
•• ···· - ··~· '· -· ••• ~ .. L.;-..: _.,, • . ,_

-~-

l)pe Checking in VIMV AL

by

Bradley C. Kuszmaul

Submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science

. at the

l\1assachusctts Institute of Technology

June 1984

© Bradley C. Kuszmaul 1984
The author hereby grants to M.l.T. permission to reproduce and to

distribute copies of this thesis document in whole or in part

Signature of Author . ~

Department of Electrital Engineering and Computer Science

lOMay 1984

Certified by . . . • . • • . • .. . • • . . . • . •

Accepted by

1

Jack B. Dennis

Thesis Supervisor

John Guttag

Chairman, Departmental Committee

l'ype Checking in VIMV AL

by

Bradley C. Kuszmaul

Submitted to the Department of Electrical Engineering and Computer
Science on 20 June 1984 in pattial fulfillment of the requirements for

the Degree of Bachelor of Science. ·

Abstract

A type system is developed for the revised version of the VAL programming
language (VIMV AL) which has the following features:

1. Type Inference: allows programs to be written with incomplete type
specifications. The type checker infers the types of the expressions from
their context

2. Polymorphism: allows modules to be written which operate on more
than one type, performing analogous operations on different types of
data.

3. Higher order functions: functions are first class data in VIMV AL.

4. Recursive types: a type may refer to itself.

A theory of types is developed which applies to a large class of programming
languages, including YIMVAL. First the notion of type is defined. then the
interaction between types and programs is described, with a definition of type
correctness. ·Type correctness is shown to be well defined and decidable~ and a type
checking algorithm is given which performs type checking for VIMV AL.

Thesis Supervisor: Jack B. Dennis
Title: Professor of Computer Science and Engineering

Keywords: Polymorphism, Static Type Checking, YIMV Alt VAL. Finite State
Automata, Type Inference.

2

Acknowledgn1ents

I would like to thank the following for their contribution to this work:

Jack Dennis, my thesis advisor, for providing a good topic, and constructive

criticism of my work.

Bhaskar Guharoy for proofreading and discussing this work.

Gary Leavens for proofreading and offering valuable suggestions.

Lyman Hurd for proofreading.

Eric Anderson for never actually telling me he did not want to hear any more about

my thesis: he probably wanted to.

Kimberly K. Lewis for listening anyway.

3

To Kimberly, \\ho likes being silly with me.

4

Chapter One:· Introduction

Chapter Two: Types

Table of Contents

2.1 A Discussion ofTypc Checking
2.2 The Properties of Types

Chapter Three: Type Checking

3.1 Type Assignments and Programs
3.2 Type Correctness - "There is a solution"
3.3 An Algorithm for Determining Type Assignments

Chapter Four: Type Checking in VIMV AL

4.1 The Semantics of Modules
4.2 Recursive Functions
4.3 "Constant" copying
4.4 The Restrictions for VIMV AL's operators
4.5 An Efficient Algorithm for Type Checking in VIMV AL

Chapter Five: Conclusion

Appendix A: VIMV AL Operators and their Restrictions

A.I Basic Operators
A.1.1 Error Tests
A.1.2 Equal and Not Equal

· A.1.3 Boolean Operators - - -· --- --··
A.1.3.1 Two Argument Boolean Operators
A.1.3.2 One Argument Boolean Operators

A.1.4 Type Conversion Operations
A.1.5 Real and Integer Operations

A.1.5~1 Binary Operators
A.1.5.2 Unary Operators
A.1.5.3 Relational Operators
A.1.5.4 Exception Predicates
A.1.5.5 Special Cases

A.1.6 The empty operation
A.l. 7 Array Operators

5

9

15

15
16

26

26
29
30

33

33
34
37
37
38

43

47

49
49
49

-·- ._._. ____ .

49
49
49
50
50
50
50
50
51
51
51
52

A.1. 7.1 Array-fill
A.1. 7 .2 Select
A.1.7.3 Append
A.1.7.4 Create-by-elements
A.1.7.5 Array To Integer Operators
A.1. 7 .6 Array-adjust
A.1.7.7 Array-addh and Array-addl
A.1.7.8 Array-remh and Array-reml
A.1.7.9 Array-set! and Array-seth
A.1.7.10 Concatenate and Join

A.1.8 Stream Operations
A.1.8.1 Stream Creation
A.1.8.2 Stream Null
A.1.8.3 Stream First
A.1.8.4 Stream Rest
A.1.8.5 Stream affix

A.1.9 Record Operators
A.1.9.1 The Record Constructor
A.1.9.2 Record Selection
A.1.9.3 Record Replace

A.1.10 Union Types
A.1.10.1 Union Make
A.1.10.2 Union Is

A.1.11 Constants
A.2 Type Declarations

A.2.1 Basic Type Specifications
A.2.2 Array and Stream Type specifications
A.2.3 Record and OneofType specifications
A.2.4 Function Type Specifications
A.2.5 Free Variables as Type Specifications

A.3 Basic Constructs
A.3.1 lfthen else
A.3.2 Tagcase
A.3.3 Forall construct

A.3.3.1 Forall with CONSTRUCT
A.3.3.2 Forall with EV AL

A.4 Functions
A.4.1 Function Declaration
A.4.2 Function Application

Appendix B: Examples of the power of VIMV AL

6

52
52
52
52
52
53
53
53
53
53
54
54
54
54
54
54
55
55
55
55
55
55
55
56
56
56
56
57
57
57
57
57
58
59
59
59
60
60
60

61

Appendix C: Listing of the VIM· VAL tJPe checker 65

7

Table of Figures

Figure 2· 1: (CONS 1 2) Cell, with paths: {<CAR, INT>, <CDR, INT>} 18
Figure 2·2: Rccursi\'c type, with an object of the type T=CONS(INT,T) 21

(Also known as LIST[INT]), along with the FSA which accepts T.

8

Chapter One

Introduction

VAL (Value-Oriented Algorithmic Language). developed by Ackerman and Dennis,

of M.I.T:s Computation Structures Group [l], explored static data flow

architecture [5] for a side-effect free language. Side-effect free languages implement

functions which. when given a particular set of arguments. always return the same

result (as opposed to languages which aHow side effects, and the result of calling a

function depends on the state of the environment as well as the explicit arguments).

Such languages are sometimes called "functional" because they implement

mathematical functions. Functional languages are well suited to highly parallel

computers because changing the order in which different parts of a program are run

(or running them in parallel) does not change the semantics of the program [7, 3].

The Computation· Structures Group is now developing a new implementation of a

revised VAL. based on an abstract data flow machine called the VAL Interpretive

Machine (VIM), which executes data flow instructions directly. The revised version

of VAL is called VIMV AL. The original VAL does not support polymorphism,

recursive data types, recursive functions, higher order functions. or type inference.

Because it was not expected that the static architecture would implement proper

function application using data flow, VAL function calls are actually implemented

by compile time "macro expansion", precluding higher order functions in general,

and recursive functions in particular. VAL is a strongly typed language which

requires that the type of every variable and fonnal argument be completely and

explicitly specified. The VIM abstract machine indudes mechanisms for function

application. and the Computation Structures Group is developing an

implementation of VIMV AL. Since higher order functions introduce extra

9

complexity, we decided to rework the type system for VIMV AL Several desired

features for the type scheme of VIMV Al. were proposed, most of which boiled down

to: ease of use for the programmer. Ease of use has at least two components:

"writeability" and "readability": it is easier to write programs (at least it involves

fewer characters to write a program) in a language which requires a minimum of

symbols, while it is typically easier to read programs written in a language which

requires the programmer to add redundant information to a program. Thus "Ease

of use" has different meanings for different people. Here is a set of criteria for

evaluating the ease of use of a type system. ·

-The type mies must be easy to remember, and express: they should be
simple and consistent.

- The programmer should not be required to write a lot of extra symbols
just to facilitate type checking. "A lot" is subjective: Some
programmers like to explicitly specify types, and some programmers
find that requiring such type specification hinders them.

- The language should be strongly typed, so that no type errors can occur
at rnn time, and so that no type information needs to be represented at
run time.

To meet these goals, we have decided to incorporate type inference into VIMV AL.

Type inference allows the programmer to write a program with a minimum of type

declarations. Most types can be deduced from their context, for example the type of

the constant 3.1415 must be REAL in VIMV AL, and multiplication of a REAL value

by some variable x would mean that x must also be REAL. The VIMV AL compiler

automatica11y determines the type of every expression, or gives an error saying that

some expressions are ambiguously typed (i.e. expressions which have more than one

possible type), or overconstrained (i.e. expressions which have no possible type).

The type checking algorithm guarantees that no type errors will occur at run time.

We adopt the strategy that the programmer should be required to write a minimum

10

- ----·-.,.~. ·--- ••••• _¥ __ .._,_ ~·--·~ ···~-·-~- ---·-·~·· --~-.. ·-----·--~~--- -- -~·---· --- ·- - - .----- ---· - ---·--~-

.,,--· ..

..

number of extra symbols to facilitate type checking, while allowing a programmer to

optionally add extra type information to a program. We will discuss how well our

type inference system meets our goals in the conclusion of this paper.

VIMVAL has the following additional features which improve the expressive power

of the language, while adding some new difficulties to type inference that have not

been covered by [16, 15, 14).

Polymorphism Allows programmers to write functions which perform analogous
operations on different types of data. One example of a built in
polymorphic function is ARRAY-LIMH, which maps from any
array to an integer. Polymorphism and type inference are loosely
coupled in VIMV AL because we allow any type to be explicitly
written, thus we need a way to denote polymorphic types. The
main restriction on polymorphism is that a formal argument to a
function can not be used polymorphically, only free variables can
be used polymorphically.

Recursive data types
Recursive types are allowed. In fact any type that can be written
is allowed. Recursive types are not the same as recursive data. It
is not possible to construct a recursive data object in VIMV AL
because VIMV AL requires that all data objects be "semantically"
constructed after their components are constructed. (There are
two "exceptions" to this rule. It is possible for a function to
operate on a copy of itself, but the circularity involved is very
stylized, and the functions are not actually being constructed with
self-references. VIMVAL has "early completion structures" [4],
which have certain advantages which do not effect the fact that
recursive data can not be built in VIMV AL.)

Higher order and recursive functions
Functions are first class data in VIMVAL: functions can be
passed to and returned from functions, and functions can be used
as parts of structures. Recursive functions are a special case of
higher order functions. All recursive functions are defined to
have the same semantics as a program written with explicit
function arguments to replace recursion. (In a language with

11

higher order functions, explicitly specifying the type of a function
can be troublesome. See (10] for a discussion of this.)

Previous \Vork

Semantics of Types and Type .Checking

Much work has been done recently on types. Scott [21) and McCracken [14] view

types as retracts of the univ·ersal domain (e.g. special functions on the set of all

objects which can be represented using strings of bits). Milner (16) views types as

ideals (which is a special set of objects meeting certain closure conditions).

Donahue [6] and Demers [2] claim that types are sets of operations (as opposed to

sets of objects). This approach is contrasted with the algebraic approach. where any

particular type is specified by its algebraic properties. We unify some of these

views. and following Solomon [22), we see types as sets of objects with certain

restrictions.

Type Inference, Polymorphism and Undecidability

Langmack [8] showed that two of VIMV AL's features, type inference and

polymorphism, can combine to make the type correctness of a program an

undecidable problem. Langmack showed that by either requiring all fonnal

arguments to be "monomorphic" (i.e. the arguments must have exactly one type), or

requiring all formal arguments to be explicitly typed, the undecidability can be

avoided. Our solution to this problem is to require all formal arguments to have

exactly one type, i.e. formals must be "monomorphic" [16) at run-time. This rules

out certain programs, but we believe, with the support of Milner [16]. that most

useful programs have the property that all their formals are monomorphic anyway.

Type Inference Algorithms

Solomon (22] implicitly described a type checking algorithm . for certain kinds of

Janguages, where types can be described by regular sets. and the type declarations

are complete and explicit. This thesis will extend Solomon's work to embrace type

u

inference. (Also relevant is the work on type equivalence for types in Algol68 [20),

which uses finite state machines to perform comparisons of types, but we are not

directly concerned with such comparisions.)

Peacock [19) designed a type checking algorithm for V1MVAL based on constraint

propagation through a graph representing a VIMV AL program. As Peacock pointed

out, his algorithm was driven by side effects (which is not aesthetically pleasing to a

group working on a purely applicative language such as VIMV AL), lacked a

correctness proof, and was not implemented. This thesis corrects and extends

Peacock's work by presenting a type checking algorithm, proving it correct, and

supplying an implementation of the algorithm.

Overview

Our work involves type inference, and we argue that the sets of objects that are of a

given type are in one to one correspondence with the sets of operations that define a

type. We note an isomorphism between sets of restrictions and certain sets of

objects: A given set of restrictions completely and uniquely describes a type, and a

type completely and uniquely describes certain sets of objects. We go on to use that

isomorphism between the restrictions and our intuitive understanding of types, to

define types, because the restrictions are ~Y to formalize. The types then have

certain algebraic properties (those of regular sets) which are dependent on the

restrictions placed on them by a programming language.

We are interested in applying the algebraic properties of types directly to implement

the type checker, falling closer to Milner [16] and Scott [21) who are modeling type

checking, than the algebraists who are modeling the type objects.

Synopsis

Chapter 2 defines type in terms of regular sets and finite state automata: types are

regular sets with a certain decidable property. Chapter 3 describes the interaction

•
13

between types and programs, defining type assignments. Chapter 3 goes on to define

type-correctness in terms of the numhcr of possible type assignments, and shows that

1ypc-corrcc111css is well defined, and decidable, and that the type assignment for a

given program is computable. Chapter 4 describes the application of our type

checking system to VJMV !\I. In conclusion we will examine the type system m

Vliv!V!\L, and compare it with our ease-of-use goals.

14

.r---..

Chapter Two

Types

The goal of this chapter is to define the notion of type rigorously. We discuss our

intuitive notions of types, and how well they fit some currently available

programming languages. Then using examples from a dialect of LISP, we motivate

several definitions, which lead to a definition of 1yp~systems and types, which

formalize our intuition. A lype is a description of a set of objects, which have a

certain property (the type of the objects). The description can be written as a regular

expression, thus types are isomorphic to regular sets.

2.1 A Discussion of Type Checking

Types are easy to use, but difficult to describe. Intuitively, type checking is

something which can catch certain programming errors (type errors), such as adding

an integer to a string, or using an array as if it were a function. Many LISP

implementations provide run time type checking, which detects type errors when

they happen~ This approach is not robust because it is difficult to determine when

all the type errors in a program have been removed. Another approach, which we

take, is that programs are checked statically for type correctness. In order to

perform such static type checking, we traditionally have to put up with a loss of

notational convenience: we may have to add extra symbols to a program to help the

type checker, or the extra restrictions required for static type checking might mean

that we are not be able to express a program in the way we want to. Another

. possibility is that the type checking system might not find all type errors (e.g. the lint

program on UNIX does some type checking on C programs, but it is not guaranteed

15

to find all type errors.) It is difficult to "retrofit" a programming language with

static type checking because it is often impossible to perform complete static type

checking. (In LISP the propertythat cdr of nil is never taken can not be statically

checked, and in C it is not possible to statically check that a pointer value actuaJly

points to a valid address.)

Our type theory wi11J9llow Leivant [9] and Solomon [22], who model types as

structural conditions on data objects: given a data object 0, and a type T, it is

possible to decide whether 0 is of type T by examining the structure of 0. This

approach means that types arc sets of objects. Jn this case, Tis a description of the

possible "shapes" of 0. We specifically follow Solomon, and claim that T describes

a regular set of paths, where a path is a sequence of symbols in some alphabet

(called the selectors) which corresponds to a legal sequence of operations on object

0. This approach means that types are isomorphic to regular Sets, and everything we

want to know about a type can be rephrased in tenns of regular sets.

2.2 The Properties of Types

Our goal is to define type rigorously. In order to.do this we need to deal with some

of the restrictions that we intuitively associate with types {for example no object is

both an integer and a real, and arrays have a "subtype", but integers do not) First

we will describe selectors, then paths. Then we will discuss the restrictions, leading

to the definition of a type-system. Finally we will define type.

We will use LISP examples in this chapter, even though the types of LISP do not

necessarily match the types of VIMVAL. We use the words "path" and "selector"

infonnally to motivate our definitions, which appear below. The dialect of LISP

that our examples will use has two base types:

16

--- ·----·

,~.

Integers The on1y selector for an integer is INT. l11ere is only one path
from an integer. and that is <INT>.

Cons ce11s Cons cel1s have a CAR and a CDR, so the selectors for a cons cell
are CAR or CDR. AH paths from a cons cell start with CAR or
CDR. Cons ce11s can be built with the CONS function. There is
a special cons-cc11 ca11ed NIL. which has CAR and CDR both
NIL. The LIST operator builds a list of cons ce11s in the standard
way, ending with a NIL. For example:

(LIST X Y Z) =def (CONS X (CONS Y (CONS Z NIL)))
We wi11 be a litt1e sloppy with the type of NIL in our examp1es,
because NIL is a "polymorphic" value (it cou1d be an empty
LIST of anything), and we have not developed the tools to
discuss NJ L's type.

