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ABSTRACT 

This thesis presents four new algorithms to route noncrossing power and ground 
trees in one metal layer of a VLSI chip. The implementation of the best algorithm forms 
MIT's Placement-Interconnect (PI) Project's power-ground routing phase. The input 
to this power-ground algorithm is a set of rectangular modules on a rectangular chip. 
Because of bonding limitations, the pads are placed along the chip's perimeter, while 
the logic modules are placed in the interior. In constructing the power-ground layout, 
the algorithm first lays a ground ring between the pads and the chip's perimeter, then 
a power ring between the logic modules and the pads. Next, a tree of wires connects 
the ground pad with the logic ~odules' ground connection points. Then, starting at 
various points on the power ring, several branches of wires connect the power ring to 
the logic modules' power connection points. A tree-traversal algorithm then uses the 
modules' current requirements to determine how much current will flow through each 
power-ground wire during the chip's operation. An algorithm then widens each wire to 
the width appropriate for carrying that current. 

Keywords: power-ground routing, VLSI chip layout, design automation, graph algorithms 
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1. OVEHVIEW 

1.1. Summary of rcsult.s 

This thesis pres~nts new algorithms that route power and ground wires to the 

modules of a custom-designed VLSI chip. The algorithms produce two noncrossing, 

interdigitated trees of metal wires, each wire being wide enough to carry the current 

that will flow through it during the operation of the chip. The LISP implementation 

of these algorithms forms one part of the Placement-Interconnect (PI) System under 

development at Massachusetts Institute of Technology. 

1.2. Problem definition 

The general power-ground problem is to lay wires that connect every power 

connection point on the modules to the power pad(s) and every ground connection 

point to the ground pad{s). Each wire must be wide enough to carry the current that 

will flow through it during the operation of the chip. Any layout that meets these 

specifications is a solution to the problem. 

The power-ground problem is part of the larger problem of automating chip layout. 

Developments in VLSI technology have greatly increased the number of modules and 

nets on a chip. The time and complexity of laying the wires that interconnect the 

modules have aroused interest in automating the layout process. 

This thesis mostly deals with the design of layouts for chips that have one power 

pad, one ground pad, and one metal layer. However, Section 1.7, paragraph 4, describes 

how multiple power-ground pads could connect to the rings that route the signal pads. 

Electrical considerations make it highly desirable to lay the power-ground wires 

entirely in the metal layer. For example, reliable connections are particularly important 

in the power and ground nets because proper operation of the chip components depends 

critically on a stable voltage difference between power wires and ground wires. Also, 

the amount of current in the power-ground wires is often large. A layout of metal wires 

provides more reliable connections and can handle larger amounts of current than . a 

layout of wires that shift between layers. 
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On the other hand, with only a single layer of metal available, using only metal 

imposes the restriction that wires of one net cannot cross those of the other net. For 

one wire to cross another without connecting to it, the first wire would have to shift 

to another layer, run under the other wire, and then shift back to the original layer. 

The metal area taken up by power-ground wires should be as small as possible. 

The reason for this is that decreasing chip size is one goal of VLSI design, and wires 

take up so much of the chip area that decreasing wire area significantly decreases 

chip size. Also, using less metal area for power-ground routing leaves more for signal 

routing, enabling the signal-routing algorithms to run more efficiently and produce 

better results. 

Describing a specific power-ground problem instance involves describing the 

modules, power net, and ground net of the chip. A module is a collection of various chip 

components. For the power-ground problem, the most important facts about a module 

are the size and location of the rectangular region it occupies, the amount of current 

it will use, and the locations of its connection points. A connection point is a point, 

usually on the module's perimeter, where the module can connect to wires outside the 

module. A power connection point should connect to a wire running to the power pad, 

and a ground connection point should connect to a wire running to the ground pad. 

The power net is a set of connection points that are to be connected by wires in the 

power-ground layout. These power connection points lie on all modules of the chip. 

The ground net is the set of all ground connection points. Chapter 3 describes in more 

detail the facts, forms, and assumptions in a description of a specific power-ground 

problem. 

When regarded as a problem in graph theory, the power-ground problem is the 

problem of finding two short, noncrossing Steiner trees in the plane. In this model, 

connection points and wires are equivalent to points and edges in the plane. An 

edge's cost is defined to be the amount of metal used by the corresponding wire. The 

power-ground trees are regarded as Steiner trees because the fabrication technology 

allows connections between wires at locations other than modules' connection points. 
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1.3. Approchcs to the power-ground problem 

Chapter 4 presents other researchers' work on the power-ground problem. Syed 

and El Carnal keep the power and ground trees from crossing by imposing traffic rules 

governing where wir~s may run in each channel. Rothermal and Mlynski grow the 

power tree from one side of the chip and the ground tree from the other. Lhota studies 

the related problem in graph theory of finding two noncrossing spanning trees. His 

"Saran-Wrap" solution produces trees within 3/2 of optimal. 

Chapters 6 and 7 present the main original results of this thesis. Four new solution 

techniques arose during this research in the power-ground problem. With respect to 

the goals of running cfficicnt.ly and producing high-quality output, the fourth solution 

technique seems to be the best. The four techniques are: 

• Routing one tree, then routing the other tree without crossing the first, 

then modifying both in an attempt. to find shorter trees. 

• Routing the two trees in parallel, one branch at a time. In deciding which 

branch to route next, this technique looks ahead and routes the trees so 

that the final result will be short trees. 

• Keeping the two trees from crossing by drawing a Hamiltonian cycle 

through the modules, routing one tree inside and the other outside the 

cycle. 

• Using bus rings to connect the pads, then routing one tree to the logic 

modules, then routing a forest of small trees to the logic modules. 

1.4. The Placement-Interconnect System 

The Placement-Interconnect (PI) Research Group under Prof. Ronald Rivest at 

Massachusetts Institute of Technology is developing algorithms to solve theoretical and 

practical problems that arise in designing chip layout. This group's work is described 

in [RI82]. This group's goal is to automate the entire placement and interconnect 

phases of chip design, producing high-quality output with a minimum amount of human 

interaction. The chip design follows the simplified rules of Mead and Conway [MCSO] 
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as applied to standard single-layer metal, n-channcl metal-oxide-semiconductor (nMOS) 

fabrication technology. In this thesis, PI cefcrs to a computer system developed by 

this research group that implements the algorithms to do module placement and 

interconnect. 

The input to PI specifics a set of rectangular modules and a set of nets. The input 

information for ca.ch module is the module's dimensions, its current requirements, and 

the locations of its connection points. 

To produce the final chip design, PI goes through four steps: 

• Placing t.hc modules (including the pads) on the chip. 

• Routing the power and ground nets. 

• Routing the signal nets. 

• Compacting the placement of the modules and wires to reduce the chip's 

size. 

This thesis describes algorithms developed for Pl's second phase, which routes 

the power and ground nets. This phase occurs after PI has placed the modules and 

before it has laid any signal wires. The power-ground algorithms '·are eompktible with­

the rest of PI, work within its restrictions and assumptions, and use its data base 

and algorithms. Therefore, many aspects of PI, such as its signal-routing techniques, 

have greatly influenced the form and scope of the power-ground algorithms. Chapter 5 

describes PI in more detail. 

1.5. Similarities between power-ground routing and signal routing 

Power-ground routing is in many respects like signal routing. In both routings, 

wires connect a set of connection points on various modules. Doth routings have the 

goal of keeping the wire area small. In PI, both routings route a net by laying a short 

Steiner tree of wires that spans the net's connection points. 
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Dr. Alan Baratz designed PJ's algorithm that constructs the Steiner trees. A more 

detailed description of thi~. algorithm is in Section 5.4.2 and a full presentation is in 

[B8 I]. To route a net with n connection points, the algorithm builds a graph where 

each connection point is represented by a vertex. It then adds to this graph vertices that 

represent intermediate points lying in free, unoccupied regions of the chip (sec Section 

5.4.2, paragraph 4, for the exact placement of these points). The distance between a 

pair of vertices reflects the distance between the represented points. There are initially 

n basis groups, each consisting of one connection point vertex. 

Paths are made to grow simultaneously in all directions from all basis groups. For 

each basis group, the path grows by adding the vertex that is closest to that basis 

group. In this aspect, the algorithm is similar to Dijkstra's algorithm for finding a 

single-source shortest path. 

As soon as two paths meet, forming a bridge between two basis groups, the vertices 

of the two groups plus the vertices· along the bridge form a new basis group that 

replaces the two old ones. In the next step, paths grow from each of the n -1 remaining 

basis groups. The process repeats until there is just one basis group. Reconstructing 

each bridge that connected two basis groups builds a Steiner tree that connects the n 

connection point vertices. 

1.6. Differences between power-ground routing and signal routing 

One difference between power-ground routing and signal routing is that a wire of 

one signal net can switch layers to cross under a wire of another signal net whereas a 

power wire cannot cross under a ground wire, under the assumption that there is only 

a single metal layer available. 

The difficulties with one wire crossing another are reflected in the cost the 

algorithms associate with each edge. A change in the cost rules results in algorithms 

that grow noncrossing Steiner trees. For signal routing, if an edge represents a wire 

that crosses another wire, the edge's cost is increased by an amount that reflects the 

disadvantages of shifting to another layer. For power-ground routing, the crossing cost 
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is set so high that the Steiner tree algorithms, looking for cheap paths, will never 

choose an edge representing a wire that gives rise to a crossing. 

