
Cohesion in Computer Text Generation:
Lexical Substitution

by

Robert Alan Granville

May, 1983

©Massachusetts Institute of Technology 1983

This research was supported (in part) by the Office of Naval Research contract N0014-80-C-0505 and

(in part) by the National Institutes of Health Grant No. l POI LM 03374-04 from the National Library of

Medicine.

l .aboratory for Computer Science

MASSACHUSETTS INSTITUTE OF TFCIJNOLOGY
Cambridge, M;issachusctts 02139

2

Cohesion in Computer Text Generation:
Lexical Substitution

by

Robert Alan Granville

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the
Requirements of Master of Science

Abstract

This report describes Paul, a computer text generation system designed to create cohesive text. The

device used to achieve this cohesion is lexical substitution. Through the use of syntactic and semantic

information, the system is able to determine which type of lexical substitution will provide the necessary

information to generate an understandable reference, while not providing so much information that the

reference is confusing or unnatural.

Specifically, Paul is designed to deterministically choose between pronominalization, superordinate

substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery

for each of the lexical substitutions. and matches them against the strength of potential antecedence of eaeh
element in the text to select the proper substitutions for these elements. There are five classes of potential

antecedence, based on the element's current and previous syntactic roles, semantic case roles, and the cilrrent

focus of the discourse. Through the use of these lexical substitutions, Paul is able to generate a cohesive text

which exhibits the binding of sentences through presupposition dependencies, the marking of old information

from new, and the avoiding of unnecessary and tedious repetitions.

Thesis Supervisors:

Peter Szolovits
Associate Professor of Computer Science

Robert Berwick
Assistant Professor of Computer Science

Keywords: Natural Language, Natural Language Generation, Utterance Realization, Cohesion,

Endophoric Reference, Lexical Substitution, Synonyms, Superordinates, General Nouns, Pronominalization,

Focus, Distance

3

Acknowledgments

I would like to thank everyone who contributed to this work, and everyone who aided, abetted,

encouraged, cajoled, or in any way assisted me during this project:

I would like to personally thank Pete Szolovits and Bob Berwick for their exceptional advice and

encouragement, their invaluable contributions in clearing my thinking processes and improving my writing,

and for reading drafts with incredible speed when time was of the essence.

I owe a huge debt to the Qinical Decision Making Group for providing insights, encouraging me when

I needed it, putting me on the right track every time I strayed, and adding a little humor to the work day.

I would like to remember all my past co-workers over the past few years who have helped me in

thinking about this work and the direction it should take. I especially thank Lance Miller, Amy Zwarico,

Michal Blumenstyk, Mugsy, Lightfingers, Machinegun, Maddog, and the whole Heidorn gang.

I feel I owe a special personal debt to George Heidorn for his encouragement, his sacrifice of personal

time for my part, his keen insights and suggestions, and for his tolerance of the Kid's capricious whims.

Without personal friends to give me support and perspective, this thesis and I would not have survived

each other:

I would like to thank the Ashdown Irregulars for their sparkling conversational wit, their channing

dinner companionship, and their always just being there when I needed them. I especially would like to thank

Brian Oki, Richard Sproat, and Monty McGovern for tolerating me when I was silly, and supporting me

when I wasn't

I would like to thank the MIT Community Players for giving me an outlet and constantly reminding me

that the problem set will be there tomorrow, but this flat bas to be built tonight I owe a special debt to Amy

Schrom, Ronni Marshak, and especially Robin Nelson for providing me with wonderful shoulders to cry on

more times than I can remember.

I owe much to Corine Bickley for telling me that everything is going to be all right, and for keeping my

attitude properly adjusted.

4

My dictionary dcfinesj(zith dS "belief without proof. confidence, reliance, loyalty:"

To Karen Jensen, who had faith in me long after I had ceased to, and who wouldn't let me give up on

myself. I cannot express the depth of my debt toward. and the magnitude of my appreciation and affection

for, Karen. If there is anything good in this thesis, it is directly attributable to her, while all shortcomings arc

due to the shortcomings of the author. Karen has been the best of teachers, advisors, coworkers, confidants,

companions, and most importantly, friends.

To my parents, who believe in me and my work without understanding, which is the most profound act

of faith. This, and everything I do, is humbly dedicated to them.