Paths for LISP are sequences with elements in {INT, CAR, CDR}. This set is called

the set of selectors for LISP.
Notation: The set of selectors for a program, denoted l:, is some finite set,
which is dependent on the program being type checked.

Elements of l: will be written in uppercase italics, e.g. INT and CAR.
Notation: A path is a sequence, with each element of the sequence in I.
Paths are possibly infinitely long.

The length of a path xis denoted I.xi.

If xis a path with I.xi > i, then xi is the ith element of x. The first element

of xis x1.

We write finite paths with angle brackets: x;;;;.(/NT, CAR> is a path with
x1;;;;. /NT and x2;;;;. CAR. The symbol <> denotes the path of length zero
(the empty path).

Paths can be concatenated: if x and y arc paths. then z= x0y is a path,
where if x is infinite then z= x. otherwise z;= X; for i E {l, ..• lxf}. and

zlxl+ ;= y/or all finite i E {l lyf}.

17

The words 1up!e, and siring, are often used for things which are similar to palhs, but

typically tuples and strings are finite in length.

Consider the LISP value. 0, generated by

(CONS I 2).

Here, 0 is a cons cell containing an integer in both its car and its cdr, the set of paths

for 0 is { <CAR, INT>, <CDR, INT> }. and this set defines the "type" of 0 (see

Figure 2-1).

i

Figure 2· l:(CONS 1 2) Cell, with paths: {<CAR, /NT>, <CDR, INT>}

The previous example describes a type which is a finite set of finite paths. The next

example illustrates a type which is an infinite set of infinitely l9ng paths. Consider

the type equation T = CONS[T,11. The paths for this type are infinitely long, and

consist of any sequence of CA Rs and CDRs.

18

-----·
For the next example (which will give an example of a type which is an infinite set,

al1 the elements of which are finite except for one) we need a few standard

definitions, adapted from [1 JL We will also need the following definitions to define

type.

Definition 2· I: If A and B arc sets of paths, then the composilion of A and
B, is

r{ A0 B =def { <1°p I (J EA, p EB}.

where u 0 p is the concatenation of path u and path p.

The definition of concatenation of paths automatically takes care of the case where

some of the elements of A or Bare infinite.

We want to compose i copies of a set of paths, A, where i can be a finite integer, or it

can be oo. The case of a finite integer is adapted directly from [11], while we need

an extra definition to define the case of i infinite.

Definition 2·2: If A is a set of paths, and i is a finite integer, then A; is
defined recursively:

- A0 =def { <> } (i.e. the empty path, not flJ)

- A; (1>0) =def AoAi-1

Definition 2· 3: A path u is an in ilia! segment of a path y if there is some
path p, such that a0 p =y.

Definition 2·4: If A is a set of paths, then

A 00
=def { u IV j(.oo, 3 p E Ai, such that pis an initial segment of a}.

If A is a set of paths, then A1 is the set of paths which are made by concatenating i

elements of A together. A00 is the set of paths which are made by concatenating an

infinite number of elements of A together.

Definition 2·5: The Kleene star operator on sets, written •, denotes the
operation

A• =..If u.E{O oo} Ai. ue I ,. .. ,

19

~--

Intuitively, A* is the set of all paths which are concatenations of zero or more

clements of A. Note that we allow an infinite concatenation of elements of A.

Definition 2·6: The Kleene plus operator on sets, written +, is

A+ = u. Ai
-def 1E{l,. ..• oo} •

Note that A* = { <> } u A+.

Now we have the tools to examine an interesting type in our LISP dialect. The type

LIST[U] is useful in LISP, and our type system can express the semantics of this

type.

Given a cons cell 0 of type Twith car of type U (where U is the set oflegal paths for

an object of type U), and cdr of the same type as 0 (i.e. any operation legal on 0 is

also legal on cdr(O), making Ta recursive type), we have

. T = { <CDR> }* 0 { <CAR> } • U.

An object of the type shown in Figure 2· 2 might be generated by (LIST 1 2 3),

where U is { <INT> } in this case. Note that T is a regular set. and can thus be

accepted by a finite state automaton if U is a regular set

Note also that one of the elements of Tis the infinite path x, such that X; = CDR

for all positive integers I.

The examples we have presented have types which can be represented by regular

sets. Solomon (22, 23) showed that the only types we should consider are the ones

which can be represented by regular sets. We place an additional restriction, (the

details of which are dependent on the programming language that the type system is

being implemented for), that some regular sets are illegal as types. In our dialect of

LISP, for example, the set { <CAR>, <INT> } is illegal, because there is nothing

which has a CAR and is an integer. Thus for a given programming language there

20

__ .,...--...,,__

Figure 2·2:Recursive type, with an object of the type T=CONS(INT,T)
(Also known as LIST(INT)), along with the FSA which accepts T.

are selector classes which provide the information to check for illegal sets like

{<CAR>. <INT>}.

We require that the selector classes for a given programming language, partition ~

into equivalence classes.

In VIMVAL, each equivalence class in the selector classes represents a different

"type class" or "type generator" (such as ARRAY. RECORD or INT). This

method of partitioning I would allow us to generalize our type system to include

abstraction, and this possibility is discussed briefly in the conclusion. It is not

essential to our work on the type checking algorithm that the selector classes are

formed according to the rule that each dass corresponds to a "type generator".

21

The selector classes for our LISP dialect are

-{CAR, CDR}

-{INT}

Some selector symbols can not be followed by any other selectors. Our LISP dialect

does not allow paths of the fmm <INT.CAR, ... >. because that would imply that

there is some object which is an integer, which has a CAR. (It is not dear what such

a path would mean, but we do not want it) Thus, for a given programming

language, some elements of I can only appear as the last element of a finite path.

Notation: The set of terminators, a subset of I, is the set, defined by the
programming language, such that any path having a tenninator in a non
final position is illegal.

In our LISP dialect. {INT} is the set oftenninators.

In VIMV AL and our LISP dialect. the tenninators correspond to "scalar" types, or

"base" types. We do not, however, require that such a correspondence hold for our

type checking algorithm to work.

A few extra definitions are needed to define types. We want to be able to talk about

the "first part" of a set of paths, and the "last part" of a set of paths, so that types can

be described in terms of these properties.

Definition 2·7: The head of U ~ I+ is the set of first elements of the
paths in U.

head(U) =def UxEUxl

Definition 2·8: The rest of a path a E l: + is a with the first element
removed.

rest(a) =def p such that <a 1> o p = a

Definition 2·9: The tail of U ~ l: + is U with the first element of every
path removed.

tail(U) =def { a I 3 p E U where a = resl(p) }

22

Definition 2· IO: If XE I then the X-selected tail of U ~ l: + is
tail>..(U} =def { rest(J~ I y EU and y1 = X }.

Now we can encapsulate all the type information for a given programming language

into a type system. Type systems are dependent on their programming language: the

correctness of a type system depends on the semantics of the programming language

associated with it. We often refer to a type system as a programming language in this

paper, because of this dependence.

Definition 2· l l: A type system Lis a three-tuple <I. C. GJ) where

- I is the set of selectors in L,

- C is the set of selector classes, which partitions l':,

- and GJ is the set of tenninators. GJ ~ I.

In order to define type, we need to be able to talk about certain properties of regular

sets which are easily defined recursively. One such property is that for any selector

a. the a-selected-tail of a type, T. must also be a type (or be empty). This recursion

could be a real problem: e.g. for the type LIST[U], the CDR-selected-tail of the type

LIST[U], is LIST[U]. There is no obvious way to terminate the recursion. By

constructing a finite state automaton (FSA) which accepts the regular set, we can

perform the tests we are interested in without resorting to such infinite recursion.

The following definitions, which describe properties of FSA, were adapted from

[11].

23

Definition 2· 12: A FSA is a tuple (K,I,8,s,F,~) where

- K is a finite set of states.

- I is an input alphabet.

- 8 is a function mapping some subset of KxI into K.

- s is a start state (s E K).
~',

· F is a set of accepting states (F ~ K).

- and ~ is a reject state (~ E K),

and 8(~.u) is undefined for all u E I.

Definition 2· 13: A configuration of an FSA is a pair (k,u) with k E K and
u EI •

Definition 2·14: A binary relation 1-M holds between configurations of
M. an FSA. (k,u) 1-M (k',u') ~ 8(k.u1) = k', and rest(u)=u'. In which
case we say that (k,u) yields (k',u') in one step. We denote the reflexive
transitive closure of 1-M as I-~. If 8(k.u 1) is undefined, then
(k,u) 1-M (~.u). (u 1 is the first element in the path a.) .

Definition 2· 15: An FSA, M, accepts a path a if the following hold:

- If u is finite then (s,a) I-~ (f,<>) for some/€ F.

- If a is infinite then it is not true that (s,a) I-~ (~.a') for any path
' (I.

Note that if a FSA reaches a configuration (k. a), where 8 is undefined, then the

FSA "hangs", and never accepts its input Specifically, if a FSA reaches the state~.

then the input is not accepted.

The set of paths accepted by an FSA is a regular set of paths •. and is called the set

that the FSA accepts.

24

We now have everything needed to define type.

Definition 2· 16: T. a regular set of paths. is a type in a programming
language <I. C, q) if there is some FSA, M = (K, I, 8, s, F. ~).
accepting Tsuch that

- Al rejects <>.

-Given a state k, if Hk = { u EI I 8(k, u) is defined}, then Ilk is a
subset of some selector class in C.

- For every state k E K. and every symbol XE I, if 8(k, X) E F, then
XE q, (Terminators occur only at the end of finite paths.)

It is not necessary to force M to be unique in the definition of type, because if Tis a

type, and N is an FSA which accepts T, then N meets the conditions imposed on M

in the definition of type. We leave this assertion without proof.

25

Chapter Three

Type Cl1ecking

Now that we have defined types, we can define type-checking by specifying the

interactions betweenJypes, and programs. A program has a set of nodes1 that we

want to type (to type node N is to assign a type to N), and some information about

the types of the nodes (which we call operators). We first Jay some groundwork,

defining concepts such as program and type-assignments, and then define

type-correctness in terms of the number of possible type-assignments for a program.

We conclude this chapter by showing that type-correctness is well defined and

decidable.

3.1 Type Assignments and Programs

Our type checking algorithm will try to infer the type of every node in a program

from its "context". We need to specify what we mean by the "context" of a node,

and to do that we will define three kinds of "operators" on nodes: parameterized

restrictions, containers, and closures.

Notation: The set of node names is denoted x. x must be disjoint from
~ .

.Kmight be infinite, but any given program will only use a finite subset of x.

A type assignment gives us a way to associate a type with a node in a program.

1Nodcs arc roughly equivalent to expressions. except that there may be some expressions that we
will not want to type (for example expressions in a module which is never used), and there some
things that we might want to type which arc not expressions (for example type declarations). See [19)
for a more complete discussion of nodes.

26

.. ...--...... Definition 3· l: A type assignment R is a regu Jar SU bsct of j(o I* such that
v xE head(R). tail j R) is a type.

Notation: The set of all type assignments is denoted S<?1:' A~ii~ Subsets of
SOTAau are elements of the power set ofSOTAan• written ~(Sotaa11).

There is an interesting isomorphism between type assignments and mappings from

P.NodeNames to types. Given a program P, and a type assignment T, there is a
""' mapping U:x-s'such that U(n) = tail

11
(n. Conversely, given a mapping U, there is

a type assignment T, such that tail Cn = U(n). We named type assignments type
11

assignments because they are isomorphic to mappings which assign a type to every

node, and we will freely, without warning, use this isomorphism when it is

convenient.

We are interested m finding which type assignments are consistent with the

"context" in which each node appears in a program.

Definition 3-2: Given an alphabet .A., if u E .A•, u finite, and Risa regular
set over .A, then the regular set after u in R is

after a(R) =def { u' I u 0 u' € R }.

Note that for a symbol x E .A, tail/R)= after<xfRJ.

A parameterized restriction gives us the ability to say that two nodes are the same

type. First we can specify the two nodes n and n' that we are interested in by giving

two paths, u and u' respectively. Any FSA which represents a type assignment

which is consistent with a given parameterized restriction has the property that if we

start from the start state of the FSA and u and u' lead to states k and k' respectively,

then the languages accepted by starting at k and k' must be the same. This is

equivalent to saying that there must be some FSA accepting th~ same language such

that k= k'. We fonnalize this with the definition of state-equivalent, and then define

parameterized restriction.

27

----------~---~-~------'----

- _ _....._, __ --- - ---- ··--·--- .,. ___ _............ ~~-··,........._ __

-~-

-~-

Definition 3·3: Given a regular set R, two paths a and a· are
state-equivalent if after (R) = after .(R). in which case we write a =Ra·. a a
Definition 3·4: Given a set of regular sets A (with every regular set in A·
over a fixed alphabet.,<), fo{every pair (a. a') E .,<*x.,<*, with a and a'
finite, there is a set of regular sets t RI R €A and a =Ra·}. We call this

set the parameterized restriction of (a. a'), and write the set as Aa:a'·

A colllainer gives u~ the ability to say that the type assignment for our program has a
. -

given path a in it.

Definition 3·5: Given a set of regular sets A (with every regular set in A
over a fixed alphabet .,<), for every--a € .,<* there is a set of regular sets
{ RI R € A and a E R }. We call this set the container of a in A, and
write the set as A

0
•

A closure gives us the ability to say that a given node must have selectors which are a

subset of some finite set of selectors. We choose the node by giving a path, and

specify the set by listing it.

Definition 3·6: Given a set of regular sets A (with every regular set in A

over a fixed aJrhabet .,<), a finite set of symbols $ ~ .,<, and a finite path
a E .,< • there is a set of regular sets
{ R IR E A, and head(afler "(R)) ~ $ }. We call this set the closure under
$of R selected by a, and wnte the set as Aa~r

Now that we have defined the kinds of restrictions we want to make on type

assignments, we define an operator to be one of those restrictions. A program will

actually consist of some nodes and some operators.

Definition 3·7: An operator OP is a subset of SOTA811 which is either a
parameterited restriction, a container, or a closureofSOTA811•

Notation: If OP is an operator, then the operands of OP are the node
names mentioned OP.

The meaning of an operator is that if there is some restriction on the types of some

nodes in a program, the operator contains the information describing the restriction.

28

---- -- ----~ -------------------- ----------

For example, if, given a program, we have an operator which requires (informally)

that "if the type of node 1 is T. then the type of node 2 is LI ST[TT' then the operator

is {RI RESOTAan and <I> =R <2.LIST> }. A more concise way of writing this set

is (SOTAall)<i>::<2,/./ST>"
Definition 3·8: A program Pis an ordered pair (NodeNames. ops),

- where NodeNames is a set of node names (a finite subset of .N),
referred to as P.NodeNames,

- and ops is a finite set of operators, where each operato;s operands
are a subset of the names of the nodes in a program. (i.e.
VxEops, head(x) E P.NodeNames.) This set is referred to as P.ops.

Notation: The set of all programs is referred to as JI.

By taking all of the operators in a program, and combining their information, we can

deduce the type assignment for a program.

Notation: The intersection of all the operators in a program is called the
complete-restriction of the program.

Definition 3·9: oxS~ JI -+ ~(SOT Aa11) is a function mapping programs
into sets of type assignments. Given a program P, oxSg~P) is defined by

oxSg~P) =def nxEP.opsx.

3.2 Type Correctness· "There is a solution"

Definition 3· 10: A program Pis type correct if fox~P)I = 1.
Definition 3-11: A program Pis type ambiguous if foxSS~)I > 1.
Definition 3· 12: A program Pis type overconstrained if toxSg~P)I = 0.

Theorem 3·13: Type correctness is well defined, and is independent of the
order in which the restrictions are examined for a given program.

Proof: Set intersection is associative and commutative. I

Peacock's proposed implementation of type checking for VIM VAL [19] used a graph,

through which information about the restrictions of the operators of a program was

29

----------- -- - - -- -------------

propagated. Peacock's thesis posed the question: "Can changing the order in which

constraints are propagated through the graph change the final answer?". We can

answer "no" to this question because if a and fJ are such that given a regular set R,

Ra and R p are operators. then it is true that:

(Ra)p = (Rp)a

We accept without proof the folfowing:

Proposition 3· 14: If a program is type correct. then no "type errors" (in the
intuitive sense) will occur while running the program.

This is difficult to prove. because it is dependent on the semantics of the language

the program is written in. Even if the language's type system conforms to our

model, the correctness of type correctness depends on how accurately the set of

operators for the language is described. Given a careful semantic model for a

programming language, and a set of operators which are consistent with the model,

a proof of this proposition would involve showing that if the local constraints

imposed by the operators are true then no type errors will occur at run-time.

Milner (16) proves this proposition for the language he considers. We will leave this

proposition unproven for VIMV AL.

3.3 An Algorithm for Determining Type Assignments

Theorem 3-13 shows that we can talk about type correctness for incompletely typed

programs with recursive types, and gives a definition of type correctness, but it does

not give us an algorithm for determining those types. In this section we will prove

that there is an algorithm for computing the type assignment for a given program.

If x is the intersection of a finite collection of operators, we need to show that it is

possible to compute whether I.xi= 0, lxl = 1 or I.xi> 1. If I.xi= 1, i.e. x = { y } for

some type assignment y, then we need to show that we can actually compute y.

