
MIT/LCS/TR-314 

SPECIFICATION AND 
IMPLEMENTATION OF 
ATOMIC DATA TYPES 

William Edward Weihl 

April 1984 



This blank page was inserted to presenie pagination. 



Specification and Implementation 

of 

Atomic Data Types 

by 

William Edward Weihl 
S.M., Massachusetts Institute of Technology (1980) 

Submitted in partial fulfillment 
of the requirements for the 

degree of 

Doctor of Philosophy 

at the 

Massachusetts Institute of Technology 
March 1984 

©Massachusetts Institute of Technology 1984 

Signature of Author_J.4/t--""-"'/~---"-~-~---~~.....;.._..;;fc;;.._~..:;..z«._~ __ -e~/___,~"'-"'-J_&'"-'+------
Department of Electrical Engineering and Computer Science 

March 7, 1984 

Certified by _______ f3_j..;;;..:a-"-'t1 ........ ·-a.""""/).:....;;' &..__'-ft....<......;_,;._' _,.~-:.:.....:....:...;<.-1;;;.<. . ...... ....;...·. ____ _ 

Barbara H. Liskov 
Thesis Supervisor 

Accepted by _______________________ _ 

Arthur C. Smith 
Chairman, Departmental Committee 



Specification and Implementation 

of 

Atomic Data Types 

by 

William Edward Weihl 

Submitted to the Department of Electrical Engineering and Computer Science 
on March 7, 1984 in partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

Abstract 

3 

Maintaining the consistency of long,lived, on-line data is a difficult task, particularly in a 
distributed system. This dissertation focuses on atomicity as a fundamental organizational 
concept for such systems. It explores an approach in which atomicity is ensured by the data 
objects shared by concurrent activities: such objects are called atomic objects, and data 
types whose objects are atomic are called atomic types. By using information about the 
behavior of the shared objects, greater concurrency among activities can be permitted. In 
addition, by encapsulating the synchronization and recovery needed to support atomicity in 
the implementations of the shared objects, modularity can be enhanced." 

This dissertation addresses three fundamental questions: 

What is an atomic type? 

How can an atomic type be specified? 

How can an atomic type be implemented? 

Atomicity of activities is a global property of an entire system, while atomicity of types is a 
local property of individual types. This dissertation examines three definitions of atomicity for 
types, each of which is optimal: No strictly weaker definition of (local) atomicity for types 
suffices to ensure (global) atomicity of activities. The definitions of atomicity discussed 
encompass both serializability and recoverability, and use user-supplied specifications of 
objects to permit greater concurrency. 

The specification framework presented in this dissertation divides the specification of a data 
type into two parts: the serial specification, which describes how the type behaves in the 
absence of concurrency and failures, and the behavioral specification, which describes how 
the type supports atomicity. This division permits the programmer of an individual activity to 
ignore how atomicity is achieved, and to focus on the serial behavior of each object. In 
addition, the definitions of atomicity permit the behavioral specification of a type to be derived 
systematically from its serial specification. 



4 

A novel two-phase locking protocol, covering both synchronization and recovery, is 
presented and verified. The protocol uses information about the behavior of objects to 
achieve greater concurrency than can be achieved with protocols based on read and write 
operations. In addition. the protocol permits the results of an operation, as well as its 
arguments. to be used in determining the appropriate lock mode for the operation. 
Furthermore. the protocol permits operations to be both partial and non-deterministic. 

Finally. several implementations of atomic types are presented. illustrating how existing 
techniques for synchronization and recovery can be extended to use information about the 
behavior of objects to increase concurrency. The dissertation also explores linguistic support 
for atomic types. analyzing the advantages and disadvantages of alternative approaches. 

Thesis Supervisor: Barbara H. Liskov 
Title: Professor of Computer Science and Engineering 

Keywords: Distributed Systems, Concurrency Control, Recovery, Atomicity, Formal 
Specifications, Program Design, Abstract Data Types, Programming Methodology, 
Programming Languages. 



5 

Acknowledgments 

First, I would like to thank my advisor. Barbara Liskov, for her guidance and encouragement, 
and for her patience as I struggled to develop the ideas presented in this dissertation. In 
addition. I would like to thank my readers. John Guttag and Nancy Lynch, for their many 
perceptive comments and suggestions. All three members of my committee read drafts of my 
dissertation quickly and thoroughly: their suggestions were invaluable in improving its 
presentation and organization. 

Many other people have contributed to the ideas in this thesis. I am indebted to Gene Stark 
for numerous discussions in the early stages of my work. I am also grateful to Maurice Herlihy 
and Toby Bloom for many conversations, enlightening and otherwise; to Dan Brotsky for his 
willingness to listen and for his invaluable comments and suggestions; to Jeannette Wing for 
her willingness to discuss problems. even as she was finishing her thesis; to Gary Leavens for 
his comments and questions on my research and for a careful reading of my entire thesis; and 
to the other members of the Programming Methodology group, especially Bob Scheifler, Paul 
Johnson, John Goree, Brian Oki, and Sheng-Yang Chiu, for their feedback on my ideas. 

The Fannie and John Hertz Foundation provided me with financial support during my tenure 
as a graduate student. I thank them for their generosity. In addition, I was supported in part 
by the Advanced Research Projects Agency of the Department of Defense, monitored by the 
Office of Naval Research under contracts N00014-75-C-0661 and N00014-83-K-0125, and in 
part by the National Science Foundation under grants MCS 79-23769 and MCS 82-03486. 

I cannot say enough to thank Toby, Dan, Jeannette, Chuck Harm, and Dan Jones for their 
friendship. 

I am deeply grateful to my family for their love, support, and encouragement during the last 
few years. I wish that my father could have lived to see me complete this dissertation; he and 
my mother have been an inspiration to me throughout my life. 

Finally, I thank my wife, Heather, with all my heart for her unceasing love and support as I 
have struggled to finish this thesis. 



6 



7 

To my father. 



8 



Chapter One: Introduction 

1.1 Implementing Atomicity 
1.1 . 1 Recovery 
1.1.2 Synchronization 

Table of Contents 

1.1.2.1 Locking Protocols 
1.1.2.2 Timestamp-based Protocols 
1.1.2.3 Hybrid Protocols 

1.2 Atomic Types 
1.2.1 Interactions Among Objects 
1.2.2 Type-specific Concurrency Control 

1.3 Overview 
1.4 Related Work 
1.5 Roadmap 

Chapter Two: System Model 

2.1 Computations and Observations 
2.2 Specifications 

2.2.1 State Machines 
2.2.2 Specifications of Objects 
2.2.3 Behavior of a System 

Chapter Three: Global Atomicity 

3.1 Definitions 
3.2 Limitations of the Scheduler Model 

Chapter Four: Local Atomicity Properties 

4.1 Dynamic Atomicity 
4.1.1 Definition of Dynamic Atomicity 
4.1 .2 Optimality 

4.2 Static Atomicity 
4.2.1 Definition of Static Atomicity 
4.2.2 Optimality 
4.2.3 Discussion 

4.3 Hybrid Atomicity 
4.3.1 Additional Events 
4.3.2 Definition of Hybrid Atomicity 
4.3.3 DiscussiQn 

4.4 Remarks 
4.4.1 Type-specific Concurrency Control 
4.4.2 Atomic Types 
4.4.3 Structure of Specifications 

Chapter Five: Locking 

5.1 Existing Protocols 
5.2 A General Locking Protocol 

9 

13 

14 
15 
15 
15 
16 
17 
18 
18 
19 
20 
21 
24 

27 

27 
30 
30 
31 
33 

35 

35 
39 

43 

44 
44 
46 
51 
51 
52 
54 
54 
55 
56 
57 
60 
60 
60 
61 

63 

63 
64 



10 

5.2.1 Definition of Commutativity 
5.2.2 The Protocol 

5.3 Correctness Proof 
5.3.1 Commutativity 
5.3.2 On-line Dynamic Atomicity 
5.3.3 Verification of LOCK . 

5.4 Remarks 
5.4.1 Existing Protocols Revisited 
5.4.2 Limitations of Commutativity-based Protocols 

Chapter Six: Linguistic Support in Argus 

6.1 Issues. 
6.2 Nested Activities 
6~3 Types versus Objects 
6.4 Implementing Atomic Types in Argus 

6.4.1 Linguistic Support 
6.4.1.1 The Type Generator Atomic_variant 
6.4.1.2 The Tagtest Statement 
6.4.1.3 Mutual Exclusion 

6.4.2 Implementation of the Semiqueue Type 
6.4.3 Remarks 

Chapter Seven: Support for an Explicit Approach 

7.1 Linguistic Support 
7.2 Implementation of the Semiqueue Type 
7.3 Remarks 

7.3.1 Summary of Examples 
7.3.1.1 Implementations of the Semiqueue Type 
7.3.1.2 Implementations of the Map Type 
7.3.1.3 Implementation of the Bank_account Type 

7.3.2 Comparison 
7.3.3 Related Work 

Chapter Eight: Summary and Conclusions 

8.1 Summary 
8.2 Conclusions and Further Work 

References 

Appendix A: Example Implementations 

A.1 Implicit Implementation of the Map Type 
A.2 Explicit Implementation of the Map Type 
A.3 Explicit Implementation of the Bank_account Type 
A.4 Remarks 

Appendix B: Index of Definitions 

64 
65 
68 
68 
70 
72 
76 
76 
78 

81 

82 
82 
85 
86 
86 
87 
88 
89 
90 
95 

97 

97 
99 

106 
106 
106 
107 
108 
109 
111 

113 

113 
114 

117 

125 

125 
129 
137 
146 

149 



Table of Figures 

Figure 2-1: An example machine. 
Figure 2-2: Serial specification of a set object x. 
Figure 2-3: Serial specification of a semiqueue object y. 
Figure 3-1: The scheduler model. 
Figure 3· 2: Serial specification of a FIFO queue object z. 
Figure 4-1 : Serial specification of a counter object y. 
Figure 5· 1: The machine LOCK. 
Figure 5-2: Serial specification of a bank account object y. 
Figure 6· 1 : Informal specification of the data type semiqueue. 
Figure 6-2: Informal specification of the data type array. 
Figure 6-3: Implicit implementation of the data type semiqueue. 
Figure 7·1: Informal specification of the data type aid. 
Figure 7 • 2: Informal specification of the data type action_queue. 
Figure 7-3: Informal specification of the data type log. 
Figure 7·4: Explicit implementation of the data type semiqueue. 
Figure A· 1: Informal specification of the data type map. 
Figure A-2: Implicit implementation of thedata type map. 
Figure A-3: Informal specification of the data type versions. 
Figure A·4: Informal specification of the data type set. 
Figure A-5: Explicit implementation of the data type map. 
Figure A-6: Informal specification of the data type bank_account. 
Figure A· 7: Informal specification of the data type crowd. 
Figure A·8: Explicit implementation of the data type bank_account. 

11 

31 
33 
33 
39 
40 
48 
66 
78 
91 
92 
93 
98 

100 
101 
102 
126 
127 
130 
131 
132 
138 
139 
140 



12 



13 

Chapter One 

Int reduction 

There are many applications in which the manipulation and preservation of long-lived, on-line 

data is of primary importance. Examples of such applications are banking systems, airline 

reservation systems, office automation systems, database systems, and various components 

of operating systems. A major issue in such systems is preserving the consistency of on-line 

data in the presence of concurrency and hardware failures. In this dissertation we consider 

how to define data objects that help provide this consistency. 

To support consistency it is helpful to make the activities that use and manipulate data 

atomic. Atomic activities are often referred to as actions or transactions; they were first 

identified in work on databases [Davies 73, Davies 78, Eswaren et al. 76]. Atomic activities are 

characterized informally by two properties: serializability and recoverability. Serializability 

means that the concurrent execution of a group of activities is equivalent to some serial 

execution of the same activities. Recoverability means that each activity appears to be all-or­

nothing: either it executes successfully to completion (in which case we say that it commits), 

or it has no effect on data shared with other activities (in which case we say that it aborts). 

Nested transactions [Davies 73, Reed 78, Moss 81, Lynch 83) are useful for decomposing 

activities into smaller units. Nested transactions provide increased failure-tolerance: 

Subtransactions of a transaction fail independently of each other and independently of the 

containing transaction. In addition, nested transactions can be used to run parts of the same 

activity concurrently, while ensuring that their concurrent execution is serializable. As 

discussed in [Liskov 82), nested transactions permit a simple implementation of a remote 

procedure call primitive with "at-most-once" semantics: A remote call is executed either zero 

or one times; partial and multiple executions cannot occur. 

Atomicity simplifies the problem of maintaining consistency by decreasing the number of 

cases that need to be considered. Since aborted activities have no effect, and every 

concurrent execution is equivalent to some serial execution, consistency is ensured as long 

as every possible serial execution of committed activities maintains consistency. Even though 

activities execute concurrently, concurrency can be ignored when checking for consistency. 

In this dissertation we explore an approach in which atomicity is achieved through the shared 

data objects, which must be implemented in such a way that the activities using it appear to 

be atomic. Objects that provide appropriate synchronization and recovery are called atomic 

objects; atomicity is guaranteed only when all objects shared by activities are atomic objects. 



14 

By encapsulating the synchronization and recovery needed to support atomicity in the 

implementations of the shared objects, we can enhance modularity; in addition, by using 

information about the specifications of the shared objects, we can increase concurrency 

among activities. ,, 

Atomic objects are encapsulated within atomic abstract data types. An abstract data type 

consists of a set of objects and a set of primitive operations; the primitive operations are the 

only means of accessing and manipulating the objects [Liskov & Zilles 74). In addition, the 

operations of an atomic type ensure serializability and recoverability of activities using the 

type. 

In this dissertation we investigate the semantics of atomic types and the problems involved in 

implementing them. We address three fundamental questions: 

What is an atomic type? 

We need a precise characterization of the behavior of atomic objects. For 

example, we need to know how much concurrency can be allowed by an 

atomic type. 

How do we specify an atomic type? 

What aspects of the type's behavior must appear in the specification of an 

atomic type, and how should the specification be structured? 

How do we implement an atomic type? 

What problems must be solved in implementing an atomic type, and what 

kinds of programming language constructs make this task simpler? 

The remainder of this chapter is organized as follows: In Section 1.1, we review protocols for 

implementing atomicity. Next, in Section 1.2, we discuss atomic types in more detail. Then, in 

Section 1.3, we summarize the contributions of this dissertation. In Section 1.4, we discuss 

related work. Finally, in Section 1.5, we outline the rest of the dissertation. 

1.1 Implementing Atomicity 

There are two subproblems that must be solved to implement atomicity: recovery of aborted 

activities, and scheduling, or synchronization, of concurrent activities. The effects of aborted 

activities must be undone, and the earlier states of objects recovered,_ to ensure that aborted 

activities have no effect on the state of the system. In addition. activities must be 

synchronized to avoid non-serializable executions. We discuss these two subproblems in the 

next two subsections. 



15 

1.1.1 Recovery 

Recovery is accomplished by maintaining redundant information. There are two basic 

techniques for performing recovery: undo logs [Gray et al. 81, Verhofstad 78), and intentions 

lists [Lampson 81, Verhofstad 78]. The representation of an object in both cases is divided 

into two pieces: the actual value of the object, and separate recovery information (either an 

undo log or an intentions list). 

Undo logs work as follows: When an activity invokes an operation on an object, the operation 

is performed on the value of the object, and sufficient information is recorded in the object's 

undo log so that the effects of the operation can be undone if the activity that executed the 

operation later aborts. For example, if an activity executes a write operation on an object, the 

old value of the object might be saved in the object's undo log. The undo log for an activity is 

simply discarded if the activity commits. 

Intentions lists are used slightly differently: When an activity invokes an operation on an 

object, the operation is simply recorded in the intentions lists associated with the object; it is 

not actually performed on the value of the object until the activity commits. For example, if an 

activity executes a write operation on an object, the new value of the object might be saved in 

the object's intentions list; the new value will replace the old value only if the activity commits. 

· If the activity aborts, the list of its operations is discarded. 

A detailed description of these techniques and alternative storage organizations for them may 

be found in [Verhofstad 78]. 

1.1.2 Synchronization 

Many protocols have been developed for synchronizing concurrent activities to ensure 

serializability (or concurrency control, as this problem is called in the literature on database 

systems ·· see [Bernstein & Goodman 81] for a survey of a large number of concurrency 

control protocols.) Most are variations or hybrids of two simple techniques: two-phase 

locking [Eswaren et al. 76] and multi-version timestamping [Reed 78]. We discuss these two 

techniques and a hybrid below. 

1.1.2.1 Locking Protocols 

One of the earli~st protocols developed for concurrency control is two-phase 

locking [Eswaren et al. 76]. Two-phase locking works as follows: Before reading an object X, 

an activity must acquire a read lock on X. Similarly, before writing an object, an activity must 

acquire a write lock on the object. An activity can acquire a lock on an object only if no 

concurrent activity holds a conflicting lock on the object. In addition, once an activity 

releases one lock, it is not allowed to acquire any additional locks. 



16 

Two locks on an object conflict if one is a write lock. This definition of conflicting locks 

ensures that at most one activily is writing an object at a time, but also allows multiple 

activities to read an object concurrently. 

The requirement that an activity not acquire any more locks after it releases a lock means that 

activities acquire locks in a two-phase manner (hence the name of the protocol). During the 

growing phase an activity acquires locks without releasing any locks. When an activity first 

releases a lock, it enters the shrinking phase. During this phase the activity releases its locks, 

but may not acquire any more locks. As is shown in [Eswaren et al. 76, Papadimitriou 79], 

two-phase locking ensures that activities are serializable in the order in which they first 

release locks. 

A variant of two-phase locking, called strict two-phase locking, is more suited to the 

applications of interest to us. Under strict two-phase locking, activities hold all locks until they 

commit or abort. This avoids cascading aborts [Wood 80], a problem with non-strict two­

phase locking: If write locks are released and then an activity aborts, any activities that read 

the values written by the aborted activity must also be aborted. In addition, strict two-phase 

locking permits locks to be acquired dynamically as needed. Non-strict two-phase locking 

may require more advance planning, particularly to determine when an activity can release a 

lock. 

Strict two-phase locking can be extended to nested activities as follows: N~sted activities 

form a natural tree structure, with each activity appearing as the parent of its subactivities. 

We define the notions of ancestor, proper ancestor, descendant, and proper descendant in 

the usual way. The locking rules for nested activities are defined as follows: As before, an 

activity must acquire a read (write) lock before reading (writing) an object. An activity can 

acquire a lock on an object as long as no concurrent non-ancestor holds a conflicting lock on 

the object. When an activity aborts, its locks are discarded. When an nested activity commits, 

its locks are inherited by its parent; when a top-level activity commits, its locks are discarded. 

Details can be found in [Moss 81, Liskov et al. 83]; a proof of the correctness of Moss's 

algorithm is given in [Lynch 83]. 

1. 1 .2.2 Timestamp-based Protocols 

The serialization order of activities attained by two-phase locking is determined dynamically 

by the order in which activities lock objects. In contrast, timestamp-based protocols 

determine the serialization order statically by selecting timestamps for activities when they 

start, and then force the execution of activities to obey this order. 

Reed's implementation [Reed 78] of a timestamp-based protocol works as follows: An activity 

is assigned a unique timestamp when it begins execution. When an activity wants to modify 



17 

an object, it creates a new version of the object. A version of an object has two timestamps 

associated with it: the write timestamp, which is the timestamp of the activity that created the 

version: and the read timestamp, which is the maximum of the timestamps of activities that 

have read.the version. When an activity with timestamp t wants to read an object, it selects 

the version of the object with the largest write timestamp less than t, and changes the read 

timestamp of the version to the maximum of its current value and t. 

Write operations sometimes cannot be executed: Suppose an activity a with timestamp t 

wants to write an object, and a version v of the object already exists with write timestamp less 

than t and read timestamp greater than t. In a serial execution in which the activities execute 

in timestamp order, a must come between the activity that wrote the version v and the activity 

that read it. If a is allowed to write the object, then in the serial execution the activity that read 

v should instead read the value written by a. Thus, the write operation must be refused. 

To avoid cascading aborts, read operations sometimes must be delayed: If an activity with 

timestamp t wants to read an object, and the version selected was written by an activity that 

has not yet committed or aborted, the read operation must wait until that activity completes. 

Otherwise, if the activity that created the version later aborts, the reader must also be aborted. 

More details, and in particular the extension of the protocol to cope with nested activities, can 

be found in [Reed 78]. 

1.1.2.3 Hybrid Protocols 

Locking and timestamp-based protocols can be combined to yield hybrid protocols that 

achieve greater concurrency [DuBourdieu 82, Chan et al. 82, Bernstein & Goodman 81]. We 

divide activities into two classes: read-only activities, which never modify objects; and update 

activities. 

Update activities set locks on objects as in strict two-phase locking, but two locks conflict only 

if one is a read lock and the other is a write lock; a write lock no longer conflicts with another 

write lock. As with Reed's protocol, each write operation creates a separate version, and 

versions have two timestamps. Rather than choosing timestamps for update activities when 

they begin executing, however, we wait until they attempt to commit. Then, using a Lamport 

clock [Lamport 78], we ensure that the timestamps chosen for updates give a serialization 

order consistent with the order induced by the locks. The order of conflicting write operations 

is sorted out using the timestamps. 

Updaters that invoke read operations always read the version with the largest timestamp. 

Read-only activities, however, may read older versions, permitting them to run without 

interfering with update activities. Timestamps for read-only activities are chosen when they 



18 

start executing. When a read-only activity wants to read an object, it simply selects the 

version with the largest write timestamp less than the activity's timestamp. A proof of the 

correctness of this protocol can be found in [Bernstein & Goodman 83]. 

1.2 Atomic Types 

Our motivation for focusing on atomic types is two-fold: First. it is important to understand the 

interactions among independent objects, and to understand what constraints must be 

satisfied by objects to ensure atomicity of activities. Second, by using information about the 

behavior of operations provided by types, we can achieve greater concurrency than can be 

achieved by protocols based on a classification of operations as reads and writes. In this 

section we discuss these two issues in more detail. In the first part, we illustrate the problems 

caused by interactions among objects. In the second part, we discuss how user-defined 

atomic types can be used to increase concurrency. 

1.2.1 Interactions Among Objects 

Each of the protocols discussed in the previous section can be shown to ensure atomicity of 

activities. Thus, an object using one of these protocols should be considered "atomic." 

However, as the example below illustrates, objects using different protocols cannot 

necessarily be used together in the same system. 

Consider two objects X and Y, each with read and write operations, and each with initial value 

0. Suppose that X is implemented using two-phase locking, and Y is implemented using 

multi-version timestamping. Now suppose there are two activities A and 8, with timestamps 1 

and 2, respectively. Consider the following execution: 

B reads X, receiving O. 
B writes 1 into Y. 
B commits. 
A reads Y, receiving 0. 
A writes 1 into X. 
A commits. 

This execution is not serializable: In a serial execution, the second activity should see the 

value written by the first, but both A and Bread the initial values of the objects. However, the 

execution is atomic at each object: At X, B is serializable before A, and at Y, A is serializable 

before B. 

The problem in this example is that X and Y use incompatible protocols to ensure atomicity. If 

both objects used two-phase locking, or both used multi-version timestamping, the above 

execution could not occur and atomicity would be guaranteed. As we will discuss in Chapter 

4, some information about the protocol used by an atomic type's implementation must be 



19 

reflected in the type's specification, and only types using "compatible" protocols can be used 

in the same system. 

1.2.2 Type-specific Concurrency Control 

The protocols discussed in the previous section were developed for simple data types, such 

as files and relations, with read and write operations. To support user·defined types, they 

must be extended to cope with arbitrary operations. The primary reason for making such an 

extension is increased concurrency: by using detailed information about the specifications of 

the operations provided by types, we can allow concurrent executions that must be forbidden 

if operations are simply characterized as reads and writes. 

Consider, for example, a bank account data type, with operations to create a new bank 

account object (with an initial balance of 0), to deposit money in an account, to withdraw 

money from an account, and to check the current balance of an account. Now consider the 

following concurrent execution of two activities, A and B: 

A deposits $3 in a barik account X. 
B deposits $2 in X. 
A commits. 
Bcommits. 

This execution is clearly serializable: A and B can execute serially in either order and perform 

the same steps. It is not permitted, however, by any of the protocols discussed in the previous 

section: A and B both update X (reading the current balance, and writing a new balance), and 

so cannot access X concurrently. 

The example above is a simple illustration of a general phenomenon: By describing a system 

in terms of abstract objects (rather than primitive objects with read and write operations), we 

can permit greater concurrency than would otherwise be possible. This additional 

concurrency may be essential for achieving adequate performance in an application. 

Particularly in a distributed system, activities may take a relatively long time to complete; by 

permitting more concurrent access to objects, we may be able to avoid creating bottlenecks 

in the system. In the remainder of this dissertation we will provide more examples of this 

phenomenon, and will show how implementations of objects can permit high levels of 

concurrency. 

Achieving the kind of concurrency illustrated above typically requires a more complex 

implementation. It may be most effective to implement a system initially permitting little 

concurrency, for example, by using a protocol based on reads and writes. If certain shared 

objects can then be identified as bottlenecks, more concurrent (albeit more complex) 

implementations can be substituted for the types defining those objects. Of course, there are 

limits to how much concurrency an atomic type can permit. One of the results of this 



20 

dissertation is a precise definition of these limits. 

1 .3 Overview 

As mentioned earlier, we address three fundamental questions in this dissertation: 

- What is an atomic type? 

- How can we specify an atomic type? 

- How can we implement an atomic type? 

To answer the first two questions we must generalize existing work on concurrency control 

(or serializability) in three ways: 

- Our definition of atomicity is data-dependent: It is based on an explicit 
specification of the desired behavior for the data objects used by activities. This 
is crucial in achieving the concurrency required by applications. 

·Our definition of atomicity is integrated: We treat both serializability and 
recoverability. This facilitates the description and verification of implementations 
of atomic objects, which necessarily must cope with both. 

· We focus on modularity issues: We identify local properties of individual objects, 
and we identify the conditions under which different kinds of objects can be 
combined in a single system while preserving atomicity of activities. 

We explore three local properties, each of which is optimal: No strictly weaker local property 

suffices to ensure atomicity. The three properties characterize respectively the behavior of 

the three classes of protocols discussed in Section 1.1.2: two-phase locking protocols, in 

which the serialization order of activities is determined by the order in which they access 

objects; multi-version timestamp-based protocols, in which the serialization order of activities 

is determined by a pre-determined total order; and hybrid protocols, which use a combination 

of these techniques. 

We present a novel locking protocol and verify its correctness. Our protocol generalizes 

previously existing protocols in two ways: It permits the results of operations, as well as their 

arguments, to be used in determining the appropriate lock mode, and it handles partial and 

non-deterministic operations. In addition, we describe and verify the-implementation of both 

synchronization and recovery; descriptions of previously existing protocols are limited to 

synchronization alone. 

Our approach to specifying atomic types permits the programmer of an individual activity to 

ignore how atomicity is achieved. To reason about whether an individual activity preserves 

consistency, one needs only the serial specification of each object used by the activity, and 



21 

the knowledge that activities are atomic; one need not know how objects cooperate to ensure 

atomicity. 

In addition, our specification framework supports an approach that permits the concurrent 

specification of an object t~ be derived systematically from a specification of its sequential 

behavior. This is perhaps the most significant contribution of this dissertation: We reduce the 

problem of specifying an object to the simpler problem of specifying how it should behave in 

the absence of concurrency. 

Finally, we present several example implementations of atomic types, illustrating how existing 

techniques for synchronization and recovery can be extended to use information about the 

specifications of objects to increase concurrency. We also discuss linguistic support for 

atomic types, analyzing the advantages and disadvantages of several alternative approaches. 

Throughout the dissertation we use a model that permits a restricted class of failures: 

Activities can abort, but objects cannot fail. This model is an abstraction of real systems, and 

can be approximated arbitrarily closely with a commitment protocol (e.g., two-phase 

commit [Gray 78, Lampson 81] or three-phase commit [Skeen 82]) and appropriate use of 

redundant information (e.g., stable storage [Lampson 81]). 

There are a number of important issues that we do not address: 

- We do not investigate particular specification languages for atomic types; rather, 
we focus on the underlying formal models of specifications and on identifying 
desirable semantic properties of atomic types. 

- We ignore some issues raised by the distributed nature of applications, such as 
the distinction between local and remote data. 

- We do not consider how to ensure progress in the face of deadlock, starvation, 
and failures. 

1.4 Related Work 

Most early work on synchronizing concurrent processes occurred in the context of operating 

systems. Numerous linguistic mechanisms were developed (e.g., see [Hoare 74, Atkinson & 

Hewitt 77, Campbell · & Habermann 74]), permitting modular implementations of 

synchronization for individual operations on objects. While similar implementation 

mechanisms are useful for supporting atomicity, the concurrency rules for atomic actions are 

different: Synchronization must cope with interference among activities invoking multiple 

operations, rather than just interference among single operations. Furthermore, there was no 

systematic approach for coping with failures. 



22 

Specification and proof techniques were also explored (e.g., see [Owicki & Gries 76, Owicki & 

Lamport 82, Pnueli 77]). Much of this work assumed a fixed set of atomic actions, and did not 

consider how to let the programmer build higher-level atomic actions or new data types. In 

addition, much of this work did not consider how to specify and verify individual modules. 

None of the operating systems work provided a systematic solution to the problem of 

choosing the specifications for the modules in a system. Our specification approach 

simplifies the problem of specifying an object by reducing it to the simpler problem of 

specifying how the object should behave in the absence of concurrency. 

The trend in database systems was quite different. Nested atomic actions were first proposed 

by Davies [Davies 73) (he called them spheres of control). Single-level transactions were 

suggested in [Eswaren et al. 76) as a way of ensuring consistency of databases in the 

presence of concurrency and failures. While Davies discussed atomic actions in very general 

terms as a concept for controlling concurrency and failures. Eswaren et al. presented a 

practical implementation based on two-phase locking. 

Meanwhile, work at the University of Newcastle on recovery blocks [Randell 75) investigated 

using nested atomic actions as a mechanism for localizing the effects of failures. Recovery 

techniques were explored in depth, particularly for building user-defined data 

types [Verhofstad 76, Anderson et al. 78). The problems of concurrency, however, were 

addressed only for a limited class of data types (e.g., resource managers in [Shrivastava & 

Banatre 78], and objects with read and write operations in [Best & Randell 81, Best 82]). In 

addition, the work on concurrency assumed the use of a locking protocol, and did not 

consider other kinds of protocols. 

As work on distributed systems began in earnest in the mid-1970's, attention was focused on 

atomic actions as a general way of reducing the complexity of coping with concurrency and 

failures. Work on distributed databases and file systems contributed many new protocols for 

implementing atomicity (see [Bernstein & Goodman 81] for a survey), including the novel 

techniques developed by Reed [Reed 78). Reed's techniques represent the first detailed 

design for an implementation of nested atomic actions. 

