MIT/LCS/TR-331

DISTRIBUTED NAME MANAGEMENT

Karen Rosin Sollins

‘This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitor-
ed by the Office of Naval Research under contract numbers

N00014-75-C~0661 and N00014-83-K-0125.

This blank page was inserted to preserve pagination.

Distributed Name Management

Karen Rosin Sollins

Submitted to the :
Department of Electrical Engineering and Computer Science
on February 14, 1985 in partia! fulfilment of the requirements

for the degree of Doctor of Philosophy
© Massachusetts Institute of Technology 1985
Mamachusetts Institute oﬂechnow
1

Thasreseamhwaswppoﬂbytiwl)efexm
and

A

Distributed Name Management

by
Karen Rosin Sollins

Submitted to the
Department of Electrical Engincering and Computer Science
on February 14, 1985 in partial fulfillment of the requirements
[or the Degree of Doctor of Philosophy

Abstract

The problem being addressed in this rescarch is the design of a naming facility
achicving the following goals. First, two functions on names must be supported:
accessing a named object, and acting as a place holder for the named object.
Sccond, it must be possible o share those names. Third, communication of the
names as well as communication by use of the names must be possible. Finally,
feasibility of implementation is @ goal. In this research a name is defined to be an
object that can be associated with another object and has an equality operation
defined on it. Two functions are defined for a name; it can be used both to provide
access to the named object and as a place holder for the named object. The assumed
system modcl s a loosely coupled, distributed system.

The research addresses this problem with: (1) a detailed analysis of the naming
problem and the nature of names themselves; (2) a proposal for a set of mechanisms
that addresses the problem above, including the proposal of two new types of
objects and the mechanisms for their use; and (3) two cxamples of uses of the
model. The model consists of private views of shared, local namespaces allowing
shared use of names and supporting shared responsibility for management of the
namespace. In addition thc model provides for the acceptance and deletion of
names in stages.

The contributions of the rescarch include an investigation into the nature of names,
an analysis of naming as a social process especially recognizing both the joint
management of names by the users of those names and the fact that acceptance and
possibly deletion occur in degrees, and the proposal for a mechanism to address
these issues.

Key words: naming, distributed system, sharing, cooperation, software environment,
strong typing.

Acknowledgments

I would not have succeeded in this rescarch project without the support, guidance,
and caring of a great many people:

Mike Sollins, my husband, who, more than anyonc else, supported, listened to, and
coaxed me through the many highs and lows of such a project,

David Reed, my advisor, who, more than anyone else, has showed me how and
encouraged me to think and question and has worked tirclessly with me through
many versions of explaining my ideas,

Peter Sollins, my son, who has come with me through many emotional highs and
lows, always ready with a hug, a kiss, and a word ol encouragement,

David Clark, a reader, who in friendship has put much more into this project than
can be asked of a reader and kept bringing me back to reality,

J. C. R. Licklider, a rcader, who has shown me how to look at the world from new
perspectives and always with enthusiasm,

Deborah Istrin and Sam Hsu, two special friends, who, in many long conversations,
have helped me through the trials and tribulations of being a graduate student while
maintaining some perspective on sclf and life,

Axel and Kathy Rosin and Susanna Bergtold, my parents and sister, who have
supported and encouraged me in things that they may believe they cannot
understand, but could with a good explanation,

The many members of the computer systems research groups, especially Mark
Kosenstein for his code and support in the mail implementation, Larry Allen, Jerry
Saltzer, and John Romkey for technical discussions of my research, the users of my
mail implementation, and the other members of the groups, who all have given me
their support and shared their sense of humor,

The women, other female students and staff members, especially Deborah Estrin,
Muriel Webber, Debby Fagin, and Toby Bloom, who have given me a better
understanding of myself and MIT and how we can all work together.

Thank you

e

Table of Contents

Chapter One: Introduction 11
1.1 The Issues 11
1.2 'The Assumption of Federation 14
1.3 The naming problem 17
1.4 Model for a Solution 19
1.5 Related Work 23
1.6 The Plan 27
Chapter Two: The Nature of Names 29
2.1 Introduction to the Problem 29
2.2 'The Definition of a Name 31
2.3 Aspects of Names 34
2.4 Aspcects of Human Naming 43
2.5 Additional Problems 49
2.6 Summary 54
Chapter Three: Sharing and Individuality: The Model, Part I 57
3.1 Introduction 57
3.2 The Context 58
3.3 The Aggregate 65
3.4 Examples of Uses of Contexts and Aggregates 71

Chapter Four: Joint Management and Name Assignment: The Model, Part 11 77

4.1 Introduction 77
4.2 A Simple Example 81
4.3 Factors in Joint Management 83
4.4 Parameterization of Joint Management 86
4.5 A Sample of Choices 89
4.6 The Merging Problem 91
4.7 Summary and Review 94
Chapter Five: Implementation of Naming in an Electronic Mail System 99
5.1 Introduction 99
5.2 Electronic mail 99
5.3 The Implementation 106

5.4 Lessons from the Mail System

Chapter Six: Design of a Naming Facility for a Programming Support

Environment

6.1 Introduction

6.2 The Programming Support Environment
6.3 "The Model

6.4 The Operations

6.5 Design of an Implementation

6.6 Comparisons and Conclusions

Chapter Seven: Conclusion

7.1 Reflection of the Ideas
7.2 Lessons and Future Research
7.3 Contributions

References

Appendix A: Operations in the General Model

A.1 Operations on Contexts
A.2 Operations on Aggregates

Appendix B: Operations in the Mail Implementations

B.1 Functions in User Interface
B.2 Opcrations on Aggregates in the Mail System
B.3 Operations on Contexts in the Mail System

Appendix C: Operations in the Programming Support Environment

C.1 Operations on Contexts and Aggregates
C.2 Operations on Library Contexts
C.3 Opcrations on Template Aggregates

Table of Figures

Figure 1-1: Aggregates containing private copies of a shared current
context

Figure 2-1: Examples of naming issucs

Figure 3-1: Depiction of a context

Figure 3-2: Depiction of an aggregate

Figure 3-3: Example of joint selection of a name

Figure 4-1: An example of a state diagram of the transitions of context
entrics

Figure 4-2: An example of a table for merging contexts

Figure 4-3: A state diagram for acceptance and deletion

Figure 5-1: Message with shared nicknames

Figure 5-2: Message with mailbox addresses for names

Figure 5-3: Processes in the mail system

ifigure 5-4: 'The list of aggregates

Figure 5-5: Displaying an aggregate

Figure 5-6: Possible states and transitions for entries a context

Figure 5-7: State table for merging two contexts

Figure 6-1: A representation of a context

21

31
60
67
73
79

80

91
101
101
108
109
109
114
114
131

Chapter One

Introduction

1.1 The Issues

Names are a critical part of communication, both among humans and between
humans and computers. In order to communicate with another human, the human
must be able (o name objects and actions in such a way that both humans
understand the names. Analogously, in order to communicate with a computer, the
human must be able o name operations and objects in a way meaningful to both the
human and the computer. Therefore, what can be named and how is a central issue

in designing a computer system uscful to humans,

There are three concepts that form the basis of this research project. The first of
these ideas is that many, perhaps most, computer environments today consist of
federations of fairly autonomous computers connected by networks and internets'.
Such a federation leads 1o issues of independence in defining names, reliability of

service, replication of data, redundancy, and many others.

The second idea is that, in addition to providing excellent storage for information
and arithmetic and decision-making capabilitics, computer systems provide a
medium of communication and cooperation both between people and computers
and among people. Such communication and cooperation may be achieved through
sending and receiving electronic messages, sharing and working within a large,
possibly distributed, database management system, coopcerative text or program

preparation, or a number of other activities.

1An internet is a network of networks, allowing for communication across network boundaries.

11

The third idea is that imitating human naming patterns m a naming lacility will lead
o a more uselul naming facility. Observations about human naming are considered
in this rescarch for two reasons. First, humans arc autonomous beings forming and
reforming federations in which they cffectively communicate and cooperate with
cach other. Second, computer systems designers and builders have created naming
facilities that are frequently adequate for computer use, but often not for human
use. It should be noted that most of these observations can be found separately as
goals of various naming [acilitics, although they have not been assembled to form
the goals of a single naming facility. The observations are:
. Communication: Names are part of the basis for communication.

Therefore sets of names used by individuals should be sharable, reflecting
common interests and communication patlerns.

2. Individuality: Part of the social process of naming is that each individual
brings personal experiences and unique decision making to the process.
Those experiences may be shared with others, but no two people will have
had exactly the same set of experiences, and no two people will make
exactly the same choices at all times.

3. Multiplicity of names:

- Different people use the same name for different things.
- Different people use different names for the same thing.
- A single user uses different names for the same thing.

- A single user uses the same name for different things in different
situations or at different times.

4. Locality of names: A person uses a small set of local names to reflect his
or her focus of interest.

5. Flexibility of usage of names: flumans use several sorts of names. For

example, names are often descriptive. In addition, descriptions that have
not been previously chosen as names may be used. Humans also use

12

gencric names to label classes of objects. These generic names may be
labels or descriptions. In fact, humans often use combinations of generic
names and descriptive names in order to narrow the sct of objects that are
identified.

6. Manifest meaning of names: The words used by humans for names have
meanings constrained by human languages. These mceanings are
understood by other humans as well.

7. Usability of names: /{umans are able rapidly to define or redefine names
and shift contexts on the basis of conversational cues. They also have
mechanisms for disambiguating names, such as querying the source of a
name for further information.

8. Unification: fHumans often use various naming schemes, not limiting the
naming of objects to special schemes based solely on the type of the object.
Rather, the various schemes are generally applicable.

The goal of this work is to investigate a framework for a naming facility that allows
for communication, cooperation, and more human-like naming based on the list of
obscrvations above. Part of this investigation is a study of those aspcects of naming
that arc common to many or all applications and thosc aspects that arc not, and

therclore must be application specific.

The underlying model of a federation of computers is discussed in Section 1.2,
followed by a brief investigation of the problem being posed in this research in
Section 1.3. A brief introduction to the proposed framework for a naming facility 1s
contained in Section 1.4, Section 1.5 discusses related work, first considering some
philosophical, linguistic and sociological work that has influenced this research. It
then presents a representative sample of work in computer science that has
investigated the ideas that are being brought together in this work. Finally, the last
section of this chapter describes how the investigation will proceed through the

remainder of the thesis.

13

1.2 The Assumption of I'ederation

Of the three ideas mentioned in Scction 1.1, federation is an underlying assumption
of this rescarch, while the concepts of communication and cooperation and the
concept of more human-like naming are goals to be achieved. Since computational
[ederation is an assumption, in addition to defining it, the implications of federation
on naming and name management must be carcfully considered. A conclusion will
be that federation complements concepts of communication and cooperation and
human-like naming. The goals define a large problem arca, that must be limited in
order to make this solution feasible. These limitations will be discussed, followed by

a brief description of the proposed mechanisms that comprise the solution,

The direction in which computer systems have been moving is toward a multiplicity
of machincs interconnected by networks providing a communication medium. The
concerns of privacy and independence from other users have always been issues
among compulter administrators and users, but the nature of those concerns has
changed somewhat as smaller cheaper computers have become available. In many
cases, administrators purchase such computers and put them into service in
isolation. At some later time, the administrators decide to connect the computers
under their management. From here, the collection may continue to grow with little
control or consensus among the participants in such a "system”. A compuler is
autonomous if all the activitics on it are isolated from the activities of any other; for
all intents and purposes, it is not connected to any other computer. Many
administrators have pursued this option in order to escapc large time-sharing
systems. A federation is a loose coupling of computers to allow some degree of
cooperation, while at the same time preserving a degree of autonomy. In a
federation, there is some agreement on behavior and protocols to be utilized, but the
barriers apparent in the isolated machine are still available to anyone who wants to

enforce them. If the administrator or user wants to disconnect the computer from

14

the network by simply not accepting messages, that is possible. [f that computer
provides a service 1o the participants in the network, they must understand that such
a service will not always be available. On the other hand, federation provides the
common ground for communication (such as agreement about protocols and
services to be available) should it be desired. Federation includes autonomous
behavior, a relatively casy problem to address, while allowing for unplanned
interconnection and cooperation as needed. Allowing for coopceration is more
difficult to address, and frequently ignored or disalowed. The loose coupling

fabelled federation is taken as the system model in this rescarch.

Federation brings with it the fact that communication may only be available on an
irregular and unpredictable basis, both because the humans involved may choose it
and becausec communication links are physically unavailable. For example, two
networks may be created independently and only later connected. The connection
may come and go, or particular machines may be available only at certain times.
These irregular communication patterns have several implications. First, uniform
agreement cannot be assumed, alfecting naming. In general, most naming schemes
loday assume that there will be an agreement on a naming service. In the large
Arpanct community, the Network Information Center (NIC)[15] provides that
service, although there is a plan for distributing this responsibility to some extent to
address this problem of a central scrvice [31]. The creators of Grapevine [5] and
Clearinghouse [36] distributed this responsibility among managers or administrators,
but still require a local external service to register names. Neither Grapevine nor
Clearinghouse allows for graceful merging of two of their environments when

namespaccs overlap.

There arc two implications of federations; their effects on naming are worth noting
at this point. First, the assumption of independent initialization implies that once

two systems have joined in a federation, unique identifiers are not available unless

15

some prior arrangement was made. Since the two systems were initialized and
operating independently, they may have overlapping scts of identifiers in use. If a
merged set of names is not to have duplicates, it is possible that names must be
changed and future agreement must be coordinated. The fact that particular
namespaces are assumed to contain only unique names may have far-rcaching
conscquences il this assumption has been built into application subsystems and
programs as well as the operating systems. The problem may be especially insidious
i the merger is occurring between two distributed systems of the same type, where
such dependencies may be well hidden from the user. This issuc was addressed
both in SNA[3] where the solution was to build a wall between two such
cooperating, but independent networks, and by Rom [41] who proposed algorithms

for merging namespaces of networks at the time of merging,

The sccond result of assuming federation is an unpredicatable lack of availability of
participants in the federation. For naming, names needing non-local resolution may
not always be resolvable. Any functions which are to be usable whenever a local
node is available must not be dependent on auxiliary remote services that might not
be available. For instance, if a remote printing service should be available to the
local machine whenever the printing server and the communications medium are
available, then accessing the printing server must not be dependent on a remote
name or authentication service. This assumption may have far-recaching effects, for
instance in compiling code with remote procedure calls, using a distributed database
management system, sending and receiving mail and many other distributed
applications. Such applications may be designed on the assumption that certain
auxiliary information is available, although it is possible to perform certain functions
without that information. Needless to say, when the time comes to perform the
remote procedure call or access the non-local data, the non-local site involved must

be accessible.

16

Compare bricfly the human situation with the assumed model of federation. There
arc many similaritics. Humans will often think and function indcpendently and
then discuss or operate cooperatively. An individual may develop ideas privately
before sharing them. Then a group may form to address them. Humans certainly
function both without joint inttialization and in the face of possibly intermittent
communication. Humans, beginning with some basic shared means of
communicating (which may be as basic as facial and hand cxpressions), negotiate
further means of communication. They also gencerally use namces without requiring
or even wanting access Lo the named entity. In fact, part of the function of a name is
as a place holder. [tis the sharing and joint management of names that this research

is addressing,

The following section will briefly present a model for a sct of mechanisms that
adhere to the eight observations listed above. The modet will be addressed further

in Chapter 3 and succeeding chapters.

1.3 The naming problem

The problem in naming that this rescarch is addressing can be stated simply and
then subdivided into three subproblems. Each of these in turn can be subdivided

again. This structure of the problem will be examined in this section.

Names allow the users of objects to identify and access those objects jointly.
Although joint naming is not always used, the fact that naming is used frequently
for communication among users must be supported. The naming problem is that
currently available naming facilities in computers do not support joint naming
among people adequately, in many cases because the full extent of the problem has
not been recognized. In addition, feasibility of implementation must also be a goal
of the design of a naming facility. Three words were highlighted because they
identify the three subproblems that are addressed in this research.

17

The nature of names will be studied in order to understand both the inherent
characteristics of them and the uses of names. This rescarch identifies five
characteristics of names. All have an impact on use or understanding of names.
Three of the characteristics reflect roles in naming: who assigns names, who resolves
them, and who uses them. These three propertics of names determine the
namespace from which names are chosen, within which they are associated and
therefore can be resolved, and within which they will be used.? The other two
properties of names identify the degree of ambiguity or unigueness ol a particular
name and its degree of meaningfulness. Name, as defined in this rescarch, have two
basic functions. First, they provide access to the named objects; and, sccond, they

can be used as place holders for the objects.

Understanding the nature of names and naming is closely related to recognizing and
identifying the aspects of how wusers or people name. Fight obscrvations about
human naming have been identified in Section 1.1, Various of thosc cight aspects of
naming can be found in various computer based naming facilities, but no single
facility allows for all of them. Naming in computer systems has generally been more

restrictive for humans than direct interpersonal communication allows.

Joint naming implies two subproblems. The first is that communication using
names must be supported, requiring sharing an understanding of names. The
sccond subproblem is that negotiation must take place in order to reach an
understanding about what is to be shared. Negotiation may also involve acceptance
of names by degrees or stages. Because federation is an underlying assumption,

dependency on an external decision maker cannot be built into the support

2Namespace is a general term for an object that remembers the association between a name and an
object and provides translation between names and objects. Chapter 2 investigates the relationship
between names and namespaces further and Chapter 3 presents the formal model, called a context, of
a narnespace proposed in this resecarch.

18

mechanisms. Whatever joint understanding exists can only be defined by the

participants in the understanding,

The problem being addressed in the model in the next section is to mirror people
using names jointly to identify and use objects. Names can be understood better by
studying both their inherent characteristics and their uses. Pcople using names can
be understood better by recognizing the various aspects of human naming, both
characteristics and uscs. And finally, the joint naming that pcople do can be better
understood by recognizing that it is a form of communication and sharing and that a
structured ncgotiation must take place in order to reach agreement and allow for

communication and sharing.

1.4 Model for a Solution

The previous scetions presented an assumption of federation and the problem areas
of communication and human naming. 'The solution in this rescarch is based on
defining two new types of objects, contexts and aggregates. Aggregates are

composed of contexts and, therefore, will be considered later.

The basis for this proposal is a simple type of object called a context. A context
translates names into cither objects or other names and is the model for a namespace
in this rescarch. A name is an objeét assigned to another object within a namespace
or context that allows the user cither to use the name as a place holder for the
named object in the context or to access the named object through the context. In
some cases, a name will be translated into another name less meaningful to or less
casily used by the user of the original name. Further translation in the same or
another context may then be requested. In the remaining cases, the user or program
will use the resulting translation as is. Whether further translation is needed or not,
the decision is not made within the context but by the client, whether user or
program, requesting the translation,

19

A context is a shared object and therefore has two further properties, both related to
the fact that the most basic operations on contexts arc name assignment and
translation, First, a context contains a model of the fact that the associations
between names and the objects they are naming may occur by degrees. For
example, once a name has been sclected, more uses of it will probably make it more
castly understood. With disuse a name may be forgotten. In contexts, this is
modclled as a serics of states. Chapter 4 addresses this sct of issues in detal. The
linal property of contexts is a sct of participants, some representation ol those
sharing responsibility for a context or namespace. This information is necded for
two reasons. First, identification of the context may include some mcans of
identifying the participants. This a reflection of a human pattern of identifying
subject matter, by including recognition of who is involved. The second rcason is
that different participants may have different roles in the selection of names. Again
this will be discussed in Chapter 4. Thus, in addition to the actual translations
between names and objects, a context also contains some means of identifying

participants and a representation of the states of translations.

The other mechanism proposed here is the aggregate, the individual’s naming
window onto the world. Names can be assigned and used only through aggregates. 4
An aggregate has two parts, the current context and the environment. The aggregate
itself is not sharced, although its current context is shared. When two pcople
communicate, there is a small set of names that they use regularly and to which they
may add new names necded in that conversation; it is this current context that they
share. They each also have a pool of other contexts on which to draw. These pools
may be different for cach participant in the conversation. The pools, which are
called their environments, consist of collections of contexts, which may or may not
be partially ordered, but which are used to translate names not in the current

context. The current context is shared by the participants. Other contexts may also

20

(farm)

envi-
ronment
pear]al /4
horse’s
c
head l [
current '
context I l
Sandy
Randy

W

N
/

Sandy

Figure 1-1:Aggregates containing private copies of a shared current context

..like a
horse's head

21

pear I a

Sandy
Randy

Randy

envi-

ronment

current

context

be shared. A user may include any context in which he or she is a participant in the

environment of an aggregate that docs not have that context as its current context.

Figure 1-1 is provided as a visualization of a shared context and two aggregates
representing individuals sharing it In that figure, Sandy and Randy are identifying
shapes. They have labelled one shape "pear”™ and now Sandy is proposing to name
the second "horse’s head.” Sandy was reeently on a farm, so farm animal shapes
come to mind. With Sandy’s proposal, the name becomes a candidate, 11 Randy
agrees, the name "horse’s head™ will be accepted in their shared context reflecting

the naming of these shapes.

The figure represents this situation as follows. Sandy and Randy each have an
aggregate. Fach aggregate contains a copy of the context that they share and each
has a private environment. Sandy’s aggregate has two rules in its environment and
Randy’s has one. The first rule in Sandy’s environment contains only the current
context of the aggregate known as "farm™. The other rules are not depicted in the
figure. The copies of the sharcd context need not be, and are not in this case, in
synchrony. Both copies contain the fact that Sandy and Randy arc the participants
sharing this context. The fact that agreement has been rcached about the name
assignment for "pear” is reflected in the letter "a" in the entry, representing an entry
accepted into the context. 'The entry for "horse’s head" is being proposed by Sandy

(3]

and therefore is in the "candidate” state represented by the letter "¢". The
information about this candidate entry has not yet propagated to Randy’s copy of

the context and therefore does not appear in Randy’s copy of the shared context.

The reader should be aware that although the aggregate mechanism is based on the
idea of human conversation, it will have a more general use. The attempt here is to
model human behavior, not to provide any sort of explanation for how humans

behave. The concepts of current context and aggregate arc extensions and

22

modilications of the ideas of working dircctory and scarch rules used in many file
systems. This is one of the aspects of the work of others that is discussed in the next

section.

1.5 Related Work

According to Lampson [26]:

Basically, there are only two ways [that] arc known of doing naming.
One way is to use hicrarchical names, where you work your way down
some structure ke a tree-structured directory system, or an arrangement
of nested records. [you apply an appropriate discipline of not generating
two subnames that are the same at any level, then you have an
unambiguous naming scheme. This is inconvenient, because you have to
give this long structured name. The other method is to have some more-
or-less aimless collection of scopes that you wander through, using
something that is a search path or a scope inherilance rule or call it what
you will. This has the advantage that if you're Tucky, it will be convenient
and give you what you want, and the disadvantage that you'll never really
be quite sure of what it is you're going to get. You can basically pay your
money and take your choice. Pcrhaps it’s unfortunate that there’s not any
systematic way to decide exactly what scarch rule will be followed.
There’s not much uniformity cither in the specifying of search rules or in
the arrangement of hicrarchical naming systems, but there are rcally only
those two basic ideas. The whole subject, in my opinion, is much simpler
than it’s generally made out to be.

Fortunately for the users of computer systems, the set of solutions to naming
problems is much richer than Lampson suggests. Exploration of various problems
has procecded in many of the subfields of computer science. In fact so much has
been done, in many cases as a side effect of other research and development on
other problems, that this report can only touch on a sampling of the work that has
been done. The related research will be addressed in a non-traditional fashion in
this thesis. This chapter will consider those works that have direct influence on this

research. In addition, in each succeeding chapter, there will be a discussion of other

23

research related to the topic of that chapter. Therefore, what is traditionally a

scction on related works in a thesis will be distributed throughout this thesis.

‘The philosopher Quinc [39] provides a masterful study of the relationships between
names, the objects being named and the meanings of the names. Much can be
fcarned much that is directly applicable to naming facilitics that imposce the thinking
of the designers and builders of such a facility on its users. Naming forms the basis
of thinking and communication. In a mor¢ practical sense, types or styles of names
are not limited to types of objects being named. In particular, in the work here,
Quine’s idea of general names has been simplified and transformed into the idea of

generic names.

Carroll of IBM as part of his work on names and naming has done sociological
studies of human naming patterns both in conversation [54,7] and in
communicating with computer systems [6]. From Carroll’'s work, four important
lessons can be learned. First, in communication between two people, there is a form
of ncgotiating that takes place in proposing and accepting names that will be used
by the two in the future. This idea of cooperative name management will be
addressed in detail in Chapter 4. Second, Carroll teaches that naming is done on the
basis of conversations, topics of mutual interest, and, in addition, based on the
participants involved. It should be noted that conversations cannot necessarily be
organized in a hierarchical fashion, but humans have mechanisms for distinguishing
them without such hicrarchical structures. Third, the individual, in bringing past
experiences to a conversation, plays an important role in determining the names that
will be chosen through those personal experiences. Fourth, Carroll re-enforces the
concept learned from Quine that naming is universal. Objects are not necessarily
distinguished by the types of names they have, but rather use the same naming
mechanisms for naming all sorts of objects. Much of what can be learned from

Quine and Carroll has not been built into computer systems, although many systems

24

begin to recognize in different ways from cach other that the problems are not as

simple as Lampson said.,

This report will now review bricfly those particular projects that have strongly
influenced this research and what those influences have been. Beginning with
Saltzer's work on naming [42], there are two ideas that have been taken from that,
The first is the need for local and - dular namespaces. Saltzer provides a detailed

and carcful analysis of why both . ity and modularity are important.

The second idea inherited from Saltzer, reinforced by the work of Birrell ¢t al. on
Grapevine [5], Oppen and Dalal on Clearinghouse [36], and Lantz and Edigholfer
on UDS|[28], is that a naming facility can and should be universal. Naming
problems and facilities cannot be split along the boundarics of the types of objects
being named. Saltzer presents his model and then applies it to both a file system
and memory management. The Grapevine expericnce was that their facility was
originally used for naming mail recipients but the same naming facility could be and
was uscd by the mail service itself to name and locate the services it needed to
operate. In addition, other communities had other plans for it as a naming scrvice.
Both Clearinghouse and UDS were designed initially as universal naming services,
in recognition that such universality was beneficial and efficient. This idea of
universality was also reinforced by Saltzer [44] and Shoch [46] in which they
distinguish names based on the objects being named. These papers only reinforced
the idea that such efforts were creating artificial and unnecessary boundaries in

naming.

Multics [37] has contributed several ideas to this work. There are two important
influences. The first is in the structure of an aggregate. As mentioned, this is based
on the idea of search rules and a working directory. Of course, other operating

systems have incorporated thesc ideas as well, but it was Multics with which the

25

author was familiar. The second is the obscrvation that even within the restrictions
on scgment names there are attempts to allow names to reflect meanings and as
much as possible reflect names that might be used outside the system. Again this
can be scen repeatedly in other operating systems as well. Directories have certain
meanings. Component names have meanings. Both reflect external names as much
as possible. In addition, as will be seen later, the Multics known segment table

provides per process local naming and that is a large component of this work,

There arc two final influences that bear mentioning here. The first is Lindsay’s set
of goals in his work on the catalog and object naming in R* [29]. Thosc goals have
much in common with the carlier observations about human naming, although
Lindsay did not emphasize communication and sharing as is done here. 'The final
influence is a negative one, and to some extent work is progressing in an attempt to
address it. The situation is the one found in the Arpanet, where a global,
hicrarchical namespacc with a central administration is the only choice. At the level
of internet addresses there is a hicrarchy administered by the NIC [15]. A hicrarchy
is convenient but it does not reflect reality. Many hosts are on several networks or
subnets and the structure of the internet is not hicrarchical. At the level of naming
hosts and users, work at moving away from a flat, global namespace again centrally
managed by the NIC is progressing. The work of Mockapetris [31, 32] scts the
standard to be a global hicrarchical structure with a hierarchical administration,
This addresses the problems of a flat namespace and a central authority, but does
not address the fact that the administrative entities that will manage such a
namespace do not form a hicrarchy. In addition, the administrative structure will be
reflected in the names, despite the fact that this has little to do with the names that

people might want to use.