30

,.,,.........-......_

SpccificaHy, we need to be able to build a FSA which accepts y, so that the VIMVAL

compiler can use the type information to compile a program. (Other representations

of regular sets would be equivalent to building a FSA which accepts y [11).)
Theorem 3· 15; Given a program P, the type correctness of Pis decidable.
If Pis type correct, then the type assignment is computable.

Proof: Suppose P has operators equal to the union of some containers
described by the set of paths { xi I i= 1, ... ,n }, and some parameterized
restrictions ckscribcd by the set of pairs of paths { (yi, zi) I i= 1, ... ,m } , and

• some closures { (~i' wi) E ~(.A) x .A I i= 1,. .. ,1 }, where .A. = .NUI.

We need to determine how many type assignments (which are regular
sets) there are that are elements of every operator in P. Since type
assignments are regular expressions, we can consider the FSA's which
accept the type assignments. In general, there will be more than one FSA
which accepts a given type assignment. but we can consider, without loss
of generality, the set of FSA 's with no more than p states, where

p = I P.NodeN~mes I + I?= 1 Ix) + I~ 1 (lyif + lzil) + If= 1 lwil + 3.
The reason we can make this reduction is that the set of FSA which accept
the languages described by any operator all have a bounded number of
states, thus the set of FSA which accept languages in the complete
restriction of a program also have a bounded number of states. Our
bound is correct because if there are two languages meeting the
restrictions of operators of the program, then there are two which need at
most p states: it is possible that every time a node or symbol is mentioned
by a operator, another state will be needed, plus we add one for the
rejecting state, one for an accepting state, and one for an "unconstrained"_
state which can be used to make type assignments different for two FSA
(assuming the unoonstrained state is reachable from the start state).

31

Since it is decidable whether the language accepted by a given FSA is in a
given operator, we simply need to generate a list of all FSA's with less
than p states, filter out the ones which do not accept a type assignment,
and determine which of them arc members of every operator in P. Given
this new set of FSA which arc in every operator of P, we need to
determine whether they a11 accept the same language, which is decidable.
If they do, then the program is type correct If they do not, then the
program is type ambiguous. Of course, if there is no FSA which accepts a
language which is in every operator of P, then Pis type overconstrained.

1ti'~

If a program P is type correct, then the type assignment is the language
accepted by one of FSA's that is found by the algorithm described above.

It is not really satisfying to be forced to use an algorithm as inefficient as the

algorithm described above for determining type correctness. This algorithm is

exponential in the size of the input program since the the number of FSA's of size p

is exponential in p.

VIMV AL, the actual language we are trying to type check, has very stylized

operators, we were able to find an algorithm for type checking which is usually more

efficient. Chapter Four describes VIMV AL in more detail.

32

---------------~--

Chapter Four

Type Checking in VIMV AL

This chapter describes the types of VIMV AL (24), and how VIMV AL interacts with

the type system 4e_veloped in chapters 2 and 3. We deal with function recursion and

polymorphism so that our type system can handle VIMV AL, then we describe the

operators of the VIMV AL language.

4.1 The Semantics of Modules

A VIMVAL program consists of a set of modules, which can be compiled separately.

Modules may use free names, which are references to other modules. The

bindings of the free names are resolved at link time, possibly with the explicit help

of the programmer. VIMV AL allows a module M with a free name "P" to to bind

"P" to N, even though the name of module N is not "P". Unfortunately, the

programmer may be required to help the linker resolve free names.

Every module is really a generator: when a module is bound to a free name, the

module is augmented in whatever ways are possible and necessary to bring it into _

conformance with its use (i.e. it is copied, and then modified). Thus, when a

programmer uses the built-in ARRAY ·SIZE function in VIMV AL, a copy is made so

that whatever type constraints are added to the ARRAY·SIZE function (for example

if the programmer uses it on an array of integers) are not propagated to other uses of

the ARRAY·SIZE function.

Note that we do not require that there be a unique type assignment for each

module, only that there be a unique type assignment for each augmented version of

33

every module. The semantics of modules does not specify that a module must be a

function. A module could be some other kind of value, or even a second-class value

such as a type, since the type restrictions for each of these cases could be expressed

as operators.

After a copy of a module is made, the type checking system must decide on exactly

one type for the tn5_)dule. This implies that all the types of the subexpressions of the

module must have exactly one type: in particular the arguments to functions must

have exactly one type. This precludes certain programs which use "run-time"

polymorphism (such as the "standard" LISP interpreter).

4.2 Recursive Functions

VIMVAL allows functions to catl each other recursively, with the restriction that

there can be no mutual recursion between modules. (Mutual recursion between

functions defined inside a module is allowed.) All recursive functions are really

treated as higher order functions, which pass other functions, perhaps copies of

themselves, around. This implies that recursive functions, whether directly or

indirectly recursive, must be converted to passed arguments. Because arguments

must have a fixed type, functions must be of fixed types when used recursively.

Recursion is treated as a syntactic sugar for functions which explicitly pass other

functions around (7]. Program examples 4-1 and 4-2 illustrate a simple case of the

desugaring process.

Program Example 4·1:

X An example of recursion
function fact(i:INT) RETURNS (INT)

IF 1<=1 THEN 1
ELSE i•fact(1-1}
END IF

END FUN

Program example 4-2 shows program example 4-1 "desugarfied". The approach

34

-------~---·---- --

taken is to trnnslate fact into a routine which calls dofacl, which does the actual

computation.

Program Example 4· 2:

function fact(i:int} RETURNS (INT)
facttype = FUNCTYPE(INT,FACTTYPE} RETURNS (INT)
function dofact(i:int,f:facttype} RETURNS (INT)

if i<=l then 1
else i•f(i-1,f)
end i,f- --

end fun % dofact
dofact(i,dofact)

endfun % fact

There are more complex cases of mutually recursive functions. They are dealt with

in the general case by translating

a : FUNCTION(<args>) (<rets>) IS
expressiona-with-these-subexpressions:

PC ...)
y(...)

END a
/J : FUNCTION(...) END {J
y : FUNCTION(...) END y

where p and y call a (directly or indirectly) into

a : FUNCTION(<args>) (<rets>) IS
do-a : FUNCTION(<args>,a,b,c) (<rets>) IS
expression

0
-with-these-subexpressions:

b()(... ,a,b,c)
c(}(... ,a,b,c)

END do-a
do-/J : FUNCTION(... ,a,b,c) •.•. END do-/J
do-y : FUNCTION(.•. ,a,b,c)

do-a(<args>,do-a,do-/J,do-y)
end a

END do-y

Of course this only translates a. A similar translation would need to be made for p,
so that p could be called directly. The following are some design considerations that

we took into account when we made this decision:

35

-~.

. -~.

· - We wanted VIMVAL to have a decidable type system, and found that,
theoretically, if we do not "fix" the type of recursive calls, the type
becomes undecidable [8].

- We wanted an easy to understand type system. Aesthetically, an unfixed
type becomes very confusing on even rnther simple examples of
recursion (sec program example 4-3).

- Practically, very few programs need the extra expressive power of
unfixed ijpes,on recursion (16].

Program Example 4-3:

function F(A,B)

F(A,B)

F(B,A)

ENDFUN I F
F(t,1.0) l difficult to type

function Ft(A,8,FZ,F3)

FZ(A,8,FZ,F3)

F3(8,A,f3,FZ)

ENDFUN l Fl
F1(1,1.0,f1,F1) l Much easier to type:

It is very difficult to give F a type in this example, because it is acceptable to pass F

anything as arguments. but the arguments are switched halfway, resulting in a

confusing type. If we write Fl instead, we can get the same meaning, but the

program is much easier to type:
I

FlaTYPE= FUNCTYPE(INT,REAL,FlaTYPE,FlbTYPE) RETURNS(...)
FlbTYPE = FUNCTYPE(REAL,INT,FlbTYPE,Fl bTYPE) REfURNS(...)
The type of Fl when called at the top level is Fla TYPE.
The type of the third argument is Fla TYPE.
The type of the last argument is_ FlbTYPE.

An example of the power of this kind of recursion is given in program example 4-4,

which shows how a standard LISP function, is easily written recursively in VIMV AL .

36

. .---.

(We also omit of the type d~clarations to demonstrate the ease of use of type

inference.)

Program Example 4-4:

function LENGTH(l)
tagcase 1

tag NullVal: 0
tag ConsVal:

l+length(l.cdr)
end tail~ -

endfun % length

4.3 "Constant" copying

After dealing with recursion, the remaining free variables in each module are treated

as invocations of a generator (either of a type, or a value), which does away with

polymorphism (since after being copied, every node must be assigned exactly one

type) .

4.4 The Restrictions for VIMV AL's operators

The actual restrictions for the operators of VIMV AL are presented in appendix A.

VIMV AL does not need the full expressive power of operators: we have described

VIMV AL using:

Simplified closures
Closures are specified by a set of symbols ~. and a path a.
VIMV AL operators are simpJe enough that a can always be
written as a path of length zero or one. If the path is of Jength
zero. then the closure gives a complete list of all the node-names.
Our implementation assumes that the node-names mentioned in
the operators are all the node-names in the program, which is
slightly easier to use than if the implementation required that an
explicit list of all the node-names be presented to the type
checker. If the path is of length one, then a must be of the form
<n> where n is a node-name.

37

Simplified containers
Containers are specified by a path CJ. YtMYAI.'s operators can be
written in such a way that all the containers arc specified by paths
of length two: the first element is a node-name. and the second is
a terminator (which is a selector).

Simplified parameterized restrictions
Either, we have A<n>=<m> or A<n.u>:::<m>• where m and n are
node-names. and CJ is a selector. (The general form of operators
allows parameterized restrictions of the form Aa=P' where a and

f1 are arbitrary elements of ..N'0 I\

These restrictions allow a great improvement in the implementation of type

checking in VIMVAL.

4.5 An Efficient Algorithm for Type Checking in VIMV AL

Our technique is to maintain an equivalence relation over node-names, which

reflects which nodes are of the same type, information about the closure for each

node, and information about the transitions that any FSA which represents some

member of our complete-restriction, must follow. Hence, in most ·cases, we are able

to rapidly reduce the upper bound of the number of states that FSA which accept

our complete-restriction, by considering each equivalence class in the equivalence

relation to represent one state of the FSA. The system requires at least one node

name in every equivalence class to have a closure restriction (because otherwise, it

might be possible to have extra transitions leading from any state, destroying the

uniqueness of the type assignment).

38

Definition 4·5: A Meta Finite S1a1e Awomaton (MFSA) is a tuple
(K, .A, x, s, F, I, 8, e}, where

- K is a set of states.

- .A is an accepting state (A E /(),

- x is an equiva1cnce relation over K (If k E K then !IG{k) the class of
k under !JG).

/ ,,--- --

- sis a start state {s E K),

- Fis a set of final states (Fis the union of some of the classes of s,
which implies F~ K . .A E F).

- I is a set of symbols,

- 8 is a function mapping (X x I) - (X u {fll}),

- and e is a function mapping !lb-+ ~(I).

Definition 4-6: A configuration of a MFSA is a pair (k, a) where k E K

and a E ~ •

Definition 4·7: A binary relation t-M holds between configurations of M,
a MFSA. (k, a) t-M (k', a') - a' = resl(a) and 8(X(k), a1) = !lb(k').

The reflexive transitive closure of t-M is denoted as t-~.

So far, MFSA are very similar to FSA. Now we are going to define some interesting - -- -

operations which allow us to perfonn our type checking algorithm. First we are

interested in restricting the set of FSA's that our MFSA represents to those which

correspond to one of the cases of a simplified parameterized restriction. (See section

4.4.)

39

Definition 4·8: If Mis an MFSA. and iandjare states then

equate<.M,i,J) =def (K, !JG', s, F', I, 8', e'),

where b E X'(a) (i.e. a and b are in the same class under X') - there is
some finite path u such that(i, u) I-~ (a,<>). and U. u) I-~ (b, <>),

and F' is the union of all the clements of x· which have some element in
F.

'-

and 8'(X'(a), a) = X'(b) - 3 (x, y) E X'(a)xX'(b), such that
8(%(x), a) = X(y),

and e'(y) = nzE %'()') c(x(z)).

The equate operation on MFSA gives us the set of FSA's in which a given pair of

states are always state equivalent.

Next we are interested in the case of a container.

Definition 4·9: If Mis an MFSA, k E K, and a E l:, then

has-path(M, a) =def M,

where if there is some x E 8(X(k), a) then M = equate(M, ~ k),
otherwise M = M, except for the transition function 8', which is the
same as 8, except that 8'(X(k), a) = !li(.A.).

The next definition allows us to deal with the second case of a simplified

parameterized restriction. (See section 4.4.)
Definition 4· 10: If Mis an MFSA, i, j E K, and a E l:, then

has-subpath-t<i._M, i, a,J) =def M,
where if there is some x E 8(X(1), a) then M' = equate(Jt.f, ~ j), otherwise
M' = M except for the function 8', which is the same as 8, except that
8'(X(1), a) = !Xi{J).

Note that a MFSA describes a set of type assignments if the following conditions

hold:

40

1. For any node-name 11, { a I 8(X(n). a) * f?J } is a subset of some selector
class. and is also a subset of e(X(n)).

2. If /1 E K. 111 E F, a E I, and 8(X(n), a) = X(m) then a is a terminator.

3. For every XE I. 8(X(.A), X) = f?J.

Note that a MFSA describes a single type assignment if the following condition
holds: (/----

1. For every node-name 11, { a I 8(X(n), a) * 0 } = e(X(m)) * 0.

To compute equate(Af,i,J), has-path(Af,i,a), and has-subpath-t<J..M,i,aJ) only

takes on the order time 11
2 in the worst case, and usually is much better.

To compute the type assignment for a program, we perform the following:

1. Build the MFSA with all the closures matching the cJosure operators in
the program. (This is easy: if a node z is closed with the set ~ in the
program, we have the function e(z) = ~. If a node z has no cJosures in
the program, then e(z) = l:.)

2. Construct new MFSA 's, by composing the MFSA operations which
correspond to the operators in the program. It does not matter which
order they are composed in, since the MFSA operations describe set
intersection: if A is a program operator corresponding to some MFSA
operation F, and B is a set of type assignments corresponding to some
MFSA M, then AnB is a set of type assignments corresponding to the
MFSA F(M). Here is the correspondence between program operators
and MFSA operations:

Program Operator

(SOT Aan><n>:c<m>

(SOTAau><,,, a>s<m>
(SOTA311)<n.a>

MFSA Operation

equau{M,n,m)

has- subpath- td,.M,n,a ,m)

has-path(M,n,a)

3. Test to see if the MFSA represents a set of type assignments (in which

41

case we kmm that the program is not 1ypc-ovNcons1mincd), and if the
MFSA represents a single type assignment (in which case we know that
the program is not type-ambiguous).

Appendix C contains the listing or a CLU [13] program to perform type checking on

V!MV AL.

42

Chapter Five

Conclusion

Did \Ve Meet Our Goals?

While the VJMVAL compiler is not yet finished, and we have no actual experience

using VIMV AL, we feel confident that V1MV AL has much the power and ease of use

stated in our original goals. This power is illustrated by a few examples in Appendix

B. We believe that VIMVAL provides a notation for polymorphic programs that is

easy to learn and use, and we proved that VIMV AL is type safe, meeting the high

level goals out1ined in the introduction. The actual type rules of VJMV AL are fairly

simple:

- There must be exactly one legal type for every value in a VIMV AL
program .

. - The type of a value is constrained by the operators that operate on the
value. The VIMV AL manual [24], and appendix A, describe the
constraints that each operator places on its operands. Intuitively, the
arguments have to be used in a "consistent" way. (This is easy to state,
but sometimes rather difficult to apply in practice, since the human
programmer may have to actually use our algorithm to determine the
type assignments of a program.) - -· ···· · -

- Recursive functions are of a fixed type, but other modules are copied
before they are compiled, which allows polymorphic functions to be
written.

VIMV AL requires a faifly complex type checking algorithm, which may require

quite a bit of computation in the worst case. We believe that this complexity is

acceptable in the light of VIMV AL's ease of use, and given that VIMV AL is designed

to run on a highly parallel computer.

43

Type inference allows programmers to write code which is difficult to read.

Empirica11y, we could argue that if type inference is difficult for a computer, it is

probably also difficult for people who are reading a program. (e.g. We found it

difficult to infer "in our heads" the type of the Y-combinator (shown below) but our

type checking algorithm correctly computed the Y-combinator's type.)

Comparison with other \Vork

VIMV AL's type system is different from Milner's [16), in that we allow "ad hoc

polymorphism" in the case of certain built in operators (such as +, which can take

real or integer arguments). Milner discussed the possibility of adding such ad hoc

polymorphism.

A more important difference between our type system and Milner's is that we allow

recursive types. The recursive types allow us to type Curry's Y combinator (which

Milner's system can not type).

Program Example 5·1:

function Y(f)
function ft(x)

f(x(x))
end fun

ft(ft)
endfun

which could be re-written without type inference.

Program Example 5· 2:

Ytype = Functype(Ytype) returns(Ytype)
function Y(f:Ytype} returns(Ytype)

function fl(x:Ytype} returns(YType)
f(x(x))
end fun

fl(fl)
endfun

Except for the above differences, our concepts of type and sets of type assignments

are not really different from Milner's. Instead of finding the "inost general type" of

an expression, and then instantiating the expression with specific types to get a

44

"monotype", as Milner docs, we copy the expression, and then deduce what the type

of the expression must be. These approaches are equivalent, because a "monotype"

is a member of a "most general type" if and only if there is context in which the

expression could have type corresponding to the "monotype".

