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Abstract 

A type system is developed for the revised version of the VAL programming 
language (VIMV AL) which has the following features: 

1. Type Inference: allows programs to be written with incomplete type 
specifications. The type checker infers the types of the expressions from 
their context 

2. Polymorphism: allows modules to be written which operate on more 
than one type, performing analogous operations on different types of 
data. 

3. Higher order functions: functions are first class data in VIMV AL. 

4. Recursive types: a type may refer to itself. 

A theory of types is developed which applies to a large class of programming 
languages, including YIMVAL. First the notion of type is defined. then the 
interaction between types and programs is described, with a definition of type 
correctness. ·Type correctness is shown to be well defined and decidable~ and a type 
checking algorithm is given which performs type checking for VIMV AL. 

Thesis Supervisor: Jack B. Dennis 
Title: Professor of Computer Science and Engineering 

Keywords: Polymorphism, Static Type Checking, YIMV Alt VAL. Finite State 
Automata, Type Inference. 
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Chapter One 

Introduction 

VAL (Value-Oriented Algorithmic Language). developed by Ackerman and Dennis, 

of M.I.T:s Computation Structures Group [l], explored static data flow 

architecture [5] for a side-effect free language. Side-effect free languages implement 

functions which. when given a particular set of arguments. always return the same 

result (as opposed to languages which aHow side effects, and the result of calling a 

function depends on the state of the environment as well as the explicit arguments). 

Such languages are sometimes called "functional" because they implement 

mathematical functions. Functional languages are well suited to highly parallel 

computers because changing the order in which different parts of a program are run 

(or running them in parallel) does not change the semantics of the program [7, 3]. 

The Computation· Structures Group is now developing a new implementation of a 

revised VAL. based on an abstract data flow machine called the VAL Interpretive 

Machine (VIM), which executes data flow instructions directly. The revised version 

of VAL is called VIMV AL. The original VAL does not support polymorphism, 

recursive data types, recursive functions, higher order functions. or type inference. 

Because it was not expected that the static architecture would implement proper 

function application using data flow, VAL function calls are actually implemented 

by compile time "macro expansion", precluding higher order functions in general, 

and recursive functions in particular. VAL is a strongly typed language which 

requires that the type of every variable and fonnal argument be completely and 

explicitly specified. The VIM abstract machine indudes mechanisms for function 

application. and the Computation Structures Group is developing an 

implementation of VIMV AL. Since higher order functions introduce extra 
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complexity, we decided to rework the type system for VIMV AL Several desired 

features for the type scheme of VIMV Al. were proposed, most of which boiled down 

to: ease of use for the programmer. Ease of use has at least two components: 

"writeability" and "readability": it is easier to write programs (at least it involves 

fewer characters to write a program) in a language which requires a minimum of 

symbols, while it is typically easier to read programs written in a language which 

requires the programmer to add redundant information to a program. Thus "Ease 

of use" has different meanings for different people. Here is a set of criteria for 

evaluating the ease of use of a type system. · 

-The type mies must be easy to remember, and express: they should be 
simple and consistent. 

- The programmer should not be required to write a lot of extra symbols 
just to facilitate type checking. "A lot" is subjective: Some 
programmers like to explicitly specify types, and some programmers 
find that requiring such type specification hinders them. 

- The language should be strongly typed, so that no type errors can occur 
at rnn time, and so that no type information needs to be represented at 
run time. 

To meet these goals, we have decided to incorporate type inference into VIMV AL. 

Type inference allows the programmer to write a program with a minimum of type 

declarations. Most types can be deduced from their context, for example the type of 

the constant 3.1415 must be REAL in VIMV AL, and multiplication of a REAL value 

by some variable x would mean that x must also be REAL. The VIMV AL compiler 

automatica11y determines the type of every expression, or gives an error saying that 

some expressions are ambiguously typed (i.e. expressions which have more than one 

possible type), or overconstrained (i.e. expressions which have no possible type). 

The type checking algorithm guarantees that no type errors will occur at run time. 

We adopt the strategy that the programmer should be required to write a minimum 

10 
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number of extra symbols to facilitate type checking, while allowing a programmer to 

optionally add extra type information to a program. We will discuss how well our 

type inference system meets our goals in the conclusion of this paper. 

VIMVAL has the following additional features which improve the expressive power 

of the language, while adding some new difficulties to type inference that have not 

been covered by [16, 15, 14). 

Polymorphism Allows programmers to write functions which perform analogous 
operations on different types of data. One example of a built in 
polymorphic function is ARRAY-LIMH, which maps from any 
array to an integer. Polymorphism and type inference are loosely 
coupled in VIMV AL because we allow any type to be explicitly 
written, thus we need a way to denote polymorphic types. The 
main restriction on polymorphism is that a formal argument to a 
function can not be used polymorphically, only free variables can 
be used polymorphically. 

Recursive data types 
Recursive types are allowed. In fact any type that can be written 
is allowed. Recursive types are not the same as recursive data. It 
is not possible to construct a recursive data object in VIMV AL 
because VIMV AL requires that all data objects be "semantically" 
constructed after their components are constructed. (There are 
two "exceptions" to this rule. It is possible for a function to 
operate on a copy of itself, but the circularity involved is very 
stylized, and the functions are not actually being constructed with 
self-references. VIMVAL has "early completion structures" [4], 
which have certain advantages which do not effect the fact that 
recursive data can not be built in VIMV AL.) 

Higher order and recursive functions 
Functions are first class data in VIMVAL: functions can be 
passed to and returned from functions, and functions can be used 
as parts of structures. Recursive functions are a special case of 
higher order functions. All recursive functions are defined to 
have the same semantics as a program written with explicit 
function arguments to replace recursion. (In a language with 
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higher order functions, explicitly specifying the type of a function 
can be troublesome. See (10] for a discussion of this.) 

Previous \Vork 

Semantics of Types and Type .Checking 

Much work has been done recently on types. Scott [21) and McCracken [14] view 

types as retracts of the univ·ersal domain (e.g. special functions on the set of all 

objects which can be represented using strings of bits). Milner (16) views types as 

ideals (which is a special set of objects meeting certain closure conditions). 

Donahue [6] and Demers [2] claim that types are sets of operations (as opposed to 

sets of objects). This approach is contrasted with the algebraic approach. where any 

particular type is specified by its algebraic properties. We unify some of these 

views. and following Solomon [22), we see types as sets of objects with certain 

restrictions. 

Type Inference, Polymorphism and Undecidability 

Langmack [8] showed that two of VIMV AL's features, type inference and 

polymorphism, can combine to make the type correctness of a program an 

undecidable problem. Langmack showed that by either requiring all fonnal 

arguments to be "monomorphic" (i.e. the arguments must have exactly one type), or 

requiring all formal arguments to be explicitly typed, the undecidability can be 

avoided. Our solution to this problem is to require all formal arguments to have 

exactly one type, i.e. formals must be "monomorphic" [16) at run-time. This rules 

out certain programs, but we believe, with the support of Milner [16]. that most 

useful programs have the property that all their formals are monomorphic anyway. 

Type Inference Algorithms 

Solomon (22] implicitly described a type checking algorithm . for certain kinds of 

Janguages, where types can be described by regular sets. and the type declarations 

are complete and explicit. This thesis will extend Solomon's work to embrace type 
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inference. (Also relevant is the work on type equivalence for types in Algol68 [20), 

which uses finite state machines to perform comparisons of types, but we are not 

directly concerned with such comparisions.) 

Peacock [19) designed a type checking algorithm for V1MVAL based on constraint 

propagation through a graph representing a VIMV AL program. As Peacock pointed 

out, his algorithm was driven by side effects (which is not aesthetically pleasing to a 

group working on a purely applicative language such as VIMV AL), lacked a 

correctness proof, and was not implemented. This thesis corrects and extends 

Peacock's work by presenting a type checking algorithm, proving it correct, and 

supplying an implementation of the algorithm. 

Overview 

Our work involves type inference, and we argue that the sets of objects that are of a 

given type are in one to one correspondence with the sets of operations that define a 

type. We note an isomorphism between sets of restrictions and certain sets of 

objects: A given set of restrictions completely and uniquely describes a type, and a 

type completely and uniquely describes certain sets of objects. We go on to use that 

isomorphism between the restrictions and our intuitive understanding of types, to 

define types, because the restrictions are ~Y to formalize. The types then have 

certain algebraic properties (those of regular sets) which are dependent on the 

restrictions placed on them by a programming language. 

We are interested in applying the algebraic properties of types directly to implement 

the type checker, falling closer to Milner [16] and Scott [21) who are modeling type 

checking, than the algebraists who are modeling the type objects. 

Synopsis 

Chapter 2 defines type in terms of regular sets and finite state automata: types are 

regular sets with a certain decidable property. Chapter 3 describes the interaction 

• 
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between types and programs, defining type assignments. Chapter 3 goes on to define 

type-correctness in terms of the numhcr of possible type assignments, and shows that 

1ypc-corrcc111css is well defined, and decidable, and that the type assignment for a 

given program is computable. Chapter 4 describes the application of our type 

checking system to VJMV !\I. In conclusion we will examine the type system m 

Vliv!V!\L, and compare it with our ease-of-use goals. 
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Chapter Two 

Types 

The goal of this chapter is to define the notion of type rigorously. We discuss our 

intuitive notions of types, and how well they fit some currently available 

programming languages. Then using examples from a dialect of LISP, we motivate 

several definitions, which lead to a definition of 1yp~systems and types, which 

formalize our intuition. A lype is a description of a set of objects, which have a 

certain property (the type of the objects). The description can be written as a regular 

expression, thus types are isomorphic to regular sets. 

2.1 A Discussion of Type Checking 

Types are easy to use, but difficult to describe. Intuitively, type checking is 

something which can catch certain programming errors (type errors), such as adding 

an integer to a string, or using an array as if it were a function. Many LISP 

implementations provide run time type checking, which detects type errors when 

they happen~ This approach is not robust because it is difficult to determine when 

all the type errors in a program have been removed. Another approach, which we 

take, is that programs are checked statically for type correctness. In order to 

perform such static type checking, we traditionally have to put up with a loss of 

notational convenience: we may have to add extra symbols to a program to help the 

type checker, or the extra restrictions required for static type checking might mean 

that we are not be able to express a program in the way we want to. Another 

. possibility is that the type checking system might not find all type errors (e.g. the lint 

program on UNIX does some type checking on C programs, but it is not guaranteed 
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to find all type errors.) It is difficult to "retrofit" a programming language with 

static type checking because it is often impossible to perform complete static type 

checking. (In LISP the propertythat cdr of nil is never taken can not be statically 

checked, and in C it is not possible to statically check that a pointer value actuaJly 

points to a valid address.) 

Our type theory wi11J9llow Leivant [9] and Solomon [22], who model types as 

structural conditions on data objects: given a data object 0, and a type T, it is 

possible to decide whether 0 is of type T by examining the structure of 0. This 

approach means that types arc sets of objects. Jn this case, Tis a description of the 

possible "shapes" of 0. We specifically follow Solomon, and claim that T describes 

a regular set of paths, where a path is a sequence of symbols in some alphabet 

(called the selectors) which corresponds to a legal sequence of operations on object 

0. This approach means that types are isomorphic to regular Sets, and everything we 

want to know about a type can be rephrased in tenns of regular sets. 

2.2 The Properties of Types 

Our goal is to define type rigorously. In order to.do this we need to deal with some 

of the restrictions that we intuitively associate with types {for example no object is 

both an integer and a real, and arrays have a "subtype", but integers do not) First 

we will describe selectors, then paths. Then we will discuss the restrictions, leading 

to the definition of a type-system. Finally we will define type. 

We will use LISP examples in this chapter, even though the types of LISP do not 

necessarily match the types of VIMVAL. We use the words "path" and "selector" 

infonnally to motivate our definitions, which appear below. The dialect of LISP 

that our examples will use has two base types: 

16 
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Integers The on1y selector for an integer is INT. l11ere is only one path 
from an integer. and that is <INT>. 

Cons ce11s Cons cel1s have a CAR and a CDR, so the selectors for a cons cell 
are CAR or CDR. AH paths from a cons cell start with CAR or 
CDR. Cons ce11s can be built with the CONS function. There is 
a special cons-cc11 ca11ed NIL. which has CAR and CDR both 
NIL. The LIST operator builds a list of cons ce11s in the standard 
way, ending with a NIL. For example: 

(LIST X Y Z) =def (CONS X (CONS Y (CONS Z NIL))) 
We wi11 be a litt1e sloppy with the type of NIL in our examp1es, 
because NIL is a "polymorphic" value (it cou1d be an empty 
LIST of anything), and we have not developed the tools to 
discuss NJ L's type. 

Paths for LISP are sequences with elements in {INT, CAR, CDR}. This set is called 

the set of selectors for LISP. 
Notation: The set of selectors for a program, denoted l:, is some finite set, 
which is dependent on the program being type checked. 

Elements of l: will be written in uppercase italics, e.g. INT and CAR. 
Notation: A path is a sequence, with each element of the sequence in I. 
Paths are possibly infinitely long. 

The length of a path xis denoted I.xi. 

If xis a path with I.xi > i, then xi is the ith element of x. The first element 

of xis x1. 

We write finite paths with angle brackets: x;;;;.(/NT, CAR> is a path with 
x1;;;;. /NT and x2;;;;. CAR. The symbol <> denotes the path of length zero 
(the empty path). 

Paths can be concatenated: if x and y arc paths. then z= x0y is a path, 
where if x is infinite then z= x. otherwise z;= X; for i E {l, ..• lxf}. and 

zlxl+ ;= y/or all finite i E {l ..... lyf}. 
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The words 1up!e, and siring, are often used for things which are similar to palhs, but 

typically tuples and strings are finite in length. 

Consider the LISP value. 0, generated by 

(CONS I 2). 

Here, 0 is a cons cell containing an integer in both its car and its cdr, the set of paths 

for 0 is { <CAR, INT>, <CDR, INT> }. and this set defines the "type" of 0 (see 

Figure 2-1). 

i 

Figure 2· l:(CONS 1 2) Cell, with paths: {<CAR, /NT>, <CDR, INT>} 

The previous example describes a type which is a finite set of finite paths. The next 

example illustrates a type which is an infinite set of infinitely l9ng paths. Consider 

the type equation T = CONS[T,11. The paths for this type are infinitely long, and 

consist of any sequence of CA Rs and CDRs. 

18 
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For the next example (which will give an example of a type which is an infinite set, 

al1 the elements of which are finite except for one) we need a few standard 

definitions, adapted from [1 JL We will also need the following definitions to define 

type. 

Definition 2· I: If A and B arc sets of paths, then the composilion of A and 
B, is 

r{ A0 B =def { <1°p I (J EA, p EB}. 

where u 0 p is the concatenation of path u and path p. 

The definition of concatenation of paths automatically takes care of the case where 

some of the elements of A or Bare infinite. 

We want to compose i copies of a set of paths, A, where i can be a finite integer, or it 

can be oo. The case of a finite integer is adapted directly from [11], while we need 

an extra definition to define the case of i infinite. 

Definition 2·2: If A is a set of paths, and i is a finite integer, then A; is 
defined recursively: 

- A0 =def { <> } (i.e. the empty path, not flJ) 

- A; (1>0) =def AoAi-1 

Definition 2· 3: A path u is an in ilia! segment of a path y if there is some 
path p, such that a0 p =y. 

Definition 2·4: If A is a set of paths, then 

A 00 
=def { u IV j(.oo, 3 p E Ai, such that pis an initial segment of a}. 

If A is a set of paths, then A1 is the set of paths which are made by concatenating i 

elements of A together. A00 is the set of paths which are made by concatenating an 

infinite number of elements of A together. 

Definition 2·5: The Kleene star operator on sets, written •, denotes the 
operation 

A• =..If u.E{O oo} Ai. ue I ,. .. , 
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Intuitively, A* is the set of all paths which are concatenations of zero or more 

clements of A. Note that we allow an infinite concatenation of elements of A. 

Definition 2·6: The Kleene plus operator on sets, written +, is 

A+ = u. Ai 
-def 1E{l,. ..• oo} • 

Note that A* = { <> } u A+. 

Now we have the tools to examine an interesting type in our LISP dialect. The type 

LIST[U] is useful in LISP, and our type system can express the semantics of this 

type. 

Given a cons cell 0 of type Twith car of type U (where U is the set oflegal paths for 

an object of type U), and cdr of the same type as 0 (i.e. any operation legal on 0 is 

also legal on cdr(O), making Ta recursive type), we have 

. T = { <CDR> }* 0 { <CAR> } • U. 

