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1. INTRODUCTION

There is an enormous literature of numerical algorithms, for such applications as hydrodynamics, image
processing, and weather forecasting, that require very high performance computers, much higher than can be
attained without the usc of parallelism. These algorithms arc commonly executed on vector, pipeline, or array
"supercomputers”, which exploit parallclism in the program to a limited extent. Thesc algorithms cz;n in fact
exhibit incredibly more paraliclism than conventional supercdmputcrs exploit. (This is especially true since,
as faster computers become available, these programs are written to use an ever finer grain in their analysis or
simulation of physical phenomena, which incrcases the paraliclism even further) The reason that
conventional supercomputers fail to fully exploit the parallelism is that they can only take advantage of local
parallelism. Their design has a "bomeneck." between the control section and the arithmetic processing
section. This bottleneck makes it impossible to exploit parallelism except in a local and restricted way.
Tremendous overall speed can be achieved if programs are executed on a computer designed to eliminate the
bottleneck and take advantage of parallelism in a more general way. Applicative programming makes such
computing systems feasible. The goal of this thesis is to show how to break the bottleneck and exploit the

parallelism.

The bulk of this thesis is a presentation of transformations that can be made to applicative programs to
achieve high performance. These transformations should be made by an optimizing compiler. This thesis can
therefore be thought of as a description of the principles on which such an optimizing compiler ought to be

based.

There is really only one aspect of computation that makes the program translation problem difficult --
arrays and other "aggregate" structures such as records. For this reason the major focus of the thesis will be
array computation. It will be shown that, if the program is written in an applicative language and represented

in the form of a data flow graph, the potential parallelism can be exploited in a natural way. A suitable_




direct-exccution computer for such graphs, that is, a data flow computer, should be able to achieve cxtremely

high performance in executing such a program.

1.1 Background

: Array_proccssors like the Illiac 1V [12] have many processors operating in lock-step.  This makes it
_possible to do repetitive array operations at a speed that is not limited by onc’s ability to shave nanoseconds
on one processor. This in turn makes the bottlencck extremely fast (potentially as fast as we like, for
sufficiently large arrays and sufficicntly large computers), but it is still a bottleneck. The reason is that the
computer is still doing essentially only one thing at a time. Vector and pipeline processors [28] perform

repetitive operations on arrays sequentially, but with substantial overlap from one element to the next.

In vector, pipeline, or array processors, the only places where massive speedup cén be achieved are
repetitive, nearly identical computations on arrays where there is no data dependence among the
computations on the various array elemepts. That is, the only data that are available for the computation of a
particular array element are the data in corresponding positions (possibly with shifted indices) in other arrays
(including "mask" arrays of control information that can enable or disable certain operations) and global data

that affect the computations of all elements.

This amounts to an inflexibility that seriously limits the parallelism exploitable by such machines, in

comparison with the parallelism achievable in principle. Among the lost opportunities for parallelism are:

1. Scalar operations. Although high performance computers sometimes have impressive
.mechanisms to speed up scalar computations through data caches, instruction caches,
instruction lookahead, and "on the fly" optimum scheduling of functional units, the vector,
pipeline, or array hardware of the big supercomputers is completely ineffective for scalar
operations. As supercomputers become more powerful in their ability to process regular

arrays, this "scalar bottleneck” becomes proportionally more serious.




Consider the following fragment of a program to be executed on a conventional

supercomputer;

| Alavery intense
vector computation

| B jsome scalar computations

1 that do not depend on the
outcome of A, but are needed
before C can begin

C Ianolher very intense
vector computation

Assume all three blocks take about the same amount of real time, but of course blocks A
ahd C contain vastly more computation than B and use the computer’s vector mechanism to
perform it. Block B could in principle be executed simultaneously with A. Since it actually
performs an insignificant amount of computation in compérison to A, it would be very little
additional burden to the computer’s processing units. It would double the computation
speed (assuming a long sequence of these alternating vector and scalar blocks) by letting the
intensive computation C commence as soon as A completed, thereby keeping the vector
mechanism busy all of the time rather than half of the time. The problem here is that,
while the arithmetic units are very powerful, the computer’s control mechanism lacks the

flexibility to schedule operations in this manner.

Irregular array operations. Conventional supercomputers have very little ability to perform
different computations on different elements of an array. Their ability is generally limited
to use of "mask" arrays that can enable or disable specific instructions on specific array
elements. This, too, is a lack of flexibility in the scheduler. The computer’s vector
mechanism runs at such a high speed that it doesn’t know what it is doing in terms of the
control structure of the program. It does not have time to stop and think about individual

array elements,

Sequential data dependencies within iterations. Some operations on arrays have an actual
data dependency from the computation involving one element to the computation
involving the next. True simultaneous processing is of course impossible here. However, a

large amount of parallel processing is usually still possible, because only a small fraction of




the arithmetic operations are in the “critical path®. Conventional supercomputers,
however, can't take advantage of this because the operations in the critical path arc deep
inside the pipeline and can’t be "fed back™ at full speed from one point in the pipcline to an

carlier point.

All of these shortcomings arise from one fundamental pfoblcm: the control mechanism ("scheduler”) of

conventional supercomputers lacks the flexibility to take advantage of the parallclism actually present in the

algorithm.
1.2 Data Flow Analysis with Scalars

For algorithms not involving arrays, the method for "optimally” scheduling operations to take full
advantage of parallelism is well known. It is the data flow model. The instructions of the program are
arranged in a "data flow graph”, showing their interdependencies.

For example, the FORTRAN program

X+Y
P/Y
XeP
R-Q
= Resp
ESULT = S/T

# N o0 on

P
Q
R
S
T
R

DO WN =
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would have the following data flow graph:
Fig. 1.1

((3) R = X*Pj}\\\\\\\\
0 p
(*4) S = R— Qj\\\\

(6) RESULT = S/T)

Data items are transmitted in programs in FORTRAN and most other languages through the writing
and reading of variables. In a data flow graph this transmission is shown by an arrow from the source
operation to the destination operation. For programs that deal only with scalars, the translation from

conventional languages is not too difficult [7, 20, 46).

The ideal parallel scheduler will execute each operation as soon as the operands that it requires become
available. One can visualize the operation of such a scheduler through the "token" model: ‘Results of
operations are créated in the form of tokens (shown as black dots) that flow along the arrows. The ideal

scheduler will therefore execute each operation when it has tokens present on all of its inputs.
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A possible state of the execution of the above graph might be

Fig. 1.2

((1) P =x+v)\\

P P

((3) R = X*P ((2) Q = P/Y)
R\ N@ P

((4) s = R——Q;?\\M
S ((6) T = R*P)
T

((6) RESULT = S/T)
R

1 & 3 have completed
2 is undergoing execution

Any scheduler that uses this criterion for instruction execution will- find all opportunities for parallelism,
without regard for locality. The possiblé parallel instruction executions will not be limited to a single locus of
control, or even a local "window” of control, or even some collection of regular, repetitive operations.
Computers capable of direct execution of programs encoded as data flow graphs have been

proposed [9, 16, 17, 22, 21, 33, 40}, and some prototypes have been built.

The design of practical direct execution data flow computers requires a few enhancements and
refinements to this model. Some of these refinements will be described briefly here -~ detailed consideration
is not crucial to this thesis. A dynamic data flow graph can effectively expand and contract during execution.
This is typically done when a function is invoked. A function invocation is initially encoded as an "apply"
node. When a token reaches that node, it turns into (that is, the computer operates as though it had turned
into) the graph representing the function body. A static data flow computer can only handle static graphs. In
static graphs, function invocations are expanded at compile time, ﬁefore execution begins. This necessarily

precludes general recursion at the hardware levei.
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Another refinement is the usc of special nodes to control conditionals and iterations. In the standard
model data flow graph [23, 24] these nodes are called "1™, "F", and "MERGE". The "T™ gatc takes one
argument of arbitrary typc and onc boolean argument. If the sccond argument is true, the first argument is
passed on as the result. Otherwisc it is simply discarded. The "F" gate does the opposite. "™ and "F" gates
control the initiation of conditional computations and the recycling of values during iterations. The
"MERGE" gate takes two arguments (labeled T and F) of arbitrary type and a third argument which is
boolean. It accepts and passcs on as the result whichever of the first two arguments is indicated by the third
argument. The unused argument is not absorbed and is not even required for the operator to fire. This
operator is used to merge the results of the various arms of a condiﬁonal, and to define the initial loop
variables for an iteration. Seé [18, 46] for a detailed description of the use of these gates. In this thesis, data

flow graphs will be shown in a level of detail that does not involve these gates -- conditionals and iterations

will be shown in terms of the more abstract nodes described in Section 2.3.
1.3 Applicative Programming

For algorithms that deal with arrays, achieving "maximally parallel” execution is a far less tractable task.
One reason for this is fundamental and will be discussed in Section 1.4; the other is that array computation is
usually not performed applicatively. This second reason is not fundamental -- it is an artificial problem
arising from conventional ways of conceptualizing coinputation. It must be disposed of before the real issues

can be addressed.

Tﬁe processing of data in arrays is commonly perceived in terms of the "von Neumann" architecture,
which is not compatible with true ﬁata flow analysis. In this model of architecture, one conceives of a
computer as a machin_e that manipulates data stored in a memory, by executing commands in some sequence.
For programs that deal with scalars, it is not difficult to recast one¢’s thinking in terms of data dependencies
instead of sequential command exccution, nor is it difficult to translate programs into data flow graphs. The

reason is that the "memory slots" of the machine’s memory can be thought of as nothing but "pipes" between
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arithmetic operations, that is, variables in the program become arcs in the data flow graph. Hence, the von

Ncumann stylc of thinking is not a serious burden in this case

The von Neumann style of thinking has a much more profound effect when arrays enter the picture.
Instcad of being simply "memory slots”, the memory consists of "blocks"” that are treated as .having a very real
cxistence. The need to pass entire arrays from one part of the program to another, and the expense of copying
them, means that the memory blocks that arrays occupy have a very real existence in onc’s conception of what
the program is doing, and in the execution model that a programming language presents to the user.
Execution of high level languages on von Neumann computers is customarily performed in a way that
requires that this execution model be pervasive in the external behavior of the "virtual machine” that defines
the language. So pervasive, in fact, that for a great many high level languages, such as FORTRAN, BLISS,
and C, the target machine for which the language was designed is clearly discerniblle from reading the

language manual.

This intertwining of the von Neumann conception of the way arrays are manipulated with the way
humans write programs makes the bottleneck difficult to break. Vector and pipeline mpe@mputem are
designed to do their vector operations l;y regular manipulation of successive words in blocks 6f memory,
because that is ﬁe way programs are conventionally written. It is nearly impossible to get truly flexible
parallel execution without getting away from the notion of memory blocks manipulated exactly the way the
programmer specified. But it is nearly impossible for a compiler to translate a program as anything other than
such a memory block manipulator, because the actual data dependencies in conventional programs are so

obscure.

What is needed, then, is a style of programming that does not enslave the computer to the von
Neumann style of execution, and a style of translation and execution that can truly exploit the parallelism,

Such a style of programming exists: it is called applicative programming [4]. In applicative programs, all data




-15 -

dependencies, cven those involving arrays, are apparcm.] (The reason it is casy to deduce the data
dependencies of programs that do not use arrays is that such programs arc cssentially applicative anyway, no

matter what language they are written in.)

For the purposes of this thesis, the important characteristic of applicative languages is the following:
Whenever any array (or other data aggregate such as a record) is modified by some computational step (say
A), the effect of that modification must always be made known, by some mechanism, to other computational
steps (say B). If the transmission of that effect takes place because B "knows" where the array is, perhaps
having known its location since before A modified it, the language’s model is not applicative. Most languages
are not applicative in most languages those statements that refer to the array X are compiled into code that
knows where X is allocated, whether on the stack, in a COMMON block, or in some local or global memory

space, and the code manipulates X through that predetermined address.

This type of transmission of effect (called a "side effect”) is not compatible with data flow scheduling
because the constraint that step A must precede step B does not take the form of a token transmission from A

to B.

In an applicative language model the only way computational step A affects step B is through direct
transmission of its result value to B. The result of A is a new array (conceptually at least), containing the
outcome of A’s action. Only steps that receive this result can sense A's action -- no other step can sense it
indirectly by reading the array that it knew A would modify. (Of course, in an implementation, step A may
very well write into memory. It is the job of the implementation to make sure that the behavior is consistent

with the applicative model.)

1. We do not consider data dependency removal that might be effected by rearranging the algorithm, or by
using mathematical identities beyond the normal purview of a compiler.
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This type of transmission is fully compatible with data flow scheduling. - One allows tokens to carry
array values as well as scalar values. Array operations are performed by functional operators such as the ones

to be described shortly.

‘The use of applicative arrays is a very radical departure from the conventional methods of computation
in numerical applications. It has led to widespread and severe criticism regarding its cfficiency in such

applications. A major goal of this thesis is to answer thesc criticisms.

A few words about array nomenclature are in order. The differences between applicative arrays and the
"arrays" (or "subscripted variables") of conventional languages are profound. It is very easy to use slippery
language that confuses the two concepts. In an applicative system, an array is nothing more or less than a
serics of values, along with the low and high bounds information indicating between what index limits these
values lie. The array is the information. In von Neumann style thinking, on the other hand, an array is a

place where values may be stored in sequence.

Strictly speaking, it is therefore incorrect to speak of "writing X into array A at position J." One should
only speak of "producing an array with X at position J and otherwise identical to A." In practice, however,
the way array computation is performed in numerical programs is not much different in a von Neumann
system or an applicative one. In FORTRAN, an array is filled by subscripted assignments to it, typically in
DO loops. One can quite properly speak of "writing X into A at position J." In an applicative language, one
would use an iteration variable which is an array and which is repeatedly rebound. One should speak of
“rebinding the iteration variable A td an array @nmining X at position J and otherwise identical to A’s old
value." In practice, the two operations are analogous to each other and are used in the same way in

algorithms written in conventional and applicative systems, respectively.
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In this thesis, the more conventional nomenclature will often be used, even though applicative array
operations arc being described. ‘The reader should be aware that "writing into an array” is somcthing of an

abusce of language in this context.
1.4 Array Computation in Applicative Systems

Having disposed of the fictitious problems with array computation, we can consider briefly, if

impreciscly, what it is that really makes array computation difficult to deal with.

The fundamental characteristic of arrays that makes computation with them difficult to analyze is that
arrays, in general, contain an amount of data that is incommensurate with the size of the program structures
that manipulate them. Programs that manipulate scalars only need to deal with as many data items as there
are names to denote them appearing in the text of the program. (Of course, it can be argued that the
information content of a small collection of scalars can be increased without limit by increasing the precision,
that is, the word length. However, this has no effect on the complexity of the program’s behavior as long as
the data are treated as indivisible units. If the program looks inside the data words instead of treating them as

indivisible units, they become, in effect, arrays.)

Any arrays that are of small fixed size present no problem.l The reason is that such an array can be
treated simply as that many scalars. Data dependencies can be analyzed for the various array elements
individually. Random accesses (“subscripted array references") can be rewritten as conditional program

structures that test the index value one case at a time, 2

1. The meaning of "small" is of course subjective. Any number is small if we are willing to make the control
structures large enough. Practical experience tells us, however, that 3 is small and 100 is large.

2. 1tis an aversion to 100-armed conditionals that leads us to say that an array of 100 elements is not "small”.
It is clearly not efficient to let the control structure of a program grow in proportion to the size of the arrays.
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1 is when arrays urc. large. however, or when their sizes are unknown in advance and hence might
conccivably be large, that they cxhibit their difficult behavior. In this case, program structures such as
conditionals can no longer encompass the range of the possible array indices. Then the indexing operations
for reading and writing arrays become essential and nontrivial. When a compiler sees just an expression like

A[Jd]
it knows nothing, in the most general case, except that J is the result of some integer computation which it
perhaps can’t analyze, and which it must use to fetch the appropriate element from the array A, whose internal

structure it can’t discern.

The fact that the manner in which data are written to and read from arrays is often unpredictable makes
it very difficult to organize programs for extremely efficient parallel computation. When uﬁpredictable, or
"random" access to arrays occurs, it is desirable to store the array in a localized area in physical memory, so
that the hardware will be able to make the accesses readily. This is the antithesis of truly bottleneck-free

parallel distributed computation.

Arrays that are accessed unpredictably are the bane of conventional supercomputers also. The vector
and array mechanisms of these machines can only deal with fairly regular algorithm structures. The various
optimizing compilers and program transformers for these systems search the source program for

computational structures (DO loops, typically) that can take advantage of the machine’s array mechanism.
1.5 Spatial Distribution of the Computation

The way to achiéve very high performance is to distribute the computation across many distinct
processing units. Since we envision execution on a data flow computer, the first step is to distribute the
computation across a data flow graph. The second step is to map that graph onto many processing units in
such a way that those units can proceed as nearly independently as possible and with as few constraints as

possible. The mapping problem, while extremely important, will not be addressed in this thesis. We will
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consider paraliclism that is visible in the data flow graph to be paraliclism achicvable by the computer. In
cffect, we will consider each instruction to have its own processor, so that "ideal” execution is obtained -- cach
instruction in the graph can fire when its operands arc available, independently of anything clsc that is
happening clsewhere in the computer. This allows us to ignore the mapping problem. In an actual computer,
one processing unit would have to serve the needs of many instructions, so the mapping must be chosen to

balance the loads on the processors.

The representation of a program as a graph constitutes a distribution of the program over many
processors and consequent exposure of its parallelism. This amount of parallelism is not enough. Additional
parallelism, enormous amounts of it, will be found among the different cycles of iterations ("loops™). To
expose that parallelism in the data flow graph, the cycles will be unfolded (or "expanded” or "unrolled”). This
is the principal technique whereby huge increases in computation speed are obtained. Of course, this
unfolding takes up space in the machine representation of the graph. Very high performance computers will
have to have a large "instruction space”. The total speed of a system is limited by the product of the
instruction space and the processing speed per instruction. (The latter quantity dependé on the speed of each
processing unit and the number of instruction cells that it must serve, that is, the degree of deviation from
ideal execution.) This thesis will be oriented toward extremely large machines executing programs whose

loops have been unfolded accordingly.
1.6 Spatial Distribution of Arrays

The translation of programs written in an applicative source language into static data flow graphs is not
too difficult a task. This is so even if ari‘ay operations are used, if the execution mechanism for the graphs
supports the array operations directly, exactly as they appear in the source program, Such a direct hardware
support for arrays means that arrays appear as tokens in the data flow graph, just as ‘scalars do. The operations
for reading and writing arrays look like any other operations in the graph -- argument tokens flow into them

and results flow out. Implementing such a scheme is rather tricky. Since it is not feasible to carry all of the
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array data in an actual tken, a method must be worked out whereby the array data are stored in a memory
unit and some sort of pointer to it is carried in the token. It is the job of the implementation (hardware,
firmware, and compiler) to ensurc that the resulting mechanism is equivalent to the idealized mechanism in
which the entire array is carricd in the token. ‘The details of such a mechanism are beyond the scope of the
thesis. 'The interested reader is referred to [3], in which an implementation is described for general dynamic
arrays, or [25] in which it is described for a restricted class of array operations for which cfficient execution
may be obtained very cheaply. For the purposes of this thesis, it is assumed that some appropriate hardware

mechanism exists.

This still leaves a serious bottleneck in the handling of arrays, especially in unfolded loops operating on
a very large, high performance computer. To circumvent this, as we expand the loops, we will expand the
arrays also. The general representation and translation technique that will be used is spatial interleaving. A
linear array is rearranged as if it were a two-dimensional strip of fixed width. If the given array'’s size is known

at compilation time, the strip’s length is known as well,

Fig. 1.3
columﬂ index —
0 1 2 3
-1 |-4 ] -3 | -2 | -1
0 |0 1 2 3
row index 1 |4 5 6 7 index in array = 4 * row index
l + column index
2 8 9 10 11 :

L

Each column is then treated in the hardware as a true array, which is implemented by whatever
mechanism the hardvgare provides. These column arrays are handled independently. High speed is achieved, ‘.
as on conventional computers, by wide interleaving, that is, by making the strip very wide and having many

independently handled arrays. Unlike conventional computers, the separate arrays do not necd to pass




through the same bottleneck, so the amount of possible interleaving is virtually unlimited. The interleaving is
performed by the compiler and is invisible to the programmer. It is the job of the compiler and the hardware

to make the overall computation faithful to the programmer’s (uninterleaved) intentions.

When the array is more than one-dimensional, a similar intcrleaving is used in each dimension.
1.7 Regularity of Array References

The techniques to be shown in this thesis work well only for array operations that take place in regular,
repetitive patterns. The bulk of the array references (reading or writing) must be inside iteration loops, with
the array index of the datum being accessed related to the cycle number in the loop by an affine mapping
Junction. An affine function is a first degree polynomial, that is, a function of the form ﬁx):Ax+ B. A
typical iteration that obeys this rule is something like

DO 10 I = 1, 1000, 2

10 CONTINUE
We can actually relax the restrictions in a number of ways at modest cost in efficiency. These relaxations will
be presented later in the thesis. One relaxation is that the function mapping the relative time of data access to
its array index can be a piecewise-affine function. This means .that it can be broken up into a "small" number
of pieces, each of which is of the form f{x)=Ax+B. The question of how small is "small” is answered in the
usual wa&: it should be small enough that program structures of that size (e.g. a conditional with one arm per
piece of the array) are feasible. The number of pieces is typically very much smaller than the size of the array

itself.
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Common examples of piccewise-affine array mapping can- be found-in the handling of boundary
conditions. All clements of an array except the first and the last are created in a regular sequence by a
uniform method, but the first and last clements are computed as special cases. Such an array might be

cxpected to be produced in three picces.

Perusal of common numerical application programs shows that they generally satisfy the restrictions on
regularity of array access. Of course there are exceptions, but those exceptions are relatively rare and do not
usually occur in the computationally intensive part of the programs. It follows that, for many numerical
calculations, tremendous performance improvement can be obtained through the use of the data flow

principles to be presented.
1.8 Synopsis

Chapter 2 will define the conventions and notation to be used in the rest of this thesis. Chapter 3 will
describe the two basic operations that we will perform on programs to obtain high performance: unfolding of
loops and interlace of arrays. Chapters 4 and 5 will describe how those operations will be made to work in
practical situations. Chapters 6 and 7 will describe additional important transformations. Chapter 8 will
discuss the special problems that arise when programs “write" into arrays. Chapter 9 will discuss the types of
transformations that must be made when the compilef has léss information about array reference indices than
we would like. Chapter 10 will describe how parts of a program can be permitted to get "out of step” with
each other for improved performance. Chapter 11 will describe a final transformation of arrays just before
they are mapped onto hardware structures. Chapter 12 will describe how occasional "irregular” array
references are handled. Chapter 13 Qill show how these methods apply to programs with nontrivial structure,
presenting two real example programs: a tridiagonal equation solver and the fast Fourier transform. Chapter
14 will describe some special array optimizations that can sometimes be made. Chapter 15 will present a few
thoughts about the design of the actual computer upon which these transformed programs should run

efficiently. Chapter 16 will present some conclusions about the manner in which a practical optimizer might




OPCrafe,
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2. THE EXECUTION MODEL AND ITS NOTATION

The exccution model that will be used is the static data flow graph. This is an ideal model for the study
of parallelism in applicative programs, since the data flow graph of such a program faithfully represents the
possible parallclism in its cxecution. Since there are no side effects, the execution of any operation can take
placc as soon as its immediate predecessors in the graph have computed their results. It does not need to wait

for any other control signal; no other activity in the program could possibly affect it.

