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Abstract 

Keeping the local 'times of processes in a distributed system synchronized in the presence of 
arbitrary faults is important in many applications and is an interesting theoretical problem In Its 
own right. In order to be practical, any algorithm to synchronize clocks must be able to deal with 
process failures and repairs, clock drift, and varying message delivery times, but these conditions 
complicate the design and analysis of algorithms. In this thesis, a general formal model to 
describe a system of distributed processes, each of which has its own clock, is presented. The 
processes communicate by sending messages to each other, and they can set timers to cause 
themselves to take steps at some future times. It is proved that even if the clocks run at a perfect 
rate and there are no failures, an uncertainty of e in the known message delivery time makes It 
impossible to synchronize the clocks of n processes any more closely than 2e(1 - 1 /n). A simple 
algorithm that achieves this bound is given to show that the lower bound is tight. 

Two fault-tolerant algorithms are presented and analyzed, one to maintain synchronization 
among processes whose clocks initially are close together, and another to establish 
synchronization in the first place. Both handle drift in the clock rates, uncertainty in the message 
delivery time, and arbitrary failure of just under one third of the processes. The maintenance 
algorithm can be modified to allow a failed process that has been repaired to be reintegrated Into 
the system. A variant of the maintenance algorithm is used to establish the initial synchronization. 
It was also necessary to design an interface between the two algorithms since we envision the 
processes running the start-up algorithm until the desired degree of synchronization is obtained, 
and then switching to the maintenance algorithm. 
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Chapter One 

Introduction 

1.1 The Problem 

Keeping the local times of processes in a distributed system synchronized in the presence of 

arbitrary faults is important in many applications and is an interesting problem in its own right. In 

order to be practical, any algorithm to synchronize clocks must be able to deal with process 

failures and repairs, clock drift, and varying message delivery times, but these conditions 

complicate the design and analysis of algorithms. 

In this thesis we describe a formal model for a system of distributed processes with clocks, and 

demonstrate a lower bound on how closely the clocks can be synchronized, even when strong 

assumptions are made about the behavior of the system. Then we describe and analyze 

algorithms to establish and maintain synchronization under more realistic assumptions. 

We assume a collection of processes that communicate by sending messages over a reliable 

medium. Each process has a physical clock, not under its control, that is incremented in some 

relationship with real time. By adding the value of a local variable to the value of the physical 

clock, the process obtains its local time. 

The design of a clock synchronization algorithm must take into account the following factors. 

1. The uncertainty in the message delivery time~ Messages are assumed in this thesis to 
be delivered a fixed amount of time after they are sent, plus or minus some 
uncertainty. 

2. Clock drift. Are the processes' clock rates fast or slow relative to real time? If the 
clocks drift, then the synchronization procedure must be repeated periodically to 
keep the clocks synchronized. 

3. Are the clocks initially synchronized? If they are, then the problem of synchronizing 
the clocks is already solved unless the clocks drift, since once nondrifting clocks are 
synchronized1 they stay synchronized. 

4. Fault tolerance. What kinds of faults (if any) are toJeJiated? This thesis does not 
consider communication link failures. A certain proportion of the processes, 
however, may be faulty in the worst possible way, by sending arbitrary messages at 
arbitrary times. 

;:, __ 
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5. Digital signatures. Can a faulty process forge a message from another process? If 
digital si~natures are available, then proc~ p can tell process q that it received a 
message x from process r, only if such was actuaHy the case. This obviously reduces 
the power of a faulty process to create havoc. Some of the other clock 
synchroni~ation algorithms in the literature [5, 7) need this capability, but ours do not. 

6. Reintegration. In order to be practical, a synchronization algorithm must allow faulty 
processes that have recovered to be reintegrated into the system. 

7. Size of the adjustment. Particularly when the synchronization procedure is 
performed periodically, the amount by which the clock is changed should not be too 
big. 

1.2 Results of the Thesis 

1.2.1 Model 

One of the contributions of this thesis is a precise formal model of a system of distributed 

processes, each of which has its own clock. Within the model, lower bound proofs can be seen to 

be rigorous, and the effects of algorithms, once they are stated in a language that maps to the 

model, can be discerned unambiguously. The model is described in Chapter 2. 

We model the situation in which each process has a physical clock that is not under its control. 

By adding some value to the physical clock time a process obtains a local time. A process can set 

a timer to go off at a specified time in the ruture. Formally, timers are treated similarly to 

messages between processes. The system is interrupt-driven in that a process only takes a step 

when a message arrives. The message may come from another process, or it may be a timer that 

was set by the process itself. Thus, by using a timer, a process can ensure that an interrupt will 

occur at a specified time in the future. 

A process is modelled as an automaton, with states and a transition function. One of the 

arguments to the transition function is a real number, representing the time on the process' clock. 

Clocks are modelled as real-valued functions from real time to clock time. We assume that the 

communication network is fully connected, so that every process can send a message directly to 
I 

every other process. Processes possess the capability of broadcasting a message to all the 

processes at the same time. The message system is described as a buffer that holds messages 

until they are delivered. AU messages are delivered within a fixed amount of time plus or minus 

some uncertainty. The delivery of a message at a process is the only type of event we consider. A 

system execution consists of sequences of "actions", each of which is a process event 
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surrounded by a description of the state of the system, one sequence for each real time of 

interest. The sequences must satisfy certain natural consistency and correctness conditions. 

1.2.2 Lower Bound 

Even if the simplifying assumptions are made that clocks run at a perfect rate and that there are 

no failures, the presence of an uncertainty of e in the message delivery time alone prevents any 

algorithm from exactly synchronizing clocks that initially have arbitrary values. We show in 

Chapter 3 that 2e(1 - 1 /n) is a lower bound on how closely the clocks of n processes can be 

synchronized in this case. Of course, in this case, any algorithm which synchronizes the clocks 

once causes them to remain synchronized. However, since these are strong assumptions, this 

lower bound also holds for the more realistic case in which clocks do drift and arbitrary faults 

occur. Just to show that this bound is tight, we describe an algorithm that achieves this bound for 

the simplified case. 

1.2.3 Maintaining Synchronization 

We describe a synchronization algorithm in Chapter 4 that handles clock drift, uncertainty in the 

message delivery time and arbitrary process faults. The algorithm requires the clocks to be 

initially close together and less than one third of the processes to be faulty. 

Our algorithm runs in rounds, resynchronizing every so often to correct for the clocks drifting out 

of synchrony, and using a fault-tolerant averaging function based on those in [1] to calculate an 

adjustment. The size of the adjustment made to a clock at ea<:h round is independent of the 

number of faulty processes. At each round, n2 messages are required, where n is the total 

number of processes. The closeness of synchronization achieved depends only on the initial 

closeness of synchronization, the message delivery time and its uncertainty, and the drift rate. 

Since the closeness of synchronization depends on the initial closeness, this is, in the terminology 

of [7], an interactive convergence algorithm. We give explicit bounds on how the difference 

between the clock values and real time grows. The aigorithm can be easily adapted to become a 

reintegration procedure for repaired processes. 

At the beginning of each round, every nonfaulty process broadcasts its clock value and then waits 

a bounded amount of time, measured on its logical clock, long enough to ensure that clock values 

are received from all nonfaulty processes. After waiting, the process averages the arrival times of 

all the messages received, using a particular fault-tolerant averaging function. The resulting 

average is used to calculate an adjustment to the process' clock. 
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The fault-tolerant averaging function is derived from those used in [1] for reaching approximate 

agreement. The function is designed to be immune to some fixed maximum number, f, of faults. tt 

first throws out the f highest and f lowest values, and then applies some orcfmary averaging 

function to the remaining values. We choose the midpoint of the range of the remaining values, to 

be specific. The properties of the fault-tolerant averaging function allow the distance between the 

clocks to be halved, in a rough sense, at each round. Consequently, the averaging function can 

be considered the heart of the algorithm. 

This algorithm can maintain a closeness of synchronization of approximately 4t, where e is the 

uncertainty in the message delivery time. 

1.2.4 Establishing Synchronization 

The problem solved by the algorithm in Chapter 4 is only that of maintaining synchronization of 

local times once it has been established. There is, of course, the separate problem of establishing 

such synchronization in the first place among processes whose clocks have arbitrary values. A 

variant of the maintenance algorithm can be used to establish the initial synchronization as well 

and is described in Chapter 5. The algorithm handles arbitrary failures of the processes, 

uncertainty in the message delivery time, and clock drift. It was also necessary to design an 

interface between the two algorithms since we envision the processes running this algorithm until 

the desired degree of synchronization is obtained, and then switching to the maintenance 

algorithm. 

The structure of the algorithm is similar. to that of the algorithm which maintains synchronization. 

It runs in rounds. During each round, the processes exchange clock values and use the same 

fault-tolerant averaging function as before to calculate the corrections to their clocks. However, 

each round contains an additional phase, in which the processes exchange messages to decide 

that they are ready to begin the next round. 

This algorithm also synchronizes the clocks to within about 4e. Again, the fault-tolerant averaging 

function used in the algorithm causes the difference in the clocks to be cut in half at each round. 
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1.3 Related Work 

The problem of synchronizing clocks has been a topic of interest recently. A seminal j,aper was 
' 

Lamport's work'[6], defining logical clocks and describing an algorithm to synchronize them. 

Several algorithms to synchronize real time clocks have appeared in the literature (5, 6, 7, 9}. 

Those of Lamport [6] and Marzullo [9] have the processes updating their clocks whenever they 

receive an appropriate message; these messages are assumed to arrive every so many real 

seconds, or more often. In contrast, the algorithms in Hal~rn. Simons and Strong [5], Lamport 

and Melliar-Smith [7], and this thesis run in rounds. During a round, _a process updates its clock 

once. The rounds are determined by the times at which different processes' local clocks reach 

the same times. There is an impossibility result due to Dolev, Halpern and Strong [2], showing 

that it is impossible to synchronize clocks without digital signatures if one third or more of the 

processes are subject to Byzantine failures. Dotev, Halpern and Strong's paper (2) also contains 

a lower bound similar to ours (proved independently), but characterizing the closeness of 

synchronization obtainable along the real time axis, that is, a lower bound on how closely ·tn real 

time two processes' clocks can read the same value. 

The three algorithms of Lamport and Melliar-Smith [7], as well as our maintenance algorithm, 

require a reliable, completely connected communication network, and handle arbitrary process 

faults. The first algorithm works by having each process at every round read all the other 

processes' clocks and set its clock to the average of those values that aren't too different from its 

own. The size of the adjustment is no more than the amount by which the clocks differ plus the 

uncertainty in obtaining the other processes' clock values. However, the closeness of the 

synchronization achieved depends on the total number of pr_ocesses, n. The message complexity 

is n2 at each round, if getting another process' clock value Is equated with sending a message. 

In the other two algorithms in [7], ea!!h process sets its clock to the median of the values obtained 

by receiving messages from the other processes. To make sure each nonfaulty process has the 

same set of values, the processes execute a Byzantine Agreement protocol on the values. The 

two algorithms use different Byzantine Agreement protocols. One of the protocols doesn't 

require digital signatures, whereas the other one does. As a result, the clock synchronization 

algorithm derived from the latter will work even if almost one half of the processes are faulty, While 

the other two algorithms in [7] can only handle less than one third faulty processes. For both of 

the Byzantine clock synchronization algorithms, the closeness of synchronization and the size of 

the adjustment depend on the number of faulty processes, and the number of messages per 

round is exponential in the number of faults. 
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The algorithm of. Halpern, Simons and Strong [5] works m the presence of any number of process 

and link failures as long as the nonfaulty processes can still communicate. It requires digital 

signatures. When a process' clock reaches a certain value (decided on in advance}, it broadcasts. 

that time. If it receives a message containing the value not too long before it reaches the value, it 

updates its clock to the value and relays the message. The closeness of synchronization depends 

only on the drift rate, the round length, the message delivery time, and the diameter of the 

communication graph after the faulty elements are removed. The message complexity per round 

is n2
. However, the size of the adjustment depends on the number of faulty processes. 

The framework and error model used by Marzullo in [9] make a direct comparison of his results 

with ours difficult. He considers intervals of time and analyzes the error probabilistically. 

The problem addressed in these papers is only that of maintaining synchronization of local times 

once it has been established. None of them explicitly discusses any sort of validity condition, 

quantifying how clock time increases in relation to real time. Only [5] includes a reintegration 

procedure for repaired processes. 



13 

Chapter Two 

Formal Model 

2.1 Introduction 

We present a formal model for describing a system of distributed processes, each of which has its 

own clock. The processes communicate by sending messages to each other, and they can set 

timers to cause themselves to take steps at some specified future times. The model is designed to 

handle arbitrary clock rates, Byzantine process failures, and a variety of assumptions about the 

behavior of the message system. 

The advantages of a formal model are that lower bound proofs can be seen to be rigorous, and 

the effects of an algorithm, once it is stated in a language that maps to the model, can be 

discerned unambiguously. 

This model will be used in subsequent chapters to describe our particular versions of the clock 

synchronization ·problem. 

2.2 Informal Description 

We model a distributed system consisting of a set of processes that communicate by sending 

messages to each other. Each process has a physical clock that is not under Its control. 

A typical message consists of text and the sending process' name. There are also two special 

messages, START, which comes from an external source and indicates that the recipient should 

begin the algorithm, and TIMER, which a process receives when Its physical clock has reached a 

designated time. 

A process is modelled as an automaton with a set of states and a transition function. The 

transition function describes the new state the process enters, the messages it sends out, and the 

timers it 'Sets for itself, alt as a function of the process' current state, received message and 

physical clock time. An application of the transition function constitutes a process step, the only 

kind of event in our model. 
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The system is interrupt-driven in that a process only takes a step when a message arrives. The 

message may come from another process, or it may be a TIMER message that was sent by the 

process itself. Thus, by using a TIMER message, a process can ensure that an interrupt will occur 

at a specified time in the future. We neglect local processing time by assuming that the 

processing of an arriving message is instantaneous. 

We assume that the communication network is fully connected, so that every process can send a 

message directly to every other process. Processes possess the capability of broadcasting a 

message to all the processes at one step. The message system is described as a buffer that holds 

messages until they are delivered. 

System histories consist of sequences of "actions .. , each of which is a process event surrounded 

by a description of the state of the system, one sequence for each re8I time of interest. The 

sequences must satisfy certain natural consistency and correctness conditions. We introduce the 

notion of "shifting" the real times at which a particular process' steps occur In a history and note 

the resulting changes to the message delivery times. F•naHy, we define an execution to be a 

history in which the message system behaves as desired. 

2 .3 Systems of Processes 

Let P be a fixed set of process names. Let X be a fixed set of message values. Then M, the set of 

messages, is {START, TIMER} U (Xx P). A process receives a START message as an external 

Indication of the beginning of an algorithm. A process receives a TIMER message when a 

specified time has been reached on its physical clock. All other messages consist of a message 

value and a process name, indicating the sender of the measage. 

Let c:f (S} denote the finite subsets of the set S. 

A process p is modelled as an automaton. It has a set Q of states, with a distinguished subset I of 

initial states, and a distinguished subset F of final states. It has a transition function, ", where 'r: Q 

x IR x M - Q x c:f (X x P) x c:f (11). The transition function maps p's state, a real number indicating its 

physical clock time, and an incoming message, all to a new state for p, a finite set of (message 

value, destination) pairs, and a finite set of times at which to set timers. For any r in II, min M, Yin 

c:f(X x P), and Zin ~(fl}, if q is in F and if 'r(q,r,m) = (q',Y,Z), we require that q' also be In F. That is, 

once a process is in a final state, it can never change to non-fmal state. 

--- ---------------~----
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We assume that, in the absence of non-TIMER messages, a process does not set an infinite 

sequence of timers for itself within a finite amount of time. To state this condition formally, we 

choose any time r1 and state q1 for p, and consider the f?llowing sequence of applications of.,. P: 

Then as i approaches oo, it must be that ri approaches CO. 

We define a step of p to be a tuple (q,r,m,q' ,Y,Z) such that T(q,r,m) • (q' ,Y,Z). 

A clock is a monotonically increasing, everywhere differentiable function from IR (real time) to IR 

(clock lime). We will employ the convention that clock names are capitalized and that the inverse 

of a clock has the same name but is not capitalized. Also, real times are denoted by small letters 

and clock times by capital letters. 

A system of processes, denoted (P,N,S), consists of a set of processes, one for each name in P, a 

nonempty subset N of P called the nonfaulty processes, and a nonempty subset S of P called the 

self-starting processes. (We will use P to denote both.the set of names and the set of processes, 

relying on context to distinguish the two.) The nonfaufty processes represent those processes 

that are required to follow the algorithm. The self -starting processes are intended to model those 

that will begin executing the algorithm on their own, without first receiving a message. A system 

of processes with clocks, denoted (P,N,S,PH), is a system of processes {P,N,S) together with a set 

of clocks PH = {PhP}, one for each p in P. Clock PhP is called p's physical clock. The transition 

function for pis denoted by.,. p' Throughout this thesis we assume IPI = n. 
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2.4 Message System 

We assume that every process can communicate directly with every process, (including itself, for 

uniformity) at each step. The message system is modefled by a message buffer, which stores 

each message, together with the real times at which it is sent and delivered. For technical 

convenience, we do not require that messages be sent before being received. This correctness 

condition is imposed later. 