As mentioned previously, there is a great deal of work related to naming. What has

been provided here is a summary of those works that had the strongest influence on

26

this rescarch as it developed. Throughout the remainder of the thesis a sampling of
other work will be noted where relevant. What is important to note here is that
although the influence of others can be found in many aspects of this work, none

has pulled the sct ol ideas together into one place.

1.6 The Plan

As part of a rescarch project, it is necessary to identify the methodology used as a
basis for the rescarch. There are three parts to this methodology: (1) identification
of the problem, (2) the tools used both in analyzing the problem and in providing a
solution, and (3) testing the results for adequacy. The problem itself'is recognizable
as a problem because although humans have a very rich and flexible naming
capability, computer systems do not and the problem becomes accentuated in a
federated computing facility. The problem can best be explained as is done in
Chapter 2 by comparison with human naming. Three tools are used in addressing
the problem. The first is to examine human bchavior, to gain an understanding of
one approach to solving the problem. The sccond is to design a model. By nature,
the model can only be an approximation because total human behavior is quite
complex and frequently unpredictable, especially in new situations. The third tool
is an implementation. The implementation of the model allows for study of the
feasibility of the model and examination of the behavior of the model. The final
part of the methodology of a rescarch project is verification of adequacy of the
results. First, the value of the issues can only be judged by the audience, although
the fact that the work is novel can be argued by reviewing other work in the field.
Second, implementability must be evaluated. This can be achieved most directly by
an implementation, or if not, a design indicating the details needed for an
implementation. Such an argument leaves the final decision to the audience again,
The final measure that one can apply to a model for a solution is simplicity. This

determination must also be left to the audience.

27

This report investigates the problems of naming a large varicty of objects in a
lederated world of computational resources cooperatively among groups of humans
in such a way as to mirror as best possible the naming that the humans would do
among themselves without the medium of computers. Returning to the analysis of
the problem in Scction 1.3, it is investigated in depth in Chapter 2, including
definitions of the problem itsclf, as well the definition of the term "name” as it is
used in this rescarch. That discussion is also concerned with the general issucs of
naming and how humans use names. 'The set of observations i1s examined in more
depth than in this chapter, complemented by a study of attributes and functions of
names. Chapters 3 and 4 together present a model for a naming facility. Chapter
3 defines and discusses contexts and aggregates in detail, followed by a discussion of
joint management and namme assignment in Chapter 4. Chapters 5 and 6 discuss
implementations in two domains, in order to verify both that the problems
presented are real and that the recommended framework can be used to build a
naming facility in the two domains. Chapter 5 discusses an implementation in an
clectronic mail system and Chapter 6 presents a design for an implementation in a
programming support environment. The thesis concludes in Chapter 7 with a
review of what has been developed pointing to further research to be done as well.

It concludes with a discussion of the contributions of this research.

This thesis addresses a large collection of issues surrounding naming and as such is
an attempt to bring some order to that arca. It presents a model, used in designing
implementations, but neither the model nor the designs is an end, but rather they
are a beginning. This rescarch is a step forward in providing a more usable
cnvironment for clients of computer systems by improving the naming facilities and

thereby the operating systems on those computers,

28

Chapter Two

The Nature of Names

2.1 Introduction to the Problem
The problem being addressed in this research is how o design a naming facility
under the assumption of a federated system and achicving the following goals:

- support of names as defined below,
- provision of sharing and communication of and by use of those names,

- feasibility of implementing such a naming facility.

Federation provides benefits over both centralized computing lacilities and
decentralized but more tightly coupled distributed computing facilities. [t both
allows for a local tolerance to partial failures elsewhere and supports local isolation
if that is desired. Continued operation in the face of separation due to remote
failurcs or the choice of isolation require local functionality. Enough information
and processing ability must be available to allow for the continuation of local
operations, such as accessing local objects using local names for them. In addition,
creation of new local names for local objects should be possible, without the need to
access a remote name server or administrator. Of course, for those activities that
require remote access, such as reaching agreement with remote sites on a shared
name for something, one must have access to the remote participants, and such
activities must await reconnection. This line of reasoning leads to the conclusion
that local naming and name management must occur in order to benefit from

federation.

29

Humans provide a good paradigm for studying cooperative naming in a federation,
because they jointly define and use names as they are described in this research. In
addition, they form federations with local facilitics for name management within
cach person’s mind, and with no sharing except in the form of the information that
flows through various media of communication between them. Therefore,
frequently throughout this rescarch humans and human naming are used as
examples both for understanding names and naming and also for where problems

may continue to exist.

This chapter analyzes in depth the problem as identified above, by examining
various aspects of names and naming. The first step in this analysis is to provide an
operational definition of names. The definition is simple, in order to capture the
essence of naming. Others have assumed more complex definitions, often in order
to provide additional functionality that may be needed in particular applications.
The definition is followed by discussions of aspects of names and obscrvations about
how names ar¢ used. The investigation of aspects of names provides the reader with
a deeper understanding of names themselves, while the observations about uses
explore patterns of cooperative usage within the definition of names. In addition, as
part of the investigation of names this chapter presents a list of other potential uses
for names to be found in other naming facilities, but excluded from this one because
they are not consistent with the definition of names chosen here. Implementability
and consideration of those problems found in other similar facilities that are not part

of naming as defined here are left to later chapters of this document.

Figure 2-1 provides a simple example of a number of the issues to be addressed
here. The Green family consists of five members, three of whom are children. The
two older children, named Samantha and Samuel, may be given the same nickname
"Sammy" at times. The baby, Sandy, cannot pronounce the names "Samantha" and
"Samuel" given to the older children by their parents. This example will be used in

a number of cases to illustrate points in the remainder of this chapter.
30

The Green Family

Meet our twins, Samantha
and Samuel and
baby, Sandy.

Thammy?
(‘“*‘““) ("‘“‘*J
c D — D
Mom Pop Samantha Samuel Sandy

Figure 2-1:Examples of naming issues

2.2 The Definition of a Name

Definition: A name is an object that can be associated with another object and has an
equalily operation that is reflexive, transitive, and symmetric. It has two uses. First, it
may provide access to the object with which it has been associated. Second, it may act

as a place holder for the object with which it has been associated.

Association of a name with an object is a function of the namespace within which

the name is defined. A name can be defined in different ways in different

31

namespaces, resulting in accessing dilferent objects by use of the name, The
equality opcration in the definition of a name is an opceration on names, whercas
assignment or the act ol associating a name with an object is an opcration on a
namespace. Therefore the function of providing access to a named object is also a
function of the namespace. In order to understand the deflinition of a name better,
the two uscs of names arce investigated separately. This scction concludes with a
discussion of the function that is the reverse of accessing an object, an additional

possible function of a naming facility, although not a function of names themselves.

Access

The function that is most commonly considcred in naming is the resolution of
names. The desired response must be recognized when a user requests that a name
be resolved in a particular namespace. First, in most naming facilities it is assumed
that there must be a single response in most situations in order that the name be
resolved correctly and that it be considered a valid name. This is certainly not true
when humans doing the naming. Consider the baby Sandy asking "Thammy" for
help. After doing it once, the child learns that several pecople may respond despite
that fact that only one person may have been intended. Humans have developed
many tcchniques for disambiguating, when that is important. But they also may
take advantage of the ambiguity. The point here is that a single or a particular
resolution is not always what is most useful. In this rescarch, the possibility of
multiple resolutions for a single name is not excluded. In cases where multiple
resolutions occur and a single one is needed, further resolution or sclection using

non-naming operations will be required.

A second aspect of name resolution is the actual translation of a name. There are
two sorts of entities that can be returned to the user of the name. The first is an
object or what appecars to be an object to the user. In this case, the user does

somcthing with the object such as hand it to a service that will print it, copy it,

32

modify it or perform some other operation with it. The other alternative is that
another name is returned to the user of the name. Not all systems allow for this.
Those that provide linking, aliasing, or other forms of synonyms may be prepared
for the return of names instead of objects in at least some situations. The names are
simply a form of indircction. In their most genceral (orm, such translations provide
another name in another namespace. A common form of this can be found in the
telephone book. A namec is resolved to a telephone number, not the person; further
resolution is needed. The telephone number is a name that the telephone system
understands. To review, the naming facility will allow for one or more responses to
a request for name resolution and those responses may be cither objects or other

names, that may or may not need further resolution.

Place holder

The other use of a name is as a place holder for an object or indirect reference.
Names provide one of the same facilitics in communication that pronouns do in
grammar. They allow for identifying something without actually having the object
in question. The situations in which such a facility is useful are those in which
containment of the object i1s impractical or impossible. For example, the object may
not yet exist or when the time comes, one of scveral objects will be chosen by some
other selection criteria to be used as well. The flexibility of delaying the binding of
name to object may also be important. In addition names allow for multiple,
physically disparate references to the same object. If names did not exist, it might
be necessary to have two copies of the object, making sharing impossible. Thus,
names serve an important function of standing in for the objects they are naming, to

both provide sharing and allow for delayed binding.

Finding a nickname
Consider a situation in which one of the parents seces one of the twins doing

something dangerous. The parent says, "Samantha, no, Samuel, watch out!" The

33

parent is scarching through the sct of names relevant in that context to match the
person being warned. This operation is the reverse of accessing an object given its
name. In this case, a name is needed for an object. The same issues are relevant to
this "untranslate” function as to the access or "translate” function. I multiple
names have been assigned (o the object, as with a name being assigned to scveral
objects, it 1s possible that one will need to be sclected. The naming facility cannot
know which one to scleet; this function is outside the naming lacility. The object for
which a name is being sought may be cither a different type of object or another,
possibly less meaningful name. Finally, if' the untranslate function is to be
supported, an equality operation is nceded on objects, in order to implement the
comparison of the object for which untranslation is sought and the objects named in
the naming facility. "The untranslate function will recur in discussions of both the

model and the implementations.

2.3 Aspects of Names

A set of aspects of names, by which names can be characterized, can be derived
from the definition of a name. These characteristics fall into two categorics, some
identifying the participants in name management and others relating to use of
names. As listed here, the first three fall into the former category and the fourth and
fifth into the latter catcgory. In order to provide a preliminary understanding of
these five aspects of names, an example from Figure 2-1 is given here. Each aspect
is then discussed below in further detail, including when relevant the general form
of appropriate opcerations.

- Assignment: Mom and Pop chose the names "Samantha” and "Samuel."”

- Resolution: Samantha and Samuel recognized the name "Thammy."

- Scope of use: Although "Samantha” and "Samuel™ arc the names given
to the twins, these are not names that Sandy can pronouce and therefore
use. As a result, Sandy tries "Thammy" instead.

34

- Uniqueness/ Ambiguity: Sandy tries "Thammy"” but it might be
applicable to ¢ither twin. This may or may not be the desired cffect.

- Meaningfulness: Sandy Green is possibly sandy (perhaps indicating hair
color), probubly not green, but is amember of the family named Green.

These examples are only that. Each of the points listed above also nceds further

explanation and discussion. They are discussed separately below.

Assignment

One of the three sorts of participants in name management is the name assigner, the
other two being the name resolver and the user of names. The genceric form of the
operation used for assignment is this research is add_name (name, object). There are
three possible sources for name assighments: an external naming authority, the
object itself or some representative of the object such as its owner, and the users of

the names Each is discussed scparately.

[In many examples, such as Grapevine [5], Clcaringhouse [36] and the
Arpanet [15, 31, 32], naming authorities are hierarchically organized to allow for
distribution of responsibilitics. Registration of a new name in Grapevine requires
contacting an administrator who will add the name. The hierarchical structure
rcflects a distribution of the responsibility in recognition that a single authority
cannot manage such a job alone. Distribution of name assignment responsibilities is
also one of the reasons for the move from a network information center being the
sole allocation authority for names of networks and hosts on the Arpanet, to the
domain scheme, in which the authority is delegated hicrarchically. Unfortunately,
neither the central authority, nor even the hierarchically structured sct of authorities
addresses all the needs of a community of name users. A hierarchy does not reflect
multiple overlapping groups, nor does it allow for the individual to play a role
except in the extreme situation in which every individual is a separate naming

authority.

35

A second source of names is the object itself or someonce directly responsible for it.
Two examples of this are people choosing their own names for themselves, and the
creators of files choosing names for their files. The individual will understand his or
her own needs, but may not realize implications of choices of names on the rest of
the community. For instance, a programmer may write a new archival facility that
uses data compression. The programmer may also have written a special data
compression procedure unwittingly choosing the name "compress”, although other
procedures were available by the same name. A question about which compression
algorithm is used must be resolved. Such a decision often uses name resolution and
may have surprising consequences for the user. Thus, although privately chosen

names solve some of the problems and hierarchics solve others, neither suffices.

A third source of names can be the users of the names. Consider the following
situation. A group forms to discuss a problem. They discover that there are two
Alexes in the group. In order to distinguish the two in conversation, as a group they
dccide that they will use middle names for each of them. ‘Thus one is called
"Brown" and the other "Harrington.” Neither of these is a name that would have
been chosen by an authority nor by the individuals although the two Alexes realize
that if even one of them is called "Alex" there might be confusion. This is a
problem that ncither the naming authority nor the individual might consider, but it
is important in the area of naming and relevant to the question of how names are

assigned.

Resolution

Name resolution involves translating names into objects by recording name
assignments at earlier times. Thercfore the name resolver is that entity that
performs the add_name operation previously mentioned as well as the translate
(name) operation. The name resolver will make use of the equality operation on

names in order to achieve translation. There are many examples of name resolution.

36

In the example above, Samantha and Samucl are performing name resolution by
translating the name "Thammy™ into themselves. A file system is a name resolver,
In the Arpanet, the IMPS that translate net addresses into routes are name resolvers.

The list is endless.

Scope of names

The third aspect in considering the management of names is their scope or who can
usc them. In this case, the two uses of names come into play. It is the user of a
name that will invoke translate. It is also the user who may use a name as a place
holder for an object. There is no operation involved here in the use of the names
itself. One can ask whether a name has a global scope, in which case it has been
assigned and its resolution is the same everywhere. Or is it private to an individual?
As in the case of the two Alexes, is it of interest to a group of users, although not to
the whole universe? There are examples ol attempts to create global names. This
was the situation originally in SNA [10]. SNA is representative of a collection of
similar situations, in which it is assumed that there is a single, global namespace or
domain within which names arc used. At sonme point, the developers discover that
there i1s a need to connect two of these global namespaces. Each has the idea of
unique names in a global namespace so embedded in it, that a very dilficult problem
confronts the architects. In SNA, the choice was to maintain the separate
namespaces, and build a wall between the two, never allowing names {from one to
move to the other, but only providing translation at the boundary [3]. The idea was
to present to the user of such names the appearance of a single, global namespace.
This is only a facade, and the user may discover by moving across that boundary
that the namespace is indecd not a global namespace in which names have the same
meaning everywhcere, Source routing [43, 35] provides the other extreme from a

global namespace, in which a particular name for a particular object must be

completely local and dependent on the uscr of the name. This situation has the

37

problem that names cannol be shared, thus obviating onc of the main uses of names.
But there is a third possibility, a middle arca, in which groups share names and their
resolutions. Rom’s [41] proposal falls into this middle arca. In his scheme those
who need to know the names do, and, for those who do not, there is no problem if
the namespaces overlap. He proposes an algorithm (or changing names within cach
scope so that all names within that scope arc unigue. He recognizes that this need

be carried no further than the boundaries of use ol a name.

Uniqueness/ Ambiguity

Orthogonal (o the determination of the participants in name management is the
issuc of uniqueness of names. There are three issucs to consider when discussing
uniqueness. The first is the desirability of it. The designer of a naming scheme
must determine whether any form of unique naming is needed. 'The second is the
degree of uniqueness nceded. It may be that a name should be used no more than
once, but that synonyms, multiple names for the same object, would be useful. On
the other hand, it may that cach name can be assigned no more than once and that
*ach object can have no more than onc name assigned to it. Finally, feasibility must
be considered. This was discussed in relation to federation earlier. It is possible that
regardless of the decisions made on the desirability of uniquess and the degree of
uniquencss needed, it is impossible. The uniqueness/ambiguity characteristic of
names is observable in the two operations mentioned above, add_name and
translate. If names must be unique then add_name may fail due to duplication,
while if ambiguity is permitted translate may return more than one object. In this
latter situation, further sclection may be needed, either by inquiring about
additional names for the objects in question or by considering other aspects of the

object, such as its type or state.

Both ambiguity and uniqueness have their uses. It is frequently important to be

able to identify or select exactly one object within a set. In fact, it is often assumed

38

that each object within a sctis distinguishable by name from all others. Exccuting a
picce of code and specifying on which data object it must operate requires
identifying cach, distinguishing them from all other possibilitics. "The simplest form
of such identification is o use names, avoiding the use of sclection procedures
sometimes used to create or distinguish objects based on other information. Such a
name needs to be unique within a namespace. If the universe is small cnough, it
may be simpler to use a global or universal namespace rather than dividing or
modularizing the namespace, as is often done to create manageable sized

namespaces within which names can be unigue.

In contrast, there are situations in which a lack of uniqueness is important. Consider
briefly Figure 2-1. The baby Sandy may say, "Help, Thammy, I'm lost." To Sandy,
it is more important that a familiar face be found than whether it is Samantha’s or
Samucl’s. In a technical example, if data is replicated in a distributed system, the
user may not need or want to know which copy is being used and would prefer that
the system determine which copy is most easily accessible at the moment. Both
unigqueness and uscful ambiguity can be seen simply in a file system such as
Multics [37] where a name may be a complete path name to distinguish a particular
segment or a short name, allowing the search rule mechanism and Known Segment

Table o provide the final resolution of the name at the time of use.

A further extension of the idea of ambiguity or lack of uniquencss can be found in
the concept of a generic name. Such a name identifies a class of objects that have
some set of attributes in common. The generic name allows for identification of
objects based on that shared sct of characteristics by being a label or place holder for

the set. This is a dircct adaptation of Quine’s [39] concept of general naming.

The problems of feasibility must also be considered, especially in a federated

computing facility. If there is an authority that can guarantee uniqueness of names

39

cither by generating unique names or by verifying the uniqueness of names
presented to it then it is feasible to base various schemes on the fact that unigue
names arc available. A centralized computing facility can probably make such a
guarantee, although cven in this case, it is difficult. Onc technique for gencrating
unique identificers is to use sequential numbers, reliably remembering the previous
number that was used. 'This is feasible only if the numbers can be generated quickly
cnough and if the means of remembering is reliable ¢cnough. Some systenis have
used the clock to generate names, assuming that it is both refiable and fine grained
enough, Another scheme is to subdivide the set of names, allowing cach of a
collection of authoritics to manage a subsct of the names. This provides some relicf
for the problem of a single authority being a bottleneck, but it increases the
probability of duplicate names if unreliability is a problem. For example, if there is
a power lailure, instead of a single authority possibly handing out a duplicate name,

2ach authority may hand out a duplicate name.

The problem of fcasibility becomes more complex with consideration of merging
namespaces in which the names have been sclected by independent naming
authorities each of which assumes that it is choosing globally unique names. The
problem in this case is how to deal with unexpected duplicate names. Both
Rom [41] and the architects of SNA [10, 3] dealt with the possibility of duplicate
names because it was important to cach of the underlying architectures that names
be unique. Rom’s decision was to replace duplicate namcs invisibly, while the SNA
solution was to keep two namespaces scparate, but gloss over that fact at a higher
level. In fact, this is not how humans address the problem in their communication.
Instead, they live with the possibility of ambiguity, recognizing that globally unique
names are not possible, and they manage without them, relying, when necessary, on

locally unique names.

40

Meaningfulness

From the points of view of the assigners and uscrs of names, those names can fall
anywhere in a range from those that have no relevant meaning to those that also
carry a great deal of information about the named object. The simplest names carry
no mcaning and arc only labels. One example of these is the set of numbers
generated by a random number gencrator and used for labelling objects. Any
relationship between any two such names is purely accidental. A uscr of the name
"Sandy Green" is unlikely to assume the named person is in any way green, but may
assume blonde hair from the name "Sandy"”. The nickname "Teach™ may not only
be a name for a person, but also carrics the information that the person so labelled is
probably a teacher. The name "President” not only identifies an individual, but also
indicates the relationship between that person and othcr members of an
organization. l*‘unhqrmorc, humans sometimes associate an attribute that is to be
used as a name with an object, e.g. "position: president” so that in the future one
~an identify the person with that name. It still is the case that the name must have
been assigned as a name in order to be one. This is separable from whether or not it

is meaningful.

A further extension of the idea of identifying an object by information lcads to
identification of an object by aspects of the object that may not have been
preassigned, but have meaning in relation to that object. For example, consider a
situation in which family names have been recorded for people, but not substrings
of those names. Then, selecting those people whose family names contain the string
"ollins" but for whom that is not their full family name is not naming. In addition,
information about an object may take a form similar to that of an attribute. An
example might be a timestamp of creation for an object, in milliseconds since the
beginning of the century, such as "CreationTimestamp:27162241234". It is

improbable that anyone will ever use that information as it stands as a name,

41

although the information may be used as part of the selection process of finding an
object. For instance, one might want to find all the objects created before a
particular time. This sort of identification and selection is not within the bounds of

whal is identified as naming in this rescarch.

Recognized structure in names is another form of manifest meaning. 11 a structure
is understood, components of that structure are recognized as having meaning. "The
simplest structure is a flat namespace in which case cach name is composed of a
single component. Two examples of flat namespaces in nctworks are RSCS [17, 16]
from 1BM and the older form of naming hosts on the Arpanct [31, 32| In addition
numecrous simple file systems and user identification schemes as well as other
examples support only flat naming. A sccond common structure is the hicrarchy in
which the nested components may reflect meaning or another one of the issues
discussed in this scction. A third form of organization is the directed graph, where
each node may have more than one parent and more than one offspring. The
schemes used in R*[29] and the IFIP WG6.5 proposal [18, 59] fall into this category.
In these cases a set of name components may be presented to the user as a choice of
hicrarchies or as an unordered set of components. [t is this third possibility that

scems to reflect the structure of names that humans use most often.

The manifestation of meaning is an unstated issue in the work of Saltzer [44] and
Shoch [46]. Both rcalized that different names manifest different sorts and degrees
of meaning to diffcrent assigners and users of names and each author based his

characterizations of names on the views of those assigners and users of names.

These five attributes of names allow for comparison among different naming
schemes along orthogonal axes. The three roles in terms of choice and use of names
address the guestions of who plays those roles. The choices can be related to each

other or independent of each other. The degree of uniqueness or ambiguity

42

determines repeatability of assignment. Finally, the degree of meaningfulness
determines how much and which information can be conveyed by using a name as a

place holder. None of these aspects of names needs to be dependent on the others.

2.4 Aspects of Human Naming

As mentioned carlier, humans provide a useful paradigm for investigating naming in
a federated computing facility. Therclore, it is uscful to understand how humans
name. The following is a list of observations about human naming that were listed
briefly in Chapter 1. Each will be considercd here in more detail. In addition,
where relevant, related literature will be noted. These cight observations form the
basis of a further understanding of the goals of this rescarch in relation to
supporting naming in a federated system and providing sharing and communication

of and through names.

1. Communication: There are two aspects of communication. One aspect
of communication is cooperative usc of names. In addition, information
rclated to named objects may be shared and passed between the user of
a name and the recipient of the name by passing meaningful names.
The individuality of each communicant is closely related to joint naming
and shared responsibilities for names, although that has been separated
herc as a distinct issue.

Examples ol sharing namespaces can be found in many other works.
The most common place where operating systems provide sharing is in
their file systems. Hierarchical structures such as those of Multics [37]
and Unix [40, 57] provide sharing by the use of working directories and
scarch rules. Non-hicrarchical systems such as OS6 [48, 49],
Eden[1, 19], and CAP[33, 34, 60] also allow for similar means of
switching namespaces or resolving names in other name spaces.3

3’(‘11(: Alto operating system [25] also provides a non-hicrarchical structure, although it is a single
user system and apparently little use was rmade of any facilitics for dividing the namespace into
directories or subdirectories.

43

Multics also provides an interesting example of local shared naming,
that was designed with a particular issuc in mind. For cach process,
there is a Known Scgment Table that maps a nickname into a particular
scgment on a per process basis. The table is shared by all procedures
running within that process. When a local, short name is used in a
procedure, the system checks the search rules for the means of resolving
it. Normally, the first entry in the scarch rules 1s the known segment
table, followed in any order by the dircctory of the calling procedure,
the working directory, the user's home directory and any other
dircctories specified by the user. None of these is required and they can
be in any order although some orderings will Iead to unprediclable
behavior. The idea behind this mechanism was that if a nickname were
used in a number of procedures, it should be resolved to the same
segment, so that, for instance, il one were working on a database, all the
procedures would share the database. On the other hand, it also can
provide for anomalous behavior, when the programmer of a procedure
had a different resolution of the name in mind. For instance, it is
possible that two different procedurcs may have the same name, but
provide different functionality and different results using different
arguments. Despite this potential problem, the shared nicknaming
facility is commonly used in Multics.

2. Individuality: Each creator of namcs is different. Thosc differences are
manifest both in the individual’s sct of experiences and decisions based
on those experiences. No two individuals have had exactly the same set
of cxperiences. In addition, in the same situation two individuals will
make different choices.® Therefore, in any joint decision such as
choosing names, individuality also plays a role.

Various forms of private nicknaming, linking, aliasing and synonyms
support the individual as distinct from the community. In Multics and
Unix, local linking to segments or files in other directories supports
private names for these objects on a per directory basis. In addition,

4}"0r example consider not putting the known scgment table first. This can lead to multiple
occurrences of a name in the known segment table. If the known segment table is used to resolve the
namec, which resolution is uscd will be implementation dependent.

SNO implication of a causal relationship between cxperiences and choices should be interpreted
from this.

both systems support aliasing on a per user basis, allowing the individual
to personalize the names used for invocation and other forms of naming
as well. Synonyms can also be found in many systems. For example, in
R* as part of a morc complex naming and cataloguing scheme [29],
Lindsay has proposed private synonyms. These lists are on the basis of
an individual user at a particular site. Many other systems (such as mail
systems providing private templates) also support individuality to one
degree or another. Just a sample has been discussed here.,

- Multiplicity of names: Allowing for a particular name to identify

different objects and for different names o identily a particular object,
provides a flexibility present in human naming, but oflen not in
computer systems. For example, many people have the same nickname.
[Lis often advantageous to name people having the same family name by
referring to them by their family name. In addition, in some cases name
assignment varying with the situation and time may be uscful. For
example, the title "Chair of the committee” will be resolved differently
depending on which committee is being discussed and when. The other
side of that situation is that such duplication in names may sometimes be
confusing. In those cases, locally unique names such as nicknames may
be created.

