
MIT /LCS/TR-3.31

Karen Rosin SOllins

This research was. supported .by the Defe~•·e Advanced Research

Projects Agency of the Department of Def.~Jule and was monitor

ed by the Office of Naval Research µnder j ,ontract numbers

N00014-75-C-OtS61 and N00014-83-K ... Ql2S.

~;,,11ll~•J"3>~-•-);~-~~~UJlJL~J.t4JIJ;l!;#_RJ.!J•D!lfllllfJMIMlJllOIJllJil(ffl!UMJJl:fo~l!.~9!'4!•~~i..1 . 1•1·~«JJ~
- ' . . ' ' .. ,.,

by

Karen Rosin Sollins

Submitted to the
Department of Electrical Enliaeeriaa arul Computer Science

on February 14. 198S in partial fWllaientof tile 114uirements
for the degree· of Doctot·of Phltoleplly

© Massachusetts Institute of Technology 1985

Massachuse• lnstitu~ ofTechnoJoay
Laboratory for~ SciclllC
Cambridge, Ma•1*•i•.••m·

1

- ~-:::-~- ~-- ::::-
- ~-~:;=E_..c-- ~==---~- -

------ -----------------------

l':'.'!lf:-r~,,_,,l,.l.ll,.ll!llJ.,,11 ...•• t.,=~cn•-.··~''"'" .¢12Z4Jllll4fa2AIJll!!Un:::4244M Ut;JM@MllUUAJtQ@WP.IJJ,!fF
;~fr~.··'>-· ·_ --, ' .. •'

1-'.

2

l)istrihutcd Na111c Managcn1ent

by
Karl'n Rosin Sollins

Submilted lo the
Department of Flcctrical Engineering and Cornruter Science

on February 14, 1985 in partial lltlfillment of the requirements
frlr the Degree of Doctor uf Philosophy

Ahslract

'fhe problem being addressed in this research is the design of a naming facility
achieving the l<Jllowing goals. First, two !'unctions on names musl be supported:
accessing a named object, and acting as a place holder for the named object.
Second, it must be possible tu share those names. Third, communication of the
names as well as communication by use of the names must be possible. Finally,
kasibility or implementntion is a goal. In this research a name is defined to be an
object that can be associated with another object and has an equality operation
defined on it. Two !'u11ctions arc defined frir a 1wme; it can be used both to provide
access to the named object and as a place holder fur the named object. The assumed
system model is a loosely coupled, distributed system.

The research addresses this problem with: (1) a detailed analysis of the naming
problem and the nature or names themselves: (2) a proposal for a set of mechanisms
that addresses the problem above, including the proposal or lwo new types of
objects and the mechanisms !'or their use; and (3) two examples of uses of the
model. The model consists of private views of shared, loc;.11 namespaces allowing
shared use of names nnd supporting shared responsibility for management of the
namespace. In addition the model provides for the ncceptance and deletion of
names in stages.

The contributions of the research include an investigation into the nature of names,
an analysis of nmning as a social process especially recognizing both the joint
management of names by the users of those names and the fact that acceptance and
possibly deletion occur in degrees, and the proposal for a mechanism to address
these issues.

Key words: naming, distributed system, sharing, cooperation, software environment,
strong typing.

3

Acknowlcdgrncnts

I would not have succeeded in this research project without the support, guidance,
and caring of a great many people:

Af ikr So/hns, my l111sh;111d, who, more than anyone else, supported, listened to, and
coaxed me through the many highs and lows of such a project,

!>avid Recd, my advisor, who, more than anyone else, has showed me how and
encouraged me to think and question and has worked tirelessly with me through
many versions or explaining my ideas,

Prter Sol/ins, my son, who has come with me through many emotional highs and
lows, always ready with a hug, a kiss, and a worcl or encouragement,

David Clark, a reader, who in friendship has put much more into this project than
can be asked or a reader and kept bringing me hack to reality,

J. C. R. Ucklidcr, a reader, who has shown me how to look at the world from new
perspectives and always with enthusiasm,

Deborah E<>trin and Sam llsu, two special friends, who, in many long conversations,
have helped me through the trials and tribulations of being a graduate student while
maintaining some perspective on self and life,

Axel and Kathy Rosin and Susanna Bergtold, my parents and sister, who have
suprortecl and encouraged me in things that they may believe they cannot
understand, but could with a good explanation,

The many members of the computer systems research groups, especially Mark
Rosenstein for his code and support in the mail irnrlementation, Larry Allen, Jerry
Saltzer, and John Rom key for technical discussions of my research, the users of my
mail implementation, and the other members of the groups, who all have given me
their support and shared their sense of humor,

The women, other female students ~md staff members, especially Deborah Estrin,
Muriel Webber, Debby Fagin, and Toby Bloom, who have given me a better
understanding of myself and MIT and how we can all work together.

Thank you

4

'1 ,;:-·/

~ ~0 ,.,._..

•• > - •

For·m, IMlsbMcl5"11k,a.._ if;~~
. < -.! • <-~~:.:;~:-"7~:-- -t~· _____ ,•/:; :.~ .,. .. :.Jw•

·.

Table of Contents

Chapter One: Introduction 11

1.1 The Issues 11
1.2 The Assumption of Federation 14
1.3 The naming problem 17
1.4 Model for a Solution 19
1.5 Related Work 23
1.6 The Plan 27

Chapter Two: The Nature of Names 29

2.1 Introduction to the Problem 29
2.2 The Definition of a Name 31
2.3 Aspects of Names 34
2.4 Aspects of Human Naming 43
2.5 Additional Problems 49
2.6 Summary 54

Chapter Three: Sharing and Individuality: The Model, Part I 57

3.1 Introduction 57
3.2 The Context 58
3.3 The Aggregate 65
3.4 Examples of Uses of Contexts and Aggregates 71

Chapter Four: Joint Management and Name Assignment: The Model, Part II 77

4.1 Introduction 77
4.2 A Simple Example 81
4.3 Factors in Joint Management 83
4.4 Parameterization of Joint Management 86
4.5 A Sample of Choices 89
4.6 The Merging Problem 91
4.7 Summary and Review 94

Chapter Fiye: Implementation of Naming in an Electronic Mail System 99

5.1 f ntroduction 99
5.2 Electronic mail 99
5.3 The Implementation 106

7

5.4 Lessons from the Mail System

Chapter Six: Design of a Naming Facility for a Programming Support
Environment

6.1 Introduction
6.2 The Programming Support Environment
6.3 The Model
6.4 The Operations
6.5 Design or an Implementation
6.6 Comparisons and Conclusions

Chapter Seven: Conclusion

7.1 Reflection of the Ideas
7.2 Lessons and Future Research
7.3 Contributions

lkferences

Appendix A: Operations in the General Model

A.I Operations on Contexts
A.2 Operations on Aggregates

Appendix B: Operations in the Mail Implementations

B.l Functions in User Interface
B.2 Operations on Aggregates in the Mail System
B.3 Operations on Contexts in the Mail System

Appendix C: Operations in the Programming Support Environment

C. l Operations on Contexts and Aggregates
C.2 Operations on Library Contexts
C.3 Operations on Template Aggregates

8

115

119

119
119
124
128
131
134

137

137
142
146

149

155

155
156

157

157
158
160

161

161
163
164

'J'ab1c of Figures

Figure 1-1: Aggregates containing private copies of a shared current 21
context

Figure 2-1: Examples of naming issues 31
Figure 3-1: Depiction of a context 60
Figure 3-2: Depiction or an aggregate 67
Figure 3-3: Example orjoint selection of a name 73
Figure 4-1: An example ol' a state diagram or the transitions of context 79

entries
Figure 4-2: An example of a table for merging contexts 80
Figure 4-3: A state diagram for acceptance and deletion 91
Figure 5-1: Message with shared nicknames 101
Figure 5-2: Message with mailbox addresses for names 101
Figure 5-3: Processes in the mail system 108
Figure 5-4: The list of aggregates 109
Figure 5-5: Displaying an aggregate 109
Figure 5-6: Possible states and transitions for entries a context 114
Figure 5-7: State table for merging two contexts 114
Figure 6· 1: A representation of a context 131

9

Chapter One

Introduction

1.1 The Issues

Names are a critical part or communication, both among humans and between

humans and computers. In order lo communicate with another human, the human

must be able to name objects and actions in such a way that both humans

understand the names. Analogously, in order to communicate with a computer, the

human must he able to name operations and objects in a way meaningl'ul to both the

human and the computer. Therefore, what can be named and how is a central issue

in designing a computer system uscl'ul to humans.

There are three concepts that form the basis of this research project. The first of

these ideas is that many, perhaps most, computer environments today consist of

feckrations of foirly autonomous computers connected by networks and internets1•

Such a federation leads to issues of independence in defining names, reliability of

service, replication of data, redundancy, ancl many others.

The second idea is that, in aclclition to providing excellent storage for information

and arithmetic and decision-making capabilities, computer systems provide a

medium of communication and cooperation both between people and computers

and among people. Such communication and cooperation may be achieved through

sending and receiving electronic messages, sharing and working within a large,

possibly distributed, database management system, cooperative text or program

preparation, or a number of other activities.

1 An internet is a network of networks, allowing for communication across network boundaries.

11

The third idea is Lhat imitating human naming ratterns 111 a naming facility will lead

to a more usel'ul naming facility. Observations about human naming arc considered

in Lhis research for two reasons. Firs!, humans arc autonomous beings forming and

rcf(irming leclerations in which they effectively communicate and cooperate with

each olher. Second, computer systems designers and builders have created naming

ll1cilities that arc frequently ackquatc !or computer use, but on.en not for human

use. IL should be noted that most or these observations can be f<rnnd separately as

goals or various naming facilities, although they have not been assembled to form

the goals or a single naming facility. The observations are:

1. Communication: Names arc part of the basis for cornmunication.
J'hcrcjiJre sets of names used by individuals should be sharable, reflecting
common interests and communication pal/ems.

2. Individuality: Part of the social process of naming is that each indivirlual
brings persomi! experiences and unique decision making to the process.
Those eX/Jerienccs may he shared 1vith 01hers. but no two people will have
had exactly the same set of o .. pericnces, and no two people will make
exactly the same choices at all times.

3. Multiplicity of names:

- Different people use the same name for different things.

- Different people use different names for the same thing.

- A single user uses different names for the same thing.

- A single user uses the same narne for different things in different
situations or al different times.

4. Locality of names: A person uses a small set of local names lo reflect his
or her focus of interest.

5. Flexibility of usage of names: flumans use several sorts of names. For
exarnple, names are often descriptive. In addition, descriptions that have
not been previously chosen as names may be used. Humans also use

12

generic names to label classes of of~jcc/.\~ 1/1('sc generic names may be
lahcls or descriptions. In jhct, humans o(!cn use comhinations of generic
names and descriptive names in order to narrow the set of objects that are
idcn I ified

(i. Manifest meaning of names: The words used by humans for names have
meanings constrained hy human languages. '/11ese meanings are
understood by other humans as well.

7. Usability of names: I Ju mans arc able rapidly to define or rcdcj711e names
and shiji contexts on the basis of con11cr.wztional cues. They also have
mechanisms for disambiguating names, such as querying the source of a
name forji1 rt her it~/ormat ion.

8. Unification: flumans (~//en use various naming schemes, not limiting the
naming of objects to special schemes hased solefy on the type of the object.
Rather, the various schemes are generally applicable.

The goal of this work is to investigate a framework for a naming facility that allows

for communication, cooperation, and more human-like naming based on the list of

observations above. Part of this investigation is a study of those aspects of naming

that arc common to many or all applications and those aspects that arc not, and

therefore must be application specific.

The underlying model of a federation of' computers is discussed in Section 1.2,

followed by a brief investigation of the problem being posed in this research in

Section 1.3. A brief introduction to the proposed framework for a naming facility is

contained in Section 1.4. Section 1.5 discusses related work, first considering some

philosophical, linguistic and sociological work that has innuenced this research. It

then presents a representative sample of work in computer science that has

investigated the ideas that are being brought together in this work. Finally, the last

section of this chapta describes how the investigation will proceed through the

remainder of the thesis.

13

1.2 The Assumption of Federation

Of the three ideas mentioned in Section 1.1, federation is an underlying m;sumption

of this research, while the concepts of cornmunication and cooperation and the

concept of more human-like naming arc goals to be achieved. Since computational

federation is an assumption, in addition to defining it, the implications of federation

on naming and name management must be carefully considered. A conclusion will

be that federation complements concepts or communication and cooperation and

human-like naming. The goals define a large problem area, that must be limited in

order to make this solution feasible. These limitations will be discussed, followed by

a brief description of the proposed mechanisms that comprise the solution.

The direction in which computer systems have been moving is toward a multiplicity

of machines interconnected by networks providing a communication medium. The

concerns of privacy and independence from other users have always been issues

among computer administrators and users, but the nature of those concerns has

changed somewhat <L') smaller cheaper computers have become available. In many

cases, administrators purchase such computers and put them into service in

isolation. At some later time, the administrators decide to connect the computers

under their management. From here, the collection may continue to grow with little .

control ur consensus among the participants in such a "system". A computer is

a111011omous if all the activities on it are isolated from the activities of any other; for

all intents and purposes, it is not connected to any other computer. Many

administrators have pursued this option in order Lo escape large time-sharing

systems. A federation is a loose coupling of computers to allow some degree of

cooperation, while at the same time preserving a degree of autonomy. rn a

federation, there is some agreement on behavior and protocols to be utilized, but the

barriers apparent in the isolated machine arc still available to anyone who wants to

enforce them. If the administrator or user wants to disconnect the computer from

14

the network by simply not accepting messages, that is possible. Ir that computer

provides a service tu the participants in the network, they must understand that such

a service will not always be available. On the other hand, federation provides the

common ground for communication (such as agreement about protocols and

services to be available) should it be desired. Federation includes autonomous

behavior, a relatively easy problem to ;1cldress, while ;tllowing for unplanned

interconnection ;md cooperation as needed. Allowing for cooperation is more

di llicult to address, and frequently ignored or disallowed. 'T'hc loose coupling

labelled federation is taken as the system model in this research.

Federation brings with it the l~1ct that communication may only he available on an

irregular and unpredictable basis, both because the humans involved may choose it

and because communication links are physically unavailable. For example, two

networks may be created independently and only later connected. The connection

may come and go, or particular machines may be available only at certain times.

These irregular communication palterns have several implications. First, uniform

agreement cannot he assumed, affecting naming. In general, most naming schemes

today assume that there will be an agreement on a naming service. In the large

Arpanet community, the Network Information Center (NIC) [15] provides that

service, although there is a plan for distributing this responsibility to some extent to

address this problem of a central service [31]. The creators of Grapevine [5] and

Clearinghouse [36] distributed this responsibility among managers or administrators,

but still require a local external service to register names. Neither Grapevine nor

Clearinghouse allows for graceful merging of two of their environments when

namespaces overlap.

There are two implications of federations; their effects on naming are worth noting

at this point. First, the assumption of inclepenclcnt initialization implies that once

two systems have joined in a federation, unique identifiers are not available unless

15

some prior arrangement w;1s made. Since the two systems were initialized and

uper«1ting inclcpendently, they may have overlapping sets or identifiers in use. Ir a

merged set of names is not to have duplicates, it is possible that names must be

changed and future agreement must be coordinated. The foct that particular

namespaces arc assumed to contain only unique 11;1mes may have far-reaching

consequences if this assumption has been built into application subsystems and

programs as well as the opernting systems. The problem may be especially insidious

ir the merger is occurring between two distributed systems or the same type, where

such clepenclencies may be well hidden from the user. This issue was addressed

both in SNA [3] where the solution was to build a wall between two such

cooperating, hut independent networks, and by Rom [41] who proposed algorithms

for merging namcspaces of networks at the time of merging.

The second result of assuming rederation is an unpredicatable lack of availability of

participants in the federation. For naming, names needing non-local resolution may

not always be resolvable. Any functions which arc to be usable whenever a local

node is available must not be dependent on auxiliary remote services that might not

be available. For instance, if a remote printing service should be available to the

local machine wh,enever the printing server and the communications medium are

available, then accessing the printing server must not be dependent on a remote

name or authcnLication service. rll1is assumption may have far-reaching effects, for

instance in compiling code with remote procedure calls, using a distributed database

management system, sending and receiving mail and many other distributed

applications. Such applications may be designed on the assumption that ce1tain

auxiliary information is available, although it is possible to perform certain functions

without that information. Needless to say, when the time comes to perform the

remote procedure call or access the non-local data, the non-local site involved must

be accessible.

16

Compare brieny Lhc human situation with the assumed model of federation. There

arc many similarities. I lumans will ortrn think and function independently and

then discuss or operate coopcralivcly. An individual may develop ideas privately

before sharing them. Then a group may 1Cm11 to address them. Humans certainly

function both without joinl initialization and in lhc race of' possibly intermittent

communication. Humans. beginning with some basic shared rne~1ns of

comrnunicating (which may be as basic as facial and hand expressions), negotiate

further means of communication. They also generally use names without requiring

or even wanting access to the named entity. In fact, parlor the function of a name is

as a place holder. It is the sharing and joinl management of names that this research

is addressing.

The following section will brieny present a model for a set of mechanisms that

adhere to the eight observations listed above. The model will be addressed further

in Chapter 3 and succeeding chapters.

1.3 The naming problem

The problem in naming that this research is addressing can be stated simply and

then subdivided into three subproblems. Each o[' these in turn can be subdivided

again. This structure of the problem will be examined in this section.

Names allow the users of objects to identify and access those objects jointly.

Although joint naming is not always used, the fact that naming is used frequently

for communication among users must be suppottcd. The naming problem is that

currently available naming facilities in computers do not support joint naming

among people adequately, in many cases because the full extent of the problem has

not been recognized. Tn addilion, feasibility of implementation must also be a goal

of the design of a naming facility. Three words were highlighted because they

identify the three subproblems that arc addressed in this research.

17

The n~1turc of names will be studied in order to understand both the inherent

characteristics of them and the uses of names. This res<.:arch iclenti fies five

characteristics of names. All have an impact on use or unclerstancling of names.

Three of the charucteristics rellect roles in naming: who assigns names, who resolves

them, and who uses them. These three properties or names cktermine the

namespace from which narnes arc chosen, within which they <1rc associated and

therefore can be resolved, ancl within which they will be usecl.2 The other two

properties of names identify the degree or ambiguity or uniqueness of' a particular

name and its degree of meaningfulness. Name, as defined in this research, have two

basic !t1nctions. First, they provide access to the named objects; and, second, they

can be used as place holders for the objects.

Understanding the nature of names and naming is closely related to recognizing and

idcnli fying the aspects of how users or people name. Eight observations about

human naming have been identified in Section 1.1. Various of those eight aspects of

naming can be found in various computer based naming facilities, but no single

facility allows for all of them. Naming in computer systems has generally been more

restrictive for humans than direct interpersonal communication allows.

Joint naming implies two subproblems. The first is that communication us111g

names must be supprnted, requiring sharing an understanding of names. The

second subproblem is that negotiation must take place in order to reach an

understanding about what is to be shared. Negotiation may also involve acceptance

of names by degrees or stages. Because federation is an underlying assumption,

dependency on an external decision maker cannot be built into the support

2 Namespace is a general term for an object that remembers the association between a name and an
object and provides translation between names and objects. Chapter 2 investigates the relationship
between names and namespaces further and Chapter 3 presents the formal model, called a context, of
a narnespace proposed in this research.

18

mechanisms. Whatever joint understanding exists can only be defined by the

participants in the unclerstunding.

'fhe problem being addressed in the model in the next section is to m;rror people

using names jointly to idcnl!/y and use ohjccts. Names can be understood better by

studying both their inherent characteristics and their uses. People using names can

be understood better by recognizing the various aspects or human naming, both

characteristics and uses. And finally, the joint naming that people do can be better

understood by recognizing Llwt it is a form or communication and sharing and that a

structured negotiation must take place in order to reach agreement and allow for

communication and sharing.

1.4 Model for a Solution

The previous sections presented an assumption of federation and the problem areas

of communication and human naming. The solution in this research is based on

defining two new types of objects, contexts and aggregates. Aggregntcs are

composed of contexts and, therefore, will be considered later.

The basis for this proposal is a simple type of object called a context. A context

translates names into either objects or other numes and is the model for a namespace

in this research. A name is an object assigned to another object within a namespace

or context that allows the user either to use the name as a place holder for the

nnmed object in the context or to access the named object through the context. In

some cases, a name will be translated into another name less meaningful to or less

easily used by the user of the original name. Fu1ther translation in the same or

another context may then be requested. In the remaining cases, the user or program

will use the resulting translation as is. Whether further translation is needed or not,

the decision is not made within the context but by the client, whether user or

program, requesting the translation.

19

A context is a shared object and therefore has two further properties, both related to

the foct tlrnt the most basic upcrntions on contexts arc name assignment and

translation. First, a context contains a model of the foct that the ltssociations

between names and the objects they arc naming may occur by degrees. For

example, once a name has been sekcted, more uses or it will probably make it more

easily understood. With disuse a name may he fcxgotten. In contexts, this is

modelled as a series or states. Clrnpter 4 addre~>ses this set or issues in detail. The

final property or contexts is a scl or participants, some representt1tion or those

sharing responsibility f()r a context or narncspacc. This information is needed for

two reasons. First, identi lication or the context may include some means of

identifying the participants. This a renection or a human pattern of identifying

subject matter, by including recognition of who is involved. The second reason is

that different pa1ticipants may have different roles in the selection or names. Again

this will be discussed in Chapter 4. Thus, in addition to Lhe actual translations

between names and objects, a context also contains some means of identifying

pa1ticipants and a representation of the states or translations.

The other mechanism proposed here is the aggregate, the individual's narrnng

window onto the world. Names can be assigned and used only through aggregates.

An aggregate has two pa11s, the current context and the environment. The aggregate

itself is nut shared, although its current context is shared. When two people

communicate, there is a small set of nnmcs that they use regularly and to which they

may add new names needed in that conversation; it is this current context that they

share. They each also have a pool of other contexts on which to draw. These pools

may be different for each participant in the conversation. The pools, which are

called their environments, consist of collections of contexts, which may or may not

be partially ordered, but which are used to translate names not in the current

context. The current context is shared by the participants. Other contexts may also

20

envi·

ronment

current

context

pear

horse's
llead

a

Sandy

Randy

0

Sandy

I
IT-(/

I I I
I _,
-

I I
L -- _v

/

... like a

horse's head

I I

Sandy

Randy

/

0
0
0

_)

Randy

Figure l·l:Aggregates containing private copies of a shared current context

21

{ envi-

~ mnment

be shared. /\ user may include Hny context in which he or she is a participant in the

environment of an aggregate that docs not have that context as its rnrrcnt context.

Figure 1-1 is provided as a visualization of a shared context and two aggregates

representing individuals sharing it. In that ligurc, Sandy and Randy arc identifying

shapes. They lrnve labelled one shape "pear" and now Sanely is proposing to name

the second "horse's head." Sanely was recently on a f~1rm, so r;1rm anirnal shapes

come to mind. With S;111dy's proposal, the name becomes a candidate. Ir Randy

agrees, the nmnc "horse\ head" will be accepted in their shared context reflecting

the naming of these shapes.

The figure represents this situation as follows. Sandy and Randy each have an

aggregate. Each aggregate contains a copy of the context that they share and each

has a private environment. Sandy's aggregqte has two rules in its environment and

Randy's has one. The first rule in Sandy's environment contains only the current

context of the aggregate known as "form". The other rules arc not depicted in the

figure. The copies of the shared context need not be, and arc not in this case, in

synchrony. Both copies contain the fact that Sandy and Randy arc the participants

sharing this context. The fact that agreement has been reached about the name

assignment for "pear" is reflected in the letter "a" in the entry, representing an entry

a1cepted into the context. The entry for "horse's head" is being proposed by Sandy

and therefore is in the "candidate" state represented by the letter "c". The

information about this candidate entry has not yet propagated to Randy's copy of

the context and therefore does not appear in Randy's copy of the shared context.

"lbe reader should be aware that although the aggregate mechanism is based on the

idea of human conversation, it will have a more general use. The attempt here is to

model human behavior, not to provide any sort of explanation for how humans

behave. The concepts of current context and aggregate arc extensions and

22

modifications or the ideas or working directory and sc~1rch rules used in many file

systems. This is one ol'thc aspects or the work or others that is discussed in the next

section.

1.5 Related \York

According to Lampson [26]:

Basically, there arc only two ways [thatJ arc known or doing naming.
One way is to use hierarchical names, where you work your way down
some structure like a tree-structured directory system, or an arrangement
or nested records. Ir you apply an appropriate cliscirline or nut generating
two subnames that are the same at any level, then you have an
unambiguous naming scheme. This is inconvenit:nt, because you have to
give this long structured name. The other method is to have some morc
or-lcss aimless collection or scopes that you wander through, using
something that is a search path or a scope inheritance rule or call it what
you will. This has the advantage tlrnt if you're lucky, it will be convenient
and give you what you want, and the disadvantage that you'll never really
be LJUite sure of what it is you're going to get. You can basically pay your
money and take your choice. Perhaps it's un rortunate that there's not any
systematic way to decide exactly what search rule will be followed.
There's not much uniformity either in the specifying of search rules or in
the arrangement or hierarchical naming systems, but there are really only
those two basic ideas. The whole subject, in my opinion, is much simpler
than it's generally made out to be.

Fortunately for the users of computer systems, the set of solutions to naming

problems is much richer than Lampson suggests. Exploration of various problems

has proceeded in many of the subfields of computer science. f n fact so much has

been done, in many cases as a side effect of other research and development on

other problems, that this report can only touch on a sampling of the work that has

been done. The related research will be addressed in a non-traditional fashion in

this thesis. This chapter will consider those works that have direct influence on this

research. In addition, in each succeeding chapter, there will be a discussion of other

23

research related to the topic of that chapter. Therefore, what is traditionally a

section on related works in a thesis will be distributed throughout this thesis.

The philosopher Qllinc [39] provides a mastcrlttl study of the relationships between

names. the objects being named and the meanings or the names. Much can be

learned much that is directly applicable to naming fl1cilities that impose the thinking

of the designers and builders or such a ll1cility on its users. Naming frmns the basis

of thinking and communication. Inn more prnctical sense, types or styles or names

arc not limited to types of' objects being named. In particular, in the work here,

Quine's idea of general names has been simpli rice! and transformed into the idea of

generic names.

Carroll of I BM as part of his work on names and naming has done sociological

studies of human naming patterns both m conversation [54, 7] and m

communicating with computer systems [6]. From Carroll's work, four important

lessons can be learned. First, in communication between two people, there is a form

of negotiating that takes place in proposing and accepting names that will be used

by the two in the future. This idea of cooperative name management will be

addressed in detail in Chapter 4. Second, Carroll teaches that naming is done on the

basis of conver:~ations, topics of mutual interest, and, in addition, based on the

participants involved. It should be noted that conversations cannot necessarily be

organized in a hierarchical fashion, but humans have mechanisms for distinguishing

them without such hierarchical structures. Third, the individual, in bringing past

experiences to a conversation, plays an important role in determining the names that

will be chosen through those personal experiences. Fou11h, Carroll re-en forces the

concept learned from Quine that naming is universal. Objects are not necessarily

distinguished by the types of names they have, but rather use the same naming

mechanisms for naming all sorts of objects. Much of what can be learned from

Quine and Carroll has not been built into computer systems, although many systems

24

begin to recogni1.e in different ways from each other that the problems arc not as

simple as Lampson said.

This report will now review briefly those rwrticular projects that have strongly

influenced this research and what Lhose influences have been. Beginning with

Salt1.er's work on naming [42], thc1\: are two ideas that have been taken from that.

The first is the need for local and , ·. ,dular namespaces. Sall1.er provides a detailed

and careful analysis of why both !1 .!ily ancl moclult1rity arc important.

The second idea inherited from Saltier, rein forced by the work of Birrell ct al. on

Grapevine [51, Oppen ancl Dalal on Clearinghouse [36], and Lantz and EdighofTcr

on UDS [28], is that a naming facility can and should be universal. Naming

problems and facilities cannot be split along the boundaries of the types of objects

being named. Saltzer presents his model and then applies it to both a file system

and memory management. The Grapevine experience was that their facility was

originally used for naming mail recipients but the same naming facility could be and

was used by the mail service itself to name and locate the services it needed to

operate. In addition, other communities had other plans for it as a naming service.

Both Cleari11ghousc and UDS were designed initially as universal naming services,

in recognition that such universality was beneficial and efficient. This idea of

universality was also reinforced hy Saltzer {44] and Shoch [46] in which they

distinguish names based on the objects being named. These papers only reinforced

the idea that such efforts were creating artificial and unnecessary boundaries in

naming.

