
MIT/LCS/TR-326

ORPHAN DETECTION IN THE ARGUS SYSTEM

Edward Franklin Walker

This blank page was inserted to presenie pagination.

Orphan Detection in the Argus System

by

Edward Franklin Walker

June 1984

© Massachusetts Institute of Technology 1984

This research was supported by the Advanced Research Projects Agency
of the Department of Defense, monitored by the Office of Naval Research

under contract N00014-83-K-0125.

Massachusetts Institute of Technology
Laboratory for Computer Science
Csmbridge, Massachusetts 02139

1

0 rphan Detection in the Argus System

by

Edward Franklin Walker

Abstract

In a distributed system, an activity running at one node can request another node to
perform some service. This request results in an activity being created at the latter
node to perform the requested service. The former node may then crash, destroying
the activity that requested the service, but leaving behind the activity performing the
service. Such surviving activities are known as orphans [Nelson81]. Orphans are
undesirable since they waste resources and can view inconsistent data.

This thesis presents an algorithm that detects and exterminates orphans before they
can view inconsistent data. The algorithm has the desirable property that no non·
orphans are mistakenly identified as orphans and exterminated. An underlying
premise of the algorithm is that orphan detection and extermination should delay
normal computation as little as possible. The algorithm works by piggybacking
information concerning orphans on various messages that flow about the system.

The algorithm piggybacks an impractical amount of data on messages. The main
contribution of this thesis is the development of a method called deadlining. This
method works in conjunction with the algorithm to detect orphans before they view
inconsistent data, while substantially reducing the amount of data piggybacked on
messages. An analytic model is used to· predict the actual performance of
deadlining.

This report is a minor rev1s1on of a thesis of the same title submitted to the
Department of Electrical Engineering and Computer Science on May 25, 1984 in
partial fulfillment of the requirements for the Degree of Master of Science.

Thesis Supervisor: Barbara H. Liskov
Title: Professor of Computer Science

Keywords: atomic actions, orphans, distributed systems, remote procedure call

2

Acknowledgments

Barbara Liskov, my thesis advisor, has my gratitude for suggesting an

intriguing thesis topic, listening to my ideas, making many invaluable suggestions,

and promptly reading the drafts of this thesis.

I am indebted to many of my fellow graduate students, for both their technical

expertise and for making the Lab a more pleasant place to work. My roommates and

fellow computer science graduate students, Tom Wanuga and Jim Restivo, have

been steady sources of encouragement and friendship. Brian Oki has also been

quite helpful and friendly. Jennifer Lundelius proved to be a valuable source of

information about clock synchronization. Bill Weihl, Maurice Herlihy, and Bob

Scheifler answered many of my questions about Argus. Brian Coan organized a most

enjoyable ski trip. Everyone in John's, Barbar~'s, and Nancy's groups has my .

thanks.

Gail Rubin has my love for her affection and emotional support while this thesis

was underway.

And I must not forget to thank my mother for everything over the years.

3

Table of Contents

Chapter One: Introduction 9

Chapter Two: Argus 12

2.1 Guardians 12
- 2.2 Atomic Actions 14

2.3 Nested Actions 16
2.4 Handler Calls 19
2.5 Mutex Objects 19
2.6 Implementation Details 20

2.6.1 Remote Lock Inheritance 20
2.6.2 Two Phase Commit 20
2.6.3 Granting Locks: Querying 21
2.6.4 Action Identifiers 23

Chapter Three: Orphans 24

3.1 Orphan Creation via Explicit Aborts 24
3.1.1 Types of Explicit Aborts 24
3.1.2 Can Abort-Orphan Creation be Avoided? 25
3.1.3 Problems Caused by Abort-Orphans 25

3.2 Orphan Creation via Crashes 31
3.2.1 Problems Caused by Orphaned-Children Crash-Orphans 31
3.2.2 Problems Caused by Uprooted-Action Crash-Orphans 31

Chapter Four: The Orphan Detection Algorithm 37

4.1 Introduction to the Algorithm 37
4.1.1 Detecting Abort-Orphans 38
4.1.2 Detecting Crash-Orphans 41

4.2 Details of the Orphan Detection Algorithm 47
4.2.1 Recovery 47
4.2.2 Action Abort 47
4.2.3 Handler Call 48
4.2.4 Reply 48
4.2.5 Refusal Messages 49
4.2.6 Topaction Creation 49
4.2. 7 Local Subaction Creation 49
4.2.8 Local Subaction Commit 49
4.2.9 Prepare Messages 50
4.2.1 O Local Lock Propagation 50

4

4.2.11 Query Responses
4.3 Unwanted C~mmitted Subactions
4.4 Simple Improvements to the Orphan Detection Algorithm

4.4.1 Done
4.4.2 Limiting the Growth of Done
4.4.3 D-list-map
4.4.4 Local Lock Propagation

4.5 Orphan Extermin~tion
4.5.1 How to Kill an Orphan
4.5.2 Stranded Actions

Chapter Five: Controlling the Size of Done: Deadlining

5.1 Deadlining
5.2 Deleting Identifiers From Done
5.3 Deadline Extension
5.4 When to Start Deadline Extension

5.4.1 Guardian Isolation
5.5 Deadline Extension for Deeply Nested Calls

5.5.1 Increasing the Time Between Deadlines
5.5.2 Short-Circuiting Deadline Extension Protocol

Chapter Six: Controlling the Size of Map: Deadllnlng

6.1 Map Deadlining
6.2 Deleting Entries From Map
6.3 Map-Deadline Extension

Chapter Seven: Performance Analysis of Deadlining

7.1 Performance Analysis of Done Deadlining
7.1.1 Modelling Deadline Extensions per Topactlon
7 .1 .2 Modelling the Size of Done
7.1.3 The Performance of Done Deadlining

7.2 Performance of Map Deadlining

Chapter Eight: Conclusion

8.1 Related Work
8.1.1 Nelson's Thesis
8.1.2 Lampson's Orphan Detection Schemes
8.1.3 Allchin's Thesis

8.2 Summary and Suggested Work

Appendix A: Mathematical Derivations

A.1 Derivation of P[D = n]
A.2 Derivation of the Mean of D

5

5Q;

51
52
52
53
54
55
55
56
56

59

60
61
65
68
71
72
73
74

81

81
82
84

89

89
89
91
96

104

107

107
107
109
109
115

118

118
118

A.3 Derivation of the Mean of S 119

6

Table of Figures

Figure 2·1 : Argus subaction creation example 18
Figure 3· 1 : Coenter example 26
Figure 3-2: Abort-orphan example snapshot one 27
Figure 3·3: Abort-orphan example snapshot two 28
Figure 3·4: Abort-orphan example snapshot three 29
Figure 3·5: Crash-orphan example snapshot one 33
Figure 3·6: Crash-orphan example snapshot two 33
Figure 3-7: Crash-orphan examplesnapshotthree 34
Figure 3-8: Uprooted-action created by crash of committed descendant 34
Figure 3-9: Uprooted-action receives invalid information 35
Figure 3·10: Uprooted-action receives no invalid information from parent 36

or child
Figure 4· 1: Abort-orphan detection example snapshot one 39
Figure 4·2: Abort-orphan detection snapshot two 40
Figure 4-3: Abort-orphan detection snapshot three 41
Figure 4-4: Abort-orphan detection snapshot four 42
Figure 4-5: Crash-orphan detection example snapshot one 44
Figure 4·6: Crash-orphan detection example snapshot two 45
Figure 4· 7: Crash-orphan detection example snapshot three 46
Figure 4·8: Crash-orphan detection snapshot four 46
Figure 5·1: Purely local descendants 60
Figure 5·2: Why deadline extension starts at Q+ e seconds before 70

deadline
Figure 5·3: Recursion example 75
Figure 7-1: Exponential density function 90
Figure 7·2: M/G/00 queue 92
Figure 7-3: A simple single-queue model of done 94
Figure 7-4: Multiple M/G/OO queue model of done 95
Figure 7 -5: General model of done 96
Figure 7-6: Probabili~_that D =0 as a function of m 97
Figure 7 • 7: ~h of D as a function of m 98
Figure 7-8: donegra~as a function of n 99
Figure 7-9: Graph of done; N = 50 102
Figure 7·10: Average size of map, according to single-queue model; m = 105

5
Figure 8· 1: Counter-example snapshot one 111
Figure 8·2: Counter-example snapshot two 113
Figure 8·3: Counter-example snapshot three 114

7

Figure 8-4: Counter-example snapshot four 115

8

Chapter One

Int reduction

A distributed computer system is composed of a group of nodes connected by

a communications network. Distinct nodes do not share memory; they can

communicate with each other only by sending messages over the network.

Components· of such a system can fail -- nodes can crash and messages can be lost.

A primary goal of distributed computing is that the system, as a whole, should be

robust to such failures.

In a distributed system, an activity running at a node can request another node

to perform some service. This request results in an activity being created at the latter

node to actually perform the requested service. However, the former node can

crash, destroying the activity that requested the service, but leaving behind the

activity performing the service. Such surviving activities are known as orphans

[Nelson81). Orphans can be created in more subtle ways than we have indicated

here; the body of the thesis contains a more detailed discussion.

Orphans cause two undesirable problems. First, they waste resources -- the

work of the orphaned activity above is futile since the requesting activity that would

benefit from this work has perished. Second, orphans can view inconsistent data,

i.e., data in a state it could not be in if the activity in question were not an orphan.

Permitting activities to view inconsistent data imposes a burden on programmers,

who are then obliged to write programs that behave properly even in the presence of

inconsistencies. Therefore both problems make it desirable to exterminate orphans.

If the latter problem is to be completely remedied, orphans must be exterminated

before they view inconsistent data.

This thesis presents an algorithm that detects and exterminates orphans before

9

they can view inconsistent data. This algorithm has the desirable property that no

non-orphans are mistakenly identified as orphans and exterminated. An underlying

premise of the algorithm is that orphan detection and extermination should delay

normal computation as little as possible. The algorithm works by piggybacking

information on various messages that flow about the system. This information is

used to detect orphans, and is guaranteed to arrive in time to prevent orphans from

viewing inconsistent data. Goree [Goree83] has verified the correctness of a portion

of this algorithm.

The algorithm, in fact, piggybacks a large amount of data on messages. In

order for the algorithm to be considered practical, it is necessary to devise some

means for reducing this information flow. The main contribution of this thesis is the

development of a method called deadlining. This method works in conjunction with

the algorithm to detect orphans before they view inconsistent data, while reducing

the amount of data piggybacked on messages. Deadlining also preserves the

property that no non-orphans are exterminated mistakenly.

The rest of this chapter is devoted to a discussion of the organization of the

subsequent chapters of this thesis.

In Chapter 2, Argus is discussed. The orphan detection algorithm discussed In

this thesis was developed expressly for the Argus system, although we believe it can

be used in other distributed systems as well. Argus [Liskov83] is a programming

language designed to support applications that run in a distributed computer system.

The Argus system is the extensive run-time support system required to run an Argus

program. Argus has three features that suit the distributed programming task well:

long-lived data, remote procedure calls, and atomic actions. Data objects in Argus

can survive much longer than the duration of the execution of a program, unlike data

in most common programming languages. Argus programs typically modify long.

lived data when run; they typically neither create nor destroy such data. A remote

procedure call is very much like a familiar procedure call, except that the called

10

procedure executes on a different machine from the caller's. Atomic actions have

the property of either running successfully to completion or having no effect upon

system state.

Chapter 3 contains a discussion detailing what orphans are and why they are a

problem. The basic orphan detection algorithm is discussed in Chapter 4. Chapters

5 and 6 discuss deadlining. Chapter 7 presents an analytical analysis of the

effectiveness of deadlining, in terms of reducing the amount of data added to

messages.

A discussion of related work and our conclusions appear in Chapter 8. Others

have encountered orphans in their proposed systems and formulated their own

orphan detection algorithms. We are aware of no actual implementation of an

orphan detection algorithm. Allchin [Allchin83] presents an or~an ~tection

algorithm similar to ours, but his algorithm is incorrect, and he presents no

mechanism like deadlining to make his algorithm practical. Nelson [Nelson81]

discusses several orphan detection strategies, all of which seem practical. Nelson,
/;

however, does not share our premise that orphan detection should avoid delaying

normal computation.

11

Chapter Two

Argus

Argus [Liskov82] [Liskov83] [Liskov84] is a programming language and system

designed to support programs that run in a network of computers. The Argus system

is the extensive run-time support system required for Argus programs. This chapter

presents a discussion of Argus that provides the necessary background for the

material in later chapters.

2.1 Guardians

In Argus, a distributed program is composed of a group of modules called

guardians. A guardian runs at a single computer in a network. From this point

onward, a computer in a network is referred to as a node. A node can contain

several guardians, but any single guardian is completely contained at some node. A

guardian encapsulates and controls access to one or more resources, e.g.,

databases or devices. Every guardian provides a set of operations called handlers.

These handlers provide access to the encapsulated resources of a guardian. When a

guardian wishes to access some other guardian's encapsulated resource, it can only

do so by calling one of that guardian's handlers..

Handler calls and handler operations in Argus are semantically and

syntactically similar to procedure calls and procedures, respectively, in more familiar

programming languages. Each handler operation provides a set of formal input

parameters and a set of formal output parameters. A handler call specifies the actual

input parameters to be transmitted to the handler and what to do with the returned

output values from the handler. The arguments (both input and output) of handler

calls are passed by value; it is impossible to pass a reference to an object In a handler

call. Since guardians usually reside at distinct nodes, handler calls usually involve

12

sending messages across the network.

Internally, a guardian contains data objects and processes. The processes

execute handler calls (a new process is spawned for each incoming handler call) and

perform background housekeeping tasks. Some of the data objects make up the

state of the guardian; these objects are shared by the processes running in the

guardian. Other objects are strictly local to some individual process and disappear

when that process terminates.

A guardian's state consists of stable and volatile objects. Stable objects are

maintained in volatile memory but are periodically recorded on stable storage

devices. Stable storage devices survive node failures {with a very high probability);

volatile memory does not. Volatile objects are maintained only in volatile memory.

When a guardian's node crashes, the volatile objects are lost but the stable objects

survive.

A guardian is capable of surviving crashes at its node given that an appropriate

collection of its objects are stable. Although a guardian does lose the work In

progress at the time of a crash, the results of past completed work are not lost. After

a crash and subsequent recovery of a guardian's node, the Argus support system

together with the guardian's user-written recovery code recreate the guardian's state

using the stable objects as they were when last recorded on stable storage. Of

course, this means that the volatile objects must be derivable from the stable objects.

Once the guardian's state has been restored, the guardian can resume background

tasks and can start processing new incoming handler calls.

In this thesis, the terms local and remote are used with respect to guardians.

That is, "local" means "at the same guardian" and "remote" means "at some other

guardian."

13

·----. ----------------

2.2 Atomic Actions

Although a distributed program might consist of a single guardian, more

typically it will be composed of several guardians, and these guardians will reside at

different nodes. In a system composed of many guardians, the state of the system is

distributed ·· it is partitioned among the different guardians. This distributed state

must be maintained consistently in the presence of concurrent activities in the

system and in spite of the fact that the hardware components on which the system

runs can fail independently. To provide consistency of distributed data, Argus

supports atomicity.

An activity in Argus attempts to examine and transform some objects in the

distributed state from their current (initial) states to new (final) states, ·with any

number of intermediate state cbanges. Two properties distinguish an activity as

being atomic: indivisibility and recoverability. Indivisibility means that the execution

of one activity never appears to overlap (or contain) the execution of any other

activity. If the objects being modified by one activity are observed over time by

another activity, the latter activity.will either always observe the initial states or always

observe the final states of those objects ·· never the intermediate states.

Recoverability means that the overall effect of the activity is all-or-nothing ··either all

of the objects remain in their initial state, pr all change to their fin·a1 state. If a failure

occurs while an activity is running, it must be possible either to complete the activity

or to restore all objects to their initial states.

Such an atomic activity is called an action. An action may complete either by

committing or aborting. When an action aborts, the effect Is as if the action had

never begun; all modified objects are restored to their initial states. When an action

commits, aJI modified objects take on their new states.

Atomic objects are special objects that support the indivisibility and

recoverability properties of actions. To prevent one action from observing or

interfering with the intermediate states of another action, accesses to an atomic

14

object are synchroni_zed via read-write locking. To permit the modifications of an

action to an atomic object to be undone, multiple versions of an atomic object are
~ .. . ~·-

maintained. Atomicity is guaranteed only when the objects shared by actions are

atomic objects. In this thesis, atomic objects are referred to as "objects." When an

object that is not atomic is spoken of in this thesis, it will be explicitly referred to as a

"non-atomic object." In addition, we assume in this thesis that atomic objects are

always stable objects.

Atomic objects are based on a fairly simple read-write locking model. Before

an action uses an atomic object, it must acquire the object's lock in the appropriate

mode. The usual locking rules apply ·· multiple readers are allowed but readers

exclude writers and a writer excludes readers and other writers. When a write lock Is

obtained, a version (i.e., a copy) of the object is made, and the action operates on

this version. If ultimately the action commits, this version will be retained, and the old

original version discarded. If the action aborts, Its version will be discarded, and the

old version retained. All locks on atomic objects acquired by an action are held until

the completion of that action, a simplification of standard two-phase locking

[Eswaren76], in order to avoid the problem of cascading aborts [Wood80].

Not all objects are atomic objects, since the properties of synchronization and

recovery are somewhat expensive and are not required in many situations. For

example, objects that are entirely local to a single action do not require these

properties.

Actions provide a straightforward way to deal with hardware failures at a node

·· a failure forces the node to crash, which in turn forces all the actions there to abort.

As was mentioned above, the stable state of guardians is stored on stable storage

devices. However, stable objects are not copied to stable storage until actions

commit. Versions of an atomic object made for a running action and information

about locks and processes are kept in volatile memory. When the node crashes this
'

volatile information is lost, effectively terminating all actions running there, releasing

15

all locks, and discarding all versions.

2.3 Nested Actions

Actions have been presented thus far as monolithic entities. In fact, it is useful

to break down actions into parts; to this end Argus provides hierarchically structured,

nested actions. Such a nested action is also called a subaction. An action may

contain any number of subactions. Similarly, a subactlon itself can contain any

number of subactions. This nesting can go arbitrarily deep.

An action that is contained in no other action is called a topaction. The term

action from this point hence will refer to either a topaction or a subaction.

We apply the usual terminology for hierarchical relationships to nested actions.

Hence we talk about the parent action of a given subaction, or the children of a given

action. We can also refer to an action's descendants or ancestors. An action is

defined to be its own ancestor and descendant. When we desire to refer to an

action's descendants (or ancestors) excluding the action itself, we sh11ll refer to that

action's proper descendants (or proper ancestors).

The fact that a topaction might have several children subactions cannot be

observed from the outside; I.e., the overall action still satisfies the atomicity

properties. Also, subactions appear as atomic activities with respect to their sibling

subactions. Subactions can commit and abort independently, and a subactlon can

abort without forcing its parent action to abort. However, the commit of a subaction

is conditional ·· even if a subaction commits, aborting its parent action will undo the

results of the subaction. Further, object versions are written to stable storage only

when topactions commit.

Subactions are a mechanism for coping with failures. Since a subaction aborts

independently of its parent, the failure of a child can be confined to that child. If a

child cannot perform its work for some reason and aborts, the parent can then take

16

- --~----------

appropriate steps to try to work around .the problem. This failure isolation provides

the means to improve program robustness and to make error recovery more

straightforward.

The locking rules are a bit more complicated for nested actions than for flat

actions. To keep locking rules from getting too complex, a parent action is not

allowed to run concurrently with its children ·· a parent is suspended while it has

active (i.e. non-completed} children. The rule for read locks is extended so that an

action may obtain a read lock on an object if every action holding a write lock on that

object is an ancestor. An action may obtain a write lock on an object provided every

action holding a read or write lock on that object is an ancestor. When a subaction

commits, its locks are inherited by its parent (i.e. the parent becomes the· holder of

the locks); when a subactions aborts, its locks and versions are discarded.