Since then, several projects (including the Argus project at MIT [Liskov & Scheifler 82], work 

at CMU [Schwarz & Spector 82), and the Clouds project at Georgia Tech [Allchin & McKendry 

83]) have focused on nested atomic actions as a fundamental concept for organizing 

distributed systems. Moss [Moss 81 ], as part of the Argus project, developed a locking-based 

implementation of nested atomic actions. The Argus project has also explored incorporating 

atomic actions into a programming language. One of the major advantages of this approach 

is that a language provides a more flexible notion of data object than is supported by a 

database system or a file system. This dissertation explores how one might take advantage of 



23 

th is flexibility. 

As discussed earlier. our work on specifying atomic types generalizes earlier database-related 

work on concurrency control (e.g., [Papadirnitriou 79]) in three ways: First, we treat both 

serializability and recoverab~lity. Second, we explore how to analyze user-specified semantic 

information to achieve greater concurrency. Third. we focus on local properties of objects 

that ensure atomicity, exploring the conditions under which different kinds of objects can be 

combined while still ensuring atomicity. 

Most of the theoretical work relevant to atomicity has focused on concurrency control, and 

has ignored problems of recovery. A notable exception is some work by Lynch [Lynch 83]. 

Lynch defines atomicity for nested actions, presents a formalization of the locking 

implementation in [Moss 81], and verifies that the (formalization of the) implementation 

ensures atomicity. While Lynch analyzes serializability and recoverability together, she does 

not consider data-dependent implementations, nor does she address modularity issues. 

A few recent papers on concurrency control [Bernstein et al. 81, Korth 81 a, Beeri et al. 83] 

address the problem of extending concurrency control protocols to cope with arbitrary user­

defined operations. This research is limited in several ways, however. Most important is the 

• lack of consideration of modularity issues. The focus of the work is on locking protocols, and 

the interactions among different kinds of protocols are not considered. In addition, the 

papers ignore recovery, and require the operations specified by the user to be functions. 

Non-determinism, which is often useful to avoid over-specifying abstractions, is not permitted. 

We have not considered how to extend all existing protocols to cope with user-defined 

operations. For example, we have not analyzed optimistic protocols [Kung & Robinson 81] in 

any detail. The primary reason for this is that optimistic protocols, by their very nature, do not 

guarantee internal consistency [Goree 83], a property that prevents orphans [Nelson 81] from 

seeing inconsistent states. Our work on specifying atomic types does not rule out optimistic 

implementations, but we have not considered in detail how to build them. 

Other protocols that we have not considered include non-two-phase locking protocols (e.g., 

see [Silberschatz & Kedem 80, Korth 81b]) and protocols for implementing replicated objects 

(e.g., see [Gifford 79]). Non-two-phase locking protocols, while useful for achieving greater 

concurrency, place strong restrictions on how data can be structured. These restrictions may 

be difficult to satisfy in the general class of applications considered here. Replication 

techniques, while essential for reliability and availability, are beyond the scope of this 

dissertation. Researchers at Cornell [Skeen & Birman 83] and MIT [Herlihy 84] are currently 

investigating how to replicate user-defined data objects. 

There is some debate over whether atomicity is too strong a requirement, and whether it 



24 

permits adequate performance. Fischer [Fischer & Michael 82] has illustrated how greater 

concurrency can be achieved for a distributed directory by sacrificing seriatizability. The 

Grapevine system [Birrell et at. 82. Schroeder, et al. 84] also violates atomicity in places, 

primarily for performance reasons. It remains to be seen whether the performance 

advantages of violating atomicity ar-e worth the resulting increase in complexity, and whether 

the protocols in [Fischer & Michael 82] and [Birrell et al. 82) can be generalized and applied to 

other systems. 

Lamport [Lamport 76] has also argued that atomicity is too strong a requirement. As evidence 

for this claim, he presents an example of a banking system, with transfer and audit 

transactions. Locking implementations of this system do not perform well: audits can run for 

a long time, preventing transfers from running. Lamport presents an ad hoc protocol that 

ensures that transfers are serializable, and that each audit sees a consistent state of the 

database. His protocol permits some, though not all, transfers to run concurrently with an 

audit. Protocols developed since the publication of [Lamport 76], including those in [Reed 

78], [DuBourdieu 82], and [Chan et al. 82], ensure serializability of all transactions (not just 

transfers). Furthermore, the protocols in [DuBourdieu 82, Chan et al. 82] permit all transfers 

to run concurrently with an audit, thus providing greater concurrency than Lamport's ad hoc 

protocol. Unlike Lamport's protocol, these protocols are easily applied in a large class of 

similar situations. 

A detailed comparison of these and other papers with our work can be found in comments 

throughout the dissertation. 

1.5 Roadmap 

In chapters 2 through 4 we focus on specifications of atomic types. In Chapter 2, we present 

our formal model of computations and specifications. Then, in Chapter 3, we use the model 

to define atomicity of activities. Finally, in Chapter 4, we define three "local atomicity 

properties:" properties of individual objects that ensure atomicity of activities. The formal 

model used in these chapters does not permit activities to be nested. We expect it to be 

relatively easy to integrate our results with existing formal work on nested activities (e.g., 

[Lynch 83]), but do not do so in this dissertation. 

In chapter 5, we connect the earlier material on specifications with the later material on 

impJementations. In this chapter we focus on one of the local atomicity properties defined 

earlier, dynamic atomicity. We present an algorithmic description of a novel locking protocol 

for implementing dynamic atomic objects and prove that it is correct. 

In Chapters 6 and 7, and in Appendix A, we discuss implementations of atomic types. In 



25 

Chapter 6, we discuss the problems that must be solved by implementations of atomic types, 

and informally discuss how to extend the material on specifications to cope with nested 

activities. Then, we present the approach taken in Argus [Liskov et al. 83] to cope with the 

problems involved in implementing atomic types, and illustrate several limitations of this 

approach. In Chapter 7 .we present an alternative approach that avoids some of the 

limitations of the Argus approach. The appendix contains several additional examples 

illustrating how to implement user-defined atomic types, and further illustrating the 

differences in the two approaches presented in Chapters 6 and 7. 

Finally, in Chapter 8, we summarize our results and discuss further work. 

An index for the technical terms defined in Chapters 2 through 5 is contained in Appendix B. 



26 



27 

Chapter Two 

System Model 

In this chapter we describe our model of systems. We begin in Section 2.1 by describing the 

components of a system and defining computations. Then, in Section 2.2, we describe how 

we model specifications of objects. 

2.1 Computations and Observations 

We view a system as composed of activities and objects. Activities correspond roughly to 

processes or threads of control: they are the active entities in the system, and perform tasks 

for users. Objects contain the state of the system: they provide operations by which activities 

can examine and modify the system state, and constitute the sole path by which activities can 

pass information among themselves.· We will typically use the symbols a, b, and c (possibly 

subscripted) for activities, and the symbols x, y, and z (again possibly subscripted) for objects. 

We use an event-based model of computation. In general, the events in which we are 

interested are events that occur at the interface between objects and activities. For the 

remainder of this chapter, Chapter 3, and the first part of Chapter 4, we.assume that an event 

is either the invocation of an operation on an object by an activity, the termination of an 

invocation, the commit (successful completion) of an activity at an object, or the abort 

(unsuccessful completion) of an activity at an object. A note on terminology: We will use the 

term "termination" to mean the end of the execution of a single operation, and the term 

"completion" to mean the end of the execution of an entire activity. Each event identifies the 

activity and the object that participate in it. If an activity (object) participates in an event, we 

say that the event involves the activity (object). In Chapters 4.2 and 4.3 we will augment our 

model with additional events that introduce information about timestamps for activities. 

For example, suppose x is an object that is intended to behave like a set of integers, with 

operations to insert an integer in x, to delete an integer, and to check for membership. If a is 

an activity, example events include the following: 

·a invokes insert on x with argument 3 (written <insert(3),x,a>) 

·an invocation of an operation by a on x terminates with result "ok" (written 
<ok,x,a>) 

· a invokes member on x with argument 7 (written <member(7),x,a>) 

·an invocation of an operation by a on x terminates with result "true" (written 



28 

<true.x.a>} 

·a commits at x (written <commit,x,a>} 

A computation is most properly viewed as a partial order of events. For our purposes it 

suffices to restrict our attention to the observable behavior of a system. We model an 

observation of a system as a finite sequence of events. 

For example, if a and bare activities, the following event sequence might be a observation of 

a system containing a set object x: 

<insert(3),x,a> 
<ok,x,a> 

<member(3),x,b> 
<commit,x,a> 

<true,x,b> 
<commit,x,b> 

If his an event sequence and Xis a set of objects, we define hlX ("h restricted to X") to be the 

subsequence of h consisting of all events in which objects in X participate. We define hlA 

similarly for a set of activities A. If xis an object and a is an activity, we write hlx for hl{x}, and 

hla for hl{a}. We also define committed(h) to be the set of activities that commit in h, and 

aborted(h) to be the set of activities that abort in h. Finally, we define completed(h) to be the 

set of activities that complete (commit or abort) in h; i.e., completed(h) = committed(h) U 

aborted(h). 

We will use the following notation for sequences: The symbol "•" denotes concatenation of 

sequences, and the symbol "A" denotes the empty sequence. 

We include here two technical lemmas. The first lemma asserts the commutativity of the 

restriction operators: 

Lemma 2· 1: Suppose X and Y are sets of objects, and A and B are sets of 

activities. Then 

1. (hlX)IY = (hlY)IX = hl(xn Y) 

2. (hlA)IB = (hlB)IA = hl(AnB) 

3. (hlX)IA = (hlA)IX 

The second lemma asserts the independence of the restriction operators and the 

concatenation operator on sequences: 

Lemma 2-2: Suppose S is a set of objects, and h and k are event sequences. 

Then 

(h•k) Is = (hlS) • (klS) 

The same property holds when S is a set of activities. 



29 

We will be interested in those event sequences that are complete in the following sense: An 

event sequence h is complete if every activity either completes at every object or does nothing 

at the object; i.e .. for all a and x, either a E completed(hlx), or hlalx =A. 

Not all event sequences m.ake sense as observations: activities are intended to act like 

sequential processes. (Concurrency within an activity should be achieved by using nested 

activities; our formal analysis of atomicity does not cover nesting.) Thus. we restrict our 

attention to event sequences h satisfying the following conditions: 

- An activity must wait until one invocation terminates before invoking another 
operation. More precisely, let op-events(h) be the subsequence of h consisting of 
all invocation and termination events; then op-events(hla) must consist of an 
alternating sequence of invocation and termination events, beginning with an 
invocation event. In addition, an invocation event and the immediately 
succeeding termination event must involve the same object. 

· No activity both commits and aborts in h (at the same or different objects); i.e., 
commit(h) n abort(h) = 0. 

- An activity cannot commit if it is waiting for an invocation to terminate, and an 
activity cannot invoke any operations after it commits. More precisely, if a E 
committed(h), then hla consists of an alternating sequence of invocation and 
termination events, ending in a termination event, followed by some number of 
commit events. 

Such "well-formed" event sequences will be called histories; in the remainder of this 

dissertation we will be concerned only with histories, not with arbitrary event sequences .. 

These restrictions on activities are intended to model the typical use of atomic activities in 

existing systems. An activity executes by invoking operations on objects, receiving results 

when the operations terminate. Since we disallow concurrency within an activity, an activity is 

permitted at most one pending invocation at any time. After successful termination of all 

invocations, an activity can commit at one or more objects. 

We make very few restrictions on aborted activities; for example, an activity can continue to 

invoke operations after it has aborted. We have two reasons for avoiding additional 

restrictions. First, we have no need for them in our analysis. Second, and most important, 

additional restrictions might be too strong to model systems with orphans (Nelson 81, Goree 

83], and we would like o'ur results to be as generally applicable as possible. 

An activity is not allowed to commit at some objects and abort at others; this requirement, 

called atomic commitment, can be implemented using a commitment protocol such as two­

phase commit [Gray 78, Lampson 81] or three-phase commit [Skeen 82]. 



30 

2.2 Specifications 

Our specifications take the form of sets of sequences. A set of sequences is like a language, 

and can be conveniently described by a machine. In Section 2.2.1 we define state machines, 

which we will use for describing specifications. Then, in Section 2.2.2, we define our model 

for specifications of objects. Finally. in Section 2.2.3, we describe how properties of a system 

can be inferred from the specifications of its components. 

2.2.1 State Machines 

Informally, a state machine consists of a collection of states and a collection of transitions. 

The transitions can be used to change the state of the machine. A step of the machine 

consists of a single transition; the machine executes steps one at a time. 

We begin with some notation. We use the notation -• to denote a partial function. The 
p 

symbol ..l denotes "undefined," and will be used to indicate when a partial function is not 

defined for a given set of arguments. The symbol •, as mentioned earlier, denotes 

concatenation of sequences. 

Formally, a state machine M consists of: a state domain SM; an initial state IM E SM; a 

collection of transitions TM; and a partial transition function NM: SM X TM-+ P SM. 

The transition function NM can be extended to finite sequences of transitions in the obvious 

way; i.e., if T is a transition and Tseq is a finite sequence of transitions, then: 

NM(S,A) = S 

NM(S, Tseq•T) = NM(NM(S, Tseq), T), if NM(S, Tseq) ':I: .L 

.L, otherwise 

If Tseq is a sequence of transitions for machine M, we will sometimes use the notation Tseq(S) 

for NM(S, Tseq). 

If Tseq(S) *- ..l, we say that Tseq is defined in S. We say that a sequence of transitions Tseq 

is accepted by a machine M if Tseq is defined in IM. 

We may easily associate a set of sequences with a machine: Given a machine M, define the 

language of M (denoted L(M)) to be all finite sequences of operations that are accepted by M. 

Our. definition of a state machine differs slightly from the usual definition of an 

automaton [Ginsburg 75]. Rather than introducing the notion of an accepting state, and then 

saying that a sequence Tseq is accepted by a machine M if Tseq(IM) is an accepting state, we 

have found it convenient for the examples that we will present to define acceptance as above. 

Not all languages (or even all recursive languages) can be defined by one of our state 



31 

machines. however. It follows from our definition of acceptance that the language of a state 

machine is prefix-closed: If a sequences is in the language of a machine M, then every finite 

prefix of s is also in the language of M. 

An example of a description of a machine appears in Figure 2· 1; the language of the machine 

consists of all finite alternating sequences of a·s and b's. The transition function is described 

by giving, for each transition, a precondition describing the set of states in which it is defined. 

and a list of state changes caused by the transition. 

States: {a, b, i} initially i 

Transitions: {a, b} 

N(s,a): 

whens= a ors= i 

changes s to b 

N(s,b): 

when s=b ors= i 

changes s to a 

Figure 2· 1 :An example machine. 

The state set of this machine is {a,b,i}. In later examples we will describe state components, 

giving a name and domain for each component. This indicates that the state set is the 

cartesian product of the sets listed; we will refer to the component name of states ass.name. 

In descriptions of machines, we use "when <expr>," where <expr> is a boolean expression, to 

describe preconditions for transitions. If the precondition is omitted from the description, it is 

assumed to be true. We use "changes <list>," where each item in <list> has the form "<state 

component> to <expr>," to describe the relationship between the state before a transition and 

the state after the transition. Components not listed are assumed to be unchanged. We will 

also use the form "if <expr> then <changes> else <changes>" to describe conditional 

changes. 

2.2.2 Specifications of Objects 

Assuming that all executions of a system are atomic, consistency is preserved if every activity 

preserves consistency when executed in isolation with no failures. To check this property we 

only need to know how each object and activity behaves in a sequential, failure-free 

environment. We have found it convenient to specify an object by first describing the object's 

sequential, failure-free behavior, and then describing how the object controls concurrency 

and failures to ensure atomicity. We reflect this two-stage process directly in our model: A 

specification of an object x consists of two parts. the serial specification (denoted x.seriaf), 



32 

and the beilaviural specification (denoted x.bel1aviti1). The serial specification of an object is 

intended to model the acceptable behavior of the object in a sequential, failure-free 

environment, while the behavioral specification describes how the object supports atomicity. 

The behavioral specification of an object x describes the acceptable histories involving x, and 

consists of a set of complete histories h such that every event in h involves x. In Section 

2.2.3 we will describe how the behavioral specifications of objects constrain the behavior of a 

system. 

It is convenient for the serial specification of an object to be in a slightly different form from its 

behavioral specification. Instead of a set of complete histories, we will use a set of operation 

sequences. An operation is a pair consisting of an invocation and a termination event. In 

addition, an operation identifies the object on which it is executed. An operation does not 

identify an activity; we have found no need for the serial specification of an object to vary 

depending on which activity executes an operation, and indeed find it more convenient to 

describe the serial specification in a way that is independent of activities. 

We often speak informally of an "operation" on an object, as in "the insert operation on a set 

object." An operation in our formal model is intended to represent a single execution of an 

"operation" as used in the informal sense. For example, the following might be an operation 

(in the formal sense) on a set object x: 

x:<insert(3),ok> 

This operation represents an execution of insert on x with argument "3" and result "ok." 

A state machine is a convenient tool for describing the serial specification of an object. We 

define the transitions of a machine to be the operations on the object, and choose a transition 

function such that the language of the machine is the desired set of operation sequences. 

For example, the state machine in Figure 2-2 describes the serial specification of a set object 

x. A set object provides three operations: insert, delete, and member. Insert adds a specified 

item to the set object. Delete removes a specified item from the object. Member determines 

whether a specified item is an element of the set object. 

The reader may check that the following operation sequence is in the language of the state 

machine in Figure 2-2: 

x:<insert(3),ok> 
x:<member(3), true> 

The following sequence, however, is not: 

x:<insert(3),ok> 
x:<member(3),false> 

Another example, the serial specification of a semiqueue object y, appears in Figure 2-3. A 

semiqueue object provides two operations: enq and deq. Enq adds a specified item to the 



States: sets of items initially 0 

Transitions: {x:<insert(i),ok>. x:<delete(i),ok>, x:<member(i),b>: i is an 

item and bis a boolean} 

N(s,x:<insert(i),ok>): 

changes s to sU{i} 

N(s,x:<delete(i),ok>): 

changes s to s-{i} 

N(s,x:<member(i),true>): 

when ifs 

N(s,x:<member(i),false>): 

when j({s 

Figure 2·2:Serial specification of a set object x. 

33 

semiqueue object. Deq nondeterministically chooses an item in the semiqueue, deletes it, 

and returns it; deq is not defined if the semiqueue is empty. Semiqueues are like multisets, 

rather than sets, in that an item can appear more than once. We will return to this example in 

later chapters, first precisely describing the concurrency that can be permitted by an object 

with this serial specification, and then illustrating how semiqueues can be implemented to 

achieve this level of concurrency. 

States: multisets of items initially 0 

Transitions: {y:<enq(i),ok>, y:<deq,i>: i is an item} 

N(s,y:<enq(i),ok>): 

changes s to sU{i} 

N(s,y:<deq,i>): 

when iEs 

changes s to s-{i} 

Figure 2·3:Serial specification of a semiqueue object y. 

2.2.3 Behavior of a System 

The behavior of a system is determined by the behaviors of its components and the 

interconnections among the components. The specification of a component constrains the 

behavior of the component, and indirectly constrains the behavior of the system. In this 

section we describe how constraints on the behavior of a system can be inferred from the 

specifications of the system's components. 



34 

The behavioral specification of an object x. as described above, is a set of complete histories 

involving x. Similarly, we define the behavioral specification of an activity a (denoted 

a.behavior) to be a set of complete histories involving a. 

We define the behavior of a system .to be all complete histories h such that, for all a and x. hla 

Ea.behavior and hlx Ex.behavior. In other words, any history of a system must be permitted 

by the specification of each of the system's components. Notice that the behavioral 

specification of each component describes how the component constrains the occurrence of 

events in which it participates, and places no constraints on the occurrence of other events. 

Many papers have been published on models for distributed systems. Recently, Stark [Stark 

84] has been studying how to model specifications of modules in distributed and concurrent 

systems. He has developed a general framework incorporating notions of composition and 

abstraction; in particular, his notion of "observations" is similar to ours, as is his notion of 

composition of behaviors for components of a system. However, he does not consider well­

formedness conditions on observations specific to any particular applications; in addition, his 

desire to be able to specify and to model eventuality properties forces him to consider infinite 

observations, complicating his framework. A framework such as his, however, could be used 

to develop a more rigorous formalization of our model and associated results. 



35 

Chaple r Three 

Global Atomicity 

In this chapter we develop a formal definition of atomicity. Our goal is to understand how 

objects can cooperate to ensure that all complete histories in a system's behavior are atomic. 

The definitions in this chapter apply to a// histories. however, not just to complete histories. In 

Chapter 4 we will concentrate on complete histories, and will look at several different ways in 

which objects can cooperate to ensure atomicity of complete histories. In Chapter 5 we will 

consider prefixes of complete histories, and illustrate how an implementation of an object can 

ensure atomicity in an on-line manner. 

The remainder of this chapter is divided into two sections. In the first, we develop our 

definition of atomicity. Then, in the second, we compare our definition to common definitions 

of serializability in the literature, illustrating some limitations of the model used in those 

definitions. 

3.1 Definitions 

Informally, a history of a system is atomic if it is equivalent to a sequential, failure-free 

execution of the committed activities in the history. The serial specifications of objects 

describe the acceptable behavior of the system in a sequential, failure-free environment. 

Since serial specifications are sets of operation sequences, not sets of histories, we need to 

establish a correspondence between histories and operation sequences. The paragraph 

below provides the necessary definitions. 

We say that a history is serial if events for different activities are not interleaved. If his a serial 

history, and a 1, •.• , an are the activities in h in the order in which they appear, then we can 

write has hla 1• ... •hlan. We say that a history his failure-free if aborted(h) = 0. Now, if his a 

serial failure-free history, we define opseq(h) as follows: Opseq(hla), for an activity a, is the 

operation sequence obtained from hla by pairing each invocation event with its 

corresponding termination event, and discarding commit events and pending invocation 

events. Let a 1, ... , an be the activities in h in the order in which they appear; then opseq(h) is 

defined to be opseq(hla 1)• ... •opseq(hlan). Opseq(h), for a serial failure-free history h, is the 

operation sequence corresponding to h. 

For example, if h is the serial failure-free history 



36 

<insert(3),x ,b> 
<ok,x,b> 

<commit,x,b> 
<member(3),x,a> 

<true,x,a> 
<commit,x,a> 

then opseq(h) is the operation sequence 

x:<insert(3), ok> 
x:<member(3), true> 

Similarly, if h is the serial failure-free history 

<insert(3),x,a> 
<ok,x,a> 

<delete(2),x,a> 

then opseq(h) is the operation sequence 

x:<insert(3), ok> 

Notice that we do not restrict the domain of opseq to complete histories; we will need to apply 

it to incomplete histories in Chapter 5. 

We say that two histories h and k are equivalent if every activity performs the same steps in h 

as ink; i.e., if hla = kla for every activity a. We also say that a serial failure-free history h is 

acceptable at x if opseq(hlx) E x.serial; in other words, if the sequence of operations in h 

involving x is permitted by the serial specification of x. A serial failure-free history is 

acceptable if it is acceptable at every object x. 

For example, suppose that x is an integer set object with a serial specification as given in 

Figure 2-2. If h is the serial failure-free history 

<insert(3),x,b> 
<ok,x,b> 

<commit,x,b> 
<member(3) ,x,a> 

<true,x,a> 
<commit,x,a> 

then opseq(h) is the operation sequence 

x:<insert(3),ok> 
x:<member(3), true> 

which is in x.serial. Thus, his acceptable. On the other hand, if his the history 

<insert(3),x,b> 
<ok,x,b> 

<commit,x,b> 
<member(3) ,x,a> 

<false,x,a> 
<commit,x,a> 

then his not acceptable, since opseq(h) is not in x.serial. 



37 

If /J is a history and Tis a total order on activities, we define scrial(h, T) to be the serial history 

equivalent to h in which activities appear in the order T. If a1 • .... an are the activities in h in the 

order T. then seria!(h, T) = hla 1• ... •hlan. 

The following lemma asserts the independence of the serializing operator and the restriction 

operator. 

Lemma 3-1: If h is a history, X is a set of objects. and T is a total order on 

activities, then seria/(hlX, T) = serial(h, T)IX. 

Proof: Let a 1, ... , an be the activities in h in the order T. The following equalities 

show the desired result: 

serial(hlX, T) = (hlX)la 1• ... •(hlX)lan 

= (hla 1)IX• ... •(hlan)IX 

= (hla 1 • ... • hla n)IX 

= serial(h, TJIX 

The first line follows from the definition of serial. The second line follows from 

Lemma 2-1, and the third line from Lemma 2-2. The fourth line again follows from 

the definition of serial. 

If Tis a total ordering of activities, we then say that a failure-free history h is serializable in the 

order T if serial(h, T) is acceptable. We say that a failure-free history h is serializable if there 

exists a total order T on activities such that h is serializable in the order T. In other words, a 

failure-free history is serializable if it is equivalent to an acceptable serial history. 

For example, if h is the failure-free history 

<member(3),x,a> 
<insert(3),x,b> 

<ok,x,b> 
<true,x,a> 

<commit,x,b> 
<commit,x,a> 

and Tis a total order in which b precedes a, then his serializable in the order T: Serial(h, T) is 

the history 

<insert(3),x ,b> 
<ok,x,b> 

<commit,x,b> 
<member(3) ,x,a> 

<true,x,a> 
<commit,x,a> 

and, as illustrated above, this history is acceptable. 

Note that serializability is defined for all failure-free histories, not just those that are complete. 

We will consider incomplete histories in Chapter 5. 



38 

Lemma 3-2 describes the relation between serializability of a history and serializability of its 

subhistories at each object. 

Lemma 3-2: If his a history and Tis a total order on activities, his serializable in 

the order T if and only if, for every object x, hlx is serializable in the order T. 

Proof: Follows easily from the definitions and Lemma 3-1. 

Now, define permanent(h) to be hlcommitted(h). We then say that his atomic if permanent(h) 

is serializable. Thus. we formalize recover.Jbility by throwing away events for non-committed 

activities, and requiring that the committed activities be serializable. 

For example, if x is an integer set as above and h is the history 

<member(3),x,a> 
<insert(3),x,b> 

<ok,x,b> 
<true,x,a> 

<commit,x,b> 
<delete(3),x,c> 

<ok,x,c> 
<commit,x,a> 
<abort,x,c> 

then permanent(h) is the failure-free history 

<member(3),x,a> 
<insert(3),x,b> 

<ok,x,b> 
<true,x,a> 

<commit,x,b> 
<commit,x,a> 

which, as illustrated above, is serializable. Thus, h is atomic. 

On the other hand, the history 

<member(2) ,x,a> 
<true,x,a> 

<commit,x,a> 

is not atomic, since x.serial does not contain the sequence 

x:<member(2), true> 

The final lemma asserts that permanent commutes with restriction to an object for complete 

histories. 

Lemma 3·3: If h is a complete history and x is an object, permanent(h)lx = 

permanent(hlx). 

Proof: We show that permanent(h)lx is a subsequence of permanent(hlx); a 

similar argument shows that permanent(hlx) is a subsequence of permanent(h)lx. 

Since both histories are subsequences of h, it suffices to show that every event 

appearing in permanent(h)lx also appears in permanent(hlx). Suppose e is an 



event in permanent(h)lx. Let a be the activity that participates in e. By the 

definition of restriction, x must also participate in e. Thus, e also appears in hlx. 

Since e appears in permanent(h)lx, a must commit in h; since h is complete, and 

hfalx *- A, a must commit in hlx. Thus, e appears in permanent(hlx). 
c 

39 

Our definition of atomicity is similar to the definition of serializability in (Papadimitriou 79], 

where. it is assumed that some underlying recovery mechanism handles aborts of activities, 

and the formal analysis considers only events for committed activities. It is different in that we 

include events for aborted and active activities in our formal model; as we will discuss in 

Chapte.r 5, this facilitates the precise description of online support for recoverability. It also 

differs in that the definition of serializability is based on user-supplied specifications of the 

acceptable serial behavior of objects, rather than a free interpretation as in [Papadimitriou 

79]. As we will discuss in Section 4.4.1, this enables us to achieve more concurrency. 

3.2 Limitations of the Scheduler Model 

Our model is slightly different from that used in much of the literature on concurrency control, 

including those papers that consider user-specified operations (e.g., [Papadimitriou 

79, Bernstein et al. 81, Korth 81 a, Beeri et al. 83]). That model, which we will call the 

scheduler model, is pictured in Figure 3· 1. 

Activities Database 

D~,, .. - - - - - ... 
' Storage SJ -..........; I· Scheduler I-+ 

-~ Module 
D . ' .... 

-------
Figure 3· 1 :The scheduler model. 

The boxes on the left represent transactions, which submit invocations to the scheduler in the 

middle. The scheduler determines the order in which to run operations invoked by 

transactions, and submits the invocations in that order to the storage module on the right, 

which processes the operations and returns their results to the transactions. (The storage 

module behaves similarly to the state machines that we use to describe serial specifications.) 

The problem addressed in the papers cited above is to analyze the properties of the scheduler 

module. The problem that we address is slightly different: we analyze the properties of the 

interface represented by the dotted line. 



40 

The scheduler model imposes unnecessary limitations on the problem, as the following 

example illustrates. Let z be a first-in-first-out queue object with a serial specification as 

described by the machine in Figure 3-2. A FIFO queue object provides two operations: enq 

and deq. Enq ·appends a specified item to the back of the queue. Deq removes and returns 

the item at the front of the queue: ifthe queue is empty, deq signals empty. Now consider the 

following history: 

<enqueue(1 ),z,a> 
<ok,z,a> 

<enqueue(2) ,z,b> 
<ok,z,b> 

<commit,z,a> 
<commit,z,b> 

<dequeue,z,c> 
<2,z,c> 

<dequeue,z,c> 
<1,z,c> 

<commit,z,c> 

Note that this history is atomic: The equivalent history with a, b, and c in the order b-a-c is 

acceptable. 

States: sequences of items initially A 

Transitions: {z:<enq(i),ok>, z:<deq,i>, z:<deq,empty>: i is an item} 

N(s,z:<enq(i),ok>): 

changes s to s•i 

N(s,z:<deq,i>): 

whens= i•s' 

changes s to s' 

N(s,z:<deq,empty>): 

whens=A 

Figure 3-2 :Serial specification of a FIFO queue object z. 

Now consider what happens in the scheduler model. This history cannot be produced using 

the scheduler model (assuming that the order of termination events corresponds to the 

scheduling order). If it were, the state of the storage module after a and b commit would be 

1 •2 (reading from front to back): then c would have to receive 1 before 2, not 2 before 1. 

Thus, the scheduler model restricts the histories that can occur, and indeed rules out some 

histories that appear "atomic." 

The cause of this limitation of the scheduler model is its fixed internal structure. It imposes a 

fixed interpretation on all histories, based on the interface between the scheduler and the 



41 

storage module. In contrast. we do not interpret events in terms of some lower-level model of 

execution. Opseq provides a kind of "operational" interpretation. but we use it only for serial 

histories, not for all histories. 