Multics [37] has contributed several ideas to this work. There are two important

in nucnces. The first is in the structure of an aggregate. As mentioned, this is based

on the idea of search rules and a working directory. Of course, other operating

systems have incorporated these ideas as well, but it was Multics with which the

25

author was familiar. The second is the observation that even within the restrictions

on segment names there arc attempts to allow names to reflect meanings and as

much as possible reflect names that might be used outside the system. Again this

can be seen 1-c11eatcdly in other operating systems as well. Directories have certain

meanings. Component names have meanings. Hoth reflect external names as much

as possible. In aclclition, as will be seen later, the Multics known segment table

provides per process local naming :md that is a large component of this work.

There arc two final influences that bear mentioning here. The lirst is Lindsay's set

of goals in his work un the catalog ancl object naming in R * [29]. Those goals have

much in common with the earlier observations about human naming, although

Lindsay did not emphasize communication and sharing as is clone here. The final

influence is n negative one, nncl to some extent work is progressing in an attemr>t to

address it. The situation is the one found in the Arpanet, where a global,

hierarchical namespace with a central administration is the only choice. At the level

of internet addresses there is a hierarchy administered by the NIC [15]. A hierarchy

is convenient but it docs not rcnect reality. Many hosts are on several networks or

subnets and the structure of the internet is not hierarchical. At the level of naming

hosts and users, work at moving away rrom a flat, global namespacc again centrally

managed by the NIC is progressing. The work of Mockapetris [31, 32] sets the

standard to be a global hierarchical structure with a hierarchical administration.

This addresses the problems of a flat namespace and a central authority, but does

not address the fact that the administrative entities that will manage such a

namespacc do not fonn a hierarchy. f n addition, the administrative structure will be

reflected in the names, despite the fact that this has little to do with the names that

people might want to use.

As mentioned previously, there is a great dent of work related to naming. Whnt has

been provided here is a summary of those works that had the strongest influence on

26

this research as it clevelored. Througho11t the remainder of the thesis a sampling of

other work will be noted where relevant. What is irnporl<:nl lo note here is that

although the innuencc or others can be fln1ncl in many aspects or this work, none

has pulled the set or ideas togdhe-r into one place.

1.6 The Plan

As part or a research project, it is necessary to identi ry the methodology used as a

basis l()r the research. There arc three parts to this 111cthodulogy: (1) identification

or the problem, (2) the tools used both in analyzing the problem and in providing a

solution, <md (3) testing the results for adequacy. The rroblcm itself is recognizable

as a problem because <tlthough humans have a very rich ::ind ncxible naming

capability, computer systems do not and the problem becomes accentuated in a

federated computing facility. The problem can best be explained as is done in

Charter 2 by comparison with human naming. Three tools arc used in addressing

the problem. The first is to examine human behavior, to gain an understanding of

one approach to solving the problem. The second is to design a model. By nature,

the model can only be an approximation because total human behavior is quite

complex and frequently unpredictable, especially in new situations. The third tool

is an implementation. The implementation of the model allows for study of the

kasibility of the 111odel and examination of the behavior of the model. The final

part of the methodology of a research project is verification of adequacy of the

results. First, the value of the issues can only be judged by the audience, although

the fact that the work is novel can be argued by reviewing other work in the field.

Second, implementability must be evaluated. This can be achieved most directly by

an implementation, or if not, a design indicating the details needed for an

implementation. Such an argument leaves the final decision to the audience again.

ll1e final measure that one can apply to a model for a solution is simplicity. This

determination must also be left to the audience.

27

This report investigates the problems of naming a large variety of objects in a

lcderated world or computational resources cooperatively among groups or hum ans

in such a way (IS to mirror as best possible the rn1ming that the humans would do

among themselves without the medium of computers. Returning to the analysis of

the problem in Section 1.3, it is investigated in depth in Chapter 2, including

definitions ur the problem itself, as well the definition or the term "name" as it is

used in this research. That discussion is also concerned with the gcnernl is:.;ucs of

naming and how humans use names. The set or observations is examined in more

depth than in this chapter, complemented by a study of attributes <ind functions of

names. Chapters 3 and 4 together present a model f<Jr a naming facility. Chapter

3 defines and discusses contexts and aggregates in detail, followed by a discussion of

joint management and name assignment in Chapter 4. Chapters 5 and 6 discuss

implementations in two domains, in order to verify both that the problems

presented arc real and that the recommended framework can be used to build a

naming facility in the two domains. Chapter 5 discusses an implementation in <Ul

electronic mail system and Chapter 6 presents a design for an implementation in a

programming support environment. The thesis concludes in Chapter 7 with a

review of what has been developed pointing to further research to be done as well.

It concludes with a discussion of the contributions or this research.

This thesis addresses a large collection or issues surrounding naming and as such is

an attempt to bring some order to that area. It presents a model, used in designing

implementations, but neither the model nor the designs is an end, but rather they

are a beginning. This research is a step forward in providing a more usable

environment for clients of computer systems by improving the naming facilities and

thereby the operating systems on those computers.

28

Chapter 'l'wo

'rhe Nature of Nan1es

2.1 Introduction to the Problem

The problem being addressed in this research is how to design a nammg facility

under the assumption of a federated system and achieving the following goals:

- support or names as defined below,

- provision of sharing and communication of and by use of those names,

- feasibility or implementing such a naming facility.

Federntion provides benefits over both centralized computing facilities and

decentralized but more tightly coupled distributed computing facilities. It both

allows for a local tolerance to partial failures elsewhere and supports local isolation

if that is desired. Continued operation in the face of separation due to remote

failures or the choice of isolation require local functionality. Enough information

and processing ability must be available to allow for the continuation of local

operations, such as accessing local objects using local names for them. In addition,

creation of new local names for local objects should be possible, without the need to

access a remote name server or administrator. Of course, for those activities that

require remote access, such as reaching agreement with remote sites on a shared

name for something, one must have access to the remote pa11icipants, and such

activities must await reconnection. This line of reasoning leads to the conclusion

that local naming and name management must occur in order to benefit from

federation.

29

Humans provide a good paradigm f(Jr studying cooperative naming in a federation,

because they jointly define and use names as they arc described in this research. In

addition, they form f'cclcrntions with lornl focilities for name management within

each person's mind, and with no sharing except in the form uf the information that

flows through various media of communication between them. Therefore,

frequently throughout this research humans and human naming are used as

examples both f(x understanding names and naming and ulso for where problems

may continue to exist.

This chapter analyzes m depth the problem as identi ficd above, by exam111mg

various aspects of names and naming. The first step in this analysis is to provide an

operational definition of names. The definition is simple, in order to capture the

essence of naming. Others have assumed more complex definitions, often in order

to provide additional functionality that may be needed in particular applications.

The definition is followed by discussions or aspects of names and observations about

how names arc used. The investigation or aspects of names provides the reader with

a deeper understanding of names themselves, while the observations about uses

explore patterns of cooperative usage within the definition of names. In addition, as

part of the investigation of names this chapter presents a list or other potential uses

for names to be found in other naming facilities, but excluded from this one because

they are not consistent with the definition of names chosen here. Implementability

and consideration of those problems found in other similar facilities that are not part

of naming as defined here are left to later chapters of this document.

Figure 2-1 provides a simple example of a number of the issues to be addressed

here. The Green family consists of five members, three of whom are children. 111e

two older children, named Samantha and Samuel, may be given the same nickname

"Sammy" at times. The baby, Sandy, cannot pronounce the names "Samantha" and

"Samuel" given to the older children by their parents. This example will be used in

a number of cases to illustrate points in the remainder of this chapter.

30

Meet our twins, Samantha
anu Samuel and

baby, Sandy.

Mom Pop

The Green Family

Samantha Samuel

Figure 2-1: Exmnples of naming issues

2.2 The Definition of a Name

Sandy

Definition: A name is an object that can be associated with another object and has an

equality operation that is reflexive, transitive, and syn1metric. It has two uses. First, it

may provide access to rhe object with which it has been associated Second, it may act

as a place holder for the object with which ii has been associaled

Association of a name with an object is a function of the namespace within which

the name is defined. A name can be defined in different ways in different

31

namespaces, resulling in accessing different objects hy use of the name. The

equality operation in the definition of a name is an operntion on names, whereas

assignment or the act of associating a name with an object is an operation on a

namespace. Therefore the function of providing access to a named object is also a

function of the namespace. In order to undersland the definition of a name better,

the two uses of names arc investigated separately. This section concludes with a

discussion of the !'unction that is the reverse of accessing an object, an additional

possible !'unction of a naming facility, although not a function of names themselves.

Access

The function that is most commonly considered in namrng is the resolution of

names. The desired response must be recognized when a user requests that a name

be resolved in a particular n<lmespacc. First, in most naming racilities it is assumed

that there must be -a single response in most situations in order that the name be

resolved correctly and that it be considered a valid name. This is certainly not true

when humans doing the naming. Consider the baby Sanely asking "Thammy" for

help. After doing it once, the child learns that several people may respond despite

that fact that only one person may have been intended. Humans have developed

many techniques for disambiguating, when that is important. But they also may

take advantage of the ambiguity. The point here is that a single or a particular

resolution is not always what is most useful. In this research, the possibility of

multiple resolutions for a single name is not excluded. Jn cases where multiple

resolutions occur and a single one is needed, further resolution or selection using

non-naming operations will be required.

A second aspect of name resolution is the actual translation of a name. There are

two sorts of entities that can be returned to the user of the name. The first is an

object or what appears to be an object to the user. In this case, the user does

something with the object such as hand it to a service that will print it, copy it,

32

modify it or perform some other operation with it. The other alternative is that

another name is returned to the user of the name. Not all systems allow for this.

Those tlrnt provide linking, aliasing, or 0L11er frm11s of synonyms may he prepared

for the return of names instead of objects in al least some situations. The names are

simply a frmn or indirection. In their most general f(mn, such translations provide

another name in another namcspace. A common 11.irm of this can be f(mnd in the

telephone book. A name is resolved to a telephone number, not the person; further

resolution is needed. The telq1honc number is a name that the telephone system

understands. To review, the naming facility will allow for one or more responses to

a request for name resolution and those responses may be either objects or other

names, that may or may not need fu1ther resolution.

Place holder

The other use of a name is as a place holder IOr an object or indirect reference.

Names provide one or the same facilities in communication that pronouns do in

grammar. They allow for identifying something without actually having the object

in question. The situations in which such a facility is useful arc those in which

containment of the object is impractical or impossible. For example, the object may

not yet exist or when the time comes, one or several objects will be chosen by some

other selection criteria to be used as well. The flexibility of delaying the binding of

name to object may also be important. In addition names allow for multiple,

physically disparate references to the same object. If names did not exist, it might

be necessary to have two copies of the object, making sharing impossible. Thus,

names serve an important function of standing in for the objects they are naming, to

both provide sharing and allow for delayed binding.

Finding a nickname

Consider a situation m which one of the parents sees one of the twins doing

something dangerous. The parent says, "Samantha, no, Samuel, watch out!" The

33

parent is searching through the set or names relevant in that context to ma1lch the

person being warned. This operation is the reverse or accessing an object given its

name. In this case, a name is needed lc>r an object. The same issues arc relevant to

this "untranslate" runction as to the access or "translate" function. If multiple

names have been ~1ssigned lo the object, as with a name being assignee! to several

objects, it is possible that one will need to be selected. The naming fr1cility cunnot

know which one to select; this function is outside the naming facility. The object IOr

which a name is being sought nrny be either a dilTcrent type or object or another,

possibly less meaningl'ul name. Finally, if the untranslate !"unction is to be

surportccl, an equality operation is nceclccl on objects, in order to implement the

comparison of the object for which untranslation is sought and the objects named in

the naming facility. The untransbtc function will recur in discussions or both the

model and the implementations.

2.3 Aspects of Names

A set of aspects of names, by which names can be characterized, can be derived

from the definition of a name. These characteristics fall into two categories, some

iclcnti fying the participants in name management and others relating to use of

names. As listed here, the first three fall into the former category and the fou1th and

lifth into the latter category. In rnder to provide a preliminary understanding of

these five aspects of names, an example from Figure 2-1 is given here. Each aspect

is then discussed below in further detail, including when relevant the general form

of appropriate operations.

- Assignment: Morn and Pop chose the names "Samantha" and "Samuel."

- Resolution: Samantha and Samuel recognized the name "Thammy."

- Scope of use: Although "Samantha" and "Samuel" arc the names given
to the twins, these arc not names that Sandy can pronoucc and therefore
use. As a result, Sandy tries "Thammy" instead.

34

- Uniqucnrss/ !lmbif',Uity: Sandy tries "Timm my" but it might be
applicable to either twin. This may or may not be the desired effect.

- Afeaninpjit!ncss: Sanely Green is possibly sandy (perhaps indicating hair
color), probably not green, but is a member ol'the f~1111ily named Green.

These examples arc only that. Each or· the points listed above also needs ru11her

explanation and discussion. They arc discussed separately below.

Assi~nment

One or the three sorts or participants in name man~1gemcnt is the name assigner, the

other two being the name resolver and the user or names. The generic form of the

operation used f(x assignment is this research is add_namc (name, object). There arc

three possible sources ror name assignments: an external naming authority, the

object itself or some representative or the object such as its owner, and the users of

the names Each is discussed separately.

In many examples, such as Grapevine [5], Clearinghouse [36] and the

Arpanet [15, 31, 32], naming authorities arc hierarchically organized to allow for

distribution of responsibilities. Registration of a new name in Grapevine requires

contncting nn administrator who will add the nmne. The hierarchical structure

reflects a distribution or the responsibility in recognition that a single authority

cannot manage such a job alone. Distribution of name assignment responsibilities is

also one of the reasons for the move from a network information center being the

sole allocation authority for names of networks and hosts on the Arpanet, to the

domain scheme, in which the authority is delegated hierarchically. Unfortunately,

neither the central authority, nor even the hierarchically structured set of authorities

addresses all the needs of a community of name users. A hierarchy does not reflect

multiple overlapping groups, nor docs it allow for the individual to play a role

except in the extreme situation in which every individual is a separate naming

authority.

35

A second source of names is the object itselr or someone directly responsible ror it.

Two examples or this arc people choosing their own names l(Jr themselves, and the

cre<1turs or liles choosing names for their Illes. The individual will understand his or

her own needs, but may not realize implications of choices of names on the rest of

the community. For instance, a programmer may write a new archival focilily that

uses data compression. The programmer may also have written a special data

compression procedure unwittingly choosing the name "compress", although other

procedures were available by the same name. A q11esliun about which compression

algorithm is used must be resolved. Such a decision often uses name resolution and

may have surprising consequences lc)r the user. Thus, although privately chosen

names solve some of the problems and hierarchies solve others, neither suffices.

A third source of names cnn be the users of the names. Consider the following

situation. A group forms lo discuss a problem. They discover that there arc two

Alexcs in the group. In order lo distinguish the two in conversation, as a group they

cleciclc that they will use middle names for each of them. Thus one is called

"Brown" and the other "Harrington." Neither of lhcse is a name that would have

been chosen by an authority nor by the inclivicluals although the two Alexcs realize

that if even one of them is called "Alex" there might be confusion. This is a

problem that neither the naming authority nor the individual might consider, but it

is important in the area or naming and relevant to the question of how names are

assigned.

Resolution

Name resolution involves translating names into objects by recording name

assignments at earlier times. Therefore the name resolver is that entity that

performs the add_namc operation previously mentioned as well as the translate

(name) operation. The name resolver will make use of the equality operation on

names in order to achieve translation. There are many examples of name resolution.

36

In the example above, Samantha and Samuel arc performing name resolution by

translating the name "Thammy" into themselves. A lilc system is a name resolver.

In the Arpanet, the IM PS that translate net addresses into routes are name re~;olvcrs.

The list is endless .

. 5cope of names

The third aspect in considering the management of names is their scope or \\>ho can

use them. In this case, the two uses of names come into play. It is the user of a

name that will invoke translate. It is also the user who may use a name as a place

holder for an object. There is no operation involved here in the use of the names

itself. One can ask whether a name has a global scope, in which case it has been

assignee! and its resolution is the s~une everywhere. Or is it private to an individual?

As in the case of the two Alexcs, is it of interest to a group of users, although not to

the whole universe? There are examples or attempts lo create global names. This

was the situation originally in SNA [10]. SNA is representative of a collection of

similar situations, in which it is assumed that there is a single, global namespace or

domain within which names arc used. At some point, the developers discover that

there is a need lo connect two of these global namespaces. Each has the idea of

unique names in a global namcspace so embedded in it, that a very difficult problem

con rronts the architects. In SNA, the choice was to maintain the separate

namespaces, and build a wall between the two, never allowing names from one to

move to the other, but only providing translation at the boundary (3]. The idea was

to present to the user of such names the appearance of a single, global namespace.

This is only a facade, and the user may discover by moving across that boundary

that the namespace is indeed not a global namespace in which names have the same

meaning everywhere. Source routing (43, 35] provides the other extreme from a

global namespacc, in which a paiticular name for a paiticular object must be

completely local and dependent on the user of the name. This situation has the

37

problem that names cannot be shared, thus obviating one or the main uses or names.

But there is a third possibility, a middle a1-c<1, in which groups share names and their

resolutions. Rom's [41] proposal foils into this middle area. In his scheme those

who need lo know the names do, and, for those who do not, there is no problem if

the namespaccs overlnr. He proposes an algorithm for changing names within each

scope so that all names within that scope arc unique. He recognizes that this need

be carried no further tlwn the boundaries of use of a name.

Uniqueness/ iln1biguity

Orthogonal lo the determination of the participants 111 name management is the

issue of uniqueness of names. There arc three issues to consider when discussing

uniqueness. The first is the desirability of it. 'The designer or a naming scheme

must determine whether any form of unique naming is needed. The second is the

degree or uniqueness needed. It may be that a name should be used no more than

once, but that synonyms, multiple names for the same object, would be useful. On

the other hand, it may that each name can be assigned no more than once and that

each object can have no more than one name assignee! to it. Finally, feasibility must

be considered. This was discussed in relation to federation earlier. It is possible that

regardless of' the decisions made on the desirability of uniquess and the degree of

uniqueness needed, it is impossible. The uniqueness/ambiguity characteristic of

names 1s observable in the two operations mentioned above, add_namc and

translate. If names must be unique then add_namc may fail due to duplication,

while if ambiguity is permitted translate may return more than one object. In this

latter situation, further selection may be needed, either by inquiring about

additional names for the objects in question or by considering other aspects of the

object, such as its type or state.

Both ambiguity and uniqueness have their uses. It is frequently important to be

able to identify or select exactly one object within a set. In fact, it is often assumed

38

that each object within a set is disti11g11ishablc by name from all others. Executing a

piece of code <1ncl specifying on which data object it must operate requires

iclentil'ying each, distinguishing them from all other possibilities. The simplest form

of such identification is to use names, avoiding the use of selection procedures

sometimes used tu create or distinguish objects based on other in formation. Such a

name needs to be unique within a namespace. If the universe is small enough, it

may be simpler to use a global or universal namcspace rather than dividing or

modularizing the namespacc, as is often clone tu create manageable sized

namcspaces within which names can be unique.

In contrast, there arc situations in which a lack of uniqueness is important. Consider

briefly Figure 2-1. The baby Sanely may say, "Help, Thammy, I'm lost." To Sandy,

it is more important that a familiar foce be found than whether it is Samantha's or

Samuel's. In a technical example, if data is replicated in a distributed system, the

user may not need or want to know which copy is being used and would prefer that

the system determine which copy is most easily accessible at the moment. Both

uniqueness and useful ambiguity can be seen simply in a file system such as

Multics [37] where a name may be a complete path name to distinguish a particular

segment or a short name, allowing the search rule mechanism and Known Segment

Table to provide the final resolution of the name at the time of use.

A further extension of the idea of ambiguity or lack of uniqueness can be found in

the concept of a generic name. Such a name identifies a class of objects that have

some set of attributes in common. The generic name allows for identification of

objects based on that shared set of characteristics by being a label or place holder for

the set. This is a direct adaptation of Quin e's [39] concept of general naming.

The problems of feasibility must also be considered, especially in a federated

computing facility. If there is an authority that can guarantee uniqueness of names

39

either by generating un1q11e narrn:s or by verilying the uniqueness of names

presented lo il, then it is lc<1sible to base various schemes on the fact that unique

names arc available. A centralized computing facility can probably make such a

guarantee, ;1lthough even in this case, it is dilTicult. One technique fr>r generating

unique identifiers is to use sequential numbers, reliably remembering the pi-evious

number that was used. This is !Casible only irthe numbers can be generated quickly

enough and i r the means of remembering is reliable enough. Some systems have

used the clock to generate rrnmcs, assuming that it is both reli~tble and line grained

enough. Another scheme is to subdivide the set or names, allowing each of a

collection of authorities to manage a subset or the names. This provides some relief

!Or the problem of a single authority being a bottleneck, but it increases the

rrobability or duplicate names ir unreliability is a problem. For example, if there is

a power failure, instead or a single authority possibly handing out a duplicate name,

each authority may hancl oul a duplicate name.

The problem of feasibility becomes more complex with consideration of merging

namespaces in which the names have been selected by inclepcnclent naming

authorities each or which assumes that it is choosing globally unique names. The

problem in this case is how to deal with unexpected duplicate names. Both

Rom [41] and the architects of SNA [10, 3] dealt with the possibility of duplicate

names because it was important to each of the underlying architectures that names

be unique. Rom's decision was to replace duplicate names invisibly, while the SNA

solution was to keep two namespaces separate, but gloss over that fact at a higher

level. In fact, this is not how humans address the problem in their communication.

Instead, they live with the possibility of ambiguity, recognizing that globally unique

names are not possible, and they manage without them, relying, when necessary, on

locally unique names.

40

M caninp,Jldness

Frum the points or view or the assigners and users l)r n;m1es, those names can rail

anywhere in a range rrorn those that have no relevant meaning lo those that also

carry a great deal or in rormation about the named object. The simplest names carry

no meaning and arc only labels. One example or these is the set or numbers

generated by a random number generator and used l()r labelling objects. Any

relationship between any two such rwmcs is purely accidental. ;\ user or the name

"Sanely Green" is unlikely to assume the named person is in any way green, but may

assume blonde hair from the name "Sandy". The nickname "Teach" may not only

be a name for a person, but also carries the in formation that the person so labelled is

probably a teacher. The name "President" not only identifies an individual, but also

indicates the rclutionship between that person and other members of an

organization. Fu11hennorc, humans sometimes associate an <1ttribute that is Lo be

used as a name with an object, e.g. "position: president" so that in the future one

can identify the person with that name. It still is the case that the name must have

been assigned as a name in order to be one. This is separable from whether or not it

is meaningful.

A fu11her extension of the idea of identifying an object by information leads to

identification of an object by aspects of the object that may not have been

preassigned, but have meaning in relation to that object. For example, consider a

situation in which family names have been recorded for people, but not substrings

of those names. Then, selecting those people whose family names contain the string

"ollins" but for whom that is not their full family name is not naming. In addition,

information about an object may take a form similar to that of an attribute. An

example might be a tirnestamp of creation for an object, in milliseconds since the

beginning of the century, such as "CreationTimestarnp:27162241234". It is

improbable that anyone will ever use that information as it stands as a name,

41

altlwugh the information may be used <ls part of the selection process or finding an

object. For instance, one might want to find all the objects created bef(Jrc a

particular time. This sort or identification and sckction is not within the bounds of

what is identilied as naming in this research.

Recognized structure in names is another form of manifest meaning. Ira structure

is understood, components or that structure me rccogni1.ed as having meaning. The

simplest structure is a llat namespacc in which case each name is composed of a

single component. Two examples of flat rwmespaces in networks arc RSCS [17, 16J

from IBM and the older flm11 ur naming hosts on the Arpanet [31, 32]. In addition

numerous simple file systems and user iclcnti fication schemes as well as other

examples support only flat naming. A second common structure is the hierarchy in

which the nested components may reflect meaning or another one of the issues

discussed in this section. A third form or organization is the directed graph, where

each node may have more than one parent and more than one offspring. The

schemes used in R* [29] and the IFIP WG6.5 proposal [18, 59] fall into this category.

In these cases a set or name components may be presented to the user as a choice of

hierarchies or as an unordered set of components. IL is this third possibility that

seems to reflect the structure or names that humans use most often.

The manifestation or meaning is an unstated issue in the work of Salt1.cr [44] and

Shoch [46]. Both realized that different names manifest different sorts and degrees

or meaning to different assigners and users of names and each author based his

characterizations of names on the views of those assigners and users of names.

These five attributes of names allow for comparison among different naming

schemes along orthogonal axes. The three roles in terms of choice and use of names

address the questions of who plays those roles. The choices can be related to each

other or independent of each other. The degree of uniqueness or ambiguity

42

determines repeatability of ;issignment. Finally, the degree or 111e<111ingfulness

determines how much <llld which inrormalion can be conveyed by using a narnc :.is a

place hulclcr. None ur these aspects ur names needs to be dependent Oil the others.

2.4 Aspects or 11 uman Naming

As mentioned earlier, humans provide a userul raradigrn rm investigating nc.nning in

a lederated computing fr1cility. Thererore, it is uscf'ul to underst<111d how humans

name. The l<Jllowing is a list or observations about human naming that were listed

briefly in Chapter l. Each will be considered here in more detail. In addition,

where relevant, related literature will be noted. These eight observations form the

basis of a further understanding of the goals of this research in relation to

surporting naming in a federated system and providing sharing and communication

of and through names.

1. Communication: There arc two aspects of communication. One aspect
or communication is cooperative use ufnames. In addition, information
related to named objects may be shared and passed between the user of
a name and the recipient of the name by passing meaningful names.
The individuality of each comnlllnicant is closely related to joint naming
and shared responsibilities for names, although that has been separated
here as a distinct issue.

Examples of sharing namesp1ces can be found in many other works.
The most common place where operating systems provide sharing is in
their file systems. Hierarchical structures such as those or Multics (37)
and Unix (40, 57] provide sharing by the use of working directories and
search rules. Non-hierarchical systems such as OS6 (48, 49),
Eden [1, 19], and CAP [33, 34, 60] also allow for similar means of
switching namcspaces or resolving names in other name spaces.3

3The Alto operating system [25] also provides a non-hierarchical structure, although it is a single
user system and apparently little use was made of any facilities for dividing the namespace into
directories or subdirectories.

43

Multics also provides an interesting example or local shared naming,
that was designed with a particular isst1c in mind. For each process,
there is a Known Segment Table that maps a nickname into a particular
segment on a per process basis. The table is shared by all procedures
running within that process. When a local, short name is used in a
procedure, the system checks the search rules for the means or resolving
it. Normally, the first entry in the search rules is the known segment
table, fiJllowed in any order by the directory of the calling procedure,
the working directory, Lile user's home directory and any other
directories specified by the user. None or these is required and they can
be in any order although some orderings will lead to unpredictable
behavior.4 The idea behind this mechanism was that if a nickname were
used in a number or procedures, it should be resolved to the same
segment, so that, for instance, if one were working un a database, all the
procedures would share the database. On the other hand, it also can
provide for anomalous behavior, when the programmer or a procedure
had a different resolution of the name in mind. For instance, it is
possible that two different procedures may have the same name, but
provide different functionality and different results using different
arguments. Despite this potential probkm, the shared nicknaming
facility is cornmonly used in Multics.

2. Individuality: Each creator of names is diffaent. Those differences are
manifest both in the individual's set of experiences and decisions based
on those experiences. No two individuals have had exactly the same set
or experiences. In addition, in the same situation two individuals will
make different choices.5 Therefore, in any joint decision such as
choosing names, individuality also plays a role.

Various forms of private nicknaming, linking, aliasing and synonyms
support the individual as distinct from the community. ln Multics and
Unix, local linking to segments or files in other directories supports
private names for these objects on a per directory basis. f n addition,

4For example consider not putting the known segment table first. This can lead to multiple
occurrences of a name in the known segment table. If the known segment k1ble is used to resolve the
name, which resolution is used will be implementation dependent.

5No implication of a causal relationship between experiences and choices should be interpreted
from this.

44

hoth syslcms surport aliasing on a per user basis, allowing the individual
to perso11ali1.e the nallll'S used IC.ff invocation and uther nmm; or naming
as well. Synonyms c;111 ulso be found in many systems. For example, in
R * as p<trt or a more complex rwming rn1d cataloguing scheme [29],
I jndsay h;1s prorosed rrivate synonyms. Thesc lists arc on the basis or
c.111 inclivid11<tl user at a particular site. Many uther systems (such as mail
systems providing private tcmrlates) also suprort individuality to one
degree or another. Just a sum pie has been clisrnssed here.

