
MIT/LCS/TR-317

AN ABSTRACT ARCHITECTURE

FOR PARALLEL GRAPH REDUCTION

Kenneth R. Traub

This blank page was inserted to presenie pagination.

AN ABSTRACT ARCHITECTURE

FOR PARALLEL GRAPH REDUCTION

by

Kenneth R. Traub

C Kenneth R. Traub 1984

The author hereby grants to Ml.T. permission to reproduce and to distribute copies of this docu
ment in whole or in part.

2

AN ABSTRACT ARCHITECTURE

FOR PARALLEL GRAPH REDUcnON

by

Kenneth R. Traub

ABSTRACT

An implementation technique for functional languages that ha received recent attention i1 1rap1'

red11Cti011, which off en opportunity for the exploitation of parallelism by multiple proccaon.

While several proposals for parallel graph reduction machinca have been made, cliff ering terminol-

ogy and approaches make thcac proposals difftcult to compare. Thia paper prcacnt1 a systematic

approach to the study of parallel graph reduction machines, and propoaca an abstract architecture

for such a machine that ii independent of the base languqe and communication network chosen

for an actual implementation. The abstract architecture, in addition to 1ervin1 u a foundation for

the design of real machines, lends quite a bit of insight into the caacncc of parallel araph rcduc-

tion.

Keywords: Abstract Machines, Applicative Languages, Computer Architecture, Multiple Pro
ccuor Architectures, Parallel Prcx:eaain1, Reduction.

3

ACKNOWLEDGEMENTS

It ii quite possible that this tbcail would never have e:l:iated were it not for the late nipts

Tim Cbamben and I spent tryina to complete the combinator reduction program for 6.847. 10

thank you. Tim, for helping me to undentand reduction in the Int place. The greatest thanks, of

coune, arc owed my thcail advisor, ProfCllOI' Arvind, who wu a constant aourcc of encourage-

ment, and whoec guidance improved the quality of tbil work immcuurably. And finally. a hearty

thank you to Richard Soley, who provided timely inaipt into the intricacies of the Lisp Machine,

and to Profcsson Donald Troxel and Steve Ward, who unknowinalY 1upplied large amounts of

computer facilities and rcaourcca.

Thia document wu originally aubmitted to the Department of Electrical Engineering and Com
puter Science at Ml.T. on May 11, 1984 ia partial fulftJlmcat of die requirements for the Degree of
Bachelor of Science in Electrical Enaiaecriaa and c.o.putcr Scicacc. TbClia lldviaor: Arvind,
AllOciatc Prof CllOI' of Electrical Engiaeerina and Computer Sci1mace.

------------ ----

1. llltrodaclloa

u

An implementation technique for functional languaaes daat bu received recent attention ii

reduction. In reduction machines, the program ii represented u a directed graph of operaton and

data, and ii executed by the repeated application of identities, or udllCtion rllk•, that simplify por

tiom of the graph until the original graph ii transformed into the ftnal result. Reduction machines

can be divided into two broad categories: •tri111 redllCtion machines, in which there ii no sharin& of

subgraphs, and ''°"" red11Ctio11 machines, in which there may be. The subgraph lharin& in the

latter can confer self-optimization properties upon its programs; the G-machine3 and the SKIM

machine1 arc uniproccuor machines that attempt to exploit this property.

Both graph reduction and string reduction approaches offer opportunities for parallel evalua

tion since several portions of the program graph may be reduced simultaneously. Mago5 bu

dcacribcd a parallel strin& reduction machine; ltcllcr et. al.', Darlin&ton and
0

Rccvc2, and Sleep and

Burton', have each made proposals for parallel graph reduction machines. The proposed graph

reduction machines use different reduction languages, different communication networks, and clif

f erent mechanisms for coordinating parallel execution, matiq it diflcult to compare the

machines to determine what aapcctl represent ncccuary f catlll'CI of all graph reduction machines

and what upcctl arc f eaturea of the individual machines.

1.2. ParaUel Graph Redactln Maclalaa • A S,.aematlc Appr09Cll

Figure 1 depicts the hierarchy of issues relating to the design of a parallel graph reduction

machine. At the innermost level ii the reduction bue lanpage itself; that ii, the set of rules for

transforming a graph into a printable answer, alona with an alpithm for their systematic applica

tion. Since the design of a sequential reduction macbiac l1ICb u tlac 0-machine encounten these

illuca alone, the illues at this level can be called the •et•ntial4a1•11tlt: illuca.

Topolo11cal Lnel

Structure of Communications Network
Load Balanciaa

Graph Distribution
Communication Scmantia

Tut Manqcment

BucLanguqc
Reduction Rules

Ruic Application Algorithm

Figure L Hierarchy of luuca in the Design of a Parallel Graph Reduction Machine

5

One level out arc the illuca related to the •parallelization• of the rccluction proccaa. Any

parallel reduction machine attempts to employ many individual proccaaing clements (PEI) in the

concurrent reduction of a single srapb. Thia introduccl proba.. of where to place the srapb in

relation to the PEI. of what information must be CODUDunicatecl by the PEI. and of what wort

muat be done by each PB O¥cr and above the applicat'°8 of reduction rules. These can be called

ptualkl-6ellUllllic illuca.

'
Finally, at the outel'IDOll level, ii the llructure of the coaununicatiom network that 111pporta

the intra-PE inf ormatioa low proscribed by the parallel 1emantica; this level ii called the 109olo1i

cal lnel. As will be 1een1 the illues related to load balanciag are molt appropriately dealt with at

thia level.

Put propoull for parallel graph reduction machines have made no attempt to dilcuaa the

issues in each of the three layen 1eparately. la particular, the boundary between the KqUential

acmantic and parallelcmantic layen ia usually blurr-ed. oblcuriq the cliltinction between

language particulan and euential parallel rcductioa mecJtanjem. No author baa yet given a com

plete and detailed description of all illua embodied in tlae parallekemantic layer, yet it ii pre

cilCly these illues that are the euence of parallel graph reduetioa.

Thia paper attempts to concretely define ancl dclcn"be tbolC aspects of a parallel graph

reduction machine that fall into the parallelcmantic level ol. Piprc t in a manner applicable to

all languages and network topologiel. Wlaat emcrpa en be daouglat of u an abstract parallel

graph reduction machine, which when imbued with a partioular reduction languaae and cir

cu1D1Cribed by a particular communicatioa aetwork ~- a correct dcaip for an actual

machine. While a language baaed on Turacr'I combinaton' will be UICd for illustrative purpolCI,

it will be ahOWll tut the parallelcmantic laycn of tile ail&ilta propolala, to the eztent that they

are described at all, It the model developed here.- Thia ia tan 11111eata tJtat all parallel arapla

reduction machines 11UUI function u delcribed here at tbc parallekemantic level, reaardlell of

their 1equentialcmantic and topological delip.

2. Tlae Sef:a•eatlal-Se....UC ...,...

la order to undentand parallel recluctioa, it ii Int wc••IJ to unclentand KqUential reduc

tion, ud IO a brief look will be takea at the ICqUCDti layer before proceeding on to the

parallelcmaatic layer. A aubact of Turnen combia1tor laDpap will be uacd to highlight the

importut points.

7

In all graph reduction machinea, the program ia aprcaed in a co11Stant applicative / ona

(CAF) language, in which there arc no variablca, only coutaata. Theac comtants appear in a

graph ltructurc, and the reduction rules guide the machine in aucccaively replacing aubatructures

with simpler onea until all that remains is a single printable rcau.lt. The program graph, then, ii ca

collection of nodes, where each node contains one or more lelds containing pointen to atomic

conatants or to other nodes. When a subgraph ii to be reducecl. a pointer to the root node of the

subgraph is paacd to a reduction algorithm procedure. Thia procedure euminea the subgraph and

applies the appropriate reduction rules, pouibly cauaiq the rocluction of other aubgraphl or the

creation of new nodes. When reduction ia complete, the reduction procedure returns the value

that results, and replacca the original contents of the root node of the subgraph reduced with the

result of reduction. The three important characteristics of the reduction algorithm arc:

(1) It is a proudur• that tatea one argument: a pointer to the root node of the subgraph to be

reduced.