The scheduler model was intended to be used to study the concurrency control problem, 

which is but one aspect of the more general problem of ensuring atomicity. Our model was 

designed to be used to study atomicity in as general a setting as possible: thus. we needed to 

make our model as abstract as possible. This means that we avoid the limitations of the 

scheduler model illustrated above, but also means, since our model incorporates less fixed 

structure, that it may be more difficult to verify implementations. 



42 



43 

Chapter Four 

Local Atomicity Properties 

We are interested in ways of ensuring that all possible histories of a system are atomic. As 

discussed in Chapter 2, the histories of a system are constrained by the specifications of the 

components of the system. In this chapter we investigate several properties of individual 

objects that ensure atomicity of activities using the objects. We call such properties local 

atomicity properties. More precisely, a local atomicity property is a property P of 

specifications of objects such that the following is true: If the specification of every object in a 

system satisfies P, then every history in the system's behavior is atomic. 

The problem that must be solved in designing a local atomicity property is to ensure that the 

objects agree on at least one serialization order for the committed activities. Solving this 

problem can be difficult because each object is aware of only the events in which it 

participates. In other words, each object has purely local information; no object has complete 

information about the global computation of the system. 

As discussed in Chapter 1, there are many different protocols that ensure agreement among 

objects, and these protocols are not always compatible. In this chapter we present three 

different local atomicity properties, highlighting the way in which agreement is reached. We 

also show that each property is optimal, in a sense to be defined below. Our optimality results 

imply that no local property is both necessary and sufficient for global atomicity. 

The three properties presented in this chapter provide formal characterizations of the 

behavior of three different classes of protocols, exemplified by the three types of protocols 

(two-phase locking, multi-version timestamping, and hybrid methods) discussed in Chapter 1. 

Each of the properties is based on user-supplied specifications of the acceptable serial 

behavior of objects, thus permitting implementations that achieve greater concurrency than is 

possible when operations are simply characterized as reads and writes. 

The remainder of this chapter is divided into four sections. In each of the first three we 

present a different local atomicity property. In the fourth we conclude with some remarks on 

classes of atomic types and related work. 



44 

4.1 Dynamic Atomicity 

Two-phase locking protocols [Eswaren et al. 76. Bernstein et al. 81. Korth 81 a] determine a 

serialization order for activities dynamically, based on the order in which activities invoke 

operations and obtain locks on objects. Our first local atomicity property characterizes the 

behavior of protocols, including two-phase locking protocols, which are dynamic in this 

sense. We call this property dynamic atomicity. 

Informally stated, the fundamental property of protocols characterized by dynamic atomicity is 

the following: If the sequence of operations executed by one committed activity conflicts with 

the operations executed by another committed activity, then some of the operations executed 

by one of the activities must occur after the other activity has committed. Locking protocols 

(and all pessimistic protocols) achieve this property by delaying conflicting operations; 

optimistic protocols [Kung & Robinson 81] achieve this property by allowing conflicts to 

occur, but aborting conflicting activities to prevent conflicts among committed activities. 

The remainder of this section is divided into two subsections. In the first, we present dynamic 

atomicity and prove that it is a local atomicity property. In the second, we define optimality, 

and show that dynamic atomicity is optimal. In Chapter 5, we will examine dynamic atomicity 

in greater detail, describing locking-based implementations and verifying that dynamic 

atomicity indeed characterizes their behavior. We will also illustrate the limitations of locking, 

showing that there are useful non-locking protocols that are characterized by dynamic 

atomicity. 

4.1.1 Definition of Dynamic Atomicity 

We can describe dynamic atomicity precisely as follows. If h is a history, define precedes(h) 

to be the following relation on activities: <a,b>Eprecedes(h) if and only if there exists an 

operation invoked by b that terminates after a commits. The events need not occur at the 

same object. The relation precedes(h) captures the concept of an operation being delayed: If 

<a.b>Eprecedes(h), then some operation executed by b was delayed in h until after a 

committed. 

For example, if x is a set object as before, and h is the history 

<insert(2),x,a> 
<ok,x,a> 

<member(3) ,x,b> 
<false,x,b> 

<commit,x,b> 
<commit,x,a> 

then precedes(h) is the empty relation, while if his the history 



<insert(2),x,a> 
<ok,x,a> 

<member(3),x,b> 
<commit,x,a> 

<false,x,b> 
<commit,x,b> 

45 

then precedes(h) contains the pair <a,b>. Note that, for any history h, precedes(h) is a partial 

order. 

The following lemma provides the key to our definition of dynamic atomicity. 

Lemma 4· 1: If his a history and xis an object, then precedes(hlx) ~ precedes(h). 

If h is a history of the system, each object has only partial information about precedes(h). 

However, if each object x ensures local serializability in a// orders consistent with 

precedes(hlx), we are guaranteed global serializability in all orders consistent with 

precedes(h). To be precise, we have the following definition of dynamic atomicity: We say 

that a history h is aynamic atomic if permanent(h) is serializable in every total order consistent 

with precedes(h). In other words, every serial history equivalent to permanent(h), with the 

activities in an order consistent with precedes(h), must be acceptable. 

For example, the following history h is atomic, but not dynamic atomic: 

<member(3) ,x,a> 
<insert(3),x,b> 

<ok,x,b> 
<false,x,a> 

<member(3),x,c> 
<commit,x,b> 

<true,x,c> 
<commit,x,a> 
<commit,x,c> 

Permanent(h), which is the same ash, is equivalent to the following acceptable serial history: 

<member(3),x,a> 
<talse,x,a> 

<commit,x,a> 
<insert(3),x,b> 

<ok,x,b> 
<commit,x,b> 

<member(3),x,c> 
<true,x,c> 

<commit,x,c> 

and thus is serializable in the order a followed by b followed by c (written a-b-c). However, 

since precedes(h) contains only the single pair <b,c>, permanent(h) must also be serializable 

in the orders b-a-c and b-c-a for h to be dynamic atomic. This is not the case; for example, the 

serial history 



46 

<i nsert(3) .x ,b> 
<ok,x,b> 

<commit,x,b> 
<member(3),x,a> 

<false,x,a> 
<commit.x,a> 

<member(3),x,c> 
<true,x,c> 

<commit,x,c> 

is not acceptable. 

As another example, the history 

<member(2) ,x,a> 
<insert(3),x,b> 

<ok,x,b> 
<false,x,a> 

<member(3),x,c> 
<commit,x,b> 

<true,x,c> 
<commit,x,a> 
<commit,x,c> 

is dynamic atomic. Precedes(h) contains the single pair <b,c>, and permanent(h) is 

serializable in the orders a-b-c, b-a-c, and b-c-a. 

We say that an object x is dynamic atomic if every history in x.behavior is dynamic atomic. 

The following theorem justifies our claim that dynamic atomicity is a local atomicity property: 

Theorem 4·2: If every object in a system is dynamic atomic, then every history in 

the system's behavior is atomic. 

Proof: Suppose every object in a system is dynamic atomic, and let h be a history 

of the system. Precedes(h) is a partial order, so let T be a total order of the 

activities in h that is consistent with precedes(h). By Lemma 4-1, precedes(hlx) ~ 

precedes(h), so T is also consistent with precedes(hlx) for every x. Since each 

object is dynamic atomic, permanent(hlx) is serializable in every total order 

consistent with precedes(h); in particular, it is serializable in the order T. By 

Lemmas 3-3 and 3-2, permanent(h) is serializable in the order T. Thus, his atomic. 

4.1 .2 Optimality 

Dynamic atomicity is optimal: there is no other local atomicity property that is strictly more 

permissive. The paragraphs below state this result precisely and provide a proof. We caution 

the reader, however. that "optimal" does not mean "best." As we will see in Section 4.2, 

there are other local atomicity properties that are also optimal, yet are different: Each allows 

specifications not allowed by the others. Also, the optimality of a local atomicity property 

depends on the events in the underlying model: a property that is optimal in one model may 



47 

be suboptimal in a model with more events. if the addition~! events provide objects with useful 

information about the execution of the system. We will see an example of this latter situation 

in Section 4.3. With these caveats in mind. we now present the theorem. 

As defined earlier, a local atomicity property Pis any property P of specifications of objects 

such that the following is true: If the specification of every object in a system satisfies P, then 

every history in the system's behavior is atomic. We say that a property Pis weaker (or more 

permissive) than a property Q if every specification that satisfies Q also satisfies P; in other 

words, if Q implies P. A property Pis strictly weaker than a property Q if Pis weaker than Q, 

and Q is not weaker than P. Note that if P is strictly weaker than Q, then there exists some 

specification that satisfies P and does not satisfy 0. If we equate the level of concurrency 

permitted by a property with the behaviors permitted by the property for a given serial 

specification, then if Pis strictly weaker than Q, P permits more concurrency than Q. 

We say that a local atomicity property P is optimal if no local atomicity property is strictly 

weaker than P. The following theorem shows that dynamic atomicity is optimal: 

Theorem 4·3: For systems using the events described in this section, dynamic 

atomicity is optimal. 

Proof: The proof proceeds by contradiction: Suppose dynamic atomicity is not 

optimal. Then there exists a local atomicity property P that is strictly weaker than 

dynamic atomicity. We will exhibit a system composed of objects satisfying P, and 

show that there is a non-atomic history of that system, thus contradicting the claim 

that Pis a local atomicity property. 

Since Pis more permissive than dynamic atomicity, there must be a specification 

Sx of an object x such that Sx satisfies P but xis not dynamic atomic. In particular, 

there must be at least one history hx in x.behavior that is not dynamic atomic; that 

is, such that permanent(hx) is not serializable in at least one total order T 

consistent with precedes(h). We will construct an object y whose specification 

contains a history h involving the committed activities in h . Now, consider a y x 
system containing x, y, and all the activities in h . We will choose h so that h is x y y 

serializable only in the order T, and there is a history h of this system such that 

hlx = h and hly = h . Since permanent(h ) is only serializable in the order T, and x y y 

permanent(h ) is not serializable in that order, it follows from Lemma 3-2 that x 

permanent(h) is not serializable. Thus, his not atomic. 

Construction of y: 

The construction of y is as follows: Let y have a single operation called increment. 

Y is intended to behave as a counter: Its state is initially zero, and each invocation 

of the increment operation increments the state of y and returns the resulting 



48 

value. A state machine describing the serial specification of y appears in Figure 

4-1. 

States: integers initially 0 

Transitions: {y:<increment,i>: i is an integer} 

N(s, y:<increment, i) f 
wheni=s+1 

changes s to s + 1 

Figure 4· 1 :Serial specification of a counter object y. 

The operation sequences in y.serial have the following form: 

y:<increment, 1 > 
y:<increment,2> 

y:<increment,n> 

Let y.behavior be the largest set of histories such that y is dynamic atomic; i.e., let 

y.behavior contain all dynamic atomic histories h such that h = hly. Since P is 

weaker than dynamic atomicity, SY satisfies P. 

Now, let a 7, a2 . ... , an be the committed activities in hx in the order T, and let hy be 

the following serial history in y.behavior: 

<increment,y,a 1 > 
<1,y,a1> 

<commit,y,a1> 
<increment,y,a2> 

<2,y,a2> 
<commit,y,a2> 

<increment,y,an> 
<n,y,an> 

<commit,y,an> 

Note that h is serializable only in the order T. y 

Construction of h: 

It now suffices to show that there exists a history h such that hlx = hx and hly = 

h . We note several facts about h and h : y x y 

1. Tis consistent with precedes(hx). 

2. h is serial, and activities appear in the order T. y 



3. T is consistent with precede~(h ). 
y 

4. committed(h ) = committed(h ). y x 

5. aborted(h ) = 0. y 

Now consider the folfowing algorithm, which we will show "merges" hx and hy to 

get a history h satisfying our requirements: 
s:= A 
SX: = h x 
sy: = h y 
while committed(sx) * 0 do 

lets 1, s2, and a be such that sx = s 1 •<commit ,x ,a>•s2, 
and committed(s1) = 0 

s:=s•s7 

SX: = S2 

if syla * A then 
let s3 and s4 be such that sy = s3•<commit,y,a>•s4 
s : = s • s3 • <commit,y,a> 

sy: = s4 
end 

s: = s • <commit,x,a> 
end 

s: = s • sx • sy 

let h = s 

It is clear that the algorithm terminates, since each iteration of the loop shortens 

sx. In addition, it is obvious that the final value of h contains the initial values of hx 

and hy as subsequences, as desired. It remains to be shown that the event 

sequence his a history, that is, that it is well-formed. This we do below. 

We/1-formedness of h: 

We repeat here the conditions on well-formed sequences from Chapter 2: 

· An activity must wait until one invocation terminates before invoking 
another operation. More precisely, let op-events(h) be the subsequence of 
h consisting of all invocation and termination events; then op-events(hla) 

must consist of an alternating sequence of invocation and termination 
events, beginning with an invocation event. In addition, an invocation 
event and the immediately succeeding termination event must involve the 
same object. 

· No activity both commits and aborts in h (at the same or different objects); 
i.e., commit(h) n abort(h) = 0. 

·An activity cannot commit if it is waiting for an invocation to terminate, and 
an activity cannot invoke any operations after it commits. More precisely, if 
a E committed(h), then hla consists of an alternating sequence of 

49 



50 

invocation and termination events. ending in a termination event, followed 
by some number of commit events. 

The second condition follows from the fact that cornmitted(h) = committed(h) U 

committed(h ) and aborted(h) = aborted(h ) U aborted(hy), and from the y x 

previously stated facts about h and h . )( y 

We argue the first condition as follows: If b ~ committed(h) then hlb = hxlb, and 

the first condition follows from well-formedness of hx. Suppose b E committed(h), 

and suppose that the first condition does not hold for hlb; we will derive a 

contradiction. Note that if an invocation event is in the subsequence s3 moved 

from sy to s, then the corresponding termination event immediately follows it in s3, 

and hence in h. 

Let h 1 be the longest prefix of hlb such that h 1 is an alternating sequence of 

invocation and termination events, beginning with an invocation event. Since the 

first condition does not hold for hlb, h is longer than h 1. We claim that h1 ends in 

an invocation event from hx: 

- h 1 cannot end in an invocation event from h , since the corresponding 
termination event immediately follows it in 17, Ymplying that h1 is not the 
longest prefix of alternating invocation and termination events. 

· h1 cannot end in a termination event from hx' since the next event in hlb 
would then have to be a termination event; this second termination event 
cannot come from h , since it immediately follows its corresponding 
invocation event, and rt cannot come from hx, since otherwise hxlb would 
contain two adjacent termination events. 

- h1 cannot end in a termination event from h : If it did, the next event in hlb 

would have to be a termination event, and w"ould have to come from hx; the 
next-to-last event in h1 would have to be the invocation event from hy' and 
the event preceding it would have to be an invocation event from hx' 
contradicting the assumption that h1 is an alternating sequence. 

Since h 1 ends in an invocation event from h , the next event in hlb must be an x 

invocation event from hy. 

Now consider the iteration of the main loop during which the events for bin hy are 

moved in s3 from sy to s. s already contains h 1 as a subsequence before s3 is 

appended to s, and s2 contains a termination event for b. Let a be the activity 

whose commit event is moved from sx to s during that iteration. Since s2 contains 

a termination event for b, a termination event for b follows a commit event for a in 

hx, so <a.b> E precedes(h). But events for bat y appear in s3, and so appear in hy 

before the commit event for a; by the construction of h , <b,a> E precedes(h ). y y 

This is a contradiction, since Tis consistent with precedes(h ) and precedes(h ). x y 



Thus, the first condition holds for hlb. 

Now consider the third condition. Suppose a E committed(h). By the first 

condition, op-events(hla) consists of an alternating sequence of invocation and 
-, 

termination events; since h and h are well-formed, it suffices to show that no . x y 

events involving a except commit events occur in h after the first commit event for 

a. As shown above. when the commit event for a at y is moved to s, only commit 

events remain in sx for a. When the first commit event for a at x is moved to s, 

either no events remain for the activity in sy, or the events for the activity in sy are 

fTIOved to s, on the same iteration of the main loop, before the commit event from 

sx is moved to s. 

Thus, h is well-formed. Since permanent(h ) is not serializable in the order T, and x 

permanent(hy) is serializable only in the order T, h is not atomic. This is the 

desired contradiction, showing that dynamic atomicity is optimal. 

51 

The locking protocols of [Bernstein et al. 81] and [Korth 81 a] are suboptimal: while sufficient 

to ensure atomicity (given their assumptions about the underlying recovery mechanism), they 

achieve strictly less concurrency than permitted by dynamic atomicity. We will illustrate this 

point with detailed examples in Chapter 5. 

4.2 Static Atomicity 

Protocols characterized by dynamic atomicity determine a serialization order for activities 

based on the dynamics of the execution of activities. In contrast, timestamp protocols (see, 

e.g., [Reed 78]) determine a serialization order for activities statically, based on timestamps 

chosen when activities start. Our second local atomicity property characterizes the behavior 

of protocols which are static in this sense. We call this property static atomicity. 

The remainder of this section is divided into three subsections. In the first, we define static 

atomicity and prove that it is a local atomicity property. Then, in the second, we show that 

static atomicity is optimal. Finally, in the third, we compare static and dynamic atomicity. 

4.2.1 Definition of Static Atomicity 

Static atomic objects ensure that activities are serializable in a pre-determined order. We 

model this behavior as follows: Let ACT be the set of all activities, and let TS be a fixed total 

order on ACT. Let h be a history containing initiation, invocation, termination, commit, and 

abort events. We say that his static atomic if permanent(h) is serializable in the order TS. 

For example suppose x is a set object as before. Suppose that a and b are activities, and that 



52 

TS orders b before a. Then the following history h is atomic. but not static atomic: 

<member(3),x,a> 
<false.x,a> 

<commit,x,a> 
<insert(3),x,b> 

<ok,x,b> 
<commit,x,b> 

Permanent(h) is a serial history. and is serializable in the order a-b. However, permanent(h) is 

not serializable in the order b-a, which is the order specified by TS. 

As another ex~mple, the history 

<insert(3),x,a> 
<ok,x,a> 

<commit,x,a> 
<member(3),x,b> 

<false,x,b> 
<commit,x,b> 

is static atomic: Permanent(h) is serializable in the order TS. 

We say that an object is static atomic if every history permitted by the object's behavioral 

specification is static atomic. The following theorem verifies that static atomicity is a local 

atomicity property: 

Theorem 4-4: If every object in a system is static atomic, then every history in the 

system's behavior is atomic. 

Proof: Suppose that every object in a system is static atomic, and let h be a history 

of the system. By the definition of static atomicity, permanent(hlx) is serializable in 

the order TS. By Lemmas 3-3 and 3-2, permanent(h) is also serializable in the 

order TS, so h is atomic. 

4.2.2 Optimality 

Static atomicity, like dynamic atomicity, is optimal. The paragraphs below provide a precise 

proof of this result. We begin with some definitions, and then prove the theorem. 

If his a history, define the relation commit-order(h) on activities to contain all pairs <a.b> such 

that a.b E committed(h) and the first commit event for a in h occurs before the first commit 

event for b in h. Note that commit-order(h) is a partial order on activities, and that it totally 

orders committed(h). 

Theorem 4-5: For systems using the events described in this section, static 

atomicity is optimal. 

Proof: The proof proceeds by contradiction, along the lines of the proof of 

Theorem 4-3. Suppose P is a local atomicity property that is strictly weaker than 

static atomicity. We will exhibit a system composed of objects satisfying P, and 



show that there is a non-atomic history of that system. thus contradicting the claim 

that Pis a local atomicity property. 

Since Pis more permissive than static atomicity. there must be a specification S 
' x 

of an object x such that S satisfies P but x is not static atomic. In particular, there x 

must be at least one history h in x.behavior that is not static atomic; that is. such x 

that permanent(h ) is not serializable in the order TS. We will construct an object y x 

whose specification contains a history h involving the committed activities in h . y x 

Now, consider a system containing x, y, and all the activities in h . As in the proof x 

of Theorem 4-3, hy will be chosen so that it is serializable only in the order TS, and 

there is a history h of this system such that hlx = hx and hly = hy. Since 

permanent(hy) is only serializable in the order TS, and permanent(h) is not 

serializable in that order, it follows from Lemma 3-2 that permanent(h) is not 

serializable. Thus, h is not atomic. 

Construction of y: 

The serial specification of y is the same as in the proof of Theorem 4-3, and is 

described by the machine in Figure 4-1. Let y.behavior be the largest set such that 

y is static atomic. Notice that while the serial specification of y is the same as in 

the proof of Theorem 4-3, the behavioral specification is different. Since P is 

weaker than static atomicity, SY satisfies P. 

Now, let a7, a2, ... , an be the activities in committed(hx) in the order 

commit-order(h). Let order: {a7, ... ,an} -+ [1,2,. .. ,n] map the ai to the integers 

between 1 and n such that order(ai)<order(aj) if and only if TS orders ai before aj. 

Let hy be the following serial history in y.behavior: 

<increment,y,a1> 
<order( a 1 ),y,a1> 
<commit,y,a1> 

<increment, y ,a2> 
<order(a2),y,a2> 
<commit,y,a2> 

<increment,y,an> 
<order(an),y,an> 
<comrnit,y,an> 

Note that hy is serializable only in the order TS. 

Existence of h: 

53 



54 

By the same arguments as in the proof of Theorem 4-3, there exists a history h 

such that hlx = h and hly = h . This gives the desired contradiction. x y 

4.2.3 Discussion 

Dynamic atomicity and static atomicity are different: each permits operations to be 

interleaved in ways that the other does not. This implies that optimal does not mean "best," 

but rather that nothing else is strictly better. 

Which of these two local atomicity properties is better for a given application will depend on 

the patterns of operations invoked by activities. For example, dynamic atomicity works poorly 

for long read-only activities such as audits. If dynamic atomicity is implemented using a 

locking protocol, a read-only activity, once it has a lock on an object, will cause other 

activities that need conflicting locks to wait. Because of the need to wait for locks, long 

read-only activities can be quite prone to deadlock. Static atomicity, however, works 

reasonably well for long read-only activities. In the implementation proposed by Reed [Reed 

78], read-only activities are never forced to abort (the analog of deadlock in a locking system), 

and are rarely delayed by other activities. On the other hand, static atomicity works poorly for 

update activities with old timestamps. For example, in the implementation proposed by Reed, 

if an activity attempts to write an object after another activity with a later timestamp has 

already read the object, the former activity must be aborted. Using dynamic atomicity, the 

writer might be delayed until the reader committed, but would then be able to proceed. 

4.3 Hybrid Atomicity 

Our final local atomicity property, which we call hybrid atomicity, characterizes the behavior 

of protocols that exhibit some of the characteristics of dynamic atomic protocols and some of 

the characteristics of static atomic protocols. Examples of such protocols include the mixed 

methods of [Bernstein & Goodman 81, Section 5.3.2] and the multi-version scheme proposed 

in [DuBourdieu 82] and formally analyzed in [Bernstein & Goodman 83]. 

Hybrid atomicity is based on two ideas. First, we partition activities into two classes: read­

only activities, and update activities. Intuitively, a read-only activity is one that does not 

invoke any operations that change the state of an object. Formally, if the serial specification 

of an object is described by a state machine M, then an operation 0 on the object is read-only 

if ~(S,0) = S for all states Sin which 0 is defined. An activity is read-only if every operation 

executed by the activity is read-only. All other activities are considered to be update activities 

As in Reed's implementation of static atomicity, timestamps for read-only activities are chosen 



55 

when they begin execution. Timestamps for update activities. however, are chosen 

dynamically as they commit. The system ensures that the timestamp order on updates is 

consistent with the precedes order; objects can use this property to ensure that updates are 

serializab.le in timestamp order. 

When a read-only activity with timestamp t invokes an operation on an object, the answer to 

its query is computed by including the effects of all operations executed by committed update 

activities with timestamps less than t. The system also ensures that update activities that 

commit later choose a timestamp greater than t, ensuring that the results returned to the 

read-only activity are not invalidated by an update that commits later. 

The remainder of this section is divided into three subsections. In the first, we describe the 

additional events needed to define hybrid atomicity. In the second, we define hybrid atomicity 

and prove that it is a lccal atomicity property. We also claim that hybrid atomicity is optimal. 

Finally, in the third, we compare hybrid atomicity to static atomicity and dynamic atomicity. 

4.3.1 Additional Events 

To define hybrid atomicity precisely, we need to introduce some new events that describe the 

timestamps chosen by activities. In addition, we must partition the set of activities into two 

subsets: the updates (written a, b, and c), and the read-only activities (written r and s). 

Timestamps for updates are chosen when they commit, and an object learns of an update's 

timestamp when the update commits at the object. We write the event corresponding to the 

commitment of an update a at object x with timestamp t as <commit(t),x,a>. Timestamps for 

read-only activities are chosen when they start, and an object learns of a read-only activity's 

timestamps when the activity invokes an operation on the object. We model this by including 

initiation events: Before invoking an operation on an object, a read-only activity must initiate 

at the object to let the object know its timestamp. We write the event corresponding to the 

initiation of activity r at object x with timestamp t as <initiate(t).x,r>. We use the term 

timestamp events to denote the set of all commit events for updates and all initiation events 

for read-only activities. 

We assume that timestamps are taken from some countable, totally ordered set: in our 

examples we will use natural numbers. 

In addition to the well-formedness constraints on event sequences stated in Chapter 2, we 

have the following constraints: 

·A read-only activity must initiate at an object before invoking any operations at 
the object; i.e., for every read-only activity rand every object x, hlrlx begins with 
an initiation event. 



56 

· Any two timestamp events for distinct activities have distinct timestamps. 

· Any two timestamp events for the same activity have the same timestamp. 

For example, the following sequence is well-formed: 

<insert(3),x,a> 
<ok,x,a> 

<commit(2),x,a> 
<initiate( 1 ),x,r> 

<member(3),x,r> 
<false,x,r> 

<commit,x,r> 

The following sequence h, however, is not: 

<insert(3) ,x ,a> 
<ok,x,a> 

<commit(2),x,a> 
<member(3),x,b> 

<true,x,b> 
<commit(1 ),x,b> 
<initiate(2),x,r> 

since rand a use the same timestamp, violating the uniqueness property of timestamps. 

We ~tend the definition of opseq to histories including timestamp events by having opseq 

throw away timestamp events in addition to completion events. Acceptability, serializability, 

and atomicity for histories are then defined as before in terms of opseq. 

4.3.2 Definition of Hybrid Atomicity 

Leth be a history. We say that h is hybrid atomic if permanent(h) is serializable in timestamp 

order. 

For example, let x be a set object as before; then the following history h is atomic: 

<insert(3),x,a> 
<ok,x,a> 

(insert(4),x,b> 
<ok,x,b> 

<commit(1 ),x,a> 
<commit(3),x,b> 
<initiate(2),x,r> 

<member(3) ,x,r> 
<true,x,r> 

<member(4),x,r> 
<true,x,r> 

<commit,x,r> 

since it is serializable in the order a-b-r. However, it is not hybrid atomic, for the following 

reason. Permanent(h) in timestamp order is the history 



<insert(3),x,a> 
<ok.x.a> 

<commit(1 ),x,a> 
<initiate(2),x,r> 

<member(3),x,r> 
<true,x,r> 

<member(4),x,r> 
<true,x,r> 

<commit,x,r> 
<insert(4),x,b> 

<ok,x,b> 
<commit(3),x,b> 

which is not an acceptable serial history. 

As another example, the history 

is hybrid atomic. 

<insert(3),x,a> 
<ok,x,a> 

<insert(4),x,b> 
<ok,x,b> 

· <commit(1 ),x,a> 
<commit(3),x,b> 
<initiate(2),x,r> 

<member(3),x,r> 
<true,x,r> 

<member(4),x,r> 
<false,x,r> 

<commit,x,r> 

57 

We say that an object is hybrid atomic if every history permitted by the object's behavioral 

specification is hybrid atomic. The following theorem verifies that hybrid atomicity is a local 

atomicity property: 

Theorem 4·6: If every object in a system is hybrid atomic, then every history of 

the system is atomic. 

The proof is identical to that for static atomicity. 

Hybrid atomicity is optimal; the proof again is by contradiction. 

4.3.3 Discussion 

At first glance hybrid atomicity might not seem very different from static atomicity: both work 

by establishing a single global ordering on activities and ensuring that activities are 

serializable in that order. Static atomicity uses a pre-determined order, chosen before 

activities begin executing. Hybrid atomicity, in contrast, uses an order determined by the 

order in which updates commit. This difference is substantial: it raises a number of 



58 

interesting implementation issues. and results in some useful properties. 

One simple way to implement hybrid atomicity is to use dynamic atomicity for update 

activities. generating timestamps for them so that the timestamp order on updates is 

consistent with the precedes order, and to compute the results of an operation invoked by a 

read-only activity with timestamp t by including the effects of all committed updates with 

timestamps less than t. (See. e.g., [DuBourdieu 82, Bernstein & Goodman 83] for a detailed 

description of this approach for simple objects with read and write operations.) This simple 

implementation, like implementations of static atomicity, permits read-only activities to run 

without interfering with update activities; by using dynamic atomicity for updates, however, 

the problems of static atomicity are avoided. 

More complex implementations of hybrid atomicity can allow more concurrency among 

update activities than is permitted by dynamic atomicity. Consider, for example, a first-in-first­

out queue object z with a serial specification as described by the machine in Figure 3-2. 

Hybrid atomicity allows activities to enqueue items in parallel, as is illustrated by the following 

hybrid atomic history: 

<enqueue(1) ,z,a> 
<enqueue(2),z,b> 

<ok,z,a> 
<ok,z,b> 

<commit(3),z,b> 
<commit(5),z,a> 
<dequeue,z,c> 

<2,z,c> 
<dequeue,z,c> 

<1,z,c> 
<commit(17),z,c> 

Dynamic atomicity allows activities to enqueue items in parallel, but the items enqueued 

cannot be dequeued by another activity. Consider the following history h: 

<enqueue(1 ),z,a> 
<enqueue(2) ,z,b> 

<ok,z,a> 
<ok,z,b> 

<commit,z,b> 
<commit,z,a> 

<dequeue,z,c> 
<?,z,c> 

<commit,z,c> 

If c dequeues 1 in place of the "?," then h is not serializable in the order b-a-c; if c dequeues 

2, then his not serializable in the order a-b-c. Since precedes(h) contains only the pairs <a,c> 

and <b,c>, his not dynamic atomic, regardless of which item is dequeued by c. (In Chapter 5, 

we will discuss this problem with dynamic atomicity in more detail, and will explain how to 



59 

solve it.) 

Hybrid atomicity can allow more concurrency than dynamic atomicity because the objects 

have more information, namely the timestamps assigned to update activities as they commit. 

This does not contradict .our optimality results. but rather serves to emphasize their 

dependence on the information available to objects. (Cf. tile work in [Kung & Papadimitriou 

79] on the "optimality" of concurrency control protocols, and the dependence of "optimality" 

on the amount of information available to the protocols.) 