3. Multiplicity of names: Allowing !(Jr a r<trticular name to identify
different objects and IC.n different names to identify a particular object,
provides a flexibility rresent in human n<1ming, but orten not in
computer systems. For example, many people hnve the same nickname.
It is orten advantageous to name people having the same family name by
referring to them by their fomily name. In addition, in some c<ises name
assignment varying with the situation and time may be uscrul. For
example, the tille "Chair of the committee" will be resolved differently
depending on which committee is being discussed and when. The other
side or that situation is that such duplication in names m<iy sometimes be
confusing. In those cases, locally unique names such as nicknames may
be created.

Again, there are many examples or multiplicity in the literature. Source
routing [43, 50] provides an important one. As its name implies source
routing is a mechanism by which an object is named at the source of the
name by the route from the source to the object. One distinguishing
characteristic of source routes is that they arc dependent on the source
and therefore imply multiple names. In addition, the forms of naming
mentioned under individuality also support multiple names, although
there arc other forms of multiple names as well. ~n1ey can be found for
instance in IBM's SNA in the mechanism for joining two SNA
networks [10, 3]. SNA provides a static hierarchical structure for
internetworking and aliasing local to each single network, providing
multiple names for hosts, although from any location only one name is
accessible. The aliases may not escape the local network and are shared
by all users of the local network. Within a single network the
namespacc, including aliases, is flat. Thus, in an internetwork of SNA
networks, there may be a different name on each network for a
particular host. Both Clearinghouse [36] and the IFIP Working Group
6.5 work on names and directories [18, 59] support multiple names

45

explicitly. In Clearinghouse one name !(Jr e:ich ohject is more important
than all other names ltJr that object, while the WG6.5 work lws no such
mechanism. /\11 arc equally valid as long as they define a complete set of
component names, one component from e~1ch naming authority on a
directed p:1th rrom the root to the destination. In foct, multiple names
foll intn two categories. The !irst category contains those names that
C1lluw only dilTerL·nt names !'rum different perspectives, such us links in a
hierarchy in which ~111y object cm only be named at most once from any
directory. The second is synonyms within a single namespace such as
Lindsay's set of synonyms !()r R *.

4. Locality of names: Conversations arc a common source or local naming.
Within a partirnlar conversation, the particip~mts will cleline the names
that they arc using locally in that conversation. As they move to other
conversations, those names may have difl'crent meanings. For instance,
the narne "Alex" may idcntiry one person in one conversation, and
someone else in another. Ir both Alexes participate in a single
conversation, the group of participants may agree on di !Tcrcnl names for
each of them, or find other ways to distinguish them. Locality is used by
humans constantly in order to avoid having to provide unique names
over all experiences.

Directories, whether in hierarchical or non-hierarchical lik systems, are
one of the most common forms of providing local naming. This can be
seen in Multics and Unix in their hierarchical file systems as well as
those previously mentioned non-hierarchical !ile systems. The need for
local naming can also be found in networks. In SNA [3], although the
attemr1t has been to provide an image of a single namespace to the user,
in fact what is provided is a collection of local namcspaces each
consisting of an SNA network. To move from one namespace to
another the user must move from one SNA net to another. The domain
naming project in the Internet [31, 32] is aimed at providing local
namespaces by dividing a single namespace into a hierarchy. In R* [29],
full names consist of four components: the creator's name, the creator's
site, the site of creation, and a name that is unique given the other three
components. Local naming is supported by supporting defaulting of any
of the first three components. Saltzer [42] in his treatise on names
discusses the need ror locality in naming even in a centralized facility in
order to achieve modularity and provide for sharing.

46

5. Flexibility or usage: There arc several sorts or names that humans use in
addition to unique, or rch1tively unique, n~1111es. For example, names
that rellcct role or position, rclkcting relation lo others, llirm one group
or names. The names "Cousin" and "Chair or the committee" arc two
such. These foll into the category or generic names. An example of a
different sort or name is "the green one." In this case, the name is
descriptive. It reflects something of the inherent nature of the object
being named. The di ITerent sorts or rwmes implied here reflect different
means or incorporating meaning into names.

There is not much work on supporting di ITercnt sorts or names fi.x the
s~1111e object other than in Clearinghouse [3(Jj [llld the I Fl P Working
Group 6.5 [18, 59]. In Clearinghouse an object can be named both by its
unique name that may carry no meaning and by a set of properties
having values. The WG6.5 project supports the possibility of multiple
paths through a rooted directed graph, allowing for name components
ranging from those that arc simply unique within a set, but otherwise
have no particular meaning Lo names that are attribute pairs and have
meanings.

6. Manircst meaning or nanu's: When objects arc given names that have
meaning as well as providing identification, and those names arc shared
among a group of people, it is assumed that those names also will be
understood by the whole group. If people do noL understand those
meanings, they will have clif!iculty remembering the names. In addition,
as seen in several other works such us the WG6.5 project [59] and
Multics [37]6 when a namespuce is divided, one of the goals is that the
components of the name be meaningful and therefore guessable by the
potential users of the name.

Communicating and sharing meaning is often provided as part of the
structure of names. 111is can be seen clearly in some file systems.
Multics and Unix again provide an example. The hierarchical structure
or directories is often used to provide pa11 of the name of an object and
allow that part to have some meaning. An example from Unix might be
"/usr/sollins/lib/mail.rnl". This identifies a library written in Mock
Lisp [14] that supports a mail system, and belongs to the user "sollins".

6Thcsc arc only examples.

47

Multics supports a similar syntax. Surporti11g the sharing of the
meanings or names was also one ol'thc goals or the I Fl P Working Group
6.5 in the mechanisms provided there and described previously in this
work. The property lists or Cocos [l l, 20] and Clearinghouse [3()] also
have the same effect of allowing users or names to share meanings by
incorporating a means of allowing fix meaningl'ul nmnes into the
naming facility.

7. Usability of names: It is easy frir people, talking to each other, to dclinc
and redefine names thus providing multiple names, ii' one docs not
su nice. In addition, without ~1ppearing to think, people can rcnect upon
the choices or names and select the ones they want. This must all be
easy Lo do when communicating with and through a computer system, as
well.

Providing usability in namrng facilities is generally not one of the
primary goals in designing naming mechanisms. Lindsay [29] in R *
worked toward a naming facility that would make name resolution
simple for the user. His defaulting mechanisms certainly were a step in
that direction. In fact linking and the default name resolution provided
by allowing the user to specify both a working or current directory and a
set of search rules arc also a step toward making naming facilities more
useful without adding to the burden placed on the user of names. These
facilities have already been discussed in other contexts. In a more
general sense, all naming facilities arc trying to make computational
facilities more usable.

8. Unification: Finally, although several researchers have recognized that
the mechanisms used for naming one class of bojcct arc also useful for
others, there is an added argument in favor or a unified naming facility.
f n discussing flexibility it was suggested that generic names may be
useful. A generic name may rcncct an entity that is not recognized as a
single type of object in the computer system. Instead humans apply the
name to a collection of objects, each of which may be a different type.
This is essentially what was clone in Clearinghouse, with properties. A
user has a set of properties, that may, for instance, renect different ways
of reaching the user, such as a list of electronic mailboxes, a phone
number, and a US postal address. In fact, these are all different objects,
that have been organized hierarchically, presumably because access to
the information is to be based on property names within user names.

48

Clearly those researchers designing and building general name servers
such as Dalal and Oppcn in Clearinghouse [161 and I ,antz and
Fdigholkr in UDS [28] recognize the general applirnbility of solving
certain naming problems in Sl!Ch a way Lhat the solutions arc usable in
nwny domains. In addition, several researchers have discovered after
the ':1ct that their solutions were applicable to other problems. An
e" ,pie of this can be frHtnd in the Grapevine project [5], where
~ii·'·, it1gh it w<1s not planned this way, the ;1uthors frrnnd that the
1111.:ciianisrns tlrnl they clcvelopecl 1<.ir naming m<1ilboxes also served their
own needs or naming other services needed by the mail service itself. So
Crapcvine uses its own mechanisms behind the scenes to provide some
of the user level services. In addition, Grapevine registration servers
that keep track or names arc used for non-mail applications as well,
although the details of those uses arc not in the published literature.

With this list of observations, the discussion or the problem addressed m this

research is complete. The final section of this chapter discusses a further set of

problems. Some of these problem are generally considered unsolved while solutions

to others are often sought in naming facilities.

2.5 Additional Problems

The definition of names and the goals for a naming facility assumed in this research

are broad and simple. The reason for this choice was to provide the common

functionality needed for many different sorts of applications. Frequently, when a

naming facility is built for a specific application or subsystem, greater functionality

is required of the naming facility. Therefore certain naming facilities address

problem~ that may not be addressed by the facility proposed in this research. This

section contains a list of the most common of these additional problems solved by

some naming facilities. In some cases, the problems identified here represent

problems that even humans with their much more sophisticated naming

mechanisms cannot always solve satisfactorily. This list of problems will recur in

Chapter 4 in a discussion of how the proposed model addresses some of these

problems, in spite of their not being goals of the research.
49

'/11c reply-to proble1n

When a message or some other in forrn;1tion is delivered to a user, it is often tagged

with a name ll>r the sender or source of' the inf'ormation. There arc many situations

in which that name is either ;1111biguously ddined or unddined in the receiving

narncspace. For example, at MIT, one or the computers is named "Comet". In

addition, one the computers al Symbolics is also named "Comet" and the networks

of' the two organizations arc interconnected. Ir someone al Symbolics on Cornet

sends mail to someone <tl MIT, unless the mail systems change the name Cornet to

SCRC-Comet (fix Symbolics), the recipient will not be able to respond to the

sender, since the name "Comet" within MIT identities a computer on which that

sender does not have an account. In a more aggravated f'orm of this problem, there

may be di ffercnt users with the same name, one on the l'v1 IT "Comet" and one on

the Symbolics "Comet." The reply-to problem is that one cannot always reply to a

name, despite the fact that mail arrived from a person with that name. When this

problem is spcci fie to networking it is ortcn labelled as the problem of source route

translation.

7/ze name-equality problem

The name-equality problem arises in trying to answer the following question; given

two names do they identify the same o!~ject? This is a particularly difficult question,

and although names arc often used to answer it, they do not provide the whole

answer. In a world where every object has a system-wide unique name (possibly in

addition to other names), and access to that unique name is provided, given two

names they can be resolved to their respective objects. Ry discovering their system

wide unique names and comparing them the question can be addressed. In other

cases, the object') themselves may support an equality operation.

1n addition, there are other considerations that come into play. For example, in an

environment where objects are strongly typed, an object may be wrapped in layers

50

of typing. Consider comparing an object with the object that is its reprcscntalion 7.

It is not clear whether the two arc the same or different objects since underneath it

all they arc represented by the same collection or hits, but at the higher level they

may not be accessed by the same mechanisms and Lile user may appear to be very

different l'rom each other.

A reverse sort of situation may arise, in which an object consists or multiple copies

kept in different places and reliably maintained in a consistent slate. It is certainly

possible to find two dilTerenl names for different cupies ol" the object, but at some

level, even though the n~imes arc di ITerent the two may be considered to represent

the same object. In this situation, two different collections or bits may represent the

same object.

The question of identity and how it relates to names is complex, and simply

answering the question of whether or not two names resolve to objects that have the

same or cli ffcrent globally unique identifiers may not in fltct answer the deeper

question that is being asked. The problem here is that although the assumption may

be that the question to be answered is the one posed above, in fact there is a

collection of more speci tic questions that need to be answered, and a function that

nnswers the one above docs not answer the more complex ones. In fact, all the

possible questions cannot be enumerated, because there will be at least one for each

type of object, and all types of objects cannot be enumerated. ln addition, the

number or questions will be dependent on the uses of those types, again impossible

to enumerate. Thus, the name-equnlity problem persists.

7This is the tenninology that is used in Clu [30]. An object is of a partirnlar type defined by the
type name and the names of the operations and their arguments and is realized by being represented
by another object of another type. The system prnvides a small number of basic types.

51

The who-is problem

The who-is problem is similar to the ntnne-equality problem but reaches beyond the

bounds of Lhe computer system, and is therefore related to the goal of providing for

the manifest nature of names. The problem here is the ICJ!lowing; a person has

received a name inside the comruter system, and knows about an object or person

outside the system. The recipient or the name would like to test for equality

between the inside and outside worlds. This is an especially diffiClllt problem,

because outside the computer system, humans will use a large array or other

facilities, perhaps making use of the five senses as well, m order to address the

problem, and those arc not available inside the computer.

The mobile-name problem

Pait of the goal or rnultiplicity is to allow a name to be used for more than one

object, but there is a problem that can arise from this. In some cases, such as "Chair

of the committee" the name must be assigned lo no more than one object at a time,

but which object is being named may change over time. The mobile-name problem

reflects this mobility of a name. The problem may be compounded in spanning

multiple computers.

Location transparency

It is very difficult to separate a nammg facility from location of the user of the

names. [fa user has access to a set of names in one location, when he or she travels

across the country, the names that he or she uses should be the same. The person is

the same and the objects being named are the same, but in too many situations, the

host through which the user is accessing the computational resources has a strong

influence on the names that arc available. ll1is problem is labelled location

transparency. It makes naming much more difficult for the user.

52

'f '1 " II " I II I / rl<' a v~~ I 1e pro J em

This pruhlem can best be understood by considering a person asking for "a book

about gcnetics" initially and then l(illowing that with future requests for "the book

about genetics." In the initial request, one ur a rnllcction might have sufficed. After

the name was bound once to a particular book, that one was the only one that would

SU flice. A first step toward au dressing this problem can be seen in the Known

Segment Table in Multics, but generally this is not a problem that has been

addressed thoruughly in rrnming facilities.

Selection

Both the goals or multiplicity or names and the recognition or generic names will

lead to the problem that a name may not map into a single object in a situation in

which a single object is needed. This problem is common for humans who have a

large array or mech~t11isms to call into play to address it. They nrny ask about other

names assigned to the possible choices. They may call defaulting procedures in to

play. They may ask about the nature or the objects. They may ask whether any of

the choices is one that they have chosen previously. They may ask for

recommenclalions from others. And the list goes on. The problem is not a simple

one, nor arc the potential solutions. Selection functions appear not to be

generalizable and are best left to specific applications Lo handle.

Persistence

Many facilities have a short-term and a long-term naming mechanism for objects.

Programming systems arc a prime example of this. Consider the runtime system for

Clu [30]. In this case, objects can be named as typed objects within the language,

but such typed objects are not persistent; they cease to exist with the completion of

execution of the code. The file system is another naming facility for naming

persistent objects. ln order to make an object persistent it is translated from its

runtime form into a form that is stored in a file, which in turn is identified through

53

the file system. Clu provides a facility, alb,:i' somewhat awkward, frlr retaining

some type in formation when an object is tran'.Jtlrmcd using the "gc-dump" facility

to save an object in a file.

A second example naming persistent ob: ~'·) can be found in the Macintosh

operating system [2], in which lilcs containi11g data have associated with them the

program that created them. When a file is "invoked" that program is invoked

operating on the data in the file. The Eden system [I, 19] provides a third example,

although it is still in the prototype stage. Finally, the Swallow repository [52, 51] was

a prototypical storage facility designed to support objects rather than lilcs. There

arc other such research projects, but the idea of persistent objects is not widely

accepted yet, and it will be a long time before the small step taken by Apple in the

Macintosh will move even the small set of researchers, much less the larger group of

programmers, to the recognition that all objects should have persistence as they do

outside the computer system.

This concludes the discussion of the problems that are and arc not being nddrcssed

by the naming facility modelled in the following two chapters.

2.6 Summary

The emphasis of this chapter has been on the problem being addressed in this

research. ll1c problem itself can be stated simply ns the design of a naming facility

that suppo1ts names and the functions for which they arc used, allows for

communication both of the names themsdves and of information by means of the

names, and is implementable. f n order to design such a naming facility, one must

understand names, the definition of them, what their functions are, and how they

arc used. The definition of a name is simple. A name is an object that can be

associated with another object of any type and that has an equality operation on it.

54

A name has two possible uses. It can be used as handle providing access to the

object named by it, or it can serve as a place holder for lhat object.

There is more to understanding the naming problem than these simple dcffoitions.

The assumption of a federnled cump11ti11g facility means that not only will

cooperative activity occur at the convenience or the communicants, but also that it

will be intermingled with periods or isolated activity. It is the need for cooperation

while allowing for autonomy that makes the problem more dinicult. 1-fuman

interactions provide a useful paradigm for understanding the patterns of

communication and autonomy in a federation of computers; therefore, human

interaction and naming was explored in order to understand the problem in a

lccleration better. Section 2.4 presented a list of observations about human naming

that are taken as subproblems of this research project.

In aclclition, there arc a number facets of naming that can be used to understand and

compare naming schemes including the one to be proposed in this work. They

include identification of the participants in the naming activities, the assigner of a

name, the resolver ufthe name if it is being used for access to an object, and the user

of the name or the scope over which the name is known. Furthermore, two

additional attributes of names are the degree of uniqueness of a name and the

degree of meaningfulness. The degree of uniqueness is reflected in whether or not a

name can be assigned to more than one object or not. Meaningfulness reflects the

in formation that is inherent in the name and therefore can be carried in the name

itself when the name passes from one user to another.

The definitions of names and the problem being defined in this research are

somewhat different from past related work. Others have often imposed a greater

functionality on names and naming facilities, losing generality by including

functions that arc application specific. The definitions chosen here were selected for

55

il'ltlJIJUR!QlUJUJ!!JIJ'~lllttQAPt§ltlclll#l•gu~1ttMIWl!l~-,,5l,t~"i'.'· .. · ~i;r<·'?:i., . lllt .. 11 ..
'-.,';_.;..-_ ,' . -
. ,.

I_<--,

their generality and therefore the assumption that a aolUlion that. addresaes them

will be of general applicability. The next two ~'.~nt the proposed

solution. a model fbr a naming facility. ~ S -r:,~Mldress the issue or
implementability.

c:hapter 'l'hrcc

Sharing and Individuality:
The Model, Part I

3.1 Introduction

This chapter and the next together describe the model for a solution to naming in a

comp11ter federation. Chapter 2 investigated the computer naming problem posed

in this research in detail by comparing it with human naming. This comparison led

to a fuller description or part of the problem based 011 the observations of human

naming as well as discussions of the uses of names and a better understanding of an

orthogonal set of characteristics of names. Human naming is a complex and rich set

of mechanisms. In order to create a mechanism that is currently implementable, the

model proposed here is an approximation. It is not presented itself as a proposal for

the mechanisms used by humans, but rather it is a mechanism that exhibits an

approximation to human behavior in order to meet the goals of this research.

The method for discussing the model is as follows. The model consists of two newly

defined types of objects. One new type, context, supports sharing of names and

name management among a group. The other new type, aggregate, provides an

individual's viewpoint on those shared objects. Each type is discussed separately,

although the two discussions follow the same pattern. 111e set of issues related to

joint management and shared responsibility for shared contexts is separated and

discussed in Chapter 4 in order to simplify presentation of the material. These two

chapters together describe the model. Therefore, a summary of how the model

achieves the goals is left to the end of Chapter 4.

The discussion of each of the two new types proceeds along the following lines. The

57

presentation hegins with a definition and discussion or motivation and use of the

type including such issues as naming objects or this type, initialization, and

containment or objects or this type in other objects of the same type. The discussion

proceeds with identification or the basic operations on the type. A more cornplcte

list or possible operations is included in Appendix A. Finally, implementation

issues relating to each type arc discussed, including management of multiple copies,

synchronization of distributed in!Crn1iation, communication media f<Jr such

distributed information, and a review of initialil.ation questions. The chapter

concludes with three cxamrlcs of the use of the two proposed types of objects, first

in a human interaction, and 1hcn naming facilities in two existing systems.

3.2 The Context

Definition and Discussion

Dclinition: A context is a shared object that tnaps names into either o~jects or other

names. These mappings are in one of a series of states ranging frorn unknown or

deleted to fully accepted In addition to 1/Je mapping information, a context contains

information reflecting the identify of the participants in the sharing and joint

management of the context. Any information in a co111ext may vary over time. There

are Lwo fimctions on names supported by contexts: access to a named object and

substitution of one name for another.

In the approach in this research of modelling human use of names, a context

represents a focus of interest, and as such may be shared among a group of users of

the names. In its simplest form it is based on the idea of a working directory in a file

system such as Multics [37]. In such a system, the user can change working

directories explicitly to reflect a change in the set of name mappings that is to be

used. The idea of names being mapped into other names is a direct extension of the

idea of links in a file system that allow a name in one directory to be mapped into

another name in another directory.
58

There arc two issues that will be discussed further in Chapter 4 but arc worth

mentioning here. First, one component or a context that docs not have a

counterpart in a working directory is the list or participants rcllccting the shared

nature or contexts. The group of participants is not only the users of names, but also

the group sharing responsibility f(Jr managing the context. Thercf()re, as a group

they will acid and delete names, decide when the context sho11ld merge with another

or perlrnps when it should divide into several. Second, a mapping in a context may

be in one of a number or states, reflecting its previous use in that context. Prior to

any assignment or use in a context, a name will be unknown in the context. Usage

may cause it to move through a series of stales until it is fully accepted as a name in

that context. Disuse or explicit deletion operations may cause a name to pass

through a series or states until it is deleted. Continued investigation of joint

management and the states or mappings will be delayed to Chapter 4.

There is one further aspect of the functionality or a context that must be mentioned.

A name rnay be reserved withoul il being assigned to another name or object. There

arc many uses for such a possibility. A name might he reserved but not assigned

either because the object to which it will be assigned docs not yet exist or is

unknown or because the name has been deassigned until some further event. An

example of the first situation may arise in programming, when a procedure calls

another procedure that has not yet been written. The second situation may arise, for

example, when a procedure provides a printing service, but the code is found to

contain so many bugs that it is temporarily taken out of service. The name by which

it was invoked should remain reserved for the time when the code is back in service

or a substitute is found.

Figure 3-1 provides one possible depiction of a context. It has five entries including

three names for one object, one of which is indirect. Two objects are named. There

are three users pa1iicipating in sharing the context. In addition, there is one name

59

that is unassigned. Fach entry in the context is in one of several st<1tcs, represented

by the letters, "c", "a", and "cl", for "canclidatc", "accepted", and "dclcled".

(names ;ind
objects)

(partici
pants)

Operations

Context
namel

name2 c I name3

Ta 1- =--.-----------narne3

~~d ~L
c

narne4

names

user1

user2

user3

Figure 3· J: Depiction of a context

Tlierc arc four operations of primary importance on contexts. In addition, many

others are needed to make contex1s usable. Only the five basic operations are

discussed here; a more complete list is included in Appendix A. l.

create = proc () returns (context)
This operation is the local operation creating a local copy of a context. It
creates a context containing no names and only the creator indicated as a
participant. Prior to creation of a shared context, negotiation must take
place. 1l1is negotiation is considered further in the discussion of
implementation issues.

add_name = proc (context, name, [object])
A name is added to a particular context. The addition procedure must

60

take into consideration the issues to be discussed in Chapter 4, renecting
usage or the name and the degree of sharing or responsibility fCH" name
assignmenl. The object argument may be another name or some other
type ol' ohjccl. In <1dclitio11, the object argument is optional because a
name may either he assigned to an object through this operation or
reserved ICir rut ure assignment. In th is latter case the
assign_object_tc>_rcservecl_name operation will also be needed. In
Appendix J\. l two operations have been provided, one with the object,
add_name. and one without, reserve_namc. In addition, an operation is
then neeclecl to assign an object to a reserved name,
assign_ohject_to_reservecl_name.

translate = proc (context, name) returns (set[object])
This is probably the most commonly used operation on contexts. The
translation operation takes a name and returns all the objects and names
into which the first name is translated with the context provided. The
invoker of' the operation must be prepared fix several possibilities. First,
the 1wme may not exist in the context. Second, it may exist but not be
assigned to an existing object. Third, it might be translated into another
name in another context, and fourth, it might be translated into an object.
Fu ttherrnore, the i 11 voker must be prepared fi.)r more than one
translation; the set may consist of representatives from any of the four
possib ii ities.

untranslate = proc (context, object/name) returns (set[name])
As discussed in Section 2.2, this operation is the reverse of translate,
although the values returned by this operation are more predictable than
for translate. In this case the only response is a possibly empty set of
names. Again, the invoker must be rrepared for the response being a set
of more than one name. This operation was found to be especially useful
in the electronic mail implementation because mail would often arnve
from senders not using this mail system, but rather their own.

add_participant = proc (context, participant)
This operation is needed in order to define the list of participants sharing
a context. The means of identifying participants has been excluded from
the naming facility and this research. The reason for this decision is that
identifying participants may involve complex activities that certainly do
not fall within the bounds of naming as defined here. For example,
pa1ticipant identification may include sophisticated authentication

61

procedures. All that will be said here is tlwl a meclwnism for identifying
pttrticipants must be available and it will vary at least fi·om one system to
another and possibly from one subsystem to another.

In order to use contexts, many ~tdditional orcrntiuns arc needed. Appendix

A. I contains such a list. These operations include operations for deletion of various

pieces of in formation, such as names, bi ncli ngs, participants.

!mplemcn tat ion Issues

The implementation issues !(Jr contexts fall into three categories, effects of

federation, communication, and nmning of contexts. In order Lo provide service in

the face of discontinuities in cooperation in a federated computer facility, a context

that is shared across such a leclerntion must be implcmcntecl as multiple copies. The

reason for this is that if a name has been defined in a locally known context for a

local object that name must be usable for that object even if the remainder of the

!ederation is not in communication. In addition, there is a further complication. It

is possible to define a context in such a way that any individual participant is

allowed to define new names in the context. In this case, if the federation is in a

disconnected state, the local user should still be able to define new names in the

context. This also points to the need for a local version of the context. On the other

hand, local versions or copies require synchronization.

The synchronization need not be perfect. As a result of federation, copies of the

context need not be kept in perfect synchrony. In fact, for a human interface such

behavior is probably both unnecessary and undesirable. As long as mutual

agreement on the contents of the context is eventually reached, it need not occur

instantaneously or even atomically. Modifications to a local copy need only occur

by the time of next use after their arrival at the local site. This may appear to cause

problems, for example, if two users attempt to define the same name in a situation in

which each name may have only one translation. Such a situation should occur. If a

62

contexl is created with Lhc restriction that a name occur at most once in it and all

users have equal responsibility l()r assigning n~tmes, no user can be allowed lo define

a new name unilaterally. Co111rnunicatio11 with the other copies or the conkxt is a

necessity and such a proposal llff a new name can be al best only tentative, pending

synchronization with all other participants. The issue or synchronization will be

discussed rurl11er in the consideration or implementation issues for aggregates.

In building a naming facility, one must consider what information needs to be

curnmunicaled and how that will be achieved. The second area or concern in

implementing contexts is communication. There arc two sorts of in formation that

must be communicated in relation to using contexts. The first is the names

themselves and the second is the negotiation in rormation rclalccl to management of

the shared context. Closely tied to this is a determination or the medium of

communication. As will be seen in Chapter 5, in the electronic mail system, the

medium of communication was the mail ilsclL The medium of communication and

the use ol' the names will determine the representation form of the names that are

passed among participants. l n addition, the medium of communication and the

objects being communicated will determine the form of communication that is

available for the in!(xmation needed to manage a context. Management

in formntion is needed in order to reach agreement on initializing a new context as

well as to make decisions about adding and deleting information in the context.

There is an underlying assumption in this discussion of communication and

initialization that there is some basis for initiating communication. There must be

some agreement among the participants on a communications protocol. In talking

to someone one has never met before, there will probably be an assumption of a

common language and possibly some common experiences. Lacking that there may

be an assumption of understanding certain facial and hand expressions. Without

some basis from which to begin, negotiation and communication cannot be

established.

63

The linal implementation issue in relation to contexts is how contexts are identified.

Contexts must be identifiable in order both to manage the information in them and

tu use them in rwmc translation, accessing objects given names. Since a context is an

object it can be named in another context just as any other object can be named.

Th is quickly reduces to a problern or initialization, that was discussed above.

Agreement must be reached not only on the fact that a context will be created, but

also how it will be ickntiliccl. Interestingly, humans use more than a name to

identify a context. They also use participants. Since particirant inf<mrn1tion is part

or every context, it can easily used in the selection process in choosing a context

from within which to use names. Because participant identification may not be by

name, selection ora context based on particirant inl(mnation docs not frill under the

responsibilities of the naming facility. This issue of selection versus naming arises in

an important role in a programming support environment and therefore is discussed

further in Chapter 6.