(2) It r•t1111U one value: the result of reduciq that subgraph. The result may be an atom or a

more complex value.

(3) It hu the sid•~ /•ct of modifying the graph. The moll important aide-effect is that the root

node of the subgraph reduced is replaced with the rcault al reduction.

Because the root node of a aubgraph plays aucb an important role in that aubgraph'I reduc

tion (its addrcu ii paacd to the reduction procedure; its coatcnta arc replaced by the rcault),

•reducing node N' ii comidcrcd synonymous with •rcducina the aubgrapb of which node N ii the

root".

To get a feel for what kind of opcntioaa arc involved ia the reduction of a node, a language

bucd on a subset of Turner's combinator lanpap will be praentcd. Wlaile Turner's combinator

code ii perhaps the lean readable of all CAP laaguagca, its acmantica arc quite simple and elepnt,

allowing the cucntial features of all CAP lanpa1ea to be higllliptcd without 1cttin1 too bogged

down in language details.

I

The reduction rules for a sublet of Tumer'I lanpaae ii shown in Figure 2. In that llgure,

lowercue letten refer to any arbitrary araph. the notation <.z> means •the result of reducing z•.

and the left arrow indicates both what ii returned and what replaca the node being reduced•. Fig

ure 3 ahows in detail the reduction procedure to apply thOle rula. Herc arc IODIC aampla Of

reduction using thia procedure; it will be helpful to refer to Figure 3 when reading these examples.

Example 1: E -1 +.
Slcp 1: 11t T • Redllce(fa(E)) •I

All atom II mcadJ hldamcl. bJ dclaidaa.
51cp 2: w a - Redllce(CJP(B)) - +
Step 3: Writ"P(B.Q)

Tiie ar.,ra 11 lcfl • I +
Slcp 4: ..,.,

........ atom + .. rcbrlllllL

To compute </ z>.
uae the following rules to compute <</>z>:

<lz> .. <.z>

<Kz> .. &z

<Kz y> .. <.z>

<+z> .. +z

<+ z y> .. <.z>+<y>

<Sf> .. Sf

<Bf 1> .. Sf I

<Sf 1z> .. </ z (lz)>

otherwise ... BOOR

Figure 2. A Small Reduction Lanauaae 8uecl oa Turner's Combinaton

~ die remit of rcdlctiaa II • atom •· bJ cmYClldiaa Ille aada redlald ii bJ I •· Sllda a !lode la called aa ,,._

4lnt:I'--· bJ TIUeer.

The Reduction Procedure:
Given a pointer to a graph, E, reduce
the graph and return the rCIUlt.

111u1mw Redllee(B) {
Slut:
Ill T • llcdace(fo.(E));
llTilaaatom.._{

tr T -1 .._ { /• 'l1lc nlc <a .s> .. <s> "I
111 a • lledilce(ap(E));
Writc>op(E ,Q);
nblrllQ;}

.._., r •& .._ 1•'J1ac n1e <&.s> .. &.s.,
Write-fn(E ,7);
nblraB;

.._., T • +tllla /•'J1ac nllc <+.s> .. +.s "I
Write-fn(E ,7);
ntllnlB;

.._trT-1.._ /•'11lcnlc<a/> ... l/ "1
Write-fo.(E ,7);
nblraB;

.... { ,. The •emir nlttf .,

Writo-fo.{E,J);
writooop(E,moa);
ntma moa;} t

... Ir fo.(T) ii .. atom {
Ir fll(T) - & (,. 'l1lc nlc <It .s 7> .. <a> .,

111 a - llodllcc(op(J'));
Writo-fa(E ,I);
WritHip(E ,Q);
nbnlQ;}

.._., fn(T) • + tMa { /• 'l1lc nlc <+ .s 7> ... <a~> "1
111 a - acdace(ap(T)) + Rcdace(op(E));
Write-fn{E,J);
Writc-ap(E ,Q);
ntDrllQ;}

lllltrfn(T)•ltMa 1•'lbcnde4/ 1> .. l/ 1"1
Write-fa(E ,7);
nblrll.B;}

111111 fn(fn(T)) ii aa atom tMa
Ir fn(fn(T)) •I tllla (r 'l1lc nlc 4/ 1 .s> ... <I .s (I .s)> "1

Ill F • op{fa(T));
Ill G .. ap{J');
111 X - ap(a);
Write-fn(E,Crcate(F ,X));
Writc-ap(E ,Crcatc(G.X));
... Slut;}

} ,. End of proccduc 1tcdllcc .,

~ hotttl,,,_ ColW "1
fn(E) ,...... Wdcf,, •.
op(E) ·-· cl jiiiled kt.,, •.
Writo-fa(E,X) wm.•••....._, ... _..,.... .. .,, •.
W~,X) WdtmXla ... __.,, •.
Crule(K ,.J') 0....a..,._lllldrl111 •....._ ... 1ox

.... .,... ,. 11.

Figure 3. A Reduction Procedure for the Lanpage in Figure 2.

'

Ezample 2: E = (I +) 3.
Step J: Ill T • ltcdlce(fll(B)) • +

nil nidlll:dcm •• m..tratod la &•mph L
1tep2: w~.T)

........... lcft.+3..
Step3:

... + 3 .. ret1lnled.

Ezamplc 3: E = ((I +) 3) ((+ 4) S)
Step J: Ill T • ltedllce(fn(B)) • + 3

...... redllCtiaa ... ill1lllndod .. EUtDple 2.
Step 2: Ill Q • Rodllce(cip(T)) + llodllcc(ap(B)) • 3 + t • D

cip(T) •3(u ac.a). ... op(2') •(+4)5,wllicll,..._I09.
Step 3: Writo-fn(S,I)
Step 4: Write-ap(B,Q)

11lc II left u I 23-
Step 5: ,

ud die atam D la ret1lnled.

Esample 4: E = ((S +) (+ 3)) 4
Step J: Ill T • Rodllce(fll(B)) • (I +)(+ 3)

................... to& fk2.
Step 2: Ill F • ap(fll(J')) • +

fll(T) - • +. - ap(fll(J')) - +.
Step 3: 111 a • op(r) - < + 3)
Step 4: Ill x - ap(e) - 4
Step 5: Writo-fm(B,Crale(I' .X))

... , +4
Step 6: W~.er.ae(G.Z))

................... (+3)4
HCllCC, &' II .,. (+ 4)((+ 3) 4)

Step?:
Tiie wllalc redllcdm praaalllrie 11....W apla • YOnloa ol &' •
..,., u.

11

Tbeae four examplea arc typical of the typea of recluction ndca encountered in mOlt rcduc-

tioo laopagea. In Ezamplc 1 the node ii unchanged; ia &le 2 101DC daceodcnta of the node

arc recluced and the raultl atorcd back into the node; ia Bzample 3 deac:endeata arc rcducecl. a

computation performed on the results, and the rCllllt of the computation returned and stored back

into the graph; in Esample 4 new aodca arc created. the anpla rarraogcd. and the reduction rules

reapplied to the result. It ahoulcl be noted tlaat ia &le 4 die node ii ii comidercd recluced not

at Step 7 but only when a ret11n1 statcmcat ii lnallJ eueuted; the writing of a node doCI not

nec:cmrily take place only at tbe coacluaioa of its reduetioa. It Uould also be noted that in Step

2 of Ezample 3 the two recluctiona requirccl could be pcrfonaed aimultaaeoaaly in a parallel

machine; in general parallelism ii obtained b1 •tortina" demand acrcm strict opcraton in thil way.

11

While there are many CAP languagea other than Turner's, the reduction procedurea to

implement thOK languages will be quite limilar to the procedure in Figure 3. A careful e.umina

tion of Figure 3 and the examplea preaented will reveal that there are only Ive kinds of opera

tiona performed on the graph during the reductioa of a node N:

(1) Reading the fields of node N.

(2) Writina the fields of node N.

(3) Creating new nodea.

(4) Calling for the reduction of dcacendent nodea of node N.