We say that an action B has committed up to ancestor action A if B and every

ancestor of B up to but not necessarily including A.has committed. This "committed

up to" terminology will be used throughout this thesis.

There are three means of creating subactions in Argus. The first two are the

enter and coenter statements. The enter statement is used to create.a single child

subaction of the action that executes the enter. The child runs at the guardian of the

parent. The coenter creates some specified number of children subactions of the

action that executes the coenter. The created children run concurrenUy with each

other; each child runs at the guardian of the parent. The final means of creating a

subaction is through handler calls. A handler call creates a child subaction of the

action executing the handler call. The child runs at the called guardian. The handler

call is the only means of creating a subaction that does not run at its parent's

guardian. Handler calls are discussed in greater detail in the next section. An

annotated piece of Argus code is given in Figure 2-1 that illustrates the use of enter,

coenter, and handler calls.

An action resides at a single guardian in Argus •· an action is created, run, and

17

-------------- -------

•
•
•
enter action

handler calls

y:=y+1

coenter

action ~Arst
concurrent
child created

x : = G.read (y) by coenter

actl:~ = H.write (!~~~~rent
guardian ~---~-----~)) child created

- bycoenter
handler operation ~------name

end

end

•
•
•

Subaction tree created by above code:

.--t-- Subactlon created by enter

l"Scope"" subaction

"""""' by
enter

First concurrent child
Second concurrent child created by coenter

Subaction created
by handler call ----Subaction created by handler call

GuardianG GuardianH

Figure 2·1: Argus subaction creation example

terminated all at a single guardian. Hence it makes sense to speak of an "action's

guardian," since every action is intimately associated with a single guardian. A

subaction need not run at its parent's guardian; such subactions are created by

handler calls.

18

2.4 Handler Calls

The Argus system constructs and sends the ca// and reply messages needed to

implement a handler call. A ca// message is sent from the calling action's guardian to

that of the called guardian. Call messages contain the values of the actual

parameters, the identity of the handler operation that is being called, and the

identifier of the calling action. A reply message is sent from the called handler to the

guardian of its caller when the handler completes. Reply messages contain the

values of the output parameters being returned to the caller, and the identifier of the

replying action.

Since handler calls are run as subactions, they have at-most-once semantics,

namely that effectively either the call message is delivered and acted on exactly once

at the called guardian, with exactly one reply received, or the message is never

delivered.

A handler call actually creates two subactions. At the caller's guardian a call

action is created. This action is a child of the caller. The call action handles the
•

preparation of the call message and the receipt of the reply message. At the called

remote guardian a handler action is created. This action is considered to be a child

of the call action. The handler action executes the called handler operation.

2.5 Mutex Objects

Mutex objects are not atomic objects, even though they are shared by atomic

actions. Mutex objects are used by programmers to implement their own atomic

objects. Argus provides several "built-in" types of atomic objects; however, a

programmer can achieve greater concurrency in some cases by building his own

atomic object types. Mutex objects are similar to atomic objeets in that they have

locks, but there are two significant differences. Firstly, an action can release a lock it

has acquired on a mutex object at any arbitrary time. An action cannot release a lock

on an atomic object; locks on atomic objects are not released until after the action

19

holding them completes. Secondly, multiple versions are not maintained for mutex

objects, i.e. modifications to mutex objects by aborted actions are not undone.

Stable mutex objects modified by an action are written to stable storage after the

action's topaction commits, as with stable atomic objects.

2.6 Implementation Details

The discussion thus far has basically focused on discussing the Argus

language. This section is concerned with assorted details of the Argus system

implementation.

2.6. 1 Remote Lock Inheritance

When a handler action commits, the locks it obtained are inherited by its call

action per the locking rules. However, to avoid the expense of including information

about locks in reply messages, the information about these inherited locks is kept

locally at the handler's guardian. The locks are still heid; the caU action becomes the

absentee holder of the locks. In· addition, the call action not only inherits the locks

the handler subaction itself obtained, but also any locks the handler inherited and

owns in absentia. Hence an action can hold several locks at several guardians

distinct from its own. Furthermore, the system maintains no ·information at the

action's guardian concerning the exact identities of these locks.

2.6.2 Two Phase Commit

The commit of a subaction is conditional. If the topaction a subaction has

committed up to aborts, then the subaction should be aborted. On the other hand, if

a topaction commits, all the results produced by subactions that committed up to the

topaction should be committed. However, if one of these subaction's results have

been wiped out by a crash, the topaction and all its committed descendants must be

forced to abort.

To ensure that a topaction and all the subactions that committed up to it either

20

all commit or all abort, a standard two-phase commit protocol is carried out [Gray78].

In the first phase, an attempt is made to verity that all locks are still held, and to

record the new state of each modified stable object on stable storage. This is done

by sending a prepare message to each guardian where a handler call subaction ran

that committed up to the topaction. Upon receipt of a prepare message, a guardian

makes sure that the appropriate locks are still held and, if so, writes the appropriate

objects to stable storage and then replies with a prepared message. If the first phase

is successful, i.e. a prepared message is received from every .guardian a prepare

message was sent to, then in the second phase the locks are released, the recorded

states become the current states, and the previous states are forgotten. If the first

phase fails, the recorded states are forgotten and the topaction Is forced to abort,

restoring the objects to their previous states.

2.6.3 Granting Locks: Querying

When a subactlon requests a lock, that lock might be held by an absentee lock

holder. In this case, communication is necessary to discover If the lock can indeed

be granted to the lock requester. This communication procedure is called querying.

In order for querying to be necessary, the subaction that obtained the lock in

question must have committed. There are two possible cases ·· either the lock was

obtained by a relative or the lock was obtained by a non-relative.

In the case of a non-relative, the lock can be granted only if some ancestor of

the lock obtainer has been aborted. In this case, the action that inherited the lock

must have been aborted.1 When an action is aborted, the system makes no attempt to

locate and release any non-local locks the action might have inherited. Hence the

system can find itself holding a lock for an action that does not exist, i.e. that has

been aborted.

10r should be aborted; actions with aborted ancestors are orphans.

21

To discover if some ancestor of the lock obtainer has aborted, the guardian of

the lock requester first directs a query message to the lock-obtainer's topaction's

guardian. If the topaction has completed two-phase commit or aborted, implying that

some action that inherited the lock was aborted, a query response will be sent back

indicating that the lock should be released, and any versions discarded. If this is not

the case, a query response to the effect of "don't know" will be sent back. The

requester's guardian can then direct queries to other guardians to attempt to

discover if any ancestor the the lock obtainer has aborted.

Let us now consider the case where the lock in question was obtained by a

relative of the requester. Consider the case where the lock requested is a read lock,

and the lock held is a write lock. If the write lock has been inherited by an ancestor of

the requester, the read lock can be granted to it according to the locking rules of

Argus. In order to discover if this is the case, the requester's guardian directs a

query to the guardian of the least common ancestor, or LCA, of the holder and

requester. The LCA is defined as the closest ancestor any g1ven set of related

actions have in common. If the lock obtainer has committed up to the LCA, the LCA's
•

guardian sends back a query response indicating that the LCA is indeed the

absentee holder of the write lock. The read lock is granted to the requester once this

message is received.

Similar events occur when the lock requested is a write lock. In this case

queries will be directed to the guardians of each LCA of the requester and some

particular obtainer of a read or write lock. Each query response indicates if the

obtainer in question has committed up to the given LCA. If all the query responses

indicate that all the locks have been inherited by ancestors of the requester, the write

lock can be granted to the requester.

This discussion of querying has omitted many details; a full discussion can be

found in [Liskov84]. This discussion is included here since query response

messages have a role in orphan detection.

22

2.6.4 Action Identifiers

Each action has a unique identifier. A subaction's identifier consists of the

identifier of its parent concatenated with the guardian identifier of the subaction's

home guardian and a unique identifier. Guardian identifiers, incidentally, are unique

fixed-length identifiers. A topaction's identifier consists of a unique identifier and its

guardian's identifier. Thus an action identifier consists of a sequence of pairs of

unique identifiers and guardian identifiers. Hence the identifiers of all a subaction's

ancestors can be derived from that subaction's identifier. Note also that the

identifiers of the guardians of all an action's ancestors can be derived from the

action's identifier.

23

---------------------- -~---

Chapte'r Three

Orphans

An orphan is an action that has had some ancestor perish or had the pertinent

results of some relative action lost in a crash. This chapter discusses how orphans

arise in Argus and identifies the problems that justify bothering to detect and

exterminate them.

The reader should note that we define an orphan to always be an active action,

i.e. an action that has neither committed nor aborted.

But a caveat here; note that orphans are not exclusively children actions

whose parents (or ancestors) have been killed for one reason or another. This is just

a warning that the typical preconceived notion about what constitutes an "orphan" Is

not totally correct.

Orphans arise in Argus due to crashes and explicit aborts. Orphans that arise

due to explicit aborts will be discussed first, and then orphans that arise due to

crashes.

3.1 Orphan Creation via Explicit Aborts

When a parent action is aborted, the active descendants it leaves behind

become orphans. An active action with an explicitly aborted ancestor is called an

abort-orphan.

3.1.1 Types of Explicit Aborts

There are two flavors of explicit aborts in Argus that can cause the creation of

orphans. The first is the explicit abort of handler calls. Recall that a handler call

24

actually creates two subac;tions ·• a call subaction at the caller's guardian and the

handler subaction at the remote guardian. If the system judges that a handler call

cannot be completed successfully due to a communications failure, etc., it aborts the

call action. This orphans the handler subaction, if it indeed exists, and any of its

descendants.

The second source of abort-orphans is explicit aborts initiated by the coenter

statement. The coenter statement spawns concurrent sibling subactions, as

previously discussed in Section 2.3. If any one of these concurrent siblings transfers

control outside the textual scope of the coenter statement, the other active siblings

are aborted before execution is allowed to proceed any further .. If any of these

aborted siblings happened to have made a handler call, the remote handler action

and its descendants are orphaned. Figure 3· 1 gives an annotated example of using

the coenter statement to implement a handler call timeout. In the example, when the

first subaction created by the coenter completes, the other is aborted. The example

repeatedly makes a handler call until the handler call successtuny returns within 60

seconds.
•

3.1.2 Can Abort-Orphan Creation be Avoided?

Abort-orphans are inevitable in Argus, due to a c;iesign decision that Argus

should provide "quick" aborts. If abort-orphans are to be avoided, the abort of an

action must be delayed until all of its active descendants are tracked down and

aborted. Of course, many of its descendants might be remote, so tracking them

down typically involves communicating across the network. Such a delay is not

compatible with the design goal of "quick" aborts.

3.1.3 Problems Caused by Abort-Orphans

One might question what problems an abort-orphan could possibly cause.

Since an abort-orphan does not commit up to its topaction, it does not participate in

two phase commit. Hence the results it eventually produces are not committed to

25

-------------- ------ --------------- --------------

while hue do
coenter

action

Handler call

/
y : = G.read (x)

break-----
action

sleep(60)
continue

end %coenter "'-

Transfers control out of while loop

end % W h j le Transfers control to beginning of while loop

Figure 3·1: Coenter example

stable storage; these results will be discarded whe~ it is discovered through querying

(or orphan detection) that they. were produced by an orphan. Hence an abort­

orphan's results are undone. So one could argue that abort-orphans are harmless in

that they have no observable effect on system . state. Hence why bother detecting

and aborting them?

One problem with abort-orphans is that they waste resources. An abort­

orphan's results are undone; the resources used to produce these results are

wasted. But even though resource wastage is an unfortunate consequence of abort­

orphans, is it so grave a problem that it justifies bothering to detect and exterminate

abort-orphans? Since the orphan detection scheme that this thesis presents is rather

costly, one could argue that going to the bother just on account of wasted resources

is not justified.

A significant problem does arise, however, when abort-ol'phans are permitted

to run unchecked. An abort-orphan can encounter a situation where it views data in

an inconsistent state. By this it is meant that an abort-orphan's data can get into an

26

"impossible" state ··one that violates the·semantics of atomicity. The idea that an

action should always view consistent ·data has been formalized by Goree as

view-seriafizability [Goree83].

An example is now presented that illustrates how an abort-orphan can view

inconsistent data. The crux of the example is two guardians named GX and GY. GX

and GY each contain a single atomic object, x and y, respectively. There is an

invariant between x and y, namely x = y. We can suppose GX and GY implement the

copies of a replicated data base. Suppose that x = y = O initially. In the example, an

abort-orphan will come to view x ¢ y, violating the consistency constraint.

In this example, the creation of call actions is ignored. Remember that a

handler call causes two subactions to be created •· a call subaction at the caller's

guardian and a handler subaction at the called guardian. But since these call actions

have no interesting role in this example, we ignore them.

GUARDIAN GX

Action A locked by A

Ix= 01
GUARDIAN GB

"x = O"
CALL MESSAGE DELA YEO

GUARDIANGV

y = 0

Figure 3-2: Abort-orphan example snapshot one

Suppose an action A is created at guardian GX. A reads x, which has the value

27

of zero, and then makes a handler call to GY passing the information in the

arguments of the call that xis zero. But suppose the call message is delayed in the

network. Figure 3·2 illustrates the resulting situation.

Suppose the system then judges that it cannot complete the handler call

successfully and aborts it. {It does this by aborting the call action.) A then resumes

execution but gives up and aborts itself. This causes the lock on x to be released.

GUARDIANGX

ction A
ABORTED

8.1

"x = O"
CALL MESSAGE DELAYED

GUARDIANGV

GUARDIAN Ge·

Topaction B

Figure 3-3: Abort-orphan example snapshot two

•

Suppose then a topaction B residing at guardian GB makes a handler call to

GX creating subaction 8.1. 8.1 changes the value of x to one and commits to B.

Then B makes another handler call, this time to guardian GY, creating action 8.1.

B.1 changes the value of y to one. Figure 3-3 illustrates the resulting situation.

Suppose that 8.2 commits to B. Then 8 itself commits and two phase commit

is completed successfully. This causes the locks on x and y to be released and their

new values to be assumed. Then suppose the delayed handler call made by aborted

28

GUARDIAN GX

x = 1

Action A
ABORTED

"x = O"

GY

locked by A.1

I Y = 1 f
Orphan A.1

BeHevesO = x .. y

GUARDIAN GB

Figure 3·4: Abort-orphan example snapshot three

action A finally arrives at GY, creating subaction A.1. A.1 reads y, and finds that y is

one, contrary to the information A.1 received through its arguments that indicates y Is

zero. The invariant x = y has been violated in t~e view of A.1. Figure 3·4 illustrates

this final situation.

Let us now discuss the negative aspects of permitting an abort-orphan to view

inconsistent data. An abort-orphan is just a piece of Argus code written under the

assumption that the data it views is consistent. Thus an abort-orphan might behave

erratically when this proves not to be the case. This bizarre behavior could be

realized by going into an infinite loop, terminating with an unhandled exception, or

perhaps producing garbage on a perplexed user's terminal. In these cases, a

programmer's confidence in his code would be shaken since it would not be known

to the programmer whether the action was indeed an abort-orphan when it displayed

its erratic behavior.

It was stated previously that an orphan's results are always undone. This is

29

true insofar as atom_ic data is concerned, but is not true of non-atomic data. In

particular, an orphan's modifications to mutex objects are never undone. In Argus, a

programmer can use non-atomic mutex objects together with. atomic objects to

construct his own user-defined atomic objects. Actions share non-atomic data! in

such implementations of user-defined atomic objects; these implementations must be

written with. extreme care in order to work correctly. However, these programs are

still written under the assumption that an action's view. is consistent. When an

orphan views inconsistent data, it could hopelessly corrupt shared non-atomic mutex

objects. Such modifications are never undone. After mutex objects are corrupted,

other non-orphaned actions that share the corrupted objects would then behave

erratically and possibly corrupt other data.

In addition, an abort-orphan might have some interaction with the physical

world that cannot be taken back. The example above of printing garbage on a user's

terminal falls into this category.

Let us analyze how an abort-orphan can come to view inconsistent data.

Consider an ancestor whose abort creates an abort-orphan. This ancestor could

have passed information concerning the states of data it examined or modified down

to the abort-orphan. This information reaches the abort-orphan by filtering down the

descendant chain starting from the ancestor. The information is transmitted from

one action to the next in the descendant chain either through the arguments of

handler calls when the next descendant in the ·chain is remote, or through shared

objects when the next descendant is local. But in any case, the abort-orphan

receives information originating from the ancestor concerning the states of its local

data. But this information becomes invalid after the ancestor aborts, since the

ancestor's modifications are undone and its locks are released, permitting some

other action to modify data the ancestor examined. It is this invalidated Information

that can lead the abort-orphan to view inconsistent data.

3.2 Orphan Creation via Crashes

When a guardian crashes, all active actions with an ancestor at the crashed

guardian become orphans. Additionally, any active action with a descendant that ran

at the crashed guardian becomes an orphan, provided this descendant committed up

to the action in question. We call orphans created by crashes crash-orphans. Crash­

orphans fall into two categories .. orphaned-children and uprooted-actions. A crash­

orphan is an orphaned-child if it was orphaned due to an ancestor perishing in a

crash. A crash-orphan is known as an uprooted-action when it is orphaned by crash

of a non-ancestor's guardian.

3.2.1 Problems Caused by Orphaned·ChUdren Crash-Orphans

An orphaned-child crash-orphan has had some ancestor perish in a crash. But

perishing in a crash has the same effect as an explicit abort of the ancestor .. the

ancestor's execution is terminated, its locks are released, and its versions are thrown

away, as discussed in Section 2.2. Thus orphaned-child crash-orphans get into

exactly the same type of trouble as abort-orphans do, for exactly the same reasons.

All of the previous discussion concerning abort-orphans applies to orphaned-child

crash-orphans as well.

3.2.2 Problems Caused by Uprooted-Action Crash-Orphans

An uprooted-action is either an action that has had a descendant's guardian

crash, provided the descendant committed up to the action, or any descendant of

such an uprooted-action. Hence an uprooted-action has suffered the crash of a

some relative's guardian; note that this relative need not be a descendant. Uprooted­

actions get into the same sorts of trouble as the other types of orphans that have

been discussed .. they waste resources and they can view inconsistent data.

The results produced by an uprooted-action are discarded. Assuming an

uprooted-action commits up to its topaction, two phase commit for the topaction will

fail since it will be diseovered that the locks obtained by the relative whose guardian's

31

crash created the uprooted-action have been released prematurely. Thus uprooted-

actions waste resources, since their work to produce results is futile-:--··--·

Uprooted-actions can also view inconsistent data. This has the same negative

ramifications as permitting an abort-orphan or orphaned-child crash-orphan to view

inconsistent data.

An example is now presented that illustrates how an uprooted-action can view

data in inconsistent state. The uprooted-action in this example is created through

the crash of a committed child's guardian. This example takes place in a scene like

that of the previous example -- there are two guardians GX and GV, each containing

an atomic object, x and y, respectively. The uprooted-action in this example will view

the invariant "x = y" violated.

Again, in this example we ignore the existence of call subactions.

Suppose a topaction A is created at guardian GA. A does a handler call to GX

creating subaction A.1 at GX. Action A.1 reads x and discovers it has the value of

zero. A.1 then commits to A returning information in its return arguments that x is

zero. Figure 3-5 illustrates the resulting situation.

Then guardian GX crashes and recovers. This causes the lock obtained by

action A.1 and inherited by action A to be released. Topaction A is now an uprooted·

action. Then suppose a topaction B at guardian GB does a handler call to GX

creating subaction 8.1. 8.1 changes the value of x to one and then commits to 8. 8

then does a handler call to GV creating subaction 8.2. 8.2 changes the value of y to

one. Figure 3-6 illustrates the resulting situation.