To review, in this section an object type called context has been rroposed as the

basis for shared naming. It is jointly managed by a set of participnnts and contain

not only the relevant naming in formation but also some form of id en ti ti cation of the

participants. Name translations in a context can be in one or a number of states

reflecting previous usage of the name. The basic operations on a context are to

create a context, add names and participants to the context and to translate names

into objects. In addition a number of other operations are needed for general use

and management of contexts. The assumption of a federated computing facility

leads to the implementation requirement that multiple copies of a shared context

exist, one for each independently operating entity. Further issues that must be

considered in any implementation are synchronization of those multiple copies, how

communication occurs and what is communicated, the basis for communication, and

how selection that is not straightforward naming, such as in selecting a context on

the basis or participants as well as an agreed upon name, is to occur.

64

3.3 The Aggregate

!Jcftn it ion and Discussion

Definition: An agJ!,regatC' is a private o/~jcct that consists ofa current context and an

environmmt. '/'he current context is shared amo11,i.; aggrcgotfs belonging to the several

participants of the context. An c11viro11me111 is a partiaffF ordered set of contexts used

in the partial ordering spccijled to translate names not known in the current context.

Any inj(mnat ion in an agg,regat e may vmy over t in1c. The j[111ct ions 011 names

supported by aggregates arc access to a name object and substitution of one name for

another.

The view taken in this research is that all naming is clone through the nammg

facility. This is not to say that there arc not other ways of identifying and accessing

an object, but only that all naming is to be through the naming facility. Each

namcspace of a user is an aggregate. The aggregate is a private view of a shared

context. The context is the nmrn::space shared by a group for a particular purpose,

with a raiiicular focus. In addition, each participant has his or her private view of

the sharing. If a group of people have a conversation, they will jointly define terms

and use nicknames on which they have agreed. In addition, the issue of the

participants' individuality must be considered. In order to capture these ideas, an

aggregate is composed or two components. The first is the current context which is

the shared context representing the focus of the group. The second component is

the environment, a partially ordered set of other contexts in which the individual is

also a participant and from which he or she may wish to draw information. The idea

for the structure of an aggregate is derived from the concepts of working directories

and search rules. The current context is derived from the working directory and the

environment, from search rules. The user of names would like Lo be able to draw on

other experiences without having to be explicit about it. Unlike the search rules of

Multics or Unix, in this research a partial rather than a complete ordering is

65

permissible. This decision is in keeping with the fact th~1t names may be resolvable

to more than one objccl. Ir there arc several contexts al the sami: priority in an

aggregate, then all resolutions or a particular name in those contexts have equal

priority within that aggregate. A "rule" is a set or contexts at a single priority in an

environment. Figure J-2 is one possible visualization of <111 aggregate. It has the two

part current context and an environment with three rules. The first contains two

contexts, the second, one.

Operations

The operations on aggregates rail into two categories, those that have counterparts in

contexts and those that do not. Even the operations in the first category arc not

identical to the comparable operations on contexts. The operations on

environments, adding contexts to rules and aclcling rules, arc completely new here.

create = proc () returns (aggregate)
Creation of a new nggregate involves creation of a new context as
described for contexts as well as creation or an environment. Although
this operation involves creating a new context as the current context, in
the mail implementation, as will be seen in Chapter 5, creation may
involve using a pre-existing context as the current context.

add_namc = proc (aggregate, name, [object])
This operation is quite similar to the comparable operation on a context
except that an aggregate is identi fled and the addition is made to the
current context of that aggregate.

translate = proc (aggregate, name) returns (set[object])
The translate operation on an aggregate is somewhat di !Terent from
translation on a context, above and beyond the fact that one of its
arguments is an aggregate. The net result is similar, return of a set of
objects having the name assigned to them. The difference is in the
aggregate's resources used. First, the current context is checked. lf there
is no translation there, the highest priority set of contexts in the
environment is checked (the first rule in the environment), and so on
until a rule in the environment is found having at least one translation.
All translations at a particular rule are considered equally valid. Thus, the

66

envi

ronment

current

context

AGGREGATE1

(narn s a d

obec~)

participants

(aggregate2)

§ iaggcegatc4)

n (aggcegate5)

Figure 3-2: Depiction of an aggregate

order in which contexts are checked within a rule and the order of the
returned values are meaningless.

untranslate = proc (aggregate, object/name) returns (set[name])
111e untranslate operation is also somewhat different from untranslation
on a context, in the same way that translate is different. rr the object is
not named in the current context, then the environment is used. Again,
all untranslations within a particular rule are considered of equal
importance. The untranslate operation was found especially useful in the

67

electronic mail implc111ent;1tion presented in Chapter 5. Because
incoming nwil might have been generated using a mail program not
implementing aggregates and contexts, the unlranslate helped provide the
user with a more uniftnm interface. The add_aggregate operation also
allows the user to <lssign the incoming message to an aggregate in order
that the untranslation operation occur in that aggregate.

add_participant ::.: proc (aggreg<1te, participant)
This opcr;1tion is identical to the operation of the same name for contexts
except that it adds a participant Lo the current cont.ext or the aggregate
provided.

insert _ _rule = proc (aggregate I, rule#, aggregate2)
This operation affects aggregatel, by inserting the current context of
aggregate2 as a new rule at the specified number. The reason that an
aggregate is specified l()r addition is that it would be possible, as will be
noted in the implementation discussion, to name only aggregates and
identify contexts only as the current context of an aggregate. In order for
this operation to succeed the current context of aggregate2 cannot be in
some other rule.

add_to_rule = proc (aggrcgatel, rule#, aggregate2)
This operation is similar to insert_rule except Lhat it adds the current
contexl of aggrcgate2 to the specified rule in aggregatel. Again, it does
not succeed if the context is already in anolher rule.

The additional operations needed to make aggregates usable are listed in Appendix

A.2. These operations include a selection of operations for management of the

environment as well as those operations inherited from contexts.

Implementation Issues

Two of the issues discussed with respect to contexts must be reconsidered in

discussing aggregates. The first is the synchronization of copies of a shared context,

each of which is the current context of an aggregate. cll1e second is naming

aggregates. In addition, a different form of initialization must be considered.

68

An aggregate rclkcls the owner's private view of a shared context. It is possible to

use thal advantageously by recognizing that changes to a private copy of the shared

context need not occur until lhe owner or the aggregate actually uses the context.

Therefore, delaying such changes is leasible. This allows for a relaxation in

synchronization or the multiple copies of a context with the unclcrst"nding that such

delays in updates nol be visible to the owner or the aggregate. The electronic mail

1;1cility lakes advantage or this by h<tving the bearers or new inl(mnation be the

messages themselves. Updates to a current context only occur as new mail items

containing any new in formation arc read. Other synchronization mechanisms are

possible and can be based on the medium of communication. What is important to

note here is that it is not necessary to provide any !Orm or update atomicity because

the level or cooperation among participants is not close.

Naming of aggregates is the second implementation issue. In the discussion of

contexts, lhe suggestion was made that contexts be named through the naming

mechanism. The same holds true for aggregates. There is a further question related

to naming aggregates and contexts, that or whether separate names are needed for

aggregates and contexts. The approach that is taken in this research is that a context

can be named simply by identifying it as the current context of some aggregate.

This implies that a context can be the current context of at most one aggregate for

each participant involved in sharing the current context. It also implies that a

context cannot be divorced from its aggregate. An alternative would be to allow a

user of the naming facility to create a new aggregate that would have a current

context that was already the current context of another aggregate owned by that

same user, but having a different environment. Uses for such a facility are not

obvious and it therefore adds unnecessary complexity. Such a facility is available in

the electronic mail facility, but no use was ever found for it. If a use is found, a

cleaner solution to the problem may be that the user who wants to use a context

69

twice 111 different aggregates create two iclenlilies as different participants. This

btter alternative allows the user or the context to distinguish between the two

aggregates.

The linal implcmenlation issue Lo be addressed here relates to initialization. In

aclclilion lo the discussion rebted to contexts, one must consider how a user gets

started. The proposal here is that each user start with some basic aggregate that is

the private \Vorld of the individual. That private aggregate would contain a current

context of private names. In addition, the individual may want to include more

recent sets of names in the environment of that aggregate. The environment of the

user's b~1sic aggregate may change more frequently than most other environments

renecling recent experiences. The set of contexts in the environment may be fairly

stable, but their arrangement into rules may vary. In addition, although this was not

discussed earlier, an· enhancement to the creation operation for aggregates would be

to insert a single context, the current context of the user's basic aggregate, into any

newly created environment. In the electronic mail facility, the first time someone

uses the facility a basic aggregate containing a private, unshared context is created.

When a new aggregate is created it is completely empty.

To summarize the contents of this section, an aggregate is the only interface that the

user has to the naming facility, although it is composed of contexts. The aggregate is

not shared, but consists of one jointly managed current context that is the focus of

most of the activity in the aggregate and a private environment within which names

used in relation to the current context but not defined there may be recognized. In

addition to the operations provided for contexts, the only additional operations

needed for aggregates are those to manage the environment. Aggregates can be

named using the naming abilities of aggregates themselves. [n addition, since from

each user's viewpoint a context is in exactly one aggregate, the context need not

have a name separate from the name of the aggregate in which it is contained. The

70

foct that updates to a shared context need not occur until the user next secs the

context makes carcl'ul and immediate synchronization or multiple copies

unnecessary. Finally, each user will have a private set or names managed in a

private or basic aggregate. The current context or that aggregate is not shared.

3.4 Examples of Uses of Contexts and Aggregates

With the definitions and discussions or names, contexts, and aggregates in place, a

presentation or how they can be used to describe several existing situations is in

order. Three examples arc discussed here. They will also reappear in Chapter 4.

The three arc a conversation between two people, the Known Segment Table in

Multics mentioned earlier, and the cataloguing facility in R*.

The particular example of a human interaction used here is one of a large number

presented by Carroll [7]. Carroll was using data collected by Krauss8, although it

was analyzed further by Carroll and his colleagues and presented in the Appendix of

Carroll's work. The situation was as follows. Eighteen subject pairs were observed.

For each pair, the two subjects were arranged so that they could not sec each other,

but could communicate. They were shown a collection of graphical patterns in

clifTerent spatiai arrangements for each or the two subjects. The subjects were to

identi ry jointly all the figures. The complete conversations were originally recorded.

Carroll and his colleagues extracted all the references to the figures, sorting them by

reference to each figure, resulting in 212 different situations. The analysis of this

data presents the subjcct5 reaching an agreement in most cases about a name and

then later using that name. Just one of these will be presented here to exemplify

some of the procedures or joint definition and use of names. Carroll used the data

8 According to Carroll, these data were originally discussed in the literature by Krauss and
Weinheimer [21], and later again by Krauss and his colleagues in [22, 23, 24)

71

to study the sorts of names that were chosen and the procedures by which they were

selected. The example chosen is in Figure 3-39. The Arabic numerals refer lo page

numbers of the origitwl observations and the Roman numerals identify the subject.

The page numbers were included lo indicate the distribution of the reference~ ..

Considering this cxamrlc in the terms the model presented in this research, the two

subjects have a shared context predefined l(Jr them. When their discussion is

complete it will contain names liJr all the objects shown lo them. In <1clclition, each

has a private view of the shared context. Perhaps, subject I was recently on a farm

and therefore a context defining farm animal names may have been high on the

environment list for this subject. On the other hand subject I I may have had

nothing unusual occur recently leading to the suggestion of "horse's head". (Sec

Figure 1-1 on page 21.) In this cxarnrlc, it is clear in addition to the shared context

used f()r c\elining names IOr the figures being shown to the subjects, they assume

that they have other experiences in common, in this case experiences that would

give them both the knowledge of the shape of both a seahorse and a horse's head.

Those experiences may well not he shared experiences, but each will have contexts

in which those names arc defined and the assumption is that they arc defined in

similar ways. Before the series begins frir these two subjects, they will have some set

or contexts that they will bring with them to the interaction, those contexts forming

their environments. The shared context will be empty until they begin defining

terms. The negotiation rrocess through which they go will be discussed further in

Chapter 4, in considering how agreement on names is reached.

The Multics Known Segment Table (KST) [37] was described earlier in Section 2.4.

Nonnally, when a process is initialized the KST is empty. [t is generally the first

9This dialog is from p. 13 of Carroll [7]. It is between the second subject pair and is discussing the
figure labelled B by the experimenters.

72

1.1 sort or like a head on it, an animals head, sort or like a horses head
1.11 horses head
1.1 two points on the top
1.11 sort or like it's got two points on the top
1.1 a seahorse
I.I I ~111d it comes real narrow ut the bottom
1.1 like a seahorses head
2.1 same seahorse
3.1 seahorses head
3.1 seahorse sort of thing
4.1 seahorse
5.1 seahorse
6.1 seahorse
6.1 seahorse
6.11 seahorse
6.11 seahorse
6.1 seahorse
7.11 seahorse
7.1 seahorse
7.1 seahorse
8.1 seahorse sort of thing
8.1 seahorse
9.1 seahorse
10.1 seahorse

Figure 3-3:Fxamrle of joint selection ofa name

entry in the search rules. When a name needs resolution in the process and that

name is not in the KST, another rule is used to resolve the mime and then an entry is

made into the KST. From that point forward, any reference to that name is resolved

in the KST, assuming the KST has highest priority in the search rules. Thus all

occurrences of that name in any segment used in that process will be resolved in the

same way. The search rules can easily be compared with the environment of an

aggregate and the KST, when it is at the top of the list in the senrch rules, can be

73

compared with the current context. The architects and designers of Multics were

aware when this mechanism was created that there is a potential for incorrect

resolution or names, but it was decided that that cost was worth the beneficial

tradeoff Once in a great while, the mechanism surrrises a programmer or user, but

in general the mechanism provides the desired and expected behavior. The same

tradeolT will exist in the mechanisms proposed here and the same choice is made.

The idea missing frum the KST is any representation or participants, since by design

there was only one shared context and participation was not an issue.

Jn the catalog of R*, a distributed database management system [29], Lindsay made

a similar choice. In that case, each user at a site has a set of single component

nicknames. A system name consists of four components, the creator's name, the

creator's site, the creation site, and a name for the object that is unique when

combined with the other three components. Ir any of the first three components is

not specified there arc mechanisms for choosing defoult names. In addition, if only

a single component name is specified, the user's local table of synonyms will be used

for possible name translation prior to any other defaulting that may come into play.

In this case, the system-wide catalogue that translates system wide names into

objects is a single shared context. The private, local synonym tables provide private

views on that. In addition, another mechanism, the defaulting mechanism is

inserted in the middle. It provides a non-naming function, in terms of naming a'i

defined in this research. The combination of mechanisms in R * as described by

Lindsay provide a tradcoff similar to that of the Multics KST. Again, translations

will be made using a common table, with possibly undesirable effects, but in most

cases acceptable and even desirable effects.

These three examples point out that not only does the model describe patterns of

human naming, but also choices similar to those of this research have been made in

other computer systems with similar trndeoffs. The choices were made knowingly

74

and successfully. Olapter 4 wiH return to the seaorse ex.ample; in discuming in

detail the problems or candidacy and jeiftt m•.....- ,,,...... These are an

important part of the proposed mechanism were separated in order to

give them a more thorough <lisctaion.

1S

Chapter Four

.Joint Managen1cnt and Na111c Assig111nent:
The Model, Part II

4.1 Introduction

This chapter completes the discussion or the model. The aspects or the model

presented in this chapter arc the joint selection of names to be in a shared context

and representation or state changes with patterns of usage or names. Clrnpter

3 addressee! the fact Llial names have two uses, as h~mclles for accessing the objects to

which they are assigned and as place holders for those object. Since a name is

anything that lits the definition presented there, exactly how a name is contained or

passed between users is not specified. That is an implementation issue, not part of

the model. The issues addressed here arc how and where names arc entered into a

context and which names are chosen. Although these issues involve possibly

distributed decision making, for simplicity it will be assumed that lack of

synchronization and accc:ssibility are not a problem. The issues of synchronization

and multiple copies will recur in several places. The problems discussed in this

chapter involve agreement at a different level of abstraction from multiple copies of

a context.

The problem of n::ime selection can be decomposed into two separate problems.

The first is the determination of which names are proposed for entry into a

particular context. The naming facility puts no restrictions on these choices other

than requiring that names fit the definition of names in Chapter 2 and they aTe

supported in the implementation of contexts and aggregates. They arc solely the

responsibility of the proposers of names. The second problem of name selection is

77

determination of how and when a name becomes part of a context. There arc two

means by which a name can be entered into a context. The first is as a proposal

from one or more participants and the second is as the result of merging two

contexts, thus creating a new one. Thus the participants sh;1ring in the use of a

context arc also the proposers of new potential name assignments.

Direct prormsal of a name by participants leads to recognition that there arc many

possible foctors that may come into play in determining whether or not a name will

be chosen by a group of communicants. Some of those will in fact be inllucnccd by

the l<xm of the name and possibly its relationship to other names that have already

been accepted or rejected. Which factors arc relevant to a particular context for

both addition and deletion will determine part of the nature of that context.

Therefore the functions of acceptance and deletion must be parameters of the type

of a context.

When a name is proposed as a candidate for acceptance, it is transformed from

being unknown to being tentatively accepted. In this model, the degree of

acceptance or deletion is represented as one of a series of states. That series can be

depicted by a state diagram including transitions between the states. A name may

pass through a number of candidate states before being fully accepted. The

transitions from one such state to another will occur when certain factors anse

during use of the name. For example, it may be that anyone within a group can

propose a name, moving it to the first candidate state. As it is used repeatedly, it

moves through states toward the accepted state. Many factors, one of which is

frequency of use, may affect progress through the candidate states. Perhaps, it can

only be truly accepted when it is used by the organizer of the context in which it is

being proposed. Figure 4-1 is a depiction of an example of a state diagram.

78

Figure 4-1 :An example of a state diagram of the transitions or context entries

The second means of entering names into a context is through merg111g. In this

research a proposal was made for a collection of separate narncspaces called

contexts. There will be occasions on which it will be necessary to merge two

contexts to form a third. Even if the contexts arc parameterized by the same

acceptance and deletion procedures, merging two contexts may be ccmplicatcd. A

table can be used to indicate the state of each entry in the new context based on its

state in the original contexts. Figure 4-2 presents one such example. fn such a table

choices must be made about the state of an entry in the merged context given its

possible states in the two contexts being merged. The fact that a name is in a

particular state in a particular context is the result of the history of its use in that

context. If the two source contexts contain different states reflecting different

aspects of the history of use of names, the choice of states in the newly merged

context will be especially difficult to determine, and probably cannot be handlcd by

any general procedure.
79

u d c1 c2 en a
-----r--- .-----

u u d c1 c1 c1 c1 u unknown

d d d c1 c1 cm en d deleted
-~-- ----

c1 c1 c1 c1 c1 cm en c1 candidate1

c2 c1 c1 c1 c2 cm en c2 candidate2
f----

en candid a ten
r---

en c1 cm cm cm en a a accepted

a c1 en en en a a

Figure 4·2:An example of a table for merging contexts

Given this background the factors that may play a role in the functions of

acceptance and deletion can be investigated. Section 4.2 discusses a simple example

to highlight some of the factors and how they come into play in accepting a single

name. A larger list of factors is discussed in Section 4.3. Such a list cannot be

complete because one cannot predict all the possible uses of names nor the joint

decisions among participants of criteria for accepting and deleting. The most that

can be done is present a well thought out set of likely factors. This will be followed

in Section 4.4 by a discussion of how the factors might come into play as parameters

to the acceptance and deletion operations. A sample set of choices with respect to

those factors appears in Section 4.5. Merging is discussed in more detail in Section

4.6 and the chapter concludes with a review of the model as presented in this and

80

the preceding chapters ;me! how the model as whole addresses the goals presented in

Chapter 2.

4.2 A Simple Example

There arc many possible fl1ctors that may affect the set of names in use in a current

context. 'fhcrc arc probably di ITercnt foctors that affect acceptance than deletion.

Deletion is considered here to be less important th:rn acceptance because a name

need not be used even if it is in a context, although there may be special situations in

which deletion is important. Such a situation might occur if each object were

allowed only one name in a context. If a name fell into disuse, it might be that the

name itself was causing a problem. For instance, it might be difficult to use, causing

an undesirable modification of behavior of the users. Therefore, it would be useful

to have such a name cleletccl, allowing for a new one. The reverse situation in which

a name can be assigned to no more than one object may also cause a problem of

name conflict. In this situation, a name cannot be reused and assigned to an object

unless it is not naming anything else. Although deletion is of frequent concern,

acceptance is considered here to be even more important and, therefore, the focus

here will be on acceptance.

Three examples were presented m Section 3.4. Of those only one involves

negotiated responsibility for choosing names. That one, the conversation between

two experimental subjects, also reflects degrees of acceptance of a name, not found

in the other two. Since the human interaction provides an example of a set of

factors that may come into play in such decision-making, it will provide the starting

point for the discussion of factors involved in such joint decision making. 1110se

factors are also relevant to non-human interactions.

81

This discussion returns to Figure 3-3 on page 73. There arc several things to notice

about the interaction presented in this ligure. The first is the degree to which

negotiation is t<1king place. I makes the initial comrm:nt, II picks up with "horses

head", then I modifies il, and II picks up on the modification, I proposes

"seahorse", 11 adds to the modi lirntion, I uses the head idea once more, and they

settle into "seahorse", both using il li·om then on. The second ~ind third points stern

from noticing that all this negotiation happens un the first page. There is a rather

intense period of negotiation consisting of seven relerences tu the figure, alkr which

agreement has been reached. The total number or ref'erences before agreement is

reached is not high, in this case seven, although in many other examples it is even

lower. In addition, because this occurs in a short period or time, the frequency of

reference is high. fourth, the name passes through several mutations, beginning

with a comparison to a "horse's or other animal's head" to assuming just the term

"horse's head", through the stages of "seahorse". Carro11 l7J discusses various forms

of mutation that may take place, that will be discussed further in Section 4.3. The

Ii f'th point is a little more obscure. Although the researchers chose the label "B" fbr

this shape, the subjects chose a name that has some meaning to them: it describes a

shape that they both understand. It is something that each assumes the other will

know and understand. Such a name is something that the participants realize that

they share with each other in a different context.

Attention must be given to the fact that only a single example was discussed above.

One cannot make generalizations based on it, but rather use it to exemplify some of

the sorts of factors that arc considered to be important in studying the procedures

used for jointly agreeing upon names to be shared. This paiticular example was

chosen to reflect several of those factors. Other examples may reflect other factors,

but most did not seem to reflect them as clearly. The next section will discuss a

non-exhaustive collection of factors that affect joint agreement on names.

82

4.J Factors in .Joint Management

Given the live l~1ctors that played a role in the example presented above of two

participants agreeing upon a shared name, a larger set of factors will now be

considered. These foclo1s arc derived rrom a variety of sources and modirications of

observations about them. One obvious source is the work by Carroll [7, 54]. The

other major source is information that is considered important to record for lilcs in

various file systems. Initially in this chapter a distinction was made between the

content of a name and the mechanism by which agreement is reached in selecting

the name. In foct the two can be closely tied to each other.

Factors:

- The user's relationship to the group: The user of a name may play an
important role in re:tehing an agreement on a name. The user may be in
some sort of either dominant or subordinate role in relation to the
recipients of the name. As will be seen in the programming support
environment, a librarian may have special privileges when it comes to
dclining names in a shared context, while the individual programmer
may only be allowed to make suggestions to the librarian.

- The recipients' relationships to the group: As with the user of a name,
the role of the recipients may make a difference as well. For instance, it
may be that, if the dominant participant is among the recipients, the
usage will carry more weight in upgrading the stale of the entry in the
current context than if only subordinate participants sec a name. In
addition, the number of recipi~nts may be significant.

- The application's usage of the name and relationship to other
applications: I-low the name is used, by which application, may
determine how much weight the usage of a newly proposed name or a
name in a candidate state will have. It may well be that a context is used
by several applications, such as one that is used both for source code and
compiled code. It may be that for proposing a new name for source
code, agreement is needed among the various participants, but once that
has been decided, naming a compiled object that is derived from such a
source code object can be clone without any further negotiation. In
addition, an application program may use names in various functions,

83

some more important than others. This factor may be tied closely to the
l~1clor or previous choices.

- Time of usagl~: The time at which a name is used may have an effect on
its state. For example, it may be that al certain times of the year, usage
becomes much heavier and, in order to avoid delinition or m[lt1y nnmes
that will not be used much again, this fact may influence the way the
other factors ~11-e taken into account.

- Numher of uses: This factor may alone be the most important. In the
example the wurd "seahorse" was used in conjunction with other words
IC>ur times after its original proposal befrlre it was accepted. In the
electronic mail implcment~1tion, number or uses is the sole criterion.
This factor may take on numerical values up to a limiting value. In
addition this factor may be used in conjunction with others such as the
user or the recipients.

- Frequency of use within a (lCriod: This factor has two important aspects.
The first is the frequency of usage. It may be that a name that is used
once a day is less likely to be accepted than a name that is used once an
hour. The other aspect of this factor is the period over which the
frequency extends. It may be important that a name not only by used at
least once an hour, but also that this usage pattern be maintained for at
least two days, or some similar requirement. It should be clear that this
frtctor cannot become relevant until a name has passed the initial
proposing stage and has become a candidate for acceptance.

- Mutation: Mutation was mentioned in the discussion or the example in
the previous section. There identification changed from comparison to
an animal's or horse's head to a seahorse's head to a seahorse. These
changes are not very great. Ir the changes had been less closely related
to each other, perhaps more uses or more negotiation would have been
needed to reach agreement. Mutation is also related to the next factor as
well.

- Hclationshit> bet ween a description and the final choice of a name: If the
original description was "like a seahorse" and the final name was
"seahorse", arriving at that agreement might be easier and quicker than
if the original name was "like a horse's head". fn turn this latter might
be easier than if the original had been "like an animal's head". Carroll

84

arwlyzecl the 212 different joint identifications presenting a set of
conclusions about rossiblc strategics used Lo arrive at a 1wme given a
description. He also ;111alyzed the data f(Jr number or occurrences of
each. The following is simply a list or them in decreasing order of
rrequency:

1. The Wholc-/Jcscrif!tion Strategy in which the whole description
(which may be a single word or small nu111ber or words) is used as
the name.

2. The Content Strategy in which the !in;tl name comprises the
contCllt or the original description.

3. The Content-Noun Strategy in which the maJor noun of the
description becomes the name.

4. Minor Utera/ .S'tmtcgics in which the name finally chosen plays a
minor role in the initial description.

5. Nonlitera/ Strategies into which all other examples that reached
agreement on a name foll. This includes strategies such as use of
synonyms or other semantic relationships in combination with one
of the previous strategies.

Depending on which strntcgy is being used in <lrriving at a name, the
period or negotiation before acceptance may be sho1ter or longer. This
factor, as many of the others, is likely to be used in conjunction with
other factors.

- Previous choices: This factor was mentioned in the example. ft is based
on ideas both of Carroll [54] in his work on human factors and
observation of operating systems throughout this research. Many
systems pmvide for similar character strings to be used in situations to
indicate relationships among the named objects. In addition, Carroll
suggests that names displaying what he calls congruence arc easier for
people to handle. What Carroll is describing is complementary terms, or
opposites, such as using the term "down" rather than "return" for the
motion that is the opposite of that labelled "up" or in the electronic mail
example using the names "sender" and "recipient" rather than "sender"
and "reader".

85

- Sharing in othl'r contexts: This factor wus also discussed in relation to
the example. Ir the proposer or a name and the recipients of the
proposal recogni1.e it from another shared context, perhaps it should be
more easily accepted than ir the recipients have never seen the name
before.

Ten !'actors have been suggested here. In different situaLions different foctors may

be more or less important. In the example only live or them were identified. The

proposal in this research is that the litCtors be specillcct on a per-context basis. In

fact, the proposal here is that the type conrc_....:I nut be a type but rnther a type

generator and that the acceptance and deletion factors ancl their interrelationships

form the basis or the parameterization. Parameterization is discussed further in the

next two sections.

4.4 Parameterization of Joint !Vlanagement

This section addresses the means for using the foctors listed in the rrevious section.

First, the implementor using the context type generator must understand how those

factors will be evaluated by the context type for both the acceptance and deletion

operations. In addition, the implementor must identiry the states through which a

name may pass in moving from unknown in the context to perhaps accepted as part

of the context. The factors may be cardinal numerical values, ordinal values, binary

(true/false) values, based on a table: of values, or related to other previously stored

information. The finite state representation of how these factors affect acceptance

and deletion must also be defined. They will result in a diagram such as Figure 4-1.