Lamport [Lamport 76) suggested that atomicity is too strong a requirement because it permits 

too little concurrency, and presented the example of a banking system to support his claim. 

The system contains transfer activities (which move money between two accounts) and audit 

activities (which print out the current balances of all accounts). Lamport noted the 

performance problems of locking implementations, and suggested that the solution to these 

problems is to allow non-atomic executions. He defined a correctness property, namely that 

the view of the database seen by an audit must be consistent, and described an 

implementation that guarantees this property while permitting more concurrency than a 

locking implementation of atomicity. His correctness property does not ensure, however, that 

the view seen by an audit bears any relation to the actual state of the database. In addition, 

audits under his implementation still interfere with some updates. The implementations of 

hybrid atomicity discussed above solve the problem addressed by Lamport, namely the 

performance problems with read-only activities under dynamic atomicity. In contrast to 

Lamport's solution, hybrid atomicity ensures atomicity; this means that the view seen by an 

audit can be related to the updates performed by transfers and to the views seen by other 

audits. In addition, hybrid atomicity can be implemented so that audits do not interfere with 

any updates, and the techniques can be applied easily to other situations involving read-only 

activities. 

Our primary motivation for developing hybrid atomicity was to solve the problems of dynamic 

atomicity with long read-only activities. In addition, hybrid atomicity permits more 

concurrency among update activities than does dynamic atomicity. For example, hybrid 

atomicity permits a FIFO queue that allows concurrent use of enq operations. Hybrid 

atomicity also appears useful for replication: Herlihy [Herlihy 84] has developed novel 

replication techniques, based on hybrid atomicity, for user-defined objects. Hybrid atomicity 

permits greater freedom in choosing quorums for operations than dynamic atomicity, 

providing the potential for increased availability. 



60 

4.4 Remarks 

In this section we discuss a number of issues related to the material presented earlier. The 

section is divided into three subsections. In the first, we return to the issue of type-specific 

concurrency control discussed in Chapter 1. In the second, we discuss the meaning of the 

term "atomic type," and explain how the local atomicity properties discussed above serve to 

classify different kinds of atomic types. Finally, in the third, we discuss the structure of 

specifications of objects. 

4.4.1 Type-specific Concurrency Control 

Let us consider the example of a semiqueue object discussed earlier. The serial specification 

of a semiqueue object y was given in Figure 2-3. Consider the following history h: 

<enq(1 ),y,a> 
<enq(2),y,b> 

<ok,y,b> 
<ok,y,a> 

<enq(3),y,a> 
<ok,y,a> 

<enq(4),y,b> 
<ok,y,b> 

<commit,y,a> 
<commit,y,b> 

<deq,y,c> 
<3,y,c> 

<commit,y,c> 

Permanent(h) is the same as h, and precedes(h) contains the pairs <a,c> and <b,c>. The 

reader may check that permanent(h) is serializable in the orders a-b-c and b-a-c, and thus 

that h is dynamic atomic. 

Protocols based on a free interpretation of the operations (as used in [Papadimitriou 79]) 

cannot achieve this kind of concurrency: each operation is assumed to update the object's 

state, implying that activities cannot access an object concurrently. For example, two-phase 

locking using exclusive locks is shown in [Kung & Papadimitriou 79] to be optimal, given that 

no information is available about the semantics of operations. The example above, and 

others throughout this dissertation. illustrate how a specification of the acceptable serial 

behavior of objects can be used to achieve greater concurrency. 

4.4 .. 2 Atomic Types 

As discussed in the introduction, a data type consists of a collection of objects with 

associated operations. We extend properties of objects to types as follows: We say that a 

type satisfies a property P if all of its objects satisfy P. For example, if a type's objects are all 

dynamic atomic. we say that the type is dynamic atomic. 



61 

Each of the three local atomicity properties discussed in this chapter defines a class of 

"atomic" types. The types within a single class are "compatible," in the sense that as long as 

all types in a system belong to a single class, activities are guaranteed to be atomic. Types in 

different .classes are not necessarily compatible; for example, as illustrated in Chapter 1, 

atomicity is not guaranteed if dynamic atomic and static atomic objects are used together. 

Indeed, a recent paper on concurrency control [Beeri et al. 83] claims to "verify" an 

implementation of an atomic type taken from [Weihl & Liskov 82]. The type happens to be 

dynamic atomic. However, all that is shown in [Beeri et al. 83] is that every history permitted 

by the .implementation is atomic. As we illustrated in Chapter 1, if the implementation were 

placed in a system containing incompatible types, atomicity could be violated. Our results 

show that there are many different definitions for the term "atomic type," and that it is 

necessary to check that the different types in a system are all compatible. 

4.4.3 Structure of Specifications 

We separated the serial specification of an object from its behavioral specification to reflect 

the stages of our informal design process. As the following example illustrates, this 

separation also enhances the modularity of a system, by reducing the amount of information 

about an object needed by the programmer of an activity. 

Consider the plight of the programmer of a single activity who is given a behavioral 

specification (and no separate serial specification) for each object and the assurance that 

every system history is atomic. The programmer would like to ignore the non-serial histories 

in each object's specification, since atomicity is supposed to ensure that all histories are 

"serializable." Now consider the following serial history in the specification of an object x 

which is informally documented as a set of integers: 

<insert(3),x,a> 
<ok,x,a> 

<commit,x,a> 
<member(3),x,b> 

<false,x,b> 
<commit,x,b> 

Without knowing the local atomicity property satisfied by x, the programmer will find it difficult 

to place a reasonable interpretation on this history. If x is static atomic, and TS orders b 

before a, then the history makes sense for a set object, since it is serializable in the order TS. 

If, however, xis dynamic atomic, the history is rather odd: One would expect b to find 3 in the 

set after it has been inserted by a. By separating the serial specification from the behavioral 

specification, we avoid the need for the programmer of an activity to understand the details of 

the local atomicity property used by objects. Instead, the programmer needs to know only 

that every system history is atomic; he or she can then check that an activity preserves 

consistency using only the serial specification of each object. 



62 



63 

Chapter Five 

Locking 

In this chapter we look at how two-phase locking protocols can be used to implement 

dynamic atomic objects. We begin in Section 5.1 by reviewing the locking protocols in the 

literature [Bernstein et al. 81, Korth 81 a]. These protocols are limited in several ways, 

particularly in their inability to handle non-deterministic operations. Then, in Section 5.2, we 

describe a general locking protocol that avoids some, but not all, of the limitations of existing 

protocols. Our description covers both synchronization and recovery. Next, in Section 5.3, 

we verify that the protocol described in Section 5.2 ensures dynamic atomicity. Finally, in 

Section 5.4, we discuss a number of related issues. 

5.1 Existing Protocols 

The two-phase locking protocol of [Eswaren et al. 76) has been extended in [Bernstein et al. 

81) and [Korth 81 a] to use user-specified information about objects to increase concurrency. 

These extended protocols restrict invocations to be total and deterministic: If M is a machine 

describing a serial specification, SM is the state domain of M, and TERM is the set of 

termination events, then for every invocation event i we can define a total function perform1: 

SM-+ SM X TERM, where perform;(s) = <s',r> and NM(s,<i,r>) = s'. In other words, for every 

invocation i, and every state s of M, there exists exactly one termination event r such that 

NM(s,(i,r>) * .l. In contrast, we permit partial invocations, for which there may be no 

termination event in some states, and non-deterministic invocations, for which there may be 

more than one termination event in some states. The serial specification of the semiqueue 

object in Figure 2-3 illustrates both: The deq invocation is partial (there are states in which no 

execution of deq is defined) and non-deterministic (there are states in which more than one 

execution of deq is defined). 

Like the read-write locking protocol discussed in Chapter 1, these extended protocols 

partition the set of operations on an object into classes, and use a different lock mode for 

each class. Classes are relatively coarse-grained; for example, all operations with the same 

invocation event are in the same class. 

Informally, we say that a lock mode for one class is compatible with a lock mode for another 

class if all operations in the first class "commute" with all operations in the second class. 

Two lock modes conflict if they are not compatible. 

An execution of an operation must first acquire a lock in the mode defined for its class. A lock 



64 

can be acquired if no concurrent activity holds a conflicting lock. Locks are released when 

activities complete. If an operation is unable to acquire its lock, it waits until conflicting 

activities complete. 

The proof that this extended proto.col ensures dynamic atomicity is relatively simple: since 

operations executed by concurrent activities "commute," they can be reordered without 

affecting their results or the final state. By appropriately reordering operations, we can obtain 

a serial execution equivalent to any concurrent execution that obeys the locking rules. This 

proof depends, however, on the requirement that operations be total and deterministic. In the 

next two sections we define and verify a general locking protocol that permits partial and 

non-deterministic operations. The protocols of [Bernstein et al. 81] and [Korth 81 a] are 

special cases of our protocol. In our remarks at the end of the chapter we discuss the 

differences between our protocol and the protocols of [Bernstein et al. 81, Korth 81 a), and 

illustrate how their requirements enable the proof to be simplified. 

5.2 A General Locking Protocol 

Like the locking protocols of [Eswaren et al. 76, Bernstein et al. 81, Korth 81 a], our protocol is 

based on the notion of "commutativity" of operations. We begin our description of the 

protocol by precisely defining commutativity. 

5.2.1 Definition of Commutativity 

It is convenient to define commutativity quite generally, so that it covers sequences of 

operations, not just individual operations. If M is a state machine, and T and U are two 

sequences of transitions of M, we say that T and U commute if, for every state s in which T 

and U are both defined, T(U(s)) = U(T(s)) and T(U(s)) "¢ ..L. 

The obvious definition of commutativity is simply that T and U commute if, for all states s, 

T(U(s)) = U(T(s)). Our definition differs in two respects from this simple definition: First, we 

only care about those states in which T and U are both defined. Second, we require that the 

state resulting from application of both T and U be defined. The simple definition permits 

T(U(s)) = U(T(s)) = ..L. As should be clear from the proof in the next section, the more 

complex definition is necessary for the protocol to work. 

We illustrate our definition of commutativity with some examples taken from the serial 

specification of a set object x in Figure 2-2. If T = x:<insert(i),ok> and U = x:<insert(j),ok>, 

then T and U commute: Both are defined in all states, and T(U(s)) = U(T(s)) = sU{i}U{i}. 

On the other hand, if V = x:<delete(i),ok>, then T and V do not commute: T(V(s)) = sU{i}, 

while V(T(s)) = s-{i}. U and V commute, however, as long as i"¢j. 



65 

Suppose W = x:<member(i).true>. Wand V do not commute: V and Ware both defined only 

in states containing i. Ifs contains i, V(W(s)) = V(s) = s-{i}. However, W(V(s)) :;::: W(s-{i}) = 

J.., so W and V do not commute. On the other hand, W and T commute: If s contains i, 

T(W(s))· = W(T(s)) :;::: sU{i} = s. 

5.2.2 The Protocol 

Our description of our protocol is designed to emphasize the general strategy followed by the 

protocol, and to highlight the differences with other locking protocols. We do not address in 

this chapter the problem of designing an efficient implementation of the protocol for a 

particular object. An efficient implementation of this protocol for a "map" data type can be 

found in the appendix. 

We assume that the serial specification of an object x is given by a state machine SERIAL. We 

let the behavioral specification of x consist of all dynamic atomic complete histories. An 

implementation of x is described by the state machine LOCK in Figure 5-1. The language of 

the machine LOCK consists of a set of event sequences involving x; in the next section we will 

show that LOCK is correct in the sense that every complete history in L(LOCK) is dynamic 

atomic. 

The definition of LOCK uses some new notation: ACT is the set of all activities, INV is the set 

of all invocation events, and sequence(S), where S is a set, is the set of all sequences of 

elements of S. Also, the expression m[x-+y], where mis a (possibly partial) function from X to 

Y, xEX, and yEY, denotes that function identical to m except at x, which it maps to Y- Recall 

that the symbol -+ P is used to denote a partial function. 

The machine LOCK works roughly as follows: Recovery is accomplished using intentions 

lists. When a termination event occurs for an activity, the operation (consisting of the 

termination event and its corresponding invocation event) is appended to an intentions list for 

the activity. When an activity commits, the operations on its intentions list are applied to the 

current value of x, producing a new current value. Thus, the current value of x reflects all 

changes made by committed activities. 

Each activity has its own "view" of the current value of x, defined by applying the operations 

in the activity's intentions list to x's current value. An activity's view reflects all changes made 

by committed activities, plus changes made by the activity itself. A termination event is 

allowed to occur for an activity only if the operation (again consisting of the termination event 

and its corresponding invocation event) is defined in the activity's view. This is clearly 

necessary: If the activity then commits, and all other activities abort, the activity must be 

serializable after the other committed activities. 



66 

State Components 

current E SSERIAL initially 'sERIAL 
pending: ACT-+ INV initially .1 

p 
intentions; ACT-+ sequence(T SERIAL) initially A 

committed~ ACT initially 0 
aborted~ ACT initially 0 

Transitions: events involving x 

NLOCK(s, <commit,x,a>): 

if aEs.committed then no change else changes 

s.current to NSERIAL (s.current, s.intentions(a)) 

s.committed to s.committed U {a} 

NLOCK(s, <abort,x,a>): 
changes 

s.pending to s.pending[a-+.1] 

s.aborted to s.aborted U {a} 

NLOCK(s, (i,x,a>): 

when i is an invocation event 

changes s.pending to s.pending[a-+i] 

NLOCK(S, <r,x,a>): 
when 

r is a termination event 

and s.pending(a) *- .1 

and NSERIAL (s.current, s.intentions(a)•x:<s.pending(a),r>) *' .1 

and x:<s.pending(a),r> commutes with every operation in 

s.intentions(b), for every bin 

ACT -s.committed-s.aborted-{ a} 

changes 

s.pending to s.pending[a-+.1] 

s.intentions to s.intentions[a-+s.intentions(a)•x:<s.pending(a),r>] 

Figure 5-1 :The machine LOCK. 



67 

In addition, a termination event is allowed to occur for an activity only if the operation 

commutes with all operations executed by concurrent activities. This is sufficient to ensure 

serializability in all orders consistent with the precedes order. 

A more precise explanation of LOCK follows. The states of LOCK have five components. 

Current E SSERIAL is the current serial state. derived from the initial serial state by performing 

the operations executed by committed activities. Pending: ACT-+ INV maps each activity to p 

its current pending invocation, if any. Intentions: ACT -+ sequence(T SERIAL) maps each 

activity to the sequence of operations it has executed. Committed ~ ACT is the set of 

committed activities, and aborted ~ ACT is the set of aborted activities. We denote the 

components of a state s E SLOCK by s.current, s.pending, s.intentions, s.committed, and 

s.aborted. 

When an activity commits for the first time, LOCK updates the current serial state by applying 

the activity's intentions list to the state. (Multiple commit events may occur for an activity at 

an object: we only want to apply the activity's changes to x's current value once.) When an 

activity aborts, the current serial state is not changed. 

Each active activity has its own "current view" of the current serial state, defined by applying 

the activity's intentions list to the current serial state. Invocation events are recorded in 

pending. Termination events can occur for an activity whenever three conditions are 

satisfied: 

1. The activity has a pending invocation. 

2. The resulting operation (obtained by pairing the pending invocation with the 
termination event) is defined in the activity's current view. 

3. The operation commutes with all operations executed by concurrent activities 
(those that have not yet committed or aborted). 

When a termination event occurs, the corresponding operation is appended to the intentions 

list for the activity, and the record of the pending invocation is discarded. 

Note that the "intentions list" for an activity is never discarded. A real implementation of this 

protocol would not keep intentions lists for aborted activities, or for committed activities once 

the intentions list had been applied to the current value of the object. The intentions lists for 

completed activities have no effect on the behavior of the m·achine; we keep them around 

solely for convenience in the proof of correctness in the next section. Similarly, if intentions 

lists for completed activities are discarded, there is no need in a real implementation to 

remember the sets of committed and aborted activities. Again, we keep them for 

convenience. These parts of the state of LOCI< are not unlike the "ghost variables" of [Owicki 

& Gries 76]. 



68 

5.3 Correctness Proof 

We wish to prove the following theorem: 

Theorem 5· 1: Let SERIAL be a machine, and let x be an object with x.serial = 

L(SERIAL), and with x.behavior defined to be the set of all dynamic atomic ,, 
complete histories involving x; Let LOCK be a machine as defined in the previous 

section. Then every complete history in L(LOCK) is in x.behavior. 

We note that there may be histories in x.behavior that are not in L(LOCK); i.e., dynamic 

atomicity permits more histories than can be achieved by this locking protocol. We will 

discuss the diff~rences between dynamic atomicity and locking-based implementations of it in 

Section 5.4.2. 

Our proof of the theorem consists of the verification of a collection of invariants relating the 

state of LOCK with the histories it accepts. We present our proof in three parts. First, in 

Section 5.3.1. we present some technical lemmas about commutativity. Then, in Section 

5.3.2. we describe our main invariant. Finally, in Section 5.3.3, we present a series of lemmas 

that complete the proof. 

5.3.1 Commutativity 

We begin with some notation. In a diagram such as: 

an arc leading downward indicates that T(s1) = s
2

, and hence that Tis defined in s1. If T and 

U commute, and we have the diagram: 

then by the definition of commutativity we can complete the diagram to: 

~ 
~ 

The first lemma provides an inductive technique for proving that two sequences commute: 

Lemma 5·2: Let A. and 8., for i,j E {0,1}, be sequences of transitions. If A. 
I I I 

commutes with Bi for all i and j, then A0 • A1 commutes with 8
0 
•81. 

Proof: Lets be such that A0•A1(s) * J. and B0•81(s) * .L We need to show that 



A
0

•A
1
(B

0
•B

1
(s)) = B

0
•B

1
(A

0
•A

1
(s)) and that A

0
•A

1
(B

0
•B

1
(s)) * ..L. We have the 

following diagram: 

~o 
A~ ~B1 

which by the hypotheses of the lemma can be completed to: 

which shows the desired result. 

The following corollary extends the lemma to sequences composed of more than two parts. 

Corollary 5-3: Let Ai, 1 Si<m, and Bi' 1 Si Sn, be sequences of transitions, and 

let A = A
1

• .•. •A and B = 8 1• ... •B . If A. commutes with 8. for all i and j, then A m n 1 J 

commutes with 8. 

69 

The following lemma addresses the situation when we have a collection of more than two 

sequences that commute pairwise. 

Lemma 5·4: Let S be a state, and let Ti, 1 Si<n, be sequences of transitions such 

that: 

1. T. is defined in S for all i. 
I 

2. T. commutes with T. for all i and 1·, 1 <i<J"<n. 
I J - -

Let i1 ,i2,. . .,in be a permutation of 1 ,2,. .. ,n. Then: 

1. T1T2• ... •T
0
(S) ':I: ..L 

2. Ti1 •Ti2 • ... •Ti
0
(S) = T 1•T2 • ... •T 

0
(8) 

Proof: The proof proceeds by induction on n. The case when n = 1 is trivial. The 

case when n = 2 follows directly from the definition of commutativity. 

For the induction step, assume that the lemma holds for fewer than n sequences. 

Let i be such that ij = 1 (so T.. = T
1

). By the induction hypothesis, 
IJ 

T 2•T 3 • ... •T 
0
(5)-:1:.1, and Ti1 • ... •Ti(j-l) •Tiu+ 1) • ••• •Ti

0
(S) = T 2 • ... •T 

0
($). 



70 

that S1 :;t l. and T.<. 1)· ... ·T. is defined in S1. 
I J + in 

By Corollary 5-3. T
1 

commutes with T2• ... •T , T.1• ... •T.(. l)' and T.<. 1)• ... •T .. 
n I I J· I J + in 

Since T 1 ·is defined in S, and so is T 
2 

• ... •T n' T 
2 

• ... •T n(T 1(S)) *- l.. This proves the 

first half of the lemma. 

Now. since T1 is defined in S, and so is Ti 1 • ... •Ti(i·l)' it follows from the definition of 

commutativity that T 1 is defined in S1. Therefore T 1(Ti(i + l) • ... •Tin(S1)) = 

Ti(i + l) • ... •Tin(T 1(S1 )). 

The following equalities show the second half of the lemma: 

T1•T2 • ... •Tn(S) = T2• ... •Tn(T1(S)) 

= T
1
(T

2
• ... •T

0
(S)) 

= T1(Ti1• ... •Ti(i-1)•Ti(i+1)• ... •Tin(S)) 

= T1(Ti(i+l)• ... •Tin(S1)) 

= T.<. 1)• ... •T. (T1(S1)} 
I J + in 

= Ti(j+1( .. •Tin(T1(Ti1• ... •Ti(i-1)(S)) 

= T.
0 1)• ... •T. (T .. (T.1• ... •T.01 l(S)) 

I + In IJ I I · 

= Ti1 •Ti2 • ... •Tin(S). 

The second line follows since T 1 commutes with T 
2 

• ... •T 
0

. The remaining lines 

follow from equalities argued above. 

5.3.2 On-line Dynamic Atomicity 

In this section we define the main invariant to be proved about the histories in L(LOCK). We 

actually define two properties: strong dynamic atomicity, and on-line dynamic atomicity. 

Let x be an object and Ma machine, with x.serial = L(M). We say that a history h is strong 

dynamic atomic at x if the following conditions are satisfied: 

- hlx is dynamic atomic. 

- if T1 and T2 are total orders on activities consistent with precedes(hlx), then 
NM(IM' opseq(serial(permanent(hlx), T7))) = 

NM(IM' opseq(serial(permanent(hjx), T2))). 

In other words, the final state of M resulting from executirig the operations in 

serial(permanent(hjx), T) does not depend on T. 

We say that a history h is strong dynamic atomic if it is strong dynamic atomic at all objects x. 

The following lemma follows easily from the definitions: 

Lemma 5-5: If his strong dynamic atomic, his also dynamic atomic. 



71 

The following example illustrates how strong dynamic atomicity and dynamic atomicity differ. 

In Section 4.3.3 we illustrated a problem with dynamic atomicity, namely that concurrent 

activities can enqueue items on a FIFO queue, but that the items cannot be dequeued later. 

We repeat the example history here: 

<enqueue(1 ),z,a> 
<enqueue(2).z,b> 

<ok,z,a> 
<ok,z,b> 

<commit,z,b> 
<commit,z,a> 

<dequeue,z,c> 
<?,z,c> 

<commit,z,c> 

The problem is that the result returned by the dequeue operation depends on the order in 

which a and bare serialized. Consider the following prefix h of this history: 

<enqueue(1 ),z,a> 
<enqueue(2),z,b> 

<ok,z,a> 
<ok,z,b> 

<commit,z,b> 
<commit,z,a> 

This prefix is not strong dynamic atomic: The state of the machine M resulting from serializing 

a before b is the sequence 1 •2, while the state resulting from serializing b before a is the 

sequence 2• 1. 

This example is an instance of a general problem with dynamic atomicity. If an 

implementation allows a history that is not strong dynamic atomic, it may have difficulty 

responding to later invocations. There are two solutions to this problem. One is to use hybrid 

atomicity, as discussed in Section 4.3.3: Once activities commit, they can be totally ordered 

by their timestamps. The other is to strengthen dynamic atomicity, requiring strong dynamic 

atomicity instead. This latter solution results in a toss of concurrency: however, the lost 

concurrency does not seem useful, since it leads to situations where an activity invokes an 

operation and never gets a response. All implementations of dynamic atomicity that we have 

studied produce histories satisfying strong dynamic atomicity. 

Our second property. on-line dynamic atomicity. seems fundamental to all pessimistic 

implementations of dynamic atomicity. We say that a history h is on-line dynamic atomic at x 

if, for every set C of activities such that committed(hlx) ~ C ~ ACT - aborted(hlx), the 

following conditions are satisfied: 

- hlxlC is serializable in every total order consistent with precedes(hlx). 

· if T1 and T2 are total orders consistent with precedes(hlx), then NM(IM' 
opseq(serial(hlxlC, T1))) = NM(IM, opseq(serial(hlxlC, T2))). 



72 

Pessimistic implementations have the property that once an activity executes an operation, it 

can commit at any time without violating dynamic atomicity. Consider a history h and all 

extensions of h obtained by appending commit events for some of the active activities in h; 

on-line dynamic a,tomicity simply requires that all these histories be strong dynamic atomic. 

We say that a history his on-line dynamic atomic if it is on-line dynamic atomic at all objects x. 

The following lemma is immediate: 

Lemma 5-6: If his on-line dynamic atomic, his also strong dynamic atomic. 

5.3.3 Verification of LOCK 

We will now present a series of lemmas describing properties of the machine LOCK and the 

histories accepted by it. The final lemma completes the proof of Theorem 5-1. 

Recall that commit-order(h) is the partial order on activities containing all pairs <a,b> such 

that the first commit event for a in h occurs before the first commit event for b. 

The first lemma describes a number of simple relationships between a history accepted by 

LOCK and the final state of LOCK after accepting the sequence. 

Lemma 5· 7: Suppose his a history in the language of the machine LOCK. Lets 

= h(ILOCK). Then: 

1. opseq(hla) = s.intentions(a) 

2. hla ends in the invocation event <i,x,a> = s.pending(a) = i 

3. a E committed(h) =a Es.committed 

4. a E aborted(h) =a Es.aborted 

5. a -:;:. b /\ a,b (£ committed(h) U aborted(h) => s.intentions(a) commutes 
with s.intentions(b) 

6. Let T be a total order consistent with commit-order(h), and let permanent 

= opseq(serial(hlcommitted(h), T)). Then s.current = NSERIAL (!SERIAL' 
permanent). 

Proof: The proof is by induction on the length of h. For illustration we will prove 

the fifth property, showing that the sequences of operations executed by two 

active activities commute. 

The basis case, when h = A, is trivial. 

For the induction step, suppose h-:t. A, and assume that the fifth property holds for 



all histories in L(LOCK) that are shorter than h. Then h = ii •c for some history k in 

L{LOCK) and some event e. Since k is shorter than h, the fifth property holds fork. 

Note that if a <! committed(h) U aborted(h), then a <! committed(k) U aborted(k), 

and similarly for b. There are two cases, depending on the type of e. 

If e is a commit, abort, or invocation event, thens.intentions = k(ILOCK).intentions, 

and the result follows from the induction hypothesis. 

If e is a termination event <r,x,c>, s.intentions differs from k(ILOCK).intentions only 

at c. If a*c and b::t:c, then the result again follows from the induction hypothesis. 

Suppose without loss of generality that a = c. From the definition of LOCK it 

follows that s.intentions(a) = k(ILOCK).intentions(a)•<k(ILOCK).pending(a),r>, and 

by the induction hypothesis k(ILOCK).intentions(a) commutes with s.intentions(b). 

By Corollary 5-3 and the precondition on e, <k(ILOCK).pending(a),r> commutes with 

s.intentions(b). The result then follows from Lemma. 5-2. 

73 

The next lemma shows that the sequence of operations executed by an active activity is 

always defined in the current serial state. 

Lemma 5-8: Suppose his a history in the language of the machine LOCK. Lets 

= h(ILOCK). Then: 

a <! committed(h) U aborted(h) ~ s.intentions(a) is defined in 

s.current 

Proof: The proof proceeds by induction on the length of h. The basis case, when 

h = A, is trivial. 

For the induction step, suppose h*A, and assume that the lemma holds for all 

histories in L{LOCK) that are shorter than h. Then h = k•e for some history k in 

L(LOCK) and some event e. Since k is shorter than h, the lemma holds fork. Note 

that if a <! committed(h) U aborted(h), then a <! committed(k) U aborted(k). There 

are three cases, depending on the type of e. 

If e is an abort event or an invocation event, then s.intentions = k(ILOCK).intentions 

and s.current = k(ILOCK).current. The result follows from the induction 

hypothesis. 

If e is a termination event, the precondition fore ensures that the lemma holds for h 

if it holds for k. 

If e is a commit event <commit,x,b>, thens.intentions = k(ILOCK).intentions. (Note 

that b*a, since a<!committed(h).) If bEcommitted(k) then k(ILOCK) = h(ILOCK), and 

the result follows from the induction hypothesis. Suppose b<!committed(k). 



74 

By the induction hypothesis, k(ILOCK).ln/entions(a) is defined in k(ILOCK).current. 

Since b~committed(k) and h is well-formed, k(ILOCK).intentions(b) is defined in 

k(ILOCK).current. By Lemma 5-7. k(ILOCK).intentions(b) commutes with 

k(ILOCK).intentions(a). By the definition of commutativity, k(ILOCK).intentions(a) is 

defined in NSERIAL (k(ILOCK).current, k(ILOCK).intentions(b)). which is 

h(ILOCK).current. 

An obvious corollary of the above two lemmas is that h(ILOCK).current is never ..L, implying 

that hlcommitted(h) is serializable in any order consistent with commit-order(h). 

The penultimate lemma shows that the active activities can be serialized in any order starting 

in the current serial state, and the resulting final serial state does not depend on the order. 

Lemma 5·9: Leth be a history in the language of the machine LOCK, and lets = 
h(ILOCK). Suppose A~ ACT-aborted(h)-committed(h), and let T be any total order 

of activities. Then NSERIAL (s.current, opseq(serial(hlA,T))) is defined and does not 

depend on T. 

Proof: Let a1, ... ,an be the elements of A. By Lemmas 5-7 and 5-8, opseq(hlai) is 

defined ins.current for all i. By Lemma 5-7, opseq(hlai) commutes with opseq(hlai) 

for all i and j, 1 :$i<j:$n. The result follows from Lemma 5-4. 

The final lemma proves that every history in L(LOCK) is on-line dynamic atomic. This 

completes our proof of Theorem 5-1, since by Lemma 5-6, every history (and hence every 

complete history) in L(LOCK) is therefore dynamic atomic. 

Lemma 5· 10: Suppose h is a history in L(LOCK). Then h is on-line dynamic 

atomic. 

Proof: Since h = hlx, it suffices to show that his on-line dynamic atomic at x. We 

repeat the conditions for on-line dynamic atomicity here: h is on-line dynamic 

atomic at x if, for every set C of activities such that committed(hlx) ~ C ~ ACT 

· aborted(hlx), the following conditions are satisfied: 

· hlxlC is serializable in every total order consistent with precedes(hlx). 

·if T1 and T2 are total orders consistent with precedes(hlx), then NM(IM' 
opseq(serial(hlxlC, T1))) = NM(IM' opseq(serial(hlxlC, T2))). 

The proof proceeds by induction on the length of h. The basis case, when h = A, 

is trivial. 

For the induction step, suppose h-:;t:. A, and assume that the lemma holds for all 

histories in L(LOCK) that are shorter than h. Then h = k•e for some history k in 

L(LOCK) and some event e. Since k is shorter than h, the lemma holds fork. 



Let C be such that committed(h) ~ C ~ ACT. aborted(h), and let T1 and T2 be 

total orders consistent with precedes(h). 

First, note that precedes(k)~precedes(h), committed(k)~committed(h), and 

aborted(k)~aborted(~). Thus, C, T1 and T2 satisfy the conditions of the definition 

of on-line dynamic atomicity for k. There are now two cases, depending on the 

type of e. 