Then 8.2 commits to 8. 8 commits, and two phase commit is done for 8 and

succeeds. This causes the locks held on x and·y to be released. Then topaction A

does a handler call to GY passing information in the arguments of the call that xis

zero. Recall that A's subaction A.1 passed it this information before the crash. This

32

'

GUARDIAN GX GUARDIAN GA

"x = O"
Topaction A

locked by A.1

Ix= ol

GUARDIANGY GUARDIAN GB

y = 0

Figure 3-5: Crash-orphan example snapshot one

GUARDIAN GX GUARDIAN GA

A.1 CRASHED

:0:---+----+-:> Q Topaction A
"x = O"

GUARDIAN GY GUAR.Dl.AN GB

Topaction B

Figure 3·6: Crash-orphan example snapshot two

handler call causes the creation of subaction A.2 at GY. A.2 reads y and observes

33

GUARDIAN GX GUARDIAN GA

:0.-----4---1-:
A.1 CRASHED "x = O"

x = 1

Topactlon A
Uprooted-action

GUARDIAN GY GUARDIAN GB

locked by A.2 Orphan A.2
I Y = 1 I BelievesO=x=y

Figure 3· 7: Crash-orphan example snapshot three

that the invariant x = y has been violated. Figure 3-7 illustrates this final situation.

-~u
• fromR

//...~.
~-..-

Figure 3-8: Uprooted-action created by crash of committed descendant

Let us analyze how uprooted-actions can come to view inconsistent data. Let

us first consider uprooted-actions orphaned by the crash of a descendant's

guardian. This descendant must have committed up to the uprooted-action .. Figure

3-8 illustrates this case. Subaction U is an uprooted-action created by the crash of

R's guardian sometime after R committed. R has passed information concerning the

34

states of data it exam!ned or modified up to U. This information was transmitted from

one action to the next in the action ancestor chain starting from Rand ending at U

either through the return values of handler replies when the nE:;txt ancestor in the

chain was remote or through shared objects when the next ancestor was local. The

crash causes R's modifications to objects to be undone and the locks it obtained to

be released, permitting some other action to modify the data it examined. Since the

information passed to U about the state of data at R's guardian no longer conforms

to the true state of data there, U can find itself in a situation of viewing data in an

"impossible" state.

A

/,A.o~mR
~romUR

R cashes u
Figure 3·9: Uprooted-action receives invalid information

Let us now consider how uprooted-actions created by the crash of a non·

descendant's guardian can view inconsistent data. In this case, the uprooted-action

is a descendant of some other uprooted-action that has suffered the crash of a

committed descendant's guardian. Figure 3-9 illustrates this situation. U Is an

uprooted-action created by the crash of R's guardian. (A and B are also uprooted­

actions). In the case illustrated, subaction B was spawned after R committed up to

A. As the illustration shows, information originating from subaction R has been

passed up to A and then down to U. The crash of R's guardian invalidates this

information, however, leading U to perhaps view inconsistent data.

let us now consider the case where subaction B is spawned before R commits

up to A. Figure 3-·10 illustrates this situation. In this case, subaction B is a

35

~
info

~ • fromR

fQIA·'<am"
~ashes

u

Guardian

Figure 3· 10: Uprooted-action receives no invalid information from parent or
child

concurrent sibling of subaction T, R's ancestor that is a child of A. R has passed

information concerning the states of data it examined or modified up to subactlon V.

Subaction V has in turn embedded this information in an object It modified. When V

commits up to A, A inherits the lock on this object. At this point, U can obtain a lock

on this object. If U does not reside at A's guardian, this involves querying, as

discussed jn Section 2.6.3. When U obtains the lock and examines this object, it

obtains information concerning the states of data at R's guardian. This information is

invalidated by the crash of R's guardian, however, leading U to perhaps view

inconsistent data. Note that this case is unique in that invalid information was passed

to the orphan neither by its parent nor child, unlike all the other cases involving

abort-orphans and crash-orphans that have been examined previously.

36

Chap.ter Four

The Orphan Detection Algorithm

This chapter presents an orphan detection algorithm. This algorithm has a

number of attractive features. First, the algorithm does not falsely accuse an action

of being an orphan; only orphans are detected as such by the algorithm. Second, the

algorithm detects an orphan before it can view any inconsistent data. Since an

orphan is benign (except for wasting resources) until it views inconsistent data, the

algorithm works well enough to keep orphans from getting Into trouble.

The algorithm as it is presented in this chapter is obviously inefficient and

impractical. At the e11d of the qpapter, several minor inefficiencies in the algorithm

are addressed. Subsequent chapters deal with .correcting the major impractical

aspects of the algorithm.

4.1 Introduction to the Algorithm

This section presents the fundamental workings of the orphan detection

algorithm. In order to keep the presentation from becoming bogged down in detail,

the discussion of many aspects of the algorithm is deferred until the next section.

The discussion of precisely how an orphan is exterminated once detected is also

deferred.

The orphan detection algorithm works by piggybacking information about

orphans onto the messages that flow about the system. The algorithm can be divided

into two halves. One half of the algorithm handles abort-orphans and the other half

handles crash-orphans. A discussion of each half follows.

37

4.1.1 Detecting Ab~rt·Orphans

Detection of abort-orphans is based upon a data structure called done. Done

is a list of action identifiers of aborted actions. Each guardian maintains its own done

data structure. When an action is aborted, its identifier is added to its guardian's

done. The presence of an action's identifier in done is interpreted as meaning that all

descendants? of that action are orphans.

Whenever a message is sent out from a guardian, the guardian piggybacks Its

current value of done onto the message. A guardian receiving a message uses the

piggybacked· done to detect local orphans. Any action running at the receiving

guardian that has the identifier of an ancestor appearing in the piggybacked done is

an orphan and is aborted. Additionally, if the message is among those that are sent

on behalf of a particular action (e.g. handler call and reply messages), the sending

action could be an orphan itself, or even have been aborted since the message was

sent. The sending action's identifier is included in such messages. The receiving

guardian checks the identifier included in the message against Its own done to detect

this condition. If the sending action is a descendant of an action whose identifier is in

done, the received message is discarded. The receiving guardian also updates

(unions) its own done with the piggybacked done.

A guardian that receives a message can start .. normal" processing of the

message only after all the steps above relating to orphan detection have been

completed. For example, a guardian receiving a· calt message must complete all the

above steps before a handler action is created to run the call.

Whenever a guardian participates in two phase commit, it records its current

value of done on stable storage. This ensures that done is restored to a proper state

after a crash.

2Recall from Chapter 2 that an action is always its own descendant, according to our definition of
"descendant." Also recall that "ancestor" is similarly defined.

38

The workings of abort-orphan detection shall now be illustrated by taking the

first example from the iast chapter and adding orphan detection. Again, guardians

GX and GY each contain a single atomic object, x and y, respectively. The invariant

between x and y is x = y. Suppose ihitiallythat x = y = 0, and that every guardian's

done is empty.

GUARDIANGX

Done: empty locked by A

I x = 01
QActionA

V1 "x = 0" .
.,, Aid: A; Done: empty

CALL MESSAGE DELAYED

GUARDIANGY

Done: empty
y=O

GUARDIAN GB

Done: empty

•
note: "Aid" = action identifier

Figure 4· 1: Abort-orphan detection example snapshot one

Suppose action A at guardian GX reads x, discovering that it has a value of

zero. ·Then A does a handler call to guardian GY passing the information that x is

zero in the arguments of the call. A's action identifier and GX's done are

piggybacked onto the call message. But the call message gets delayed in the

network. Figure 4-1 illustrates the resulting situation.

The system then judges that the handler call cannot be completed successfully

and aborts the handler call. (It does this by aborting the call action. In this example

we omit the detail of call action existence.) A then itself aborts, causing its action

identifier to be added to GX's done. Then topaction B at guardian GB does a handler

39

GUARDIAN GX

x =
Done: A

Action A
ABORTED

cr---~A~id: 8.1; Done: A

"x = O"
Aid: A; Done: empty

CALL MESSAGE DELAYED

GUARDIAN GV
Done: empty

y = 0

GUARDIAN GB
Done: A

Topaction B

Figure 4·2: Abort-orphan detection snapshot two

call to GX creating subaction 8.1 at GX. 8.1 changes the value of x to one and

commits to B. The reply message from B.1 to B includes GX's done which contains

A's action identifier. When GB receives this message, it sees .that the sent done

contains an action identifier its done does not •• namely A's. Hence GB adds A's

action identifier to its own done. Figure 4-2 illustrates the resulting situation.

Topaction B then makes a handler call to GY. GB's done, containing A's action

identifier, is piggybacked on this message. When GY receives this message, it adds

A's action identifier to its own done and creates subaction B.2 to run the handler call.

Subaction B.2 changes the value of y to one. Figure 4-3 illustrates the resulting

situation.

Subaction B.2 then commits to B and B subsequently itself commits. Two

phase commit for. topaction B finishes successfully, causing the locks on x and y to

be released. Finally, the delayed handler call message from aborted action A arrives

40

GUARDIANGX

Done: A locked by B.1

I x = 1 I
Action A

ABORTED

"x = 0"
Aid: A; Done: empty

CALL MESSAGE DELAYED

GUARDIAN GV

Done: A

8.2

GUARDIAN GB

Done: A

Topaction B

Figure 4-3: Abort-orphan detection snapshot three

at GY. This message carries the invalid information that x is zero. This message is

discarded, however, since it is from A and A's action identifier appears in GY's done.

Figure 4·4 illustrates the resulting situation.

4.1.2 Detecting Crash-Orphans

Detecting crash-orphans is somewhat more complicated than detecting abort·

orphans. Every guardian maintains a counter in stable storage called a crash count.

Whenever a guardian recovers from a crash, it increments its crash count. Every

guardian also maintains a data structure called map. Map is a table that associates

guardian identifiers with crash counts. Any given guardian's map represents the

beliefs that guardian has about the number of crashes that have occurred at other

guardians. A guardian's map contains an entry for itself, which is always up-to-date.

A data structure called the d-list-map also plays an important role in the

41

------- ---- -

GUARDIANGX

Done: A x = 1

Action A
ABORTED

"x = O"
GV Aid: A; Done: empty

Done: A y = 1
REFUSED

GUARDIAN GB

Done: A

Figure 4-4: Abort-orphan detection snapshot four

detection of orphans created by crashes. The d·list-map is a table that associates

guardian identifiers with crash counts, like map. Every action has a d-list-map

associated with it. An action's d-list-map contains the identifiers of all the guardians

whose crash would cause the action to become an orphan. TheSe guardians include

those where some ancestor of the action is running or where some descendant that

committed up to the action ran. For each such guardian, the d-list-map associates

the crash count of the guardian at the time the relative ran there with the guardian's

identifier.

Whenever a message is sent out from a guardian, the guardian piggybacks its

map onto the message. This piggybacked map is used to detect orphans at the

guardian that receives the message. Any action at the receiving guardian is an

orphan if its d-list-map is out-of-date according to the piggybacked map, i.e. if the

crash count associated with some guardian identifier in the action's d-list-map is

lower than the crash count associated with the same identifier in the piggybacked

42

map. All such orphans detected are aborted.

A piggybacked map is also used to update the map of a receiving guardian, ,as

follows. Any entries. for guardians in the piggybacked map not appearing in the

receiving guardian's map are added to it. In addition, any entry for a particular

guardian in the receiving guardian's map that has a lower crash count than the

corresponding entry for the same guardian in the piggybacked map is adjusted to

reflect the higher crash count.

For a message sent on behalf of a particular action (e.g. handler call and reply

messages), that action's d-list-map is piggybacked onto the message. This d-list-map

is used at the receiving guardian to detect if the sending action3 Is an orphan. The

sending action is an orphan if its d-list-map is out-of -date according to the receiver's

map. If the sending action proves to be an erphan, the receiver discards the

message.

The d-list-map piggybacked on call messages is used to initialize that of the

handler action created to run the call. The handler's d-list-map is initially the

piggybacked d-list-map with an entry added for the handler's guardian. Similarly, the

d-list-map piggybacked on reply messages Is merged into the d-Ust-map of the action

the reply is directed to. A topaction's d-llst-map initially contains just a single entry

for the topaction's guardian.

A guardian can only start "normal" processing of a received message after all

the steps above relating to orphan detection for a received message are completed.

Whenever a guardian participates in two phase commit, it records its map on

stable storage. This ensures that map is restored to a proper state after a crash.

Crash-orphan detection is now illustrated by taking the second example from

3nie reader should note that actions never actually send or receive messages; only guardians send
or receive messages, though sometimes acting as an agent of a particular action.

43

the last chapter and adding orphan detection. The crux of this example, like the one

presented for abort-orphans, is two guardians named GX and GY. GX and GY each

contain a single atomic object, x and y, respectively. The invarlan~ between x and y is

x = y. Suppose initially that x = y = 0, and that all guardian's crash counts are zero.

GUARDIAN GX GUARDIAN GA

Map: <GX,OXGA O> Map: <GA,OXGX,O>
CC: 0 \4-__.--.-l~-4----.1 Action A

locked by A.1

Ix = ot
A.1

d-map:<GA,O>
<GX,O>

GUARDIAN GY

Map: <GY,O>

y:O

note: "d·map" = d·list-map

"x
d-map:<GA.o>

<GX,O>
Map:<GX,0>

<GA,O>

d-map:<GA,OXGX.O>

GUARDIAN GB

Map: <GB,O>

Figure 4-5: Crash-orphan detection example snapshot one

Suppose action A at guardian GA makes a handler call to GX, creating

subaction A.1 at GX. A.1 reads x, discovering t~at it has the value of zero. A.1 then

commits to A, returning information in the reply message that x is zero. A.1 's d-list·

map, which includes the entry <GX,O>, is piggybacked on the message. When the

message arrives, the entry <GX,O> is added to A's d-list-map and GA's map. The

resulting situation if shown In Figure 4-5.

GX then crashes and recovers causing the lock on x to be released. Action A

is now an uprooted-action. Then topaction 8 at guardian GB does a handler call to

guardian GX creating subaction 8.1. 8.1 changes the value of x to one and commits

to 8. GX's map piggybacked on the reply message to B includes the entry <GX,1>.

44

----------------------- --- -

GUARDIAN GX GUARDIAN GA

Map: <GX, 1XGB,O> Map: <GA,OXGX,O>

CC: 1 B: CRASHu:ieon-. -+-......:--t-> OAction A
"x = O"

Action 8.1
d-map:
<GX,1XGB,O>

GUARDIAN GY

d·map:<GA,OXGX,O>

Map:<GX, 1XGB.O>
Aid:B.1

d-map:<GB,OXGX, 1) GB

Map: <GY,O> Map: <GB,OXGX, 1>

y = 0 Topaction B
d-map:<GB,OXGX, 1>

Figure 4-6: Crash-orphan detection example snapshot two

Upon receiving this message, GB updates its own map with the sent map resulting in

GB's map having the entry <GX, 1 >. The resulting situation is shown in.figure +6.

Topaction B at GB then does a handler call to guardian GY. GB's map

piggybacked onto the call message contains the entry <GX,1>. After the message Is

processed at GY, GY's map contains <GX, 1> and subaction 8.2 Is created to run the

handler call. B.2 changes the value of y to one. The resulting situation is shown in

Figure +7.

Subaction B.2 then commits to B. Topaction B then itself commits and two

phase commit successfully completes, resulting in the locks on x and y being

released. Then action A makes a handler call to guardian GY. passing the invalid

information that xis zero. A's d-list-map piggybacked on the call message contains

the entry <GX,O>. When this message arrives at GY, it Is refused since GY's map

contains the entry <GX,1>. Figure +8 illustrates this final situation.

45

locked

x =

GUARDIANGV

GUARDIAN GA
Map: <GA,OXGX,O>

--+---..-;>O Topaction A
"X : 0 n d-map:<GA,OXGX,O>

GB
Map: <GV ,OXGB,OXGX, 1 >

8.2

Map: <GB,OXGX, 1>

d·map:<GB,O>
<GX,1XGY,O>

locked .2

y = 1

~-Map-:-<G-s-.o>-<G-x-.1> __ ,.__QTopaction B
Aid:B

d·map:<GB,OXGX, 1> d-map:<GB,OXGX, 1>

Figure 4·7: Crash-orphan detection examplesnapshotthree

GUARDIAN GX GUARDIAN GA
Map: <GX, 1XGB,OXGV,O> Map: <GA,OXGX,O>

CC: 1 . 6:--+---~
A.1 "x = O" CRASHED

x = 1
Uprooted-action

GUARDIAN GV GUARDIAN GB

Map: <GV ,OXGB,OXGX, 1 > Map: <GX, 1XGB,OXGV,O>

y = 1

Figure 4-8: Crash-orphan detection snapshot four

46

4.2 Details of the.Orphan Detection Algorithm

Several important details about the orphan detection algorithm were not

mentioned in the previous section in the interest of preventing that discussion from

becoming cluttered. This section presents the orphan algorithm in all its detail.

The algorithm is ·presented in this section by considering individually those

situations that require some sort of activity by the orphan detection mechanism.

In the last section, it was categorically stated that done and map are

piggybacked· on all messages. This is actually not the case. Done and map are only

piggybacked on messages discussed below.

4.2.1 Recovery

Upon recovery from a crash, a guardian must increment its crash count on

stable storage. It must also restore its map and done from the copies last written on

stable storage. Its map must also be updated to reflect its new crash count. The

guardian can only start accepting handler calls when all these tasks are completed.

4.2.2 Action Abort

When an action running at a guardian G is aborted, its action identifier must be

added to G's done. Also, all descendants of the action running at G must be aborted.

Both of these tasks must be completed before any of the action's locks are released

or versions discarded.

This rule is applied in a recursive manner, so an action Is never actually

aborted until all its descendants running at its guardian are first aborted. This results

in no aborted action leaving behind any local active descendant actions; an abort

creates no local abort-orphans.

47

4.2.3 Handler Call

A handler call causes the creation of a remote subaction. Suppose action A

running at guardian G is doing a handler call to guardian H. The following items are

piggybacked on the call message that is sent to H: G's done, G's map, and A's

d-list-map. In addition, the call message contains A's identifier.

When the call message is received at H1 H must perform several tasks. Let the

done, map, d-list-map, and identifier of the calling action included in the call message

be denoted as m.done, m.map, m.d-list-map, and m.aid 1 respectively. H first checks

to see if the sending action is an orphan. If H's done contains the action identifier of

some ancestor of m.aid or if a comparison of m.d-list-map and H's. map shows that

m.d-list-map is out-of -date, then A is an orphan. In this case, a refusal message is

sent back to G. Refusal messages are discussed later. After this, H uses m.done and

m.map to detect and abort any local orphans. H then updates its own done and map

from m.done and m.map. After all these tasks are completed, and if the call was not

refused, a handler action can be created to run the handler call. The handler action's

d-list-map is initialized to be m.d-list-map with an entry added for H.
•

4.2.4 Reply

When a handler action commits, a reply message is sent back to guardian of

the action that did the handler call. Suppose handler action A.Cat guardian H is

committing to call action A at guardian G. The following items are piggybacked on

the reply message for A.C: H's done, H's map, and A.C's d-list-map. In addition, the

reply message contains A.C's identifier.

When G receives the reply message, it must perform several tasks. Let the

done, map, d-list-map, and the identifier of the replying action included in the reply

message be denoted as m.done, m.map, m.d-list-map, and m.aid, respectively. First

G ascertains if the replying action is an orphan by checking m.d-list-map and m.aid

against its map and done. If the replying action proves to be an orphan, the reply

message is discarded. M.done and m.map are then used to detect and abort local

48

orphans running at G. Then m.done and m.map are used to update G's own done

and map. If the reply was not discarded, the sent d-list-map is merged into A's d-list­

map. This is done by just addiag to A's d-list-map any entry for a guardian that

appears in the piggybacked d-list-map but not in A's d-list-map. Only after these

tasks are completed can A start processing the reply.