Both of these were done in the electronic mail implementation and arc presented in

Chapter 5 with the state diagram in Figure 5-6. For now, the nature of those factors

will be considered further.

The relationships among the user, the recipients and the rest of the group are likely

to fit into some sort of ordinal arrangement of the participants. A simpler

86

representation of information about the rec1p1em" is a count or the number of

recipients without regard to the relative importaJk(' of them. In addition, if

different applications have different effects, this will best he represented as a relative

relationship among the applications. One is most important, has the most effect,

:rnol her has the second most, rn1cl so on down to the le<1sl effecli ve. It may be that

d1ese can be reduced to binary relationships by recognizing only two categories,

: hose people or <1pplications that have more effect and those that have less. In the

simplest case, all participants uncl all applications arc or equal importance. In this

rnse, a count or the number of recipients may still be a factor.

The next three factors, time of usage, number of uses, and frequency of usage within

a period, will all standardly have cardinal values, although the latter may have

several possible v~dues for different periods. It may be that approximations are

made for each of these. Time of usage may simply be categorized into one of several

periods, e.g. prior to some time, during a time period, or after a particular time.

Number of uses may be used as a value up to some limit. This is what was done in

the electronic mail system, where the limit was three. Finally, frequency of usage

within a period may be recorded only for one fixed period (5 minutes or one hour or

one day, but not all three), and again there may be a limit. In addition, there may be

an upper or lower lirnit on the frequency; e.g., if the frequency is more than five per

time unit, how much more may be unimportant.

Mutation and the relationship between a description and the final choice of a name

are probably the most difficult factors to which to assign values for computation.

One might attempt to assign relative numerical values, but the basis would have to

be some heuristics. For this some of the techniques developed in the Artificial

Intelligence community for recording the relationships between words and concepts

should probably be employed. Unfo11unately, more is needed than simply to record

relationships. In addition an assignment of relative importance to various of those

87

relationships is needed and one needs the capability for adding new, yet unknown

relationships and undcrst<rncling how they lit into the previously existing schemes.

In an operating system environment where cflicicncy or opcrati()n is critical, these

sorts of activities arc likely to add much complexity to the computation and

thercf'ore reduce cfliciency.

The effects or previous choices may be evaluated in different ways. For instance, if

at least the first three characters arc the s<1mc as another previously accepted name,

it might be that the boolean value True will be chosen for this factor, or False if

fewer than three characters match. One might provide an t1bsolute value or the

number of characters that match with a lower limit, so that at least two must match

before this factor comes into play. Congruence is more di flicult, and probably

involves a dictionary in order to provide recognition of opposites. As with the

semantic relationships discussed above, if such operations !Or acceptance and

deletion arc included efliciency will probably be greatly reduced.

The final factor is sharing in other contexts. This may be given relative values based

on how many people know the name in another context and the state or the entry in

that other context, or it may simply be a binary value of whether the name is known

to all and accqAed in another context. Although this sounds like a straightforward

computation, in fact there is a compliu1tion because the time and circumstances of

the computation will be unpredictable and may be variable at different sit(;":s. For

example, if the shared context is implemented and exists as a single object (whether

or not there is replication), its state will be consistent at all times. This was not the

case in the mail system. Multiple closely related versions existed, one for each

sender or recipient. The updates on them were done independently. In a situation

such as that, the state of the world may be different at the time of each update and

therefore the results of using external information vary over time. Jn the mail

system, that was acceptable because distributed information was not used in the

88

process of clclining names. The user's expectation is very important in such a

situation, since the users believe that they arc communicating and reaching

agreements with each other. The naming f~tcility is unacceptable if routinely users

believe th<1t they have reached an agreement, only to discover that there are

di fTerences of opinion on this.

4.5 A Sample of Choices

Th is section presents a selection of factors that might be used for human interaction.

These choices provide an example that might appear in the implementation of a

user interface. Therefore such values as times and number of repetitions are chosen

to fall within common human understanding. In another situation different choices

might be made. 10

Of primary importance is the nurn ber of uses. Because of Carroll's observations that

small numbers of uses in fairly quick succession arc most common in human

conversation, the number four is used. The period for humans should be on the

order of one day. This would require keeping a minimum of four timestamps for

usage. An assumption is made here that all participants have equal status within the

group, and that as with the electronic mail system, each participant has a private

copy of the context, the set being kr~pt in approximate synchrony. 'Tl1is means that

as each participant secs four instances of a name within one day, the name becomes

accepted for that participant. Since this is application independent, neither the

factor of application nor time of usage is included. Of the remaining four factors,

10The only test of such choices in this research effort was made in the implementation of the
electronic mail system. The choice there was kept especially simple, but implemented so that others
could be substituted easily if the occasion arose. Due to limited use of the software, little was learned
about this aspect of the implementation and it was felt that alternative decision making mechanisms
could not have been tested well enough to be of value.

89

three arc not included here because of the complexity or including them. These arc

mutation, rebtionship between a description and the final choice of a name, and

sharing in other contexts. The final l~tctor, previous choices, can he included in a

limited form. For example, given a name with a particular extension, the choice of

the same name with <111 extension chosen from a limited set of choices might be

accepted after one use, if the first name were already accerted. In order to

implement decision-making based on this set or lltctors, the only additional

inl<:mrn1tiun beyond names and states that is needed is timestamping.

There arc two further issues related to what happens if there are not fcJur uses within

one day. 1 n humans' minds, a name will slowly lose ground, be forgotten by degrees

over time. As it is losing ground further uses will revive it. Forgetting seems to

happen more slowly than accepting a name. Therefore the proposal here is that the

acceptance functior1 work in eight hour intervals, but the fiiial deletion step be an

additional 24 hours. The final issue is how a name can begin to fade once accepted.

Here perhaps a one week period might reCTect reality. Thus the stale diagram might

be drawn as in Figure 4-3. It will be noted that no distinction is made between

unknown and deleted. Again, this may be a simplification of reality for the sake of

erficiency. It must be remembered that the choices made here were to demonstrate

an example.

As mentioned, 111 addition to recogn1zmg which factors are important for both

acceptance and deletion, the implementor must determine the various possible

states of a context entry and which factors will affect which transitions between

states. Feasibility would dictate a simple set of states and transitions. This, in turn,

probably means that in any implementation only a small number of factors can be

considered. Not only must programming be done, but the computation must be

done, and for many of the factors, historical information may need to be stored,

such as the identification of all previous users of the name or the times of previous

90

candidfltel

(a) (d)

(b) (b)

(c) (c) ,- - --
1 (a) first use

(b) use within 8 hrs.

(b)

(e)

(c) at least 8 hrs. since last use

(d) at least 24 his. since last use

~) ~ast 7 days since last u~

Figure 4·3:A state diagram for acceptance and deletion

I
I

_I

uses. It is clear that if naming is too inenicient, it will not be useful to potential

users. Therefore in addition to the goals of providing a naming facility efficiency

must always be considered.

4.6 The Merging Problem

In addition to determining the states of entries in a context based on use of names

and other related information, there is one further situation that may determine the

states of the entries in a context. Consider the situation in which a context is created

by merging two previously existing contexts. The operation that achieves this

merging is another parameter to the context type generator. Jt determines the

detailed nature of the type of such a context, although it will be used at most once in

the lifetime at the creation time of a context.

91

The problem can be separated into two subproblems, the solution of one of which is

rnan~1gcablc and the other is open ended. The simpler of the two is merging two

contexts of the same type, that arc parameterized by the same operations. In this

case, although there arc many decisions to be made, the problem is tractable.

Unfortunately, if the contexts arc parameterized hy different implementations of the

acceptance, deletion and merging operations, there is no basis of agreement from

which to begin in general. If such a merge is lo occur, a special procedure must be

created for each particular pair of context types l(Jr which it is needed. In those

cases the same issues must be addressed as will be discussed below f(_ir two contexts

or the same type, although the linal choices will be designed for the particular pair

or context types.

A number of issues must be l~Ked by the implementor of the merging operation is

the determination of entries in the new context and the state of each. There arc

several factors that may be taken into consideration. First, the two contexts may be

considered on equal standing or one may be considered more important than the

other. With this knowledge, each entry in each context will be considered. For each

name translation, consideration must be given to its current state, whether the name,

the object, or the full entry exist in the other context, and the relationship between

the original contexts. As mentioned earlier, in some cases additional information

such as timestamps of uses is saved for the acceptance and deletion procedures.

That in formation may also need to be merged or at least be used as part of the

merging operation, although this adds complexity. [n the case of merging, a table

can be drawn up, as for example in Figure 4-2 based on the possible stales of names.

In the case of that figure the two contexts were considered of equal importance. fn

addition, the groups of participants will simply be joined into one.

There is a fu1ther problem of the creation of the environment in any new aggregate

formed by using the new context as a current context. There are a number of

92

possibilities here. I f'the participant and owner or the aggregate was not a participant

in either uf' the original contexts, then probably the environment should defoult to

whatever it would for a new aggregate. If the participant was a participant in one of

the contexts, then perhaps the environme11t shuuld be that or that earlier shared

context. Finally, if the participant shared in both or the urigi11al contexts, perhaps

both should be re!lectecl in the new e11vironrnent.. IL is not clear in this latter case

exactly how the environments should be merged. More importantly, it should be

remembered that the enviro11ment is a reflection and representation of the

individuality or each participant. As such, the recommendation here is that it

should not be created aulonrntically by the same mechanism for all users sharing the

new context. Rather, nothing should be done other than any defaulting that the

individual may have specified, thus leaving the management or the environment the

responsibility solely of the individual.

The discussion of merging to this point has not considered what problems might

arise from multiple copies of one or both contexts in a merge opcrntion. If all copies

of each context arc in synchrony there is no problem. Consider a situation in which

the copies of one context arc not synchronized. Merging occurs by merging the

local copies of two contexts forming a third local context. The question that must be

addressed is what happens if a context entry is in one state in one copy of the

context and in a different state in another. The merging tables pre~ented in this

report have a feature important to this discussion; an entry that exists in any state in

one context cannot become unknown through the merging procedure. This means

that entries cannot disappear. In addition, entries do not move farther from

acceptance through use. Now the merging of local copies can be reconsidered. If an

entry is accepted in one local copy and only a candidate in another, the result after

the merge may be different in the new local copies, but that is an acceptable

condition. In the worst case, if the two local copies being merged are not up to date

93

and an entry is unknown in both, but known in local copies elsewhere, the

rnech~111ism for proposing nmnes can be used lo bring the newly created local copy

up to date. Ir <Ill assumption is made that an entry exists, but it docs not, the human

recourse is to explore further by asking flff further cxph1nation or delinition from

the source. A similar procedure can be used in the world nf contexts and aggregates,

as it 111ight be without a preceding merge operation. This analysis of merging

contexts consisting of unsynchronin:d copies or the contexts leads to the conclusion

that such a merge operation poses no new problems. The problems arc only those

of adding names and merging contexts composed ofsyncrhonizcd copies.

4. 7 Summary and Review

This section concludes the presentation of the model proposed here as a framework

for a naming facility. As such, the section will briefly review the problem addressed

in the research and those concepts clcfincd. In addition, a summary of th·

framework itself is presented, prior to a discussion of how the model addresses the

posed problem.

Names arc defined in this work as objects with an equality operation that stand for

other objects. The purpose of a name is either to provide access to the object to

\vhich it is assigned, if that is possible, or to act as a place holder for the object. The

equality operation tests for the equality of two names, not equality of two objects

named by different names. The goal of the research is to explore the possibility of

designing a naming facility that suppo1ts that definition of names, provides sharing

and communication within federations of and by means of those names, and is

implementable. The equality operation on names is needed in order to implement

access of named objects through a naming facility. A federation is a loose coalition

that may not be active at all times and that allows for both cooperation and

individuality among the participants. Before proceeding with a review of accessing

94

objects and providing sh:tring and COllllllUllication, reasibility or implementation Cllll

be dismissed fiir now. The purpose or Chapters 5 and 6 is to investigate

implementations in two particular donrnins.

The model proposed as a framework ror a naming racility presents the user of the

naming facility with a collection of objects or a single type, aggregate, as tJl1e sole

interfoce to the naming l~1cility. An aggregate provides its owner with a private view

of a shared rwmcspace, known as a context. The shared context is known as the

current context and pruvides the main focus for name resolution. In addition, each

aggregate has an environment, a private list or parti:illy ordered alternative contexts

to be used in the individual's case if a name cannot be resolved in the current

context. The type context is also newly defined in this research. A context also

consists or two types of in formation, the translations from names into objects and

some means of iclcntirying the participants sharing the particular context. The

translations can be in one a series of possible states ranging from just proposed as a

candidate to fully accepted as a legitimate name to deleted and therefore not

accepted as a name for a particular object. Further, those factors relevant to each

context in order to move name translations from one state to another or enter them

into one initially must be considered. This in formation may take the form of

procedures for accepting and deleting context entries as well as merging contexts to

form a new context with predefined translations. The definitions of aggregate and

context incorporate exactly the definition of names presented in Chapter 2,

therefore suppo11ing that definition in the naming facility framework. An

investigation of sharing and communication in the face of federation was based on

human naming and provided a set of eight observations considered here to be

subgoals. Tt is worth renecting on each separately in order to explore how the

framework supports them.

1. Communication: There arc two uses for communication. The first is to
share the use of names, to transfer names among users. 'n1e other is to

95

transfer in f(m11alion used lo manage shared namespaccs or contexts.
For both or these the lcdcn1lion assumed as a system model provides the
basis for COllllllllllicalion on common ground. What the medium or
communication is, need not be speci lied here and will vary from one
system to another. The important li1ct is that contexts and <iggrcgates are
designed in such a way that names and in l<.m1wtion passed through that
medium or communication can be incorporated into the contexts and
<1ggregates. Furthermore, the participants sharing a context must believe
that they have reached some ltJrm or agreement. Negotiation using the
medium or cornrnunication will lake place prior lo the creation or a local
copy or a shared copy, so that all the P"rlicirrnnts agree upon the various
details of specification ora context, such as addition ancl deletion factors
and procedures and a merging procedure.

2. Individuality: The environment part of the aggregate allows the
individual to make use of personal experiences. The environment
provides flx potential name translation in cases in which the current
context of an aggregate cannot translate a name. This allows the user to
foll back on other experiences that he or she thinks may help in such
situations.

3. Multiplicity of names: There are two means by which contexts provide
!Or a rnultirlicity of names. First, a context contains relations between
names and named objects. The existence of one relation within a
context docs not preclude the existence of any other relation between
either the name or the object and any other name or object. Second, the
fact that an individual or set of individuals are participants in one
context bears no relation to whether any of those individuals participate
together or separately in any other contexts containing a possibly
different set of relations between names and objects. Therefore the full
flexibility of multiplicity of naming is available through the naming
facility.

4. Locality of Naming: Independent contexts provide locality of naming.
The framework imposes no relationship between names in different
contexts or between the contexts or aggregates themselves. Therefore,
the naming within one context is completely local to that context.

5. Flexibility of usage: The definition of a name includes only a
requirement of an equality operation. The naming facility also must

96

have some means of associating a name with an object and transmitting
names between users sharing names. Other than these, there arc no
limitations on the nature of names, allowing f(Jr a large degree of
flexibility in the choices of names dellned by participants cooperating in
sharing a context.

6. Manifest nature of namrs: T'hc users of names <1rc also the participants
sharing responsibility for dclining those names and managing the
namcspaccs or contexts containing the names. Therefore, the users are
free Lo select names thal manil'cst whatever degree of meaning they
jointly choose.

7. Usability of names: Humans, in the course of normal communication
with each other, use names and switch narncspaces olkn without a
conscious thought given to it. In involving a colllputer facility in such
activities, some actions and choices must be made more explicit because
the recipient or medium of transport of the names is providing some
interpretation, but docs not have the capability of a human mind. The
naming facility modeled here provides a simple means of involving a
computer facility in such naming. Namcspaces or contexts arc local.
Identification of contexts and aggregates themselves is based on that
same local naming with the addition of identi llcation of other users
sharing the namespaces. In addition, the translations better reflect
human name definition procedures allowing for different procedures in
different situations and different sets of slates reflecting patterns of
usage. In addition, LIS will be seen in the next two chapters, the
proposing of names and state changes for name translations can be made
automatic.

8. Unification: There are no restrictions on the types of objects based on
names. Names are not typed and a name can be assigned to several
objects of different types. This allows for generic naming as described in
Chapter 2 which is considered an advantage of this naming facility
model. It is in sharp contrast with implementations of strong typing that
depend on compile time type checking, because at times prior to
execution, types may not be known since the relations may not be
known or there may be several. In fact, even at execution time, if typing
is inherent in the supporting system, adequate preparation must be
made for handling type information.

97

1.

This concludes the presentation of the model ptOpG9ed to "he a Jtamework for a

naming facility. The next two chapters discms ~ desips ill order to

support the goal of implementability and, t advantages of

using such a naming facility in those domains.

98

5.1 Introduction

Chapter Five

hnplcrncntation of Narning in an
Electronic Mail Systen1

Chapter 2 clcfined the goals or this research on a naming facility in a federated

system. Chapters 3 and 4 proposed a model to be used as a framework for

implementing a naming facility and as such is an arproximation to the way in which

humans manage and use names. 'fhe implementation discussed in this chapter is an

approximation to the approxinrntion. The model is simplified yet f'urther in the

implementation. In order to describe the model used and the design choices made

in the implementation, electronic mail systems and their naming problems must first

be considered in Section 5.2. Section 5.3 then will present the implementation

decisions that were made for this work. Finally, in Section 5.4 review what can be

learned from the implementation.

5.2 Electronic mail

Most electronic mail systems allow people to communicate with each other using a

f'ederated computer system to compose, send, receive, and read mail. One of the

distinguishing features of mail is that the sender and recipient need not be present

simultaneously in order for the communication to succeed. In fact, in most mail

transport facilities, if the mail is travelling from one host computer to another, the

two computers need not be in direct communication at the time of the composition

and sending (from the viewpoint of the sender) or receiving (from the viewpoint of

99

the recipient) and reading 11 . In spite of' that, at a bare minimum the sender must be

able to idcntif'y the recipient to the computer system. There arc further

identifications without which the mail system is barely us~1blc. First, there should be

a focility frn identil'ying the sender, in order that the recipient understand from

whom the message came. Further, it would also be be11cficial if' the recipient could

in turn become sender and respond to the sender, preferably using lhc same name

used by original sender f(ff sci r iclenti fication.

Figures 5-1 and 5-2 present an example that will be used in the remainder of the

chapter. They arc two forms of the same message, the first is taken from the

implementation to he described here, while the second, containing only network

addresses, is more like what the user is likely to sec currently. The improvement in

the former over the latter lies in the names and name management possible in the

Fonner. Thl'sc examples will be discussed further below, including a discussion of

choice or names for mail recipients, aggregates, and aggregate names.

Before considering an alternative for naming in an electronic mail system, it is

valuable to consider a representative '.;ampling or naming in other mail systems.

This discussion is based on the five attributes of names listed in Chapter 2:

assignment, resolution, scope of use, uniqueness/ambiguity, and meaningfulness.

Consider for a moment the name "Brown.INP@M IT-MULTICS.ARPA" from

Figure 5-2. lt is a hierarchically structured name for a mailbox; the local name is

"Brown" in the project "INP", on the host "MIT-MULTlCS" (probably a Multics

at MIT), supported by ARPA. The meanings of most of the components are

probably irrelevant to most of the other recipients and the sender. The identity of

the individual is important and "Alex who is interested in mail" may be more

11 In a store-and-forward network, it is possible for the two never to operational simultaneously if
there arc intermediate forwarders

100

To: s~rncly, Alex
Cc: Chris <cbosgcl !hasmecl !qusavs!ukm !ecg)
From: Randy
Subject: improvements
Aggregate: mail

The !()!lowing lcaturcs have been adclccl to the mail program

Figure 5-1 :Message with shared nicknames

To: smith(f?_lMIT-CLEANSER.ARPA, Brown.INP@MIT-MULTICS.ARPA
Cc: cbosgcl ! hasm eel! q usa vs! u km! ccg
From: rsmith(aiM IT-N EWCLEA NS FR.ARPA
Subject: improvements

The following features

Figure 5-2:Message with mailbox addresses for names

appropriate for that. The assignment was made mostly be external authorities,

although "Brown" may have been a personal choice. Although the name may

appear in the message as it is delivered to a recipient, in fact it will be translated by

various lower levels of protocols such as SMTP [38], if it is used on the Arpanet.

rflle name was selected with the idea that it would be universal in scope, and

globally unique. Ambiguous names might allow for sending a message to several

mailboxes for a single user, or for naming a group, such as a mailing list. As will be

101

seen, other approaclh , c;11pport so111ewhat di ITcrent decisions for those

churactcristics of naming hted above.

The Arpanet <1pproach described in RFC 822 (9] (e.g. "MIT-MULTICS.ARPA") is
I

tlwL host names are the important part of the naming scheme and that they foll into
, '

a global hierarchy. In fact, RFC 822 specifics nothing about user names within a

host. The structure and nwnagement or those user names is left completely to the

local system, and may vary rrom one system to another. For cxamrle, Unix [40, 57]

provides a llat namespace (e.g. "smith") with aliasing, both shared by the whole

system and private to the individual. Multics [371 provides a two-level hierarchy of

users within projects (e.g. "Brown.I NP") and some aliasing. Finally TOPS-20 [12],

provides a hierarchy similar to Multics, but of any depth, based on the directory

structure of the system. The meaning of the components of a user name on

TOPS-20 is simply ·that each component is a subdirectory of the directory name to

its left, unless there is none, in which case it is a top level directory.

The UUCP approach [35] (e.g. "cbosgd!hasmed!qusavs!ukm!ecg") on Unix is

similar to the Arpanet approach in lack of concern about local naming except that

the scheme for naming hosts is different. Again the host name plays an important

role with user name locally managed, but the namespace is neither global nor is it

necessarily hierarchical. Rather a host name is a route from the sender's host to the

recipient's host. The limitations on the number of routes is based on the topology of

the network and explicit interconnection capabilities at individual sites. In addition,

there is nothing that limits a name (route) to a single object (host). A route from

host A to host B may also identify the route from host C to host D and there would

be no problem or conflict, although there might be other problems, such as

discovering or understanding a name of a host. Returning to the characteristics

listed earlier, most of such naming is meaningless to both the sender and the

recipient. The structure is that of a directed graph. The names are chosen in a

102

distributed fashion. For each node, someone responsible fur it chooses exactly one

name. Use or a p~1rticular name ftir a particular location must be completely local,

although names need not be unique. In many cases, there are several routes

between two nodes, each providing a legitimate name with no means or testing for

identity.

The other three mail systems to be mentioned here include the user's name in their

schemes. Grapevine provides a hierarchical, two-layer scheme. Us1.:rs arc named

within registries. These user names arc assigned within the Grapevine system.

Registries iclcntiry administrative domains, that may also renect organi1.ational or

geographic distribution. The Grapevine approach is to provide a global hierarchy.

An example or a Grapevine style name is "Smith.PA", where "Smith" is the user's

name and "PA" is the name or the registry, representing Palo Alto. In this case the

name or the registry is geographical and must be incluclccl as part or the name in

Grapevine. This means that a user or the name must realize the Smith works within

the Palo Alto region, which may be not only irrelevant, but not a known fact.

Grapevine docs allow a name to rerer to a list, thus providing a mailing list

capability, allowing for uniqueness or ambiguity, although name assignment ts

managed by an administrator or the registry where a name will be assigned.

The IFIP Working Group 6.5 standard [18, 59] proposes that users be named and

that their names consist of a collection or components that provide what appears to

be a hierarchy to users of the names. An interesting aspect of this structure is that

the ordering of the components is of no import. Therefore, the namcspace may look

like different hierarchies to differenL users of the namespace. Jhe names, in fact,

form a global lattice. All share the same set of names, although multiple names can

exist for any recipient. In this case, a full set of components must be examined at

each node which in turn will resolve that part that it understands.

103

Finally, the Cocos project [I I] and the related research by Kerr [20J propose that

each mail recipient be id en ti fiable by a set or attributes. No host name is needed.

The attribute names are not nested. Again the namespace is global. In biJth the

Cocos project and the proposals or the I Fl P WG 6.5, the idea is that the component

names be names that arc meaningrul to users, although the components arc chosen

and resolved by outside authorities. In the IFIP proposal, each component is chosen

by a separate authority, while in Cocos the complete set or attributes is

predetermined and built into the system. In both, the complete schemes are

universal, although in the IFIP proposal a name need not be unique. In none of the

above projects arc names selected by the users, or even in most cases by those being

named. In addition, in most cases the users or the names have not been considered,

and therefore names in cases other than these last two are probably not very

meaningful. All or these approaches to mail provide for names for mail senders and

recipients although none provides the sorts of naming set as goals in the earlier

chapters or this work.

At this point it is valuable to reconsider the assumptions and goals of this research in

relationship to a mail system. First, in terms of mail delivery, rcderation must be

assumed. Even if the user community uses only a single computer, mail allows for a

separation of sender and recipient that matches the definition of federation. When

it comes to managing the narnespace used for identifier mail recipients, only the

UUCP approach of source routing 12 allows for local names, but in this case they

cannot be shared because a name is location dependent. There is an additional

problem in UUCP; when two hosts attempt to communicate each one must have the

correct authorization. The sending host must allow sending to that particular

receiving host and the receiving one to receive from the particular sending host.

12scc Sunshine [50] and Saltzcr ct al. [43] for a more detailed discussion of source routing in
general.

104

Thus the common technique or generating a return address hop by hop during the

origi1wl tr:iversal or a message may produce an inv<tlicl address. Cirapcvinc and the

IFIP WG 6.5 stancl<1rd anJ the newer Arpanet standard f31, 32] all propose

distributing the naming autliority, although the responsibility still docs ; :t lie with

the users of the names to dcllne the names that they will use <ts discuss\·, ;11 earlier

chapters of this report.

The purpose of a mail system is to sup110rl communication. That communication

involves both sharing inl'ormation, such as who the other recipients of a mail item

arc, as well as jointly determining the names that will be used. Jn communication

outside a cornputcr system, people communicating will jointly decide on names, as

in conversation. They should also be able to determine the names they use jointly

when a computer system provides the medium of communication. People may have

many interactions with each other and may interact on different bases in different

situations. In addition, the same name may be chosen for different people under

different conditions. As a result multiple names are important. As mentioned

before, people do not use globally unique names !Or each other. If, by chance the

names arc globally unique, they probably are not very uscful. 13 Certainly in the case

of a mail system, the nexibility of using various sorts of names would enhance such a

system for the human users. In addition, whatever mechanisms arc built to support

a naming facility must be easy for humans to use. Although the goal of unification

was not achieved in the implementation of the mail system, it could and probably

should have been. The naming scheme is used only for naming people. It should

13consider telephone numbers. With their full country and area codes they may be unique, but it
is not clear what they arc naming. They certainly arc not really naming people. They arc not naming
telephones, because a telephone can move and can be assigned a different number. They arc not
naming locations, because numbers can move. They appear to name a particular location or set of
locations at a particular time, with the <idclitional information that such a name is not likely to change
very often. J\ feature such as forwarding (known as "call-forwarding") allows a phone number to be
used indirectly on a temporary basis, blurring the meaning even further.

105

also have been used !(Jr naming at least aggregates and contexts as well. A separate

mcch<tnism with less llcxihility was rrovidcd for aggreg<itcs and contexts, simply a

llat rwmesrace where each such name is interrreted relative to the user's private

namespace. 1 r an opera I ing system with a library of subsystems rather than

particular subsystem were being built; the idea is that users could use the same

naming facility to name people in the mail system as, fr>r example, people in a

calendar system, and any other system in which naming people was or use as well as

unifying naming people with naming other objects.

The remainder of this chapter will discuss the implementation of the mail system

naming facility in addition to a discussion or conclusions in the last section of the

chapter.

5.3 The Implementation

This section describes the actual implementation, beginning with the model of

contexts and aggregates and the user environment. That is followed a discussion of

the operations provided at all three levels, contexts, aggregates, and the user

interface. Finally, a review is presented of those decisions that were made in order

to design the implementation.

Before discussing what confronts the user of the mail system, a brief overview of

those decisions about data structures and the possible choices discussed in Chapters

3 and 4 are presented here. In addition, the organization of the management of the

information is discussed. The discussion then turns to what the users sees in the

mail system and how it can be used.