Again, there are many examples of multiplicity in the literature. Source
routing [43, 50] provides an important one. As its name implies source
routing is a mechanism by which an object is named at the source of the
name by the route from the source to the object. One distinguishing
characteristic of source routes is that they are dependent on the source
and thercfore imply multiple names. In addition, the forms of naming
mentioned under individuality also support multiple names, although
there arc other forms of multiple names as well. They can be lound for
instance in IBM’s SNA in the mechanism for joining two SNA
networks [10,3]. SNA provides a static hierarchical structure for
internetworking and aliasing local to each single network, providing
multiple names for hosts, although from any location only one name is
accessible. The aliases may not cscape the local network and are shared
by all users of the local network. Within a singlec nectwork the
namespace, including aliases, is flat. Thus, in an internetwork of SNA
networks, there may be a different name on cach nctwork for a
particular host. Both Clearinghouse [36] and the FIP Working Group
6.5 work on names and directories [18, 59] support multiple names

45

explicitly. In Clearinghouse one name f{or cach object is more important
than all other names lor that object, while the WG6.5 work has no such
mechanism. All are cqually valid as long as they define a complete set of
component names, one component from cach naming authority on a
directed path from the root to the destination. In fact, multiple names
fall into two categories. "The first category contains those names that
allow only different names from different perspectives, such as links in a
hicrarchy in which any object can only be named at most once from any
directory. The sccond is synonyms within a single namespace such as
Lindsay’s set of synonyms for R*,

. Locality of names: Conversations are a common source of local naming,
Within a particular conversation, the participants will define the names
that they are using locally in that conversation. As they move to other
conversations, those names may have different meanings. For instance,
the name "Alex” may identify one person in onc conversation, and
someone else in another. If both Alcxes participate in a single
conversation, the group of participants may agree on different names for
cach of them, or lind other ways to distinguish them. Locality 1s used by
humans constantly in order to avoid having to provide unique names
over all experiences.

Directories, whether in hicrarchical or non-hicrarchical file systems, are
onc of the most common forms of providing local naming. This can be
scen in Multics and Unix in their hicrarchical file systems as well as
those previously mentioned non-hierarchical file systems. The need for
local naming can also be found in networks. In SNA [3], although the
attempt has been to provide an image of a single namespace to the user,
in fact what is provided is a collection of local namespaces each
consisting of an SNA network. To move from one namespace to
another the user must move from one SNA nct to another. The domain
naming project in the Internet |31, 32] i1s aimed at providing local
namespaces by dividing a single namespace into a hicrarchy. In R*[29],
full names consist of four components: the creator’s name, the creator’s
site, the site of creation, and a name that is unique given the other three
components. Local naming is supported by supporting dcfaulting of any
of the first three components. Saltzer [42] in his trcatise on names
discusses the need for Jocality in naming even in a centralized facility in
order to achieve modularity and provide for sharing.

46

5. Flexibility of usage: There are several sorts of names that humans use in
addition to unique, or relatively unique, names. For example, names
that reflect role or position, reflecting relation to others, form one group
of names. The names "Cousin™ and "Chair of the committee” are two
such. These fall into the category of genceric names. An example of a
different sort of name is "the green one.” In this case, the name is
descriptive. It reflects something of the inherent nature of the object
being named. The dilTerent sorts of names implied here reflect different
mecans of incorporating meaning into names,

There is not much work on supporting different sorts of names for the
same object other than in Clearinghouse [36] and the TFIP Working
Group 6.5[18, 59]. In Clearinghousc an object can be named both by its
unigue name that may carry no meaning and by a set of properties
having valucs. The WG6.S project supports the possibility of multiple
paths through a rooted directed graph, allowing for name components
ranging from those that are simply unique within a set, but otherwise
have no particular meaning to names that are attribute pairs and have
meanings.

6. Manifest meaning of names: When objects are given names that have
meaning as well as providing identification, and those names are shared
among a group of people, it is assumed that those names also will be
understood by the whole group. If pcople do not understand those
meanings, they will have difficulty remembering the names. In addition,
as seen in scveral other works such as the WG6.S project [S9] and
Multics [37](’ when a namespace is divided, one of the goals is that the
components of the name be meaningful and therefore guessable by the
potcntial users of the name.

Communicating and sharing meaning is often provided as part of the
structure of names. This can be seen clearly in some file systems.
Multics and Unix again provide an example. The hierarchical structure
of directories is often used to provide part of the name of an object and
allow that part to have some meaning. An example from Unix might be
"/usr/sollins/lib/mail.ml”. This identifies a library written in Mock
Lisp [14] that supports a mail system, and belongs to the user "sollins".

6’1‘hcsc are only examples.

47

Multics supports a similar syntax. Supporting the sharing of the
meanings of names was also one of the goals of the TFIP Working Group
0.5 in the mechanisms provided there and described previously in this
work. The property lists of Cocos [11, 20] and Clearinghouse [36] also
have the same ceffect of allowing users of names to share meanings by
incorporating a means of allowing for mcaningful names into the
naming facility.

. Usability of names: [t is casy for people, talking to cach other, to define
and redefine names thus providing multiple names, if onc doces not
suflice. In addition, without appcearing to think, people can reflect upon
the choices of names and sclect the ones they want. This must all be
casy to do when communicating with and through a computer system, as
well.

Providing usability in naming facilitics is generally not one of the
primary goals in designing naming mechanisms. Lindsay [29] in R*
worked toward a naming facility that would make name resolution
simple for the user. His defaulting mechanisms certainly werc a step in
that direction. In fact linking and the default name resolution provided
by allowing the user to specify both a working or current directory and a
set of scarch rules are also a step toward making naming facilities more
usclut without adding to the burden placed on the user of names. These
facilities have alrcady been discussed in other contexts. In a more
general sense, all naming facilities are trying to make computational
facilities more usable,

. Unification: Finally, although several rescarchers have recognized that
the mechanisms used for naming one class of boject are also useful for
others, there is an added argument in favor of a unified naming facility.
In discussing flexibility it was suggested that generic names may be
useful. A generic name may reflect an entity that is not recognized as a
single type of object in the computer system. Instead humans apply the
name to a collection of objects, each of which may be a different type.
This is cssentially what was done in Clearinghouse, with properties. A
user has a set of properties, that may, for instance, reflect different ways
of reaching the uscr, such as a list of clectronic mailboxes, a phone
number, and a US postal address. In fact, these are all different objects,
that have been organized hierarchically, presumably because access to
the information is to be based on property names within user names.

48

Clearly those rescarchers designing and building general name servers
such as Dalal and Oppen in Clearinghouse [36] and lLantz and
FEdigholfer in UDS [28] recognize the general applicability of solving
certain naming problems in such a way that the solutions are usable in
many domains. In addition, several rescarchers have discovered after
the et that their solutions were applicable to other problems. An
¢ aple of this can be found in the Grapevine project [S], where
al”mough it was not planned this way, the authors found that the
mechanisms that they developed for naming mailboxes also served their
own needs of naming other services needed by the mail service itsell. So
Grapevine uses its own mechanisms behind the scenes to provide some
of the user level services. In addition, Grapevine registration servers
that keep track of names are used for non-mail applications as well,
although the detatls of those uses arc not in the published literature.

With this list of observations, the discussion of the problem addressed in this
rescarch i1s complete. The final section of this chapter discusses a further set of
problems. Some of these problem are generally considered unsolved while solutions

to others arc often sought in naming facilities.

2.5 Additional Problems

The deflinition of names and the goals for a naming facility assumed in this research
are broad and simple. The reason for this choice was to provide the common
functionality necded for many different sorts of applications. Frequently, when a
naming facility is built for a specific application or subsystem, greater functionality
is required of the naming facility. Therefore certain naming facilities address
problems that may not be addressed by the facility proposed in this rescarch. This
section contains a list of the most common of these additional problems solved by
some naming facilities. In some cases, the problems identified here represent
problems that even humans with their much more sophisticated naming
mechanisms cannot always solve satisfactorily. This list of problems will recur in
Chapter 4 in a discussion of how the proposed model addresses some of these

problems, in spite of their not being goals of the research.
49

The reply-to problem

When a message or some other information is delivered 1o a user, it 1s often tagged
with a name for the sender or source of the information. There are many situations
in which that name is cither ambiguously defined or undefined in the receiving
namespace. For example, at MIT, onc of the computers is named "Comet”. In
addition, onc the computers at Symbolics is also named "Comet” and the networks
of the two organizations are interconnected. 1 someone at Symbolics on Comet
sends matl to someone at MIT, unless the mail systems change the name Comet to
SCRC-Comet (for Symbolics), the recipient will not be able to respond to the
sender, since the name "Comet™ within MI'T identifies a computer on which that
scnder does not have an account. In a more aggravated form of this problem, there
may be different users with the same name, one on the MIT "Comet” and one on
the Symbolics "Comct." The reply-to problem is that one cannot always reply to a
name, despite the fact that mail arrived from a person with that name. When this
problem is specific to networking it is often labelled as the problem of source route

translation,

The name-equality problem

The name-equality problem arises in trying to answer the following question; given
iwo names do they identify the same object? This is a particularly difficult question,
and although names arc often used to answer it, they do not provide the whole
answer. In a world where every object has a system-wide unique name (possibly in
addition to other names), and access to that unique name is provided, given two
names they can be resolved to their respective objects. By discovering their system-
wide unique names and comparing them the question can be addressed. In other

cases, the objects themselves may support an equality operation.

In addition, there are other considerations that come into play. For example, in an

environment where objects are strongly typed, an object may be wrapped in layers

50

of typing. Consider comparing an object with the object that is its rcprcsonlution7.

It is not clear whether the two are the same or different objects since underneath it
all they are represented by the same collection of bits, but at the higher level they
may nol be accessed by the same mechanisms and - the user may appear to be very

different from each other.,

A reverse sort of situation may arise, in which an object consists ol multiple copies
kept in different places and reliably maintained in a consistent state, It is certainly
possible to find two different names for different copies ol the object, but at some
level, even though the names arc different the two may be considered to represent
the same object. In this situation, two diffcrent collections of bits may represent the

same object.

The question of identity and how it relates to names is complex, and simply
answering the question of whether or not two names resolve to objects that have the
same or different globally unique identifiers may not in fact answer the deeper
question that is being asked. The problem here is that although the assumption may
be that the question to be answered is the one posed above, in fact there is a
collection of more specific questions that nced to be answered, and a function that
answers the one above does not answer the more complex ones. In fact, all the
possible questions cannot be enumerated, because there will be at least one for each
type of object, and all types of objects cannot be ecnumecrated. In addition, the
number of questions will be dependent on the uses of those types, again impossible

to enumerate. Thus, the name-equality problem persists.

7'[‘his is the terminology that is used in Clu [30]. An object is of a particular type defined by the
type name and the names of the operations and their arguments and is realized by being represcented
by another object of another type. The system provides a small number of basic types.

51

The who-is problem

The who-is problem is similar to the name-cquality problem but reaches beyond the
hounds of the computer system, and is therefore related to the goal of providing for
the manifest nature of names. The problem here is the following; a person has
received a name inside the computer system, and knows about an objcct or person
outside the system. The recipient of the name would like to test for cquality
between the inside and outside worlds. 'This is an especially difficult problem,
hecause outside the computer system, humans will usc a large array of other
facilities, perhaps making use of the five senses as well, in order o address the

problem, and those are not available inside the computer.

The mobile-name problem

Part of the goal of multiplicity is to allow a name to be used for more than one
objecct, but there is a problem that can arisc from this. In some cases, such as "Chair
of the committee™ the name must be assigned to no more than one object at a time,
but which object is being named may change over time. The mobile-name problem
reflects this mobility of a name. The problem may be compounded in spanning

multiple computers.

Location transparency

It is very difficult to separate a naming facility from location of the user of the
names. If a user has access to a sct of names in one location, when he or she travels
across the country, the names that he or she uscs should be the same. The person is
the same and the objects being named are the same, but in too many situations, the
host through which the user is accessing the computational resources has a strong
influence on the names that are available. This problem is labelled location

transparency. It makes naming much more difficult for the user.

52

The “a" vs. "the” problem

This problem can best be understood by considering a person asking for "a book
about genetics” initially and then following that with future requests for "the book
about genetics.” In the initial request, onc of a collection might have sufficed. After
the name was bound once to a particular book, that one was the only one that would
suffice. A first step toward addressing this problem can be seen in the Known
Scgment Table in Multics, but generally this is not a problem that has been

addressed thoroughly in naming facilities.

Selection

Both the goals of multiplicity of namces and the recognition of genceric names will
Icad to the problem that a name may not map into a single object in a situation in
which a singlc object is needed. This problem is common for humans who have a
large array of mechanisms to call into play to address it. They may ask about other
names assigned to the possible choices. They may call defaulting procedures in to
play. They may ask about the naturce of the objects. They may ask whether any of
the choices is one that they have choscn previously. They may ask for
rccommendations from others. And the list goes on. The problem is not a simple
one, nor are the potential solutions. Selection functions appear not to be

generalizable and are best left to specific applications to handle.

Persistence

Many facilities have a short-term and a long-term naming mechanism for objects.
Programming systcms arc a prime example of this. Consider the runtime system for
Clu [30]. In this case, objects can be named as typed objects within the language,
but such typed objects are not persistent; they cease to exist with the completion of
execution of the code. The file system is another naming facility for naming
persistent objects. In order to make an object persistent it is translated from its

runtime form into a form that is stored in a file, which in turn is identified through

53

the file system. Clu provides a facility, albeit somewhat awkward, for retaining
some type information when an object is transformed using the "ge-dump” facility

to save an objectin a file.

A second example naming persistent ob: s can be found in the Macintosh
operating system 2], in which files containing data have associated with them the
program that crcated them. When a file is "invoked" that program is invoked
operating on the data in the file. The Eden system [1, 19] provides a third example,
although it is still in the prototype stage. Finally, the Swallow repository [52, 51] was
a prototypical storage lacility designed to support objects rather than files. There
arc other such rescarch projects, but the idea of persistent objects is not widely
accepted yet, and it will be a long time before the small step taken by Apple in the
Macintosh will move even the small set of rescarchers, much less the larger group of
programmers, to the recognition that all objects should have persistence as they do

outside the computer system.

This concludes the discussion of the problems that are and are not being addressed

by the naming facility modelled in the following two chapters.

2.6 Summary

The emphasis of this chapter has been on the problem being addressed in this
rescarch. The problem itself can be stated simply as the design of a naming facility
that supports names and the functions for which they are used, allows for
communication both of the names themsclves and of information by means of the
names, and is implementable. In order to design such a naming facility, one must
understand names, the definition of them, what their functions are, and how they
arc uscd. The definition of a name is simple. A name is an object that can be

associated with another object of any type and that has an equality operation on it.

54

A name has two possible uses. It can be used as handle providing access to the

ohject named by it, or it can serve as a place holder for that object.

There is more o understanding the naming problem than these simple definitions.
The assumption of a federated computing facility means that not only will
cooperative activity occur at the convenience of the communicants, but also that it
will be intermingled with periods of isolated activity. 1t is the necd for cooperation
while allowing for autonomy that makes the problem more difficult. Human
intcractions provide a uscful paradigm for understanding the patterns of
communication and autonomy in a federation of computers; thercfore, human
interaction and naming was explored in order to understand the problem in a
federation better. Section 2.4 presented a list of observations about human naming

that are taken as subproblems of this rescarch project.

In addition, there are a number facets of naming that can be used to understand and
compare naming schemes including the onc to be proposced in this work. They
include identification of the participants in the naming activitics, the assigner of a
name, the resolver of the name if it s being used for access to an object, and the user
of the name or the scope over which the name is known. Furthermore, two
additional attributes of names are the degree of uniqueness of a name and the
degree of meaningfulness. The degree of uniqueness is reflected in whether or not a
name can be assigned to more than onc object or not. Meaningfulness reflects the
information that is inherent in the name and therefore can be carried in the name

itsclf when the name passes from one user to another,

The definitions of names and the problem being defined in this research are
somewhat different from past related work. Others have often imposed a greater
functionality on names and naming facilities, losing generality by including

functions that arc application specific. The definitions chosen here were sclected for

55

i their generality and therefore the assumption that a m&m that addresses them

will be of general spplicability. The next two chapters. present the proposed.
solution, a model for a naming facility. Chmia&ﬁﬂdrw the issue of
1mplemenmbmty

Chapter Three

Sharing and Individuality:
The Model, Part 1

3.1 Introduction

This chapter and the next together describe the model for a solution to naming in a
computer federation. Chapter 2 investigated the computer naming problem posed
in this research in detail by comparing it with human naming. This comparison led
to a fuller description of part of the problem based on the observations of human
naming as well as discussions of the uses of names and a better understanding of an
orthogonal sct of characteristics of names. Human naming is a complex and rich set
of mechanisms. In order to create a mechanism that is currently implementable, the
model proposed here is an approximation. It is not presented itself as a proposal for
the mechanisms used by humans, but rather it is a mechanism that exhibits an

approximation to human behavior in order to meet the goals of this research.

The method for discussing the model is as follows. The model consists of two newly
defined types of objects. One new type, context, supports sharing of names and
name management among a group. The other new type, aggregate, provides an
individual’s viewpoint on those shared objects. Each type is discussed separately,
although the two discussions follow the same pattern. The sct of issues related to
joint management and shared responsibility for shared contexts is separated and
discussed in Chapter 4 in order to simplify presentation of the material. These two
chapters together describe the model. Therefore, a summary of how the model

achieves the goals is left to the end of Chapter 4.

The discussion of each of the two new types proceeds along the following lines. The

57

presentation begins with a definition and discussion of motivation and use of the
type including such issucs as naming objects of this type, initialization, and
containment of objects of this type in other objects of the same type. The discussion
proceeds with identification of the basic operations on the type. A more complete
list of possible operations is included in Appendix A, Finally, implementation
issues relating o each type are discussed, including management of multiple copies,
synchronization of distributed information, communication media for such
distributed information, and a review of initialization questions. The chapter
concludes with three examples of the usce of the two proposed types of objects, first

in a human interaction, and then naming facilities in two existing systems.

3.2 The Context

Definition and Discussion

Definition: A context is a shared object that maps names into either objects or other
names. These mappings are in one of a series of states ranging from unknown or
deleted to fully accepted. [n addition to the mapping information, a conlext conlains
information reflecting the identity of the participants in the sharing and joint
management of the context. Any information in a context may vary over time. There
are two functions on names supported by contexts: access to a nhamed object and

substitution of one name for another.

In the approach in this rescarch of modelling human use of names, a context
represents a focus of interest, and as such may be shared among a group of users of
the names. In its simplest form it is based on the idea of a working directory in a file
system such as Multics [37]. In such a system, the user can change working
directories explicitly to reflect a change in the set of name mappings that is to be
used. The idea of names being mapped into other names is a direct extension of the
idca of links in a file system that allow a name in one directory to be mapped into

another name in another directory.
58

There are two issucs that will be discussed further in Chapter 4 but arc worth
mentioning here. First, one component of a context that does not have a
counterpart in a working directory is the list of participants reflecting the shared
nature ol contexts. 'The group of participants is not only the users of names, but also
the group sharing responsibility for managing the context. ‘Therefore, as a group
they will add and delete names, decide when the context should merge with another
or perhaps when it should divide into several. Second, a mapping in a conlext may
be in one of a number of states, reflecting its previous use in that context. Prior to
any assignment or use in a context, a name will be unknown in the context. Usage
may causc it to move through a series of states until it is fully accepted as a name in
that context. Disuse or explicit deletion opcerations may cause a name to pass
through a scrics of states until it is deleted. Continued investigation of joint

management and the states of mappings will be delayed to Chapter 4.

There is one further aspect of the functionality of a context that must be mentioned.
A name may be reserved without it being assigned to another name or object. There
are many uses for such a possibility. A name might be reserved but not assigned
cither because the object to which it will be assigned does not yet exist or is
unknown or because the name has been deassigned until some further event. An
example of the first situation may arise in programming, when a procedure calls
another procedure that has not yet been written. The second situation inay arise, for
example, when a procedure provides a printing service, but the code is found to
contain so many bugs that it is temporarily taken out of service. The namc by which
it was invoked should remain reserved for the time when the code is back in service

or a substitute is found.

Figure 3-1 provides one possible depiction of a context. It has five entries including
three names for one object, one of which is indirect. Two objects are named. There

are three uscrs participating in sharing the context. In addition, there is one name

59

that is unassigned. Fach entry in the context is in one of several states, represented

l' Nl LI 4

by the letters, "¢, "a", and "d", for "candidate™, "accepted”, and "deleted”.

{object1)

Context
(names and name 1 i_a l e
objects)) nam:e—gt . “:na@ (obiect2)
name3d a e ———
B [—
names |>~ T
(partici- useri
ants —
pants) user2
user3
Figure 3-1:Depiction of a context
Operations

There are four operations of primary importance on contexts. In addition, many
others are nccded to make contexts usable. Only the five basic operations are

discussed here; a more complete list is included in Appendix A. L.

create = proc () returns (context)
This opcration is the local operation creating a local copy of a context. It
creates a context containing no names and only the creator indicated as a
participant. Prior to creation of a shared context, negotiation must take
place. This negotiation is considered further in the discussion of
implementation issues.

add_name = proc (context, name, [object])
A name is added to a particular context. The addition procedure must

60

take into consideration the issues to be discussed in Chapter 4, reflecting
usage of the name and the degree of sharing of responsibility for name
assignment. ‘The object argument may be another name or some other
type of object. In addition, the object argument is optional because a
name may cither be assigned o an object through this operation or
reserved lor future assignment. In this latter case the
assign_object_to__reserved_name operation will also be needed. In
Appendix A1 two opcerations have been provided, once with the object,
add__name, and one without, reserve_name. In addition, an operation is
then nceded to assign an object o a reserved name,
assign__object_to_reserved_name.

translate = proc (context, name) returns (sctfobject])

This is probably the most commonly used opcration on contexts. The
translation operation takes a name and rcturns all the objects and names
into which the first name is translated with the context provided. The
invoker of the operation must be prepared for several possibilities. First,
the name may not exist in the context. Second, it may exist but not be
assigned to an existing object. Third, it might be translated into another
name in another context, and fourth, it might be translated into an object.
Furthermore, the invoker must be prepared for more than one
translation; the sct may consist of representatives from any of the four
possibilities.

untranslate = proc (context, object/name) returns (set{name])

As discussed in Scction 2.2, this operation is the reverse of translate,
although the values returned by this operation are more predictable than
for translate. In this case the only response is a possibly empty set of
names. Again, the invoker must be prepared for the response being a set
of more than one name. This operation was found to be especially useful
in the eclectronic mail implementation because mail would often arrive
from senders not using this mail system, but rather their own,

add_participant = proc (context, participant)
This operation is needed in order to define the list of participants sharing
a context. The means of identifying participants has been cxcluded from
the naming facility and this research. The reason for this decision is that
identifying participants may involve complex activities that certainly do
not fall within the bounds of naming as dcfined here. For example,
participant identification may include sophisticated authentication

61

procedures. All that will be said here is that a mechanism for identifying
participants must be available and it will vary at least [rom one system to
another and possibly from onc subsystem to another,

In order to usc contexts, many additional opcrations are nceded. Appendix
A.1 contains such a list. These operations include operations for deletion of various

picces ol information, such as names, bindings, participants.

Implementation Issues

The implementation issues for contexts fall into three categories, cffects of
federation, communication, and naming of contexts. In order (o provide service in
the face of discontinuities in cooperation in a federated compulter facility, a context
that is shared across such a federation must be implemented as multiple copies. The
rcason for this is that if a name has been defined in a locally known context for a
local object that name must be usable for that object even if the remainder of the
federation is not in communication. In addition, there is a further complication. It
is possible to define a context in such a way that any individual participant is
allowed to define new names in the context. In this case, if the federation is in a
disconnected state, the local user should still be able to define new names in the
context. This also points to the need for a local version of the context. On the other

hand, local versions or copices require synchronization.

The synchronization need not be perfect. As a result of federation, copics of the
context need not be kept in perfect synchrony. In fact, for a human interface such
bechavior is probably both unnecessary and undesirable. As long as mutual
agreecment on the contents of the context is eventually reached, it need not occur
instantaneously or even atomically. Modifications to a local copy need only occur
by the time of next use alter their arrival at the local site. This may appear to cause
problems, for example, if two users attempt to define the same name in a situation in

which each name may have only one translation. Such a situation should occur. If a

62

context is created with the restriction that a name occur at most once in it and all
users have equal responsibility for assigning names, no user can be allowed to define
a new name unilaterally, Communication with the other copies of the context is a
necessity and such a proposal for a new name can be at best only tentative, pending
synchronization with all other participants. The issuc of synchronization will be

discussed further in the consideration of implementation issues for aggregates.

In building a naming facility, one must consider what information needs to be
communicated and how that will be achieved. The sccond arca of concern in
implementing contexts is communication. There are two sorts of information that
must be communicated in relation to using contexts. The first is the names
themsclves and the second is the negotiation information related to management of
the shared context. Closely tied to this is a determination of the medium of
communication. As will be seen in Chapter 5, in the electronic mail system, the
medium of communication was the mail itsclf. The medium of communication and
the usc of the names will determine the representation form of the names that are
passed among participants. In addition, the medium of communication and the
objects being communicated will determine the form of communication that is
available for the information needed to manage a context. Management
information is nceded in order to rcach agreement on initializing a new context as
well as to make decisions about adding and deleting information in the context.
There is an underlying assumption in this discussion of communication and
initialization that there is some basis for initiating communication. There must be
some agreement among the participants on a communications protocol. In talking
to someone one has never met before, there will probably be an assumption of a
common language and possibly some common experiences. Lacking that there may
be an assumption of understanding certain facial and hand expressions. Without
some basis from which to begin, negotiation and communication cannot be

established.

63

The final implementation issuc in relation to contexts is how contexts are identified.
Contexts must be identifiable in order both to manage the information in them and
to usc them in name translation, accessing objects given names. Since a context is an
object it can be named in another context just as any other object can be named.
This quickly reduces to a problem of mitialization, that was discussed above,
Agreement must be reached not only on the fact that a context will be created, but
also how it will be identified. Interestingly, humans use more than a name to
identify a context. They also use participants. Since participant information is part
of every context, it can casily used in the selection process in choosing a context
from within which to use names. Because participant identification may not be by
name, selection of a context based on participant information does not fall under the
responsibilities of the naming facility. This issue of selection versus naming arises in
an important role in_ a programming support cnvironment and therefore is discussed

further in Chapter 6.

To review, in this section an object type called context has been proposed as the
basis for sharcd naming. [t is jointly managed by a sct of participants and contain
not only the relevant naming information but also some form of identification of the
participants. Name translations in a context can be in one of a number of states
reflecting previous usage of the name. The basic operations on a context are to
create a context, add names and participants to the context and to translate names
into objects. In addition a number of other operations are needed for general use
and management of contexts. The assumption of a federated computing facility
leads to the implementation requirement that multiple copies of a shared context
exist, onc for each independently operating entity. Further issues that must be
considered in any implementation are synchronization of those multiple copies, how
communication occurs and what is communicated, the basis for communication, and
how selection that is not straightforward naming, such as in selecting a4 context on

the basis of participants as well as an agrecd upon name, is to occur.