5

Table of Contents

1. Introduction . 10

1.1. Statement of the Problem . 10

1.2. Cohesion . 13

1.3. Lexical Substitution . 14

1.4. The Approach of This Report: Paul . 14

1.5. Outline of the Remaining Chapters. 21

2. Cohesion . 23

2.1. Introduction. 23

2.2. The Goals of Cohesion. 23

2.3. Cohesive Relations . 24

2.4. Cohesion vs. Coherence . 25

2.5. Cohesive [)evices. . . . • • . . • • . . • • • . • 26

2.5.1. Reference. • . • . . . • 26

2.5.2. Substitution . • • . . . • 27

2.S.3. Ellipsis . 28

2.S.4. Conjunction • • • . • . . . • • • . . • • • 29

2.5.5. Lexical Substitution • • • . • • . • • 30

3. Lexical Substitution. • . • 31

3.1. Reiteration • . . . • • . . . • 31

3.2. Synonyms • • 32

3.3. Superordinates . • 34

3.4. General Nouns • . • • . • 37

3.5. Personal Pronouns • • • • 38

6

3.6. Definite Noun Phrases . 38

3.7. Controlling Lexical Substitution . 39

3.7.l. Strength of Antecedence Recovery. 39

3.7.2. Strength of Potential Antecedence. • • 41

3.7.3. Focus . 43

3.7.4. Distance . • • 43

3.7.5. Endophoric Limitations. 44

3.8. Comparison with Another System . 45

4.NLP . 48

4.1. Introduction. 48

4.2. NLP Records . • 48

4.3. Augmented Phrase Structure Rules. 49

4.4. Condition Specifications. • . Sl

4.5. Creation Specifications. • . • . . _. 59

4.6. The Complete NLP Rule • • 63

4.7. Named Records. • • . 64

4.8. Cover Attributes . • • • . . • • • 64

4.9. Record I>efinitions. • • • • • 66

4.10. The Generation Algorithm. • • • 66

4.11. The Generation Paradigm . • . • 68

5. An Example • . 77

6. Related Work . • • . . 87

7. Conclusions . • 93

7.1. Contributions of Paul . • 93

7.2. Limitations of Paul. • • 93

7

7.3. Future Research

Appendix I: from Alice s Adl'entures in Wonderland .

Appendix II: Trace of Control Variables ..

Appendix III: Additional Examples

Appendix IY: 13NF for NLP

Appendix Y: NLP program for Paul ..

References

94

95

97

104

106

109

116

8

Table of Figures

3-1: Fragment of a Semantic Hierarchy . 31

3-2: Synonyms for Odor. • . 33

3-3: Example of Uncontrolled Synonym Substitution • . 33

3-4: Classification of Synonyms by Connotation . • 33

3-5: Another Sample Hierarchy . 36

3-6: Story with Uncontrolled Lexical Substitution . 39

3-7: The Five Classes of Potential Antecedence. • 41

3-8: Mapping of Potential Antecedence Oasses to Lexical Substitutions. 42

3-9: Expected Focus Algorithm. 43

3-10: The Sample Story • . 45

3-11: The Simple Pronominalization Rule. •. • • • 45

3-12: Results of Simple Pronominalization Rule • • • • 46

3-13: Paul's Version of Sample Story • • . • . . . • • • . . . • • 46

4-1: Fragment of an Nl.P Program. . • . • . • • • . • . . • • . • • . . • • • 50

4-2: Generated Phrase. Structure Tree • • . • • . • . • • . . . • • . • 50

4-3: Example ofNlP Rule • . . • • . . . • • . • . • . • • • • • • . .• • • • • • • . Sl

4-4: Example ofNLP Rule•..............•... : 63

4-5: The Generation Algorithm • • • . 67

4-6: Cover Attributes for Example . • 69

4-7: NLP Reeords for Example. . . . • . • . . . • 69

4-8: NLP Rules for Example • • . 70

4-9: Trace of Control Stack for Example. • • 72

'' '' ~; .i ,,, , " ' •\ " , , ~· • , , ,,, ~. , •• ,. -~ ·' .. "' ., ,_, •" ...:. r· ~

9

4-10: Created Records for Example Sentence.

4-11: The Generated Tree

5-1: NLP Records for Example Story

5-2: Example Story without Lexical Substitution

5-3: Example Story with Uncontrolled Pronoun Substitution ..

5-4: Example Story with Uncontrolled Superordinate Substitution ..

5-5: The World in which the Example Story Exists

5-6: Expected Focus List

5-7: Control Variables After First Sentence

5-8: Control Variables After Second Sentence

5-9: Control Variables After Third Sentence .

5-10: Control Variables After Fourth Sentence

5-11: Control Variables After Ninth Sentence

73

74

78

78

79

79

80

82

83

83

84

85

85

10

1. Introduction

1.1. Statement of the Problem

The need for computer systems to generate acceptable text in a natural language such as English is

constantly increasing. While computer text generation is an interesting problem in itself, other types of

systems have found a requirement for the ability to communicate in a natural language. This is especially true

for computer systems that attempt to address human factor issues, that is, systems that strive to make

computers easier to use, or more "friendly," especially for people outside the field of computer science. One

obvious way to enhance this "friendliness" is to have the computer communicate in a language that is easy for

the user to understand, her own natural language, rather than in a language that is easy for the machine to

understand, a programming language, that requires an effort on the user's part to learn. If we hope to build

systems that gain general acceptance and widespread usage, we must be willing to incorporate natural

language communication into these systems.

This report describes Paul, a computer text generation system designed to create cohesive text The

device used to achieve this cohesion is lexical substitution. Through the use of syntactic and semantic

information, the system is able to determine which type of lexical substitution will provide the necessary

information to generate an understandable reference, while not providing so much information that the

reference is confusing or unnatural.

Specifically, Paul is designed to deterministically choose between pronominalization, superordinate

substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery

for each of the lexical substitutions, and matches them against the strength of potential antecedence of each

element in the text ·to select the proper substitutions for these elements. There are five classes of potential

antecedence, based on the element's current and previous syntactic roles, semantic case roles, and the current

focus of the discourse. Through the use of these lexical substitutions, Paul is able to generate a cohesive text

which exhibits the binding of sentences through presupposition dependencies, the marking of old information

from new, and the avoidance of unnecessary and tedious repetitions.