(S) Reading the fields of those dcacendcnt nodca that have been reducccl.

(Tbe term •c1c1cendcnt node of node N9 laere denotes a node that ia reached through the trac

ing of a chain of pointen of bounded length rooted at node N~ It it particularly important to note

that the only node an imtance of the reduction procedure writea ii the node it ia reclucina. Stated

another way, a node can only be altered by the imtance of tbe rocluction procedure that reducea

it. Thia impliea that once a node ia reduced, II u _.,., wrltln .,.., aodea become constants after

they are reduced.

The Ive kinds of operations listed above are the only waya in which the reduction procedure

ia permitted to interact with the program graph. Ally other oom.patation performed by the reduc

tion procedure ia limited to manipulation of ill internal stato. Sllcla manipulation would include

arithmetic operationa on data obtained from the papla, comparilam in order to 1elect a reduction

rule, etc. Limitin& the reduction procedure's KCe11 to the ..,. to the Ive operations above ia

not an arbitrary reatriction but an oblervation that relecll the nature of graph reduction in gen

eral. Thia univenal property of the 1equentiaHematic layer will be the piding force in the

development of the parallel-semantic layer.

u

3. ne Parallel-Se ... tlc LQer

3.1. M.eMae Orpalzatloa

In a parallel reduction machine, there arc many procclliq clementl (PF.a) all trying to

reduce one graph. The tint question to be rct0lved, then, ii wlaere tlac graph ii to lie in relation to

the PF.a. An obvious approach ii to place tlac grapla in a memory that ii •lulntl amons the PP.a 10

that each PE bu equal acceu to all nodca of tlac grapla. WIUle thil approach ii conceptually

attractive, it introducea severe problema related to maintainin& atomicity of operations performed

upon the memory. Furthermore, it ii clear that CODtcDtioa for tlac mared memory will swamp the

benefits obtained from parallelilm for even a modelt umber of PEI.

To eliminate the contention iaue, each PE ii pea a certain amount of ill own local graph

memory, to which only it bu acceu. Tllil in turn requirea that tlae program graph be distributed

among the graph memories of. tlac PEI, ancl to DOdea of tlae grapla mlllt be able to point to other

nodca that reside both in the local PE and ill other P&. A poilder to a aodc, therefore, must be a

tuple of the form (PE adr•H), where l'E ii tlae PB oa wlaicll the aodc pointed to rcaidcl, and

addre•• ii the addrca ill that PE'I local memory. Anotlaer ·way of Yiewia& tlaia 1eheme ii u one

large contiguous addrca apace that ii divided up naoaa die Pl!a. A aodc raiding in the memory

of one PE can ref er to a aodc raiding ill a different PB, nt a aode can be read or written only

by that node's PE; i.e., by tlac PE ill wlame local IDCmcx'J daat aocle raidca.

Of course, there must be IOme IOrt of coat•.Ucatlort lld1Nri between the PEI if they are to

wort in concert. In dclipiaa the parallel-temutic laJer dac oalJ aaumption made about the

communicationa network ii that a PE may ICllCI a arbitrary mc221p to another PE; all other

details of the network are properly dealt with in tlac &opolopcaJ layer. While the communication

network ii in IOmC KDIC a marccl l'CIOUl'CC, die clelip at tlae &opolopcaJ layer can be ChOICn to

reduce any contention problems to a suitable Jcvcl; tbc lalDC caaaot be aid for a llharcd memory.

Diltributina tbc nodca amon1 the local mcmoriea of the PBI providcl a natural way to divide

tbc wort of reducin1 tbc graph: tbc wort of reducin& aay parlicalar aodc - applying reduction

rulca, etc. - ii uaigned to that node's PB. Node (2 4S), therefore, will alway• be rcduecd by PB

number 2, node (112) by PB number 7. 11lil vaipmcnt of wort ii only natural, for the reduetion

of a node N ii guarantccd to require reading and writing the lelck of node N, and only node N"a

PE bu the privileac of acceain& node N. Oac effcet of this •ripmeat ii that the distribution Ot.

nodca among the PE"a memorica ii equivalent to diltributiq wort among the PB"a proceaon; if all

nodca of a graph were placed in one PE"a memory, only that PB'a proccaor could take part in the

reduction of that graph.

3.2. later.PB Commulatlaa Baeatlall

With the basic atrueture of the machine in hand, it ii now aeeeaary to make it function. In

the previoua aeetion, the Ive kinda of opcratioul perf onncd oa a graph during reduction were

enumerated. It ii the tut of the parallcl-ecmantie layer to iature that a method for aeeomplishina

each of thcac opcratiom cxilta in the parallel machine.

lmplmcnting the tint two opcrationa, rcaclina and writiq the node being reduced, arc cuy,

aincc the node being reduced alway• rcaidel in the graph memary of the PE perf ormina the reduc

tion. Theae opcrationa arc aimplc 8CCCllCI to local memory.

The third and fourth kinda of operationa, crcatina new nodel and callin1 for the reduction of

esilting nodca, require the Uliltancc of other PEI; the former beca111e new nodel will aomctimca

have to be created OD other PEI to diltributc the workloacl, aacl the latter bccaUIC reduction of

existing nodca ii comtrained to take place OD OKia mctmdual aoclc'I PB. la a lcqUClltial machine,

the reduction procedure would acc:omplilb tlaclc opentiolll tlalvqh procedure calla: a call to the

•create• procedure crcatca a new node and retur111 a poiatcr, a call to the •rec1ucc• procedure

rcducca a node and retur111 the rcault. la a aequeatial maclaine, of counc, the latter ii a recunive

call. The reduction procedure in the parallel machine allo cu aceomplUh theae operationa

through procedure calla, but in thil cue thcee proccdurca mipa require accutioa on a ctilfcrent

PE. What ii nccdcd ii a n•ote procetlwe call facility.

14

To implement remote procedure calls, we tum to the communications network. A remote

procedure call in the parallel reduction machine is accomplished by a pair of messages: a reqwst

message, sent from caller to callee, communicating the arguments of the procedure, and an ad:-

nowledgement message, sent from callee to caller. communicating the results. Any aide-effects

caused by the remote procedure arc restricted to the local memory of the callee. A request mes-

sage takes the form:

I reqest-id I type-REQ l arg11111ent1 I

while an acknowledgement looks like:

I reqest-id j type-ACK I re111lt1 I

The type fields of the messages indicate in effect what procedure is being called, and the reqwst-id

field, copied by the called PE from request to acknowledgement, allows the acknowledgement mes-

sage to be routed to the calling PE and identified there. Figure 4 lists the messages used in paraJ-

lei reduction.

The first two messages in Figure 4 arc used in the creation of new nodes. Suppose PE #1

wants to create· a node and have it reside in the memory of PE #2. From a semantic point of

view, PE #1 would lite to call a procedure lite Create(initial-contents), where initial-content• arc

the initial values for the fields of the new node, and have a pointer to the new node returned as a

result. Note that PE #1 expects not only a returned result, but also the side cff ect of the creation

of a new node. Using the remote procedure call mechanism, PE #1 prepares a CREA TE-REQ

message and sends it to PE #2. PE #1 then waits until it receives a CREATE-ACK message whose

reqwst-id field matches the request-id it created for the earlier request. When that message is

received, PE #1 examines the results field to obtain a pointer to the new node.

I

From PE #2's point of view, PE #2 receives a CREATE-REQ message. It responds by allo-

eating space for a node in its local memory. initializing the new node according to the initial-

contents field of the message, and sending back a CREA TE-ACK message containing a pointer to

(1) Cnalloa Re4aelt

llcqaatl the crealiae al • - .. bddalbed lo

(2) Crealloa Acbewledaeaeal
, ... ~-eq-.,-,-,-14-..... ,-.Clt&\--~-A-CK-.... (-,...,-.,-ol-111-a ,

lafCIUll the ICDder al. a&A1"S.allQ lo.,,~"""··

(3) Redaclloa Re4aelt

I req•il-14 I RBDUC&..uQ I polnl•r I
Recpat1 tJaat the-~ paillted lo bJ ,,,,,,,., b9 ,....._

(4) Redaclloa Acbewled&eaeBI
.... , ~-q-,.-,,--14__,l_DDV--CB-A--e&---.l....-'"""-....... I

Inform the ICDdcr al a &DMJa.aBQ-. n.11af11 llr P'ha ii,...._

(S) bcremeat Refereace Cool Req•elt

I req••l-14 l INCUl'-DQ I poilllu I
Rcqaatl the refercaco eaua al the node painted lo bJ ,.,,,,., .. lrMl1 rmed

(6) lllcremeal Refereace Coul Acbow

I rq•it-14 l INCUl'-ACS I
Inform the ICDdcr al• INC&D-&BQ-ae rd--.. beat im:rcmcated.