64

3.3 The Aggregate

Definition and Discussion

Definition: An aggregate is a private object that consists of a current context and an
environment. The current context is shared among aggregates belonging to the several
participants of the context. An environment is a partially ordered set of contexts used
in the partial ordering specified to translate names not known in the current context.
Any information in an aggregate may vary over time. The functions on names
supported by aggregates are access (o a name object and substitution of one name for

another,

The view taken in this research is that all naming is done through the naming
facility. "Ihis is not to say that there are not other ways of identilying and accessing
an object, but only that all naming is to be through the naming facility. Each
namespace of a user is an aggregate. The aggregate is a private view of a shared
context. The context is the namespace shared by a group for a particular purpose,
with a particular focus. In addition, cach participant has his or her private view of
the sharing. 11 a group of pcople have a conversation, they will jointly define terms
and use nicknames on which they have agreed. In addition, the issue of the
participants” individuality must be considered. In order to capture these ideas, an
aggregate 1s composed of two components. The [irst is the current context which is
the shared context representing the focus of the group. The seccond component is
the environment, a partially ordered set of other contexts in which the individual is
also a participant and from which he or she may wish to draw information. The idea
for the structure of an aggregate is derived from the concepts of working directories
and search rules. The current context is derived from the working directory and the
environment, from search rules. The user of names would like (o be able to draw on
other experiences without having to be explicit about it. Unlike the search rules of

Multics or Unix, in this research a partial rather than a complete ordering is

65

permissible. This decision is in keeping with the fact that names may be resolvable
to more than one object. If there are several contexts at the same priority in an
aggregate, then all resolutions of a particular name in those contexts have equal
priority within that aggregate. A "rule™ is a set of contexts at a single priority in an
cnvironment. Figure 3-2 is one possible visualization of an aggregate. 1t has the two
part current context and an environment with three rules. The first contains two

contexts, the second, one,

Operalions

The operations on aggregates fall into two categories, those that have counterparts in
contexts and those that do not. Even the operations in the first category are not
identical to the comparable operations on contexts, The opcrations on

environments, adding contexts to rules and adding rules, arc completely new here.

create = proc () returns (aggregate)
Creation of a new aggregate involves creation of a new context as
described for contexts as well as creation of an cnvironment. Although
this operation involves creating a new context as the current context, in
the mail implementation, as will be seen in Chapter 5, creation may
involve using a pre-cxisting context as the current context.

add_name = proc (aggregate, name, [object])
This operation is quite similar to the comparable operation on a context
except that an aggregate is identified and the addition is made to the
current context of that aggregate.

translate = proc (aggregate, name) returns (setfobject])
The translate operation on an aggregate is somewhat different from
translation on a context, above and beyond the fact that one of its
arguments is an aggregate. The net result is similar, return of a set of
objects having the name assigned to them. The difference is in the
aggregate’s resources used. First, the current context is checked. [f there
iIs no translation there, the highest priority set of contexts in the
environment is checked (the first rule in the environment), and so on
until a rule in the environment is found having at least one translation.
All translations at a particular rule are considered equally valid. Thus, the

66

{aggregate?)

AGGREGATE1

N (aggregate3d)

envi-

ronment Q {aggregated)

(aggregateb)

(namls ade
obecr#.) |

context | l

current

participants

Figure 3-2:Depiction of an aggregate

order in which contexts are checked within a rule and the order of the
returned valucs are meaningless.

untranslate = proc (aggregate, object/name) returns (set[name])
The untranslate operation is also somewhat different from untranslation
on a context, in the same way that translate is different. If the object is
not named in the current context, then the environment is used. Again,
all untranslations within a particular rule are considered of equal
importance. The untranslate operation was found especially useful in the

67

clectronic mail implementation presented in Chapter 5. Because
incoming mail might have been generated using a mail program not
implementing aggregates and contexts, the untranslate helped provide the
user with a more uniform interface. 'The add_aggregate operation also
allows the user to assign the incoming message to an aggregate in order
that the untranslation operation occur in that aggregate.

This opceration is identical to the operation of the same name for contexts
except that 1t adds a participant Lo the current context of the aggregate
provided.

insert_rule = proc (aggregatel, rule #, aggregate?)

This operation affects aggregatel, by inscrting the current context of
aggregate? as a new rule at the specified number. The reason that an
aggregate is specified for addition is that it would be possible, as will be
noted in the implementation discussion, to name only aggregates and
identify contexts only as the current context of an aggregate. In order for
this opcration to succeed the current context of aggregate? cannot be in
some other rule.

add_to_rule = proc (aggregatel, rule #, aggregate2)
This operation is similar to insert_rule except that it adds the current
context of aggregate? o the specified rule in aggregatel. Again, it does
not succeed if the context is already in another rule.

The additional operations neceded to make aggregates usable are listed in Appendix
A.2. These opcrations include a selection of operations for management of the

environment as well as those operations inherited from contexts.

Implementation [ssues

Two of the issues discussed with respect to contexts must be reconsidered in
discussing aggregates. The first is the synchronization of copies of a shared context,
each of which is the current context of an aggregate. The second is naming

aggregates. In addition, a different form of initialization must be considered.

68

An aggregate reflects the owner’s private view of a shared context. It is possible (o
use that advantageously by recognizing that changes o a private copy of the shared
context need not occur until the owner of the aggregate actually uses the context.
Therefore, delaying such changes is feasible. This allows for a relaxation in
synchronization of the multiple copies ol a context with the understanding that such
delays in updates not be visible to the owner of the aggregate. 'The electronic mail
facility takes advantage of this by having the bearers of new information be the
messages themselves. Updales to a current context only occur as new mail items
containing any new information are read. Other synchronization mechanisms are
possible and can be based on the medium of communication. What is important to
note here is that it is not necessary to provide any form of update atomicity because

the level of cooperation among participants is not close.

Naming of aggregates is the second implementation issue. In the discusston of
contexts, the suggestion was made that contexts be named through the naming
mechanism. The same holds true for aggregates. There is a further question related
to naming aggregates and contexts, that of whether separate names are needed for
aggregates and contexts. The approach that is taken in this rescarch is that a context
can be named simply by identifying it as the current context of some aggregate.
This implies that a context can be the current context of at most onc aggregate for
each participant involved in sharing the current context. [t also implies that a
context cannot be divorced from its aggregate. An alternative would be to allow a
user of the naming facility to create a new aggregate that would have a current
context that was alrcady the current context of another aggregate owned by that
same user, but having a different environment. Uses for such a facility are not
obvious and it therefore adds unnecessary complexity. Such a facility is available in
the electronic mail facility, but no use was ever found for it. If a use is found, a

cleaner solution to the problem may be that the user who wants to use a context

69

twice in different aggregates create two identitics as different participants. This
latter alternative allows the user of the context to distinguish between the two

aggregates.

The final implementation issuce o be addressed here relates to initialization. In
addition to the discussion related to contexts, once must consider how a uscr gets
started. The proposal here is that cach user start with some basic aggregate that is
the private world of the individual. That private aggregate would contain a current
context of private names. In addition, the individual may want (o include more
recent sets of names in the environment of that aggregate. The environment of the
user’s basic aggregatle may change more frequently than most other environments
reflecting recent experiences. The set of contexts in the environment may be fairly
stable, but their arrangement into rules may vary. In addition, although this was not
discussed carlier, an enhancement to the creation operation for aggregates would be
1o insert a single context, the current context of the user’s basic aggregate, into any
newly created cnvironment. In the electronic mail facility, the first time someone
uses the facility a basic aggregate containing a private, unshared context is created.

When a new aggregate is created it is completely empty.

To summarize the contents of this section, an aggregate is the only interface that the
user has to the naming facility, although it is composed of contexts. The aggregate is
not shared, but consists of one jointly managed current context that is the focus of
most of the activity in the aggregate and a private environment within which names
used in relation to the current context but not defined there may be recognized. In
addition to the operations provided for contexts, the only additional operations
necded for aggregates are those (o manage the cnvironment. Aggregates can be
named using the naming abilities of aggregates themselves. In addition, since from
each user’s viewpoint a context is in exactly one aggregate, the context need not

have a name separate from the name of the aggregate in which it is contained. The

70

fact that updates to a shared context need not occur until the user next sees the
context makes careful and immediate synchronization of multiple copies
unnccessary. Finally, cach user will have a private set of names managed in a

private or basic aggregate. The current context of that aggregate is not shared.

3.4 Examples ol Uses of Contexts and Aggregates

With the definitions and discussions of names, contexts, and aggregates in place, a
presentation of how they can be used to describe scveral existing situations is in
order. "Three examples arc discussed here. They will also reappear in Chapter 4.
The three are a conversation between two people, the Known Scgment Table in

Multics mentioned earlier, and the cataloguing facility in R*,

The particular example of a human interaction used here is one of a large number
presented by Carroll [7]. Carroll was using data collected by Kraussg, although it
was analyzed further by Carroll and his colleagues and presented in the Appendix of
Carroll's work. The situation was as follows. Eighteen subject pairs were observed.
For cach pair, the two subjects were arranged so that they could not see each other,
but could communicate. They were shown a collection of graphical patterns in
different spatial arrangements for each of the two subjects. The subjects were to
identify jointly all the figures. The complete conversations were originally recorded.
Carroll and his colleagues extracted all the references to the figures, sorting them by
reference to each figure, resulting in 212 different situations. The analysis of this
data presents the subjccts rcaching an agreement in most cases about a name and
then later using that name. Just one of these will be presented here to exemplify

some of the procedures of joint definition and use of names. Carroll used the data

8/\ccording to Carroll, these data were originally discussed in the literature by Krauss and
Weinhcimer [21], and later again by Krauss and his collcagues in [22, 23, 24]

71

to study the sorts of names that were chosen and the procedures by which they were
g o . ~ C . . .

sclected. The example chosen is in Figure 3-3%. The Arabic numerals refer 1o page

numbers of the original obscrvations and the Roman numerals identify the subject.

The page numbers were included to indicate the distribution of the references.

Considering this example in the terms the model presented in this rescarch, the two
subjects have a shared context predefined for them. When their discussion is
complete it will contain names for all the objects shown to them. In addition, ¢ach
has a private view of the shared context. Perhaps, subject | was recently on a farm
and thercfore a context defining farm animal names may have been high on the
environment list for this subject. On the other hand subject 11 may have had
nothing unusual occur recently leading to the suggestion of "horse's head”. (See
Figure 1-1 on page 21.) In this example, it is clear in addition to the sharcd context
used for defining names for the figures being shown to the subjects, they assume
that they have other experiences in common, in this case expericnces that would
give them both the knowledge of the shape of both a seahorse and a horse’s head.
Those experiences may well not be shared experiences, but cach will have contexts
in which those names are defined and the assumption is that they are defined in
similar ways. Before the series begins for these two subjects, they will have some set
of contexts that they will bring with them to the interaction, thosc contexts forming
their environments, The shared context will be empty until they begin defining
terms. The negotiation process through which they go will be discussed further in

Chapter 4, in considering how agreement on names is reached.

The Multics Known Segment Table (KST) [37] was described earlier in Section 2.4.

Normally, when a process is initialized the KST is empty. [t is generally the first

9’I‘his dialog is from p. 13 of Carroll [7]. It is between the second subject pair and is discussing the
figure labelled B by the experimenters.

72

1.1 sortof like a head on it, an animals head, sort of like a horses head
1.11 horses head

1.1 two points on the top

LIT sort of ike it’s got two points on the top
1.1 ascahorse

LI and it comes rcal narrow at the bottom
1.I like a scahorses head

2.1 same scahorse

3.1 scahorses head

3.1 scahorse sort of thing

4.1 scahorse

5.1 seahorse

6.1 seahorse

6.1 scahorse

6.11 scahorse

6.1t scahorse

6.1 seahorse

7.I1 scahorse

7.1 scahorse

7.1 seahorse

8.1 seahorse sort of thing

8.1 seahorse

9.1 seahorse

10.1 seahorse

FFigure 3-3:Fxample of joint selection of a name

entry in the search rules. When a name needs resolution in the process and that
name is not in the KST, another rule is used to resolve the name and then an entry is
made into the KST. From that point forward, any reference to that name is resolved
in the KST, assuming the KST has highest priority in the scarch rules. Thus all
occurrences of that name in any segment usced in that process will be resolved in the
same way. The search rules can easily be compared with the environment of an

aggregate and the KST, when it is at the top of the list in the search rulcs, can be

73

compared with the current context. The architects and designers of Multics were
awarc when this mechanism was created that there is a potential for incorrect
resolution of names, but it was decided that that cost was worth the bencficial
tradcoff. Once in a great while, the mechanism surprises a programmer or uscr, but
in general the mechanism provides the desired and expected behavior, The same
tradeolt will exist in the mechanisms proposed here and the same choice is made.
The idea missing from the KS'T is any representation of participants, since by design

there was only one shared context and participation was not an issue.

In the catalog of R*, a distributed database management system [29], Lindsay made
a similar choice. In that case, each user at a site has a set of single component
nicknames. A system name consists of four components, the creator’s name, the
creator’s site, the crcation site, and a name for the object that is unique when
combined with the other three components. [any of the first three components is
not specificd there are mechanisms for choosing default names. In addition, if only
a single component name is specified, the user’s Jocal table of synonyms will be used
for possible name translation prior to any other defaulting that may come into play.
[n this case, the system-wide catalogue that translates system wide names into
objects is a single shared context. The private, local synonym tables provide private
views on that. In addition, another mechanism, the defaulting mechanism is
inserted in the middle. It provides a non-naming function, in terms of naming as
defined in this research. The combination of mechanisms in R* as described by
Lindsay provide a tradeoff similar to that of the Multics KST. Again, translations
will be made using a common table, with possibly undesirable effects, but in most

cases acceptable and even desirable effects.

These three examples point out that not only does the model describe patterns of
human naming, but also choices similar to those of this research have been made in

other computer systems with similar tradeoffs. The choices were made knowingly

74

and successfully. Chapter 4 will return to the seahorse example: in discussing in
detail the problems of candidacy and joint management %m These are an
important part of the proposed mechanism and ﬂmﬁm were separated in order to
give them a more thorough discussion.

75

Chapter Four

Joint Management and Name Assignment:
The Model, Part 11

4.1 Introduction

This chapter completes the discussion of the model. The aspects of the model
presented in this chapter are the joint sclection of names to be in a shared context
and representation of state changes with patterns of usage of names. Chapter
3 addressed the fact that names have two uses, as handles for accessing the objects to
which they are assigned and as place holders for those object. Since a name is
anything that fits the definition presented there, exactly how a name is contained or
passed between users is not specified. That is an implementation issue, not part of
the model. The issues addressed here are how and where names are entered into a
context and which names are chosen. Although these issucs involve possibly
distributed decision making, for simplicity it will be assumed that lack of
synchronization and accessibility are not a problem. The issues of synchronization
and multiple copies will recur in several places. The problems discussed in this
chapter involve agreement at a different level of abstraction from multiple copies of

a context,

The problem of name selection can be decomposed into two separate problems.
The first is the determination of which names are proposed for entry into a
particular context. The naming facility puts no restrictions on these choices other
than requiring that names fit the definition of names in Chapter 2 and they are
supported in the implementation of contexts and aggregates. They are solely the

responsibility of the proposers of names. The second problem of name selection is

71

determination of how and when a name becomes part of a context. There are two
means by which a name can be entered into a context. The first is as a proposal
from onc or more participants and the second is as the result of merging two
contexts, thus creating a new onc. Thus the participants sharing in the use of a

context are also the proposcers of new potential name assignments.

Direct proposal of a name by participants Ieads to recognition that there are many
possible factors that may come into play in determining whether or not a name will
be chosen by a group of communicants. Some of those will in fact be influcnced by
the form of the name and possibly its relationship to other names that have already
been accepted or rejected. Which factors are relevant to a particular context for
both addition and deletion will determine part of the nature of that context.
Therelore the functions of acceptance and deletion must be parameters of the type

of a context.

When a name is proposed as a candidate for acceptance, it is transformed from
being unknown to being tentatively accepted. In this model, the degree of
acceptance or deletion is represented as one of a series of states. That scries can be
depicted by a state diagram including transitions between the states. A name may
pass through a number of candidate states before being [ully accepted. The
transitions from one such state to another will occur when certain factors arise
during usc of the name. For example, it may be that anyone within a group can
propose a name, moving it to the first candidate state. As it is used repeatedly, it
moves through states toward the accepted state. Many factors, one of which is
frequency of usc, may affect progress through the candidate states. Perhaps, it can
only be truly accepted when it is used by the organizer of the context in which it is

being proposed. Figure 4-1 is a depiction of an example of a state diagram.

78

unknown

deleted

Figure 4-1:An examplc of a state diagram of the transitions of context entries

The second mecans of entering names into a context is through merging. In this
research a proposal was made for a collection of separate namespaces called
contexts. There will be occasions on which it will be necessary to merge two
contexts to form a third. Even if the contexts are parameterized by the same
acceptance and deletion proccdures, merging two contexts may be cecmplicated. A
table can be used to indicate the state of each entry in the new context based on its
state in the original contexts. Figure 4-2 presents one such example. In such a table
cheices must be made about the state of an entry in the merged context given its
possible states in the two contexts being merged. The fact that a name is in a
particular state in a particular context is the result of the history of its use in that
context. If the two source contexts contain different states reflecting different
aspects of the history of use of names, the choice of states in the newly merged
context will be especially difficult to determine, and probably cannot be handled by

any general procedure.
79

u u | d|ct|ct cl | ci u unknown
d | d d |ct|ct cm | cn d deleted
cl jct |clicl|c cm | cn (o candidate1
c2 |cl|cl|cl|c2 cm | ¢n c2 candidate2
cn candidaten
cn | €1 |cm|cm|cm cn | a a accepted
ajcljcnjcnicn al| a

Figure 4-2:An example of a table for merging contexts

Given this background the factors that may play a role in the functions of
acceptance and deletion can be investigated. Section 4.2 discusses a simple example
to highlight some of the factors and how they come into play in accepting a single
name. A larger list of factors is discussed in Section 4.3. Such a list cannot be
complcte because one cannot predict all the possible uses of names nor the joint
decisions among participants of criteria for accepting and delcting. The most that
can be done is present a well thought out set of likely factors. This will be followed
in Section 4.4 by a discussion of how the factors might come into play as parameters
to the acceptance and deletion opcrations. A sample sct of choices with respect to
those factors appears in Section 4.5. Merging is discussed in more detail in Section

4.6 and the chapter concludes with a review of the model as presented in this and

80

the preceding chapters and how the model as whole addresses the goals presented in

Chapter 2.

4.2 A Simple i<xample

‘There are many possible factors that may affect the set of names in usc in a current
context. There are probably different factors that affect acceptance than deletion.
Delction is considered here to be less important than acceptance because a name
need not be used even i it is in a context, although there may be special situations in
which dcletion is important. Such a situation might occur if each object were
altowed only onc name in a context. I a name fell into disuse, it might be that the
name itself was causing a problem. For instance, it might be difficult to use, causing
an undesirable modification of behavior of the users. Therefore, it would be useful
to have such a name deleted, allowing for a new one. The reverse situation in which
a name can be assigned to no more than onc object may also causc a problem of
name conflict. In this situation, a name cannot be reused and assigned to an object
unless it is not naming anything else. Although deletion is of frequent concern,
acceptance is considered here to be even more important and, thercfore, the focus

here will be on acceptance.

Three examples were presented in Scction 3.4. Of those only one involves
negotiated responsibility for choosing names. That one, the conversation between
two experimental subjects, also reflects degrees of acceptance of a name, not found
in the other two. Since the human interaction provides an example of a set of
factors that may come into play in such decision-making, it will provide the starting
point for the discussion of factors involved in such joint decision making. Those

factors are also relevant to non-human interactions.

81

This discussion returns to Figure 3-3 on page 73. There are several things to notice
about the interaction presented in this figure. The first is the degree to which
negotiation is taking place. I makes the initial comment, H picks up with "horses
head”, then [modifies i, and [T picks up on the modification, | proposes
"scahorse”, 11 adds to the modification, I uses the head idea once more, and they
scttle into "scahorse”, both using it from then on, The second and third points stem
from noticing that all this negotiation happens on the first page. There is a rather
intensc period of negotiation consisting of seven references to the figure, after which
agreement has been reached. The total number of references before agreement is
reached is not high, in this case seven, although in many other examples it 1s even
lower. In addition, because this occurs in a short period of time, the frequency of
reference is high. Fourth, the name passes through several mutations, beginning
with a comparison toa "horse’s or other animal’s head” to assuming just the term
"horse’s head"”, through the stages of "scahorse”. Carroll |7] discusses various forms
of mutation that may take place, that will be discussed further in Scction 4.3. The
fifth point is a little more obscure. Although the researchers chose the label "B" for
this shape, the subjects chose a name that has some meaning to them; it describes a
shape that they both understand. It is something that each assumcs the other will
know and understand. Such a name is something that the participants realize that

they share with each other in a different context.

Attention must be given to the fact that only a single example was discussed above.
One cannot make generalizations based on it, but rather use it to exemplify some of
the sorts of factors that are considered to be important in studying the procedures
used for jointly agrecing upon names to be shared. This particular example was
chosen to reflect several of those factors. Other examples may reflect other factors,
but most did not seem to reflect them as clearly. The next section will discuss a

non-exhaustive collection of factors that affect joint agreement on names.

82

4.3 Factors in Joint Management

Given the five factors that played a role in the example presented above of two
participants agreeing upon a sharcd name, a larger sct of factors will now be
considered. These factors are derived from a varicty ol sources and modifications of
observations about them. One obvious source is the work by Carroll [7, 54]. The
other
various [tlc systems.

content of a name and the mechanism by which agreement is reached in sclecting

major source is information that is considered important to record for liles in

the name. In fact the two can be closely tied to cach other,

Factors:

The usei’s relationship to the group: The user of a name may play an
important role in reaching an agreement on a name. The user may be in
some sort of either dominant or subordinate role in relation to the
recipicnts of the name. As will be scen in the programming support
environment, a librarian may have special privileges when it comes to
defining names in a shared context, while the individual programmer
may only be allowed to make suggestions to the librarian.,

The recipients’ relationships to the group: As with the user of a name,
the role of the recipients may make a difference as well. For instance, 1t
may be that, if the dominant participant is amiong the recipients, the
usage will carry more weight in upgrading the state of the entry in the
current context than if only subordinate participants sce a name. In
addition, the number of recipicnts may be significant.

The application’s usage of the name and relationship to other
applications: How the name is used, by which application, may
determine how much weight the usage of a ncwly proposed name or a
name in a candidate state will have. It may well be that a context is used
by several applications, such as one that is used both for source code and
compiled code. It may be that for proposing a new name for source
code, agreement is necded among the various participants, but once that
has been decided, naming a compiled object that is derived from such a
source code object can be done without any further negotiation. In
addition, an application program may use names in various functions,

Initially in this chapter a distinction was made between the

1

some more important than others. This factor may be tied closcely to the
factor of previous choices.

Time of usage: The time at which a name is used may have an cffect on
its state. For example, it may be that at certain times of the year, usage
becomes much heavier and, 1in order to avoid delinition of many names
that will not be used much again, this fact may influence the way the
other factors arc taken into account.

Number of uses: This factor may alone be the most important. In the
example the word "scahorse” was used in conjunction with other words
four times after its original proposal before it was accepted. In the
electronic mail implementation, number of uses is the sole criterion.
This factor may take on numerical values up to a limiting value. In
addition this factor may be used in conjunction with others such as the
uscr or the recipients,

Frequency of use within a period: This factor has two important aspects.
The first is the frequency of usage. It may be that a name that is used
once a day is less likely to be accepted than a name that is used once an
hour. The other aspect of this factor is the period over which the
frequency extends. It may be important that a name not only by used at
least once an hour, but also that this usage pattern be maintained for at
feast two days, or some similar requirement. It should be clear that this
factor cannot become relevant until a name has passed the initial
proposing stage and has become a candidate for acceptance.

Mutation: Mutation was mentioned in the discussion of the example in
the previous section. There identification changed from comparison to
an animal’s or horse’s head to a seahorse’s head to a scahorse. These
changes are not very great. If the changes had been less closely related
to each other, perhaps more uses or more negotiation would have been
needed to reach agreement. Mutation is also related to the next factor as
well.

Relationship between a description and the final choice of a name: If the
original description was "like a scahorse” and the final name was
"seahorsc"”, arriving at that agreement might be casier and quicker than
if the original name was "likc a horse’s head”. [In turn this latter might
be casier than if the original had been "like an animal’s head". Carroll

84

analyzed the 212 different joint identifications presenting a sct of
conclusions about possible strategies used o arrive at a name given a
description. He also analyzed the data for number of occurrences of
cach. The following is simply a hist of them in decrcasing order of
frequency:

1. The Whole-Description Strategy in which the whole description
(which may be a single word or small number of words) is used as
the name,

2. The Content Strategy in which the final name comprises the
content of the orginal description.

3. The Content-Noun Strategy in which the major noun of the
description becomes the name.

4. Minor Literal Strategies in which the name finally choscn plays a
minor role in the initial description.

5. Nonliteral Strategies into which all other examples that reached
agreement on a name fall. This includes strategies such as use of
synonyms or other semantic relationships in combination with one
of the previous strategies.

Depending on which strategy is being used in arriving at a name, the
period of negotiation before acceptance may be shorter or longer. This
factor, as many of the others, is likcly to be used in conjunction with
other factors.

- Previous choices: This factor was mentioned in the example. [t is based
on ideas both of Carroll [54] in his work on human factors and
observation of operating systems throughout this research. Many
systems provide for similar character strings to be used in situations to
indicate rclationships among the named objects. In addition, Carroll
suggests that names displaying what he calls congruence are easier for
people to handle. What Carroll is describing is complementary terms, or
opposites, such as using the term "down™ rather than "return” for the
motion that is the opposite of that labelled "up” or in the electronic mail
example using the names "sender” and "recipient” rather than "sender”
and "reader”.

85

- Sharing in other contexts: This factor was also discussed in relation to
the example. [f the proposer ol a name and the recipients of the
proposal recognize it from another shared context, perhaps it should be
more casily accepted than if the recipients have never seen the name
before.
Ten factors have been suggested here. In different situations different factors may
be more or less important. In the example only live of them werce identified. The
proposal in this research is that the lfactors be specified on a per-context basis. In
fact, the proposal here is that the type context not be a type but rather a type
generator and that the acceptance and deletion factors and their interrclationships
form the basis of the parameterization. Paramecterization is discusscd further in the

next two sections.

4.4 Parameterization of Joint Management

This section addresses the means for using the factors listed in the previous section.
First, the implementor using the context type gencrator must understand how those
factors will be evaluated by the context type for both the acceptance and deletion
operations. In addition, the implementor must identify the states through which a
name may pass in moving from unknown in the context to perhaps accepted as part
of the conlext. The factors may be cardinal numerical values, ordinal values, binary
(true/false) values, based on a table of values, or related to other previously stored
information. The finite state representation of how these factors affect acceptance
and dclction must also be defined. They will result in a diagram such as Figure 4-1.
Both of these were done in the electronic mail implementation and are presented in
Chapter 5 with the state diagram in Figure 5-6. For now, the nature of those factors

will be considered further.