If e is a commit, abort, or invocation event note that opseq throws away pending 

invocation events (those without corresponding termination events) and 

completion events. Thus, opseq(serial(hlC, Ti)) = opseq(serial(klC, Ti)). Since the 

lemma holds fork, it also holds for h. 

Now suppose that e is a termination event <r,x,a>. This is the difficult case. Note 

that if a~C then hlC = klC, and the result follows from the induction hypothesis. 

Assume that a EC. 

Let T be a total order of the activities in C such that the committed activities in h 

appear in commit-order(h), a appears next, and the remaining activities appear in 

arbitrary order. Note that Tis consistent with precedes(h). We will first show that 

hlC is serializable in the order T, and then show that for any order U consistent with 

precedes(h), NSERIAL (!SERIAL' opseq(serial(hlC, T))) = . NSERIAL (!SERIAL' 

opseq(serial(hlC, U))). This suffices to prove the lemma. 

Let A = C-committed(h). The sequence opseq(serial(hlC, D) can be written as 

opseq(serial(hlcommitted(h),commit-order(h}}) • opseq(serial(hlA, T)). By Lemma 

5-7, h(ILOCK).current = NSERIAL (!SERIAL' 
opseq(serial(hlcommitted(h),commit-order(h)))). By Lemma 5-9, 

NSERIAL (h(ILOCK).current, opseq(serial(hlA, T)) is defined. Thus, hlC is serializable 

in the order T. 

Now suppose U is consistent with precedes(h}. The sequence opseq(serial(hlC,U)) 

can be written as S1 •opseq(hla)•S2, where S1 = opseq(serial(hlC1 ,U)), S2 = 
opseq(serial(hlC2 ,U)), and committed(h)f;C1. Note that Si = 
opseq(serial(klCi,U)), since a(Ci. 

Let V be a total order on C1 in which the elements of cammitted(h) occur first in 

commit-order(h), following by the remaining elements of C1 in arbitrary order. Let 

NS1 = opseq(serial(klC1,V)). By the inductive hypothesis, NSERIAL(ISERIAL'S1) = 

NSERIAL (I SERIAL ,NS1 ). 

75 



76 

Now let NS2 = opseq(serial(klC1-committed(/J),V)). The sequence NS1 can be 

written as opseq(serial(hlcommitted(h),commit-order(h))) • NS2. The following 

equalities show the desired result: 

NSERIAL (I SERIAL .opseq(seria/(hlC,U))) 

= NSERIAL (ISERIAL'S1 •opseq(hla)•S2) 

= NSERIAL (I SERIAL .NS1 •opseq(hla)•S2) 

= NSERIAL (!SERIAL' 

opseq(serial(hlcom m itted(h) ,com mit-order(h))) • NS2• opseq(l1la) •52) 

= NSERIAL (h(ILOCK).current,NS2•opseq(hla)•S2) 

= NSERIAL (I SERIAL ,opseq(serial(hlC, T))). 

The last line follows from Lemma 5-9; the others follow from equalities argued 

above. 

5.4 Remarks 

This section consists of two parts. In the first we discuss the protocols in [Bernstein et al. 

81, Korth 81 a]. In the second we illustrate limitations of locking protocols, showing that there 

is potentially useful concurrency permitted by on-line dynamic atomicity that cannot be 

achieved by locking. 

5.4.1 Existing Protocols Revisited 

In this section we discuss the relationship between our general protocol and the locking 

protocols in [Bernstein et al. 81, Korth 81 a]. We argue that these other protocols are special 

cases of our protocol. 

The protocols in [Bernstein et al. 81, Korth 81 a] are modeled using the scheduler model (see 

Figure 3· 1 ). The scheduler determines whether an invocation can be executed; if so, the 

invocation is passed to the storage module. The storage module executes invocations in the 

order in which they are received, changing state and determining the results to be returned. 

(We note that the presentations in [Bernstein et al. 81, Korth 81 a] do not consider recovery. 

The protocols are presented as characterizing the behavior of committed activities, and the 

implementation of recovery is not discussed.) 

As discussed above, the protocols in [Bernstein et al. 81, Korth 81a] require invocations to be 

total and deterministic. This means that we can treat invocations as functions: If the serial 

specification of an object is described by a machine M (with state domain SM)' and TERM is 

the set of termination events, we can define a function perform;: SM-+ SM X TERM for each 

invocation event i. This function is defined by performi(s) = <s",r> such that NM(s,<i,r>) = s'. 



77 

The storage module executes an invocation i using pp1 form : If tile current state of the 
I 

storage module is s, and perform (s) = <s',r>, then the new state of the storage module after 
I 

executing i is s' and the result returned is the event r. 

Commutativity is defined for_ invocations. rather than operations. in [Bernstein et al. 81, Korth 

81 a]: Two invocations i and 1 commute if perform 0 perform = perform 0 perform , where 
I I I I 

"
0

" denotes composition of functions. (If invocations are restricted to be total and 

deterministic, this is equivalent to saying that <i.q> commutes with <j.r> for all termination 

events q and r.) The scheduler schedules an invocation for an activity if it commutes with all 

other invocations already executed by concurrent activities. 

Recovery is not covered in [Bernstein et al. 81, Korth 81 a]; rather, they rely on unstated 

assumptions about the operation of the storage module in handling abort events for activities. 

The description in the papers, and our explanation above, only cover committed activities. It 

is not clear how one would implement recovery using the scheduler model: the intent 

in [Bernstein et al. 81, Korth 81 a] is clearly to use some sort of undo log, but this approach is 

complicated by the fact that not all operations have natural inverses (consider, for example, 

the insert operation on a set object). One could use intentions lists, but this requires a more 

complex notion of what it means for the storage module to "execute" an invocation once it 

has been scheduled. (Indeed, one would then have a description much closer to our machine 

LOCK, and much less like the scheduler model.) 

From the above definition of the protocols in [Bernstein et al. 81, Korth 81 a], it is easy to show 

that every history involving committed activities that is permitted by these protocols is also 

permitted by our protocol. The converse, however, is not true. One reason is that we permit 

objects, such as semiqueues, with partial non-deterministic invocations. The protocols 

in [Bernstein et al. 81 , Korth 81 a] do not. 

The other reason is that our locking protocol, unlike the protocols in [Bernstein et al. 

81, Korth 81 a], permits information about the results of executing an invocation (i.e., the 

termination event) to be used in scheduling invocations. For example, consider a bank 

account object y, with a serial specification described by the machine in Figure 5-2. A bank 

account provides three operations: deposit, withdraw, and balance. Deposit adds a specified 

amount to the bank account. Withdraw withdraws a specified amount from the bank account 

if the current balance is adequate (in which case its result is "ok "); otherwise it leaves the 

account unchanged (with a result of "no"). Balance determines the current balance of the 

bank account. Note that the invocations on y are total and deterministic: For each invocation 

i and every state s of the machine M in Figure 5-2, there exists exactly one termination event r 

such that NM(s,<i.r>) '* ..L. Further note that the invocation withdraw(3) does not commute 

with the invocation balance (by the definition of "commutativity" for invocations given above). 



78 

States: integers initially 0 

Transitions: {y:<deposit(i),ok>, y:<withdraw(i),ok>, 

y:<withdraw(i),no>. y:<balance,i>: i is an integer} 

N(s,y:<deposit(i),ok>): 

changes s to s + i 

N(s,y:<withdraw(i),ok>): 

when s~i 

changes s to s-i 

N(s,y:<withdraw(i),no>): 

when s<i 

N(s,y:<balance,i>): 

whens= i 

Figure 5-2:Serial specification of a bank account object y. 

Now consider the following history: 

<withdraw(3),y,a> 
<balance,y,b> 

<no,y,a> 
<O,y,b> 

<commit,y,b> 
<commit,y,a> 

Since the invocation withdraw(3) does not commute with balance, the protocols in [Bernstein 

et al. 81, Korth 81 a] cannot produce this history. However, this history can be produced by 

our locking protocol, since the operation y:<withdraw(3),no> commutes with the operation 

y:<balance,O>. 

5.4.2 Limitations of Commutativity-based Protocols 

All known two-phase locking protocols are based on some notion of commutativity: activities 

are allowed to execute operations concurrently only if the operations "commute." As 

discussed in the previous section, previously existing locking protocols are special cases of 

our protocol. In this section we illustrate how on-line dynamic atomicity permits more 

concurrency than can be achieved by any known locking protocol. 

Consider is a bank account object y, with a serial specification as described in Figure 5-2. 

Two operations of the form y:<deposit(i),ok> and y:<deposit(j),ok> commute, since addition is 

commutative. However, two operations of the form y:<withdraw(i),ok> and y:<withdraw(j),ok> 

do not commute: If the current balance is greater than i and j but less than their sum, then 

neither sequence of both operations is defined. Similarly, y:<deposit(i),ok> does not commute 



79 

with y:<withdraw(j),no>: The latter operation is defined only in states s less than j; if s + i is 

greater than j, then y:<withdraw(j),no> is not defined in the state resulting from executing 

y:<deposit(i),ok> in states. Also, y:<deposit(i),ok> does not commute with y:<withdraw(j),ok>. 

Consider the following history: 

<deposit(1 O),y,a> 
<ok,y,a> 

<commit,y,a> 
<withdraw(4),y,b> 
<withdraw(3),y ,c> 

<ok,y,c> 
<ok,y,b> 

<commit,y,c> 
<commit,y,b> 

This history is on-line dynamic atomic: It is serializable in the orders a-b-c and a-c-b, and the 

"final serial state" does not depend on the serialization order. However, since 

y:<withdraw(4),ok> does not commute with y:<withdraw(3),ok>, and b and c execute these 

operations concurrently, this history is not permitted by locking protocols. 

Similarly, the following sequence is on-line dynamic atomic but is not permitted by locking 

protocols: 

<deposit(1 ),y,a> 
<ok,y,a> 

<commit,y,a> 
<deposit(1 ),y,b> 

<ok,y,b> 
<withdraw(1 ),y,c> 

<ok,y,c> 
<commit,y,b> 
<commit,y,c> 

On-line dynamic atomicity allows withdraw operations to be executed concurrently with 

deposit operations as long as the deposits are not needed to cover the withdrawals, or the 

withdrawals are too large to be affected by the deposits. 

Locking implementations of on-line dynamic atomicity achieve less than maximal 

concurrency because they do not use two kinds of information available to them. First, 

locking protocols are conflict-based: synchronization is based on a pair-wise comparison of 

operations executed by concurrent activities. In contrast. on-line dynamic atomicity depends 

on the sequences of operations executed by activities. Second, locking protocols are history­

independent: synchronization is independent of past history, in particular the operations 

executed by committed activities. In contrast, on-line dynamic atomicity depends on the 

entire history; witness the concurrent execution of withdraw operations when enough money 

has been deposited by committed activities to cover all of the withdrawals. 



80 

An example of a flight reservation list for an airline reservation database is presented 

in [Reuter 82]. This example is similar to our bank account, and also illustrates the limitations 

of locking. 

A similar situation arises with semiqueue objects (see the serial specification in Figure 2-3). 

Deq operations do not always commute with other deq operations or with enq operations, but 

on-line dynamic atomicity permits deq's to be executed with enq's and other deq·s as long as 

there are enough enqueued items to cover all the deq's. 

Locking protocols are clearly useful for many applications, and can be implemented relatively 

easily, The examples above illustrate, however, that there may be applications for which 

locking protocols are inadequate. Later in this dissertation we will present implementations of 

the semiqueue and the bank account that achieve the kind of concurrency illustrated above. 

It remains to be seen whether the increased concurrency is worth the added complexity of the 

implementations. 



81 

Chapter Six 

Linguistic Support in Argus 

In the next two chapters. and in the appendix, we consider how atomic types can be 

implemented. Our purpose is two-fold: First, we will provide several detailed examples of 

implementations of highly concurrent atomic types. Second, we will evaluate alternative 

programming language constructs for implementing atomic types. 

Our approach in these chapters is informal. We do not provide formal specifications of the 

types used in examples, nor do we formally verify the correctness of example 

implementations. Taking a formal approach to these issues would require developing a 

formal specification language and deductive system, and a formal semantics for the language 

in which implementations are expressed. Such work is well beyond the scope of this 

dissertation. 

We limit our scope in these chapters in two ways. First, we focus on implementing dynamic 

atomic types. Second, we restrict our attention to pessimistic (as opposed to optimistic [Kung 

& Robinson 81]) implementations. In our remarks at the end of Chapter 7 we will discuss what 

can be concluded about other kinds of atomic types,. and about optimistic implementations. 

We use Argus [Liskov & Scheifler 82, Liskov et al. 83] as a vehicle for describing 

implementations. The mechanisms in Argus support a program structure in which no user 

code is executed when activities commit or abort. In this chapter we present the Argus 

approach. In Chapter 7 we will introduce extensions to Argus to support an alternative 

program structure, and discuss the relative merits of the two approaches. 

In our formal analysis of atomicity we restricted our attention to single-level activities. In our 

study of implementations, we will permit activities to be nested, and will explore how 

implementations can support atomicity for nested activities. We will discuss the extensions 

needed to cope with nesting in Section 6.2. 

Each of our example implementations ensures on-line dynamic atomicity (see Section 5.3.2). 

In addition, all of our examples are implemented using clusters [Liskov et al. 83]. a data 

abstraction mechanism originally developed for CLU [Liskov et al. 81]. The view of types 

supported by clusters is slightly different from the class-like view (as in Simula [Dahl et al. 70] 

and Smalltalk [Robson 81 ]) taken in our formal model. These differences, however, are 

unimportant for our purposes; we will discuss them briefly later in this chapter. 

The remainder of this chapter is organized as follows: In Section 6.1, we discuss the issues 



82 

involved in implementing an atomic type. Then. in Section 6.2. we discuss atomicity of nested 

activities, and illustrate how the definition of dynamic atomicity applies to nested activities. 

Next, in Section 6.3, we discuss the differences between the Argus view of types and the view 

taken in our forrrlal model. Finally, in Section 6.4, we discuss the linguistic support provided 

by Argus. illustrating its use with a detailed example. 

6.1 Issues 

Like an implementation of a data type in a sequential language, an implementation of an 

atomic type must define a representation for objects of the type, and must provide 

implementations for each operation of the type in terms of that representation. However, the 

implementation of an atomic type must also ensure appropriate synchronization and recovery 

for activities using objects of the type. The necessary synchronization and recovery are 

defined by the type's specification, and depend on the local atomicity property satisfied by the 

type. 

To provide synchronization and recovery for activities using objects of an atomic type, it is 

necessary to update the representation of objects as activities commit and abort. In Argus, 

the programmer relies on the system to update the representation. We call this an implicit 

approach. An alternative is for the programmer to supply code that is run when activities 

complete to update the representations of objects. We call this an explicit approach. In this 

chapter we focus on the implicit approach as supported by Argus. We will discuss the explicit 

approach and compare the two alternatives in Chapter 7. 

In addition to providing appropriate synchronization and recovery for activities using objects 

of the type, an implementation of an atomic type must cope with internal concurrency and 

failures. An operation invoked by an acti\'ity is not executed instantaneously: It may fail after 

completing only some of the steps described by its implementation. Operations invoked by 

concurrent activities may also run concurrently. Steps must be taken by the implementation 

of the type to manage concurrency and failures of operations. (We avoided this issue in our 

analysis of LOCK in Chapter 5 by assuming that the transitions of LOCK were instantaneous.) 

6.2 Nested Activities 

Nested activities, or subactivities, are used for composing activities into larger activities. They 

are also a mechanism for limiting the scope of failures, and for introducing concurrency 

within an activity. 

An activity may contain any number of subactivities, some of which may be performed 

sequentially, some concurrently. Atomicity for nested activities means that the internal 

---- ~~-----------------------



83 

structure of an activity cannot be observed outside the activity; in other words, the activity as 

a whole. including all its nested activities, is serializable with respect to other activities at the 

same level. If the order in which nested activities appear to be executed does not matter. 

nested activities can be executed concurrently without any additional synchronization. 

Nested activities can commit or abort independently. and a nested activity can abort without 

forcing. its parent activity to abort. However. the commit of a nested activity is relative to its 

parent: Even if a nested activity commits, it will have no effect if its parent later aborts. A 

top·level activity has no parent: its effects cannot be undone once it has committed. (See 

[Reed 78, Moss 81, Liskov & Scheifler 82] for more detailed discussions of nested activities.) 

As discussed in Chapter 1, nested activities form a natural tree structure, with each activity 

appearing as the parent of its subactivities. We can define the notions of child, sibling, 

ancestor, proper ancestor, descendant, and proper descendant in the usual way. As a 

technical device, we assume the existence of a single "root" activity which is the parent of all 

top·level activities. 

The notion of the least common ancestor of two activities, and the related notion of visibility, 

are keys in extending dynamic atomicity to cover nested activities: If a and b are activities, 

then the least common ancestor of a and b is the ancestor of both a and b which is a 

descendant of all other ancestors common to a and b. For example, consider the following 

tree of activities: 
d 

I 
/c" 

a e 
I 
b 

The ancestors common to a and bare c and d; c is the least common ancestor of a and b. 

Informally, we say that an activity bis visible to an activity a if b has committed up to the level 

of the least common ancestor of a and b. For example, suppose that a and bare subactivities 

of the same activity. Then bis visible to a if and only if b has committed. As another example, 

consider the following tree of activities: 

lea ./ "bp 
I 
b 

bis visible to a if and only if band its parent. bp, have committed. If bis not visible to a, then 

either b (or one of its ancestors) has aborted, or b (or one of its ancestors) is still active. In 



84 

either case, a should not be permitted to "depend on" b's effects, since if b aborts a must 

then be aborted as well. (Note that the least common ancestor of two top· level activities is the 

"root" activity; thus, one top-level activity is visible to another if and only if it has committed.) 

We extend our notion of the precedes order as follows: We say that b precedes a in an 

execution if b is visible to a when a, or a descendant of a, executes an operation. If b 

precedes a, then dynamic atomicity only requires that b be serializable before a. If, however, 

a and b are unrelated by the precedes order, then a and b must be serializable in either order. 

(On-line dynamic atomicity also requires that the final "serial state" not depend on the 

serialization order.) 

For example, consider the tree of activities described above, and suppose activities execute 

the following steps on a semiqueue object y: 

<enq(1 ),y,b> 
<ok,y,b> 

<commit, y ,b> 
<deq,y,a> 

<t,y,a> 
<commit,y,bp> 
<commit,y,a> 

<commit,y,lca> 

In this history b does not precede a, yet a is serializable only after b. Thus, this history is not 

dynamic atomic. On the other hand, the following history is dynamic atomic: 

<enq(1 ),y,b> 
<ok,y,b> 

<commit,y,b> 
<deq,y,a> 

<commit,y ,bp> 
(1,y,a> 

<commit,y,a> 
<commit,y,lca> 

If an activity a is executing an operation on an object, then a's "view" of the object includes 

the effects of all activities that are visible to a. The results returned by the operation are 

allowed to "depend on" the activity's view, but must be independent of operations executed 

by concurrent (not visible) activities. 

As discussed earlier, nested activities must be serializable at every level: each subactivity 

must appear indivisible to its siblings. The following example illustrates this requirement. 

Consider the following tree of activities: 



A~b 
/ I '""" 81 a2 bl b2 

Suppose that x and y are both semiqueue objects. and consider the following history: 

<enq(l ),x,al > 
<ok,x,a1> 

<enq(2),y,b1 > 
<ok,y,b1> 

<commit,y,b1> 
<commit,x,a 1 > 

<deq,y,a2> 
<2,y,a2> 

<deq,x,b2> 
<1,x,b2> 

<commit,y ,a2> 
<commit,x,b2> 
<commit, y ,a> 
<commit,y,b> 
<commit,x,a> 
<commit,x,b> 

85 

a1 and b1 enqueue items concurrently at x and y, respectively, and then a2 and b2 dequeue 

items at y and x, respectively. However, a2 is serializable only after b 1, while b2 is serializable 

only after a 1. This implies that a and b are not serializable, since in any equivalent serial 

execution, the activity that executes first will not see the item enqueued by the other activity. 

Indeed, the deq operation invoked by a2 should not return the item enqueued by b1 until b1 is 

visible to a2; i.e., until b1 and b have committed. At the point that a2's deq operation 

terminates in the above history, a2's view of the semiqueue contains no items. Similarly, the 

deq operation invoked by b2 should not return the item enqueued by a7 until a1 is visible to 

b2. 

6.3 Types versus Objects 

In our formal model we take a "class-like" [Dahl et al. 70, Robson 81) view of objects: We 

treat objects as independent entities, each with an associated collection of operations. Argus 

takes a different view. treating each data type as a "type manager," and associating 

operations with the type rather than with the objects. This view is called "cluster-like." after 

the name of the module used to implement such types. 

The class-like view is more appropriate to distributed systems, in which the objects may be 

physically distributed. (For example, guardians in Argus. used to implement distributed 



86 

objects, are class-like. We use clusters for our implementations to avoid introducing issues 

such as the distinction between local and remote data.) The cluster-like view is useful for 

local data; for example, operations that involve more than one object of the type are more 

conveniently expressed. The class-like view. on the other hand, provides natural support for 

hierarchies of types. None of these distinctions, however. is important for our examples. 

Operations that create new objects are not naturally associated with the objects themselves; 

rather, they are more naturally a part of the data type. A cluster-like view easily 

accommodates creation operations, since all operations are associated with a type. A class­

like view can be made to accommodate creation operations by assuming that each type is 

itself an object, and by associating the creation operations with the type object. 

We took the class-like approach in our formal model: We assumed that each type is itself an 

object, with operations to create new objects of the type. We model the serial behavior of 

creation operations in the following way: We assume that all objects exist for all time, and that 

when a system starts executing there is a sufficient supply in th~ system of each kind of 

object, in each possible initial state, to satisfy all creation operations that will ever be 

executed. (Formally, we can model this by assuming an infinite number of each kind of 

object.) A creation operation provided by a type simply selects any object of the type (in the 

appn~priate initial state) that has not been previously selected. 

The behavioral specification of a type must then describe how the type copes with 

concurrency and failures of activities creating objects. We require that an object never be 

returned by a creation operation more than once in an execution; since our sequential 

specification of creation operations is non-deterministic, this suffices to ensure that the type 

satisfies all three local atomicity properties discussed earlier. 

6.4 Implementing Atomic Types in Argus 

In this section we discuss how atomic types can be implemented in Argus. The section is 

divided into three parts. In the first, we discuss the linguistic support in Argus for 

implementing atomic types. In the second, we present an example implementation. Finally, in 

the third, we discuss the strengths and weaknesses of the approach taken in Argus. 

6.4.1 Linguistic Support 

The mechanisms in Argus have two important characteristics: The names of activities are not 

accessible to user code, and no user code runs when activities complete. The programmer 

must rely on the system to update the representations of objects when activities complete. 

The linguistic support in Argus consists of several built-in atomic types, statements that use 



87 

those types, and a mutual exclusion primitive. 

The only processing done by the Argus system when an activity completes is to update locks 

and versions in the representation of each object of a built-in atomic type. Because of this, 

the programmer has to include some lower-level atomic objects (and ultimately at the lowest 

level some built-in atomic objects) in the representation of a user-defined atomic type. 

However, to implement types that permit highly concurrent use. the programmer must include 

non-atomic objects in addition to atomic objects. Some kind of synchronization and recovery 

is needed for these objects to cope with internal concurrency and failures; this is the purpose 

of the· mutual exclusion primitive in Argus. The details of the Argus mechanisms are 

described below; a more complete description can be found in [Liskov et al. 83]. 

6.4.1.1 The Type Generator Atomic_variant 

Argus provides several built-in atomic types and type generators. Of particular interest to us 

in our examples is the built-in type generator atomic_variant. The serial specification of 

atomic variants is essentially that of variants in CLU [Liskov et al. 81]: A variant type 

specification consists of a list of tags and associated types. The state of a variant object 

consists of a tag and a value; if the current tag of a variant is t, then the type of the current 

value of the variant is the type associated with t. For each tag t in the type specification, there 

are four operations: make_t, change_t, is_t, and value_t. Make_t takes one argument of the 

type associated with the tag t, and returns a new variant object whose tag is t and whose value 

is the argument of the operation. Change_t takes two arguments, a variant and an object of 

the type associated with t, and changes the state of the variant so that its tag is t and its value 

is the second argument of the operation. ls_t takes one variant argument, and returns true if 

and only if the tag of the variant is t. Finally, value_t takes one variant argument; if the tag of 

the variant is t then it returns the current value, and otherwise it signals wrong_tag. When 

only these operations are used, atomic variants are dynamic atomic. 

Atomic variants are used in two ways: in conjunction with other atomic objects, to make 

activities atomic; and in conjunction with non-atomic objects, as part of the representation of 

a user-defined atomic object. In the latter case, it may be possible for an activity to gain 

access to an atomic variant created by another activity that has aborted or is still active. For 

example, one activity might create an atomic variant and insert in a (non-atomic) array; a 

concurrent activity with access to the array could then access the newly created atomic 

variant. Thus, the make_t operations, which create new atomic variant objects, require 

special consideration: We must define what happens to an atomic variant when its creator 

aborts, and whether concurrent activities can use an atomic variant before the object's 

creator has completed. 

Argus defines the make_t operation to create a new atomic variant object whose tag is t and 



88 

whose value is the argument to the operation; this state is the object's "base" state, and the 

object will continue to exist in this state even if the creating activity aborts. (An alternative is 

to have the object "disappear" when its creator aborts; our experience indicates that this 

leads to awkward and complex programs.) 

Concurrent use of a newly created atomic variant is limited as follows: The operations on 

atomic variants are classified as readers and writers. Synchronization of activities using an 

atomic variant object is done with read and write locks. The usual locking rules apply: Any 

number of activities can hold read locks simultaneously, but if one activity holds a write lock 

then no other activity can hold a read lock or a write lock. Make_t, is_t, and value_t are all 

readers, and change_t is a writer; readers acquire read locks when executed, and writers 

acquire write locks. By having the activity that creates an atomic variant retain a read lock, we 

ensure that the activity will not observe concurrent use of the object by other activities. 

6.4.1.2 The Tagtest Statement 

In an implementation of a user-defined atomic type, it is convenient for an activity to be able to 

test whether it would have to wait if it were to invoke a particular operation on an atomic 

variant. Argus provides the tagtest statement as structured support for testing and setting 

locks on atomic variants. The use of the tagtest statement can violate atomicity, since it 

permits an activity to observe the presence of concurrent activities. However, it appears to be 

necessary for implementing user-defined atomic types using an implicit program structure. 

A tagtest statement has th.e following form:1 

where 

tagtest expression 

atag_arm { atag_arm } 

[others: body] 

end 

atag_arm :: = tag_kind name, ... [ (idn: type_spec)] : body 

tag_kind : : = tag 

I wtag 

The expression must evaluate to an atomic variant object. If a read lock could be obtained on 

the atomic variant object by the activity executing the statement, then the tag of the object is 

matched against the names on the atag_arms; if a matching name is fqund, then the tag_kind 

on the arm is considered. 

1
we use an extended BNF for syntactic descriptions. with the following conventions: I is used to separate 

alternatives; " [a]" denotes an optional a; "{a}" denotes a sequence of zero or more a's; and "a, ... " denotes a 
list of one or more a's separated by commas. 



89 

If the tag_ kind is tag. a read lock is obtained on the object and the match is complete. If the 

tag_kind is wtag and the activity can obtain a write lock on the object, then a write lock is 

obtained and the match is complete. In all other cases the match is incomplete. 

If a complete match is not found. or the activity could not obtain a read lock. then the body in 

the others arm, if present, is executed; if there is no others arm, the tagtest statement 

terminates. 

When a complete match is found, if a declaration (idn: type_spec) appears on the matching 

arm, the value component of the object is assigned to the local variable idn. The body on the 

matching arm is then executed; idn, if declared, is defined only in that body. The entire 

matching process, including testing and acquisition of locks, is indivisible. 

6.4.1.3 Mutual Exclusion 

Argus provides the built-in type generator mutex and the seize statement to enable 

implementations to cope with concurrency among executions of operations. Mutex and 

seize can be used to ensure mutual exclusion among regions of code executed by 

concurrent operations; thus, for example, implementations can prevent interference among 

• concurrently executing operations by forcing them to run serially. 

Mutex objects are mutable containers for information. The type generator mutex has a single 

parameter, which is the type of the contained object. Mutex types provide operations to 

create and decompose mutex objects. The create operation takes a single argument of the 

parameter type and creates a new mutex object containing the argument object. The 

get_value operation extracts and returns the contained object from its mutex argument; 

following the conventions of Argus, the expression "mutex[t]$get_value(m)" is usually 

written "m.value". 

Mutexes are used primarily to provide mutual exclusion on non-atomic shared data. Argus 

provides the seize statement, which allows a sequence of statements to be executed by an 

activity while the activity is in exclusive possession of a mutex object. The seize statement 

has the following form: 

seize expression do body end 

The expression must evaluate to a mutex object. After evaluating the expression, the 

executing activity attempts to gain possession of the resulting mutex object. Only one activity 

may have possession of a mutex object at one time; thus, an activity may be forced to wait 

when it attempts to gain possession. Once the activity gains possession, the body of the 

seize statement is executed. Termination of the body causes possession of the mutex object 

to be released. If several processes are waiting for possession of the same mutex object, 

possession will be awarded fairly, in the sense that as long as no process retains possession 



90 

forever, every waiting process will eventually gain possession. 

An implementation of an operation often has a precondition that must be true before the 

operation can be executed. Sometimes it is necessary to gain possession of mutex objects 
', 

simply to test the precondition; if ~he precondition is false, the operation must wait. It is 

important to release possession of mutex objects while waiting, particularly if some other 

operation that requires possession of the mutex objects must be executed for the 

precondition to become true. Argus provides the pause statement for this purpose. It may 

be executed only inside the body of a seize statement. When a process executes pause, the 

mutex object s~ized by the closest enclosing seize statement is released, and the process is 

blocked for a system-determined time. When the process is unblocked, it regains possession 

of the mutex object released by the pause statement, waiting if necessary, and then 

continues execution with the statement following the pause. 

Activities in Argus never fail while in possession of a mutex object unless the containing 

guardian crashes. When such a crash occurs, the states of the objects in the guardian are 

restored from stable storage. A discussion of the interactions between implementations of 

atomic types and stable storage in Argus can be found in [Weihl & Liskov 82]. In this chapter 

and the next we will assume that an activity in possession of a mutex object executes the body 

of the seize statement correctly, and does not abort until after it has released possession of 

the mutex. 

6.4.2 Implementation of the Semiqueue Type 

Our first example is an implementation of the semiqueue type. The serial specification of a 

semiqueue object was presented in Figure 2-3; the corresponding informal specification of 

the semiqueue type is presented in Figure 6-1. Semiqueues are similar to queues, except that 

enqueued items are not necessarily dequeued in first-in-first-out order. Instead, the deq 

operation makes a non-deterministic choice of an item to remove and return. 