The appropriate computer for this model is an idealized "data flow computer” that can "fire" (execute)
all operations independently. Such a computer, in the ideal limit of true simultaneous execution of all

enabled operations, can take ultimate advantage of the parallelism in an applicative program. .

In the static data flow model, the data flow graph does not change its structure during program
execution. This property assumes that functions are. expanded "in liné", prior to execution, as if by a macro
preprocessor, and makes execution of recursive functions very difficult. The graph-consists of nodes which
can perform predetermined applicative operations, and directed arcs carrying data "tokens" among the nodes.
Except for the special nodes to control conditional and iterative computation, the nodes have a
straightforward firing rule: a node can fire whenever its input arcs contain tokens and its output arcs do not.
When it fires, it absorbs its input tokens, using the data they contain as arguments to compute its.function,

and places a copy of the result of that computation on each output arc to be sent to other nodes.

As noted previously, the translation of an applicative program into a data flow graph is not difficult if
“only scalar values are involved. Likewise, the qualitative analysis of how such a graph would be executed on
any reasonable data flow computer is trivial. When arrays are involved, the transformations that must be

made become rather involved.
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Since all array operations must be performed as applicative operations encoded in the data flow graph, a
sct of "basic™ machine level operations suitable for high speed computation must be chosen. These are the
data flow computer’s analogue of the indexed load and store operations that are the basic array instructions of
conventional computers, The fundamental operations are

select written as: A[J]
append written as: A[J:V]

Sclect performs the same "subscripted read” operation as in conventional languages. Append returns an array
similar to the argument "A", but with value "V" at index "J", replacing whatever "A" has at that index. While
different operations can be devised, applicative programming requires that any "subscripted write” operation

be somewhat similar to the append operator.

There are a number of alternative forms of the append operator. Two that are especially useful for the
sequential creation of arrays are:

addh written as: addh(A,V)
addl written as: addi(A,V)

These return an array whose upper bound has been increased, or lower bound decreased, respectively, with
the given value as the new element. (We assume that the low and high bounds of an array are part of the

information associated with the array.)
2.1 The Source Language

Programs will be written in a suitable subset of VAL [5]. This language is, for the purposes of this thesis,
a rather ordinary and typical language. It is applicative, it has the desired array operations, and it has suitable
control structures, The properties of VAL that set it apart from other languages such as Id [9] or pure

LISP {42] relate mostly to syntax and type checking, which are irrelevant to our concerns here. VAL is rather




simple-minded in its approach to functions, in that functions are not treated as "first class objccls".1

This
makes it suitable for translation into static data flow graphs. Languages that treat functions more generally,
such as Id, LISP, FP [11], or KRC [45], may be more difficult to translate for the execution cfficiency that we
envision for VAL. (This is not to say that they will never be implemented as cfficiently as VAL, but we
believe that further developments in architecture and compiler design will be required.) The restrictions

imposed by using VAL and static data flow graphs do not impose any undue hardship for many application

areas.

The principal array operators of VAL are SELECT and APPEND, described previously. When building
arrays with append, one often starts with the array "array_empty”. Because VAL is applicative, this is a
constant. The semantics of VAL provides detailed rules governing the behavior of SELECT, APPEND, and
array_empty, particularly regarding how array bounds "stretch” when an APPEND writes into a position
out of the existing bounds. These rules will be ignored in this thesis -- they are not important for the kinds of
regular array creation we will be dealing with. We will just assume that application of a series of APPEND
operations to array_empty will always do the right thing. We will not even assume that array bounds are
part of the data carried by the token. T_he difference between the assumptions being made and the actual
semantics of VAL (or any similar language), and the difference between those assumptions and the actual

behavior of a target data flow computer, are details that may be left to the design of a compiler.

Other array operations have been proposed for the VAL language, but they are not important. Most of

them perform "housekeeping” operations involving the array bounds.

1. This means that function names and definitions may not be passed as parameters, bound to variables or
arrays, or otherwise manipulated. The only thing that one may do with a function is invoke it, and the only
thing that one may invoke is a function name which is permanently bound at compile time to a function
definition that the compiler can find.
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The notation for iterations in VAL is shown in the following example:

for J, K := N, 1 % J and K are loop variables
do if J = 0 then K % exit and return this value
else iter J, K := J—1, J*K enditer
endif
endfor

The body of a for block may cvaluatc (depending on the valucs of test expressions involving the loop
variables) to an iter clause. If so, the loop variables arc bound to the new valucs as indicated, and the body is
evaluated again. Otherwise, evaluation of the for block is complete. As noted in [4), this is typical of the way

iterations must be expressed in an applicative language.

The VAL language also has a forall block exemplified by

forall J in [LO, HI] % "vector sum” of A and B
construct A[J]+B[J]
endall ‘

In this thesis, the forall block will be considered as nothing but a "sugaring” (short notation) for the
appropriate for block. All considerations of iterative program structures and their transformations will be

made in terms of for blocks, and the extension to forall blocks will be implicit. For example, the above forall

block can be considered a sugaring forl

for J, A := LO, array_empty

do if J > HI then A
else iter J, A := J+1, A[J: A[J]+B[J]] enditer
endif

endfor

1. This ignores a minor difference in the way the VAL semantics treats pathological values of the array
bounds.
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One may wonder why we artificially sequentialize the forall block. The object of the game is to uncover
parallelism, and the forall block is designed to show the compiler where parallelism lies, so destruction of this
information scems counterproductive. The rcason we do this is that the correct translation of the forall block
is the same as the correct translation of the cquivalent for block, as will become clear later when "loop
unfolding” is “introduced. When a forall block is converted into an iteration and a loop unfolding of N is
performed, the resulting code simultancously computes N consecutive instances of the forall, and then moves
on to the next N, and so on. If N is as large as the machine size will support, this is the best way to translate

gencral forall’s,

If the forall limits are known to the compiler and are reasonably small, converting it to an iteration loop
is still the correct thing to do. Complete unfolding of the resulting iteration will generate the "intuitively

obvious" parallel forall code.

Whether an optimizing compiler actually converts forall’s into iterations, or just acts as though it had, is

a minor implementation detail.
2.2 Compile-time Parameters

It will soon become apparent that it is very impértant for an optimizing compiler to know the numerical
values of certain parameters such as array sizes. Of course it is not appropriate for such parameters to be
specified as manifest constants at the points where they are used. . The Fourier transform procedure, for
example, should be written with the array size as a symboiic parameter:
function DFT(ARG: array[coﬁplex] ; N: integer . . .

(The reader who is curious about what comes next should refer to Section 13.2.)




[n any given run of a program, it will be known, for cach invocation of this function and others like it,
what the value of N will be. Typically, the programmer will want to specify the numerical value at the
outermost level of the program, leaving it as a symbolic valuc everywhere clse. It is for this reason that some
lzmguagCS such as FORTRANT77[29] and ADA [6] have a "parameter” or "constant declaration” feature.
Using "parameters”, values that are required to be known prior to exccution can be specified numerically

only at the outermost level, and left in symbolic form elsewhere.

A nicc property of functional languages is that there need be no difference between such a "parameter”
and an ordinary "variable”. There is no need to tell the compiler that, in one case, a parameter will be
numerically specified at the start of the program, and in the other case, that a variable should have memory
allocated to it. Since a "variable" in a functional language can’t be changed once it is defined, there is no need
to allocate memory for it.

A definition such as

let N := 2048

in .,

endiet
is completely equivalent to substituting 2048 for all free occurrences of N in the block. The same is true for

definitions made by passing arguments to functions.

Therefore, it is reasonable that "compile-time parameters” will be specified, using normal mechanisms
of the language, by a top-level function such as the following:

function TOP_LEVEL(DATA: array[real] returns array[real])
SOLVE_NAVIER_STOKES_EQUATION(DATA, 2048)
endfun
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2.3 The Graph Model '

In this thesis data flow graph fragments will be exhibited in a very simplified notation designed to
convey just the essential aspects of cach graph. Ordinary connections among operators will be shown in the
natural way, with arrows. The select and append nodes will be illustrated by nodes with abbreviated names S
and A. The index argument to these nodes will be shown with an open arrow: —X8 . Where possible, that
arrow will be horizontal. The other argument(s) will be shown with plain arrows. The append operator takes
two other arguments. The one on the Ieft will be the incoming array; the new value will be on the right.

Where the actual graph structure would be more éonfusing than helpful, ordinary cxpressions will be written.

p XsY+Z means p

Where several nodes receive the same index, an arrow will pass through all of them: °

R

Arguments will occasionally be subsumed into nodes:

1

@D mems G

N/4

D> s A

The ubiquitous constant array_empty will be written as "A".
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The notation for conditionals is as follows: An IF node takes a boolean -argument on the side, and dat

at the top. 'The left data argument is used if the boolcan is true; otherwise the right argument is used.

X \f

if P then X else Y endif is represented as P@

The actual representation of a conditional in a static data flow computer is quite different-- a
"MERGE" opecrator plays the part of the IF, but "1™ and "F" gates are placed at the top of the subgraphs

computing X and Y to allow tokens to cnter only the chosen subgraph.

Several IF’s in a row can have a single boolean arrow going through them:

Iterations have the most complex notation. (This includes loops made from the VAL forall feature --
the latter is treated as an abbreviation for a sequential loop.) The body of the loop is surrounded by a dotted
line passing through "LV" nodes at the top and a FOR node at the bottom. The "LV" nodes are sources of the
Loop Variables for each cycle. The data shown going into them at the top (outside of the dotted line) are the
initial values, computed only once. Just above the final FOR node is an ITERIF node controlling the loop. It

is a variation of the IF node of ordinary conditionals.

The body of a VAL iteration loop is an if/then/else, one clause of which is of the form
"iter <vars) : = {newvalues> enditer”, and the 'other of which defines a tuple of ordinary values.1 That
if/then/else will be an ITERIF node. The boolean control value will enter on the side in the usual way. The
"data values" going into it will be "iterating arms" or "returning arms”, drawn as boxes with "I" or "R" in

them. An iterating arm has as many arrows going into it as there are loop variables. If that arm is selected,

1. The VAL language actually allows many variations of this.
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those values are used as the new loop variables, and another iteration cycle takes place. That is, the tokens are
considered to be routed back 1o the respective "LV" nodes and to re-enter the loop body. A returning arm has
as many arrows going into it as there are values returned by the entire loop, which is the number of arrows
cmanating from the FOR node. If a returning arm is sclected, those values are returned. That is, the tokens
are considcr.cd to pass through the FOR node and out of the loop.

If J and K are the loop variables, then

if J = 0 then K
else iter J, K := J-1, J*K enditer

endif

is represented by

J K
ép_
b ITEEIF )

for J, K := N, 1

do if J = 0 then K
else iter J, K := J-1, J*K enditer
endif

endfor

and

is represented by
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3. ITERATION UNFOLDING AND ARRAY INTERLACE

The principal program restructuring operation [_hat we will perform is that of loop unfolding, also called
loop expansion. "This basically consists of writing out multiple copics of the loop body. 1n a data flow or other
suitable parallel computer, these copies are expected to cxecute simultancously, instcad of the forced

sequential execution implied by the original iteration.

Recall that, in an applicative language, the purpose of an iteration is to apply some transformation to a
set of loop variables repeatedly, until some predicate is satisfied. We will be primarily interested in
transformations that are performed a certain number of times, known in advance. These are characterized by
having one of the loop variables be a counter, and having the predicate be a test of that counter and the
transformation involve incrementing it.

The standard iteration might look like

%% compute fN(INITVAL)

Z := for X, I := INITVAL, 0

do if I=N then X
else iter X, I := f(X), I+1 enditer
endif

endfor

In a static data flow computer, and most other forms of computer, this suggests only one locus where f
is computed, and hence strictly sequential evaluations of f, unless the situation can be improved upon.
A simple form of unfolding would be to rewrite this as

%% compute TN(INITVAL), N is even

Z := for X, I := INITVAL, O

do if I=N then X
else iter X, I := f(f(X)), I+2 enditer
endif

endfor

This transformation is the standard model of loop unfolding. The function f inside the loop is duplicated (or
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replicated some number of times) and the copices strung together in-a series. 'The iteration then needs to cycle
only some fraction of the number of times it otherwise would have. The intention is that, when the
transformed program is loaded into the compulter, thc scparate copics will exccute simultancously, except
where data dependencics constrain them. For example, on a static data flow computer the operations of the
different copies would be placed in different instruction cells that would fire independently. In an array

processor the copies would be operated in lock-step by the different processors.

This loop unfolding is similar in concept to the "loop unrolling” sometimes used in conventional
compilers [8, 14]. In conventional systems, however, the objectives are very different. There the aim is to
reduce the number of times the exit test must be performed. There is rarely any assumption that the

execution of the loop bodies will overlap at all.

The benefits of making separate copies of the transformation f can vary from virtually no overlap to
complete overlap. On the surface, it might appear that, if we are computing f(f(f(f(X)))), the
innermost function must complete before the next can begin, so one might as well leave the function in a
loop. This is true for some functions, such as mathematical functions. If we need to compute
log(log{log(log(X)))), we can’t do the Tog operations in parallel. In a typical transformation,
however, there is little or no actual data dependen'ce among the evaluaﬁons of f because they refer to
different parts of the set of loop variables. In particular, the different evaluations of f typically compute

independent elements of a result array from different elements of an incoming array.

Any iteration made from a forall (and we expect that many iterations will be) necessarily has complete
independence of the evaluations of f. Other iterations may not have complete independence, but will have

near independence, with some sort of “critical path” encompassing only a small part of the computation.
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3.1 Loop Unfolding

‘The standard unfolding is what was described previously, and will be called just Joop unfolding or loop
expansion. 'The unfolding factoris the number of copics of f that arc expanded.
Here is unfolding factor 4:

%% compute fN(INITVAL), N is multiple of 4

Z := for X, I := INITVAL, O

do if I=N then X
else iter X, I := f(f(f(f(X)))), I+4 enditer
endif

endfor
For simplicity, loop unfolding factors will always be powers of 2 in the examples. It is expected that this is the
situation that will almost always arise in practice. If the unfolding factor (or the interlace factor, to be

discussed later) is not a power of two, things become somewhat more difficult. This will be discussed in

Section 4.6.

Since many iteration loops will come from forall’s, it is useful to examine the loop unfolding of a forall.

%% compute Z[I] = g(I), 0 < I < N, N is multiple of 4
Z := forall I in [0, N-1]

construct g(I)

endall

becomes

Z := for X, I := A, 0

do if I=N then X
else iter X, I := X[I: g(I)]., I+1 enditer
endif

endfor
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which becomes, with unfolding of 4

Z := for X, I :=A, 0

do if I=N then X
else iter X, I := X[I: g(I), g(I+1), g(I+2), g(I+3)], I+4 enditer
endif '

endfor

where X[I: a, B8, v. 8] is the VAL notation for an append that stores several values at consecutive indices.
To get the full benefit of the unfolding, we assume that the 4 storage operations can be performed in parallel.

Array interlace, described later, will accomplish this.

3.2 Initial Unfolding

Another transformation is called initial unfolding, and consists of taking some number of copies of f out
of the lo_op altogether and doing them first. For example, we might do the first 3 cycles initially.

%% compute fN(INITVAL), N > 3
Z := for X, I := f(f(f(INITVAL))). 3

do if I=N then X .
else iter X, I := f(X), I+1 enditer
endif

endfor

3.3 Final Unfolding

The third transformation is called final unfolding: we execute the loop until some fixed number of
cycles remain, and then do those cycles separately.

%% compute fN(INITVAL), N > 3

Z := for X, I := INITVAL, O

do if I=N-3 then f(f(f(X)))
else iter X, I := f(X), I+1 enditer
endif

endfor
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We can combine all three types of unfolding in a single loop. ‘The following has initial unfolding=3,
loop unfolding =4, and final unfolding=2..

%% compute fN(INITVAL), N = 5+some multiple of 4
Z := for X, I := f(f(f(INITVAL))), 3
do if I=N-2 then f(f(X))
else iter X, I := f(f{f(f(X)))). I+4 enditer
endif

endfor

1f the number of cycles that a loop will undergo is known, and we perform an initial or final unfolding
by that number, the loop will disappear completely. This is because the loop that remains after the unfolding
will have its end test satisfied immediately. A popular example of this is a forall with fixed limits.

Z := forall I in [0, 3]
construct f(I)
endall

This loop will have 4 cycles, which is a small enough number that we can perform a complete initial
unfolding, obtaining |

Z:= [0: T(0), f(1), f(2), f(3)]
3.4 Unfolding When the Number of Cycles is Not Well-behaved

Each of the transformations, as shown in the comments of the programs above, requires that certain
properties of N be satisfied. It is expected that, when an optimizing compiler makes any of these
transformations, it will know whether the requirements are satisfied. This is because N has been specified as a
"parameter”, in the manner described in Section 2.2. It is still possible, with extra code, to handle the general

case. Consider initial unfolding. If we did not know that N 2> 3, we could write
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Z := if N=0 then INITVAL
elseif N=1 then f(INITVAL)
elseif N=2 then f(f({INITVAL))
else
for X, T := f(f(f(INITVAL))), 3
do if I=N then X
else iter X, I := f(X), I+1 enditer
endif
endfor

endif

A similar sort of thing could be done for final unfolding. There is considerable waste of space, but the waste

of time becomes relatively insignificant for large N.
For loop unfolding, if N is not the required multiple of the unfolding factor, we do this

%% unfolding = 4, but can handle any value of N
Z := for X, I := INITVAL, O
do if I < N-4 then iter X, I := f(f(f(f(X))))., I+4 enditer
else
if I=N then X
elseif I=N-1 then f(X)
elseif I=N-2 then f(f(X))
else f(f(f(X))) % I = N-3 here
andif ‘
endif
endfor

The waste of time in this should be comparatively small for large N.

If N is not a multiple of the unfolding but its remainder modulo the unfolding is known, we can do

better than the above example. If N mod 4 = 3, we can use an initial (or final) unfolding of 3. What is left

over will be a multiple of 4.
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To summarize, it is only when the number of cycles is not known {as opposed to known but not a
multiple of the unfolding) that we need to put in extra conditionals. Wherever possible, the compiler should

know the number of cycles of the important loops in a program.
3.5 Loops That Have No Obvious Index Variable

The foregoing has been defined in terms of an index variable that counts up to a fixed limit. This was
done because most of the loops that arc important in numerical programs (including all loops arising from
forall's) are of this type. However, loop unfolding, initial unfolding, and final unfolding can be performed on
any loop at all.

A typical loop is

for X := INITVAL

do if P(X) then R(X)
else iter X := S(X) enditer
endif '

endfor
where X denotes all of the loop variables, P denotes the exit predicate, R denotes the ;/alue(s) to return, and S
denotes the next-state function.
If we know that this will cycle at least 3 times, we can perform an initial unfolding of 3:

for X := S(S(S(INITVAL)))

do if P(X) then R(X)
else iter X := S(X) enditer
endif

endfor

If we know that this will cycle a inultiple of 4 times, we can perform a loop unfolding of 4:

for X := INITVAL

do if P(X) then R(X)
else iter X := S(S(S(S(X)))) enditer
endif

endfor
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We can similarly perform a final unfolding. These transformations depended on some knowledge of how

many cycles would take place, in that they neglected to evaluate P(X) in certain places and just assumed

P(X) was falsc. This is equivalent to the assumptions made previously about N when the loop was controlled

by a counter. If we can’t make assumptions about when P(X) will be true, then we have to put in extra code,

just as in the 16ops controlled by a counter. For example, a completely safe initial unfolding would look like

if P(INITVAL) then R(INITVAL)
elseif P(S(INITVAL)) then R(S(INITVAL))
elseif P(S(S(INITVAL))) then R(S(S(INITVAL)))
else
for X := S(S{S(INITVAL)))
do if P(X) then R(X)
else iter X := S(X) enditer
endif
endfor
endif

3.6 Rescaling the Index Variable

When loop unfolding is performed on a loop controlled by an index variable, it is often useful (i.c. it

saves excess arithmetic operations) to rescale the index variable, usually by dividing it by the amount of the

unfolding.

If we have:

2 := for X, I := INITVAL, 0

do if I=N then X
else iter X, I := f(X), I+1 enditer
endif

endfor
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and we perform loop unfolding of 4;

Z := for X, I := INITVAL, O

do if I=N then X
else iter X, I := f(f(f(f(X)))), I+4 enditer
endif

' endfor
we can introduce a new variable J = 1/4 and rewrite this as

Z := for X, J := INITVAL, 0
do if J=N/4 then X |
else iter X, J := f(f(f(f(X)))). J+1 enditer
endif '

endfor
This is particularly useful when interlaced arrays are involved.
Rescaling can also involve adding or subtracting a fixed offset. For example

2 := for X, I := INITVAL, 1

‘do if I=97 then X
else iter X, I := f(X), I+1 enditer
endif '

endfor
could expand to

Z := for X, I := INITVAL, 1

do if I=97 then X
else iter X, I := f(f(f(f(X)))), I+4 enditer
endif

endfor

which could be rescaled by I = 4J+1, obtaining

Z := for X, J := INITVAL, 0

do if J=24 then X
else iter X, J := f(f(Ff(f(X)))), J+1 enditer
endif :

endfor
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3.7 Interlace

Perhaps the most important transformation one can perform to improve the performance of numgcrical
computations involving arrays is to spatially scparate array opcrations that nced to take place at nearly the
same time. By having the array operations take place in different hardware units, the bottleneck is removed,
and those hardware units can do their tasks in parallcl.' This is the basis for the memory interlace used in

vector and pipeline computers, and the physically distinct processing units of array computers.

Arrays can be interlaced dircectly in the data flow graph. The amount of interlace for each array can be
chosen independently for optimum performance. By interlacing arrays directly in the graph, the issues
relating to interlace can be separated from issues of the computer hardware, though the optimum amount of

interlace for a given program requires knowing how the machine behaves.

Interlace consists of dividing the array into a slices, where the slice to which an element belongs is
determined by its index modulo a. a is the interlace factor (or the interlace). For simplicity it is always a

power of 2.

If an array A is given an interlace factor of 4 (or a "4 way interlace") there are 4 slices, called Ags Ay, Ay,
and A;. Those elements that were originally A[-8], A[~4], A[0], A[4] etc. are stored in A;. Those
elements that were A[ -3], A[ 1], A[ 5] etc. are stored in A,, and so on.

The mapping function for interlace factor a is

Alal+d] A;[1]
(in the original array) (in the interlaced array)

u

where 0 € J < a

or equivalently,

A[1] is stored in A; . [ LI/ad ]




wheremod s detined o vicld anonnegative result and LXJ truncates toward — 00

3.8 Graphical Representation of Unfolding

When iterations are drawn in graphical notation. loop unfolding is performed cssentially by splicing

together multiple copies of the part of the loop body that lies between the "I V" nodes and the values going
into the "iter”

Referring back to the original example:

Z := for X, I := INITVAL, O
do if I=N then X
else iter X, I := f(X), I+1 enditer
endif
endfor
the graph is
0

INITVAL
|

Fig. 3.1




with 4-way unfolding, assuming we know that N is a multiple of 4;

Fig. 3.2

0 INITVAL

Of course, in a typical loop that arises in practice, the part that gets replicated is more than just the
single node "f". It is a complex subgraph which, when replicated, overwhelms the rest of the loop.
Furthermore, the replicated copies are often intertwined with each other quite intricately, as subsequent

chapters will show.