An object of the type shown in Figure 2· 2 might be generated by (LIST 1 2 3), 

where U is { <INT> } in this case. Note that T is a regular set. and can thus be 

accepted by a finite state automaton if U is a regular set 

Note also that one of the elements of Tis the infinite path x, such that X; = CDR 

for all positive integers I. 

The examples we have presented have types which can be represented by regular 

sets. Solomon (22, 23) showed that the only types we should consider are the ones 

which can be represented by regular sets. We place an additional restriction, (the 

details of which are dependent on the programming language that the type system is 

being implemented for), that some regular sets are illegal as types. In our dialect of 

LISP, for example, the set { <CAR>, <INT> } is illegal, because there is nothing 

which has a CAR and is an integer. Thus for a given programming language there 

20 
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Figure 2·2:Recursive type, with an object of the type T=CONS(INT,T) 
(Also known as LIST(INT)), along with the FSA which accepts T. 

are selector classes which provide the information to check for illegal sets like 

{<CAR>. <INT>}. 

We require that the selector classes for a given programming language, partition ~ 

into equivalence classes. 

In VIMVAL, each equivalence class in the selector classes represents a different 

"type class" or "type generator" (such as ARRAY. RECORD or INT). This 

method of partitioning I would allow us to generalize our type system to include 

abstraction, and this possibility is discussed briefly in the conclusion. It is not 

essential to our work on the type checking algorithm that the selector classes are 

formed according to the rule that each dass corresponds to a "type generator". 
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The selector classes for our LISP dialect are 

-{CAR, CDR} 

-{INT} 

Some selector symbols can not be followed by any other selectors. Our LISP dialect 

does not allow paths of the fmm <INT.CAR, ... >. because that would imply that 

there is some object which is an integer, which has a CAR. (It is not dear what such 

a path would mean, but we do not want it) Thus, for a given programming 

language, some elements of I can only appear as the last element of a finite path. 

Notation: The set of terminators, a subset of I, is the set, defined by the 
programming language, such that any path having a tenninator in a non
final position is illegal. 

In our LISP dialect. {INT} is the set oftenninators. 

In VIMV AL and our LISP dialect. the tenninators correspond to "scalar" types, or 

"base" types. We do not, however, require that such a correspondence hold for our 

type checking algorithm to work. 

A few extra definitions are needed to define types. We want to be able to talk about 

the "first part" of a set of paths, and the "last part" of a set of paths, so that types can 

be described in terms of these properties. 

Definition 2·7: The head of U ~ I+ is the set of first elements of the 
paths in U. 

head(U) =def UxEUxl 

Definition 2·8: The rest of a path a E l: + is a with the first element 
removed. 

rest( a) =def p such that <a 1> o p = a 

Definition 2·9: The tail of U ~ l: + is U with the first element of every 
path removed. 

tail(U) =def { a I 3 p E U where a = resl(p) } 
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Definition 2· IO: If XE I then the X-selected tail of U ~ l: + is 
tail>..(U} =def { rest(J~ I y EU and y1 = X }. 

Now we can encapsulate all the type information for a given programming language 

into a type system. Type systems are dependent on their programming language: the 

correctness of a type system depends on the semantics of the programming language 

associated with it. We often refer to a type system as a programming language in this 

paper, because of this dependence. 

Definition 2· l l: A type system Lis a three-tuple <I. C. GJ) where 

- I is the set of selectors in L, 

- C is the set of selector classes, which partitions l':, 

- and GJ is the set of tenninators. GJ ~ I. 

In order to define type, we need to be able to talk about certain properties of regular 

sets which are easily defined recursively. One such property is that for any selector 

a. the a-selected-tail of a type, T. must also be a type (or be empty). This recursion 

could be a real problem: e.g. for the type LIST[U], the CDR-selected-tail of the type 

LIST[U], is LIST[U]. There is no obvious way to terminate the recursion. By 

constructing a finite state automaton (FSA) which accepts the regular set, we can 

perform the tests we are interested in without resorting to such infinite recursion. 

The following definitions, which describe properties of FSA, were adapted from 

[11]. 
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Definition 2· 12: A FSA is a tuple (K,I,8,s,F,~) where 

- K is a finite set of states. 

- I is an input alphabet. 

- 8 is a function mapping some subset of KxI into K. 

- s is a start state (s E K). 
~', 

· F is a set of accepting states (F ~ K). 

- and ~ is a reject state (~ E K), 

and 8(~.u) is undefined for all u E I. 

Definition 2· 13: A configuration of an FSA is a pair (k,u) with k E K and 
u EI • 

Definition 2·14: A binary relation 1-M holds between configurations of 
M. an FSA. (k,u) 1-M (k',u') ~ 8(k.u1) = k', and rest(u)=u'. In which 
case we say that (k,u) yields (k',u') in one step. We denote the reflexive 
transitive closure of 1-M as I-~. If 8(k.u 1) is undefined, then 
( k,u) 1-M (~.u ). ( u 1 is the first element in the path a.) . 

Definition 2· 15: An FSA, M, accepts a path a if the following hold: 

- If u is finite then (s,a) I-~ (f,<>) for some/€ F. 

- If a is infinite then it is not true that (s,a) I-~ (~.a') for any path 
' (I. 

Note that if a FSA reaches a configuration (k. a), where 8 is undefined, then the 

FSA "hangs", and never accepts its input Specifically, if a FSA reaches the state~. 

then the input is not accepted. 

The set of paths accepted by an FSA is a regular set of paths •. and is called the set 

that the FSA accepts. 
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We now have everything needed to define type. 

Definition 2· 16: T. a regular set of paths. is a type in a programming 
language <I. C, q) if there is some FSA, M = (K, I, 8, s, F. ~). 
accepting Tsuch that 

- Al rejects <>. 

-Given a state k, if Hk = { u EI I 8(k, u) is defined}, then Ilk is a 
subset of some selector class in C. 

- For every state k E K. and every symbol XE I, if 8(k, X) E F, then 
XE q, (Terminators occur only at the end of finite paths.) 

It is not necessary to force M to be unique in the definition of type, because if Tis a 

type, and N is an FSA which accepts T, then N meets the conditions imposed on M 

in the definition of type. We leave this assertion without proof. 
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Chapter Three 

Type Cl1ecking 

Now that we have defined types, we can define type-checking by specifying the 

interactions betweenJypes, and programs. A program has a set of nodes1 that we 

want to type (to type node N is to assign a type to N), and some information about 

the types of the nodes (which we call operators). We first Jay some groundwork, 

defining concepts such as program and type-assignments, and then define 

type-correctness in terms of the number of possible type-assignments for a program. 

We conclude this chapter by showing that type-correctness is well defined and 

decidable. 

3.1 Type Assignments and Programs 

Our type checking algorithm will try to infer the type of every node in a program 

from its "context". We need to specify what we mean by the "context" of a node, 

and to do that we will define three kinds of "operators" on nodes: parameterized 

restrictions, containers, and closures. 

Notation: The set of node names is denoted x. x must be disjoint from 
~ . 

.Kmight be infinite, but any given program will only use a finite subset of x. 

A type assignment gives us a way to associate a type with a node in a program. 

1Nodcs arc roughly equivalent to expressions. except that there may be some expressions that we 
will not want to type (for example expressions in a module which is never used), and there some 
things that we might want to type which arc not expressions (for example type declarations). See [19) 
for a more complete discussion of nodes. 
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.. ...--...... Definition 3· l: A type assignment R is a regu Jar SU bsct of j(o I* such that 
v xE head( R). tail j R) is a type. 

Notation: The set of all type assignments is denoted S<?1:' A~ii~ Subsets of 
SOTAau are elements of the power set ofSOTAan• written ~(Sotaa11). 

There is an interesting isomorphism between type assignments and mappings from 

P.NodeNames to types. Given a program P, and a type assignment T, there is a 
""' mapping U:x-s'such that U(n) = tail

11
(n. Conversely, given a mapping U, there is 

a type assignment T, such that tail Cn = U(n). We named type assignments type 
11 

assignments because they are isomorphic to mappings which assign a type to every 

node, and we will freely, without warning, use this isomorphism when it is 

convenient. 

We are interested m finding which type assignments are consistent with the 

"context" in which each node appears in a program. 

Definition 3-2: Given an alphabet .A., if u E .A•, u finite, and Risa regular 
set over .A, then the regular set after u in R is 

after a(R) =def { u' I u 0 u' € R }. 

Note that for a symbol x E .A, tail/R)= after<xfRJ. 

A parameterized restriction gives us the ability to say that two nodes are the same 

type. First we can specify the two nodes n and n' that we are interested in by giving 

two paths, u and u' respectively. Any FSA which represents a type assignment 

which is consistent with a given parameterized restriction has the property that if we 

start from the start state of the FSA and u and u' lead to states k and k' respectively, 

then the languages accepted by starting at k and k' must be the same. This is 

equivalent to saying that there must be some FSA accepting th~ same language such 

that k= k'. We fonnalize this with the definition of state-equivalent, and then define 

parameterized restriction. 
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Definition 3·3: Given a regular set R, two paths a and a· are 
state-equivalent if after (R) = after .(R). in which case we write a =Ra·. a a 
Definition 3·4: Given a set of regular sets A (with every regular set in A· 
over a fixed alphabet.,<), fo{every pair (a. a') E .,<*x.,<*, with a and a' 
finite, there is a set of regular sets t RI R €A and a =Ra·}. We call this 

set the parameterized restriction of (a. a'), and write the set as Aa:a'· 

A colllainer gives u~ the ability to say that the type assignment for our program has a 
. -

given path a in it. 

Definition 3·5: Given a set of regular sets A (with every regular set in A 
over a fixed alphabet .,<), for every--a € .,<* there is a set of regular sets 
{ RI R € A and a E R }. We call this set the container of a in A, and 
write the set as A

0
• 

A closure gives us the ability to say that a given node must have selectors which are a 

subset of some finite set of selectors. We choose the node by giving a path, and 

specify the set by listing it. 

Definition 3·6: Given a set of regular sets A (with every regular set in A 

over a fixed aJrhabet .,<), a finite set of symbols $ ~ .,<, and a finite path 
a E .,< • there is a set of regular sets 
{ R IR E A, and head(afler "(R)) ~ $ }. We call this set the closure under 
$of R selected by a, and wnte the set as Aa~r 

Now that we have defined the kinds of restrictions we want to make on type 

assignments, we define an operator to be one of those restrictions. A program will 

actually consist of some nodes and some operators. 

Definition 3·7: An operator OP is a subset of SOTA811 which is either a 
parameterited restriction, a container, or a closureofSOTA811• 

Notation: If OP is an operator, then the operands of OP are the node 
names mentioned OP. 

The meaning of an operator is that if there is some restriction on the types of some 

nodes in a program, the operator contains the information describing the restriction. 
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For example, if, given a program, we have an operator which requires (informally) 

that "if the type of node 1 is T. then the type of node 2 is LI ST[TT' then the operator 

is {RI RESOTAan and <I> =R <2.LIST> }. A more concise way of writing this set 

is (SOTAall)<i>::<2,/./ST>" 
Definition 3·8: A program Pis an ordered pair (NodeNames. ops), 

- where NodeNames is a set of node names (a finite subset of .N), 
referred to as P.NodeNames, 

- and ops is a finite set of operators, where each operato;s operands 
are a subset of the names of the nodes in a program. (i.e. 
VxEops, head(x) E P.NodeNames.) This set is referred to as P.ops. 

Notation: The set of all programs is referred to as JI. 

By taking all of the operators in a program, and combining their information, we can 

deduce the type assignment for a program. 

Notation: The intersection of all the operators in a program is called the 
complete-restriction of the program. 

Definition 3·9: oxS~ JI -+ ~(SOT Aa11) is a function mapping programs 
into sets of type assignments. Given a program P, oxSg~P) is defined by 

oxSg~P) =def nxEP.opsx. 

3.2 Type Correctness· "There is a solution" 

Definition 3· 10: A program Pis type correct if fox~P)I = 1. 
Definition 3-11: A program Pis type ambiguous if foxSS~)I > 1. 
Definition 3· 12: A program Pis type overconstrained if toxSg~P)I = 0. 

Theorem 3·13: Type correctness is well defined, and is independent of the 
order in which the restrictions are examined for a given program. 

Proof: Set intersection is associative and commutative. I 

Peacock's proposed implementation of type checking for VIM VAL [19] used a graph, 

through which information about the restrictions of the operators of a program was 
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propagated. Peacock's thesis posed the question: "Can changing the order in which 

constraints are propagated through the graph change the final answer?". We can 

answer "no" to this question because if a and fJ are such that given a regular set R, 

Ra and R p are operators. then it is true that: 

(Ra)p = (Rp)a 

We accept without proof the folfowing: 

Proposition 3· 14: If a program is type correct. then no "type errors" (in the 
intuitive sense) will occur while running the program. 

This is difficult to prove. because it is dependent on the semantics of the language 

the program is written in. Even if the language's type system conforms to our 

model, the correctness of type correctness depends on how accurately the set of 

operators for the language is described. Given a careful semantic model for a 

programming language, and a set of operators which are consistent with the model, 

a proof of this proposition would involve showing that if the local constraints 

imposed by the operators are true then no type errors will occur at run-time. 

Milner (16) proves this proposition for the language he considers. We will leave this 

proposition unproven for VIMV AL. 

3.3 An Algorithm for Determining Type Assignments 

Theorem 3-13 shows that we can talk about type correctness for incompletely typed 

programs with recursive types, and gives a definition of type correctness, but it does 

not give us an algorithm for determining those types. In this section we will prove 

that there is an algorithm for computing the type assignment for a given program. 

If x is the intersection of a finite collection of operators, we need to show that it is 

possible to compute whether I.xi= 0, lxl = 1 or I.xi> 1. If I.xi= 1, i.e. x = { y } for 

some type assignment y, then we need to show that we can actually compute y. 
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SpccificaHy, we need to be able to build a FSA which accepts y, so that the VIMVAL 

compiler can use the type information to compile a program. (Other representations 

of regular sets would be equivalent to building a FSA which accepts y [11).) 
Theorem 3· 15; Given a program P, the type correctness of Pis decidable. 
If Pis type correct, then the type assignment is computable. 

Proof: Suppose P has operators equal to the union of some containers 
described by the set of paths { xi I i= 1, ... ,n }, and some parameterized 
restrictions ckscribcd by the set of pairs of paths { (yi, zi) I i= 1, ... ,m } , and 

• some closures { (~i' wi) E ~(.A) x .A I i= 1,. .. ,1 }, where .A. = .NUI. 

We need to determine how many type assignments (which are regular 
sets) there are that are elements of every operator in P. Since type 
assignments are regular expressions, we can consider the FSA's which 
accept the type assignments. In general, there will be more than one FSA 
which accepts a given type assignment. but we can consider, without loss 
of generality, the set of FSA 's with no more than p states, where 

p = I P.NodeN~mes I + I?= 1 Ix) + I~ 1 (lyif + lzil) + If= 1 lwil + 3. 
The reason we can make this reduction is that the set of FSA which accept 
the languages described by any operator all have a bounded number of 
states, thus the set of FSA which accept languages in the complete 
restriction of a program also have a bounded number of states. Our 
bound is correct because if there are two languages meeting the 
restrictions of operators of the program, then there are two which need at 
most p states: it is possible that every time a node or symbol is mentioned 
by a operator, another state will be needed, plus we add one for the 
rejecting state, one for an accepting state, and one for an "unconstrained"_ 
state which can be used to make type assignments different for two FSA 
(assuming the unoonstrained state is reachable from the start state). 
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Since it is decidable whether the language accepted by a given FSA is in a 
given operator, we simply need to generate a list of all FSA's with less 
than p states, filter out the ones which do not accept a type assignment, 
and determine which of them arc members of every operator in P. Given 
this new set of FSA which arc in every operator of P, we need to 
determine whether they a11 accept the same language, which is decidable. 
If they do, then the program is type correct If they do not, then the 
program is type ambiguous. Of course, if there is no FSA which accepts a 
language which is in every operator of P, then Pis type overconstrained. 

1ti'~ 

If a program P is type correct, then the type assignment is the language 
accepted by one of FSA's that is found by the algorithm described above. 

It is not really satisfying to be forced to use an algorithm as inefficient as the 

algorithm described above for determining type correctness. This algorithm is 

exponential in the size of the input program since the the number of FSA's of size p 

is exponential in p. 