(7) Decremeal Refereace Co.at Reqaal

.... , ~-.,,-.. -,,--14---, -~---:.uQ---,-,-°""-.,-,
R11q11mt1 llMI refereMe cmat al llMI .. palllled to "1,.,,,,.. •... ud

u

All mcuaaa carry a rcquaa identilcatioa ha tile leld ,.,..,..,. The request identification ii
crcatccl by the iuuer of a Rf19C11 aacl copied from ,... .. •nap to acbowledgcmcnt •caaae
by the receiver of a recpaat.

Figure 4. lnter-Pra"llOI' MCIUICI

the node. The pointer, of counc, will be of the form (2 .ltlru•). The req••t-Ul field of the

rcqucat mcaagc contains the llallle of the ICDdcr, PB #1. IO dlat PB #2 bows to whom to addre11

the acknowledgement. PB #2 copica the eatiro rCfiUC181-icl leld from rcqucat mcaaage to ack

nowledgement. Thus with the aid of the Int two mcaaaca ia Piprc 4, the third kind of operation

required by reduction algorithma ia accomodated.

The nezt two meanies in the Figure implement the fourtla kind of operation, the calling for

of the reduction of another node. Herc, the procedure call liamlatccl ia Redace(pointer), where

pointer ii a pointer to the node to be reduced, which retUJ'DI tile rcault of reduction u well u hav

ing the aide effect of altering the node reduced. Tlac implemcatation of this procedure through

mcaage puaing ii analogous to the implementation of tile •create• procedure: a llEDUCB-REQ

mcuagc carrica a pointer to the node to be reduced to that aoclc'I PE, and that PE rcaponda by

reducing the node and scndiag back a UDUCB-ACK me11aae daat contaim a copy of the remit.

The 1ubjcct of what czactly ia returned in a UIKJC&.ACK mcaage requires 10me thought.

U the result of a reduction ia an atom, then the atom ii.elf aa limply be returned. If the result

of reduction ii a subgraph, however, it ia aot obvious wUI malt be returned. Merely returning a

pointer to the 1ubgrapb ii not always IUfflcieat, for the caller wiU generally need to acccu 10me

of the nodes in thia subgraph (i.e., the fifth kind of opentioa • lilted in Section 2), which it can

not do if the 1ubgraph remaina on another PB. Oa the odler laud, the entire subgraph 1hould not

be returned, not only becabsc this ii far more iaformatioa dlu ii needed, but also became the

entire aubgraph ia not ~ available to the PE prcpari8a the acbowledgcment, u it may

be distributed acrOll many macbinel.

The limplcat policy ii to return a copy of the root node of the aubgraph to be returned; that

ii, to return a copy of the node reduced. Tlac PB reccivias die acbowlcdgcmcnt then takes the

node from the acknowledgement and placca it ia its owa loctll memory, and may then treat the

new node in local memory u though it were the node oa die foriegn machine. In doing this

operation, two copies of the ume node are created, nilin1 the queatioa of couiatency. There ia

17

no need to worry about consiatency, however, for the node copied ii a node that bu already been

rcduccd. M pointed out in Section 2, a node that ha been reduced can never be altered again - it

ii effectively a constant until it ii gubage collected. Thus, creating a copy of a reduced node ii

safe, since it amounts to creating a copy of a CODltallt.

Bcf ore moving on, it ii worthwhile to consider u example. Yipre 5a shows the program +

(• 3 4) 8 distributed acroa three PEI. The root node ii at addrca 0 on PE #1, the two-node

e:rprcaion (• 3 4) ii at addreuea 0 and 1 on PE #3, and the remaining node ii at addrea 0 on PE

'111.. The reduction of the program begins with the following m .. age ment to PE #1:

I reque•t-ltl I UDlJCB-llBQ I (1 0) I

PE #1 atarta to apply the reduction procedure shOWll in Piprc 3 to the node, whose ftnt step ii let

T == llcducc{f n(E)). fn(E) ii the node (2 O), IO PE #1 mendl the following mcuage to PE 'IQ.:

I reqwn-ltl I UDUCB-&BQ I (2 0) I

PE 'IQ. reapondl by applying the reduction procedure to node (2 0), and ftndl that since the func

tion ii the atom +, the node should be returned unaltered. So PB #1. mendl a copy of node (2 0)

back to PE #1 lite IO:

I requn-ltl I UDVCS-ACK I [(A TOM ~ (3 0)) I

When PE #1 receive1 this mcuage, it creates a node in its owa memory and puts the copy of (2 0)

there. At thil point, the PEI' memories appear a in Fipre 5b (the function pointer of node (1 0)

ha not been changed from (2 0) to (11), u might be c:lpCCted, but the pointer to (11) ii kept in

the temporary variable T of the reduction proceclurc aec11tiaa on PE #1). The reduction pro

cedure on PE #1 now resumes, and 1ee1 that the statement W fa(7') • +ii utilfted, and proceeds to

call for the reductions of the operandi of aodca (1 0) aacl (11). Node (1 O)'I operand ii an atom, but

node (1 l)'a operand ii tbc graph at (3 0), which ii recluced by ICllding a reduction request to PE

#3. PE #3 responds with a reduction actnowlcdaement coatai•illl the atom 12, and PE #1

(10) (2 0) I (ATml ., I

PE #1 Grlpll MClllCllJ

(2 0) I (ATml +) I (3 0)

PE #2 Grapla MC111G1J

(30) (31) I (Atal 4) I
(31) I (ATmit ., I (Ata1 ,, I

PE #3 Graph MC111G1J

(•)

(10) (2 0) I (A'IUI I) I

(11) I (ATmi -tt I (3 0)

PE #1 Gnpla.......,

(2 0) I (ATOii -tt I (3 0)

(30) I (31) I (ATOM 4) I
(31) I (Atai ., I (ATGI ,, I

PE #3 Gnpla U-,

(b)

Fipre S. Stepa ia Parallel lleduc:lioa

JI

(l 0) I (ATOI& I) I (ATOI& 20) I

(11) I (ATml +} I (3 0)

PB #1 Graph M.emorJ

(30) I (ATOM I) I (ATOM 12) I
(3 J) I (A'ml ., I (Ata1 ,, I

PE #3 Graph Mc11DarJ

(c)

reduces node (1 0) to I 20, scndina a recluctioa acbowJqemcat contain.ins the atom 20. Figure

Sc lhowa the ft.Dal appcarence of tile PEI' memories.

ID the example above, the result of reduc:iaa aode (2 0) waa tile three node mbgraph + (• 3

4), but it wu aufllcieat for PE "'2 to return only tile root .- to PE #1 in tile reduction act-

nowledgement, for the root node contained all iaformatioa aeeded by PE #L Consider now the

reduction of Sf 1 % , where each of tile three aodea are aa different PEI u lhown in Fipre 6a.

(10) (2 0) (I) (10) (2 0) (I) (10) (2 0) (I)

PE #1 Grmpla McmorJ (11) (12)

(12) I (ATCU I) I Cf)

(2 0) (3 0) (a) (2 0) (30) (a) (2 0) (21) (a)

(21) I (ATml I) I u> (2 1) I (Arow I) I u>

PE n. Gnpla 11ema1J

(3 0) I (ATOl I) I u> (3 0) I (ATCU I) I (f) (30) I (Amwl) I u>

PE #3 Grapll MemarJ PE #3 Grapla MemarJ

(•) (b) (e)

Figure 6. Pint Steps in Rcduciq I/ 6 z

Reduction bcgim on PE #1, which 1eodl a reduction rcquClt lo PE #1., which in turn 1endl a

reduction request to PE #3. PE #3, 1eein1 dlat the fuactioa ii the atom S, 1eodl the f ollowio1

acknowledgement to PE #1.:

------ ------- -----

I reqwst-Ul I UDU<SAC& l [(A TOM S) (/)] I

PE rtf!l copies this node into its own memory, and the mcmorica arc now u shown in Figure 6b.