Another difference between power-ground routing and signal routing is that the 

current in signal wir~s is typically small enough to permit the wire's width to be the 

minimum allowed by the fabrication technology whereas the larger curren_ts flowing 

through power-ground wires require wire widths to be determined individually in each 

case. 

This paragraph describes the technique, presented in Chapter 7, for determining 

how wide each power-ground wire should be. The Steiner tree algorithms produce 

complete trees of minimum-width wires. The trees' roots are the power and ground 

pads, and the leaves are the modules' connection points. Using each module's current 

requirement, a tree-traversal algorithm calculates how much current flows through each 

wire. The design rules are then used to compute the required width for each wire. 

The PI Research Group is developing a resizer that modifies the placement of 

modules and wires to accomplish any of three tasks: 

• Widen power-ground wires. 

• Provide more room for signal routing. 

• Compact a complete layout of modules and wires. 

The power-ground algorithms use the resizer to make each power-ground wire grow 

to its required width. For each wire, input to the resizer consists of one side of the wire, 

the other side of the wire, and the required width of the wire. The rcsizer modifies the 

placement of the sides of the wire so that they are separated by the required distance, 

producing a wire of the appropriate width. 

1. 7. Description of the power-ground algorithm 

This section describes the original power-ground routing techniques developed to 

implement PI's power-ground routing phase. 

11 



PJ's method of placing modules influences the power-ground layout. PI places along 

the chip's perimeter the power, ground, and signal pads, signal pads being the modules 

that carry communica~ions to and from the chip. PI places in the chip's interior the 

logic modules, which are the modules that perform the desired logical or functional 

operations. 

This placement makes it natural to separate laying power-ground wues to the 

signal pads from laying wires to the logic modules. There are two reasons for this: 

• The placement of the signal pads is uniform. 

• The current requirements of signal pads are often much greater than 

those of logic modules. 

Laying wires to the signal pads creates a uniform pattern of wires. One ground 

wire, called the ground ring, runs from the ground pad along the chip's perimeter, 

between the signal pads and the chip's edge. One power wire, called the power ring, 

runs from the power pad along the inside edge of the signal pads, between the logic 

modules and the signal pads. This power ring does not run along the inside edge of the 

. ground pad, but leaves a gap there to give the ground pad access to the logic modules. 

Short wires connect the rings to the connection points on the signal pads. The result is 

that for the signal pads the rings connect every ground connection point to the ground 

pad and every power connection point to the power pad. 

This ring pattern also works with chips that have multiple power and ground 

pads. For such chips, the rings lie in the same place. Since all pads lie between the 

power ring and the ground ring, a short wire can connect each power-ground pad to 

the appropriate ring. 

Once the ring layout is complete, the power-ground algorithms route one Steiner 

tree that connects the ground pad to every ground connection point on the logic 

modules. 
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Then the powcr-groun<l algorithms route a set of small Steiner trees that connect 

the power ring to the power connection points on the logic modules. Each tree has its 

root in the power ring and grows so that its wires never cross a wire of the previously 

)~id ground tree. 

When the Steiner trees are routed, the power and ground trees arc complete 

in the sense that minimum-width wires connect every power and ground connection 

point to the appropriate pad. At this point, running the tree-traversal algorithm to 

determine each wire's required width and then executing the _resizcr produces the final 

power-ground layout. 

1.8. Determining which power-ground problems are solvable 

A power-ground problem is solvable if and only if every module's perimeter 

consists of two segments, one containing all the module's power connection points, the 

other containing all its ground connection points. A layout that is a solution to the 

power-ground problem connects all the connection points within each net. This means 

that from every connection point to every other connection point on the same net, 

there is a path of metal wires. If there is a module whose perimeter does not satisfy 

the above condition, the module has the following sequence of connection points: one 

for power, one for ground, one for power, one for ground. It is topologically impossible 

to lay noncrossing wires outside the module in one layer that connect the two power 

connection points to each other and the two ground ones to each other. 

If a power-ground problem satisfies the above condition, the algorithms of this 

thesis always succeed in connecting every connection point ot the appropriate pad. 

In the following justification of this statement, the logic region refers to the region 

occupied by the logic modules. In routing the chip, the algorithms first consider the 

signal pads. Since all pads lie between the power ring and the ground ring, short, local 

wires can make the appropriate connections. Routing the logic modules comes next. 

There are as yet no wires in the logic region, and the ground pad has access to the 

logic region through the gap in the power ring. Therefore, there is a path from the 

ground pad to every ground connection point in the logic region, and a tree can make 

the appropriate connections. Laying this tree's wires leaves the logic region as one 
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continuous region because a tree has no cycles that would isolate one area. There is 

therefore a path from every power connection point in the logic region to some point 

on the power ring. A set of small trees can make the appropriate connections, thus 

completing the layout. At each step, being able to call the resizer guarantees that there 

will be enough room "for the wires of the power-ground layout. 

1.9. Stlmmary of the power-ground algorithm 

PJ's power-ground routing phase occurs after the placing of the modules. Its 

power-ground algorithms lay a ground ring along the chip's perimeter and connect this 

ring to the ground connection points on the signal pads. Then a power ring along the 

signal pads' inside edges connects to the power connection points on the signal pads. 

Next, one Steiner tree is routed that connects the ground connection points on the 

logic modules to the ground pad. Several small Steiner trees that grow from the power 

ring without crossing the ground tree connect the power connection points on the 

logic modules. Regarding the power and ground pads as the power and ground trees' 

roots, a tree-traversal algorithm determines how much current Bows through each wire 

and, hence, how wide each wire must be. The resizer accordingly widens the wires to 

produce the final power-ground layout. PI then proceeds to its signal-routing phase. 

Chapter 8 contains a sequence of photographs showing the original module 

placement, then the power and ground rings for the pads, then the trees for the logic 

modules, and finally the power-ground layout with wires of the correct width. 

14 
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2. GOALS IN AUTOMATING POWER-GROUND ROUTING 

The work on automating power-ground routing described in this thesis is part of 

a larger research effort to automate the placement-interconnect phases of chip design. 

This in turn is part· of a larger effort studying what is sometimes known as "silicon 

compilation", the goal of which is to automate the entir.e chip design process as much 

as possible. 

As with compilation of a high-level language, the goals of silicon compilation are 

to 

• produce high-quality output 

• run efficiently 

• require minimum human interaction 

Automation is desirable because recent fabrication technology advances are greatly 

increasing the number of objects on a chip. Thus, the algorithms implementing the 

automation will be applied to huge problems. This makes the algorithms' efficiency 

particularly important. 

In finding efficient algorithms, it is important to note that, according to the models 

commonly used, many placement and interconnect problems are NP-complete. This 

indicates finding good heuristics is more fruitful than searching for algorithms that 

produce provably optimal results. 

Looking at the underlying problems gives an indication of whether the power-ground 

problem is NP-complete. This thesis models the power-ground problem as the problem 

of constructing two noncrossing geometric Steiner trees using the rectilinear metric. 

In the rectilinear metric, the distance from (xJit11) to (:z:2,Jl2) is l:z:2 - :1:11+1112 -Yil· 
The problem of constructing one such Steiner tree is NP-complete in the strong sense 

([GJ7DJ), but the complexity of constructing two noncrossing Steiner trees on the same 

set of vertices is not known, although we conjecture that it, too, is NP-complete. 
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3. PROBLEM DEFINITION 

This chapter define~ the power-ground problem studied in this thesis. The first 

section discusses the restrictions imposed on the problem. The second defines the terms 

used in describing the problem. The third describes the problem's input and the desired 

solution. 

3.1. Restrictions imposed on the problem 

3.1.1. Restrictions imposed by the fabrication technology 

The methods in use for manufacturing chips have greatly influenced the specifics 

of the power-ground problem in this thesis. This section presents the main assumptions 

these methods impose. 

This thesis assumes the chip has one metal layer. Since the metal layer is the only 

layer that can easily handle the large currents the power-ground wires carry, the entire 

power tree and ground tree must lie wholly in the metal layer. That there is only one 

metal layer imposes the very important restriction that one tree's wires cannot cross 

the other's. 

Some fabrication methods make chips with two metal layers. For such chips, one 

routing method is to route all horizontal wire segments in one layer and all vertical 

segments in the other. The algorithms of this thesis cannot be applied when such a 

method is used. 

For other methods for routing on chips with two layers of metal, one solution 

to the power-ground problem is to route the power tree on one metal layer and the 

ground tree on the other. To do this efficiently, a Steiner tree could connect each net's 

connection points. However, putting both trees in one layer is sometimes desirable 

because this leaves the other metal layer free for signal routing. The algorithms of this 

thesis can be used for this. 

Another restriction imposed by the technology is that the trees' metal wires must 

vary in width according to how much current they must carry. This leads to a difference 
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between signal routing and power-ground routing. The current in signal wires is almost 

always so low that a minimum-width wire suffices, whereas the current in power-ground 

wires is often very great, even in the lower power CMOS technology. Because of this, 

power-ground wires must vary greatly in width. Also, a power-ground wire's width 

must be able to handle the peak loads. For example, one wire may supply power to 

several modules, all of which may be drawing their maximum currents simultaneously. 

This thesis assumes there arc no buried contacts. This means that wire layouts 

that carry out the chip's logical functions cannot lie under power-ground wires. Signal 

wires arc allowed to cross under power-ground wires, but they cannot change layers 

under the wire. 