VIMV AL, the actual language we are trying to type check, has very stylized 

operators, we were able to find an algorithm for type checking which is usually more 

efficient. Chapter Four describes VIMV AL in more detail. 
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Chapter Four 

Type Checking in VIMV AL 

This chapter describes the types of VIMV AL (24), and how VIMV AL interacts with 

the type system 4e_veloped in chapters 2 and 3. We deal with function recursion and 

polymorphism so that our type system can handle VIMV AL, then we describe the 

operators of the VIMV AL language. 

4.1 The Semantics of Modules 

A VIMVAL program consists of a set of modules, which can be compiled separately. 

Modules may use free names, which are references to other modules. The 

bindings of the free names are resolved at link time, possibly with the explicit help 

of the programmer. VIMV AL allows a module M with a free name "P" to to bind 

"P" to N, even though the name of module N is not "P". Unfortunately, the 

programmer may be required to help the linker resolve free names. 

Every module is really a generator: when a module is bound to a free name, the 

module is augmented in whatever ways are possible and necessary to bring it into _ 

conformance with its use (i.e. it is copied, and then modified). Thus, when a 

programmer uses the built-in ARRAY ·SIZE function in VIMV AL, a copy is made so 

that whatever type constraints are added to the ARRAY·SIZE function (for example 

if the programmer uses it on an array of integers) are not propagated to other uses of 

the ARRAY·SIZE function. 

Note that we do not require that there be a unique type assignment for each 

module, only that there be a unique type assignment for each augmented version of 
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every module. The semantics of modules does not specify that a module must be a 

function. A module could be some other kind of value, or even a second-class value 

such as a type, since the type restrictions for each of these cases could be expressed 

as operators. 

After a copy of a module is made, the type checking system must decide on exactly 

one type for the tn5_)dule. This implies that all the types of the subexpressions of the 

module must have exactly one type: in particular the arguments to functions must 

have exactly one type. This precludes certain programs which use "run-time" 

polymorphism (such as the "standard" LISP interpreter). 

4.2 Recursive Functions 

VIMVAL allows functions to catl each other recursively, with the restriction that 

there can be no mutual recursion between modules. (Mutual recursion between 

functions defined inside a module is allowed.) All recursive functions are really 

treated as higher order functions, which pass other functions, perhaps copies of 

themselves, around. This implies that recursive functions, whether directly or 

indirectly recursive, must be converted to passed arguments. Because arguments 

must have a fixed type, functions must be of fixed types when used recursively. 

Recursion is treated as a syntactic sugar for functions which explicitly pass other 

functions around (7]. Program examples 4-1 and 4-2 illustrate a simple case of the 

desugaring process. 

Program Example 4·1: 

X An example of recursion 
function fact(i:INT) RETURNS (INT) 

IF 1<=1 THEN 1 
ELSE i•fact(1-1} 
END IF 

END FUN 

Program example 4-2 shows program example 4-1 "desugarfied". The approach 
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taken is to trnnslate fact into a routine which calls dofacl, which does the actual 

computation. 

Program Example 4· 2: 

function fact(i:int} RETURNS (INT) 
facttype = FUNCTYPE(INT,FACTTYPE} RETURNS (INT) 
function dofact(i:int,f:facttype} RETURNS (INT) 

if i<=l then 1 
else i•f(i-1,f) 
end i,f- --

end fun % dofact 
dofact(i,dofact) 

endfun % fact 

There are more complex cases of mutually recursive functions. They are dealt with 

in the general case by translating 

a : FUNCTION(<args>) (<rets>) IS 
expressiona-with-these-subexpressions: 

PC ... ) 
y( ... ) 

END a 
/J : FUNCTION( ... ) .... END {J 
y : FUNCTION( ... ) .... END y 

where p and y call a (directly or indirectly) into 

a : FUNCTION(<args>) (<rets>) IS 
do-a : FUNCTION(<args>,a,b,c) (<rets>) IS 
expression

0
-with-these-subexpressions: 

b()( ... ,a,b,c) 
c(}( ... ,a,b,c) 

END do-a 
do-/J : FUNCTION( ... ,a,b,c) •.•. END do-/J 
do-y : FUNCTION( .•. ,a,b,c) 

do-a(<args>,do-a,do-/J,do-y) 
end a 

END do-y 

Of course this only translates a. A similar translation would need to be made for p, 
so that p could be called directly. The following are some design considerations that 

we took into account when we made this decision: 
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· - We wanted VIMVAL to have a decidable type system, and found that, 
theoretically, if we do not "fix" the type of recursive calls, the type 
becomes undecidable [8]. 

- We wanted an easy to understand type system. Aesthetically, an unfixed 
type becomes very confusing on even rnther simple examples of 
recursion (sec program example 4-3). 

- Practically, very few programs need the extra expressive power of 
unfixed ijpes,on recursion (16]. 

Program Example 4-3: 

function F(A,B) 

F(A,B) 

F(B,A) 

ENDFUN I F 
F(t,1.0) l difficult to type 

function Ft(A,8,FZ,F3) 

FZ(A,8,FZ,F3) 

F3(8,A,f3,FZ) 

ENDFUN l Fl 
F1(1,1.0,f1,F1) l Much easier to type: 

It is very difficult to give F a type in this example, because it is acceptable to pass F 

anything as arguments. but the arguments are switched halfway, resulting in a 

confusing type. If we write Fl instead, we can get the same meaning, but the 

program is much easier to type: 
I 

FlaTYPE= FUNCTYPE(INT,REAL,FlaTYPE,FlbTYPE) RETURNS( ... ) 
FlbTYPE = FUNCTYPE(REAL,INT,FlbTYPE,Fl bTYPE) REfURNS( ... ) 
The type of Fl when called at the top level is Fla TYPE. 
The type of the third argument is Fla TYPE. 
The type of the last argument is_ FlbTYPE. 

An example of the power of this kind of recursion is given in program example 4-4, 

which shows how a standard LISP function, is easily written recursively in VIMV AL . 
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(We also omit of the type d~clarations to demonstrate the ease of use of type 

inference.) 

Program Example 4-4: 

function LENGTH(l) 
tagcase 1 

tag NullVal: 0 
tag ConsVal: 

l+length(l.cdr) 
end tail~ -

endfun % length 

4.3 "Constant" copying 

After dealing with recursion, the remaining free variables in each module are treated 

as invocations of a generator (either of a type, or a value), which does away with 

polymorphism (since after being copied, every node must be assigned exactly one 

type) . 

4.4 The Restrictions for VIMV AL's operators 

The actual restrictions for the operators of VIMV AL are presented in appendix A. 

VIMV AL does not need the full expressive power of operators: we have described 

VIMV AL using: 

Simplified closures 
Closures are specified by a set of symbols ~. and a path a. 
VIMV AL operators are simpJe enough that a can always be 
written as a path of length zero or one. If the path is of Jength 
zero. then the closure gives a complete list of all the node-names. 
Our implementation assumes that the node-names mentioned in 
the operators are all the node-names in the program, which is 
slightly easier to use than if the implementation required that an 
explicit list of all the node-names be presented to the type 
checker. If the path is of length one, then a must be of the form 
<n> where n is a node-name. 
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Simplified containers 
Containers are specified by a path CJ. YtMYAI.'s operators can be 
written in such a way that all the containers arc specified by paths 
of length two: the first element is a node-name. and the second is 
a terminator (which is a selector). 

Simplified parameterized restrictions 
Either, we have A<n>=<m> or A<n.u>:::<m>• where m and n are 
node-names. and CJ is a selector. (The general form of operators 
allows parameterized restrictions of the form Aa=P' where a and 

f1 are arbitrary elements of ..N'0 I\ 

These restrictions allow a great improvement in the implementation of type 

checking in VIMVAL. 

4.5 An Efficient Algorithm for Type Checking in VIMV AL 

Our technique is to maintain an equivalence relation over node-names, which 

reflects which nodes are of the same type, information about the closure for each 

node, and information about the transitions that any FSA which represents some 

member of our complete-restriction, must follow. Hence, in most ·cases, we are able 

to rapidly reduce the upper bound of the number of states that FSA which accept 

our complete-restriction, by considering each equivalence class in the equivalence 

relation to represent one state of the FSA. The system requires at least one node

name in every equivalence class to have a closure restriction (because otherwise, it 

might be possible to have extra transitions leading from any state, destroying the 

uniqueness of the type assignment). 
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Definition 4·5: A Meta Finite S1a1e Awomaton (MFSA) is a tuple 
(K, .A, x, s, F, I, 8, e}, where 

- K is a set of states. 

- .A is an accepting state (A E /(), 

- x is an equiva1cnce relation over K (If k E K then !IG{k) the class of 
k under !JG). 

/ ,,--- --

- sis a start state {s E K), 

- Fis a set of final states (Fis the union of some of the classes of s, 
which implies F~ K . .A E F). 

- I is a set of symbols, 

- 8 is a function mapping (X x I) - (X u {fll}), 

- and e is a function mapping !lb-+ ~(I). 

Definition 4-6: A configuration of a MFSA is a pair (k, a) where k E K 

and a E ~ • 

Definition 4·7: A binary relation t-M holds between configurations of M, 
a MFSA. (k, a) t-M (k', a') - a' = resl(a) and 8(X(k), a1) = !lb(k'). 

The reflexive transitive closure of t-M is denoted as t-~. 

So far, MFSA are very similar to FSA. Now we are going to define some interesting - -- -

operations which allow us to perfonn our type checking algorithm. First we are 

interested in restricting the set of FSA's that our MFSA represents to those which 

correspond to one of the cases of a simplified parameterized restriction. (See section 

4.4.) 
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Definition 4·8: If Mis an MFSA. and iandjare states then 

equate<.M,i,J) =def (K, !JG', s, F', I, 8', e'), 

where b E X'(a) (i.e. a and b are in the same class under X') - there is 
some finite path u such that(i, u) I-~ (a,<>). and U. u) I-~ (b, <>), 

and F' is the union of all the clements of x· which have some element in 
F. 

'-

and 8'(X'(a), a) = X'(b) - 3 (x, y) E X'(a)xX'(b), such that 
8(%(x), a) = X(y), 

and e'(y) = nzE %'()') c(x(z)). 

The equate operation on MFSA gives us the set of FSA's in which a given pair of 

states are always state equivalent. 

Next we are interested in the case of a container. 

Definition 4·9: If Mis an MFSA, k E K, and a E l:, then 

has-path(M, a) =def M, 

where if there is some x E 8(X(k), a) then M = equate(M, ~ k), 
otherwise M = M, except for the transition function 8', which is the 
same as 8, except that 8'(X(k), a) = !li(.A.). 

The next definition allows us to deal with the second case of a simplified 

parameterized restriction. (See section 4.4.) 
Definition 4· 10: If Mis an MFSA, i, j E K, and a E l:, then 

has-subpath-t<i._M, i, a,J) =def M, 
where if there is some x E 8(X(1), a) then M' = equate(Jt.f, ~ j), otherwise 
M' = M except for the function 8', which is the same as 8, except that 
8'(X(1), a) = !Xi{J). 

Note that a MFSA describes a set of type assignments if the following conditions 

hold: 
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1. For any node-name 11, { a I 8(X(n). a) * f?J } is a subset of some selector 
class. and is also a subset of e(X(n)). 

2. If /1 E K. 111 E F, a E I, and 8(X(n), a) = X(m) then a is a terminator. 

3. For every XE I. 8(X(.A), X) = f?J. 

Note that a MFSA describes a single type assignment if the following condition 
holds: (/----

1. For every node-name 11, { a I 8(X(n), a) * 0 } = e(X(m)) * 0. 

To compute equate(Af,i,J), has-path(Af,i,a), and has-subpath-t<J..M,i,aJ) only 

takes on the order time 11
2 in the worst case, and usually is much better. 

To compute the type assignment for a program, we perform the following: 

1. Build the MFSA with all the closures matching the cJosure operators in 
the program. (This is easy: if a node z is closed with the set ~ in the 
program, we have the function e(z) = ~. If a node z has no cJosures in 
the program, then e(z) = l:.) 

2. Construct new MFSA 's, by composing the MFSA operations which 
correspond to the operators in the program. It does not matter which 
order they are composed in, since the MFSA operations describe set 
intersection: if A is a program operator corresponding to some MFSA 
operation F, and B is a set of type assignments corresponding to some 
MFSA M, then AnB is a set of type assignments corresponding to the 
MFSA F(M). Here is the correspondence between program operators 
and MFSA operations: 

Program Operator 

(SOT Aan><n>:c<m> 

(SOTAau><,,, a>s<m> 
(SOTA311)<n.a> 

MFSA Operation 

equau{M,n,m) 

has- subpath- td,.M,n,a ,m) 

has-path(M,n,a) 

3. Test to see if the MFSA represents a set of type assignments (in which 
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case we kmm that the program is not 1ypc-ovNcons1mincd), and if the 
MFSA represents a single type assignment (in which case we know that 
the program is not type-ambiguous). 

Appendix C contains the listing or a CLU [13] program to perform type checking on 

V!MV AL. 
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Chapter Five 

Conclusion 

Did \Ve Meet Our Goals? 

While the VJMVAL compiler is not yet finished, and we have no actual experience 

using VIMV AL, we feel confident that V1MV AL has much the power and ease of use 

stated in our original goals. This power is illustrated by a few examples in Appendix 

B. We believe that VIMVAL provides a notation for polymorphic programs that is 

easy to learn and use, and we proved that VIMV AL is type safe, meeting the high 

level goals out1ined in the introduction. The actual type rules of VJMV AL are fairly 

simple: 

- There must be exactly one legal type for every value in a VIMV AL 
program . 

. - The type of a value is constrained by the operators that operate on the 
value. The VIMV AL manual [24], and appendix A, describe the 
constraints that each operator places on its operands. Intuitively, the 
arguments have to be used in a "consistent" way. (This is easy to state, 
but sometimes rather difficult to apply in practice, since the human 
programmer may have to actually use our algorithm to determine the 
type assignments of a program.) - -· ···· · -

- Recursive functions are of a fixed type, but other modules are copied 
before they are compiled, which allows polymorphic functions to be 
written. 

VIMV AL requires a faifly complex type checking algorithm, which may require 

quite a bit of computation in the worst case. We believe that this complexity is 

acceptable in the light of VIMV AL's ease of use, and given that VIMV AL is designed 

to run on a highly parallel computer. 
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Type inference allows programmers to write code which is difficult to read. 

Empirica11y, we could argue that if type inference is difficult for a computer, it is 

probably also difficult for people who are reading a program. (e.g. We found it 

difficult to infer "in our heads" the type of the Y-combinator (shown below) but our 

type checking algorithm correctly computed the Y-combinator's type.) 

Comparison with other \Vork 

VIMV AL's type system is different from Milner's [16), in that we allow "ad hoc 

polymorphism" in the case of certain built in operators (such as +, which can take 

real or integer arguments). Milner discussed the possibility of adding such ad hoc 

polymorphism. 

A more important difference between our type system and Milner's is that we allow 

recursive types. The recursive types allow us to type Curry's Y combinator (which 

Milner's system can not type). 

Program Example 5·1: 

function Y(f) 
function ft(x) 

f(x(x)) 
end fun 

ft( ft) 
endfun 

which could be re-written without type inference. 

Program Example 5· 2: 

Ytype = Functype(Ytype) returns(Ytype) 
function Y(f:Ytype} returns(Ytype) 

function fl(x:Ytype} returns(YType) 
f(x(x)) 
end fun 

fl( fl) 
endfun 

Except for the above differences, our concepts of type and sets of type assignments 

are not really different from Milner's. Instead of finding the "inost general type" of 

an expression, and then instantiating the expression with specific types to get a 

44 



"monotype", as Milner docs, we copy the expression, and then deduce what the type 

of the expression must be. These approaches are equivalent, because a "monotype" 

is a member of a "most general type" if and only if there is context in which the 

expression could have type corresponding to the "monotype". 

Our approach to types can be generalized to include type abstraction [12] by 

defining a correspondence between the legal operations on user defined abstract 

types and an augmented selector alphabet: abstract types are sets of objects with a 

set of operations (17), and a type checking algorithm would simply generate the 

additional selectors that the abstract type needs (which are different from the 

previously defined selectors), and put them all in the same selector class. None of 

the new selectors would be terminators. The rest of our type checking system would 

apply to this new system. We did not make this generalization because we wanted 

to limit the scope of this work, and because VIMV AL is perceived as a "number

crunching" language, which does not require the powerful and easy to use 

abstraction mechanisms that are found in CLU (13]. VIMV AL does have a type 

abstraction mechanism, which involves encapsulating a data type inside a procedure, 

but the mechanism is not easy to use (syntactic sugar would help solve this 

problem (14)), and it is impossible to maintain a representation invariant for objects 

of a given abstract type [12] (such as a requirement that an array be a sorted array). 