4.2.5 Refusal Messages

Whenever a handler action is aborted due to orphan detection, a refusal

message is sent to the guardian of the call action.

The sending guardian's done and map are included in a refusal message. The

guardian receiving a refusal message uses the sent done and map to detect and

abort local orphans and to update its own done and map.

4.2.6 Topaction Creation

When a topaction is creat~, its d-list-map is initialized to have a single entry

consisting of the identifier of its guardian paired with its guardian's current crash

count.

4.2. 7 Local Subaction Creation

When a subaction is created that runs at the same guardian as that of its

parent, the subaction's d-list-map is initially a copy of its parent's.

4.2.8 Local Subaction Commit

When a subaction commits to a parent and both run at the same guardian, the

subaction's d-list-map is merged into the parent's d-list·ITI'ilP·

49

4.2.9 Prepare Mes~ages·

When a topaction commits, two phase commit is performed. The done and

map of the topaction's guardian are piggybacked on the prepare messages of the

two phase commit protocol. When a guardian receives a prepare message, it uses

the sent done and map to detect local orphans and to update its own done and map.

After done and map are updated, they must be written to stable storage before a

prepared message can be sent back.

4.2.10 Local Lock Propagation

Before a lock inherited by an action is granted to some local descendant of that

action, the d-list-map of the former action must be merged into that of the latter.

4.2.11 Query Responses

When an action desires to obtain a lock acquired by a committed relative, a

query message is directed towards the guardian of their closest common ancestor,

as described in Section 2.6.3. Suppose the query response indicates that the relative

has committed up to the ancestor in question, signifying that the lock can be granted

to the action. This query response message must include the sending guardian's

done and map, and also the d-list-map of the closest common ancestor. The

guardian receiving the query response uses the sent done and map to detect local

orphans and update its own done and map. The sent d-list-map is also merged into

the lock-requesting action's d-list-map. These tasks must be completed before the

lock can be granted.

In other cases, a query response message may indicate that all locks acquired

by an action should be released and its versions discarded. Such a query response

can result due to either a relative or non-relative attempting to acquire a lock

obtained by the action. Such a query response message must include the sending

guardian's map and done. The receiving guardian uses the sent map and done to

detect local orphans and to update its own map and done. These tasks must be

50

accomplished before the locks in question are released.

4.3 Unwanted Committed Subactions

A committed action is never an orphan, since an orphan is always an active

action. However, the orphan detection algorithm can also detect unwanted

committed subactions. Recall that the commit of a subaction is conditional; if some

ancestor of the subaction aborts, the subaction's results become unwanted. A

committed subaction's results also become unwanted if some ancestor becomes

orphaned or some guardian in the committed subaction's d·list-map crashes. In

these cases, the committed subaction's results will never be committed as a result of

two phase commit; its results will be discarded eventually. The locks acquired by a

committed subaction are held until two phase commit for the subaction occurs or a

query response message is received indicating that the locks should be released.

One would like the locks acquired by an unwanted committed subaction to be

released as soon as possible to avoid delaying actions that might want one of these

locks.
_,;/

A guardian can use its map and done to detect local unwanted committed

subactions at any convenient time. A committed subaction is known to be unwanted

if some ancestor's action identifier appears in the sent done or its d·list-map is out-of·

date. Each detected unwanted committed subaction has its locks released and

versions discarded.

The above discussion assumes that an action's d·list-map is kept even after the

subaction commits; this is not strictly necessary. In this case, only the committed

action's identifier is available to check against done.

51

4.4 Simple Improvements to the Orphan Detection Algorithm

The orphan detection algorithm presented above is both inefficient and

impractical. Some inefficiencies-in the algorithm will be addressed in this section.

The greatest impractical aspect of the algorithm, however, is the size of done and

map. Every guardian's done grows without bound since the algorithm never removes

any identifier from done. In some imaginable systems, each guardian's map would

be enormous ·• perhaps containing on the order of a thousand entries. Piggybacking

such large dones and maps onto messages increases communication costs to a

ludicrous level. The problem of the large size of done and map is not easily

remedied. Later chapters present a scheme for cutting down the sizes of these data

structures.

4.4.1 Done

There are several ways that the growth of done can be reduced. Each of t~e

modifications to the orphan detection algorithm proposed here is inexpensive in

terms of time and uses no additional space.

First of all, the identifier of an action ca": be deleted from a guardian's done

that also contains the identifier of one of the action's ancestors. The presence of the

ancestor's identifier in done implies that all its descendants are orphans. Of course,

the ancestor's descendants are a superset of any of its descendant's descendants.

Secondly, in some cases it is clearly not necessary to add the identifier of an

aborted action to done. One such case is when some ancestor's identifier is already

in done. Another more significant case is when the aborted action has no active

remote children.

Thirdly, when the second phase of two phase commit is ready to begin for a

topaction, its identifier is added to done, given that done contains some

descendant's identifier. This is advantageous since the topaction's identifier might

replace several of its descendant's identifiers ln done; also the topaction's identifier

52

is shorter than that 9f any of its descendants. Note that the use of this strategy

means that one must be slightly more careful about detecting unwanted committed

subactions based on information in done than in the presentation of Section 4.3.

Committed subactions that have completed the first phase of two phase commit are

not (necessarily) unwanted even though the identifier of their topaction might appear

in done.

Fourthly, an orphan detected and aborted as a result of information in map

does not necessarily need its identifier added to done. If the map entry that caused

the orphan to be detected is for a guardian of one of the orphan's ancestors, then the

orphan's identifier need not be added to done. Every one of the orphan's

descendants has an out-of-date entry for the ancestor in its d·list-map. Since map

and done are always transmitted together, the entry in map for the ancestor's

guardian suffices to "catch" all the orphan's descendants.

4.4.2 Limiting the Growth of Done

The above modifications to the algorithm reduce the growth rate of done, but

they do not address the problem of dona's unbounded growth. Information in map

can be used to "garbage collect" information In done and thereby effectively bound

its growth. As we shall see, however, such a scheme does not work well enough;

done does not stay at a reasonable size.

Recall that every action identifier contains the guardian identifiers of all Its

ancestor's guardians, as discussed in Section 2.6.4. In this scheme, action identifiers

are modified to also include the crash counts of these guardians. An action's

identifier thus contains the entries for ancestor's guardians appearing in the action's

d-list-map. A guardian, using its map, can eliminate from its done any identifier that

contains an out-of -date crash count associated with some guardian's identifier.

To understand why this is the case, consider the orphans whose detection can

be caused by the presence of an action identifier A in the done of guardian G. Every

53

such orphan is a descendant of the action named by A, so every such orphan's d-list·

map contains an el'ltry for each of the guardian identifiers in A. This is true since

every action's d-list-map contains an entry for each ancestor's guardian.

Furthermore, the crash counts associated with the guardian identifiers in A and the

d-list-maps of these orphans are the same. Suppose then that A can be deleted from

G's done according to an. entry for guardian H in G's map. Every orphan detected by

A then has an out-of-date crash count associated with H in its d-list-map. Hence

every such orphan will be detected by G's map entry containing the more up-to-date

crash count for H. Since map and done are always piggybacked on messages

together, the identifier A in G's done is redundant, insofar as orphan detection is

concerned.

Assuming that every guardian crashes regularly, this scheme solves the

problem of done's unlimited growth. Guardians are assumed, however, to crash

infrequently. Hence done will still tend to be too large to consider piggybacking it on

messages as practical. Since this modification to the algorithm increases the size of

action identifiers, it is probably best left unimplemented, since it does not adequately ..
limit dona's growth.

4.4.3 D·list-map

The crash counts in d-list-maps are not needed. Every entry in an action's

d-list-map also appears in the map of that action's guardian. Furthermore,

corresponding entries for the same guardian in the d-list-map and map agree on

crash counts. Hence the crash count associated with a guardian identifier in an

action's d-list-map can be determined by looking up the guardian identifier in the

map of the action's guardian. Note that every time in the algorithm when an action's

d-list-map is piggybacked on a message, the map of the actlo·n·s guardian is also

piggybacked on the message. Thus a guardian can determine the crash counts in a

received d-list-map from the map received in the same message. Hence the d-list­

map can be shortened to ad-list, i.e. just the d-list-map without crash counts.

54

Actually, this modification to the algorithm becomes invalid when the scheme

for controlling the size of map is discussed in a later chapter, since guardians neither

maintain nor tra~smit a copy of the entire map.

4.4.4 Local Lock Propagation

In the algorithm, when an action acquires a lock inherited by a local ancestor,

the action's d-list-map must be extended so that it contains all the entries in the

ancestor's d-list-map (Section 4.2.1 O).

However, we now outline a scheme that lowers the cost of lock acquisition by

not requiring any d-list-map manipulation when acquiring a lock, if no querying is

required. This scheme has two parts. Firstly, when a concurrent child commits to its

parent, its d-Ust-map is merged into that of every one of the parent's local

descendants. This step is valid since if the parent is orphaned by a crash of a

guardian in its d-list-map, its descendants are also all orphaned. If none of these .

descendants acquire locks inherited by the parent from the committed child, this step

just results in the parent's descendants being detected as orphans possibly sooner

than in the algorithm as presented above. Secondly, when a handler action is

created, its d-list-map must have the d-list-maps of every local ancestor merged in.

This must be done since the handler action (or any of its local descendants) could

acquire a lock inherited by some local ancestor.

4.5 Orphan Extermination

This section's discussion is divided into two parts. First, the details involved in

actually aborting an orphan are discussed. Second, stranded actions are discussed.

Stranded actions are created by aborting orphans, and must a1so be aborted.

55

4.5.1 How to Kill ai:- Orphan

Aborting orphans when detected is usually a quick and simple matter.

Typically, aborting an orphan just involves immediately terminating the action's

execution, aborting all its local descendants (youngest first}, releasing its locks, and

discarding its versions. However, orphan extermination can sometimes be more

complicated than this due to the existence of mutex objects, introduced in Section

2.5.

An action holding a lock on a mutex object cannot have its execution abruptly

terminated and its mutex lock released, since doing so could leave the mutex objeet

in an inconsistent state. There are two options when faced with the need to abort an

orphan that holds a lock on a mutex object. First, the orphan's guardian can be

crashed. This will abort the orphan, as well as every other action at the guardian.

The recovery process will restore the mutex object the orphan had locked to a

consistent state. Second, the extermination of the orphan can be delayed until it

releases the lock on the mutex object. Of course, there is no guarantee of when, if

ever, the orphan will release the lock. If the orphan does not release the lock within a

"reasonable" period, the first option is always available. Recall that the ,.normal"

processing of a message cannot commence until all orphan processing associated

with the message is completed .. including the abortion of detected orphans, so

waiting for an orphan to release a lock slows the progress of other actions.

4.5.2 Stranded Actions

A child subaction can be an orphan while its parent is not. This can only be

true if the child is an uprooted-action. In any case, when the child is detected and

exterminated, the parent can be left stranded.

Let us first consider the case where the orphaned child and non-orphaned

parent both run at the same guardian. Furthermore, suppose that the child is not a

call action. Then the child must have been created by an enter or coenter

statement. First consider the case where the child was created by an enter

56

statement. When this child is detected and aborted, the parent cannot be restarted.

The child has some specification that it is supposed to satisfy. When the parent is

restarted after the child terminates,. the parent expects data shared with the child to

obey this specification. Note that this data could include non-atomic objects. The

orphaned child is detected and terminated at an arbitrary point in its execution;

hence, there is no guarantee that this specification is satisfied after the child is

aborted. The parent cannot be safely restarted, since the parent's proper behavior

depends on the child fulfilling its specification. One could imagine somehow

signaling the parent that the child has been aborted by the system, indicating that the

child's "normal termination" specification has not necessarily been satisfied, but this

approach is not taken in Argus. Thus the parent cannot be restarted; it is stranded.

Consider the case where the orphaned child was spawned by a coenter

statement. Again, the same statements about the child not fulfilling its specification

apply when the child is detected and abruptly aborted by the system. However,

aborting the child need not leave the parent stranded if other concurrent siblings are.

still active. If one sibting completes by transferring control out of the coenter, the
•

parent can be safely restarted, since then all uncommitted siblings are aborted at an

arbitrary point anyway. However, if this does not occur, the parent is left stranded.

Let us now consider the case where the orphaned child Is a call action. In this

case an unavailable exception can be signaled to the parent, so the parent can be

safely restarted. The unavailable exception signals the parent that the handler call

could not be completed for some reason. Hence the parent is not left stranded in this

case.

When the orphaned child is a handler action, a refusal message should be sent

back to the parent's guardian, following the procedure in Section 4.2.5. Otherwise

the call action would be left hanging waiting for a reply message from the handler

action. If the call action is not an orphan, the call could be attempted again or an

unavailable exception could be signaled to the parent. Thus neither a call action

57

nor its parent are left stranded by aborting an orphaned handler action.

Stranded actions should be aborted. If a stranded action holds a mutex lock, it

can only be aborted by a crash of its guardian. Furthermore, the abort of a stranded

action might also leave its parent stranded.

In the Argus implementation, the position is taken that whenever an orphan is

aborted, its closest ancestral handler action or topaction is also assumed stranded

and aborted, resulting in the abort of all the handler's or topaction's local

descendants. One arrives at this stance by assuming that whenever a child created

by a coenter is aborted, its parent is left stranded.

58

-- --~------ -----------

Chapter Five

Controlling the Size of Done: Deadlining

One of the greatest impracticalities of the orphan detection algorithm

presented in the preceding chapter is the potentially large size of done. Done is

piggybacked onto many messages; the communication overhead this entails when

done is large is unacceptable. This chapter presents a scheme for keeping done

down to a "reasonable" size, called deadlining. The actual. performance of

deadlining depends on several parameters and will be analyzed in a later chapter.

However, under reasonable conditions, deadlining does reasonably well.

Deadlining requires approximately synchronized clocks. That is, every node

must have its own clock and these node clocks must be all approximately

synchronized with each other. The greatest possible difference between the

readings on any two node clocks at any instant of real time must be bounded; let this

upper bound be denoted as e. In other words, at any given instant of real time, there

is a node clock with the lowest reading and a node clock with the highest reading;

these readings must not be more thane seconds apart. Every guardian is assumed

to have access to its node's clock, which will be referred to as that guardian's clock.

The magnitude of e required for deadlining to perform adequately determines if

having approximately synchronized clocks is indeed feasible. We envision that an E

on the order of a few minutes in magnitude is acceptable. For networks where

communication delays have a small upper bound, a clock synchronization algorithm

such as that of Marzullo [Marzullo83] can be used. In networks where message delay

is extremely arbitrary, the N.B.S. time dissemination service provided by a satellite

and accurate to within 1 ms anywhere in North America could be used to synchronize

clocks. This satellite has been used to obtain synchronized clocks in ARPAnet hosts

59

•
for the purpose of gathering performance measurements [Seitz83]. The magnitude

of e required by deadlining seems to be realistic.

Before proceeding any further, some terminology is introduced. A purely local

descendant of an action A is any action B that {1) runs at the same guardian as A,

and (2) has no ancestor X such that X does not run at A's guardian but is a

descendant of A. See Figure 5-1. An action is considered to be one of its own purely

local descendants. The local root action, or simply local root, of an action A is an

action P where (1) P is a handler action or topaction, and (2) A is a purely local

descendant of P. A handler action's or topaction's local root is itself. In addition,

handler actions and topactions are collectively referred to as local root actions.

Purely local
descendants
of action A

5.1 Deadlining

G1
Not a purely local
descendant of A

G2

Figure 5·1: Purely local descendants

Local root action

The idea behind deadlining is to establish a limit on the amount of time an

abort-orphan can survive before being aborted. Then an action identifier need not

stay in any guardian's done longer than this time.

In deadlining, every local root action is assigned a deadline time. The deadline

time assigned to a topaction is some arbitrary future time. The deadline time

assigned to a handler action is included in its call message; this deadline is the same

60

as that of the calli~g action's local root action. Thus a topaction and all its

descendant handler actions have the same deadline time.

We will say a local root's deadline arrives when a local root's deadline time

equals or exceeds the reading on its guardian's clock. An actipn whose deadline has

arrived is also said to be expired.

Expired local root actions are aborted, but not necessarily promptly at the time

they expire. The abort of an expired local root is postponed until a message with a

piggybacked.\ done arrives at the local root's guardian •• with one exception

discussed later. To implement this, a guardian checks for expired actions during the

orphan detection processing that occurs when a message with a piggybacked done

is received. More precisely, when -a guardian compares a local r09t action's identifier

against those in a received done to check if the local root is an orphan, it also checks

if the local root has expired. If the local root is orphaned or expired, it is aborted.

Note that the abort of a local root leads to the abort of all its purely local

descendants, as dictated by the procedure for aborting actions in Section 4.2.2.

An expired local root is not aborted when a reply message is received,

provided that the reply message is directed to one of the local root's descendants.

This is the one exception alluded to in the above paragraph.

A guardian discards any call messages it receives that include a deadline time

that has passed, according to its clock.

5.2 Deleting Identifiers From Done

Deadlining1s goal is to permit identifiers to be deleted from done within a

"reasonable" period. This section discusses how the deadlines associated with

actions can be used towards this end.

First of all, the. done data structure must be modified somewhat. Done must

61

now be a set of tagged action identifiers. When an action's identifier is added to

done, it is tagged with the deadline time of the aborting action's local root. These

tags are ignored when identifiers in -done are used by the orphan detection algorithm

of the last chapter.

An identifier is deleted from a given guardian's done e seconds after its tagged

time passes, according to that guardian's clock. The tag associated with an identifier

in done thus indicates when the identifier can be deleted ·· e seconds after the

tagged time. In an implementation, guardians need not delete identifiers promptly at

the time indicated by their tags, but can wait until any convenient time.

Let us now informally examine the correctness of the above rule for deleting

identifiers from done. The orphan detection algorithm, together with this rule and

deadlining, will be referred to in the following as the "deletion rule algorithm." First

assume that the abort-orphan detection algorithm from the last chapter is correct, i.e.

it detects orphans before they can view inconsistent data. . The deletion rule

algorithm is valid if every orphan is detected at least as soon as the plain abort­

orphan detection algorithm would detect it. Note that our notion of "~orrectness" Is

restricted to the property that orphans are detected before they can view inconsistent

data · · we do not consider the notion that a healthy action should not be aborted due

to orphan detection. The deletion rule algorithm clearly violates this notion.

An orphaned and expired local root action is aborted when the first message

with a piggybacked done arrives at the local root's guardian, unless this message is a

reply to one of the expired local root's descendants. First consider the case where

the message is not a reply. In the plain abort-orphan detection algorithm, the

piggybacked done might or might not have contained an identifier of one of the

orphaned local root's ancestors. Since the orphaned and expired local root is

aborted in either case, it is detected as soon or sooner than the plain orphan

detection algorithm would.

Now consider the case where the message is a reply from a descendant of the

62

--- ---------- --------------

local root. In the plain algorithm, the piggybacked done on the reply would not

contain an identifier of one of the local root's ancestors. If this done did contain such

an identifier, the replying handler.action would never have been allowed to complete

and reply in the plain algorithm; it would have been detected and aborted. Thus the

plain algorithm would not have detected the orphan at this point. Hence orphaned

and expired actions are detected just as quickly as in the plain algorithm.

Let us now consider whether an orphaned local root is detected properly

before it expires. Could a piggybacked done be received at an orphaned and

unexpired local root action's guardian that would have contained an ancestor's

identifier in the plain algorithm, but that does not In the deletion rule algorithm? This

could occur only if an identifier of one of the orphaned local root's ancestors was

deleted from some guardian's done before the local root expired. Suppose that this

indeed occurred; this assumption will now be shown to lead to a contradiction. Let

the orphaned local root's deadline be denoted as T. The tag on the deleted identifier

must have been T, since all related local root actions share the same deadline.