As noted in Sections 4.4.1 and 5.4.2, semiqueues place few constraints on concurrency. Two 

enq operations commute with each other, as do an enq and a deq operation or two deq 

operations as long as they involve different items. Thus, many different activities can enq 

concurrently, or deq concurrently. Furthermore, one activity can enq while another deq's, 

provided only that the deq not return the newly enq'd item. Dynamic atomicity permits some 

additional concurrency as well: one activity can enq an item while another deq's the same 

iteni as long as at least one committed activity has enqueued the same item. 

An implementation of the semiqueue data type appears in Figure 6-3. The plan of this 

implementation is to keep the enqueued items in a regular (non-atomic) array. This array can 

be used by concurrent activities, but it is enclosed in a mutex object to control internal 



data type sem1qucuc[ilern: type] is create. enq, deq 

% A semiqueue is like a bag (or multiset) of items; semiqueue[item] is dynamic atomic if 
% item is dynamic atomic. 

create= proc ()returns (sem_iqueue) 
% Returns a new. empty semiqueue. 

enq = proc (q: semiqueue, i: item) 
% Addsito q. 

deq = proc (q: semiqueue) returns (item) 
% If q is.non-empty, chooses some element of q, removes it from q, and returns it. 

Figure 6· 1 :Informal specification of the data type semiqueue. 

91 

concurrency. All modification and reading of the array occurs inside a seize statement on 

this containing mutex object. An informal specification of arrays appears in Figure 6-2. 

To determine the status of each item in the array, we associate with each item an atomic 

object that tells the status of activities that inserted or deleted that item. For this purpose we 

use the built-in atomic type atomic_variant (described in the previous section). 

The semiqueue operations are implemented as follows: The create operation simply creates a 

new empty array and places it inside a new mutex object. The enq operation associates a 

new atomic variant object with the argument item; this atomic variant will have tag 

"enqueued" if the calling activity commits later, and tag "dequeued" if it aborts. Then enq 

seizes the mutex and adds the new atomic variant to the contained array. 

The deq operation seizes the mutex and then searches the array for an item it can dequeue: If 

an atomic variant has tag "enqueued" and the activity that called deq can get a write lock on 

it, the contained item is selected and returned after changing the variant's tag to "dequeued." 

If no suitable atomic variant is found, pause is executed (releasing the mutex) and later the 

search is retried. 

Proper synchronization of activities using a semiqueue is achieved by using the qitems in the 

buffer. An enq operation need not wait for any other activity to complete. It simply creates a 

new qitem and adds it to the array. Of course, it may have to wait for another operation to 

release the mutex object before adding the qitem to the array, but this delay should be 

relatively short. A deq must wait until some activity that executed an enq operation commits 

relative to the activity that invoked deq; thus it searches for a qitem with tag "enqueued" that 

it can write. 

The qitems are also used to achieve proper recovery for activities using a semiqueue. Since 



92 

data type array[t: type} is new, size, empty, fetch. store. addh, addl, remh, reml, elements 

% Arrays are extensible: they can grow and shrink. They may be viewed as partial mappings 
% from integers to objects of type t, with the restriction that an array is always defined on a 
% connected interval of integers. The state of an array a can be modeled with two compo-
% nents: an integer a.low, called the low bound; and a sequence a.elts of objects of type t, 
% called the elements. An array a is empty if a.elts is the empty sequence. and is otherwise 
% defined on integers from a.low to a.low+ la.e/tsl·1, where la.eitsl is the length of a.elts. We 
% say that an integer i is in bounds for an array a if a is defined on i. Ifs is a sequence, we 
% use s(i) to denote the ith element of s (where s(1) is the first element of s). 

new= proc ()returns (array[!]) 
% Returns a new empty array with low bound 1. 

size = proc (a: array[t]) returns (int) 
% Returns la.eltsl. 

empty = proc (a: array[t]) returns (bool) 
% Returns true if and only if ja.eltsl = 0. 

fetch = proc (a: array[!], i: int) returns (t) signals (bounds) 
% If a is defined on i, then returns a.elts(i-a.low + 1 ); otherwise signals bounds. 

store = proc (a: array[t], i: int, x: t) signals (bounds) 
% If a is defined on i, then changes a.elts(i-a.low + 1) to x; otherwise signals bounds. 

addh = proc (a: array[t], x: t) 
% Changes a.elts to a.eltsllx. 

addl = proc (a: array[t], x: t) 
% Changes a.elts to xlla.elts, and changes a.low to a.low-1. Decrementing 
% a.low keeps the indexes of the previously existing elements the same. 

remh = proc (a: array[t]) returns (t) signals (bounds) 
% Changes a.elts by removing the last element in the sequence; signals bounds if la.eltsl = 0. 

reml = proc (a: array[t]) returns (t) signals (bounds) 
% Changes a.elts by removing the last element in the sequence, and increments a.low; signals 
% bounds if la.e/tsl = O. Incrementing a.low keeps the indexes of the previously existing 
% elements the same. 

elements = iter (a: array[t]) yields (t) 
% Yields the elements of a.elts in order from the first to the last. 

Figure 6-2:1nformal specification of the data type array. 

------------------ ----~ 



Figure 6- 3 :Implicit implementation of the data type semiqueue. 

semiqueue = cluster[item: type] is create, enq, deq 

qitem = atomic_variant(enqueued: item, 
dequeued: null] 

buffer = a rray[qitem] 
rep = mutex[buffer] 

create = proc () returns (cvt) 
return( rep$create(buffer$new())) 
end create 

enq = proc (q: cvt, i: item) 
qi: qitem : = qitem$make_dequeued(nil) % dequeued if activity aborts 
qitem$change_enqueued(qi, i) % enqueued if activity commits 
seizeq do 

b: buffer:= q.value 
buffer$addh(b, qi) % add new qitem to buffer 
end 

endenq 

deq = proc (q: cvt) returns (item) 
cleanup(q) % cleanup should be called less frequently 
seize q do 

b: buffer:= q.value 
while true do 

end 
enddeq 

for qi: qitem in buffer$elements(b) do 
tagtest qi % see if item can be dequeued by this activity 

end 
pause 
end 

wtag enqueued (i: item): qitem$change_dequeued(qi,nil) 
return(i) 

end 

93 



94 

Figure 6·3 (continued) 

cleanup = proc (q. rep) 
enter topaction ~o stwt an 1r1dcpc11dcnt activity 

seize q do 

b buffer = q.value 

for q1 qrtern in buffer$clerncnts(b} do 

end 

end 
end cleanup 

end serrnqueue 

~o rernove only qrterns rn tile dequeued state 

tag test qr 

end 

tag dequeued buffcr$rernl(b} 

others: return 

end 



95 

the array in the mutex is not atomic, changes to the array made by activities that abort later 

are not undone. This means that a deq operation cannot simply remove a qitem from the 

array, since this change could not be undone if the calling activity later aborted. Instead, a 

deq operation changes the state of a qitem; the atomicity of qitems ensures proper recovery 

for this modi~cation. If the calling activity later commits to the top level, the qitem will have 

tag "dequeued" permanently. : Such qitems. which are also generated by enq operations 

called by activities that later abort, have no effect on later operations. Leaving them in the 

array wastes storage, so the internal procedure cleanup, called by deq, removes them from 

the low end of the array. (Of course, a more realistic implementation would call cleanup only 

occasionally.) 

Note that cleanup cannot run in the calling activity: If the calling activity had previously 

executed a deq operation, that deq is visible to a later operation executed by the same 

activity. Instead, cleanup runs as an independent activity. This activity will only be able to 

lock qitems that are not being used by any active activities; thus it will not remove any qitems 

that could affect later operations. 

6.4.3 Remarks 

The implementation of the semiqueue type in the previous section illustrates the general 

strategy used to implement a user-defined atomic type in Argus. The representation of a 

user-defined atomic type typically consists of a mutex object containing a non-atomic 

collection (e.g., an array) of atomic objects (typically atomic variants). Greater concurrency 

among activities using the type is achieved by introducing atomic objects only at the lowest 

level of the representation. 

The implementation in the previous section also illustrates a number of limitations of the 

expressive power of the implicit approach supported by Argus. 

First, the implementation of deq is relatively inefficient, since in the worst case it takes time 

proportional to the size of the representation of the semiqueue. There is no obvious way to 

improve the efficiency of this implementation: The activity that executes an operation is 

implicit, so there is no way to structure the representation of an object based on the activities 

that enqueued or dequeued an item. 

Second, scheduling of deq operations is accomplished using busy-waiting. The system has 

very little information on which to base scheduling decisions, implying that an activity is likely 

to be awakened when it is unable to complete the operation, and also that an activity may be 

unlikely to be awakened very soon after the precondition for the operation becomes true. 

Finally, the programmer has no control over when the representation of an object gets 



96 

updated by the system as activities commit and abort. In Argus, the system updates built-in 

atomic objects automatically when activities complete, and does so at arbitrary times. The 

following example illustrates the problems that can result: Suppose that we want to 

implement the ·semiqueue type with the following additional constraint: If there is only one 

dequeuing activity at a time, and dequeuing activities do not abort, then items enqueued by a 

single activity should be dequeued in the order in which they were enqueued. This constraint 

is not satisfied by the implementation presented above. Suppose that activity A has enqueued 

two items, X and Y, in that order, and that activity B starts to execute a deq operation. If A 

commits after B has examined the first qitem (containing X) in the representation of the 

semiqueue and before B has examined the second, the deq operation will return Y. 

It seems impossible to modify the implementation of semiqueue presented above to satisfy 

this additional constraint, given the semantics of Argus: Suppose deq has found an item that 

can be dequeued. There is no way to tell whether some other item was enqueued by the 

same activity. If we impose the additional restriction on the system that commits and aborts 

appear to be instantaneous (so if an activity has committed at one atomic_variant then it has 

committed at any others that it touched), then we can modify deq to search backwards 

through the representation and to return the last available item that it finds. (Or to search 

forwards until it finds one available item, and then to search backwards from there.) The 

resulting implementation satisfies the additional constraint on semiqueues. 

This example illustrates that the programmer does not have complete control over all events 

that affect the representation of an object. Commit and abort events involving lower-level 

objects are controlled by the system, and can occur asynchronously. This asynchrony is 

visible to the programmer, and can affect the correctness of an implementation. 

In the next chapter we will present an alternative approach that avoids the problems 

discussed above. 



97 

Chapter Seven 

Support for an Explicit Approach 

In this chapter we discuss an explicit approach for implementing atomic types, in which the 

programmer supplies code that is run when activities complete to update the representations 

of objects. We begin in Section 7.1 by describing extensions to Argus to support the explicit 

approach. Then. in Section 7.2. we present an example implementation to illustrate the 

approach. Finally, in Section 7.3, we compare the implicit and explicit approaches. 

7 .1 Linguistic Support 

We present the language constructs as additions to Argus. We do not intend this to be a 

complete language proposal; rather, it is a vehicle for presenting examples using an explicit 

approach. The examples will serve both to illustrate how implementations of atomic types can 

be constructed using an explicit approach, and as a basis for comparing the explicit and 

implicit approaches. 

We extend Argus in three ways. First, we add a new built-in data type, aid, to represent 

names of activities. Second, we extend the existing module for implementing abstract data 

types (the cluster) to provide the implementation of an operation with access to the name of 

the activity that invoked it, and to permit easy identification to the system of the code to be run 

when activities commit and abort. Third, we add a queuing/signalling mechanism designed 

to support efficient synchronization of activities. 

An informal specification of the type aid appears in Figure 7-1. Note that no operations are 

provided to create new aids. While we will allow an implementation of an atomic type explicit 

access to the aid of an activity that invokes one of the type's operations, we follow Argus in 

implicitly associating aids with processes. Thus, the system automatically creates new aids 

whenever an existing activity executes the enter statement to create subactivities or nested 

top-level activities. and associates the new aids with the corresponding processes. Also note 

that the set of operations provided by the type aid is not complete; we have included only 

those that we need for· our examples. and expect that others would be needed for general 

use. 

We extend clusters in two ways. First, a routine in a cluster that implements an operation of 

the defined type can have two interface specifications. The external specification 

corresponds to the interface specification of the operation in the type's specification. The 

internal specification differs from the external specification in that it has an additional implicit 



98 

data type aid is parent, ancestors, proper _ancestors, top, equal 

parent = proc (a: aid) returns (aid) signals (top) 
% Returns a's parent; signals top if a has no parent. 

ancestors = iter (a: aid) yields (aid) 
% Yields the ancestors of a, including a ·itself, in root-to-leaf order. 

proper_ancestors = iter (a: aid} yields (aid} 
% Yields the proper ancestors of a (i.e., not including a itself) in root-to-leaf order. 

top = proc (a: aid} returns (bool) 
% Ret~rns true if a is a top-level activity; otherwise returns false. 

equal= proc (a1, a2: aid) returns (true) 
% Returns true if a 1 and a2 name the same activity; otherwise returns false. 

Figure 7·1 :Informal specification of the data type aid. 

argument. This implicit argument must appear as the first argument in the argument list of the 

routine, and has type aid. Thus, for example, an operation with external specification 

op= proc (xl: tl, ... ) ... 

might have internal specification 

op = proc (a: aid, xl: tl, ... ) ... 

The identifier used to declare the implicit argument may be chosen at the convenience of the 

programmer. When a routine with distinct internal and external specifications is invoked, the 

implicit argument is assigned the value of the aid of the invoking activity, and the other 

arguments are assigned the values of the corresponding actuals. 

Second, a cluster may supply two additional operations, called commit and abort. We call 

these special operations completion operations. Their interfaces are as follows: 

commit = proc (a: aid, x: rep) signals (failure(string)) 

abort = proc (a: aid, x: rep) signals (failure(string)) 

These operations are intended to be called by the system (say, with arguments a and x) when 

an activity a that used the object represented by x commits or aborts. To let the system know 

that an activity has used an object, the routines inside a cluster may call the special procedure 

register, which has the following interface: 

register = proc (a: aid, x: rep) signals (completed) 

An invocation of register will signal completed if the activity named by the first argument has 

alre.ady committed or aborted. Otherwise the invocation will return. Sometime after the 

activity a completes, the system will invoke the appropriate completion operation defined in 

the cluster (commit if the activity commits. abort if the activity aborts) with arguments a and 

x. If the completion operation signals failure, the system will try again at some future time. If a 

committing activity is a subactivity of another activity, and the invocation of the commit 



99 

operation terminates normally, the system will also register the activity's parent on the same 

object; thus, when the parent completes, the appropriate completion operation will again be 

invoked. (Similarly, if the parent commits and its commit operation terminates normally, the 

system. will register its parent on the same object, and so on until a top-level activity is 
'; 

reached.) 

We will use the mutex type and the seize statement in Argus to cope with internal 

concurrency. As in the previous chapter, we assume that activities do not fail when in 

possession of a mutex object. 

Finally, we add the built-in data type action_queue to allow operations to wait for necessary 

preconditions. An informal specification of the operations provided by action_queue 

appears in Figure 7-2. We also provide the block statement to allow an activity to wait on an 

action_queue. The block statement has the following form: 

block exprl on expr2 

The first expression must evaluate to an aid, and the second to an action_queue. The 

block statement can appear only within a seize statement. When executed, it blocks the 

executing process on the specified action_queue on behalf of the specified aid, and 

releases the mutex object seized by the closest enclosing seize statement. 

A process blocked on an action_queue is in one of two states: asleep or waiting. When a 

process executes a block statement, it is initially asleep. An asleep process on an 

action_queue changes to the waiting state when some other process executes the notify or 

wake operation on the action_queue. A process in the waiting state attempts to regain 

possession of the mutex object that was released when the process blocked, and is 

unblocked as soon as it regains possession. 

7 .2 Implementation of the Semiqueue Type 

In this section we present an implementation of the semiqueue type using the linguistic 

constructs described in the previous section. An informal specification of semiqueues 

appeared in Figure 6-1 . The implementation appears in Figure 7-4. It uses the type generator 

tog; an informal specification of logs appears in Figure 7-3. 

The representation of a semiqueue consists of three componeflts enclosed in a mutex object. 

The components are: committed, which represents the items known to be in the semiqueue 

(they have been enqueued by activities that have committed to the top-level, and they have 

not been dequeued); logs, which is a collection of summary information about the operations 

executed by active activities; and pending, which is an activity queue used for blocking deq 

operations that cannot find an item to dequeue. The mutex object is used to prevent 



100 

data type action_ queue is create. notify. wake. empty 

% A process can add itself to an action_ queue by executing the block statement, specifying 
% an aid on whose behalf it wishes to wait. A process on an action_ queue rs in one of two 
% states: asleep or waiting. A waiting process will be unblocked as soon as it can regain 
% possession of the rhutex ob1ect released when it blocked. An action_queue is empty if 
% and only if no processes, asleep or waiting. are blocked on it. 

create = proc ()returns (action_queue) 
% Returns a new, empty action queue. 

notify = proc (q: action_queue, a: aid) 
% Changes all asleep processes on q waiting on behalf of siblings of a or their descendants to 
% waiting; all top-level activities are considered to be siblings of a top-level activity. 

wake = proc (q: action_queue) 
% Changes all asleep processes on q to waiting. 

empty= proc (q: action_queue) returns (bool) 
% Returns false if any process, asleep or waiting, is blocked on q; otherwise returns true. 

Figure 7·2:1nformal specification of the data type action_queue. 

interference among concurrently executing operations on the same semiqueue by forcing 

them.to run serially. 

The summary for an activity consists of two parts: enq, which represents the items enqueued 

by the activity (or its committed descendants) and not subsequently dequeued; and deq, 

which represents the items dequeued by the activity (or its committed descendants), and 

contains sufficient information to be able to "undo" the deq operations if the activity aborts. 

The implementation of enq works as follows: It finds the summary record for the invoking 

activity by calling the internal procedure tind_log. It then adds the item to be enqueued to the 

list of items enqueued by the activity, registers the invoking activity and the semiqueue object 

(so the appropriate completion operation will be invoked by the system when the activity 

completes), and returns. The mechanism used for enq operations is like an intentions list: a 

record of the operation is kept, but the operation only becomes visible to the activity's siblings 

when the activity commits. If the activity aborts, the record of the operation is discarded. 

The implementation of deq is more complex: It first looks for an item to dequeue by calling 

the internal procedure find_elist. Find_elist searches the committed items and the intentions 

lists for the calling activity and its ancestors, looking tor a non-empty list. The lists searched 

by find_elist contain the enqueued items that are visible to the calling activity and that have 

not yet been dequeued. If no list is found by find_elist, deq blocks on the queue in the 

representation of the semiqueue, and tries again when some activity that used the semiqueue 

becomes visible to the calling activity. If a non-empty list is found by find_etist, deq removes 



data type log[t: type) is create, fetch, store, delete, ancestors 

% A /og[r] object maps aids tot objects. 

create :::: p roe () returns (log[t]) 
% Returns·a new, empty log. 

fetch = proc (I: log[t], a: aid) returns {t) signals (not_found) 
% Returns the t object associated with a in/, signalling not_tound if a is not bound in/. 

store = proc {I: log[t], a: aid, x: t) 
% Binds a to x in/. 

delete : proc (I: log[t], a: aid) 
% Unbinds a in/. 

root21eaf = iter (I: log[t], a: aid) yields (aid, t) 
% Yields each ancestor of a (including a itself) with its associated binding, if it is bound in /; 
% items are yielded in root-to-leaf order. 

leaf2root = iter (I: log[t], a: aid) yields (aid, t) 
% Yields each ancestor of a (including a it.self) with its associated binding, if it is bound in /; 
% items are yielded in leaf-to-root order. 

Figure 7·3:1nformal specification of the data type log. 

101 

the first item from the list and creates an undo record containing that item and the list. Next, if 

the item dequeued was not enqueued by the invoking activity (or one of its committed 

descendants), the undo record is added to the summary information for the activity. (If the 

same activity enqueued and then dequeued an item, there is no need to remember either 

operation; the net effect on the semiqueue will be the same regardless of whether the activity 

commits or aborts.) Finally, the invoking activity and the semiqueue are registered, and the 

item to be dequeued is returned. 

The mechanism used for deq operations is like an undo log: If the invoking activity aborts, the 

information in the undo records is used to put the item back in the list from which it was 

removed, effectively "undoing" the operation. 

The abort routine is simple: It undoes the deq operations executed by the aborting activity 

and its committed descendants by putting the dequeued items back in the lists from which 

they were removed, and then discards the summary (including the intentions list of enqueued 

items) for the aborting activity. Finally, if any deq operations were undone, the abort routine 

unblocks any pending deq operations, since the items that were returned from the aborting 

activity's undo list might now be visible to the pending operations. 

The commit routine merges the summary for the committing activity with that for its parent. 

The activity's list of enqueued items is simply appended to its parent's list. The undo 



102 

Figure 7-4:Explicit implementation of the data type semiqueue. 

semiqueue = claster [item: type] is create, enq, deq 

undo = struct[i: item, 
deleted_from: elist] 

% item returned by deq op. 
% elist it was removed from. 

elist = array[item] 

dlist = array[undo] 

summary = struct[enq: elist, 
deq: dlist] 

aq = action_queue 

% intentions list for enq's, and list 
% of fully committed enq'd items. 

% undo log for deq's. 

% summary of operations executed by 
% a single activity. 

components = struct[committed: elist, % committed items in semiqueue. 
logs: log[ summary],% summaries for all activities. 
pending: aq] % pending deq ops. 

rep = mutex[components] 

% rep invariant: 
% for each activity a, and for each undo record u in rep.value.logs[a].deq, either 
% u.deleted_from = rep.value.committed, or there exists a proper ancestor a' of a such 
% that u.deleted_from = rep.value.logs[a'].enq 

create = proc ()returns (cvt) 
re tu rn(rep$create(components${ committed: elist$new(), 

end create 

logs: log[summary]$create(), 
pending: aq$create()})) 

% external spec: enq = proc (q: cvt, i: item) 
enq = proc(a: aid, q: cvt, i: item) 

seizeq do 
s: summary:= find_log(q.value.logs, a) 
elist$addh(s.enq, i) 
register(a, q) 
end 

end enq 



Figure 7 -4: (continued) 

% external spec: deq = proc (q: cvt) returns (item) 
deq = proc (a: aid, q: cvt) returns (item) 

seizeq do 
while true do 

end 
enddeq 

visible: elist: = find_ellst(q.value,a) 
except when none: block a on q.value.pending % pause 

continue % and retry 
end 

u: undo:= undo${i: elist$reml(visible), deleted_trom: visible} 
s: summary:= find_log(q.value.logs, a) 
if u.deleted_from - = s.enq 

then dlist$addh(s.deq, u) end% else operations cancel each other 
register(a, q) 
return(u.i) 
end 

% gets the summary for a from logs. 
find_log = proc (logs: log[summary], a: aid) returns (summary) 

return(logs[a]) 
except when not_found: s: summary:= summary${enq: elist$new{), 

deq: dlist$new()} 

end 
end find_log 

logs[a]: = s 
return(s) 

% finds a non-empty elist visible to a (i.e., either committed, or belonging to an ancestor 
% of a). If q.committed is non-empty it is returned. Signals if no non-empty elist is found. 
find_elist = proc (c: components, a: aid) returns (elist) signals (none) 

if elist$size(c.committed) - = 0 then re tu rn(c.committed) end 
for anc: aid, s: summary in log(summary)$root21eaf(c.logs, a) do 

if elist$size(s.enq) - = 0 then retu rn(s.enq) end 
end 

signal none 
end find_elist 

103 



104 

Figure 7 -4: (continued) 

commit = proc (a: aid, q: rep) signals (failure(string)) 
seize q do · -; 

qv: components:= q.value 
I: log[summary]: = qv.logs 
as: summary : = l[a] 

except when not_found: return end 
log[summary]$delete(I, a) 
ps: summary:= find_log(I, aid$parent(a)) 

except when top: merge_enq(qv.committed, as.enq) 
if elist$size(as.enq) - = 0 then aq$wake(qv.pending) end 
return 

end 
merge_enq(ps.enq, as.enq) 
merge_deq(ps, as.deq) 
if elist$size(as.enq) - = 0 then aq$notify(qv.pending, a) end 
end 

end commit 

abort = proc (a: aid, q: rep) signals (failure(str•ng)) 
seizeq do 

as: summary:= q.value.logs[a] 
except when not_found: return end 

log [summary ]$delete(q. value.togs, a) 
for u: undo in dlist$elements(as.deq) do 

elist$addh(u.deleted_from, u.i) 
end 

if dlist$size(as.deq) - = 0 then aq$wake(q.value.pending) end 
end 

end abort 

% appends (in order) items in from onto to. 
merge_enq = proc (to: elist, from: elist) 

for i: item in elist$elements(from) do 
elist$addh(to, i) 
end 

end merge_enq 



Figure 7-4: {continued) 

~'o appends {in order) undos in from onto to.deq, 1gnor1ng those undos u 

% with u.deleted_from = to enq {such deq's have committed to the 
'Jo level of the corresponding enq. so both operations can be forgotten), 

merge_deq = proc (to: summary. from: dl1st) 
for u undo in dl1st$clements{from) do 

if u.dcldcd_from - = to.enq 

end 

then dl1st$addh(to.deq, u) 
end 

end merge_deq 

end semiqueue 

105 



106 

information for dcq operations is similarly appended, except that records for items enqueued 

by the parent are discarded from the undo log. (The operations effectively cancel each other 

in this case.) In the case of a committing top-level activity, the tentatively enqueued items are 

appended to the ~st of committed items, and the undo log is discarded. Finally, if any items 

enqueued by the committing activity were added to its parent's intentions list. the commit 

routine unblocks pending deq operations invoked by activities to which the committing 

activity is now visible. 

When a blocked deq operation is unblocked, there is no guarantee that it will be able to 

execute. For example, there may be several pending deq operations unblocked by the same 

completing activity, but it is possible that only one will actually be able to dequeue an item. 

Thus, the deq operation loops after blocking, and may block again if it still finds no items 

available for it to dequeue. 

7.3 Remarks 

In this section we discuss the relative merits of the implicit and explicit approaches. We begin 

in Section 7.3.1 by summarizing the conclusions to be drawn from the examples, including 

those presented in the appendix. Next, in Section 7.3.2, we compare the two approaches . . 
Finally, in Section 7.3.3, we discuss related work. 

7.3.1 Summary of Examples 

First, in Section 7 .3.1.1 we discuss the two implementations of the semiqueue type. Next, we 

summarize the conclusions to be drawn from the three examples in the appendix. Two of 

those examples are implementations of the map type, one using an implicit approach and the 

other an explicit approach. The third is an implementation of the banl<_account type. We 

discuss the implementations of map in Section 7.3.1.2, and the implementation of 

bank_account in Section 7.3.1.3. 

7 .3 .1. 1 Implementations of the Semiqueue Type 

The explicit implementation of the semiqueue type has a number of advantages over the 

implicit implementation. First .. the implementation of the deq operation in the explicit 

implementation is more efficient than in the implicit implementation. In the implicit 

implementation the deq operation takes time proportional to the size of the representation of 

its semiqueue argument (in the worst case); in the explicit implementation the deq operation 

takes time proportional to the number of ancestors of the calling activity (again in the worst 

case). This difference arises because the explicit implementation has access to the names of 

invoking activities. 



107 

Second, the semiqueue type cannot be implemented in Argus to satisfy additional properties, 

like the restriction that items enqueued by a single activity be dequeued in the order in which 

they are enqueued: the explicit mechanism presented here does not suffer from this limitation. 

The problem with Argus is that the system does not update the states of all built-in atomic 

objects instantaneously, so it is possible for one activity to see that another activity has 

committed at one built-in object and later to see that the activity still holds a lock on another 

built-in object. It is possible to change the semantics of Argus to avoid this problem. 

However, it might be expensive for the system to guarantee that commits and aborts appear 

instantaneous in a distributed system. In addition, even with this additional guarantee, it can 

be difficult to implement the "fifo" -like restriction on semiqueues. 

Third, the implicit implementation of the semiqueue type uses busy-waiting to schedule deq 

operations, while the explicit implementation uses a signalling mechanism. The signalling 

mechanism can be significantly more efficient than busy-waiting: In the implicit 

implementation, the system has very little information on which to base scheduling decisions, 

and is quite likely to awaken a pending operation when the operation cannot proceed, and not 

to awake:i a pending operation when in fact it can proceed. In the explicit implementation, a 

pending deq operation is awakened only if an activity that enqueued some items becomes 

visible to the activity waiting to deq, or if an activity that dequeued some items aborts, making 

those items available for other activities to dequeue. 

Finally, the implicit implementation requires a "cleanup" routine to .keep the size of the 

representation of a semiqueue from increasing forever; the explicit implementation 

accomplishes the same effect with the user-supplied completion operations, and does it more 

efficiently since it is possible to tell from the arguments to the completion operation exactly 

what information needs to be deleted from the representation and when it needs to be 

deleted. 

7 .3.1.2 Implementations of the Map Type 

Maps are like associative memories, binding uids to other objects. A map provides three 

operations: insert, which adds a new binding to the map; delete, which deletes a binding from 

the map; and lookup, which retrieves the binding for a specified uid from the map. 

Both implementations of the map type in the appendix use a two-phase locking protocol, 

based on the state machine LOCK described in Chapter 5. They illustrate how a locking 

protocol that chooses locks based on the results of operations as well as their arguments can 

be implemented. 

The two implementations provide the same level of concurrency. In addition, they use similar 

representations for maps: both represent a map using a non-atomic table protected by a 



108 

mutex; tables are like maps. except that they are not atomic. The implementations differ in 

several ways, however. 

First, the implicit implementation requires an internal "cleanup" routine (like the cleanup 

routine in the implicit implementation of semiqueues) to keep the representation from growing 

too large. The explicit implementation uses the completion operations to update the 

representation of a map as activities complete. avoiding this kind of periodic "garbage 

collection" of the representation. 

Second, the implicit implementation uses busy-waiting for scheduling, while the explicit 

implementation uses action_queues. Separate queues are used for each uid, with the result 

that a pending operation on a uid will be awakened only if an activity that used the same uid 

aborts or becomes visible to the activity that invoked the operation (i.e., commits to their least 

common ancestor). A queue is stored for a uid only if an operation on the uid that was 

invoked by an active activity was forced to wait. If conflicts causing operations to wait are 

relatively rare, then the number of queues stored should be small. 

Third, the explicit implementation keeps track explicitly of the uids used by an activity; this 

effect is achieved in the implicit implementation by the fact that the system keeps track of the 

built-in atomic objects used by each activity. 

The explicit implementation appears significantly more complex than the implicit 

implementation: It contains 156 lines of code, while the implicit implementation contains 64 

lines of code. Some of the extra code (31 lines) is needed for managing queues. Much of the 

rest (65 lines) is needed to manage information and perform tasks that are handled 

automatically by the system in the implicit approach, for example, the completion operations 

themselves, and keeping track of the uids used by each activity. 