Our approach to types can be generalized to include type abstraction [12] by

defining a correspondence between the legal operations on user defined abstract

types and an augmented selector alphabet: abstract types are sets of objects with a

set of operations (17), and a type checking algorithm would simply generate the

additional selectors that the abstract type needs (which are different from the

previously defined selectors), and put them all in the same selector class. None of

the new selectors would be terminators. The rest of our type checking system would

apply to this new system. We did not make this generalization because we wanted

to limit the scope of this work, and because VIMV AL is perceived as a "number

crunching" language, which does not require the powerful and easy to use

abstraction mechanisms that are found in CLU (13]. VIMV AL does have a type

abstraction mechanism, which involves encapsulating a data type inside a procedure,

but the mechanism is not easy to use (syntactic sugar would help solve this

problem (14)), and it is impossible to maintain a representation invariant for objects

of a given abstract type [12] (such as a requirement that an array be a sorted array).

A View from Above

The "high level goals" for the MIT Computations Structures group were well stated

in [3]:

to present a system model for a kind of ideal multiprogrammed computer
system, one that would serve many users in a way permitting sharing of
the products of their individual programming efforts consonant with the
principles of program modularity -- the ability to build program units
which can be combined to form higher units, etc.

We believe that the development of the type system for VIMVAL is an important

45

milestone in the de\'elopment of the \'I\1\IAL language, which in turn represents an

important step on the p:1th to that high level goal.

46

Appendix A

VIMV AL Operators and their Restrictions

This appendix describes the actual operators that are in VJMV AL Much of this

appendix is borrowed from Peacock's [19] appendix A.

We adopt the convention that every operator has n input nodes, named x1, ... ,x
0

and

m result nodes named Yl'····Ym· An operator is set of regular sets, and we give the set

for each operator.

l: =
{ REAL, INT, CHAR, BOOL, NULL, ARRAY, STREAM,

GET-a, IS-a, ARG-n, RET-n
I a is a legal VIMVAL identifier, and n is a positive integer }

The correspondence between selectors in our type system, and the "type classes" in

VIMV AL are as follows:

selector
REAL -+

INT -+

CHAR -+

BOOL -+

ARRAY

STREAM

GET-a

IS-a -+

RET-n, ARG-n -+

The tenninators are

{ REAL, INT, CHAR, BOOL, NULL }.

The selector classes are:

47

type class
REAL
INT
CHAR
CHAR
ARRAY
STREAM
RECORD
ONEOF
FUNCTION

{ REAL}.
{ INT}.
{ CHAR }.
{ BOOL }.
{ NULL}.
{ ARRAY}.
{ STREAM}.
{ GET-a I a Is a legal VIMVAL identifier}.
{IS-a I a Is a legal VIMVAL identifier}.
{ ARG-n, RET-n I n is a positive integer }.

We will call the set of a11 type assignments o.

There is a little bit of added complexity due to the non-uniform polymorphism of

some of the operators in VJMV AL. The + operator, for example allows arguments

which are either all integers or all reals. We can deal with such finite disjoint unions

of operators, by computing a separate complete-restriction for every possibility. We

will refer to {INT, REAL, CHAR, BOOL} as RICB, {REAL, INT} as RI, and

{REAL, CHAR} as RC.

Most operators in the VIMV AL language correspond to more than one operator as

defined in definition 3-7. Rather than write the operators in the form (SOT Aan> a .
l

for i in some set of integers, we wiJl write the restrictions in standard set notation.

We will also choose not to mention the closure operator for operators which

mention selectors which are in selector classes of order one. This set of selectors is

OWNCLASS = {REAL, INT, CHAR. HOOL. NULL. ARRAY, STREAM}. In

general, if an operator specifies that there is some path <z. a>, with

a E OWNCLASS, then there is an implied closure operator of the form

(SOTAan>z[{cr}]·

48

A.1 Basic Operators

A.1.1 Error Tests

There are three universal error tests in VtMV AL Their names are is-undef.

is-miss- elt, and is- error. They have 1 input and l output Their only constraint

is that the output must be boolean.

{ SEO I <y1 :/BDOL> E s }
A.1.2 Equal and Not Equal

Equal, (=). and not equal, (-=). are in a special class because they constrain their

argument types not to a specific type but to a set of four possible types, namely real,

integer, char, or bool. They have 2 inputs and 1 output. The inputs must be the

same type and the output is a bool: Thus there is one operator for every p E RICB.

V p E RICB:
{SEO I { <x1 , p>. <x2 , p>. <yl' BOOL> } ~ S}

A.1.3 Boolean Operators

There are two classes of boolean operators in VIMV AL. The first class has two

arguments, the second has one.

A.1.3.1 Two Argument Boolean Operators

The members of the class with two arguments are and, (&); and or, ()). Their

constraints are that all the inputs and results must be bool.

{ SEO I { <xl' BOOL>. <x2 , BOOL>. <yl' BOOL> } ~ s }
A.1.3.2 One Argument Boolean Operators

The second class has only one member, the not, (-) operator. The input and result

are both bool.

{SEO I { <x1 • BOOL>, <yl' HOOL>}~ s}

49

A.1.4 Type Cmnersion Operations

There are three operations intended to convert one data type into another. These

· are real. character. and integer. They all have one input and one result

real { SEO I { <xl' IN1>. <yl' REAL>}~ S}

integer

character

v p E RC: {SEO I { <x1• p>, <yl' JN1>} ~ S}

{SEO I { <x1, IN1>, <yl' CHAR>}~ S}

A.1.5 Real and Integer Operations

Most real and integer operations have the same names. Those that do are divided

into four classes. There are some special cases, which are described after the four

classes.

A.1.5.1 Binary Operators

The first class takes two arguments and returns one result, all three types being the

same type, and being real or integers. The members of this class are plus, (+);
minus,(·); multiply,(*); divide,(/); max; and min.

V p E RI
{SEO I { <x1' p>, <x2 , p>, <y1' p>} ~ S}

A.1.5.2 Unary Operators

The next class has one argument and one result, both of the same type. and both

either integer or real. The members of this class are negation,·-·; and abs.

V p E RI
{ SEO I { <X1. p> I <Y1 I p> } ·~ s }··

A.1.5.3 Relational Operators

The next class has two arguments and one result. The arguments must be the same

type. and be integer or real. The result is a boolean. The members of this class are

>. <.>=.and<=.
V p € RI

{ SEO I { <x1 , p>, <x2 , p>, <y1 , BOOL> } ~ S}

50

_ _.,-...__

A.1.5.4 Except ion Predicates

The fourth and final class of real/integer operations has one argument and one

result. The argument can be real or integer, and the result is a boolean. The

members of this class are is-pos-over, is-neg-over. is-unknown,

is-zero-divide, is-over, and is-arith-error.

V p € RI
{ 5€0 I { <x1• p>, <y1 , BOOL> } ~ s}

'._/

A.1.5.5 Special Cases

There are five operations that operate on real and integer types which do not fit into

the above classes. The first of these special cases is mod, with two arguments and

one result, all of which are integer.

{ 5€0 I { <x1 • INT>, <x2, INT>, <y1 , INT> } ~ S }

The second special case is exp (which computes x1 x2), with two inputs and one

result. If x2 is REAL then all are real, and if y1 is INT then all are integers.

{ SEO I { <x1• REAL>, <x2 , REAL>, <y1, REAL> } ~ s }

{SEO I { <xl' INT>, <x2 , INT>, <y1 , INT>} ·t; S}

{SEO I { <x1 , REAL>, <x2 , INT>, <y1 , REAL>}~ s}

The final three special cases are is-pos-under, is-neg-under, and is-under, with .

one input (a real) and one output (a boolean). - - - -

{SEO I { <xl' "REAL">, <i(y)l' "DOOL">}~ S}

A.1.6 The empty operation

The empty operation has no inputs, and one result: a string or an array. There is a

"dummy" node called z which is used for technical reasons:

{ seo I <y1 • ARRAY> =s <z> }

{ SEO I { <y1 • STREAM> =s <z> }

51

A.I. 7 Array Operators

A.1.7.1 Array-fill

The array-fill operator has three inputs and one output. The first two inputs are

integers, and the output is an array of type x3.

{ SEO I { <x1 • INT>, <x2 • INT> } ~ S,

and~,.(Yp ARRAY> =s <x3> }
A.1.7.2 Select

The select operator <m has two inputs, an array and an integer. and an output, an

element of the array.

{ SEO I { <x2 , INT> } ~ s. and <x1 , ARRAY> =s <y1> }
A.l.7.3 Append

The append operation takes three inputs and gives one result The first input, the

last input, and the output are all arrays of the same type. The second input is an

integer.

{ SEO I { <x2 , INT> } ~ S,

and <x1 , ARRAY> =s <x3 , ARRAY> =s <y1 , ARRAY> }

A.1. 7.4 Create-by-elements

The create-by-elements operator[:] is takes n>l inputs and gives one result The first

input is an integer. the output is an array of the second input The rest of the inputs
--- --·--·-·- --·

must be the same type as the second input

{SEO I { <x1 , INT>}~ S, and <x1>. <y1 , ARRAY> for i€{2, ..• ,n}}

A.1.7.5 Array To Integer Operators

The following three operators have the same constraints: array-/imh. array-liml and

array-size. They take an array input and give an integer result We need a dummy

node named z.

{ SEO I { <yl' INT> } ~ S, and <x1' ARRAY> =s <z> }

52

.~.

A.1.7.6 Array-adjust

The array-adjust operator takes three inputs and gives an output. The first two

inputs arc integers. The last input and the output are arrays of the same type.

{ SEO I { <x1 , INT>, <x2 , INT> } ~ S, and <x3 , ARRAY> =s <y1> }
A.1. 7. 7 Array·addh and Array·addl

The operations array-addh and array-add/ both take two inputs and yield an output

The first input and the output are arrays of the the second input's type.

{ SEO I <x1 • ARRAY> =s <x2> =s <y1 • ARRAY> }

A.1.7.8 Array·remh and Array·reml ·

The operations array-rcmh and array-rem! both take one input and give one output

The input is an array of the outpufs type.

{ SEO I <x1 , ARRAY> =s <y1> }

A.1.7.9 Array-sell and Array·seth

The operations array-set! and array-seth take an array and an integer and give an

array output. The first input and the output are arrays of the same type.

{SEO I { <x2 , INT>} ~ s, and <x1' ARRAY> =s <y1 , ARRAY>}

A.1.7.10 Concatenate and Join

The operations concatenate and array-join takes two arrays, and give one array, all of

the same type.

{SEO I <x1 • ARRAY> =s <x2 , ARRAY> =s <y1 • ARRAY>} -

53

A.1.8 Stream Operations

A.1.8.1 Stream Creation

The s1ream operator allows n inputs and one output There is really one operator

for every non-negative number n. (We will assume that there is at least one input

If not, we need a dummy input, which we can calJ x1.) The inputs must all be the

same type, and~ the output is a stream of that type.

{ SEO I <x;> =s <y1 , STREAA1> for i E { 1, ... ,n } }

A.1.8.2 Stream Null

The null operator takes a stream and returns a boolean. We need a dummy node

named z.

{ SEO I <y1 • BOOL> E s. and <x1 , STREAM> =s <z> }

A.1.8.3 Stream First

The first operator takes a stream[f] and returns a T.

{ SEO I <x1 • STREAM> =s <y1> }

A.1.8.4 Stream Rest

The rest operator takes a stream and returns a stream of the same type. We need a

dummy node z to describe this restriction.

{ SEO I <x1> =s <y1>, and <x1, STREAM> =s <z> }

A.1.8.5 Stream afflX

The affix operator takes a stream[f] and a T. and returns a streamff).

{ SEO I <x1• STREAM> =s <x2> =s <y1• STREAM> }

54

A.1.9 Record Operators

A.1.9. 1 The Record Constructor

The record operator takes n inputs and gives one output. Note that there is
a1·····an

. one record operator for every finite set of V1MVAL identifiers. Assume that a 1, ... ,

an are sorted Jcxicographically. We must be sure to exclude other selectors on the

output

{ SEO I <y1 • GET-a 1> =s <x;> for iE {1, ... ,n}.

and <y1 , GET-p, .. . > (S if /3({ a 1, .•. , an} }

A. l.9.2 Record Selection

The se/ecta operation on records takes a record and gives a value which was stored

in the record. Note that we must be careful to allow paths that start with GET-p, for

all P*a, because the select path does not say anything about the other selectors. a

{ SEO I <x1 • GET-a> =s <y1 > }
A.1.9.3 Record Replace

The replacea operation on records takes a record and a value, and returns a new

record of the same type.

{ SEO I <x1> =s <Yi>. and <xi, GET-a> =s <x2> }
A.1.10 Union Types

A.1.10.1 Union Make

The make a operator takes an object and returns a oneof.

{ SEO I <xi> =s <Yi, IS-a> }

A.1.10.2 Union Is

The isa operator takes a oneof and returns a boolean. We need a dummy node

named z.

{ SEO I <x1, IS-a> =s <z>, and <Yi, BOOL> € S }

55

.-~-

.. ..--......._

A.I. I I Constants

Integer. real, and character constants have no inputs and one output The output

must be the type of the constant

Real {SEO I <yl' REAL> ES}

Integer {SEO I <y1• JN])€ S}

Character --- · ·. { SEO I <yl' CH AR> € S }

A.2 Type Declarations

Variables and Formal arguments may have type information explicitly given about

them through a type specification. The type specification is treated just like an

expression for the purposes of typing.

A.2.1 Basic Type Specifications

Reals, integers. characters, booleans. and null can each be specified by their names.

which have selectors associated with them: REAL. INT, CHAR. BOOL. and NULL

respectively. If we see a basic type a, with selector [J. then there is only one

"output", and that is the type a.

{ 5€0 I <y1 , /J> € s }

A.2.2 Array and Stream Type specifications

If we see a type specification ARRA Y[A], where A is a type specification. then we

say the "output" is an array of A. and the "input" is A.

{ SEO I <y1 , ARRAY> =s <x1> }

Similarly for streams:

{ 5€0 I <y1' STREAM> =s <x1> }

S6

.-~·-

A.2.3 Record and Oncof Type specifications

If we see a record type specification RECORD[a1:Al' ...• an:A
0
]. then we treat it

exactly the same as the record constructor in section A.1.9.1.

Similarly for oneof type specifications: There is no oneof constructor that specifies

all the arms, but it should be treated like a record constructor, just replace a11 the

GET-a 's with IS-a ·s: -- -·--

{ SEO I <y1 , /S-a 1> =s <x1> for i E {1, ••• ,n},
and if <y1, IS-fl, ... > E R, then P = aj for some j }

A.2.4 Function Type Specifications

Function type specifications are treated just like function applications in section

A.4.1. Instead of having subexpressions, we have subtypes.

A.2.5 Free Variables ~ Type Specifications

A free variable just names a single node, as is true for any VIMV AL expr~ion.

A.3 Basic Constructs

A.3.1 If then else

The if then else operator appears in the form:
IF <expt> THEN <exp2> ELSE <exp3> ENDIF

We require that <expD be a boolean 1-valued expr~ion. <exp2> and <exp3> be

. m-valued expressions. where <exp2>i is the same type as <exp3>i for i= 1 through

m. The IF is a m-valued expression.

We label the <expl> node x1,1, the <exp2> nodes X"i.i· ...• x2.m• the <exp3> nodes

x3,Jt .•.• x3,m, and the result nodes Yp •..• Ym·

{ SEO I <x1 , tt BOOL> € s,
and <x2, 1> =s <x3 , 1> =s <y1> for i in {t •... ,m} }

57

A.3.2 Tagcase

The tagcase construct appears in the fonn:

TAGCASE <exp>
TAG a 1 (n 1): <exp 1>

TAG a 2 (n 2): <exp2>

TAG an (n 3): <expn>
{ OTHERWISE : <expn+t> }

ENOTAG

The requirements arc that <expi> .. <expn+l> are the same type, and T(<exp>) must

be a oneof type with a 1 •. an as tag values. (If the OTHERWISE is not included,

then there must be no other tag vall;les.) The value of a T AGCASE can be a m

valued expression.

We label the node of <exp> as x0, the nodes of <exp? as xij for j= l, ... ,m. The

resulting nodes of the· tagcase are yj for j = l. .. ,m.

If the OTHERWISE is included we have:

{ SEO I <exp 1> =s <y1> for i in { 1, ••• ,n+l }.

and <exp, GET-a 1> = <n 1> }

If the OTHER WISE clause is not included, add the extra restriction that there are

no other tags:

{ SEO I <exp 1> =s <y1> for i in { 1, ••• ,n+1 }.

and <exp, GET-a1> = <n 1>,
and if <exp,GET-{J, .•. > ES, then {J = a 1

58

-------- ·----------

for some i }

------- ·-·----------------

A.3.3 Forall construct

The fora II construct appears as:
FORALL <var> IN [<expl> , <exp2>]

CONSTRUCT or EVAL <exp3>
ENDALL

There are two cases, the CONSTRUCT and the EVAL case: Jn every case, <expl>

and <exp2>~mtist-be integer. We label <expl>'s node x1, <exp2>'s node x2, and

<exp3>'s node x 3. The result node is y1.