A View from Above 

The "high level goals" for the MIT Computations Structures group were well stated 

in [3]: 

to present a system model for a kind of ideal multiprogrammed computer 
system, one that would serve many users in a way permitting sharing of 
the products of their individual programming efforts consonant with the 
principles of program modularity -- the ability to build program units 
which can be combined to form higher units, etc. 

We believe that the development of the type system for VIMVAL is an important 
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milestone in the de\'elopment of the \'I\1\IAL language, which in turn represents an 

important step on the p:1th to that high level goal. 
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Appendix A 

VIMV AL Operators and their Restrictions 

This appendix describes the actual operators that are in VJMV AL Much of this 

appendix is borrowed from Peacock's [19] appendix A. 

We adopt the convention that every operator has n input nodes, named x1, ... ,x
0 

and 

m result nodes named Yl'····Ym· An operator is set of regular sets, and we give the set 

for each operator. 

l: = 
{ REAL, INT, CHAR, BOOL, NULL, ARRAY, STREAM, 

GET-a, IS-a, ARG-n, RET-n 
I a is a legal VIMVAL identifier, and n is a positive integer } 

The correspondence between selectors in our type system, and the "type classes" in 

VIMV AL are as follows: 

selector 
REAL -+ 

INT -+ 

CHAR -+ 

BOOL -+ 

ARRAY ....... 

STREAM ....... 

GET-a ....... 

IS-a -+ 

RET-n, ARG-n -+ 

The tenninators are 

{ REAL, INT, CHAR, BOOL, NULL }. 

The selector classes are: 
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type class 
REAL 
INT 
CHAR 
CHAR 
ARRAY 
STREAM 
RECORD 
ONEOF 
FUNCTION 



{ REAL}. 
{ INT}. 
{ CHAR }. 
{ BOOL }. 
{ NULL}. 
{ ARRAY}. 
{ STREAM}. 
{ GET-a I a Is a legal VIMVAL identifier}. 
{IS-a I a Is a legal VIMVAL identifier}. 
{ ARG-n, RET-n I n is a positive integer }. 

We will call the set of a11 type assignments o. 

There is a little bit of added complexity due to the non-uniform polymorphism of 

some of the operators in VJMV AL. The + operator, for example allows arguments 

which are either all integers or all reals. We can deal with such finite disjoint unions 

of operators, by computing a separate complete-restriction for every possibility. We 

will refer to {INT, REAL, CHAR, BOOL} as RICB, {REAL, INT} as RI, and 

{REAL, CHAR} as RC. 

Most operators in the VIMV AL language correspond to more than one operator as 

defined in definition 3-7. Rather than write the operators in the form (SOT Aan> a . 
l 

for i in some set of integers, we wiJl write the restrictions in standard set notation. 

We will also choose not to mention the closure operator for operators which 

mention selectors which are in selector classes of order one. This set of selectors is 

OWNCLASS = {REAL, INT, CHAR. HOOL. NULL. ARRAY, STREAM}. In 

general, if an operator specifies that there is some path <z. a>, with 

a E OWNCLASS, then there is an implied closure operator of the form 

(SOTAan>z[{cr}]· 
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A.1 Basic Operators 

A.1.1 Error Tests 

There are three universal error tests in VtMV AL Their names are is-undef. 

is-miss- elt, and is- error. They have 1 input and l output Their only constraint 

is that the output must be boolean. 

{ SEO I <y1 :/BDOL> E s } 
A.1.2 Equal and Not Equal 

Equal, ( = ). and not equal, (-= ). are in a special class because they constrain their 

argument types not to a specific type but to a set of four possible types, namely real, 

integer, char, or bool. They have 2 inputs and 1 output. The inputs must be the 

same type and the output is a bool: Thus there is one operator for every p E RICB. 

V p E RICB: 
{SEO I { <x1 , p>. <x2 , p>. <yl' BOOL> } ~ S} 

A.1.3 Boolean Operators 

There are two classes of boolean operators in VIMV AL. The first class has two 

arguments, the second has one. 

A.1.3.1 Two Argument Boolean Operators 

The members of the class with two arguments are and, (&); and or, ()). Their 

constraints are that all the inputs and results must be bool. 

{ SEO I { <xl' BOOL>. <x2 , BOOL>. <yl' BOOL> } ~ s } 
A.1.3.2 One Argument Boolean Operators 

The second class has only one member, the not, (-) operator. The input and result 

are both bool. 

{SEO I { <x1 • BOOL>, <yl' HOOL>}~ s} 
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A.1.4 Type Cmnersion Operations 

There are three operations intended to convert one data type into another. These 

· are real. character. and integer. They all have one input and one result 

real { SEO I { <xl' IN1>. <yl' REAL>}~ S} 

integer 

character 

v p E RC: {SEO I { <x1• p>, <yl' JN1>} ~ S} 

{SEO I { <x1, IN1>, <yl' CHAR>}~ S} 

A.1.5 Real and Integer Operations 

Most real and integer operations have the same names. Those that do are divided 

into four classes. There are some special cases, which are described after the four 

classes. 

A.1.5.1 Binary Operators 

The first class takes two arguments and returns one result, all three types being the 

same type, and being real or integers. The members of this class are plus, ( + ); 
minus,(·); multiply,(*); divide,(/); max; and min. 

V p E RI 
{SEO I { <x1' p>, <x2 , p>, <y1' p>} ~ S} 

A.1.5.2 Unary Operators 

The next class has one argument and one result, both of the same type. and both 

either integer or real. The members of this class are negation,·-·; and abs. 

V p E RI 
{ SEO I { <X1. p> I <Y1 I p> } ·~ s }·· 

A.1.5.3 Relational Operators 

The next class has two arguments and one result. The arguments must be the same 

type. and be integer or real. The result is a boolean. The members of this class are 

>. <.>=.and<=. 
V p € RI 

{ SEO I { <x1 , p>, <x2 , p>, <y1 , BOOL> } ~ S} 
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A.1.5.4 Except ion Predicates 

The fourth and final class of real/integer operations has one argument and one 

result. The argument can be real or integer, and the result is a boolean. The 

members of this class are is-pos-over, is-neg-over. is-unknown, 

is-zero-divide, is-over, and is-arith-error. 

V p € RI 
{ 5€0 I { <x1• p>, <y1 , BOOL> } ~ s} 

'._/ 

A.1.5.5 Special Cases 

There are five operations that operate on real and integer types which do not fit into 

the above classes. The first of these special cases is mod, with two arguments and 

one result, all of which are integer. 

{ 5€0 I { <x1 • INT>, <x2, INT>, <y1 , INT> } ~ S } 

The second special case is exp (which computes x1 x2), with two inputs and one 

result. If x2 is REAL then all are real, and if y1 is INT then all are integers. 

{ SEO I { <x1• REAL>, <x2 , REAL>, <y1, REAL> } ~ s } 

{SEO I { <xl' INT>, <x2 , INT>, <y1 , INT>} ·t; S} 

{SEO I { <x1 , REAL>, <x2 , INT>, <y1 , REAL>}~ s} 

The final three special cases are is-pos-under, is-neg-under, and is-under, with . 

one input (a real) and one output (a boolean). - - - -

{SEO I { <xl' "REAL">, <i(y)l' "DOOL">}~ S} 

A.1.6 The empty operation 

The empty operation has no inputs, and one result: a string or an array. There is a 

"dummy" node called z which is used for technical reasons: 

{ seo I <y1 • ARRAY> =s <z> } 

{ SEO I { <y1 • STREAM> =s <z> } 
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A.I. 7 Array Operators 

A.1.7.1 Array-fill 

The array-fill operator has three inputs and one output. The first two inputs are 

integers, and the output is an array of type x3. 

{ SEO I { <x1 • INT>, <x2 • INT> } ~ S, 

and~,.(Yp ARRAY> =s <x3> } 
A.1.7.2 Select 

The select operator <m has two inputs, an array and an integer. and an output, an 

element of the array. 

{ SEO I { <x2 , INT> } ~ s. and <x1 , ARRAY> =s <y1> } 
A.l.7.3 Append 

The append operation takes three inputs and gives one result The first input, the 

last input, and the output are all arrays of the same type. The second input is an 

integer. 

{ SEO I { <x2 , INT> } ~ S, 

and <x1 , ARRAY> =s <x3 , ARRAY> =s <y1 , ARRAY> } 

A.1. 7.4 Create-by-elements 

The create-by-elements operator[:] is takes n>l inputs and gives one result The first 

input is an integer. the output is an array of the second input The rest of the inputs 
--- --·--·-·- --· 

must be the same type as the second input 

{SEO I { <x1 , INT>}~ S, and <x1>. <y1 , ARRAY> for i€{2, ..• ,n}} 

A.1.7.5 Array To Integer Operators 

The following three operators have the same constraints: array-/imh. array-liml and 

array-size. They take an array input and give an integer result We need a dummy 

node named z. 

{ SEO I { <yl' INT> } ~ S, and <x1' ARRAY> =s <z> } 
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A.1.7.6 Array-adjust 

The array-adjust operator takes three inputs and gives an output. The first two 

inputs arc integers. The last input and the output are arrays of the same type. 

{ SEO I { <x1 , INT>, <x2 , INT> } ~ S, and <x3 , ARRAY> =s <y1> } 
A.1. 7. 7 Array·addh and Array·addl 

The operations array-addh and array-add/ both take two inputs and yield an output 

The first input and the output are arrays of the the second input's type. 

{ SEO I <x1 • ARRAY> =s <x2> =s <y1 • ARRAY> } 

A.1.7.8 Array·remh and Array·reml · 

The operations array-rcmh and array-rem! both take one input and give one output 

The input is an array of the outpufs type. 

{ SEO I <x1 , ARRAY> =s <y1> } 

A.1.7.9 Array-sell and Array·seth 

The operations array-set! and array-seth take an array and an integer and give an 

array output. The first input and the output are arrays of the same type. 

{SEO I { <x2 , INT>} ~ s, and <x1' ARRAY> =s <y1 , ARRAY>} 

A.1.7.10 Concatenate and Join 

The operations concatenate and array-join takes two arrays, and give one array, all of 

the same type. 

{SEO I <x1 • ARRAY> =s <x2 , ARRAY> =s <y1 • ARRAY>} -
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A.1.8 Stream Operations 

A.1.8.1 Stream Creation 

The s1ream operator allows n inputs and one output There is really one operator 

for every non-negative number n. (We will assume that there is at least one input 

If not, we need a dummy input, which we can calJ x1.) The inputs must all be the 

same type, and~ the output is a stream of that type. 

{ SEO I <x;> =s <y1 , STREAA1> for i E { 1, ... ,n } } 

A.1.8.2 Stream Null 

The null operator takes a stream and returns a boolean. We need a dummy node 

named z. 

{ SEO I <y1 • BOOL> E s. and <x1 , STREAM> =s <z> } 

A.1.8.3 Stream First 

The first operator takes a stream[f] and returns a T. 

{ SEO I <x1 • STREAM> =s <y1> } 

A.1.8.4 Stream Rest 

The rest operator takes a stream and returns a stream of the same type. We need a 

dummy node z to describe this restriction. 

{ SEO I <x1> =s <y1>, and <x1, STREAM> =s <z> } 

A.1.8.5 Stream afflX 

The affix operator takes a stream[f] and a T. and returns a streamff). 

{ SEO I <x1• STREAM> =s <x2> =s <y1• STREAM> } 
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A.1.9 Record Operators 

A.1.9. 1 The Record Constructor 

The record operator takes n inputs and gives one output. Note that there is 
a1·····an 

. one record operator for every finite set of V1MVAL identifiers. Assume that a 1, ... , 

an are sorted Jcxicographically. We must be sure to exclude other selectors on the 

output 

{ SEO I <y1 • GET-a 1> =s <x;> for iE {1, ... ,n}. 

and <y1 , GET-p, .. . > ( S if /3( { a 1, .•. , an} } 

A. l.9.2 Record Selection 

The se/ecta operation on records takes a record and gives a value which was stored 

in the record. Note that we must be careful to allow paths that start with GET-p, for 

all P*a, because the select path does not say anything about the other selectors. a 

{ SEO I <x1 • GET-a> =s <y1 > } 
A.1.9.3 Record Replace 

The replacea operation on records takes a record and a value, and returns a new 

record of the same type. 

{ SEO I <x1> =s <Yi>. and <xi, GET-a> =s <x2> } 
A.1.10 Union Types 

A.1.10.1 Union Make 

The make a operator takes an object and returns a oneof. 

{ SEO I <xi> =s <Yi, IS-a> } 

A.1.10.2 Union Is 

The isa operator takes a oneof and returns a boolean. We need a dummy node 

named z. 

{ SEO I <x1, IS-a> =s <z>, and <Yi, BOOL> € S } 
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A.I. I I Constants 

Integer. real, and character constants have no inputs and one output The output 

must be the type of the constant 

Real {SEO I <yl' REAL> ES} 

Integer {SEO I <y1• JN])€ S} 

Character --- · ·. { SEO I <yl' CH AR> € S } 

A.2 Type Declarations 

Variables and Formal arguments may have type information explicitly given about 

them through a type specification. The type specification is treated just like an 

expression for the purposes of typing. 

A.2.1 Basic Type Specifications 

Reals, integers. characters, booleans. and null can each be specified by their names. 

which have selectors associated with them: REAL. INT, CHAR. BOOL. and NULL 

respectively. If we see a basic type a, with selector [J. then there is only one 

"output", and that is the type a. 

{ 5€0 I <y1 , /J> € s } 

A.2.2 Array and Stream Type specifications 

If we see a type specification ARRA Y[A], where A is a type specification. then we 

say the "output" is an array of A. and the "input" is A. 

{ SEO I <y1 , ARRAY> =s <x1> } 

Similarly for streams: 

{ 5€0 I <y1' STREAM> =s <x1> } 
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A.2.3 Record and Oncof Type specifications 

If we see a record type specification RECORD[a1:Al' ...• an:A
0
]. then we treat it 

exactly the same as the record constructor in section A.1.9.1. 

Similarly for oneof type specifications: There is no oneof constructor that specifies 

all the arms, but it should be treated like a record constructor, just replace a11 the 

GET-a 's with IS-a ·s: -- -·--

{ SEO I <y1 , /S-a 1> =s <x1> for i E {1, ••• ,n}, 
and if <y1, IS-fl, ... > E R, then P = aj for some j } 

A.2.4 Function Type Specifications 

Function type specifications are treated just like function applications in section 

A.4.1. Instead of having subexpressions, we have subtypes. 

A.2.5 Free Variables ~ Type Specifications 

A free variable just names a single node, as is true for any VIMV AL expr~ion. 

A.3 Basic Constructs 

A.3.1 If then else 

The if then else operator appears in the form: 
IF <expt> THEN <exp2> ELSE <exp3> ENDIF 

We require that <expD be a boolean 1-valued expr~ion. <exp2> and <exp3> be 

. m-valued expressions. where <exp2>i is the same type as <exp3>i for i= 1 through 

m. The IF is a m-valued expression. 

We label the <expl> node x1,1, the <exp2> nodes X"i.i· ...• x2.m• the <exp3> nodes 

x3,Jt .•.• x3,m, and the result nodes Yp •..• Ym· 

{ SEO I <x1 , tt BOOL> € s, 
and <x2, 1> =s <x3 , 1> =s <y1> for i in {t •... ,m} } 
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A.3.2 Tagcase 

The tagcase construct appears in the fonn: 

TAGCASE <exp> 
TAG a 1 (n 1): <exp 1> 

TAG a 2 (n 2): <exp2> 

TAG an (n 3): <expn> 
{ OTHERWISE : <expn+t> } 

ENOTAG 

The requirements arc that <expi> .. <expn+l> are the same type, and T(<exp>) must 

be a oneof type with a 1 •. an as tag values. (If the OTHERWISE is not included, 

then there must be no other tag vall;les.) The value of a T AGCASE can be a m

valued expression. 

We label the node of <exp> as x0, the nodes of <exp? as xij for j= l, ... ,m. The 

resulting nodes of the· tagcase are yj for j = l. .. ,m. 