When unfolding is performed on a 'loop making references to arrays, and the arrays are interlaced, the
compiler can use its information about the array index in each unfolded instance to oﬁtimize the array
references. Certain references in certain loop instances will, by virtue of the known array index modulo the
interlace factor, refer only to certain array slices. The resulting graph typically looks something like this:

B := forall I in [0, N-1] construct A[I]*3 endall
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with unfolding 4 only:

Fig. 3.3

Fig. 34

The potential for parallelism when unfolding and interlace are used can be readily seen.




-46-

3.9 Nested Loops

When loops are nested one can choose the unfolding independently at each level.
Consider the following nested loop:

%% assume M and N are multiples of 4
for I, X := 0, INITVAL
do if I = N then X
else
let NEWX := for J, Y := 0, X
do if J = M then g(Y, I)
else iter J, Y := J+1, f(X, Y, I, J) enditer
endif
endfor ;
in iter I, X := I+1, NEWX enditer
endlet
endif
endfor

The functions f and g symbolize the inner workings of the loops. Their dependence on the values of the

counter variables is shown explicitly, which will demonstrate that loop unfolding requires a lot of careful

bookkeeping.

If we perform a loop unfolding of 4 on the inner loop, we get the following, where some extra

assignments have been made to keep the complexity manageable.




_47_

/7 this 1s the inner loop only
for J,

Y := 0, X
do if J = M then g(Y, I)

else
Tet NEWY1 := f(X, Y, I, J)
NEWY2 := (X, NEWY1, I, J+1} ;
NEWY3 := f(X, NEWYZ, I, J+2)
NEWY4 := f(X, NEWY3, I, J+3) ;
in iter J, Y := J+4, NEWY4 enditer
endif

endfor
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We can also perform a loop unfolding of 2 on the outer loop, obtaining

%% assume M and N are multiples of 4
for I, X := 0, INITVAL
do if I = N then X
else
| Tet NEWX1 := for J, Y := 0, X
do if J = M then g(Y, I)

else
let NEWY1 := f(X, Y, I, J) ;
’ NEWY2 := f(X, NEWY1, I, J+1) ;
NEWY3 := f(X, NEWY2, I, J+2) ;
NEWY4 := f(X, NEWY3, I, J+3) :
in iter J, Y := J+4, NEWY4 enditer
endif
endfor ;

NEWX2 := for J, Y := 0, NEWX1
do if J = M then g(Y, I+1)

else
let NEWY1 := f(NEWX1, Y, I+1, J) ;
NEWY2 := f(NEWX1, NEWY1, I+1, J+1) ;
NEWY3 := f(NEWX1, NEWY2, I+1, J+2) ;
NEWY4 := f(NEWX1, NEWY3, I+1, J+43) ;

in iter J, Y := J+4, NEWY4 enditer
endif ‘
endfor ;
in iter I, X := I+2, NEWX2 enditer
endiet
endif
endfor

This nested loop has "2*4" unfolding. (We could use different amouvnts.of unfolding in the different
instantiations of the inner loop arising from the outer unfolding, but there is rarely any reason to do so.) The
total number of instantiations of the innermost loop body is the product of all of the unfoldings, 8 in this case.
This product could be considered the "total” unfolding, since it is a measure of the total amount of space in

the computer that the nested and unfolded loops will consume.
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One might ask why we don’t use all of the unfolding we have spacce for on the innermost loop, and none
on the outer ones. On conventional computers, one typically optimizes the innermost loop most carcfully.
For example, variables manipulated by inner loops are given highest priority for using high-speed registers.
We do not cnvision a data flow comﬁutcr having high-speed registers that various parts of the computation
compete for, so this consideration does not apply. When there are data dependencies from one iteration cycle
to the next, preferentially unfolding the innermost loop provides a slight advantage in terms of overhead in
loop control operators. However, when the loop cycles can be exccuted simultancously, the loop cycles are
correlated with clements of an array, and there arc references to neighboring array clements in cach
unfolding, it is advantageous to unfold loops at all levels. The shape of the unfolding of nested loops refers to
the relative amounts of unfolding at the various levels. 1t is the shape of the rectangular grid of unfolded loop

cycles. This will be illustrated by various "2-dimensional" algorithms shown in Chapters 6 and 7.
3.10 Coalescing Control Structures

When there are nested loops, and unfolding is used, it very frequently occurs that the multiple

instantiations of the inner loop can be executed simultaneously.
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Suppose we use unfolding of two on sonie outer loop. obtaining something such as the tollowing:

lig. 3.5

0 INIT INIT

Now it may happen that, when the inner workings of the "f" subgraphs are worked out, there will in fact be
no data dependency going from the first unfolding to the second. The graph might look like

Fig. 3.6
0 INIT -INlIT
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Now, if the occurrences of

Fig. 3.7

and the control structures are congruent, that is, the index variables and end tests are handled similarly, as is
highly likely if the inner loops are just different instantiations of the same code arising from unfolding in the

outer loop, they can be combined:

Fig. 3.8

The benefit of this is not the fact that a few nodes have been saved, but that the subgraphs for g9, and g,
lying in the same loop, can share common subexpressions with each other. The significance of this will be

discussed in Chapter 6.

One might think it unlikely that, when the outer loop is unfolded, the unfoldings would have no data
dependencies among themselves, but in fact it occurs frequently. Almost all of the nested loops that will be

examined in this thesis will have the control structures of the inner loops coalesced.




-52-

This coalescing of control structures is somewhat similar- to the transformation known as "loop
jamming" in conventional compilers [8. 14]. 'The transformation in conventional systems is performed in
terms of "code motion” from one loop to another, principally for the purpose of cconomizing on loop control
instructions. In the applicative casc we have little concern for economy in the control computation, since it
can be perforined in parallel with the rest of the program. Instead, the objective is to prevent data values
from having to be communicated among different loops, and thereby to allow common subexpressions to be

combined.

The fact that loop control structures are coalesced does not mean that they operate in lock-step. The
recycling of loop variables from the "iterating arm” of an ITERIF back to the LV nodes should be able to
occur at different times. The coalesced inner loop might look, in part, like

Fig. 3.9

Within each cycle, g, may have to be somewhat ahead of g,. It should be possible for g,’s loop variable B to
recycle and start the next cycle of g, While g, is still busy. The timing might look sort of like this, showing

when each loop variable gets recycled (except &, which is just passed from g otog 1).
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Fig. 3.10

9, ]

R Y 9,
This "decoupling” phenomenon will show up in the "wavefront transformation” in Section 10.1.

3.11 Interlace of Multidimensional Arrays

The model of multidimensional arrays we use is the "vector of vectors” model. Every genuine array in
the language is actually a one-dimensional structure, whose element types can be anything. If we choose
arrays of reals as the element type, we get an array of arrays of reals, which is equivalent to a two-dimensional
array. If X is such an array, X[ 1][J] selects an element from it. X[I] selects the I'" one of the "second
level” arrays, and (X[ I])[J] selects the final element. This is the model used by some languages, sucﬁ as
VAL; CLU, and C, and one of the models available (indirectly) in most languages with a general type system,

such as PASCAL.

The model used by some other languages, notably FORTRAN and PL/], is the "flat" model. The
lowest level rows are concatenated end-to-end to make one-dimensional arrays. If there are more k;vels, these
results are then concatenated, and so on. The result is a one-dimensional array with a mapping function for
references. For example, a [1-10]x[1-100}x{1-20] array (as might be declared in FORTRAN by
"DIMENSION A(10, 180, 20)")is actually implemented as a single array running from 1 to 20000, and a

referenceto A(I, J, K)istreatedasA(2000+1 + 20+J + K-2020).

From an implementation standpoint, flattening is a good idea. It makes all array sclections possible
with one memory reference (and array memory references may be expensive in data flow computers). It also
means that only scalar data are actually stored in the array memory -- not array descriptors. This is extremely

important in an applicative data flow system, because there is large overhead associated with reference




-54 -

accounting as array descriptors are manipulated [2, 3] We want to cut down on manipulation of array

descriptors, as will be made clear in Chapter 15, so we refrain from storing them in other arrays.

However, premature flattening of arrays will preclude the use of interlace to the same advantage in the
multidimensional casc as in the onc-dimensional case. Therefore, we will use the "vector of vectors” model.
When considering interlace and various program optimizations, arrays will be treated as truc hicrarchical
objects. They will not be flattened. Interlacing will be performed on cach dimension independently, yielding
a multidimensional collection of slices. After loop unfolding and array interlace are performed, each slice will
be flattened. The result will be far superior in general to what would be obtained by initially flattening the

array and then interlacing the resuit.

This multidimensional interleaving and flattening of individual slices, with each array considered
separately, constitutes a radical restructuring of the arrays as described in the source program. When a
complicated program is running on a data flow computer, the array elements will be scattered throughout the
machine in a manner that is far from obvious. It is the applicative nature of the pl"ogramming system that

makes it feasible for a compiler to do this, because the compiler knows where every element of every array

comes from.

Incidentally, the flattening of arrays in FORTRAN ié mandated by the semantics. If A is a 10x10 array,
it is legal to send its first row to a procedure F with the call F(A( 1)), assuming F expects a one-dimensional,
ten element argument. The second row may be sent with the call F(A(11)), and the K*M with
F(A(10+K+1)). This works because the ﬂattcning mechanism is a fixed part of the language. It is therefore
extremely difficult to write a FORTRAN compiler that uses some other array organization. This is a case of
overspecification of the semantics of a programming language, an all t00 common occurrence. Note that,
with the "vector of vectors” model, it is equally easy to send the KtP row of a two-dimensional array to some

proccdure. A data flow computer using the "vector of vectors” model has the freedom to interlace, flatten, or
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otherwise manipulate the array in many ways while remaining totally faithful w the language semantics.
3.12 Geometrical Representation of Unfolding

If we consider cach cycle of a single loop to be a point, and perform N-way unfolding on that loop, then

cach unfolded cycle will process a group of N adjacent points. The groups will be processed in sequence.

Fig. 3.11
=N

..

1st  gnd  grd  4th
unfolded cycles
If we consider a double nested loop to be a plane array of points, the programmer’s intention is that the
points be processed sequentially in a "raster scan" order. Individual points in each row will be processed
from left to right, and the rows will be processed from top to bottom. If we perform an M*N unfolding and
coalesce the control structures of the inner loops, we will still have a double nested loop. Each cycle of that
loop will process an M*N rectangle of points. The order of the cycles of the unfolded loop is such that the

rectangles will be processed once again in a raster scan order, but on a coarser scale.

Fig. 3.12
k— N —3l
01 e 2. o8 . 4. .| ete
11 - |- 12- |- etc -PI_

- 21 |- 22+ - | etc
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For K-fold nested loaps. cach untolded evele will procoss a K-dimensional box in the K-dimenstondl

space. and the boxes will be processed in the usual order.

I'his is the computational process we envision for a high-performance applicatise computer. [t will
processes the data space in large Tocalized chunks. It will work best on algorithims with Tocality of data

dependence.
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4. MATCHING INTERLACE AND UNFOLDING

This chapter will examine the relationship among the loop unfolding factor. the array interlace factor,
and the parameters of the program for loops that deal with arrays. As will be scen, a careful match among
these quantitics is crucial to efficient translation.. One of the major tasks of an. optimizing compiler is to
examine the parameters of the loops and choose the éppropriatc amounts of interlace for the arrays and
unfolding for the loops. When this is done correctly, the resultant code structures will permit extremely rapid,

bottlencck-free distributed computation,

The discussion will be primarily aimed at select’s. Append’s will also be considered, but in a
simple-minded way, as though append were a slight variation of select. This assumption will suffice for the

purposes of the present chapter, though there are other aspects of append that will be discussed in Chapter 8.

The situation that can be exploited well, in terms of parallel or o&erlapped accesses to interlaced arrays,
is an iteration (or equivalent forall) whose ‘array accesses are affine. The following:example shows such an

iteration, Any iteration in which all array accesses are affine is of this basic form.
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for T, U := init_array?, init_arrayl ;
<other 1nitializations>
J := init_index ;

do if J=exit_index then T, U, <other values>

else
let V1 := . expression ... A[JsfactorA+offsetA] ... ;
V2 := . expression ... B[J+#factorB+offsetB] ... ;
new_Tvalue := . expression
new_Uvalue := . expression ...
in iter
T := T[J+factorT+offsetT: new_Tvalue] ;
U := UfJ+factorU+offsetU: new_Uvalue] ;
<other reassignments> '
J := J+increment ;
enditer
endlet
endif
endfor

Assume for now that all of the relevant parameters ("init_index", "factorA"”, "offsetA”,
"increment", etc.) are known to the compiler. If any are not known at compile time, it may still be possible
to achieve extremely high performance, but it may require more complex code and more work on the part of

the compiler. This will be discussed below.

The interesting activities in this loop are the array reads (of A and B) and writes (to T and U). These
occur at regular intervals across the respective arrays. By examining the "factor” and "offset” of each array
reference, and the initial index and increment, we can determine at just what index the array references occur.
The reference interval is the distance along the array of the references in consecutive loop cycles. For each
array it is just the "factor” for that array reference multiblied by the "increment” for the loop index variable.
For example, the first reference to array A occurs at (factorA*init_index+offsetA), and the

reference interval is (factorA*increment). It is possible for the same array to be referred to in more than
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once place in the same loop with different reference intervals.

Assume for simplicity that all reference intervals (as well as all unfolding factors and interlace factors)

are powers of 2.
4.1 Random Array Access and the "PERMUTE" Operator

If a completely random access needs to be made to an interlaced array, that is, we have no information
in advance about the index, the select or append node must be able to operate on any of the slices. If the array

has an N-way interlace, the following is needed:

Fig. 4.1
to get use
Ay mod W
ALJ]
J/N
where the division operator is assumed to truncate toward minus infinity.
To get the slice "A J mod u"’ a permute operator will be used. There is a permute operator for every value

of N that is a power of 2. It permutes N incoming tokens by "rotating” them right the amount of its index

value.
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Fig. 4.2
I |
J PERMUTE,
I
J=0 J=1 . J=2 J=3
! T I N I S I 14
I [N [ ] [N

The permute'1 operator rotates left. We assume that the hardware has the necessary instruction types to do
this efficiently, and that there will not be reference counting overhead if array tokens are permuted. (The
reference counting problem for array tokens will be discussed in Chapter 15.) Permute operators are
expensive, however. The large number of arguments indicates that, 6n any reasonable computer, a permute
would have to be made out of a large number of actual instructions. One way to build it would be to use a
network of 2*2 exchange instructions, built into a network such as an N-cube [43]. Each exchange instruction

would be controlled by one bit of the binary representation of the index.

The permute operators will be assumed to use their index value modulo N. To get A[J], use

Fig. 43
Ao Al . e . A"_ 1 ’

| i
J PERMUTE!

J/N
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An append requires that the result be put back into the correct array: slice, so it requires

A a A Fig. 4.4
0 1 N-1
- !

J—P PERMUTE?

. data

J/N

J—P PERMUTE,
Bp By . .. By,

4.2 Affine Array Operations with Reference Interval Equal to One

It is clearly desirable to avoid the full "random" access, with its permute operator, presented in the
previous section. In Chapter 3 it was shown that, if the desired index is the loop counter variable, the initial
value the the counter variable is zero, and the interlace is equal to the unfolding, the situation is very nice.
Each select or append operation in the expanded loop is known to refer to a specific slice, so no permute

operations are ever needed. The index value going into the select or append is just the scaled counter variable.

The first array reference does not necessarily take place at index zero, but at
"factor*init_index+offset”. The effect of this is to change the "phase” of the N array slices going
into the N select or append operators. If this value is known at compilation time (or is known modulo N), a
simple rearrangement of the incoming and outgoing array slices will take care of things. If the value is not
known, some permute operators are needed to effect the rearrangement. These operators have to do their
work only once, when the array slices enter the >loop (and, in case of append, once again when they leave), so
this is not too great a hardship. Handling the initial value of the loop counter variable and the array reference

offset is therefore a relatively minor matter.




The important things to deal with are the reference interval, interlace, and unfolding. For now, let the

reference interval be fixed at onc.

If the unfolding is greater than the interlace, say twice as great, then two instantiations will have to share
the same slice. One will use the slice at index cqual to the scaled loop variable times two, and the other at that

plus one.

For unfolding = 4 and interlace =2, we have

scaled
variable
instance 0 1nstance 1

instance 2 instance 3

Fig. 4.5

unfolding of them). In the case of

Each slice goes into 2 select or append nodes (or more generally, into % interlace

append nodes, the slice goes into them in series, as in

:d—(ac {ﬁ data 3
variable

B1

. Fig. 46

The general rule for unfolding > interlace is that no permute operators are ever used, and that

each array slice goes to %ﬁ-ﬁﬁ%& operators.1 This situation isn’t too bad, though the use of several select

unfolding .
- Snterlace S of course, a power of 2.
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or append operators on the same array slice may tend to create a bottleneck.

Now if the interlace is greater than the unfolding, say twice as great, then cach instantiation will have to
usc two slices alternately, depending on whether the scaled variable is even or odd. ‘The array index that it
will present to the slice will be the scaled variable divided by two (perhaps with some offsct added).

For unfolding =2 and interlace =4, we have

Fig. 4.7
A A A A
0 2 1 3
1 | ! i
PERMUTE™! [ ———————D PERMUTE™!
scaled
variable
instance 0 instance 1
Each pair of slices (or more generally, group of interlace of them) goes through an inverse permuter into

unfolding
one select or append node. In the case of append nodes, the result has to be permuted back. All the slices that

do not go through the append node are passed directly from the permute'1 to the permute.

Fig. 438
Ao A, Ay )
| i ] i}
[———p PERMUTE"! | PERMUTE"!
scaled data 0 data 1 -
variable l
L—v PERMUTE o PERMUTE
v 3 X T
B, B, B, By

The general rule for unfolding (interlace is that each select or append operator in an

instantiation needs a permute”! of size %—: to find the correct slice. The use of PERMUTE operators

looks like something to be avoided, though it might be possible to build a computer in which they are not too

expensive,
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4.3 Reference Interval Not Equal to One

Supposc that the reference interval is not equal to one, but is some other number (a power of 2, of
coursc) known at compilation time. The important criterion determining what will happen is the comparison

of the following two values:

reference interval » unfolding : interlace

If the reference interval times the unfolding is smaller than the interlace, permute operators will be

: interlace . . .

needed, with reference intervalsunfolding inputs. If larger, each array slice will go to,
. refer i sunf i . .
approximately, eference interval®unfolding select or append nodes. (A correct version of this

interlace

number will be given later.) Note that the previous results for reference interval equal to one agrees with this,

To analyze these cases, consider first the effect of a reference interval less than the interlace. Suppose
the array A uses an interlace of 8, so that it is divided into slices Aj A, .. A, If an iteration refers to it with a
reference interval of two, say only even indices, then only Ag Ay A, and A, are actually used. Inside the
loop, the array appears to have only four slices, that is, only a 4-way interlace. Note further that every element
of each slice is referred to, instead of every other element. The array appears inside the loop to have a

reference interval of one, not two. In general, the array appears to have an "effective interlace" equal to

true interlace . . . .
reference interval’ Since the loop appears to have a reference interval of one, the preceding section

applies.
4.4 Reference Interval * Unfolding < Interlace --- Permute

In this case, the reference interval is clearly less than the interlace. The loop behaves as though the

" s " interlace ‘s . .
: . \ m
effective interlace” were reference interval This is greater than the unfolding, so there are permute
operators with interlace inputs.

reference intervalsunfolding
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FExample: reference interval =2, unfolding = 2, interlace =8
I

Fig. 4.9

A A A A
0 4 2 6
] 1 ! i
PERMUTE ™! PERMUTE ™!
scaled
variable (+2) P
instance 0 instance 1

4.5 Reference Interval * Unfolding > Interlace --- Multiple Operators

In this case, we must compare the reference interval and the interlace. Suppose the reference interval is
smaller. Then the loop behaves as though the reference interval were one and the “effective interlace” were

interlace ; - . . .
~aference interval’ Since the latter quantity is less than the unfolding, each array slice that is used goes

© reference interval*unfolding
interlace

select or append operators.

Example: reference interval =2, unfolding =4, interlace=4

Ag A,
scaled
variable +1 l l
instance 1

instance 0

Fig. 4.10

instance 2 instance 3

Now suppose the reference interval is greater than the interlace. Then only one slice is actually used,
and the "effective reference interval” for the index values going into the array operators is

refer;:r;t;er;::: rvg_ Since there is only one slice, there are no permute operations. That slice goes to

every select or append operator -- one per instantiation, so each slice that is used is used in a number of

operators equal to the unfolding.
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Example: reference interval =4, unfolding =2, interlace =2

Fig. 4.1

scaled
variable

instance 0 ‘
instance 1

To summarize:

ireference interval « unfolding < interlace : |

interlace . L .
Teference interval slices are used; there is a

interl s
permuter of cororence intervalsunfoiding NPUtS.

[ reference interval » unfolding > interlace : ]

interlace . .
reference interval T slices are used; .
unfolding

each one that is used goes to -
interlace
reference interval

places.

The general rule of thumb is that the reference interval times the unfolding should be eqdal to the
interlace, so that there are neither permutes nor array slices passing through many array operators. This rule
may not always be exactly right in practice. Various factors involving the machine speed and the nature of the
computation may dictate a ratio other than unity. However, the best ratio will not be grossly different from
unity, and will stay reasonably cbnstant as the machine size scales upward (that is, it will not go asymptotically
to zero or infinity). If a unit ratio is not obtainable, it is better to have the reference interval times the

unfolding be greater than the interlace, to avoid the necessity for permuters.
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What happens if the reference interval is not known o the compiler? AH is not lost. It simply becomes
more difficult to take advantage of the interlace. At worst, all references become "random accesses”. Of
course, we want to avoid brute-force random accesses if at all possible. There are several uscful cases in which
they can be avoided. If the reference interval is known to lie within a small bound (typically it is cither zero or
one, dependirig on run-time circumstances), a small amount of messy object code can run quite cfficiently,
This is discussed in Chapter 9. Another case of interest is the one in which the reference interval, while
unknown, is known to be a multiple of the interlace factor. In this casc the interlace does not cause any
inconvenience at all. An example of this is the inner loop of the “cyclic reduction algorithm”, discussed at
length later in this chapter. More generally, whenever the reference interval and the interlace factor have a

known common divisor greater than one, we can do better than brute-force access.

4.6 When Things Are Not Powers of Two

The preceding treatment depended on the fact that if X and Y are both powers of the same prime, either
X divides Y or Y divides X, depending on which number is smaller. This made it possible to say that perhaps
permuters would be needed, or perhaps array slices would be used in multiple loop instances, but not both. If
the interlace, unfolding, or reference interval are not powers of two (or some other prime) we might have the
worst of both worlds -- slices used in multiple loop instances and permuters required in each instance. In
particular, it is not possible to remove the need for pérmutets simply by increasing the unfolding, unless the

factorization of the unfolding number is taken into consideration.