7.3.1.3 Implementation of the Bank_account Type 

A bank account provide three operations: deposit, which adds a specified amount to the 

account; withdraw, which removes a specified amount from the account, signalling 

insufficient_funds if the balance is too low; and balance, which returns the current balance in 

the account. The explicit implementation in the appendix illustrates how an implementation of 

an atomic type can provide more concurrency than can be achieved with two-phase locking. 

It also serves to illustrate further the greater expressive power and, in some cases, ease of 

use, of the explicit approach: The lack of access to the names of invoking activities in the 

implicit approach makes it difficult, if not impossible, to construct an implicit implementation 

that permits comparable levels of concurrency. 



109 

7 .3.2 Comparison 

We base our comparison of the implicit and explicit approaches on the two implementations 

of the semiqueue type presented above, and on the implementations of the map and 

bank_accqunt types presented in the appendix. 

The explicit approach described earlier in this chapter is strictly more powerful than the 

implicit approach in Argus. It extends the Argus approach in three ways: implementations of 

atomic types have explicit access to the names of invoking activities: the programmer can 

supply code that is run when activities complete to update the representations of objects; and 

implementations can explicitly awaken a pending operation when it might be able to proceed, 

rather than using busy-waiting to perform scheduling. 

By permitting implementations to access the name of the activity that invokes an operation, 

we achieve greater flexibility in structuring the representations of objects. and avoid some of 

the limitations of the implicit approach. For example, the deq operation in the implicit 

implementation of the semiqueue type takes time proportional to the size of the 

representation of its semiqueue argument (in the worst case). In the explicit implementation, 

the deq operation takes time proportional to the number of ancestors of the calling activity 

(again in the worst case). 

Similarly, it is impossible using the implicit approach to satisfy the constraint on semiqueues 

that, as long as at most one activity dequeues items at a time and that activity does not abort, 

items enqueued by a single activity should be dequeued in the order in which they were 

enqueued. The reader can easily verify that the explicit implementation of the semiqueue type 

satisfies this constraint. 

Achieving this flexibility in structuring representations appears to require access to the names 

of invoking activities, but does not require the use of user·supplied completion operations. 

We could provide a "query" operation on aid objects, permitting an implementation to find 

out from the system whether a given activity is still active, and if not, whether it has committed 

or aborted. An implementation could periodically check the status of active activities, and 

update the representation of an object appropriately when told that an activity has completed. 

In this way we could achieve much of the effect of user-supplied completion operations, 

without having them executed automatically by the system. 

While user-supplied completion operations are not needed for flexibility in structuring 

representations, they may be necessary for achieving efficient scheduling of operations. The 

implicit approach in Argus uses busy.waiting to schedule operations; as illustrated by the 

implementations of the semiqueue and map types, the queuing mechanism in the explicit 

approach presented here permits much more control over scheduling of operations. The 

mechanism relies on user-supplied completion operations to awaken blocked operations 



110 

explicitly. It is not clear whether comparable control over scheduling can be achieved without 

user-supplied completion operations. 

The explicit implementations that we have presented are obviously more complex than the 

implicit ones. Much of this compl_exity arises from the need to represent explicitly certain 

kinds of information that are handled automatically by the system in the implicit approach. 

For example, in the explicit implementation of the map type in the appendix, we explicitly 

represent the uids used by an activity; in the implicit implementation, this is not necessary 

because the system keeps track of the built-in atomic objects used by activities. 

Some of the complexity, however, arises out of the desire for more efficient and more 

concurrent implementations. Some of the information that is handled automatically by the 

system in the implicit approach may be more efficiently used when structured differently (e.g., 

compare the two semiqueue implementations): As discussed above, the explicit approach, by 

permitting implementations to access the names of invoking activities, provides control over 

this structure, while the implicit approach does not. In addition, the management of queues 

introduces complexity, but also permits much more efficient scheduling. 

More work may be required of the programmer in the explicit approach, since it may be 

necessary to supply completion operations. However, in the implicit approach, it is frequently 

necessary to provide an internal operation that compacts the representations of objects (e.g., 

the cleanup routine in the implicit implementation of the semiqueue type); this ~ind of internal 

garbage collection is not needed in explicit implementations. 

In addition, the explicit approach does not require linguistic support that is specific to a 

particular local atomicity property. The tagtest statement in Argus is designed to support 

implementations of dynamic atomic types, and provides little if any help in building 

implementations of static atomic types. In contrast, the explicit structure presented above, by 

permitting explicit access to aids, provides the programmer with tools that can be used for 

implementing static atomic types as well as dynamic atomic types. Hybrid atomic types can 

also be implemented using the explicit structure, although for efficient management of old 

versions it might be useful to add explicit "initiate" operations for read-only activities. 

Neither the linguistic support in Argus, nor the extensions we presented earlier in this chapter, 

supports optimistic implementations. It appears relatively easy to do so using an explicit 

approach. simply by allowing programmers to supply an explicit "pre-commit" operation for 

objects to vote on whether to allow an activity to commit. It appears very difficult to extend an 

implicit approach to permit optimistic implementations. 

The use of mutual exclusion to control internal concurrency is just a simple way of making the 

implementations of operations "atomic," by forcing them to run serially. A more general 



111 

approach is to use atomic actions. making each execution of an operation a top· level activity. 

This approach appears viable, however, only if implementations have access to the names of 

invoking activities. In an implicit structure, certain steps in the implementation of an operation 

(e.g., operations on lower-level atomic objects) must be executed on behalf of the invoking 

activity. yet there is no way· for a process to act on behalf of two activities at the same time. 

Even in an explicit structure, this approach may have difficulties. It is not clear whether a 

queuing mechanism comparable to our action_queues can be designed to work with top­

level activities instead of with seize statements. 

In summary, the expressive power of the implicit approach is limited in several ways. 

However, implementations using an explicit approach appear more complex. It is not clear 

whether an intermediate approach can be found that provides the efficiency of the explicit 

approach but avoids some of the complexity. 

7.3.3 Related Work 

Some recent work at CMU by Spector and Schwarz [Schwarz & Spector 82] has considered 

how to build "atomic objects." Spector and Schwarz ignore recovery, however, and focus 

only on locking implementations. They appear to suggest that the system should manage 

"lock tables" automatically, but do not describe in detail how the programmer can describe 

the set of lock modes and their conflict relationships to the system. In addition, it is 

sometimes difficult for an operation to tell in advance what kind of lock it will need; for 

example, in implementations of the map type, an insert operation will need a different kind of 

lock depending on whether it terminates normally or signals. This indicates that an automatic 

locking mechanism might be difficult to use. 

Work at Newcastle on recovery blocks [Anderson et al. 78, Anderson & Lee 79, Verhofstad 76] 

investigated recovery techniques for building user-defined data types. While concurrency 

was not considered, alternative program structures were explored. The inclusive recovery 

scheme in [Anderson et al. 78] is similar to our implicit approach, while their disjoint recovery 

scheme is similar to our explicit approach. The authors of [Anderson et al. 78, Anderson & 

Lee 79] note that the inclusive scheme provides limited control over recovery and can be less 

efficient than the disjoint scheme, but that implementations in the disjoint scheme can be 

more complex than those in the inclusive scheme. These conclusions are similar to our 

conclusions about the implicit and explicit approaches for implementing atomic types. 

Allchin [Allchin & McKendry 83, Allchin 83] has also investigated "atomic objects." He has 

focused on the implicit approach, attempting to make the system do as much of the work as 

possible. As we have discussed above, this approach provides limited expressive power. 

One interesting mechanism that he proposes is a queuing mechanism for an implicit scheme: 

He. associates one queue with each object. An activity can wait on a queue, and will be 



112 

awakened when another activity that used the same object becomes visib!e to it. However, he 

does not consider examples like the map type (illustrated in the appendix of this dissertation, 

and discussed in Section 7.3.1 ), for which it may be important to have finer control over 

scheduling. In particular, it is important in the implementation of map in Section A.2 to be 

able to discard queues that are no. longer needed for pending operations. This appears 

impossible in the implicit queuing mechanism proposed by Allchin. 



113 

Chapter Eight 

Summary and Conclusions 

8.1 Summary 

Atomicity is a useful organizational concept for reducing the complexity of a concurrent 

system. If activities are atomic, concurrency can be ignored when checking that the state of 

the system remains consistent. In this dissertation we have explored how to specify and 

implement "atomic types," which support atomicity of activities. 

One of the most important contributions of this dissertation is a specification framework that 

permits the behavioral specification of an object to be derived systematically from a 

specification of its serial behavior. In addition, our framework permits the programmer of an 

individual activity to ignore how atomicity is achieved, and to focus on the serial behavior of 

each object. 

In studying what it means for an object to be atomic, we generalized existing work on 

concurrency control in three important ways: 

- Our definition of atomicity is based on an explicit specification of the desired 
behavior for the objects shared by activities. 

·Our definition of atomicity encompasses both serializability and recoverability. 

·We identify local properties of individual objects that ensure global atomicity of 
activities. 

Our focus on local properties appears to be unique. A few papers (e.g., [Bernstein et al. 

81, Korth 81 a, Beeri et al. 83]) have considered using specifications to increase concurrency, 

and at least one paper [Lynch 83] has considered recovery in addition to synchronization. 

However, we know of no other work focusing on local properties of objects, or dealing with 

more than one of the above three issues. 

We also presented a novel two-phase locking protocol, and verified its correctness. Our 

presentation and analysis of the protocol, unlike published descriptions of existing protocols, 

cover recovery as well as synchronization. The protocol extends existing protocols in two 

ways: It permits operations to be partial and non-deterministic, and it permits the results of 

operations, as well as their arguments, to be used in synchronizing activities. 

Finally, we presented several examples of implementations of atomic types, illustrating how 

existing techniques for synchronizing and recovering activities can be extended to achieve 



114 

greater concurrency. In addition, we presented two different linguistic mechanisms. The 

mechanism in Argus is clearly limited in expressive power; the alternative that we explore, 

while more powerful, may also be harder to use. 

8.2 Conclusions and Further Work 

Each of the three local atomicity properties defined in this dissertation characterizes the 

operation of a large class of protocols. Each def in es limits on the concurrency among 

activities that can be permitted by types. In addition, each is optimal, in the sense that no 

more concurrency can be permitted without violating atomicity. The three properties do not 

characterize all protocols, however. It might be worth investigating how to extend other 

protocols (see, e.g., [Silberschatz & Kedem 80, Kung & Robinson 81]) to cope with user· 

defined operations. 

Our optimality results indicate that, without further constraints, objects satisfying different 

local atomicity properties (e.g., dynamic atomicity and static atomicity) cannot be used in the 

same system. As systems grow and existing systems are interconnected, it will become 

necessary to cope with connecting systems that use different protocols. Existing protocols 

will need to be extended so that the interactions among different protocols can be handled 

gracefully. 

At the moment it does not appear that any one local atomicity property is clearly "best," in the 

sense of providing better performance than any other. This means that a system designer 

must choose which local atomicity property to use in a system. More experimentation is 

needed to determine the kinds of applications for which each local property provides good 

performance. 

It is clear from the example implementations that we have presented that implementing an 

atomic type is a difficult task. One of the reasons for the- complexity of these implementations 

is the interaction between synchronization and recovery. The traditional approach to 

analyzing atomicity in database systems is to assume that synchronization and recovery are 

provided by separate modules in the implementation. However, our presentation and 

verification of the locking protocol in Chapter 5 should make it clear that synchronization and 

recovery can interact in subtle ways, particularly when we consider operations other than 

reads and writes. Implementations of atomic types need to be explor~d further in an attempt 

to develop a better understanding of how they should be structured. 

Of the two program structures that we have studied, the explicit structure is the more general, 

but requires more work on the part of the programmer. It seems unlikely that general support 

could be designed that would significantly reduce the complexity of implementations and at 



115 

the same time provide the expressive· power of the explicit structure studied here. On the 

other hand, it may be that specialized support can be developed for particular implementation 

strategies. such as locking. Experimental work is also needed to evaluate the need for certain 

kinds of expressive power; it may be that the expressive power limitations of the mechanisms 

in Argus are not important tor many applications. 

Perhaps the biggest problem with the Argus mechanism is its lack of flexibility: It appears 

difficult to use for implementing types other than dynamic atomic types. A more flexible 

mechanism would be preferable, if only because it would permit experimentation with 

different local atomicity properties. 

Atomic types are clearly useful in many applications for supporting atomicity. However, it is 

not clear how often the programmer will need to take on the job of implementing 

synchronization and recovery. It may be that the performance demands of most applications 

can be satisfied without basing synchronization on the specifications of objects, or that only a 

few types in a system need to provide this extra concurrency. It is clear that this extra 

concurrency will be provided rarely as long as it is so difficult to construct an implementation 

that provides it. 

• A hard problem that we have not considered is how to test and debug a concurrent system. 

Activities using atomic types, as well as implementations of atomic types, will need to be 

tested and debugged. It may be that the needs of testing and debugging will also influence 

the choice of mechanisms for implementing an atomic type. 

We have barely touched on the problem of ensuring "reliable" operation of a system. Among 

the possible requirements that an application might make are that systems remain available, 

that information not be lost, and that activities make progress. Existing protocols for meeting 

these requirements need to be extended to cope with user-defined operations, and the 

interactions of these extensions with implementations of atomic types need to be explored. 



116 



References 

[Allchin $3] 
Allchin, J. E. 
An architecture for reliable decentralized systems. 
PhD thesis, Georgia Institute of Technology, September, 1983. 
Available as Technical Report GIT-ICS-83/23. 

[Allchin & McKendry 83] 
_Allchin, J.E .. and McKendry, M. S. 
Synchronization and recovery of actions. 
In Proceedings of the Second Annual ACM Symposium on Principles of Distributed 

Computing, pages 31-44. ACM, Montreal, Canada, August, 1983. 

[Anderson & Lee 79] 
Anderson, T., and Lee, P. 
The provision of recoverable interfaces. 
Technical Report 137, University of Newcastle upon Tyne Computing Laboratory, 

March, 1979. 

[Anderson et al. 78] 
Anderson, T., Lee, P., and Shrivastava, S. 
A model of recoverability in multilevel systems. 
IEEE Transactions on Software Engineering SE-4(6):486-494, November, 1978. 

[Atkinson & Hewitt 77] 
Atkinson, R.R., and Hewitt, C. 
Synchronization in Actor Systems. 
In Proceedings of the Fourth Annual Symposium on Principles of Programming 

Languages, pages 267-280. ACM, January, 1977. 

[Beeri et al. 83] 
Beeri, C., et al. 
A concurrency control theory for nested transactions. 
In Proceedings of the Second Annual ACM Symposium on Principles of Distributed 

Computing, pages 45-62. ACM, Montreal, Canada, August, 1983. 

[Bernstein & Goodman 81] 
Bernstein, P. A., and Goodman, N. 
Concurrency control in distributed database systems. 
ACM Computing Surveys 13(2):185-221, June, 1981. 

[Bernstein & Goodman 83] 
Bernstein, P. A .. and Goodman, N. 
Multiversion concurrency control ·· theory and algorithms. 
ACM Transactions on Database Systems 8(4):465-483, December, 1983. 

117 



118 

[Bernstein et al. 81] 
Bernstein. P., Goodman. N .. and Lai, M.·Y. 
Two part proof schema for database concurrency control. 
In Proceedings of the Fifth Berkeley Workshop on Distributed Data Management and 

Computer Networks, pages 71-84. February, 1981. 

[Best 82] 
Best. E. 
Relational semantics of concurrent programs. 
In Dines Bjorner, editor. Preliminary Proceedings of the IFIP TC-2 Working 

Conference, pages 301-322. North-Holland Publishing Company, June, 1982. 

[Best & Randell.81] 
Best. E., and Randell, B. 
A formal model of atomicity in asynchronous systems. 
Acta Informatica 16:93-124, 1981. 

[Birrell et al. 82] 
Birrell, A. D., et al. 
Grapevine: an exercise in distributed computing. 
CACM 25(4):260-274, April, 1982. 

[Campbell & Habermann 74] 
Campbell, R.H. and Habermann, A. N. 
The specification of process synchronization by path expressions. 
Springer-Verlag, 1974,. 

[Chan et al. 82] 
Chan, A., et al. 
The implementation of an integrated concurrency control and recovery scheme. 
Technical Report CCA-82-01, Computer Corporation of America, March, 1982. 

[Dahl et al. 70] 
Dahl, 0.-J., et al. 
The Simula 67 common base language. 
Publication No. S-22, Norwegian Computing Center, Oslo, 1970. 

[Davies 73] 
Davies, C. T. 
Recovery Semantics for a DB/DC System. 
In Proceedings of the ACM Annual Conference, pages 136-141. ACM, Atlanta, GA, 

1973. 

[Davies 78] 
Davies, C. T. 
Data processing spheres of control. 
IBM Systems Journal 17(2):179-198, 1978. 

[DuBourdieu 82] 
DuBourdieu, D.J. 
Implementation of distributed transactions. 
In Proceedings of the Sixth Berkeley Workshop on Distributed Data Management and 

Computer Networks, pages 81-94. 1982. 



[Eswaren et al. 76] 
Eswaren, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. 
The notions of consistency and predicate locks in a database system. 
Communications of the ACM 19(11 ):624-633, November, 1976. 

[Fischer & Michael 82] 
Fischer, M. J., and Michael, A. 

119 

Sacrificing serializability to attain high availability of data in an unreliable network. 
In Proceedings of the Symposium on Principles of Database Systems. ACM, March, 

1982. 

[Gifford 79] 
.Gifford, D. K. 
Weighted Voting for Replicated Data. 
In Proceedings of the Seventh Symposium on Operating Systems Principles, pages 

150-162. ACM SIGOPS, Pacific Grove, CA, December, 1979. 

[Ginsburg 75] 
Ginsburg, S. 
Algebraic and automata-theoretic properties of formal languages. 
North Holland/American Elsevier, New York, 1975. 

[Goree 83] 
Goree, J. A. 
Internal consistency of a distributed transaction system with orphan detection. 
Master's thesis, MIT, January, 1983. 
Available as MIT /LCS/TR-286. 

[Gray 78] 
Gray, J. 
Notes on Database Operating Systems. 
In Lecture Notes in Computer Science, Volume 60: Operating Systems -- An Advanced 

Course. Springer-Verlag, 1978. 

[Gray et al. 81] 
Gray, J.N., et al. 
The recovery manager of the System R database manager. 
ACM Computing Surveys 13(2):223-242, June, 1981. 

[Herlihy 84] 
Herlihy, M. P. 
Replication methods for abstract data types. 
PhD thesis, MIT, 1984. 
Forthcoming. 

[Hoare 74] 
Hoare, C. A. R. 
Monitors: an operating system structuring concept. 
CACM 17(10):549-557, October, 1974. 



120 

[Korth 81 a] 
Korth, H.F. 
Locking protocols: general lock classes and deadlock freedom. 
PhD thesis. Princeton University, 1981. 

[Korth 81 b] 
Korth, H.F. 
A deadlock-free. variable granularity locking protocol. 
In Proceedings of the Fifth Berkeley Workshop on Distributed Data Management and 

Computer Networks, pages 105-121. IEEE, February, 1981. 

[Kung & Papadimitriou 79] 
Kung, H.T., and Papadimitriou, C-H. 
An optimality theory of concurrency control for databases. 
In Proceedings of the 1979 SIGMOD Conference. Boston, MA, May, 1979. 
More recent version available as MIT /LCS/TM-185. 

[Kung & Robinson 81] 
Kung, H.T., and Robinson, J.T. 
On optimistic methods for concurrency control. 
ACM Transactions on Database Systems 6(2):213-226, June, 1981. 

[Lamport 76] 
Lamport, L. 
Towards a theory of correctness for multi-user data base systems. 
Technical Report CA-7610-0712, Massachusetts Computer Associates, October, 1976. 

[Lamport 78] 
Lamport, L. 
Time, clocks, and the ordering of events in a distributed system. 
CACM 21(7):558-565, July, 1978. 

[Lampson 81] 
Lampson, 8. 
Atomic transactions. 
In Goos and Hartmanis, editors, Lecture Notes in Computer Science, Volume 105: 

Distributed Systems: Architecture and Implementation, pages 246-265. Springer­
Verlag, Berlin, 1981. 

[Liskov 82] 
Liskov, B. 
On linguistic support for distributed programs. 
IEEE Transactions on Software Engineering SE-6(3):203-210, May, 1982. 

[Liskov & Scheifler 82] 
Liskov, B., and Scheifler, R. 
Guardians and actions: linguistic support for robust, distributed programs. 
In Proceedings of the Ninth Annual ACM Symposium on Principles of Programming 

Languages. pages 7-19. ACM, January, 1982. 
Revised version to appear in TOPLAS. 



[Liskov & lilies 74] 
Liskov, B., and Zilles, S. N. 
Programming with abstract data types. 

121 

In Sigplan Notices. Volume 9: Proceedings of the ACM SIG PLAN Conference on Very 
,, High Level Languages, pages 50-59. ACM, 1974. 

[Liskov et al. 81] 
Liskov, B., et al. 
CLU reference manual. 
In Goos and Hartmanis, editors, Lecture Notes in Computer Science, Volume 114. 

Springer-Verlag, Berlin, 1981. 

[Liskov ·et al. 83] 
Liskov, B., et al. 
Preliminary Argus reference manual. 
Programming Methodology Group Memo 39, MIT Laboratory for Computer Science, 

October, 1983. 

[Lynch 83] 
Lynch, N.A. 
Concurrency control for resilient nested transactions. 
In Proceedings of the Second ACM Symposium on Principles of Database Systems. 

March, 1983. 

[Moss 81) 
Moss, J.E.B. 
Nested transactions: an approach to reliable distributed computing. 
PhD thesis, Massachusetts Institute of Technology, 1981. 
Available as Technical Report MIT /LCS/TR-260. 

[Nelson 81] 
Nelson, B. J. 
Remote procedure calf. 
PhD thesis, Carnegie-Mellon University Department of Computer Science, May, 1981. 
Available as CMU-CS-81-119. 

[Owicki & Gries 76] 
Owicki, S., and Gries, D. 
Verifying properties of parallel programs: an axiomatic approach. 
Communications of the ACM 19(5):279-285, May, 1976. 

[Owicki & Lamport 82] 
Owicki, S., and Lamport, L. 
Proving liveness properties of concurrent programs. 
ACM Transactio11s on Programming Languages and Systems 4(3):455-495, July, 1982. 

[Papadimitriou 79] 
Papadimitriou, C.H. 
The serializability of concurrent database updates. 
Journal of the ACM 26(4):631-653, October, 1979. 



122 

[Pnueli 77] 
Pnueli, A. 
The temporal logic of programs. 
In Proceedings of the 18th Annual Symposium on Foundation of Computer Science, 

pages 46-57. IEEE, Providence, RI, October, 1977. 

[Randell 75] 
Randell, B. 
System structure for software fault tolerance. 
IEEE Transactions on Software Engineering SE-1 (2):220-232, June, 1975. 

[Reed 78] 
Reed, D .. P. 
Naming and synchronization in a decentralized computer system. 
PhD thesis, Massachusetts Institute of Technology, 1978. 
Available as Technical Report MIT /LCS/TR-205. 

[Reuter 82] 
Reuter, A. 
Concurrency on high-traffic data elements. 
In Proceedings of the Symposium on Principles of Database Systems, pages 83-92. 

ACM, Los Angeles, CA, March, 1982. 

[Robson 81] 
Robson, D. 
Object-oriented software systems. 
BYTE 6(8):74-86, August, 1981. 

[Schroeder, et al. 84] 
Schroeder, M. D., Birrell, A. D., and Needham, R. M. 
Experience with Grapevine: the growth of a distributed system. 
ACM Transactions on Computer Systems 2(1):3-23, February, 1984. 

[Schwarz & Spector 82] 
Schwarz, P., and Spector, A. 
Synchronizing shared abstract types. 
Technical Report CMU-CS-82-128, Carnegie-Mellon University, September, 1982. 

[Shrivastava & Banatre 78] 
Shrivastava, S.K., and Banatre, J.-P. 
Reliable resource allocation between unreliable processes. 
IEEE Transactions on Software Engineering 4(3):230-241, May, 1978. 

[Silberschatz & Kedem 80] 
Silberschatz, A., and Kedem, Z. 
Consistency in hierarchical database systems. 
JACM 27(1 ):72-80, January, 1980. 

[Skeen 82] 
Skeen, M. D. 
Crash recovery in a distributed database system. 
PhD thesis, University of California at Berkeley, May, 1982. 
Available as UCB/ERL M82/ 45. 



[Skeen & Birman 83] 
Skeen, D., and Birman, K. 
Resilient objects. 

123 

Technical Report TR 83-553, Cornell University Computer Science Department, 1983. 

[Stark 84) 
Stark, E.W. 
Foundations of a theory of specifications for distributed systems. 
PhD thesis, MIT, May, 1984. 
Forthcoming. 

[Verhofstad 76) 
.Verhofstad, J.S.M. 
Recovery for multi-level data structures. 
Technical Report 96, University of Newcastle upon Tyne, December, 1976. 

[Verhofstad 78) 
Verhofstad, J. S. M. 
Recovery techniques for database systems. 
ACM Computing Surveys 10(2):167-195, June, 1978. 

[Weihl & Liskov 82) 
Weihl, W., and Liskov, B. 
Specification and implementation of resilient, atomic data types. 
Computation Structures Group Memo 223, MIT, December, 1982. 

[Wood 80) 
Wood, W.G. 
Recovery control of communicating processes in a distributed system. 
Technical Report 158, University of Newcastle upon Tyne, 1980. 





125 

Appendix A 

Example Implementations 

In this appendix we present three example implementations of dynamic atomic types. The 

first, in Section A.1, is an implementation of a map data type using an implicit structure. The 

second, in Section A.2, is an implementation of the same data type using an explicit structure. 

The third, in Section A.3, is an implementation of a bank account data type using an explicit 

structure. This implementation illustrates how a data type that permits more concurrency 

than allowed by locking can be implemented. Finally, in Section A.4, we discuss the 

conclusions to be drawn from the examples. 

A.1 Implicit Implementation of the Map Type 

In this section we present an implementation of the map type using an implicit structure. An 

informal specification of the map type appears in Figure A-1. Maps are like associative 

memories, binding uids to other objects. In different maps, the uids can be bound to different 

types of objects. The type of the bound object for a particular map type is given by the 

parameter type vtype. 

Maps permit substantial concurrency. Insert, delete, and lookup operations involving 

different uids commute, and so can be used by concurrent activities. Not much concurrency, 

however, is possible among operations involving the same uid. If we classify insert and delete 

operations that terminate normally (rather than signalling) as writers, and all other operations 

as readers, we see that readers commute with each other, and that a writer does not commute 

with any other operation involving the same uid. For example, if an activity inserts a binding 

for a uid, concurrent activities cannot execute any operations involving that uid, although the 

lookup operation could be performed by a concurrent activity if the insert had signalled 

duplicate. Similarly, if a lookup executed by an activity terminates normally, a concurrent 

activity cannot delete the same uid, while if a lookup executed by an activity signals 

not_found, a concurrent activity cannot insert the same uid. 

The concurrency analysis above is the basis for the implementation of map in Figure A-2. The 

strategy employed in this implementation is similar to that used in the implementation of the 

semiqueue type presented earlier. A map is represented using a regular (non-atomic) table. 

Tables provide the same operations as maps, with the same serial specification, and in 

addition an iterator pairs, with the following specification: 

pairs = iter (t: table[vtype)) yields (uid, vtype) 



126 

data type map[vtype: type] is create, insert, delete. lookup 

% Maps are like associative memories, binding uids to vtype objects; map[vtype] is dynamic 
% atomic if vtype is dynamic atomic. 

create = proc ()returns (map) 
% Returns a new. empty map (one containing no bindings). 

insert = proc (m: map. u: uid, v: vtype) signals (duplicate) 
% If u is not bound in m, binds u to v in m; otherwise signals duplicate. 

delete = proc (m: map, u: uid) signals (not_found) 
% If u is bound in m, unbinds u in m; otherwise signals not_found. 

lookup = proc (m: map, u: uid) returns (vtype) signals (not_found) 
% If u is bound in m, returns the associated vtype object; otherwise signals not_found. 

Figure A· 1: Informal specification of the data type map. 

Pairs yields all pairs (u, v) such that u is bound to v in t. Unlike maps, however, tables are not 

atomic. Since the table is not atomic, changes to it made by activities that later abort are not 

undone; thus, the table maps uids to atomic variant objects rather than directly to the 

corresponding vtype objects. In addition, the table is enclosed in a mutex object to handle 

internal concurrency. 

The implementation of map also uses the Argus built-in type null. Null is generally used as a 

kind of "place filler" in a variant type when the tag contains all necessary information. Null 

has exactly one immutable object, represented by the literal nil. 

The implementations of insert, delete, and lookup are all similar. Each seizes the mutex, and 

then calls the internal procedure find_status to obtain the atomic variant associated with a 

given uid. Next, if the status object can be locked appropriately, its tag is checked, and then 

either information is returned about the binding or the status object is modified to reflect a 

change in the binding. (Of course, if the invoking activity later aborts, this modification to the 

status object will be undone.) If the status object cannot be locked appropriately, the 

operation pauses, releasing possession of the mutex. When possession is regained, the 

operation tries again. 

Find_status gives the illusion that a status object exists for all uids. If the uid is bound to a 

status object, that one is returned. Otherwise, the uid is not bound by the map, so find_status 

creates a new status object with base state "absent." binds the uid to it in the table, and 

returns it. 

When an activity that deleted a uid from the map commits, the status object associated with 

the uid will have tag "absent." Such status objects waste space: The same information can 

be represented by the absence of a binding for the uid in the table. The internal procedure 



Figure A-2: Implicit implementation of the data type map. 

map = cluster[vtype: type] is create, insert, delete, lookup 

status = atomic_variant(present: vtype, 
absent: null] 

log = table[ status] % maps uids to status objects. 

rep = mutex[log] 

create= proc ()returns {cvt) 
return{ rep$create{log$create())) 
end create 

insert = proc {m: cvt, u: uid, v: vtype) signals {duplicate) 
seize mdo 

while true do 
s: status:= find_status{m.value, u) 
tagtest s 

tag present: signal duplicate 
wtag absent: status$change_present(s, v) 

return 
end 

pause % couldn't locks; wait and try again. 
end 

end 
end insert 

delete = proc (m: cvt, u: uid) signals (not_found) 
seize mdo 

while true do 
s: status:= find_status(m.value, u) 
tagtest s 

wtag presen:: status$change_absent(s, nil) 
return 

tag absent: signal not_found 
end 

pause % couldn't locks; wait and try again. 
end 

end 
end delete 

127 



128 

Figure A·2: (continued) 

lookup= proc (m: cvt, u: uid) returns (vtype) signals (not_found) 
seize m do · , 

while true do 
tagtest find_status(m.value, u) 

tag present (v: vtype): return (v) 
tag absent: signal not_found 
end 

pause % couldn't locks; wail and try again. 
end 

end 
end lookup 

find_status = proc (I: log, u: uid) returns (status) 
cleanup(!) 
return (log$1ookup(I, u}) 

except when not_found: 
s: status:= status$make_absent(nil) 
log$insert(I, u, s) 
return (s) 
end 

end find_status 

cleanup = proc (I: log) 
enter topaction 

for u: uid, s: status in log$pairs(I) do 
tagtest s 

end 
end 

end cleanup 

end map 

wtag absent: log$delete(I, u) 
end 



129 

cleanup, called by find_status, finds and removes such bindings from the table. 