Some packaging and bonding techniques require that pads are placed on the chip's 

perimeter. This affects placement of not only the pads but also the logic modules 

and greatly inBuences the pattern of power-ground wires that connects the pads, as 

explained in Section 6.4. Also, some automatic handling techniques require that the 

chip's corners are left free of modules, pads, and wires. This, too, influences the pattern 

of power-ground wires that connects the pads. 

3.1.2. Restrictions imposed by the design methodology 

This thesis deals with custom-designed chips. It makes very few assumptions 

about the placement of the modules. This makes the problem much harder and makes 

applying the work of researchers who studied gate arrays or standard cell layouts more 

difficult. This thesis does make assumptions about the placement of pads, as described 

in Section 6:4. 

This thesis uses a rectilinear model for chip objects. This means that objects such 

as modules, wires, and connection points are represented by rectangles whose sides are 

parallel to the sides of the chip. Also, it is assumed one module does not abut another. 

The algorithms of this thesis regard a module as a self-contained unit and do not 

know the layout of wires internal to the module. Two consequences of this are that the 

algorithms cannot lay a wire over a module and that the module's connection points 

must be on its perimeter. 
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The algorithms assume there is a single VDD pad and a single CND pad for 

the chip. Section 1.7, paragraph 4, describes how multiple power-ground pads could 

connect to the rings that route the signal pads. 

The algorithms ~lso assume each module has one VDD connection point and one 

GND connection point. However, this assumption is not ~cccssary. The algorithms 

work with multiple connection points, as long as the connection points' placement is 

such that a solution is possible, as described in Section 1.8. 

The algorithms search for solutions in which the wire layouts are acyclic, forming 

trees. There are three reasons for this. Many chip designs use trees for power-ground 

distribution. Also, this assumption enables the algorithms to use many powerful 

techniques from graph theory that construct trees. Finally, having wires in a tree 

facilitates many tasks. One such task is determining the maximum current that will How 

through every wire. Chapter 7 describes the tree-traversal technique that accomplishes 

this task. 

3.1.3. Restrictions imposed by the Pl System 

The code that implements the power-ground algorithms of this thesis forms 

part of the PI System. As such, the algorithms have been greatly influenced by the 

data structure PI uses to represent the chip and by its assumptions. PI adopts that 

assumptions presented in the two preceding sections. 

3.1.4. Optimization Criteria 

This section presents the characteristics that are used, when choosing between 

various power-ground layouts, to determine which layout is best. 

The metal area used for power-ground wires should be minimum. There are two 

reasons for this. The amount of metal used for wiring is an important factor in 

determining the chip's size. Using less metal for power-ground routing is apt to prduce 

a smaller chip. Also, using less metal for power-ground routing leaves more metal for 

signal routing. Given more metal, the signal-routing algorithms are apt to run more 

efficiently and produce better results. 
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The power-ground layout should divide the chip into simple, regular regions. Signal 

routing occurs after power-ground routing and must route around the power-ground 

wires. \Vorking with simple, regular regions enhances the signal router's performance. 

The power and ground trees' combined length should be minimum. In general, this 

goal is compatible with the two given above-short trees tend to use less metal and 

form more regular regions. Also, short trees decrease the worst-case distance from a 
I 

pad to a connection point. This is desirable because it decreases resistance and makes 

the system less suceptible to noise. 

3.2. Definitions or terms 

This section definies the terms used throughout this thesis to refer to chip objects. 

The chip is a custom-designed VLSI chip with three layers-diffusion, polysilicon, 

and a single metal layer. Since this thesis deals only with objects on the metal layer, it 

regards the chip as a rectangular region in the plane. 

The following objects lie on the chip. The algorithms model each object as a 

rectangle whose sides are parallel to the chip's sides. 

A module is the basic unit of the chip. The designer creates the module's internal 

wire layout to carry out a specific logical function. Being of such general purpose, 

modules vary greatly in size, complexity, and current requirements. The algorithms of 

this thesis know nothing of the module's internal wire layout but know the module's 

exact dimensions and maximum current requirement. 

A pad is a module to be located on the chip's perimeter that communicates with 

objects outside the chip, enabling current and information to enter and leave the chip. 

A logic module is a module to be located in the chip's interior that carries out the 

chip's logical functions. 

A wire carries current or information among the modules. The algorithms regard 

a wire as a set of metal rectangles. A wire can abut a module. When the algorithms 

first lay wires, each wire has minimum width. Later, each rectangular wire is widened 

until it is wide enough to carry the appropriate amount of current. 



Laying a wire means calculating the wire's exact placement or location. 

A ~onnection point is a rectangle on the module's perimeter at which a wire can 

make contact with a module. This allows one module to communicate with another. 

A net is a set of connection points to be connected. If two connection points lie on 

the same net, the final chip design will have a wire running from one connection point 

to the other. 

Routing a chip, module, net, or connection point means laying wires to connect all 

appropriate chip objects. 

Power and VDD are interchangeable terms that refer to the pad, net, wires, and 

connection points that carry electrical current to the modules. 

Ground and GND are interchangeable terms that refer to the pad, net, wires, and 

connection points that provide the modules with an electrical ground. 

Signal describes something involved in carrying information. 

A layout is a description of the exact locations of the chip objects. 

3.3. Definition of the power-ground problem 

The power-ground problem is the problem of routing two nets-the VDD net and 

the GND net. There is one VDD pad, with a VDD connection point, and one GND pad, 

with a GND connection point. Except for these two pads, it is assumed every· module 

has one VDD connection point and one GND connection point. 

A solution to the power-ground problem is a wire layout that 

• connects the VDD connection points to each other 

• connects the GND connection points to each other 

• has no wire from one net crossing a wire from the other net 

• has wires wide enough to carry the current that might flow through them 

during the operation of the chip. 
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111 solving thl' probll'm, the goal 1s to find a w1rc layout that uses a mm1rnum 

amount of the metal layer. 
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4. HISTORY 

This chapter presents three previous algorithms that solve the power-ground 

problem: 

• Syed and Carnal give a rule-based algorithm, where the rules specify 

where to route power-ground wires in the "streets" between the modules. 

• Rothermel and Mlynski give an algorithm that divides the chip into left 

and right halves, routes the VDD connection points that are in the left 

half, routes the GND connection points that are in the right half, and 

then completes the trees. 

• Lhota gives an algorithm. that solves a special type of power-ground 

problem in which modules are points. The algorithm uses a "Saran-Wrap" 

technique that produces a pair of non-crossing trees, each of which spans 

the set of points. The combined length of the edges of this pair of trees 

is within 3/2 of the combined length of the edges of the shortest possible 

pair of non-crossing spanning trees. 

4.1. Syed and Gamal's algorithm (SG82] 

Three assumptions facilitate applying this algorithm: 

• The VDD pad is in the upper left corner. 

• The GND pad is in the lower right corner. 

• There is enough room for the final trees. 
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The algorithm first routes the VDD tree. Starting from the VDD pad in the upper 

left corner, the VDD tree grows down and to the right. These rules control the tree's 

growth so that its branches will not interfere with the growing of the GND tree: 

For a horizontal channel, run the wire to the right along the bottom of the 

channel until the wire is obstructed by a module or the edge of the chip. 

Then delete the wire back to just above the right vertical edge of the 

module just above which the wire was running just before it encountered 

. the obstruction. 

For a vertical channel, run the wire down along the right side of the channel 

until the wire is obstructed by meeting a four-way intersection (where 

four channels meet), a module, or the edge of the chip. Then delete the 

wire back to just to the left of the bottom horizontal edge of the module 

to the left of which the wire was running just before it encountered the 

obstruction. 

The wires keep from crossing the opposing tree's wires not by referring to the 

opposing tree's wires' positions but by keeping to one side of the street. Thus, there are 

several valid orders for growing each tree's branches. The algorithm can route the tree 

in a breadth-first manner: it runs a wire to the right along the top horizontal channel, 

then runs a wire down each vertical channel that meets this horizontal channel, then 

to the right along each horizontal channel that meets one of these vertical channels, 

etc. When this tree is complete, every module has a VDD wire running along its left 

and top sides. 
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The algorithm then. routes the GND tree. Starting from the CND pad in the lower 

right corner, the GND tre,~ grows up and to the left. The following rules control the 

GND tree's branches so that they do not cross the VDD tree's branches: 

For a horizontal channel, run the wire to the left along the top of the 

,channel until it meets a module or the edge of the chip. Then delete 

the wire back to the left edge of the module below which the wire was 

running just before it encountered the obstruction. 

For a vertical channel, run the wire up along the left. side of the channel until 

it meets a four-way intersection (where four channels meet), a module, 

or the edge of the chip. Then delete the wire back to the top edge of 

the module to the right of which the wire was running just before it 

encountered the obstruction. 

Again, there are several valid orders for routing the GND tree. One technique is 

to route it in a breadth-first manner. When this tree is complete, every module has a 

GND wire running along its right and bottom sides. 

The algorithm then connects the trees' branches to the modules' connection points. 

Every module has VDD wires along its left and top sides and GND wires along its right 

and bottom sides. Local routing connects each module's VDD and GND connection 

points to the appropriate wires .. 

At this point, the algorithm deletes all useless wire segments. A wire segment is 

useless if it does not lie on a simple path between a connection point and a pad. 