The "effective interlace”, that is, the number of array slices that are actually used, is given by

= _interlace
GCD(interlace, reference interval)

USE

This is in all cases consistent with the formulas given previously, because of the equation

X

GCD(X, Y) I_)Yl-l if X and Y are both powers of the same prime
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unfolding
GCD(unfolding, USE)

Fach slice goes to loop instances

: - g . USE .
Each loop instance requires a permuter of GCD(USE, unfolding) inputs

It was shown previously that, given the interlace and the reference interval, one could remove the need for

interlace
reference interval °’

permuters simply by making the unfolding large enough -- it had to be at least
the numbers are not all powers of two, things are slightly more difficult. We nced to make

USE = GCD(USE, unfolding), which requires that the unfolding be an integral multiple of USE, that is,

interlace
GCD(interlace, reference interval)

unfolding = amultiple of

4.7 Loops with Many Arrays

Loops may well have several arrays coming in or going out, and many aspects of the program interact
wher we choose the interlace for each array and the unfolding for each loop. In making these choices, a few

obvious truths should be noted.

1. The unfolding in any loop must be one value, not different values in different parts of the
loop. If aloop’s use of one array suggests that an unfolding of four is optimal and its use of
another array suggests eight, a consistent decision must be made. Typically the larger value

will be used, since that will avoid the use of permute operators.

2. The interlace of any one array must be one value that is consistent for the array’s producer
and all of its consumers. When matching the interlace of an array to the various loops in
which it is used, it is generally best to choose the smallest of the "optimal” values that the
loops suggest, once again to avoid permute operators. (Actually, one could run an array

through an "interlace converter” if a mismatch threatened to be serious.)

3. The reference interval for any array reference in a loop is a property of the program and not
under the optimizer’s control. The same array could be used in multiple places in the same
loop with different reference intervals, that is, the reference interval is a property of each

reference, not each array.
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4.8 Choosing the Interlace and Unfolding

‘The method for making the various choices of array interlace and loop unfolding might be roughly as
follows. It is proposed that, until really sophisticated techniques become available, a computer program to
perform these transformations use human-generated "advice”, cither by querying the user when running or

by reading a file.

We first determine, for cach loop, what amount of loop unfolding to use. This depends on a
compromise between the amount of space available in the machine for instruction cells (large unfolding in
large loops consumes an enormous amount of space) and the benefit to be derived from the unfolding. Many
factors interact in the unfolding decisions for the various loops in the program. We will discuss some of the

issues later, but a truly "scientific” analysis of the problem has not be¢n developed.

Having determined unfolding, we determine the interlace for each array roughly as follows. For each
loop that creates or consumes an array, we know the reference interval, and the-"ideal” interlace is the
product of the reference interval and the unfolding. In many cases, these "ideal” interlaces won't all be the
same. If this happens, we generally use the smallest figure. This avoids permute nodes but means that we

may have array slices going to more than one select or append node.

The interaction between the loop unfolding and the array interlace does not go in one direction only:
| We may choose the unfolding of a loop to match the interlace of an array, instead of the other way around.
This will happen when two or more loops are linked to each other through an array, and the speed of one of

the loops makes it pointless to use as much unfolding in the other as we would like.
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An optimizer that automatically chooses interlace and unfolding without human advice will have to be
able to handle all of the "local” factors considered here, and "global” factors as well.  When an array is
created in one loop and used in one or more other loops, the ideal amounts of unfolding in the various loops
interact through the array interlace. 'The individual choices must therefore be made in the presence of many
constraints, some of which are likely to be inconsistent. The job of the optimizer is to make these choices,
making compromises where necessary, in a way that is compa[iblcv with the overall size of the computer and

will yicld the best performance.
4.9 The Periodic Cyclic Reduction Algorithm -- Reduction Part, Inner Loop

The following program illustrates the considerations that go into choosing unfolding and interlace. It is
the inner loop of the "reduction” part of the "periodic cyclic reduction algorithm" (also known as "even-odd
reduction™) for solving certain second order differential equations in one dimension with periodic boundary

conditions. The equation is
X' + AX = Q

That is, given the array Q and the scalar A, it finds the array X that solves the difference equation
X[J+1] + X[J-1] + (A-2)X[J] = Q[J] 2 < J < SIZE+

subject to the boundary conditions X[1] = X[SIZE+1]and X[2] = X[SIZE+2].




lie complete lgorithm is:

LRLILAL TSR LTL T LT LL LT LLLLLL LT LIL L LTS TLTT AL LT TR BT IITTo %o
;§ Periodic Cyclic Reduction

éé Produces array X[2..SIZE+1] such that, for 1=3..SIZE,

ﬁé X[i+1] + X[i-1] - 2*X[i]

U%h e emm e mm e mmmmmmm - + A+ X[1] = - Q[1]

s hxx*x*2

%%

7% That is, del-squared(X) + A*X = -Q in one dimension.
Y4

%% Boundary conditions "wrap around": The above equation is true
%% for i=2, but with X[SIZE+1] in ptace of X[1], and is true for
% i=SIZE+1, but with X[2] in place of X[SIZE+2].

%%

%% A must not be zero.

%%

%% SIZE must be a power of 2, and at least 4.



function PERI1(Q: areal; HX, C: real; SIZE: integer returns areal)
type areal=array[real] :

let
%% Scale incoming array for mesh size.
FAC := HX*HX ;
QA: areal := forall i in [2, SIZE+1] construct Q[i]*FAC endall ;

FhRRLTRBLR TR ELTe%
%% REDUCTION %%
FhRIRLRRRRRTHEE

LOGSIZE, FINA, FINQ: areal, FINB: areal :=

for IH := 1 ; % IH runs from 1 through SIZE/2
COUNT := 1 ;
B: areal := array_empty[real] :
A := 2.0-C*FAC ;
Q: areal := QA ; % QA is the scaled incoming array
do
let

%% Produce an array T with
%% T[K] = Q[K-IH] + A+Q[K] + Q[mod(K, SIZE)+IH]
%% for all K = 1 + a multiple of 2+IH

NEWQ :=
for K := 2+IH+1 ; % IH is a power of 2
T:=Q; " % Q, T bounds are 2 to SIZE+1 inclusive
QK := Q[IH+1] ;
do if K > SIZE+1 then T
else .
let NQK := Q[mod(K, SIZE)+IH]
in iter K, T, QK := % happens SIZE/(2+«IH) times

K+2+IH,
T[K: QK + A*Q[K] + NQK],
NQK
enditer
endlet
endif

endfor ;

NEWB: areal := array_addh(B, A) ;
in
if IH = SIZE/2 then
COUNT, A=A-4.0, NEWQ, NEWB
%% the A*A-4.0 makes the wrap-around work,
%1% it will losae if C=0
else '
iter IH, COUNT, B, A, Q :=
IH*2, COUNT+1, NEWB, AsA-2.0, NEWQ enditer
endif
endlet
endfor ;

%% Repair last element with scale factor magically computed above.
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QB: areal := FINQ[SIZE+1: FINQ[SIZE+1]/FINA] ;

in
S AL RIRAIL LIRS RAK S
%% SUBSTITUTION %%
IRRIRUIAIALIAD LD %
for IH := SIZE/2 ; % IH runs from SIZE/2 to 1
LOGI := LOGSIZE ;
Q: areal := QB ;
do Tlet A := FINB[LOGI] ;
NEWQ :=
for K := IH+1 ;
QK := Q[SIZE+1] ;
T := ;
do if K > SIZE+1 then T
else
let NQK := Q[K+IH]
in .
iter K, T, QK :=
K+2#=1IH,
T[K: (QK + Q[K] + NQK)/A],
NQK
enditer
endlet
endif
endfor
in if IH = 1 then NEWQ
else iter IH, LOGI, Q := IH/2, LOGI-1, NEWQ enditer
endif
endlet
endfor
endlet
endfun

For now, we will just look at the inner loop of the reduction part (the first half of the algorithm).
Because there are two nested loops, there are, in effect, several nearly identical inner loops, that differ in the
value of IH, which is a loop variable of the outer loop. IH is always a power of two, varying from 1 up to
SIZE/2. SIZE (also a power of 2) is the size of the matrix being solved, and is very large (perhaps thousands
pf elements). Since the reference intérval of thé inner loop is IHe2, the analysis varies from one cycle of the
outer loop to the next. Hence we consider each value of IH as defining a different inner loop. The array
comes in as Q. The result is built as the loop variable T, and is yielded as the final result of the inner loop.
The resu}t of one inner loop goes into the next one as Q, so the interlace of Q and the result should be

compatible from one inner loop to the next. Since the reference interval for the select references to Q and for
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the append references to the result are both the same, the "ideal” interlaces are the same, so we might as well

use the same interlace for everything. The bounds of Q and T are [2, SIZE+1] inclusive.

The inner loops are as follows:

for K := 2*IH+1 ; % IH is a power of 2
T :=Q % Q, T bounds are 2 to SIZE+1 inclusive
QK := Q[IH+1] ;
do if K > SIZE+1 then T
else
let NQK := Q[mod(K, SIZE)+IH]
in iter K, T, QK := % happens SIZE/(2+IH) times
K+2=IH,
T[K: QK + A=Q[K] + NQK],
NQK
enditer
endlet
endif
endfor

The above code is not the way it really ought to be written. The loop variable QK was manually introduced to
reduce the number of array references. This should be done by an optimizer, which will be discussed in

Section 7.4,

There are two select references to Q within the loop, and one append reference to T. They all have

1

reference interval 2« IH," which is a variable with respect to the outer loop, but is, fortunately, a constant

within any one of the inner loops. The number of inner loops is 1o0g, (SIZE).

1. One of the references has a mod operator in its index. The reference interval is still 2*IH, but an
optimizer will have to work hard to deduce that. We propose that optimizers in fact be able to do so. The -
computation could be expressed with an if/then/else instead of mod, which would also require that an
optimizer work hard.




Suppose Uat on the basis of some obscure analisis, we choose an interlace ot oo The Mideal”

untolding will vary frony one Toop to another because of the changing reference mterval, as follows:

IH reference Mideal” number of number of
interval  untolding virtual cycles cxpanded cyeles

1 2 8 "SIZE/2 SIZE/16

2 4 4 SIZE/4 SIZE/ 186

4 8 2 SIZE/8 SIZE/16

8 16 1 SIZE/16 SIZE/16

16 32 1 SIZE/32 SIZE/32

32 64 1 SIZE/64 SIZE/64

IH 2+1IH 1 SIZE/(2+1IH) SIZE/(2x1IH)

SIZE/2 SIZE 1 1 1

For the first 4 loops. the criterion reference interval*unfolding = interlace is met

exactly. No permute operators are necded in any of the loops.
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‘This is the basic graph;
Fig. 4.12

2s5IH+1 Q  Q[IH+1]

!
{
1

1
i

'K > SIZE+1

Those loops for which IH is 8 or more have the reference interval a multiple of the interlace factor. As
noted previously, this means that the fact that we don’t know the reference interval is no problem. Because of
this, along with the fact that these lodps have the same unfolding, they can all be treated as one loop with
different parameters. The cases IH=1, 2, and 4 must be removed and treated as special cases. This is not
surprising -- since they have different unfoldings thej}' will have very different structures and will have to be
compiled separately. The case IH=8 should also be treated differently if permute’s are to be avoided. The
select required in "Q[mod(K, SIZE)+IH]" has reference interval a multiple of 16 whenever IH > 8, but

the offset (the "IH") is only 8 when IH is 8, which would require a permute. The initial value for QK, which is

Q[ IH+17, has a similar problem.

So, to avoid any permutes, only the cases with IH > 16 will be made into a common loop. The arrays Q

and T are interlaced 16 ways.
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‘T'he counter variable K is rescaled by

Kold = 16 » Knew + 1

To properly compile this, the identity

is used. (Yes, optimizing compilers will need a fair amount of virtuosity in dealing with modular arithmetic.)

The resulting graph, for ITH2>16, is
Fig. 4.13

VK > SIZE/16
\
\

AR ITERIF ) _ -

\"‘”-Qgﬁj____-—"’

result,
(other slices are just the
corresponding slices of Q)

In the remaining graphs we also use a few arithmetical tricks.
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[he graph for TH=4 tunfolding = 2} is
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‘The graph for IH=2 (unfolding=4) is
Fig. 4.16
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The graph for TH=1 (unfolding=4§) is
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\
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'K > SIZE/16 ) K+1
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N ITERIF
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8

all odd slices of the result

To summarize the transformation of the inner loop of the cyclic reduction algorithm:

1. We assumed an optimizer that is quite skillful at performing transformations on integer
computations, for such things as loop reparameterization, caiculation of termination
conditions, and removal of mod operators where the known range of the arguments makes
them trivial,

2. 'We made heavy use of the fact that we knew the value of the parameter IH, at Jeast for the
values less than 16. For the other values, we used the fact that it was a multiple of 16 so that
array references could be generated without knowing its exact value. How we use the fact
that IH is a power of two, and how we must deduce that from the algorithm’s outer loop,

further illustrate the need for a good integer optimizer.

3. We made use of the fact that SIZE is a power of two and at least 16, though nothing more
need be known about it.




_83-

4.10 The Periodic Cyclic Reduction Algorithm -- Reduction Part, Outer Loop

We now cxamine the outer loop, and sce how the loops interact.

The simplificd outer loop is:

for IH := 1 ; % IH runs from 1 through SIZE/2
A 2.0-C=«FAC ; _
Q := QA ; % QA is the actual incoming array
do et NEWQ := <inner loop, depends on Q, A, and IH>
in if IH=SIZE/2 then NEWQ
else iter IH, A, Q := IH+2, A=A-2,0, NEWQ enditer
endif
endlet
endfor

The usual translation of a loop would consist of one copy of | the body, with appropriate control
operators to cause the body to be used repeatedly. In this case, the inner loops for IH=1, 2, 4; and 8 must be
different code. This can be handled by performing an initial expansion of 4 on the outer loop. Whenever an
inner loop has different structure on certain cycles of the outer loop, and those cycles océur at the beginning

or end, those loops can be pulled out of the outer loop by making and initial or final expansion.
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In this case, the expanded outer loop would look like

QA (16 way intcrlace) ‘AA

[ inner loop, IH=1

Lirmcr loop, IH=2

v

[ inner loop, IH=4

!

inner loop, IH=8

- e ———— - =

ITERIF

w2

4.11 The Periodic Cyclic Reduction Algorithm -- Substitution Part

Fig. 4.18

The "substitution” part of the cyclic reduction algorithm is very similar to the "reduction” part. The

principal difference is that the inner loop is called with the values of IH in reverse order, from SIZE/2 down

to 1. The inner loop is very similar to the corresponding loop for the "reduction” part, and is analyzed in the
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same way. [t requires one loop for TH> 16, and scparate loops for TH equal to 8,4, 2, and 1.

‘The simplified outer loop is

for IH := SIZE/2 ; % IH runs from SIZE/2 to 1
Q := QB ; % QB is the result of the reduction
do Tlet NEWQ := <inncr loop, using Q and IH> ;
in if IH=1 then NEWQ
else iter IH, Q := IH/2, NEWQ enditer
endif
endlet
endfor

Because the special values of IH -- 8, 4, 2, and 1, occur at the end of the outer loop, a final expansion is

used. The resultant graph is

Fig. 4.19

QB (16 way interlace)

SIZE/2

\

~____§gl)__-_

( inner loop, IH=8 |

| inner loop, IH=4 |

inner loop, IH=2 ]

linner loop, IH=1 |
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Fhie "evelic reduction algorithim™ can be used o solve other topes of diftference equations. Anothel
version of 1t to solve ridiagonal Tinear systems. will be presented in full in Chapter 13, The version shown
here was selected because only one array is used in the critical parts, and because the periodic boundary
condition {which gave rise to the mod operator) shows an interesting example of the types of optimization that

must be performed on integer expressions.
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5. UNFOLDING AND INTERLACE IN MULTIPLE DIMENSIONS

In this chapter the results of the previous chapter will be generalized to the cases of nested ieration

loops and multidimensional arrays.

Multidimensional arrays can be interlaced at cach level. If a two-dimensional array X has "2%4
interlace”, it has a 2-way interlace at the top level, and cach clement of cach top level slice is a
onc-dimensional array with a 4}-way interlace. The total array thus has 8 slices, denoted X, j with 0 < i<2
and 0 < j<4, such that

X[2P+i][4Q+j] = Xy3[PILQ] where P and Q are arbitrary expressions
(in the source program) (in the implementation)

Multidimensional arrays and nested loops work very well together in the simple cases. As one might
‘expect, the nicest case is the one in which the loop nesting and array indexing match each other, the interlace

is equal to the unfolding at each level, and the reference interval is equal to one at each level,

Here is the graph for references to X[ I1][J] in a nested loop with I as the outer loop index, J as the inner

loop index, and 2#4 unfolding and interlace:

Fig. 5.1

outer
scaled
index

inner
scaled
index

loop instances
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5.1 Relationship Among Unfolding, Reference Interval, and Interlace

If, at some level, the unfolding and interlace are not equal, or the reference interval is not equal to one,

the same thing happens at that icvel as in the one-dimensional casc.

reference interval = unfolding < interlace:

Permute operators will be needed, with

interlace .
reference intervalsunfolding inputs.

reference interval = unfolding > interlace:

tach array slice that is used goes to

interlace
reference interval

Both situations are nonoptimal; the first one is more serious.
These effects can be illustrated through the preceding example of a nested loop with 2#4 unfolding, by
setting the interlace to something other than 2*4.

Suppose the array A has 2*2 interlace. Then the select’s from it look like
Fig. 52

unfolding > interlace, inner _level

0,1 0,3 1,1 1,3
instances
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Suppose the array A has 1*4 interlace. ‘Then the seleet’s from it look like

unfolding > interlace, outer level
Roo Ao Aoz Ao3 Ao Aot Aoz Aos

inner
scaled
variable

inner
scaled
variable

0,1 0,3 1,1 1,3
instances

Suppose the array A has 2#8 interlace. Then the select’s from it look like

unfolding < interlace, inner level
. A AL, Ans Anc A, Ape Apa Ry Agn Ay g Agy A Ay AscAsa A
00 Y04 o1 "Yos oz Nos o3 o7 1o 14 11 s 12 Ve 13 7
e el el il i Ml Sl el
scaled Prlppt fpl et et ppt et et
variable ’ _ .

outer
scaled
variable

+2

0,0 0,1 0,2 0.3 1,0 1,1 1,2 1,3
instances

Fig. 5.3

Fig. 54
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Suppose the array A has 4*4 intertace. Then the select’s from it look like

unfolding < interlace, outer level

Rgo Ao Agy Ay Agy Mgy Aga Apa Asg Agg Agy Agy Aly Agy Apq A
0077207017721 702 "'22 703 "°23 7110 7730 11 °31 7712 32 713 733
outer I B Y | | R S A S A S A
scaled AR A A - B 49'1 Hp'l p-l b Pt

variable

inner
scaled
variable

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3
instances

Fig. 5.5

The preceding data flow graphs are just models of the program organization at a certain conceptual

level. When prepared for execution, further transformations must be made: The permute operators are

moved downstream so that they handle only scalar data; consecutive select operators are combined as

multidimensional array slices are flattened, etc.

5.2 Unfolding and Interlace That do Not Nest Similarly

In the preceding, we have considered only cases in which the depth of loop nesting was the same as the

dimensionality of the array, and furthermore that the array indices were in exact correspondence with the

loop indices. That is, the outermost array reference depended only on the outermost loop index, and so on.

In fact, we can have much less regular arrangements, such as reversal of the order of indices:

for I := |,

for d := ....

ALII[1]
endfor
endfor
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or an array reference depending on two loop indices:
A[8#J+1]
or nong at all:
A[7]
or any combination:
A[II[7]1[1+2«d][1][4%J]
‘These variations have no significant effect on the actual array select operations because, once the array
slices are flattcned, the select operation involves an array index which is some affine function of the loop

indices. It is fairly straightforward to determine what that affine function is.

The important task is to examine the relationship among reference interval, interlace, unfolding, and the
resultant code for every dependence of an array operation on a loop index. In the previous examples, we
assumed a strict correspondence between loop levels and array levels, with reference interval of one in each

case. This could be represented graphically by a nesting diagram as follows:

Fig. 5.6
LOOP LEVELS ARRAY LEVELS
outer outer
[1] Q ref int=1 MO
[93 ref int=1
inner inner

An arrow is drawn whenever there is a dependence, and each arrow has a reference interval associated with it.
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The examples itlustrated carlier would have the following nesting diagrams:

Fig. 5.7
LOOP LEVELS ARRAY LEVELS
[I] %
1
ALJILI]
[J1]
LOOP LEVELS ARRAY LEVELS
[1]
1
A[8+J+I1]
8
[v]
LOOP LEVELS ARRAY LEVELS
D

o

LOOP LEVELS ARRAY LEVELS

[J]

The loop unfolding at each level, and the array interlace at each level, are properties of the loops and
arrays themselves, not of the references, so they can be written inside the circles. For the example of 2*4

unfolding, 2*2 interlace, and strict nesting, the diagram is




Fig. 5.8
LOOP LEVELS ARRAY LEVELS

= ref int=1 =
[1] (unfold=2 n @
[J] @ ref int=1 @

We know that the property of a reference that determines what kind of array operators are required to
implement it is the comparison between the interlace and the product of the unfolding and the reference
interval. In the general case, this comparison is madce for each arrow -- the interlace at the right end of the
arrow is comparcd with the product of the arrow’s reference interval and the unfolding at its left end. In this
example, there is a mismatch in the lower arrow -- the interlace is too small - so array slices are used in

multiple places but permute operators are not required.

If the nesting diagram is complicated, there may be no choice of Aunfoldings and interlaces that leads to a

good match everywhere.,

If an array node in the nesting diagram has no arrows going into it, that reference has a constant index
(at least one that does not depend on any of the loop variables), so the situation is trivial. Ifit has exactly one

arrow going into it, the method developed so far can deal with it, even if the arrows cross each other.