If the OTHERWISE is included we have: 

{ SEO I <exp 1> =s <y1> for i in { 1, ••• ,n+l }. 

and <exp, GET-a 1> = <n 1> } 

If the OTHER WISE clause is not included, add the extra restriction that there are 

no other tags: 

{ SEO I <exp 1> =s <y1> for i in { 1, ••• ,n+1 }. 

and <exp, GET-a1> = <n 1>, 
and if <exp,GET-{J, .•. > ES, then {J = a 1 
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A.3.3 Forall construct 

The fora II construct appears as: 
FORALL <var> IN [ <expl> , <exp2> ] 

CONSTRUCT or EVAL <exp3> 
ENDALL 

There are two cases, the CONSTRUCT and the EVAL case: Jn every case, <expl> 

and <exp2>~mtist-be integer. We label <expl>'s node x1, <exp2>'s node x2, and 

<exp3>'s node x 3. The result node is y1. 

A.3.3.1 Forall with CONSTRUCT 

The restrictions for the CONSTRUCT case are that if <exp3> is of type T, then y1 is 

type ARRA Y[I]. 

{ SEO I { <xl' INT>, <x2 , INT> } ~ s. and <x3> =s <y1, ARRAY> } 

A.3.3.2 F orall with EV AL 

There are six possible "evaluation operators" for the EV AL clause of a forall 

statement In each case we have the additional restriction that the type-of exp3 must 

be the same as the type of the output 

There are more restrictions, based on which evaluation operator is used: 

In the case of +, • ,min, or max we have the restriction that <exp3> must be an 

integer or a real: 

V p €RI 
{ SEO I { <x1 , INT'>, <x2 , INT>. <x3• p>, <y1 , p> } € S } 

In the case of&, or or we have the restriction that <exp3> must be boolean. 

{ SEO I { <x1 , INT>, <x2 , INT>. <x3 , BOOL>, <y1 , BOOL> } € s } 
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A.4 Fu net ions 

There are two ways that a function is encountered in VIMVAL. The first is the 

declaration of a function. which is first treated by the compiler to get rid of 

polymorphism and recursion. The second is when the function is passed as an 

argument (either to a built in operator such as apply, or as another function). 

A.4.1 Function Declaration 

After a function ___ has been copied and modified to deal with polymorphism and 

recursion, the type checker sees a "function declaration" node, which we can write 

as 

FUNCTION(a1, ... ,a
0

) RETURNS (/J1, ... ,/Jm) <EXPRESSION> END FUNCTION 

where the ai's and Pj's actually are node names of nodes inside <expression>. We 

assume that <expression> is m-valued. and that /Jj is the name of jth output node of 

<EXPRESSION>. The resulting type constraints of a function dedaration is that 

the output is a function taking n values, such that the ith value is of type ai, and 

returning m values, such that the jth returned value is of type Pr y1 refers to the 

node of the actual function. 

{ R€0 I <y1 • ARG-1) =s <a1>. 
and <y1, RET-b =s </J1> for approprfate i's } 

A.4.2 Function Application 

Ifwe see 

<exp>(<exp1>, ... , <exp
0
>) 

then we have a function application. The requirements are that <exp? be the same 

type as the ith argument of <exp>. and that the jth output of this function 

application is the type of the jth return value of <exp>. Here <exp> is labeled xl' 

and <ex pi> is labeled x2.i. The outputs are labeled Yj for appropriate values of j. 

{ 5€0 I <x1, ARG-i> =s <x1+1>, and <x1, RET-i> =s <y1> } 
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Appendix B 

Exan1ples of the power of VIMV AL 

Program example 5-3 composes two functions to give a new one: One weakness in 

our type syst~m is that one can not write a function which takes an arbitrary number 

of arguments. (This weakness is a result of the syntax of VIMV AL, rather than the 

type system itself.) 

Program Example 5· 3: 

function compose (F:functype(B) returns (C), 
G:functype(A) returns (8)) 

returns (functype(A) returns (C}} 
function composer (aval:A) returns (C) 

F(G(aval)) 
endfun % composer 

composer % return the composer 
endfun % compose 

Program example 5-4 implements the same function, with type inference instead 

Program Example 5·4: 

function compose (F,G) 
function composer (aval) 

F(G(aval)) 
endfun % composer 

composer 
endfun % compose 

Program example 5-5 shows how a multiplier, the encapsulation of multiplication by 

a constant, can be implemented in VIMV AL: 

Program Example 5·5: 

% MakeMul takes an integer I and returns a 
% function which multiplies integers by I 
function MakeMul(i:INT) returns (FUNCTYPE(INT) returns (INT)) 

function dolt(j:int) returns (int) 1*j endfun 
dolt % return doit 
endfun 
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Program example 5-6 shows how the multip1ier in examp1e 5-5 can be written 

without explicit type declarations. This examp1e is s1ightly more powerful, in that in 

can operate on reals or integers. 

Program Example 5·6: 

function MakeMul(i) 
function dolt(j) i•j endfun 
dolt 
endfun ___ _ 

Program example 5-7 demonstrates a "password hider" program, which can be used 

to hide information, which will only be released upon presentation of the correct 

password. See (18] for further details on this sort of protection. 

Program Example 5·7: 

type hider=functype(givenpass:T, 
command :oneof[store:T: fetch]) 

returns(oneof[badpass; 
didstore:hider; 
didfetch:T]) 

type pfuntype = functype(T,T) returns(boolean) 

function makePassword(password:T, 
passfun:pfuntype, 
hiddenObject:T) 

returns (hider) 
X makePassword returns a function which knows the password and knows the 
i hidden object, but will not reveal the bidden object unless the user 
i presents the correct password. There is also no way to uncover the 
I password itself, except by subverting the type system, e.g. using 
i a debugger (or perhaps by trial and error). 

function dolt(givenpass,command) · 
i dolt is the function that is returned by makePassword. dolt 
X knows the password, because the password is in dolt's lexical 
i scope. 
i dolt returns the value 1ff the password presented causes 
i PASSFUN(PASSWORD,GIVENPASS) to return true. 

if -passfun(password,givenpass} then 
make[BadPass:nil] 

else 
tagcase o:=command 

tag store: make(DidStore:makePassword(password,passfun,o)] 
tag fetch: make[DidFetch:hiddenObject] 

end tag 
end if 

endfun i dolt 
d91t i return dolt 

endfun i makePassword 

62 



Finally, we have an example which implements lisp primitives in VIMV AL. 

Program Example 5-8: 

function cons(a,b) 
make[ConsVal:record$[car:a,cdr:b]) 
endfun I cons 

% The car of null is null 
function car(a) 

Tagcase b:=a 
tag Consval: b.car 
tag Nul lval: a 

end tag 
endfun I car 

X the cdr of a null is null 
function cdr(a) 

TagCase b:•a 
tag Consval: b.cdr 
tag Nullval: a 

end tag 
endfun X cdr 

function nullp(a) 
is NullVal(a)' 
endfun I nullp 

function lispn11() 
make[nullval:null] 
endfun I 11spn11 

function length(a) 
if nullp(a) then 0 
else t+length{cdr(a)) 
end if 

endfun I length 

function append(a,b) 
if nullp(a) then b 
else cons(car(a), append(cdr(a), b)) 
end1f 

endf un I append 

function ith(a,1) 
if i>O then 1th{cdr(a),1·1) 
else car(a) 
end if 

endfun I ith 
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function reverse(a) 
% doreverse returns the first elements of a in reverse 
function doreverse(a,i) 

if i=O then lispnil() 
else cons(ith(a,i), doreverse(a,i-1)) 
end if 

endfun % doreverse 
doreverse(i, length( a)) 
endfun % reverse 



Appendix C 

Listing !)f the VIM· VAL type checker 

This appengi_x contains a listing of the VIM-VAL type checker which is written in 

the CLiJ-[iJJ programming language. The style is "functional". i.e. we have been 

careful to avoid side-effects. so that the eventual translation of the VIM-VAL 

compiler into VIM-VAL will not be too painful. 

SOTA 

SET 

EQUIVREL 

MAP 

SOTATEST 

A cluster which implements the MFSA defined in definition 4-5. 
along with its operations and the predicates which can be used to 
determine type correctness. 

A cluster which implements the mathematical object set. 

A cluster which implements equivalence relations. 

A cluster which implements maps from one set of objects to 
another set of objects. 

A procedure which tests SOTA. 
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#extend 
sota • cluster[alphabet, nodename, classname:type] 11 

create, equate, has_subpath_to, has_path, has_closed_path, 
close, 
get_unique_type_assignment, 
export % for debugging only 

where 
alphabet has get_class:proctype(alphabet) returns(classname). 

equal:proctype(alphabet, alphabet) returns(bool), 
get_is_terminator:proctype(alphabet) returns(bool), 

% requires: if two alphabet items A and B then 
% A.class•B.class implies A.is_terminator•B.fs_terminator 
nodename has equal:proctype(nodename, nodename) returna(bool), 
clas~name has equal:proctype(classname, classname) returns(bool) 
- . ..----

/" 
abstract • sota[alphabet,nodename,classname] 
rep • struct[equivs:ERNN, 

closures:TNSA, 
transitions:tntano] 

ERNN•EquivRel[NodeName] 
TNSA•map[NodeName,SA] 
SA•Set[Alphabet) 
tntano • map[NodeName, tano] 
tano • map[alphabet, no] 
no • oneof[acceptor:null, 

node:nodename] 
nopair•struct[first,second:no) 
% nodepair•struct[f1rst,second:nodename] 
agenda•set[nopair] 

% representation invariant I(R) 
% R.equ1vs agrees with R.transitions: i.e. 
% EquivrelfNodeName]Sfquivalent(R.equfvs,n.•) 1mplies 
I R.transftionsfnJ • r.transitionsf•] 
% R.transitions preserves well-typeness: f.e. 
% R.transftionsfn]fa] and R.trans1tions[n][b] are defined implies 
% a.class•b.class 
% R.closures agrees with R.transftions: i.e. 
% If R.c1osures[n] is defined then 
% Domain(R.transit1ons[n]) Is 1 subset of R.c1osures[n] 

% abstraction function R corresponds to A 1ff 
% equivrelfNodeName]Sequfvalent(r.equfvs,n.•J iff· 
% for all Q in A, <n> 1s state-equivalent to <•> 
% equ1vre1fnodename]Sequivalent(r.equfvs.•. . 
I no$va1ue_node(r.transit1onsfn]fa]J) fff 
I for a11 Q fn A <n,a> is state equivalent to <a> 
% noSis_acceptor(r. trans1t1ons[n][a]) 1ff -- - - -------
1 for a11 Q 1n A <n.a) is in O 

create • proc() returas(cvt) 
% returns the set of all type assignments 
return(rep${equivs:ERNNSCr1ate(), 

closures:TNSAScreate{), 
transitions:TNTAN0$create{))) 

end create 

equate • proc(os:cvt, nodei,nodej:nodename) returns(cvt) 1ignal1(empty) 
I returns OS[nodei•nodej], (signals empty 1f there is none} 
tf ERNNSEquivalent(os.equivs, nodei,nodej) then return(os) end 
ttd:agenda:•agenda$[nopairS{first:noSmake_node(nodei), 

second:noSmake_node(nodej))] 
I ttd: things to do, but these things have to be chected tor 
% compatabi11ty AND put into the equivrel 
newequivs:ernn:•os.equivs 
while -agendaSis_empty(ttd) do 

nowdo:nopair 
nowdo,ttd:•agenda$pick_rest(ttd) 
I the first thing to check 1s prev1ous equ1valence. If they 
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% are already equ1va1ent, then we don't need to add more. 
% after that, we should check for compat1bi1ity. The class of the 
% labels on the optput transitions should be tht.same. We rea11y 
% only need to test one of them from each node. 
% After that, we should gather a list of the ones that should ba 
% made if these two nodes are equivalent. Th1s really must be 
% done for the whole class of them 
if noSis_node(nowdo.first) cand noSis_node(nowdo.second) th•• 

nowdol:nodename:•noSvalue_node(nowdo.first) 
nowdo2:no~ename:•noSvalue_node(nowdo.second) 
tf -ernnSequivalent(newequivs, nowdol, nowdoZ) th•• 

% now we actually have to equate them, but are they compatible? 
1f -compatible(os.nowdol,nowdoZ) 

_..---- then signal empty end 
,/'-- % we must go to the mapping and add stuff 

1 ttd:•ttd I pairs_which_must_be_same(os, newequivs(nowdol], 
newequivs(nowdoZ]) 

newequivs:•ernnSequate(newequivs, nowdol, nowdo2) 
end 

else1f noSis_node(nowdo.first) cor noSis_node(nowdo.second) 
then signal empty end 

end 
% built up newequivs, but not done yet 
J now we have to actually create th• new object to return· 
% we must extend the old maps · 
% (not because newequivs does not partition everything correctly, ft 
% does, but because we can only get the non_tr1v1a1_c1asses out, and 
% that is not everything) 
rettrans:tntano:•os.transitions 
retclos:tnsa:•os.closures 
for eclass:set[NodeName] 1n ernnSnon_trivial_classes(newequivs) do 

everclosed:bool:•fala• % did we ever hit a closure for this class? 
thistran:tano:~tanoScreate() -
thisclose:sa:•saScreate() 
for elt:nodename tn set[nodename]Selements(eclass) do 

for al:alphabet,n:no 1n tanoSentries(os.transitions[elt]) do 
thistran:•tanoSdefine_override(thistran,al,n) 
end except when undefined: end 

begin 

end 

ff everclosed then 
thisclose:•thisclose&os.closures[elt] 
elH 

end 

thisclose:•os.closures[elt] 
everclosed:•true 

end I th1s 1s so we can keep tract of if we closed ft 
except when undefined: end 

% check for the closure restriction one last tf .. 
tf everclosed cand -tanoSdomain_is_in(thistran,thisclose) 

then st9nal empty end % not an error 1f never c1osed 
for elt:nodename tn set[nodename]Seletnents(eclass) do 

rettrans:•tntano$define_overr1de(rattrans,elt,thistran) 
tf everclosed then 

retclos:•tnsaSdefina_ovarride(retclos,elt,thisclose) 
end % don't define unJess we actuaJly closed it 

end 
end 

return(repS{equivs:newequivs, 
closures:retclos, 
transitions:rettrans}) 

end equate 

% internal routine decides if two nodes are compatfbJe. 
% does check the closure condition 
X we have to do is 1ook at a rep from the doma1n of the transitions to 
I see if they are the same class. If there is none, then its ok on this. 
X we also have to check the clsoure condition 
X check that both of these are true: 

(p 1. 