A tree traversal algorithm examines the modules' current requirements and 

determines the maximum current that will flow through each wire segment. The 

algorithm's final step widens each wire segment so that it can carry its current. 
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The following shows Syed and Gama.l's algorithm routing a chip. The solid lines 

show power wires, and the dashed lines show ground wires. 
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4.2. Rothermel and Mlynski's algorithm [RM81) 

Rothermel and Mlynski's algorithm divides the chip into left and right halves1 

routes the VDD connection points that are in the left half1 routes the GND connection 

points that are in th~ right half, and then completes the trees. This algorithm's use of 

a vertical line to divide the chip into regions so that a tree can grow separately in each 

region is similar to Section 6.3's algorithm's use of a Hamiltonian cycle. 

This algorithm assumes that there is one VDD pad in the chip's left half and one 

GND pad in the chip's right half. 

The algorithm first uses a vertical line to divide the chip into halves. A line-search 

algorithm similar to Hightower's routes one tree that connects the VDD pad to all 

the VDD connection points in the left half and another tree that connects the GND 

pad to all the GND connection points. An algorithm similar to Lee's completes the 

trees. Then, tree traversal calculates each branch's required width. The algorithm 

then appropriately widens the wires. If necessary, the algorithm adjusts the modules' 

placement to accommodate the thicker wires. 

4.3. Lhota's algorithm (LH080) 

To obtain insight on the best way to lay power and ground wires, Frank J. Lhota 

studies the problem in graph theory of finding two trees that span a set of vertices 

in the Cartesian plane, that lie in the plane, and that do not intersect each other. 

An optimal solution to this problem is one in which the two trees' combined length is 

minimum. 

One method of solving this problem is to find a minimum spanning tree and then 

find the shortest tree that spans the vertices but does not cross the first tree. This 

method is similar to Section 6.1 's algorithm. 

Lhota's first result is a lower bound on the combined length of the trees in the 

optimal solution. Each of the optimal solution's two trees spans the vertices. As such, 

the length of each is at least a minimum spanning tree's. Thus, the optimal solution's 

trees' combined length is at least twice a minimum spanning tree's. 
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Now consider the technique or finding the trees by first finding a minimum spanning 

tree and then finding another spanning tree that does not cross the first. It sometimes 

happens that a certain minimum spanning tree forces the second tree to have twice the 

length or the minimum spanning tree. This solution's trees' combined length is then 

three times a minimum spanning tree's. 

Jn the_ following, the first row shows how the first minimum spanning tree forces 

the second, noncrossing spanning tree to be so long that the two trees' combined length 

is not optimal. The second row shows two noncrossing spanning trees with optimal 

combined length. In both rows, the dashed lines are the edges of the first tree, and the 

solid lines are the edges of the second tree . 
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Combining the results of the third and fourth paragraphs reveals that there are 

cases where the technique of finding a minimum spanning tree and then finding a 

second noncrossing tree produces trees with a combined length no less than 3/2 an 

optimal solution's. 

Lhota devises the "Saran-Wrap" technique to find the second noncrossing spanning 

tree. Given a minimum spanning tree, start drawing the second by drawing a path 

down the Jef t side of the leftmost branch, visiting each vertex. Then draw a path up 

the right side of the branch until another branch is encountered. Continue down this 

branch's left side and up its right side. continue until the path reaches its starting point 

and forms a cycle. The cycle spans the vertices, and its length is twice the minimum 

spanning tree's. 

Modifying this cycle turns it into a tree. First, note that the cycle visits every 

vertex more than once. So, first change the cycle so that it visits every vertex exactly 
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once. Deleting one edge from the resulting cycle produces a pa.Lb that visits every 

vertex exact.ly once. This pa.th is a noncrossing spanning tree with length twice the 

minimum spanning tree's. Call this second tree the Saran-Wrap tree. 

Note how this Saran-Wrap tree differs from Section 6.1 's second, noncrossing tree. 

The Saran-Wrap tree Is a spanning tree whereas Section 6.l's tree is a Steiner tree. In 

general, Steiner trees a.re shorter. Therefore, the following results cannot be directly 

applied to determine Section 6.1 's trees' length. 

The solution containing a minimum spanning tree and ·a Saran-Wrap tree has a 

combined length three times the minimum spanning tree's. This length is within 3/2 

of optimal. 

Since the shortest noncrossing tree's length must be less than or equal to the 

Saran-Wrap tree's, the solution containing a minimum spanning tree and the shortest 

noncrossing spanning tree is also within 3/2 of optimal. However, a previous result 

indicated that there are cases where this solution is no better than 3/2 of optimal. 

Thus, in some cases the Saran-Wrap tree's length is very close to the shortest 

noncrossing tree's. However, there are cases where the Saran-Wrap tree's length is twice 

that of the shortest noncrossing tree. 

The following shows the constructing of the Saran-Wrap tree around a minimum 

spanning tree. The dashed lines are edges of the minimum spanning tree, and the solid 

lines are edges of the Saran-Wrap tree . 
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5. THE PI SYSTEM 

5.1. Overview of the PI System 

The Placement-Interconnect (PI) Hescarch Group under Prof. Ronald Rivest at 

Massachusetts Institute of Technology is implementing in LISP an automated design 

system for custom, single-layer metal, NMOS and CMOS chips. The PI group is taking 

an algorithmic approach to the problem of completely automating the placement and 

interconnect phases of chip design. This group's goal is the create a system that 

produces high-quality output with a minimum amount of human interaction. Prof. 

Rivest described this sytcm, called PI, at the 19th DAC Conference ((Rl82}). 

The following are two important aspects of how PI views the chip design problem: 

• In dealing with chip objects, PI uses the absolute coordinates of their 

locations on the chip instead of describing their positions symbolically or 

relative to other chip objects. 

• PI regards modules as rectangles with connection points to connect to 

wires outside the module. Since PI does not know the wiring internal to 

the module, it never lays a wire over a module. 

When PI routes a chip, it divides the placement-interconnect design process into 

four phases: 

• Placing the modules on the chip . 

• Routing the power and ground nets . 

• Routing the signal nets . 

• Compacting the chip regions to reduce the chip's size . 

PI subdivides the third phase (signal routing) into four subphases: 
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• Defining the channels . 

• Routing the nets globally . 

• Deciding where the wires should cross the channel edges . 

• Routing the channels . 

The rest of this chapter on PI describes each phase and subphasc with comments 

on how each relates to the power-grourid algorithms. 

5.2. Placing the modules on the chip 

The placement phase puts each rectangular module into a specific location on the 

chip. Upon input, PI knows each module's dimensions and the locations of its connection 

points. After placement, each module has an exact, absolute location. Placement has 

two su bphases: one places the pads, which are the modules that carry communications 

to and from the chip; the other places the logic modules, which are the modules tpat 

perform the desired logical or functional operations; 

5.2.1. Placing the pads 

PI places pads (power pad(s), ground pad(s), and signal pads) along the chip's 

perimeter. The goals are to plac~ the pads on as few sides as possible and to orient each 

pad so its user-specified outside edge is closest to the chip's edge. This pattern of lining 

up pads along the chip's perimeter was a major reason for arr~ging the power-ground 

wires in rings, described in Section 6.4. 

5.2.2. Placing the logic modules 

When PI places the logic modules, it first goes through a top-down, min-cut 

procedure to determine the approximate locations of each one, then goes through a 

bottom-up, successive-pairing procedure to determine each module's orientation and 

exact location. 

At each step, the min-cut procedure uses a line to divide the modules into two 

groups so that many of the wires connecting the signal nets' connection points will lie 
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within each group and few will lie between groups. In the first st.ep, the line divides 

the chip into two regions. The min-cut procedure puts some modules on eitl1er side of 

the line. Subject to balancing constraints that ensure all modules will not lie on one 

side, the goal is to minimize the number of signal wires that will cross the line. To 

divide the chip into regions, the procedure uses either a vertical or a horizontal line, 

depending on which provides the minimum cut. 

The procedure continues in a binary, top-down manner. Each region is divided 

into two by either a vertical or horizontal line. Moving modules within each region 

minimizes the number of wires that cross each line. This process continues until each 

module is in its own region. 

Then the bottom-up procedure considers two adjacent regions, each containing 

one module, to determine for each module its orientation and its placement relative to 

the other module. Each module has eight possible orientations, produced by rotating 

it 90 degrees four times, flipping it, and rotating it four more times. The definition of 

one module's placement relative to another is the differences between the x-coordinates 

of the modules' left sides and between the y-coordinates of their bottom sides. In the 

next two paragraphs, placement refers to both the orientation and relative placement 

of a module. 

The bottom-up procedure chooses the best placement for the two modules. When 

choosing, the procedure has as its goal minimizing the area of the final layout of wires 

and modules. At this point, the procedure has to estimate how much room the signal 

routing will require. After it finds the best placement, the two regions become one. 

Within the new region, the modules' placements are fixed. 

The procedure continues in a bottom-up, successive-pairing manner. When every 

region has a pair of modules, the procedure considers the best placement for an adjacent 

pair of regions and merges this pair into a new region. This process continues until all 

the logic modules are in one region. At this point, each module's location becomes its 

exact, absolute location. ' 
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5.3. Routing the power and ground nets 

This phase uses the atgorithms described more fully in Section 6.4 and Chapter 7. · 

These algorithms Jay a ground ring and a power ring to connect the pads, Jay a ground 

tree and a forest of power trees to connect the logic modules, and use the resizer to 

widen each wire to its appropriate width. 

5.4. Routing the signal nets 

Signal routing's goal is, for each signal net, to lay a tree of wires that span the 

signal net's connection points. The following sections describe each of signal routing's 

subphases. 