The reduction procedure on PE #Z 1CC1 that the statement • fa(T) - S succccdl, and so wants to

return the two-node rcault (S /) I· H only the root node of a graph ii returned, PE #Z sends this

mcuage to PE #1=

When PE #1 receives this mcuagc, it will have two of the three nodca comprising the S expres

sion, but to apply the reduction rule for S it needs aU three, fw it accdl the pointen to/,,, and z

(in fact, at this point it ii milling the node that contaiaa the SO. In this cue, PE rtf!l mmt actually

send two nodes back to PE #1, both of which will act copied into PE #l's local memory. This

would be accomplished by a mcaagc lite this:

I reqw11-id I REDUCE-AC& I {[(MSG 2) (I)] ((ATOM S)(l)D l

In this mcaage, the pointer (MSG 2) points to the ICCODd node contained in the mcaage; when PE

#1 copies the contents of the mcaagc into its own anpla IHlllOl'J, it will replace the (MSG 2)

pointer with a pointer to the actual node created fw the wond node in the mcaugc. Figure 6c

showa the state of the memories after PE #1 tinisbca tlail copJiq. ·

When a graph ii to be returned from rcductioa, then, the rule for determining which aodca

to include in the reduction acknowledgement ii u follon. TH root node of the graph to be

returned ii always included. In addition, any nodca pointed to by the root node that were returned

from reductions requested during the reduction of the root aodc arc allO included. The nodcl in

this set arc known to be reduced, matina it mo to 1encl them in a maugc, and arc guaranteed to

be acccuiblc to the PE creating the acknowlcdacmcnt.

-----------~---

21

3.3. 'ne Need I• Mllltl-T

ID the preceedin1 dilcuuion, no mention wu made of what a PE must do if it receives addi

tional requests before dispensing with the one in J>l'OIRll. When a PE proceaea a reduction

request, at several points it will 1end rcquesta of its own and wait for the corresponding ack

nowledgements. It ii unacceptable for the PE to IUlpCll4 all activity when waitin1 for ack

nowledgements, bccaue the rcquesta it mates may came odaer PEI to 1end additional requests

back. U the PE ignores thOIC requests, it will never receive Ille acknowledgements it ii waitin1

for, and a deadlock occun. BccaUIC the proccuiq of a recluction request may be auapended while

waitin1 for 1ervice from another machine, a PE mUll be capable of prouaia1 several reduction

requests at once.

A single PE, therefore, can have 1CVeral outataadiaa reduction proce••••, each one

corresponding to a node currently undergoing reduction. Amociated with each reduction procaa

ii a proceH tle•criptor (PD), which hu enouah information to allow the proccaa to be 1uapcnded

while waiting for acknowledgements and later resumed at Ille point of auapemioa. A procaa can

be in one of two 1tatca: auapeaded or runnable. A IUlpCnded procea ii one that haa 1ent rcquelta

but bu not yet received all correapondiq acbowJedacmenll, and a runnable proccu ii either one

that bu jult been created or one that bu received all acbowlodpments. A runnable proceu will

be 1elccted by the PE for nccutioa, at which poiat the recluclioa procedure will be resumed on

that procca1 until either one or more requesta arc iaauecl, caUliaa Ille proccaa to become auapended,

or until the algorithm lnilbcl, caUling a reduction actnowlediement to be 1ent. A auapended pro

ccu becomes runnable again when it rcccivca all 1ebowlcdpmcats for which it wu waiting. Fig

ure 7 illustrates the states a proce11 can U1Ume.

When a particular proce11'1 in1tance of the reduction procedure wants to mate a requcat, it

must do two thiap: it mUll 1encl the appropriate requcat and it must indicate in the pro

ceu dclcriptor that it ii waitiq for actnowlcdpmeats. Tlae PE may daen pick another runnable

proce11 and work oa it for a while. When acbowlcdpmeat me11agca arc received, they must tlnd

New

Figure 7. State Diagram for a Procea.

their way to the correct proccu dcacriptor and return the proccu to the runnable state. To organ-

ize the flow of inf ormatioa, each proccu ii aligned a unique procea number, and acveral reqw•t

dot• arc provided in each procea dcacriptor. Recall that meaagea always contain a request

indentifier. Whenever a proccu acnda a request meuap, it includca a request identifier of the

form (PE proceH •lot), where PE ii the number uaigncd to the requesting PB,proce•• ii the pro-

cca number of the proccu mating the request, and dot ii the number of a request alot in that

proccu dcacriptor. After sending the request meaage, the procea atores the atom WAITING in

request alot •lot of the proccu deacriptori any proccu dclcriptor that bu the atom WAITING in

one or more of ill rcqucat alota ii considered auapendcd. Any acbowlcdgcment arriving at the PB

ii stored in alot •lot of proceaa descriptor proce,., where llot and proceH arc taken from the

request identifier of the acknowledgement (remember that the request idcntiftcn in acknowledge-

menta arc copies of the request idcntificn contained in the corrcapondinp requeata). When a pro-

c:cu receives the Jut acknowledgement it ii waitin1 for 1 that Kknowlcdgcmcnt replaces the laat

occurcncc of the atom WAITING in that prOCCM'I request alota, and the proceu ii considered

runnable. When the reduction procedure ii resumed on that proceu, it can find the reaulta it

requested in the request alota, for that ii where the acknowledgement mcuagca arc stored. Note

that a proceu can mate 1everal requeata at once by 1enctin1 IOVeral request meuagca, each with a

different value of slot in their request iclcntiften; thil ii how parallelism ia achieved.

Another function of the procea dacriptor ii to hold tile requat idcntifter of the reduction

request meaaae that created that procea, for that inf ormatioa ii necea1ry when preparing tile

reduction acknowledgement when the reductioa procedure terminatea. Became of 1ubaraph 1har

ing, it ia pmaible for a leCODd request to reduce a given node to arrive while the Int request ia

1till being proceucd. It ia not ufe for a leCODd proc:e11 to be ltarted on that node, becauae the

two proceue1 will interfere with each other. lmteacl, only oae procea ia allowed to reduce one

node, but a proces1 ia allowed to acnd any number of reductioa actnowledgcmentl when it com

pletes. To keep tract of tllia, the proceu dcacriptor will contain a lilt of aotlflers, one for each

reduction request received for the node beina reduced by that procea. A notifier ia merely the

request identifier from a reduction request meuap; when the procea completes, one reduction

acknowledgement will be 1ent for every notifier in the aotilor Jilt, and tile request-id flelda of

theac actnowlcdgementl will be created from the inform1tioa in the aotiften.

Support for multiple procellCI also requires additional information to be 1tored with each

node. Each node moat have, in addition to the data Ile .. prOICribccl by the aequential-emantic

layer, a statu field. A node can be in one of three llatel: urcduccd, reduciq, and reduced.

When a node ia created, either throup the pl'OCClling of a CllSAD-&EQ meaage or tbroup the

copying of nodca received in a REDUCE-ACK JDClllF, the •tut leld ii ICI to UNREDUCED.

When the ftnt reduction request to reduce that node arrivca, a procea deacriptor ii created and

initialized, and the procea dcacriptor number ii atorecl in tile •tm leld of that node. Thus, the

preacnce of a procea dacriptor number in the ltatua leld of a aodc indicates that the node ii in

the •reducina" 1tate. U additional requcatl to reduce that node arrive while the node ii in the

•rcc1ucina" 1tate, the llatua lleld of the node indicatca wlaicll proce11 dcacriptor lhould receive the

additional notifier. When tile procca finally lnilbca rcdueiaa tile node, the llatua leld of the node

ia changed to REDUCED. Servicios any additional requestl fm the rcductioa of that node will

limply entail readin1 the node and prcparin1 the appropriate reduction acknowledgement. Aa wu

noted earlier, once a node enten the REDUCED state it effcctiYcly becomes a conatant.