Page z 



ps:<kuszmau1.thes1s.va1c1u>sota.c1u.6Z ZB April 1984 12:36:01 

I os.closures[nl] is undefined or contains domain(os.trans1tions[n2]) 
% os.c1usures[n2] is undefined or contains domain(os.transitinosfnl)) 
% if they are both defined then this is equivalent to test1no 
% if the intersection of the closure conditions contains the unfon 
% of the domains (This is equivalent because we already knew 
I that the closures contained the domain of their own functions 
compat;b1e • proc(os:rep. n1,n2:nodename) returns(bool) 

tl: tano: •o.s. trans iUons(nl] 
except when undefined: tl:•tanoScreate() en

t2:tano:•os. transitions(n2] 
except when undefined: t2:•tanoScreate() end 

if tano$pick_from_domain(tl).class -• 
tanoSpick_from_domain(tZ).class 
the~~eturn(false) end 
•xcept when none: end I ok so far 

begin 
cl:sa:•os.closures(nl] 
if -tanoSdomain_is_in(t2,cl) then return (false) tnd 
end except when undefined: 

tnd I 1t is ok if os.cJosuresfnJJ ts undefined 
begin 

c2:sa:•os.closures[n2] 
1f -tanoSdoma;n_is_in(t1,c2) then return(f1l11) tad 
end except when undefined: end I it is ot 

return(true) 
end compatible 

% internal routine which returns a set of pairs that must be the same 
% if the elements of sJ and s2 are to be the same under a mod1f1td OS. 
% the reason we don't accept the union of sl and s2 fs that we 
% would have to return all the pairs fn (Sl/SZ) CROSS (Sl/52), 
I which is no fun. 
I this way, we won't have to return any such pairs, which speeds things up 
% (of course, we can ff we want to, no guarantees here.) 
I the pa1rs that we return are the ones where 
pairs_which_must_be_same • proc(os:rep, sl,sZ:set[nodename]) 

returns(agenda) 
I Jet s:•sJ union sZ 
% for each element 1n 1 
I 
% for each element fn sJ 
retset:agenda:•agendaScreate() 
sn:sequence[nodename]:•set[nodename]$set2seq{s1) 

II set[nodename]Sset2seq(s2) 
for i:int in sequence[nodename]Sindexes(sn) do 

thisname:nodename:•sn[i] 
thistano: tano: •01. trans 1t ions[thisnaM] --· -·-· ··· --·-

except when undefined: thistano:•tanoScreate() ••d 
for symbo1:a1phabet in tanoSdomain_iter{thistano) do 

for j:1nt in 1ntSfrom_to(1+1,sequence[nodename]Ssize{sn)) do 
thatname:nodename:•sn[j] 
% add •hat you get 1f you fo11o• SYMBOL frOlfl thfsname and thatname 
retset: •retset+ 

end 
tnd 

end 
return(retset) 

nopairS{first:os.transitions[thisname][symbol], 
second:os.transitions[thatname][symbol]) 

except when undefined: 
end I 1f a symbol fs not thera, don't •orry 

end pairs_which_must_be_same 

% if has_subp•th exists, then we would lfke th1s to mean the same th1ng as 
r a:rep.b:nodename:•has_subpath(os,node_from,sym) 
I return(equate(a,b,node_to)) 
I but we don't use the intermediate node name 
I note that in any event, if node_from.1s_terminator then signals terminator 
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has_subpath_to • proc(os:cvt. node_from:nodename, sym:alphabet, node_to:nodename} 
returns(cvt) signals(empty,terminator) 

X 1f sym is a terminator, then node_to would have to be an acceptor. 
X which is impossible 
if sym.is_terminator then signal terminator end 

% worry about closure first 
if -saSelementof(sym,os.closures[node_from]) 

then signal empty end 
except when undefined: end X its ok 

nmap:tano:•os.transitions[node_from] 
except when undefined: nmap:•tanoS[] end 
_._,/ 

% check for the class restriction 
if tanoSpick_from_domain(nmap).class-•sym.class 

then signal empty end 
except when none: end % it is olc 

already_to:no:•os.transitions[node_from][sym] 
except 

when undefined: 

end 

% just build the new object and return it 
return(repS{equivs:os.equivs, 

closures:os.closures, 
transitions: 
tntanoSdefine_override( 

os.transitions, 
node_from, 
tanoSdefine_override( 

nmap, sym, noSmake_node(node_to)))}) 

I if it 1s an acceptor, it can't equate to node_to 
1f noSis_acceptor(already_to) then signal empty end 

nat:nodename:•noSvalue_node(already_to) 
if ernnSequivalent(os.equivs,nat,node_to) then 

rtturn(os) 
end 

X 1t is defined, and 1t meets the closure condition, but the node 
I is not equivalent. Checlcs again to see if meets the cJass property 
X ins1de equate 
rtturn(down( equate(up(os) ,nat,node_to))) rtaignal empty 
end has_subpath_to 

I has_subpath does the fo11ow1ng: 
% if os.trans1t1ons[nodeJ[symJ 1s defined, returns 01 
X otherwise, checlcs to see 1f the transitions that are already there 
X · are compatible with sym (1f not s1gna1s Bflpty) 
I then creates an anonymous node which 1s transitioned to 
% there 1f sym.1s_terminator then 
I returns the nodename that we go to on sy• 
lhas_subpath • proc(os:cvt, node:nodename, sym:11ph1bet) 
I returns(cvt,nodename) signa1s(empty) 
I has_subpath is not actually a def1ned funct1on 
I end has_subpath 

I has_path •dds path <node,sym> to the transitions 
I if -sym.is_terminator then you get •non_term1nator• s1gna11ed 
% if sym is 1ncompattb1e with the current vers1on, s1gna1s •e11pty• 
I it could either be incompatible with the closure 
I or the transftfon class 
has_path • proc (os:cvt, node:nodename, sym:alphabet) 

returns(cvt) s1gnals(empty,non_term1nator) 
I check for • terminator 
if -sym.is_terminator then signal non_terminator tnd 

(,.'I. 
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% check for the transition already existing, if it does then just 
% return os because it is guaranteed to be an accepting node, because 
% sym.is_terminator is true 
if tano$defined(os.transitions[node),sym) then return(os) end 

except when undefined: end % it is ok 

% check the closure condition 
if -sa$Element0f(sym,os.~losures[node]) then signal empty end 

except when undefined: end % it is ok 

% check the transition compatiblity 
if tano$pick_from_domain(os.transitions[node)).class-•sym.class 

then signal empty end 
except when undefined: 

when none: 
end % it is ok 

% now return the new object 
old_tano:tano:=os.transitions[node] 

except when undefined: old_tano:•tano$create() end 
new_tano:tano:•tano$define_override(old_tano,sym, 

no$make_acceptor(n11)) 
newtntano:tntano:•os.transitions 
for affected:nodename 1n set[nodename]Selements(os.equivs[node]) do 

newtntano:•tntano$define_override(newtntano,affected,new_tano} 
end 

return(rep$replace_transitions(os,newtntano)) 
end has_path 

% if os can't meet the closure condition, then signal empty 
% otherwise return os with the new closure condition 
close • proc(os:cvt, node:nodename, syms:set[alphabet]) 

returns(cvt) ~ignals(empty) 
if -tano$domain_is_in(os.transitions[node),syms) 

then signal empty end 
except when undefined: end % it is ok 

% now create the new os 
isyms:sa:•syms&os.closures[node] 

except when undefined: isyms:•syms end 
if sa$is_empty(isyms) then signal empty end 
retclosures:tnsa:•os.closures 
eclass:set[nodename]:•os.equivs[node] 

except when undefined: eclass:•set[nodename]S[node] end 
% all the equivalent nodes should have equal maps 
for ntofix:nodename in set[nodename]Selements(eclass) do 

retclosures:•tnsa$define_override(retclosures,ntofix,isyms) 
end 

return(repSreplace_closures(os,retclosures)) 
end close 

% has_c1osed_path does c1ose(has_path(os,node,sym),node,(sym}) 
has_closed_path • proc(os:abstract, node:nodename, sym:alphabet) 

returns(abstract) s1gnals(empty) 
return(close(has_path(os,node,sym), node, saS[sym])) 

resignal empty 
end has_closed_path 

% returns the map, which describes the transition function for the 
% fsa which accepts the type assignment. 
% signals ambiguous if any of the nodes named dont have some transition 
% leading away from them. Nodes can be named in closures, equivs, or 
% they could have transition functions which are undefined everywhere 
% also signals ambiguous if the closure of a node is not exactly 
% equal to the domain of the of the transition function. This 
% has two special cases: 
% 1) a node does not have a closure (nodes 
% without a closure are ambiguous) 
% 2) a node has a closure, but some element of the closure does not 
% have a transition. 
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% (we are guaranteed that the domain of the transition is in the closure) 
get_unique_type_assignment • 
proc(os:cvt) 

returns(map[noderiame,map[a1phabet,oneot[acceptor:nu11,node:nodename]])} 
signals( ambiguous} 

% check for ambiguity by finding mentioned nodes that are never used 
% several ways for it to be ambiguos: an entry could have a tano 
% with no entries, or there could be a named node somewhere wfth 
% not entry in transitions 
% or there could be a node mentioned in the closure that has no entry 
% in transitions 
% or there could be a node named in equivs with no entry in 
% transitions 
tor n~~me:nodename,ntano:tano in tntanoSentries(os.transitions) do 

rX if the named node does not have a closure then ambiguous 
myclosure:sa:•os.closures[nname] 

except when undefined: signal ambiguous end 
% if any of the symbols in the closure don't have a transition 
% then ambiguous 
tor symindom:alphabet in sa$e1ements(myclosure) do 

tanoSfetch(ntano,symindom) 
end 

except when undefined: signal ambiguous end 
% if the named node has a completely undefined transition 
% function then then ambiguous 
tanoSpick_from_domain(ntano} 

except when none: signal ambiguous 1nd 
% if any of the nodes fn range of the transition 
% dont have closures or have undefined transition 
% functions then ambiguous 
tor sym:alphabet,nrs1t:no in tanoSentries(ntano) do 

tagcase nrs1t 

end 

tag acceptor: % do nothing 
tag node(nto:nodename}: 

%% % if the node does not have a closure then it fs 
%% % ambiguous 

end 
e•d 

%% tnsaSfetch(os.closures,nto) 
%% except when undefined: signal ambiguous end 
%% note: all the nodes are checked for th1• 

% if there is no transition from nto, to another node 
X it is ambiguous 
tanoSpick_from_domain(os.transitions[nto]) 

except when undefined.none: 1ignal ambiguous end 

% ff any of the nodes mentioned 1n the equivalence cl111e1 
% dont have closures or have undefined transition• 
% then amb1gous . 
tor nt_c1asses:set[nodenameJ in ernnSnon_triv1a1_classes(os.equ1vs) do 

for mentioned:nodename in set[nodename)Se1ements(nt_classes} do 
tnsaSfetch(os.c1osures,mentioned) 

end 

except •hen undefined: signal ~biguous end 
tanoSpick_from_domain(os.transitions[mentioned]) 

except when undefined.none: signal ambiguous end 
end 

% 1f any of the nodes mentioned 1n the closure• 
% dont have closures or have undefined transftfons 
% then ambiguous 
for c_node:nodename 1n tnsaSdomain_iter(os.closures) do 

tnsa$fetch(os.c1osuras.c_node) 
except when undefined: signal ambiguous end 

tanoSpick_from_domain(os.transitions[c_node]} 
except when undefined.none: signal ambiguous end 

end 
return(os.transitions} 
end get_unique_type_assignment 
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Z eMport returns a copy of the internal representation for os 
% note that since everything is functional, this is perfectly safe 
export = proc(os:cvt) returns(rep) 

return(os) 
end export 

end sota 
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#extend 
set • cluster[t:type] is 

create. new, % these are the same 
add, % add a new element 
contains.gt, % these are the same 
elementof, % other direction for contains 
mem, % does some element of a set satisfy a predfcate 
elements,cons,pick,pick_rest,is_empty, % •fsc 
equal, I are they the same set? 
union.or. % these are the same 
intersection, and, % these are the same 
sub, % set subtraction 
set2seq 

where t has equal:proctype(t,t) returns (bool) 

rep • sequence[t] 
% create the empty set 
new• proc() returns(cvt) return(repS[]) end new 

% add an element 
add• proc(s:cvt. el:t) returns(cvt) 

if up(s)>el then return(s) else return(repSaddh(s,el)) end 
end add 

I Jow: 1nt:•1 
I high:int:•repSsfze(s) 
% while 1ow<•h1gh do 
I 1:int:•(1ow+h1gh)/2 
I if s[1]•e1 then return(s) 
I eJseff s[i]<e1 then 1ow:•i+1 
% else high:•1·1 
I end 
I end 
I return (repSsubseq(s,l,h1gh) 
I II repS[eJ] 
I II repSsubseq(s, 1ow,repSsize(s)-high)) 
I end add 

I membership operator 
gt• proc(s:cvt, el:t) returns(bool) 

for elin:t in repSelements(s) do 
if elin•el then return (true) end 
Hd 

return(falH) 
I Jow:fnt:•J 
I high:1nt:•rep$s1ze(s) 
I whfle 1ow<•h1gh do 
I i:1nt:•(1ow+h1gh)IZ 
I ff s[1J•e1 then return(true} 
I elseff s[1]<e1 then Jow:•f+J 
I else h1gh:•1-1 
I end 
I end 
I return (false) 
Hd gt 

I the other name for the membership operator 
contains• proc(s:set[t], el:t) returna(bool) 

return(s>el) 
end contains 

I the other d1rect1on for the membership operator 
elementof • proc(el:t, s:set[t]) returns(bool) 

return(s>el) 
end elementof 

I return true fff there fs an element K 1n S, such that PRED(EL,K) 
mem • proc(el:t, s:set[t], pred:proctype(t,t) returns(bool)) returns(bool) 

for knownel:t in set[t]Selements(s) do 
1f pred(el,knownel) then return(true) tnd 
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end 
return(fal11) 
end mem 

elements • 1ter(s:cvt) y1elds(t) 
for e:t 1n repSelements(s) do yield(e) end 
end elements 

cons • proc(s:sequence[t]) returns(set[t]) 
retval:set[t]:•set[t]S[] 
for e:t 1n sequence[t]Selements(s) do 

retval:•retval+e 
end 

return(retval) 
end cons 

pick • proc(s:cvt) returns(t) s1gnals(empty) 
return(s[l]) except when bounds: signal empty end 
end pick 

pick_rest • proc(s:cvt) returns(t,cvt) signals(empty) 
return(s[l],repSreml(s)) 

except when bounds: signal empty end 
end pick_rut 

is_empty • proc(s:cvt) returns(bool) 
return (repSempty(s)) 
end h_empty 

% two sets are the same if they have exactly the same elements 
equal • proc(s1,s2:cvt) returns(bool) 

1f sl•s2 then return(true) end % m1ght as well optimize 
1f repSsize(s1}-•repSsize(s2) then return(false) end 
for el:t 1n elements{up(sl)) do 

1f up(sZ)->el then return(false) end 
end 

% everything in s2 is in sl, and they are tn 1-1 correspondance, so 
return( true) 
end equal 

or • proc(sl,s2:set[t]) returns(set[t]) 
for el:t 1n elements{sl) do 

s2:•s2+e1 
end 

return{sZ) 
I size1:1nt:•repSstze(s1) 
I s1zeZ:1nt:•repSstze(s2) 
I retval:array[tJ:•array[tJSpredict(l,stzel+stzeZ) 
I tndx1:tnt:•I 
I tndx2:tnt:•1 
I while indxl<•s1zel cand 1ndx2<•size2 do 
I tr s1[indx1]•s2[1ndx2] then 
I array[t]Saddh(retva1,s1[1ndxl]) 
I indxl:•indxl+l 
I tndx2:•1ndx2+l 
I elseif s1[tndx1]<s2[indx2] then 
I erray[t]Saddh(retva1,s1[indx1]) 
I 1ndx1:•indx1+l 
I else 
I erray[t]Saddh(retve1,s2[1ndxZ]) 
I 1ndxZ:•indxZ+1 
I 
I 
x 
I 
I 
I 
I 
I 

end 
end 

I one of the tndx's 1s over 
if indxl<sizel then 

return(repSaZs(retva1)//repSsubseq(s1,1ndx1+1,stze1-1ndx1)) 
elseif indx2<sizeZ then 

return(repSaZs(retva1)//repSsubseq(s2,1ndxZ+l,s1ze2-1ndx2)) 
else return(rep$a2s(retva1)) 
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I end 
end or 

union • proc(sl,sZ:set[t]) rtturns(set[t]) return(sllsZ) end union 

and • proc(sl,sZ:set[t]) returns(set[t]) 
retset:set[t]:•set[t]S[] 
for el:t 1" e1ements(s1) do 

1f sZ>el then retset:•retset+el end 
end 

return(retset) 
% size1:int:•rep$size(s1) 
% sizeZ:int:•rep$s1ze(sZ) 
% retval:array[t]:zarray[t]$pred1ct(1,1nt$min(size1,sizeZ)) 
I indxl:int:•l 
I indxZ:int:•l 
I while indxl<•sizel cand indxZ<•sizeZ do 
I if sl[indxlJ•sZ[indxZJ then 
I array[t]$addh(retva1,sl[indx1]) 
I indxl:•indxl+l 
I indxZ:•indxZ+l 
I elseif s1[indxl]<sZ[indxZ] then indxl:•ind.xJ+J 
% else fndxZ:•indxZ+J 
I end 
I end 
I return(rep$aZs(retva1)) 
end and 

intersection•proc(sl,sZ:set[t]) returna(set[t]) rtturn(sl&s2) end intersection 

sub • proc(s1,sZ:set[t]) returna(set[t]) 
retset:set[t]:•set[t]S[] 
for el:t 1n elements(sl) do 

% 
I 
% 
I 
I 
I 
I 
I 
I 
I 
I 
I 
s 
I 
I 
I 
I 
I 
I 

1f sZ->el then retset:•retset+el end 
end 

size1:1nt:•repSsize(s1) 
sizeZ:int:•rep$size(sZ) 
retva1:array[t]:•array[t]$predict(1,1nt$m1n(s1zel,1izeZ)) 
ind.xl:int:•l 
1nd.xZ: int :•J 
while ind.xl<•sizel cand ind.xZ<•sizeZ do 

if sl[ind.xl]•sZ[indxZ] then 
1nd.x1: • 1nd.x1+1 
indxZ: • ind.xZ+J 

elseif s1[1nd.xJ]<sZ[1nd.xZJ then 
array[tJ$addh{retva1,s1[1nd.xJJ) 
1nd.x1: •1ndJCl+J 

else 1ndxZ:•1nd.xZ+J · 
end · 

end 
if ind.xl<s1zeJ then 

return(rep$a2s(retva1)//repSsubseq(sJ,1nd.xl+J,s1zeJ-1nd.xJ)) 
else return(rep$aZs(retva1)) 
end 

end sub 

set2seq • proc(s:cvt) returns(aequence[t]) 
return(•) 
end set2seq 

create • proc() returns(cvt) 
return(repSnew()) 
end create 

Hd set 
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lex tend 
equivrel • cluster[T:type] 11 

create,equate,non_trivial_classes,fetch,equivalent,cons,new,equal 
where T has equal:proctype(t,t) returns (bool) 