Hence some guardian's clock read T + e before the clock where the orphaned local

root is running read T, since some guardian deleted the local root's ancestor's

identifier before the local root expired. Suppose the local root's guardian's clock

read T-a (a>O) at the moment the identifier was deleted. Hence·two clocks differed

by e + a at some instant, violating the assumption that clock differences are bounded

by e. Thus an orphaned and unexpired action is aborted no sooner or later than by

the plain orphan detection algorithm.

The above argument is not quite complete -- there is still the issue of call

messages originating from orphaned actions to consider. The issue here is whether

or not a call message that would be refused in the plain orphan detection algorithm

could be accepted in the deletion rule algorithm. A· call message including a

deadline time that has passed according to its receiver's clock is discarded outright.

Thus the danger here is a call message being accepted that would have been refused

by the plain algorithm when the time on the receiver's clock is less than the deadline

63

--------" -"-- -------

time in the call message. Suppose that this occurred. Let ,,. denote the deadline time

included in the call message. As in tne case above, some guardian must have

deleted an identifier tagged with ,,. before the receiving guardi.an's clock read ,,.,

Hence again there are two clocks that are more than e seconds apart at some instant.

Thus call messages from orphaned actions are properly handled by the deletion rule

algorithm.

The reader should note that orphaned actions are not always detected just as

quickly as they would be by the plain algorithm. This is due to the fact that call

messages from expired orphans (or non-orphans) are ignored. In the plain algorithm,

such a call message could result in a refusal message being sent back. When

received, this refusal message could result in an orphan being detected; since the

deletion rule algorithm does not· send a refusal message back in this case, this

orphan is not detected as soon as in the plain algorithm. But this does not detract

from the correctness of the deletion rule algorithm. We could simply pretend that

refusal messages are always lost; then orphans are detected by the deletion rule

algorithm at least as soon as they are by the plain algorithm.

This argument concerning the correctness of the deletion rule algorithm

implicitly makes the assumption that clocks are never set back. Due to running a

clock synchronization algorithm, etc., it might be occasionally necessary to decrease

the reading on a guardian's clock. However, there is a trivial patch to make the

deletion rule algorithm work correctly even when clocks can be set back: before

setting a clock back, all expired actions must be aborted. A guardian also must make

a note of the time just before setting back its clock; any call messages coming in with

a deadline time less than this noted time are discarded. Once the guardian's clock

exceeds this noted value, it can unnote the value; the guardian no longer needs to

keep track of it.

Clock wrap around can be viewed as setting a clock back. Note that the above

is an unacceptable way to handle clock wrap around, however, since a guardian

64

would never accept call messages again after its clock wraps around. But we

assume that the values read from clocks and timestamps contain sufficient bits to

keep clock wrap around from occurring in practice.

5.3 Deadline Extension

Aborting any action after it expires can lead to the abort of healthy non·

orphans .. an unpalatable situation. To prevent healthy actions from being aborted

due to expired deadlines, we now present a scheme for extending, i.e. increasing, the

deadlines of actions that are not abort-orphans.

Basically, deadline extension works as follows. When a local root action nears

its deadline, its guardian attempts to extend its deadline by sending a message to the

guardian of the local root's parent. This message is propagated up the call chain to

the topaction's guardian. Along the way, the health of the action's ancestors are

checked. Then a message indicating that the local root's deadline can be extended

is propagated back down to the guardian, if all the action's ancestors proved to be

healthy. •

The deadline extension protocol is based upon three types of messages:

o_rphaned?, not-orphaned, and orphaned messages.

When a handler action nears its deadline, its guardian sends an orphaned?

message to the guardian of the handler action's parent. This orphaned? message

includes the identifier of the handler action and its deadline as well. The deadline is

included so that the protocol properly handles lost, delayed, and duplicated

orphaned? messages.

When a topaction nears its deadline, its guardian increases the topaction's

deadline to some arbitrary future time. A topaction can never be an abort-orphan.

Not-orphaned messages are then sent to the guardians running handter actions for

call actions among the topaction's purely local descendants. Each not-orphaned

65

, message contains the identifier of a call action and the new deadline of the topaction.

One not-orphaned message is sent for each such call action.

A guardian that receives an orphaned? message takes the following steps.

Let the handler action whose identifier is included in the message be denoted as

m.handler; let the deadline included in the message be denoted as m.deadline. Let

m.handler's parent, a call action, be denoted as m.call. If m.call's local root is not

active, an orphaned message, containing m.call's local root's identifier, is sent back

to m.handler's guardian. If the local root is active, the receiver then examines the

deadline included in the orphaned? message. There are two possible cases at this

point •· either m.deadline is less than the deadline of m.call's local root or these

deadlines are equal.

Let us first consider the former case. In this case, first a not-orphaned

message is prepared ·· but is not actually sent quite yet. This not-orphaned

message contains m.call's identifier and the deadline value of m.call's local root. The ·

health of m.call is then ascertained; if m.call has been aborted, an orphaned

message is sent back to m.handler's guardian and processing of the orphaned?

message terminates. This orphaned messages includes m.call's identifier.

Otherwise, the guardian sends the not-orphaned message it previously prepared to

m.handler's guardian.

In the case that m.deadline equals that of m.call's local root, the health of

m.call is ascertained. If m.call has been aborted, an orphaned message, containing

m.call's identifier, is sent to m.handler's guardian. Otherwise, the deadline extension

procedure starts for m.call's local root ·· an orphaned? message is sent to its

parent's guardian, etc. Of course, it is possible that the deadline extension

procedure has already previously started for m.call's local- root; no action needs to be

taken in this case.

An orphaned message contains an action identifier of an action. When a

guardian receives an orphaned message, it aborts all descendants of the named

66

action. In addition, _the receiver sends an orphaned message to every guardian

running a remote handler action for any call action aborted due to receiving the

orphaned message. Each orphaned message sent contains the identifier of one of

these call actions.

A guardian that receives a not-orphaned message takes the following steps.

A not-orphaned message contains a deadline value and the identifier of a call

action whose child the message is directed to; let these be denoted as m.deadline

and m.call, respectively. If m.deadline is less than or equal to that of m.call's child,

the not-orphaned message is old and is ignored. Otherwise, the deadline of the

m.call's child is set to m.deadline, and not-orphaned messages are sent to all of the

guardian's running a handler action for some purely local descendant call action of

m.call's child. A not-orphaned· message is sent for each such call action; each

message contains the identifier of one of these actions and m.deadline. Of course,

the above discussion assumes that m.call's child has not terminated at the time the

not-orphaned message arrives; the not-orphaned message is ignored if this is the

case.

Let us now consider the correctness of deadline extension •· is the rule for

deleting identifiers from. done based upon tag values still valid? First note that a local

root's deadline is greater than or equal to any deadline associated with any of its

descendants. A local root's deadline is increased only when an appropriate

not-orphaned message is received. Such a message is sent only after the deadlines

associated with all of the local root's proper ancestors that happen to be local root

actions have been increased to the deadline value included in the message. Also

note that before a not-orphaned message directed to a particular handler action is

actually sent, the health of the handler's call action is checked. If it is aborted, the

message is not sent. Thus when an action's identifier is added to done and tagged

with ,,., all of the action's proper descendants that happen to be local roots have

deadline values no greater than ,,., Hence all these descendants will expire before the

identifier is removed from any guardian's done, showing that deadline extension

67

works properly.

Let us now discuss the issue_ of lost messages .. In order to guard against lost

orphaned? messages, a guardian should retransmit a orphaned? message if it has

not received a response within a "reasonable" period. To protect this retransmitted

message from being lost, an acknowledgment could be requested. A lost orphaned

message is not harmful; a properly received orphaned message merely prevents its

recipient from retransmitting orphaned? messages. A lost not-orphaned message

could cause a healthy action to be aborted. The retransmission of orphaned?

messages, however1 makes the protocol resilient to lost not-orphaned messages.

5.4 When to Start Deadline Extension

Thus far, it has been said that deadline extension should be undertaken when a

local root action "nears" its deadline. This section discusses just when deadline

extension should actually be undertaken.

The amount of time allotted to extend the deadline for a lo~al root action

should be based on the depth of the local root action In the call chain, i.e. it should

be based upon the number of ancestors the local root action bas that are handler

actions. In the deadline extension protocol, orphaned?. messages must propagate

up the call chain and then not-orphaned messages must propagate back down.

The time required to successfully extend a local root action's deadline is therefore

proportional to its number of handler action ancestors.

A local root might be so deep in a call chain, however, that there is not enough

time to propagate messages up and down the call chain before its deadline arrives.

This problem is addressed in a later section.

In this scheme, a local root action and its purely local descendants are

permitted to run while the deadline extension protocol is being run on their behalf.

Thus, an action is permitted to make a handler call even as its local root nears its

68

deadline. Unfortunately, if the action making a call is deep in the call chain and its

local root is close to its deadline, there might not be sufficient time to propagate a

not-orphaned message down to the handler action created by the call before it

expires. In order to· prevent the creation of handler actions that are unlikely to

successfully have their deadlines extended, a handler call made by an action whose

local root is "close" to its deadline should be delayed until the local root's deadline is

extended. The call message generated by such a handler call is queued at the

caller's guardian until the deadline is extended; if the deadline is not extended the

message is discarded.

In the deadline extension protocol, the propagation of orphaned? messages

up a call chain is not crucial; the propagation of not-orphaned messages down a

call chain actually causes deadlines to· be extended. Orphaned? messages are

propagated up to a topaction's guardian in order to force it to start propagating

not-orphaned messages back down while there is still sufficient time for these

messages to reach the lowest extents of the call chains. We now suggest a scheme

that reduces the need of using orphaned? messages to stimulate a topactlon's

guardian. This is desirable since then the deadline extension procedure only need

start for a local root in sufficient time for a not-orphaned message to propagate

down to it, as opposed to in sufficient time to both propagate an orphaned?

message up and then a not-orphaned message down. This can be accomplished if

a topaction's guardian "predicts" the length of the topaction's longest associated

call chain, and starts the process of propagating not-orphaned messages in

sufficient time for these messages to propagate down a call chain of that length. The

most straightforward means of implementing this idea is to have a guardian always

"predict" the same length. A typical value might be five. Then suppose it takes Q

seconds to propagate a not-orphaned message down a call chain of this fixed

"predicted" length. Suppose a guardian then extends a topaction's deadline and

sends out the appropriate not-orphaned messages Q+ e seconds before the

topaction's deadline arrives. Then there is absolutely no need to transmit any

orphaned? messages if a call chain is within this "predicted" length·· assuming that

69

no not-orphaned ~essages are lost. · To guard against lost not-orphaned

messages, each local root transmits an orphaned? message when it has not

received a not-orphaned message in an appropriate~mount of time. If a call chain

is actually longer that this fixed "predicted" value, deadline extension must start for

the deeper actions in the chain in sufficient time for orphaned? messages to

propagate up and then not-orphaned messages to propagate down the call chain.

Note that this prediction of call chain length also lightens the restriction on an

action making handler calls while its local root is "close" to its deadline. An action

can make a· handler call no matter how close it is to its deadline as long as the

handler call does not extend the call chain length beyond the "predicted" value.

One might question why the topaction's guardian starts the deadline extension

process at 0 + e instead of just Q seconds before the deadline arrives. This is done

to insure that the not-orphaned message starts its journey in enough time to reach

a guardian with a clock that grossly disagrees with that of the topaction's guardian

when e is large relative to Q. Figure 5-2 illustrates what could happen if deadline

extension was only started Q seconds before deadlines. Consider what could occur

if a topaction was running at the "slow" guardian and some descendant at the "fast"

guardian.

"Fast" Guardian

Q
>

real
time f Deadline extension ends at "fast" guardian ...

I
k E

"Slow" Guardian

before it even begins at the "slow" guardian

---~-f a > real
time

Flgu re 5-2: Why deadline extension starts at Q + e seconds before deadline

70

-- - - --------------------~

5.4.1 Guardian Isolation

Consider a guardian that is trying to extend a local root action's deadline, but is

unable to do so before the deadline arrives. Does the guardian really need to abort

the action when a message with a piggybacked done arrives? Actually, the guardian

does have an alternative.

Instead of aborting such an action, the guardian could postpone all processing

of incoming messages with piggybacked dones until the action's fate was

ascertained; note, however, that reply messages from descendants of the action can

be processed as normal. After the local root expires, any action identifiers indicating

that the action is an orphan potentially have been deleted from many guardians'

dones. Hence any incoming message, except in the case of certain reply messages,

might come from a guardian that did delete such an action identifier from done.

This is a rather poor method since it delays the progress of many actions In the

system on account of a single local root action and its purely loc~I descendants. But

if a guardian judges that perhaps deadline extension could be completed for an

action in just a small amount of additional time, then perhaps it is worttiwhile.

One might believe that just suspending a local root action and all its purely

local descendants after the local root expires Is an acceptable method of allowing the

deadline extension process to continue. Processing of Incoming messages

proceeds as normal while the expired action and its purely local descendants are

suspended. However, this can lead to a rather subtle problem. Some other action

created by an incoming handler call and passed information that the suspended

action was remotely aborted could· "see" the suspended orphan; the action could

"see" an action that was supposedly aborted.

The foHowing illustrates the danger of just suspending an action after it

expires. Suppose parent Pat guardian GP makes a handler call to guardian G,

creating action P.1 at G. Then the handler call is aborted at GP. P.1 is now an

orphan. Suppose orphan P.1 locks atomic object 0 at G. Then say that the action

71

----~--------

identifier indicating P.1 is an orphan is deleted from GP's done. P.1 is suspended at

this time. Suppose then that P then makes another handler call to G, creating action

P.2. P.2 sees that the lock on O is still held. But suppose that only guardian GP Is the

only guardian in the system that ever makes handler calls to G and furthermore that

GP never allows more than one handler call at ·a time to be active at G. Thus P.2

expects to find the lock on 0 free, and hence has evidence that an orphan is lurking

about when it finds the lock held.

5.5 Deadline Extension for Deeply Nested Calls

There Is a problem with the deadline extension scheme presented in the

preceding sections. A call chain could conceivably get so long that there would only

be just enough time to propagate orphaned? messages up and not-orphaned

messages back down the call chain before a newly established deadline arrived. The

action at the bottom of this long call chain would not be permitted to make any

handler calls. Hence, a limit has been effectively placed upon how deep a call chain

can become. This limit depends upon the choice of the amount of time between

deadlines.

But is this actually a problem in practice? Experience shows that call chains do

not get very deep unless recursion is present. Recursion does not appear to be a

practical programming technique in ·the Argus environment, since substantial

overhead is associated with each such remote recursive can. Hence it seems that in

any practical case, there will be plenty of time to do deadline extension with any

reasonable choice of the time between deadtin~s. Also note that in many

conventional programming language implementations, the permissible depth of calls

is bounded due to a fixed stack size. _Thus the fact that call depth is limited does not

seem to be of practical significance; however, we subsequently explore ways of

alleviating this problem.

The first method for coping with deeply nested recursive calls involves

72

increasing the inter-deadline time for ant topaction with such a deeply nested call

chain. The second method is a modification of the deadline extension protocol that

can vastly reduce the number of messages and the amount of .time needed to do

deadline extension for actions in a long call chain.

5.5.1 Increasing the Time Between Deadlines

A topaction's deadline is extended by some arbitrary amount. Typically, this

amount should be more than enough to permit the deadline extension procedure to

complete for. non-recursive calls. However, for extremely deeply nested calls, this

might not be the case. An action might be so deeply nested that there is insufficient

time to propagate orphaned? messages up the call chain and then not-orphaned

messages back down to the action before its deadline arrives.

To alleviate this problem, a topaction's guardian needs to take into account

lengths of outstanding call chains when establishing a new deadline for a topaction.

Unfortunately, such information is not normally available at the topaction's guardian.

The following discusses who passes this information up to the topaction's guardian

and when.

First of all, let us make the rule that guardians never decrease the duration

between deadlines for a particular topaction. In other words, if a topactlon ran for T

seconds between its last two deadlines, it will run for at least .,. seconds before its

next deadline.

Suppose an action's handler call is postponed since the system judges that the

handler action so created would not have a good chance of successfully completing

the deadline extension process. If this happens when the calling action is "close" to

its deadline, it just means that the action chose a poor time to do a handler call. If

this occurs when the calling action is "far" from its deadline, however, it means that

the action is at the end of an extremely long call chain. In this case, the duration

between successive deadlines should be increased to allow the call chain to increase

73

·''~ •, .

its length. This can be done by having such an action communicate with its

topaction's guardian, informing it of the call chain's length. The topaction's guardian

can then set the next deadline for the topaction appropriately.

Also, for very deep call chains, increasing the Q values for the local root

actions in the chain would be beneficial. The time needed to extend deadlines for

local roots in a long call chain could be reduced by Increasing the Q values used for

these actions. News about a new Q value can then be propagated down the call

chain on not-orphaned messages.

5.5.2 Short-Circuiting Deadline Extension Protocol

We now present a deadline extension protocol that can drastically reduce the

number of messages needed to do deadline extension for recursive handler calls. In

practice, recursion is the sole source of deeply nested calls. This scheme is called

short-circuiting. In the worst case, this scheme does no worse that the plain deadline

extension protocol, in terms of the number of messages sent.

•
Short-circuiting is an embellishment to the plain deadline extension protocol

presented in the previous section. Orphaned? messages are still sent out basically

as before. The major change is the information tacked onto not-orphaned

messages.

In the plain deadline extension protocol, a not-orphaned message only

indicates that a single local root action is not an abort-orphan and can have its

deadline extended. But in short-circuiting, a single not-orphaned message

potentially indicates that several local root actions at a guarc:Uan can have their

deadlines extended. This is done by placing addition.al Information on

not-orphaned messages.

Consider the recursive call chain depicted in Figure 5-3. The call chain

repeatedly loops through guardians GA, GB, and GC. The deadline extension

74

Figure 5-3: Recursion example

protocol of the previous section propagates a not-orphaned message all the way

down this call chain, repeatedly looping through .the three guardians. The short· ·

circuiting protocol, on the other hand, only propagates a not-orphaned message

completely around the loop ~· The not-orphaned message in short-circuiting

propagates from.GA to GB, to GC, back to GA, and finally to GB.

In short-circuiting, each not-orphaned message carries a history of the

guardians that have propagated it. This history takes the form of a sequence (i.e.,

ordered list) of guardian identifiers. Each guardian that propagates a given

not-orphaned message adds its guardian identifier to the end of this sequence.

In short-circuiting, a single not-orphaned takes the place of several

not-orphaned and orphaned messages of the plain protocol. A not-orphaned

message is directed to all the descendants of a given topaction at a guardian, instead

of just a particular handler action. Therefore, each not-orphaned message carries

the identifier of a topaction, instead of the identifier of a call action as in the plain

deadline extension protocol. In Figure 5-3, the not-orphaned messages propagated

down the illustrated call chain contain T's identifier.

75

Information concerning aborted actions is included in not-orphaned

messages. This information is in the forfn of a set of identifiers of aborted actions.

Each guardian that propagates a given not-orphaned message. adds to this set all

the action identifiers in its done that belong to actions descended from the topaction

whose identifier is included in the message. It is this information concerning aborted

actions that permits a single not-orphaned message to take the place of several

messages the plain protocol would send.

When a guardian receives a not-orphaned message, it extends the deadline

of any local root action descended from the topaction whose identifier is included in

the message, given that the local root satisfies the following two conditions. First, no

identifier of one _of the local root's ancestors appears in the set of aborted actions

included in the message. Secondly, each one of the local root's ancestors either ran

at a guardian whose identifier appears in the guardian identifier sequence included

in the message, or ran at the receiving guardian itself.