In natural language generation, there are at least six criteria that computer output must meet before it

could be considered acceptable.

1. The generated text cannot be canned.

2. The generated text must be based on an arguably correct semantic representation.

3. The generated text must exhibit cohesion.

11

4. The generated text must be comprehensible.

5. 'The generated text must not have erroneous connotations.

6. The generated text must not violate the intended style and mood.

The use of previously prepared strings of text, known as canned text, is possibly the simplest and most

obvious way to have the computer respond in natural language. Having the computer merely display the

appropriate stored text is adequate in many applications, such as in error messages. However, in addition to

being a relatively uninteresting approach, the use of canned messages has severe limitations [30). All possibly

desired messages must be anticipated in advance, which is not always (indeed not usually) a feasible feat.

While the use of slot filling, strategically placing variables in the text (such as the name and ad~ of the

recipient of a form letter), allows an additional freedom, the general outline as well as the bulk of the text is

still dictated in advance, and therefore fixed. Each such invariant text must be composed by humans in

advance and permanently stored on the system. The occurrence of a new situation, or even just a new and

unexpected variation on an anticipated situation, would require the creation of an entirely new text

Furthermore, the computer cannot aid in any meaningful way in the creation of these texts, and the complete

lack of generality in this method prevents an implementor from gaining any benefits from economy of scale.

Having written and entered a score of error messages will not ease or affect the tabor of writing and entering

an additional score.

The current alternative to canned text is to translate knowledge structures into a natural language. The

temptation here is to follow the expedient of developing knowledge structures and translation rules that are

adequate for a chosen domain. While proper use of constraining one's domain is beneficial, and with the

current state of the art probably necessary, taking undue advantage of the constraints and avoiding generality

for the sake of convenience will produce systems that apply only to their specific domains, and do nothing to

further knowledge of natural language systems in general. Rather than being merely adequate, systems

should be based on knowledge structures and translating rules that are general enough to adequately produce

text in several domains. In order to be able to achieve this goal, systems must have knowledge structures and

translating rules that are linguistically justified [30]. The generated text must be based on an arguably correct

semantic representation.

In order for a string of sentences to be considered a text in natural language, those sentences must

exhibit cohesion, an interdependence between the sentences created by causing the interpretation of some

elements to be dependent on other elements [11].
Saa 1s upset. Ht can't go to Gertrude's party.

The interpretation of he in the second sentence is dependent on Sam in the first

12

Text without cohesion has the stilted and awkward feel of an elementary school primer, and certainly

doesn't sound intelligent. Such text would be unacceptable for most systems today that require a natural

language capability. The generated text must exhibit cohesion.

While cohesion is necessary for acceptable text generation, it is not sufficient It is possible through the

injudicious use of certain cohesive devices (such as pronouns) to render a text completely unintelligible. If

elements appear whose interpretations depend on other elements that don't appear, either because the

program mistakenly neglected to put these elements in, or worse yet, replaced them with additional cohesive

devices, the resulting text will be ludicrous and serve no useful purpose. (The classic example of carrying this

problem to an extreme is the verse "evidence" read by the White Rabbit in Chapter XII of Lewis Carroll's

Alice's Adventures in Wonder/an}.) A computer generated text that no one can understand is simply not a

text. The generated text must be comprehensible.

Additionally, if the program has an option in word selection from its vocabulary, care must be taken in

this selection process. In addition to meaning, most words in any natural language have connotations and

implications associated with them. For instance, consider the synonyms one would find in a standard

thesaurus for the word "smell" The synonyms listed could be of a favorable nature, such as "emanation,"

"fragrance," or "aroma"; they could be of a neutral sense, as in "odor," "smell," or "scent"; or they could

express distaste, as with "stench," "stink," or "foulness." All these words should be achievable from the

structure representing the concept SMELL, but clearly they are not interchangeable. The program must have

some means of selecting words with the desired implications. or at least avoiding words that have blatantly

wrong implications. The generated text must not have erroneous connotations.

In the same vein as connotation, words have senses of style and mood that must be considered. Certain

vernacular phrases, terms of endearment, and other ways of expressing familiarity would be inappropriate in a

medical diagnosis or a formal business letter, but they would not only be acceptable but expected in a close

personal communication. A letter to a good, steady customer who has apparently forgotten a small bill should

not have the same tone as a letter to a person who is considerably behind in her accounts and has ignored

several communications to that effect Vocabulary selection and grammatical constructions can have a large

impact on the mood and Style the text is going to have, and this impact needs to be taken into account The

generated text must not violate the intended style and mood.

1nie text ofthis evidence appears $an appendix.

---------....-----------

13

1.2. Cohesion.

A set of sentences must exhibit cohesion to be considered a wcll-fonned text. There are several

necessary functions that are provided by this cohesion. The first one, already mentioned briefly in the

previous section, is that without cohesion a text is awkward and appears unintelligent. An example might help

demonstrate this.

Tl.1: John went to the store.
John bought a kite.
John went home.

The sentences of Tl.1 appear to be isolated. As speakers of English, we want relationships between the

sentences, but there is nothing in Tl.1 to make these relationships clear. The average reader would be

unhappy calling Tl.1 wcll-fonned text.