JA. Refereace eo-1 Garbap CoUect._

Because of the dynamic nature of reduction arapbl, 1arbage collection ia an important con

cern in the design of a araph reduction machine. It ii doubly important in the parallel araph

reduction machine because of the copyina of nodes from one PE to another when reduction act

nowlcdgementa are sent. A useful propoerty of mOlt reduction languages i1 that they can be

defined in such a way so u never to create cyclic papbl. Turacn language, for example, can be

made to either create cyclic arapbl or not create cyclic papbl depending on the implementation

of the Y combinator. In general, the avoidance of cyclic anPlaa entails a small amount of addi

tional wort during reduction, but there ia a potentially areat savinp in the time required for 1ar

bage collection, for in the ab1ence of cyclic araplll refen11a c...i 1arba1• colkctio11 can be pcr

f ormed.

The mechanism necessary for reference count garbage collection ii euily added to the I)' ..

tem already described. Each node in graph memory ii aupacated with a reference co""' field,

which ii initialized to one when a node ii created. When a recluction prOCClll creates an additional

pointer to a node, it mends an Increment Jlefereace Count JlequClt {INCREl'-REQ) mcuage to

that node'I PE which contains a pointer to that node. The PE receiving an INCREl'-REQ me11age

responds by simply incrementing the ref erencc couat of that nodc. Similarly, when a aode des

troys a pointer to a node, it sends a Decrement Reference Count Request (DBCREl'-REQ) to the

node'I PE, which rcsponda by dccrementin1 the reference couat of that node. U the reference

count of a node ii decremented to zero, DBCllBl'-REQa arc U.ued to the PEI of any nodes

pointed to by that node, and the node ii rcturaed to the f rec Hat.

Since INCREl'-REQa and DBCREF-REQa can be isaucd for a aiven node by several PEI at

once, precautions must be taken to mate sure that these mCIUICI do not arrive out of order. H

the reference count of a node ii one, for example, and an INCltBl'-REQ followed by a DECREI'·

25

REQ ii iasued for that node, if the mcuagcs arrive out of order the reference count will drop to

zero before the INCllEl'-llEQ mcaage arrivcs, and the node will be garbage collected even

though a pointer still czilts to it. To prevent this occurcnce, it ii noted that any time a pre>cc11

creatcs a new pointer to a node, it must already hue a pointer to that node. Even if the

INCREl'·REQ message never arrives, the node will not be 1arbagc collected u long u that pro

ccu retains the original pointer it had to that node. Thua, the procca iasuing an INCREl'-REQ

can guarantee the corrcctnca of the node's rcf crcncc count by nspcnding its activity until it ii

sure the INCUl'·REQ message bu been received.

The obvioua way to accomplish this synchronization ii to have the issuer of an INCREl'·REQ

enter the suspended state until it receives an lncrcmeat Rcf crencc Count Acknowledgement

(INCREl'-ACK.) mcaagc, which the receiver of aa INCll.Bl'-REQ sends after incrementing the

reference count. In this way, the prOCCll cannot accidentally isluc a DBCREl'-RBQ for that node

until the INCREl'-RBQ bu dc&nitcly been procascd, and 10 the reference count will never be aa

undcrcstimatc. There ii no need to have a Decrement Reference Count Acknowledgement, for

there ii no danger in overstating the reference count temporarily. The iasucr of a DEC&EF-RBQ

can proc:ccd immediately after issuing the meaage.

3.5 •,.,

The cascntial deaign of the parallel-ecmaatic layer ii complete, aad ii now summarized. The

overall appcarencc of the parallel reduction maclainc ii u illuatratccl in Figure 8, with a number

of identical Proccuing Elements conaccted by a commuaicationl network. The communications

network ii of arbitrary topology. but must aupport the rcHablc tnmmiaion of mcuagcs from one

PE to aaother.

The low of information within each PE ii depicted in F'agure 9. There arc two types of data

stored in the memory of a PE: nodes and proce11 dacripton. Nodes, which arc the objects

comprising the program graph, arc stored in Graph Memory (OM), and contain, in addition to the

fields prescribed by the sequential semantic layer of the particular machine, a statua fteld and a

PE

#1

PE

#2

Communication Network

PE

#3

Figure 8. Organization of the parallel reduction machine.

PE

#N

26

Procca
Descriptor
Memory

JlEDUCB-llEQ
REDUCE-A~

CREATE-A~

INCREP-~

Computation
MCIHge
Proceuor

Reducer

REDUCB-llEQ
CllEATE-llEO
INCREP·REO

DECJlEP-REO
REDUCE-A~

From
COlllllUlllicatlou

Network

Graph
Memory

,
To

COlfUlt#lelctltlou
NdWOlt

Figure 9. Summary of PE function.

Storage
Meaage
Proceuor

27

ZI

reference count field. Procca Descriptors tccp tract of the tub in proarea within a PE; there ii

one active procea delcriptor for every node in Graph Memory that ii in the •reducing" llate. The

procca dccriptor contains a list of notifiers, one for every UDIJC&-ACK mcuage that will be

sent upon the completion of that procca, a act of requcat llota ucd both to indicate the llatus Of

the process and to hold acknowledgements after they are received, and enough llate information

to rcaume the reduction procedure after it becomes 1111pCDdecl through the iaauing of rcquCltl.

There are logically three distinct computational entities within each PE. The Storage Mca

aagc Proccuor bandies the proceaing of incomin1 CllBATB-&BQ, INCREl'·REQ, and DECllEI'·

REQ mcaaagca. In proceaina thcac mcaaagca, the SMP rcquira ac:ccu to the Graph Memory, and

can iaaue CREATE-ACK, INCllEF-ACK, and DBCll.El'-RBQ meaagca. The latter arise when

nodCI arc garbage collected, and aincc DECllEl'-RBQ meaapa have no corrcapondina ack

nowledgement, the SMP docs not need to auapcnd its operations at any time.

The rcmainina mcaaages, llEDUCE-REQ, DOUCE-ACK, CREA.TE-ACK, and INCREF-ACK,

arc handled by the Computation Mcuagc Proccaor. nae latter three mcuagca cause the writing

of requcat slots of procea delcriptors in the auapcndcd state. nae REDUCE-REQ mcaaage cauaca

the status field of the node indicated in the meaaagc to be aamiaed. If the status ii •unreducccr,

an unused procea delcriptor ii obtained and its aumber atored in the llatus fteld of the node to be

reduced. The state information in the new proccaa dcaeriptor ii initialized ao that it points to the

beginning of the reduction procedure with the node u arpmeat. Finally, the notifier lilt of the

procca delcriptor ii initialized with the requcll-id of the UDlJCB-llEQ meaaac. Thia rcaults in

a new runnable proccu. If the status fteld of the node in the UDIJCB-REQ mcaaage wu already

the number of a procca delcriptor, the requeat-id ii acldccl to the notifier lilt of that prOCCll

delcriptor. If the status fteld of the node wu •reducecf', the operalionl performed arc exactly the

same u if the status field wu •unrcducccr, accpt that the llatc information in the new proccaa

delcriptor ii initialized to begin at the end of the reduction procedure: at the beginning of the

acction that acnda the reduction acknowledgements and remOYea the PD.

Processca move from the auspendcd state to the runnable state only upon the receipt of a

mcuage, ao the Computation Mcuagc Procc:aor ii eapable of providina a stream of procca

descriptor numben of proccaca that have moved from the 1U1pCndcd state to the runnable state.

A PD number ii added to this stream in two cues: if a UDUCE-ACK., CREA TE-ACK., Or

INCilEl'-ACK. ii received that overwritca the last occurencc of the word W AJTING in the request

slots, or if a REDUCE-HQ ii received that creatca a new pn>CCll descriptor. The stream of runn

able proccas numben ii paued to the Reducer, which actuaDy performs the reduction algorithm.