There is a problem with short-circuiting as It has been presented thus far. A

not-orphaned message pretends to carry all information about aborts of

descendants of a given topactlon at the guardians that have propagated the

message. But, in reality, this is not the case; some action can abort at one of these

guardians after the not-orphaned message is propagated. Consider Figure

5-3 again. Suppose no descendant of T has aborted. Topaction T nears its deadline,

guardian GA extends T's deadline, and sends a not-orphaned message to guardian

GB. Guardian GB extends only the deadline of action T.1, and propagates the

message to GC. GC then extends the deadline of every descendant of T running

locally. But note that at this point the deadlines of several actions at GC are greater

than those of several of their ancestors. Consider action T.C, for example; Its

deadline is greater than that of its ancestor T.A. If T.A were to abort at this point, Its

identifier would be deleted from done before T.C's deadline expired. In order to

remedy this problem, a done-tag is associated with every local root action.

76

In short-circuiting, when an action is aborted, its Identifier in done is tagged

with its local root's ·done-tag, instead of its local root's deadline as before. A local

root action's done-tag is initially set to be the same as its deadline. Local root actions

still have a deadline associated with them. When a not-orphaned message is

propagated by a guardian, it increases the done-tag of all descendants of the

appropriate topaction to .the deadline value included in the message. Then in the

situation recounted above, action T.C's deadline would indeed be greater than that of

its ancestor, T.A, but T.A's done-tag equals T.C's deadline. Hence if T.A aborted at

this point, its identifier would not be deleted from any guardian's done until after T.C

expires.

There still remains a similar problem caused by call messages that arrive at a

guardian after a not-orphaned message is propagated. After a not-orphaned

message including fields m.top, a topaction identifier, and m.deadline, a deadline

value, is sent out from a guardian, any descendant of m.top that runs at the guardian

must have its identifier stay in done until m.deadline if aborted. For descendants

running at the guardian at the time the message is sent, this is accomplished by
•

upping their done-tags to m.deadline. This does not properly handle handler actions

related tom.top created at the guardjan after the message is sent out. In order to

properly set these handlers' done-tags, a done-tag-set is maintained by each

guardian. The done-tag-set is a set of done-tag-entries. A done-tag-entry has two

fields·· a topaction identifier and a done-tag value. When a not-orphaned message

is received by a guardian, a new done-tag-entry is created with Its fields set tom.top

and m.deadline. This done-tag-entry is then added to the done-tag-set. The done­

tag-set is maintained so that it never contains two done-tag-entries for the same

topaction. A done-tag-entry with a lower done-tag is eliminated in favor of a done­

tag-entry for the same topaction with a higher done-tag. Any done-tag-entry can be

deleted from the done-tag.-set at the done-tag value. Whenever a call message

arrives at a guardian, it searches through its done-tag-set for a done-tag-entry with

the caller's topaction's identifier. If there is such an entry, the created handler action

has its done-tag set to the value in the done-tag-entry -- unless the deadline value

77

included in the call message is greater, in which case it is set to this deadline value.

Let us now recount all the events that occur when a guardian receives a

not-orphaned message. Let the new deadline, topaction identifier, guardian

identifier sequence, and action identifier included in the message be denoted as

in.deadline, in.top, in.gseq, and in.aborts. Firstly, in.aborts is merged into the

guardian's done and any actions that are descendants of those in in.aborts are

aborted. Then the done-tag of each local handler action descended from in.top is

increased to in.deadline, unless its done-tag is already greater than in.deadline. This

latter check is needed so that old not-orphaned messages have no effect. Then the

deadlines of all local handler actions descended from in.top are changed to

in.deadline if the following two conditions are met. First, in.deadline must be greater

than the handler action's current deadline ·· again, this is in the interests of ignoring

repeated not-orphaned messages. Second, the set composed of all the handler

action's ancestor's guardians must be a subset of the guardians appearing in in.gseq

together with the handler action's guardian.

After taking the above steps, the not-orphaned message receiver itself sends

out not-orphaned messages. Let the information Included in these outgoing

messages be denoted as out.top, out.aborts, out.gmap, and ou~.deadline. Out.top

and out.deadline are the same as in.top and in.deadline. Out.aborts is in.aborts with

any identifiers of descendants of in.top in done added. Out.gmap is in.gmap with the

receiver's guardian identifier concatenated onto the end. The guardians that are

candidates to receive a not-orphaned message are those running a remote child of

a purely local descendant of a local root action that just had its deadline changed to

in.deadline above. However, not all these guardians are sent a message; they are

screened as follows. A not-orphaned message is not sent to guardian DG if there

exist sequences of guardian identifiers X and Y such that out.gseq = X II DG II Y,

where every guardian that appears in Y appears in X and "II" denotes concatenation.

If this test is satisfied, the set of aborted action identifiers included in the message

78

has not grown any4 since DG last received.the message.

Let us now detail the events that occur when a topaction nears its deadline or

its guardian receives an appropriate orphaned? message (that is not old). The

topaction's guardian first determines and sets the topaction's new deadline. It then

changes the done-tag of every local handler action descended from the topaction to

the new deadline value. Then a not-orphaned message Is sent to every guardian

that is running a remote subaction whose parent is some purely_ local descendant of

the topaction. Every one of these not-orphaned messages contains the following

information. °The guardian sequence included in these messages consists of a single

guardian -- that of the topactlon. The set of action identifiers consists of all action

identifiers in the topaction's guardian's done belonging to descendants of the

topaction. Also, the topaction's identifier and new deadline are included in the

messages.

As in the plain deadline extension scheme, when a local root nears its deadline,

an orphaned? message is sent to its parent's guardian. However, if there are

several related local roots at a guardian whose call actions all reside at the same

guardian, an orphaned? message need only be sent on behalf of the eldest.

Orphaned? messages still serve as insurance against lost not-orphaned

messages. If a local root has not had its deadline extended within a "reasonable"

period after nearing its deadline, it retransmits an orphaned? message.

A lost not-orphaned message should cause its sender to eventually receive

an orphaned? message. The appropriate response to this orphaned? message is

the lost not-orphaned message. Therefore, a guardian must somehow remember

any not-orphaned message it transmits so that It can be retransmitted if necessary.

To do this, whenever a guardian sends a not-orphaned message, the guardian

4
Actually, this set might have grown some, but DG still does not need to learn of these additional

aborted actions since their identifiers in done are tagged with the new deadline value contained in the
message.

79

associates the message with every local root action that had its deadline changed

due to receiving the message. This not-orphaned message replaces any such

message previously associated with.any one of these local roots.

When a guardian receives an orphaned? message it checks if the deadline

included in the message is less than that of the local root of the parent of the handler

action the message was sent on behalf of. If this is the case, a not-orphaned

message transmitted previously has been lost or delayed, and the not-orphaned

message associated with the appropriate local root is retransmitted. Otherwise, this

local root is considered to ·have "neared" its deadline and the appropriate steps are

taken, i.e. an orphaned? message is sent, etc.

•

80

~~--- --------~

•· :'!-'."-,_···.c·.'

Chapter Six

Controlling the Size of Map: Deadlining

There are two impractical aspects to the orphan detection algorithm of Chapter

Four·· the large sizes of done and map. This chapter presents a deadlining scheme,

somewhat similar to that previously presented for done, that keeps the size of map

small.

6.1 Map Deadlining

In map deadlining, every local root action has a second deadline associated

with it. In order to differentiate this deadline from the one associated with local root

actions for the purpose of controlling the size of done, the former deadline will be .

known as a map-deadline and the latter as a done-deadline.

The map-deadline assigned to a topaction Is some future time; however, the

map-deadline period must be the same for all topactions in the system. The map­

deadline period is the time between a topaction's creation and its map-deadline.

Call messages include the map-deadline value of the calling action's local root.

A handler action's map-deadline is set to the value included in its call message.

Hence a topaction and its descendant handler actions all have the same map­

deadline time.

When a local root action's m~p-deadline arrives, that action is said to be

map-expired, or simply expired. When a local root action ·becomes map-expired, it is

aborted along with all its purely local descendants. The local root need not be

aborted the exact instant its map-deadline arrives, but it must be aborted before any

message that arrives with a piggybacked map can be processed.

81

----------··---

A guardian discards any call message it receives if the map-deadline included

in the message has passed, according to the guardian's clock. .

We envision the map-deadline period as being a relatively large value; virtually

no action should ever find itself closing in on its map-deadline.

6.2 Deleting Entries From Map

As in the deadlining scheme for done, map entries are· tagged with a time

stamp. TheS:e tags are ignored insofar as the orphan detection algorithm of Chapter

Four is concerned.

When a guardian recovers from a crash, it places an updated entry for itself in

Its map. The guardian tags this entry with the current time plus the map-deadline

period. We assume that clocks do not fail during crashes; they keep on ticking

reliably even while their node is down.

An entry in a given guardian's map can be deleted e seconds after the entry's

tagged time, according to that guardian's clock. The entry need not be deleted

promptly; the guardian can wait until a convenient time.

In map deadlining, the abbreviation of d-list-maps to d-lists, as proposed in

Section 4.4.3, is no longer valid. Due to the above rule for deleting entries from map,

a guardian's map is no longer necessarily a superset of each of its local action's

d-list-maps.

Let us now consider the correctness of this scheme. The orphan detection

algorithm from Chapter 4, together with map-deadlines and the above map entry

deletion rule, is referred to in the following as the "deletion rule algorithm." The

question is whether or not a crash-orphan is detected by the deletion rule algorithm

as quickly as it would be by the plain orphan detection algorithm.

First consider the case of a map-expired local root action with a crash-

82

orphaned purely local descendant. The local root and all its purely local

descendants, including tne crash-orphan, will be aborted by the time the first

message with a piggybacked map· arrives. Hence the plain algorithm detects a crash·

orphan with a map-expired local root no faster than the deletion rule algorithm.

Now consider the case of a crash-orphan whose local root has not yet expired.

Suppose a piggybacked map arrives that would have contained an entry identifying

the crash-orphan as such in the plain algorithm, but that does not in the deletion rule

algorithm. For this to be true, some entry for a guardian appearing in the crash­

orphan's d-list-map was deleted from some guardian's map. We proceed to show

that this leads to a contradiction. Suppose this deleted entry was for guardian G, and

was tagged with the time T; thus the crash-orphan's d-list-map contains an entry for

G with an out-of-date crash count. Since the clock of the guardian that deleted the

entry must have read at least T + e at the time of the deletion, the crash-orphan's

guardian's clock must read at least T when the piggybacked map missing the entry

arrives. Since the crash-orphan's local root has not expired ·when the message

arrives, its map-deadline must be greater than "· Since a topaction and all its ..
descendant local roots share the same map-deadline, the map-deadline of the crash-

orphan's topaction must also be greater than "· But then the topaction must have

been created after G recovered. G recovered at T-P, where P denotes the map.

deadline period. The topaction was created after -r-P, since its map-deadline is

greater than "· But if the topaction was created after G recovered, none of its

descendant's d-list-maps can possibly contain an entry for G with an old crash count,

contradicting the fact that the crash-orphan's d-list-map does indeed contain such

an entry.

This correctness argument is not quite complete until. call messages are

considered. can messages carrying an expired map-deadline are discarded. The

danger is that a call message carrying a map-deadline that has not expired might be

accepted when in the plain orphan detection algorithm it would have been refused.

An argument similar to the one above can be made showing that for such an anomaly

83

to occur, the calling action's topaction .must have been created after the guardian

whose entry was deleted from map recovered, and hence the d-list-map included in

the call message could not possibly contain an outdated entry for the deleted

guardian.

6.3 Map-Deadline Extension

Since we assume crashes occur infrequently, the map-deadline period can be

quite large while still keeping map at a reasonable size. Very few actions should ever

map-expire, if any. Hence map-deadline extension Is a somewhat less critical Issue

than is done-deadline extension. In any case, we now present a map-deadline

extension scheme.

Map-deadline extension works basically as follows. When a local root action

nears its map-deadline, Its guardian queries all the guardians appearing in the local

root's d·list-map and those appearing in the d-list-maps of its purely local

descendants. If the local root•s. guardian discovers that none of these guardians

have crashed, the local root's map-deadline is increased by the map-deadline period.

As mentioned earlier, the map-deadline period. is a constant, and must be uniform

across all guardians in a system.

Let us now discuss the map-deadline extension procedure in detail. When a

local root action nears its map-deadline, its guardian first constructs an e-map and

associates it with the local root action. Thee-map is a table that associates guardian

identifiers with either crash counts or the special value null, and is used to keep

track of guardians' responses to queries. The e-map is constructed by taking the

union of the local root's d-list-map with those of all its purely local descendants, and

then mapping each guardian into the special value null .. Once the e-map has been

constructed, the local root's guardian queries each guardian in the e-map for its

current crash count. Of course, the local root's guardian can immediately update the

entry for itself in. the e-map. As the guardian acquires information about these

84

guardian's crash counts, it updates entries· in thee-map.

The protocol used to query guardians of their crash count is quite

straightforward. Each guardian appearing in thee-map is sent a crashed? message.

A crashed? message contains the identifier of the local root action and its current

map-deadline.

When a guardian receives a crashed? message, it immediately sends back a

status message. A status message contains the replying guardian's identifier, its

crash count, and also the action identifier and map-deadline· included in the

crashed? message.

When a guardian receives. a status message, it first checks that the map­

deadline included in the message equals that of the local root action whose identifier

is included in the message. If this is not the case, the status message is discarded.

Otherwise, the crash count in the status message is used to update the local root's

e-map.

In order to guard against lost crashed? and status messages, the local root's

guardian times out at some point after sending out the first round of crashed?

messages, but before· the local root's map-deadline arrives, and retransmits

crashed? messages to any guardians in the e-map still mapped into null. The

guardian then can set another time-out to occur before the local root expires to again

check and retransmit any crashed? messages if necessary.

When a local root action's map-deadline expires, its map-deadline is extended

as follows. If the d-list-map of the local root or those of any of its purely local

descendants is not strictly a subset of thee-map, then the local root's deadline is not

extended -- the local root is aborted instead. I~ this is not the case, the local root

action's map-deadline is increased by the map-deadline period and its e-map is

discarded. When a local root's map-deadline expires, its guardian must attempt to

extend the local root1s map-deadline before any messages with a piggybacked map

85

that happen to arrive can ~ processed.

The time an entry stays in map needs to be increased, in order for map·

deadline extension to work correctly. This has to do with the fact that an action

orphaned by the crash of a guardian can survive longer than a single deadline period

after the guardian recovers. This is true since the interval between receiving

successive status messages from a particular guardian directed at the same action

can exceed one map-deadline period. If this guardian crashes and recovers

immediately after sending out the first status message, the crash-orphaned action

survives until it receives the second status message, and thus the crash-orphan

survives for more than a single map-deadline period.

An upper bound on the amount of time an entry must spend in map is two

deadline periods. Since the map-deadline period is a relatively large value, doubling

the magnitude of map entry tags would be detrimental to the performance of

deadlining, in terms of keeping map small. One can improve the state of affairs by

establishing an amount of time, denoted C, that is less than the map-deadline period,

and restricting guardians to starting map-deadline extension for any g1ven local root

only when the current time is less than C seconds away from the map-deadline. Then

new map entries need only be tagged with the current time plus the map-deadline

period plus C.

Our description of map-deadline extension is not quite complete. There

remains a problem to be addressed concerning reply and lock-granting query

response messages. These messages cause some action's d·list-map to grow. If

one of these messages is received while map deadline extension is going on, should

the local root's e-.map be modified? If deadline extension is not going on, is there any

problem if the action sending the message has a map-deadline iess than that of the

receiver'? We explain what occurs in .these cases below.

A handler's map-deadline is included in its reply message. When a guardian

receives a reply message, it first ascertains if there is an e-map for the appropriate

86

call action's local root. If there is, the local root is undergoing map-deadline

extension. There are two possible cases -- either the map-deadline in the reply is

greater than the local root's map~deadline or it is not. In the former case, the e-map

is updated using the piggybacked .d-list-map. That is, any entries in the d-list-map but

not thee-map are added to thee-map, and any guardians mapped into null In the

e-map that appear in the d-list-map are mapped into the crash count given by the

d·list-map. In the latter case, any guardians in the piggybacked d-list-map not

appearing in thee-map are added to thee-map, but these guardians are mapped into

null.

If there is not e-map for the call action's local root, two cases are again

possible: either the map-deadline in the reply message is less than that of the local

root or it is not. In the former case, before the reply can be processed, the guardians

of non-ancestors in its d-list-map must be queried. Alternatively, the rep1y message

could be discarded. In the latter case, the reply message is processed as normal.

While the deadline extension process is taking place for a handler action, the

handler action is not permitted to complete and thereby cause a reply message to be

sent to its parent's guardian; its completion is delayed until its map-deadline is

extended. This is done since there might not be enough tim~ for a guardian to

extend the deadline of a local root if sorrie handler that has several guardians in its

d·list-map committed up just as the local root got very close to its deadline. This

situation cannot be avoided entirely, however, due to the fact that reply messages

can be delayed.

Query responses that include an action's d-list-map also include that action's

map-deadline. Such messages with a piggybacked map-deadline are treated in the

same manner as reply messages. However, one can discard query response

messages whenever convenient. Again, a query directed towards an action's relative

while that action is undergoing map-deadline extension is postponed until after the

map-deadline is extended. This avoids the reception of query responses with map-

87

deadlines less than that of the receiving action.

Again as in the done deadlining scheme, a purely local descendant of a local

root action should not be permitted to make a handler call if there is only a slim

chance of the created handler action being able to successfully extend its map­

deadline before it expires.

88

Chapter Seven

Performance· Analysis of Deadlining

Deadlining's goal is to keep the sizes of done and map both down to a

"reasonable" size. How well does deadlining do this? A performance analysis is

presented in this chapter that shows how well deadlining achieves this goal. This

chapter first examines the performance of done deadlining, and then the

performance of map deadlining.

7.1 Performance Analysis of Done Deadlining

The parameter that affects the performance of done deadlining the most is the.

done-deadline period, i.e. the amount of time between successive done-deadlines for .

any given action. In this analysis, this is assumed to be a fixed value and is denoted

byP.

There is a tradeoff involved with the value of P. As one makes P smaller, the

average size of done becomes smaller .. On the other hand, the smaller P is, the

shorter the interval between deadlines for every action, and hence deadline

extension is necessary more often. One can make the average size of done

arbitrarily small by appropriately setting P. The interesting performance issue is how

small the average size of done can be while still having only a "reasonable" amount

of deadline extension.

7 .1.1 Modelling Deadline Extensions per Topactlon.

In this section, a simple model is formulated for the total number of times any

given topaction will undergo deadline extension. The analysis of the model

developed in this section is deferred until after done is modeled in the next section.

89

--- ~-, --- -------

In order to model ·the total number of deadline extensions a topaction

undergoes, it is first necessary to model lhe length of a topaction's lifetime. Let the

random variable L denote the length of a topaction's lifetim~. Topactions are

assumed to have exponentiaUy distributed lifetimes with mean 1 /X. That is, we

assume the time from a topaction's creation to its completion is exponentiaUy

distributed, and that this time amounts to 1/X seconds on average. The probabiHty

distribution and density functions for L are given by Equations 7·1 and 7 -2,

respectively. The shape of L's density function is illustrated in Figure 7-1.

FL(x) =: P[L < x] = 1 - e-N< = fx fl(t) dt (7-1)
0

fL(x) = Xe-M. (7·2)

1/)..

Figure 7-1: Exponential density function

One might question why it is assumed that topaction lifetimes are exponentially

distributed. Why not some other distribution? First of all, since Argus has not been

implemented as of this writing, there is no data to debunk this assumption. As it turns

out, the exponential distribution has proved itself quite versatile in modelling

phenomena somewhat analogous to action lifetimes. For a discussion of the

exponential distribution, the reader is directed to (Kleinrock75]. However, no broad

claim is made about the applicability of the exponential assumption to the case of

topaction lifetime; it is only hoped that this assumption is not too unreasonable. Part

of the attractiveness of this choice is that it somewhat simplifies the mathematics of

this chapter.