A state of the message buffer consists of a muttiset of tuples, each of the form (p,x,q) or 

(TIMER,T,p) or (START,p), with associated real times of sending and delivery. The message (x,p) 

with recipient q is represented by (p,x,q). (TIMER,T,p) indicates a timer set for time T on p's 

physical clock. (START,p) represents a START message with pas the recipient 

An initial state of the message buffer is a state consisting of some set of ST ART messages. The 

sending and delivery times are all initialized as oo. 

The behavior of the message buffer is captured as a set of sequences of SEND and RECEIVE 

operations, each operation with its associated real time. Each operation involves a message 

tuple. The result of performing each operation is described below. 

SEND(u,t): the tuple u is placed in the message buffer with sending time t and delivery time oo as 

long as there is no u entry already in the message buffer with sending time oo. If there is, then t is 

made the new sending time of the u entry with the earliest delivery time and sending time oo. 

RECEIVE(u,t): the tuple u Is placed in the message buffer with delivery time t and sending time 

oo, as long as there is no u entry already In the message buffer with delivery time oo. If there Is, 

then t is made the new delivery time of the u entry with the earliest sending time and delivery time 

00, 

The message delay of a non· ST ART message is the delivery time minus the sending time. A 

positive message delay means the message was sent before it was delivered. A negative message 

delay means the message was delivered before it was sent. A message delay of + oo means the 

message was sent but never delivered, and a message delay of -00 means the message was 

deUvered, but never sent. (The message delay is not defined for START messages that are never 

delivered.) 
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2.5 Histories 

In this section we define a history, a construct that models a computation in which· nonfaulty 

processes follow their state-transition functions. Constraints to ensure that the message system 

behaves correctly will be added in Section 2.8. 

Fix a system of processes and clocks 'J = (P ,N,S,PH). 

An event for P is of the form receive(m,p), the receipt of message m by process p, where p is in 

P. A schedule for Pis a mapping from IR (real times) to finite sequences of events for P such that 

only a finite number of events occur before any finite time, and for each real time t and process p, 

all TIMER events for p are ordered after all non-TIMER events for p. The first condition rules out a 

process taking an infinite number of steps in a finite amount of time, an.d the second condition 

allows messages that arrive at the same time as a timer goes off to get in "just under the wire". 

In order to discuss how an event affects the system as a whole, we define a configuration for P to 

consist of a state for each process in Panda state for the message buffer. An initial configuration 

for (P,N,S) consists of an Initial state for each process and an initiat state for the message buffer. 

An action for Pis a triple (F,e,F'), consisting of an event for P and two configurations F and F' for 

P. Fis the preceding and F' the succeeding configuration for the action. 

A history for 'J is a mapping from real times to sequences of actions for (P,N,S) with the following 

properties: 

• the projection onto the events is a schedule; 

•if the sequence of actions is nonempty, then the preceding configuration of the first 
action is an initial configuration, and the succeeding configuration of each action is 
the same as the preceding configuration of the following action; 

• if an action {F,receive(m,p),F') occurs at real time t, then F • F' except for p's state 
and the state of the message buffer; moreover, there exist Y in CJ(X x P) and Z In CJ(ll) 
such that the buffer in F' is obtained from the buffer in F by executing the following 
operations: 

o if m =START, then RECEIVE((START,p),t); 
if m :: TIMER, then RECEIVE((TlMER,Ph (t),p),t); 
if m = (x,p') for some p', then RECEIVE(G,1 ,x,p),t); 

o SENO((p,x,p'),t) for all messages of the form (x,p') in Y; 

o SEND((TIMER,T,p),t) for all Tin Z such that T > r (that is, as long as the timer is 
set for a future time); if T ~ r, then no operation is performed. 
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Furthermore, if p is in N, then (q,r,m,q' ,Y,Z) is a step of p, where q is p's state in F, r = 
PhP(t), and q' is p's state in F'. 

The first condition merely ensures that only a finite number of occurrences take place by any 

finite time. The second condition states that the configurations match up correctly. The final 

condition causes the configurations to change according to the process' transition function, if it is 

nonfaulty. Since a faulty process need not obey its transition function, it can send any messages 

and set any timers. 

Given :r, an initial configuration F, and a schedules, a history can be constructed inductively by 

starting with F and applying the transition functions as specified by the events ins to determine 

the next configuration. We will denote the history so derived by hist(s,F,:f). 

Define, for each process p and history h, first-step(h,p) = min{t: h(t) contains an event for p}. 

This is the earliest time at which a step is taken by pin h. If p never takes a step, then first­

step(h,p).is oo. Let first-step(h) = minp€P{first·step(h,p)}. This is the earliest time at which any 

process takes a step in h. Similarly, define, for each history h and nonfaulty process p, 

last-step(h,p) = min{t: h(t) contains a configuration in which pis in a final state}. This Is the 

earliest time at which pis a final state. Define last-step(h) • maxp€P{last·step(h,p)}. This Is the 

earliest time in h after which all nonfaulty processes are in final states. If some p in N never enters 

a final state in h, then last-step(h,p) and last-step(h) are oo. 

·2.6 Chronicles 

In order to isolate the steps of an individual process in a history from the real times at which they 

occur, we define a chronicle. 

The chronicle of nonfaulty process p in history h is the sequence of tuples of the form 

(q1,r1,ml'q1'.Y1,Zi> which is derived as follows: if the I-th action for p occurs in h(t), then m1 is the 

message received in that action, q1 is the state of p in the preceding configuration of the action, r1 

is p's physical clock reading at real time t, qi' is the state of p in the succeeding configuration, Y1 is 

the collection of messages to be sent to the message buffer, and Z1 is the collection of timers to be 

set. We know that each tuple is a step of p. 

Two histories, h for :r = (P,N,S,PH) and h' for :r' = (P,N,S,PH'), are equivalent if, for each process 

p in N, the chronicle of p in h is the same as the chronicle of pin h'. 
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2. 7 Shifting 

Given a schedule S, nonfaulty process p, and real number r I define a new schedule s' = 
shift(s,p,n to be the same ass except that an event for p appears in s'(t) if and only if the same 

event appears in s(t + n, and the order of events for p is preserved. The result s' can easily be 

seen to be a schedule also. All events involving p are shifted earlier by r if r is positive, and 

shifted later by -r if r is negative. 

A set of clocks PH = {Phq}qEP can also be shifted. Let PH' = shift(PH,p,n for pin N be the set of 

clocks defined by PH' = {Phq'}qEP where Phq'(t) = Phq(t) if q ¢ p, and Php'(t) = Php(t) + r. 
Process p's clock has been shifted forward by r, but no other clocks are altered. 

Lemma 2-1 states that if a schedule and a set of clocks are shifted by the same amount relative to 

the same process, then the histories derived from those schedules and sets of clocks starting 

from the same initial configuration are equivalent. 

Lemma 2· 1: Let '! = (P,N,S,PH) and '! • 11 (P,N,S,PH'), where PH' .. shift(PH,p,f) for 
some process p and real number r. Lets be a schedule for P ands' = shlft(s,p,!). Let 
F be an initial configuration for '!and '! '. Then the history hist(s,F ,1) = h is equivalent 
to the history hist(s' ,F,'! ') • h'. 
Proof: Let q be an arbitrary process in N. It suffices to show that the chronicle of q in h 
is the~ as the chronicle of q in h'. 

Case 1: q ¢ p. We proceed by induction on the elements of the chronicles. Let q's 
chronicle in h be (mi'qci'Ph (t1),qn1,Yi'Z~ and in h' be (m1',qc1',Phq'(~'),qn1',Y1',Z1'). (qc 
stands for current state, qn ror next state.) 

Basis: i = 1. Then t1 • first-step(h,q) and t1' • first-step(h' ,q). By construction of h', 
these real times are the same. Therefore, m1 = m1 '. Since F iS the Initial configuration 
in both hand h', qc1 • qc1'. Ph (t1) • Ph~'(t/) since Phq • Phq' by construction. 
Finally I qn1 = qn 1 'I y 1 II y 1 '• and z1 = z1 I since .,. Q is deterministic and the Inputs are 
the same. 

lnductio.n: Assume the elements are the same up to I - 1, and show that the I-th 
elements are the same. Again, m1 = mi' by construction of h'; qc1 • qc1' by the 
induction hypothesis since qc1 • qn1_1 = qn1_1' • qc1'; Phq(~) • Phq'(t1') ~ before; 
finally qn1 • qn1', Yi • Y1', and~ • Z1' because.,. q is determmlstic. 

Case 2: q = p. Again we proceed by induction on the elements of the chronicles. Let 
p's chronicle in h be (m1,qci,Php(ti),qni,Yi,Zi) and in h' be (mi' ,qc1' ,Php'(t1'),qn1' ,Y1',Z1'). 

First we note that by construction, t1 = ti' + r for all i. 

Basis: i = 1. By construction, m1 = m1'. Since Fis the initial configuration in both h 
and h', qc1 = qc1'. Php(t1) = P~'(t1 ') since Php(t1) • Ph

1
/(tff> • Ph '(t1'+ f-r>, 

Finally, qn1 = qn1 ', Y 1 • Y 1', and z.1 ... Z1' since .,. P is deterministic and thg inputs are 
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the same. 

Induction: assume the elements are the same up to i - 1, and show that the i-th 
elements are the same. m. = m.' by construction of h'; qc. ,.. qc.' by the induction 

I I I I 

hypot~esis; Php(ti) = PhP'(~:> ~Y the ~me argll,"'~~t as in the basis case; and again qn1 = qni I yl = Yi I and zi • zi since .,. p IS deterministic. I 

The next lemma quantifies the changes to the message delays in a history when its schedule and 

set of clocks are shifted by the same amount relative to the same process. 

Lemma 2·2: Let'! = (P,N,S,PH) and '!' = (P,N,S,PH'), where PH' = shift(PH,p,f) for 
some pin P and real number f. Lets be a schedule for P ands' = shift(s,p,f). Let F 
be an initial configuration for '! and '! '. Then there is a one-to-one correspondence 
between the tuples in the message buffer in h = hist(s,F,'!) and h' = hist(s',F,'! '),and 
the message delays for corresponding elements will be the same in the two histories (if 
defined) except for two cases: 

1. if the delay for any tuple of the form (p,x,q) is p. in h for any process q * p and 
message value x, then the delay for the corresponding element in h' will be I' + 
f;and 

2. if the delay for any tuple of the form (q,x,p) is I' In h for any process q * p and 
message value x, then the delay for the corresponding element in h' will be p. -
r. 

Proof: By Lemma 2-1, hand h' are equivalent. Therefore, the chronicles of all the 
processes are the same. The same messages are sent and received at the same 
physical clock times in h' and h. Also, the message buffers have the same START 
elements since the initial configuration is the same for both. Therefore, each element 
of the message buffer in h has a corresponding one In h' and vice versa. 

ST ART messages are still either received at some finite time or not, thus ST ART 
elements have the same delays in the two histories. Since only p's clock is shifted, the 
clocks of the other processes will bear the same relationship to real time in h' as in h, 
causing the delays for Rle88ages between processes other than p and the delays of 
timers tor processes other than p to be the same in the two histories. The delays of 
timers for p will be the same as well, since they are both set and received ! earlier In h' 
than in h. 

Chooseq ~ p. 

I 

1. Suppose (p,x,q) is sent at t and received at t' in h. The relationship between s 
and s' implies that (p,x,q) is sent at t - ! and received at t' in h'. Thus the 
message delay in h' is t' - (t - !) • ,,. + r. 

2. Suppose (q,x,p) is sent at t and received at t' in h. The relationship between s 
and s' implies that (q,x,p) is sent at t and received at t' - ! in h'. Thus the 
message delay in h' is t' -r-t = ".,.. r. 
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2 .8 Executions 

Now we require correct behavior of the message system. Accordingly, we define an execution to 

be a history with the necessary properties. 

We fix for the remainder of the thesis two nonnegative constants 8 and e with 8 > e. 

An execution for '!is a history for '!with four additional properties: 

• the initial state of the message buffer consists exactly of a START message for each 
process in S U (P - N), that is, for each self-starting process and each faulty process; 

• all ST ART messages for nontaulty processes are received at some finite time; 

• the message delay of any non-TIMER and non-ST ART message is between 8 - e and 
a + e inclusive; and 

•any (TIMER,T,p) element of the message buffer, for any T and p, has finite message 
delay and is delivered at PhP·1cn. 

The intent of the first condition is to model the self-starting processes as those processes that 

begin the algorithm on their own, and to allow the faulty processes to begin their bad behavior at 

arbitrary times. The second condition states that nonfaulty self-starting processes all receive their 

ST ART ~essages. The third condition guarantees that all interprocess messages arrive at their 

destinations within a of being sent, subject to an uncertainty of e. The fourth condition ensures 

that a timer goes off if and only if it was previously set and that It goes off at the right time. 

2.9 Logical Clocks 

Each process p has as part of its state a local variable CORR, which provides a correction to its 

physical clock to yield the local time. During an execution, p's local variable CORR takes on 

different values. Thus, for a particular execution, It makes sense to define a function CORRP(t), 

giving the value of p's variable CORR at time t For a particular execution, we define the local 

time for p to be the function LP, which is given by PhP + CORRP. 

A logical clock of p is PhP plus the value of CORRP at some time. Let cD P denote the initial logical 

clock of p, given by PhP plus the value of CORRP in p's initial state. Each time p adjusts its CORR 

variable, it is, in effect, changing to a new logical clock Ci for some i. The local time can be 
. p 

thought of as a piecewise continuous function, each of whose pieces is part of a logical clock. 
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Chapter Three 

Lower Bound 

3.1 Introduction 

In this chapter, we show a lower bound on how closely clocks can be synchronized, even if the 

clocks don't drift and no processes are faulty. Since these are strong assumptions, this lower 

bound also holds for the more realistic case in which clocks do drift and arbitrary faults occur. 

Just to show that the bound is tight, we present a simple algorithm that synchronizes the clocks 

as closely as the lower bound. 

3.2 Problem Statement 

For this chapter alone we make the following assumptions: 

1. clocks don't drift, i.e. dCP(t)/dt • 1 for all p and t; 

2. all processes are nonfautty, i.e. N = P. Therefore, we will omit "N" from the notation. 

Since the processes have physical clocks which are progressing at the same rate as real time, the 

only part of the clock synchronization problem which is of interest is the problem of bringing the 

clocks into synchronization •• once this has been done, synchronization is maintained 

automatically. 

A clock synchronization algorithm (P,S) is y,a-correct if every execution h for {P,S,PH), for any set 

of clocks PH, satisfies the following three conditions: 

1. Termination: All processes eventualty enter final states. Thus, last·step(h) is defined. 

2. Agreement: IL (t) - Lq(t)I S y for any processes p and q and time t > last-step(h). 
We say h synctfronizes to within y. 

3. Validity: For any process p there exist processes q and r such that c0q(t) - a < LP(t) 
:s; c<>r{t) + a for all times t > fast-step(h). This ensures that p's new logical clock 
isn't too much greater (or smaller) than the largest (or smallest) old logical clock 
would have been at this time. We say h bounds the adjustment within a. 

We will show that no algorithm can be y,a-correct for 'Y < 2e(1 - 1/n) and any a, where e is the 
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uncertainty in the message delivery time and n is the number of processes. Then we exhibit a 

simple algorithm that is 2e(1 - 1 /n),e·correct. 

3.3 Lower Bound 

In this section we show that no algorithm can synchronize n processes' clocks any closer than 

2e(1 -1/n). 

Theorem 3· 1: No clock synchronization algorithm can synchronize a system of n 
processes to within y, for any y < 2e(1 -1/n). 

Proof: Fix a system of processes (P,S) that synchronizes to within y. We will show that 
y ~ 2e(1 -1/n). 

Let P consist of processes p1 through Pn· Consider the syste~ 11 = (P,S,PH1). 

Consider an execution h1 = hist(s1,F,11), for some schedule s1 and initial 
configuration F, of any clock synchronization algorithm In which all messages from pi 
to pk have delay a - e if k > j, have delay 8 + e if k < i. and have delay a if k • j. . 

Consider n -1 additional histories, h2 for system 12 through h
0

for1
0

• The systems are 
constructed inductively by letting PHi = shift(PHl-1'pi-1,2e) and ~ • (P,S1PH1). The 
histories are constructed inductively by letting s1 • shift(Si.1,pi-1'2e). and h1 • 
hist(s1,F,:f1). Stated informally, the i·th history iS obtained from the (i-1)-st history by 
shifting the schedule and set of clocks by 2e relative to the (i-1 )-st process. Let Phip 
be p's physical clock in PHr 

By Lemma 2-1, all the h1 are equivalent. 

Next we show by induction on I that hi is an execution for :ri' and further, that the delays 
in h1 for messages from Pr to pk are 8 + e if j < i and k ~ i, a - e if j ~ I and k < I, 
otherwise aa in h1. 