Both contexts and aggregates have exactly that information discussed in Chapter

3 and diagrams of them would be identical to Figures 3-1 and 3-2 on pages 60 and

106

67 respectively, except that contexts do not have separate lists of users and

reservation of names not <1ssigned lo ohjccts is not possihle in the mail system. The

entries in a context arc more limited than the general ltnm of contexts and

aggregates. Specifically, both the names and objects arc strings. Therefore, contcxls

und aggregates themselves arc not named in this way. Instead, each user has a

private list of contexts and aggregates and their names. The names of contexts arc

not universal or global. A name l(Jr a context or aggregate is translated by the

indiviclu<d using one or those private lists of contexts and <1ggreg<ltes. As for joint

111arrnge111ent, mail is used for negotiation. When a mail item arrives with a name in

the aggregate field that is unknown, a new aggregate by that name, containing a new

context by that name is created. If a new aggregate is created, but a context by that

name already existed locally, then the existing context is used as the current context

for the new ;1ggregate. The linal aspect of joint management is proposing and

selecting names. Name translation pairs can be in on of five possible states. This is

discussed in more detail below.

rl11c representations of the objects needed for this implementation are simple.

Names and addresses are simply strings. A context is an unordered set of pairs of

strings. Searching is linear because it is assumed that contexts will remain small.

The lists of aggregates and contexts for each user arc lists of rrnirs consisting of

names and aggregates or contexts respectively. An aggregate has two components.

The current context is a pointer into the context list and the environment is a list of

unordered sets of pointers into the context list.

Due to the pre-existing software used in this implementation, the management of

the naming information was implemented as a separate process. Therefore, sending

a message involves passing the message header to the separate process for possible

name translation and sending it back to the user mail process for vcri tication prior to

passing it to the Unix sendmail process (57]. When mail is read, before it is

107

displayed for the user the header is passed to the recipient's name managing process

lor translation. Figure 5-3 depicts these <1ctivitics <incl the three processes involved.

Send Mail

send
message

Unix
send mail

process

Receive Mail

Unix
- ... sendmail

process

receive
message

Figure 5·3:Processes in the mail system

The user of the mail system has a small collection of new objects to m:magc. When

a user enters the mail system, he or she is provided initially with a single basic

aggregate, named "basic_a" containing a current context named "basic_c" and an

undefined environment. Each user of the mail system has his or her own private

version of basic_a and basic_c. These are not shared. In addition, each user has two

lists, one of named aggregates and one of named contexts in which he or she is a

participant. In order to describe the use of contexts and aggregates in the mail

system, Figure 5-1 will be reconsidered. In addition, the operations of listing

aggregates and listing the contents of the "mail" aggregate as in Figures 5-4 and

108

mail
basic_a

Current contcx t:

Environment:

A Sandy
A Alex
!\. Randy
C Chris

Figmc 5-4:The list of aggregates

smith~DM IT··CI ,EA NSFR./\RPA
Brown.INP@MIT-MUl,TJCS.ARPA
rsm itht?tM IT-N FWCLEA NS ER.ARPA
cbosgd ! hasmecl !q usa vs!u km !ecg

Figure 5-S:Displaying an aggregate

5-5 will help in this discussion. The assumption is that the message in Figure 5-1 is

at least the third message sent among the group. but that Chris is new to the group.

There are a number of points to note about using the system. Figure 5-5 is Randy's

"mail" aggregate; no environment has been specified.

- Contexts do not contain separate lists of participants because the names
in a context are not only the objects being named, but also the
participants.

- Since an aggregate is a narnespace, each outgoing and incoming message
will have a newly defined field attached to it, as allowed under the
Internet specification [31, 32]. The field's name is "Aggregate" and it
will name the private aggregate containing the shared context to be used
for the envelope of that message, in this case "mail".

109

- When Chris lirst 11ses the mail system, a private aggregi1tc "basic_a" will
he created. Later when Chris first reads the message from Randy,
another aggregate will be created named "mail". In addition, a new
context named "mail" will be created and it will be the rnrrent context
or the new aggregate. 11: fix some reason, a context named "mail"
already existed, that context would have been chosen as the current
context or the new aggregate.

- A message may be sent without the aggregate field speci lied. This wi 11
occur either if the sender specifics no aggregate field or if the sender
speci lies use ol' the "basic_a" aggregate. l n either case, the sender's
"basic_a" will be used for any translation needed.

- Names specified in "()'"swill not be translated. The combination of a
name in "()"'s ctnd a preceding phrase, as in the "Cc:" field of Figure
5-1 allows lor adding new names and addresses to the current context of
the specified aggregate. This will be discussed l'urthcr below.

- A message may arrive without an aggregate field speci lied. There are
two possible causes for this. Either the sender used his or her "basic_a"
aggregate, or the sender was not using a facility that supported
srecifying aggregates. Jn either case, the recipient's "basic_a" aggregate
will be used when reading the message.

- Finally, there is a facility allowing assignment of an aggregate to a
message after arrival, so that on succeeding readings of the message, its
names will be translated with respect to the assigned aggregate. This is
especially useful for messages coming from senders not using this mail
system.

In the implementation two decisions were based on the fact that this is a mail

system. The first has to do with the nature of the names and objects supported and

the second with the transport of names and proposed translations. The names that

are used for people are strings. In addition, since names are translated into network

addresses which in the J nternet specification also consist of strings, the objects are

represented as strings as well. The second decision is that the only means of

transporting names within the federated computer facility is the mail messages

llO

themselves. The reason that this is possible is that in the Internet specilications,

each licld that represents a person can have multiple p~1rts, an initial phn1se, nn

address, and a comment. Since the comment part ollcn has 1111prcdictablc

information in it and the initial phrase, ii' present, generally has only a name, this

l~1ct is being used. It is not l()olproor, hut no problems lrnvc been reported and nny

could be easily corrected by the user. Nornwlly, such a field in messages generated

with this mail 1:1cility conlc1ins a phrase that is the shared name in the current

context and a net address. In the most common case, the sender specifics a name

and the mail system appends the net address before sending the message. Figure

5-1 contains examples of both. Al the receiver's site, when the message is read, the

address is stripped off and the recipient secs only the name. This hides the awkward

and user-unfriendly network address in the user interface.

There are several wi1ys in which this can vary. First, the sender may be using a name

that has not previously been used in that aggregate. Ir the name exists in the

environment, its translation is taken from there and proposed as a candidate in the

current context. If this is a completely new name translation pair, the sender must

include both name and address, 1.vhich is then proposed in the current context. At

the receiving end, ii' the name translation pair has been accepted, the recipient secs

only the name. Otherwise the recipient will see both. This last case renects a

situation in which the name has not yet been accepted, therefore the translation is

provided as well as the name as might be done in direct conversation. If the name is

completely new to the recipient, it is proposed in the current context. If it already

exists, its usage is renected in the current context as appropriate. Thus users can

propose both new aggregates and new names within existing aggregates to be shared

with other users. In the message in Figure 5-1, Randy is proposing a new name to

the participants in the mail aggregate. To Chris, the new participant, the aggregate

itself and all its entries are new. The aggregate displayed in Figure 5-5 is Randy's,

111

wilh only one candidate entry for Chris (indicaled by "C" as opposed to "A" ll)r the

other entries). In Chris's case, all lhe entries would he cancliclates. The only

variation from this pattern is use of the basic aggregate, which docs nol escape the

owner's domain.

The mail system provides two approacl1cs Lo managing the names and objects to the

mail user. One is tu create aggregates and enter names m~mwtlly. For this, specific

operations <1re proviclcd listed in i\ppenclix B. These operations allow for creation

of aggregates and contexts and adding, deleting, and modifying the state or entries.

The other approach is automatic, allowing names to be entered wilh usage as was

suggested in the example discussed in this chapter. When a message is sent or read,

an aggregate is chosen by the mail syslern. If there is no aggregate field, the basic

aggregate is chosen, and otherwise the spcci fied aggregate is chosen. ff a name

adclrcss pair is found that does not exist in the current context, it is made a

candidate. When a message is sent, if a name is found that exists only in the

environment of the currently active aggregate, that name-address pair is proposed as

a candidate to the current context. The implementation allows for both approaches

and the user can intermingle the two.

For this implementation a simple scheme for accepting names has been chosen. A

name can be in one of five states, candidate1, candiclate2, accepted, deleted, and

unknown, see Figure 5-6. This is simplified from Figures 4-1 and 4-3. The solid

lines indicate transitions that can occur automatically; the dashed line transitions

can only be achieved rnanually. Unknown implies that there is no such entry.

When a name is first proposed it is in the first candidate state. Upon another use of

that name with that object (net address), it moves to the second candidate state. 111e

third use puts it into the accepted state, where it remains unless it is manually

deleted. It is only when a current context entry is in the accepted state that the

address is not displayed when the name is displayed. Thus the only factor discussed

112

in Chapter 4 for acceptance is the numher of uses. In addition, in order to allow for

cleaning up a context, an exp1111gc operation is included as well, which removes all

deleted entries from the context, making them unknown again. A name-address

rair can go from either the deleted or unknown state into the first candidate state.

The hooks arc available in the implementations of contexts and 8ggregates for

merging, although this was not put into the prototype ol' the user inter!~tce. When

two contexts arc merged, the states of all the entries in them arc determined as in

Figure 5-7. This is a simplification of Figure 4-2. Because the nggrcgatcs and

contexts arc being used by only one application and in a very stylized way, the

acceptance and merging procedures can be includecl in them directly and need not

parameterize them by these proccdures. 14

There arc three levels of operations provided to support naming as described above.

The topmost level is the user interface to the mail system. This is supprnted by

operations on aggregates, which in turn in some cases (except for operations on the

environment) arc supported by operations on contexts. 15 The functions and

operntions are all listed in Appendix B. rt should be noted here that several

operations have been included that should not be accessible to users, because this is

14Thcrc was a problem in Clu. For reliability every change was to be saved onto disk. In Clu
there were two choices. This could be done by converting all the information into a file losing type
information and requiring conversion code within the procedures. The other alternative was to use a
function called gc_dump to copy the object with its type information into a file. For c;rticicncy the
choice was the latter, but the context cluster needed to be parameterized by procedures for
acceptance, deletion, and merging. Such objects can be created and were originally, although it was
discovered later that due to implementation limitations, procedures cannot be gc_dumped.

15This implementation was embedded in a pre-existing mail system written by Mark Rosenstein at
MIT. It is written in Mock Lisp, the extension language of Gosling's Emacs [14] and runs on a Vax
111750 running BSD 4.2 Unix [57]. Mock Lisp is not a rich enough language to achieve what was
needed, so contexts, aggregates, and an interface arc written in Clu [30] and run in a separate process.
Only the user's interface within the mail system and the operations defining the context and
aggregate clusters arc considered here.

113

candidate2

Figure 5-6:Possible states and transitions for entries a context

u d c1 c2 a

u u d c1 c1 c1 u unknown

d d d c1 c1 c1 d deleted

c1 c1 c1 c1 c1 c2 c1 candidate1

c2 c1 c1 c1 c2 c2 c2 candidate2

a c1 c1 c2 c2 a a accepted

Figure 5-7:State table for merging two contexts

only a prototype and the users of it are sophisticated programmers and Emacs users.

These are expunge-context and change-status. This allows the user more direct

114

access than generally rccommcnclcd Lo names and contexts, side-stepping the

aggregate mechanism. The ch<mges lo the operations Ii steel in Appendix B. l :Jre due

lo three factors. The two legitimate ones arc the addition or the Aggregate field to

messages and the need lo translate names both when sending and displaying

messages. The third cause r<ir changes to the mail system was incon1plete ~;upport

for multiple processes in Mock Lisp. Those operations arc indicated as such.

This section has described a simplified version or the model, that was used in the

implementation of the ideas in a mail system. Users have private copies of shared

current contexts and aggregates. Contexts can only contain names for user

mailboxes, representing the users to be named in a shared context and also the

participants in the sharing of that context. Each mail item carries with it the name

of the aggregate and the names and addresses of a.II addressees as well as the sender.

In general, the sender and recipient need not sec or use those addresses. In addition

simplified acceptance and merging procedures were used and no deletion occurs

automatically.

The next section discusses conclusions that can be drawn from the experience with

the mail system.

SA Lessons from the Mail System

The mail system was a further simplification of the model that was presented in

earlier chapters. In turn the ideas presented in those earlier chapters were a model

of human naming and communication. In spite of these simplifications, there are

lessons to be learned from the mail system. Three are imprntant enough to highlight

here. First, even with the simplification of some of the mechanisms such as

acceptance and deletion, a model can still be provided that is useful to users and

reflects patterns comfortable to them. Second, the limitations placed on the mail

115

system by using only the mail system itselr as the medium or communicating new

names reflects human patterns. Although computers could provide much more

sophisticated mechanisms for support and update ol' sha1 ed names, those might be

disconcerting al best to the lrnman users. Third, only the mail senders and

recipients have been included in the aggregate ~tnd context mechanism. Research

into conversation-b<tsccl mail [8] is progressing in grouping and managing messages

on a similar basis to that suggested here for name management. Each or these three

points will be discussed in further detail.

First, consider the use of a single, simple acceptance procedure and no deletion

procedure. Carroll's studies [7) have shown that one facet of accepting names is

repeated usage. For simplicity it has been assumed here that it makes no difference

who reuses them from an individwtl's point of view. In fact, carrying this further,

the assumption is m-ade that reviewing them by looking at a message repe;1tedly will

have the same effect as reuse for the individual. In addition, three possible states on

the road to acceptance have been assumed as mentioned earlier and depicted in the

state diagram, Figure 5-6, reduced from the four suggested in Chapter 4. When a

new name and address pair arrives in a message and the recipient reads the message,

the name and address pair is added to the current context in the candidate 1 state.

Upon each successive reading or use of the name in an outgoing message, the

context entry moves to the next state in the state diagram until it becomes accepted.

Until the time when it is accepted, when it is displayed to the user its translation is

displayed as well. Once the user has seen the name with its associated net address

three times, it is assumed that the user will know to which address the name refers.

This procedure reflects part of what humans do in jointly choosing names. Another

part, not included in this implementation, is a mechanism for allowing names to

mutate during the acceptance procedure as discussed in Chapter 4. This was

determined to be too complex to include in the implementation.

116

The second lesson to be learned lh>m the implementation deals with limiting the

potential uses or the computer facility. Consider hriclly a situation in which three

people arc discussing a particular subject. One clay one or them is unavailable and

the other two continue, dcllning new names in the conversation. The third will

probably never be brought ![illy up to date about what went on. Suppose the two

defined a new name "1.ibble", the name f(Jr a new concept that they arc proposing.

The third one will not realize that anything went on until the new name is used. In

this mail system, ii' the name is not yet clcrinccl in the third person's copy of the

current context, then when it arrives in a message, it will be added as a candidate

and its translation will be included until it has been used enough in the local copy of

the context. Thus, the third person will be brought up to date on any names that

continue to be used and were dcllnccl during any absence. In such a mail system,

the computer system could easily provide complete recall even of those events in

which someone did not participate. Thus while one person was not participating his

or her private view of the context could be changing. This was clone by Comer and

Peterson [8] with respect to messages, but it would be disconcerting at the least to

discover that one's working namespace had changed while one was not actively

viewing the changes. Although computers could provide a more automated form of

name management, it wou lei have the problems of not renecting humans' patterns of

nammg.

crhe third lesson is that some of the goals of this research are applicable to other

domains than naming. The goal in this work has been to analyze and address

problems of naming. In doing so one conclusion has been that communication,

cooperation and sharing play in important role in the functions and uses of names.

The work of Comer and Peterson [8] is one of the most recent steps in the area of

conversation based mail. They propose that not only should messages be tagged

with the conversation of which they are a part, but in addition, each message carries

117

a rcnection of the stale of the sender at the time that the message was sent. ·nrns,

each message reflects hoth the conversation and those messages in the conversation

that were read by the sender prior to sending the message. In a different approach

:·n)m that or this research, Comer and Peterson arc presenting some or the same

, ,:.i-; that have been presented here. They idcnti ry a conversation on the b<1scs both

<'the group or participants and the topic or interest. Such a conversation consists of

; set or messages identified on those bases, and each message is identifiable only

locally within the conversation or which it is a part. In addition, the idea that there

is something unique about the state or each participant is also important. In this

case, the state or the person is reflected in the list or messages previously read. It is

the idea of the context from which a sender is sending that is new and unique in

Corner and Peterson's work and which, indeed, tics it more closely to that or this

report. Corner and Peterson choose to provide a standard globally unique naming

scheme. This work is progn~ssing in Peterson's doctoral research. In an ideal mail

based conversation, everything would be based on the conversation itself, both those

aspects that arc shared as well as those that arc unique to an incliviclual participant.

Such a system would incorporate both the ideas of this research and those of Comer

and Peterson.

118

Chapter Six

Design of a Nan1ing Facility for a
Progranuning Support Environrnent

6.1 Introduction

By considering electronic mail, much was learned about a naming facility. In order

to understand naming facilities better, the requirements and a design ffJr such a

facility in a programming supprni environment will also be explored. Programming

in anything but the smallest project is a social activity requiring cooperation and

coordination among a group or people working toward a single goal, each with a

separate but complementary set of tasks. A programming support environment may

provide many functions for all involved in a programming effort. Certain naming

facilities can help to improve even the simplest functions. It is the supporting

naming facilities that will be explored in this chapter. This study will begin with an

examination of the problem and brief summary of related work in this area. The

chapter follows a structure similar to the previous chapter discussing the electronic

mail system. The chapter will begin with an overview of what is needed in a

programming support environment, followed by a presentation of the extended

model used in this domain, a discussion of the operations needed, a proposal for a

possible representation for the data structure and some concluding remarks

comparing this version of the model with the previous one.

6.2 The Programming Support Environment

A programming support environment is many different things for different people

at different times, but one can say that it supports people in their programming

119

efforts. In particular, it is especi:tlly useful when the programmer has a number of

tasks related lo a programming cffrnt and must coordinate the work with others

working on the same or related projects. The tools or a progrmnming support

environment may include editors, compilers, interpreters, linkers, loaders, testing

focilities, debuggers, documentation lftcilities, product and revision announcement

focilities, etc. Exactly which tools arc needed and in' what frirm is not the topic of

this research. For a number of such programming support systems, sec the

"Software Fngincering Symposium on Practical Sollware Development

Environments" l47] in addition to the earlier work by Tichy [55, 56], Schmidt [45],

Kay [53], Dobtta and Mashey [13] (for more on the Programmer's Workbench see

also Bianchi and Wood [4]), Weinreb and Moon [58], and Lancaster [27) as

examples.

One important problem to he solved in a programming support environment is how

to distinguish an object from among a set. Although commonly not addressed in

programmmg suppo1t environments, the problem of identification and

distinguishing among objects can be separated into several problems, as was done in

earlier chapters in this research. One part of the larger problem is naming. ft

implies possibly joint decisions about the names that will be assigned to objects and

the contexts in which they will be recognizable. There is an additional patt of the

problem that plays an especially important role in programming support

environments. That is the issue of selection of an object based on information about

the object that has not been pre-selected as a name.

A brief example will help to explicate the distinction being made here. Consider a

procedure named "integrate". The name is chosen as a name and assigned to the

120

procedure. 16 In addition, suppose it is the intention of the programmer that this

procedure he in Clu, although a lirst version might be sketched oul in a pscuclo-Clu

invented by the prugr:11nrner ICir this purpose. The programmer might also identify

the procedure with the label "language: Clu". This name will he available whether

or not the sketch is converted to Clu that can be compiled. Suppose that the

programmer requests that a compiled version or the "integrate" procedure be

inst<tllccl in a rrnblic library, but a compiled version docs not exist. A friendly

programming support environment may search out the object named "integrate"

and "language: Clu", interpret the latter and HUempt to comrilc the code, although

the fact that the object is identified as being in Clu docs not guarantee that it is.

Therefore, the installation request may rail, becm1se a name ICJr the object was not

correctly meaningfi.II. The installation procedure would in fact use the compiler not

only to compile, but also to identify an object that can be compiled and therefore

matches the language spe1.::ification !'or Clu. Selection or objects in Clu cannot be

done on the basis of names assignee! to those objects, hut require some additional

runctionality from the selection mechanism. On the other hand, the naming

function remains important and bears separate investigation because its

functionality is universal.

Lancaster provides an approach different from the other researchers in this area.

1-ler work is described here briefly, because her approach is similar to the approach

taken in this research and is not readily available in the literature. The problem

domain is that of selecting an implementation from among a set of implementations

for a pm1icular specification. In order to achieve this and supp011 a collection of

goals similar to the observations about human naming first enumerated here in

16
It is probably chosen because it is meaningful to potential users of it and therefore is more easily

remembered, although a name such as "x27" might be chosen simply as an identifier. To the user of
the procedure it is no less or more usable depending on which names was chosen.

121

Chapter I, she proposes a library. She recognizes thal the names must be shared but

docs nol discuss shared m<11wgcrncnt of the names. She proposes what she has

identi fiecl as a narning scheme lo address many of lhe problems inherent in selection

in a prograrnming support environment. Her library is used lo identify

implementations by means of sets pf attrib11tes. Each attribute consists of a name

and a value, which may define relationships between objects. The library docs not

actually contain objects, but rather points lo objects outside the library. The library

is separate from a general liling scheme that would contain all implementations, as

well as all other related objects such as specifications, compiled versions of the

implementation, and, in fact, the implementations themselves. For all objects

identified in the library there arc required and optional attributes. The set of all

these attributes or subsets of them can be used to identity implementations and

select individual ones.

Where this research parts ways with hers is in the definition of naming as opposed to

other activities. A clear distinction was made in earlier chapters of this work

between information recorded to be used as a name and other information that has

more to do with the state of the object used as part of a computation that may result

in selection. There may be situations in which these two appear to be similar, but

the supp011 mechanisms to use the two are dissimilar. The naming facility is a

service that can easily and valuably cross application boundarie:-i whereas the

computation/selection requires simultaneously more complex and more application

speci fie service. It is not unreasonable to join the two in a particular situation if

naming is not to be unified across application boundaries, as was done by Lancaster.

This work concentrates on the naming support as distinct from other fonns of

selection that is needed for a programming support environment, especially

recognizing that programming efforts must be done in conjunction with other

people. In general the sharing of name management and name resolution is left to

122

two mechanisms, the library ancl the file system. File systems present a problem in a

programming support environment. They do not provide the support for shared

and cooper~tlivc naming, the flexibility ft1r the individual, nor the flexibility in

structure that humans use in their everyday activities. This was discussed earlier in

Chapter 2.

As mentioned earlier, I ,ancaster provides an example of a library facility. A library

can provide a number or functions: cataloguing, modularizing the namespacc,

allowing for overlap in choices of names, selecting among multiple implementations

and multiple versions, locking, recording dependencies, rrovicling consistency based

on them, etc. Much or this functionality is not naming.

In addition, there is another area or naming in a programming support environment,

the names embedded in the objects created within the programming support

environment. The problem here is that not only must programmers cooperate in

their naming, but also there must be provision for both the programmer and user to

bind names to objects. The situation is the following. The programmer must use

names in some cases bound to objects and in other cases not bound during the

programming effort. Those names not bound during programming must be bound

at later times. The Known Segment Table in Multics mentioned earlier is one

mechanism for achieving this. Binding may occur in several stages. For example,

some binding may arise from compiling source code. Further binding may occur

when compiled code is linked, loaded or executed. [n each case, the new bindings

are the result of merging those already known and some found through the bindings

of the client or user requesting that the activity occur. Thus, in each case a merge

occurs of what was provided as a partially defined template for a namespace and

bindings found through the client or user's namespace. As will be seen below, this

merge is the same kind of merge discussed in Chapter 4.

123

A programming support environment has even more need for more complex names

than those provided in the electronic mail system implementation. In the mail

situation names consisting only of strings sufficed. A richer naming facility would

allow for attributes, each of which has a name and a value. This <1pproach has been

used in a number of places, such a!'> I .ancaster [27], Oppen and Dalal [36], Dawes ct

al. [11] and Kerr [20]. In addition, much work has been done in this direction in the

,\;tilicial Intelligence community. The approach that will be taken here will follow

, ,re closely the work of the li:.iur papers mentioned above. Such an extension

, ,ttld have enhanced the mail system, but did not appear to be as important as in

tl!:.: case of the programming support environment. The structure implied here is

simply a means of organizing the meanings of names, as was discussed in Chapter

2 when meaningfulness and structure were addressed as part of understanding the

nature of names.

In order to nchieve the desired functionality, two facilities will be designed. Both

are based on the framework previously proposed in this work. The lirst is a library

naming facility to aid in cataloguing, sharing and cooperating in naming ancl the

second is templates and the associ~1ted operations to make them useful.

6.3 The Model

The model for nammg m a prograrnrrnng support environment consists of

aggregates and contexts, expanded from that model used earlier in Chapter 5. In

addition, certain contexts and aggregates will be used in stylized ways in order to

achieve the desired effect. Therefore the modifications to the basic mechanisms will

be discussed first, then how they will be used, followed by a discussion of the

operations needed to achieve the goals. No changes arc proposed here for

aggregates, so the discussion will be limited to contexts, followed by discussions of

two new terms, library contexts and template aggregates.

124

One or the ways in which humans idcntiry the context within which they want to

resolve names is by the other parlicipants involved. 'The electronic mail system was

anomalous in that lhe objects being named were also Lhe participnnts in a shared

context. Therefore, these two facets or the context were combined, simplifying

contexts. In most cases, the named objects will be distinct fi·om participants in

sharing. Thus, in Lhe programming support environment, a shared context must

also have associated with it a separate set or participants. Certain participants may

have different effects on the shared context from the olhcr participants. For

example, it may be that a librarian for a program library is the only one allowed to

create new names in the library, while other pa11icipanls can only call on the library

to resolve names. This interaction between Lhe set of pa11icipants and the

acceptance and deletion procedures will recur later in this discussion.

A second modification or the context model is th~it names may be chosen without

knowing into which object they will be mapped. This is needed in order to provide

for such situations as the recursive function, or including a call to a procedure that

has yet to be written. The name must be included in the source code. In fact, as

long as the code is not actually invoked, many compilers will allow it to be compiled,

in order to begin the process of testing and debugging with incomplete code.

The third change from the previous model, as has been discussed, is a meaningful

structure consisting of names as pairs of attribute or name and value. This last

change allows for names that can manifest more meaning, better reflecting human

naming.

There is a special use for both of the types of contexts and aggregates. The special

use of the context is as a library context. There are three requirements or

restrictions placed on a library context.

- A library context will contain only attributes from a pre-specified set.

125

For simplicity, since this work is not research into programming suppo1t
environments, a superset or Lancaster's standard attributes will be
assumed. Others such as Schmidt [45J rropose a slightly different set.
Since, in a general programming support environment, namable objects
may be other things besides implcrncntations, such as specifications or
shared sets or deli nit ions (in Clu a set or equates), the set of standard
<1ttributes will be enlarged. It will also be expanded to provide each
object a name that is unique within the library context.

- An object can exist in at most one library context. As previously
discussed, a fl[tme in a context may label another n~1111e allowing tor
indirection ancl control of binding time between the name and the
object. On the other hand, a name nrny also label the object directly. A
restriction on library contexts is that an object in the programming
support environment will exist in at most one library context and in that
context will have exactly one unique name, although it may have other
non-unique names, lor example Owned By or RelatedSpcci fication.

- A library context must be able to store names that arc not yet assigned to
objects. The understanding is that before one needs to access the object
using the name, the object will have been created. The problem is
exhibited in its simplest form when one writes a recursive function. One
must be able to name the function befixe it is fully defined.

The use of library contexts will be in conjunction with unrestricted contexts. The

unrestricted contexts will provide the full llexibility of naming discussed in previous

chapters with one minor difference. Names or attributes can be translated only into

other names in other contexts. rn1ose may or may not be names in library contexts.

These additional contexts will allow for private work or work by subgroups of a

larger group. For example, a subgroup may want to use a new experimental set of

objects not yet released for general use. It is wo1th noting here that there may be

objects in no library context, but only in non-library contexts. An example of one

such object is the list of errors due to running a compilation. Such an object

probably does not belong in a publicly used library, but only in a private context.

The additional contexts will be needed to meet the goals of the full richness of

126

naming spelled out in earlier chapters. that arc also beneficial l(x a programming

support environment.

The model presented thus for is somewhat over restricted. It would not allow

objects lo migrate from one library to another. But in a distributed computing

facility, one may discover that an object should be relocated for convenience or

crliciency. Ir an object is moved to another library, all those refert.:nces to the object

in the original library will be left dangling unless a !(Jrward pointer is added to the

library entry. Therefore, by allowing such "tombstones" pointing to another library,

more than one library entry is permitted f(Jr some objects.