However, this is not the only effect cohesion, or its lack, has on text. The speaker2 wants her thoughts

understood, and the listener wants to understand the thoughts being conveyed. Cohesive devices can help

make this task easier by distinguishing old infonnation from new (15, 16]. Consider the following example,

which is Tl.1 with a simple modification.

· T1.2 A boy went to the store.
A boy bought a kite.
A boy went home.

Tl.2 is even more objectionable to the average reader than was Tl.1. Not only are the intersentential

relationships not explicit, but the text is ambiguous. Are we referring to one boy who perfonned all the

actions in the text, or three separate boys, one who went to the store, one who bought a kite, and one who

went home? Tl.2 demonstrates that cohesion is more than a device to make text more elegant or pleasing. It is

necessary for marking old infonnation from new, for distinguishing references to items and ideas that have

been already mentioned from those that are being introduced for the first time. Since the speaker's goal in

most discourse is to either elaborate the details of a specific idea or item, or to explain the relationship

between an item or idea known by the speaker to one that is new to the speaker (15, 17, 16], this ability to

distinguish new from old is essential. Obviously, a computer system that generates text must also be able to

perform cohesion in order to generate understandable text

20r writer. For the larger part, we will not distinguish between written and oral text in this section.

14

1.3. Lexical Substitution

The cohesive devices that will be discussed in this report are collectively known as lexical substitution

[11). Lexical substitution includes general noun substitution, the replacement of a specific reference to an

entity with one of the so-called general nouns [11) (such as man, woman, boy, girl for humans, creature, beast

for animals, mailer, affair for inanimate abstracts), synonymous substitution, the use of synonyms, and

superordinate substitution, the replacement of specific references with words with a more general meaning (i.e.

"vehicle" as a replacement for "car"). Pronominalization, the use of pronouns, is treated as a special form of

lexical substitution, and is included in this report. Finally, definite noun phrases, using the definite article

"the" as opposed to the indefinite article "a," can be used as a last resort when the four lexical substitutions

listed above cannot be applied.

Particularly in superordinate substitution, the danger exists that the word selected could have more than

one referent in the text. For example, if writing about a Volvo and a Ford. a reference to "the car" is

ambiguous. One way to handle this problem is by disambiguating the superordinate selection as much as is

necessary, but no more than is necessary [9). If we were writing about a green Volvo and a red Ford. while

"the car" would be unacceptably ambiguous, "the green car" or "the foreign-made car" would be clear.

However, "the green foreign-made car" would be blocked because it gives more information than is necessary

to disambiguate the reference.

Since the vocabulary hierarchy is semantically based. synonym substitution is fairly straightforward.

Care must be shown, though, in order that erroneous connotations are not created, nor style and mood

violated. Rather than simply having a list of words that express a concept and selecting from that list, the

words must be partitioned into distinct (and possibly disjoint) sets based on their connotations. Furthermore,

each distinct set must be further partitioned by the style and mood effects the individual words exhibit Such

a partitioning yields lists of words that are truly synonymous and can be readily substituted in the text without

incorrectly impacting style, mood, or connotative considerations.

1.4. The Approach of This Report: Pfllll

Paul is a natural language generation program initially developed at IBM's Thomas J. Watson Research

Center this past summer as part of the ongoing Epistle project (14, 20]. One of the ultimate goals of the Epistle

project is to generate business letters from a one or two sentence description of the topic, and access to a

knowledge base containing information about the recipient. the nature of the business, and related business

correspondence [14). Paul was designed as a first step to generate text from the appropriate knowledge

structures once these structures have been created The system, written in NLP (13), accepts knowledge

15

structures in the form of NLP records and translates them, through NLP rules, into multiscntential text. Such

a natural language generation system following the six criteria explained above has been achieved by

expanding and refining the Paul system.

All NLP programs manipulate, alter, and create NLP records as the basic primitive data structure. These

records are very similar to frames (36).

The NLP rules that make up the program that translates the records ink> English text are based on

augmented phrase structure grammar [13, 45). Augmented phrase structure rules are very similar to the

concept of phrase structure rules (4) that linguists are familiar with. The chief difference is that specifications

can be placed on the structures being manipulated. Since these specifications are created by the user and can

contain any information desired, the rules need not be strictly syntactic, but can reflect semantic and

pragmatic infonnation as well. A subset of NLP, that which is nece~y for natural language generation, has

been implemented at MIT in MACLISP for Paul.

The emphasis of the Paul system is in research of discourse phenomena, the study of cohesion and its

effects on multisentential texts (11, 38). Text generation can be divided into two distinct subtasks (30, 27, 35).

The first subtask is to create the knowledge structures that will be used, ensuring that these structures are

correctly ordered and contain the desired knowledge. In other words, this subtask is to determine what the

text is to say. This subtask will be called utterance1 planning in this paper. The second subtask is to take the

created knowledge structures and translate them into the target natural language, taking care that the six

criteria discussed above, especially those concerning style and cohesion and their effects. are met In ~er

words, this subtask is to detennine how to say it This subtask will be called utterance realization in this paper.

Paul is an utterance realization system.

By the very nature of the fact that Paul translates knowledge structures into English, the system does not

make use of canned text in any form. Therefore, the first criterion that the generated text not be canned is met

by Paul.