Basis: h1 is an execution and the message delays are as required by hypothesis. 

Induction: Assume hi is an execution with the required message delays, and show that 
hi+ 1 is also an execution with the required message defays. 

• The initial state of the message buffer is the same in h1+1 as in h1, since both 
use initial configuration F. Thus the initial state is as required. 

• The ST ART messages are all received in h1+1 as they are in hr 

• By Lemma 2·2, a message in hi+ 1 from p1 to Pm' m >I, will have delay 8 - e + 2e 
= 8 + e; one from p1 to Pm' m < i, wilt have delay 8 - e + 2e = 8 + e; one from 
Pm to pi' m > i, will have delay 8 + e - 2e = 8 - e; and one from Pm to pi' m < i, 
will have delay 8 + e - 2e = 8 - e. The others stay the same. Thus the delays 
are within the correct range. 

•Now we need to show that timers are handled properly in hi+ 1. Lemma 2-2 
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implies that the message delays are the same in h. 
1 

as in h., thus they are 
I+ I 

finite. For all processes except pi' the timers arrive at the same real times and 
the same clock times in h. 

1 
as in h., and thus they arrive at the proper times in 

I+ I · 
hi+ 1. Consider a timer set by p1 for T th~t arrives at T • Ph' P. (t) in hr In h1 + 1 it 
arrives at t + 2e. However, since Ph'+ 1 (t + 2e) ,. Ph1 (t) ,. T, the timer 
arrives at the proper time in h

1
+

1
. Pi Pi 

Therefore, hi is an execution for !f'r 

Since h1 was correct, it terminated; therefore, hi also terminates. Let ~ • 
maxi= 1_.n{last·step(hi)}. In execution h1, the algorithm synchronizes all the processes' 
clocks to values v1 through vn at time~· and all the values are within y. In particular, 

Since h1 is equivalent to h1_1, the correction variable for any process p will be the same 
in both executions at time~· The value of pi_1 's logical clock at~ will be v1_1 + 2e and 
the value of p1's logical clock at~ will be v1 by the way PH1 Is defined. Since these 
values are within y, we have 

Putting together this chain of inequalities, we have 

vnSv1 + ys; ... <vi+ (i-1)(y-2e) + ys; ... Svn + (n-1)(y-2e) + y. 

Therefore, vn < vn + (n - 1)(y - 2e) + y, and so 0 < (n -1)y- (n -1)2e + y. In order 
for this inequality to hold, it must be the case that y ~ 2s(1 - 1/n). I 

·3.4 Upper Bound 

In this section we show that the 2e{1 - 1 /n) lower bound is tight, by exhibiting a simple algorithm 

which synchronizes the clocks to within this amount 

3.4.1 Algorithm 

There is an extremely simple algorithm that achieves the closest possible synchronization. As 

soon as each process p receives a message, it sends its local time in a message to the remaining 

processes and waits to receive a similar message from fNery other process. lmmediatety upon 

receiving such a message, say from q, p estimates q's current local time by adding 6 to the value 

received. Then p computes the difference between its estimate of q's local time and its own 
current local time. After receiving local times from all the other processes, p takes the average of 

the estimated differences (including O for the difference between p and itself) and adds this 

average to its correction variable. Note that in contrast to many other agreement algorithms, in 
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this one each process treats itself non-uniformly with the others. 

Since it is obviously impractical to write algorithms in terms of transition functions, we have 

employed a clean, simple notation for describing interrupt-driven algorithms. To translate this 

notation into the basic model, we first assume that the state of a process consists of values for all 

the local variables, together with a location counter which indicates the next beginstep statement 

to be executed. The initial state of a process consists of the indicated initial values for all the local 

variables, and the location counter positioned at the first beginstep statement of the program. 

The transition function takes as inputs a state of the process, a message, and a physical time, and 

must return a new state and a collection of messages to send and timers to set. This is done as 

follows. The beginstep statement is extracted from the given state. The local variables are 

initialized at the values given in the state. The parameter u is set equal to the message. The 

variable NOW is initialized at the given physical time + CORR. The program is then run from the 

given beginstep statement, just until It reaches an endstep statement. (If it never reaches an 

endstep statement, the transition function takes on a default value.) The next beglnstep after that 

endstep, together with the new values for all the local variables resulting from running the 

program, comprise the new state. The messages sent are all those which are sent during the 

running of the program, and similarly tor the timers. 

There is a set-timer statement, which takes an argument U representing a logical time. The 

corresponding physical time, U-CORR, is the physical time described by the transition function. 

{This statement is not ustl(i in this algorithm but will be used later In the thesis.) 

We will use the shorthand NOW to stand for the current logical clock time and ME for the Id of the 

process running the code. 

For this algorithm, initial states are those in which the location counter is at the beginning of the 

code, local variables CORR and V have arbitrary values, and local variables SUM and 

RESPONSES have value O. Anal states are those in which the location counter is at the end of 

the code. 

The code is in F'rgure 3-1. 

We will show that any execution h of Algorithm 3-1 is y ,a-correct, where y = 2t{1 - 1 /n) and a • 

t. Thus, Algorithm 3-1 synchronizes the clocks to within 2t{1 - 1 /n), showing that the lower 

bound is tight. The upper bound isn't as unintuitive as it might look at first glance; it can be 
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beginstep(u) 
send(NOW) to all q ~ ME 

do forever . 
if u = (v,q) for some message value v and process q then 

V := v + 8 - NOW 
SUM := SUM + V 
RESPONSES := RESPONSES + 1 
end if 

if RESPONSES = n - 1 then exit endif 
endstep 
beginstep(u) 
enddo 

CORR := CORR + SUM/n 
endstep 

Figure 3· 1 :Algorithm 3-1, Synchronizing to within the,Lower Bound 

rewritten as (2e + (n - 2)2e)/n, the average of the discrepancies in the estimated differences. 

The estimated differences of two processes for each other can differ by at most e apiece (giving 

the 2e term), and their estimated differences for the other n - 2 processes can differ by up to 2e 

apiece (giving the (n - 2)2e term). Then the estimated differences are averaged, so the sum Is 

divided by n. A more careful analysis is given below. 

3.4.2 Preliminary Lemmas 

The next two results follow easily from the assumption that clocks don't drift. 

Lemma 3·2: For any p and I ~ 0, d P(t') - d P(t) = t' -t. 

Proof: Immediate since the slope of C1P is 1. I 

Lemma 3·3: For any p and q, i ~ 0, and times t and t' I c1p(t')-C1q(t') = C1p(t)-C1q(t). 

Proof: C1P(t') - C1P(t) • t' - t = C1q(t') - C1q(t) by two applications of Lemma 3-2. The 
result follows. I . 

Now we can define the initial difference between two processes' clocks in execution h. Define 

Apq to be cO P(t) - cO q (t). That is, Apq is the difference in local times before either of the processes 

has changed its correction variable. Since there is no drift in the clock rates, any time will give the 

same value. 

Lemma 3·4: For any execution h, and processes p and q, Apq = -Aqp' 
Proof: Immediate from the definition of A. I 
Lemma 3·5: For any execution h, and processes p, q, and r, Apq = Apr + Arq. 

Proof: Immediate from the definition of A. I 

-----------· ----------------
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3.4.3 Agreement 

For q *- p, let V qp be the value of variable V in the code when q's message is being handled by p. 

V qp = Lq{t) + 8 - LP{t'), where local time Lq(t) was sent by q at real time t and received by pat real· 

time t'. Let V PP = O. We will denote SUM/n, p's addition to its correction variable, by AP. 

First we relate the estimate V qp to the actual value Aqp· 

Lemma 3·6: IVqp-Aqpl Se. 
Proof: Suppose at real time t, q sent the value L (t), which was received by pat real 
time t'. Then q 

IV qp - Aqpl = ILq{t} + 8 - Lp{t'} -Aqpl = ic0 q{t) + 8 - cD p{t'} - Aqpl 

• 1c0 P(t) + Aqp + 8 - cD P(t') - Aqpl' by de_finitlon of Aqp 

= 1c0 P{t} - cD P(t') + 81 

= It - t' + 81, by Lemma 3-2 

= 18 - Ct' - t>I 

S 18 - (8 - e)I, since 8 - e is the smallest message delay 

• e. I 

Here is the main result. 

Theorem 3· 7: (Agreement) Algorithm 3· 1 guarantees clock synchronization to within 
2e{1 -1/n). 

Proof: We must show that for any execution h, any two processes p and q, and all 
times t after last-step(h), 

Without loss of generality, assume p • p1 and q • p2, so that the remaining processes 
are p3 through p

0
• By the way the algorithm works, 

ILP(t) - LqCt>I = 1<c0 P(t} + AP)- cc0 q(t} + Aq}I = IApq + AP - Aql· 

We know by definition of AP and Aq that 

AP= (1/n)(Vpp + vqp + Iiz:3 .. nvp.p) and 
I 

Aq = (1/n)(Vpq + Vqq + I 1,. 3 •. nvp~). 
I 

Substituting these values and noting _that V PP • V qq • 0, we get 

ILP(t) - Lq(t}I = IApq + (1 /n)(V qp + Ii,. S .. n V p.p - V pq - I 1=3 .. n V p.q>I 
I I 
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= (1 /n)lnApq + V qp + l':i = 3 .. n V pip - V pq - l':i = 3 .. n V plql 

= (1 /n)j(Apq + V qp) + (Apq - V pq) + l':i = 3 .. n<Apq + V PiP - V P;q)I 

S (1 /n)(JApq + V qpl + IApq - V pql + :Ei = a .. nlApq + V PiP - V p
1
qD 

S (1 /n)(e + e + l':. 
3 

IA + V - VP I), by Lemmas 3-6 and 3·4 •= .. n pq P1P iq 

= (1 /n)(2e + Ii= 3 .. nlAPPi + Apiq + V PiP - V piql), by Lemma 3-5 

= (1/n)(2e + I._ 3 l(V P-A )- (V q-A q>D' by Lemma 3-4 
1- .. n Pi P1P Pi P1 

S (1 /n)(2e + Ii= 3 .. nlV P1P - AP1PI + Ii= 3;.nl·(V Pf! - Aplq)I) 

S (1/n)(2e + Ii=a .. ne + I 1=a .. ne), by Lemma3-6 

S (1 /n)(2e + (n - 2)2e) 

= 2e(1 -1/n). I 

3.4.4 Validity 

The validity result states that each new logical clock is within e of what one of the initial logical 

clocks would have been. 

Theorem 3·8: (Validity) Algorithm 3· 1 bounds the adjustment within e. 
Proof: By definition, the amount to be added to CORR is ~P • (1/n) IaEPVqp. Then 
minqEPVqp <AP< maxrEPVrp. Let q be the process ~h me minimum-Vqp· Let r be 
the process with the maximum V rp' Then, 

vqp s AP s vrp. 

By applying Lemma 3-6 to each end of this inequality, we get 

Aqp- e < Vqp SAPS Vrp <Arp + e. 

Adding p's initial clock value c<> P(t) fort~~· we get 

c0
p(t) + Aqp- es c<>p(t) + AP< c<>p(t) + Arp + '· 

which together with the definition of A implies 

-~-------------
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Chapter Four 

Maintenance Algorithm 

4.1 Introduction 

This chapter consists of an algorithm to keep synchronized clocks that are close together initially, 

and an analysis of its performance concerning how closely the clocks are synchronized and how 

close the clocks stay to real time. The algorithm handles clock drift and arbitrary process faults . 

The algorithm requires the clocks to be initially close together and less than one third of the 

processes to be faulty. (Dolev, Halpern and Strong (2) show that it is Impossible without 

authentication to synchronize clocks unless more than two thirds of the processes are nonfaulty.) 

This algorithm runs in rounds, resynchronizing periodically to correct for clock drift, and using a 

fault-tolerant averaging function based on those in [1] to calculate an adjustment. The size of the 

adjustment is independent of the number of faulty processes. At each round, n2 messages are 

required, where n is the total number of processes. The closeness of synchronization achieved 

depends only on the initial closeness of synchronization, the message delivery time and its 

uncertainty, and the drift rate. We give explicit bounds on how the difference between the clock 

values and real time grows as time proceeds. The algorithm can be easily adapted to include 

reintegration of repaired processes as described Jn Section 4.8. 

4.2 Problem Statement 

We are now considering the situation in which clocks can drift slightly and some proportion of the 

processes can be faulty. Therefore, the statement of the problem differs from that in Chapter 3. 

For a very small constant p > 0, we define a clock C to be p·bounded provided that for all t 

1 - p S 1/(1 + p) S dC(t)/dt < 1 + p 'S; 1/(1 -p). 

We make the following assumptions: 

1. All clocks are p·bounded, including those of faulty processes, i.e., the amount by 
which a clock's rate is faster of slower than real time is at most p. (Since faulty 
processes are permitted to take arbitrary steps, faulty clocks would not increase their 
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power to affect the behavior of nonfaulty processes.) 

2. There are at most f faulty processes, for a fixed constant f, and the total number of 
processes in the system, n, is at least 3f + 1. 

3. A ST ART message arrives at each process p at time r° on its initial logical clock d' p' 

and t0 is the real time when this occurs. Furthermore, the initial logical clocks are 
closel: synchronized, i.e., tc0 P(T0)- c0 q(r°)I < p, for some fixed p and all nonfaulty p 
andq. 

We let tmax0 = maxP nontaulty {t
0 
P} and analogously for tmin°. 

The object is to design an algorithm for which every execution in which the assumptions above 

hold satisfies the following two properties. 

1. y-Agreement: ILP(t)- Lq(t)I S y, for all t > tmin° and all nonfaulty p, q. 

2.(a1,a2,a3)-Validity: a1(t-tmax0) + r°-a3 <LP(t)<a2(t-tmin°> + r° + a3,foraJlt 
~ t0 P and aJI nonfaulty p. 

The Agreement property means that all the nonfaulty proce9ses are synchronized to within 'Y· The 

Validity property means that the local time of a nonfaulty process increases in some relation to 

real time. We would, of course, like to minimize a1, a2, Cla• and y. 

4.3 Properties of Clocks 

_We give several straightforward lemmas about the behavior of (p· bounded) clocks. 

Lemma 4-1: Let C be any clock. 

(a) If t1 S ~· then 

(1 -p)(t2-t1) < (t2-t1)/(1 + p) S C(9-C(t1) < (1 + p)(~-t1 ) S (t2-t1)/(1-p). 

(b) If T1 S T2, then 

(1-p)(T2-T1) < (T2-T1)/(l + p) s c(T2>-c<T1) s (1 +p)(T2-T1) < (T2-T1)/(1-p). 

Proof: Straightforward. I 
Lemma 4·2: Let C and D be clocks. 

(a) If dC(t)/dt = 1 and T 1 < T 2, then 

l(c(T 2) -d(T 2» - (c(T 1>-d(T 1»1 = j(c(T 2>- c(T 1» - (d(T ~ - d(T 1>)1 s p(T 2 - T 1>· 

(b) If T 1 ST 2, then " 
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l(c(T 2) -d(T 2)) - (c(T 1) - d(T 1))1 = l(c(T 2)- c(T 1)) - (d(T 2) -d(T 1))1 < 2p(T 2 - T 1). 

(c) If dC(t)/dt = 1 and t1 S t2, then 

l(C(t2)- D(t2))- (C(t1)- D(t1))f = l(C(t2)-C(t1)) - (D(t2) - D(t1))1 < p(t2 -t1). 

(d) If t1 S ~· then 

l(C(t2) - D(t2)) - (C(t1) - D(t1 ))I = l(C(t2) - C(t1)) - (D(t2) - D(t1 ))I < 2p(t2 - t1 ). 

Proof: Straightforward using Lemma 4· 1. I 

Lemma 4-3: Let C and D be clocks, T1 ST2. Assume lc(T)-d(T)I Sa for all T, T1 < 
T < T 2. Lett1 = min{c(T 1),d(T 1)} and t2 • max{c(T 2),d(T ~}. 

Then IC(t)- D(t)I S (1 + p)a for all t, t1 St S t2• 

Proof: There are four cases, which can easily be shown to be exhaustive. 

Case 1: c(T1) < t S c(T2). 

Let T 3 = C(t), so that T 1 < T 3 S T 2. By hypothesis, lc(T 3) - d(T 3)1 S a. Then IT 3 -
D(t)I S (1 + p)a, by Lemma4-1. 

Case 2: d(T 1) < t S d(T 2). This case is analogous to the first. 

Case 3: c(T ~ < t < d(T 1). 

Then c(T 1) < t < d(T 1 ). So C(t) > D(t), and thus 

IC(t) - D(t)I = C(t) - D(t) • (C(t) - T 1) + (T 1 - D(t)) 

S (1 + p)(t- c(T 1)) + (1 + p)(d(T 1) -t), by Lemma 4-1, 

= (1 + p)(d(T 1) - c(T 1)) S (1 + p)a. 