An example of crossed but otherwise simple arrows arises in the 2-dimensional cyclic reduction
algorithm. Part of the code is

forall J in [....]
forall K in [....]
Q[K][J]
endall
endall
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The graph fragment is

Fig. 59
If the array Q has 2*4 interlace, we could choose 4*2 interlace:
Fig. 5.10
LOOP LEVELS ARRAY LEVELS
[J] @ ref int=1
[K] 1
Both arrows match perfectly. The array operations in the unfolded loops are:
Fig. 5.11

QOO QIO Q20 030 QOI Qll QZI Q31

B R e B
@

, (scaled) - N
\\ ‘\ X
\ [ (scaled) I ;
N\ \\ l, l’
N \\ / /,
v oyt 0,3 1,1 1,3 . -

5.3 Array References Depending on More Than One Variable

If two or more arrows point to the same array node in the nesting diagram, the array reference depends

on two or more loop variables.
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For examiple
Alaxl + B*3 + v]

ZIVES TISC 1O

PP —

‘The graph resulting from loop expansion and array interlace cxpansion is generally similar to the cases

Fig. 5.12

discussed previously: In cach loop instance, some array slice (perhaps sclected by a permuter controlled by
the scaled loop variables) goes to an array operator whose index argument is a function of the scaled loop
variables,

Example of reference "A[ I+J37]" with 4*4 unfolding and 4 way interlace

Fig. 5.13
LOOP LEVELS ARRAY LEVELS

[J] (unfold=4 ref int=1
—— \$ R
e
[K] (unfold=4 ref int=1
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‘There are 16 loop expansions. The select operations look like

Fig. 5.14

scaled
variables

3,0 3,1 3,2 3,3

In the one-dimensional case, there was a rule that, if the reference interval time$ the unfolding is greater
than the interlace, each array slice goes to several array operation nodes. That rule does not apply when the
reference depends on more than one loop variable. Each slice typically goes to many operations, regardless of .
the unfolding and interlace, because there are typically many values of the variables I and J that have the

same sum. Of course a code generator will optimize out redundant references to the same array slice.
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In the example above, the optimized array selections might look like:

scaled

variables
0,0 0,1 0,2 0,3
/ A
1,0 1,1 1,2 1,3
/ A,
2,0 2,1 2,2 2,3
AZ

3,0 3,1 3,2 3,3

Fig. 5.15

To find out whether permute operators are required, note that we have many

(reference interval * unfolding) products. The smallest of them is the important parameter. If

this is less than the array interlace, a permute operator is needed, and that permute must choose from among

interlace
min {reference interval+unfolding}

inputs.

Example:

ref int=1

Fig. 5.16
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‘This needs a 2-way permuter on the inner index.  All division operators are assumed to truncate nonintegral

results downward:

Scaled outer index = 1 Scaled inner index = J
A, A A, A
0o "2 1 3
! 1l
J—pPPl—pp1
J J
I+ % .—o(%) (?q.— I+ %
0,0 0,1
Ay A, A, A,
: | i
J —pP ! —H P!

J J+1
g — 18 TR
1,0 1.1

Ay Ag Ry A4
| !
J —Y P p-1
J+1 +
I+ 53 —‘9@ C%”—I“Lil
2,0 ‘2.1
A, A A, A
3 1 0 "2
" 41
J—Hpl b——P P!
J+1
I+ 32 (%q._u %n
3,0 3,1

Another example:

@ ref int=1

ref int=1

Fig. 5.17

Fig. 5.18
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‘This needs a 2-way permuter on the outer index:

Fig. 5.19
Scaled outer index = I Scaled inncr indcx = J
A, A A A A, A A, A
0 72 2 To 3 ™M
l l L {4 {4
I — PP pyop! H P! o Lk
J ?§; Dé; P%?
I+ 5 é?
0,1 0,2 0,3
A, A A, A A, A A, A
1 73 2 "o 3™ o "2
- {1 1 4 ! 4
I p-1 o p-i p-i
J J+1 J
I+ 3 —o(ié) I+ _pé Ja@ I+ +1
1,1 1,2 1,3
Example with unfolding < interlace on two variables:
Fig. 5.20
lace=4
@ ref int=1
This needs a 2-way permuter on a function of both indices:
Fig. 5.21
Scaled outer index = I Scaled inner index = J
A, A A, A
0 2 1 3
i 1 !

I+ —y P! ——rPY Pt

I+J _ 1+J
2 2

0,0 0,1
Ay Ay Az Ao
- L

I+ — P! —p P°1

W i

3,0 3,1

If all of the (reference interval « unfolding) products are greater than the interlace, the
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structure becomes different, but permuters are not required.

Fig. 5.22
. ref int=1
Fig. 5.23
Scaled outer index = 1 Scaled inner index = J
Ao Ay A, A; Ao Ay A, As
I+2J »@ )@ )@ r@ m r@ r@ »@ '@
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1+2J

I+2J

I+2J

3,0 3,1 3,2 3,3 3.4 3,5 3,6 3,7

Here is an example in which one of the (reference interval * unfolding) products is greater than

the interlace and one is smaller. The smaller one creates the need for a permuter.

ref int=1

Fig. 524

ref int=1
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_ Fig. 5.25
Scaled outer index = I Scaled inner index = J
A, A, A, A, A, A, A, A, A, A
p N2 M N3 A2 3 o "2
I !

A. A, A, A, A, A
[ S R S S S G A A
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6. COMBINING COMMON SUBEXPRESSIONS

Finding common subexpressions within an expression or program fragment is a very well known
optimization for conventional compilers. - It is of extreme importance, particularly with regard to array

references, in an applicative supercomputer.

A "common subexpression” is somcthing like "X-Y" in "(X-Y)*(X-Y)". ‘Iransforming it to
"lTet T := X-Y in T=T" saves a subtraction and perhaps a few memory cycles on a conventional

computer.

This optimization actually has limited usefulness in conventional situations, because common

subexpressions of significant size are extremely rare. A human programmer is likely to change

Y := (2.45eXs#2 + 3.0) / (2.45+X+e2 + 3.0 + X)
to

T := 2.45eX#%2 + 3.0

Y 1= T/(T+X)

before a compiler ever sees it, if only to save typing.

In a data flow system with loop unfolding, however, optimization of common subexpressions becomes
important because expressions in different loop expansions can be identical even though they looked different
in the source program. That is, inter-cycle optimizations can be performed. A simple example of this is

forall I in [LO, HI]
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Assuming unfolding and interlace of 4, with rescaling, the four expansions are -

Fig. 6.2

This is approaching the minimum possible number of array fetches. Except for the "boundary conditions™
(which will be disposed of in the next chapter) each array element is fetched only once. Note that the "nearest
neighbor” nature of the computation becomes graphically apparent in the above figure. We are heading in

the direction of an "ideal" representation of the algorithm.

The same benefits can be realized in higher dimensions. An example in two dimensions is useful. The
algorithm is the same "sum of self and adjacent points” problem as above.

forall I in [ILO, IHI]

forall J in [JLO, JHI]
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After a 2*2 unfolding and interlace, we have

Fig. 6.3

inner unfolding —

outer
unfolding

i

With removal of common subexpressions (which can take place before or after the interlace, and is

independent of whether the interlace matches the unfolding well or badly) we have
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Fig. 6.4

inner unfolding —

AOI ?%
outer

unfolding 1 J-1

188
All

The part outside of the dotted line is the "boundary condition" computation. It gets proportionately smaller
as the unfolding increases. The part inside the dotted line looks like what one would expect the data flow

graph of the "sum of self and adjacent points” function to look like.

If there is an M*N unfolding, there are M-N array fetches! inside the dotted line and 2M +2-N

outside.

1. Remember from Section 3.11 that this a@?—) will be turned into a single fetch after the array slices
are flattened.
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Fig. 6.5
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We can now draw some conclusions about the optimal "shape" of nested loop unfoldings. (Shape was
defined in Section 3.9.) If there is no communication among the loop unfoldings (no data dependencies) and
they have no common subexpressions, there is hardly any reason to choose one shape over another. There
will probably be a small difference in the number of operations required to control the loops, but this is a

minor criterion and, in any case, needs to be evaluated in the context of many machine-dependent factors,

If there is communication among the cycles in an unfolding, say, common subexpressions as in the
above example, then the shape should be more or l.ess “square” (or cubical, or whatever). A well-known
problem of elementary calculus is to find the shape that minimizes the perimeter for a given area. The
solution is a square. In the above example, if we have space for 64 total unfoldings, an 8+8 shape would be

best.

If the communication among the cycles in an unfolding is not isotropic, the result is different. If each
grid point requires data from its neighbors two points away in the I direction and just one point away in the J

direction:
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A[I, J] + A[I+1, J] + A[I+2, 3] + A[I-1, J] + A[I-2, J]
+ A[I, J+1] + A[I, J-1]

calculus once again provides the answer. ‘The ideal shape is twice as long in the I direction as in the J

direction. [f there is no communication in the J direction, we may want to have all loop unfolding occur in

the I direction.

The best shape for nested loop unfolding will also be strongly affected by the shape of the interlace of
the arrays that are being used. The preceding discussion of optimal shape did not take imo account the fact
that array references are more expensive if the unfolding does not match the interlace. The interlace generally
has to be chosen as a compromise to match as closely as possible the unfoldings of all of the loops that refer to

the array. In practice, choosing all interlaces and unfoldings depends on a great many interacting influences.
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7. AUXILIARY LOOP VARIABLES

In the preceding chapter we saw that common subexpressions can be combined among different source
iteration cycles if those cycles arc parts of the same unfolded cycle. We can also combine subexpressions from
adjacent unfolded itcration cycles by saving the value in one cycle for use in the next. 'This is done by

introducing extra iteration variables to carry the value.

Referring back to figure 6.2, in cach unfolded iteration cycle the following six values werc needed
Aj[1-1] Ay[1] AI] A,[1] A,[1] Ag[I+1]

Four of them are inevitable, and two were required for "boundary conditions"”.

Note that, on each cycle, the references A,[1-1] and A,[ 17 are in common with two references from

the previous cycle. On the previous cycle we calculated A,[I'] and Aj[I'+1], where I' was the index

value on that cycle. Since I' = I+1, these are the values needed for the present cycle. Introduce variables
X and Y, having the property that, during any cycle, .

X = A3[ I - 1 ]

Y = A[I]

Then the essential part of the program graph is
Fig. 7.1

The initial values of X and Y must be set up appropriately, outside of the loop, so that the above equations will

be true during the first cycle.

If the source program was
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B := forall I in [0, N-1]
construct A[I] + A[I-1] + A[I+1]
endall

then, after 4-way unfolding and interlace, and introduction of auxiliary variables, we would have

~~_____T FOR -

7.1 Boundary Conditions

Of course, the program might have been written with explicit bouhdary conditions:

B := forall I in [0, N-1]
construct
A[I] +
if I=0 then V else A[I-1] endif +
if I=N-1 then W else A[I+1] endif
endatll

Fig. 7.2
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which could be translated as follows:

Fig. 7.3

o S—3( ITERIF D) -7

T ~-_~_--j FOR t--—-—--__.-—' -

By By B, By

7.2 Combining Subexpressions Over Long Distances

We can combine common subexpressions across different iteration cycles even if the distance between
them is quite large -- say, larger than the unfolding. Suppose we need to compute the sum of each element of
an array and the element 6 positions to the left. If the unfolding and interlace are 4, we have

Fig. 7.4

A, A, A Ay Ay A, A, A




-1

Now we can mtroduce 4 variables obeyving the following equations on cach cyele:

1}

A[1-2]
= Aj[1-2]
A [1-1]
A[I-1]

— »n v

They of course need the correct nitial conditions for the first cvele. After that. their "new" values tor the next

cvele need o be

Q' = A[I-1]
R' = A,[I-1]
S' = A[1]
T = A[I]

A [1]and A, [ 1] are already available. For the other two, we introduce two more variables:

W
X

A,[1-1]
A[I-1]

that will provide the right valucs for Q' .and R'. They also need to be initialized for the first cycle, and their

"new' values need to be

w'
XV

AL 1]
AsL1]

which are available.
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So the body of the Toop becomes

Fig. 7.5

Clearly there is a point at which it is not economically feasible to introduce new loop variables, and it is better

to recompute the desired data.

7.3 Nested Loops

We can use saved variables to avoid recomputing common subexpressions in any loop, however that

loop might be nested. However, in the common case of near neighbor dependencies in all directions in

multidimensional arrays, it turns out that only the innermost loop can benefit. Referring back to figure 6.4,

we can handle the left and right boundaries only. Introduce variables W, X, Y, and Z with

N =< X £

H 0 n 0

AL, 3]
Agol I, J]
Ay L1, 3-1]
Ay [T, 3-1]

Then, remembering that J is the inner loop variable, so the next value of J will be J+1 while I will be

unchanged, we need

wl
xl
YC
Z'

Ao[l, 3+1]
Ago[I. J+1]
Ay,LI, 3]
Ay L1, ]




-113-

So the appropriate graph is

Fig. 7.6
inncr unfolding —
> X'
X
> 7'
4
outer
unfolding
l
Y
> Y
W
> W'

1

As before, them ére 4 array fetches inside the dotted line (though not the same 4). Extra fetches for the
boundaries are required only for the dependencies along the outer loop index. The impossibility of
combining fetches in this direction is not a serious problem, since the outer loops cycle more slowly -- the
time that would be saved by keeping common subexpressions from one cycle to the next, instead of

recomputing them, would be insignificant.

The technique of using auxiliary variables to save values changes the analysis of the optimal unfolding

shape. Compare ﬁgui'e 6.5 with the new version, using auxiliary variables
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Fig. 7.7
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The two leftmost columns of fetches are removed. The total npmber of fetches is now '(M+2)-N. For
fixed product M-N, this is least when N = 1, implying that all unfolding should be in the outer loop, with none
in the inner loop. This is somewhat deceptive, however. The total number of array fetches and manipulations
of saved variables is, as before, M-N+2-M+2-N, which is least when M=N= M:-N. There is a nonzero
cost associated with manipulating these variables, so the best shape is some compromise based on the relative

costs of array fetches and manipulation of saved variables.
7.4 Periodic Cyclic Reduction Revisited

We can now exhibit the inner loop of the cyclic reduction algorithm the way it should be written. The

version shown in Section 4.9 had an auxiliary variable added by hand.




IRE

I should be

for K, T := 2xIl+1, Q
do if K>SIZE+1 then T
else
iter K, T :=
K+2#TH, T[K: Q[K-IH] + A*Q[K] + Q[mod(K, SIZE)+IH]]
enditer
endif

endfor

[Uis casier to understand and verify the program in this form.
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8. ARRAY CREATION OPERATORS

Up to this point we have used SELECT as the standard array operator for our consideration of interlace

and unfolding. Some array creation operators (applicative, of course) are clearly required.

For the cases we are presently interested in (uniform, repetitive operations), the operator that will do
what we want is one that adds one more clement to an array. This is appliced repeatedly to a loop variable that
is initially sct to an empty array. The addh operator of VAL doés this conveniently. The size of an array is
part of its data in VAL, so such an operator is possible, without the need to tell it the indéx at which the new
element will be stored. However, a language might not require such an operation, or the computer might not
provide it. At a slight sacrifice of source program simplicity, we could use an operator that is specifically told
at what index to store the element, such as the append operator of VAL. Now the semantics of VAL arrays
and the append operator state that, if if an element is written out of the existing bounds of the array, the
bounds are stretched to accommodate the new element. This makes it possible to start with an empty array,
whose bounds are set to be right next to where the first element will be written, and write the elements at

consecutive addresses.

It would not be wise to assume that we have the exact semantics of the VAL array operators, cither in
the source language that we wish to support or in the hardware. Several of the details of the VAL operators
are not relevant to the present work. For example, the hardware might require that the array bounds be
specified at the start of the loop, and perhaps that the array be initially filled with suitable dummy values. It
might be useful to "flatten” multidimensional arrays in such a way that the elements will not be written

consecutively, even though we know that all positions will eventually be filled.
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Therefore, we will u$umc the minimum possible detail in the array operations, and use them in the
most "standard” way possible. For the types of array-creating loops that we are trying to get high
performance out of, we will assume that the array bounds are known at the start of the loop.] the index of
cach clement is known as it is added to the array, and consecutive additions are most cfficient. If these
requirements are not met. we assume that the hardware will be less efficient in exccuting the resultant code.
So, for our purposes, the append operator will be quite suitable, and we will ignore fine points of its semantics
and assume that an actual compiler for a real machine will fill in the details. We will also use "A" as the
all-purpose empty array that always does the right thing when used as the starting point for a series of

append’s,

Of course, the exact choice of operations to be made available to the programmer; and the exact
instructions that the hardware is capable of executing, will have a strong influence on the efficiency of the
system and on code generation techniques when random array operations are used. If array A is produced by
a regular structure, and a random append operation is invoked, as by the VAL assignment

B := A[13: 3.1416] ; .
then we need to know a lot about the semantics of the operation and the behavior of the hardware before we
can begin to design a code generator. But, for regular, repetitive sequences of operations, which we are
interested in, we do not need to be concerned with details. In the examples to follow, we will generally use

the append operator in order to make the index explicit. When addh or addl appears in the source program,

we assume the compiler does the appropriate thing.

1. If the machine is going to support true dynamic arrays, there will be cases in which the final array size is
not known when the loop starts. However, it might be reasonable to allow the creation of arrays to be less
efficient in such cases, so we will provide the bounds and refrain, where possible, from using- whatever
features the hardware might have for the support of dynamic arrays.
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8.1 Structure of Loops that Create Arrays

T'he canonical way to create a one-dimensional array with a single loop is something like this:

%%% set A[I] = f(I)

for A, T := A, 0

do- if I=N then A
else iter A, I := A[I: f(I)], I+1 enditer
endif

endfor

Of course a VAL forall could be used, which is roughly equivalent to the above.

Since we use the "vector of vectors” model of arrays, the canonical way to create a two-dimensional
array with a double loop is simply to nest the above loop, something like this:

%%% set A[I, J] = f(I, J)
for A, I := A, 0
do if I=N then A
else
lTet NEWROW :=
for B, J := A, 0
do if J=M then B
else iter B, J := BfJ: f(I, J)]. J+1 enditer
endif
endfor
in iter A, I := A[I: NEWROW], I+1 enditer
endlet
endif
endfor

and analogously for higher dimensions. Nested VAL forall’s are roughly equivalent to the above.

Now this looks ugly and cumbersome. It appears difficult to write source programs this way, and it
appears that the underlying machine instructions will be inefficient, since they require packing array

descriptors into other arrays.
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As for the first objection, one can imagine linguistic constructions that would look better. Where there
is no scquential data dependency, the forall is a good construction. 1f nested sequential loops are actually
required, some way of assembling the array without explicitly building rows would be uscful. Since the VAL
language has no such convenient feature, we will use the present notation and Icave: clean notations to the
imagination.1 |

As for the second objection, remember that the vector-of-vectors model is used only when dealing with
loop unfolding and array interlace. Once the array slices are chosen, they will be "flattened”, so the actual

machine instructions that perform array operations will "see” only one-dimensional arrays.

As things now stand, the array dimension structure must match the loop nesting structure. That is, the
innermost loop must assemble the one-dimensional vectors, which the next outer loop assembles into

2-dimensional structures, and so on. The loop-array correspondence graph must look like this:

Fig. 8.1
LOOP LEVELS : ARRAY LEVELS

outer Qref i“*’“@ outer
inner O\"fiﬂiﬂ_,@ inner

There can be no crossing of the arrows.

1. VAL does allow nested array appends, as in A[I, J: f(I, J)], but it doesn’t actually do the correct
thing with them as presently defined, and so this feature is not used. It only cleans up a small part of the mess
in any case.
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What happens if we specifically want to cross the arrows, that is, to create an array that is the transpose
of what the canonical nested loop produces? ‘There is really no reasonable notation in VAL to specify such a

thing directly. Hence we will ignore the possibility. We will not deal with it because

1. If a notation were created to allow convenient construction of such loops, we know that we
will be able to produce cfficient machine code. When the slices are flattened, the mapping
function that determines where each item is to be written in the slice will simply be

different.

2. Inthe absence of a good notation, we can concoct a bad notation to get the desired effect by
creating the array in the normal way and then explicitly transposing it. We would transpose
it with something like
B := forall I in [0, M], J in [0, N] construct A[J, I] endall ;

which we can translate efficiently,

One final observation about the structure of array-creating loops: the referenc? interval is always 1 (or
-1). That is, consecutive items are written, one per loop cycle. If the index at which array elements were being
written advanced less often than every cycle, some of the elements would later be overwritten, and the loop
could presumably be transformed to remove the superfluous cycles. On the other hand, if the index increased
by more than one per cycle, "holes” would be left in the array. We could presumably rescale the index (and
rescale everything that reads the array) to squeeze out the holes. Whether a compiler ought to do these things

is a question that we will not address.

Incidentally, it is the fact that the reference interval is 1 or -1 that makes the VAL addh and addl!

operators so useful.




8.2 low to Use the Append Operator

The property of the append (and addh/addl) operator that makes it trickicr than select is that it emits a
modificd array as an output, and so the order in which an array or array slice passes through a scrics of
uppcnd‘s may })c significant. Fortunately, the propertics of this operator, when the order in which a serics of
them is applied is reversed, is fairly simple if we know the array indices. The same array index inﬁ')nnation
that makes it possible for a compiler to perform interlacing and other optimizations allows it to optimize

append operations.

First, note that a straightforward loop unfolding preserves the order in which append operators are
applied. (This is because loop unfolding is faithful -- it preserves the application order of all operations.) If
we have a doubly nested loop, and we wish to perform a 2*2 loop unfolding on it, we just do so, letting the
operations go where they have to go. All of the previous analysis for select operations, involving' unfolding,
interlace, and reference interval, apply to append operators. When dealing with interlace, we must make the
following construction for append operators. If the index is known to refer to a particular slice, the operator is

put in that slice, and the other slices are sent through untouched.

Fig. 8.2
X Xo « « « Xgop Xg o Xger o - o Xyey
N way interlace

— = -

N*J+a _ Jd

(a is a constant, 0 < a { N)

If the index does not behave so well, all slices to which the index could refer must go through a permuter.
How to do this was described in Section 4.1 for select’s. For append we need another permuter to get the

array slices back into the correct order from the operator outputs.




Fig. 8.3
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If the loop nesting structure matches the array structure (that is, the arrays are created in the canonical
way as described in Section 3.11), re-ordering of operations should not be required. If not, the program may
have an apparent data dependency that must be removed. Consider first the canonical double loop:

%% create A[I][J] = f(I, J)
%% assume M and N are multiples of 2
for I, A :=0, A
do if I = N then A
else
let NEWROW := for J, B := 0, A
do if J = M then B
else iter J, B := J+1, B[J: f(I, J)] enditer
endif
endfor ;
in iter I, A := I+1, A[I: NEWROW] enditer
endlet
endif
endfor

If we perform a 2*2 unfolding, whether we interlace or not, the inner control structures can be coalesced, so
the resultant graph appears to have just two loops, one inside the other. If 2*2 interlace is used, the result

looks very simple. (Note that the inner loops’ control structures can be coalesced, as commonly occurs for

nested loops of this type.)




-123-

Fig. 8.4
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The presence or absence of interlace does not affect the ability to perform 2#2 unfolding efficiently.

Now if we try to construct an array that does nof match the loop structure, there is trouble.
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4% create A[64=I+J] = (I, J)
%% assume M and N are multiples of 4
for I, A :=0, A
do if I = 64 then A
else
let NEWA := for J, B :
do if J = 64 then B
else iter J, B := J+1, B[64=I+J: f(I, J)] enditer
endif
endfor ;
in iter I, A := I+1, NEWA enditer
endlet
endif

endfor

0. A

The outer loop concatenates all the results of the inner loop into one long array. This is similar to the

“flattening"” that will be discussed in Chapter 11, but not as benign.