For a natural language generation system to be based on an arguably correct representation, its

knowledge structures must be linguistically motivated. In Paul, knowledge is represented in NLP records

through the use of a case frame [6] formalism, where each case corresponds to an NLP record attribute.

Furthermore, records are used to set up a semantic hierarchy of vocabulary. Words are currently arranged in a

superset hierarchy, similar to AKO links (46]. The refinement of Paul has a fairly extensive overhaul of this

3By utterance we again mean both spoken and written natural language production, rather than that restricted to oral

16

hierarchy. RatheLthan having words as the main entries in the vocabulary data base, canceptual or primitive

structures [39, 25) ·contain the semantic information necessary for initial selection of vocabulary. Separate

word entries contain morphological information, such as irregular plural or past tense formations. By keeping

conceptual information separate and distinct from morphological knowledge, two major advantages are

gained. First, the program is free to make vocabulary selections to express the desired concepts, rather than

have these selections made explicitly for the program. Second, by having morphological information separate,

generalities can be captured that otherwise might be missed. As an example, consider the word "have."

"Have" has at least three very distinct meanings: as an auxiliary verb ("I have finished."), as a verb meaning to

possess ("I have it."), and as a verb meaning to cause someone to do something ("I have a maid come in twice

a week."). Each distinct meaning of "have" should have its own entry in the semantic hierarchy. However,

the word "have" has only one conjugation, regardless of its current semantic use. This irregular conjugation

must be made explicitly known to an English language generation system. If a morphological entry for "have"

did not exist distinct from the semantic entries, the information would have to be repeated for each semantic

entry. Having a separate entry captures the necessary morphological generality.

Deciding when lexical substitution would be proper, and which of the several devices should be used is

a difficult task, although controlling such a choice is a very important requirement for the use of any cohesive

device. Abusing the text by overusing cohesive devices will yield output suitable only for humorous purposes.

Intelligibility must be preserved. Furthermore, consideration must be given to the connotations behind any

words selected to create cohesion, as well as their effects on the desired style and mood of the text.

The problem in using these cohesive devices is that it is necessary to guarantee that they are

understandable. That is, since these items refer anaphorically[38, ll] to a previously mentioned item. called

the anaphor's antecedent (7, 24L it is required that the anaphor can be unambiguously related back to its

antecedent Otherwise, unintelligible text may be generated.

Investigation into anaphora resolution has been perfonned in the pursuit of natural language

understanding [5, 10, 41]. Many of these works propose using focus or theme[ll] as a basis to. restrict or

predict the eligible candidates for the antecedent of a given anaphor ([41) particularly). Infonnally, focus is

what a sentence is about, that is, the central point of the utterance. In (41L each noun phrase in a sentence is

ranked for its potential as the focus. Then, when an anapbor occurs, the ranked list is tested in order for

syntactic, semantic, and pragmatic acceptance. The first item in the ranked list that passes these criteria is

assumed to be the antecedent for the anaphor, and is confinned as the focus.

Focus was also used rather successfu_lly in generation, notably by McKeown (35). Her TEXT system,

designed to address problems in utterance planning, uses focus to restrict the system's options in what should

17

be said next. Foctis is used to eliminate choices that have no.bearing on the current focus of the discourJe, and

furthermore, focus is used and shifted to determine which of the various relevant items will actually be

generated.

Unfortunately, a theory of anaphora generation involving only focus is inadequate. While a sentence

has only one focus, every entity referred to within a sentence must be somehow marked as old information in

later sentences, not just the focus of the sentence. Consider the following example:

Tl.3 1.
2a.
2b.
2c.

John sent a letter to Mary.
He wanted to see her.
She was glad to receive it.
He wrote it by hand.

The focus of the sentence in Tl.3· 1 is a letter, as it is the object receiving the action of being written. A lexical

substitution theory which allows replacement of foci only would allow only the noun phrase a letter to be

pronominalized in a following sentence. But T1.3·2a, Tl.3-2b, and Tl.3-2c are all acceptable sentences to

follow Tl.3·1, even though each has a pronominalization of noun phrases other than the focus ofTl.3-1. In

fact, Tl.3 demonstrates each possible pair of noun phrases pronominalized. Oearly, a theory for lexical

substitution based on such a narrow view of focus is inadequate.

Paul controls lexical substitution through the use of minimal features. Each noun phrase that is a

candidate is identified, and the minimal amount of information that is required to make an understandable

reference is calculated. Paul then determines which of the various forms of lexical substitution (including no

lexical substitution) provides the minimal features to keep the text clear.

Rather than isolating one entity in a sentence and labeling that as the focus eligible for lexical

substitution, all entities mentioned in the sentence are labeled as focal points of the sentence and therefore

subject to lexical substitution. The distinction here is that the data base from which the semantic

representation is created has a good deal more information than is being expressed in the sentence. For

instance, for sentence Tl.3· 1, the data base could conceivably have knowledge about the size of John, his age,

the color of his hair, etc., and of course; the same kinds of information would be stored in the entry for Mary.

However, most of these items were screened out during the utterance planning phase of generation. These

items are not eligible for lexical substitution, and references to them in future sentences must be explicit The

points from previous sentences are eligible for lexical substitution.