Case 4: d(T 2) < t < c(T 1). This case is analogous to the third. I 

4.4 The Algorithm 

4.4.1 General Description 

The algorithm executes in a series of rounds, the i-th round for a process triggered by its logical 

clock reaching some value T1• (It will be shown that the logical clocks reach this value within real 

time {J of each other.) When any process p's logical clock reaches rt, p broadcasts a T1 message. 

Meanwhile, p collects ti messages from as many processes as it can, within a particular bounded 

amount of time, measured on its logical clock. The bounded amount of time is of length (1 + p)(/l 
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+ 8 + e), and is chosen to be just large enough to ensure that Ti messages are received from all 

nonfaulty processes. After waiting this amount of time, p averages the arrival times of all the T1 

messages received, using a particular fault-tolerant averaging function. The resulting average is 

used to calculate an adjustment to p's correction variable, thereby switching p to a new logical 

clock. 

The process p then waits until its new clock reaches time Ti+ 1 = Ti + P, and repeats the 

procedure. P, then, is the length of a round in local time. 

The fault-tolerant averaging function is derived from those used in [1] for reaching approximate 

agreement. The function is designed to be immune to some fixed maximum number, f, of faults. It 

first throws out the f highest and f lowest values, and then applies some ordinary averaging 

function to the remaining values. In this paper, we choose the midpoint of the range of the 

remaining values, to be specific. 

4.4.2 Code for an Arbitrary Process 

Global constants: p, p, 8, e, and P, as defined above. 

Local variables: 

• CORR, initially arbitrary; correction variable which corrects physical time to logical 
time. 

• ARR[q], initially arbitrary; array containing the arrival times of the most recent 
messages, one entry for each process q. 

• T, initially undefined; local time at which the process next intends to send a message. 

Conventions: 

•NOW stands for the current logical clock time (i.e., the physical clock reading + 
CORR). NOW is assumed to be set at the beginning of a step, and cannot be 
assigned to. 

•REDUCE, applied to an array, returns the multiset consisting of the elements of the 
array, with the f highest and f lowest elements removed. 

•MID, applied to a multiset of reals numbers, returns the midpoint of the set. of values 
in the multiset. 

The code is in Figure 4-1. 



beginstep(u) 
do forever 
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1• in case Ti messages are received before this process reaches Ti •/ 

while u = (m,q) for some message m and process q do 
ARR[q] := NOW 
endstep 
beginstep(u) 
endwhila 

1• fall out of the loop when u = START or TIMER: begin round •/ 

T := NOW 
broadcast(T) 
set-timer(T + (1 + p)(/J + 8 + e)) 

while u = (m,q) for some message m and process q do 
ARR[q] := NOW 
endstep 
beginstep(u) 
endwhile 

1• fall out of the loop when u = TIMER; end round •1 

AV := mid(reduce(ARR)) 
ADJ := T + 8 - AV 
CORR :• CORR + ADJ 
set-timer(T + P) 
end step 
beginstep(u) 
enddo 

Figure 4· 1 :Algorithm 4· 1, Maintaining Synchronization 

4.5 Inductive Analysis 

Although the algorithm is fairly simple, its analysis is surprisingly complicated and requires a long 

series of lemmas. 

4.5.1 Bounds on the Parameters 

We assume that the parameters p, 8, and e are fixed, but that we have some freedom in our 

choice of P and /J, subject to the reasonableness of our assumption that the clocks are initially 

synchronized to within /J. We. would like {J to be as small as possible, to keep the clocks as 

closely synchronized as we can. However, the smaller {J is, the smaller P must be (i.e., the more 

frequently we must synchronize). 
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There is also a lower bound on P. In order for the algorithm to work correctly, we need to have.P 

sufficiently large to ensure the following. 

(1) After a nonfaulty process p resets its clock, the local time at which p schedules its next 

broadcast is greater than the local time on the new clock, at the moment of reset. 

(2) A message sent by a nonfaulty process q for a round arrives at a nonfaulty process p after p 

has already set its clock for that round. 

Sufficient bounds on P turn out to be: 

P > 2(1 + p)(/J + e) + (1 + p)max{6, fl + e} + p6, and 

P</314p-elp-p(/J + 6 + e)-2/l-8-2e. 

A required lower bound on fJ is fJ > 4e + 4p(3/J + 6 + 3e) + 8p2(/J + 8 + e). 

Any combination of P and fJ which satisfies these inequalities will work in our algorithm. If P is 

regarded as fixed, then fl, the closeness of synchronization along the real time axis, is roughly 4e 

+ 4pP. This value is obtained by solving the upper bound on P for p and neglecting terms of 

order p. 

4.5.2 Notation 

Let T1 = r«l + iP and U1 = rt + (1 + p)(/J + 8 + e), for all I~ O. 

For each i, every process p broadcasts rt at its logical clock time T1 (real time t1P) and sets a timer 

to go off when its logical clock reaches U1• When the logical clock reaches u1 (at real time u1J. the 

process resets its CORR variable, thereby switching to a new logical clock, denoted c1• 1P. Also 

at real time u1P, the process sets a timer for the time on its physical clock when the new logical 

clock C1 + 1 
P reaches T1 + 1. It is at least theoretically possible that this new timer might be set for a 

time on the physical clock which has already passed. If the timer is never set in the past, the 

process mo\l8S through an infinite sequence of clocks d'p' c1p, etc, where c0p is in force in the 

interval of real time (·oo,u0 
P), and each c'p• i > 1, is in force in the interval of real time [u1•

1
P, u1

P). 

If, however; the timer is set in the past at some u1P, then no further timers arrive after that real time, 

and no further resynchronizations occur. That is, c1+ 1P stays in force forever, and JP and~ Pare 

undefined for j ~ i + 1. 

------ -- -------------
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Let tmini denote minP nontaulty {tip}, and analogously for tmaxi, umini and umaxi. 

For p and q nonfaulty, let ARR1 (q) denote the time of arrival of a T1 message from q top, sent at . p 

q's clock time T1, where the arrival time is measured on p's local clock cip· (We will prove that ciP 

has actually been set by the time this message arrives.) Let AV1P denote the value of AV 

calculated by p using the ARRiP values, and let AOJ1P denote the corresponding value of ADJ 

calculated by p. Thus, Ci+ 1 P = Cip + ADJip· 

This section is devoted to proving the following three statements for all i ~ 0: 

(1) The real time tip is defined for all non faulty p. (That is, timers are set in the future.) 

(2) lt1 P - t1ql < p, for all non faulty p .and q. (That is, the separation of clocks is bounded by P .) 

(3) t1P + 6 - e > u1
•
1q, for all nonfaulty p and q, and i ~ 1. (That is, messages arrive after the 

appropriate clocks have been set.) 

The proof is by induction. For i = 0, (1) and (2) are true by assumption and (3) is vacuously true. 

Throughout the rest of this section, we assume (1 ), (2), and (3) hold for i. We show (1 ), (2), and (3) 

for i + 1 after bounding the size of the adjustment at each round. 

4.5.3 Bounding the Adjustment 

In this subsection, we prove several lemmas leading up to a bound on the amount of adjustment 

made by a nonfaulty process to its clock, at each time of resynchronization. 

Lemma 4·4: Let p and q be nonfaulty. 

(a) ARR1P(q) S °ri + (1 + p)(/l + 6 + a). 

(b) If 6- e >fl, then ARR1P(q) > T1 + (1 -p)(6 - e -Jl). 

(c) If 8 - e < p, then ARR1P(q) ~ T1 - (1 + p)(/j -a + e). 
Proof: Straightforward using Lemma 4-1. t 
Lemma 4·5: Let p be nonfaulty. Then there exist nonfaulty q and r with 

ARR1P(q) S AViP S ARR1P(r). 
Proof: By throwing out the f highest and f lowest values, the proces$ ensures that the 
remaining values are in the range of the nonfaulty processes' values. I 

We are now able to bound the adjustment. 
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Lemma 4-6: Let p be nonfaulty. Then IADJiPI < (1 + p){/l + e) + p8. 

Proof: ADJiP = Ti + 8 -AVip· 

Thus, for some nonfaulty q and r, Lemma 4-5 implies that 

Then Lemma 4-4 implies that: 

(a) ADJiP > Ti + 8 - (T1 + (1 + p)(/l + 8 + e)) = -(1 + p)(/l + e) - p8. 

(b) If 8 - e ~ p, then ADJiP < t + 8 -(T1 + (1 - p)(8 - e -/I)) = (1 - p)(/l + e) + p8. 

(c) If 8 - e < p, then ADJ1P < T1 + 6 - (T1 -(1 + p)(/l- 6 + e)) • (1 + p)(/l + e)- p8. 

The conclusion is immediate. I 

4.5.4 Timers Are Set In the Future 

Earlier, we gave a lower bound on P and described two conditions which that bound was 

supposed to guarantee (that timers are set in the future and that messages arrive after the 

appropriate clocks have been set). In this subsection, we show that the given bound on P is· 

sufficient to guarantee that the first of these two conditions holds. 

Lemma 4· 7: Let p be n0nfaulty. Then U1 + ADJ1P <rt + 1. 

Proof: U1 + ADJ1P S U1 + (1 + p)(/l + e) + p8, by Lemma 4-6 

= U1 + (2(1 + p)(/l + e) + (1 + p)8 + p8)- (1 + p)(/l + 8 + a) 

< U1 + P-(1 + p)(/l + 8 + e), by the assumed tower bound on P 

This lemma implies that timers are set in the future and that t1+1 P is defined, the first of the three 

inductive properties which we must verify. 

4.5.5 Bounding the Separation of Clocks 

Next, we prove several lemmas which lead to bounds on the distance between the new clocks of 

nonfautty processes. The first lemma gives an upper bound on the error in a process' estimate of 

the difference in real time between its own clock and another nonfaulty process' clock reaching 

r'. 
Lemma 4-8: Let p, q and r be nonfaulty. Then 
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l(ARRiP(q) - (Ti + 8)) - (ciq(Ti) - cip(Ti))I S e + p(/J + 8 + e). 

Proof: Let a be the real time of arrival of q's message at process p. Then a is at most 
ci (Ti) + 8 + e. Define a new auxiliary clock, D, with rate exactly equal to 1, and such 
th'kt D(a) = ciP(a). Thus, ARRiP(q) = D(a). So the expression we want to bound is at 
most equal to: 

First we demonstrate that the first of these two terms is at most e. 

ID(a)- (Ti + 6) - ciq(Ti) + d(T1)1 

= la - d(T1 + 8) - c1q(Ti) + d(T1)1, since D has rate 1 

= la- c1q(T1
) + rl- (Ti + 8)1 

S lciq(Ti) + 8 + e - ciq(T1) - 81 

= tl. 

Next we show that the second term, lc1P(Ti) -d(ri)I, is at most p(/J + 8 + t). 

Case 1: ciP(T1
) Sa. Sop reaches Ti before q's message arrives. 

Let y = a- ciP(Ti). Then y <fl + 8 + e. 

Subcase 1a: d(T1
) > c1P(T1

). So CP has rate slower than real time. 

Then d(T1
) - c~f(T1).is l~rgest when C ~oes at the slowest possible rate, 1/(1 + p) •. In 

t~is ~· d{T1 
- c1P(T~ == y .;.. (a - c/l.T )), where a - d(Ti) • y/(1 + p). ·Thus, d(T') -

c1P(T1
) == y(1 -1/(1 + p)) == yp/(1 + p) < 'YP :S p(/J + 8 + e). 

Subcase 1b: d(T1) S cip(T1). So CP has rate faster than real time. 

T.he~ c1P(T' - d(Ti) is largest when CP goes at the fastest possible rate, 1 + p. Then 
c1p(T') -d(T1

) == y(1 + p) -y == 'YP s p(/J + 6 + e). 

Case 2: c1P(Ti) > a. So p reaches rl after q's message arrives. 

Let y = c1P(T1
) - a. Then y < fJ - 8 + e. 

Subcase 2a: d(Ti) > c1P(T1
). So CP has rate faster than real time. 

An argument similar to that for case 1b shows thatd(T1) - c1P(T1) S yp S p(/J-8 + e), 
which suffices. 

Subcase 2b: d(T1
) S ciP(T1

). So CP has rate slower than real time. 

An argument similar to that for case 1a shows that c1P(ri)-d(T1) S yp S p(ft - 6 + e), 
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which suffices. I 

In order to prove the next lemma, we use some results about multisets, which are presented in the 

Appendix. This is a key lemma because the distance between the clocks is reduced from P to 

p12, roughly. The halving is due to the properties of the fault-tolerant averaging function used in 

the algorithm. Consequently, the averaging function can be considered the heart of the 

algorithm. 

Lemma 4·9: Let p and q be nonfaulty. Then 

l(ciP(Ti)-ciq(Ti))-(ADiP -ADJiq)I < p12 + 2e + 2p(/J + 8 + t). 
Proof: We define multisets U, V, and W, and show they satisfy the hypotheses of 
Lemma A-4. Let 

U == cip(Ti) - (T1 + 8) + ARR1P, 

V == c1q(ri)-{ri + 8) + ARRiq' and 

W = {cir(T1): r is nonfaulty}. 

U and V have size n and W has size n - f. 

Let x == e + p(/J + 8 + e). 

Define an inj~tion from W to U as follows. Map each element cir(Ti) i!l W to ciP(ri)- (Ti 
't: 8) + ARR'p(r) in U. Since Lemma 4-8 implies that l(ARR~(r) - (T' + 8)) - (c1r<T'> -
c'p(Ti))I < e + p(/J + 8 + e) for all the elements of W, dx(W,U) == 0. Similarly, dx(W,V) 
= 0. . 

Since any two nonfaulty processes reach T1 within p real time of each other, diam(W) 
= p. 

By Lemma A-4, lmid(reduce(U)) - mid(reduce(V))f S p 12 + 2e + 2p(/J + 8 + e). 

Since mid(reduce(U)) • mid_(r~uce(c1 (Ti) - (Ti + 8) + ARR~)) = c1P(ri) - ADJip' and 
similarly mid(reduce(V)) • c'q(T') - ADJ q' the result follows. 1 

The next lemma is analogous to the previous one, except that it involves ui instead of rl. 
lemma 4· 10: Let p and q be nonfaulty. Then 

ICciP(U1)-ciq(U1))-(ADJiP -ADJiq>I S p12 + 2e + 2p(2 + p)(/J + 8 + e). 
Proof: The given expression is 

, 

< {J/2 + 2e + 2p(/J + 8 + e) + 2p(1 + p)(/J + 8 + e), by Lemmas 4-9 and 4-2. 

---···--~-----------~ 
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This reduces to the claimed expression. I 

Next we bound the distance in real time between two nonfaulty processes switching to their new 

clocks. It is crucial that the distance between the new clocks reaching ui be less than /J in order 

to accommodate their relative drift during the interval between U1 and ri + 1. 

Lemma 4· 11 : Let p, q be nonfaulty. Then 

lci+ 1P(U1)-c1•\(U1)1S/ll2 + 2e + 2p(3/l + 28 + 3e) + 4p2(/j + 8 + e). 

Proof: We define idealized clocks, D and D , as follows. Both have rate exactly 1. 
Also, DP(uip) = C1+1 P(uip) = Ui + ADJP, and s'lmilarly for q. Then 

lei+ 1 (Ui) - ci + 1 (Ui)I < lei+ 1 (Ui) - d (Ui)I + Id (Ui) - d (Ui)I + Id (U1) - cl+ 1 (Ui)I p q - p p p q q q. 

We bound each of these three terms separately. 

First,considerlci+ 1P(U1)-dp(U1)1. Now,U1 + ADJ'P = DP(u1
P) • c1+1P(u1p>. So 

lc1+1 (U1) - d (Ui)I < l(c1+1 (U1) -d (U1)) - (c1+1 (U1 + ADJ1 ) -d (U1 + ADJ' ))I p p - p p p pp p 

S plADJ1PI' by Lemma 4-2 

S p((1 + p)(/j + e) + p8), by Lemma 4-6. 

The same bound holds for the third term. 

Finally, consider the middle term, ldp(U1) - dq(U1)1. We know that dP(U1) "" dP(U1 · + 
ADJ1p)-ADJ1p ... u1

p -ADJ'p' and similarly for q. 

ldP(U1) - dq(U1)1 • j(u1P - u1q) - (ADJ'P - ADJ1q)I 

< {J/2 + 2e + 2p(2 + p)(/j + 8 + e), by Lemma 4-10. 

Combining these three bounds, we get the required bound. I 

Finally, we can show the second of our inductive properties, bounding the distance between 

times when clocks reach r' + 1• 

Lemma 4· 12: Let p, q be nonfaulty. Then ~1 + 1 P - ~ + 1ql :S /J. 
Proof: lt1+1 ... t'+ 1 I p q 

= lc1+1 (T1+1)-c1+1 (Ti+1>I 
p q 

< J(c1+1 (T1+1)-c1+1 (r'+1))-(c1+1 (Ui)-c1+1 (U~)I + lc1+1 (Ui)-c1+1 (Ul)I 
- p q p q p q 

< 2p(P- (1 + p)(/1 + 8 + e)) + fJ/2 + 2e + 2p(3/J + 28 + 3e) + 4p2(/j + 8 + e}, by 
Lemmas 4-2 and 4-11. 
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The assumed upper bound on P implies that this expression is at most {J. I 

4.5.6 Bound on Message Arrival Time 

In this subsection, we show that the third and final inductive assumption holds. That is, we show 

that messages arrive after the appropriate clocks have been set. 