When the Reducer rcaumca a proccu, it worb on that pn>CCll either until it iuuca one or more

requests, whereupon the proccas enten the suspended state by virtue of the word WAITING in

one or more of ill rcqucat aloll, or until it complctca, caaaing one DOUCE-ACK mcaaage to be

sent for every notifier in the notifier lilt, after which the PD ia returned to the lilt of f rec PDa.

Al Figure 9 iUuatratca, while the Storage MC11&1e Procc:aor, the Computation MC11&ge Pro

ccaaor, and the Reducer are function.Uy independent, alley lbare two data structurca, Graph

Memory and Proccu Descriptor Memory. Contention problems arc avoided, however, because

their use of thcac structurca ia disjoint. The Storage Meaaae Proccllor, for example, ia the only

unit that uaca the free node lilt or the ref crence count lckll of the nodcl. The data ftclda of

nodcl arc only used by the reducer after the SMP creatca tlacm. The status fields of the nodca are

used only by the Computation Mcaaac PrOCCllOI'. Similar diviaionl of uaagc occur between the

Computation Meaage Proccaaor'I and the Reducer's use of proce11 descriptors.

4. Optloul l'eatua

In the previous section, the minimum function of the paraDel-.emantic layer wu deacribcd.

There are many cztensiona to this basic system pcmible that will improve the performance.

4.1. rr.,... .. Loadlq aad VO

While the capability for initial loadina of proaram cnphl ia hardly an optional feature, it ia

of lcu importance than the actual execution of program cnphl. Happily, providing thia feature

requires no additional mechanism in the parallekcmantic layer.

Generally, the overall machine structure u lhown in Figure 8 will also include a special

Front-End Proceaor attached to the communication network, wlaich can be addreaaed u if it were

a regular PE. Thia special unit ii in charge of all interaction with the user, including VO and the

loading of progrlllDI. The Front-End ProcellOI' loadl a prop'8ID into the machine by issuing

CUA TE-REQ measages, and begina ill execution by issuing a UDUCE-REQ meuagc. When it

rccciYes a UDUCB-AClt meuagc, that meuagc will contain the result to be printed for the user.

The way in which VO ii bandied ii up to the bue tanauaae. but it will usually be in the form of

1trcam1, whOIC opcratora interact with the Front-End Proc:easor through UDUCE

UQIUDUCE-AClt meuagc pain.

4.2. Time Slaarlaa

Any parallel reduction machine built upon the principlcl ect forth here ii capable of per

forming time abarina, for each PE already bu the facility for working on acveral tub at once.

To achieve the aimultancoua execution of two unrelated prosnm1, the Front-End Proccaor limply

loads both programa onto the PEa and aenda a UDUCS&BQ for each of the two root nodea. The

two grapba will each act a more or leu equal abare of the PBa oombined time, for the PEa baYc no

way of knowing that the varioua nodca being reduced arc part of unrelated grapba.

It ii also relatively euy to provide this time llwing IJSlcm with a crude priority mechanism.

A priority ftcld ii aclded- to the proc:c11 dclcriptor and to the llBDUcs.asQ meuagc. When a PE

rccciYes a UDUCE-REQ meuagc, it compares the priority lcld of the request with the priority

field of the proc:eaa dcacriptor that will proce11 the requeat, ud ltores the greater back into the

proceu dcacriptor. Whenever a proceu ilauea a UDUCS&BQ, it will take the priority ftcld of

the rcqucat from the priority field of the proceaa\ proceaa dcleriptor. Thus, the priority ii pro

pagated to the dcaccndant nodes of the original node rcduecd.

The priority comes into play when the PE choolcl a runnable procea for execution by the

:Reducer. When the PE aelectl a proccaa from the atream of 1111111ablc proccuca, it alwaya aclectl

---------------------~- --------

31

the runnable proccu with the highest priority, thus asauriD1 that higher priority prOCCllCI are acr

vicccl Int.

4.J. Redaced Idle n.e Tl&roap Eqer EYaluta.

Up to now, the parallel reduction machine hu been completely demand driven; a UDUCE

UQ ii never issued for a node until some reduction proce11 definitely necda the result. Some

rcacarchcn have auggcatcd that additional parallelism caa be extracted from a program by reduc

ing some nodes be/ on they arc needed, so that If their valuel an eventually nccdcd they will have

already been computed. Thia scheme can make DIC of uy idle time that might otherwise ezist in·

a system with a large number of PEI, but it is important that valuable time ii not wasted reducing

nodca whose values will never be nccdcd.

The priority mechanism described in the previous ICctioa provides an elegant way of control

ling cager evaluation. By assigning a higher priority to the UDUCE-REQ issued for the root

node of the graph than for the UDUCE-aEQs iuued for odaer aodea of the graph, each PE will

always work on nodes definitely nccded for the computation of the lnal result If it hu a choice.

An additional problem introducccl by eager evaluation is that nodes requiring garbage collection

can have reduction prw active on them. The garbap collection mechanism must theref orc

collect proccllCI u well u nodel.

4A. lacre .. d Tl&r•..,.t Tl&r M.atlple Red.an

Unlike many proposed parallel machines, the parallel reduction machine described here docs

not make uac of ahared memory at all. One comcqucnce is that each PE must multi-task: a PE

can have acvcral runnable procellCI czisting at once. The throqbtput of a PE cu be improved If

the PE in Figure 9 is augmented to include acvcral Rcduccn. Tlaae Rcducen will have to aharc

Graph Memory and Procell Descriptor Memory, but to tlae clcp-ee that the Reducen can inter

leave memory cycles there will be more proce11e1 dilpOlcd of ia uy time interval. Thia system

reprcacntl a very general type of multiproceaor where ahared memory ii Died up to the point

32

where additional proccsson sharing the memory ii no longer bcnilcial, after which groups of

proccuor/memory units arc interconnected with a commuaications actwork.

4.5. Load Balaaclaa

It was pointed out in Section 3 that because a node ii alwa71 reduced bJ the PE in whOIC

memory it resides, a poliq for allocating new nodel to P& ii equivalent to a poliq for distribut

ing the workload. The distribution of workload ii maialy an ilaue in the topological layer, for it ii

only the communications network that can •sec• all the PEI and thereby have an indication of

which PEI arc lightly loaded and which arc heavil7 loadc.d..

Load balancing ii accomodated by changing the CREA TB-llBQ message 10 that ii not

directed at any particular PE. The communications network, apoa obtaining a CREA TB-BBQ

message, can route it to the PE that ii the least loaclccl. Since the CREA TB-ACK mcuagc contains

a complete pointer, including PB number, no apecial mpport ii required from the issuer of the

CREA TB-REQ mcaage.

In general, two different typcl of CREATB-RBQ mcuagca will have to be provided: one for

nodel that arc to be allocated on a PB to be determined by the load balancer, and one for nodel

where the PE ii specified by the PE scndin1 the request. An instance where the latter ii required

ii when a PE mull allocate a node in its owa memory to copJ a aodc received in a DOUCE-ACK

mcaage.

5. Comparlloa Wit• ll:zllllq Pro,_..

In the introduction it wu ltated that the paralleHcmantic layer u dclcribcd here ii cucn

tially the same u the parallcl-emantic layen of other parallel anph reduction machines that

have bcca propmccl, czccpt that here it prcacatcd more IJllcmaticallJ and thoroughly. The other

propoaall will now be compared to the syltcm here.

5.L Keller, Lladltr .. , aad PatD

Perhaps the mOlt detailed delcription of a parallel anpJa reduction machine ii pvcn by

Keller et. al.4, and while their machine diffen from the 1ebcmc here in minor ways, it fttl the

abstract architecture quite well.

The FOL language that their machine UICI rc8ccta their machine's load balancing poliq: all

nodes belonging to a ainpe user procedure arc allocated on the ume PE. A code block in their

aystem ii a type of comtant, and the l1111oke operator cs:ccutca by min.a the information in a code

block to create a collection of nodcl (all on one PE). Some of the nodcl created by the I 1111oke will

include information computed at run time in addition to the compile time information taken from

the code block. Thia and many other iuuea dilcuaed in the Keller paper actually pertain to the

acquential-temantic layer rather than the parallelcmantic layer.