The various forms oflexical substitution, however, are not interchangeable, because they offer differing

levels of difficulty in antecedence recovery. Pronouns are the most difficult to recover, because they convey the

least amount of information. The only knowledge explicitly given by a pronoun is number and gender (if

singular). General nouns offer little more except for the general class the antecedent belongs to.

-- -------- ---.------ --

18

Superordinate substitution is fairly explicit, especially with the proper choice .of descriptive adjectives to

disambiguate the, reference. Synonyms are the strongest reference, since they are not true examples of

anaphor, but merely a device to avoid unnecessary and tedious repetition. And of course, since definite noun

phrases are not a fonn of substitution at all, there is no problem of antecedence recovery.

We can control the selection of lexical substitution devices by detennining the minimal features

required to provide an understandable reference, and which lexical substitution will provide these minimal

features. This is done by ranking the focal points of a sentence by their strength of potential antecedence. This

ranking is based on several factors, including both syntactic and semantic infonnation. These factors are the

point's position in an expected focus list, the number and gender of the item as well as the numbers and

genders of all previously mentioned items, the distance between· the current mentioning of the item and the

last previous reference, the syntactic role the item played in the last reference as well as its current syntactic

role, and whether an item is a part of a previously mentioned item or a member of a previously mentioned set

These factors allow us to identify the various classes of strength of potential antecedence.

Paul identifies five classes of potential antecedence strength. These classes are:

Qassl:

aassn:

aassm:

QassIV:

Class V:

I. The sole referent of a given gender and number (singular or plural) last mentioned
within an acceptable distance, OR

2. The focus or the head of the expected focus list for the previous sentence.

The last referent of a given gender and number last mentioned within an acceptable
distance.

A focal point that filled the same syntactic role in the previous sentence.

1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned
within an acceptable distance.

A referent that is known to be a part of a previously mentioned item.

The current focus and the expected focus list can be found by using the algorithm developed and

reported by Sidner in [41). That report specifies a focus algorithm in detail (this algorithm appears in Figure
'

3-9 ahead), and Paul uses it to find the expected focus. The algorithm calls for the ordering of the various

noun phrases in a sentence by their syntactic and semantic roles. as well as the order in which they appear in

the sentence. As these semantic and syntactic roles are detennined, Paul createS and modifies the expected

focus list as the sentence is being generated.

19

Distance is-the number of clauses between the current one and the one which contains the most recent

reference to a specific item. To see why this is important, consider the following example.

Tl.4 1. John sent a letter to Mary.
2. Fred found the letter and read it.
3. He told George about it.
4. George gave it to Pete.
5. Pete hid it.
6. She never got it.

The reader identifies that the subject she in Tl.4-6 is Mary, after a moment's thought But she has to refer to a

female, and in all of Tl.4 the only female mentioned is Mary. Why, then, can't the reader immediately

associate this reference with its antecedent? The answer is distance. There are five clauses between sentences

Tl.4·1 and Tl.4-6. With so many referents introduced between the anaphor she and its antecedent Mary, the

reader loses track, and cannot make the immediate connection. While the reader is able to eventually trace

down the reference in this example, it might not be always possible since 20 or 200 or even 2000 clauses could

be between the anaphor and its antecedent.

Paul arbitrarily decides that a distance of two clauses is the maximum acceptable distance for natural

anaphor recovery. This is enforced by only keeping the relevant information about the focal points of the last

two clauses. The relevant information includes the gender and number of each focal point, as well as their

syntactic and semantic roles in the clauses they appear in.

Once the focal points have been classified as to their strength of potential antecedence, it is relatively

easy to determine which form of lexical substitution would be acceptable, based on these forms' strength of

antecedence recovery. The definite noun phrase has the strongest, because it is not really a lexical substitution.

It does, however mark the item being referred to as old information, and therefore provides a useful function

when no form oflexical substitution is appropriate.

Synonym substitution is also relatively safe in that it too does not generate true anaphora. However, it

doesn't by itself distinguish new information from old. Of the two previously discussed tasks for cohesion,

that of avoiding needless repetition, and that of marking new information from old, synonym substitution is

capable of obtaining only the first goal. Therefore, it is unsuitable as a means in creating anaphora to

distinguish previously mentioned items from new ones, and Paul doesn't include synonyms in its options for

lexical substitution.

That is not to say that synonyms have no place in a text generation system, nor that Paul ignores them

completely. Synonyms that are members of the same partitioned set are interchangeable. This is not true only

in unusual circumstances where there is a need to use an exact word in the text The decision that a specific

word must be used is one of utterance planning, not of utterance realization. If an item is marked as having to

20

be expressed by, a specific word, then Paul is capable Df generating the text using that specific word.

Otherwise, Paul randomly selects from the set of equivalent synonymS; thereby achieving variation in the text

without fear of incorrectly affecting the intended style and mood.

The ~ext easiest type of lexical substitution to recover is the superordinate substitution. This is true

because not all the specific information about the antecedent is lost. Furthermore, because Paul insures that

all superordinate substitutions will be made unambiguous by adding sufficient modifiers to make the

reference unique, recovery from a superordinate substitution is not difficult at alt

Pronouns and general class nouns are the most difficult to recover. Because they provide so little

information, they could in general refer to several possible antecedents. The only information directly

obtainable from them is gender and number. (And with pronounS; even gender is lost in English if the

pronoun is plural.) These forms oflexical substitution have the weakest strength of recovery.