% this is immutable 
rep•map[T,set[T]] 
% abstraction function A(e:rep), if e[x] is defined, then x is in 
% the class with elements of e[x]. If e[x] is undefined. x is in { x } 
% by itself 

%. rep invariant R(r:rep) if r[x] is defined then /r[xJJ>J and 
% x is in r[xJ, and for all y in r[x] r[y] is defined 

% return an equivalence relation with no relations. 
% every element of T has it's own class 
create • proc() returns(cvt) 

return(repScreate()) 
end create 

% create an equivalence relation with the added relationship vali•valj 
equate • proc(er:cvt,vali,valj:T) returns(cvt) 

if set[T]$Element0f(valj,up(er)[vali]) then return(er) end 
newclass:set(T]:•set(T]$Union(up(er)(vali],up(er)[valj]) 
for affected:T tn set[T]Selements(newclass) do 

er:•repSdefine_override(er,affected,newclass) 
end 

return( er) 
end equate 

X yield all the classes which have more than one element in them 
X watch out/ Th1s does not yield all the classes because there 
% is no way to generate a complete list of T. Anything 
% not yielded 1s in its own class 
non_trivial_classes • tter(er:cvt) 1telds{set[T]) 

did:set[T]:•set(T)Screate() 
for elt:T,i:set(T] tn repSentries(er) do 

if -set[T)SElementOf(elt,did) then 
did:•did+elt 
1teld(i) 
end 

end 
end non_trivial_classes 

J returns the class that val is 1n 
fetch• proc(er:cvt, val:t) returns(set[t]) 

I 1f t is not defined, then return set[tJ$[va1J 
return(er(val]) except wben undefined: return(set[t]S[val]) end 
end fetch 

J 1f va11 1s 1n er[va1j] then return true, else false 
equivalent • proc(er:equivrel[T], vali,valj:t) returns(bool) 

return(set(T]$element0f(va11,er[valj])) 
end equivalent 

new • proc() returns(equivrel(T]) return(create()) end new 

cons • proc(ss:sequence[set(T]]) returns(cvt) stgnals(not._well_defined) 
ret:rep:•repScreate() 
for cl:set(T] tn sequence(set[T]]Selements(ss) do 

tor el:T 1n set[T]Selements{cl) do 
ret:•repSdefine(ret,el,cl) 

except wben already_defined: stgnal not_well_defined end 
end 

end 
return(ret) 
end cons 

I this depends on the fact that there are no s1ngletons/ 
equal • proc(a,b:cvt) returns(bool) 
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return(a=b) 
end equal 

end equivrel 

77 
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map • cluster[domain,range:type) 11 
create.fetch, 
define,define_override,cons,new, 
defined, 
pick_from_domain,domain_is_in,domain_iter,entries, 
equal 

where domain has equal:proctype(domain,domain) returns(bool). 
range has equal:proct1pe(range,range) returns(bool) 

rep • oneof[empty:null, 
onedefined:entry) 

entry • struct[d:domain, 
r:range, 
rest:map[domain, range)) 

% returns a function which is undefined everywhere 
create • proc() returns(cvt) 

return(repSmake_empty(ntl)) 
end create 

% if fun(x) is defined, then fun(x) is returned, else signals undefined 
fetch • proc(fun:map[domain,range), x:domain) returns(range) 

11gna11(undefined) 
for d:domain,r:range in entries(fun) do 

11 d•x then return(r) end 
end 

signal undefined 
end fetch 

% if fun(x) is defined, then returns true, else false 
defined • proc(fun:map[domain,range), x:domain} returns(bool) 

fetch(fun,x} except when undefined: return(false) end 
return(true) 
end defined 

% if fun(x) is defined to be different from f_f~. 
% then signals already_defined 
I otherwise, returns a function which ts the same as fun, except that 
I it 1s defined to be f_of_x at x. 
define • proc(fun:map[domain,range], x:domain, f_of_x:range) 

returns(cvt} signals(already_defined) 
11 fun[x]•f_of_x then return(down(fun)) 

else signal already_defined end 
except when undefined: 

return(repSmake_onedefined( 
entry${d:x,r:f_of_x,rest:fun})) 

end 
end define 

I an internal routine whfch signals SAME 1f fun(x)•f_of_x 
I if fun(x) fs undefined signals undefined 
I and otherwise returns a function wh1ch is the same as fun, except that 
I fun[x]•f _of_x 
do_define_override • proc(fun:cvt, x:domain, f_of_x:range) 

returns(cvt) 11gna11(same,undefined) 
tagcase fun 

tag empty: signal undefined 
tag onedefined(e:entry): 

end 

1f e.d•x then 
1f e.r•f_of_x then signal same 

else return(rep$make_onedefined( 
entry$replace_r(e,f_of_x))) 

end 
else return(repSmake_onedefined( 

entry$rep1ace_rest(e,do_define_override( 
e.rest,x,f_of_x)))) 

resignal same.undefined 
end 

tnd do_define_overridt 
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% returns fun, except that it is defined to be f_of_x at x 
% this overrides any o1d defns that fun had 
def1ne_override • proc(fun:map[domain,range], x:domain, f_of_x:range) 

returns(map[domain,range]) 
% we must get rid of the previous definit1on, so we can't do 1t 
% smoothly by just consing a new thing onto the head 
return(do_define_override(fun,x,f_of_x)) 

except when same: return(fun) 
when undefined: 

end 

return(up(rep$make_onedef1ned( 
entryS{d:x,r:f_of_x,rest:fun}))) 

end define_override 

new • proc() returns(map[domain,range)) return(create()) end new 

cons • proc(ents:sequence[struct[d:domain,r:range]]) 
returns(map[domain,range]) 
signals(not_well_defined) 

en•struct[d:domain,r:range] 
ret:map(domain,range]:•map(domain,range]Screate() 
for e:en in sequence[en]Selements(ents) do 

ret:•define(ret,e.d,e.r) 
except when already_defined:.signal not_well_def1ned end 

end 
return(ret) 
end cons 

% if fun is undefined forall values then s1gnals (none), 
% else returns a value for which fun is defined 
pick_from_domain • proc(fun:cvt) returns(domain) s1gnals(none) 

tagcase fun · 
tag empty: signal none 
tag onedefined(e:entry): return(e.d) 
end 

end pick_from_domain 

% 1f domain(fun) is in superdomain returns true, else false 
domain_is_in • proc(fun:map(domain,range], suptrdomain:set[domain]) 

returns(bool) 
for d:domain 1n domain_iter(fun) do 

1f -set[domain]SElementOf(d,superdomain) then return(falae) e1d 
end 

return(true) 
end doma1n_is_in 

% yields all the values fn domain(fun) -····-·-
domain_iter • 1ter(fun:map(domain,range]) J1elda(doma1n) 

for d:domain,r:range in entries(fun) do 
J1eld(d) 
end 

end domain_iter 

% yields the pairs (d,r) where r•fun[dJ, and d is in the doma1n(fun) 
entries • 1ter(fun:cvt) Jields{domain,range) 

while (true) do 
t.agcaae fun 

end 

t.ag empt1: return 
tag onedefined(e:entry): J1e1d(e.d,e.r) fun:•down(e.rest) 
end 

end entries 

equal • proc(f1,f2:map[domain,range]) returna(bool) 
d:domain r:range 
begin 

for d,r 1n entries(f1) do 
1f f2[d)-•r then return(false) end 
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end 
for d,r 1n entries(f2) do 

end 

1f f1[d]-=r then return(false) end 
end 

except when undefined: return(false) end 
return(true) 
end equal 

end map 

Page 3 



.~. 

. ...--. .. 

ps:<tuszmau1.t~es1s.va1c1u>sotatest.c1u.55 28 April 1984 JZ:48:57 

#extend 
alphabet•struct[class:str1ng, 

is_terminator:bool, 
name:strtng] 

nodename•1nt % we w1ll use negatives 1f we need dummy's 
classname•strfog 
vimsota•sota[alphabet,nodename,classname] 
tmap•map[alphabet,oneof[acceptor:null,node:nodename]] 
vimsotarep•struct[equivs:ernn, closures:tnsa, transitions:tritano] 
ernn•equivrel[nodename] 
snn•set[nodename] 
tnsa • map[nodename,sa] 
sa•set[alphabet] 
tntano•map[nodename,tano] 
tn_ent•struct[d:nodename,r:tano] 
ta_ent•struct[d:alphabet,r:no] 
ts_ent .. struct[d:nodename,r:sa] 
tano•map[alphabet,no] 
no•oneof[acceptor:null, node:nodenama] 

% th1s routine does some testing on the sota 
sotatest • proc() 

vsr•vimsotarep 
putl•streamSputl 
po:stream:•streamSprimary_output() 
I first test, do a create, and get the rep which should be totally empty 
s_create:vimsota:•vimsotaScreate() 
sexpect("s_create",s_create, 

vsrS{equivs:ernnS[], closures:tnsaS[], trans1t1ons:tntano$[]}, 
trut) 

% now we have really tested the create out. That really only 
% g1ves us a little confidence in the lower 1eve1 objects, 
% since create is so simple. 
noa:no:•no$make_acceptor(nt1) 
nol:no:•noSmake_node{l) no2:no:•no$make_node(2) no3:no:•noSmake_noda{3) 
no4:no:•noSmake_node(4) no5:no:•noSmake_node(5) no6:no:•no$make_node(D} 
a_int:alphabet:•alphabetS{class:"INT", is_terminator:TRU£, nama:"INT"} 
a_string:alphabet:• 

alphabetS{class:"STRING", 1s_tarminator:TRU£, nama:"STRING"} 
a_real:alphabet:•alphabetS{class:"REAL", 1s_tarminator:TRUE, nama:"REAL"} 
a_array:alphabet:• 

alphabetS{class:"ARRAY", is_terminator:FALSE, nama:"ARRAY"} 
a_geta:alphabat:• 

alphabetS{class:"STRUCT", is_tarminator:FALSE, name:"GET....A"} 
a_getb:alphabat:• 

alphabatS{class:"STRUCT", is_tarminator:FALSE, nllllMt:"GET-8"} 
a_gatc:alphabat:• 

alphabetS{class:"STRUCT". is_tarminator:FALSE, n1111e:"GET_C"} 

I Jets try equating two nodes. We should then get an amb1guous error 
% if we try to get the typemap 
s_1a2:vimsota:•vimsotaSequate(s_creatt,1,2} 
sexpact("s_1a2",s_1a2, 

· vsrS{equivs:ernnS[snn$[1,2]], 
closuras:tnsaS[J, transitions:tntanoS[]}, 

fallt) 
I the transittons and closures should be completely undeffned 
J the equ1vc1ass should have exactly {1,Z} 1n 1t 

J try sOllleth1ng really fancy: 
S a real problem: Nl is an array of nZ 
J NZ 1s an 1nt 
I does ft wort? 
I 
I 
I 
I 
J 

Nl • ARRAY[NZJ 
NZ • ARRAY[N1] 

does 1t wort? 

ii 
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I Nl • INT 
I N2 • ARRAY 
I does it not work1 
I 
I NJ • ARRAY[NZJ 
I N3 • ARRAY[N4J 
I Nl • N3 
I doe.s it work? 
I 
I Nl • ARRAY[N2J 
I N3 • ARRAY[N4J 
I N2 • INT 
I N4 • STRING 
I Nl • N3 
I does 1t not work 
I 
I Nl • CLOSED_STRUCT[A:N2,B:N3J 
I NZ • INT 
I N3 • STRING 
I Nl • OPEN_STRUCT[A:N4] 
I does 1t work 
I 
I Nl • CLOSED_STRUCT[A:N2,8:N3J 
I NZ • INT 
I NJ • STRING 
I Nl • OPEN_STRUCT[C:N3] 
I does 1t not work 
I 
I Nl • CLOSED_STRUCT[A:nZ,B:N3J 
I NZ • INT 
I N4 • CLOSED_STRUCT[A:n5:b:n6] 
I n6 • STRING 
I Nl • N4 
I does 1t work 
I 
I that pretty well tests the closure with equates 
I now for some recurs1on 
I Nl • ARRAY[Nl] 
I deos 1t work1 
I 
I Nl • ARRAY[NZ] 
I NZ • ARRAY[Nl] 
I does 1t work1 
I 
I Nl • CLOSED_STRUCT[a:NZ, b:N3] 
I N2 • CLOSED_STRUCT[a:NZ, b:N4] 
I N4 • Nl 
I does 1 t wortt _ --· 
I 
I Nl • CLOSED_STRUCT[a:NZ, b:N3] 
I NZ • CLOSED_STRUCT[a:N1, c:N3] 
I does 1t work1 
I 
I NJ • CLOSED_STRUCT[A:N2, B:N3] 
I NZ • N1 
I N3 • NZ 
I NJ • CLOSED_STRUCT[A:NZ, C:N3] 
I does 1t not work1 
I 
I test the terminators to see 1f 1t won't allow has_path to be a non-terminator 
I Nl • ARRAY[NZJ 
I does 1t not work (amb1gu1ty) 

I the comments are repeated: 

I try something really fancy: 
I a real problem: Nl 1s an array of nZ 
I NZ 1s an 1nt 
I does 1t work? 
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x 
ev:vsr:•vsrS{equivs:ernnS[], 

closures:tnsaS[ts_entS{d:l,r:saS[a_array)}, 
ts_entS{d:Z,r:saS[a_int]}], 

transitions:tntanoS[ 
tn_entS{d:l,r:tanoS[ta_entS{d:a_array,r:noZ}]}, 
tn_ent${d:Z,r:tano$[ta_ent${d:a_int,r:noa}]}]} 

sexpect("N2•INT,Nl•ARRAV(N2)", 
vimsotaShas_subpath_to( 

vimsota$close(vimsota$has_closed_path(s_create,2,a_int), 
l,saS[a_array]), 

1. a_array, Z), 
ev, true) 

sexpect("Nl•ARRAY(N2],N2•INT", 
vimsota$has_closed_path( 

vimsotaSclose(vimsotaShas_subpath_to(s_create,1,a_array,2), 
1, saS[a_array]), 

2,a_int), 
ev,true) 

X Nl • ARRAY[N2J 
X N2 • ARRAY[NlJ 
% does it work? 
sexpect("Nl•ARRAY(N2],N2•ARRAY[N1]", 

vimsotaSclose( 
vimsotaShas_subpath_to 

( vimsotaScl ose( 
vimsotaShas_subpath_to(s_create,1,a_array,2), 
1,saS[a_array)), 

2,a_array,1), 
z.sa$[a_array]), 

vsrS{equivs:ernnS[], 
closures:tnsaS[ts_entS{d:l,r:saS[a_array]}. 

ts_entS{d:2,r:saS[a_array]}], 

true) 

X NJ • INT 

transitions: 
tntanoS[tn_ent${d:1,r:tanoS[ta_ent${d:a_array,r:no2}]}. 

tn_entS{d:Z,r:tanoS[ta_ent${d:a_array,r:no1})})}, 

X N2 • ARRAY[NlJ 
X does tt work? 
sexpect("Nl•INT,NZ•ARRAY[Nl]", 

vimsotaSclose(vimsotaShas~subpath_to( 
vimsota$has_c1osed_path(s_create,1,a_1nt), 
2,a_array,1), 

z, saS[a_array]), 
vsr${equ1vs:ernn$[], 

true) 

c1osures:tnsaS[ts_ent${d:1,r:sa$[a_int]}, 
ts_entS{d:Z,r:saS[a_array]}], 

transitions: 
tntanoS[tn_ent${d:1,r:tano$[ta_ent${d:a_int,r:noa}]}, 

tn_entS{d:Z,r:tanoS[ta_entS{d:a_array,r:nol}]}]}, 

X same thing without the closure on the 1nt 
sexpect("Nl•NC_INT,NZ•ARRAY[N1]", 

vimsota$c1ose(vimsota$has_subpath_to( 
vimsota$has_path(s_create,1,a_1nt), 
2,a_array,1), 