A.3.3.1 Forall with CONSTRUCT

The restrictions for the CONSTRUCT case are that if <exp3> is of type T, then y1 is

type ARRA Y[I].

{ SEO I { <xl' INT>, <x2 , INT> } ~ s. and <x3> =s <y1, ARRAY> }

A.3.3.2 F orall with EV AL

There are six possible "evaluation operators" for the EV AL clause of a forall

statement In each case we have the additional restriction that the type-of exp3 must

be the same as the type of the output

There are more restrictions, based on which evaluation operator is used:

In the case of +, • ,min, or max we have the restriction that <exp3> must be an

integer or a real:

V p €RI
{ SEO I { <x1 , INT'>, <x2 , INT>. <x3• p>, <y1 , p> } € S }

In the case of&, or or we have the restriction that <exp3> must be boolean.

{ SEO I { <x1 , INT>, <x2 , INT>. <x3 , BOOL>, <y1 , BOOL> } € s }

59

A.4 Fu net ions

There are two ways that a function is encountered in VIMVAL. The first is the

declaration of a function. which is first treated by the compiler to get rid of

polymorphism and recursion. The second is when the function is passed as an

argument (either to a built in operator such as apply, or as another function).

A.4.1 Function Declaration

After a function ___ has been copied and modified to deal with polymorphism and

recursion, the type checker sees a "function declaration" node, which we can write

as

FUNCTION(a1, ... ,a
0

) RETURNS (/J1, ... ,/Jm) <EXPRESSION> END FUNCTION

where the ai's and Pj's actually are node names of nodes inside <expression>. We

assume that <expression> is m-valued. and that /Jj is the name of jth output node of

<EXPRESSION>. The resulting type constraints of a function dedaration is that

the output is a function taking n values, such that the ith value is of type ai, and

returning m values, such that the jth returned value is of type Pr y1 refers to the

node of the actual function.

{ R€0 I <y1 • ARG-1) =s <a1>.
and <y1, RET-b =s </J1> for approprfate i's }

A.4.2 Function Application

Ifwe see

<exp>(<exp1>, ... , <exp
0
>)

then we have a function application. The requirements are that <exp? be the same

type as the ith argument of <exp>. and that the jth output of this function

application is the type of the jth return value of <exp>. Here <exp> is labeled xl'

and <ex pi> is labeled x2.i. The outputs are labeled Yj for appropriate values of j.

{ 5€0 I <x1, ARG-i> =s <x1+1>, and <x1, RET-i> =s <y1> }

60

.. .--.........

....-..

Appendix B

Exan1ples of the power of VIMV AL

Program example 5-3 composes two functions to give a new one: One weakness in

our type syst~m is that one can not write a function which takes an arbitrary number

of arguments. (This weakness is a result of the syntax of VIMV AL, rather than the

type system itself.)

Program Example 5· 3:

function compose (F:functype(B) returns (C),
G:functype(A) returns (8))

returns (functype(A) returns (C}}
function composer (aval:A) returns (C)

F(G(aval))
endfun % composer

composer % return the composer
endfun % compose

Program example 5-4 implements the same function, with type inference instead

Program Example 5·4:

function compose (F,G)
function composer (aval)

F(G(aval))
endfun % composer

composer
endfun % compose

Program example 5-5 shows how a multiplier, the encapsulation of multiplication by

a constant, can be implemented in VIMV AL:

Program Example 5·5:

% MakeMul takes an integer I and returns a
% function which multiplies integers by I
function MakeMul(i:INT) returns (FUNCTYPE(INT) returns (INT))

function dolt(j:int) returns (int) 1*j endfun
dolt % return doit
endfun

61

__ ,,..-..___
Program example 5-6 shows how the multip1ier in examp1e 5-5 can be written

without explicit type declarations. This examp1e is s1ightly more powerful, in that in

can operate on reals or integers.

Program Example 5·6:

function MakeMul(i)
function dolt(j) i•j endfun
dolt
endfun ___ _

Program example 5-7 demonstrates a "password hider" program, which can be used

to hide information, which will only be released upon presentation of the correct

password. See (18] for further details on this sort of protection.

Program Example 5·7:

type hider=functype(givenpass:T,
command :oneof[store:T: fetch])

returns(oneof[badpass;
didstore:hider;
didfetch:T])

type pfuntype = functype(T,T) returns(boolean)

function makePassword(password:T,
passfun:pfuntype,
hiddenObject:T)

returns (hider)
X makePassword returns a function which knows the password and knows the
i hidden object, but will not reveal the bidden object unless the user
i presents the correct password. There is also no way to uncover the
I password itself, except by subverting the type system, e.g. using
i a debugger (or perhaps by trial and error).

function dolt(givenpass,command) ·
i dolt is the function that is returned by makePassword. dolt
X knows the password, because the password is in dolt's lexical
i scope.
i dolt returns the value 1ff the password presented causes
i PASSFUN(PASSWORD,GIVENPASS) to return true.

if -passfun(password,givenpass} then
make[BadPass:nil]

else
tagcase o:=command

tag store: make(DidStore:makePassword(password,passfun,o)]
tag fetch: make[DidFetch:hiddenObject]

end tag
end if

endfun i dolt
d91t i return dolt

endfun i makePassword

62

Finally, we have an example which implements lisp primitives in VIMV AL.

Program Example 5-8:

function cons(a,b)
make[ConsVal:record$[car:a,cdr:b])
endfun I cons

% The car of null is null
function car(a)

Tagcase b:=a
tag Consval: b.car
tag Nul lval: a

end tag
endfun I car

X the cdr of a null is null
function cdr(a)

TagCase b:•a
tag Consval: b.cdr
tag Nullval: a

end tag
endfun X cdr

function nullp(a)
is NullVal(a)'
endfun I nullp

function lispn11()
make[nullval:null]
endfun I 11spn11

function length(a)
if nullp(a) then 0
else t+length{cdr(a))
end if

endfun I length

function append(a,b)
if nullp(a) then b
else cons(car(a), append(cdr(a), b))
end1f

endf un I append

function ith(a,1)
if i>O then 1th{cdr(a),1·1)
else car(a)
end if

endfun I ith

63

function reverse(a)
% doreverse returns the first elements of a in reverse
function doreverse(a,i)

if i=O then lispnil()
else cons(ith(a,i), doreverse(a,i-1))
end if

endfun % doreverse
doreverse(i, length(a))
endfun % reverse

Appendix C

Listing !)f the VIM· VAL type checker

This appengi_x contains a listing of the VIM-VAL type checker which is written in

the CLiJ-[iJJ programming language. The style is "functional". i.e. we have been

careful to avoid side-effects. so that the eventual translation of the VIM-VAL

compiler into VIM-VAL will not be too painful.

SOTA

SET

EQUIVREL

MAP

SOTATEST

A cluster which implements the MFSA defined in definition 4-5.
along with its operations and the predicates which can be used to
determine type correctness.

A cluster which implements the mathematical object set.

A cluster which implements equivalence relations.

A cluster which implements maps from one set of objects to
another set of objects.

A procedure which tests SOTA.

65

.r---..

,-.

ps:<kuszmaul.thesis.valclu>sota.clu.62 28 April 1984·12:36:01

#extend
sota • cluster[alphabet, nodename, classname:type] 11

create, equate, has_subpath_to, has_path, has_closed_path,
close,
get_unique_type_assignment,
export % for debugging only

where
alphabet has get_class:proctype(alphabet) returns(classname).

equal:proctype(alphabet, alphabet) returns(bool),
get_is_terminator:proctype(alphabet) returns(bool),

% requires: if two alphabet items A and B then
% A.class•B.class implies A.is_terminator•B.fs_terminator
nodename has equal:proctype(nodename, nodename) returna(bool),
clas~name has equal:proctype(classname, classname) returns(bool)
- . ..----

/"
abstract • sota[alphabet,nodename,classname]
rep • struct[equivs:ERNN,

closures:TNSA,
transitions:tntano]

ERNN•EquivRel[NodeName]
TNSA•map[NodeName,SA]
SA•Set[Alphabet)
tntano • map[NodeName, tano]
tano • map[alphabet, no]
no • oneof[acceptor:null,

node:nodename]
nopair•struct[first,second:no)
% nodepair•struct[f1rst,second:nodename]
agenda•set[nopair]

% representation invariant I(R)
% R.equ1vs agrees with R.transitions: i.e.
% EquivrelfNodeName]Sfquivalent(R.equfvs,n.•) 1mplies
I R.transftionsfnJ • r.transitionsf•]
% R.transitions preserves well-typeness: f.e.
% R.transftionsfn]fa] and R.trans1tions[n][b] are defined implies
% a.class•b.class
% R.closures agrees with R.transftions: i.e.
% If R.c1osures[n] is defined then
% Domain(R.transit1ons[n]) Is 1 subset of R.c1osures[n]

% abstraction function R corresponds to A 1ff
% equivrelfNodeName]Sequfvalent(r.equfvs,n.•J iff·
% for all Q in A, <n> 1s state-equivalent to <•>
% equ1vre1fnodename]Sequivalent(r.equfvs.•. .
I no$va1ue_node(r.transit1onsfn]fa]J) fff
I for a11 Q fn A <n,a> is state equivalent to <a>
% noSis_acceptor(r. trans1t1ons[n][a]) 1ff -- - - -------
1 for a11 Q 1n A <n.a) is in O

create • proc() returas(cvt)
% returns the set of all type assignments
return(rep${equivs:ERNNSCr1ate(),

closures:TNSAScreate{),
transitions:TNTAN0$create{)))

end create

equate • proc(os:cvt, nodei,nodej:nodename) returns(cvt) 1ignal1(empty)
I returns OS[nodei•nodej], (signals empty 1f there is none}
tf ERNNSEquivalent(os.equivs, nodei,nodej) then return(os) end
ttd:agenda:•agenda$[nopairS{first:noSmake_node(nodei),

second:noSmake_node(nodej))]
I ttd: things to do, but these things have to be chected tor
% compatabi11ty AND put into the equivrel
newequivs:ernn:•os.equivs
while -agendaSis_empty(ttd) do

nowdo:nopair
nowdo,ttd:•agenda$pick_rest(ttd)
I the first thing to check 1s prev1ous equ1valence. If they

Page l

ps:<kuszmau1.thesis.va1c1u>sota.c1u.6Z ZS Apr11 1984 22:36:02

% are already equ1va1ent, then we don't need to add more.
% after that, we should check for compat1bi1ity. The class of the
% labels on the optput transitions should be tht.same. We rea11y
% only need to test one of them from each node.
% After that, we should gather a list of the ones that should ba
% made if these two nodes are equivalent. Th1s really must be
% done for the whole class of them
if noSis_node(nowdo.first) cand noSis_node(nowdo.second) th••

nowdol:nodename:•noSvalue_node(nowdo.first)
nowdo2:no~ename:•noSvalue_node(nowdo.second)
tf -ernnSequivalent(newequivs, nowdol, nowdoZ) th••

% now we actually have to equate them, but are they compatible?
1f -compatible(os.nowdol,nowdoZ)

_..---- then signal empty end
,/'-- % we must go to the mapping and add stuff

1 ttd:•ttd I pairs_which_must_be_same(os, newequivs(nowdol],
newequivs(nowdoZ])

newequivs:•ernnSequate(newequivs, nowdol, nowdo2)
end

else1f noSis_node(nowdo.first) cor noSis_node(nowdo.second)
then signal empty end

end
% built up newequivs, but not done yet
J now we have to actually create th• new object to return·
% we must extend the old maps ·
% (not because newequivs does not partition everything correctly, ft
% does, but because we can only get the non_tr1v1a1_c1asses out, and
% that is not everything)
rettrans:tntano:•os.transitions
retclos:tnsa:•os.closures
for eclass:set[NodeName] 1n ernnSnon_trivial_classes(newequivs) do

everclosed:bool:•fala• % did we ever hit a closure for this class?
thistran:tano:~tanoScreate() -
thisclose:sa:•saScreate()
for elt:nodename tn set[nodename]Selements(eclass) do

for al:alphabet,n:no 1n tanoSentries(os.transitions[elt]) do
thistran:•tanoSdefine_override(thistran,al,n)
end except when undefined: end

begin

end

ff everclosed then
thisclose:•thisclose&os.closures[elt]
elH

end

thisclose:•os.closures[elt]
everclosed:•true

end I th1s 1s so we can keep tract of if we closed ft
except when undefined: end

% check for the closure restriction one last tf ..
tf everclosed cand -tanoSdomain_is_in(thistran,thisclose)

then st9nal empty end % not an error 1f never c1osed
for elt:nodename tn set[nodename]Seletnents(eclass) do

rettrans:•tntano$define_overr1de(rattrans,elt,thistran)
tf everclosed then

retclos:•tnsaSdefina_ovarride(retclos,elt,thisclose)
end % don't define unJess we actuaJly closed it

end
end

return(repS{equivs:newequivs,
closures:retclos,
transitions:rettrans})

end equate

% internal routine decides if two nodes are compatfbJe.
% does check the closure condition
X we have to do is 1ook at a rep from the doma1n of the transitions to
I see if they are the same class. If there is none, then its ok on this.
X we also have to check the clsoure condition
X check that both of these are true:

(p 1.

Page z

ps:<kuszmau1.thes1s.va1c1u>sota.c1u.6Z ZB April 1984 12:36:01

I os.closures[nl] is undefined or contains domain(os.trans1tions[n2])
% os.c1usures[n2] is undefined or contains domain(os.transitinosfnl))
% if they are both defined then this is equivalent to test1no
% if the intersection of the closure conditions contains the unfon
% of the domains (This is equivalent because we already knew
I that the closures contained the domain of their own functions
compat;b1e • proc(os:rep. n1,n2:nodename) returns(bool)

tl: tano: •o.s. trans iUons(nl]
except when undefined: tl:•tanoScreate() en

t2:tano:•os. transitions(n2]
except when undefined: t2:•tanoScreate() end

if tano$pick_from_domain(tl).class -•
tanoSpick_from_domain(tZ).class
the~~eturn(false) end
•xcept when none: end I ok so far

begin
cl:sa:•os.closures(nl]
if -tanoSdomain_is_in(t2,cl) then return (false) tnd
end except when undefined:

tnd I 1t is ok if os.cJosuresfnJJ ts undefined
begin

c2:sa:•os.closures[n2]
1f -tanoSdoma;n_is_in(t1,c2) then return(f1l11) tad
end except when undefined: end I it is ot

return(true)
end compatible

% internal routine which returns a set of pairs that must be the same
% if the elements of sJ and s2 are to be the same under a mod1f1td OS.
% the reason we don't accept the union of sl and s2 fs that we
% would have to return all the pairs fn (Sl/SZ) CROSS (Sl/52),
I which is no fun.
I this way, we won't have to return any such pairs, which speeds things up
% (of course, we can ff we want to, no guarantees here.)
I the pa1rs that we return are the ones where
pairs_which_must_be_same • proc(os:rep, sl,sZ:set[nodename])

returns(agenda)
I Jet s:•sJ union sZ
% for each element 1n 1
I
% for each element fn sJ
retset:agenda:•agendaScreate()
sn:sequence[nodename]:•set[nodename]$set2seq{s1)

II set[nodename]Sset2seq(s2)
for i:int in sequence[nodename]Sindexes(sn) do

thisname:nodename:•sn[i]
thistano: tano: •01. trans 1t ions[thisnaM] --· -·-· ··· --·-

except when undefined: thistano:•tanoScreate() ••d
for symbo1:a1phabet in tanoSdomain_iter{thistano) do

for j:1nt in 1ntSfrom_to(1+1,sequence[nodename]Ssize{sn)) do
thatname:nodename:•sn[j]
% add •hat you get 1f you fo11o• SYMBOL frOlfl thfsname and thatname
retset: •retset+

end
tnd

end
return(retset)

nopairS{first:os.transitions[thisname][symbol],
second:os.transitions[thatname][symbol])

except when undefined:
end I 1f a symbol fs not thera, don't •orry

end pairs_which_must_be_same

% if has_subp•th exists, then we would lfke th1s to mean the same th1ng as
r a:rep.b:nodename:•has_subpath(os,node_from,sym)
I return(equate(a,b,node_to))
I but we don't use the intermediate node name
I note that in any event, if node_from.1s_terminator then signals terminator

Page 3

,,,--..,.,

ps:<kuszmau1.thesis.va1c1u>sota.c1u.6Z ZS Apri1 1984 12:36:01

has_subpath_to • proc(os:cvt. node_from:nodename, sym:alphabet, node_to:nodename}
returns(cvt) signals(empty,terminator)

X 1f sym is a terminator, then node_to would have to be an acceptor.
X which is impossible
if sym.is_terminator then signal terminator end

% worry about closure first
if -saSelementof(sym,os.closures[node_from])

then signal empty end
except when undefined: end X its ok

nmap:tano:•os.transitions[node_from]
except when undefined: nmap:•tanoS[] end
.,/

% check for the class restriction
if tanoSpick_from_domain(nmap).class-•sym.class

then signal empty end
except when none: end % it is olc

already_to:no:•os.transitions[node_from][sym]
except

when undefined:

end

% just build the new object and return it
return(repS{equivs:os.equivs,

closures:os.closures,
transitions:
tntanoSdefine_override(

os.transitions,
node_from,
tanoSdefine_override(

nmap, sym, noSmake_node(node_to)))})

I if it 1s an acceptor, it can't equate to node_to
1f noSis_acceptor(already_to) then signal empty end

nat:nodename:•noSvalue_node(already_to)
if ernnSequivalent(os.equivs,nat,node_to) then

rtturn(os)
end

X 1t is defined, and 1t meets the closure condition, but the node
I is not equivalent. Checlcs again to see if meets the cJass property
X ins1de equate
rtturn(down(equate(up(os) ,nat,node_to))) rtaignal empty
end has_subpath_to

I has_subpath does the fo11ow1ng:
% if os.trans1t1ons[nodeJ[symJ 1s defined, returns 01
X otherwise, checlcs to see 1f the transitions that are already there
X · are compatible with sym (1f not s1gna1s Bflpty)
I then creates an anonymous node which 1s transitioned to
% there 1f sym.1s_terminator then
I returns the nodename that we go to on sy•
lhas_subpath • proc(os:cvt, node:nodename, sym:11ph1bet)
I returns(cvt,nodename) signa1s(empty)
I has_subpath is not actually a def1ned funct1on
I end has_subpath

I has_path •dds path <node,sym> to the transitions
I if -sym.is_terminator then you get •non_term1nator• s1gna11ed
% if sym is 1ncompattb1e with the current vers1on, s1gna1s •e11pty•
I it could either be incompatible with the closure
I or the transftfon class
has_path • proc (os:cvt, node:nodename, sym:alphabet)

returns(cvt) s1gnals(empty,non_term1nator)
I check for • terminator
if -sym.is_terminator then signal non_terminator tnd

(,.'I.