There is an additional problem with general class noun substitution. General class nouns tend to be

very informal, extremely personal and familiar, and often derisive and abusive. Obviously, using general class

nouns would have a severe impact on the generated text Controlling the overwhelming effects general class

nouns would have on the style and mood of text is beyond the scope of this work. Therefore, while Paul can

generate general class noun substitutions, unless a text is specifically marked as informal and familiar, a

pronoun substitution will be selected.

After a focal point has been found and its class identified, Paul has make the appropriate substitution.

Deciding which lexical devices can be used on which classes of focal points under which circumstances is a

difficult problem. There are issues in addition to achieving understandable cohesion. It is always possible to

choose a lexical substitution that has a stronger antecedence recovery than is required, and in fact this is

sometimes done by natural speakers. The decision of how to map the various classes of focal points to the

lexical substitutions is affected by the desired style of the text to be generated. As the style can change within

a text to emphasize something or make a specific idea clearer, this mapping decision must be modified.

Unfortunately, such an investigation into changing style and its effects on the selection of lexical substitution

is beyond the scope of this work.

Paul makes an arbitrary selection of style in choosing lexical substitution devices. Oass I focal points are

replaced by pronouns, superordinate substitution is performed on Class II points, and those of Oass IV and V

become definite noun phrases. Under most circumstanceS; Oass III focal points are subject to superordinate

substitution. However, if the previous reference to the item is a Oass I focal point. the Class III instance also

becomes a pronoun. Intuitively, in order to properly match an element with a lexical substitution to replace it,

------------~----~-----------~

21

as the strength ofpotential antecedence of the element becomes weaker, the strength of antecedence recovery

must become stronger.

The significant 4ifference of this work from others is that it addresses the problem of lexical

substitution, and cohesion in general, in a methodical manner. Through the use of syntactic and semantic

infonnation, the strength of potential antecedence of each focal point is made to detennine the minimal

features required to generate an understandable reference. A lexical substitution is then selected, based on its

strength of antecedence recovery, to provide these minimal features. In this way, the dual tasks of cohesion,

the avoiding of repetition and the marking of new infonnation from old, are both achieved

A few words should be said on the limitations of Paul. First, and most obviously, Paul is strictly an

utterance realization system. There is no provision for utterance planning, and as a complete generation

system, Paul cannot stand alone. A second limitation is that Paul perfonns only lexical substitution, which is

not the only cohesive device available in English. Other devices, such as ellipsis and conjunction, have not

been investigated to any depth in this work.

Another limitation is that while Paul addresses some of the issues of intersentential relationships, these

are fairly local issues. There is no attempt to generate text of more than a paragraph at a time. The effects of

cohesion, and lexical substitution as a particular device to achieve cohesion, on paragraph structure, and

similarly the effects of paragraph structure on cohesion and lexical substitution are topics far beyond the

scope of this work. However, work on the paragraph, the level of text generation that Paul addresses, could

not be seriously attempted until isolated sentence generation had been mostly mastered. It is felt that work ~n

larger texts consisting of many paragraphs cannot be feasibly attempted without first addressing the issues of

single paragraph generation.

1.5. Outline of the Remaining Chapters

This chapter has served as a brief introduction to the problem of lexical substitution in computer text

generation. The next chapter wilt provide a detailed discussion of cohesion in English, why it is necessary, and

various methods for achieving it Chapter 3 describes lexical substitution as a cohesive device. In this chapter,

we will see what is gained by the inclusion of lexical substitution, as well as what the limitations of such

devices are. We will also see in detail how Paul incorporates lexical substitution into the generated text.

Chapter 4 gives an introduction to NLP, the language Paul is written in. Here we will also see the general

algorithm used in NLP to generate text The chapter concludes with a discussion of the generation paradigm

used in Paul. (Readers interested only in the linguistic resultS of Paul can skip most of this chapter. Except

for section 4.11, it is not needed to understand the system's underlying theory nor Paul's achievements.)

Chapter 5 presents an example text worked out in detail. The output will also be compared to "incorrect"

~~ ~ .;, ' ., .,

22

texts, that is, texts without any cohesion and with uncontrolled lexical substitution, in order to graphically

illustrate the necessity of controlled lexical substitution. In Chapter 6, current work related to Paul will be

discussed. And finally, Chapter 7 will conclude this work, describing limitations to the system and future areas

of research, as well as presenting the achievements of Paul.

23

2. Cohesion

2.1. Introduction

The purpose of communication is for one person (the speaker or writer) to express her thoughts and

ideas so that another (the listener or reader) can understand them. There are many restrictions placed on the

realization of these thoughts into language so that the listener may understand. The speaker must organize her

ideas and present them in sentences that are complete and grammatical. The sentences must be arranged and

realized in such a way that the thoughts naturally progress for the listener in the way that the speaker

intended.

One of the most important requirements for an utterance is that it seem to be unified, that it form a text.

Utterances that are not so unified, that seem to consist of random sentences, are confusing and are usually

dismissed as not being serious attempts at communication. Unfonunately, there are no codified rules for what

makes an utterance a unified text, the way there is for deciding whether a given sentence is grammatical.