The problem is that the transmission of the single array from one inner loop to the next appears to
create a data dependency among the inner loops. If we perform a 2+2 loop unfolding, we can’t coalesce the

inner loop bodies.
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Fig. 8.5

the computation of f
is not shown

this prevents coalescing
the inner loops

R][1
ITERIF ) .~

TS FOR - - - -

No interlace less than 128 will make this dependency go away (and an interlace of 128 would create the need

for huge permute operations), |




A simple re-ordering will solve things nicely. Since the 4096 append’s all take place at different indices,
they can be rearranged in any order. 'T'he following is a useful order:

Fig. 8.6
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Whenever multiple loop unfoldings are being performed and the inner loops are being checked for

dependency to see if they can be coalesced, we must look for arrays being append’ed to. If an apparent
dependency involves an array, we check whether all of the indices involved in the loop unfoldings are disjoint.
In the example just given, the question is whe;he’r, foreach I'in [0, 31]andJ, and J, in [0, 31] with
J, #J,, wehave
({1281+23,} U {1281+2J,+1} U (1281+2J,+64} U {1281+2J,+656}) N
({1281+2J,} U {1281+2J3,+1} U {128I+2J,+64} U (1281+2J,+656}) = &

If this is so, the dependency is removed and the loops are coalesced, with the append’s all strung together
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inside the coalesced loop.
8.3 Common Subexpressions Using SELECT and APPEND

The fact that (A[I: X])[I] = X mcans that thesc two cxpressions can have “common
subexpression combination” performed on them as though they were identical expressions. 1f a fragment of a

graph looks like
Fig. 8.7

we can combine all of the select’s with the append, and have them just return the data value (X) that went into
the append. This optimization is treated just like the common subexpression combination of Chapters 6 and
7. As in those chapters, this will be most useful in iterations when the common subexpressions come from
different cycles of the unfolded loop. If those different cycles occur in the same unfolding of an unfolded
loop, the combination is straightforward. If in different unfoldings, then, as in Chapter 7, we compute the
common value in the earliest unfolded cycle and feed it forward to the later cycles. In a situation in which an
append is one of the things being combined, the append will always be in the earliest cycle, so that it will be
the source of the data, and the select’s will all be consumers. This follows from causality -- one can’t read a

value out of an array before it has been written.

Combining append and select usually occurs in algorithms that solve a "recurrence relation” --
computing elements of an array sequentially using, for each element to be computed, the value stored in the

previous one or more elements of the same array. For example, if we want to set

B[I] = B[I-1] + A[I] for 1 <1 < 64
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‘This must be computed by a sequential loop1

for I, B := 1, [0: BO] % need initial element
do if I=65 then B
else iter I, B := I+1, B{I: B[I-1] + A[I]] enditer
endif
. endfor

Digression

The optimization we are about to exhibit has been discussed in the literature [31] in the ongoing debate
over the suitability of applicative languages. The optimization basically consists of introducing a new loop
variable whose value is B[ I-17 on each cycle. If the source program were so transformed, we might have

for I, B, LASTB := 1, [0: BO], BO
do if I=65 then B
else
let NEWB := LASTB + A[I]
in iter I, B, LASTB := I+1, B[I: NEWB], NEWB enditer
endlet '
endif

endfor
This sort of transformation can of course. be made whether the program is written in FORTRAN, VAL, or
nearly any languaée. Experienced ﬁrogrammers frequently do make such a transformation if they know that
it will improve performance on the target computer that they will be using. On many conventional machines
there will be little, if any, improvement, because array references aren’t particularly expensive (that is, if the
"compiler keeps the index variable in an index register). On some array and pipeline machines it is an
important transformation to make, because the last item written into B may be somewhere inside the pipe¢line,

rather than in the memory, when it is needed, and it cannot be obtained without destroying the pipelining.

1. This particular computation could be rewritten so that it does not require a sequential loop, but we are
interested in general recurrences of this kind, for which no shortcut is possible.
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O data flow machime 10 also an important tansformation, because array references are expensive.

In any case. the programuer should not have o make the transformation by hand -- the compiler
should do i, By doing things this way . the compiler for cach target machine can optimize its code for that

machine. and fewer machine-dependent quirks will be seen in source programs.

I-nd of digression

The original graph is

Fig. 8.8
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We first perform a 4-way unfolding and scale the loop variable
Fig. 8.9
0 [0: BO] A

L AD D

;- I '
' XS (O¢41+1 \

/ (+) \

' A—41+1 '
»

(S (S¢-41+2

(P

(AG—41+2

!

[

.
l -

) S (OF41+3 .
‘ )

{ O )

| )

\ AXt—41+3

{
\ ‘3 @" 41+4 !
! /
\ S ,
! /
\

)
\ m AX— 41+4 //
. G® /
N\ R “ ’
» D TTERTF 7
~~ST{FOR L2 - -

Now common subexpressions are removed in the same unfolded cycle, using the knowledge that we have

about append operators.
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Now a comimon subexpressions -- B[ 417 -- is optimized across cycles, using an auxiliary variable.

Fig. 8.11
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As a final step we might interlace the arrays. We could have interlaced before performing the common

subexpression removal and introducing the loop variable -- in previous examples we did so. The order in

which the transformations are made does not matter.
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9. ARRAY REFERENCES WITH UNKNOWN REFERENCE INTERVAL

This chapter considers the case in which the reference interval is not known prior to exccution because
it depends, from -onc loop cycle to the next, on the ongoing calculation. The techniques to be shown work
well only if the reference interval, while unknown, is known to have a small upper bound that can be
determined at compilation time. If the upper bound is large, many array references will be wasted and the

codc to manipulate arrays will overwhelm the rest of the computation.

Loops for which the reference interval has a small upper bound are important in practice. In fact, the
most important case is that in which the upper bound is oné, that is, the array index increases either by zero or
by one on any given loop cycle. This case includes the programs in which some "pointer” is scanning across
an array and, on any given cycle, either moves on to the next element or stays unchanged.

The most common example of this is the "merge” part of the "mergesort” algorithm:

4% A, B = incoming sorted arrays

%% ASIZE, BSIZE = their sizes

%% AI, BI = pointers for scanning them

%% OUT = array being constructed

%% OI = pointer for constructing it

for AI, BI, OI, OUT = 1, 1, 1, A

do if AI > ASIZE & BI > BSIZE then OUT
elseif BI > BSIZE | (AI < ASIZE & A[AI] < B[BI]) then

iter AI, OI, OUT := AI+1, OI+1, OUT[OI: A[AI]] enditer

else iter BI, OI, OUT := BI+1, OI+1, OUT[OI: B[BI]] enditer
endif

endfor
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Another rather interesting such problem is the "Exercise attributed to R. W. Hamming" in [27]

for A, I, P2, P3, P5 := [1: 1], 2, 1, 1, 1
do if I > N then A

else
let X2 := 2+A[P2] ;
X3 := 3*A[P3] ;
X5 := 5%A[P5] ;

NEW := min(X2, X3, X5)
in iter A, I, P2, P3, P5 :=
A[I: NEW],
I+1,
if X2 <= NEW then P2+1 else P2 endif,
if X3 <= NEW then P3+1 else P3 endif,
if X5 <= NEW then P5+1 else P5 endif
enditer
endlet
endif

"endfor
We will assume that the uncertain_reference interval is expressed as a conditional that chooses one of
several constants as the amount by which the index variable is to be incremented, such as

iter
J := if PO then J+1
elseif P1 then J+2
elseif P2 then J+3
else J %increment = 0
endif
enditer

There are, of course, other ways to formulate it, but they differ from this only in some transformations a
compiler would make to determine the upper bound on the amount of the increment. By making the amount

of the increment a choice of manifest constants, the problem of determining the bound is obviated.
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‘The general case we will consider is that in which the possible values of the increment are unknown but
bounded multiples of a known constant. The latter constant will, of course, be a power of two for
convenience. [t is the reference multiplier, and is somewhat analogous to the reference interval of previous

chapters. The upper bound on the unknown number by which it is multiplied is the reference bound.

For cxample, if the increment is known to be 0, 4, or 12, the reference multiplicr is 4 and the reference
bound is 3. One could, of course, declare the reference multiplier to be 1 and the bound to be 12, but it would

result in very incfficient optimized graphs.

The general technique for handling an unknown reference interval in the presence of loop unfolding is
as follows: The multiple loop instantiations need values from the array for several loop éycles at a time.
When the reference interval was known, we were able to predict exactly which elements would be needed and
to obtain those elements in advance. In the present situation, we can only predict that the needed elements
will come from a certain set, and obtain all of the elements in that set. Then, using the actual values of the
reference interval that become available as the loop cycles progress, we can route thc; correct elements to the

place where they are needed and throw the others away.

Because of the unknown "phase” of the array indices with respect to the loop instantiations, we are
much more likely to require permuters than in the case of a known reference interval: Permuters are needed
whenever the interlace is greater the the reference multiplier. (They were formerly needed only when the

interlace was greater than the product of the reference interval and the unfolding.)

We begin by using the techniques of Chapter 4 as though the loop unfolding were only one and the
"reference interval” of Chapter 4 were equal to the present reference multiplier. That is, we generate the data
flow graph for accessing the element needed by the first instantiation only. This will require a permuter if the

interlace is greater than the reference multiplier.
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Example:

interlace = 8

reference multiplier = 1

reference bound = 2

unfolding = 4, but the initial graph will be made as though it were 1

To get A[ 3] for the first instantiation, we have

Fig. 9.1
A, A A
0 1 7
' !
J —P PERMUTE !
T !
J
8
datum = A[J]

Now, since the unfolding is 4, we need the data for the next 3 cycles. Normally, the datum for the next cycle

would be produced by the same graph as above, but with index J increased by 1.

We might do it this way:
A Fig. 9.2
A A
0 1 7
] I} i
J—H PERMUTE !
T ! T
J+1
8
A[J+1]
and the graph for the datum after that would be
Fig. 93
Ao Al - . . A7
! i) .
J — PERMUTE;!
342 ’ |
8 L4
A[J+2]

Because the reference bound is 2, the datum that we want for the second instantiation could be any of A[J],
A[J+1], or A[J+2]. Since the unfolding is 4, 3 instantiations are needed after the initial one, which could

require any of A[ 3] through A[ J+6]. To avoid long chains of data dependencies, they can all be computed
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in parallel, using just onc permute operator,

Fig. 9.4
A A A A A A A A
0 1 2 3 4 5 6 7
4 i 1 i ! i i i
J —D PERMUTE;!
N J+2 J+4 J+6
8 8 )
J+1 J+3 255
8 B
ALJ] A[J+2] A[J+4] A[J+6]
A[J+1] A[J+3] A[J+6]

This construction, to simultancously access many consecutive (relative to the reference multiplier) items will

be called a multi-select.

Incidentally, it is reasonable to suppose that the operation of computing things like (J+5)/8 and using

the result as a select index will be supported by very efficient hardware mechanisms.

Since we may need A[J] through A[J+6], this construction matches our needs well. The reason is

that, for this case, we have

reference multiplier = reference bound * unfolding = interlace
This is the optimum situation, If the product on the left were greater than the interlace, each slice would have
to go to multiple array operations, just as in Chapter 4. Unlike Chapter 4, however, we still need a permuter.

We always need a permuter when the interlace is greater than the reference multiplier. That permuter must

interlace
referencemultiplier

permute items.

For example, if

interlace = 8

reference multiplier = 1
reference bound = 4
unfolding =
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then this
Fig. 9.5
A, A A
0 1 . . a 7
" l
J—P PERMUTE !
J J+1 J+7
8 8 8.
A[J] A[J+1] A[J+7]

will get A[J] through A[ J+7]. But we nced data up through A[ J+127, so most slices must go to two select

operators.
Fig. 9.6
A A .. A
0 1 . 7
| 4 }
J PERMUTE ;!
A[d] f A[J+1] f
A[J+8] A[J+9]

9.1 Reference Multiplier Not Equal to One

If the reference multiplier is not equal to one, it affects things the same way a reference interval not

equal to one affected things in Chapter 4: The “effective interlace” becomes
interlace '] .. . . .
|- reference multipiier | This is the number of array slices required by the computation.

Example:

interlace = 32

reference multiplier = 4
reference bound = 2
unfolding = 4

We can rescale the loop index, dividing it by the reference multiplier. Let V be the scaled index,soV = J/4.
Then the situation, in terms of V and array slices A,, A,, .. A, looks just like the earlier case with

interlace =8 and reference multiplier=1.
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The "multi-sclect” looks like:

Fig. 9.7
v=3

A A A A A A, A A

0 4 8 12 16 20 24 28
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A[J+4] A[J+12] A[J+20]

9.2 Using Multi-selects to Provide the Data

Recall that the program fragment controlling the index variable look generally like this:

iter J :=
if P1 then J
elseif P2 then J+1
else J+2
endif

enditer

There is some conditional (or huge tree of conditionals) computing the new value of the index by selecting
fixed increments to add to it. Those increments lie between zero and the reference bound, assuming that the
index has been rescaled if the reference multiplier is not 1.

Graphically, this looks something like this:
Fig. 9.8
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These are cascaded as many times as the unfolding requires:

Fig. 9.9

(to 15t
instance)
P (from 15! instance)
(to 2M9)
P' (from 2M)
(to 379)
P'* (from 39)
(to 4tM)

pre (from 4th)

value for next unfolded cycle

Now.the first instance requires A[J]. That comes out of the multi-select easily. The next instance requires
A[J'], whichisA[J], A[J+1], or A[J¥2 ], depending on a computation that uses P. To obtain A[J' ], we
duplicate the same conditional, controlled by P, but with A[J], A[J+1], and A[ J+2] entering it instead of
J,J+1, and J+2.

The result is:

Fig. 9.10

A J
4 _
muiti-select K
¥ v Y
A[J]  A[J+1] A[J+2] GD (2)
IF P

A[3'] | J'
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‘The graph for the entire loop with unfolding of 4 is:

Fig. 9.11
A J '
'L .

multi-select
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1F )A-CTF X IF IF P
A[J'l]
J +D 2
IF 1F P
A[JII']
JCVI + +2
IF pree

value for next unfolded cycle

Unfortunately, this consumes an amount of space that is quadratic in the amount of unfolding.
9.3 Array Appends with Unknown Reference Interval

When a loop needs to "write"” to an array, that is, send the array through append operations, and the
reference interval is unknown, a similar sort of construction is used. For each unfolded loop body there is a
range of array indices into which append’s might take place. Within that range it is not known in advance
which indices will be written to and which will be left unchanged, so a "multi-select” is used to read the
original contents of all elements in that range. Those values are then sent through a network of conditionals
to substitute the new values where needed, and the results go to a "multi-append” to write them back into the
array. The design of the "multi-append" is similar to that of the "multi-select”. The network of conditionals
that inserts the new values is somewhat similar to the network that performs select’s with unknown reference

interval. It, too, has a complexity that is quadratic in the amount of unfolding. It will not be shown here.
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It happens that a general append with unknown reference interval is probably not a useful thing in
practice. 'This is because such a loop, if the reference bound is two or more, must occasionally leave "holes”
in the array. A much morc common situation is the special case of reference multiplier and reference bound
both cqual to one, with the append taking place only on those cycles in which the loop index actually
increases. ‘That is, in any cycle onc of two things happens: Either an clement is added at the index given by
the index variable and the variable is increased by one, or the array and index variables are both left
unchanged. The typical iteration control thus looks something like this:

iter A, J, <other variables> :=
if P then A[J: X] else A endif,
if P then J+1 else J endif,
{other values>

enditer

The graph with no unfolding or interlace looks like:

Fig. 9.12

next A next J

Assuming a unfolding and interlace of 4, we have, in the unfolded loop body, four boolean values P
through P* ' * and four data values X through X' ' '. (For each P value that is false the corresponding X value

will not be used.)
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The graph for this is;

D> (3-d)
mod 4

D > (-Jd) D> (1-3)
mod 4 mod 4

D> (2-3)
mod 4

next A, next A, next A, next A,
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10. DISTRIBUTION AND DECOUPLING OF CONTROL STRUCTURES

1t was suggested in Scction 3.10 that, when inner loop control structures arising from unfolding on an
outer loop are coalesced, they should not force the loops to operate in lock-step, but should, in some cases at
least, allow them to "decouple™. This chapter will show why such decoupling is important, and will suggest

how it might be achieved.
10.1 Multidimensional Data Dependencies and the "Wavefront” Transformation

Consider an algorithm which is a double nested loop creating a two-dimensional array. Each element of
the result depends, in part, on the values of the resul array in the adjacent positions above and to the left.
This implies some sort of upper-left-to-lower-right computation order, which must be expressed in the source
program. The usual way to express it is by explicitly specifying a top-to-bottom and left-to-right "raster scan”
order. It is reasonable to express it the same way in a data flow program, as follows: |

for I, Q := 1, [0: TOP_BOUNDARY_ARRAY]
do if I=N then Q
else
let ROW := for J, R := 1, [0: LEFT_BOUNDARY_SCALAR]
do if J=M then R

else
iter J, R :=
J+1, R[J: A[IJ[I]+Q[1-1][J]J+R[JI~-1]]
enditer
endif
endfor

in iter I, Q := I+1, Q[I: ROW] enditer
endiet
endif

endfor
Of course, a data flow or other parallel computer need not enforce a strict raster scan order, as long as the data

dependencies are satisfied.
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As was indicated in Chapters 6 and 7, the unfolded and coalesced loop instances make a 2-dimensional

matrix. When common subexpressions are combined, data flows through that matrix from upper left to lower

right.
Fig. 10.1
B —) \
SNV g
from loop *0 (+) (+) (+) © to new valucs
variables *{} () 0’0*0 of loop variables

Because of the data dependencies, one would expect the activity in the graph to proceed, approximately,
along a "wavefront" -- a diagonal line that sweeps from upper left to lower right. An instantaneous picture of

the graph might look like this.
Fig. 10.2

these
instantiations
have finished

these have not

If the unfolded loops all operate in lock-step so that none may begin a cycle until all have completed the
previous cycle, the next group of instances may not begin until the current wavefront reaches the lower right
corner. Looking at many blocks of the array (refer to Section 3.12) the boundary between processed and

unprocessed parts must look like this
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Fig. 10.3
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Block B cannot begin until block a has completed.

If, on the other hand, the loops are decoupled, loop instances near the top of a block will be able to start
while instances near the bottom of the previous block are still busy. This is because loop variables near the
top are recycled before those near the bottom, and a loop cycle can begin as soon as its loop variables become

available. The boundary between processed and unprocessed parts now looks like this:

Fig. 104
L L
| T I ! [
F - + }-
b [ o
: ! — A
| I S l |
! O 4

The diagonal part of the boundary slides smoothly to the right, as one would expect in a "natural”

computation. The entire array is processed in horizontal strips, the topmost strip being processed first.
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Depending on the distance over which data dependencies occur among the loop cycles, and on the
amount of unfolding at cach level, the overlap among the groups could be much higher than the example here

shows. The exccution of the decoupled loops could therefore be separated by several entire cycles.

On most vector, pipeline, or parallel processors, the "raster scan” order is not efficient. This is because
those machines cannot handle scquential data dependencies among loop cycles (sometimes referred to in the
litcrature as "recurrence relations™) well, Optimizéxs therefore sometimes re-order the computation so that it
will proceed along a different raster scan, in this case one rotated 45 degrees from the originally specified
order. In this cxample, a program that originally was, in FORTRAN

DO 99 I =1, N
DO 99 J =1, M

becomes, in effect:

DO 99 AA = 1, M+N-1 .
DO 99 I = MAX(1, AA+1-M), MIN(AA, N)
J = AA-I+1
The “coordinates” I and J of the computation space are reparameterized in terms of new coordinates I and
AA. The inner loop proceeds along a diagonal line with no sequential data dependencies, which a vector or

pipeline machine can handle well. The outer loop moves this line (the "wavefront™) downward and to the

right.

This "wavefront transformation” plays an important role in optimizers, such as PARAFRASE [38], for
conventional supercomputers. It is not needed in a data flow system. By allowing loop bodies to decouple, the

wavefront will form naturally.




- 148 -

10.2 Achieving the Decoupling

To decouple the multiple inner loops, we must allow the operators that control the recycling of loop
variablcs to function at different times. These operators arc controtled by boolean control valucs that come
from the test operators that sense when the loop is to terminatc. When the loops werce coalesced, all of the
loop variable recycling operators were put under the control of a single test operator. An cxample of‘ such an
arrangement is the following:

Fig. 10.5
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control

The MERGE and F gates controlling the loop variables are locked into step with each other by the static
firing rules: The =N operator cannot emit a boolean token until all of the operators to which it send tokens
have absorbed the previous token. On the Dennis-Misunas data flow design [26] this is accomplished by
having operators send acknowledgment tokens to indicate that they have absorbed their inputs. Because of

this, the MERGE and the various F gates cannot fire at significantly different times.

To allow these gates to fire at different times, and hence allow the loop variables to recycle at different

times, we can place short FIFO ("first-in first-out™) buffers in the lines carrying the control information.
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The control logic at the left can now run several cycles ahead of the instances, filling the FIFO buffers. The
instances can consume tokens from the buffers at different times, with some instances perhaps running several

cycles (timited by the FIFO capacity) ahead of others.

FIFO buffers can be implemented as chains of identity operators:

Q—O—O—XO—O—0D—

For any but the shortest chains this is a very wasteful way of doing it. There are many ways to implement
these buffers in a space-efficient manner. See [25] for a design for efficient huge FIFO buffers, in the context

of a machine that uses such buffers for difect storage of arrays.

There is another way to solve the problem of lock-step operation -- replicate and distribute the control

structures.
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If a separate copy of the control structure

Fig. 10.7

index
iteration control

is used for each instance, the instances will be able to run with the appropriate timing differences.
Distributing the control structures has another potentially important advantage. It reduces the amount of
communication among geographically separated parts of the program. To achieve high speed and avoid
bottlenecks, it is important for the instances to be executed in different parts of the computer. The
transmission of the index and iteration control tokens (on each cycle) émong the parts can create a heavy load
on the communication system, and may lead to bottlenecks. Distributing the control structure can prevent

this.

Loop control subgraphs such as the one above will probably be very commonplace in compiled data
flow prograxﬁs, and hence it will be useful if such graphs can be implemented efficiently in terms of speed,
processor loading, and instruction space. An instruction set design by Burkowski [13] features some

instruction types designed for efficient implementation of various loop control schemes such as this one.
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I, FLATTENING OF ARRAYS

It has been assumed all along that multidimensional arrays arc interlaced independently at cach level. [t
was further assumed that the shices were themselves to be treated as multidimensional arrays. For example, if
an array X is 4-dimensional and has AXBXCXD interlace, then for cach ain [0, A-1],8in[0, B-1],

yin[0, €C-1],anddin [0, D-1] thereis a slice xaBY5 which is itself a 4-dimensional array.