The relationships among the uscr, the recipients and the rest of the group are likely

to fit into some sort of ordinal arrangement of the participants. A simpler

86

representation of information about the recipients s a count of the number of
recipients without regard to the relative importance of them. In addition, if
different applications have different effects, this will best be represented as a relative
relationship among the applications. Onc is most important, has the most effect,
another has the sccond most, and so on down (o the least effective. 1t may be that
these can be reduced to binary relationships by recognizing only two categorics,
those people or applications that have more elfect and those that have less. In the
simplest case, all participants and all applications are of cqual importance. In this

case, a count of the number of recipients may still be a factor.

The next three factors, time of usage, number of uses, and frequency of usage within
a period, will all standardly have cardinal values, although the latter may have
several possible values for different periods. It may be that approximations are
made for cach of these. 'Time of usage may simply be categorized into onc of several
periods, e. g. prior to some time, during a time period, or after a particular time.
Number of uses may be used as a value up to some limit. This is what was done in
the clectronic mail system, where the himit was three. Finally, frequency of usage
within a period may be recorded only for one fixed period (5 minutes or one hour or
one day, but not all three), and again there may be a imit. In addition, there may be
an upper or lower limit on the frequency; e.g., if the frequency is more than five per

time unit, how much more may be unimportant.

Mutation and the rclationship between a description and the final choice of a name
are probably the most difficult factors to which to assign values for computation.
One might attempt to assign relative numerical values, but the basis would have to
be some heuristics. For this some of the techniques developed in the Artificial
Intelligence community for recording the relationships between words and concepts
should probably be employed. Unfortunately, more is needed than simply to record

relationships. In addition an assignment of relative importance to various of those

87

relationships is needed and one needs the capability for adding new, yet unknown
rclationships and understanding how they fit into the previously existing schemes.
In an opcrating system cnvironment where cfficicncy of operation is critical, these
sorts of activitics arc likely to add much complexity o the computation and

thercfore reduce cfficiency.

The cffects of previous choices may be evaluated in different ways, For instance, if
at least the first three characters are the same as another previously accepted name,
it might be that the boolean value True will be chosen for this factor, or False if
fewer than three characters match, One might provide an absolute value of the
number of characters that match with a lower limit, so that at least two must match
before this factor comes into play. Congruence is more difficult, and probably
involves a dictionary in order to provide recognition of opposites. As with the
semantic relationships discussed above, if such operations for acceptance and

deletion arc included efficiency will probably be greatly reduced.

The final factor is sharing in other contexts. This may be given relative values based
on how many people know the name in another context and the state of the entry in
that other context, or it may simply be a binary value of whether the name is known
to all and accepted in another context. Although this sounds like a straightforward
computation, in fact there is a complication because the time and circumstances of
the computation will be unpredictable and may be variable at dilferent sites. For
example, if the shared context is implemented and exists as a single object (whether
or not there is replication), its state will be consistent at all times. This was not the
case in the mail system. Multiple closely related versions existed, one for each
sender or recipient. The updates on them were done independently. In a situation
such as that, the state of the world may be different at the time of each update and
therefore the results of using external information vary over time. In the mail

system, that was acceptable because distributed information was not used in the

838

process of defining names. The user’s expectation is very important in such a
situation, since the users believe that they are communicating and reaching
agreements with cach other. 'The naming facility is unacceptable if routinely users
believe that they have reached an agreement, only to discover that there are

differences of opinion on this.

4.5 A Sample of Choices

This section presents a selection of factors that might be used for human interaction.
These choices provide an example that might appear in the implementation of a
user interface. Therefore such values as times and number of repctitions are chosen
to fall within common human undcrstanding. In another situation different choices

might be made.1?

Of primary importance is the number of uses. Because of Carroll’s observations that
small numbers of uses in fairly quick succession are most common in human
conversation, the number four is used. The period for humans should be on the
order of onc day. This would require keeping a minimum of four timestamps for
usage. An assumption is made here that all participants have cqual status within the
group, and that as with the clectronic mail system, each participant has a private
copy of the context, the set being kept in approximate synchrony. This means that
as each participant secs four instances of a name within one day, the name becomes
accepted for that participant. Since this is application independent, neither the

factor of application nor time of usage is included. Of the remaining four factors,

10’!‘110 only test of such choices in this rescarch effort was made in the implementation of the
electronic mail system. The choice there was kept especially simple, but implemented so that others
could be substituted casily if the occasion arose. Duc to limited use of the software, little was learned
about this aspect of the implementation and it was felt that alternative decision making mechanisms
could not have been tested well enough to be of value.

89

three are not included here because of the complexity of including them. These are
mutation, relationship between a description and the final choice of a name, and
sharing in other contexts. The final factor, previous choices, can be included in a
limited form. For example, given a name with a particular extension, the choice of
the same name with an extension chosen from a limited set of choices might be
accepted after onc wuse, if the first name were alrcady accepted. In order to
implement decision-making based on this set of factors, the only additional

information beyond names and states that is needed is timestamping.

There arc two further issues related to what happens if there are not four uses within
onc day. In humans’ minds, a name will slowly losc ground, be forgotten by degrees
over time, As it is losing ground further uses will revive it. Forgetting seems to
happen more slowly than accepting a name. Thercfore the proposal here is that the
acceptance function work in eight hour intervals, but the final delction step be an
additional 24 hours. The final issue is how a name can begin to fade once accepted.
Here perhaps a one week period might reflect reality. Thus the state diagram might
be drawn as in Figure 4-3. It will be noted that no distinction i1s made between
unknown and deleted. Again, this may be a simplification of reality for the sake of
cfficiency. It must be remembered that the choices made here were to demonstrate

an example.

As mentioned, in addition to recognizing which factors are important for both
acceptance and deletion, the implementor must determine the various possible
states of a context entry and which factors will affect which transitions between
states. Feasibility would dictate a simple set of states and transitions. This, in turn,
probably means that in any implementation only a small number of factors can be
considered. Not only must programming be done, but the computation must be
done, and for many of the factors, historical information may need to be stored,

such as the identification of all previous users of the name or the times of previous

90

candidatet

(a) first use

I
{b) use within 8 hrs. |
(c) atleast 8 hrs. since last use l

(d) at least 24 hrs. since last use

Figure 4-3: A state diagram for acceptance and deletion

uses. It is clear that if naming is too inefficient, it will not be useful to potential
users. Therefore in addition to the goals of providing a naming facility efficiency

must always be considered.

4.6 The Merging Problem

In addition to determining the statcs of entries in a context based on use of names
and other rclated information, there is one further situation that may determine the
states of the entries in a context. Consider the situation in which a context is created
by merging two previously existing contexts. The operation that achieves this
merging is another parameter to the context type generator. It determines the
detailed nature of the type of such a context, although it will be used at most once in

the lifetime at the creation time of a context.

91

The problem can be separated into two subproblems, the solution of one of which is
manageable and the other is open ended. The simpler of the two is merging two
contexts of the same type, that are parameterized by the same operations, In this
case, although there are many decisions to be made, the problem is tractable.
Unfortunately, if the contexts are parameterized by different implementations of the
acceptance, deletion and merging operations, there is no basis of agreement from
which to begin in gencral, I such a merge is to occur, a special procedure must be
created for cach particular pair of context types for which it is nceded. In those
cases the same issues must be addressed as will be discussed below for two contexts
of the same type, although the linal cheices will be designed for the particular pair

of context types.

A number of issues must be laced by the implementor of the merging operation is
the determination of entrics in the new context and the state of each. There are
several factors that may be taken into consideration. First, the two contexts may be
considered on equal standing or one may be considered more important than the
other. With this knowledge, cach entry in cach context will be considered. For each
name translation, consideration must be given to its current state, whether the name,
the object, or the full entry exist in the other context, and the relationship between
the original contexts. As mentioned carlier, in some cases additional information
such as timestamps of uses is saved for the acceptance and dceletion procedures.
That information may also nced to be merged or at least be used as part of the
merging operation, although this adds complexity. In the case of merging, a table
can be drawn up, as for example in Figure 4-2 based on the possible states of names.
In the case of that figure the two contexts were considered of equal importance. [n

addition, the groups of participants will simply be joined into one.

There is a further problem of the creation of the environment in any new aggregate

formed by using the new context as a current context. There are a number of

92

possibilitics here, I the participant and owner of the aggregate was not a participant
in cither of the original contexts, then probably the environment should default to
whatever it would for a new aggregate. If the participant was a participant in onc of
the contexts, then perhaps the environment should be that of that carlier shared
context. Finally, if the participant shared in both of the original contexts, perhaps
both should be reflected in the new environment, It is not clear in this latter case
exactly how the environments should be merged. More importantly, it should be
remembered that the cnvironment is a reflection and representation of the
individuality of cach participant. As such, the recommendation here is that it
should not be created automatically by the same mechanism for all users sharing the
new context. Rather, nothing should be done other than any dcfaulting that the
individual may have spccified, thus fcaving the management of the environment the

responsibility solely of the individual.

The discussion of merging to this point has not considered what problems might
arise from multiple copics of one or both contexts in a merge operation. 1f all copies
of cach context are in synchrony there is no problem. Consider a situation in which
the copies of one context are not synchronized. Merging occurs by merging the
local copies of two contexts forming a third local context. The question that must be
addressed is what happens if a context entry is in one state in one copy of the
context and in a different state in another. The merging tables presented in this
report have a feature important 1o this discussion; an entry that exists in any state in
one context cannot become unknown through the merging procedure. This means
that cntrics cannot disappear. In addition, entrics do not move farther from
acceptance through use. Now the merging of local copies can be reconsidered. If an
entry is accepted in one local copy and only a candidate in another, the result after
the merge may be different in the new local copies, but that is an acceptable

condition. In the worst case, if the two local copies being merged are not up to date

93

and an entry is unknown in both, but known in local copics clsewhere, the
mechanism for proposing names can be used (o bring the newly created local copy
up Lo date. 1T an assumption is made that an entry ¢xists, but it does not, the human
recourse is to explore further by asking for further explanation or definition from
the source. A similar procedure can be used in the world of contexts and aggregates,
as it might be without a preceding merge operation. This analysis of merging
contexts consisting of unsynchronized copices of the contexts leads to the conclusion
that such a merge operation poses no new problems. 'The problems are only those

of adding names and merging contexts composed of syncrhonized copics.

4.7 Summary and Review

This section concludes the presentation of the model proposed here as a framework
for a naming facility. As such, the section will briefly review the problem addressed
in the rescarch and those concepts defined. In addition, a summary of the
framework itself is presented, prior to a discussion of how the model addresses the

posed problem.

Namees arc defined in this work as objects with an cquality operation that stand for
other objects. The purpose of a name is cither to provide access to the object to
which it is assigned, if that is possible, or to act as a place holder for the object. The
equality operation tests for the equality of two names, not equality of two objects
named by different names. The goal of the research is to explore the possibility of
designing a naming facility that supports that definition of names, provides sharing
and communication within federations of and by means of those names, and is
implementable., The cquality operation on names is needed in order to implement
access of named objects through a naming facility. A federation is a loose coalition
that may not be active at all times and that allows for both cooperation and

individuality among the participants. Before proceeding with a review of accessing

94

objccts and providing sharing and communication, feasibility of implementation can
be dismissed for now. The purpose of Chapters 5 and 6 is to investigate

implementations in two particular domains.

The model proposed as a framework for a naming facility presents the user of the
naming facility with a collection of objects of a single type, aggregate, as the sole
mterface to the naming facility, An aggregate provides its owner with a privale view
of a shared namespace, known as a context. The shared context is known as the
current context and provides the main focus for name resolution, In addition, each
aggregate has an environment, a private list of partially ordered alternative contexts
to be used in the individual’s case if a name cannot be resolved in the current
context. ‘The type context is also newly defined in this research. A context also
consists of two types of information, the translations from names into objects and
some means of identifying the participants sharing the particular context. The
translations can be in one a series of possible states ranging from just proposed as a
candidate to fully accepted as a legitimate name to deleted and thercfore not
accepled as a name for a particular object. Further, those factors relevant to each
context in order to move name translations from onc statc to another or enter them
into one initially must be considered. This information may take the form of
procedures for accepting and deleting context entries as well as merging contexts to
form a new context with predefined translations. The definitions of aggregate and
context incorporate exactly the definition of names presented in Chapter 2,
therefore supporting that definition in the naming facility framework. An
investigation of sharing and communication in the face of federation was bascd on
human naming and provided a set of cight observations considered here to be
subgoals. It is worth reflecting on each separately in order to explore how the

framework supports them.

1. Communication: Therc are two uses for communication. The first is to
share the use of names, to transfer names among users. The other is to

95

transfer information used to manage shared namespaces or contexts,
For both of these the federation assumed as a system model provides the
basis for communication on common ground. What the medium of
communication is, nced not be specified here and will vary from one
system to another. The important fact is that contexts and aggregates are
designed in such a way that names and information passed through that
medium of communication can be incorporated into the contexts and
aggregates. Furthermore, the participants sharing a context must believe
that they have reached some form ol agreement. Negotiation using the
medium of communication will take place prior to the creation of a local
copy of a shared copy, so that all the participants agrec upon the various
details of specification of a context, such as addition and deletion factors
and procedures and a merging procedure,

Individuality: The environment part of the aggregate allows the
individual to make use of personal experiences. The cnvironment
provides for potential name translation in cases in which the current
context of an aggregate cannot translate a name. This allows the user to
fall back on other experiences that he or she thinks may help in such
situations.

. Multiplicity of names: There are two means by which contexts provide
for a multiplicity of names. First, a context contains rclations between
names and named objects. The cxistence of one relation within a
context docs not preclude the existence of any other relation between
either the name or the object and any otlier name or object. Sccond, the
fact that an individual or set of individuals are participants in one
context bears no relation to whether any of those individuals participate
together or separately in any other contexts containing a possibly
different set of relations between names and objects. Therefore the full
flexibility of multiplicity of naming is available through the naming
facility.

. Locality of Naming: Independent contexts provide locality of naming.
The framework imposes no relationship between names in different
contexts or between the contexts or aggregates themselves. Therefore,
the naming within one context is completely local to that context.

. Flexibility of usage: The definition of a name includes only a
requirement of an equality operation. The naming facility also must

96

have some means of associating a name with an object and transmitting
names between users sharing names. Other than these, there are no
limitations on the nature of names, allowing for a large degree of
Mexibility in the choices of names delined by participants cooperating in
shuaring a context.

. Manifest nature of names: The uscers of names are also the participants
sharing responsibility for defining those names and managing the
namespaces or contexts containing the names. Therefore, the users are
free to sclect names that manifest whatever degree of meaning they
jointly choose.

. Usability of names: Humans, in the course of normal communication
with each other, usc names and switch namespaces olten without a
conscious thought given to it. In involving a computer facility in such
activities, some actions and choices must be made more explicit because
the recipient or medium of transport of the names is providing some
interpretation, but does not have the capability of a human mind. The
naming facility modeled here provides a simple mcans of involving a
computer facility in such naming. Namecspaces or contexts are local.
Identification of contexts and aggregates themscelves is based on that
same local naming with the addition of identification of other users
sharing the namespaces. In addition, the translations better reflect
human name definition procedures allowing for dilferent procedures in
different situations and different sets of states reflecting patterns of
usage. In addition, as will be secn in the next two chapters, the
proposing of names and state changes for name translations can be made
automatic,

. Unification: There are no restrictions on the types of objects based on
names, Names are not typed and a name can be assigned to several
objects of different types. This allows for generic naming as described in
Chapter 2 which is considered an advantage of this naming [acility
model. It is in sharp contrast with implementations of strong typing that
depend on compile time type checking, because at times prior to
execution, types may not be known since the relations may not be
known or there may be several. In fact, even at exccution time, if typing
is inherent in the supporting system, adequate preparation must be
made for handling type information.

917

- This concludes the presentation of the model proposed to be a framework for a

naming facility. The next two chapters discuss implementati
support the goal of implementability and simuhancously
using such a naming facility in thm domains.

stion designs in order to

Chapter Five

Implementation of Naming in an
Electronic Mail System

5.1 Introduction

Chapter 2 delined the goals of this rescarch on a naming facility in a federated
system. Chapters 3 and 4 proposed a model to be used as a framework for
implementing a naming facility and as such is an approximation to the way in which
humans manage and use names. The implementation discussed in this chapter is an
approximation to the approximation. The model is simplified yet further in the
implementation. In order to describe the model used and the design choices made
in the implementation, ¢lectronic mail systems and their naming problems must first
be considered in Section 5.2. Section 5.3 then will present the implementation
decisions that were made for this work. Finally, in Section 5.4 review what can be

learned from the implementation,

5.2 Electronic mail

Most electronic mail systems allow people to communicate with each other using a
federated computer system to compose, send, receive, and recad mail. One of the
distinguishing features of mail is that the sender and recipient need not be present
simultaneously in order for the communication to succeed. In fact, in most mail
transport facilities, if the mail is travelling from one host computer to another, the
two computers necd not be in direct communication at the time of the composition

and sending (from the viewpoint of the sender) or receiving (from the viewpoint of

99

the recipicent) and rcu(ling”. In spite of that, at a bare minimum the sender must be
able to identify the recipient to the computer system. There are further
identifications without which the mail system is barely usable. First, there should be
a facility for identifying the sender, in order that the recipient understand from
whom the message came. Further, it would also be beneficial if the recipient could
in turn become sender and respond to the sender, preferably using the same name

uscd by original sender for self identification.

Figures 5-1 and 5-2 present an example that will be used in the remainder of the
chapter. They are two forms of the same message, the first is taken from the
implementation to be described here, while the second, containing only network
addresses, is more like what the user is likely to see currently. The improvement in
the former over the latter lies in the names and name management possible in the
former. These examples will be discussed further below, including a discussion of

choice of names for mail recipients, aggregates, and aggregate names.

Before considering an alternative for naming in an electronic mail system, it is
aluable to consider a representative sampling of naming in other mail systems.
This discussion is based on the five attributes of names listed in Chapter 2:
assignment, resolution, scope of use, uniqueness/ambiguity, and meaningfulness.
Consider for a moment the name "Brown.INP@MIT-MULTICS.ARPA" from
Figure 5-2. It is a hicrarchically structured name for a mailbox; the local name is
"Brown" in the project "INP", on the host "MIT-MULTICS" (probably a Multics
at MIT), supported by ARPA. The meanings of most of the components are
probably irrelevant to most of the other recipients and the sender. The identity of

the individual is important and "Alex who is interested in mail" may be more

11In a store-and-forward nctwork, it is possible for the two never to operational simultancously if
there are intermediate forwarders

100

To: Sandy, Alex

Cc: Chris <cbosgd!hasmed!qusavs!ukm!ecg>
From: Randy

Subject: improvements

Agpregate: mail

The [ollowing features have been added to the mail program....

Iigure 5-1:Mecssage with shared nicknames

To: smith@MIT-CLEANSER.ARPA, Brown. INP@MIT-MULTICS.ARPA
Cc: cbosgd!hasmed!qusavs!ukm!ccg

From: rsmith@MIT-NEWCLEANSER.ARPA

Subject: improvements

The following features....

Figure 5-2:Mecssage with mailbox addresses for names

appropnate for that. The assignment was made mostly be external authorities,

although "Brown" may have been a personal choice. Although the name may

appear in the message as it is delivered 1o a recipient, in fact it will be translated by

various lower levels of protocols such as SMTP [38], if it is used on the Arpanet.

The name was selected with the idea that it would be universal in scope, and

globally unique. Ambiguous names might allow for sending a message to several

mailboxes for a single user, or for naming a group, such as a mailing list. As will be

101

secen, other approache . support somewhat different decisions for those

characteristics of naming hsted above.

The Arpanct approach described in RFC 822 [9] (e.g. "MIT-MULTICS.ARPA") is
that host names are the important part of the naming scheme and that they fall into
a global hicrarchy. In fact, RFC 822 specifies nothing about user names within a
host. The structure and management of those user names is Icfl completely to the
focal system, and may vary from one system to another, For example, Unix [40, 57]
provides a flat namespace (c.g. "smith™) with aliasing, both sharcd by the whole
system and private to the individual. Multics [37] provides a two-level hierarchy of
users within projects (e.g. "Brown.INP") and some aliasing. Finally TOPS-20 [12],
provides a hicrarchy similar to Multics, but of any depth, based on the directory
structure of the system. The meaning of the components of a user name on
TOPS-20 is simply that cach component is a subdircctory of the directory name to

its left, unless there is none, in which casc it is a top level directory.

The UUCP approach [35] (c.g. "cbosgd!hasmed!qusavs!ukmlecg™) on Unix is
similar to the Arpanet approach in lack of concern about local naming except that
the scheme for naming hosts is different. Again the host name plays an important
role with user name locally managed, but the namespace is ncither global nor is it
necessarily hierarchical. Rather a host name is a route from the sender’s host to the
recipient’s host. The limitations on the number of routes is based on the topology of
the network and explicit interconnection capabilities at individual sites. In addition,
there is nothing that limits a name (route) to a single object (host). A route from
host A to host B may also identify the route from host C to host D and there would
be no problem of conflict, although there might be other problems, such as
discovering or understanding a name of a host. Rcturning to the characteristics
listed earlier, most of such naming is mcaningless to both the sender and the

recipient. The structure is that of a directed graph. The names are chosen in a

102

distributed fashion. For cach node, somceone responsible for it chooses exactly one
name. Usc of a particular name for a particular location must be completely local,
although names need not be unique. In many cases, there are several routes
between (two nodes, cach providing a legitimate name with no means of testing for

identity.

The other three mail systems to be mentioned here include the user’s name in their
schemes. Grapevine provides a hicrarchical, two-layer scheme. Users are named
within registrics. These user names are assigned within the Grapevine system.
Registries identify administrative domains, that may also reflect organizational or
geographic distribution. The Grapevine approach is to provide a global hicrarchy.
An example of a Grapevine style name is "Smith.PA", where "Smith" is the user’s
name and "PA" is the name of the registry, representing Palo Alto. In this case the
name of the registry is geographical and must be included as part of the name in
Grapevine. This means that a user of the name must realize the Smith works within
the Palo Alto region, which may be not only irrelevant, but not a known fact.
Grapevine docs allow a name to refer to a list, thus providing a mailing list
capability, allowing for uniqueness or ambiguity, although name assignment is

managed by an administrator of the registry where a name will be assigned.

The IFIP Working Group 6.5 standard [18, 59] proposes that users be named and
that their names consist of a collection of components that provide what appears to
be a hierarchy to uscrs of the names. An interesting aspect of this structure is that
the ordering of the components is of no import. Therefore, thec namespace may look
like different hicrarchies to different users of the namespacc. The names, in fact,
form a global lattice. All share the same set of names, although multiple names can
exist for any recipient, In this case, a full set of components must be examined at

each node which in turn will resolve that part that it understands.

103

Finally, the Cocos project [11] and the related rescarch by Kerr [20] propese that
cach mail recipient be identifiable by a sct of attributes. No host name is needed.
The attribute names are not nested. Again the namespace is global. In both the
Cocos project and the proposals of the TFIP WG 6.5, the idca is that the component
names be names that are meaningful to users, although the components are chosen
and resolved by outside authoritics. In the FFIP proposal, cach component is chosen
by a separate authority, while in Cocos the complete set of attributes s
predetermined and built into the system. In both, the complete schemes are
universal, although in the IFH proposal a name need not be unique. In none of the
above projects are names sclected by the users, or even in most cases by those being
named. In addition, in most cascs the users of the names have not been considered,
and therefore names in cases other than these last two are probably not very
meaningful. All of these approaches to mail provide for names for mail senders and
recipients although none provides the sorts of naming set as goals in the earlier

chapters of this work.

At this point it is valuable to reconsider the assumptions and goals of this research in
relationship to a mail system, First, in terms of mail dclivery, federation must be
assumed. Even if the user community uses only a single computer, mail allows for a
separation of sender and recipient that matches the definition of federation. When
it comes to managing the namespace used for identifier mail recipients, only the
UUCP approach of source muting12 allows for local names, but in this case they
cannot be shared because a name is location depcndent. There is an additional
problem in UUCP; when two hosts attempt to communicate each one must have the
correct authorization. The sending host must allow sending to that particular

receiving host and the receiving one to reccive from the particular sending host.

12Scc Sunshine [50] and Saltzer ct al. [43] for a more dctailed discussion of source routing in
general.

104

Thus the common technique of generating a return address hop by hop during the
original traversal of a message may produce an invalid address. Grapevine and the
[IFIP WG 6.5 standard and the newer Arpanct standard [31, 32] all propose
distributing the naming authority, although the responsibility still does 2t lic with
the users of the names (o define the names that they will use as discusse in carlier

chapters of this report.

The purpose of a mail system is (o support communication. That communication
involves both sharing information, such as who the other recipients of a mail itcm
are, as well as jointly determining the names that will be used. In communication
outside a computer system, people communicating will jointly decide on names, as
in conversation, ‘They should also be able to determine the names they use jointly
when a computer system provides the medium of communication. People may have
many interactions with cach other and may interact on different bases in different
situations. [n addition, the same name may be chosen for different people under
diffcrent conditions. As a result multiple names are important. As mentioned
before, people do not use globally unique names for cach other. If, by chance the
names arc globally unique, they probably are not very useful. 13 Certainly in the case
of a mail system, the flexibility of using various sorts of names would enhance such a
system for the human users. In addition, whatever mechanisms are built to support
a naming facility must be easy for humans to use. Although the goal of unification
was not achieved in the implementation of the mail system, it could and probably

should have been. The naming scheme is used only for naming pecople. It should

13Considcr telephone numbers. With their full country and area codes they may be unigue, but it
is not clear what they arc naming. They certainly are not really naming people. They are not naming
telephones, because a telephone can move and can be assigned a different number. ‘They are not
naming locations, because numbers can move. They appear to name a particutar location or set of
locations at a particular time, with the additional information that such a name is not likely to change
very often. A feature such as forwarding (known as "call-forwarding”) allows a phone number to be
used indirectly on a temporary basis, blurring the mecaning cven further,

105

also have been used for naming at least aggregates and contexts as well. A separate
mechanism with less flexibility was provided for aggregates and contexts, simply a
ffat namespace where cach such name is interpreted relative to the user’s private
namespace. If an operating system with a library of subsystems rather than
particular subsystem were being built; the idea is that users could use the same
naming facility to name people in the mail system as, for example, people in a
calendar system, and any other system in which naming pcople was of use as well as

unifying naming people with naming other objects.

The remainder of this chapter will discuss the implementation of the mail system
naming facility in addition to a discussion of conclusions in the last section of the

chapter.

5.3 The Implementation

This section describes the actual implementation, beginning with the model of
contexts and aggregates and the user environment. That is followed a discussion of
the operations provided at all three levels, contexts, aggregates, and the user
intcrface. Finally, a review is presented of those decisions that were made in order

to design the implementation.

Before discussing what confronts the user of the mail system, a brief overview of
those dccisions about data structures and the possible choices discussed in Chapters
3 and 4 are presented here. In addition, the organization of the management of the
information is discussed. The discussion then turns to what the users sees in the

mail system and how it can be used.