90

- --------------~

We now proceed to model the number of deadlines a topaction reaches. Let

the random variable D denote the total number of deadlines a topaction reaches over

the course of its lifetime. A topaction reaches no deadlines if it lives for less than P

seconds, showing that P[D = O] = P[L < P]. A topaction encounters exactly one

deadline over its lifetime if it lives for more than P seconds but less than 2P seconds,

demonstrating that P[D = 1] = P(P ~ L < 2P]. The general case is given by

Equation 7 -3.

P(D = n] = P(nP < L < (n + 1)P) (7-3)

Since we have assumed that Lis exponentially distributed, Equation 7-3 can be

rewritten as Equation 7 -4. The derivation is given in Appendix Section A.1.

P[D = n] = [1 - e-N>J e-MP (7-4)

Let D denote the mean number of deadlines a topaction reaches, i.e. D

denotes the mean of D. D is given by Equation 7-5; the derivation appears in

Appendix Section A.2.

D = 1 I { eN> - 1) (7 -5)

•
Preferably no topaction ever reaches its first deadline. Deadline extension

causes additional communication traffic in a system. When an action's deadline is

extended, that action's health is also jeopardized ··even when the action is not an

abort-orphan, there is always some chance that deadline extension for the action will

not complete successfully, thus causing the action to be aborted. An important

measure of how well deadline extension is avoided is P[D = 0) = 1 - e-N>.

7 .1.2 Modelling the Size of Done

The model of done size presented in this section is based upon the M/G/00

queue [Kleinrock75]. An abstract M/G/00 queue is illustrated In Figure 7-2. When a

new action identifier is added to a guardian's done, this is modeled as a new

"customer" coming in for "service" at the queue. An M/G/00 queue has an

unlimited number of "servers", so the customer does not spend any time waiting for

91

service. The time an action identifier spends in a guardian's done is modeled as the
--

"service time" of the customer in the queue. When a customer completes its service

time in the model, it leaves the queue, corresponding to the deletion of an action

identifier from done. Customers coming into an M/G/00 queue constitute a Poisson

process. That is, the time between customer arrivals to the queue is exponentially

distributed. Thus we must assume that the time between adding two successive

action identifiers to done is exponentially distributed. No such assumption needs to

be made about the distribution of service times; the distribution of service time in a

M/G/00 queue is arbitrary. With this simple model, the average size of a guardian's

done corresponds to the average number of customers receiving service in the

queue at any given time, which is the product of the average arrival rate and the

average service time.

Customer

arrives

Customer selects
an unbusy server

Server; only capable
___- of giving one

customer service
at a time

Customer

-----.. ~ departs
when its

servicing

is finished

Figure 7-2: M/G/OO queue

Let us first formulate the arrival rate of action identifiers to a guardian's done.

First consider action identifiers that a guardian adds to its done due to the abort of

some local action. Let us ignore for now the action identifiers a guardian adds to its

done as a result of merging in some other guardian's done that was piggybacked on

a message. Let us assume that local action aborts at a guardian that cause a new

action identifier to be added to done occur at rate a. Furthermore, the inter-add time

is assumed to be exponentially distributed. All guardians are assumed to be

homogeneous in this respect.

92

When an ancestor's identifier is added to done, all its descendant's identifiers

can be deleted. In this analysis, however, only the deletion of identifiers due to

deadlining is considered. This other source of deleted identi,iers is ignored by

restricting a to be the rate tooaction identifiers are added to done locally. Recall that

a topaction's identifier is added to done when the topaction completes, given that

there is some descendant's identifier in the topaction's guardian's done. Then as

done propagates about the system, the topaction's descendant's identifiers are

replaced by the topaction's identifier. Restricting a to topactions ignores the

transient effects of identifiers being added to done and later being replaced by their

topaction's identifier.

Now let us consider action identifiers added to a guardian's done as a result of

merging in a sent done. Let us a8sume that there are N guardians in the distributed

system. Also, we assume that each guardian communicates with every other

guardian, directly or indirectly. Hence every guardian eventually receives, In a

piggybacked done, any action identifier any other guardian adds to its done due to a

local abort. Then the rate new topaction identifiers are added to any particular

guardian's done as a result of merging in sent donas is (N-1)a, since the other N-1

guardians in the system each produce identifiers of local topactlons at rate a. Again,

the effects of non-topaction identifiers in done are ignored. Thus the rate topaction

identifiers are added to a guardian's done from both remote and local sources is

(N-1)a+ a= Na.

Let us now turn our attention towards determining the "service time" of action

identifiers in the M/G/00 model. A topaction's identifier is tagged with the

topaction's deadline when first added to done. Guardians can delete the Identifier at

the tagged time plus e. Hence the time a topaction identifier needs to stay in done Is

dependent upon the difference between the time of the topaction's completion and

its deadline. Let the random variable S denote the amount of time a topaction

identifier spends in done. The distribution of S can be derived from the assumption

that L, topaction lifetime, is exponentially distributed.

93

For the M/G/OO model, only the mean of S1 denoted S 1 is of interest. The

derivation of S is given in Appendix Section A.3. The assumption that L is

exponentially distributed makes this derivation quite straightforward, since this

distribution has the "memoryless property." Equation 7 ·6 shows the result. We

assume that e is small; an addend of e is ignored in Equation 7-6.

S = { FL(P)[XP-1]° + PfL(P)} I AFL(P) (7·6)

Average service time:

Arrival rate:

Net

Figure 7 -3: A simple single· ueue model of done

•
Figure 7-3 illustrates a simple M/G/OO model of a guardian's done. Action

identifiers come into done at the rate of Na per second. Each such identifier then

receives "service" for S seconds and then leaves the q1Jeue. The average size of

done, denoted done, is the average number of Identifiers in service at any given time

in the model. The equation for done is given by Equation 7· 7:

done= SNa. (7-7)

The model of Figure 7-3 is a bit too simple, however. When a topaction 1s

identifier is added to its own guardian's done, the identifier does indeed spend an
-

average of S seconds there. But identifiers of non-local actions added to the same

guardian's done will have i•aged" some as they were propagated to the guardian in

piggybacked donas. These identifiers spend less time than S on average in the

guardian's done. The above model suggests that identifiers of completed topactions

are broadcast to all guardians and immediately added to their dones; this Is certainly

94

(N· 1) Ol .. ~--------..:. _____ ~ __,._ ... --.. ----

Figure 7-4: Multiple M/G/00 queue model of done

not the case. A more accurate model of a guardiar')'s done can be obtained by using ·

several M/G/OO queues, as illustrated in Figure 7-4. This particular model uses four

M/G/ oo queues. In the model, p1 + p2 + p3 + p 4 = 1; also O ~ p1,p2,p3,p4 ~ 1. The

value p1 represents the proportion of guardians whose aborted local action -identifiers reach the modeled guardian's done very quickly, and hence spend S

seconds on average in done before being deleted. The value p4, on the other hand,

represents the proportion of guardians whose aborted local action identifiers take

such a long time to reach the modeled guardian's done that they spend no time In it

at all ·· they are in fact deleted from all other guardians' dones before they ever reach

the modeled guardian's done. The values p2 and p3 represent cases In between the

latter two extremes. The pi's are called branching probabilities. When a customer

enters the model from the customer $tream with the (N· 1)a rate, the customer takes

the topmost branch with probability p1, the next branch with probability p2, etc. Note

that in this model, the stream of local identifiers added to done is distinguished from

the stream of remote identifiers added to done. In this model, the average size of the

modeled done is given by Equation 7-8.

95

aS +p1(N-1}aS +p2(N-1)a(2/3)S +p3(N-1}a(1/3)S. {7-8)

The four-queue model of Figure 7-4 above can be generalized to an n-queue

model of done. Figure 7-5 illustrates the general model. The average size of done is
- n

denoted by done and is given by Equation 7-9. Again, '2 pi = 1, and O ~pi,:::; 1.
. i=1

Also, O < fi < 1, and f 1 = 1.

(N· 1) oc. ...

Figure 7-5: General model of done

n
done= aS[1 + p1(N-1)] + '2Pi(N-1)afiS (7-9)

i=2

7 .1.3 The Performance of Done Deadlining

Does deadlining keep done at a reasonable size while still not causing

excessive amounts of deadline extension to occur? In this section, we attempt to

answer this question based upon the modelling machinery developed in the past two

sections.

96

The major parameter of deadlining is P, the deadline period. Let us first

examine the performance question of how large P must be to avoid excessive

amounts of deadline extension.

P(D = O]
1

0 1 2 3 4
Figure 7-6: Probability that D = 0 as a function of m

m
5

Let P = m(1 /A), i.e. let m denote the proportionality constant between P and

1 I A., the average topaction lifetime. Equation 7 -1 o shows the result "Of substituting

m{1 IA) for Pin Equation 7-4. Figure 7-6 is a graph of P[D =0] as a function of m.

From the graph, we see that if P is three times larger than the average topactlon

lifetime, then only about 5% of all topactions ever hit a single deadline. If P is five

times larger than the average topaction lifetime, then 99% of all topactions never hit a

single deadline.

P[D = n] = [1 - e-m] e-nm (7-10)

Figure 7-7 similarly shows D, the average number of deadline extensions per

topaction, as a function of m. From the graph, we see that a topaction only

encounters a significant number of deadlines if P is less than the average topaction

lifetime. Equation 7-11 is obtained by substituting m(1 /A) for Pin Equation 7-5.

D = 1 I (em-1) (7-11)

From the above analysis, it appears that setting Pat least three times larger

97

o e.s1

.16 .05. 02 01
L...~~~~-=:::::=======::=====:=.-:·::...-----..:!· m
0.1 .s

1 2 3 4 5

Figure 7-7: Graph of Das a function of m

than the average topaction lifetime should lead to acceptable performance with

respect to the amount of deadline extension that occurs In a system. One could even

make a case that setting P only twice as large as the average topaction lifetime yields

acceptable performance.

Let us now examine the impact of P upon the size of done. Our first analysis is

based upon the simple single-queue model of Figure 7-3. Let p = Na. Then pis the

overall rate that topaction identifiers are added to the modeled done; P's

dimensionality is "identifiers per second." Let P = m(1 /A), as before. Furthermore,

let n be defined by P = nA. Suppose every topaction's identifier is added to done

when it terminates. Then the value n represents the degree of parallelism of
. .

topactions in the distributed system. If n = 1, then only one topaction tends to be

98

-----~--~~---

running anywhere in _the distributed system at any given time. If n = 2, then exactly

two topactions tend to be running in the system at any given time; etc.

Let done denote the average size of done. For the single-queue model, done

= f3S. Substituting nA for f3 and m(1 /A) for Pinto Equations 7-7 and 7-6 leads to

Equation 7-12:

done= n { (1 -e-m)(m -1) + me-m} I (1 -e-m) (7·12)

done
40 m=S

dOne = 4.034n

m=4
30 -done = 3.075n

m=3
20 -done = 2.157n

m=2 -
10 done = 1.313n

0 1 2 3 4 5 6 7 8 9 10 n

Figure 7·8: done graphed as a function of n

Figure 7-8 shows Equation 7-12 graphed as a function of n for several different

values of m. From the graph, we see that if m = 3 ··i.e., that if Pis thrice the average

topaction lifetime, the size of done is just about twice the degree of topaction

99

parallelism in the distribut~ system.

In evaluating this result, we must consider the type of system the single-queue

model "fits" best. The single-queue model fits a system where information .about an

abort spreads about quickly to all the guardians that make up the system. It seems

that this implies .that such systems must be small. Also note that the single-queue

model overstates the size of done; information about aborts never spreads

throughout a system instantaneously as the model suggests. Hence the above result

provides an upper bound on the average number of topaction identifiers for done Jn

small systems. For large systems, the single-queue model still provides an upper

bound, but not a very tight one.

Let us now repeat the above analysis using a four-queue model of done. This

analysis will be more complicated due to the many parameters of the multiple-queue

model of done.

Suppose that the guardians in a system can be divided into three categories

with respect to the modeled guardian's done -· "fast," "medium,; and "slow."

Identifiers added to done by a "fast" guardian reach the modeled guardian's done

with very little delay. On the other hand, the identifiers of "slow" guardians take a

while to reach the modeled guardian's done. Let p2, p3, and p4 denote the fractions

of the N-1 guardians that fall into the fast, medium, and slow categories, respectively.

Let p1 = 0. This takes care of determining the branching probabilities of a four·

queue model (Figure 7-5).

The more guardians a system has, the larger it would seem p4 is. Large

systems (on the order of 500 guardians) are probably organized into several

subsystems. Guardians within a subsystem frequently communicate with each other,

but rarely with guardians outside the subsystem. A small system is composed of a

single subsystem; all guardians communicate frequently with each other, so p4 is

almost zero. A large system, on the other hand, is composed of many subsystems, so

information concerning aborts takes a long time to travel from one subsystem to

100

another. Hence p4 has a significant _value; many guardians fall into the "slow"

category.

Again, in this analysis let us assume that all topaction identifiers are added to

done. Let n be defined such that a = nA. Then n is the degree of ~

multiprogramming of topactions. Note. that this differs from the previous definition of

n to be the g!.QQfil degree of multiprogramming. For example, if n = 1, then there

tends to be one topaction running at each guardian at any point in time.

Also, let m be defined such that P = m(1 IA), as before.

The "delay factors" f2, f31 andf4 need to be determined (Figure 7-5). It seems

that these delay factors should be dependent upon n .. the higher the level of activity

at each guardian the more frequent it seems inter-guardian communication should

occur. Hence the higher n is, the closer the fi 's should get to 1.

Suppose every c2 th topaction at a guardian in the "fast" category

communicates with the guardian· whose done we are modelling. Then it seems that

d2 = c2 I nA is a respectable estimate of the amount of time an identifier ages before

reaching the modeled done from a fast guardian. Hence f2 = (S · d2) IS. f3 and t4

are defined similarly. Equation 7-13 gives the expression for f1 in terms of m, n, and

Ci'

f1 =1-{ci(1-e-m)/n[(1-e-m)(m-1) + me-m]},ifgreaterthanO. (7·13)

Fix the value of N at 50, the value of c2 at 1, c3 at 51 and c 4 at 20. Also fix the

value of mat 3. Figure 7-9 graphs done as a function of n based on different choices

of the branching probabilities.

From the above analysis, it appears that deadlining keeps done to a reasonable

size when the local degree of multiprogramming Is around one topaction. In the

above analysis, this implies a system-wide degree of multiprogramming around 50

·· i.e., at any given time 50 topactions are running in the distributed system, on

101

P2,P 3P 4 .3,.3,.4

I p
2
,p 3P 4.2,.21.6

p2,p .iP 4.5,.3,.2 / P. p p 1 3 6 3
-.._ / 2.1 3 4· ,. ,.

done SO

60

.40

20

n
0 1 2 3 4 5

Figure 7-9: Graph of done; N = 50

average. Recall that it was assumed that all topaction identifiers are added to done.

In reality, there are probably many topactions that when run cause no identifiers to be

added to done. Hence the actual degree of multiprogramming can be much higher

than one while still having done stay at a reasonable size. In addition, many

guardians in a typical system do not run topactions, so the actual number of

guardians in a system with performance comparable to that predicted by the model

will probably be much greater than 50.

In any case, we suspect that the actual local degree of topaction

multiprogramming in a typical system is fairly small •· around one. Under these

conditions, the above analysis has demonstrated that deadlining performs

adequately.

102

In this analysis, we h_ave so far ignored the "transient" effect of non-topaction

identifiers in done.· However, the presence of these identifiers in done does cause

the actual average size of done to be larger than that indicated by our analysis above.

The question is exactly how much larger.

We make the assumption that only one identifier belonging to a descendant of

any particular topaction is in any given guardian's done at any particular moment.

This assumption can be made true (for all practical purposes) by adding any

committing action's identifier to done, when one of its descendants identifiers is

already in done. If this is done, then identifiers in done can no longer be used to

detect unwanted committed subactions, as explained in Section 4.3. Our analysis

below depends on this assumption being true; if this assumption is not true, actual

system performance could be much worse than that predicted. However, it is not

clear if this assumption need be made true to obtain acceptable performance in

practice.

Let the random variable T denote the amount of time any identifier of any one

of a given topaction's descendants can be found in some guardian's crone, under the

assumption that some descendant of a topaction is aborted very shortly after the

topactlon is created. Then the mean of Tis given by Equation 7-14. Since E[D], the

mean of D, is approximately zero for the magnitudes of P we consider practicable,

E[T} is approximately P.

E[T] = P (E[DJ + 1) (7-14)

We now examine the result of adding non-topaction identifiers to the single·

queue model of done. To have this model take transient identifiers into account, one

just changes the mean service time to E[T]. This works due to the assumption that

only one identifier of an action descended from a particular topactlon is in any one

guardian's done. When a topaction is created, one of its descendant's identifiers is

very quickly (i.e. instantaneously) added to done at some guardian, by assumption.

This is modeled as the identifier being a "customer" coming in for service at the

103

queue at the time the topaction is created. The "customer" leaves the queue E(T]

seconds later, modelling the deletion of the appropriate topaction's identifier from

done. While it is in service, this "customer" might represent several different

identifiers of a topaction 's descendants. But since there are never two or more

identifiers belonging to the same topaction's descendants in any particular done, by

assumption, this one "customer" suffices to represent any Identifier of the

appropriate topaction's descendants that finds its way into done. Then the

approximate average size of done is n(m) when taking non-topaction identifiers into

account, where fJ = na and P = m(1/A.). From examining Figure 7-12, we can see

that the size of done is less than double the size predicted by the analysis that only·

takes topaction identifiers into account. For m = 2, for example, the average size of

done is about 52% larger than the topaction-ldentifier-only average size. (Recall that

P, the deadline period, is m times the average topaction lifetime). Form = 4, the

"true" average size of done is about 30% larger. Hence it appears that even though

our analysis ignoring non-topaction identifiers understates the size of done, this does .

not result in a gross underestimate.

7.2 Performance of Map Deadlining

The modeling machinery developed In previous sections to analyze the

performance of done deadlining also can be used to predict the performance of map

deadlining.

Let P denote the map-deadline period. Figures 7-6 and 7-7 apply immediately

to map deadlining. Here the random variable D denotes the number of map.

deadlines a topaction encounters over its lifetime. Again, m is defined by P =
m(1 IA.). From Figure 7-6, it can be ~n that if Pis five times larger than the average

action lifetime, then 99% of all topactions never hit a single map-deadline.

Let a denote the rate at which guardians crash. Then a guardian produces a

map entry for itself at rate a. We can then use the models of Figures 7-5 and 7 ·3 to

104

model the size of map. The service time, S, of map entries is simply twice P. (We

ignore e and the restriction proposed in the last section concerning C.)

Let n be defined by a = (1 /n)A. Then n is the ratio of a topaction's lifetime to a

guardian's inter-crash time. In any proper system, the value of n should be fairly

large; the inter-crash time should be much larger than the average topaction lifetime.

map 70
n = 10

40 n = 50

30 n = 75

20 n = 100

n"' 150
10

100 200

N = no. of guardians._
Figure 7·10: Average size of map, according to single-queue model; m = 5.

Let us consider the simple, but inaccurate, single-queue model of map

illustrated in Figure 7-3. The average number of map entries In this model is given by

iiiiP = 2Nm(1 /n), where N is the number of guardians in the system. Rgure

7-1 O shows map graphed as a function of N for several values of n with m fixed equal

to 5. Since the single-queue model is only valid for systems with a "small" number of

guardians, this graph looks quite encouraging. For example, if the Inter-crash time Is

100 times the length of topaction lifetime, wrap = (1 /10)N. So for a system with 100

guardians, map tends to only have 10 entries In It.