The bounds of cach slice can be calculated from the bounds of the original array. If the array X

described above has bounds

[Pa, Qul X [Pg. Qg] X [Pc. Qc] X [Py, Qp]

then a simple calculation shows that slice X 5 has bounds

aBy

P,- Q,-a Pe.-B Q-8

A A B

[l' | L % _”X[l— B -||_‘EE‘_”
Pc-y Qv Pp-8 Qp-d

<[22 LI < [T %1 L% ]
If the bounds for the given array X are known at compilation time, the bounds for each slice can be computed
at compilation time. If the bounds for X are defined in terms of quantities that are known only at execution
time, the bounds for each slice can be computed in terms of the same quantities. Furthermore, if the bounds
are known at compilation time modulo the interlace, the computation is much less formidable than the
formula above would indicate. For example, if P A is known to be A*J + 3, where J will not be known until

P,-a

execution, then r J'A_— -l = Jif a23, or J+1 if a<3. (The value of a, the slice number, is always known at

compilation time for each slice.)
11.1 Order of Indices in Flattening

Knowing the bounds, either numerically at compilation time or in terms of computed values, we can
flatten the array. This is done by choosing an index and taking the one-dimensional strips of the array that are

formed when that index varies but all other indices are held constant. There is one such strip for each value
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of the other indices. Choose a second index and lay end-to-end those strips that arise from letting that second
index vary. ‘There is now a collection of longer strips, onc for cach valuc of the remaining indices. Fach strip
has the data from an cntire planc of the array. Choose another index and lay the strips end-to-end again, and

so on. The result is one strip containing the entire array.

We can choose any order of the indices in doing this. For example, if array slice S has bounds

[Up. Val X [Ug, Vgl X [Ug. Vel X [Up, Vgl

it could be flattened into the one-dimensional slice T with

TL(Vp-Up+1) ((Ve-U+1) ((Vg-Ug+1) (1)+3)+K)+L] = S[I, J, K, L]
This order is sometimes called “last index varying most rapidly” and is the order we will generally use. One

could flatten in the opposite order, obtaining R with

RL(Vp-Up+1) ((Vg=Ug#1) ((V-Uc*1)(L)+K)+3)+1] = S[I, J, K, L]
sometimes called "first index varying most rapidly” (the way arrays are required to be organized in

FORTRAN), or in any other order.

We could leave holes in the flattened array by replacing the multipliers (the expreésions like
"V -U.+1") with any higher number. This could be useful if the bounds of different slices were different,

and we wanted to use the same multipliers for all slices.

Knowledge of the bounds on the original slices, whether they be computable at compilation time or

defined in terms of execution time values, can be turned into knowledge of the bounds of the flattened slices.
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11.2 Using Flattened Slices in SELECTs

Fach K-dimensional array slice will presumably be used in select operations, in which the slice will go
through K individual select operators {o yicld a scalar. When the slice is flattened, it becomes a 1-dimensional
array, which therefore needs to go through just one select. The index value for that select can be found from
the correspondence between the original slice and the flattened one. This correspondence is a simple linear

combination, such as

S[I, J, K, L] = T{E-I + F-J + G-K + HL]
where S is the original slice and T is the flattened one. E, F, G, and H are the coefficients, which will, in many

cases, be constants known at compilation time. Then

Fig. 11.1

is transformed into

11.3 Getting Permuters and Conditionals Out of the Way

A few things may cause the original array slice not to go through a series of select operators in the
simple way shown above. Foremost of these is a permuter. The situation is corrected by moving all permute
operators "downstream” past all select operators. This will cause all multidimensional array slices to go
through only selects until a scalar result is obtained before going into a permuter. It has the added effect of
making permuters handle only scalar data. This may be useful in two regards: It avoids reference accounting
problems that could arise from manipulation of array values, and it avoids the possibility of sending array

values from one part of the computer to another in an unpredictable manner. These points will be discussed

in Chapter 15.
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When a permute operator is moved downstream past a row of seleet operators, the index valucs for the

selects need to be permuted to compensate. Specifically,

Fig. 11.2
.ii... R ...(\)Li
J—{ PERMUTE"! must become J—P PERMUTE
v, |
J —P  PERMUTE™!
v
A

This is not always an inconvenience. In many cases the index values going into the selects (the Q, values) are
all the same, so no permutation is needed. In other cases the Q, values are related to each other in a simple

way whose interaction with the permuter can be predicted. For example, this:

Fig. 11.3
I R
V) ) A}
J— PERMUTE!
oo U
is equivalent to
Fig. 114

Bom g
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So the standard multi-sclect of figure 9.4 becomes

Fig. 115
Ao . . » L] - . . A7
J+7 g
8 8
J —9 PERMUTE
A[J] c e e oo A[I+T)

Another thing that nceds to be moved downstream past any select operator is the conditional.

Whenever we have

we turn it into

How easy it is in practice to do this in reasonably general cases remains to be seen.

If these things are done, and no other pathological program structures conspire to make life difficult,
K-dimensional array slices should go only to K consecutive select operators. When this is so, the slices can be

flattened.
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11.4 Creating Flattened Slices

Multidimensional arrays of the sort we are interested in are created by nested loops in which cach loop
level creates once dimension of the array. Using the nesting diagrams of Chapter 5, we require strict

correspondence with no crossing of arrows.

Fig. 11.6
LOOP LEVELS ARRAY LEVELS
outer outer

inner inner

At each loop level, the elements are assembled, one per cycle, into a linear array. Those elements are either
scalars or lower level arrays produced b_y inner loops. We wiil assume that reference interval for creation is
always one. If it were greater, the array would be created with h(;les in it. If less, elements would be
overwritten. A compiler could, in principle, turn these cases into the equivalent cases with reference interval

equal to one.

Now the fact that there is a strict correspondence between loop levels and array levels may be just a

shortcoming of the language we are using. It is certainly possible, in FORTRAN, to write

DO 99 I =1, 10
DO 99 J = 1, 10
DO 99 K = 1, 10
Dog9 L =1, 10

A(K, L, J, 1) = expression
That is, a FORTRAN or other statement-oriented language can fill a multidimensional array with any loop
level/array level correspondence. To do the same in VAL is unnatural because of the applicative nature 6f

the Janguage and the fact that it uses the "vector of vectors”" model for multidimensional arrays. One may
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well be able to design a language that can casily define arrays with any index order. It is not necessary,
however. One could just reorder the indices to match the loop nesting structure and then use the

straightforward VAL, notation. Hence we will assume the array indices correspond with the loop levels

exactly.

The loop at cach level looks something like this:

for I, A := 0, A
do if I=N then A
else
let X := . . . either a scalar or the array
produced by a loop similar to this
in dter I, A := I+1, A[I: X] enditer
endlet
endif

endfor

The graph to produce this is
Fig. 11.7

~N
scalar or graph>,
similar to this

These graphs are of course nested.
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Even if loops arc unfolded by arbitrary amounts at arbitrary levels, cach instantiation looks like this, as
long as the index variable is rescaled and the amount of unfolding is cqual to the array interlace at cach level.
We will ignore for now the possibility that the interlace might not equal the unfolding. Fach slice is produced

by a graph such as the onc above.

Now it happens that, if thc multidimensional array slice is flattened with the last index. varying most
rapidly, the order in which the scalar values are produced by the innermost loop is the order in which they are
placed in the flattened slice. Instead of having the innermost loop create separate rows which the outer loops
assemble into the final array slice, only one linear array is used. The innermost loop simply adds its clements
to that array value. The outer loops pass the result of one inner loop into the next inner loop. Graphically, we

could flatten a two dimensional array slice produced by this loop

Fig. 11.8

two-dimensional slice
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by having it produced instead by this

Fig. 119

— -

scalar v

LI
)
1
]

—_— -
- ——— —

flattened slice

Now the array slice is one-dimensional. Elements are appended at only one level. By passing the slice from
one inner loop to the next, the "rows" that the inner loop would normally produce are concatenated end to

end, as the flattening operation requires. This construction can be used for any number of dimensions.
11.5 Flattening the Control Structure

The part of the above graph that produces the sequence of scalar values can be separated from the part
that assembles them into the flattened array slice. The latter part can easily be seen to function by simply
appending the scalars into the slice in linear order. It clea_,rly doesn’t need to be a nested loop -- it can be

"flattened” into a simple loop.
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We now have

Fig. 11.10

-————— T T T = - \

-~

scalar

flattened slice

The graph on the right is an "array packer”. It is a structure that the hardware should be able to handle very

efficiently. We will return to this structure in Chapter 15.

A special graph structure can also be used for select operators, if the loop nesting matches the array
structure and the reference interval is one at each level. A nested loop that refers to A[I]1[ 3], where I is the

outer loop index variable and J the inner one, might look like this after array flattening;
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Kig. 11.11

Fig. 11.12

0 ' array

The graph on the right is an "array unpacker”. It is also a structure that the hardware ought to be able to

handle efficiently.
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Array packers and unpackers have an interesting property that make them potentially able to save
cnormous amounts of memory space. In certain cases, packer/unpacker pairs can be removed, and an array

can be passed from one loop to another as a stream of scalar values. This will be discussed in Chapter 14.
11.6 Interlace Not Equal to Unfolding -- Alternators

If the interlace is smaller than the amount of loop unfolding, we know that cach slice must go to
multiple select or append operators, cach in a different loop instance.

We cither have

Fig. 11.13
slice slice

= - wy

Using an array unpacker, we have to send the unpacked elements to the separate instances in interleaved

order:

Fig. 1114
L unpacker

to loop instances

This subgraph can be considered a one-input two-output "alternator”. The alternating true and false boolean
tokens can be obtained in a variety of other ways, such as using the low order bit of the index in the unpacker.
In any case, careful attention needs to be paid to boundary conditions to make sure that this starts up in the

correct state.
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Using an array packer, we need a two-input onc-output alternator, like this:

Fig. 11.15
from loop instances

packer

When the ratio of the loop unfolding to array interlace is greater than two, more complex alternators are

required.

If the interlace is larger than the amount of loop unfolding, we have multiple array packers or unpackers
connected to the same loop instance. This problem is also solved with appropriately connected alternators.
These alternators perform a function equivalent to that of the permuters that were used to solve the same

problem in Chapter 4.

In multiple dimensions, when the interlace at the various levels does not match the unfolding at the
corresponding level, the data must go through several layers of alternators, each one designed to correct the

mismatch at that level. The actual structure of such networks can be quite complex.
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12. BOUNDARY CONDITIONS

‘T'he loops considered so far have all been completely uniform in their use of arrays. That is, the

correspondence between loop cycle number and array index has been "affine™:

array index = a - cycle number + S8

where a and B may or may not be known prior to exccution, but are known not to change once the loop

begins.

The results can casily be extended to loops that refer to arrays in a "piecewise-affine” way. A
piecewise-affine correspondence is one that looks like this:
a; - cycle number + Bl.. for vy, < cycle number < v,
array index = a, * cycle number + B,, for 1y, < cycle number < 13
a, - cycl.e. n'm.nber + By, for 1y, < cycle number < v,y
It is important that the number of pieceg (k in the formula above) be fairly small. This is because the size of
the program itself may increase in proportion to k. Recall from Section 1.4 that we are dealing with arrays
much larger than the program size that we couid tolerate. It follows that the number of pieces must be very

small in comparison to the number of elements in the array.

The solution is fairly straightforward in principle (though, like so many things in this report, tedious in
its details): Analyze the array accesses separately for each piece, and generate the appropriate code. Use

conditionals to select the correct code in each piece. For example, something like

= the loop index variable
if I < 50 then 2+1+47 else 4+] endif

ALY

*% 1
J =
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gets translated o

A[2+1+47]
A[4%1]

Al :
A2 :

1 .

if I < 50 then Al else A2 endif

Now, since I is the loop index variable, the appropriate code for A[2#I+47] and A[4*1] may be easily

generated.

Of course, if some of the picces cover only one loop cycle, as is often the case with boundary conditions,
the compiler should recognize that the index variable is a "constant” in the array access for that piece, and

make the appropriate simplification.

The extension of this to nested loops is straightforward.
12.1 Dividing Loops

Another technique that is useful in some cases is to divide the loop into a series of loops, one for each
piece, which are then concatenated to form the original one. Each loop in the series processes only the cycles
of the original loop that correspond to its piece, and passes its final loop variables to the next loop. Within

each loop, array references are purely affine.

This technique is useful when the computations involving the various pieces differ significantly, since
the amount of code that is shared among the pieces is small. Boundary conditions provide a typical example

of this. If we have a loop such as
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forall I in [LO, HI]
construct
if I=LO then P
elseif I=HI then Q
else f(I)
endif

enda]f

1t would be appropriate to translate it as

Fig. 12.1

loop for
[LO+1, HI-1]

Of course, the programmer could have specified this decomposition in the source program, writing something
like
let X := forall I in [LO+1, HI-1] construct f(I) endall

in  X[LO: PJ[HI: Q]
endlet

but the representation as a single forall with a conditional inside seems to be the preferred programming style
in VAL (largely because the explicit decomposition is hard to express with nested forall’s). For this reason,

automatic division of loops is a useful optimization technique.
12.2 Dividing Nested Loops with Muitiple Array References

When several array references (to the same or different arrays) are involved, each of which is in several
affine pieces, it is necessary to divide the loop wherever any of the array references requires it. If one array

reference requires division like this
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Fig. 12.2
La | b_| c |
and another requires division likc this
) Fig. 12.3
@ ] B l ]
the loop must actually be divided like this
Fig. 124
a b : b - c c
a a B B Y

If we have nested loops, and various regions must be divided up so that all references will be affine in each

piece, we must choose a fine cnough mesh in cach direction. For example, if we have a double loop with

these pieces
Fig. 12.5
inner loop
—
B
_outer
loop | a Y
)

The outer loop must be divided into four pieces, and then the inner loops independently divided like this on
those pieces:

Fig. 126
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13. LARGE SCALE PROGRAM STRUCTURE

This chapter will cxamine the applicability of the techniques of array interlace and loop unfolding to

programs in gencral.

Any program whose array references are all picc'cwise affine can be treated by the methods of the
preceding chapters. This needs to be taken in perspective: 1t does nor mean that arbitrarily large amounts of
parallelism can be found, for there may be genuine bottlenecks in the algorithm. It does mean that
bottlenecks arising from array references can be removed. That is, we can remove the apparent bottleneck
that arises from the fact that repetitive array operations seem to pass a single array token from one operation
to another in sequence. To the extent that there is parallelism in the algorithm, the array operations can be

restructured so that they will not prevent that parallelism from being éxploited.

Programs consist of operators, conditionals, and iteration 1oops; put together in an acyclic data flow
graph. (Forall loops are considered to be a special case of iterations.) In the case of conditionals and
iterations, there is a hierarchical structure -- the subgraphs of conditionals and iterations are themselves
acyclic data flow graphs composed of operators, conditionals, and iterations. (The inner mechanism of an
iteration involves cyclic flow of tokens, but, in an abstract structural sense, programs are built out of a

hierarchy of acyclic graphs of operaitors, conditionals, and iterations,)

Every array reference is inside some (possibly empty) nested collection of loops. The index expression
for the reference (or, if the array is multidimensional, each index expression) may depend on one or more of
the loop index variables. Now there are several ways in which an index expression in an array reference might

be badly behaved.




- 169 -

1 1t might not depend solely on loop index variables - there might be contributions from

other calculations that arc unpredictable or "random”.
2 'T'he dependence might not be affine.

3 The loop variables might not have a uniform increment from one loop cycle to the next.

Collectively, these conditions mean that the reference interval is not well defined.

Now a failure in one or more of these conditions might not be fatal. If the failure occurs just at the
boundaries or, in any case, at a very small number of points, we can take those points out of the loop, as
discussed in Chapter 12. The important point is that the vast majority of references depend solely on loop
indices with known reference interval. A few occasional references that don’t satisfy these criteria won’t

matter.

Another failure that is not fatal is a dependence on something that is not a loop index variable with
known reference interval, but is nevertheless known to be a multiple of the interlace. This situation arose in
the periodic cyclic reduction algorithm of Chapter 4. It is why an initial expansion was performed on the

outer loop.

The important point is this: If the index expression of an array reference depends solely on loop
variables with known reference interval, and appropriate amounts of array interlace and loop unfolding are
used, that array reference will not limit the parallelism of those loops. That is, no sequential data dependency
will exist in those loops as a consequence of that array reference. This does not mean that the loops can really

be successfully unfolded -- there might be other sequential data dependencies.

Not all parts of a program can necessarily benefit from this. Some parts are not in loops (or, because

they are boundary conditions, must be taken out of their loops), or are in loops that do not unfold well.
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Not all parts of a program need to benefit from this. The overall performance of a program is usually
determined by once critical part -- usually an innermost loop. The performance of a program on a large
applicative computer will depend on whether loop unfolding and array interlace can be performed on the
critical parts. If onc is very successful at this, some of the parts that had not previously been critical might

become critical. In the limit of extreme loop unfolding, bottlenccks might arise in unexpected places.
13.1 Example -- the Cyclic Reduction Algorithm

The complete cyclic reduction algorithm follows [36, 44]. This solves lincar systems of equations in
which the nonzero elements in the coefficient matrix are permitted only along the main diagonal or the

diagonals immediately above and below it.

The traditional algorithm for solving this problem, sometimes called "LU décomposition", “has
sequential data dependencies whose length is of order N, the number of equations in the system. This makes
it unsuitable for vector or array machings. The cyclic reduction algorithm overcomes this problem. It has
roughly the saxhe numbser of arithmetic operations as LU decomposition, but much larger numbers of them
can be executed in parallel. The longest chain of sequential data dependency is of order Tog(N). This
property of having the theoretical absolut;: minimum computation time much shorter than the execution time

on a sequential machine makes cyclic reduction suitable for data flow computation as well.

The algorithm presented here is very similar to the "periodic cyclic reduction” algorithm presented in
Section 4.9. The earlier algorithm was a specialization of this one for solving Poisson’s equation, with some
extra computation (the manipulation of the scalar "A") to satisfy periodic boundary conditions. The earlier
algorithm manipulated one array: Q. This one manipulates four arrays: A, B, C, and D. It also does more

arithmetic -- the computation of MU, LAM, and RHO.
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%h% .

%%% Solve a tridiagonal system of equations.

%%% :

%%% N is required to be a power of 2.  The incoming vectors

%%%  are:

h%% M[1..N-1] - the diagonal elements of the matrix,

%%% U[1..N-2] - the above-diagonal elements

%h% L[2..N-1] - the below-diagonal elements

%h% R[1..N-1] - the right-hand side.

hE%

%%% This returns the vector [1..N-1], call it X, such that

%h%

%h% M[1] U[1] O o o ... 0 X[1] R{1]
%%% L[2] Mf23 uf2] o o . .. 0 X[2] R[2]
%h% 0 L[3] M[3] u[3] 0O 0 « X[3] = R3]
B%% e e e e e e e e e e e e e cens ceen
%%% 0 0 0 .. L[N-2] M[N-2] U[N-2] X[N-2] R[N-2]
%%% 0 0 0 .. 0 L[N-1] M[N-1] X[N-1] R{N-1]
%%%

%%% This uses the "cyclic reduction" algorithm,

*h%

BhRARLRS RIS RARUALARK DI ALAL RS ARAALLALRRRBRAb U AU RENRERRRAIRRARLT LT %R Teto
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function solve(M, U, L, R: areal ; N: integer returns areal)

type areal=array[real]

%%% REDUCTION

AZ, BZ, C2, DZ :=
for IH, AA, BB, CC, DD :
do - .
if IH=N/2 then AA, BB, CC, DD
else
let
ID := IH*2 ;
NEWAA, NEWBB, NEWCC, NEWRR :=
for J, A, B, C, D := ID, AA, BB, CC, DD
do
if J=N then A, B, C, D
else
Tet
MU := AA[J-IH]*AA[J+IH] ;
LAM := CC[J]*AA[J+IH] ;
RHO := BB[J]*AA[J-IH] :

it

1, M, U, L, R

in
iter J, A, B, C, D :=
J+1ID,
A[J: LAMBB[J-IH]+RHO*CC[J+IH]-MU*AA[J]].
B[J: RHO+BB[J+IH]],
C[J: LAMsCC[J-IH]],
D[J: LAM«DD[J-IH]+RHO*DD[J+IH]-MU+DD[J]]
enditer
endlet
endif
endfor ;
in
iter IH, AA, BB, CC, DD :=
ID, NEWAA, NEWBB, NEWCC, NEWRR
enditer )
endlet
endif
endfor ;
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%%4% SUBSTITUTION

in
for ID, X := N, DZ
do
if ID=1 then X
else
let
IH := 1D/2 ;
NX :=
for J, NNX := IH, X
do
if J=N+IH then NNX
else
let
ALPHA := if J=IH then 0.0 else CZ[J]*X[J-IH] endif ;
BETA := if J = N-IH then 0.0 else BZ[J]*X[J+IH] endif ;
in
iter J, NNX :=
J+ID, NNX[J: (X[J]-ALPHA-BETA)/AZ[J]]
enditer
endlet
endif
endfor ;
in
iter ID, X := IH, NX enditer
endlet
endif
endfor
endlet
endfun

The same analysis that was performed in Seﬁtion 4.9 applies here. The manipulations of arrays A, B, C,
and D are virtually identical to the manipulation of Q in Section 4.9. As in Section 4.9, if we usé a 16 way
interlace on A, B, C, and D, it is appropriate to perform an initial unfolding of 4 on the outer reduction loop
(for values of IH = 1, 2, 4, and 8) and to use various amounts of unfolding on the inner loops. In the
substitution part, it is appropriate to perform a final unfolding of 4 on the outer loop, and to use various

amounts of unfolding on the inner substitution loops.
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13.2 The Fast Fourter Transform

The tollowing program is the complex diserete Fouarier transform over N points, computed by the

Cooley-tukey ("fast Fourier transform™Y algorithm [15]. COSTAB is the table of sines and cosines. The

compiler is expected to remove the apparent record structure of data of "complex™ type.  All arrays of

complex type (e.g. A or AL) are actually two arrays. one carrving the real parts and one the imaginary parts.
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%A%

%%% Complex Discrete Fourier Transform over N points.

%%% N must be a power of 2, and at least 4.

%%% The argument and result are defined on [0..N-17.

%%% INVERT tells whether to invert the transform.

%%% The result is not normalized: it should be divided by SQRT(N)

%%%  to get the true transform.

%%% If INVERT is false, this returns RESULT such that

Th n-1

%%%  RESULT[K] = SUM exp(2+pi*i*jsk/N) ARG[j] for K in [0, N-1]
%%% j=0

%%% If INVERT is true, the argument to exp is negated.

%% This requires 3 quadrants of cosines in COSTAB, defined over:
%% [ -N/4+1, N/2-17, with COSTAB[j] = COS(2+pisj/N).

function DFT(ARG: array[complex]} ; COSTAB: array[real] ; N: integer ;
INVERT: boolean returns array[compiex}) ' v

type complex = record[re, im: real] ;

for Z, A := 1, ARG ;
do
if Z = N then A
else
let
NEWZ := Z+2 ;
AL, AH :=
forall L in [0, N/NEWZ-1], J in [0, Z-1]
P := A[ZsL+3] ;
Q := A[Z=L+J+N/2] ;
SO := COSTAB[N/4-J=N/NEWZ] ;
S := if INVERT then -S0 else SO endif ;
C := COSTAB[J»N/NEWZ] ;
QWre := Q.re*C-Q.im*S ;
QwWim := Q.re*S+Q.im*C ;
construct
record[re: P.re+QWre ; im: P.im+QWim],
record[re: P.re-QWre ; im: P,im-QWim]
endall ;
NEWA := forall K in [0, N-1]
construct :
if mod(K, NEWZ) < Z then AL[K/NEWZ][mod(K, Z)]
else AH[K/NEWZ][mod(K, Z)]
endif
endall ;
in
iter A, 7 := NEWA, NEWZ enditer
endlet :
endif
endfor
endfun
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If we assume that the input and output arrays have 8 way interlace, it is uscful to perform an initial
unfolding of 3 on the outer loop, since the optimal structure of the inner loops is different for

Z = 1, 2, and 4. The interlace and unfolding of the forall loops are as follows:

First outer cycle, Z = 1:

A interlace = 8, size of cach slice = -g-

AL, AR interlace = 4 * 1, siz¢ of each slice = %* 1
Since size of slice in second index is one, it is not really an array, and thc slices can be considered
to be onc-dimensional.