Both contexts and aggregates have exactly that information discussed in Chapter

3 and diagrams of them would be identical to Figures 3-1 and 3-2 on pages 60 and

106

67 respectively, except that contexts do not have scparate lists of users and
reservation of names not assigned to objects is not possible in the mail system. The
entrics in a context are more limited than the general form of contexts and
aggregates. Specifically, both the names and objects are strings. Thercfore, contexts
and aggregates themselves are not named in this way. Instead, cach user has a
private list of contexts and aggregates and their names. 'The names of contexts are
not universal or global. A name lor a context or aggregate is translated by the
individual using one of thosc private lists of contexts and aggregates. As for joint
management, mail is used for negotiation. When a mail item arrives with a name in
the aggregate ficld that is unknown, a new aggregate by that name, containing a new
context by that name is created. If a new aggregate is created, but a context by that
name already cxisted locally, then the existing context is used as the current context
for the new aggregate. The final aspect of joint management is proposing and
selecting names. Name translation pairs can be in on of five possible states. This is

discussed in more detail below.

The representations of the objects needed for this implementation are simple.
Names and addresses are simply strings. A context is an unordered sct of pairs of
strings. Searching is linear because it is assumed that contexts will remain small.
The lists of aggregates and contexts for each user are lists of pairs consisting of
names and aggregates or contexts respectively. An aggregate has two components.
The current context is a pointer into the context list and the environment is a list of

unordered sets of pointers into the context list.

Due to the pre-existing software used in this implementation, the management of
the naming information was implemented as a scparate process. Therefore, sending
a message involves passing the message header to the separate process for possible
name translation and sending it back to the user mail process for verification prior to

passing it to the Unix sendmail process[57]. When mail is read, before it is

107

displayed for the user the header is passed to the recipient’s name managing process

for translation, Figure 5-3 depicts these activitics and the three processes involved.

Send Mail Receive Mail

user mail user mail
process process
——

check
header

name
management
process

header
check transformed

header

header
transformed

name
management
process

receive
message

send
message

Unix -
sendmail
process

Unix
sendmail
process

IFigure 5-3:Processes in the mail system

The user of the mail system has a small collection of new objects to manage. When
a user enters the mail system, he or she is provided initially with a single basic
aggregate, named "basic_a" containing a current context named "basic_c" and an
undefined environment. Each user of the mail system has his or her own private
version of basic_a and basic_c. These are not shared. In addition, each user has two
lists, one of named aggregates and one of named contexts in which he or she is a
participant. In order to describe the use of contexts and aggregates in the mail
system, Figure 5-1 will be reconsidered. In addition, thc operations of listing

aggregates and listing the contents of the "mail" aggregate as in Figures 5-4 and

108

mail
basic_a

Figure 5-4:The list ol aggregates

Current context:

A Sandy smith@MI'T-CLLEANSER.ARPA

A Alex Brown INP@MIT-MUILTICS.ARPA

A Randy rsmith@MIT-NEWCILEANSER.ARPA
C Chris cbosgdthasmed!qusavstukmlecg

Environment:

Figure 5-5:Displaying an aggregate

5-5 will help in this discussion. The assumption is that the message in Figure 5-1 is
at least the third message sent among the group. but that Chris is new to the group.
There are a number of points to note about using the system. Figure 5-5 is Randy’s

"mail” aggregate; no environment has been specified.

- Contexts do not contain scparate lists of participants because the names
in a context are not only the objects being named, but also the
participants.

- Since an aggregate is 2 namespace, each outgoing and incoming message
will have a newly delined field attached to it, as allowed under the
Internet specification [31, 32]. The field’s name is "Aggregate” and it
will name the private aggregate containing the shared context to be used
for the envelope of that message, in this case "mail”.

109

- When Chris first uses the mail system, a private aggregate "basic_a" will
be created. lLater when Chris first reads the message from Randy,
another aggregate will be created named "mail”. In addition, a new
context named "mail™ will be created and it will be the current context
of the new aggregate. If, for some reason, a context named "mail”
already existed, that context would have been chosen as the current
context of the new aggregate.

A message may be sent without the aggregate field specified. This will
occur cither il the sender specilies no aggregate field or if the sender
spectlies use ol the "basic_a™ aggregate. In cither case, the sender's
"basic_a" will be used for any translation needed.

- Names specified in "<O™'s will not be translated. The combination of a
name in "3™s and a preceding phrase, as in the "Ce:" ficld ol Figure
5-1 allows for adding ncw names and addresses to the current context of
the specified aggregate. This will be discussed [urther below.

- A message may arrive without an aggregate field specified. There are
two possible causes for this. Either the sender used his or her "basic_a"
aggregate, or the sender was not using a facility that supported
specifying aggregates. In cither case, the recipient’s "basic_a" aggregate
will be used when reading the mcessage.

Finally, there i1s a facility allowing assignment of an aggregate to a
message after arrival, so that on succecding readings of the message, its
names will be translated with respect to the assigned aggregate. This is
espectally useful for messages coming from senders not using this mail
system,

In the implementation two decisions were based on the fact that this is a mail
system. The first has to do with the nature of the names and objects supported and
the second with the transport of names and proposed translations. The names that
are used for people are strings. In addition, since names are translated into network
addresses which in the Internet specification also consist of strings, the objects are
represented as strings as well. The second decision is that the only means of

transporting names within the federated computer facility is the mail messages

110

themselves., 'The reason that this is possible is that in the Internct specifications,
ach field that represents a person can have multiple parts, an inttial phrase, an
address, and a comment. Since the comment part often has nnpredictable
information in it and the initial phrase, il present, gencrally has only a name, this
fact is being used. IUis not foolproof, but no problems have been reported and any
could be easily corrected by the user. Normally, such a ficld in messages generated
with this mail [acility contains a phrase that is the shared name in the current
context and a net address. In the most common case, the sender specifies a name
and the mail system appends the net address before sending the message. Figure
5-1 contains examples of both. At the receiver’s site, when the message is read, the
address is stripped off and the recipient secs only the name. This hides the awkward

and uscr-unfriecndly network address in the user interface.

There are several ways in which this can vary. First, the sender may be using a name
that has not previously been used in that aggregate. If the name exists in the
environment, its translation is taken from there and proposed as a candidate in the
current context. If this is a completely new name translation pair, the secnder must
include both name and address, which is then proposed in the current context. At
the receiving end, if the name translation pair has been accepted, the recipient sees
only the name. Otherwise the recipient will see both. This last case reflects a
situation in which the name has not yct been accepted, therefore the translation is
provided as well as the name as might be done in direct conversation. If the name is
completely new to the recipient, it is proposed in the current context, [f it already
exists, its usage is reflected in the current context as appropriate. Thus users can
proposc both new aggregates and new names within existing aggregates to be shared
with other users. In the message in Figure 5-1, Randy is proposing a new name to
the participants in the mail aggregate. To Chris, the new participant, the aggregate

itself and all its entries are new. The aggregate displayed in Figure 5-5 is Randy’s,

111

with only one candidate entry for Chris (indicated by "C™ as opposed to "A" for the
other entrics). In Chris’s case, all the entrics would be candidates. The only
variation from this pattern is usc of the basic aggregate, which does not escape the

owner’s domain.

The mail system provides two approaches to managing the names and objects to the
mail user. One is Lo create aggregates and enter names manually. For this, specific
operations arc provided listed in Appendix B, These operations atllow for creation
of aggregates and contexts and adding, deleting, and modifying the state of entries.
The other approach is automatic, allowing names (o be entered with usage as was
suggested in the example discussed in this chapter. When a message is sent or read,
an aggregate is chosen by the mail system. Il there is no aggregate field, the basic
aggregate is chosen, and otherwise the specified aggregate is chosen. [f a name-
address pair is found that does not exist in the current context, it is made a
candidate. When a message is sent, if a namc is found that exists only in the
environment of the currently active aggregate, that name-address pair is proposed as
a candidate to the current context. The implementation allows for both approaches

and thc uscr can intermingle the two.

For this implementation a simple scheme for accepting names has been chosen. A
name can be in onc of five states, candidatel, candidate?, accepted, deleted, and
unknown, see Figure 5-6. This is simplificd from Figures 4-1 and 4-3. The solid
lines indicate transitions that can occur automatically; the dashed line transitions
can only be achieved manually. Unknown implies that there is no such entry.
When a name is first proposed it is in the first candidate state. Upon another use of
that name with that object (net address), it moves to the second candidate state. The
third use puts it into the accepted state, where it remains unless it is manually
deleted. It is only when a current context entry is in the accepted state that the

address is not displayed when the name is displayed. Thus the only factor discussed

112

in Chapter 4 for acceptance is the number of uses. In addition, in order to allow for
cleaning up a context, an expunge operation is included as well, which removes all
deleted entries from the context, making them unknown again. A name-address

pair can go from cither the deleted or unknown state into the first candidate state.,

The hooks are available in the implementations ol contexts and aggregates for
merging, although this was not put into the prototype of the user interface. When
two contexts are merged, the states of all the entries in them are determined as in
Figure 5-7. This is a simplification of Figure 4-2. Because the aggregates and
contexts are being used by only one application and in a very stylized way, the
acceptance and merging procedures can be included in them directly and need not
paramcterize them by these procedures.14

There arc three levels of operations provided to support naming as described above.
The topmost level is the user interface to the mail system. This is supported by
operations on aggregates, which in turn in some cases (except for operations on the
cnvironment) arc supported by operations on contexts.'> The functions and
operations are all listed in Appendix B. It should be noted here that several

operations have been included that should not be accessible to users, because this is

14'I‘hcrc was a problem in Clu. FFor reliability cvery change was to be saved onto disk. In Clu

there were two choices. 'This could be done by converting all the information into a file losing type
information and requiring conversion code within the procedures. 'The other alternative was to use a
function called gc_dump to copy the object with its type information into a file. For cificiency the
choice was the latter, but the context cluster needed to be parameterized by procedures for
acceptance, deletion, and merging. Such objects can be created and were originally, although it was
discovered later that due to implementation limitations, procedures cannot be ge_dumped.

15'l‘his implementation was embedded in a pre-existing mail system written by Mark Rosenstein at
MIT. Itis written in Maock Lisp, the extension language of Gosling’s Fmacs [14] and runs on a Vax
117750 running BSI> 4.2 Unix [57]. Mock Lisp is not a rich cnough language to achicve what was
nceded, so contexts, aggregates, and an interface are written in Clu [30] and run in a separate process.
Only the user’s interface within the mail system and the operations defining the context and
aggregate clusters are considered here.

113

{ unknown

candidatet SE— candidate2 —]

deleted

Figure 5-6:Possible states and transitions for entries a context

u d ¢t c¢c2 a

u u d|ct|cl|ct u unknown
d d d ¢l |{cl|cl | d deleted
cl |ctjclcl]ct|c2 c1 candidatel
c2 |cl|ct |ct|c2]c2 c2 candidate2
alcltlijcl|c2|ic2| a a accepted

Figure 5-7:State table for merging two contexts

only a prototype and the users of it are sophisticated programmers and Emacs users.

These are expunge-context and change-status. This allows the user more direct

114

access than gencerally recommended to names and contexts, side-stepping the
aggregate mechanism. The changes to the operations listed in Appendix B.1 are due
to three factors. The two legitimate ones are the addition of the Aggregate ficld to
messages and the need (o translate names both when sending and displaying
messages. 'The third cause for changes to the mail system was inconiplete support

for multiple processes in Mock Lisp. Those operations are indicated as such.

This scction has described a simplilicd version of the model, that was used in the
implementation of the ideas in a mail system. Users have private copies of shared
current contexts and aggregates. Contexts can only contain names for user
mailboxes, representing the users to be named in a shared context and also the
participants in the sharing of that context. Each mail item carries with it the name
of the aggregate and the names and addresses of all addressees as well as the sender.
In general, the sender and recipient need not see or use those addresses. In addition
simplified acceptance and merging procedures were used and no deletion occurs

automatically.

The next scction discusses conclusiens that can be drawn from the experience with

the mail system.

5.4 Lessons from the Mail System

The mail system was a further simplification of the model that was presented in
carlier chapters. In turn the ideas presented in those earlier chapters were a model
of human naming and communication. In spite of these simplifications, there are
lessons to be learned from the mail system. Three are important enough to highlight
here. First, even with the simplification of some of the mechanisms such as
acceptance and deletion, a model can still be provided that is useful to users and

reflects patterns comfortable to them. Second, the limitations placed on the mail

115

system by using only the mail system itsell as the medium of communicating new
names reflects human patterns. Although computers could provide much more
sophisticated mechanisms for support and update of shared names, those might be
disconcerting at best to the human users. Third, only the mail senders and
recipicnts have been included in the aggregate and context mechanism. Research
into conversation-based mail [8] is progressing in grouping and managing messages
on a similar basis to that suggested here for name management. Fach of these three

points will be discussed in further detail.

First, consider the use of a single, simple acceptance procedure and no deletion
procedure. Carroll’s studics [7] have shown that onc facet of accepting names is
repeated usage. For simplicity it has been assumed here that it makes no difference
who reuscs them from an individual’s point of view, In fact, carrying this further,
the assumption is made that reviewing them by looking at a message repeatedly will
have the same effect as reuse for the individual. In addition, three possible states on
the road to acceptance have been assumed as mentioned earlier and depicted in the
state diagram, Figure 5-6, reduced from the four suggested in Chapter 4. When a
new name and address pair arrives in a message and the recipient reads the message,
the name and address pair is added to the current context in the candidatel state.
Upon each successive reading or use of the name in an outgoing message, the
context entry moves to the next state in the state diagram until it becomes accepted.
Until the time when it is accepted, when it is displayed to the user its translation is
displayed as well. Once the user has scen the name with its associated net address
three times, it is assumed that the user will know to which address the name refers.
This procedure reflects part of what humans do in jointly choosing names. Another
part, not included in this implementation, is a mechanism for allowing names to
mutate during the acceptance procedure as discussed in Chapter 4. This was

determined to be tco complex to include in the implementation.

116

The second lesson o be learned from the implementation deals with limiting the
potential uses of the computer factlity, Consider briefly a situation in which three
people are discussing a particular subject. One day one of them is unavailable and
the other two continue, defining new names in the conversation. The third will
probably never be brought fully up to date about what went on. Suppose the two
defined a new name "zibble”, the name for a new concept that they arc proposing.
The third onc will not realize that anything went on until the new name is used. In
this mail system, if the name is not yet defined in the third person’s copy of the
current context, then when it arrives in a message, it will be added as a candidate
and its translation will be included until it has been used enough in the local copy of
the context. Thus, the third person will be brought up to date on any names that
continue to be used and were defined during any absence. In such a mail system,
the computer system could casily provide complete recall even of those cvents in
which someone did not participate. Thus while one person was not participating his
or her private view of the context could be changing. This was done by Comer and
Peterson [8] with respect to messages, but it would be disconcerting at the least to
discover that one’s working namespace had changed while one was not actively
vicwing the changes. Although computers could provide a more automated form of
name management, it would have the problems of not reflecting humans’ patterns of

naming.

The third lesson is that some of the goals of this research are applicable to other
domains than naming. The goal in this work has been to analyze and address
problems of naming. In doing so one conclusion has been that communication,
cooperation and sharing play in important role in the functions and uses of names,
The work of Comer and Peterson [8] is one of the most recent steps in the area of
conversation based mail. They propose that not only should messages be tagged

with the conversation of which they are a part, but in addition, each message carries

117

a reffection of the state of the sender at the time that the message was sent. Thus,
cach message reflects both the conversation and those messages in the conversation
that were read by the sender prior to sending the message. In a different approach
from that of this rescarch, Comer and Peterson are presenting some of the same
~oels that have been presented here. They identify a conversation on the bascs both
+{"the group of participants and the topic of interest. Such a conversation consists of
aoset of messages identified on those bases, and cach message is identifiable only
locally within the conversation of which itis a part. In addition, the idea that there
15 something unique about the state of cach participant is also important. In this
case, the state of the person is reflected in the list of messages previously read. It is
the idea of the context from which a sender is sending that is new and unique in
Comer and Peterson’s work and which, indecd, tics it more closcly to that of this
report. Comer and Peterson choose to provide a standard globally unique naming
scheme. This work is progressing in Peterson’s doctoral research. In an ideal mail
bascd conversation, everything would be based on the conversation itself, both those
aspects that are shared as well as those that are unique to an individual participant.
Such a system would incorporate both the ideas of this rescarch and those of Comer

and Peterson.

118

Chapter Six

Design of a Naming Facility for a
Programming Support Iinvironment

6.1 Introduction

By considering electronic mail, much was learned about a naming facility. In order
to understand naming facilitics better, the requirements and a design for such a
facility 1n a programming support environment will also be explored. Programming
in anything but the smallest project is a social activity requiring coopcration and
coordination among a group of pcople working toward a single goal, each with a
scparate but complementary set of tasks. A programming support environment may
provide many functions for all involved in a programming cffort. Certain naming
lacilities can help to improve cven the simplest functions. It is the supporting
naming facilitics that will be explored in this chapter. This study will begin with an
examination of the problem and brief summary of related work in this arca. 'The
chapter follows a structure similar to the previous chapter discussing the electronic
mail system. The chapter will begin with an overview of what is needed in a
programming support environment, followed by a presentation of the cxtended
model used in this domain, a discussion of the operations needed, a proposal for a
possible representation for the data structure and somc concluding remarks

comparing this version of the model with the previous one.

0.2 The Programming Support Environment

A programming support environment is many different things for different people

at different times, but one can say that it supports people in their programming

119

efforts. In particular, it 1s especially useful when the programmer has a number of
tasks related to a programming cffort and must coordinate the work with others
working on the same or related projects. The tools of a programming support
environment may include cditors, compilers, interpreters, linkers, loaders, testing
facilities, debuggers, documentation facilitics, product and revision announcement
facilities, ete. Exactly which tools are needed and in what form is not the topic of
this rescarch. For a number of such programming support systems, sce the
"Soltwarc Engincering Symposium on Practical Software Development
Environments” |[47] in addition to the earlier work by Tichy [55, 56], Schmidt [45],
Kay [53], Dolatta and Mashey [13] (for more on the Programmer’s Workbench sce
also Bianchi and Wood [4]), Weinreb and Moon [58], and lLancaster [27] as

examples.

One important problem to be solved in a programming support environment is how
to distinguish an object from among a sct. Although commonly not addressed in
programming support cnvironments, the problem of identification and
distinguishing among objects can be separated into several problems, as was done in
earlicr chapters in this rescarch. One part of the larger problem is naming. [t
implies possibly joint decisions about the names that will be assigned to objects and
the contexts in which they will be recognizable. There is an additional part of the
problem that plays an cspecially important role in programming support
environments. That is the issue of selection of an object based on information about

the object that has not been pre-selected as a name.

A brief example will help to cxplicate the distinction being made here. Consider a

procedure named "intcgrate”. The name is chosen as a name and assigned to the

120

16 15 addition, suppose it is the intention of the programmer that this

procedure.
procedure be in Clu, although a first version might be sketched out in a pseudo-Clu
invented by the programmer for this purpose. The programmer might also identify
the procedure with the label "language: Clu”. This name will be available whether
or not the sketch is converted to Clu that can be compiled. Suppose that the
programmer requests that a compiled version of the “integrate™ procedure be
installed in a public library, but a compiled version doces not exist. A friendly
programming support environment may scarch out the object named "integrate”
and "language: Clu”, interpret the Iatter and attempt to compile the code, although
the fact that the object is identified as being in Clu does not guarantee that it is.
Therefore, the installation request may fail, because a name for the object was not
correctly meaningful. The installation procedure would in fact use the compiler not
only to compile, but also to identify an object that can be compiled and therefore
matches the language specification for Clu. Selection ol objects in Clu cannot be
done on the basis of names assigned to those objects, but require some additional
functionality from the sclection mechanism. On the other hand, the naming
function remains important and bears separatc investigation because its

[unctionality is universal.

Lancaster provides an approach different from the other rescarchers in this arca.
Her work is described here briefly, because her approach is similar to the approach
taken in this research and is not rcadily available in the literature. The problem
domain is that of selecting an implementation from among a set of implementations
for a particular specification. In order to achieve this and support a collection of

goals similar to the observations about human naming first enumerated here in

16It is probably chosen because it is meaningful to potential users of it and therefore is more easily
remembered, although a name such as "x27" might be chosen simply as an identifier. To the user of
the procedure it is no less or more usable depending on which names was chosen.

121

Chapter 1, she proposces a library. She recognizes that the names must be shared but
docs not discuss shared management of the names. She proposes what she has
identified as a naming scheme to address many of the problems inherent in selection
in a programming support cnvironment, Her library is used (o identify
implementations by means of sets of attributes. Fach attribute consists of a name
and a value, which may define relationships between objects. The library does not
actually contain objects, but rather points to objects outside the library. The library
is separate from a general liling scheme that would contain all implementations, as
well as all other related objects such as specifications, compiled versions of the
implementation, and, in fact, the implementations themselves. For all objects
identificd in the library there are required and optional attributes. The set of all
these attributes or subsets of them can be used to identify implementations and

sclect individual ones.

Where this research parts ways with hers is in the definition of naming as opposed to
other activities. A clear distinction was made in earlier chapters of this work
between information recorded to be used as a name and other information that has
more to do with the state of the object used as part of a computation that may result
in selection. There may be situations in which these two appear to be similar, but
the support mechanisms to use the two are dissimilar. The naming facility i1s a
service that can easily and valuably cross application boundaries whereas the
computation/selection requires simultaneously more complex and more application
specific service. [t is not unreasonable to join the two in a particular situation if

naming is not to be unified across application boundaries, as was done by Lancaster.

This work concentrates on the naming support as distinct from other forms of
selection that is needed for a programming support environment, especially
recognizing that programming efforts must be donc in conjunction with other

people. In general the sharing of name management and name resolution is left to

122

two mechanisms, the library and the file system. File systems present a problem in a
programming support environment. They do not provide the support for shared
and cooperative naming, the flexibility for the individual, nor the flexibility in
structure that humans usc in their everyday activitics. This was discussed carlier in

Chapter 2.

As mentioned carlier, Lancaster provides an example of a library facility. A library
can provide a number of functions: cataloguing, modularizing the namespace,
allowing for overlap in choices of names, sclecting among multiple implementations
and multiple versions, locking, recording dependencics, providing consistency based

on them, etc. Much of this functionality is not naming.

In addition, there is another arca of naming in a programming support environment,
the namces cmbedded in the objects created within the programming support
environment. The problem here is that not only must programmers cooperate in
their naming, but also there must be provision for both the programmer and user to
bind names o objects. The situation is the following. The programmer must use
names in some cases bound to objects and in other cases not bound during the
programming ¢ffort. Those names not bound during programming must be bound
at later times. The Known Scgment Table in Multics mentioned carlier is one
mechanism for achieving this. Binding may occur in several stages. For example,
some binding may arise from compiling source code. Further binding may occur
when compiled code is linked, loaded or executed. In cach case, the new bindings
are the result of merging those already known and some found through the bindings
of the client or user requesting that the activity occur. Thus, in cach case a merge
occurs of what was provided as a partially defined template for a namespace and
bindings found through the client or user’s namespace. As will be seen below, this

merge is the same kind of merge discussed in Chapter 4.

123

A programming support environment has even more need for more complex names
than those provided in the electronic mail system implementation. In the mail
situation names consisting only of strings sufficed. A richer naming facility would
allow for attributes, cach of which has a name and a value. This approach has been
used in a number of places, such as Lancaster [27], Oppen and Dalal [36], Dawes ¢t
al. [11] and Kerr [20]. In addition, much work has been done in this dircection in the
Actificial Intelligence community. "The approach that will be taken here will follow

ore closely the work of the four papers mentioned above. Such an exiension
~uld have enhanced the mail system, but did not appear to be as important as in
ihie casc of the programming support environment. The structure implicd here is
simply a means of organizing the meanings of names, as was discussed in Chapter
2 when meaningfulness and structure were addressed as part of understanding the

naturc of names.

In order to achieve the desired functionality, two facilities will be designed. Both
are based on the framework previously proposed in this work. The first is a library
naming facility to aid in cataloguing, sharing and coopcrating in naming and the

second is templates and the associated operations to make them useful.

6.3 The Model

The model for naming in a programming support environment consists of
aggregates and contexts, expanded from that model used carlier in Chapter 5. In
addition, certain contexts and aggregates will be used in stylized ways in order to
achieve the desired effect. Therefore the modifications to the basic mechanisms will
be discussed first, then how they will be used, followed by a discussion of the
operations needed to achieve the goals. No changes arc proposed here for
aggregaltes, so the discussion will be limited to contexts, followed by discussions of

two new terms, library contexts and template aggregates.

124

Onc of the ways in which humans identify the context within which they want to
resolve names is by the other participants involved. The clectronic mail system was
anomalous in that the objects being named were also the participants in a shared
context. Thercfore, these two facets of the context were combined, simplifying
contexts. In most cases, the named objects will be distinct from participants in
sharing. Thus, in the programming support ecnvironment, a shared context must
also have associated with it a separate set of participants. Certain participants may
have different effects on the shared context from the other participants. For
example, it may be that a librarian for a program library is the only onc¢ allowed to
create new names in the library, while other participants can only call on the library
to resolve names. This interaction between the set of participants and the

acceptance and deletion procedures will recur later in this discussion.

A second modification of the context model is that names may be chosen without
knowing into which object they will be mapped. This is needed in order to provide
for such situations as the recursive function, or including a call to a procedure that
has yet to be written. The name must be included in the source code. In fact,. as
long as the code is not actually invoked, many compilers will allow it to be compiled,

in order to begin the process of testing and debugging with incomplete code.

The third change from the previous model, as has been discussed, is a meaningful
structure consisting of names as pairs of attribute or name and value. This last
change allows for names that can manifest more meaning, better reflecting human

naming.

There is a special use for both of the types of contexts and aggregates. The special
use of the context is as a library context. There are three requirements or

restrictions placed on a library context.

- A library context will contain only attributes from a pre-specified set.

125

For simplicity, since this work is not research into programming support
environments, a superset of Lancaster’s standard attributes will be
assumed. Others such as Schmidt [45] propose a slightly different set.
Since, in a general programming support environment, namable objects
may be other things besides implementations, such as specifications or
shared sets of deflinitions (in Clu a set of equates), the set of standard
attributes will be enlarged. 1t will also be expanded to provide each
object a name that is unique within the library context.

An object can exist in al most onc library context. As previously
discussed, a name in a context may label another name allowing for
indirection and control of binding timc between the name and the
object. On the other hand, a name may also label the object directly. A
restriction on library contexts is that an object in the programming
support environment will exist in at most once library context and in that
context will have exactly one unique name, although it may have other
non-unique namecs, for example OwnedBy or RelatedSpecification.

- A library context must be able to store names that arc not yet assigned to
objects. The understanding is that before one needs to access the object
using the name, the object will have been created. The problem is
exhibited in its simplest form when one writes a recursive function. One
must be able to name the function before it is fully defined.

The usc of library contexts will be in conjunction with unrestricted contexts. The
unrestricted contexts will provide the full flexibility of naming discussed in previous
chapters with one minor difference. Names or attributes can be translated only into
other names in other contexts. Those may or may not be names in library contexts.
These additional contexts will allow for private work or work by subgroups of a
larger group. For example, a subgroup may want to use a new experimental set of
objects not yet released for general use. [t is worth noting here that there may be
objects in no library context, but only in non-library contexts. An example of one
such object is the list of errors due to running a compilation. Such an object
probably does not belong in a publicly used library, but only in a private context.

The additional contexts will be nceded to meet the goals of the full richness of

126

naming spelled out in carlier chapters. that are also beneficial for a programming

support environment.

The model presented thus far is somewhat over restricted. It would not allow
objects to migrate from one library to another. But in a distributed computing
facility, onc may discover that an object should be rclocated for convenience or
efficiency. If an object is moved to another library, all those references to the object
in the original library will be left dangling unless a forward pointer is added to the
library entry. Therefore, by allowing such "tombstones™ pointing to another library,

more than one library entry is permitted for some objects.