5.4.1. Defining the channels 

Channel definition divides the chip area into nonoverlapping rectangular chip 

objects. Each object is one of the following: 

• a module 

• a free channel-a routing region that conatins no wires or modules 

• a covered channel-a routing region with a power or ground wire occupying 

the region's entire metal layer but nothing on the other layers 

The channel definition algorithm is executed during many stages in the PI system. 

For example, it may be executed immediately after placement, before power-ground 

routing is done. Since at this stage there are no power or ground wires, the algorithm 

divides the chip into modules and free channels. On the other hand, executing the 

algorithm after the power-ground routing is completed divides the chip into modules, 

free channels, and covered channels. 

Channel definition draws lines on the chip until every chip region is a rectangle. 

A line separating two channels is a channel edge. In choosing among possible sizes and. 

shapes for the channel layout, channel definition's goal is to minimize the total length 

of the channel edges it must draw to form the channels. 
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The following shows a chip's channel edges as dotted lines. 
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The global router determines, for each mit, which channels the nets' wires will pass 
' through and which channel edges these wires will cross as they pass from one channel 

to the next. It routes the signal nets one at a time, starting with those that have the 

fewest connection points. During this process, it creates, for each channel edge, a list 

of nets that have a wire crossing this channel edge. These lists arc input to the next 

phase, which decides exactly where on the channel edge the wires should cross. 

The following paragraphs ·describe the global routing algorithms developed by 

Dr. Alan Baratz. These algorithms are fully presented in (B81]. When Chapter S's 

algorithms construct a tree, path, or forest, they use these global routing algorithms. 

To route a net globally, these algorithms first create a graph whose vertices 

represent the nets' connection points and the chip's channel edges. The algorithms 

then find in this graph a short Steiner tree that spans the connection point vertices. 

This tree roughly corresponds to the final Steiner tree of wires that will connect the 

net's connection points. 

At first, the global router creates a graph that has a vertex for every connection . 

point of the net and every channel edge of the chip. It draws an edge between two 

vertices if the two corresponding chip objects are on the perimeter of the same channel. 



Each edge's cost reflects how far one chip object is from the other, how crowded the 

common channel is because of other nets that have already been routed through it, 

and whether it is a free or covered channel. 

After creating the graph, the algorithms grow paths from the connection point 

- vertices until the paths meet to form a tree. If there are n connection point vertices, 

there are initially n basis groups, each consisting of one connection point vertex. Paths 

grow simultaneously in a.II directions from all basis groups. Eventually, two paths meet, 

forming a bridge between two basis groups. The vertices along this bridge are two 

connection point vertices plus a number intermediate vertices representing channel 

edges. Then a new basis group consisting of all the vertices on the bridge replaces the 

two old ones. In the next step, paths grow from the n - 1 basis groups. This process 

repeats until there is just one basis group. At this point, reconstructing each bridge 

that connected two basis groups builds a Steiner tree that connects the n connection 

point vertices. 

The method of growing the paths ensures the process results in a short Steiner 

tree. To see why the tree is short, consider how the algorithms grow the bridge that 

connects two basis groups. They grow the shortest bridge because they grow the path 

from each basis group by adding the shortest edges first, as in Dijkstra's algorithm. To 

see why the final tree is a Steiner tree, consider the branch points that can occur at 

channel edge vertices. Paths grow simultaneously from each vertex in the basis group, 

channel edge vertices as well as connection point vertices. The path from a channel 

edge vertex may be the first to meet a path from another basis group;'"The final tree 

will then have a branch point at this channel edge vertex. Since this channel edge 

vertex is not one of the original vertices to be spanned by the tree, this branch point 

is a Steiner point. 

5.4.3. A power-ground modifica~ion of global routing 

When determining the cost of each edge in the original graph, the global router 

considers whether the edge crosses a free or a covered channel. Ir it crosses a covered 

channel, the global router increases the edge's cost to reflect the disadvantages of 

running a signal wire over the metal wire that creates the covered channel. 
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Imposing a high penalty on edges that cross covered channels ensures such edge 

wiJJ never appear in the final Steiner tree. The power-ground phase uses this technique 

to construct noncrossing trees of metal wires. Alter connecting the logic modules with a 

ground tree of metal wires, the power-ground algorithms calJ channel definition, which 

turns the metal wires into covered channels. They then construct a forest of power 

trees to connect the logic modules. A high penalty at this point prevents these power 

trees from crossing the metal wires of the previously laid ground tree. 

5.4.4. Deciding where the wires should cross the channel edge 

The crossing placement phase determines where the signal wires cross the channel 

edge. At the end of the global routing phase, each channel edge vertex has a list of 

signal nets. A signal net appears on a vertex's list if that vertex appears in the Steiner 

tree that routes the signal net. Thus, a vertex's list indicates which signal wires will 

cross the channel edge that corresponds to the vertex. Using such information as where 

the wire comes from and where it is going, crossing placement assigns to each wire a 

crossing location. 

5.4.5. Routing the channels 

The channel router determines exactly where the wires run in each channel. At 

this point, crossing placement has already determined the exact location where a wire 

enters and exits the channel. The channel router lays wires to connect each entry point 

with its exit point. Because the entry and exit points are fixed, the channel router can 

attack each channel as a separate, independent, self-contained routing problem. 

PI has three channel routers. The channel routing phase first calls the simplest 

router, which handles many common layouts. If this router cannot find a valid routing, 

the second router searches for a routing by dividing the channel into slices. If the 

second router fails, the third router searches for a routing by using Lee's algorithm. 



5.5. Ucsizi11g the chip regions to reduce the chip's size 

The resizer modifies the placement of wires and modules to accomplish any of 

three tasks: 

• Widen ·power-ground wires. 

• Provide more room for signal routing. 

• Compact a complete layout of modules and wires. 

The res1zer modifies placement once in the x direction and then once in the y 

direction. The next two paragraphs describe resizing in the x direction. A similar 

process resizes in the y direction. 

First, the resizer creates a graph. Each vertex of the graph corresponds to a 

vertical side of a chip object, such as the vertical side of a wire or module. Between 

two vertices, the resizer creates a constraint, which is either a minimum or an equality 

constraint. For instance, the constraint between a module's left and right sides is an 

equality const.raint because the module's dimensions are fixed. On the other hand, the 

constraint between a channel's left and right sides is a minimum constraint because a 

channel can be wider than its required width. 

Once the graph is complete, the resizer finds the longest path from the vertex that 

represents the chip's left side to the vertex that represents the chip's right side. The 

resizer uses information about this path to find an z-coordinate for each vertex in the 

graph so that all constraints are satisfied. Then, for each vertex and its z-coordinate, 

the resizer moves the chip objects so the corresponding vertical side is located at the 

z-coordinate. This completes resizing in the x-direction. 

The next three paragraphs describe how the resizer is used by the power-ground 

phase, the signal-routing phase, and the compaction phase. 

The power-ground phase uses the resizer to widen the power-ground wires. A 

tree-traversal algorithm, described in Chapter 7, finds how much current Hows through 
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each power-ground wire. The amount of current determines ca.ch wire's nummum 

width. The power-ground phase, for each wire, calls the resizer, indicating U1e wire's 

left and right sides and its minimum width constraint. Resizing produces wires of the 

appropriate width. 

The signal-routing phase calls the rcsizer either in its crossing placement subphase 

or it channel routing subphase. Crossing placement uses the resizer to lengthen channel 

edges. After global routing, crossing placement may find that a channel edge is not 

wide enough to accommodate all the wires that must cross it.. Crossing placement calls 

the resizer, indicating the channel's endpoints and the length required by the crossings. 

The channel router uses the resizer to give it more room for routing. If, at first, the 

channel router fails because the channel is too small, it calls the resizer, indicating the 

channel's left and right edges, to increase the width of the channel. 

After the channel router succeeds, the reduction phase uses the resizer to compact 

the layout. Given a layout of wires and modules, the resizer collects constraints that 

ensure the layout satisfies the design rules. Subject to the constraints, the resizer 

reduces the size of the chip as much as possible. 



~ .. 

6. FOURALGORITlIMICMETlIODSTO GROW NONCROSSING 

TREES 

This chapter describes four new methods to construct the power and ground trees 

and discusses each one's advantages and disadvantages. As for running efficiently and 

producing high-quality results, the fourth method is the best. The implementation of 

this fourth method forms part of PJ's power-ground phase. The four methods are: 

• Constructing the trees sequentially, one after the other. 

• Constructing the trees concurrently, one branch at a time. 

• Drawing a Hamiltonian cycle through the modules, then constructing the 

trees, respecting the boundary defined by the cycle. 

• Laying two rings to connect the pads, then constructing the trees 

sequentially to connect the logic modules. 

The algorithms use Section 5.4.2's signal-routing algorithm or Section 5.4.3's 

modified signal-routing algorithm to construct Steiner trees to connect various sets of 

points. In discussing running times of the algorithms, ST(V) is the time each algorithm 

takes to route V vertices. 

6.1. Constructing the trees sequentially, one after the other 

This algorithm constructs one tree and then constructs the second tree so that 

it does not cross the first. To construct the first tree, Section 5.4.2's signal-routing 

algorithm finds a short Steiner tree that connects the first net's connection points. To 

construct the second tree, Section 5.4.3's modified signal-routing algorithm constructs 

a short Steiner tree that connects the second net's connection points and that does not 

cross any wire of the first tree. 

The advantage of this algorithm is that it quickly produces a valid power-ground 

layout in time 0(2ST(V)). The layout is valid because .one tree connects aU the first 
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net's connection points, the other tree connects all the second net's connection points, 

and the trees do not cross each other. 