Lemma 4·13: Let p and q be nonfaulty. Then ii•\ + 8-e > u1
P. 

Proof:Sincet1• 1 + 8-e>t1
• 1 _a+ 8-e,itsufficestoshowthat q - p p 

t
1
+

1 
P - u1

P > fJ - 8 + e. 

Now, t1+ 1 
- u1 > (P - (1 + p)(/J + 8 + e) - ADJ1 )/(1 + p) since the numerator 

represen~ the tn8i1est possible difference in the va1u':ts of the clock Ci+ 1 P at the two 
given real times. 

But the lower bound on P implies that P > 3(1 + p)(/J + e) + p8. Also, the bound on 
the adjustment shows that ADJ1P S (1 + p)({J + e) + p8. Therefore, 

t1+
1 P - u1

P > (3(1 + p)({J + e) + p8 - (1 + p)(/J + 8 + e) - (1 + p)(/J + e) - p8) I (1 + 
p) 

= fJ - 8 + e, as needed. I 

Thus, we have shown that the three inductive hypotheses hold. Therefore, the claims made in this 

section for a particular i, in tact hold for all i. 

4.6 Some General Properties 

In this section, we state several consequences of the results proved in the preceding section. 

First, we state a bound on the closeness with which the various clocks reach corresponding 

values. 

LefT!mB 4·14: Let p, q be nonfaulty, i > o. Assume that Tis chosen so that u1
•
1 < T 

SU', if i > 1, orsothatr° ST SU°, if i • O. 

Then lciP(T) - c1q(T)I S fJ + 2p(1 + p)(/J + 8 + e). 
l 

Proof: Basis: i = 0. Then r° ST S tfl. 

lc0Pm-c0q<"t)I S l<c0P(T)-c0q(T))-(c0p<"r°>-c0qcr°>>I + lc0,cr°>-c0q«r°>I 

S 2p(T-r°} + /J, by Lemma 4-2 and assumption 3 

S /J + 2p(1 + p )({J + 8 + e). 
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Induction: i ~ 0. Choose T with ui·1 ~ T < U1• 

lei (T) - c1 (T)I < 1Cc1 (T)- c1 (T))- (c1 (U1"1) - c1 (U1"1))1 + lc1 (Ui"1)- c1 (U1"1)1 p q - p q p q p q 

~ 2pP + /Jl2 + 2e + 2p(3/J + 28 + 3e) + 4p2(/J + 8 + e), by Lemmas 4-2 and 4-11. 

The upper bound on P implies the result. I 

Next, we prove a bound for a non faulty process' (i + 1 )·st clock, in terms of nonfaulty processes' 

i-th clocks. 

Lemma 4· 15: Let p be nonfaulty, i > o. Then there exist nonfaulty processes, q and 
r, such that for u1P St< umax1, -

c1q(t) - a < C1+ 1 p(t) :S C1r(t) + a, 

where a • e + p(4/l + 8 + 5e) + 4p2(/J + 8 + e) + 2p3(/J + 8 + e). 
Proof: c 1+ 1P(t) = Cip(t) + ti + 6-AV1 • Therefore, by Lemma 4-5 there are nonfaulty 
processes, q and r, for which P . 

Ci (t) + Ti + 8-ARR1 (q) S d+ 1 (t) < d (t) + Ti + 8-ARR1 (r). p p p - p p 

We show the right-hand inequality first .. Let a = c~~ARR1P~r)), the real time at which 
the message arrives at p from r. Thus, C1P(a) = ARR1P(r). Note that C1r(a) ~ ti + (1 -
p)(6-i). 

C1 + 1 (t) < C1 + T1 + 8 - ARR1 (r) from above 
p - p p ' 

:S C1r(t) + d P(a)-C1r(a) + Ti + 8 -ARRiP(r) + (C1P(t) - C1r(t)) - (C1P(a) - C1r(a)) 

:SC1r(t) + Cip(a)-Cir(a) +Ti+ 8-ARRip(r) + 2p(t-a),byLemma4-2slncet>a 

:SC1r(t) + ARR1P(r)-T1-(1-p)(8-e) + T1 +8-ARR1P(r)+2p(t-a) 

= c'r(t) + e + p8-pe + 2p(t-a). 

It remains to bound t - a The worst case occurs when t • umax'. The longest 
possible elapsed real time between a particular nonfaulty process reaching r' and U1 

on the same clock is (1 + p)2(/J + 8 + e). Thus, umax1 - tmin1 SP + (1 + p)2(/J + 8 
+ e). But a~ tmin1 + 8 - e. Therefore, t- a Sp + (1 + p)2(/J + 8 + e) - 8 + e 

Thus, C1+ 1P(t) S C1r(t) + e + p8 - pe + 2p(/J + (1 + p)2(/J + 8 + e)- 8 + e} 

= cir(t) + e + p(4/J + 8 + 3e) + 4p2(/J + 8 + e) + 2p3(/J + 8 + e) 

< C1r(t) + Cl. 

For th~ left·h.and inequality, we see that C1 (t) - e - p8 - pe - 2p(t- a) < d + 
1 P(t), where 

a = c1P(ARR1P(q)). The factor t- a is bou~ed exactly as before, so that we ootain: 

- .. -.,.,.,. .... ,.,.__. .... 



42 

4. 7 Agreement and Validity Conditions 

We are now ready to show that the agreement and validity properties hold. The main effort is in 

restating bounds proved earlier concerning the closeness in real times when clocks reach the 

same value, in terms of the closeness of clock values at the same real time. 

4. 7 .1 Agreement 

The first lemma implies that the local times of two nonfaulty processes are close in those intervals 

where both use a clock with the same index. 
Lemma 4-16: Let p, q be nonfaulty. Then 

ICiP(t)- ciq{t)I S (1 + p)(/j + 2p(1 + p)(/j + 6 + e)) 

for max{ui-1P,ui·1q} St S max{uiP,u1q}, if i > 1, 

and for min{t0 P,t0 q} < t S max{u0 P,u0 q}' if i • O. 
Proof: Basis: i • O. Lemma 4-14 implies that 

lc1P(T) - c1q(T)I SP + 2p(1 + p)(/j + 6 + e) 

for all T, U1"1 < T < U1 if i > 1 and for all T, r° < T <LI° if i = O. Then Lemma 4-3 - - - - -
immediately implies the needed result for I • O. 

Induction: i > 1. Lemma 4-3 implies the result for all t with 

min{c1Pcu1·1). c1qcui-1
)} St< max{u1

P, u1q}. 

It remains to show the bound fort with 

max{u1"1 p•u'-\l < t < min{cipcu1-1>, c1q(U1"1)}. 

Without toss of generality, assume that cip(U1' 1) < c1 (Ui-1), so that the minimum is 
equal to c1Pcu1·1). - q 

!Ci {t)- Ci (t)I < ICC1 (t)- C1 (t)) - (Ci (c1 (Ui-1)) -d (c1 (Ui-1)))1 p q - p q pp qp 

+ ICi (c1 {Ui-1)) -d (c1 cu1•1n1 
p p q p 

T~e first ~erm •. by Lemma .4-2, is at most 2p(ciP{Ui-1
) - t). Since t ~ max{u

1
-
1 
P' ui·

1 
ql > 

u1
•
1 P ~ c1

•
1 P{u'-1

), we have 

2p{cip{u1-1)-t) s 2p(c1p{u1-1) - c1
•
1 pcu1

•
1n. 
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Since ci·\cui-1) = ciP(T) for some T with IT - ui·11 S IADJiPI' this quantity is 

S 2plciP(ui-1
)- c1P(T)I 

S 2p(1 + p)IU1
"1 - Tl, by Lemma 4-1 

S 2p(1 + p)IADJ1PI 

S 2p(1 + p)((1 + p)(/j + e) + p8}, by Lemma 4-6. 

To bound the second term we note that Lemma 4-11 implies that 

lciP(ui-1
) - c1q(ui-1>1 < {J/2 + 2e + 2p(3/J + 26 + 3e) + 4p2(/j + 8 + e) = a, 

and so Lemma 4-3, with T 1 = T 2 = U1" 1, implies that 

ICi (c1 (Ui"1)) - C1 (c1 (U1"1))1 < (1 + p}a p p q p - • 

The assumed lower bound on fJ gives the result that 

2p(1 + p)((1 + p)(/j + e) + p8) + (1 + p)a S (1 + p)(/j + 2p(1 + p)(/j + 8 + e)) I 

Here is the main result, bounding the error in the synchronization at any time. 

Theorem 4· 17: The algorithm guarantees y-agreement, 

where y • fJ + e + p(7fJ + 38 + 7e) + 8p2(/J + B + e) + 4p3(/j + B + e). 
Proof: The result for intervals in which the processes use clocks with the same Indices 
has been covered in the preceding lemma. The expression In the statement of that 
lemma simplifies to 

fJ + p(3/j + 28 + 2e) + 4p2(/j + 8 + e} + 2p3(p + a + e), 

which is less than y. 

Next, we must consider the case where one of the processes has changed to a new 
clock,,while the other still retains the old clock. Consider fd+ \Ct) - C1q(t)f for some t 
with u1P St S u'q· Lemma 4-15 implies that there exist nonfaulty processes rand a 
such tl1at 

c'r<t>-asc1
•

1P<t>Sd1(t) +a, 

where a • e + p(4/j + B + 5e} + 4p2(/J + B + e) + 2p3(/J + B + e). 

1c1
•

1P(t)-C1q(t)I Sa+ max{IC1r(t)-dq(t}I, IC1
8
(t)-dq(t)I} 

S a + (1 + p) (/j + 2p(1 + p)(/j + 8 + e)), by the preceding lemma 

= fJ + e + p(7/J + 38 + 7e) + 8p2(/J + 8 + e) + 4p3(/t + 8 + e}, as needed. I 
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In some applications, it may never be the case that clocks with different indices are compared, 

perhaps because use of the clocks for processing ceases during the interval in which confusion is 

possible. In that case, the closeness of synchronization achieved by Algorithm 4-1 is given by 

Lemma 4-16, and is approximately fJ + p(3/J + 28 + 2e). This value is more thane less than the 

bound obtained when clocks with different indices must be compared. 

Now we can sketch why it is reasonable for fJ to be approximately 4e + 4pP, as mentioned at the 

end of Section 4.5.1. Assume P is fixed. The i-th clocks reach T1 within fJ of each other. After the 

processes reset their clocks, the new clocks reach U1 within /J/2 + 2e (ignoring p terms). By the 

end of the round, the clocks reach T1+ 1 within about fJ/2 + 2e + 2pP of each other, because of 

drift. This quantity must be at most /J. The inequality fJ/2 + 2e + 2pP < fJ yie1ds fJ > 4e + 4pP. 

Suppose we alter the algorithm so that during each round, the processes exchange clock values 

k times instead of just once. Then we get fJ 12k + (4 - ~-k)e + 2pP < fJ, which simplifies to fJ ~ 
4e + 2pP(2kt(it-1)). ltappearsthat{J ~4e + 2pPisapproachable. 

If the number of processes, n, increases while f, the number of faulty processes remained fixed, a 

greater closeness of synchronization can be achieved by modifying Algorithm 4· 1 so that it 

computes the mean instead of the midpoint of the range of values. 

As in [1], we show that the convergence rate of algorithms that use the mean instead of the 

midpoint is roughly f/(n-2f). 

The result is based on the following lemma concerning multisets. 

Lemma 4-18: Let U, V, and W be multisets such that IUI • M • n ~ 3f + 1 and IWI 
• n-f. If d (W,U) = d (W,V) = 0, then 

JC. JC 

lmean(reduce{U)) - mean(reduce(V))I S diam(W)f /(n-2f) + 2x. 

The analysis of the modified Algorithm 4-1 parallels that just presented. However, the upper 

bound on P becomes 

P S /l(n-3f)/(n-2f)2p - el p- p(/J + 8 + e)-2/J - 8 - 2e. 

This bound implies fJ ~ 2(n-2f)(e + pP)/(n-3f), which approaches fJ > 2e + 2pP as n 

approaches i~finity. 

We now demonstrate that this bound is reasonable. After updating the clock and then waiting 

until the clocks reach the next T1
, the clocks must still be within fJ, giving f /J /(n-2f) + 2e + 2pP S 
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p, which implies p > (2e + 2pP)(n-2f)/(n-3f), which approaches 2e + 2pP as n approaches 

infinity. 

4.7.2 Validity 

Next, we show the validity condition. The first lemma bounds the values of the zero-index clocks. 

Lemma 4·19: r° + (1-p)(t-tOP) S COP(t) Sr°+ (1 + p)(t-t0p) fort~ t0p. 

Proof: By Lemma 4-1. I 

The next lemma is the main one. 

Lemma 4·20: Let p be nonfaulty, i > O. Then 

(1 - p)(t-tmax°> + r°- ie s cip(t) s (1 + p)(t-tmin°> + r° + ie 

for all t' u1
•
1 if i > 1, and for all t > t0P if i • o. 

i:;. p - -
Proof: We proceed by induction on i. When proving the result for i + 1, we will 
assume the result for i, for all executions of the algorithm (rather than just the 
execution in question). 

Basis: I • O. This case follows immediately by Lemma 4-19. 

Induction: Assume the result has been shown for l and show it for i + 1. 

We argue the right-hand inequality first. The left-hand inequality is entirely analogous. 

Assume in contradiction that we have a parti~ular execution in which C1+1 P(t) > (1 + 
p}(t - tmin°) + r° + (i + 1 )e for some t > u'

9
• Then by the limitations on rates of 

clocks, it is clear that C' + 
1 P(u1p> > (1 + p)(JP - tmin°> + r° + (I+ 1 )e. 

Recall that presets its clock at real time ui , by adding Ti + 6-AV1P. In this case, the 
inductive hypothesis implies that the adjusfment must be an Increment. 

By Lemma 4-5, this increment is S rt + 8 -ARR1P(q} for some nonfaulty q. Therefore, 

Clp(UiJ + Ti + 8 -ARR1p(q)) (1 + p)(Uip - tmln°> + r° + (i + 1}e. 

Next, we claim that if p had done· the adjustment Just when the message arrived from q 
rath~r than wa!ting titl real tif!ie u\~· the bound would stilt have been exceeded. That is, 
ARR' (q) + T' + 6 - ARR' (q) > (1 + p)(t' - tmin°) + T° + (i+ 1)e, where t' • 
ciP(AAR1P(q)}. (This again tor~ by the limits on the rates of clocks.) Thus, 

Ti+ 6>(1 + p)(t'-tmin°> + r° + (i+1)e. 

Now consider an alternative execution of the algorithm in which everything is exactly 
like the one we have been describing, except that Immediately after q sends out clock 
reading T1, q's clock C1

q begins to move at rate 1. This change ~nnot affect p's 
(i + 1 )·st clock because q doesn't send any more messages until t' + 1 q' and these 

i '~ 
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messages aren't received until after the time when p sets its {i + 1 )-st clock. 

By the lower bound on message delays, q's ~ge to p took at least 6 - e time. Then 
at real time t' {defined above), we have C'q{t') > T' + 6 - e. But then C1q(t') > (1 + p){t' 
- tmin°> + ,.0 + ie. 

But then the inductive hypothesis is violated, since t', the time when p receives q's T1 

message, is greater than or equal to ui·1q, the time when q sets its round i clock. I 

Now, we can state the validity condition. Let cp = {P - (1 + p)(/l + e) - p6) I (1 + p). This is the 

size of the shortest round in real time since the amount of clock time elapsed during a round is at 

least P minus the maximum adjustment. 

Theorem 4·21: The algorithm preserves (a1,42,a
3
)-validity, 

where a 1 = 1 - p - elcp, a2 = 1 + p + eltp, and a3 = e. 

Proof: We must show for all t ~ t0 P and all nonfaulty p that 

a1(t - trnax°> + T°- a3 < LP(t) < a2(t- tmin°> + t° + a3. 

We know from the preceding lemma that for i > O, t ~ u1
•
1
P (or t° J• and nonfaulty p 

(1 - p)(t - tmax°> + t°- ie s cip{t) s (1 + p)(t- tmln°> + ,.0 + le. 

Since Lf(t) is equal to d rl(t) for some i, we just need to convert I Into an expression in 
terms o t, etc. An upper DOund on i is 1 + (t - trnax°>l tp. Then 

(1 + p)(t- tmin°> + t° + ie S (1 + p)(t- tmin°> + T° + (1 + (t- tmax°>lfP)e 

< (1 + p + e/tp)(t- tmln°> + T° + e, since tmin° S trnu0, 

and that 

(1-p)(t-tmax°> + t°-ie ~ (1-p)(t-tmax°> + t°-(1 + (t-trnax°>lcp)e 

~ (1 - p- e/tp){t-trnax°> + r°- e. 