. Page 4

ps:<kuszmau1.thesis.va1c1u>sota.c1u.62 28 April 1984 12:36:01

% check for the transition already existing, if it does then just
% return os because it is guaranteed to be an accepting node, because
% sym.is_terminator is true
if tano$defined(os.transitions[node),sym) then return(os) end

except when undefined: end % it is ok

% check the closure condition
if -sa$Element0f(sym,os.~losures[node]) then signal empty end

except when undefined: end % it is ok

% check the transition compatiblity
if tano$pick_from_domain(os.transitions[node)).class-•sym.class

then signal empty end
except when undefined:

when none:
end % it is ok

% now return the new object
old_tano:tano:=os.transitions[node]

except when undefined: old_tano:•tano$create() end
new_tano:tano:•tano$define_override(old_tano,sym,

no$make_acceptor(n11))
newtntano:tntano:•os.transitions
for affected:nodename 1n set[nodename]Selements(os.equivs[node]) do

newtntano:•tntano$define_override(newtntano,affected,new_tano}
end

return(rep$replace_transitions(os,newtntano))
end has_path

% if os can't meet the closure condition, then signal empty
% otherwise return os with the new closure condition
close • proc(os:cvt, node:nodename, syms:set[alphabet])

returns(cvt) ~ignals(empty)
if -tano$domain_is_in(os.transitions[node),syms)

then signal empty end
except when undefined: end % it is ok

% now create the new os
isyms:sa:•syms&os.closures[node]

except when undefined: isyms:•syms end
if sa$is_empty(isyms) then signal empty end
retclosures:tnsa:•os.closures
eclass:set[nodename]:•os.equivs[node]

except when undefined: eclass:•set[nodename]S[node] end
% all the equivalent nodes should have equal maps
for ntofix:nodename in set[nodename]Selements(eclass) do

retclosures:•tnsa$define_override(retclosures,ntofix,isyms)
end

return(repSreplace_closures(os,retclosures))
end close

% has_c1osed_path does c1ose(has_path(os,node,sym),node,(sym})
has_closed_path • proc(os:abstract, node:nodename, sym:alphabet)

returns(abstract) s1gnals(empty)
return(close(has_path(os,node,sym), node, saS[sym]))

resignal empty
end has_closed_path

% returns the map, which describes the transition function for the
% fsa which accepts the type assignment.
% signals ambiguous if any of the nodes named dont have some transition
% leading away from them. Nodes can be named in closures, equivs, or
% they could have transition functions which are undefined everywhere
% also signals ambiguous if the closure of a node is not exactly
% equal to the domain of the of the transition function. This
% has two special cases:
% 1) a node does not have a closure (nodes
% without a closure are ambiguous)
% 2) a node has a closure, but some element of the closure does not
% have a transition.

70

Page 5

-~--

ps:<kuszmaul.thesis.valclu>sota.clu.62 28 April i9S4 12:36:01

% (we are guaranteed that the domain of the transition is in the closure)
get_unique_type_assignment •
proc(os:cvt)

returns(map[noderiame,map[a1phabet,oneot[acceptor:nu11,node:nodename]])}
signals(ambiguous}

% check for ambiguity by finding mentioned nodes that are never used
% several ways for it to be ambiguos: an entry could have a tano
% with no entries, or there could be a named node somewhere wfth
% not entry in transitions
% or there could be a node mentioned in the closure that has no entry
% in transitions
% or there could be a node named in equivs with no entry in
% transitions
tor n~~me:nodename,ntano:tano in tntanoSentries(os.transitions) do

rX if the named node does not have a closure then ambiguous
myclosure:sa:•os.closures[nname]

except when undefined: signal ambiguous end
% if any of the symbols in the closure don't have a transition
% then ambiguous
tor symindom:alphabet in sa$e1ements(myclosure) do

tanoSfetch(ntano,symindom)
end

except when undefined: signal ambiguous end
% if the named node has a completely undefined transition
% function then then ambiguous
tanoSpick_from_domain(ntano}

except when none: signal ambiguous 1nd
% if any of the nodes fn range of the transition
% dont have closures or have undefined transition
% functions then ambiguous
tor sym:alphabet,nrs1t:no in tanoSentries(ntano) do

tagcase nrs1t

end

tag acceptor: % do nothing
tag node(nto:nodename}:

%% % if the node does not have a closure then it fs
%% % ambiguous

end
e•d

%% tnsaSfetch(os.closures,nto)
%% except when undefined: signal ambiguous end
%% note: all the nodes are checked for th1•

% if there is no transition from nto, to another node
X it is ambiguous
tanoSpick_from_domain(os.transitions[nto])

except when undefined.none: 1ignal ambiguous end

% ff any of the nodes mentioned 1n the equivalence cl111e1
% dont have closures or have undefined transition•
% then amb1gous .
tor nt_c1asses:set[nodenameJ in ernnSnon_triv1a1_classes(os.equ1vs) do

for mentioned:nodename in set[nodename)Se1ements(nt_classes} do
tnsaSfetch(os.c1osures,mentioned)

end

except •hen undefined: signal ~biguous end
tanoSpick_from_domain(os.transitions[mentioned])

except when undefined.none: signal ambiguous end
end

% 1f any of the nodes mentioned 1n the closure•
% dont have closures or have undefined transftfons
% then ambiguous
for c_node:nodename 1n tnsaSdomain_iter(os.closures) do

tnsa$fetch(os.c1osuras.c_node)
except when undefined: signal ambiguous end

tanoSpick_from_domain(os.transitions[c_node]}
except when undefined.none: signal ambiguous end

end
return(os.transitions}
end get_unique_type_assignment

71

Page 6

ps:<kuszmau1.thesis.va1clu>sota.clu.62 28 April 1984 12:36:01 Page 7

Z eMport returns a copy of the internal representation for os
% note that since everything is functional, this is perfectly safe
export = proc(os:cvt) returns(rep)

return(os)
end export

end sota

ps:<kuszmau1.thesis.va1c1u>set.c1u.2120 Apri1 1984 13:33:13

#extend
set • cluster[t:type] is

create. new, % these are the same
add, % add a new element
contains.gt, % these are the same
elementof, % other direction for contains
mem, % does some element of a set satisfy a predfcate
elements,cons,pick,pick_rest,is_empty, % •fsc
equal, I are they the same set?
union.or. % these are the same
intersection, and, % these are the same
sub, % set subtraction
set2seq

where t has equal:proctype(t,t) returns (bool)

rep • sequence[t]
% create the empty set
new• proc() returns(cvt) return(repS[]) end new

% add an element
add• proc(s:cvt. el:t) returns(cvt)

if up(s)>el then return(s) else return(repSaddh(s,el)) end
end add

I Jow: 1nt:•1
I high:int:•repSsfze(s)
% while 1ow<•h1gh do
I 1:int:•(1ow+h1gh)/2
I if s[1]•e1 then return(s)
I eJseff s[i]<e1 then 1ow:•i+1
% else high:•1·1
I end
I end
I return (repSsubseq(s,l,h1gh)
I II repS[eJ]
I II repSsubseq(s, 1ow,repSsize(s)-high))
I end add

I membership operator
gt• proc(s:cvt, el:t) returns(bool)

for elin:t in repSelements(s) do
if elin•el then return (true) end
Hd

return(falH)
I Jow:fnt:•J
I high:1nt:•rep$s1ze(s)
I whfle 1ow<•h1gh do
I i:1nt:•(1ow+h1gh)IZ
I ff s[1J•e1 then return(true}
I elseff s[1]<e1 then Jow:•f+J
I else h1gh:•1-1
I end
I end
I return (false)
Hd gt

I the other name for the membership operator
contains• proc(s:set[t], el:t) returna(bool)

return(s>el)
end contains

I the other d1rect1on for the membership operator
elementof • proc(el:t, s:set[t]) returns(bool)

return(s>el)
end elementof

I return true fff there fs an element K 1n S, such that PRED(EL,K)
mem • proc(el:t, s:set[t], pred:proctype(t,t) returns(bool)) returns(bool)

for knownel:t in set[t]Selements(s) do
1f pred(el,knownel) then return(true) tnd

73

ps:<kuszmauJ.thesis.valclu>set.clu.27 20 April 1984 13:33:13

end
return(fal11)
end mem

elements • 1ter(s:cvt) y1elds(t)
for e:t 1n repSelements(s) do yield(e) end
end elements

cons • proc(s:sequence[t]) returns(set[t])
retval:set[t]:•set[t]S[]
for e:t 1n sequence[t]Selements(s) do

retval:•retval+e
end

return(retval)
end cons

pick • proc(s:cvt) returns(t) s1gnals(empty)
return(s[l]) except when bounds: signal empty end
end pick

pick_rest • proc(s:cvt) returns(t,cvt) signals(empty)
return(s[l],repSreml(s))

except when bounds: signal empty end
end pick_rut

is_empty • proc(s:cvt) returns(bool)
return (repSempty(s))
end h_empty

% two sets are the same if they have exactly the same elements
equal • proc(s1,s2:cvt) returns(bool)

1f sl•s2 then return(true) end % m1ght as well optimize
1f repSsize(s1}-•repSsize(s2) then return(false) end
for el:t 1n elements{up(sl)) do

1f up(sZ)->el then return(false) end
end

% everything in s2 is in sl, and they are tn 1-1 correspondance, so
return(true)
end equal

or • proc(sl,s2:set[t]) returns(set[t])
for el:t 1n elements{sl) do

s2:•s2+e1
end

return{sZ)
I size1:1nt:•repSstze(s1)
I s1zeZ:1nt:•repSstze(s2)
I retval:array[tJ:•array[tJSpredict(l,stzel+stzeZ)
I tndx1:tnt:•I
I tndx2:tnt:•1
I while indxl<•s1zel cand 1ndx2<•size2 do
I tr s1[indx1]•s2[1ndx2] then
I array[t]Saddh(retva1,s1[1ndxl])
I indxl:•indxl+l
I tndx2:•1ndx2+l
I elseif s1[tndx1]<s2[indx2] then
I erray[t]Saddh(retva1,s1[indx1])
I 1ndx1:•indx1+l
I else
I erray[t]Saddh(retve1,s2[1ndxZ])
I 1ndxZ:•indxZ+1
I
I
x
I
I
I
I
I

end
end

I one of the tndx's 1s over
if indxl<sizel then

return(repSaZs(retva1)//repSsubseq(s1,1ndx1+1,stze1-1ndx1))
elseif indx2<sizeZ then

return(repSaZs(retva1)//repSsubseq(s2,1ndxZ+l,s1ze2-1ndx2))
else return(rep$a2s(retva1))

7'-1

Page 2

ps:<kuszmau1.thesis.valc1u>set.c1u.Z7 ZO April 1984 13:33:13

I end
end or

union • proc(sl,sZ:set[t]) rtturns(set[t]) return(sllsZ) end union

and • proc(sl,sZ:set[t]) returns(set[t])
retset:set[t]:•set[t]S[]
for el:t 1" e1ements(s1) do

1f sZ>el then retset:•retset+el end
end

return(retset)
% size1:int:•rep$size(s1)
% sizeZ:int:•rep$s1ze(sZ)
% retval:array[t]:zarray[t]$pred1ct(1,1nt$min(size1,sizeZ))
I indxl:int:•l
I indxZ:int:•l
I while indxl<•sizel cand indxZ<•sizeZ do
I if sl[indxlJ•sZ[indxZJ then
I array[t]$addh(retva1,sl[indx1])
I indxl:•indxl+l
I indxZ:•indxZ+l
I elseif s1[indxl]<sZ[indxZ] then indxl:•ind.xJ+J
% else fndxZ:•indxZ+J
I end
I end
I return(rep$aZs(retva1))
end and

intersection•proc(sl,sZ:set[t]) returna(set[t]) rtturn(sl&s2) end intersection

sub • proc(s1,sZ:set[t]) returna(set[t])
retset:set[t]:•set[t]S[]
for el:t 1n elements(sl) do

%
I
%
I
I
I
I
I
I
I
I
I
s
I
I
I
I
I
I

1f sZ->el then retset:•retset+el end
end

size1:1nt:•repSsize(s1)
sizeZ:int:•rep$size(sZ)
retva1:array[t]:•array[t]$predict(1,1nt$m1n(s1zel,1izeZ))
ind.xl:int:•l
1nd.xZ: int :•J
while ind.xl<•sizel cand ind.xZ<•sizeZ do

if sl[ind.xl]•sZ[indxZ] then
1nd.x1: • 1nd.x1+1
indxZ: • ind.xZ+J

elseif s1[1nd.xJ]<sZ[1nd.xZJ then
array[tJ$addh{retva1,s1[1nd.xJJ)
1nd.x1: •1ndJCl+J

else 1ndxZ:•1nd.xZ+J ·
end ·

end
if ind.xl<s1zeJ then

return(rep$a2s(retva1)//repSsubseq(sJ,1nd.xl+J,s1zeJ-1nd.xJ))
else return(rep$aZs(retva1))
end

end sub

set2seq • proc(s:cvt) returns(aequence[t])
return(•)
end set2seq

create • proc() returns(cvt)
return(repSnew())
end create

Hd set

7S

Page 3

ps:<kuszmau1.thesis.va1c1u>equivre1.c1u.14 21 April 1984 14:00:67

lex tend
equivrel • cluster[T:type] 11

create,equate,non_trivial_classes,fetch,equivalent,cons,new,equal
where T has equal:proctype(t,t) returns (bool)

% this is immutable
rep•map[T,set[T]]
% abstraction function A(e:rep), if e[x] is defined, then x is in
% the class with elements of e[x]. If e[x] is undefined. x is in { x }
% by itself

%. rep invariant R(r:rep) if r[x] is defined then /r[xJJ>J and
% x is in r[xJ, and for all y in r[x] r[y] is defined

% return an equivalence relation with no relations.
% every element of T has it's own class
create • proc() returns(cvt)

return(repScreate())
end create

% create an equivalence relation with the added relationship vali•valj
equate • proc(er:cvt,vali,valj:T) returns(cvt)

if set[T]$Element0f(valj,up(er)[vali]) then return(er) end
newclass:set(T]:•set(T]$Union(up(er)(vali],up(er)[valj])
for affected:T tn set[T]Selements(newclass) do

er:•repSdefine_override(er,affected,newclass)
end

return(er)
end equate

X yield all the classes which have more than one element in them
X watch out/ Th1s does not yield all the classes because there
% is no way to generate a complete list of T. Anything
% not yielded 1s in its own class
non_trivial_classes • tter(er:cvt) 1telds{set[T])

did:set[T]:•set(T)Screate()
for elt:T,i:set(T] tn repSentries(er) do

if -set[T)SElementOf(elt,did) then
did:•did+elt
1teld(i)
end

end
end non_trivial_classes

J returns the class that val is 1n
fetch• proc(er:cvt, val:t) returns(set[t])

I 1f t is not defined, then return set[tJ$[va1J
return(er(val]) except wben undefined: return(set[t]S[val]) end
end fetch

J 1f va11 1s 1n er[va1j] then return true, else false
equivalent • proc(er:equivrel[T], vali,valj:t) returns(bool)

return(set(T]$element0f(va11,er[valj]))
end equivalent

new • proc() returns(equivrel(T]) return(create()) end new

cons • proc(ss:sequence[set(T]]) returns(cvt) stgnals(not._well_defined)
ret:rep:•repScreate()
for cl:set(T] tn sequence(set[T]]Selements(ss) do

tor el:T 1n set[T]Selements{cl) do
ret:•repSdefine(ret,el,cl)

except wben already_defined: stgnal not_well_defined end
end

end
return(ret)
end cons

I this depends on the fact that there are no s1ngletons/
equal • proc(a,b:cvt) returns(bool)