The disadvantage of this algorithm is that the trees' combined length may not be 

· near optimal. The first tree's length is near the optimal for a sp.!l-nning Steiner tree. 

However, when routing the second tree, the facts that thc:i first is already complete and 

that the. wires of the second cannot cross those of the first often require the second tree 

to have long branches. According to the result in Section 4.3, paragraph 5, there are 

cases where constructing the trees sequentially produces trees with a combined length 

at least 3/2 of optimal. It should be noted, however 1 that the result in Section 4.3, 

paragraph 9, indicates that, for m~st cases, with effective algorithms to grow Steiner 
. . 

trees, the trees' length will be within 3/2 of optimal. 

The following repeats Section 4.3's example of how the choice for the first minimum 

spanning tree greatly influences the length of the second noncrossing spanning tree. 

The dashed lines are the edges of the first tree, and the solid lines are the edges of the 

second tree . 
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The next two sections describe two algorithms derived from this one. The first 

algorithm successively reroutes the trees' branches so as to shorten the trees' combined 

length. The second algorithm provides a different way to connect the second net's 

connection points after the first tree is complete. Instead of growing one tree for the 

second net, this algorithm grows several trees from several roots. Pl's power-ground 

algorithm, described in Section 6.4, includes a version of this technique. 

6.1.1. Successively rerouting branches to shorten the trees' combined length 

This algorithm starts with the trees produced -i,y 'Section 6.1 's algorithm. The 
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disadvantage of these trees is that one tree is very short whereas the other tends to be 

very long. The algorithm Eescribed in this section shortens the second while slightly 

lengthening the first. This reduces the trees' combined length. 

The second tree !Jlay be longer than necessary because it may have long, branchless 

paths. In general, short trees are very bushy, with frequent branching. In order to 

connect a few connection points to the rest of the second tree, there is often a 

hranchless path that goes around an obstructing branch of the first tree. This path 

greatly increases the second tree's length. 

The algorithm shortens the second tree by deleting that tree's longest branchless 

path and then connecting the resulting components of the tree. Deleting the path leaves 

two connected components. Ignoring the first tree, the algorithm finds the shortest path 

that connects these components. Because the algorithm ignored the first tree, this path 

probably crosses wires of the first tree. The algorithm then deletes any wire of the first 

tree that the new path crosses. Because of this, the first tree has now become several 

connected components. The algorithm finds paths that connect these components and 

that do not cross the wires of the second tree. The result is two complete, connected 

trees. 
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The following shows the results of applying this algorithm. In the first figure, the 

solid lines show Lhe first tree, and the dashed lines show the second, noncrossing tree. 

In the second figure, the algorithm has deleted the second tree's longest bra.nchlcss 

path and constructed another branch. In the third figure, the algorithm has rerouted 

one branch of the first tree so that the first tree no longer crosses the second. 
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At this point, the algorithm compareis the new trees' combined length with the 

original trees'. If the length decreased, as in the a.hove example, the new trees become 

the best layout yet found. If not, the original trees remain the best layout yet found, 

and the algorithm marks the longest branchless path to tell future iterations that 

deleting this path will not lead to shorter trees .. 

The algorithm continues by searching in the best layout yet found for the longest 

branchless path not yet considered. These iterations continue until the algorithm has 

considered every branchless path in the current second tree without reducing the trees' 

combined length. At this point, the trees of the current layout become the final power 

and ground trees. 

The advantage of this algorithm is that at each step the layout is a valid power tree 

and ground tree and that at the end of each step the trees' combined length is never 

greater than it was at the end of the previous step. This gives the user flexibility. One 

user may tolerate a large combined length for the trees hut require a short computation 

time. This user should run the algorithm through just a few iterations. Another may 

tolerate a long computation time but require a short com.bined length for the trees. 

This user should run the algorithm to completion. 

The disadvantage of this algorithm is that running it to completion requires a long 

computation time. This is due to the large number of hranchless paths to be considered 

for deletion and the extensive rerouting required after deleting each branchless path. 

6.1.2. Constructing one tree, then a forest of trees 

This algorithm grows the first tree in the same way Section 6.1 's algorithm does. 

To connect the second net's connection points, this algorithm grows several trees. 

This technique makes it more likely that the second tree will be short. Constructing 

the second tree is difficult because the wires have to avoid crossing the first tree. 

Constructing several trees makes it less likely that a long, branchless path will be 

needed to get around a branch of the first tree. For example, the algorithm could place 

one root for the second tree between the tips of two main branches of the first tree. A 
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tree constructed from this root could connect the second net's connection points that 

lie between those branches without worrying about crossing the branches. 

The advantage of: this algorithm is that growing the small trees requires less 

computation time and results in trees of smaller total length than growing one large 

tree. 

The disadvantage of this algorithm is that only special layouts allow one of the 

trees to have multiple roots. PI's power-ground phase uses this algorithm to grow the 

VDD tree for the logic modules. Since a VDD ring surroun.ds the logic modules, as 

described in Section 6.4.1, the power-ground phase can pick points along this ring as 

· the VDD trees' roots. These roots and the trees that grow from them are connected to 

the VDD pad through the VDD ring. 

6.2. Constructing the trees concurrently, one branch at a time 

This algorithm constructs the two trees concurrently, one branch at a time. At 

each step, the algorithm constructs the branch that will least hinder the other tree's 

growth. 

The trees' edges are of two kinds: 

• tentative edges that indicate the tree's probable future growth 

• committed edges that will definitely appear in the final layout 

No edge, tentative or committed, can cross a committed edge. One tentative edge can 

cross another. 

The algorithm begins by laying two complete trees of tentative edges. For each 

tree, the algorithm finds a short Steiner tree that spans the connection points. Since 

all the edges are tentatative edges, crossings are allowed, and the algorithm can grow 

each tree without considering the other. 

·The algorithm then determines which tentative edge should turn into a committed 

edge. To do this, it observes, for each tentative edge, the changes that would occur 

if the edge became a committed edge. Suppose that the algorithm is considering a 

43 



tentative edge in the first tree that a tentative edge in the second tree crosses. Turning 
I 

the first. tree's tentative edge into a committed edge would require some rerouting of the 

second tree's tentative part to avoid crossing the new committed edge. The algorithm 

notes how much longer the new second tree is than the former. 

After considering all the trees' tentative edges, the algorithm changes some 

tentative edge into a committed edge such that this change produces the least increase 

in the length of the opposite tentative tree. Alter changing the tentative edge to a 

committed edge, the algorithm appropriately redraws the opposite tentative tree. 

Considering the current layout of trees, the algorithm again searches for the best 

tentative edge to change into a committed edge. This continues until there arc no more 

tentative edges. At this point, the two trees of committed edges are the final power 

and ground trees. 
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The following figures show this algorithm constructing two trees. In these figures, 

a dotted line represents a tentative ground edge, a solid line is a committed ground 

edge, a line of plusses lS a tentative power edge, and a dashed line is a committed 

power edge: 

The first figure shows the two complete tentative .trees. The algorthms commit 

the power branch to the upper right module with no change in the tentative ground 

tree. Committing the power branch to thn upper left module requires a rerouting 

of the tentative ground tree, as shown in the second figure. Committing the ground 

tree's upper branch requires no rerouting. Committing the ground tree's lower branch 

requires a rerouting of the tentative power tree. Committing this last tentative power 

branch results in the final trees. 
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The advantage of this algorithm is that it provides a balanced, symmetric approach 

to constructing the trees. This contrasts with the algorithm dc~cribcd in Section 6.1, 

which from the beginning gives the advantage to the first tree. 

The disadvantage of this algorithm is that it requires a long computation time. 

This is due to the large number of tentative edges it must consider and, for each 

tentative edge considered, the extensive rerouting of the opposite tentative tree that 

must be carried out. However, there arc several characteristics of the algorithm that 

keep the running time reasonable. 

During the algorithm's first steps, there are many tentative edges near the trees' 

roots that tentative edges of the opposite tree do not cross. Since no edge crosses them, 

turning these tentative edges into committed edges will not increase the length of the 

opposite tentative tree. Thus, the first steps require little computation time. 

During the algorithm's last steps, most of the trees' edges are committed edges. 

Reconstructing the trees' tentative parts is quick because the tentative parts are so 

small. Thus, the final steps require little computation time. 

6.3. Drawing a Hamiltonian cycle through the modules, then constructing 

the trees, respecting the boundary defined by the cycle 

This technique of keeping the power and ground trees from crossing was presented 

at the 20th DAC Conference {(M083]). 

6.3.1. Using the Hamiltonian cycle to divide the chip into regions 

A Hamiltonian cycle helps construct noncrossing trees because it divides the chip 

into two regions-one outside and one inside the cycle. If the cycle has all one net's 

connection points inside and all the other's outside, the cycle divides the chip into a 

VDD region and a GND region. The tree that connects each net's connection points 

lies within that net's region. Since the regions are separate, the trees do not cross. 

For a set of modules, there are many Hamiltonian cycles, and each relates to a 

different power-ground layout. To see this relationship, consider a chip with the power 

and ground trees already laid. Imagine standing on a module with its VDD connection 
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points to your right and its GND connection points to your left. When you try to 

walk to another module, keeping the VDD wires on your right and the GND wires on 

your left will determine the next module you encounter. Continuing the walk takes you 

through every module and back to where you started. Thus, a layout of power and 

ground trees determines a Hamiltonian cycle through the modules. 