The result follows. I 

4.8 Reintegrating a Repaired Process 

Our algorithm can be modified to allow a faulty process which has been repaired to synchronize 

its clock with the other nonfaulty processes. Let p be the process to be reintegrated into the 

system. During some round i, p will gather messages from the other processes and perform the 

same averaging procedure described previously to obtain a value for its correction variable such 
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that its clock becomes synchronized. Since p's clock is now synchronized, it will reach ti+ 1 

within fJ of every other nonfaulty process. At that point, p is no longer faulty and rejoins the main 

algorithm, sending out Ti+ 1 messages. 

We assume that p can awaken at an arbitrary time during an execution, perhaps during the middle 

of a round. It is necessary that p identify an appropriate round i at which it can obtain all the Ti 

messages from nonfaulty processes. Since p might awaken during the middle of a round, p will 

orient itself by observing the arriving messages. More specifically, p seeks an i such that f Ti·1 

messages arrive within an interval of length at most (1 + p)(/J + 2e) as measured on its clock. 

There will always be such an i because all messages from nonfaulty processes for each round 

arrive within fJ + 2e real time of each other, and thus within (1 + p)(/J + 2e) clock time. At the 

same time asp is orienting itself, it is collecting Tl messages, for all j. 

Assuming that p itself is still counted as one of the faulty processes, at least one of the f arriving 

messages must be from a nonfaulty process. Thus, p knows that round i - 1 is in progress ·or has 

just ended, and that it should use Ti messages to update its clock. 

Now p collects only ti messages. It must wait (1 + p)(p + 2e + (1 + p)(P + (1 + p)(/J + e) + 

p8), as measured on its clock, after receiving the f-th r1·1 message in order to gua~antee that it 

has received Ti messages from all nonfaulty processes. The maximum amount of real time p must 

wait, (/J + 2e + (1 + p)(P + (1 + p)(/J + 2e) + p8), elapses if the f·th 11•1 message is from a 
I 

non faulty process ·q and it took 8 - e time to arrive, if q's round i - 1 lasts a long as possible, (1 + 

p)(P + (1 + p)(/J + e) + p8) (because its clock is slow and it adds the maximum amount to its 

clock), and if there is a nonfaulty process r that is fJ behind q in reaching r1 and its T1 message to 

p takes 8 + e. The process waits this maximum amount of time multiplied by (1 + p) to account 

for a fast clock. 

(Some extra bookkeeping in the algorithm is necessitated by the fact that Ti messages from 

nonfaulty processes can arrive at p before p has received the f·th T1"1 message. This scenario 

shows why: Suppose p receives the first T1"1 message at real time a, it is from a nonfaulty procass 

q, and its delay is 8 + e, and that the f ·th r·1 message is received fJ + 2e after the first one. Also 

suppose that q's round i - 1 is as short as possible in real time, P- (1 + p)(/J + e) - p8) I (1 + p), 

that there is a nonfaulty process r that begins round i /J before q does, and that r's Ti message to p 

arrives at real time b and has delay 8 - e. 

We show that b < a + fJ + 2e, implying that the T1 message is received before the f·th Ti·1 
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b=t1 +8-e r 
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= t1"1q + (P-(1 + p)(p + e)-p8)/(1 + p)-/J + 8-e 

>ti\ + ((1 + p)(3/J + 3e) + p8-(1 + p)(p + e) · p8) I (1 + p)-/J + 8- e, by lower bound on P 

= f\ + fJ + 8 + e 

= a-8-e + fJ + 8 + e. 

Thus, b >a + /J. However, if Pis very close to the lower bound, then bis approximately a + /J, 
which is less than a + fJ + 2e.) 

Immediately after p determines it has waited tong enough,, it carries out the averaging procedure 

and determines a value for its correction variable. 

We claim that p reaches rt+ 1 on its new clock within fJ of every other nonfaulty process. First, 

observe that it does not matter that p's clock begins initially unsynchronized with all the other 

· clocks; the arbitrary clock will be compensated for in the subtraction of the average arrival time. 

Second, observe that it does not matter that p is not sending out a rt message; p is being counted 

as one of the faulty processes, which could always fail to send a message. (Processes do not 

treat themselves specially in our algorithm, so it does not matter that p fails to receive a message 

from Itself.) Finally, observe that it does not matter that p adjusts its correction variable whenever 

it is ready (rather than at the time specified for correct processes in the ordinary algorithm). The 

adjustment is only the addition of a constant, so the (additive) effect of the change is the same in 

either case. 

We want to ensure that when a process that is reintegrating itself into the system finishes 

collecting T1 messages and updates its clock, this new clock hasn't already passed T1+ 
1. The 

reason for ensuring this is that the process is supposed to be nonfaulty by T1+ 1 and send out its 

clock value at that time. 

The code is in Figure 4-2. 

INFO is an array, each entry of which is a set of (process name, clock time) pairs. When a T1 

-------- ------- ---~-------------------



beginstep(u) 
do forever 
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if u = (T 1,q) and (q,T) ( INFO[i] for any T then 
INFO[i] := INFO[i] U {(q,NOW)} 
if l{(q,T) € INFO[i]: q is any process and 

T ~ NOW - ( 1 + p )(fl + 2e)} I = f 
then exit endif 

endif 
endstep 
beginstep(u) 
end do 

1• p knows it should use round i values */ 

do for each (q,T) € INFO[i] 
ARR[q) :• T 
end do 

set-timer(NOW + (1 + p)(/l + 2e + (1 + p)(P + (1 + p)(/l + e) + p8))) 
endstep 

beginstep(u) 
while u = (T 1,q) for the chosen 1 do 

ARR[q] :• NOW 
end step 
beg instep( u) 
endwhile 

t• fall out of loop when timer goes off •/ 

AV := mid(reduce(ARR)) 
ADJ := T1 + 8 - AV 
CORR := CORR + ADJ 
set-timer(T1 + P) 
endstep 

1• switch to Algorithm 4-1 •/ 

Figure 4·2:Algorithm 4-2, Reintegrating a Repaired Process 

message arrives from proces8 q, p checks that q hasn't already sent It a Ti message. If not, then 

q's name and the receiving time are added to the set of senders of ti, INFO[i]. If f distinct r' 
messages have been received within the last (1 + p)(/J + 2e) time, then p knows that It should 

use ti messages to update its clock. 

The current lower bound on P, the round length, is not large enough to ensure that when the 

reintegrating proce8s finishes collecting Ti messages and updates its clock, this new clock hasn't 

already passed l1+ 1. 

There are two ways to solve this problem: 
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1. make the minimum P approximately three times as large as it currently must be; 

2. have the process send out its clock value at ,-I+ 2• It can be collecting T1 
+ 

1 messages 
all along, but now it knows a tighter bound on when to stop collecting them (since Its 
(i + 1 )-st clock is synchronized with the other nonfautty processes' clocks). This will 
work as long as the time at which it stops collecting Ti messages isn't after the 
process' (i + 2)-nd clock has reached ,.i+ 2. 

Now we show that P must be about three times as large as the previous lower bound in order to 

prevent the reintegrating process from waiting too long before updating its clock. The actual 

criterion we use is that the process must update its clock at least fJ before any other nonfaulty 

process' (i + 1 )-st clock reaches ri + 
1
• (Since the process' new clock is synchronized with those 

of the nonfaulty processes, it will not reach T1 + 1 more than fJ before any other nonfaulty clock 

does.) 

Let p be a process being reintegrated during round i and let t be the real time when p stops 

collecting T1 messages 

Lemma 4· 22: If t < ci + 1q(T1+1) - fl for any nonfaulty process q, then 

P > (6/3 + 6 + 9t + p(8/J + 38 + 16e) + p2(6/l + 6 + 14e) + p3(4{J + 38 + Se) 
+ p4(/J + 6 + 2e)) I (1 - 5p -3p2 - p3j. 

Proof: The worst case occurs if p waits as long as possible to finish collecting T1 

messages and another nonfaulty process q reaches rl + 1 as soon as possible. 

Suppose p receives the first T1"1 message at real time t', and the f-th 'f 1 message at r 
+ (1 + p)2(/J + 2e) (because its clock is slow). According to the reintegration 
algorithm, p will then wait (1 + p)(/J + 2e + (1 + p)(P + (1 + p)(/J + 2e) + p6)) on its 
clock, which means it will wait (1 + p) times as long in real time. 

Thus, t • t' + (1 + p)2(2/J + 4e + (1 + p)(P + (1,._+ p)(/J + 2e) + p8)) . . ., 

Now assume that the first T1
"
1 messag. e received by p was from a nonfauttyprocess q 

and that it took 6 + e time to arrive. Thus c1•1 q(T'"1) • t' - 6 - e. If round I - 1 and 
round i both take the shortest amount of real time, (1 - p){P - (1 + p)(/J + e) - p3), 
then 

c1•\<T1
+

1
) = l 1q(rl"1

) + 2(1-p)(P-(1 + p)(/J + e)-p6). 

We want to ensure that c1
+ 1q(T1+ 1)-t 2!! fl, i.e., 

t' - 6 - e + 2(1 - p)(P - (1 + p)(/J + e)- pB) 
- t' - (1 + p)2(2/l + 4e + (1 + p)(P + (1 + p)(/J + 2e) + p&)) 2!! /J. 

This inequality simplifies to the stated bound. I 

. _ _....,,.__, ___ .,__ . 
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This new lower bound on P is about three times the size:of the previous one, which was 

P > 2/J + 6 + 2e + 2p(jj + 8 + e). 

If increasing the lower bound on Pis unacceptable, the second solution can be employed. Its 

drawback is that now it will take longer for a process to be reintegrated. A similar argument ~o the 

above shows that in order to guarantee that p finishes collecting T1 messages at least fJ before 

any nonfaulty process reaches T1+2, we must have 

P > (5/J + 6 + 10e + 2p(5/J + 26 + 9e)) I (2 • 4p), ignoring p2 terms. 

This lower bound is fairly close to the original one. For absolute certainty that the original lower 

bound will suffice, the process can wait until ti +3. 
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Chapter Five 

Establishing Synchronization 

5.1 Introduction 

In this chapter we present an algorithm to synchronize clocks in a distributed system of 

processes, assuming the clocks initially have arbitrary values. The algorithm handles arbitrary 

failures of the processes and clock drift. We envision the processes running this algorithm until 

the desired degree of synchronization is obtained, and then switching to the maintenance 

algorithm described in the previous chapter. 

5.2 The Algorithm 

5.2.1 General Description 

The structure of the start·UP algorithm is similar to that of the algorithm which maintains 

synchronization. It runs in rounds. During each round, the processes exchange clock values and 

use the same fault-tolerant averaging function as before to calculate the corrections to their 

clocks. However, each round contains an additional phase, in which the processes exchange 

messages to decide that they are ready to begin the next round. This method of beginning rounds 

stands in contrast to that used by the maintenance algorithm, in which rounds begin when local 

clocks reach particular values. A more detailed description follows. 

Nonfaulty processes will begin each round within real time 6 + 3e of each other. Each nonfaulty 

process begins the al_gorithm, and its round 0, as soon as it first receives a message. (It will be 

shown that this must be within 6 + 3e.) At the beginning of each round, each nonfaulty process p 

broadcasts its local time. Then p waits a certain length of time guaranteed to be long enough for 

it to receive a similar message from each nonfaulty process. At the end of this waiting interval, p 

calculates the adjustment it wiff make to its clock at the current round, but does not make the 

adjustment yet. 

Then p waits a second interval of time before sending out additional messages, to make sure that 

these new messages are not received before the other nonfaulty processes have reached the end 
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of their first waiting intervals. At the end of its second waiting interval, p broadcasts a READY 

message indicating that it is ready to begin the next round. However, if p receives f +. 1 READY 

messages during its second waiting interval, it terminates its second interval early, and goes 

ahead and broadcasts READY. As soon as p receives n - f READY messages, it updates the 

clock according to the adjustment calculated earlier, and begins its next round by broadcasting 

its new clock vaiue. (This algorithm uses some ideas from [3].) 

A process need only keep clock differences for one round at a time. The waiting intervals are 

designed so that during round i a nonfaulty process p will not receive a READY message from 

another nonfaulty process until p has finished collecting round i clock values. Round i + 1 clock 

values are not broadcast until after READY is broadcast, so p will certainly not receive round i + 1 

clock values untit after it has finished collecting round i clock values. However, round i + 1 clock 

values might arrive during the second waiting interval and while the process is collecting READY 

messages. As a result, the adjustment is calculated at the end of the first waiting interval and the 

difference for any round i + 1 clock value received during round I ls decremented by the amount 

of the adjustment. 

5.2.2 Code for an Arbitrary Process 

Global constants: 6, e, p, n, f: as usual. 

Local variables (al~ initially arbitrary): 

• T: clock time at which current round began. 

• U: clock time at which the first waiting period is to end. 

• V: clock time at which the second waiting period is to end. 

• DIFF: array of clock differences between other processes and this one for current 
round. 

•SENT-READY: set of processes from whom READY messages have been received In 
current round. 

• CORR: correction variable. 

• A: adjustment to clock. 

The code is in Figure 5-1. 
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beginstap(w) 
do forever 1• each iteration is a round •/ 

. T :• NOW 
broadcast(T) 
U :• T + (1 + p)(28 + 41) 
set-timer( U) 

1• first waiting interval: collect clock values•/ 

while -(w • TIMER & NOW • U) do 
if w • (m.q) then OIFF[q] := m + 8 - NOW endif 
endstep 
beginstep(w) 
endwhile 

1• end of first waiting interval •/ 

A :• mid(reduce(DIFF)) 
V :• U + (t + p)(4• + 4p(8 + Ze) + 2p2(4 + Ze)) 
set-t i11er(V) 
SENT-READY :• ta 

1• second waiting interval: collect READY messages and clock valt18'S 
for next round •/ 

while -(w • TIMER & NOW • V) do 
if w • (READY.q) then 

SENT-READY : • SENT-READY U {q} 
if ISENT-READYI • f + 1 then exit endif 

elseif w ~ (m,q) then DIFF[q] :• • + 4 - NOW endif 
endstep 
beginstep(w). 
endwhile 

./• end of second waiting int&rval due to timer or f + 1 READY messages •/ 

broadcast( READY) 
endstep 
beg instep(•) 

1• collect n - f READY .. ssages and next round clock values •/ 

while true do . 
if w. (READY,q) then 

SENT-READY :• SENT-READY U {Cl} 
if ISENT-READYI • n - f then exit endif 

elsaif w • (11,q) then DIFF[q] :• a + 3 - IOW endif 
endatep 
begfnstep(w'} 
endwhfle 

·/•update clock and begin next round•/ 

DIFF :• DIFF - A 
CORR :• CORR + A 
endstep 
beginstep(w) 
enddo 

- "''" ,_ L•- 0 ~ M••- •M .-.-.~. 

Figure 5·1:Algorithm5-1, Establishing Synchronization 
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rdyiq(P) > .J p + I - I 

~ v1r + l-1 

~t1r + (28 + 41) + (4£ + 4p(8 + 21)) + l-1,bydefinitionofi,andtheupper 
bound on the drift rate 

• t1r + 38 + 71 + 4p8 + Spc, 

and 

u
1Q s tr + ct'Q -t'~ + (uiq -t1q> 

s t1r + ct' Q -ti) + (1 + p)2(28 + 4c), by definition of u1
q and the lower bound on the 

drift ra18 

· .• t'r + ct'Q -ii) + 26 + 4c + 4p8 + Spa. 

Thus. t' ;:: u1 - (t' - t' \ - 28 -4c -4p& -Spa, imptyirl; r q q r' . 

nW q(P);:: u1q -ct'q -t')-28-4c-4p8-8pc + 31 + 71 + 4p& +&pa 

I . .i 
• u q - (~ q - r) + I + 3e. I 
Lemma 5· 2: For any nonfaulty procesaes p and q and any i ~ 0, 

<•>~p-t'qlScl + 3a,anct 

(b) rtty'q(P) ~ u1
q •. 

Proof: We procead by induction on i. 

Basia: i • 0. 

(a) It° P - fl qi S a + 1, becauM • soon as p MIMs up, it sends its round o message to. 
all oUier PfOC81181 The receipt of this m1amge. which OCCUl8 at moat cl + I later, 
causes q to begin round o, if it hllln't already done ID. 

(b) Let r be the first nonfaulty proceu to send READY at round O. By Lemma 5-1, 

rdyoq(P) ~ uoq-(t°q-t°) + a+ 3a 

;:: u0 q - (I + a) + & + 31, by part (a) 

>Jlq. ·,. 

Induction: Assume for i -1 and show for i. 