The special use of the aggregate in the programming support environment is as a

template aggregate. In the model here each object will consist of the actual object,

such as a procedure, and a template aggregate. The temrlate aggregate is not special

in form, although, most likely it contains some names not yet assigned to particular

objects, but reserved for future use. Providing a namespace for an object that is

separate from the namespace in which the object was created is not a new idea. This

is done regularly and was elucidated by Saltzer in his general discussion on naming

[42].

The template aggregate provides a special case of the merging problem discussed in

Section 4.6. Not only must the object's and the user's contexts be merged, but in

this special case an environment must be created as well from the two aggregates.

Exactly how this is to be done must he specified by the creator of the paiticular

template. It may differ for each template. The specification may depend on

whether or not both current contexts affect the resulting current context; if both do,

how conflicts are resolved; if not, does the unused one simply become part of the

environment, and how connicts in the rules of the two environments are resolved.

127

An unclcrslanding of the enhanced model f(>r contexts and stylized uses for contexts

as library contexts and aggrcg~1tes as templates and a discussion of the operations

needed to support them is now possible. That will be f<Jllowed by a presentation of

a possible representation.

6.4 The Operations

An understanding of Lhe objects and Lheir uses is only parl of the description needed

in a design of an implementation. In addition, a list of orerntions is needed. The

model for contexts has been expanded from the mail system; the resulting

operations on bolh contexts and 8ggregates arc listed in Appendix C.l. For

completeness those operations include arguments for slate modification of entries.

It should be noted here that although in the operations, names arc represented as

strings, they should in fact be logirnl combinations of strings, allowing the client to

name an object by a set of names. An implcmentalion of this would be embedded

in the implementations of the appropriate operations. New operations are also

needed in the programming support environment to implement library contexts and

template aggregates.

The library serves a number of functions in a progr<lmming support environment.

In <lddition to the cataloguing, sharing and joint management that have an effect on

naming, a library may also record and manage relationships among catalogued

objects ns well as provide support for other forms of selection among sets of objects.

This research is considering only the naming functions and therefore will discuss

only the operations needed for library contexts.

Library contexts provide a shared context for all the participants m perhaps a

particular project. The library context will be the sole repository for the "official"

versions of all objects of interest to the project as a whole. Entries in a library will be

128

restricted so that each type of object will have a lixed set or names. For example, a

procedure object might have, in addition to its name, the name of the author, the

name or its specification, the names or other implementations or the specification,

the names of related documentation, the names or other procedures on which this

one c\erends, etc. Di ITercnt types of objects will have di ITerent sets or names.

For simrlicity, each object in a librnry should be contained in no more than one

library context, although there is no way to L:n f'orce this, since libraries arc

independent of each other. The problem 1s that most names have manifest

meanings and as such may become inapplicable or incorrect. An added

complication is that the fact of <lll object's containment in a library is not an attribute

of the object. Therefore, when the object is modified or its names change, this will

be recorded only where specilicd. Keeping names in more than one library in

synchrony would be difficult at best and might be impossible if one could not locate

all of them. Therefore, frH· the purposes of this work it will be assumed that an

object is in, at most, one library and that whenever an object is added to or modified

within a library some of its names may change. There arc several issues relevant to

library contexts that can be addressed separately.

Creation and updating of names in a library must be considered. When a new

object is entered into a library, a set of names will be specified for it based on its

type, as mentioned earlier. Some of these will be defined at the tirnc of creation,

others only later. Some may be optional. Since this is not research into

programming support environments, although the facility must be here to support

it, those choices are left to others in the field of programming suppo11 environments.

In addition, there are situations in which only a label is chosen, for example, if the

object does not exist, but the name is needed or should be reserved. The standard

context operations arc listed in Appendix C.1. The additional procedures needed

for library contexts arc listed in Appendix C.2.

129

Another important issue in considering library contexts is moving objects from one

library to another for convenience or necessity. The fact that names can be mapped

into other names in other contexts will be used in order to avoid dangling rcfi~rences

and help previous users or the object being moved; indirect names will replace

direct references. As previously mentioned, if an object is contained in two or more

libraries, the names rnay become obsolete. There are two possible approaches to

this. The first is to assume that all such in f(Jrnwtion about an indirect reference may

be obsolete. The second is to include an operation un libraries that causes them to

trnce all such indirect references and update all names for each indirect reference.

The operation needed to support the hitter is also in Appendix C.2

Finally, with respect to library contexts, it should be pointed out that all library

context operations can be implemented out of the standard context operations. For

example, consider move_Jibrary _refercnce. It will mean creating a new reference in

the new library using add_name. If the new label needs to be unique in the new

context, some further checking in the new library may be needed before the object

is moved. Once the name has been selected and the new reference created in the

new library, the old reference can be modified to renect an indirect reference.

Three special operations arc needed [(Jr template aggregates beyond those for

aggregates listed in Appendix C.1. They are listed in Appendix C.3. The first

operation is a replacement for the create operation of aggregates. It is needed

because a template aggregate is created by creating an aggregate and then simply

wrapping it in the template aggregate type. The second procedure is the merging

operation that will be used when a template is to be merged with a client's

aggregate. Finally, an aspect of a template that must be considered is whether all

users of the object share a single current context or whether each will have a private

copy. lne last operation, sharc_currcnt_context allows for selecting this option.

130

6.5 Design of an Implementation

In order lo validate lhc proposal for a more complex implementation in this chapter,

a rcrrcscntation is described in this section. An implementation would follow

directly from it. Since library contexts and template aggregates arc quite similar to

contcx ts and <1ggrcgatcs thci r im plcmcnlalions arc not discussed in dctai I.

Furthermore, since aggregates here arc the same as in the electronic mail system,

they arc not reconsidered.

CONTEXT

attribute: value/
name

att 1: value 1

att 1: NILNAME

namea

nameb

named

objects object
attributes: values/

names

namea

att 1: value1

nameb

att1 :value1

named

att 1: NILNAME

Figure 6· l:A representation of a context

participants

userl

user2
J--·-

user3

The representation of a context proposed here is as follows and is depicted in Figure

6-1. A context consists of three sets, two of which are discussed here together and

the third later. The first is a set of names. A name may be a pair or a single entity,

131

and each name is associaled wilh a sel of objects. The second set in the context is

the set or objects. An entry in this set consists or an object or an indirect n.:ferencc

l() the object in another co;l!cxt <tnd a list or all names associ:1tecl with it. Although

this means that in format: · ! \' ;·1 be duplicated wilhin a context, it will allow for

more efficient operation ·tl otherwise. The set of names should be organized to

optimize searches on aver;i(~C. This whole arrangement will allow l(>r two sorts of

l~1st access. The lirst is searching for all objects having a cerlain name. The second

is finding all the names for a particular object. The lradeoff is that modification

requires access to both sets. In those cases where a name is applicabk, but not yet

defined, Lancaster's approach or using Nil is proposed. In cases where a name is not

applicable, the object is not in the set or objects to which the name can be applied.

There is one further consideration: what to do in the set of objects about names that

have been selected for objects that do not currently exist. Dummy objects are

proposed to solve this problem. A dummy object is a place holder. In the set of

names, the dummy object appears no different from any other object. In the set of

objects, the dummy object has something in common with Nil as proposed by

Lancaster; there is no object there, although there may be a set or names, rather

than just one. The two rcJsons that one might want such an unassigned name are,

first, that one may want to reserve a name and, second, that one may want to assign

a collection of names to such a dummy object, later being able to attach that whole

set or names to a real object. Thus there will now be NilName (which is the Nil that

Lancaster proposed) and NilObject.

The third set associated with a context is the set of participants. How the

participants arc identified is not addressed here fully. As mentioned earlier, it may

be a problem of authentication. The context is not expected to be an authentication

service. Rather an authentication service is assumed to be accessible to the context

and user. There arc two possible approaches to using an authentication service.

132

First, the user can make a request of the authentication service to produce an

unforgeable object that the context will believe, to be passed to the contexi: either

directly by the authentication service or by the user. Second, the context can

request that the authentication service authenticate a particular requestor of the

context. 17

Before leaving this section library contexts and template aggregates must be

reconsidered briefly. First, library contexts contain a little inlCmnation above and

beyond a standard context. !\library context also has a record of those required and

optional names that have been identified in it ll)r speci fie types of objects to be

named in it. Not all types need to have such specifications, and names not included

in thuse lists can also be attached to objects of any type. This facility of pre

spccifying attribute names allows objects of certain types to have names that fall into

certain patterns. For example, it may be that part of entering a source code object

into a library must be an indication of the language of the source code. An optional

name might be the author or the code, assuming that it is known. The only

additional information associated with template aggregates is whether or not the

current context resulting from a merge is to be shared by all current users of the

associated object. These pieces of related information in library contexts and

template aggregates must be considered in their representations.

17 Jt should be noted that authentication need not depend on globally unique identification. In
fact, at best, it can depend on mostly unique identifiers. Encryption keys provide a good example of
the fact that an absolute guarantee of uniqueness and unforgcability arc impossible. It is all a matter
of degree; cost and degree of the guarantee arc closely linked.

133

6.6 Comparisons and Conclusions

Since the model presented in this chapter is an expansion or that or Chapter 5, the

differences must be examined as a means or reco111n11211ding in each area which

choice is more general. In some cases, the sim pier version may be more appropriate

to the general case, with certain exccr>tions needed f(Jr partirnlar applications. In

other cases, the more complex version may he more appropriate, with the

understanding that there arc situations that Jo not need such full functionality.

This chapter contains a proposal for a second area in which the naming framework

can beneficially be applied. There arc a number or ways in which the framework

was modilied from the previous proposal. Each of those will be examined

individually, considering whether each is or general appliu1bility or not.

- Names without bindings: The programming support environment
needed to allow ror names to be chosen as place holders for objects that
were not currently known to exist. For instance, that would permit
naming or procedures that \Vere to be written later. Although the issue
did not arise in the electronic mail system, it might have been useful
there as well. An example is a name that represents a role, for example
"chair or the committee." There may he a time when there is no person
in that role, but the role still exists.

- Participants: The reason that a separate list of pa1ticipants was not
necessary in the rnail system was thut the set or recipients was the set or
part1c1pants. A set or participants must be a part of every context,
although as occurred in the mail system the implementation of contexts
could be simplified because the entries in the context and the set of
participants were identical.

- Hcstricting an object to being in only one context: It would appear that
such a limitation exists for those objects in library contexts. In fact, such
a restriction was suggested only among library contexts in order to
simplify implementation and synchronization or information, although
as suggested, there is no means of en forcing it. Such a restriction would
certainly be detrimental to a mail recipient naming scheme as well as
many other facilities and is unnecessary. Therefore it is not

]34

recommended as a general feature of contexts. It should be noted here
that restricting an object to being in no more than one library context is
a sep~1rate issue fro111 whether or nut the library context itselr consists of
multiple copies. Multiple copies can be synchronized to any desirable
degree.

- Accl'SS control: Access control is related to naming in that it may be
used to restrict the privileges of cert<1in participants in a context. It may
depend on authentication. In a library f';1cility access control may be
used to allow only the librarian special privileges. Access control was
not discussed in the electronic mail system, although it could well be a
useful part of such a system. Thr advantage of including access control
and authorization is that one can leave objects completely accessible if
one wants, while having the opportunity to control access when it is
needed. Therefore, an access control mechanism is recommended,
although it is external to a naming facility.

Thus the choices here arc to allow for llexibility, permitting the implementer or user

the choice of whether names should have bindings initially, whether objects can be

entered into one or more than one context, and what the access control ought to be.

In addition, the set or participants should be distinct from the set of objects named

in a context.

135

Chapter Seven

Conclusion

7.1 Hcncction of the Ideas

In this research, a name is defined Lo be an object lhat can be associated with

another object and has an equality OfKrnlion dclinecl 011 it. The most common use

of a name is as a handle lex an object. A name used thus provides access to the

object. A second use l(Jr a name is as a place holder [()ran object. The reason that

place holders arc important is for use as a substitute for the object itself.

Substitution may be needed either if the object is to be shared and cannot exist in

more than one place at one time or if the named object docs not exist at the time.

The problem being addressed in this research is the design of a computer naming

focility achieving the following goals. First, names must provide access to named

objects as well as be usable as place holders for the objects named by them. Second,

it must be possible to share those names across computer boundaries. Third, it must

be possible to communicate using names. There arc two forms that this

communication takes. One is the transmission or the names themselves and the

other is transmission of information in the names because the names are meaningful

to be to the user and recipient of the name. Finally, nn implementation must be

feasible.

Computer naming, as described in this research, reflects a social process. 111c social

process is assigning and using names privately or in limited groups and sharing the

responsibility for that assignment, modification, and deassignment. 'The process of

naming, when done cooperatively, involves entities that can operate independently

as well as in cooperation with each other. As such, these entities form a federation

137

m which each brings some individuality to the joint effort and within the

cooperation retains a certain degree of autonomy. 1-1 um an naming has provided this

rcscnrch with both goals and examples on which to base solutions f(x two reasons.

First, humans function as an amorphous set or federations that form and reform

unpredictably and when ncedccL using naming as part or the interaction within the

!Ccleralions. Also, computer systems arc built, in the end, to support humans in

their activities. ThcrefcH"e, this research set out to investigate the sort of rwming that

humans do jointly. In order to understand the problem better, various pa11s of the

problem can be considered separately before looking at a solution.

Cha me I eris I ics

A number of characteristics of names can be identified. First, there arc three roles

related to names and naming, the <1ssigner of a name, the resolver of a name, and the

user of a name. The assigner determines which name should be associated with

which object. The resolver performs name resolution or translation. The user of a

nmne can only use names that the assigner has chosen. If resolution is needed, then

the resolver must also be uble to clo its job for the user. The user will use a name

either to access the named object or as a place holder for the object. Beyond these

three characteristics of names, one can also consider the degrees of uniqueness and

meaningfulness of a name. If a name is unique within the domain of a 1csolver, it

will be resolvable to no more than one object. The more meaningful a name is, the

more information the name itself carries from name user to name receiver.

Meaningfulness may be manifested in the form of structure of names.

Observations

Returning to the analysis of the research problem, a set of observations can be made

about how humans name the objects in their worlds. Humans use names to a great

extent to communicate with each other. Part of that social process of

communicating also involves each participant in that process bringing an

138

individuality into it. In the formation and rcformntion or cooperating groups,

names arc frequently reused in diiTerenl contexts and at different times to have

di fTcrent meaning. In addition, a particular object may have more than one name at

any given time reflecting either di ffcrcnt meanings and characteristics or di1ffercnt

perspectives. Both in order to achieve such multiplicity and because the size of a

universal namcspace is unmanageable, small, local namespaccs arc used. In

addition, there arc several more aspects or usage or names. Humans use a number

or approaches to naming and generally do not restrict a particular approach to a

particular type of object. As mentioned earlier, names often have meanings that are

conveyed between user and recipient when names themselves arc shared. One final

point about human naming is that it appears to take little or no effort to choose,

share and use names both privately and cooperatively in a group.

Cooperation

Cooperation and joint management or names form the final part of the examination

or the problem of naming. This involves first recognizing that a name passes

through a number of stages from the Lime it is proposed until it is accepted as a

name for a particular object. 'n1cre also may be a range of stages as a names falls

into disuse and is slowly forgotten or is more explicitly replaced. Many factors can

be identified as potentially playing a role in these activities. A small number appear

to be both imp01tant and practical tu implement in a computer system. The number

of uses of a name in association with an object is probably the single most important

factor. Frequency of use may also be quite important. Finally, the fact that a name

bears a similarity to another previously selected name and that similarity has a

manifest meaning may make the later choice more readily acceptable. In current

file systems, an example of this is accepting a file name with an extension of "bin" as

the result of a compilation with the primary component being the same as the

primary name of a file containing source code. Tl1is is a restricted and stylized use

139

or in forniat ion about previous choices, but for efficiency it is probably better to limit

this factor lo such a simple form.

'Ifie model

Tu address the problem of creating a naming facility, this research proposes a model

consisting of a set of objects for each client of the system. The objects arc known as

aggregates. Fach aggregate provides a private view to the client of a possibly shared

namespace. An aggregate is mmposed of two parts, the shared namcspace, known

<is the current context, and the environment, that part of the aggregate that

personalizes it for this particular client. The current context contains the names

shared by the group, while the environment identifies a set of other mappings

between names and objects which the individual client may wish to use as proposals

for the current context. The environment consists of a partially ordered set of other

namespaces in which this client is also a participant. Both the current context and

the environment are based on a simpler form of object, also proposed <Le; part of this

research, the context. A context also has two parts, a mapping from names to

objects and a list of participants. The model supports acceptance and deletion of

names in stages based on usage and jointly by the participants sharing responsibility

for the context. No particular structure is placed on either the organization of

contexts or the internal structure of names within contexts. Instead both of these are

left to the discretion of the pa11icipants in the sharing. The context provides the

basic mechanism for name translation and shared management of namespaces.

The implementation designs

The discussions of implementations demonstrate both the feasibility and usefulness

of the mechanisms. A brief summary of how the problems and issues of Chapter

2 are reflected in the domains of electronic mail and a programming support

environment and how the designs in those domains address the issues will serve here

a~ a review of Chapters 5 and 6. In both domains, activity occurs in cooperation

140

among varying groups of participants communicating and cooperating only when

such joint activities arc needed. Federation is the norm and is assumed in both of

the implementation designs. Furthermore, names as used in the implementation

designs foll under the dellnition that they only be required to have an equality

opcrntion and can be used either f(Jr access or as a place holder. In both domains,

names arc chosen to be strings. In aclclition, in the electronic mail implementation,

since the objects named can only be strings, the untranslatc operation is also

guaranteed tu be available. In the programming support environment, it is only

possible the untranslatc if an equality operation exists for the objects named in a

context.

Five attributes can be used to describe a set of names: the assigners, the resolvers,

the users, the degree of uniqueness, and the degree of meaningfulness. [n both

domains, the assigners and users of the names arc the same pool of participants,

although the programming support environment allows for some participants such

as a librarian to have special privileges in terms of defining names. In both

examples, the resolver of a name 1s always a specified aggregate that the

programmer or user can select. As for uniqueness, in the electronic mail

implementation, no restrictions were placed on the number of assignments either of

a name or to an object. Some such limitations might be useful in the programming

surport environment, although the proposed mechanism does not enforce any.

Finally, in considering attributes of names, since the assigners and users are

generally people and the nnmes are strings in which humans can easily discern

meaning, the degree of meaningfulness is to whatever extent the human participants

desire and choose.

In terms of the goals of the naming facility, the first was to support the definition of

names; this is done in the two domains as discussed in the paragraph above. The

second goal required support for sharing and communication of and by use of those

141

names. The mechanisms or contexts and aggregates including the joint management

facilities provide r<x slwring both the names themselves and responsibility for

managing them. This funcLionality is nwintained from the model to the

implementation. Cornmunirntion is supported both by the representation of the

names as string, allowing for infrmnation to be shared in the names themselves, as

well as in the electronic mail system using the mail itself as the medium for passing

names around. The programming support environment did not propose a particular

111edi11m of communication, because in an implementation that will depend on the

characteristics or a supporting distributed system. The third mid linal goal was that

the model be implementable. That is demonstrated through the implementation of

the electronic mail system and the irnplcrnentablc design for the programming

support system.

This section has presented a review of the problem addressee! in the research

reported here, followed with a brief summary or the general proposal ror a solution

and brief return to the two domains for application of the model. There must be

two further parts to such a review. A research rroject such as this cannot be

considered in isolation. There will be parts of the rroject or related issues that have

not been investigated fully or satisfactorily. In general such unfinished business

leads to suggestions fCJr alternative or further work that would enhance the project.

The other side of this coin is a review of those areas in which the research was

successful and has made useful contributions. The following two sections will

address these to sides of such a review.

7.2 Lessons and Future Research

With a topic as broad as naming, the research possibilities arc endless, especially

when one attempts to walk the narrow line between facilities that are efficient

enough to be useful and those that more and more accurately mirror direct

142

interpersonal communirntion. In attempting to do so in this research many parts of

the problem could not be treated fully. The f(Jllowing is a list of such issues in

increasing order or generality. Each ~11Torcls opportunities for identifying both

possible weak points in the research as well as possible areas for further research.

1. Consideration or the implementation in the electronic mail system lends
to a number of possible improvements.

- The choice or a simple but little used mail system meant that few
users were found ror it. An implementation in a more widely used
and heller supported environment would be beneficial. This
would allow studies along the lines of Carroll's, in order to observe
the patlerns that humans choose, given the freedom to choose.

- A further enhancement would be to extend the namable objects in
the mail system beyond the recipients. The other namable objects
in such an environment would be messages, aggregates, and
contexts.

- One might extend contexts to reflect a combination or the ideas of
this research and those of Comer and Peterson [8] as well. This
research has explored those ideas only within the domain of
naming. Such an extension would allow a deeper study of the
social aspects or naming.

- Finally, a more challenging implementation would be a broader
subsystem or system, such as the programming support
environment or a whole operating system. This would require that
clients use only aggregates for all naming, being unable to step
outside such a system. It would provide a more controlled
environment in which to study patterns of usage.

2. Chapter 4 explored the idea of how the determination of a state of a
context entry is made. Much further work can and should be done to
examine these issues further. In order to learn more, either surveys
could be done or systems could be built as previously suggested, that
would allow for testing of different factors, with means of measuring
user satisfaction with various factors. The latter would only test
previously recognized factors, while the former might shed light on new
factors as well.

143

3. In the discussion or a programming support environment, it became
clear that the question or how selection is clone, once naming has taken
place is an imporiant problem for some applications, closely related to
naming. ;\!though sdeclion has not heen studied here, there may be
aspects or selection that arc common across application boundaries.
Some or the factors that may come into play arc who used the objects in
question most recently, when, the types or the objects, and how the
objects were last used. Other foctors may be important as well, as can be
seen in the literature on programming support environments. Further
work in this area wuulcl certainly be beneficial.

4. An interesting problem !Or which an adequate solution was not
proposed in this research is initialization. There arc two parts to this
problem. The first issue is how such a system will start at the very
beginning. The question of how tile first context will be shared must be
addressed. A second part or initialization is how any individual will be
initialized when joining a pre-existing community. This problem was
considered in the discussion of the mail system, but further work is
needed on it also.

5. This research suggests that globally unique names arc neither useful nor
in fact implementable in general, with the expansion of the various
electronically linked computational facilities. Yet many researchers,
architects, designers, and builders or such distributed systems continue
to propose naming mechanisms based on an assumption of the existence
and use or globally unique names. This research suggests that humans
do not need them and that they also are not needed in computer
systems, at least not globally unique names. Of course, local uniqueness
is possible and, in fact, necessary. Further thought, research and
ex pcrimcntation is needed in the area of globally unique names.

6. The proposal for the relationships among contexts in this research is that
those relationships be unconst1ained. 1r one considers human naming,
there are many example of namespaces that form unconstrained
networks. On the other hand, when people are making an effort to
organize and catalogue objects, they will often use a hierarchical
structure. If the problem is very complex, they may use several
hierarchies with pointers from one to another. Consider briefly
genealogies, a method of organizing familial information. A genealogy
is generally viewed as a hierarchy with a root either in the past and

144

branching chronologically or the reverse renecting the ancestry or an
individual. Thus, although tile nexibility of an unconstrained network is
userul in many cases, a tool ror hierarchical structuring may also be
beneficial. Further research into this is needed. One way to study this
problem is to use one or the existing non-hierarchical file systems to set
llf'l experiments and observer human behavior.

7. The proposals ol'this research arc aimed at solving naming problems for
small enough gn1u11s of users to permit reaching agreement and being
<1ble Lo share responsibility for management or namcspaccs. This may
break down if the community grows large. Name ma11~1gcmcnt l(Jr large
grot1ps has not been considered but needs further work because those
large loosely coupled communities arc growing in frequency of
occurrence.

8. Finally, the most open ended question in this area, the nature of names
themselves, their development <lnd relationship to the objects being
named as well as the users of the names, can well afford further study.
This research has examined names and naming carefully enough to
identify various l~1ctors about which there has been much confusion in
the past, but the concepts of names and naming arc still far from being
well-defined.

Although the items in the list above cannot be listed in order of importance, some

deserve special attention. In looking toward computational facilities of the future,

there arc two aspects of naming that need the most thought and attention. They

both arc the result of" the pro Ii feration of personal computers with communications

capabilities and the hardware networks for that communication. lt is of paramount

importance that the naming needs for very large communities of communicators be

studied. Currently most developments are completely disorganized and achieved on

a local and ad hoc basis. In addition, as the user community extends beyond the

community of programmers and sophisticated users who have learned to manage in

alien environments, it becomes more important to support environments more

comfortable to humans. Several of the items listed above are aimed at that. The

other issues raised above are also useful, although they are not as important as these

two.

145

7.J Contributions

Th is work will conclude with a review of' the major contributions or this research.

The research is a synthesis; it has pulled together ideas from several areas, ideas lhat

in many cases have been recognized as u~;dul in particular situations, but have not

been recognized as rrnrt or a larger problem.

One contribution or this research is the recognition that a computer naming facility

should support cooperation, comrnunication, <111d sharing of names. Sharing objects

or in l<.irmation has long been recognized as important, but sharing ancl cooperating

in managing names for those objects is less rrcquently recognized <1s a goal for a

naming facility. This research proposes that communication and sharing of names

as well as objects must be part or the goals of a naming facility. The benefit of this

contribution is in achieving greater functionality through less restrictive and more

nexible naming.

A second contribution is the recognition that a computer naming facility should not

support non-naming functions, such as selection, although naming facilities may

have done this traditionally. Selection, involving means of distinguishing objects

from each 1 •ther by other mechanisms than naming, such as performing

computatim:" ,m the objects or various properties or the objects, is not and should

not be considered naming. Separate facilities are needed for SL~ch necessary

functions. In addition, names cannot generally be used to test for identity. Whether

two objects arc in fact the same object is dependent on various factors such as the

types of the objects and the application using the objects. These should not and

cannot be known to the naming facility. Finally, in a related problem, naming

cannot be the only solution to authentication. Naming may be part of the solution,

but more information that is not susceptible to any signifirnnt degree of

masquerading or other forms of subversion of authentication procedures is needed

146

to rcrform authentication. Thus, this research proposes a further modilirntion of

the functionality defined as naming. This !alter set of modillcalions allows the

researcher, architect, designer, and programmer to recognize <t11d separate functions

and thereby rellect desired rolicies in a system more clearly and accurately.

The presentation in this research of a model for a single, uni lied naming facility

rrovicling local naming contributes a new idea to computer supported naming. As

mentioned earlier, several universal name servers have been prorused or built, but

they arc remote services, not useful for naming small, local objects frequently.

Addressing naming problems across application boundaries not only provides a

savings in terms of efficiency by not repeating work, but in addition, allows tor

greater functionality that a collection of separate naming facilities. The reason for

this is that it is difficult or impossible to use naming to rellcct relationships across

the boundaries of separate naming facilities.

An important contribution is the development of a method for joint management of

shared contexts. The method includes a representation or degrees of acceptance of a

name as a series of states. There are a few file systems, such as TOPS-20 [12] that

provide a much simplified version of this as a convenience to the user. In that file

system, the deletion procedure occurs in two stages, deletion and expunge. Deletion

is reversible for a limited period of time, while expunging is not reversible. This

mechanism allows users to change their minds about deletion. The mechanism

proposed in this research reflects the negotiation and shared use of names, so that as

a name's usage increases, it is more likely to become generally accepted and as it

falls into disuse, it becomes more difficult to remember and use. This reflects the

contribution of a new concept to naming.

The final contribution is the recognition that nammg 1s a social process of

communication. For this reason, the naming facility must distinguish the individual

147

from the group, in order to support the needs and contributions of both. That has

been done in two separate ways. 'fhe group's needs and contributions arc rcncctcd

in the concept of the context that contains those names upon which the group has
I

reached agreement. In addition, the identities or the participants arc recognized as

an important aspect of the context. The individual is given recognition 111 the

uggregatc, which provides a private view of the shared context, as well as the

individual's <1dclitional source of influence on the shared context. Thm; these

sepmate concepts reflect the di !Te rent needs and in lluences of the group and the

individual, allowing the group to communicate using shared and jointly defined

names, while providing a private view and set of influences brought by each

participant in that communication and sharing. The recognition of this last idea of

naming as a social process is uf benefit to all members of the computer community.