Using the reverse of the above technique, drawing the Hamiltonian cycle first 

determines the layout of power and ground trees. In deciding which Hamiltonian cycle 

to draw, the algorithm should pick the cycle that will produce the shortest power and 

ground trees. It is therefore instructive to consider how a cycle's characteristics relate 

to the corresponding layout's characteristics. 

Such a consideration shows that the desired Hamiltonian cycle is the shortest one 

that can be found in a reasonable amount of time. One support for this conclusion 

arises from the need for the Hamiltonian cycle to split the chip into two regions. To 

produce two regions, the cycle must not cross itself. The shortest cycle does not cross 

itself, and, in general, shorter cycles have fewer crossings. This indicates a short cycle 

is desirable. Another support for this conclusion is that shorter cycles produce regions 

of simpler shape. Routing in such regions produces simpler, shorter, more regular trees. 

6.3.2. Defining distance from one module to another 

This section defines the distance from one module to another. The calculation of 

the cycle's length uses this distance, which is basically the Manhattan distance between 

the modules. 

In keeping with the notion of walking along the cycle, a module's OUT point is 

defined to be the point where the cycle leaves the module. As it leaves the module, the 

VDD connection points are to its right, the GND connection points to the left. To make 

this more specific, find the most counterclockwise VDD connection point and the most 

clockwise GND connection point. The module's OUT point is on the module's perimeter 

halfway between these two connection points. The OUT point is counterclockwise from 

the VDD connection point and clockwise from the GND connection point. 
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A module's IN point is defined to be the point where the cycle enters the module.· To 

locate it, find the most clockwise VDD connection point and the most counterclockwise 

GND connection point. The IN point is halfway between them, clockwise from the 

VDD connection point, counterclockwise from the GND connection point. 

The distance from Module A to Module B is defined to be the Manhattan distance 

from A's OUT point to B's IN point. Note that this definition of distance is not 

symmetric. 

6.3.3. Finding a short Hamiltonian cycle 

This section describes an algorithm that finds a ·short Hamiltonian cycle. This cycle 

consists of abstract edges, each edge having a module at each end. An edge indicates 

that the cycle goes from one module to the other but does not specify exactly where 

the cycle runs. 

It is convenient to think of a Hamiltonian cycle as an ordering of the modules. If 

the modules are Mi, M2, Ma, ... , Mn, any ordering (Mip Mi2 , Mi3 , ••• , Mi,.) designates 

a Hamiltonian cycle with abstract edges (Mi., Mi2 ), (Mi2 , Mi3 ), ... , (Mi,., Mi1). 
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Shen Lin's algorithm ([LIN65]) is one of many algorithms lo find a short 

Hamiltonian cycle. (sec [C70]). ll starts with a random, directed Hamiltonian cycle. 

As shown in the preceding paragraph, any ordering of the modules suffices for this 

initial cycle. The algorithm then deletes three edges, producing three segments. It then 

adds three edges that. reconnect the segments. There is only one set of three edges 

whose addition at this point will produce a directed Ilamiltoniari cycle, as shown by 

the following figures. 

~ 

', 

.\ 

At this point, the algorithm compares the new cycle's length with the initial cycle's. 

If the length decreased, the new cycle becomes the shortest cycle yet found. If not, the 

initial cycle remains the shortest cycle yet found, and the algorithm marks the set of 

three edges to tell future iterations that deleting these edges will not lead to a shorter 

cycle. 

The algorithm continues by picking anqther set of three edges to delete from the 

cycle. H trying all possible sets of three edges fails to reduce a cycle's length, the 

algorithm ends with the cycle as its output. 

6.3.4.. Routing the Hamiltonian cycle 

The prec~ding section's algorithm provides the order in which the Hamiltonian 

cycle traverses the modules. The next step is to determine the cycle's exact path from 

one module to the next. 

Suppose that there is a Hamiltonian cycle of n edges. Routing the cycle involves 
I 

routing each of the n edges, and routing each edge involves connecting one module's 

OUT point to another's IN point. Note that connecting these two points is very similar 
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to routing a signal net that has two connection points. For this reason, the algorithms 

of Section 5.4 can route each edge of the Hamiltonian cycle. 

Specifically, using Section 5.4.3's modified algorithm to route the edges ensures 

that the cycle will ~ot cross itself. The algorithm routes one edge at a time. When 

routing an edge, the algorithm ensures that its path docs not cross a previously routed 

edge's path. 

The order in which the algorithm should route the nets is not obvious. Because 

one edge's path cannot cross another, a different order for routing could produce quite 

different paths for the cycle. 

The following example shows how the order of routing the edges affects the final 

layout of the cycle. The Hamiltonian cycle goes from Module 1 to Module 2 to Module 

3. The second figure shows the result of routing the edges in the following order: 

Module 2 to Module 3, Module 3 to Module 1, and Module 1 to Module 2. The third 

figure shows the result of the following routing order: Module 1 to Module 2, Module 

3 to Module 1, and Module 2 to Module 3. 
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The cycle in the third figure is longer and less desirable than that in the second. 

This example shows that laying one edge's wires could block a path that would provide 

a short routing for a later edge. This later edge's routing may require long wires to 

avoid previously la.id wires. 

Because of this, the algorithm routes the Hamiltonian cycle's edges in ascending 

order according to the edges' lengths, where length is defined in Section 6.3.2. The 

algorithm routes in this order because the harmful effects of blocking an edge's path, 

such as the increase in wire length, is more noticeable for shorter edges. For longer 

edges, there is a greater choice of paths that connect one module's OUT point to 

another's IN point using wires of approximately the same length. Therefore, cutting 

off one of these paths is less likely to increase significantly the cycle's final length. 

6.3.5. Routing the VDD and GND nets 

After the complete routing of the Hamiltonian cycle, all of one net's connection 

points_ are inside the cycle, all of the other's are outside. 

Routing the inside net comes first. To do this, Sectiori 5.4.3's modified signal-routing 

algorithm finds a short Steiner tree that spans the connection points and that lies 

entirely inside the cycle. The tree lies inside the cycle because the algorithm regards 

the routed cycle as (temporary) metal wires. Since the algorithm never routes across a 

metal wire, the tree's edges will never cross the cycle and will therefore remain inside 

it. 

The algorithm then deletes the Hamiltonian cycle and uses the same signal-routing 

algorithm to route the outside net. The signal-routing algorithm finds a short Steiner 

tree that spans the connection points and that does not cross the previously routed 

inside tree, which consists of metal wires. The chip now has the complete power and 

ground trees. 

Conceptually, the algorithm produces one nets' tree inside the cycle, the other's 

outside. The algorithm could route the inside net, then route the outside net, then delete 

the cycle. However, even without the Hamiltonian cycle, the modified signal-routing 

algorithm ensures that the trees will not cross, and preventing it from crossing the 
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Hamiltonian cycle may prevent it from finding a shorter, noncrossmg Steiner tree. 

Thus, deleting the Hamiltonian cycle before routing the outside net cannot. hurt and 

could help. 

Routing the nets in a different order in some cases might produce better results. 

In such cases, the algorithm would route t.he net outside the Hamiltonian cycle, then 

delete the cycle, then route the net that was inside the cycle. 

The foJlowing shows the results of routing the Hamiltonian cycle, routing the inside 

net, deleting t.he cycle, then routing the outside net. 
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6.3.6. Advantages and disadvantages of using tlw Hamiltonian cycle 

The advantage is thaHt provides a method to keep the routing the trees separate 

and thus to keep them from crossing. 

There are two disadvantages. The first is the long computation time required to find 

the Hamiltonian cycle. The second is the difficulty in determining the relation between 

the Hamiltonian cycle's characteristics and the corresponding trees'. Specifically, what 

kind of Hamiltonian cycle results in the shortest trees is not clear. 

6.4. J ... aying two rings to connect the pads, then constructing the trees 

sequentially to connect the logic modules 

This algorithm uses two rings to connect the pads. Then a ground tree connects 

all the logic modules' GND connection points. Then several branches from points on 

the VDD ring connect all the logic modules' VDD connection points. The next two 

sections describe the algorithm in more detail. 

6.4.1. Laying two rings to connect the pads 

Two reasons suggest routing pads separately from logic modules: 

• Bonding limitations require the pads to lie on the chip's perimeter. 

• Pads often require much more current. 

PI places pads along the chip's perimeter. This placement's regularity suggests a 

regular wire layout. The pads' large current needs require thick wires. Laying such thick 

wires along the chip's perimeter does not interfere with the logic modules' placement 

and routing. 

Conceptually, there is a VDD ring between the logic modules and the pads and a 

GND ring between the pads and the chip's perimeter. 

The following restriction on the pads facilitates laying the rings: a signal pad's 

GND connection points must be on its outside edge and its VDD connection points 

on its inside edge. Since the GND ring runs along the pad's outside edge, one short, 



sLraighl wire can connect the ring lo lhe pad's GND connection points. If there were no 

reslrictions on the pads, local routing could connect the ring to the connection points. 

The VDD ring's actual placement is that it runs along the signal pad's inside 

edges. It is not truly a. ring because there is a gap next to the GND pad. One reason 

for this gap is that a wire must connect the GND pad to the logic modules. A solid 

VDD ring would cut the GND pad off from the logic modules. Another reason is that 

the gap ensures that the VDD wires form a tree. 

The GND ring's actual placement is that it runs along the pads' outside edges. 