(a) Let s be the first nonfautty proceu to baOirl round i. Then s receives n - f READY 
messages during ill round i - 1.(aftllr u""1J. ~ ,_. n - 2f al them we from nonfauly 
proc .... by plirt (b) of the induction hypalh,I Ill Thelit n - 2f nontaulty proc8IW 

' 

--- - ---- - . -~ -- - ~ ··: -. .. . ~ ... ,. _...,,.. 
______ ................ _-



also send READY messages to all the other processes. By t' s + 21, every nonfaulty 
process receives at least n - 2f > f + 1 READY massages and broadcasts READY. 
Thus q receives n -f READY messages by t's + 2e + & + e. Thus, 

t'q st'. + a + 3c 

<t'P + 6 + 3e,bychoiceofs. 

which implies t' q - t P < 8 + 3c. 

By reversing the roles of p and q in the above argument, we obtain t P - t' q S 6 + 3c. 

(b) Let r be the first nonfauJty process to send READY at round i. By Lemma 5-1, 

rdyiq(p)>u1q-Ct'q-t'~ + 8 + 3c 

> u1q-(8 + 3e) + 8 + 3e, by part(a) 

• u1
q. I 

Next we show that a process waits a sufficient length ~ time to receive clock values from all 

nonfaulty procaeses before beginning the second waiting interval in a round. 

Lemma 5·3: Let p and q be nonfaulty, and i ~ 0. Then arr1 P(q) ~ u1P. 

Proof: By the lower bound on the drift rate, u1 ~ t' + 21 + 4e. Lemma 5-2 implies 
~at q sends its round i clock value by t P + a ! 31,. PThua an1 P(q) S t' P + 28 + 4c S 
up. I 

The next two lemmas bound haw long a round can last for one proceaa. First we bound how long 

.a process must wait after sending READY to receive n - f READY massaga 

Lemma 5·4: For p nonfaulty ~I ~ O, t'+ 1 P -v' P S 28 + 41 + 4p(! + 4c). 

Proof: The worst case occurs if p is as far ahead of the other nonfaulty processes aa 
possible, its clock is fast, the other clocks are slow, and the slow proceuas' READY. 
messages take as long as possible to arrive. However, aa soon as they arrive, p begins 
the next round. Let q be one of the slow nonfaufty ~ 

. t' + 
1 -v' • ct'+ 1 

- J ) + cv' - u1 
\ + (u1 -t' ' + ct' - r } -cJ - u1 

' - (u1 -t' \ PP P Q q q' Qq' QP' PP' PP' 

S (8 + e) + (1 + p)2(4c + 4p(8 + 2e)) + (1 + p)2(2& + 4c) + (B + 31) 
- (4c + 4p(8 + 2e))- (28 + 4c} 

• 28 + 4e + 4p(8 + 4c), ignoring p2..._ I 
Lemma 5·5: For any nonfaulty process p and any i ~ O. 

t'+ 1
P-t'P S 41 + 12e + 4p(3' + 10a). 

Proof:t'•1 -t' • (t+ 1 -J l + (v1 -u1 l + (u1 -t' \ 
pp p P' p P' PP' 

~ ... -... ~ , ........ -.. -·- . 
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< 28 + 4e + 4p(8 + 4e) + (viP - uip> + (uip -f J• by Lemma 5-4 

S 26 + 4e + 4p(8 + 41) + (1 + p)2(41 + 4p(c5 + 2-)) + (1 + p)2(28 + 4t) 

• 48 + 121 + 4p(36 + 101}. I 

' 
Now we give an upper bound on how far apart tmaxi and tmax1 + 1 can be. 

Lemma 5·6: For any i 2= 0, 

tmax1• 1 -tmax1S48 + 121 + 4p(36 + 101). 

Proof: Let p be the nonfautty process such that t + 1 P • tmax1+ 1• Then 

tmax1
•

1 -tmax1 = t• 1 -tmax1 < t• 1 -t' 
p - p p 

S 48 + 12e + 4p(38 + 10e}, by Lemma 5-5. I 

Lemma 5-7 bounds the amount of real time between the time a nonfaulty process receives a 

round i message from another nonfaulty process and the time the last nonfaulty process begins 

round I+ 1. 

Lemma 5· 7: For any i > O and nonfaulty processes p and q, 

trnax1• 1 -arr1P(q) < 58 + 191 + 4p(3' + 101). 

Proof·tmax1• 1 -arr1 (q) = (tmax1 • 1 -~+ 1 l + (t'+ 1 -t' l + (t -t' )-(arr' (q)-t' \ • p ' P" p P" p q p q' 
\ 

s ca + 3t) + (48 + 121 + 4p(3' + 101)) + ca + &>-ca -1), by Lemmas s-2 and 
5-5 and the lower bound on the message delay 

• 58 + 191 + 4p(38 + 101). I 

The next lemma bounds the error in a nonfaulty proceas' estimate of another nonfaulty process' 

locat time at a particular real time. 

Lemma 5·8: Let p and r be nonfaufty. Then 

IOlf'r:ip(r) + C1p(tmax1+1)-c'r(tmax1+ 1)1 SI+ p{113 + 391). 

Proof: fOlfi=i P(r) + C1P(tmax1+1
) -d r(tmai + 1)1 

• IVAL1 (r) + I-AR~ (r) + d (tmax1+1)-d (tmai+1)f. 
P P P r 

If the quantity in the absolute value signs is negatMt. then this expression is equal to 

d (tmax1 • 
1> ...: d (tmax1

•
1
) + c1 carr1 er>> - a - VAL1 (r) r p P p . p 

S drctmai•1)-d P(tmai+ 1
) + c1 P(arr1 P(r))-1-dr(arr' P(r)-3-c), since the delay is·at 

moat&+ I 

- ·- - '" ---------·---- ..... _. ________ ,_, ...... -.-............·-·--· --- .. ·--~---·--·---- .. --·~ ... _... __ . ___ ...... __ .,._ -··-···-- .. ~--·~·~~-~- .... ··-·· 
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<C\Ctmai• 1)-dP(tmax1+1
) + C;P(aJtP(r))-B-d,(arrlP(r)) + (1 + p)(B + e),since 

the cfock drift is at moat 1 + p . 

,. (Cir(tmax1+ 1)-dp(tmax1+ 1)}-(dr(arr1P(r))-dp{arr1P{r)))-3 + 3 + e + p8 +pc 

S 2p(tmax1+ 1 
- ar~ P{r)) + e + p& + pa, by Lemma 4-2 

S 2p{56 + 19e) + e + p6 + pe, by Lemma 5-7 

,. e + p(116 + 39e). 

If the quantity in the absolute value signs is pasitive, a similar argument shows that 
IDIFi=ip(r) + cip(tmax1

•
1)-Cir(tmax1

•
1>1se+p(11&+371). I 

The next lemma bounds how far apart two processes' i-th clocks are at the time when the last 

process begins round i + 1. The bound is in terms of how far apart the Clocks are when the last 

process begins round i. 
Lemma 5·9: For any nonfaulty p and q, and any i, 

IC1P(tmax1+1)-C1q(tmax1+1)I S el + 8p(8 + 31). 

Proof: IC1P(tmax1+1
) - d q(trnax1+1 >I 

S IC1 
(tmax

1
} - d Ctmax1>1 + ICC1 (tmax1

+
1
) -d (tmax1

+
1
)) - cd Ctmax? - d Ctmax?>I p q . q q p q 

< ei + 2p(tmax1 +·,1 -tmmh by definition of e1andlemma4-2 

S B1 + 2p(4& + 121), by Lemma 5-6 and ignoring p2 terms 

• 81 + 8p(8 + 31). I 

Now we can state the main result, bounding e1+ 1 in terms of 'it. 
Theorem 5·10: e1

•
1 S t..!81 + 21 + 2p(114 + ·39t). 

Proof: s'+ 1 • max{ld+ 1 ctmax1+ 1)-c!+ 1 (tmax1+1)J} for nonfaulty p and q. p q 

Letx • e + p(113 + 391). 

We now define three multiseta U, V, and W that satisfy the hypotheaes of Lemma A-4. 
Let 

U • Dlr:t=f P + c'P(tmax1+1), 

v. 01FF'q + c1qctmax'• 1>, and 

w • {c',ctrnai • 1): r is nonfaulty}. 

U and V have size n; W haa size n - f. 
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~fine~ injection from W to U as follows. Map each element dr in W to DIFF' P(r) + 
C' P(tmax' + 1) in U. Since Lemma 5-8 lmpHes that 

fDIFF' P(r) + dp(tmax1
+

1)-dr(tmax'+1)t :S x 

for all then -f nonfaulty processes. dic(W.U) • o. Similarty, dic(W.V) • 0. 

Bylemma5-9,diam(W)<B1 +8p(8 + 3e). Thus,LemmaA-4implies 

lmid(reduce(U))- mid(reduce(V))f :S 1.idiam(W) + 2x 

• ine' + 2e + 2p(111 + 391). 

Since mid(reduce(U)) • mid(reduce(DIFF' P + c' P{tmaxl + 1))) 

• mid(reduce(DIFF1 J> + c' P(tmax1
+

1
) 

• AOJI + d (tmai+1) 
p p 

• c'+1 (tmaxf +1) 
. p 

and similarly mid(reduce(V)) • c'•\ctmax1• 1), the result foUowa. I 

We obtain an approximate bound on how closely this algorithm will synchronize the clocks by 

considering the limit of a' a the round number Increases without bound. 

Theorem 5· 11: This algorithm can synchronize clocks to within 4e + 4p(118 + 391). 

Proof: l""i-+oos' 

• lim1-+00(B01a1 + (1 + 1/2 + ... + 112'°1)(2• + 2p(111 + 381))) 

• 4e + 4p(118 + •>. since ttie limit of the geometric aerie& la 2. I 

As was the case for Algorithm 4-1, if the number of procaues, n, increaes while f, the number of 

faulty processes remained fixed, a greater closen- of syndvonization can be achieved· by 

modifying Algorithm 5-1 so that it computes the mean imlteld of the midpoint of the range of 

values. which approaches 21 + 2pP u n approaches infinity. 

After modifying Algorithm 5-1, we get 

Fi :S Et1t1(n-2f) + 21 + a,(11 a + •> .... 

This is the same• 

Fi :S a°f 1<n-2fl + c1 - <t1<n-2f)>'>Jt1 - t1(n-2f))(21 + 21><11 a + •>. 

............... 



81 

which approaches 2e + 2p(118 + 39e) as n approaches infinity. 

5.4 Determining the Number of Rounds 

The nonfaulty processes must determine how many rounds of this algorithm must be run to 

establish the desired degree of synchronization before switching to the maintenance algorithm. 

The basic idea is for each nonfaulty process p to estimate eO, and then calculate a sufficient 

number of rounds, NROUNDSP, using the known rate of convergence. e0 is estimated by having 

p calculate an overestimate and an underestimate for c"q(tmax°> for each q, and letting the 

estimated fiJ be the difference between the maximum overestimate and the minimum 

underestimate. 

Let p's overestimate for c<> q(tmax°> be OVERP(q) and p's underestimate for cO q(tmax°) be 

UNOERP(q). 

For the overestimate, we assume that q's clock is fast, and that the maximum amount of time 

elapses between t° q (when q sent the message) and tmax0• That maximum is 8 + c since every 

nonfaulty process begins round o as soon as it receivee a maaage. Thus. 

Similarly, we can derive the underestimate. We assume that q is the last nonfaulty process to 

begin round o. Thus, 

Process p computes its estimate of a°, 

Now p estimates how many rounds are needed until the spread ia dole enough. There is a 

predetermined ., ~ 4c + 4p(11 I + 39c), which la the delired clolen•• of synchronization for 

the start-up algorithm. After j rounds. 

Fi :S f/Jp/'J + (1 + 112 + ... + 112'°1)(21 + 2p(11ct ~ 3Jt)). -

Process p sets the right hand side equal to ., and solves for j to obtain a estimate of the required 

number of rounds. NROUNDSP. 

' • - > • • - •••••• ~ --··--- ...... - ••• - ..... _ .. ·-
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Now each process executes a Byzantine Agreement protocol on the vector of NROUNOS values, 

one value for each process. The processes are guaranteed to have the same vector at the end of 

the Byzantine Agreement protocol. Each process cho~ the (f + 1 )-st smallest element of the 

resulting vector as the required number of rounds. The smallest number of rounds computed by a 

nonfaulty process will suffice to achieve the desired cfOsetiess of synchronization. Variations in 

the number of rounds computed by different nontaulty processes are due to spurious values 

introduced by faulty processes and to different message delays. However, the range computed 

by any nonfaulty process is guaranteed to include the actual values of all nonfaulty processes at 

tmax0, so the range determined by the process that computes the smallest number of rounds atso 

includes all the actual values. In order to guarantee that each process chooses a number of 

rounds that is at least as large as the smallest on& computed by a nonfaulty process. it chooses 

the (f + 1 )·st smallest element of the vector of values. 

Any Byzantine Agreement protocol requires at least f + 1 rounds. The processes can execute 

this algorithm in parallel with the clock synchronization atgorithm, beginning at round 0. The 

clock synchronization algorithm imposes a round structure on the processes' communications. 

The Byzantine Agreement algorithm can be executed using this round structure. Each SA 

message can also include information needed for the clock synchronization algorithm (namely, 

the current clock value). However, the processes will always need to do at least f + 2 rounds, one 

to obtain the estimated number of rounds and f + 1 for the Byzantine Agreement algorithm. 

5.5 Switching to the Maintenance Algorithm 
. -· 

After the processes have done the rwquired number of rounds (denoted by r throughout· this 

section) of the start-up algorithm, they cease ~ecuting It. The proceaaes should begin the 

maintenance algorithm as soon as possible:)dt. eitd;ng the start-up algorithm in order to 

minimize the inaccuracy introduced by theciock drift. 

In the maintenance algorithm each process broadcasts its clock value when its clock reach~ -r', 
for i • o, 1, ... , where ri• 1 • r' + P. Let ,.0 be a multiple of P. It is shown below in Lemma 5-13 

that the first muttiple of P reached by nonfautty p's clock after fini8hing the required r rounds 

differs by at moat one from the first muftiple reached by nonfaully q's clock after the r rounds. 

When a process reaches the first multiple of P after it haa ended the start-up algorithm, it 

broadcasts its dock valU. as in the maintenance algorithm, but doesn't update its clock. At the 

next multiple of P, the process begins the hUf maintenance algorithm by broadcasting its dock 
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value and updating its clock. (It will receive clock values from all nonfautty processes.) 

The analysis introduces a new quantity, {J
1
, representing an upper bound on the closeness of the 

nonfautty processes' clocks at tmaxr. That is, for any nonfaulty processes p and q, ICr P(tmaxr) -

crq(tmm{)I ~ P1· We show that if the following five inequalities are satisfied by the parameters. 

then the switch from the start-up algorithm to the maintenance algorithm (with parameter /J} can 
be accomplished. 

(1)/J
1 

)4e + 4p(118 + 391) 

(2)/J > (ft1 + 21 + p(6P-/J1 + 28 + 121)) I (1-8p) 

(3) P > 2(1 + p)(/J + e) + (1 + p}max{B, /J + e} + p8 

(4)P </Jl4p-elp-p(/J + 8 + e)-2/l-3-2e 

(5) P > 4e + 4p(3/l + B + 3e) + ap2(JJ + 8 + e} 

The first inequality is imposed by the limitation on how closefy the start-up algorithm can 

synchronize. The second inequality reflects the inaccuracy introduced during the switch. The 

last three are simply repeated from Section 4.5.1. 

First we show that_ {J1 can be attained by the start-up algorithm. 

Lemma 5·12: There exists an integer i such that Fi S /J1• 

Proof: Since {J1 must be larger than 4e + 4p(11& + 39e), the result follows from 
Theorem 5-11, which statea that the closeness of synchronization approaches 4t + 
4p(11 B + 391) as the round number, i, inereaaes. I 

Note that the number of rounds, r, that the processes agree on is > i, and that the worst-case fl is 

no more than the worst-case B1, which is at most.fl,. 

Lemma 5-13 shows that the first multiple of P reached by a nonfauJty process after finishing the 

start-up algorithm differs by at most one from that reached by another nonfaulty process. 

Lemma 5· 13: Let p and q be nonfaulty processes. Then 

jeq(t' J-C'P(t' JI SP. 
Proof:IC'q<t"J-C"P(t' Jf~lCrqCfJ + (1 + p)(t'q-t"J-C'pCt'JI 

s 1cr qcr J-C" per JI + c1 + P><' + &>, by Lemma s-2 

< l(C'q(t' J-C"q(tmaxr))-(C"P(t' J-C'P(tmaxr))I + IC'qCtmax')-c'P(tmax')f 



.+ (1 + p)(8 + 31) 

S 2p(trnaxr -r J + /J1 + (1 + p}(6 + 3e), by Lemma4-2and definition of /J1 

< 2p(6 + 31) + /11 + (1 + p)(8 + 3c), by Lemma 5-2 

= fJ, + (1 + 3p}(8 + 31). 

Suppose in contradiction that P < {J
1 

+ (1 + 3p)(8 + 31). By soMng inequality (2) for 
/J1, we get 

/J1 < (/J-21-p(S/1 + 26 + 121 + 6P)) I (1-p), 

which implies that 

P < (/J - 2e - p(8/J + 28 + 121 + 6P)) I (1 - p) + (1 + 3p)(8 + 31). 

