
~ 

;:_.:-~.'~~·· ... ~··~ ·. "' ·' 

Abstract 

Extending Binary Byzantine Agreement to 
Multivalued Byzantine Agreement 

Russell Turpin 1 

Information Research Associates 
911 West 29th Street 

Austin, TX 78706 

Brian A. Coan2 

MIT Laboratory for Computer Science 
Cambridge, MA 02139 

April 1984 

A binary Byzantine agreement algorithm can be extended to produce a multivalued Byzantine 

agreement algorithm. The resulting multivalued algorithm is cheaper than previously published 

algorithms when the cost of transmitting values from the multivalued domain is significant. 

Keywords 

Byzantine generals, Byzantine agreement, fault tolerance in distributed systems. 

© 1984 Massachusetts Institute of Technology, Cambridge, MA 02139 

1 This author eschews government funding. 

2 This author's work was supported in part by the Office of Naval Research under contract Nl0014-82-l<-0154, the Qffice of 
Army Research under contract DMG29-79-C-0155, and the NSF, under grants MCS-3116678, MCS-8302391, and MCS-
8306854. 



2 

Introduction 

The concern of this paper is a set of potentially faulty processes that engage in a distributed 

computation to agree on some piece of information. Each process enters the computation with an 

initial value. The computation returns a common result value to each correct process. If all correct 

processes begin the computation with identical initial values, then the result value equals the initial 

value. 

The computation can be briefly characterized as follows. The computation is fully· distributed 

and symmetric. It includes several rounds of synchronous message exchange over a completely 

connected, totally reliable communications network. The correct processes communicate only 

through messages. The communications network correctly identifies the sender of each message to 

the recipient of the message. Processes are assumed to have no signature ability (authentication}. 

That is, there is no immediate way of detecting whether or not a relayed message has been altered. 

A process fails if it does not successfully perform the actions prescribed by the agreement 

algorithm. No assumptions are made restricting the measages sent by faulty processes. One can 

imagine that all faulty processes act maliciously, in collusion, and with magical knowledge of the state 

of the distributed system. 

A computation that functions as described above solves the Byzantine generals problem 

without authentication [3]. (Authenticated protocols protect relayed messages from alteration.} Let P 

be the number of processes that engage in the agreement computation and let T be an upper bound 

on the number of processes that may fail during the agreement computation. Byzantine agreement 

without authentication requires P>3T (6), and cannot be achieved In fewer than T + 1 rounds (4). 

A less general formulation of the problem assumee that a distinguished process transmits 

initial values to the other processes. This paper makes no assumption aboUt the source of the 

processes's initial values. 

-------------- - ----



3 

This paper describes a method for extending a binary Byzantine agreement algorithm to reach 

agreement on values from an arbitrary domain V. Any binary algorithm that does not require a 

distinguished transmitter process may be used. Two rounds are prepended to the binary algorithm. 

In the first round, each process sends every other process its initial value. In th~ second round, each 

process broadcasts a single bit of information by sending or not sending null messages. The third and 

subsequent rounds follow the chosen binary algorithm. 

Previous algorithms for reaching Byzantine agreement on values from an arbitrary domain V 

require processes to send messages whose length depends on the size of Vin each round of the 

computation. Using the extension described in this paper, messages whose length depends on the 

size of V are sent only in the first round. Since the time that must be allotted each round of the 

computation depends in part on the length of messages sent in the round, the extension enables 

significant savings when the domain is large. 

The prepended rounds are an integral part of the extended computation. In particular, 

agreement can be guaranteed only if no more than T processes fail during the computation, including 

the first two rounds, where P>3T. (The chosen binary algorithm may make additional assumptions.) 

The body of this paper contains three sections: a description of the extension, a proof of its 

correctness, and a discussion of implementation concerns and performance characteristics. 

Description of the Extension 

In the first round, each process sends its initial value to every other process. A process is said 

to be perplexed if, in the first round, it receives at least as many as (P - T)/2 initial values different 

from its own. Processes that are not perplexed are said to be content. In the second round, each 

perplexed process sends a message to every other process. The semantics of this message is just "I 

am perplexed". 

Each process maintains three local variables: two arrays indexed by process number and a 

boolean. These variables are are assigned values during the first two rounds. For process j, and 1:;e:j, 



4 

these variables are defined as follows: 

v(j) The process's initial value. 

v(i) The initial value received from process i. 

p(j) A boolean that is set true if and only if process j is perplexed, that is, v(j)~v(i) for at 

least as many as (P - T)/2 distinct values of i. 

p(i) A boolean that is set true if and only if process i sent a message claiming it is 

perplexed. 

alert A boolean that is set true if and only if at least as many as P - 2T elements of p are true. 

The binary computation is used to reach agreement on alert. If the binary computation agrees 

alert= true, there are correct processes with different initial values from V. ln this ~e. all correct 

processes use a ,predefined default value from V as the.result of the extended computation. If 

agreement is alert= false, then all correct content processes have the same initial value from V. This 

value is the result of the extended computation. Perplexed proceaees deduce this result by using the 

initial value that is common to a majority of the content processes. That is, each perplexed process 

tabulates as votes the values v(j) for which p(j) is false. The majority vote is for the value favored by 

Proof of Correctness 

The extended computation is correct if (1) all correct procesees obtain the same result value, 

and (2) the result value equals the common initial value whenever all correct processes begin with the 

same initial value. 