The special use of the aggregate in the programming support environment is as a
template aggregate. In the model here cach object will consist of the actual object,
such as a procedure, and a template aggregate. The template aggregate is not special
in form, although, most likely it contains some names not yet assigned to particular
objects, but reserved for future use. Providing a namcspace for an object that is
separate from the namespace in which the object was crcated is not a new idea. This
is done regularly and was clucidated by Saltzer in his general discussion on naming

[42].

The template aggrepate provides a special case of the merging problem discussed in
Section 4.6. Not only must the object’s and the user’s contexts be merged, but in
this special case an environment must be created as well from the two aggregates.
Exactly how this is to be done must be specified by the creator of the particular
template.‘ It may differ for each template. The specification may depend on
whether or not both current contexts affect the resulting current context; if both do,
how conflicts are resolved; if not, does the unused one simply become part of the

environment, and how conflicts in the rules of the two environments are resolved.

127

An understanding of the enhanced model for contexts and stylized uses for contexts
as library contexts and aggregates as templates and a discussion of the opcrations
needed to support them is now possible. That will be followed by a presentation of

a possible representation.

6.4 The Operations

An understanding of the objects and their uses is only part of the description needed
in a design of an implementation. In addition, a list of operations is needed. The
model for contexts has been expanded from the mail system; the resulting
operations on both contexts and aggregates are listed in Appendix C.1. For
completeness those operations include arguments for state modification of entries.
It should be noted here that although in the opcrations, names are represented as
strings, they should in fact be logical combinations of strings, allowing the client to
name an objcct by a sct of names. An implementation of this would be embedded
in the implementations of the appropriate operations. New operations are also
necded in the programming support environment to implement library contexts and

template aggregates.

The library serves a number of functions in a programming support environment.
In addition to the cataloguing, sharing and joint management that have an effect on
naming, a library may also record and manage relationships among catalogued
objects as well as provide support for other forms of selection among sets of objects.
This research is considering only the naming functions and therefore will discuss

only the opcrations needed for library contexts.

Library contexts provide a shared context for all the participants in perhaps a
particular project. The library context will be the sole repository for the "official”

versions of all objects of interest to the project as a whole. Entries in a library will be

128

restricted so that cach type of object will have a fixed sct of names. For example, a
procedure object might have, in addition to its name, the name of the author, the
name of its specification, the names of other implementations of the specification,
the names of related documentation, the names of other procedures on which this

one depends, cte. Different types of objects will have different sets of names.

For simplicity, cach object in a library should be contained in no more than one
library context, although there is no way to enforce this, since libraries are
independent of cach other. The problem is that most names have manifest
meanings and as such may become inapplicable or incorrect. An added
complication is that the fact of an object’s containment in a library is not an attribute
ol the object. Therefore, when the object is modified or its names change, this will
be recorded only where specified. Keeping names in more than one library in
synchrony would be difficult at best and might be impossible if one could not locate
all of them. Therefore, for the purposes of this work it will be assumed that an
object is in, at most, onc library and that whenever an object is added to or modified
within a library some of its names may change. There arc several issues relevant to

library contexts that can be addressed scparately.

Creation and updating of names in a library must be considered. When a new
object is entered into a library, a set of names will be specified for it based on its
type, as mentioned earlier. Some of these will be defined at the time of creation,
others only later. Some may be optional. Since this is not research into
programming support environments, although the facility must be here to support
it, those choices are left to others in the field of programming support environments,
In addition, there are situations in which only a label is chosen, for example, if the
object does not exist, but the name is needed or should be reserved. The standard
context operations are listed in Appendix C.1. The additional procedures needed

for library contexts are listed in Appendix C.2.

129

Another important issue in considering library contexts is moving objects from one
library to another for convenience or necessity. The fact that names can be mapped
into other names in other contexts will be used in order to avoid dangling references
and help previous users of the object being moved; indirect names will replace
direct references. As previously mentioned, if an object is contained in two or more
libraries, the names may become obsolete. There are (wo possible approaches to
this. The first is to assume that all such information about an indirect reference may
be obsolcte. The second is to include an operation on libraries that causes them to
trace all such indirect references and update all names for cach indirect reference.

The operation needed to support the latter is also in Appendix C.2

Finally, with respect to library contexts, it should be pointed out that all library
context operations can be implemented out of the standard context operations. For
example, consider move_library_refercnce. It will mean creating a new reference in
the new library using add_name. If the new label needs to be unique in the new
context, some further checking in the new library may be neceded before the object
is moved. Once the name has been sclected and the new reference created in the

new library, the old reference can be modified to reflect an indirect reference.

Three special operations are needed for template aggregates beyond those for
aggregates listed in Appendix C.1. They are listed in Appendix C3. The first
operation is a replacement for the create operation of aggregates. It is needed
because a template aggregate is crcated by creating an aggregate and then simply
wrapping it in the template aggregate type. The second procedure is the merging
operation that will be used when a template is to be merged with a client’s
aggregate. Finally, an aspect of a template that must be considered is whether all
users of the object share a single current context or whether each will have a private

copy. The last operation, sharc_current_context allows for selecting this option.

130

0.5 Design of an Implementation

In order to validate the proposal for a more complex implementation in this chapter,
a representation is described in this section. An implementation would follow
dircctly from it. Since library contexts and template aggregates are quite similar to
contexts and aggregates their implementations are not discussed in - detail,
Furthermore, since aggregates here are the same as in the clectronic mail system,

they are not reconsidered.

CONTEXT
attribute: value/ . . attributes: values/
name objects object names

participants

o namea
att1: valuet . » user1
B att1: value1
user2

att1: NILNAME — B userd

T context2, nameb
namea —t L NamMec atti:valuet
nameb —

named
Nilobjec
| ———ptiebiest att1: NILNAME

named ———

Figure 6-1:A representation of a context

The representation of a context proposed here is as follows and is depicted in Figure
6-1. A context consists of three sets, two of which are discussed here together and

the third later. The first is a set of names. A name may be a pair or a singlc entity,

131

and cach name is associated with a set of objects. The second set in the context is
the sct of objects. An centry in this sct consists ol an object or an indirect reference
to the object i another context and a list of all names associated with it. Although
this means that informat: -+ wi'l be duplicated within a context, it will allow for
more efficient operation o 0 otherwise. 'The set of names should be organized to
optimize scarches on average. This whole arrangement will allow for two sorts of
last access. The first is scarching for all objects having a certain name. The second
is finding all the names for a particular object. The tradeoflT is that modification
requires access to both sets. In those cases where a name is applicable, but not yct
defined, Lancaster's approach of using Nil is proposed. In cases where a name is not
applicable, thc object is not in the set of objects to which the name can be applied.
There is one further consideration: what to do in the set of objects about names that
have been selected for objects that do not currently exist. Dummy objects are
proposed to solve this problem. A dummy object is a place holder. In the sct of
names, the dummy object appears no diffcrent from any other object. In the set of
objects, the dummy object has something in common with Nil as proposed by
Lancaster; there is no object there, although there may be a sct of names, rather
than just one. 'The two reasons that one might want such an unassigned name are,
first, that one may want to reserve a name and, second, that one may want to assign
a collection of names to such a dummy object, later being able to attach that whole
set of names to a real object. Thus there will now be NilName (which is the Nil that

Lancaster proposcd) and NilObject.

The third set associated with a context is the set of participants. How the
participants are identified is not addressed here fully. As mentioned earlier, it may
be a problem of authentication. The context is not expected to be an authentication
service. Rather an authentication service is assumed to be accessible to the context

and user. There are two possible approaches to using an authentication service.

132

First, the user can make a request of the authentication service to produce an
unforgeable object that the context will believe, to be passed to the context either
directly by the authentication service or by the user. Sccond, the context can
request that the authentication service authenticate a particular requestor of the
context.l’

Before lcaving this section library contexts and template aggregates must be
reconsidered briefly, First, library contexts contain a little information above and
beyond a standard context. A library context also has a record of those required and
optional names that have been identified in it for specific types of objects to be
named in it. Not all types need to have such specifications, and names not included
in those lists can also be attached to objects of any type. This facility of pre-
specifying attribute names allows objects of certain types to have names that fall into
certain patterns. For example, it may be that part of entering a source code object
into a library must be an indication of the language of the source code. An optional
name might be the author of the code, assuming that it is known. The only
additional information associated with template aggregates is whether or not the
current context resulting from a merge is to be shared by all current users of the
associated object. These picces of refated information in library contexts and

template aggregates must be considered in their representations.

17It should be noted that authentication need not depend on globally unique identification. In
fact, at best, it can depend on mostly unique identifiers. Encryption keys provide a good example of
the fact that an absolute guarantee of uniqueness and unforgeability arc impossible. It is all a matter
of degree; cost and degree of the guarantee are closely linked.

133

6.6 Comparisons and Conclusions

Since the model presented in this chapter is an expansion of that ol Chapter 5, the
differences must be examined as a means of recommending in cach arca which
choice is more gencral. In some cases, the simpler version may be more appropriate
to the gencral case, with certain exceptions needed for particular applications. In
other cases, the more complex version may be more appropriate, with the

understanding that there are situations that do not need such full functionality.

This chapter contains a proposal for a seccond area in which the naming framecwork
can beneficially be applied. 'There are a number of ways in which the framework
was modified from the previous proposal. Each of those will be examined
individually, considering whether cach is of general applicability or not.

- Names without bindings: 'The programming support cnvironment
needed to allow for names to be chosen as place holders for objects that
were nol currently known to exist. For instance, that would permit
naming of procedures that were to be written later. Although the issue
did not arisc in the clectronic mail system, it might have been uscful
there as well. An example is a name that represents a role, for example
"chair of the committee.” There may be a time when there is no person
in that role, but the role still exists.

Participants: Thec rcason that a scparate list of participants was not
nccessary in the mail system was that the sct of recipients was the set of
participants. A set of participants must be a part of every context,
although as occurred in the mail system the implementation of contexts
could be simplified because the entries in the context and the set of
participants were identical.

Restricting an object to being in only one context: It would appear that
such a limitation exists for those objects in library contexts. In fact, such
a restriction was suggested only among library contexts in order to
simplify implementation and synchronization of information, although
as suggested, there is no means of enforcing it. Such a restriction would
certainly be detrimental to a mail recipient naming scheme as well as
many other facilities and is unnecessary. Therefore it is not

134

rccommended as a general feature of contexts. It should be noted here
that restricting an object to being in no more than one library context is
a separate issuce from whether or not the library context itsclf consists of
multiple copies. Multiple copics can be synchronized to any desirable
degree.

Access control: Access control is related to naming in that it may be
uscd o restrict the privileges of certain participants in a context. It may
depend on authentication. In a library lacility access control may be
uscd to allow only the librarian special privileges. Access control was
not discussed in the electronic mail system, although it could well be a
uscful part of such a system. The advantage of including access control
and authorization is that one can leave objects completely accessible if
one wants, while having the opportunity to control access when it is
needed. Therefore, an access control mechanism is recommended,
although it is external to a naming facility.

Thus the choices here arc to allow for [lexibility, permitting the implementer or user
the choice of whether names should have bindings initially, whether objects can be
entered into onc or more than one context, and what the access control ought to be.
In addition, the set of participants should be distinct from the set of objects named

in a context.

135

Chapter Seven

Conclusion

7.1 Reflection of the Ideas

In this rescarch, a name is defined o be an object that can be associated with
another object and has an cquality operation defined on it. The most common use
of a name is as a handle for an object. A namec uscd thus provides access to the
object. A sccond use for a name is as a place holder for an object. The reason that
place holders are important is for use as a substitute for the object itself.
Substitution may be neceded either if the object is to be shared and cannot exist in
more than one place at one time or if the named object does not exist at the time.
The problem being addressed in this rescarch is the design of a computer naming
facility achicving the following goals. First, names must provide access to named
objects as well as be usable as place holders for the objects named by them. Second,
it must be possible to share those names across computer boundaries. Third, it must
be possible to communicate using names. Therc are two forms that this
communication takes. One is the transmission of the names themselves and the
other is transmission of information in the names because the names are meaningful
to be to the user and recipicnt of the name. Finally, an implementation must be

feasible.

Computer naming, as described in this research, reflects a social process. The social
process is assigning and using names privately or in limited groups and sharing the
responsibility for that assignment, modification, and deassignment. The process of
naming, when done cooperatively, involves entities that can operate independently

as well as in cooperation with each other. As such, these entities form a federation

137

in which cach brings some individuality to the joint cffort and within the
cooperation retains a certain degree of autonomy. Human naming has provided this
rescarch with both goals and examples on which to base solutions for two reasons.
First, humans function as an amorphous set ol federations that form and reform
unpredictably and when needed, using naming as part of the interaction within the
federations. Also, computer systems zlrc‘buill, in the end, to support humans in
their activitics. Thercfore, this rescarch set out to investigate the sort of naming that
humans do joindy. In order to understand the problem better, various parts of the

problem can be considered separately before looking at a solution.

Characteristics

A number of characteristics of names can be identified. First, there are three roles
rclated to names and naming, the assigner of a name, the resolver of a name, and the
user of a name. The assigner determines which name should be associated with
which object. The resolver performs name resolution or translation. The user of a
name can only usce names that the assigner has chosen. If resolution is needed, then
the resolver must also be able to do its job for the user. The user will use a name
either to access the numed object or as a place holder for the object. Beyond these
three characteristics of names, onc can also consider the degrees of unigueness and
meaningfulness of a name. If a name is unique within the domain of a resolver, it
will be resolvable to no more than one object. The more meaningful a name is, the
more information thc name itself carries from name user to name receiver.

Meaningfulness may be manifested in the form of structure of names.

Observations

Returning to the analysis of the research problem, a set of observations can be made
about how humans name the objects in their worlds. Humans use namecs to a great
extent to communicate with each other. Part of that social process of

communicating also involves each participant in that process bringing an

138

individuality into it. In the formation and reformation of cooperating groups,
names are frequently reused in different contexts and at different times to have
different meaning. In addition, a particular object may have more than one name at
any given time reflecting either different meanings and characteristics or different
perspectives. Both in order to achicve such multiplicity and because the size of a
universal namespace is unmanageable, small, local namespaces are used. In
addition, there arc several more aspects of usage of names. Flumans use a number
of approaches to naming and gencrally do not restrict a particular approach to a
particular type of object. As mentioned earlier, names often have meanings that are
conveyed between user and recipient when names themselves are shared. One final
point about human naming is that it appears to take little or no cffort to choose,

share and usc names both privately and cooperatively in a group.

Cooperation

Cooperation and joint management of names form the final part of the examination
of the problem of naming. This involves first recognizing that a name passes
through a number of stages from the time it is proposed until it is accepted as a
namc for a particular object. There also may be a range of stages as a names falls
into disuse and is slowly forgotten or is more explicitly replaced. Many factors can
be identified as potentially playing a role in these activities. A small number appear
to be both important and practical to implement in a computer system. The number
of uses of a name In association with an object is probably the single most important
factor. Frequency of use may also be quite important. Finally, the fact that a name
bears a similarity to another previously sclected name and that similarity has a
manifest meaning may make the later choice more readily acceptable. In current
file systems, an example of this is accepting a file name with an extension of "bin" as
the result of a compilation with the primary component being the same as the

primary name of a file containing source code. This is a restricted and stylized use

139

of information about previous choices, but for efficiency it is probably better to limit

this factor to such a simple form,

The model

To address the problem of creating a naming facility, this rescarch proposes a model
consisting of a set ol objects for cach client of the system. The objects are known as
aggregates. Fach aggregate provides a private view to the client of a possibly shared
namespace. An aggregate is composed of two parts, the shared namespace, known
as the current context, and the cenvironment, that part of the aggregate that
personalizes it for this particular client. The current context contains the names
shared by the group, while the environment identifies a sct of other mappings
between names and objects which the individual client may wish to use as proposals
for the current context. The environment consists of a partially ordered set of other
namespaces in which this client is also a participant. Both the current context and
the environment are based on a simpler form of object, also proposed as part of this
rescarch, the context. A context also has two parts, a mapping from names to
objects and a list of participants. The model supports acceptance and deletion of
names in stages based on usage and jointly by the participants sharing responsibility
for the context. No particular structure is placed on either the organization of
contexts or the internal structure of names within contexts. Instcad both of these are
left to the discretion of the participants in the sharing. The context provides the

basic mechanism for name translation and shared management of namespaces.

The implementation designs

The discussions of implementations demonstrate both the feasibility and uscfulness
of the mechanisms. A brief summary of how the problems and issues of Chapter
2 are reflected in the domains of clectronic mail and a programming support
environment and how the designs in those domains address the issues will serve here

as a review of Chapters 5 and 6. In both domains, activity occurs in cooperation

140

among varying groups of participants communicating and cooperating only when
such joint activitics arc needed. Federation is the norm and is assumed in both of
the implementation designs. Furthermore, names as used in the implementation
designs fall under the definition that they only be required to have an equality
operation and can be used cither for access or as a place holder. In both domains,
names are chosen to be strings. In addition, in the clectronic mail implementation,
since the objects named can only be strings, the untranslate operation is also
guaranteed to be available. In the programming support environment, it is only
possible the untranslate if an cquality operation cxists for the objects named in a

context.

Five attributes can be used to describe a sct of names: the assigners, the resolvers,
the uscrs, the degree of uniquencess, and the degree of meaningfulness. In both
domains, the assigners and uscrs of the names are the same pool of participants,
although the programming support environment allows for some participants such
as a librarian to have special privileges in terms of defining names. In both
examples, the resolver of a name is always a specified aggregate that the
programmer or user can select. As for uniqueness, in the electronic mail
implementation, no restrictions were placed on the number of assignments either of
a name or to an object. Some such limitations might be uscful in the programming
support environment, although the proposed mechanism does not enforce any.
Finally, in considering attributes of names, since the assigners and users are
generally people and the names are sirings in which humans can easily discern
meaning, the degree of meaningfulness is to whatever extent the human participants

desire and choose.

In terms of the goals of the naming facility, the first was to support the definition of
names; this is done in the two domains as discussed in the paragraph above. The

second goal requircd support for sharing and communication of and by use of those

141

names. The mechanisms of contexts and aggregates including the joint management
facilitics provide for sharing both the names themselves and responsibility for
managing them. This functionality is maintained from the model to the
implementation. Communication is supported both by the representation of the
names as string, allowing for information to be shared in the names themselves, as
well as in the clectronic mail system using the mail itself as the medium for passing
names around. The programming support environment did not proposc a particular
medium of communication, because in an implementation that will depend on the
characteristics of a supporting distributed system. “The third and final goal was that
the model be implementable. That is demonstrated through the implementation of
the electronic mail system and the implementable design for the programming

support system.

This scction has presented a review of the problem addressed in the research
reported here, followed with a brief summary of the general proposal for a solution
and bricf return to the two domains for application of the model. There must be
two further parts to such a review. A research project such as this cannot be
considered in isolation. There will be parts of the project or related issues that have
not been investigated fully or satisfactorily. In general such unfinished business
leads to suggestions for alternative or further work that would enhance the project.
The other side of this coin is a review of those arcas in which the research was
successful and has made useful contributions. The following two sections will

address these to sides of such a review.

7.2 Lessons and Future Research

With a topic as broad as naming, the research possibilities arc endless, especially
when one attempts to walk the narrow line between facilities that are efficient

enough to be useful and those that more and more accurately mirror direct

142

interpersonal communication. In attempting to do so in this rescarch many parts of
the problem could not be treated fully. The following is a list of such issues in
increasing order of gencrality. Fach affords opportunitics for identifying both
possible weak points in the research as well as possible arcas for further research,

1. Consideration of the implementation in the clectronic mail system leads
o a number of possible improvements.

- The choice of a simple but little used mail system mcant that few
users were found for it. An implementation in a more widely used
and better supported environment would be beneficial, This
would allow studics along the lines of Carroll’s, in order to observe
the patterns that humans choose, given the freedom to choose.

A further enhancement would be to extend the namable objects in
the mail system beyond the recipients. The other namable objects
in such an cnvironment would be messages, aggregates, and
contexts,

Onc might extend contexts to reflect a combination of the ideas of
this rescarch and those of Comer and Peterson [8] as well. This
research has explored those ideas only within the domain of
naming. Such an extension would allow a deeper study of the
social aspects of naming.

Finally, a morc challenging implementation would be a broader
subsystem or system, such as the programming support
environment or a whole operating system. This would rcquire that
clients use only aggregates for all naming, being unable to step
outside such a system. It would provide a more controlled
environment in which to study patterns of usage.

2. Chapter 4 explored the idea of how the determination of a state of a
context entry is made. Much further work can and should be done to
examine these issues further. In order to learn more, either surveys
could be done or systems could be built as previously suggested, that
would allow for testing of different factors, with means of measuring
user satisfaction with various factors. The latter would only test
previously recognized factors, while the former might shed light on new
factors as well.

143

3.

6.

In the discussion of a programming support environment, it became
clear that the question of how sclection is done, once naming has taken
place is an important problem for some applications, closcly related to
naming. Although sclection has not been studied here, there may be
aspects of selection that are common across application boundaries.
Some of the factors that may come into play are who used the objects in
question most recently, when, the types of the objects, and how the
objects were last used. Other factors may be important as well, as can be
scen in the literature on programming support environments. Further
work in this arca would certainly be benceficial.

. An interesting problem for which an adequate sofution was not

proposed i this rescarch is initialization. There are two parts to (his
problem. 'The first issue is how such a system will start at the very
beginning. The question of how the first context will be shared must be
addressed. A second part of initialization is how any individual will be
initialized when joining a pre-cxisting community. This problem was
considered in the discussion of the mail system, but further work is
needed on it also.

. 'This rescarch suggests that globally unique names arc neither useful nor

in fact implementable in general, with the expansion of the various
clectronically linked computational facilities. Yet many researchers,
architects, designers, and builders of such distributed systems continue
to proposc naming mechanisms based on an assumption of the existence
and use of globally unique names. This research suggests that humans
do not neced them and that they also are not needed in computer
systems, at least not globally unique names. Of course, local uniqueness
is possible and, in fact, necessary. Further thought, research and
experimentation is needed in the area of globally unique names.

The proposal for the relationships among contexts in this research is that
those relationships be unconstrained. If one considers human naming,
there are many example of namespaces that form unconstrained
networks. On the other hand, when people are making an effort to
organize and cataloguc objects, they will often use a hierarchical
structure. If the problem is very complex, they may use several
hierarchies with pointers from one to another. Consider briefly
genealogies, a method of organizing familial information. A genealogy
is generally viewed as a hicrarchy with a root either in the past and

144

branching chronologically or the reverse reflecting the ancestry of an
individual. Thus, although the flexibility of an unconstrained network is
usclul in many cases, a tool for hicrarchical structuring may also be
beneficial. Further rescarch into this is needed. One way to study this
problem is (o use one of the existing non-hicrarchical file systems to set
up experiments and observer human behavior.,

7. The proposals of this rescarch arc aimed at solving naming problems for
small enough groups of users to permit reaching agreement and being
able to share responsibility for management of namespaces. 'This may
break down if the communily grows large. Name management for large
groups has not been considered but needs further work because those
large looscly coupled communitics are growing in [requency of
occurrence.

8. Finally, the most open ended question in this arca, the nature of names
themselves, their development and relationship to the objects being
named as well as the users of the names, can well afford further study.
This rescarch has examined names and naming carclully enough to
identify various factors about which there has been much confusion in
the past, but the concepts of names and naming are still far from being
well-defined.

Although the items in the list above cannot be listed in order of importance, some
deserve special attention. In looking toward computational facilities of the future,
there arc two aspects of naming that need the most thought and attention. They
both are the result of the proliferation of personal computers with communications
capabilitics and the hardware networks for that communication. 1t is of paramount
importance that the naming needs for very large communities of communicators be
studied. Currently most developments are completely disorganized and achieved on
a local and ad hoc basis. In addition, as the user community extends beyond the
community of programmers and sophisticated users who have learned to manage in
alien environments, it becomes more important to support environments more
comfortable to humans. Several of the items listed above are aimed at that. The
other issues raised above are also useful, although they are not as important as these

two.
145

7.3 Contributions

This work will conclude with a review of the major contributions of this research.
The rescarch is a synthesis; it has pulled together ideas from several arcas, ideas that
in many cases have been recognized as useful in particular situations, but have not

been recognized as part of a larger problem.

One contribution of this rescarch is the recognition that a computer naming facility
should support cooperation, communication, and sharing of names. Sharing objects
or information has long been recognized as important, but sharing and cooperating
in managing namecs lor those objects is less frequently recognized as a goal for a
naming facility. This rescarch proposes that communication and sharing of names
as well as objects must be part of the goals of a naming facility. The benefit of this
contribution is in achicving greater functionality through less restrictive and more

flexible naming.

A second contribution is the recognition that a computer naming facility should not
support non-naming functions, such as selection, although naming facilities may
have done this traditionally. Selection, involving mcans of distinguishing objects
from each uother by other mechanisms than naming, such as performing
computatioi, on the objects or various properties of the objects, is not and should
not be considered naming. Separate facilities are nceded for such necessary
functions. In addition, names cannot gencrally be used to test for identity. Whether
two objects arc in fact the same object is dependent on various factors such as the
types of the objects and the application using the objects. These should not and
cannot be known to the naming facility. Finally, in a related problem, naming
cannot be the only solution to authentication. Naming may be part of the solution,
but more information that is not susceptible to any significant degree of

masquerading or other forms of subversion of authentication procedures is nceded

146

to perform authentication, Thus, this rescarch proposes a further modification of
the functionality defined as naming. This latter set of modifications allows the
rescarcher, architect, designer, and programmer 1o recognize and scparate functions

and thereby reflect desired policies in a system more clearly and accurately.

The presentation in this research of a model for a single, unificd naming [acility
providing local naming contributes a new idea to computer supported naming. As
mentioned carlier, several universal name servers have been proposed or built, but
they are remote services, not uscful for naming small, local objects frequently.
Addressing naming problems across application boundarics not only provides a
savings in terms of efficiency by not repcating work, but in addition, allows for
greater functionality that a collection of separate naming facilities. The reason for
this is that it is difficult or impossible to usc naming to reflect relationships across

the boundaries of separate naming facilities.

An important contribution is the development of a method for joint management of
shared contexts. The method includes a representation of degrees of acceptance of a
name as a series of states. There are a few file systems, such as TOPS-20 [12] that
provide a much simplificd version of this as a convenience to the user. In that file
system, the deletion procedure occurs in two stages, deletion and expunge. Dcletion
is reversible for a limited period of time, while expunging is not reversible. This
mechanism allows uscrs to change their minds about deletion. The mechanism
proposed in this research reflects the negotiation and shared use of names, so that as
a name’s usage increases, it is more likely to become generally accepted and as it
falls into disuse, it becomes more difficult to remember and use. This reflects the

contribution of a new concept to naming.