Page J

ps:<kuszmaul.thesis.valclu>equivrel.clu.14 21 April 1984 14:00:57

return(a=b)
end equal

end equivrel

77

Page 2

ps:<kuszmauJ.thesis.vaJclu>map.clu.30 21 April l984 14:09:19

map • cluster[domain,range:type) 11
create.fetch,
define,define_override,cons,new,
defined,
pick_from_domain,domain_is_in,domain_iter,entries,
equal

where domain has equal:proctype(domain,domain) returns(bool).
range has equal:proct1pe(range,range) returns(bool)

rep • oneof[empty:null,
onedefined:entry)

entry • struct[d:domain,
r:range,
rest:map[domain, range))

% returns a function which is undefined everywhere
create • proc() returns(cvt)

return(repSmake_empty(ntl))
end create

% if fun(x) is defined, then fun(x) is returned, else signals undefined
fetch • proc(fun:map[domain,range), x:domain) returns(range)

11gna11(undefined)
for d:domain,r:range in entries(fun) do

11 d•x then return(r) end
end

signal undefined
end fetch

% if fun(x) is defined, then returns true, else false
defined • proc(fun:map[domain,range), x:domain} returns(bool)

fetch(fun,x} except when undefined: return(false) end
return(true)
end defined

% if fun(x) is defined to be different from f_f~.
% then signals already_defined
I otherwise, returns a function which ts the same as fun, except that
I it 1s defined to be f_of_x at x.
define • proc(fun:map[domain,range], x:domain, f_of_x:range)

returns(cvt} signals(already_defined)
11 fun[x]•f_of_x then return(down(fun))

else signal already_defined end
except when undefined:

return(repSmake_onedefined(
entry${d:x,r:f_of_x,rest:fun}))

end
end define

I an internal routine whfch signals SAME 1f fun(x)•f_of_x
I if fun(x) fs undefined signals undefined
I and otherwise returns a function wh1ch is the same as fun, except that
I fun[x]•f _of_x
do_define_override • proc(fun:cvt, x:domain, f_of_x:range)

returns(cvt) 11gna11(same,undefined)
tagcase fun

tag empty: signal undefined
tag onedefined(e:entry):

end

1f e.d•x then
1f e.r•f_of_x then signal same

else return(rep$make_onedefined(
entry$replace_r(e,f_of_x)))

end
else return(repSmake_onedefined(

entry$rep1ace_rest(e,do_define_override(
e.rest,x,f_of_x))))

resignal same.undefined
end

tnd do_define_overridt

Page l

. ps:<kuszmauJ. thesis. va1c1u>map.c1u.30 21 Apri1 1984 14:09:19

% returns fun, except that it is defined to be f_of_x at x
% this overrides any o1d defns that fun had
def1ne_override • proc(fun:map[domain,range], x:domain, f_of_x:range)

returns(map[domain,range])
% we must get rid of the previous definit1on, so we can't do 1t
% smoothly by just consing a new thing onto the head
return(do_define_override(fun,x,f_of_x))

except when same: return(fun)
when undefined:

end

return(up(rep$make_onedef1ned(
entryS{d:x,r:f_of_x,rest:fun})))

end define_override

new • proc() returns(map[domain,range)) return(create()) end new

cons • proc(ents:sequence[struct[d:domain,r:range]])
returns(map[domain,range])
signals(not_well_defined)

en•struct[d:domain,r:range]
ret:map(domain,range]:•map(domain,range]Screate()
for e:en in sequence[en]Selements(ents) do

ret:•define(ret,e.d,e.r)
except when already_defined:.signal not_well_def1ned end

end
return(ret)
end cons

% if fun is undefined forall values then s1gnals (none),
% else returns a value for which fun is defined
pick_from_domain • proc(fun:cvt) returns(domain) s1gnals(none)

tagcase fun ·
tag empty: signal none
tag onedefined(e:entry): return(e.d)
end

end pick_from_domain

% 1f domain(fun) is in superdomain returns true, else false
domain_is_in • proc(fun:map(domain,range], suptrdomain:set[domain])

returns(bool)
for d:domain 1n domain_iter(fun) do

1f -set[domain]SElementOf(d,superdomain) then return(falae) e1d
end

return(true)
end doma1n_is_in

% yields all the values fn domain(fun) -····-·-
domain_iter • 1ter(fun:map(domain,range]) J1elda(doma1n)

for d:domain,r:range in entries(fun) do
J1eld(d)
end

end domain_iter

% yields the pairs (d,r) where r•fun[dJ, and d is in the doma1n(fun)
entries • 1ter(fun:cvt) Jields{domain,range)

while (true) do
t.agcaae fun

end

t.ag empt1: return
tag onedefined(e:entry): J1e1d(e.d,e.r) fun:•down(e.rest)
end

end entries

equal • proc(f1,f2:map[domain,range]) returna(bool)
d:domain r:range
begin

for d,r 1n entries(f1) do
1f f2[d)-•r then return(false) end

Page z

ps:<kuszmau1.thesis.va1c1u>map.c1u.3C 21 April 1984 14:09:19

end
for d,r 1n entries(f2) do

end

1f f1[d]-=r then return(false) end
end

except when undefined: return(false) end
return(true)
end equal

end map

Page 3

.~.

. ...--. ..

ps:<tuszmau1.t~es1s.va1c1u>sotatest.c1u.55 28 April 1984 JZ:48:57

#extend
alphabet•struct[class:str1ng,

is_terminator:bool,
name:strtng]

nodename•1nt % we w1ll use negatives 1f we need dummy's
classname•strfog
vimsota•sota[alphabet,nodename,classname]
tmap•map[alphabet,oneof[acceptor:null,node:nodename]]
vimsotarep•struct[equivs:ernn, closures:tnsa, transitions:tritano]
ernn•equivrel[nodename]
snn•set[nodename]
tnsa • map[nodename,sa]
sa•set[alphabet]
tntano•map[nodename,tano]
tn_ent•struct[d:nodename,r:tano]
ta_ent•struct[d:alphabet,r:no]
ts_ent .. struct[d:nodename,r:sa]
tano•map[alphabet,no]
no•oneof[acceptor:null, node:nodenama]

% th1s routine does some testing on the sota
sotatest • proc()

vsr•vimsotarep
putl•streamSputl
po:stream:•streamSprimary_output()
I first test, do a create, and get the rep which should be totally empty
s_create:vimsota:•vimsotaScreate()
sexpect("s_create",s_create,

vsrS{equivs:ernnS[], closures:tnsaS[], trans1t1ons:tntano$[]},
trut)

% now we have really tested the create out. That really only
% g1ves us a little confidence in the lower 1eve1 objects,
% since create is so simple.
noa:no:•no$make_acceptor(nt1)
nol:no:•noSmake_node{l) no2:no:•no$make_node(2) no3:no:•noSmake_noda{3)
no4:no:•noSmake_node(4) no5:no:•noSmake_node(5) no6:no:•no$make_node(D}
a_int:alphabet:•alphabetS{class:"INT", is_terminator:TRU£, nama:"INT"}
a_string:alphabet:•

alphabetS{class:"STRING", 1s_tarminator:TRU£, nama:"STRING"}
a_real:alphabet:•alphabetS{class:"REAL", 1s_tarminator:TRUE, nama:"REAL"}
a_array:alphabet:•

alphabetS{class:"ARRAY", is_terminator:FALSE, nama:"ARRAY"}
a_geta:alphabat:•

alphabetS{class:"STRUCT", is_tarminator:FALSE, name:"GET....A"}
a_getb:alphabat:•

alphabatS{class:"STRUCT", is_tarminator:FALSE, nllllMt:"GET-8"}
a_gatc:alphabat:•

alphabetS{class:"STRUCT". is_tarminator:FALSE, n1111e:"GET_C"}

I Jets try equating two nodes. We should then get an amb1guous error
% if we try to get the typemap
s_1a2:vimsota:•vimsotaSequate(s_creatt,1,2}
sexpact("s_1a2",s_1a2,

· vsrS{equivs:ernnS[snn$[1,2]],
closuras:tnsaS[J, transitions:tntanoS[]},

fallt)
I the transittons and closures should be completely undeffned
J the equ1vc1ass should have exactly {1,Z} 1n 1t

J try sOllleth1ng really fancy:
S a real problem: Nl is an array of nZ
J NZ 1s an 1nt
I does ft wort?
I
I
I
I
J

Nl • ARRAY[NZJ
NZ • ARRAY[N1]

does 1t wort?

ii

Page l

.. ~._

,,--...

ps:<kuszmaul.thesjs.vaJclu>sotatest.clu.55 28 April 1984 12:48:51

I Nl • INT
I N2 • ARRAY
I does it not work1
I
I NJ • ARRAY[NZJ
I N3 • ARRAY[N4J
I Nl • N3
I doe.s it work?
I
I Nl • ARRAY[N2J
I N3 • ARRAY[N4J
I N2 • INT
I N4 • STRING
I Nl • N3
I does 1t not work
I
I Nl • CLOSED_STRUCT[A:N2,B:N3J
I NZ • INT
I N3 • STRING
I Nl • OPEN_STRUCT[A:N4]
I does 1t work
I
I Nl • CLOSED_STRUCT[A:N2,8:N3J
I NZ • INT
I NJ • STRING
I Nl • OPEN_STRUCT[C:N3]
I does 1t not work
I
I Nl • CLOSED_STRUCT[A:nZ,B:N3J
I NZ • INT
I N4 • CLOSED_STRUCT[A:n5:b:n6]
I n6 • STRING
I Nl • N4
I does 1t work
I
I that pretty well tests the closure with equates
I now for some recurs1on
I Nl • ARRAY[Nl]
I deos 1t work1
I
I Nl • ARRAY[NZ]
I NZ • ARRAY[Nl]
I does 1t work1
I
I Nl • CLOSED_STRUCT[a:NZ, b:N3]
I N2 • CLOSED_STRUCT[a:NZ, b:N4]
I N4 • Nl
I does 1 t wortt _ --·
I
I Nl • CLOSED_STRUCT[a:NZ, b:N3]
I NZ • CLOSED_STRUCT[a:N1, c:N3]
I does 1t work1
I
I NJ • CLOSED_STRUCT[A:N2, B:N3]
I NZ • N1
I N3 • NZ
I NJ • CLOSED_STRUCT[A:NZ, C:N3]
I does 1t not work1
I
I test the terminators to see 1f 1t won't allow has_path to be a non-terminator
I Nl • ARRAY[NZJ
I does 1t not work (amb1gu1ty)

I the comments are repeated:

I try something really fancy:
I a real problem: Nl 1s an array of nZ
I NZ 1s an 1nt
I does 1t work?

Page z

ps:<kuszmau1.thes1s.va1c1u>sotatest.c1u.55 28 April 1984 12:48:57

x
ev:vsr:•vsrS{equivs:ernnS[],

closures:tnsaS[ts_entS{d:l,r:saS[a_array)},
ts_entS{d:Z,r:saS[a_int]}],

transitions:tntanoS[
tn_entS{d:l,r:tanoS[ta_entS{d:a_array,r:noZ}]},
tn_ent${d:Z,r:tano$[ta_ent${d:a_int,r:noa}]}]}

sexpect("N2•INT,Nl•ARRAV(N2)",
vimsotaShas_subpath_to(

vimsota$close(vimsota$has_closed_path(s_create,2,a_int),
l,saS[a_array]),

1. a_array, Z),
ev, true)

sexpect("Nl•ARRAY(N2],N2•INT",
vimsota$has_closed_path(

vimsotaSclose(vimsotaShas_subpath_to(s_create,1,a_array,2),
1, saS[a_array]),

2,a_int),
ev,true)

X Nl • ARRAY[N2J
X N2 • ARRAY[NlJ
% does it work?
sexpect("Nl•ARRAY(N2],N2•ARRAY[N1]",

vimsotaSclose(
vimsotaShas_subpath_to

(vimsotaScl ose(
vimsotaShas_subpath_to(s_create,1,a_array,2),
1,saS[a_array)),

2,a_array,1),
z.sa$[a_array]),

vsrS{equivs:ernnS[],
closures:tnsaS[ts_entS{d:l,r:saS[a_array]}.

ts_entS{d:2,r:saS[a_array]}],

true)

X NJ • INT

transitions:
tntanoS[tn_ent${d:1,r:tanoS[ta_ent${d:a_array,r:no2}]}.

tn_entS{d:Z,r:tanoS[ta_ent${d:a_array,r:no1})})},

X N2 • ARRAY[NlJ
X does tt work?
sexpect("Nl•INT,NZ•ARRAY[Nl]",

vimsotaSclose(vimsotaShas~subpath_to(
vimsota$has_c1osed_path(s_create,1,a_1nt),
2,a_array,1),

z, saS[a_array]),
vsr${equ1vs:ernn$[],

true)

c1osures:tnsaS[ts_ent${d:1,r:sa$[a_int]},
ts_entS{d:Z,r:saS[a_array]}],

transitions:
tntanoS[tn_ent${d:1,r:tano$[ta_ent${d:a_int,r:noa}]},

tn_entS{d:Z,r:tanoS[ta_entS{d:a_array,r:nol}]}]},

X same thing without the closure on the 1nt
sexpect("Nl•NC_INT,NZ•ARRAY[N1]",

vimsota$c1ose(vimsota$has_subpath_to(
vimsota$has_path(s_create,1,a_1nt),
2,a_array,1),

2,saS[a_array]),
vsrS{equivs:ernnS[],

c1osures:tnsaS(ts_ent${d:Z,r:sa$[a_array]}],
trans it ions:
tnt~noS[tn_entS{d:l,r:tanoS[ta_entS{d:a_int,r:noa}]},

tn_entS{d:Z,r:tanoS[ta_entS{d:a_array,r:nol}J}]},
false)

I same thing, without the closure on the array

Page 3

--~-

ps:<lr.uszmaul. thesis. valclu>sotatest. clu. 55 28 April 1984 12:48:57

sexpect("Nl•INT,N2•NC_ARRAY[N1)",
vimsota$has_subpath_to(

vimsota$has_closed_path(s_create,l,a_int),
2,a_array,1),

vsr${equivs:ernn$[J,
closures:tnsa$[ts_ent${d:1,r:sa$[a_intJ)J,
transit ions:
tntano$[tn_ent${d:l,r:tanoS[ta_ent${d:a_int,r:noa)]),

tn_ent${d:2,r:tano$[ta_entS{d:a_array,r:nol)])J},
falH}

% NJ • ARRAY[NZ]
% N3 • ARRAY[N4]
% NJ • N3
% NZ • INT
% should work when all closed
tmpl:vimsota:• vimsotaSclose(

vimsotaSclose(
vimsotaShas_subpath_to(

vimsotaShas_subpath_to(s_create,l,a_array,2),
3,a_array,4),

3, sa$[a_array)),
1,saS[a_array])

tmpl:• vimsota$has_closed_path(vimsota$equate(tmpl, 1,3),
2,a_int)"

sexpect("Nl•A[N2),N3•A[N4],N1•N3,N2•INT",
tmpl,
vsr${equivs:ernn$[snn$[1,3),snn$[2,4J),

true)

closures:tnsaS[ts_entS{d:1,r:sa$[a_array]},
ts_ent${d:2,r:sa$[a_1nt]},
ts_entS{d:3,r:saS[a_array]},
ts_entS{d:4,r:sa$[a_1ntJ)J,

transitions:
tntano$[tn_antS{d:l,r:tano$[ta_ent${d:a_array,r:no2}J},

tn_ent${d:2,r:tano$[ta_ent${d:a_int,r:noa}J},
tn_entS{d:3,r:tanoS[ta_ent${d:a_array,r:no4)]},
tn_entS{d:4,r:tanoS[ta_ent${d:a_int,r:noa}]})},

X NJ • ARRAY[NZ]
% N3 • ARRAY[N4J
I NZ • INT
I N4 • STRING
I NJ • N3
I can't bu11d 1t, don't even bother w1th the closures
tmp:vimsota:•

v1msota$has_path(vimsota$has_path(
vimsotaShas_subpath_to(

vimsotaShas_subpath_to(s_create,1,a_array,2),
3,a_array,4),

2,a_int),
4,a_string)

% should work up to here
begfn

vimsotaSequate(tmp,1,3)
streamSputl(streamSprimary_output(),"Can build exA, wrong•)
signal failure("Can build exA, wrong")
end

except when empty:
streamSputl(streamSprimary_output(),"Can't build exA, ok•)

end

I NJ • CLOSED_STRUCT[A:NZ,B:N3J
I NZ • INT
% N3 • STRING
I NJ • OPEN_STRUCT[A:N4J
I should work
tmp:•vimsotaShas_subpath_to(

Page 4

ps:<kuszmaul.thesis.valclu>sotatest.clu.55 ZB Apr11 l984 22:48:51

vimsotaShas_subpath_to(
vimsotaSclose(s_create,1,saS[a_geta,a_getb]),
1. a_geta. z),