For extremely large systems, the single-queue modei is not accurate; it

105

- ------·-----

overestimates the size of map. But the preceding analysis has shown that the single­

queue model indicates that map has a reasonable size for a system composed of a

few hundred guardians, certainly·not a small system. Since map entries are tagged

with P + C instead of 2P, map-deadlining performs even better than our modelling

here indicates. Hence the claim that map-deadlining keeps map "small" seems

justified by this analysis. .

•

106

Chapter Eight

Conclusion

This chapter is organized into two parts. First, related work on orphans is

discussed. Second, the conclusions of this thesis are presented.

8.1 Related Work

Several others have proposed orphan detection strategies. These schemes

are discussed and compared with the orphan detection scheme presented in the

thesis.

8.1.1 Nelson's Thesis

Nelson [Nelson81] discuss.es orphans and orphan detection in the context of

his remote procedure call scheme. Nelson's orphans are different from Argus's

orphans in several respects. First of all, Nelson.'s orphans are created strictly by the

crash of an ancestor. Secondly, Nelson's orphans are simple subprocesses; in Argus

orphans are subactions. Finally, there ·is no notion of Nelson's orphans viewing

inconsistent data; in Argus, on the other hand, this is the primary justification for

orphan detection. Nelson justifies orphan detection by showing that It Is needed to

provide so-called last-of-many semantics for remote procedure calls.

The orphan detection schemes in Nelson's thesis are basically worked-out

versions of schemes proposed by Lampson [Lampson81].

The first orphan detection scheme Nelson describes is called extermination.

This scheme delays recovery from a crash until all orphans created by the crash are

tracked down and_ destroyed. This scheme leads to unbounded recovery times.

107

Nelson then d_escri6es a scheme for relieving the problem of unbounded

recovery times in his extermination scheme, called expiration. In this scheme, each

process is assigned a time limit. A remote subp~ocess spaV1ned via a remote

procedure call inherits the time limit of its parent. If a process is still running when its

time limit arrives, it is destroyed. As in the deadlining scheme described in this

thesis, this scheme imposes a maximum bound upon the amount of time an orphan

can exist before being destroyed. Expiration and extermination are used together to

create an orphan detection scheme without unbounded recovery times. If for some

reason extermination cannot complete normally at a recovering site, recovery at that

site is simply. delayed until all orphans created by the crash are certain to have been I
destroyed via expiration. Unfortunately, expiration can lead to the destruction of;

non-orphaned processes.

The final orphan detection scheme Nelson details is called reincarnation. This

scheme is similar to the basic algorithm for detecting crash-orphans presented in this

thesis in that it works by piggybacking information onto messages. In Nelson's

scheme, each site maintains a crash-count, which he calls an epoch. When a site

recovers from a crash, it increments its epoch number. The epoch number is

piggybacked on every outgoing message from a site.- When a site receives a

message with a higher epoch number than its own, it destroys all its local processes

and increases its own epoch number. Of course, this can result in non-orphans

being destroyed. To correct this deficiency, Nelson proposes another scheme called

gentle reincarnation. Gentle reincarnation works just like plain reincarnation does

except when destroying processes at a site that has just received a higher epoch

number on an incoming message. Instead of simply destroying processes, querying

up the ancestor chain is done to ascertain if a process Is indeed an orphan or not. Of

the orphan schemes Nelson describes, this one is the closest to that of Argus in that

it works by piggybacking information on messages.

Of all the orphan detection schemes presented in his thesis, Nelson advocates

the combined expiration and extermination scheme as the best. The orphan

108

detection scheme presented in this thesis represents an improvement over this

scheme since recovery need never be delayed waiting for orphans to perish. While a

node is waiting for orphans to perish in Nelson's scheme, that same node would be

up and running in our scheme. Also, our scheme does not cause non-orphans to be

aborted.

8.1.2 Lampson's Orphan Detection Schemes

As Nelson points out in his thesis, his orphan detection schemes are worked­

out versions of schemes proposed by Lampson [Lampson81]. Lampson also

proposes an additional scheme to those detailed in Nelson's thesis, deadlining.

Deadlining is an enhancement of expiration, described in the last section.

Instead of merely aborting a process when it reaches its time limit, querying is done

up the ancestor chain to ascertain if the process is actually an orphan. If the process

is not an orphan, its time limit is extended. Of course, deadlining is the method used

in this thesis to age entries out of done and map. Lampson does not go into the

details of deadlining. The communication required to extend deadlines is much

simpler in Lampson's context than ours, since he must only communicate up to

ancestors, whereas we must also communicate down to committed relatives.

Lampson uses deadlining to establish a maximum on .the amount of time crash

recovery need be delayed due to orphan detection, whereas we use deadlining to

trim the orphan information piggybacked on messages.

8.1.3 Allchin's Thesis

Allchin [Allchin83] presents a system based on nested atomic actions that is

very similar to the Argus system. Orphans arise in Allchin's system from sources that

are analogous to the sources of orphans in Argus. Allchin's orphans cause the same

sort of problems as Argus's orphans -- they waste resources and can see

inconsistent data. Allchin discusses the orphan problem and proposes an orphan

detection algorithm. His algorithm is more efficient than that presented In Chapter 4,

109

---~-~---··----

but it is incorrect.

I have chosen to present Allchin's orphan detection scheme using the

terminology of this thesis and within the context of Argus, rather than using his

terminology.

Allchin's orphan detection algorithm is strikingly similar to the algorithm of

Chapter 4. His algorithm can be separated into two halves, just as our algorithm ·· an

abort-orphan detection and crash-orphan detection. His abort-orphan detection

scheme is basically the same as ours. His crash-orphan detection scheme is almost

identical to ours, except in one vital respect ·· he does not piggyback map on any

message. Messages on which our algorithm piggybacks both a guardian's map and

an action's d-list-map, he piggybacks only the d-list-map. On prepare messages we

piggyback the map of the committing topaction's guardian ·· he instead piggybacks

the topaction's d-list-map. A message receiver uses the sent d-list-map in Allchln's

algorithm at those times the sent map is used In our algorithm. That is, In Allchin's ·

algorithm the sent d-list-map is used by the receiving guardian to update its own map

and detect local orphans.

We now present a counter-example that demonstrates Allchin's crash-orphan

detection algorithm can fail. In this example there are three guardians of interest:

GX, GY, and GZ. Each of these guardians has a single atomic object·· x, y, and z,

respectively. The consistency constraint is that x > y > z. Suppose that initially x =

100, y = 99, and z = 96. Also suppose each guardian's map just contains a single

entry for itself.

Suppose topaction A is created at G1. Its d-list-map initially contains just the

entry <G1 ,O>. Action A does a handler call to guardian GX creating subaction A.1.

A.1 's d-list-map is initialized to that of A piggybacked on the call message along with

an additional entry for GX. A.1 reads x, discovering that it has the value of 100. A.1

then commits a~d passes the information that x is 100 to A. The d-list-map

piggybacked on the reply is merged into A's d-list-map, resulting in A's d-list-map

110

note: "d·map" = d·list-map.

GX Map:<GX,O><G1,0>

A.1
locked by A.1

I x = 100

G2 GZ

D d-map:<G1 ,O><GX,O>

z = 98.

GV

y = 99

Figure 8· 1: Counter-example snapshot one

d-map: ..
<GX,0>
<G1,0>

acquiring the entry <GX,O>. Figure 8-1 illustrates the state of affairs at this point.

Then GX crashes and recovers. This causes the lock A.1 obtained on x to be

released and GX's crash count to be incremented. Action A is now a crash-orphan.

This counter-example will show that the information about GX's crash does not reach

GZ in time to prevent A from making a handler call there and viewing inconsistent

data.

Suppose a topaction Bat guardian G2 makes a handler call to guardian GX

after it recovers, creating subaction 8.1. 8.1 changes the value of x to 200 and

commits to B, passing information to B that x is 200. Note that B's d-fist-map

111

piggybacked on the reply message contains the entry <GX, 1). Thus after the sent

d-list-map is merged with thJ~ of 8, B's d-list-map contains the entry <GX, 1>.

Topaction B then makes a handler call to GY, passing the information that xis

200. B's d-list-map is piggybacked on the associated call message. At GY, merging

B's sent d-list-map into GY's own map results in its map acquiring the entry <GX,1>.

Thus news about the crash of GX has reached GY at this point in the counter­

example.

This call message creates subaction B.2 at GY. B.2 changes the value of y to

150, and checks to make sure that the consistency constraint x > y > z is still

preserved by checking that the passed value of x, 200, is greater than the new value·

of y, 150, which is itself greater than the old value of y, 99. The consistency

constraint is indeed preserved. Figure 8-2 illustrates the current situation.

Subaction B.2 then commits to topaction B. Then B itself commits and

subsequently two phase commit for topaction B successfully finishes. This results in
'

the release of the locks on x and y. • l

Then a topaction C is created at G3. C makes a handler call to GY, resulting in

the creation of subaction C.1. C.1 reads the value of y, and discovers it has a value of

150. C.1 then commits to C, passing information that y is 150. But note that C.1's

d-list-map only contains entries for G3 and GY. Hence the reply message carries no

information about the crash of GX, even though the message itself carries

information that is inconsistent with the state of GX before the crash.

C then makes a handler call to GZ, passing information that y is 150. This

causes the creation of subaction C.2 at GZ. C.2 changes the v~lue of z to 100. C.2

then checks that the consistency constraint x > y > z still hol~s by making sure the the

new value of z, 100, is less than the value of y passed to it, 150. The consistency

constraint is indeed preserved. Note that C.2's d-list-map only contains entries for

G3, GY, and GZ. Figure 8-3 illustrates the current situation.

112

G2

B

Map:

<GY,O>
<GX,1)
<G2,0>

GY

locked by B.2

I Y = 1so ·. I

. GX Map; <GX, 1XG2,0>

8.1 -

0 d-map:<GX, 1XG2,0>
A.1

QPE ISHED IN CRASH

d-map:
<G2,0>
<GX,1>
<GY,O>

GZ Map:(GZ,O>

z = 98

d-map: <G1,0>

Figure 8-2: Counter-example snapshot two

d-map:
<GX,O>
<G1,0>

Subaction C.2 then commits to C and C subsequently itself commits. Note that

C's final d-list-map contains entries just for G3, GY, and GZ. Two phase commit for

topaction C then successfully finishes. Note the information about the crash of GX

has failed to reach GZ, although the state of GZ is inconsistent with the state of GX

before the crash.

Finally, orphaned action A makes a handler call to GZ, passing the invalid

information that xis .100. Since GZ's map contains no entry that is more up-to-date

113

- G x Map: <GX, 1XG2,0>

A.1 .

x = 200
QPE ISHED IN CRASH

d-map: <G1,0>

G2
GZ Map:<GZ,O> <G3,0XGY,O>

locked by C.2

I z = 100

GY Map: <GY,O> <GX,1> <G2,0> <G3,0>

locked by C.1

I y = 150

d-map:
<G3,0>
<GY,O>

d-map:<G3,0>

d-map:<G3,0XGY,O>

"y = 150"

c
d-map:
<G3,0>•
<GY,O>

Figure 8-3: Counter-example snapshot three

d-map:
<GX,O>
<G1,0>

than any entry in the call message's piggybacked d-list-map, the call is accepted.

Subaction A.2 is created at GZ to run the call. A.2 then reads z and finds that the

consistency constraint has been unexplicably violated. Figure 8-4 illustrates the final

situation.

Allchin's orphan detection algorithm is more efficient than the one presented in

this thesis, since it never piggybacks any guardian's entire map ~:>n any message. As

the counter-example shows, however, this optimization does not always lead to

correct results.

114

--~---------------- ----- ---

G2

G x Map: <GX, 1XG2,0>

A.1

x = 200
QPE !SHED IN CRASH

d-map: <G1,0>

GZ Map:<GZ,O> {G3,0XGY,O>

locked by A.2

I z = 100

G y Map: <GY .O> <GX, 1> <G2,0> <G3.0>

y = 150

Figure 8-4: Counter-example snapshot four

8.2 Summary and Suggested Work

G3

D

This thesis presented an orphan detection algorithm that worked by

piggybacking two data structures named map and done on messages. Since map

and done can be large, this algorithm is not practical.

A method called deadlining was introduced to trim the sizes of done and map.

In this method, a map-deadline and done-deadline are associated with actions.

When either of an action's deadlines arrives, the action is aborted unless it

successfully completes the deadline extension procedure.

115

A performanc~ analysis of deadlining was presented that predicted its

performance. From this analysis, it was- concluded that map and done deadlining

both should work satisfactorily, but in heavily utilized systems it i$ important to avoid

adding identifiers to done whenever possible.

More work to improve deadlining as presented in this thesis could be done.

First of all, the map-deadline period is quite inflexible. A scheme should be

developed that permits this period to be changed .. A map-deadline extension

protocol that works well in the presence of recursion could also be developed. Our

protocol inundates the system with messages in this situation.

Also, methods to adjust the done-deadline period based on actual conditions In

the system could be developed.· For example, if done is too large while very few

actions where hitting done-deadlines, the done-deadline period should be

decreased. This could be done by having each guardian determine its done-deadline

by hill-climbing using a heuristic that balances the tradeoff between the size of done

and the amount of deadline extension that goes on. Another way to do this would be

to have a single "done-deadline center" for a system. Each guardian wou~

periodically send the center statistics concerning the size of its done and the amount

of deadline extension that occurred locally. The center periodically distributes a

done-deadline to all the guardians of the system. Since the center has global

information about the system, it should be able to do a better job in setting done­

deadlines than guardians can do individually.

Since the performance analysis seems to show that done could attain an ample

size in large systems even when done deadlining is used, some method for reducing

the amount of done transmitted should be developed. One such method would be for

a guardian to remember what portion of its done it has previously transmitted to other

guardians; the guardian would never transmit an Identifier to any particular guardian

more than once. Allchin [Allchin81 J presents such a scheme in his thesis. Even in

systems where done is not large, such a method could significantly reduce the

116

-------- -------

average size of the portion of done actually transmitted on messages. A guardian

need not remember exactly what it has sent to every guardian it has ever

communicated with for this scheme. to be effective; just remembering what it has sent

to the few guardians it communicates with most is sufficient.

Much work needs to be done in verifying the correctness of the algorithm in

Chapter 4. Goree [Goree83] proved the abort-orphan detection portion of the

algorithm correct, but no work has been completed concerning the correctness of

the crash-orphan detection portion of the algorithm. Goree's proof is complex; proof

techniques need to be developed that permit cleaner and simpler proofs .

•

11.7

Appendix A

Mathematical Derivations

A.1 Derivation of P[D = n]

1. The discussion in section 7.1.1 justifies equation 8· 1:

P[D = n] = P[nP :SL< (n+1)P] (8·1)

2. Letting FL denote the distribution function of L, equation 8-1 can be
rewritten as equation 8-2:

P[D = n] = FL((n + 1)P) - FL(nP) (8·2)

3. Since L is exponentially distributed with mean 1 /A, equation 8·2 can be
rewritten as equation 8-3:

P[D = n] = 1-e-N<n+ 1)P] - { 1-e-NiP} (8-3)

4. Simplifying equation 8-3 yields equation 8-4:

P[D = n] = FL{ P) ~-NiP (8·4)

A.2 Derivation of the Mean of D

1. E[D] = D. Applying the definition of expectation yields equation 8-5:
00

E[D] = ~ nP[D = n] (8·5)
n=O

2. Substituting using equation 8-4 gives equation 8-6:
00

E[D] = FL(P) ~ ne-MP (8·6)

n=O
3. Eliminating the summation yields equation 8-7:

E[D] = FL(P) {e->J> /(1--.e->J>)2 } (8-7)

4. Simplifying 8· 7 leads to equation 8-8:

E[D] = 1 I (e>J> -1) (8-8)

118

A.3 Derivation of the Mean of S

1. S denotes the amount of time a topaction identifier stays in done before
being deleted. Let X be defined such that S = P- X + e. We first derive
the distribution of X. X denotes the amount of time that has passed
since a topaction's last deadline when that topaction terminates. A
topaction terminates after hitting ~ particular number of deadlines.
Let X1 denote the·amount of time that has passed since a topaction's last
deadline when that topaction terminates, · given that the topaction
terminated sometime after its ith deadline but before its ith + 1 deadline.
Equation 8·9 gi,ves the distribution of x,.

Fx {t) = P[L < t - iP I iP < L < {i + 1)P 1
I -

2. Due to the memoryless property of the exponential distribution, equation
8·9 can be rewritten as equati9n 8· 10. Hence the distribution of X1 is
independent of i, so X = Xr

Fx{t) = P[L < t IL~ P]

3. Applying the definition of conditional probability leads to equation 8· 11:

Fx{t) = FL{t) I FL{P), where 0 < t < p

4. Differentiating equation 8-11 yields the density function of X, given by
equation 8-12:

f x<t) = .Ae-~t I {1 - e-~P) , if O < t <: 1P~
5. We now proceed to determine E[X). . Applying th~ definition of

expectation yields equation 8-13:

{8-9)

(8-10)
. '

'

. I

{8-11)

i

(8-12)
I

p
E[X] = f x fx{X) dx -- (8-13)

0 . ~1

6. Simplifying equation 8-13 yields equation 8-14:

E(X] = { FL{P)-.APe-~} I AFL{P) .

7. Since S = E[S] = P - E[X] + e, S is readily obtained from equation
8-14

119

(8-14)

Allchin83

Eswaren76

Goree83

Gray78

Kleinrock75

Lampson81

Liskov82

Liskov83

Liskov84

Marzullo83

--~--------

References

Allchin, James, "An Architecture for Reliable Decentralized
Systems," Ph.D .. thesis, Technical Report GIT-ICS-83/23, Georgia
Institute of Technology, Atlanta, Georgia, 1983.

Eswaren, K.P., Gray, J.N., Lorie, R.A., and Traiger, l.L., "The
notion of consistency and predicate locks in a database system,"
Comm. of the ACM 19, 11 (November 1976), 624-633.

Goree, John Jr., "Internal Consistency of a Distributed
Transaction System with Orphan Detection," Master's thesis,
Technical Report MIT ILCSITR-286, M.l.T. Laboratory for
Computer Science, Cambridge, Massachusetts, January, 1983.

. --
Gray, James, "Notes on Database Operating Systems," in Goos
and Harmanis (editors), Lecture Notes in Computer Science 60,
pages 393-481, Springer-Verlag, Berlin, 1978.

.,

Kleinrock, Leonard, Queueing Systems, Volume I: Theory, John.·
Wiley and Sons, 1975. ·

·. l

Lampson, Butler, "Applications and Protocols," in Butler
Lampson, editor, Distributed Systems: Architecture and

• Implementation, an Advanced Course, Chapter 14, Springer-
Verlag, 1981.

Liskov, Barbara and Scheifler, Robert, "Guardians and Actions:
Linguistic Support for Robust, · Distributed Programs,~·
Proceedings of the 9th Annual ACM Symposium on Principles of
Programming Languages, January, 1982, 7-19. Also In ACM
Transactions on Programming Languages and Systems, July
1983.

Liskov, Herlihy, Johnson, Leavens, Scheifler, and Weihl,
"Preliminary Argus Reference Manual," M.l.T. L.C.S.
Programming Methodology Group Memo 39, October 1983.

Liskov, B., "Overview of the Argus language and system," M.l.T.
L.C.S. Programming Methodology Group Memo 40, Feburary
1984.

Marzullo, Keith, "Loosely-coupled distributed services: a
distributed time service," Ph.D. thesis, Stanford University (1983).

120

Nelson81

Seitz83

Wood80

Nelson, Bruce, "Remote Procedure Call," Ph.D. thesis, Technical
Report CSL-79-3, xe·rox Palo Alto Research Center, 1981.

Seitz, N. 8., Wortendyke, D.R., and Spies, K. P., "User-Oriented
Performance Measurements on the ARPAnet," IEEE
Communications Magazine, 1983.

Wood, W.G., "Recovery control of communicating processes in a
distributed system," Technical Report 158, University of
Newcastle upon Tyne, 1980.

121