Unfolding of forall creating AL, AR is 8 * 1
Since the inner loop has only one cycle after expansion, it is removed.

Unfolding of forall creating NEWA is 8

Second outer cycle, Z = 2:
A interlace = 8, size of each slice = %

AL, AR interlace = 2 * 2, size of each slice = -:-* 1
Since size of slice in second index is one, it is not really an array, and the slices can be considered
to be one-dimensional.

Unfolding of forall creating AL, AR is 4 * 2
Since the inner loop has only-one cycle after expansion, it is removed.

Unfolding of forall creating NEWA is 8

Third outer cycle, Z = 4: '
A interlace = 8, size of each slice = %

AL, AR interlace = 1 * 4, size of each slice = %ﬁ 1
Since size of slice in second index is one, it is not really an array, and the slices can be considered
to be one-dimensional.

Unfolding of forall creating AL, AR is 2 * 4
Since the inner loop has only one cycle after expansion, it is removed.

Unfolding of forall creating NEWA is 8

Later outer cycles, Z > 8:
A interlace = 8, size of each slice = %

AL, AR interlace = 1 * 8; size of each slice = fz- *%“
Unfolding of forall creating AL, ARis 1 * 8

Unfolding of forall creating NEWA is 8

AL and AR slices, being two-dimensional, are flattened.
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No permiaters are required anywheres and the worst case of an array slice being used in more than one
operation occurs when Z is 1,2 or 4 In the forall that ercates AL and AR. those array slices go through two

append’s in cach cyvcle.

Ihe remaining array reference that needs 1o be considered is the select reference to COSTAB. If
COSTAB has an interlace of 8. no penmuters will he needed, but, except for the fast few cyvceles of the outer
loop. only slice zero will be used. Since the forall that makes reference to COSTAB is unfolded 8 ways. slice
zero needs to go 1o 8 select operators. The bottlencck implied by this can be removed by using 8 copics of the
slice, onc for cach unfolded loop instance. Since COSTAB is a constant array. it is casy to provide multiple

copics.



178 -

14. PIPELINING AND ARRAY REMOVAL

Itis very common in an iteration loop to have the computation of the termination condition not depend
on the outcome of the bulk of the computation, and the data paths from any valuc of any loop variable to its
next value be very short in comparison to the bulk of the computation. When this happens, a very useful

form of "decoupling” may be possible.

The first criterion is satisfied by, among other things, any loop that is controlled by a counter, such as

for I, X, Y := 0, <other initial values>
do if I=N then <values to return)
else iter I, X, Y := I+1, <other new values> enditer

endif
endfor

Any forall loop is clearly of this form, for example.

The graph for this is

a b,

other T~
' computauon) \

Fig. 14.1

The signiﬁcance of this situation is that the flow of tokens through the control operators can proceed far
ahead of the rest of the computation. The control computation for the entire loop could complete before the
bulk of the graph completed its first cycle. The control part of the loop can "decouple” from the rest ;)f the
.loop, in the same manner as was discussed in Chapter 10. ‘As in that chapter, FIFO buffers are required to
hold the boolean tokens that have been created by the control part but not yet consumed by the bulk of the

computation.
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The other criterion is that, althm@h some computation paths may be long, the cyclic paths through
which loop variables must pass arc cach relatively short. That is, the dependence of a "next” value of a loop
variable on the "present” value of that same variable is simple, although its dependence on the present values
of other loop variables might involve a lengthy computation.

The prototypical examples of such loop variables are the array unpacker:

Fig. 14.2
incoming array
t

iteration

control
from
control
section

index

data
and the array packer:
Fig. 14.3
A
t

iteration

control
from
control
section _ data

index

final result array

If these two (or any other subgraphs with short cycle paths) are connected so that déta from the
unpacker goes through a lengthy computation and then to the packer, it may be possible for the unpacker to
run many cycles ahead of the packer. The control section must be independent and able to run at least ahead
of the unpacker, and there must at least be a FIFO buffer to store the control tokens that the packer has not

yet consumed. The results of the extra unpacks can then be pipelined through the main body of the
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computation. That is, several "waves™ of tokens can be in transit through the graph simultancously. The
acknowledge rules of the static data flow computer will maintain an orderly flow. This pipelining can

improve the throughput/instruction space ratio of the system tremendously.

The capability of the graph to allow this pipelining is heavily dependent on many aspects of the graph's
structure. Programs that support this pipelining are referred to as "pipe structured” and are examined in [25].
The ability to support pipelining can often be enhanced by inserting null operations in strategic places, an act

known as "balancing”. This is examined in [32].

To support pipelining, the graph must have the property that no operator or subgraph may have a long
latency (time that elapses from the instant a token enters it until the corresponding result emefges) unless that
operator or subgraph itself supports pipelining. Individual operators have short latency, but subgraphs that
are iterations typically do not, and iteration loops, viewed from the outside, do not support pipelining. That
is, a loop of one hundred cycles cannot accept a second wave of input tokens to start its second hundred cycles

until it has at least started the hundredth cycle from the first wave. Any loop nested inside the outer loop in

question would therefore appear to render pipelining of the outer loop impossible.

This problem can be overcome by interleaving the entire inner loop. Suppose the inner loop has a
latency of 80 microseconds, but we want a new cycle of the outer loop to start every 10 microseconds. A token
must pass each point of the buter body every 10 microseconds, but a token can enter a copy of the inner loop
only every 80 microseconds. We can use 8 copies of the inner loop (expensive, but we get the performance
that we pay for) whose inputs and outputs are con_mected through alternators. Alternators were described in

Chapter 11. The alternators can be visualized as 8 position rotary switches:
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Fig. 144

inner inner inner
loop loop oo

o

Every incoming token goes through the upper switch into one of the inner loops, and that switch
advances to its next position. When the lower switch receives a token along its selected line, it passes that

token along and advances to its next position.

Of course we want all instances of the inner loop to be as efficient as possible, which may require

pipelining them, as well as the usual unfolding.

A nice property of the pipelining that can occur in a data flow computer is that it doesn’t need to be
worked out precisely in advance the way it does in "systolic” systems [39]. If FIFO buffers of approximately
correct size are put into the correct places, pipelining will happen naturally. Minor mismatches m the running
speeds of the various pafts will not cause serious problems. If some transient irregularity occurs (an
arithmetic exception may occur somewhere and need to be corrected) the natural load balancing ability of a

computer with many independent processors will smooth the computation out.
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14.1 Array Removal

It may happen that array packer/unpacker pairs can "cancel” cach other. If onc is diligent and
fortunate in putting all array references in the form of pack and unpack modules, then arrays will only be
created by packers, and they will only be consumed by unpackers. The two modules will be found only in

pairs, with an array token passing from cach packer to its unpacker. The pairs will look like this:

Fig. 14.5

iteration scalars
Toop

array
iteration scalars

Toop

The packer came from the upper iteration, and its control section was extracted from that of the
iteration. Likewise, the unpacker came from the lower iteration. Now, if the unpacker expects an array of the
same size as the one that was created, the packer/unpacker pair are just a conduit for scalar tol;ens. That
conduit has memory (obviously?) -- it is able to absorb all of the incoming tokens from the upper loop before

the lower loop is ready to accept any tokens.

Under what circumstances is this memory unnecessary? If there is some other data dependency from
the final result of the upper loop to the start of the lower loop, then the entire array must be stored before the
first element is unpacked. In this case the memory is clearly necessary. - However, if there is no such
dependence, the two loops can cycle simultaneously, and the pack/unpack pair can be eliminated. The b
control structures of the two loops might even be coalesced into one. The question of when two loops can be

made to run in step with each other is the same question that arose in Section 8.2.
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Onc might ask: What kind of program would have two loops that could have been coalesced but run

scquentially instcad? Why would anyone write

Y := forall I in [LO, HI] construct A[I]J+B[I] endall ;
Z := forall I in [LO, HI] construct Y[I]/Q endall ;
when
Z := forall I in [LO, HI] construct (A[I]+B[I])/Q endall ;

would do just as well? The answer lics in the realm of software engineering. It may be that using two loops,
creating an "obviously unnecessary” intermediate array and then immediately consuming it, can make
programs easier to understand in some cases. Programmers presently know from experience that such

intermediate arrays are wasteful, and they carefully avoid such waste.

The excess arrays are only wasteful in conventional systems thét cannot remove them by optimization.
When systems are used for which there is no efficiency penalty for different ways of expressing an algorithm,

perhaps algorithms will be expressed in ways that are easier to understand.
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15. CONSIDERATIONS OF MACHINE DESIGN

"This chapter will discuss a few points relating to the design of an efficient instruction sct for a data flow
computer. The design issuces in a data flow computer are of course complex and diverse. Most of them are far
beyond the scope of this thesis. The present discussion will be restricted to just thosc issues that relate to

cfficient processing of arrays, and a bricf point about pipelines for boolean values.

In the following, "array” means array slice. That is, we are discussing arrays as scen by the hardware

itself, as opposed to the arrays that appeared in the original source program.

A generality/efficiency trade-off is pervasive in the handling of arrays. In the most general case, arréys
are dynamic, that is, their size can increase unpredictably during the computation. The array "tokens” can be
duplicated or destroyed unpredictably, so their reference counts (see below) can take on arbitrary values.
Append operations can be performed when the reference count is more than one, which requires that the
underlying mechanism copy the entire array. (The necessity for this will be discussed below.) Finally, array
tokens can be sent through permuters and other control operators to arbitrarily distant parts of the machine.
When such a token then enters a select or append operator, the place where the operation must be performed
may be far removed from the place where the array is stored, which leads to a great deal of mmmunicaﬁon

through routing networks.

The type of computer that can handle this is complex indeed. Rough designs for such machines have
been formulated [1, 3], but they are not efficient enough for numerical supercomputation with existing
technology. We will assume here that such uncontrolled situations do not arise in the computations of

interest, and will examine the type of machine that can take full advantage of that fact.
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15.1 Array Localization and Management

In an applicative system, local processing of many small arrays throughout the system is the ideal way to
proceed. A major objective of the preceding chapters was to develop data flow graphs in which arrays are
processed in small subgraphs. Idcally, cach array token spends its entire lifetime in .;)uch a subgraph. 'This
lifct'ime usually consists of the allocation of a block of memory somewhere, the filling of that block in a fairly
standard type of loop containing append operators, the reading of that array, usually in another standard loop
containing select operators, and finally the release of the array’s storage when its token disappears inside some
control gate. There are many variations of this, but the general goal is to restrict eacﬁ .array token to a
localized subgraph during its entire lifetime. The reason for doing this is to allow all select and append
operations to be executed in hardwaré units that are physically and logically close to the memory unit in

which the array is stored.

“This local processing of arrays can and should be reflected in the hardware. The subsystems of the
machine that handle arrays are replicated many times over. Ideally, each array token spends its lifetime 'in just
one such subsystem. That subsystem contains the memory devices (e.g. RAM’s) in which the array is stored.
The mapping, performed by the compiler; from the data flow graph onto the machine includes an gssignment
of each array-handling subgraph onto an array-handling subsystem. It is desirable that array tokens not be
allowed to travel very far. In particular, they should not move from one array-handling subsystem to
another -- otherwise there will be an enormous amount of traffic in the communication network as data items
are fetched in one subsystem for use in another. This is the reason that, in Chapter 11, we attempted to

minimize the passage of array tokens through such things as permuters and conditionals.

It is reasonable to assume that the memory blocks to which array tokens correspond are allocated
dynamically. That is, each array subsystem has a dynamic memory management mechanism. When a token

is created (by the operation that we have denoted in graphs by the symbol A) a suitably sized block is taken
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from a "frce storage pool”. When that token is no longer nceded its block is returned to the pool.
Completely static allocation, in which cach array token in the data flow graph is assigned a specific location in
the memory of its array subsystem prior to exccution, could also be used for a restricted class of programs.

This does not scem worthwhile, since the overhead incurred in dynamic allocation should be quite small.
15.2 Reference Counts

‘There are two common methods for handling memory management: In the garbage collector method,
unused blocks of memory are located through a specific procedure, called garbage collection, when the free
storage pool becomes empty. This is done by tracing all blocks of memory that are in use. This method can
be quite complicated, especially in a machine in which array tokens can pass through routing networks. It is
generally used only when memory references can be circular and thg simpler reference couniing scheme will

not work.

In the reference count method, the system knows at all times which blocks are in use, and returns each
block to the free storage pool as soon as it ceases to be in use. This information is ger;erally stored in the form
of a reference count, which is the number of references to that block. There is a reference count associated
with each block. The reference count must be carefully manipulated whenever any operation is performed
that changes the number of references. The reference counting method is simpler than garbage collection,
but does not work if circular lists can be made. This is because a circular list could be isolated, that is, have no
references into it from the rest of the computation, but still have nonzero reference counts because of the

mutual references within the list. Such lists cannot be created in an applicative system, so reference counting

is the method of choice.

In a data flow graph, each token containing an array value counts as a reference to that array. If arrays
can be stored in arrays, each storage of an array in another array also counts as a reference. Since we assume

that arrays are flattencd, this does not occur, so we need not consider it further, It is not a serious problem in
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-any case.

Every time an array token is duplicated in any opcration, such as sending a result from one operator to
several destinations, the count must be incrcased. Every time an array token is destroyed, the count must be
decreased. If it goces to zero, its space must be reclaimed. The principal operations that destroy tokens are the
"true” and "false” gates uscd in conditionals and iterations. In fact, it is the gate in an iteration that causes a
token to disappear after the last cycle, if that array is not being passed on to some other part of the graph. The
other possible operation that destroys an array token is the select operator. Since an array token enters but
only a scalar leaves, it effectively destroys its reference. As will be seen later, i; is useful to redefine this

operator so that it preserves its array token.

The reference count plays another very important role in an applicative system. Throughout this thesis
we have treated the append operator as though it were a simple thing -- no more complex to perform than the
"subscripted left-hand-side” array writing operation of conventional systems. This is not really true. In an
applicative system, no value, array or otherwise, is ever allowed to "change". Instead, new values are created.
The append operator must, in general, copy its entire array argument and modify only the copy. In an efficient

computer this is, of course, atrocious.

The trick that saves the day is that, if the incoming array has reference count equal to one, that array
would be discarded and its space reclaimed right after the copy is made. That being so, the new array might
as well use the same space. So, if the reference count is one, the append operator can write the new data in
situ, making it as simple as we h.;we been quming. An applicative operation can be made out of

non-applicative actions.
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15.3 Pseudo-reference Counts

A straightforward implementation of the reference count scheme would have the count for cach array
stored in the actual memory along with the array’s data. When an array is created (that is, an array token
proceeds forth from a A node) its count is set to one. All operations through which i-t can-pass increase the
couﬁt if they send the token to multiple destinations. (In a static data flow graph thé number of destinations
is an unchanging property of each node.) A "T" or "F" gate decreases the count if it destroys the token,
which depends on the value of the boolcan control token. A select operator always decreases the count. Any

time the count is decreased, the result is checked. If it is zero, the array’s storage is reclaimed.

All of these reference count manipulations are expensive. The number of memory references to change
the count could exceed the number of references to the data. They are also unnecessary, in most cases. With
a little extra care, the graph can be constructed so that the referenqe count of a token at any point in the graph
is known to the compiler, before execution begins. In fact, it can be known to be equal to one, which will
permit in situ append operations. By having the compiler compute “pseudo-reference counts”, the program
doesn’t need to compute actual counts during execution. Operations to ;eclaim arrays can be inserted into the

graph at the points that the compiler determines that the count would have gone to zero.

In the simple cases, the reference count is known to be one throughout a loop that creates an array. The

standard such loop is:
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Fig. 15.1

condition

data
index
result

The "array packer” is of this type, as are many array-filling loops.

This loop can easily be seen to leave the reference count equal to one at all times, and yield as its result
an array with reference count equal to one. Consequently, no run-time manipulation of reference counts
needs to be performed, and an in situ array write can be performed for the append. If the initial aﬁay came in
from some other computation with reference count equal to one, the situation would be the same.

If the array must pass through more than one append, as it must if the interlace is less than the product
of the loop unfolding and the reference interval, the reference count is still preserved as the array passes

through the append’s in sequence.
Now consider a loop that reads from an array with select operators:
Fig. 15.2
condition

index

data
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This obeys the reference count rule in spirit but not in fact: ‘The token is duplicated just before the
select operator. ‘The select operator then reads from the array and destroys the array token, reducing the
count back to onc. A little thought will show that this is quite typical of array rcading operations: When an

array token gocs into a select, it typically will be used again, so it must have been duplicated.

The excess reference count manipulations that are implicd by this style of select can be avoided if the
operator is redefined to have a second output arc. That arc emits the same array token that entered. Instead
of duplicating the token and sending one copy to the select and kecping the other copy for later use, the

correct procedure is to send the single token into the select and use the copy that it emits for later operations.

‘ Fig. 15.3
Now instead of this we have this

array array
MQ— index index
scalar scalar
array array

If the array must go to more than one select, as it must if the interlace is less than the product of the loop
unfolding and the reference interval, it should go through these modified select’s in sequence, thereby

preserving the reference count.
15.4 The "Create"” and "Reclaim" Operators

An array is destroyed, and its memory space reclaimed, when its reference count goes to zero.
Assuming that the reference count is known to be one during the array’s lifetime, this typically occurs at the
end of a loop when the control value directs a gate to dispose of the token. Instead of having the gate take

care of reclaiming the space, we can have a special operator do the job.
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Fig. 154
instead of ' wc have

condition condition

index reclaim index

data
data

* This operator discards its token
when the control value is true, so it
must reclaim the array, which

requires interaction with the
memaory system.

To create an aﬁay, some sort of create operator is appropriate, which could take a numeric argument
telling how big a block of memory to allocate. Of course a well-rounded computer should be able to handle
dyna}nic arrays and allow the allocation of an already existing array to increase beyond any predicted size, but
in most cases the size can be predicted. Array creation with a predicted size is certainly a situation tl_1at the
system should be able to handle efficiently. The prediction might be a constant, or might be the result of a

previous computation.
15.5 Fully Static Allocation

In many cases, an outer loop repeatedly causes an array to be created, used in an inner loop, and
- reclaimed. If the compiler can determine that the array is of the same size each time and that the next create
operator does not need to act until after the previous reclaim, the reclaim/create pairs can be combined, and
the same array token used repeatedly. Such transformations point the way toward fully static array allocation,

a technique that is certainly efficient but not very general,
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15.6 The "Pack" and ';Unpack" Modules

The array "packer” and "unpacker” are the prototypical modules for manipulating arrays. A "packer”

for N items (where N is cither constant or computed during execution) is, in full detail:

Fig. 155
create
t
data
| (N tokens)
result ’
An "unpacker” is
Fig. 15.6
0
t M t
+1

data
(N tokens)

The complexity of these subgraphs makes the point of this chapter: The "packer" and "unpacker” are
probably the most common modules that manipulate arrays, but, if built out of the standard data flow
operators, are far too unwieldy. A good machine design should support these operations with great efficiency
in both time and space. Ideally, each of these ‘subgraphs could be compressed into a single operator.
Burkowski’s inétruétion set [13] can compress the control pafts of these graphs into efficient operators, but

does not take the array operations themselves into consideration.
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15.7 Boolean Pipelines

As discussed in Chapters 10 and 14, there are many places where it is useful to allow different parts of a
loop to "decouple”, letting the loop control section run several cycles ahead of some parts of the loop. This
requires FIFO buffers in the lines between the control section and the rest of the loop body. Those lines go to
"I, "F", and "MERGE" operators. It follows that a compiled program will have many such opcraltors with
FIFO buffers. Since the data in the buffers is of boolcan type, the buffers really don’t need much space. A
good instmction sct might arrange to have these operators, without taking up too much extra space, function

as though they had built-in FIFO buffers of modest length.
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16. CONCLUSION

We have seen how a number of program optimizations may be performed that, for many programs,
should lead to extremely efficient exccution on a suitably designed and sufficiently large computer. Many of
the optimizations are “"parameterized” -- they depend on choices of the degree of loop unfolding and array

interlace. How might an optimizer make these choices, and how can we predict how well they will work?

An adequate theory of how well programs will perform under transformations of this type does not
exist. The performance of a program on a parallel computer of the type we are considerin.g may depend very
strongly on seemingly minor points of data dependency. Programmers are not yet fully accustomed to
thinking in terms of these points, so perhaps a detailed theory that would apply to a large class of programs is
inappropriate at this time. The class of programs for which such a theory would be profitable has not been

characterized in a useful way.

A great many programs have been analyzed, of course. However, the class of programs expressible in
most languages is so rich that the problem seems intractable, at least at present. The best execution-time
organization of a program, and the optimum values of the unfolding and lookahead, are somewhat "random”

functions of the structure of the program.

We propose the following approach for an operational compiler: Very approximate values will be
chosen for the parameters (unfolding and interlace) based on the need to match unfolding to interlace and on
the constraint of total machine size. These values will then be refined, that is, the parameter space will be
searched for nearby points that might yield better performance. The estimated performance at each point will
be calculated from such thingsfas the lengths of critical instruction chains and the number of éycles executed
in various loops. The size of the unfolded program must also be estimated, to be sure it will fit in the -

computer. If these estimates can be made more accurate by using detailed knoWledge about the computer’s
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structure (relative speeds uf‘ floating point and fixed point instructions, behavior of the scheduler, behavior of
interconnection networks, ctc.) so much the better. Such detail is probably unnccessary, however. It could
lcad to the cxpenditure of more computation to optimize the program than to run it. Also, since the
paramecters are adjusted by factors of two, changes in performance should be quite noticeable and not require

accurate measurements for their detection.

Using a very simple measurc of efficiency, an optimizer should be able to find a point in the parameter
space that will lead to rcasonably nearly optimum performance. Exactly optimum program organization is
unattainable without fully simulating the program. This is because events that depend on the data at
execution time, such as arithmetic exceptions, can determine when certain parts of the program will be
executed. Determination of the amount of the computer’s resources to dedicate to these pané depends (l)n the

frequency with which these events will occur.

Given that the optimizer uses this "experimental” approach, the efficiency of an optimized program
may depend, in perhaps unforeseen ways, on subtle details of the algorithm. A s;nall change in the data
dependencies specified in thg program might not greatly affect the total efficiency, but it might greatly alter
the parameters required to obtain the best efficiency. This is certainly a less than ideal situation, but it is not
unlike the situation that presently exists in conventional systems. There is considerable "folklore" about the
best ways to code various algorithms in various languages on various computer systems. A similar folklore
might arise in the world of applicative numerical programming. There is some cause for optimism that this
folklore will be more fundamental and less machine dependent than the corresponding knowledge about
conventional systems. It is also likely that this_knpwledge will be able to be incorporated in a systematic way

into future optimizing compilers.
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