It expands the functionality ~1chievablc by those involved in creating systems. That

in itself is or benefit to clients of those systems as well. Rut it also extends the style

and means of interaction through naming toward what would be possible among

those clients outside the computational facility. The idea of communicating,

cooperating, and sharing responsibility for names and name management with

exactly those clients sharing a common interest is the most important contribution of

this work to the future development of loosely coupled distributed computer

systems.

148

l{cfcrcnccs

I. G. T. A Imes, A. P. Bbck, E. D. Lazowska, J. D. Noc. The Eden System: A
technical Review. Tech. Rep. 83-10-05, Dept. of' Compulcr Science, University of
Washinglon, Seattle, Washington, Oclobcr, 1982.

2. Apple Compuler Inc. Macintosh. Apple Computer Inc., Cupertino, Califfornic,
1984. Reorder Apple # M 1500. This is lhc inlroduclory manual f<Jr lhe system.

J. J. II. Benjamin, M. L. Hess, R. A. Weingarten, W.R. Wheeler. lnlerconnecting
SNA networks. !BAI Systems.Journal 22,4(1983), 344-366.

4. M. 11. Bianchi and J. L. Wood. A User's Viewpoint on the Programmer's
Workbench. Proc. 2nd International Conference on Soflware Engineering,
Ocloher, 1976, pp. 193-199.

5. A. Birrell, R. Levin, R. Needham, M. Schroeder. Grapevine: an Exercise in
Distributed Computing. Comm. ACJ\;f 25, 4 (April 1982), 260-274. Also presented
at the 8th Symposium on Operating Systems Principles, Asilomar Con Ference
Grounds, Pacilic Grove, CA, sponsored by SIGOPS and ACM, December 1981

6. J. M. Carroll. Creating Names for PerSL)JWI Files in an Interactive Computer
Environment. IBM Research Rcpo1t RC 8356, IBM, July, 1980.

7. J. M. Carroll. Naming and Describing in Social Communications. Language and
Speech 23, 4 (1980), 307-322.

8. D. E. Corner and L. L. Peterson. Conversation-Based Mail: An Overview. Tilde
Report CSD·TR 465, Dept. of Computer Science, Purdue University, March, 1984.
Revised September, 1984.

9. D. H. Crocker. Standard for the Format of Arpa Internet Text Messages.
Nf C/RFC 822, University of Delaware, August, 1982.

10. R. J. Cypser. The Systems Programming Series. Vol. : Commtazications
Architecture for Distribu1ed Systems. Adclison-\Vesley Publ. Co., Reading, MA and
Menlo Park, CA, 1978.

11. N. W. Dawes, et al. The Design and Service Impact of Cocos, an Electronic
Office System. International Symposium on Computer Message Systems, lFIP
TC-6, Ottawa, Canada, April, 1981.

149

12. Digital Fquipmcnt Corporation. DECSYST/'.'1Vf-20 User's Guide. Digital
Equipment Corporation, Maynard, Mas')achusctts, 1978. Order No. AA-41798-TM.
Updates have been made since this version was published.

IJ. J. A. Dolatta and .I. R. \l;ishey. An Introduction to the Programmer's
Workbench. Proc. 2nd I 11 • ·national Con lcrence on Software Engineering,
October, 1976, pp. 164-168.

14. J. Gosling. Unix f,'rnacs. Carnegie Mellon University, Pillsburgh, PA, 1982.
This is the version in the public domain.

15. K. Harrensticn, V. White, E. Feinlcr. 1-lostnames Server. N IC/RFC 811,
Network Information Center, SRI International, March, 1982.

16. I BM. I !JM Virtual A4achine/5'ystem Product: Remote
Communications Subsystem Networking General lnj(mnation. I BM,
61124-5004-3.

Spooling
No.

17. IBM. I Blvl Virtual Afachine/System Product: Remote Spooling
Communications Subsystem Networking Program Reference and Operations Afanual.
IBM,. No. 51-124-5005-2.

18. IFIP WG6.5. European SEG Meeting Report on Names, Directories and Lists.
N 77, IFIP WG6.5, Systems Fnvironmcnt Group European Section, October, 1982.
Bonn, October, 1982 and Rome, January-February, 1983

19. W. H. Jessop, J. D. Noc, D. M. Jacobson, .I. Baer, C. Pu. An Introduction to the
Fden Transactional File System. Tech. Rep. 82-02-05, Department of Computer
Science, University of Washington, Seattle, Washington, February, 1982.

20. I. H. Kerr. Interconnection of Electronic Mail Systems - a Proposal of Naming,
Addressing and Routing. International Symposium on Computer Message Systems,
IFIP TC-6, Ottawa, Canada, April, 1981.

21. R. M. Krauss and S. Weinheimer. Changes in referential phrases as a function
of frequency of usage in social interaction: A preliminary study. Pschonomic
Science 1 (1964), 113-114.

22. R. M. Krauss and S. Weinheimer. Concurrent feedback, confirmation, and the
encoding of referents in verbal communication. Journal of Permnality and Social
Psychology 4 (1966), 343-346.

150

23. R. M. Krauss, C. M. Garlock, P. D. Bricker, L. F. McMahon. The role of
audible and visible back-channel resronses in interpersonal communication.
Journal <f Perso1101ity and ,",'ocial P.sycho/ogy 7 (l 977), 523-529.

24. R. M. Krauss and S. Glucksberg. Social and nonsocial speech. Scientific
Alncricnn 236 (1977), 100-105.

25. B. W. Lampson und R. F. Sproull. An open operating system f()r a single-user
machine. Proc. 7Lh Symrosium on Operating Systems Principles, ACM SIGOPS,
Asilomar Conference Crounds, Pacific Grove, CA, December, 1979, pp. 98-105.

26. B. Lampson. Panel Discussion al SIGPLAN '83 Symposium on Programming
Languages Issues in Su ft ware Systems. S/GP/,;I N Notices 19, 8 (August 1984),
51-60. Moderator/Editor: L.A. Rowe

27. J. N. Lancaster. Naming in a Programming Support Environment.
MIT/LCS/TR 312, Massachusells Institute of Technology, August, 1983. Also MS
thesis.

28. K. A. Lantz and J. I. Edighorlcr. Towards a Universal Directory System.
Department of Computer Science, Stanford University, Palo Alto, Calif.,
unpublished paper.

29. B. J ,inclsay. Object Naming and Catalog Management for a Distributed
Database Manager. Proc. 2nd l ntcrnational Con fcrence 011 Distributed Computing
Systems, Paris, France, April, 1981. Also Available as I BM Research Report
RJ2914, San Jose, Calif., August, 1980.

30. B. Liskov et al. Clu Reference Manual. MIT /LCS/TR 225, Massachusetts
Institute Technology, October, 1979.

31. P. Mockapetris. Domain Names - Concepts and Facilities. NCC/RFC 882,
Network Working Group, USC ISi, November, 1983.

32. P. Y. Mockapetris. The Domain Name System. Computer Message Services,
IFIPWG6.5, Nottingham, England, May, 1984, pp. 59-70. Also Proc. IFIP6.5
\Vorking Conference

33. R. M. Needham and A. D. Birrell. The CAP Filing System. Sixth Symposium
on Operating Systems Principles, Special Interest Group on Operating Systems of
the ACM, ACM, November, 1977, pp. 11-16.

151

J4. R. M. Needham. The CAP project - an interim evaluation. Sixth Symposium
on Orerating Systems Princirlcs, Special Interest Group on Operating Systems of
tile ACM, ACM, November, 1977, pp. 17-22.

35. D. A. Nowitz. Uucp Implementation Description. October, 1978

36. D. C. Oppen and Y. K. Dalal. The Clearinghouse: A Dcccntralit.ed Agent for
Locating Named Objects in a Distributed Fnvironment. OPD T8 l03, Xerox Office
Products Division, Systems Development Dept., October, 1981.

37. E. I. Organick. The Multics Experience: An Examination of Its Structure.
M.l.T. Press, C1mbridge, Mass, 1972.

38. J. 13. Postel. Simple Mail Transfer Protocol. RFC 821, Network Information
Center, August, 1982. The author is at USC ISi, Marina dcl Rey, CA.

39. W. V. 0. Quine. Word and Object. Technology Press of Massachusetts Institute
Technology and John Wiley & Sons, New York, 1960.

40. D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System.
Communications OfThe ACA-117, 7 (July 1974), 365-374.

41. R. Rom. Name Assignment in Computer Networks. TR 1080-310-1, SRI
International, October, 1982.

42. J. H. Saltzer. Naming and Binding of Objects. In Lecture Notes in Computer
Science, Vol. 60. Springer Verlag, New York, 1978, ch. 3, pp. 99-208.

43 . .I. H. Saltzer, D. P. Recd, and D. D. Clark. Source Routing for Campus Wide
Internet Transport. Local Networks for Computer Communications, IFIP, IBM
Research Laboratory, Zurich, Switzerland, August, 1980, pp. 1-23. Also Proc. IFlP
Working Group 6.4 International Workshop on Local Networks

44 . .I. H. Saltzer. On the Naming and Binding of Network Destinations.
International Symposium on Local Computer Networks, lFIF/T.C.6, April, 1982.

45. E. E. Schmidt. Controlling Large Software Development in a Distributed
Environment. CSL 82-7, Xerox Corporation, December, 1982. Also Ph.D. Thesis
for the Dept. of Computer Science, University of California, Berkeley.

46. J. F. Shoch. Internetwork Naming Addressing, and Routing. Proc. 17th IEEE
Computer Society International Conference, IEEE, September, 1978, pp. 72-79.
J EEE Cat. No. 78 CH 1388-8C.

152

47. , SIGSOPT and SIGPLAN. /'roe. AC/.,l .\'/GSOFJ'/S!GP/,AN Sq(lware
Engineering .Symposium on Practical Software !Jevc/opment Fnvironmcnts, April,
1984.

48 . .I. E. Stoy and C. Strnchey. OS6 - An experimental operating system for a small
cum rut er Part I: General principles and structure. Thr Computer Journal 15, 2
(May 1972), 117-124.

49 . .I. E. Stoy and C. Stracl1ey. OS6 - An experimental operating system tor a small
computer Part 2: Input/output and filing system. The Computer Journal 15, 3
(August 1972), 195-203.

50. C. Sunshine. Source Routing in Cornputer Networks. Computer
Communications Review I, 7 (January 1977), 29-33.

51. L. Svobodova. A Reliable Object-Oriented Repository for a Distributed
Computer System. Proceedings of the 8th Symposium on Operating Systems
Principles, Special I ntcrcst Group on Operating Systems of the ACM,
December, 1981, pp. 47-58. Also published as Operating Systems Review, Vol. 15,
No. 5

52. D. P. Recd and L. Svobodova. Swallow: A Distributed Data Storage System for
a Local Network. Proc. of the International Workshop on Local Networks, IFIP
Working Group 6.4, Zurich, Switzerland, August, 1980.

53. L. Tesler. The Smalltalk Environment. Byte 6, 8 (August 1981), 90-147. This
issue of Byte is devoted almost exclusively to the Smalltalk system.

54. J. C. Thomas and J.M. Carroll. Human Factors in Communication. IBM
Systems Journal 20, 2 (1981), 237-263.

55. W. F. Tichy. Software Development Control Based on Module
Interconnection. Proc. 4th lnternation Conference on Software Engineering, ACM
SIGSOfT, European Research Office, Gesellschaft fur lnfbm1atik, IEEE Computer
Society, Munich, Germany, September, 1979, pp. 29-41.

56. W. F. Tichy. Software Development Control Based on System Structure
Description. CMU-CS 80-120, Carnegie-Mellon University, January, 1980. Also
Ph. D. Thesis

57. University of California. Unix Alanual. 4.2 edition, Department of Computer
Science, University of California, Berkeley, California, 1983.

153

58. D. Weinreb and D. Moon. Usp Machine Manual. Fourth edition, M.LT.
Artificial Intelligence Laboratory, Cambridge, Mass., 1981.

59 . .I. E. White. A User-friendly Naming Convention for Use in Communication
Net.works. Computer Message Services, IFIPWG6.5, Nottingham, England,
May, 1984, pp. 37-57. Proc.IFIP6.4 Working Conference hosted by Nottingham
University and Plcssey

60. M. Y. Wilkes and R. M. Needham. The Computer Science Libraty: Operating
and Programming System.~~ Vol. 6: '/11e Cambirdge CAP Compuler and Its
Opcraling .S~vs1e111. North Hullancl, New York, 1979.

154

Appendix A

Operations in the General Model

The operations here arc in a Clu-like [30] form, in which the name or the operation

is followed by the names and types or <ill arguments, the keyword returns, and the

types of'thc returned values. Although signals would also normally be included in a

Clu speci fiG1tion, they lrnvc been omitted here !Or simplicity.

A. I Operations on Contexts

Operations for managing contexts

create = proc returns (cvt)
merge_names = proc (contcxt1, context2: cvt)
merge_participants = proc (context 1, contcxt2: cvt)
copy = proc (context!: cvt) returns (cvt)
display = proc (contextl: cvt)

Operations for managing names in a context

translate = proc (context1: cvt, name: string) returns (set[any])
untranslate = rroc (context1: cvl, object: any) returns (set[names])
acld_name = proc (context1: cvt, name: ~t ring, object:any)
reserve_namc = proc (contcxtl: cvt, name: string)
assign_object_to_rescrved_name = proc (context1: cvt,
reservcd_name: string, object: any)

delete_name = proc (contextl: cvt, name: string)
clclctc_cntry = proc (contextl: cvt, name: string, object: any)

Operations on participants sharing a context

add_patticipant = proc (contcxtl: cvt, participant_name: string)
dclctc_participant = proc (contextl: cvt, pa1ticipant_name: string)
get_participants = proc (contcxtl: cvt) returns array[string]

155

A.2 Operations on Aggregates

Operations/or rnanaging aggregates

create = proc returns (cvt)
create_with_contcxt = proc (contcxtl: context) returns (cvt)
mcrgc_current_contcxts = proc (aggregate!, aggrcgate2: cvt)
copy_current_contcxt = proc (aggregatcl, aggregatc2: cvt)
merge_cnvironments = proc (<1ggregatcl, aggregatc2: cvt)
copy_cnvironrnent = proc (aggrcgatc1, aggrcgate2: cvt)
display = proc (aggrcgatel: cvt)

Operations/or name management in the current context

translate = proc (aggregate 1: cvt, name: string) returns (sct[any])
untranslatc = proc (aggregate 1: cvt, object) returns (set[string]
add_name = proc (aggregatcl: cvt, name: string, object: any)
reserve_name = proc (aggregate l: cvt, name: string)
assign_objcct_to_rcserved_name = proc (aggregate 1: cvt, rescrved_name: string,
object: any)

dclete_namc = proc (aggrcgate1: cvt, name: string)
clclcte_entry = proc (aggregate1: cvt, name: string, object: any)
get_current_context = proc (aggregate 1: cvt) returns (context)

Operations/or managing participant narnes

acld_participant = proc (aggregatc1: cvt, participant_name: string)
clclctc_participant = proc (aggregate I: cvt, participant_namc: string)
get_participants = proc (aggregatcl: cvt) returns (~et[string])

Operalionsfor managing !he environment of an aggregate

insert_ru le = proc (aggregate 1: cvt, rule: int, contextl: context)
appcncl_rule = proc (aggregate1: cvt, contcxt1: context)
add_to_rule = prnc (aggregate 1: cvt, rule: int, context: context)
move_context_to_rule = proc (aggregatel: cvt, contextl: context)
dclcte_from_rule = proc (aggregate 1 :cvt, rule: int, context1: context)
deletc_rule = proc (aggregatel: cvt, rule: int)
get_environment = proc (aggregatcl: cvt) returns (array[set[context]])

Operation for selling working aggregate

set_working_aggregate = proc (aggrcgate_name: string)

156

Appendix B

()pcrations in the Mail ln1plc1nentations

The operations in the user interface arc runctions in Mock Lisp [14]. Those functions

listed in the user intcrfocc that arc fiJllowcd by an asterisk(*) arc invoked directly by

humans, whereas the others arc only used indirectly. The operations supporting

contexts and aggregates arc in a Clu-likc [30] form as in Appendix A. In this case,

the signals have been included since they are in the code, and the text was taken

directly from the code currently in use.

B.1 Functions in User Interface

New functions in the user interface

Name of function
I ist-aggregatcs*
list-contexts*
display-aggregate*
display-context*
display-environment*
new-aggregate*
set-current-context*

set-environment*

Comment
lists names of all aggregates
lists names of all contexts
displays an aggregate, defaults to basic_a
displays a context, defaults to basic_c
displays an environment, defaults to basic_a
creates a new aggregate
given an aggregate name, sets current context to
named context
sets environment of one aggregate equal to the
environment of a second

append-to-current-context* appends the contents of a context to the

expunge-aggregate*
add-name*
delete-entry*
delete-name*
change-status*
expunge-context*

current context
expunges all names deleted from current context
adds a specific entry'to current context
deletes a specific entry from current context
deletes all entries with given name from current context
changes state of an entry in the current context
expunges all names deleted from context

157

move-context*

acld-to-ru le*
clelete-rrom-rulc*
add-rule*
acid-aggregate*

read-names

sen cl- n am cs

mail-help*

rrompls for rule It of new location of context in
environment
acids context to rule
deletes context from rule
creates a new rule
adds an aggregate field to a message -
this is the only new operation that modifies
the .mailbox file
only used indirectly when reading a message to
trnnslate names
only used indirectly when sending a message to
translate names
displays this information

Functions modijled in !he user interface to !he mail sys/em

Name of function
display-message
quit*
start-edit*
send-mail*
init-mail

mail-mode
load-mail
next-m cssage-ncl *
previo11s-message-nd*
edit-mail*

forward-mail*
reply*
send-message*

Comments
used in displaying a message
exit mailer
begins mailer in send mode, stand-alone
begins mailer in send mode from within emacs
used both stand-alone and within emacs to initialize
mail file
sets definitions for using emacs in mail mode
loads mail from file into a large buffer
goes to next uncleletecl message
goes to previous undeleted message
enters bu ff er to create new message to send, from
reading
forwards the current message
replies to current message
sends a message, forwarded message, or reply

B.2 Operations on Aggregates in the Mail System

Operations.for aggregate management

create = proc (new _aname, new _ccname: string)
returns (cvt)

create_ with = proc (new_name: string, curcont: context)

158

rct urns (cvt)
equal = proc (aggregatel, aggregate2: cvt) returns (bool)
merge_new _cc = proc (aggregatcl, aggrcgatc2: cvt, new _ccname: string)
copy = proc (new _a name, ncw _ccnamc: string, aggregate} :cvl)

returns (aggregate)
append_to_current_context == proc (aggregate]: cvt, context]: context)
set __ currenl __ ccmlcxt = proc (<iggrcgatel: cvl, currcnt_contcxt: context.)
get_current_contcxt = proc (aggregate l: cvt) returns (context)
get_my _narne = proc (aggregate l: cvt) returns (string)
_gee! = pruc (x: cvt, tab: gcd_tab) returns (int)

Operations for name management

translate = iter (aggregate 1: cvt, label: string, aclcl_clata: int, cond:
concltypc) yields (string, int, bool) signals (no_such_narnc)

untranslale = itcr (aggrcgatcl: cvt, obj: string, aclcl_clata: int, cone!:
condlype) yields (string, int, bool) signals (no_such_name)

add __ narne = proc (aggreg8tcl: cvt, ncw_name, transformation: string,
add_clata: int) returns (boo!)

dclcte_narne = proc (aggregate I: cvt, dclname: string, clcl_clata: int)
returns (boo!)

clclete_cntry = proc (aggregate]: cvt, clelname, dcltransbtion: string,
del_clata: int) rctu rns (boo I)

entry_status = proc (aggregatcl: cvt, narncl, objl: string) returns
(int)

force_state = proc (aggregatcl: cvt, curr_namc, curr_transl: string,
curr_state: state)

Operations for environment management

appcnd_to_cnvironment = proc (aggregate 1, aggrcgate2: cvt) signals
(cl up! icate_id)

add_to_rule = proc (aggrcgatel: cvt, prior: int, labell: string,
contextl: context) signals (no_such_rulc, alreacly_used)

dclete_frorn_rule = proc (aggregatc1: cvt, label: string)
add_rule = proc (aggregatel: cvt, at __ rule: int, label: string,

contextl: context) signals (out_of_bounds, already_used)
clelcte_rulc = proc (aggregatel: cvt, dcl_rule: int) signals

(out_of_bounds)
list_environment = proc (aggrcgatel: cvt) returns (as)
move_rule = proc (aggregatcl: cvt, i, j: int) signals (out_of_bounds)

159

B.3 Operations on Contexts in the Mail System

Operations/or contc>.:t management

create = proc (cname: string)
equal = proc (context!, context2: cvt) returns (bool)
copy = proc (olcl_contcxt: cvt, ncw_name: string) returns (cvt)
append == pruc (context!: context, context2: cvt)
_gcd = rroc (x: cvt, tab: gccl_tab) returns (int)
disp_list = iter (context I: cvt) yields (string)
get_name = proc (conlextl: cvt) returns (string)
merge= proc (conlextl, context2: cvt, new_name: string) returns (context)
get_ctext == proc (context I :cvl) returns (at)
get_my _nmne = proc (context I: context) returns (string)
expunge = proc (context!: cvt)

Operations/or name management

accept = proc (context 1: cvt, new _name, new _translation: string,
aclcl_data: int) returns (bool)

delete_name = proc (context1: context, dclnamc: string, del__data: int)
returns (boo!)

delete = proc (contextl: cvt, del_name, dcl_translation: string,
del_data: int) returns (boo!)

trans18te = iter (contextl: cvt, label: string, acld_data: int, cond: condtype)
yields (string, int, boo!)

untranslatc = it er (contcxtl :cvt, obj: string, add_data: int, cond: condtype)
yields (string, int, bool)

names = itcr (contextl: cvt) yields (string, state)
force_statc = proc (contextl: cvt, curr_name, curr_transl: string,

curr_state: state)
entry_status = proc (contextl: cvt, namel, objl: string) returns (int)

160

Appendix C

()perations in the Progranuning Support Environrncnt

C. I Operations on Contexts and Aggregates

Both contexts ancl aggregates arc raramcterized by rrocedures. This is not standard

Clu syntax, but it has been clone in the style of Clu syntax. The parameterization

has been specified in two equates on the names of the clusters in order lo simplify

reading.

Operations vn Contexts

Equateforcontcxl type

contexta = context[cmerge: proc (contextl, contcxt2: cvt) returns (cvt),
ace, del: proc (contcxtl: cvt, name: string, obj, state_ data: any)]

All operations here are in the contexta cluster.

create = rroc (mergc_option: oncof[
"contcxtl has priority, although contcxt2 used also",
"contcxt2 has priority, although contextl used also",
"only contextl used",
programmcr_supplied_proc: proc (contextl, context2: cvt) returns (cvt)],

ace, del: proc (contcxtl: cvt, name: string, obj, state_ date: any))
returns (cvt)

equal = proc (contextl, context2: cvt) returns (bool)
copy = proc (context}: cvt) returns (cvt)
display = iter (contcxtl: cvt) yields (string)
merge = proc (context1, context2: cvt) returns (cvt)
translate = iter (context]: cvt, name: string, state_data: any) yields (any)
untranslate = iter (contextl: cvt, obj, state_data: any) yields (string)
add_name = proc (context I: cvt, name: string, obj, state_ data: any)
reserve_name = proc (contextl: cvt, name: string, state_data: any)

161

acld_rcscrvcd_name = proc (context I: cvt, prcviously _rcscrvccl_namc, new _name:
string, statc_data: any)

assign_obj_to_reservccl_name = fHOC (context!: cvt, rcserved __ name: string,
obj, statc_data: any)

dclctc_cntry = proc (contextl: cvt, name: string, obj, state_clata: any)
clclete_namc = proc (context l: cvt, name: string, state_clata: any)
expunge= proc (contcxtl: cvt, statc_clata: any)
gct_status = proc (contcxtl: cvt, name: string, obj: <1ny) returns (string)
<tcld_participant = proc (contextl: cvt, particip~rnt_narne: string)
dclcte_participant = proc (context 1: cvt, participant_nmne: string)
gct_participants = proc (contcxtl: cvt) returns (array[string])

Operations on Aggregates

Equalefor aggregate type

[1ggrcgatea = aggregate[amerge: proc (aggl, agg2: cvt) returns (cvt), ace,
del: proc (aggl: cvt, name: string, obj, statc_data: any)]

All operations here are in !he aggregalea cluster

create = proc (ccmcrgc_option: oneofl
"contextl has priority, although context2 used also",
"context2 has priority, although contextl used also",
"only contextl used",
"only context2 used",
"contextl to new cc, context2 lirst rule in new environment",
"context2 to new cc, contextl first rule in new environment",
progrnmmer_supplicd_ccmergc: proc (aggl, agg2, agg3: cvt, state_data:
any) returns (cvt)],

envmerge_option: oncoll
"envl has priority, env2 in succeeding rules",
"env2 has priority, envl in succeeding rules",
"envl only",
"env2 only",
"merge two rule by rule",
programmer_supplicd_envmcrge: proc (aggl, agg2, agg3: cvt) returns (cvt)],

ace, dcl: (aggl: cvt, name: string, obj, statc_data: any)) returns (cvt)
set_currcnt_context_to = proc (aggl, agg2: cvt)
copy_current_contcxt = proc (aggl, agg2: cvt)

162

mcrgc_currcnt_conlcxts = proc (aggl, agg2, agg3: cvt, statc_data: any)
rctu rns (cvt)

copy_cnvironmcnt = proc (aggl, agg2: cvt)
appcnd_cnv = rroc (aggl, agg2: cvt)
mcrgc_cnvironmcnts = proc (aggl, ugg2, agg3: cvt, statc_data: any)

returns (cvt)
copy = rroc (agg 1: cvt) returns (cvt)
dispby = proc (aggl: cvt) yields (string)
translate = it er (aggl: cvt, name: string, state_ data: any) yields (any)
untranslatc c--= itcr (aggl: cvt, obj, statc_datc: any) yields (any)
aclcl_rrnmc = proc (aggl: cvt, name: string, obj, statc_clata: any)
rescrvc_namc = proc (aggl, cvt, name: string, state_data: any)
acld_rescrvcd_namc = proc (agg I: cvt, prcviously _rcscrvcd_namc, new _name:

string, state_data: any)
assign_obj_to_rescrvcd_name == proc (aggl: cvt, reserved_namc: string, obj,

statc_data: any)
delctc_cntry == proc (agg1: cvt, name: string, obj, state_clata: any)
clclctc_name = proc (agg1: cvt, name: string, state_data: any)
expunge = proc (aggl: cvt, stalc_data: any)
get __ status = proc (agg1: cvt, name_ string, obj: any) returns (string)
add_particioant = proc (aggl: cvt, participant_namc: string)
deletc_participant = proc (contcxtl: cvt, participant_namc: string)
gct_participants = proc (agg 1: cvt) returns (array[string])
adcl_rulc = proc (aggl: cvt, rule: int, contcxtl: contexta)
appcncl_rule = proc (aggl: cvt, context!: contexta)
add_to_rulc = proc (agg1: cvt, rule: int, contextl: contexta)
movc_rulc = proc (aggl: cvt, olcl_rule, new_rule: int)
delctc_frorn_rulc = proc (aggl: cvt, rule: int, context1: contcxta)
clclctc_rule = proc (agg I: cvt, rule: int)
gct_environmcnt = proc (aggl: cvt) returns (array[string])

C.2 Operations on Library Contexts

TI1e library _context type (or type generator) will have all the context operations of

Appendix C. l as well as these few others. As with the context type generator,

library _context is a types generator, also parameterized by the same procedures as

context.

163

sct_required_namc .::.-: proc (library_contcxtl: cvt, name: string, t: type)
sct_optional_name = proc (library_contextl: cvt. name: string, t: type)
movc_library_rcfercncc = proc (olcl_library: cvt, ulcl_name: string,

object: any, ncw_library: cvt. new_nrnne: string)
update_indircct_library _rcfercnces ~-= proc (library _context l: cvt)

C.3 Operations on Template Aggregates

These arc the additional operations needed frff template aggregates, beyond those

listed for aggregates in Appendix C.1. There is one di ff crence here. The standard

create operation of aggregates will not be transferred lo the tcmplatc_aggregate type

generator. ln'itcad, a separate create operation has been included here. creating a

tcmplatc_aggregate from a pre-ex isling aggregate.

create = proc (aggregate l: aggregate) rclu ms (cvt)
merge == proc (tcmplate_aggregatc l: cvt, clicnt_aggregatc: aggregate) returns

(aggregate)
sharccl_currcnt_context = proc (template_aggregatcl: cvt, "shared" I

"not_share<l")

164