A gap in the GND ring next to the VDD pad ensures that the GND wires form a 

tree. Also, the GND rings avoids the corners of the chip, as some automatic handling 

techniques require. 
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The following shows the complete VDD and GND rings. 
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6.4.2. Constructing the trees sequentially to connect. the logic modules 

Next, the algorithm constructs a GND tree to connect all the logic modules. The 

GND pad has a GND connection point on its inside edge. The tree that will grow from 
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this connection point will reach the logic modules through the gap left ii1 the VDD 

ring. Section 5.4,3's modified algorithm grows the tree so that it stays within the metal . . 

wires of the VDD ring. 

The algorithm then decides which points along the VDD ring should act as roots 

for the forest of trees that will connect the logic modules' VDD connection points. As a 

first step, Section 5.4.l's channel definition algorithm divides the VDD ring into many 

covered channels. The algorithm then creates an imaginary connection point at the 

midpoint of each covered channel's inside edge. 

Then, Section 5.4.3's modified algorithm connects the set of VDD connection 

points consisting of the real ones of the logic modules and the imaginary ones of the 

VDD ring. It grows wires that do not cross the previously laid GND tree. Note that 

the imaginary connection points are already connected to the VDD pad through the 

VDD ring. Thus, if needed, a wire can run from an imaginary connection point to a 

real one on a logic module. If this is not needed, the imaginary connection points are 

harmless in that they do not produce any unnecessary wiring. 

The following shows the logic modules' connection points connected by one GND 

tree and several VDD branches. 
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6.4.3. Advantages and disadvantages of laying the rings and growing the trees 

scquential!y 

The advantages of this algorithm are that it requires little computation time, 

makes use of the pads' special placement, and produces short trees. The GND tree 

. is short because Section 5.4.3's algorithm produces short Steiner trees. The VDD tree 

is short because the branches coming from many points on the VDD ring split the 

problem of connecting the VDD connection points into smaller, more easily solved 

problems. 

The disadvantage of this algorithm is that it makes certain assumptions on the 

placement of the pads and connection points. 
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7. THE TREE-TR.AVERSALALGORITHMTI-IAT 

DETERMINES WIRE WIDTlf 

The preceding chapter presented several algorithms to construct two noncrossing 

interdigitated trees. ·This chapter describes an algorithm that determines how wide 

each wire in the trees should be to carry the current that will Dow through it during 

the operation of the chip. 

The following description of the algorithm traverses through one tree rooted at a 

pad. PI's power-ground phase runs this algorithm twice, once for the VDD tree and 

once for the CND tree. 

After the algorithm has determined ea.ch wire's required width, it runs Pl's resizing 

algorithms to change the wire's dimensions until it attains its required width. The fact 

that the tree-traversal algorithm works so closely with the resizer greatly influences 

the algorithm's design. 

One important feature of the resizer is that it resizes in one direction at a time. 

For example, to adjust the placement of chip objects, it would resize in the x-direction, 

then in the y-direction. Resizing in the x-direction means that the chip objects' vertical 

sides are moved to different x-coordinates. Resizing in the y-direction means that the 

horizontal sides are moved to different y-coordinates. These two resizings acieve the 

desired placement of the chip objects. 

The tree-traversal algorithm also considers only one direction at a time. It does 

one tree-traversal for the x-direction and one for the 11-direction. 

Dealing with only one direction is often counterintuitive. One can consider a wire 

as having a length and a width and the current as flowing along the wire. However, 

applying these notions is more difficult when a wire is merely a rectangle in the plane. 

Which dimension is the "length" is not clear. Its "length" could be less than its "width". 

At intersections, the direction of current flow is not clear. 

Thus, when the algorithm traverses the tree in the x-direction, it worries only 

about whether the rectangle's horizontal dimension is sufficient to carry the current 
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that will flow through the rectangle. It docs not worry about the direction of current 

flow. 

The following description traverses the tree in the x-dircction. Traversing in the 

y-dir.ection is similar. 

The basic step in the tree traversal is adding the children's currents to find the 

parent's current. Suppose that a wire comes from a pad and forks into two wires that 

connect to two modules requiring 3 and 5 units of current. 3 units will flow through 

one fork, 5 units through the other, and 8 through the base wire. 

The algorithm traverses the tree in postorder, finding each child's current and then 

summing to find the parent's current. As usual with a postorder traversal, the algorithm 

recursively finds a child's current by finding its children's currents and summing. 

The tree traversal finds the current for every wire of the tree. Multiplying by a 

design rule constant gives each wire's required width. Then, for each wire, the algorithm 

passes as parameters to the resizer the left side of the wire rectangle, the right side of 

the wire rectangle, and the required width. Running the resizer adjusts the rectangle's 

sides' placement so that the wire attains its required width. 

The algorithm must define a tree node in a way that' is compatible with considering 

only the x-direction. One tree node often corresponds with one metal rectangle 

representing a metal wire. The rectangle's left side is the node's left side and the 

rectangle's right side is the node's right side. 

In some cases, one tree node could be several rectangles. Suppose there are 

several rectangles lined up horizontally. The rectangles' bottom sides have the same 

y-coordinate, and their top sides have the same y-coordinate. In this case, the node's 

left side is the leftmost rectangle's left side, and the node's right side is the rightmost 

rectangle's right side. 
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The following shows how tree nodes arc created from the layout of metal rectangles. 

There is one tree node for each module and for. each. row of rectangular metal wires .. 
··- --. - . . - . . . ·_ ... . - . . 
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This notion of a node is compatible with the idea of making a horizontal cut. One 

way to determine the current B.ow through a node is to delete the node and find the 

total current of the tree fragment that has just been disconnected from the pad. Since 

a node can be a horizontal row of rectangles, this corresponds to the notion of cutting 

the tree by a horizontal line that runs through the rectangles and asking how much 

current flows across that line. 

60 



8. EXPERilVIENTALRESULTS 

....... 
The following photographs show the images of a computer screen during the 

execution of PI's power-ground phase. 

As input to the power-ground phase, a chip specification was created containing 

18 pads of uniform size and 2 logic modules of random size. PI's placement phase 

then used the algorithm mentioned in Section 5.2 to place the pads and logic modules, 

resulting in the following layout: 

•••• 
I 

• 
The power-ground phase uses the algorithm of Section 6.4.1 to lay a GND ring 

outside the pads and a VDD ring inside the pads, producing the following layout: 

, .• 
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. .,,,,. .. 

The power-ground phase then uses the algorithm of Section 6.4.2 to lay the GND 

tree to connect the logic modules. - .. ---· . ..., ·- ·: _·.- . 

The power-ground phase uses the algorithm of Section 6.4.2 to lay branches from 

the VDD ring to the logic modules' terminals. The branches grow so that they do not 

cros~ the branches of the GND tree. 

• •••• 
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The power-ground phase uses the algorithm of Section 7 to determine how much 

current flows through each power-ground wire and how !'ide it h~s to be to handle this 

current. PJ's resizer first stretches
1 
each power-ground wires to its appropriate width in 

the x direction. 

• •• 
·The resizcr then stretches the wires in the y direction, resulting in the final layout 

of power-ground wires. 

; . I < I • 
' ' 

From this point, the PI system will continue with signal routing to complete the 

design of the chip. 
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9. PROBLEMS FOR FURTlIER RESEARCH 

It is not known whether the following problem is NP-complete: 

Given two sets of points in the plane, find two noncrossing Steiner trees 

such that one tree spans one set, the other tree spans the other set, and 

the trees' combined length is minimum. 

The metric for determining length can be either Eulcidean h/(x2 - x1)2 + (Y2 - Y1)2) or 

Manhattan (lx2 - xi I+ IY:i -y1 I). Since this problem models the power-ground problem, 

knowing its complexity would greatly inOuence this part of VLSI research. 

Using the Hamiltonian cycle to divide the chip into separate routing regions raises 

the question of how the cycle's characteristics relate to the resulting tree's length and 

other characteristcs. 

This suggests a more general question of the best method to divide the chip into 

routing regions. There are three such methods in this thesis: 

• Section 6.3's Hamiltonian cycle separating GND routing from VDD 

routing. 

• Section 6.4's VDD ring separating logic module routing from pad routing. 

• Rothermel and Mlynski's method, described in Section 4.2, separating 

routing the chip's left half from routing the right half. 

Further research could determine how effective each method is at constructing short 

trees and could develop new methods for creating separate routing regions. 

The goal of the algorithms of this thesis is to minimize the amount of metal used by 

the trees. Further research might reveal other desirable characteristics the trees should 

possess. An interesting part of this aspect would be to determine what characteristics 

of the trees result in better signal routing. 
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10. CONCLUSIONS 

As the preceding chapter shows, PI's power-ground phase successfully automates 

the power-ground phase of chip design. The algorithm's high success rate, its low 

running time, and the high quality of its output make it a useful tool in chip design. 

The research that produced the algorithms explored the similarities and differences 

between signal routing and power-ground routing. It showed that many signal-routing 

techniques are applicable to power-ground routing. 

Through its application of signal-routing techniques, the research showed new 

applications· of techniques in graph theory, such as growing Steiner trees. 

To keep the trees from crossing, the algorithm introduced the idea of using a 

Hamiltonian cycle to separate the chip into two separate routing regions. By extension, 

using this concept in other situations could control the growth of trees. Extending 

the idea of separate routing regions, other lines besides a Hamiltonian cycle could 

control tree growth. For example, the VDD ring, described in Section 6.4, separates 

logic module routing from pad routing. This relates to Rothermel and Mlynski's work, 

where a vertical line divides the chip into two routing regions. 
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