Other aspects of their machine uc quite familiu. Their machine's •c1cmancl-lilt• and •rcsuJt

lilt• uc similar to the proccu clclcripton of the abstract maclrine. la Keller's machine, however,

notiftcn uc auociated with each node, rather than with each procca (tut, in their terminology),

and uc preauigned in mOlt casea. Thia ii pouiblc because they only attempt to cs:ploit aubaraph

sharing within a user function deftnition, and 10 mOlt aodlcn arc available at compile time.

There ii really no advantage in prccomputiq the notiften, and lcaviq space in each node foe a

notiller ii wutef ul of space tince only a fractioe of the aodel at any time will be in the •rcducing9

state. lncludiq the notillen in the nodcl allO forces their l)'llelll to use •fonrard cbaining9 to

handle multiple global notillen. Wbilc this tccbniq1lc m tile advantage that the space for

aotiften ia not of variable size, it increua the amount of communication ncceuary, for in addi

tion to the actual notiftcation 1DC1Ugea, their ayltem rcquira additional lllCIUICI to act up the for

ward chaining. No real memory space ii uvccl, foe the 1a111C umber of aotiften must be stored in

either ayltem.

Keller's paper gives no detailed dilcuuion of what me••ea arc paaed in bil aystem, so no

comparison of communication scmantica ii polliblc.

5.2. Darllqt• ... Rene

The ALICE multi-proccuor2 ia very interesting became at Int &Janee it appcan to be

greatly diff crcnt from the machine dclcribcd here. M in lteDer'I machine, nodcl of the graph

contain notiflen in addition to the information contaiDccl in nodcl of the abstract machine. In

ALICE, however, the nodcl arc all put in a shared memory to which each of the PEa hu acccu.

Darlington recognizes that shared memory limits the number of PEa that can succcsafully be

employed in thia way, so he propoaca conncctin1 group1 of memory/PE units with a communica

tion network.

Thia, of counc, ia the scheme diacuucd in Section 4A, wherein multiple Reducen are pro

vided in each PE. In Section 4A, the Rcduccn had to share common resources, including the

memory itself, the Computation Meuage Proccaor, and the Stonge Meuagc Proccuor. These

common services arc also dcacribcd in Darlington._ paper; there, be Yiaualizes the stream of ruDD

able proccuca and the free node list u •constantly circulatiq lloUed communications ringat'.

Darlington alto points out that whcia PE groups arc conaected by a communication network,

the network serves to •map the local memories onto the global addrca space of the system•. Thia,

of counc, ia rcftccted in the (PE oddre11) form that pointen take in the ayatem here. Darlington

goes on to aay that the communication network it med to lhare proceaaable nodes and free apace

among the building bloeb. While the latter ii ccrtaiDly tnae - dUa ii the load balancing function

dclcribcd in Section 4.S - the former contradicts Ida earlier statement, for the mapping of local

memories into the global addrcaa space prccludea tlac migration of nodca from one memory unit to

another. Such migration ii pollible if forwarding addrCllCI arc left behind or if the communica

tion network serves to translate -Virtual addreau" appearing in nodel to •physical addreues" con

liating of PE/addrea pairs, but the former cntaill commuaicatioa overhead to perform the for

warding, and the latter turns the communication network into a huge bottleneck through which all

memory references m111t p... In particular, any benefit tht might be obtained from grouping

related nodcl into the aamc memory segment ii lmt.

----------- --------------~- ------

35

Abandoning the extremely inefficient f cature of. allowina the migration of unreduced or par

tially reduced nodes, then, brinp ALICE on par with the abstract architecture prcaentcd here.

The main cliff erence is that in Darlington's paper, a lhared memory system is the starting point

from which a hybrid shared memory/mcaage paaina system is developed. Herc, a meuage pua

in& model is the starting point from which the hybrid is euily derived (in Section 4A).

Darlington's paper providcl no details of what communication takes place in the hybrid version of

ALICE.

The lut major difference between the ALICE machine and the abstract machine presented

here i1 that ALICE supports the acccuing of nodes, for both reading and writing, that have not

been reduced. Thia is in opposition to the principles set forth in Section 2, and reflects the fact

that ALICE is capable of supporting base languages other than strictly constant applicative form

languages. Whether this fact presents any special problems is a topic for future rcacarch.

5.3. Sleep and Butoa

Sleep and Burton give a very brief description of a parallel reduction machine' that usca a

form of combinator code u a buc language. Moat of their paper deals with the properties of

buc languages and with the details of their communication network, and 10 there is little to com

pare with the system here. What little they do discua of the parallel-semantic layer is quite f ami

liar; in particular, they delcribe the use of the status leld of aodel.

Many parallel graph reduction machines have been proposed. but little bu been done to

establish the operatina principles common to all such machines. The wort here attempts to sys

temize the design of parallel reduction machines by ctmdiaa the topic into three layen: the

sequential-semantic layer, the parallel-semantic la)'er, and the topolo&ical layer. The parallel

acmantic layer, it turu out, embodies the fundamental CllCDCC of parallel reduction in the

abstract; u such, the parallel-semantic layen of all parallel reduction machines will be similar, if

not identical.

The parallcl-scmatie layer bu been dacribcd here to a aufftcicnt level of detail that only the

language and communication network would need to be desiped to create a complete machine.

In particular, the aapccta covered in the parallel-scmantie layer iac:ludc the overall structure of the

machine, the acmantica of the mcuagca that travel the communications network, the data ltruc

turca maintained by the proc:cuina clement, and the algoritlum neccaary to manage thcac data

1tructurca. The corrcctnca of the scheme prcacnted here wu demonatrated by an emulation pro

gram written for a Symbolics 3600 Lisp Machine.

While other groups have proposed parallel reduction machines, ao propoul bu described the

parallel-semantic layer of a machine to the degree of detail u with the abstract machine

prcacnted here. To the degree that thcac other machines arc deacribed, their parallcl-scmantie

laycn arc comiatent with the model here. But the architecture prcacnted here ii more than a

hypothetical machine; by providing an abstract model for parallel graph reduction, it ii hoped that

insight into the parallel reduction procca itaclf can be pined. Such insight will undoubtedly

prove uacful in the dcsip and construction of actual high-performance araph reduction machinca.

----- -- --------------------

REFERENCBS

(1) T J .W. Carte, P JS. Gladstone, CD. Maclean, and AC. Norman, "SKIM - The S, IC, I Reduc
tion Machine•, Proc.1980 LISP Conferean, Aupat al).

(2) J. Darlington and M. Reeve, •ALJCB: A MultiaProceaor Rccluction Machine for the Parallel
Evaluation of Applicative Languages-', PronedU.,1 of llN INJ Con/erace °" Flllldiolllll Pro
'""'""in1 La111ua1e1""" Complllu Arcltltmw•, 198J,pp.6S-16.

(3) T. Johnuon, 9Tiae G-Machinc: An Abatnct Macldne for Graph Reduction•, Programming·
Methodology Group, Department of Computer Science, Caalmcn Univcnity of Tcchoaology,
M12 96 Gotebora, Swee.tea.

(4) R. M. Kellcr, 0. Lindstrom, and S. Patil, •An Architecture for a Loosely-coupled Parallel Proa
ceuor", Tech. Report UUCS-78-JOS, Univcnity of Utah, October 1978.

(S) 0. A. Mago, •A Cellular Computer Architecture for Puctional Program.mint', COMPCON
Sprln180, Fcbruary, 1980,pp.179-187. ~

(6) M. R. Sleep and F. W. Burton, 9Towarda a Zero Aaipmcat Parallel Procat«",Proceedinf1
of th Secmul I nternatiolllll Con/uan °" Du1ri1Mtlal c,_,,,,,., S,11.-., 1980, pp. SMl4.

(7) D. A. Turner, •A New Implementation Technique for Applicative Languages-', Software -
Practice ond Eipemnce, 9(1979), pp. 3M9.