The final contribution is the recognition that naming is a social process of

communication. For this reason, the naming facility must distinguish the individual

147

from the group, in order to support the needs and contributions of both. That has
been done in two separate ways. The group’s needs and contributions arc reflected
in the concept of the context that contains those names upon which the group has
reached agreement. In ndditi(‘m,i‘thc identitics of the participants are recognized as
an important aspect of the context. The individual is given recognition in the
aggregate, which provides a private view of the shared context, as well as the
individual’s additional source of influence on the shared context. Thus these
separate concepts reflect the ditferent needs and influcnces of the group and the
individual, allowing the group to communicate using shared and jointly defined
names, while providing a private view and set of influences brought by each
participant in that communication and sharing. The recognition of this last idea of
naming as a social process is ol benefit to all members of the computer community.
[t expands the functionality achievable by those involved in creating systems. That
in itself is of benefit to clients of those systems as well. But it also extends the style
and mecans of interaction through naming toward what would be possible among
those clients outside the computational facility. The idea of communicating,
cooperating, and sharing responsibility for names and name managecment with
exactly those clients sharing a common interest is the most important contribution of
this work to the future development of loosely coupled distributed computer

systems.

148

References

1. G. T. Almes, A. P. Black, E. D. Lazowska, J. D. Noe. The Eden System: A
technical Review, Tech. Rep. 83-10-05, Dept. of Computer Science, University of
Washington, Scattle, Washington, Oclober, 1982,

2. Apple Computer Inc. Macintosh. Apple Computer Inc., Cupertino, Califfornie,
1984. Reorder Apple #M1500. This is the introductory manual for the systen.

3. J. H. Benjamin, M. L. Hess, R. A. Weingarten, W. R, Wheeler. Interconnccling
SNA nctworks. 1BM Systems Journal 22,4 (1983), 344-366.

4. M. H. Bianchi and J. L. Wood. A Uscr’s Viewpoint on the Programmer’s
Workbench., Proc. 2nd International Conference on Software Engineering,
Oclober, 1976, pp. 193-199.

5. A. Birrell, R. Levin, R. Needham, M. Schroeder. Grapevine: an Exercise in
Distributed Computing. Comm. ACM 25, 4 (April 1982), 260-274. Also presented
at the 8th Symposium on Operating Systems Principles, Asilomar Conference
Grounds, Pacific Grove, CA, sponsored by SIGOPS and ACM, December 1981

6. J. M. Carroll. Creating Names for Personal Files in an Interactive Computer
Environment. IBM Research Report RC 8356, IBM, July, 1980.

7. J. M. Carroll. Naming and Describing in Social Communications. Language and
Speech 23, 4 (1980), 307-322.

8. D. E. Comer and L. L. Peterson. Conversation-Based Mail: An Overview. Tilde
Keport CSD-TR 465, Dept. of Computer Science, Purdue University, March, 1984.
Revised September, 1984.

9. D. H.Crocker. Standard for the Format of Arpa Internet Text Messages.
NIC/RFC 822, University of Delaware, August, 1982.

10. R. J. Cypser. The Systems Programming Series. Vol. : Communications
Architecture for Distributed Systems. Addison-Wesley Publ. Co., Reading, MA and
Menlo Park, CA, 1978.

11. N. W. Dawes, et al. The Design and Service Impact of Cocos, an Electronic
Office System. International Symposium on Computer Message Systems, [FIP
TC-6, Ottawa, Canada, April, 1981.

149

12. Digital Equipment Corporation. DECSYSTIM-20 User's Guide. Digital
Equipment Corporation, Maynard, Massachusctts, 1978. Order No. AA-4179B-TM.
Updates have been made since this version was published.

13. J. A.Dolatta and J.R. Mashey. An Introduction to the Programmer’s
Workbench, Proc. 2nd 10 cnational Conference on Software Engineering,
October, 1976, pp. 164-168.

14. J. Gosling. Unix macs. Carnegic Mcllon University, Pittsburgh, PA, 1982,
‘This is the version in the public domain.,

I15. K. Harrenstien, V. White, E. Feinler. Hostnames Server. NIC/RFC 811,
Network Information Center, SR1 International, March, 1982.

16. 1BM. IBM Virtual ~ Machine/System Product: Remote Spooling
Communications Subsystem Networking General Information. [BM, . No.

61124-5004-3.

17. IBM. IBM Virtual Machine/System Product: Remote Spooling
Communications Subsystem Networking Programn Reference and Operations Manual,
[BM, . No. 5H?24-5005-2.

18. IFIP WG6.5. European SEG Meeting Report on Names, Directories and Lists.
N 77, IFIP W(G6.5, Systems Environment Group European Section, October, 1982,
Bonn, October, 1982 and Rome, lanuary-February, 1983

19. W. H. Jessop, J. D. Noe, D. M. Jacobson, 1. Baer, C. Pu. An Introduction to the
Fden Transactional File System. Tech., Rep. 82-02-05, Department of Computer
Science, University of Washington, Seattle, Washington, February, 1982.

20. I. H. Kerr. Interconnection of Electronic Mail Systems - a Proposal of Naming,
Addressing and Routing. International Symposium on Computer Message Systems,
IFIP TC-6, Ottawa, Canada, April, 1981.

21. R. M. Krauss and S. Weinheimer. Changes in referential phrases as a function
of frequency of usage in social interaction: A preliminary study. Pschonomic
Science 1 (1964), 113-114.

22. R. M. Krauss and S. Weinheimer. Concurrent feedback, confirmation, and the
encoding of referents in verbal communication. Journal of Personality and Social
Psychology 4 (1966), 343-346.

150

23. R. M. Krauss, C. M. Garlock, P.DD. Bricker, L. E. McMahon. The role of
audible and wvisible back-channel responses in - interpersonal communication,
Journal of Personality and Social Psychology 7 (1977), 523-529.

24. R. M. Krauss and S. Glucksberg. Social and nonsocial speech. Scientific
American 236 (1977), 100-105.

25. B. W. Lampson and R. F. Sproull. An open operating system for a single-user
machine. Proc. 7th Symposium on Operating Systems Principles, ACM SIGOPS,
Asilomar Conference Grounds, Pacific Grove, CA, December, 1979, pp. 98-105.

26. B. Lampson. Panel Discussion at SIGPLAN *83 Symposium on Programming
Languages Issucs in Software Systems. SIGPLAN Notices 19, 8 (August 1984),
S1-60. Moderator/Editor: L. A. Rowe

27. J. N. Lancaster. Naming in a Programming Support Environment.
MIT/LCS/TR 312, Massachusctts Institute of 'Technology, August, 1983. Also MS
thesis.

28. K. A.lLantz and I.1. Edighoffer. Towards a Universal Directory System.
Departiment of Computer Science, Stanford University, Palo Alto, Calif.,
unpublished paper.

29. B. Lindsay. Object Naming and Catalog Management for a Distributed
Databasc Manager. Proc. 2nd International Conference on Distributed Computing
Systems, Paris, France, April, 1981. Also Available as IBM Research Report
RJ2914, San Jose, Calif., August, 1980.

30. B. Liskov et al. Clu Reference Manual. MIT/LCS/TR 225, Massachusetts
Institute Technology, October, 1979.

31. P. Mockapetris. Domain Names - Concepts and Facilities. NIC/RFC 882,
Network Working Group, USC ISI, November, 1983.

32. P. V. Mockapetris. The Domain Name System. Computer Message Services,
IFIPWGO.5, Nottingham, England, May, 1984, pp. 59-70. Also Proc. IFIP6.5
Working Conference

33. R. M. Needham and A. D. Birrell. The CAP Filing System. Sixth Symposium
on Operating Systems Principles, Spccial Interest Group on Operating Systems of
the ACM, ACM, November, 1977, pp. 11-16.

151

M. R. M. Needham. The CAP project - an interim cvaluation. Sixth Symposium
on Operating Systems Principles, Special Interest Group on Operating Systems of
thec ACM, ACM, November, 1977, pp. 17-22.

35. D. A. Nowitz. Uucp Implementation Description. October, 1978

36. D. C.Oppen and Y. K. Dalal. The Clearinghouse: A Decentralized Agent for
[.ocating Named Objects in a Distributed Environment. OPD T8103, Xcrox Office
Products Division, Systems Development Dept., October, 1981.

37. E. 1. Organick. The Multics Fxperience: An [xamination of [lis Structure.
M.L'T. Press, Cambridge, Mass, 1972,

38. J. B. Postel. Simple Mail Transfer Protocol. RFC 821, Network Information
Center, August, 1982, 'The author is at USC ISI, Marina del Rey, CA.

39. W. V.O. Quine. Word and Object. Technology Press of Massachusctts Institute
Technology and John Wiley & Sons, New York, 1960.

40. D. M. Ritchic and K. Thompson. The UNIX Time-Sharing System,
Communications Of The ACM 17,7 (July 1974), 365-374.

41. R. Rom. Name Assignment in Computer Networks. TR 1080-310-1, SRI
International, October, 1982.

42, J. H. Saltzer. Naming and Binding of Objects. In Lecture Notes in Computer
Science, Vol. 60, Springer Verlag, New York, 1978, ch. 3, pp. 99-208.

43. J. H. Saltzer, D. P. Reed, and D. D. Clark. Source Routing for Campus Wide
Internet Transport. Local Networks for Computer Communications, IFIP, 1BM
Research Laboratory, Zurich, Switzerland, August, 1980, pp. 1-23. Also Proc. IFIP
Working Group 6.4 International Workshop on Local Networks

44, J. H.Saltzer. On the Naming and Binding of Network Destinations.
International Symposium on Local Computer Networks, IFIF/T.C.6, April, 1982.

45. E. E.Schmidt. Controlling Large Software Development in a Distributed
Environment. CSL 82-7, Xerox Corporation, December, 1982. Also Ph. D. Thesis
for the Dept. of Computer Science, University of California, Berkeley. ‘

46. J. F. Shoch. Internetwork Naming Addressing, and Routing. Proc. 17th IEEE
Computer Socicty International Conference, IEEE, September, 1978, pp. 72-79.
IEEE Cat. No. 78 CH 1388-8C.

152

47. , SIGSOFT and SIGPLAN. Proc. ACM SIGSOI'T/SIGPLAN Software
Ingineering Symposium on Practical Software Development finvironments, April,
1984.

48. I. E. Stoy and C. Strachey. OS6 - An experimental operating system for a small
computer Part 1: General principles and structure. The Computer Journal 15, 2
(May 1972), 117-124.

49. 1. E. Stoy and C. Strachey. OS6 - An experimental operating system for a small
computer Part 2: Input/output and filing system. 7The Computer Journal 15, 3
(August 1972), 195-203.

50. C. Sunshine. Source Routing in Computer Networks. Computer
Communications Review 1,7 (January 1977), 29-33.

51. L. Svobodova. A Reliable Object-Oriented Repository for a Distributed
Computer System. Proceedings of the 8th Symposium on Operating Systems
Principles, Spccial Interest Group on Operating Systems of the ACM,
December, 1981, pp. 47-58. Also published as Operating Systems Review, Vol. 15,
No. 5

52. D. P. Reed and L. Svobodova. Swallow: A Distributed Data Storage System for
a Local Network. Proc. of the International Workshop on lLocal Networks, IFIP
Working Group 6.4, Zurich, Switzerland, August, 1980.

53. L. Tesler. The Smalltalk Environment. Byre 6, 8 (August 1981), 90-147. This
issue of Byte is devoted almost exclusively to the Smalltalk system.

54. J. C. Thomas and J. M. Carroll. Human Factors in Communication. [BM
Systems Journal 20,2 (1981), 237-263.

55. W. F.Tichy. Software Decvelopment Control Based on Module
Interconnection. Proc. 4th Internation Conference on Software Engineering, ACM
SIGSOFT, European Research Office, Gesellschaft fur Informatik, IEEE Computer
Society, Munich, Germany, September, 1979, pp. 29-41.

56. W. F.Tichy. Software Decvelopment Control Based on System Structure
Description. CMU-CS 80-120, Carnegie-Mellon University, January, 1980. Also
Ph. D. Thesis

57. University of California. Unix Manual. 4.2 edition, Department of Computer
Science, University of California, Berkcley, California, 1983.

153

58. 1. Weinreb and D.Moon. Lisp Machine Manual. Fourth cdition, M.LT.
Artificial Intelligence Laboratory, Cambridge, Mass., 1981.

59. J. E. White. A User-friecndly Naming Convention for Use in Communication
Networks., Computer Message Services, [FIPWG6.5, Nottingham, England,
May, 1984, pp. 37-57. Proc.lF1P6.4 Working Conlerence hosted by Nottingham
University and Plessey

6. M. V. Wilkes and R. M. Needham. The Computer Science Library: Operating
and Programming Systems. Vol 6: The Cambirdge CAP Computer and [is
Operating System. North Holland, New York, 1979.

154

Appendix A

Operations in the General Model

The operations here are in a Clu-like [30] form, in which the name of the operation
is followed by the names and types of all arguments, the keyword returns, and the
types of the returned values. Although signals would also normally be included in a

Clu specification, they have been omitted here for simplicity.

A.1 Operations on Contexts
Operations for managing contexts

create = proc returns (cvt)

merge_names = proc (contextl, context2: cvt)
merge_participants = proc (contextl, context2: cvt)
copy = proc (contextl: cvt) returns (cvt)

display = proc (contextl: cvt)

Operations for managing names in a conlext

translate = proc (contextl: cvt, name: string) returns (set[any])

untranslate = proc (contextl: cvt, object: any) returns (set[names])

add_name = proc (contextl: cvt, name: string, object:any)
reserve_name = proc (contextl: cvt, name: string)

assign_object_to_reserved_name = proc (contextl: cvt,
reserved_name: string, object: any)

delete_name = proc (contextl: cvt, name: string)

delete_entry = proc (contextl: cvt, name: string, object: any)

Operations on participants sharing a context

add_participant = proc (contextl: cvt, participant_name: string)
delete_participant = proc (contextl: ¢vt, participant_name: string)
get_participants = proc (contextl: cvt) returns array[string]

155

A.2 Operations on Aggregates
Operations for managing aggregates

create = proc returns (cvt)

create_with_context = proc (contextl: context) returns (cvt)
merge_current_contexts = proc (aggregatel, aggregate?: cvt)
copy_current_context = proc (aggregatel, aggregate2: cvt)
merge_cnvironments = proc (aggregatel, aggregate2: cvt)
copy_cnvironment = proc (aggregatel, aggregate?: cvt)
display = proc (aggregatel: cvt)

Operations for name management in the current context

translate = proc (aggregatel: cvt, name: string) returns (sctfany])

untranslate = proc (aggregatel: cvt, object) returns (set]string]

add_name = proc (aggregatel: cvt, name: string, object: any)

reserve_name = proc (aggregatel: cvt, name: string)

assign_object_to_reserved_name = proc (aggregatel: cvt, reserved_name: string,
object: any)

delete_name = proc (aggregatel: cvt, name: string)

delete_entry = proc (aggregatel: cvt, name: string, object: any)

get_current_context = proc (aggregatel: cvt) returns (context)

Operations for managing participant names

add_participant = proc (aggregatel: cvt, participant_name: string)
delete_participant = proc (aggregatel: cvt, participant_name: string)
get_participants = proc (aggregatel: cvt) returns (set[string])

Operations for managing the environment of an aggregate

insert_rule = proc (aggregatel: cvt, rule: int, contextl: context)
append_rule = proc (aggregatel: cvt, contextl: context)

add_to_rule = proc (aggregatel: cvt, rule: int, context: context)
move_context_to_rule = proc (aggregatel: cvt, contextl; context)
delete_from_rule = proc (aggregatel:cvt, rule: int, contextl: context)
delete_rule = proc (aggregatel: cvt, rule: int)

get_environment = proc (aggregatel: cvt) returns (array[set[context]])

Operation for setting working aggregate

set_working_aggregate = proc (aggregate_name: string)

156

Appendix B

Operations in the Mail implementations

The operations in the user interface are functions in MockLisp [14]. Those functions

listed in the user interface that are followed by an asterisk (*) arc invoked directly by

humans, whereas the others are only uscd indirectly. The opcerations supporting

contexts and aggregates arc in a Clu-like [30] form as in Appendix A, [n this case,

the signals have been included since they are in the code, and the text was taken

directly from the code currently in use.

B.1 Functions in User Interface

New functions in the user interface

Name of function
list-aggregates™*
list-contexts*
display-aggregate*
display-context*
display-environment*
ncw-aggregate™®
set-current-context*

set-environment*

Comment

lists names of all aggregates

lists names of all contexts

displays an aggregate, defaults to basic_a
displays a context, defaults to basic_c

displays an environment, defaults to basic_a
creates a new aggregate

given an aggregate name, scts current context to
named context

sets environment of one aggregate equal to the
environment of a second

append-to-current-context* appends the contents of a context to the

expunge-aggregate™*
add-name*
delete-entry*
delete-name*
change-status*
expunge-context*

current context

expunges all names deleted from current context

adds a specific entry'to current context

deletes a specific entry from current context

delctes all entrics with given name from current context
changes state of an entry in the current context
expunges all names deleted from context

157

move-context*
add-to-rule*
delete-from-rule*
add-rule*
add-aggregate*
read-names
send-names

mail-help*

prompts for rule # of new location of context in
environment

adds context o rule

deletes context from rule

creates a new rule

adds an aggregate ficld to a message -

this is the only new opceration that modifies

the .mailbox file

only used indirectly when reading a message to
translate names

only used indircctly when sending a message to
translate names

displays this information

Functions modified in the user interface to the mail system

Name of function
display-message
quit*

start-edit®
send-mail*
init-mail

mail-mode

load-mail
next-message-nd*
previous-message-nd*
edit-mail*

forward-mail*
reply*
send-message™

Comments

used in displaying a message

exit mailer

begins mailer in send mode, stand-alone

begins mailer in send mode from within emacs
used both stand-alone and within emacs to initialize
mail file

sets definitions for using ecmacs in mail mode
loads mail from file into a large buffer

goes to next undeleted message

goes to previous undcleted message

enters buffer to create new message to send, from
reading

forwards the current message

replies to current message

sends a message, forwarded message, or reply

B.2 Opcrations on Aggregates in the Mail System

Operations for aggregate management

create = proc (new_aname, new_ccname: String)

returns (cvt)

create_with = proc (new_name: string, curcont: context)

158

returns (cvt)
equal = proc (aggregatel, aggregate?: evt) returns (bool)
merge_new_cc = proc (aggregatel, aggregate2: cvt, new_ccname: string)
copy = proc (new_aname, ncw_ccname: string, aggregatel:cvt)

returns (aggregate)
append_to_current_context == proc (aggregatel: evt, contextl: context)
set_current_context = proc (aggregatel: cvt, current_context: context)
get_current_context = proc (aggregatel: cvt) returns (context)
pel_my_name = proc (aggregatel: evt) returns (string)
_ged = proc (x: cvt, tab: ged_tab) returns (int)

Operations for name management

translate = iter (aggregatel: cvt, label: string, add_data: int, cond:
condtype) yiclds (stiing, int, bool) signals (no_such_name)

untranslate = iter (aggregatel: cvt, obj: string, add_data: mnt, cond:
condtype) yiclds (string, int, bool) signals (no_such_name)

add_name = proc (aggregatel: cvt, new_name, transformation: string,
add_data: int) returns (bool)

delete_name = proc (aggregatel: cvt, delname: string, del_data: int)

returns (bool)

delete_entry = proc (aggregatel: cvt, delname, dcltranslation: string,
del_data: int) returns (bool)

entry_status = proc (aggregatel: cvt, namel, objl: string) returns
(int)

force_state = proc (aggregatel: cvt, curr_name, curr_transl: string,
curr_state: state)

COperations for environment management

append_to_environment = proc (aggregatel, aggregate2: cvt) signals
(duplicate_id)

add_to_rule = proc (aggregatel: cvt, prior: int, labell: string,
contextl: context) signals (no_such_rule, already_used)

delete_from_rule = proc (aggregatel: cvt, label: string)

add_rule = proc (aggregatel: cvt, at_rule: int, label: string,
contextl: context) signals (out_of_bounds, already_used)

delete_rule = proc (aggregatel: cvt, del_rule: int) signals
(out_of_bounds)

list_environment = proc (aggregatel: cvt) returns (as)

move_rule = proc (aggregatel: cvt, i, j: int) signals (out_of_bounds)

159

B.3 Operations on Contexts in the Mail System
Operations for context management

create = proc (cname: string)

cqual = proc (contextl, context2: cvt) returns (bool)

copy = proc (old_context: cvt, new_name: string) returns (cvt)
append = proc (contextl: context, context2: cvt)

_ged = proc (x: evt, tab: ged_tab) returns (int)

disp_list = iter (contextl: cvt) yields (string)

get_name = proc (contextl: cvt) returns (string)

merge = proc (contextl, context2: cvt, new_name: string) returns (context)
pet_ctext = proc (contextl:cvt) returns (at)

get_my_name = proc (contextl: context) returns (string)
expunge = proc (contextl: cvt)

Operations for name management

accept = proc (contextl: cvt, new_name, new_translation: string,
add_data: int) returns (bool)
delete_name = proc (contextl: context, delname: string, del_data: int)
returns (bool)
delete = proc (contextl: cvt, del_name, del_translation: string,
del_data: int) returns (boot)
translate = iter (contextl: cvt, label: string, add_data: int, cond: condtype)
yields (string, int, bool)
untranslate = iter (contextl:cvt, obj: string, add_data: int, cond: condtype)
yields (string, int, bool)
names = iter (contextl: cvt) yields (string, state)
force_state = proc (contextl: cvt, curr_name, curr_transl: string,
curr_state: state)
entry_status = proc (contextl: cvt, namel, objl: string) returns (int)

160

Appendix C

Operations in the Programming Support Environment

C.1 Operations on Contexts and Aggregates

Both contexts and aggregates are parameterized by procedures. This is not standard
Clu syntax, but it has been done in the style of Clu syntax. The parameterization
has been specified in two equates on the names of the clusters in order to simplify

reading.

Operations on Contexts
[‘quate for context type

contexta = context{emerge: proc (contextl, context2: cvt) returns (cvt),
acc, del: proc (contextl: cvt, name: string, obj, state_data: any)]

All operations here are in the contexta cluster.

create = proc (merge_option: oneof]

"context]1 has priority, although context2 used also",

"context?2 has priority, although contextl used also”,

"only context] used”,

programmer_supplied_proc: proc (contextl, context2: cvt) returns (cvt)],

acc, del: proc (contextl: cvt, name: string, obj, state_date: any))
returns (cvt)

equal = proc (contextl, context2: cvt) returns (bool)
copy = proc (contextl: cvt) returns (cvt)
display = iter (contextl: cvt) yiclds (string)
merge = proc (contextl, context2: cvt) returns (cvt)
translate = iter (contextl: cvt, name: string, state_data: any) yields (any)
untranslate = iter (contextl: cvt, obj, state_data: any) yiclds (string)
add_name = proc (contextl: cvt, name: string, obj, state_data: any)
reserve_name = proc (contextl: cvt, name: string, state_data: any)

161

add_reserved_name = proc (contextl: cvt, previously_reserved_name, new_name:
string, statc_data: any)

assign_obj_to_reserved_name = proc (contextl: cvt, reserved_name: string,
obj, statc_data: any)

delete_entry = proc (contextl: cvt, name: string, obj, state_data: any)

delete_name = proc (contextl: cvt, name: string, state_data: any)

expunge = proc (contextl: cvt, state_data: any)

get_status = proc (contextl: cvt, name: string, obj: any) returns (string)

add_participant = proc (contextl: cvt, participant_name: string)

delete_participant = proc (contextl: cvt, participant_name: string)

get_participants = proc (contextl: cvt) returns (array[string])

Operations on Aggregales
L'quaie for aggregale type

aggregatea = aggregate[amerge: proc (aggl, agg2: cvt) returns (cvt), ace,
del: proc (aggl: cvt, name: string, obj, statc_data: any)]

All operations here are in the aggregatea cluster

create = proc (ccmerge_option: oneof]
"contextl has priority, although context2 used also”,
"contex(2 has priority, although contextl used also”,
"only contextl used”,
"only context2 used",
"contextl to new cc, context? first rule in new environment”,
"context? to new cc, contextl first rule in new environment”,
programmer_supplicd_ccmerge: proc (aggl, agg?2, agg3: cvt, state_data:
any) returns (cvt)],
envimerge_option: oncolf|
"env] has priority, env2 in succceding rules”,
"env2 has priority, envl in succecding rules”,
“envl only”,
"env2 only",
"merge two rule by rule”,
programmer_supplied_envmerge: proc (aggl, agg2, agg3: cvt) returns (cvt)],
acc, del: (aggl: cvt, name: string, obj, state_data: any)) returns (cvt)
set_current_context_to = proc (aggl, agg?2: cvt)
copy_current_context = proc (aggl, agg2: cvt)

162

merge_current_contexts = proc (aggl, agg2, agg3: cvt, state_data: any)
returns (cvt)

copy_cnvironment = proc (aggl, agg2: cvt)

append_cnv = proc (aggl, agg2: cvt)

merge_cnvironments = proc (aggl, agg?2, age3: cvt, state_data: any)
returns (cvt)

copy = proc (aggl: cvl) returns (cvt)

display = proc (aggl: cvt) yiclds (string)

translate = iter (aggl: cvt, name: string, state_data: any) yields (any)

untranslate = iter (aggl: cvt, obj, state_date: any) yields (any)

add_name = proc (aggl: cvt, name: string, obj, state_data: any)

rescrve_name = proc (aggl, cvt, namc: string, state_data: any)

add_reserved_name = proc (aggl: cvt, previously_reserved _name, ncw_name:
string, state_data: any)

assign_obj_to_reserved_name = proc (aggl: cvt, reserved_namc: string, obj,
state_data; any)

delete_entry = proc (aggl: cv(, name: string, obj, state_data: any)

delete_name = proc (aggl: cvt, name: string, state_data: any)

expunge = proc (aggl: cvt, state_data: any)

get_status = proc (aggl: cvt, name_ string, obj: any) returns (string)

add_particioant = proc (aggl: cvt, parlicipant_name: string)

delete_participant = proc (contextl: cvt, participant_namc: string)

get_participants = proc (aggl: cvt) returns (array[string])

add_rule = proc (aggl: cvt, rule: int, contextl: contexta)

append_rule = proc (aggl: cvt, contextl: contexta)

add_to_rule = proc (aggl: cvt, tule: int, contextl: contexta)

move_rule = proc (aggl: cvt, old_rule, new_rule: int)

delete_from_rule = proc (aggl: cvt, rule: int, contextl: contexta)

delete_rule = proc (aggl: cvt, rule: int)

get_cnvironment = proc (aggl: cvt) returns (array[string])

C.2 Operations on Library Contexts

The library_context type (or type gencrator) will have all the context operations of
Appendix C.1 as well as these few others. As with the context type generator,
library_context is a types generator, also parameterized by the same procedures as

context.

163

set_required_name = proc (library_contextl: cvt, name: string, t: type)
set_optional_name = proc (library_contextl: cvt, name: string, t: type)
move_library_reference = proc (old_library: cvt, old_name: string,
object: any, new_library: cvt, ncw_name: string
update_indirect_library_references = proc (library_contextl: cvt)

C.3 Operations on Template Aggregates
These are the additional operations needed for template aggregates, beyond those
listed for aggregates in Appendix C.1. There is one difference here. The standard
create operation of aggregates will not be transferred to the template_aggregate type
generator, Instead, a scparate create operation has been included here, creating a
template_aggregate from a pre-existing aggregate.
create = proc (aggregatel: aggregate) returns (cvt)
merge = proc (lemplate_aggregatel: cvt, client_aggregate: aggregate) returns
(aggregate)
shared_current_context = proc (template_aggregatel: cvt, "shared" |
"not_sharcd’™)

164