1,a_getb,3)
tmp:•vimsotaShas_closed_path(tmp,2,a_int)
tmp:•vimsotaShas_closed_path(tmp,3,a_string)
tmp:•vimsota$has_subpath_to(tmp,1,a_geta,4)
sexpect("Nl•CS.[A:N2,B:N3].N2•INT,N3+S,Nl•O[a:n4]",t11p,

J

vsr${equivs:ernnS[snn$[2,4]],

true)

closures:tnsaS[ts_entS{d:l,r:saS[a_geta,a_getb]},
ts_entS{d:Z,r:saS[a_int]},
ts_ent${d:3,r:saS[a_string)},
ts_entS{d:4,r:sa$[a_int])],

transitions:
tntanoS[tn_entS{d:1,r:tanoS[ta_entS{d:a_geta,r:no2},

ta_ent${d:a_getb,r:no3}]},
tn_entS{d: 2, r: tanoS[ta_entS{d: a_ int, r: noa}]},
tn_ent${d:3,r:tanoS[ta_ent${d:a_string,r:noa}]),
tn_ent${d:4,r:tano$[ta_ent${d:a_int,r:noa}]}]),

J Nl • CLOSED_STRUCT[A:NZ,B:N3]
J Nl • OPEN_STRUCT[C:N3]
% does it not work because of closure violation
tmp:•vimsotaSclose(vimsotaShas_subpath_to(

vimsotaShas_subpath_to(s_create,1,a_geta,2),
1,a_getb,3),

1,saS[a_geta,a_getb])
begtn

vimsotaShas_subpath_to(tmp,1,a_getc,3)
stgnal failure("Could build s_cab_pc, wrong")
Hd

except when empty: stream$putl(stream$primary_output(),
"Couldnt buld s_cab_pc, ok") end

J Nl • OPEN_STRUCT[A:n2,B:N3J
J NZ • INT
J N4 • OPEN_STRUCT[A:n5:b:nBJ
J n6 • STRING
J NJ • N4
J does it not wort
tmp:•vimsotaShas_subpath_to(vimsotaShas_subpath_to(s_create,1,a_geta,2),

1,a_getb,3}
tmp:•vimsotaShas_closed_path(tmp,2,a_int)
tmp:•vimsotaShas_1ubpath_to(vimsotaShas_subpath_to(t11p,1,a_geta,5),

1,a_getb,6)
tmp:•vimsotaShas_closed_path(vimsotaSequate(tmp,1,4),6,a_string)
_14_trans:tano:•tanoS[ta_entS{d:a_geta,r:no2),

ta_ent${d:a_getb,r:no3}]
_25_trans:tano:•tano$[ta_entS{d:a_int,r:noa}]
_36_trans:tano:•tanoS[ta_entS{d:1_string,r:no1)]
mytrans:tntano:• tntanoS[tn_entS{d:l, r:_14_trans),

tn_entS{d:4, r:_14_trans},
tn_entS{d:Z, r:_25_trans},
tn_ent${d:6, r:_25_trans),
tn_ent${d:3, r:_36_tr1n1},
tn_ent${d:6, r:_36_trans}]

sexpect("Two-defined struct unclosed",tmp,
vsrS{equivs:ernnS[snnS[2,5],snnS[3,6],snn$[1,4]],

closures:tnsaS[ts_ent${d:2,r:sa$[a_int]},
ts_ent${d:5,r:sa$[a_int]},
ts_entS{d:3,r:saS[a_string]),
ts_ent${d:6,r:saS[a_string])],

transitions:mytrans),
false)

Page 5

--~-

-~-

-~--

ps:<kuszmau1.thes1s.va1c1u>sotatest.c1u.55 28 Apr11 1984 lZ:48:57

sexpect("Two-defined struct closed",
vimsotaSclose(tmp,1,saS[a_geta,a_getb]),
vsr${equivs:ernn$[snn$[Z,5],snn$[3,6],snn$[1,4)),

closures:tnsaS[ts_ent${d:2,r:saS[a_int]},
ts_entS{d:5,r:saS[a_int]},
ts_entS{d:3,r:saS[a_string)},
ts_ent${d:6,r:saS[a_string]}.
ts_entS{d:1,r:saS[a_geta.a_getb]}.
ts_ent${d:4,r:sa$[a_geta,a_getb)}].

transitions:mytrans},
true)

I that pretty weJJ tests the closure with equates
I now for some recursion
I Nl • ARRAY[Nl]
I does it work?
sexpect("Nl•A[Nl)",

vimsotaSclose(vimsotaShas_subpath_to(s_create,1,a_array,l),
l,saS[a_array)),

vsrS{equivs:ernnS[],
closures:tnsaS[ts_entS{d:l,r:saS[a_array)}].
transitions: ·
tntanoS[tn_entS{d:l, r:tanoS[ta_entS{d:a_array,r:nol})}]}.

true)

I Nl • ARRAY[NZJ
I N2 • ARRAY[Nl]
sexpect("N1•A[N2) NZ•A[Nl]",

vimsotaShas_subpath_to(
vimsota$has_subpath_to(

vimsotaSclose(
v1msota$close(s_create,Z,sa$[a_array)),
l,saS[a_array)),

1,a_array,2), 2,a_array,1),
vsr${equivs:ernn$[],

c1osures:tnsa$[ts_ent${d:1,r:sa$[a_array]}.
ts_ent${d:2,r:saS[a_array]}].

trans it ions:

true)

tntanoS[tn_entS{d:l, r:tanoS[ta_ent${d:a_array,r:no2}]},
tn_ent${d:2, r:tanoS[ta_entS{d:a_array,r:nol}]}]}.

I Nl • c1osed_STRUCT[a:NZ, b:N3]
I NZ • open_STRUCT[a:NZ, b:N4]

·.
I N4 • 12
I NZ • 113
I N3 • 114
I everything should come out to be th• •••• th1nt
tmp: •v imsota$c1 ose(vimsotaShas_subpath_to(.

vimsotaShas_subpath_to(s_create,1,a_geta,2),
1, a_getb. 3).

1,saS[a_geta,a_getb])
tmp:•vimsotaShas_subpath_to(vimsotaShas_subpath_to(tmp,2,a_geta,2),

2,a_getb,4)
tmp:•vimsota$equate(vimsota$equate(vimsota$equate(tmp,1,4),2,3),3,4)
_trans:tano:•tanoS[ta_entS{d:a_geta,r:nol},

ta_ent${d:a_getb,r:no2}]
_close:sa:•sa$[a_geta,a_getb]
sexpect("Ex C",tmp,

vsrS{equivs:ernnS[snnS[l,2,3,4]],
closures:tnsaS[ts_entS{d:1,r:_close},

ts_entS{d:2,r:_close},
ts_ent${d:3,r:_close},
ts_entS{d:4,r:_c1ose}],

true)

trans1tions:tntano$[tn_ent${d:1,r:_trans},
tn_ent${d:2,r:_trans},
tn_entS{d:3,r:_trans},
tn_ent${d:4,r:_trans}]}.

Page 6

ps:<kuszmau1.thes1s.va1c1u>sotatest.c1u.55 28 Apr11 1984 12:48:51

% Nl • CLOSED_STRUCT[a:NZ, b:N3J
% NZ • CLOSED_STRUCT[a:N1, c:N3J
% NJ • INT
% does it work?
tmp:•vimsota$has_c1osed_path(s_create,3,a_int)
tmp:•vimsota$close(vimsota$has_subpath_to(

vimsotaShas_subpa.th_.to(tmp .1, a_geta, 2),
1,a_getb,3),

1,saS[a_geta,a_getb))
tmp:•vimsota$close(vimsota$has_subpath_to(

vimsotaShas_subpath_to(tmp,Z,a_geta,1),
2,a_getc,3),

2,sa$[a_geta,a_getc])
sexpect(

"Ex D",tmp,
vsr${equivs:ernn$[],

closures:tnsa$[ts_ent${d:l,r:sa$[a_geta,a_getb)},
ts_entS{d:2,r:sa$[a_geta,a_getc]},
ts_entS{d:3,r:saS[a_int]}),

transitions:tntano$[
tn_entS{d:1,r:tano$[ta_ent${d:a_geta,r:no2},

ta_entS{d:a_getb,r:no3}]},
tn_entS{d: 2, r :·tanoS[ta_ent${d: a_geta,r: nol},

ta_ent${d:a_gatc,r:no3}]},
tn_entS{d:3,r:tano$[ta_entS{d:a_int,r:noa}]}]},

true)

sexpect("C1osure, but not all there",
vimsotaSclose(vimsota$has_subpath_to(

· vimsota$has_c1osed_path(s_craate,2,a_1nt),
1,a_geta,2),

1,saS[a_geta,a_getb]),
vsrS{equivs:ernnS[],

closures:tnsaS[ts_entS{d:l,r:saS[a_geta,a_getb]},
ts_ent${d:2,r:saS[a_int]}],

trans it ions:
tntano$[tn_ent${d:1,r:tano$[ta_ent${d:a_geta,r:no2}]},

tn_entS{d:Z,r:tanoS[ta_entS{d:a_int,r:noa}]}]},
falH)

% check for class error
tmp:•vimsotaShas_subpath_to(s_create,1,a_geta,2)
begin

tmp·: •vimsotaShas_subpath_to(tmp, 1,a_array, 2)
a1gne1 fai1ure{"class error 1 not caught")
end except when empty: streamSputl{streamSprimary_output(),

"class error 1 caught ok"}
end

tmp:•v1msota$has_path(s_create,t,a_1nt)
begin

tmp:•vimsotaShas_path(tmp,1,a_string)
signal failure("class error 2 not caught")
end except when empty: stream$putl(stream$primary_output(),

"class error 2 caught ok"}
end

% check for path w1th non-term1nator error
begin .

tmp:•vimsota$has_path(s_create,1,a_array)
signal failure("has_path with non terminator not caught")
end except when non_terminator:

stream$put1(streamSprimary_output(),
"has_path with non terminator caught ok")

end

'i7

Page 7

ps:<kuszmaul.thesis.valclu>sotatest.clu.56 28 Apr11 1984 12:48:61

% check for subpath_to with terminator error
begin

tmp:•vimsotaShas_subpath_to(s_create,1,a_int,2)
signal failure("has_subpath_to with terminator not caught•)
end except when terminator:

stream$putl(stream$primary_output(),
"has_subpath_to with terminator caught ot•)

end sotatest

% if the rep of the mysota 1s not equal to expected_rep then pr1nts an
% error, other w1se prints "ok" .
sexpect•proc(name:string, mysota:vimsota, expected_rep:vimsotarep,guta:bool)

own po:stream:•streamSprimary_output()
died:bool:•false
exp:vimsotarep:•vimsotaSexport(mysota)
streamSputs(po,name)
if exp.equivs•expected_rep.equivs then

streamSputs(po," equivs ok,")
else

end

stream$puts(po," equivs broken,")
died:•trua

if exp.c1osures•expected_rep.c1osures then
streamSputs(po," closures ok,")
else

end

streamSputs(po," closures broken,")
died:•true

% havt to do th• mapping test badly, sigh, th1s is because
% i am really modeling (nodename,alphabet)->nodename, but
% ended up using nodename->(nodename->alphabet)
trandied:bool:•false
begin

for tn:nodename, ta:tano in tntano$entries(exp.trans1ttons) do
for ts:alphabet, tno:no in tanoSentries(ta) do

etn:no:•expected_rep.transitions[tn][ts]

end

tagcase tno
tag acceptor: tf etn-•tno then extt bad..111ap end
tag node(num:tnt):

end
and

if -set[1nt]$Element0f(no$value_node(etn).
exp.equ1vs[nu11])

then exit bad.J11ap and

for tn:nodename, ta:tano tn tntano$entries(expected_rep.trans1ttons) do
for ts:alphabet, tno:no in tanoSentries(ta) do

etn:no:•exp.transitions[tn][ts]

and
end

tagcase tno
tag acceptor: 1f etn-•tno then exit bad...map and
tag node(num:tnt):

and
end

if -set[int]SElementOf(noSvalue_node(etn).
expected_rep.equivs[num])

then exit bad...map end

except when undefined,bad.J11ap,wrong_type: trandied:•true died:•true tnd

tf trandied then streamSputs(po," transitions broken,")
else streamSputs(po," transitions ok,") and

begin
vimsotaSget_unique_type_assignment(mysota)
if guta then streamSputl(po," guta defined ok")

elH

Page 8

----------------------- ---- ----

ps:<kuszmau1.thesis.valclu>sotatest.clu.55 28 April 1984 12:48:57

end
end

stream$putl(po," expected guta ambiguity, it wasn't")
died:=trua

except when ambiguous:

end

if guta then
stream$putl(po," but expect guta defined, it wasn't")
died:=trua
else

stream$putl(po," guta ambiguous ok")
end

if died then signal failure{"died---") end
end sexpect

Page 9

[1]

References

Ackerman. W.B., Dennis, J.B.
VAL--A Value-Oriented A/gori1hmic language: Preliminary Reference

Manual.
Technical Report MIT /LCS/TR~218, Massachusetts Institute of Technology

Laboratory for Computer Science, June, 1979.

[2] Demers, A., Donahue. J., Skinner, G.
Data Types as Values: Polymorphism, Type-checking, Encapsulation.
In Fifth Annual ACAi Symposium on Principles of Programming Languages,

pages 23-30. ACM, January, 1978.
Presents a uniform treatment of explicitly paramterized types.

[3] Dennis, J.B.

[4]

Data Should Not Change: A Model for a Computer System.
Massachusetts Institute Technology, Cambridge. Massacusetts, Laboratory

for Computer Science, Computation Structures Group Memo 209.

Dennis, J. B.
An Operational Semantics for a Language with Early Completion Data

Structures.
Jn Presented at the International Colloquium on The Formalization of

Programming Concepts, Penis'cola, Spain. April 19-25, 1981.

[5] Dennis, Gao, Todd.

[6]

Modeling the Weather With a Data Flow Supercomputer.
IEEE Transactions on Computers, 1984.
To appear.

Donahue,J.
On the Semantics of Data Types.
Technical Report TR-77-311, Cornell Department of Computer Science,

June, 1977.

[7] Henderson, P.
Functional Programming Application and Implementation.
Prentice-Hall International, 1980.

90

--~.

[8] Langmack, H.
On Correct Procedure Paramtcr Transmission in Higher Programming

Languages.
Acta biformalica 2:110-142, 1973.
Proves undecidability of type correctness for languages which a11ow formal

arguments to be used polymorphically.

(9] Leivant. D.
Structural Semantics for Polymorphic Data Types.
In Telllh Annual ACAi Symposium on Principles of Programming languages.

pages 155-166. ACM, January, 1983.

(10] Leivant, D.
Polymorphic Type Inference.
In Tenth Annual ACAi Symposium on Principles of Programming languages,

pages 88-98. ACM, January, 1983.
Contains a summary of several competing type systems. with an algorithm

that works for all of them.

(11] Lewis, H.R., Papadimitriou, C.H.
Elements of the Theory of Computation.
Prentice-Hall, 1981.

[12] Liskov, B., Snyder, M., Atkinson, R .• and Schaffert, C.
Abstraction Mechanisms in CLU.
CACM 20(8):564. August, 1977.

[13] Liskov, B .• Atkinson. R .• Bloom, T .• Moss, T .. Schaffert. C .. Scheifler, B .. and
Snyder, A.
CLUReference Manual. ·
Technical Report MIT /LCSITR-225, Massachusetts Institute Technology,·

October, 1979.
Also available from Springer-Verlag as the "Lecture Notes in Computer

Science" series. ·

[14] McCracken, N. J.
An Investigation of a Programming Language with a Polymorphic Type

Structure.
PhD thesis, School of Computer and Information Science, Syracuse

University, June, 1979.
Discusses parameterized and user defined types.

91

. -------.

__--....._

[15] Meertens, L
Incremental Polymorphic Type Checking in 8 .
In Te111h Annual ACM Symposium on Principles of Programming Languages,

pages 265-275. ACM. January. 1983.
B has nonrecursive types without higher order functions. Contains a

presentation of types and incremental type checking with polymorphism.

(16] Milner, R.
A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences 17(3):348-375, December, 1978.

(17] Morris, J.H.
Types are not Sets.
In Proc. ACM Symposium on Principles of Programming Languages, pages

120-124. ACM, October, 1973.

(18] Morris, J.
Protection in Programming Languages.
CACM 16(1):15-21, June, 1973.

[19] Peacock, T.
Type Checking in Generalized VAL
Massachusetts Institute Technology, Laboratory for Computer Science,

Computations Structures Group Memo 227, May 1983.
Undergraduate thesis.

(20] Scheidig, H.
Representation and Equality of Modes.
Inf. Proc. Leuers 1:61-65, 1971.

(21] Scott, D.B.
Data Types as Lattices. - · · · --- -·
SIAM Journal of Computing 5(3):522-578, September, 1976.

(22] Solomon, M.
Modes, Values and Expressions.
In Second Annual ACM Symposium on Principles of Programming

Languages, pages 149-159. ACM, 1975.
Includes a proof that recursive types can be compared (but requires

declarations, and does not discuss higher order functions).

92

[23] Solomon, M.
Type Definitions with Parameters.
Jn Fifth Annual ACAi Symposium on Principles of Programming Languages.

ACM, January, 1978.
Extended abstract, shows that restrictions arc needed for recursively defined

types.

[24] Denn is, J.B. et al.
VIM-VAL Manual.
In progress.

93