This simplifies to P ( (/J + 8 + 1 -8p/J + p8 -3fN) I (1 + Sp). 

Combining this with inequality (3) yields 

2(1+p)(/J+1) + (1 + p)8 + p8<P<(fJ + 8 + 1-Sp/J + p8-3pa)/(1 +Sp). 

Solving for /J gives fl <-(1 + 6p& + 15p1) I (1 + 20p), which is a contradiction. I 

The rest of the section is devoted to showing that the difference In real times when nonfaulty 

processes' clocks reach the first multiple of P at which they wtll alt perform the maintenance 

·algorithm is less than or equal to fJ. Consequently, this /J can be preserved by the maintenance 

algorithm. 

Define kP to be the first multiple of P reached by any nonfaulty process' r-th clock. The first 

multiple of P reached by any other nonfaulty process ii either kP or (k + 1 )P, by Lemma ~; 3. At 

(k + 1 )P some of the nonfaulty procesaas wifl actually update their docks, and at (k + 2)P all of 

them wiJI update their clocks. 

Recall that (k+ 1)P • rk• 1 and uk+ 1 • rk• 1 + (1 + p)(/J + 8 + 1). Let uk+ 1P • crp{Uk+ 1) and 

similarly for q. 

· Lets and t be two nonfaulty processes. Here is a deecriptfon of the worst cm: 

• S has the smallest clock value at tmur, barely above (k-t)P • and Ha dock ii sloW. 

• fs clock is fast and la fl 1 ahead of s•s at tmu' . 

• s updates its clock at I}+ 1' by decrementing it • much • Po 11'ble • 

. 
• h· ... ----· --~ '•• ... _ .... 

------------- --------·--



• t updates its clock at tf + 1, by incrementing it as much as possible. 

First we must bound how far apart in real time nonfaulty processes' r-th clocks reach uk+ 1. 

Lemma 5· 14: Let p and q be nonfaulty processes. Then 

1crP(uk+1)-crq(Uk+1)I S (1-p)Jl1 + 2p(2P + p +a+ e). 

Proof: Without loss of generality, supposecrp(Uk+ 1) ~ crq(uk+ 1). Then 

fer (Uk+1)-cr (Uk+1)I = c' (Uk+1)-cr (uk+1) 
p q p q 

= (er (Uk+ 1) - tmaxr) - (er (Uk+ 1) - tmaxr) 
p q 

<(Cr (uk+ 1 )-Cr (tmaxr))(1 + p)-(Cr (uk• 1 )-C" (tmaxr))(1-p),bytheboundson 
theP drift rlte P q q q 

S(2P + (1 + p)(JJ +a+ e))(1 + p)-(2P + (1.+ p)(JJ + 6 + e)-Jl1)(1-p) 

• (1 - p)IJ1 + 2p(2P + fJ + I + e). I 

Next, we bound the additional spread introduced by the resetting of the clocks. 

Lemma 5· 15: Let sand t be the nonfaulty processes described. above. Then 

(a)cr• 1,cuk+ 1)-cr,cuk+ 1) sc1 + p)(e + p(4{J +a+ 51),and 

(b) e't(uk+ 1)-cr•\cuk+1) s (1 + p}(e + p(4/l + a + Se}. ' 

Proof: (a) By Lemma 4-15, we know that s's new clock is at most a • e + p(4{J + a + 
Se) less than the "smallest" of the previous nonfaulty clocks at

1 
c'

1
cuk+ 1} • uk•1

1
• 

Since shad the amaHest ctock before, cr• 1,cuk• 1
; ~ C",(uk• J- Cl. By the lower 

bound on the drift rate, 

cr+1,(uk+1)-cr,(uk+1) S (1 +· p)a. 

(b) Lemma 4-15 also states that rs new clock is at most a more than the "largest" of 
the previous nonfaulty clocks at uk + 1 t' which was fs clock. The argument is similar to 
(a). I 

Finally, we can bound the maximum difference in real time between two nonfaulty procesw' 

clocks reaching rk•2. Let IP be the Index of p's logical clock that Is in effect when rk•2 Is 

reached. 

Theorem 5· 18: Let p and q be nonfautty proc11111 and I • 1, and j • iq. Then 

1c1,(T'+2>-cl~(T'+2)f ~~-

Proof: Without km o1 generality, auppeSe r:i Per'• 1) ~ d qrr • 2>. Then 

fc1 (T'• 1)-d ~·2>1 • c1 ~·1)-cl ~·2> p q p q 



for nonfaulty processes sand t that behave as described above. 

We know from Lemma 4-2 that 

< 2p(P - (1 + p)(/1 + 8 + a)). 

S2p(P-(1 + p)(/1+8 + e)) + c"+ 1.cuk+ 1)-cr+\cuk+ 1) 

""2p(P-(1 + p)(/1 + 8 +a))+ cr+1s(Uk+1)-cr,{Uk+1) + crt(Uk+1)-cr+\cuk+1) 

+ Cr (Uk+ 1)-Cr (Uk+ 1) 
I t 

< 2p(P- (1 + p)(/1 + 8 + e)} + 2(1 + p)(a + p(4{J + & + 51)) 

< 2p(P- (1 + p)(/1 + 8 + a)) + 2(1 + p)(a + p(4{J + 4 + Sc)) 

+ (1-p)/J1 + 2p(2P + P + 8 +a), bylemma5-14 

< p, by inequality (2). I 

This P is approximately 6a, which is sllghtty larger than the smallest one maintainable, 41. To 

shrink it back down, P can be made slightty smaller than required by the maintenance algorithm, 

as long as the tower bound of inequality (3) isn't violated. Since the synchronization procedure is 

performed more often, the clocks don't drift apart as much, and consequently, th~ can be mont 

closely synchronized. Once the desired p is reached,· P . can be increasad again. (The 

computational costs associated with performing the synchronization procedure and the possible 

degradation of validity may make it advisable to resyChronize more infrequently.) 

5.6 Using Only the Start-up Algorithm 

A natural idea is to use Algorithm 5-1 solely, and neV9r ~h to the mainenance algorithm. Both 

algorithms can synchronize clocks to within ~ 4c, so such a policy would sacrifice 

very tittle in accuracy. Using just the one algorithm. Is conceptuaDy simpler and avoids 

introducing the additional error during the sviitch·CMll'. Howe\w, if the system does no work 

during.•e period of time when processes have docks with diffetent. indices, it is important to 

• ~---."·w-"'••·• 
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minimize this interval. Algorithm 5-1 has such an interval ot length o + 3E; for Algorithm 4-1, it is 

approximately f3 + 2p(/3 + o + E). Depending on the choice of values for the parameters, 

Algorithm 4-1 may be superior in this regard. 



ea 

Chapter Six 

Conclusion 

6.1 Summary 

In conctusion, we have presented a precise formal model to describe a system of distributed 

processes, each of which has its own clock. Within this model we proved a lower bound on how 

closely clocks can be synchronized even under strong simplifying assumptions. 

The major part of the thesis was the description and analysis of an algorithm to synchronize the 

clocks of a completely connected network in the presence of clock drift, uncertainty in the 

message delivery time, and Byzantine process faults. Since it does not use digital signatures, the 

algorithm requires that more than two thirds of the processes be nonfaulty. OUr algorithm-is an 

improvement over those In [7] based on Byzantine Agreement protocols in that the number of 

messages per round Is n2 instead of exponential, and that the size of the adjustment made at each 

round is a small amount independent of the number of faults. 

I 

The algorithm in (5] works for a more general communication network, and, since it uses digital 

signatures. only requires that more than half the processes be nonfaulty. However, the size of the 

adjustment depends on the number of faulty processes. 

The issue of which algorithm synchronizes the the most cl_osely is difficult to resolve because of 

differing assumptions about the underlying model. For instance, Algorithm 4-1 of this thesis can 

achieve a cloaeneea of synchronization of approximately 4t in our notation. However, we assume 

that I~ processing time is negligible; otherwise Lamport [8] claims that ·actually there la an 

implicit factor of n in the 1, in which case the closeness of synchronization achieved by our 

algorithm depends on the number of processes as do thoae in [7]. 

We also modified Algorithm 4-1 to produce an algorithm to establish synchroniZation initially 

among clocks with arbitrary values. This algorithm also handles clock drift, uncertainty In the 

message delivery time, and Byzantine proce. faults. Thia problem, as far as we koow, had not 

been addressed previously for real-time cl~ -
- -, 



6.2 Open Questions 

It would be interesting to know more lower bounds on the closeness of synchronization 

achievable. For example, a question posed by J. Halpern is to determine a lower bound when the 

communication network has an arbitrary configuration and the uncertainty in the message 

delivery time is different for each link. 

There are also no known lower bounds for the case of clock drift and faulty processes. 

The validity of algorithm 5· 1 has not been computed. If this algorithm were used solely, knowing 

how the processes' clocks increase in relation to real time would be of interest. Lower bounds in 

general for the validity conditions are not known. 

It seems reasonable that there is a tradeoff between the closeness of synchronization and the 

validity, since the synchronization procedure must be perfonned more often in order to 

synchro~ize more closely, but each resychronization event potentially worsens the vaffdity. This 

tradeoff has not been quantified. 

M. Fischer [4] has suggested an "asynchronous" version of Algorithm 5-1 to establish 

synchronization. In his versk>n, a nonfaulty process wakes up at an arbitrary time with arbitrary 

values for its correction variable and array of differencas. Every P a measured on its physical 

(not logical) clock, the process performs the fault-tolerant averaging function and updates its 

clock. It seems that the clock values should converge, but at what rate? 

What kind of algorithms that use the fault-tolerant averaging function can be used in more general 

communication graphs? 

Another avenue of Investigation is using the fault-tolerant averaging function together with the 

capability for authentication to 189 if algorithms with higher fault·tolerance than those Ol this 

thesis and better accuracy than thoae in [5] can be designed. 

, ... ·""····r·· -
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Appendix-A 

Multisets 

This Appendix consists of definitions and lemmas concerning multisets needed for the proofs of 

Lemmas 4-9 and 5-1 o. These definitions and lemmas are analogous to some in (1 ]. 

A multiset U is a finite collection of real numbers in which the same number may appear more 

than once. The largest vaJue in U is denoted max(UJ, and the smallest value in U is denoted 

min(U). The diameter of U, diam(U), Is max(U) - min(U). Let s(U} be the multiset obtained by 

deleting one occurrence of min(U), and J{U) be the multiset obtained by deleting one occurrence 

of max(U). If IUI > 2f + 1, we define reduce(U) to be t's'(U), the ..ult of removing the f largest _ 

and f smallest elements of U. 

Given two multisets U and V with IUI S IVf, consider an injection c mapping U to V. For any 

nonnegative real number x, define Sx(c) to be {u€U: lu - c(u)I > x}. We define the x-distance 

,between U and V to be dx(U,V) • minc{ISx(c)I}. We say c witnesses dx(U,V) if ISx(c)I • dx(U,V). 
I 

The x-distance between U and V Is the number of etements of U that cannot be matched up with 

an element of V which is the same to within x. If lu - c(u)I S x. then we say u and c(u) are x-paired 

by c. The midpoint of U, mid(U), is JA[max(U) + min(U)]. 

For any multiset U and real number r, -define U + r to be the multiset Obtained. by adding r to every 

element of U; that is, U + r •· {u + r: u € U}. It is obvious that mid and reduce are invariant 

under this operation. 

The next lemma bounds the diameter of a reduced muJtiset. 

Lemma A· 1: Let U and W be multisets such that IUf • n, IWI • n -f, and d.(W,U) • 
0, where n ~ 2f + 1. Then 

max(reduce(U)) S max(W) + x and min(reda.ice(U)) ~ min(W)- x. 
Proof: We show the result for max; a similar argument holds for min. Let c witness 
dx(W,U). Suppcae none of the f elements deleted from the high end of U are x-paired 
with elements of W by c. Since d.(W.U) • o, the remaining n-f ~of U are 
x-paired with elements of w by C, and thus 8WJfY element of reduce(U) is X·pairad with 
an element of W. Suppose max(reduce(U)) ii x-paired with w in W by c. Then 
max(reduce(U)) Sw + x ~ max(W) + x. 

Now suppose one of the elements deleted from the high end al U la x-pairad with an 



71 

element of W by c. Let u be the largest such, and sup~ it was paired with w in 
W. Then max(reduce(U)) S u S w + x S max(W) + x. I · '~ 

We show that the x·distance between two multisets is not increased by removing the largest (or 

smallest) element from each. 
Lemma A-2: Let U and V be multisets. each with at least one element Then 
dx(l(U),l(V)) S dx(U,V) and dx(s(U),s(V)) < dx(U,V). 

Proof: We give the proof in detail for I; a symmetric argument holds for s. Let M .. l(U) 
and N • l(V). Let c witness dx(U,V). We construct an injection c' from M to N and 
show that fSx(c'>I < fSx(c)I. Since dx(M,N) < fSx(c')I and JSx(c)I • dx(U,V), it follows 
that dx(M,N) < dx(U, V). 

Suppose u .. max(U) and v • max(V). (These are the deleted elements.) 

Case 1: c(u) .. v. Define c'(m) .. c(m) for all m in M. Obviousty c' is an injection. 
ISx(c')I < JSx<c>I since either s.(c') .. s.cc> or Sx(c') • s.(c)- {u}. . . 

Case 2: c(u) ;t v and there is no u' in U such that c(u') • v. This is the same as caae . 
1. . . 

Case 3: c(u) ;t v, and there is u' in U such that c(u') -= v. Suppose c(u) • v'. Define 
c'(u') • v' and c'(m) • c(m) for all min M besides v'. Obviously c' is an injection. Now 
we show that ISx(c')I S IS.(c)I. 

If u or u' or both are in s.(c) then whether or not u' is in Sx(c') the inequality holds. The 
only trouble arises if u and u' are both not in s.(c) but u' is in s.(c'). Suppose that is 
the caae. Then fu' - c'(u')I • lu' -v'I > x. There are two poaibllttiea: 

(I) u' > v' + x. Since u is not In Sx(c), fu - c(u)J • fu- v'f S x. So v' ~ u- x. Hence u' > 
v' + x ~ u - x + x, which implies that u' > u. But this contradicts u being the largest 
element of u. · 

(Ii) v' > u' + x. Since u' is not in Sx(c), fu' - c(u')f • fu' -vt < x. So u' > v - x. Hence 
v' > u' + x ~ v - x + x, which implies that v' > v. But this contradicts v being the 
largest element of v. 

I 

The next lemma shows that the results of reducing two multiaets, each of whose x-distance from ~­

third multiset Is o, can't contain values that are too far apmt. 

Lemma A·3: Let U, V, and W be multil8tl IUCh that IUI • M • n and l'WI • n - f. 
where n > 3f. If d.(W.U) • O and d.(W.V) • 0, then 

rnin(reduce(U)) - max(reduce(V)) S 2x. 

Proof: First we show that d~(U,V) ~ f. Let Cu witnesS dx(W,U) and Cy witness 
d.CN. V). Define an injection c trom u to v as follows: if there i1$ w in w such that eu<w> 
• u, then let c(u) • ey(w); otherwise, let c(u) be..., UftUl8d ••ment of V. For each of 

'_.,_ - . 
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the n - f elements win W, there is u in U such that u = ~(w). Thus lu - c(u)I < lu - wl 
+ lw - c(u)I = lcu(w) - wl + lw - c=v<w)I < x + x = 2x. Thus ~(c) < f, so d2x(U,V) ~ 
f. 

Then by applying Lemma A·2 f times, we know that d2x(reduce{U),reduce(V)) < f. 
Since lreduce(U)I = lreduce(V)I • n - 2f > f, there are u in reduce(U) and v in 
reduce(V) such that lu -vi < 2x. Thus min(reduce(U)) - max(reduce(V)) S u - v < 2x. 
I 

Lemma A-4 is the main multlset result. It bounds the difference between the midpoints of twa­

reduced multisets in terms of a particular third multiset. 

Lemma A-4: Let U, V, and W be multisets such that IUI = IVI = n and IWI = n - f, 
where n > 3f. If dx(W,U) = 0 and dx(W,V) = 0, then 

lmid(reduce(U))- mid(reduce(V))I < 1hdiam(W) + 2x. 
Proof: lmid(reduce(U))- mid(reduce(V))I 

= 1hlmax(reduce(U)) + min(reduce(U))- max(reduce(V))- min(reduce{V))I 

.= 1hlmax(reduce(U))- min(reduce(V)) + min(reduce(U))- max(reduce(V))I 

If the quantity inside the absolute value signs is nonnegative, this expression is equal 
to 

1h[max(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))) 

S 1h(max(W) + x - (min(W) - x) + min(reduce(U)) - max(reduce(V))), by applying 
Lemma A· 1 twice 

• ~(diam(W) + 2x + min(reduce(U}) - max(reduce(V))) 

S 1h(diam(W) + 2x + 2x), by Lemma A-3 

• ~diam(W) + 2x. 

If the quantity inside the absolute value is nonpositive, then symmetric reasoning gives 
the result. I 

-- -------- -----------
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