Note that cleanup runs as an independent activity. and removes only those status objects that 

are not being used by any active activity. Cleanup cannot remove status objects with tag 

"absent" that are being re~d by active activities: these status objects must be retained to 

prevent the "phantom record" problem [Eswaren et al. 76], in which one activity observes the 

absence of a binding for a given uid. and another activity adds a binding for the uid before the 

first activity completes; the first activity may then observe the state of the map both before and 

after the second activity, thus violating serializability. 

Note that insert, delete, and lookup all call find_status each time they test whether the 

appropriate locks can be acquired. They cannot use the same status object each time, since 

it might have been removed from the table by another activity's call of cleanup. The mutual 

exclusion enforced by the seize statement, however, ensures that a status object returned by 

find_status will remain in the table at least until the calling operation releases the mutex. 

A.2 Explicit Implementation of the Map Type 

In this section we present an implementation of the map type using an explicit structure. The 

implementation appears in Figure A-5. It uses two types, versions and set, whose 

specifications appear in Figures A-3 and A-4, respectively. 

This implementation of map can be viewed as an optimized implementation of the state 

machine LOCK discussed in Chapter 5, suitably extended to allow activities to be nested. The 

implementation does not store the entire sequence of operations executed by each activity, 

however; instead, it keeps track of a summary that is sufficient to update the committed state 

when the activity commits and to synchronize with other activities. 

Recall from the previous section that we can classify insert and delete operations that 

terminate normally as writers, and all other operations as readers. Operations involving 

different uids commute, as do readers involving the same uid; a writer does not commute with 

any other operation involving the same uid. This implementation synchronizes operations by 

using read/write locks on individual uids. An operation can acquire a read lock on behalf of 

an activity as long as no concurrent activity holds a write lock on the same uid; in other words, 

as long as only ancestors of the requesting activity hold write locks. An operation can acquire 

a write lock on behalf of an activity as long as no concurrent activity holds a read or write lock 

on the same uid; on other words, as long as no non-ancestors of the requesting activity hold 

locks of any kind. When an activity commits, its locks are transferred to its parent; when an 

activity aborts, its locks are discarded. 

The representation of a map is enclosed in a mutex object, and consists of three pieces: 



130 

data type versions[!: type) is create, can_read, can_ write. read_lock. write_lock. 
read, write, busy, commit, abort 

% A versions[!] object is a stack of versions. each with an associated set of readers and 
% writers. The usual read/write locking discipline tor nested activities is observed: any 
% number of concurrent readers, and at most one writer (with no concurrent readers). 

create= proc (x: t) returns (versions[!]) 
% Returns a new obiect with base state x. 

can_read = proc (v: version[t], a: aid) returns (boot) 
% Returns true if and only if every writer of vis an ancestor of a. 

can_write = proc (v: version[t], a: aid) returns (bool) 
% Returns true if and only if every reader and writer of vis an ancestor of a. 

read = proc (v: version[!], a: aid) returns (t) signals (conflict) 
% If a can read v, returns the most recent version of v; otherwise signals conflict. Does not 
% make a a reader of v (the operation read_/ock must be used explicitly to set a read lock). 

write = proc (v: version[t], x: t, a: aid) signals (conflict) 
% If a can write v, removes any version of v associated with a and pushes x on v on behalf 
% of a; otherwise signals conflict. If no conflict, also makes a a writer of v. 

read_lock = proc (v: version[!], a: aid) signals (conflict) 
% If every writer of vis an ancestor of a then makes a a reader of v; otherwise signals conflict. 

write_lock = proc (v: version[!], a: aid) signals (conflict) 
% If every reader and writer of v is an ancestor of a then makes a 
% a writer of v; otherwise signals conflict. 

busy = proc (v: version[t]) returns (bool) 
% Returns false if and only if there are no readers or writers of v. 

commit = p roe (v: version[t], a: aid) 
% If a is a reader (resp. writer) of v, makes a's parent (if any) a reader (resp. writer) of v, 
% and removes a as a reader (resr. writer) of v. If a version was pushed on v on behalf of 
% a, replaces version associated with a·s parent (if any) with that associated with a. 

abort = proc (v: version[t], a: aid) 
% Releases locks held by a on v and discards any versions of v written by a. 

Figure A·3: Informal specification of the data type versions. 



data type set[t: type] is create, insert. delete. member, empty, append 

create = proc ()returns (set[t]) 
% Returns a new, empty set. 

insert = proc (s: set, x: t) 
% Inserts x ins. 

delete = proc (s: set, x: t) 
% Removes x from s. 

member = proc (s: set, x: t) returns (boot) 
% Retur~s true if and only if xis ins. 

empty = proc (s: set) returns (bool) 
% Returns true if and only ifs is empty. 

append = proc (to, from: set) 
% Inserts all elements in from into to. 

Figure A-4: Informal specification of the data type set. 

131 

items, which contains versions and locks for uids; logs, which records for each active activity 

a summary consisting of the uids for which it has executed operations; and pending, which 

contains an activity queue for uids. Items contains versions and locks only for those uids that 

are bound in the map or that have been used by an active activity. Pending contains queues 

only for those uids with pending operations; queues are created when needed, and removed 

as soon as all activities that used them either commit to the top level or abort. Items and 

pending use the type table, also used in the implicit implementation of map presented in the 

previous section. The mutex object is used to prevent interference among concurrently 

executing operations. 

The implementation of insert works as follows: First, it finds the summary for the invoking 

activity, adds the uid to the summary, and registers the activity and the map. Then, it finds the 

versions for the uid, and attempts to read the most recent version. If there is a conflict, the 

operation blocks on the queue associated with the uid, and tries again when a conflicting 

activlty becomes visible or aborts. If there is no conflict, the operation tests the tag of the 

version. If the tag is "present," the operation acquires a read lock on the version and signals 

duplicate. If the tag is "absent," the operation writes a new version with tag "present" and 

value v, and returns; a write lock is acquired in writing the new version, unless there is a 

conflict, in which case the operation blocks and tries again later. 

The implementations of delete and lookup are similar to that of insert. They differ largely in 

the conditions under which they acquire particular types of locks. 

The commit routine begins by finding the summary for the committing activity. For each uid 

touched by the activity, it finds the versions for the uid and transfers the activity's locks and 



132 

Figure A-5: Explicit implementation of the data type map. 

map = cluster[vtype: type] is create, insert, delete, lookup 

aq = action_queue 

status = oneof[present: vtype, 
absent: null] 

tentative = versions[status] 

data = table[tentative] % versions for each uid. 

queues = table[aq] % queues for pending operations on each uid. 

summary = set[uid] % uids touched by an activity. 

components = struct[items: data, 
logs: !og[summary], 
pending: queues] 

rep = mutex[components] 

% rep invariant: 
% if there exists a such that u E rep.value.logs[a], then u is mapped by rep.value.items; 
% if there is a blocked operation involving u, then u is mapped by rep.value.pending; 
% a is a reader or writer of rep.value.items[u] if and only if u E rcp.value.logs[a]; 
% if u is mapped by rep.value.pending then u is mapped by rep.value.items. 

create = proc () returns (cvt) 
retu rn(rep$create(components$(items: data$create(}, 

end create 

logs: log[summary]$create(), 
pending: queues$create()})) 



Figure A·S: (continued) 

% external spec: insert = proc (m: cvt. u: uid, v: vtype) signals (duplicate) 
insert = proc (a: aid, m: cvt, u: uid, v: vtype) signals (duplicate) 

seize m do 
s: summary : = find_log(m.value.logs, a) 
summary$insert(s, u) 
register(a, m) 
t: tentative:= find_item(m.value.items, u) 
while true do 

tagcase tentative$read(t, a) 

end 
end 

end insert 

tag present: tentative$read_lock(t, a) 
signal duplicate 

tag absent: tentative$write(t, status$make_present(v), a) 
return 

end 
except when conflict: q: aq: = find_queue(m.value.pending, u) 

block a on q 
continue 

end 

% external spec: delete = proc (m: cvt, u: uid) signals (not_found) 
delete = b[proc] (a: aid, m: cvt, u: uid) signals (not_found) 

seize mdo 
s: summary:= find_log(m.value.logs, a) 
summary$insert(s, u) 
register(a, m) 
t: tentative:= find_item(m.value.items, u) 
while true do 

tagcase tentative$read(t, a) 

end 
end 

end delete 

tag present: tentative$write(t, status$make_absent(nil), a) 
return 

tag absent: tentat1ve$read_lock(t, a) 
signal not_found 

end 
except when conflict: q: aq: = find_queue(m.value.pending, u) 

block aon q 
continue 

end 

133 



134 

Figure A·5: (continued) 

% external spec: lookup = proc (m: cvt, u: uid) returns (vtype) signals (not_found) 
lookup = proc (a: qid, m: cvt, u: uid) returns (vtype) signals (not_found) 

seize m do 
s: summary:= find_log(m.value.logs, a) 
summary$insert(s, u) 
register(a, m) 
t: tentative:= find_item(m.value.items, u) 
while true do 

tentative$read_lock(t, a) 
. except when conflict: q: aq : = find_queue(m.value.pending, u) 

block a on q 
continue 

end 
tagcase tentative$read(t, a) 

end 
end 

end lookup 

tag present (v: vtype): retu rn(v) 
tag absent: signal not_found 
end 

find_log = proc (logs: log[summary], a: aid) returns (summary) 
retu rn(logs[a]) 

except when not_found: s: summary : = summary$create() 
logs[a]: = s 

end 
end find_log 

retu rn(s) 

find_item = p roe (items: data, u: uid) returns (tentative) 
t: tentative : = data$1ookup(items, u) 

except when not_found: s: status:= status$make_absent(nil) 
t : = tentative$create(s) 
data$insert(items, u, t) 

end 
re tu rn(t) 
end find_item 



Figure A·S: (continued) 

find_queue = proc (pending: queues, u: uid) returns (aq) 
q: a-q :,= queues$1ookup(pending, u) 

except when not_fm~nd: q : = aq$create() 
queues$insert(pending, u, q) 

end 
return(q) 
end find_queue 

commit = proc (a: aid, m: rep) signals (failure(string) 
seize mdo 

mv: components:= m.value 
as: summary : = mv.logs[a] 

except when not_found: return end 
log[sumrnary]$delete(mv.logs, a) 
is_top: bool : = aid$top(a) 
for u: uid in summary$elernents(as) do 

t: tentative:= find_itern(mv.iterns, u) 
tentative$commit(t, a) 
q: aq : = queues$1ookup(mv.pending, u) 

except when not_found: if is_top cand -tentative$busy(t) 
cand status$is_absent(tentative$read(t, a)) 

then data$delete(rnv.items, u) 
end 

continue 
end 

aq$notify{q, a) 
if is_top cand aq$ernpty{q) 

end 

then queues$delete{mv.pending, u) 

end 

if -tentative$busy{t) cand status$is_absent(tentative$read(t, a)) 
then data$delete(mv.items, u) 
end 

ps: summary:= find_log(rnv.logs, aid$parent{a)) 
except when top: return 

end 
summary$append{ps, as) 
end 

end commit 

135 



136 

Figure A·5: {continued) 

abort = proc (a: aid, m: rep) signals (failure{string) 
seize m do 

mv: components:= m.value 
as: summary:= mv.logs[a] 

except when not_found: return end 
log[sumrnary]$delete(mv.logs, a) 
for u: uid in summary$elements(as) do 

t: tentative:= find_item(mv.items, u) 
tentative$abort(t, a) 
q: aq : = queues$1ookup(mv.pending, u) 

except when not_found: if -tentative$busy(t) 
cand status$is_absent(tentative$read(t, a)) 

then data$delete(mv.items, u) 
end 

continue 
end 

aq$wake(q) 
if aq$empty(q) 

end 

then queues$delete(mv.pending, u) 

end 

if -tentative$busy(t) cand status$is_absent(tentative$read(t, a)) 
then data$delete(mv.items, u) 
end 

end 
end abort 

end map 



137 

version (if any) to its parent. It then unblocks pending operations on the uid that were invoked 

by activities to which the committing activity is now visible. Finally, if the versions or the 

queue for a uid are no longer needed, they are deleted from the representation of the map. 

After processing each uid. the commit routine adds the summary information for the activity 

to that for its parent. 

The abort routine is similar: For each uid touched by the activity, it releases the activity's 

locks and discards its versions, unblocks all pending operations for the same uid, and then 

deletes versions and queues that are no longer needed. 

The process scheduling in this implementation is safe in the sense that all asleep pending 

operations that can proceed will be changed to waiting, and eventually unblocked, when an 

activity completes. However, some pending operations that cannot proceed might also be 

unblocked. For example, suppose that an activity invokes the insert operation for a uid, and 

the operation is forced to block because several other activities have read locks on the uid. 

When one of the readers becomes visible to the blocked activity, the pending operation will be 

unblocked. However, it can not yet proceed, since there are still conflicting readers. 

Similarly, if several activities are blocked waiting to get a write lock on a uid, they will all be 

unblocked at the same time, but only one of them will obtain the lock and proceed. 

The commit and abort routines delete the versions for a uid only if no processes are blocked 

on the uid's queue. This permits the implementations of insert, delete, and lookup to find the 

versions for a uid only once, before entering the loop; if one of these operations blocks, the 

uid will remain bound to the same versions object at least until the operation unblocks. 

A.3 Explicit Implementation of the Bank_account Type 

In this section we present an explicit implementation of the bank_account type. The serial 

specification of a bank account object was given in Figure 5-2; the corresponding informal 

specification of the bank account type appears in Figure A-6. (The signal neg_arg appears in 

the informal specification and not in the original serial specification because the arguments to 

the deposit and withdraw operations in the informal specification are integers rather than 

natural numbers.) 

The implementation appears in Figure A·8. It permits significantly more concurrency than 

would be permitted by a locking implementation; for example, it permits activities to withdraw 

money concurrently from an account as long as the account contains sufficient money to 

cover all the withdrawals. (Cf. Section 5.4.2.) The implementations of the deposit and 

withdraw operations are similar to the implementations of enq and deq in the semiqueue 

implementation presented in Section 7.2. Deposits are handled using intentions lists, while 



138 

data type bank_account is create. deposit, withdraw, balance 

% A bank account always has a non-negative balance. The type is dynamic atomic. 

create = p roe () returns (bank_account) 
% Returns a new bank account with a balance of 0. 

deposit = proc (b: bank_account. amt: int) signals (neg_arg) 
% Adds amt to b if amt~ O; otherwise signals neg_arg. 

withdraw = proc (b; bank_account amt: int) signals (insufficient_funds, neg_arg) 
% If amt< 0 then signals neg_arg; otherwise if amt> b then signals insufticient_funds; 

% otherwise subtracts amt from b. 

balance = proc (b: bank_account) returns (int) 
% Returns the current balance in b. 

Figure A-6: Informal specification of the data type bank_account. 

withdrawals that terminate normally are handled using undo logs. Withdrawals that signal 

and balance operations are handled separately. Not all concurrency permitted by on-line 

dynamic atomicity is permitted by the implementation; for example, withdrawals that signal 

cannot be executed concurrently with withdrawals that succeed. This additional concurrency 

could be permitted at the expense of a more complicated and less efficient implementation. 

The implementation uses the data type crowd; an informal specification of crowds appears in 

Figure A-7. The representation of a bank account is enclosed in a mutex object, and consists 

of five pieces: committed, which represents the money known to be in the account (it has 

been deposited by activities that have committed to the top level, and it has not yet been 

withdrawn); changes, which is a collection of summary information about the operations 

executed by active activities; reads, which records the active activities that have read the 

account (i.e., executed withdraw operations that signalled or executed balance operations); 

writes, which records the active activities that have written the account (i.e., executed 

withdraw operations that succeeded or executed deposit operations); and pending, which is 

used for blocking all pending operations on the account. 

The summary for an activity consists of two parts: credit, which represents the money 

deposited by the activity (or its committed descendants) and not subsequently withdrawn; and 

debit, which represents the money withdrawn by the activity (or its committed descendants), 

and contains sufficient information to be able to "undo" the withdraw operations if the activity 

aborts. 

Operations that read the account exclude operations that write it, and vice versa, but readers 

can run concurrently with each other, as can writers. The only restriction is that a withdrawal 

operation can be executed only when the account is guaranteed to contain sufficient funds, 

regardless .of withdrawals executed by concurrent activities. 



data type crowd is create. add, conflicts, empty. commit, abort 

% A crowd is a set of activity ids. 

create = proc ()returns (crowd) 
% Returns a new, empty crowd. 

add = proc (c: crowd, a: aid) 
% Adds a to c. 

conflicts= proc (c: crowd, a: aid) returns (bool) 
% Returns true if and only if a non-ancestor of a is a member of c. 

empty= 'proc (c: crowd) returns (bool) 
% Returns true if and only if c is empty. 

commit = proc (c: crowd, a: aid) 
% If a is a member of c, removes a from c and adds a's parent (if any) to c. 

abort = proc (c: crowd, a: aid) 
% Removes a from c. 

Figure A· 7: Informal specification of the data type crowd. 

139 

The internal procedure find_lower _bound is used to obtain a lower bound on the amount of 

money available to an activity. It adds the balances in the intentions list for each ancestor of 

the activity to the committed balance; since money required to cover withdrawals executed by 

other activities has been removed from the intentions lists, the amount computed by 

find_lower_bound is available to cover a withdrawal by the specified activity. The value 

returned by find_lower _bound equals the activity's view when there are no concurrent writers. 

The implementation of deposit works as follows: First it checks for conflicting read 

operations. If there is a conflict, it blocks and tries again when one of the conflicting activities 

has completed. Otherwise, the invoking activity is added to the set of writers, the deposited 

amount is added to the activity's intentions list (using the internal procedure credit), the 

activity and the object are registered, and the operation returns. The money deposited by an 

activity will only become visible to the activity's siblings when the activity commits; if the 

activity aborts the record of the deposit will be discarded. 

The implementation of withdraw is more complex. First, it uses find_lower_bound to compute 

a lower bound on the money available to the invoking activity. There are then three cases. If 

the amount to be withdrawn is greater than the lower bound, and there are no concurrent 

writers, then the lower bound equals the activity's view and the account has insufficient funds. 

In this case the operations records the activity as a reader, registers the activity and the 

object, and signals insufficient_funds. If the amount to be withdrawn is less than the lower 

bound, then the account can cover the withdrawal: If there are no concurrent readers then 



140 

Figure A·8: Explicit implementation of the data type bank_account. 

bank_account = cluster is create, deposit, withdraw, balance 

source = oneof[committed: null, 
active: aid] 

undo = struct[debit: int, 
taken_from: source] 

udlist = array[undo] 

summary = record[credit: int, 
debit: udlist] 

aq = action_queue 

components = record[commilted: int, 
changes: log[summary], 
reads, writes: crowd, 
pending: aq] 

rep = mutex[components] 

% rep invariant: 
% rep.value.committed~ O; for each activity a, and for each undo record u in 
% rep.value.logs[a].debit, either tag(u.taken_from) = committed, or value(u.taken_from) 
% is mapped by rep.value.changes; if a E rep.value.writes, then a is mapped 
% by rep.value.changes 

create = proc () returns (cvt} 
return( rep$create(components${ committed: 0, 

end create 

changes: log[summary]$create(), 
reads: crowd$create(), 
writes: crowd$create(), 
pending: aq$create()})) 



Figure A·B: (continued) 

% external spec: deposit = proc (b: cvt, amt: int) signals (neg_arg) 
deposit·= proc (a: aid, b: cvt, amt: int) signals (neg_arg) 

if amt< 0 then signal neg~arg end 
seize b do 

while true do 
if crowd$conflicts(b.value.reads, a) 

then block a on b.value.pending 
continue 

else crowd$add(b.value.writes, a) 
credit(b. value.changes, a, amt) 
register(a, b) 

end 
end 

return 

end 
end deposit 

% external spec: withdraw = proc (b: cvt, amt: int) signals (insufficient_funds, neg_arg) 
withdraw = proc (a: aid, b: cvt, amt: int) signals (insufficient_funds, neg_arg) 

if amt< O then signal neg_arg end 
seize bdo 

bv: components : = b. value 
while true do 

end 

lb: int:= find_lower_bound(bv, a) 
if amt> lb cand -crowd$conflicts(bv.writes, a) 

then crowd$add(bv.reads, a) 
register(a, b) 
signal insufficient_funds 

elseif amt ~ lb cand -crowd$conflicts(bv.reads, a) 

end 

then crowd$add(bv.writes, a) 
debit(bv, a, amt) 
register(a, b) 
return 

else block a on bv.pending 
continue 

end 

end withdraw 

141 



142 

Figure A·B: (continued) 

% external spec: balance = proc (b: cvt) returns (int) 
balance = proc (a: aid, b: cvt) returns (int) 

seize bdo 
while true do 

if crowd$conflicts(b. value. writes, a) 
then block a on b.value.pending 

continue 

end 
end 

end balance 

else crowd$add(b.value.reads, a) 
register{a, b) 
retu rn(find_lower_bound(b.value, a)) 

end 

% Returns a lower bound on the amount of money available to a; the value returned equals 
% a's view it no concurrent activity has deposited or withdrawn money. 
find_lower _bound = proc {c: components, a: aid) returns (int) 

lb: int : = c.committed 
for anc: aid, s: summary in log[summary]$ancestors(c.changes, a) do 

lb : = lb + s.credit 
end 

return{lb) 
end find_lower _bound 

find_log = proc {logs: log[summary), a: aid) returns (summary) 
retu rn(logs[a)) 

except when not_found: s: summary:= summary${ credit: 0, debit: udlist$new()} 
logs[a): = s 

end 
end find_log 

return{s) 



Figure A-8: (continued) 

commit = proc (a: aid, b: rep) signals (failure(string)) 
seize b do 

bv: components:= b."'.alue 
crowd$commit(bv.reads, a) 
crowd$commit(bv.writes, a) 
aq$notify(bv.pending, a) 
as: summary:= bv.changes[a] 

except when not_found: return end 
log[summary]$delete(bv.changes, a) 

. ps: summary : = find_log(bv.changes, aid$parent(a)) 
except when top: bv.committed : = bv.committed + as.credit 

return 
end 

ps.credit : = ps.credit + as.credit 
merge_debits(aid$parent(a), ps.debit, as.debit) 
end 

end commit 

abort = proc (a: aid, b: rep) signals (failure(string)) 
seize bdo 

bv: components:= b.value 
crowd$abort(bv.reads, a) 
crowd$abort(bv.writes, a) 
aq$wake(bv .pending) 
as: summary:= bv.changes[a] 

except when not_found: return end 
log[summary]$delete(bv.changes, a) 
for u: undo in udlist$elements(as.debit) do 

tagcase u.taken_from 

end 
end 

end abort 

tag committed: bv.committed: = bv.committed + u.debit 
tag active(ancestor: aid): anc_s: summary:= find_log(bv.changes, ancestor) 

anc_s.credit : = anc_s.credit + u.debit 
end 

credit = proc (effects: log[summary], a: aid, amt: int) 
s: summary : = find_log(effects, a) 
s.credit: = s.credit + amt 
end credit 

143 



144 

Figure A·B: (continued) 

debit = proc (c: components, a: aid, amt: int) 
s: summary:= find_log(c.changes, a) 
for anc: aid, anc_s: summary in logJsummary]$1eaf2root(c.changes, a) do 

if anc_s.credit > 0 then 
if anc - = a then 

if amt> anc_s.credit 
then 

end 

ud list$add h(s.debit, 
undo${ debit: anc_s.credit, taken_from: source$make_active(anc)}) 

else 
udlist$addh{s.debit, 

undo${ debit: amt, taken_from: source$make_active{anc)}) 
end 

if amt > anc_s.credit 

end 

then amt : = amt - anc_s.credit 
anc_s.credit : = O 

else anc_s.credit : = anc_s.credit - amt 
amt:= 0 

end 

if amt = 0 then return end 
end 

if amt > O then 
c.committed : = c.committed - amt 
udlist$addh(s.debit, undo${debit: amt, taken_from: source$make_committed: nil}) 
end 

end debit 

% appends undos in from onto to, ignoring undos with taken_from = parent. 
merge_debits = proc (parent: aid, to: udlist, from: udlist) 

for u: undo in udlist$elements{from) do 
tagcase u.taken_from 

tag committed: 
tag active(ancestor: aid): if ancestor = parent then continue end 
end 

udlist$addh{to, u) 
end 

end merge_debits 

end bank_account 



145 

the activity is recorded as a writer; the specified amount is removed from the committed 

balance and the intentions lists of the activity's ancestors, and recorded in the undo log 

(using the internal procedure debit), with sufficient information to be able to put the money 

back in the intentions lists from which it was removed; the activity and the object are 

registered; and the operatic~ returns. In all other cases the operation blocks and tries again 

later. 

Debit searches the intentions lists for the activity and its ancestors, removing money from the 

intentions lists and adding appropriate undo records to the activity's undo log so that the 

money can be returned to the proper list if the activity aborts. (It searches from the activity 

toward the root to try to minimize the impact on concurrent activities.) If the activity withdraws 

money that it (or one of its committed descendants) had deposited, the operations cancel (at 

least in part), and no record of the canceling part is kept. If the activity and its ancestors have 

not deposited sufficient money to cover the withdrawal, money is removed from the 

committed balance instead. Debit assumes that the lower bound on the funds available to the 

activity is greater than the amount to be withdrawn; otherwise the committed balance would 

become negative, violating the representation invariant. It is easy to see that the call to debit 

in the implementation of withdraw satisfies this precondition. 

The implementation of balance is simple: If there are no conflicting writers, the invoking 

activity is recorded as a reader and registered with the object, and the activity's view is 

returned. Otherwise the operation blocks and tries again later. 

The implementation of commit follows the pattern of the semiqueue implementation 

presented earlier. First, it commits the activity in the crowds of readers and writers, and 

unblocks pending operations that might now be able to proceed. Then, it finds the summaries 

for the activity and its parent, deletes the summary for the activity, and merges its intentions 

lists and undo logs into its parent's. (Undos that cancel with the parent's deposits are 

discarded.) If the activity is a top-level activity, the deposits are added into the committed 

balance, and the entire summary is discarded. 

The abort routine is also similar to the abort routine in the semiqueue implementation. It 

aborts the activity in the crowds, and then unblocks all pending invocations. Next, it retrieves 

the summary for the activity, deletes it, and uses the information in the undo list to return all 

withdrawn money to the" intentions list from which it was taken. 

Withdrawals that signal could be run concurrently with withdrawals that succeed and with 

deposits if sufficient information were maintained to determine an upper bound on the money 

available to an activity. Reuter [Reuter 82] has explored an implementation of a similar type 

(to be used for reserving seats on flights in an airline reservation system) that exploits this 

idea. However, the implementation is quite subtle, and probably inefficient. 



146 

A.4 Remarks 

The implementation of the bank_account type is interesting for two reasons. First, it illustrates 

how a type th.at permits more concurrency than can be obtained using locking can be 

implemented. Second, we have been unable to construct an implicit implementation of the 

bank_account type that provides a comparable level of concurrency; while it is difficult to 

argue that no such implementation exists, it is clear that such an implementation would be 

quite complex. The problem is partly due to the inability to tell which changes to the 

representation were made by which activity (because the representation cannot be organized 

to group data by aids), and partly due to the asynchronous processing of commits and aborts 

by the system. In contrast to the implicit approach, the explicit approach permits a reasonably 

systematic approach to building implementations like the bank_account implementation in 

FigureA-8. 

It is also instructive to compare the two implementations of the map type. First, the explicit 

implementation is much more efficient in scheduling operations. While the implicit 

implementation uses busy-waiting, the explici_t implementation uses separate queues for each 

uid for which an operation is blocked, and only unblocks a pending operation when an activity 

that used the uid of interest to the operation becomes visible to the activity that invoked the 

operation. A queue is actually stored for a uid only if an activity that invoked an operation on 

the uid was forced to wait and is still active. 

Second, the explicit implementation does not need a "cleanup" operation to keep the 

representation from growing too large. Instead, versions for a uid can be discarded when an 

activity completes, precisely at the time that they are no longer needed. The kind of periodic 

"garbage collection" performed by the cleanup operation in the implicit implementation of 

map seems characteristic of implicit implementations. 

Third, in the explicit implementation the programmer keeps track of the uids used by an 

activity. Otherwise, when an activity completed, it would be necessary to commit or abort the 

activity on the versions for all uids; unless the map were quite small, this approach would be 

too inefficient. In the implicit implementation, the system keeps track automatically of the 

built-in atomic objects used by each activity, avoiding having to represent and manipulate this 

information explicitly. 

Finally, it is instructive to compare the sizes of the two implementations. The implicit 

implementation contains 64 lines of code, while the explicit implementation contains 156 lines 

of code. This additional complexity arises from several sources. First, the tagtest statement 

in Argus provides an efficient encoding of the lock tests in the bodies of the loops in the 

insert, delete, and member routines; the explicit implementation requires a total of 12 extra 

lines of code for testing and setting locks. Second, 31 lines of the explicit implementation are 



147 

devoted to managing queues and could be removed if busy-waiting were used instead. 

Third. 13 lines. not counting those in the completion operations, are devoted to keeping track 

of the uids used by each activity. Finally. the completion operations contain 37 lines. not 

counting those needed to manage queues. 



148 



149 

Appendix B 

Index of Definitions 

This appendix contains an index of the terms and notations defined in Chapters 2 through 5. 

abort event 27 read-only activity 54 
aborted(h) 28 read-only operation 54 

acceptable 36 restriction operators ("I") 28 
accepted by 30 serial{h, T) 37 
activity 27 -serial history 35 
atomic 38 serial specification 31 
behavior of system 34 serializable 37 
behavioral specification 32 state machine 30 
commit event 27 static atomic history 51 
commit-order{h) 52 static atomic object 52 
committed(h) 28 strong dynamic atomic 70 
commute 64 termination event 27 
completed(h) 28 timestamp event 55 
complete sequence 29 total invocation 63 
completion 27 undefined (" .L ") 30 
concatenation{"•") 28 update activity 54 
defined in 30 weaker 47 
deterministic invocation 63 well-formed sequence 29,55 
dynamic atomic history 45 
dynamic atomic object 46 
empty sequence ("A") 28 
equivalent 36 
failure-free history 35 
history 29 
hybrid atomic history 56 
hybrid atomic object 57 
initiation event 55 
invocation event 27 
language 30 
local atomicity property 43 
LOCK 66 
non-deterministic invocation 63 
object 27 
observation 28 
on-line dynamic atomic 71 
operation 32 
opseq(h) 35 
optimal 47 
partial function("-+ ") 30 
partial invocation P 63 
perform; 63 
permanent(h) 38 
precedes(h) 44 
prefix -closed 31 