2,saS[a_array]), 
vsrS{equivs:ernnS[], 

c1osures:tnsaS(ts_ent${d:Z,r:sa$[a_array]}], 
trans it ions: 
tnt~noS[tn_entS{d:l,r:tanoS[ta_entS{d:a_int,r:noa}]}, 

tn_entS{d:Z,r:tanoS[ta_entS{d:a_array,r:nol}J}]}, 
false) 

I same thing, without the closure on the array 
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sexpect("Nl•INT,N2•NC_ARRAY[N1)", 
vimsota$has_subpath_to( 

vimsota$has_closed_path(s_create,l,a_int), 
2,a_array,1), 

vsr${equivs:ernn$[J, 
closures:tnsa$[ts_ent${d:1,r:sa$[a_intJ)J, 
transit ions: 
tntano$[tn_ent${d:l,r:tanoS[ta_ent${d:a_int,r:noa)]), 

tn_ent${d:2,r:tano$[ta_entS{d:a_array,r:nol)])J}, 
falH} 

% NJ • ARRAY[NZ] 
% N3 • ARRAY[N4] 
% NJ • N3 
% NZ • INT 
% should work when all closed 
tmpl:vimsota:• vimsotaSclose( 

vimsotaSclose( 
vimsotaShas_subpath_to( 

vimsotaShas_subpath_to(s_create,l,a_array,2), 
3,a_array,4), 

3, sa$[ a_array)), 
1,saS[a_array]) 

tmpl:• vimsota$has_closed_path(vimsota$equate(tmpl, 1,3), 
2,a_int)" 

sexpect("Nl•A[N2),N3•A[N4],N1•N3,N2•INT", 
tmpl, 
vsr${equivs:ernn$[snn$[1,3),snn$[2,4J), 

true) 

closures:tnsaS[ts_entS{d:1,r:sa$[a_array]}, 
ts_ent${d:2,r:sa$[a_1nt]}, 
ts_entS{d:3,r:saS[a_array]}, 
ts_entS{d:4,r:sa$[a_1ntJ)J, 

transitions: 
tntano$[tn_antS{d:l,r:tano$[ta_ent${d:a_array,r:no2}J}, 

tn_ent${d:2,r:tano$[ta_ent${d:a_int,r:noa}J}, 
tn_entS{d:3,r:tanoS[ta_ent${d:a_array,r:no4)]}, 
tn_entS{d:4,r:tanoS[ta_ent${d:a_int,r:noa}]})}, 

X NJ • ARRAY[NZ] 
% N3 • ARRAY[N4J 
I NZ • INT 
I N4 • STRING 
I NJ • N3 
I can't bu11d 1t, don't even bother w1th the closures 
tmp:vimsota:• 

v1msota$has_path(vimsota$has_path( 
vimsotaShas_subpath_to( 

vimsotaShas_subpath_to(s_create,1,a_array,2), 
3,a_array,4), 

2,a_int), 
4,a_string) 

% should work up to here 
begfn 

vimsotaSequate(tmp,1,3) 
streamSputl(streamSprimary_output(),"Can build exA, wrong•) 
signal failure("Can build exA, wrong") 
end 

except when empty: 
streamSputl(streamSprimary_output(),"Can't build exA, ok•) 

end 

I NJ • CLOSED_STRUCT[A:NZ,B:N3J 
I NZ • INT 
% N3 • STRING 
I NJ • OPEN_STRUCT[A:N4J 
I should work 
tmp:•vimsotaShas_subpath_to( 
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vimsotaShas_subpath_to( 
vimsotaSclose(s_create,1,saS[a_geta,a_getb]), 
1. a_geta. z), 

1,a_getb,3) 
tmp:•vimsotaShas_closed_path(tmp,2,a_int) 
tmp:•vimsotaShas_closed_path(tmp,3,a_string) 
tmp:•vimsota$has_subpath_to(tmp,1,a_geta,4) 
sexpect("Nl•CS.[A:N2,B:N3].N2•INT,N3+S,Nl•O[a:n4]",t11p, 

J 

vsr${equivs:ernnS[snn$[2,4]], 

true) 

closures:tnsaS[ts_entS{d:l,r:saS[a_geta,a_getb]}, 
ts_entS{d:Z,r:saS[a_int]}, 
ts_ent${d:3,r:saS[a_string)}, 
ts_entS{d:4,r:sa$[a_int])], 

transitions: 
tntanoS[tn_entS{d:1,r:tanoS[ta_entS{d:a_geta,r:no2}, 

ta_ent${d:a_getb,r:no3}]}, 
tn_entS{d: 2, r: tanoS[ta_entS{d: a_ int, r: noa}]}, 
tn_ent${d:3,r:tanoS[ta_ent${d:a_string,r:noa}]), 
tn_ent${d:4,r:tano$[ta_ent${d:a_int,r:noa}]}]), 

J Nl • CLOSED_STRUCT[A:NZ,B:N3] 
J Nl • OPEN_STRUCT[C:N3] 
% does it not work because of closure violation 
tmp:•vimsotaSclose(vimsotaShas_subpath_to( 

vimsotaShas_subpath_to(s_create,1,a_geta,2), 
1,a_getb,3), 

1,saS[a_geta,a_getb]) 
begtn 

vimsotaShas_subpath_to(tmp,1,a_getc,3) 
stgnal failure("Could build s_cab_pc, wrong") 
Hd 

except when empty: stream$putl(stream$primary_output(), 
"Couldnt buld s_cab_pc, ok") end 

J Nl • OPEN_STRUCT[A:n2,B:N3J 
J NZ • INT 
J N4 • OPEN_STRUCT[A:n5:b:nBJ 
J n6 • STRING 
J NJ • N4 
J does it not wort 
tmp:•vimsotaShas_subpath_to(vimsotaShas_subpath_to(s_create,1,a_geta,2), 

1,a_getb,3} 
tmp:•vimsotaShas_closed_path(tmp,2,a_int) 
tmp:•vimsotaShas_1ubpath_to(vimsotaShas_subpath_to(t11p,1,a_geta,5), 

1,a_getb,6) 
tmp:•vimsotaShas_closed_path(vimsotaSequate(tmp,1,4),6,a_string) 
_14_trans:tano:•tanoS[ta_entS{d:a_geta,r:no2), 

ta_ent${d:a_getb,r:no3}] 
_25_trans:tano:•tano$[ta_entS{d:a_int,r:noa}] 
_36_trans:tano:•tanoS[ta_entS{d:1_string,r:no1)] 
mytrans:tntano:• tntanoS[tn_entS{d:l, r:_14_trans), 

tn_entS{d:4, r:_14_trans}, 
tn_entS{d:Z, r:_25_trans}, 
tn_ent${d:6, r:_25_trans), 
tn_ent${d:3, r:_36_tr1n1}, 
tn_ent${d:6, r:_36_trans}] 

sexpect("Two-defined struct unclosed",tmp, 
vsrS{equivs:ernnS[snnS[2,5],snnS[3,6],snn$[1,4]], 

closures:tnsaS[ts_ent${d:2,r:sa$[a_int]}, 
ts_ent${d:5,r:sa$[a_int]}, 
ts_entS{d:3,r:saS[a_string]), 
ts_ent${d:6,r:saS[a_string])], 

transitions:mytrans), 
false) 
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sexpect("Two-defined struct closed", 
vimsotaSclose(tmp,1,saS[a_geta,a_getb]), 
vsr${equivs:ernn$[snn$[Z,5],snn$[3,6],snn$[1,4)), 

closures:tnsaS[ts_ent${d:2,r:saS[a_int]}, 
ts_entS{d:5,r:saS[a_int]}, 
ts_entS{d:3,r:saS[a_string)}, 
ts_ent${d:6,r:saS[a_string]}. 
ts_entS{d:1,r:saS[a_geta.a_getb]}. 
ts_ent${d:4,r:sa$[a_geta,a_getb)}]. 

transitions:mytrans}, 
true) 

I that pretty weJJ tests the closure with equates 
I now for some recursion 
I Nl • ARRAY[Nl] 
I does it work? 
sexpect("Nl•A[Nl)", 

vimsotaSclose(vimsotaShas_subpath_to(s_create,1,a_array,l), 
l,saS[a_array)), 

vsrS{equivs:ernnS[], 
closures:tnsaS[ts_entS{d:l,r:saS[a_array)}]. 
transitions: · 
tntanoS[tn_entS{d:l, r:tanoS[ta_entS{d:a_array,r:nol})}]}. 

true) 

I Nl • ARRAY[NZJ 
I N2 • ARRAY[Nl] 
sexpect("N1•A[N2) NZ•A[Nl]", 

vimsotaShas_subpath_to( 
vimsota$has_subpath_to( 

vimsotaSclose( 
v1msota$close(s_create,Z,sa$[a_array)), 
l,saS[a_array)), 

1,a_array,2), 2,a_array,1), 
vsr${equivs:ernn$[], 

c1osures:tnsa$[ts_ent${d:1,r:sa$[a_array]}. 
ts_ent${d:2,r:saS[a_array]}]. 

trans it ions: 

true) 

tntanoS[tn_entS{d:l, r:tanoS[ta_ent${d:a_array,r:no2}]}, 
tn_ent${d:2, r:tanoS[ta_entS{d:a_array,r:nol}]}]}. 

I Nl • c1osed_STRUCT[a:NZ, b:N3] 
I NZ • open_STRUCT[a:NZ, b:N4] 

·. 
I N4 • 12 
I NZ • 113 
I N3 • 114 
I everything should come out to be th• •••• th1nt 
tmp: •v imsota$c1 ose( vimsotaShas_subpath_to(. 

vimsotaShas_subpath_to(s_create,1,a_geta,2), 
1, a_getb. 3). 

1,saS[a_geta,a_getb]) 
tmp:•vimsotaShas_subpath_to(vimsotaShas_subpath_to(tmp,2,a_geta,2), 

2,a_getb,4) 
tmp:•vimsota$equate(vimsota$equate(vimsota$equate(tmp,1,4),2,3),3,4) 
_trans:tano:•tanoS[ta_entS{d:a_geta,r:nol}, 

ta_ent${d:a_getb,r:no2}] 
_close:sa:•sa$[a_geta,a_getb] 
sexpect("Ex C",tmp, 

vsrS{equivs:ernnS[snnS[l,2,3,4]], 
closures:tnsaS[ts_entS{d:1,r:_close}, 

ts_entS{d:2,r:_close}, 
ts_ent${d:3,r:_close}, 
ts_entS{d:4,r:_c1ose}], 

true) 

trans1tions:tntano$[tn_ent${d:1,r:_trans}, 
tn_ent${d:2,r:_trans}, 
tn_entS{d:3,r:_trans}, 
tn_ent${d:4,r:_trans}]}. 
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% Nl • CLOSED_STRUCT[a:NZ, b:N3J 
% NZ • CLOSED_STRUCT[a:N1, c:N3J 
% NJ • INT 
% does it work? 
tmp:•vimsota$has_c1osed_path(s_create,3,a_int) 
tmp:•vimsota$close(vimsota$has_subpath_to( 

vimsotaShas_subpa.th_.to( tmp .1, a_geta, 2), 
1,a_getb,3), 

1,saS[a_geta,a_getb)) 
tmp:•vimsota$close(vimsota$has_subpath_to( 

vimsotaShas_subpath_to(tmp,Z,a_geta,1), 
2,a_getc,3), 

2,sa$[a_geta,a_getc]) 
sexpect( 

"Ex D",tmp, 
vsr${equivs:ernn$[], 

closures:tnsa$[ts_ent${d:l,r:sa$[a_geta,a_getb)}, 
ts_entS{d:2,r:sa$[a_geta,a_getc]}, 
ts_entS{d:3,r:saS[a_int]}), 

transitions:tntano$[ 
tn_entS{d:1,r:tano$[ta_ent${d:a_geta,r:no2}, 

ta_entS{d:a_getb,r:no3}]}, 
tn_entS{d: 2, r :·tanoS[ta_ent${d: a_geta,r: nol}, 

ta_ent${d:a_gatc,r:no3}]}, 
tn_entS{d:3,r:tano$[ta_entS{d:a_int,r:noa}]}]}, 

true) 

sexpect("C1osure, but not all there", 
vimsotaSclose(vimsota$has_subpath_to( 

· vimsota$has_c1osed_path(s_craate,2,a_1nt), 
1,a_geta,2), 

1,saS[a_geta,a_getb]), 
vsrS{equivs:ernnS[], 

closures:tnsaS[ts_entS{d:l,r:saS[a_geta,a_getb]}, 
ts_ent${d:2,r:saS[a_int]}], 

trans it ions: 
tntano$[tn_ent${d:1,r:tano$[ta_ent${d:a_geta,r:no2}]}, 

tn_entS{d:Z,r:tanoS[ta_entS{d:a_int,r:noa}]}]}, 
falH) 

% check for class error 
tmp:•vimsotaShas_subpath_to(s_create,1,a_geta,2) 
begin 

tmp·: •vimsotaShas_subpath_to(tmp, 1,a_array, 2) 
a1gne1 fai1ure{"class error 1 not caught") 
end except when empty: streamSputl{streamSprimary_output(), 

"class error 1 caught ok"} 
end 

tmp:•v1msota$has_path(s_create,t,a_1nt) 
begin 

tmp:•vimsotaShas_path(tmp,1,a_string) 
signal failure("class error 2 not caught") 
end except when empty: stream$putl(stream$primary_output(), 

"class error 2 caught ok"} 
end 

% check for path w1th non-term1nator error 
begin . 

tmp:•vimsota$has_path(s_create,1,a_array) 
signal failure("has_path with non terminator not caught") 
end except when non_terminator: 

stream$put1(streamSprimary_output(), 
"has_path with non terminator caught ok") 

end 

'i7 
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% check for subpath_to with terminator error 
begin 

tmp:•vimsotaShas_subpath_to(s_create,1,a_int,2) 
signal failure("has_subpath_to with terminator not caught•) 
end except when terminator: 

stream$putl(stream$primary_output(), 
"has_subpath_to with terminator caught ot•) 

end sotatest 

% if the rep of the mysota 1s not equal to expected_rep then pr1nts an 
% error, other w1se prints "ok" . 
sexpect•proc(name:string, mysota:vimsota, expected_rep:vimsotarep,guta:bool) 

own po:stream:•streamSprimary_output() 
died:bool:•false 
exp:vimsotarep:•vimsotaSexport(mysota) 
streamSputs(po,name) 
if exp.equivs•expected_rep.equivs then 

streamSputs(po," equivs ok,") 
else 

end 

stream$puts(po," equivs broken,") 
died:•trua 

if exp.c1osures•expected_rep.c1osures then 
streamSputs(po," closures ok,") 
else 

end 

streamSputs(po," closures broken,") 
died:•true 

% havt to do th• mapping test badly, sigh, th1s is because 
% i am really modeling (nodename,alphabet)->nodename, but 
% ended up using nodename->(nodename->alphabet) 
trandied:bool:•false 
begin 

for tn:nodename, ta:tano in tntano$entries(exp.trans1ttons) do 
for ts:alphabet, tno:no in tanoSentries(ta) do 

etn:no:•expected_rep.transitions[tn][ts] 

end 

tagcase tno 
tag acceptor: tf etn-•tno then extt bad..111ap end 
tag node(num:tnt): 

end 
and 

if -set[1nt]$Element0f(no$value_node(etn). 
exp.equ1vs[nu11]) 

then exit bad.J11ap and 

for tn:nodename, ta:tano tn tntano$entries(expected_rep.trans1ttons) do 
for ts:alphabet, tno:no in tanoSentries(ta) do 

etn:no:•exp.transitions[tn][ts] 

and 
end 

tagcase tno 
tag acceptor: 1f etn-•tno then exit bad...map and 
tag node(num:tnt): 

and 
end 

if -set[int]SElementOf(noSvalue_node(etn). 
expected_rep.equivs[num]) 

then exit bad...map end 

except when undefined,bad.J11ap,wrong_type: trandied:•true died:•true tnd 

tf trandied then streamSputs(po," transitions broken,") 
else streamSputs(po," transitions ok,") and 

begin 
vimsotaSget_unique_type_assignment(mysota) 
if guta then streamSputl(po," guta defined ok") 

elH 
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end 
end 

stream$putl(po," expected guta ambiguity, it wasn't") 
died:=trua 

except when ambiguous: 

end 

if guta then 
stream$putl(po," but expect guta defined, it wasn't") 
died:=trua 
else 

stream$putl(po," guta ambiguous ok") 
end 

if died then signal failure{"died---") end 
end sexpect 
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