The second claim is easily proved. If all correct processes have the same initial value from the 

domain V, then no correct process is perplexed and all correct processes have alert• false. The 

binary computation agrees alert• false and aH correct processes, which are content, use their initial 

value as the result. 

The first claim has two cases: the binary computation agrees alert• true or alert• false. In the 



5 

former case, all correct processes select the default value as.the result -Of the extended computation. 

In the latter case, it is necessary to show that all content processes have the same initial value and 

that this value is deduced by all the perplexed processes. This will now be demonstrated. 

Any subset of more than (P + T)/2 processes contains a majority of the correct processes. 

From this basic fact, it follows that each content process has the same initial value as a majority of the 

correct processes. (Observe that (P + T)/2 and (P- T)/2 sum to P.) Since there cannot be two 

distinct majorities, all content processes have the.same initial value. 

Since the result of the binary computation is alert = false, there are at least T + 1 correct 

content processes, for otherwise there would be at least P - 2T correct perplexed processes and all 

correct processes would be alert and the result of the binary computation would be alert== true. Each 

perplexed process has p(j) false for all content processes and possibly for some incorrect processes. 

Since there are at most T incorrect processes, the content processes are a majority of those for which 

p(j) is false. Taking a majority vote of the vO) for which p(j) is false produces the value shared by the 

content processes. 

Implementation and Performance Analysis 

Many binary algorithms favor one of the two values in the binary domain. The binary 

algorithms (without authentication) described in· [1,2,3,5] all reach agreement for the favored value 

whenever more than T correct processes begin with that value. (Assume that the threshold LOW 

equals T + 1 in [1,2,5].) 

In the extended algorithm, the second round together with the binary computation can be 

interpreted as reaching binary agreement on which processes are perplexed, providing agreement is 

reached for perplexed whenever {P - T)/2 or more correct processes are initially perplexed. · If the 

chosen binary algorithm exhibits the bias described above, the second round of the extended 

algorithm can be omitted. (The chosen binary algorithm must require that each process sends all 

other processes initial binary values so that the values in the array p can be set.) 



~ '-·>:~.-·'-~" 'y" ..;.· ~'.,·,:-:t ·•. 

' /' 

6 

A good multivalued Byzantine agreement algorithm is presented in [5]. Agreement is reached 

in 2T + 4 rounds and requires O(P3> messages each comprising O(log P log IVI> bits. The extension 

described in this paper using the algorithm in [5] to reach binary agreement reaches multivalued 

agreement in 2T + 5 rounds (the second round of the extension is not needed) and requires O(f>3) 

messages having O(log P) bits and O(p2) messages having O(log IVI) bits. The latter messages are 

sent only in the first round. 

The above analysis shows that the extension of the binary algorithm in [5] yields a multivalued 

algorithm that is cheaper in message bitS than the multivalued algorithm deserlbed in [5]. The 

extension enables this savings because only in the first round does It send messages whose length 

depends on the size of the value domain. The actual time savings possible depends on a variety of 

factors; including the cost of an additional communication round relative to the cost of sending large 

messages, the size of the value domain, and the bandwidth of the communications network. 

Conclusion 

This paper shows that reaching Byzantine agreement on values from an arbitrary domain is 

not essentially more difficult than reaching binary Byzantine agreement, except tor the necessity of 

initially exchanging and comparing ~ues. Using the technique described in this paper to extend a 

good binary algorithm yields a multivalued algorithm faster than those previously published when 

agreement must be reached on large sets of data. 

Acknowledgments 

Mani Chandy, while teaching a distributed algorithms class, first posed the Byzantine generals 

problem to Russell Turpin, who also thanks Jay Misra and Doug Neuae for their criticism and advice, 

and J. C. Browne and the employees of Information Research Associates for their support. Brian 

Coan thanks Nancy Lynch, Jennifer Lundelius, and Eugene Stark for helpful discussions and 

suggestions. Both authors are indebted to David Gries for editorifd advice. 

----------------------- ----



7 

References 

[1] D. Dolev, M. Fischer, A. Fowler, N. Lynch, and H. A. Strong 

An Efficient Byzantine Agreement without Authentication 

IBM Research Report RJ3428, March 82, 

Watson Research Center Distribution Services, P 0 Box 218, Yorktown Hts., NY 10598 

[2] D. Dolev and H. A. Strong 

Polynomial Algorithms for Multiple Processor Agreement 

14th ACM Symp. on Theory of Computing (May 82) 401-407 

[3] L. Lamport, R. Shostak, and M. Pease 

The Byzantine Generals Problem 

ACM Transactions on Programming Languages and Systems, 4 (3) (1982) 382-401 

[4] N. Lynch and M. Fischer 

A Lower Bound for the Time to Assure Interactive Consistency 

Information Processing Letters, 14 (4) (1982) 1aa.;.1ee 

[5] N. Lynch, M. Fischer, and R. Fowler 

A Simple and Efficient Byzantine Generals Algorithm 

2nd Symp. on Reliability In Distributed Software and Database Systems (1982) 46-52 

[6] M. Pease, R. Shostak, and L. Lamport 

Reaching Agreement in the Presence of Faults 

J. ACM 27 (2) (1980) 228-234 