While most people have little trouble identifying whether most passages are text or isolated sentences, there

are many instances where the answer is not clear. Text is a matter of degree, and what one might be willing to

defend as intelligent text, another might insist on branding as a collection of isolated ramblings. However, we

are all sensitive to the presence---or lack---oftext in an utterance; and we require it in our communications.

The theory of text and what distinguishes it from isolated sentences that is used in Paul is that of of

Halliday and Hasan [11). We have already implied that text is not grammatical, and indeed it is not

Sometimes text is seen as a kind of "meta-sentence" following grammatical rules. As a phrase is built from

words along strict rules, as a clause is built from phrases, as a sentence is built from clauses, so is a text built

from sentences. If this were true, there would be rules governing the order of the sentences and how they

appear within the text, but this is not the case [19). The text is not a grammatical or syntactic unit, it is a

semantic unit A text isn't constructed with sentences, it is realized by them. Therefore, the understanding of

text will not be found by investigating their structure.

2.2 The Goals of Cohesion

If this unity found in text is not structural, there must be other factors that provide it One of the items

that enhances this unity is cohesion. Cohesion refers to the linguistic phenomena that estabJish relationships

between sentences, thereby tying them together. There are two major goals that are accomplished through

cohesion that enhance a passage's quality of text The first is the obvious desire to avoid unnecessary

repetition. A section that referred to an item using the same words with no variety would soon become tedious

to read.

24

The other goal is that new inf01mation must be distinguished from old in order that the listener can

fully understand what is being said. One reason this is true is that it is necessary to avoid ambiguity. If the

speaker refers to an item a second time without clearly marking it as an element that has been previously

mentioned, the listener may interpret the reference as one to a completely new item.

T2.1 1. The room has a large window.
2. The room has a window facing east.
3. The room has a window overlooking the

backyard.
4. The room has a window through which

the sun shines in the morning.

How many windows does the room have, four or one? If the room has only one, the speaker ofTI.1 would be

accused of trying to deceive the listener, although strictly speaking. TI.I might be completely true. The

problem is that the listener will want an indication that the windows referred to in the four sentences are

actually all the same window. The way the speaker would provide this indication is through the use of

cohesion.

T2.2 1. The room has a large window.
2. It faces east.
3. It overlooks the backyard.
4. It is located so that the sun

shines through it in the morning.

2.3. Cohesive Relations

Cohesion is created when the interpretation of an element is dependent on the meaning pf another. The

element in question cannot be fully understood until the.element it is dependent on is identified. The first

presupposes[ll] the second in that it requires for its understanding the existence of the second. As .an

example, consider the sentence n.J.

T2.3: So he did.

Of course, by itself out of context, TI.3 is nonsensical. We know someone did something, but we have no idea

who that someone was, or what it was he did. The problem is that the sentence has two items, he and did, that

presuppose the existence of previous information. Without this information, the reader cannot understand the

sentence.

An element of a sentence presupposes the existence of another when its interpretation requires reference

to another. In T2.3, he refers to the someone we hypothesized, and did refers to that person's action. If the

sentence had been preceded by "John wanted to buy a kite," we could easily see that he now refers to John,

and that did refers to buying a kite. Once we can trace these references to their sources. we can correctly

interpret these elements in T2.3.

2S

'lbe very, same devices that create these dependencies for interpretation help distinguish old

in fonnation from new. If the use of a cohesive element presupposes the existence of another reference of the

element for its interpretation, then the listener can be assured that the other reference exists, and that the

element in question can be understood as old infonnation. Therefore, the act of associating sentences through

reference dependencies helps make the text unambiguous, and cohesion can be seen as a very important part

of text

2.4. Cohesion vs. Coherence

We have seen how cohesion creates dependency relationships between sentences, allowing a passage

both to avoid tedious repetitions and to clearly distinguish old information from new, thereby enhancing the

quality of text that the passage exhibits. However, we would be very wrong to assume that this is not all that is

required for a passage to be considered a text. Consider T2.4.

T2.4 1. Fred has a green car.
2. His elephant likes peanuts.
3. The car has whitewalls.

This passage exhibits all the features of cohesion that have been thus far discussed. There are intersentence

dependency relationships; his in T2.4· 2 and the car in T2.4· 3 refer back respectively to Fred and a green car of

sentence T2.4·1. There are no unnecessary repetitions; the passage does not S!IY "Fred's elephant" in T2.4-2

nor "Fred's green car" in T2.4· 3. And old infonnation is clearly marked; we know the person referred to in

T2.4·2 is the same Fred ofT2.4·1, and that the car ofT2.4·3 is the same as the one in T2.4·1. But one would

still be hard pressed to argue that T2.4 is a unified text

The reason this is true is that T2.4 lacks coherence [15, 16, 17). While the interpretations of the sentences

demonstrate the presupposition dependency of cohesion, the meanings of the sentences are unrelated,

eliminating any sense of text. The distinction here is important The interpretation of sentences can be viewed

as understanding sentences individually. Cohesion creates presupposition dependencies so that the

understanding of the individual sentence is dependent on the other sentences of the passage. The meanings of

sentences can be viewed as the understanding of the contents of the sentences as they relate to each other.

Coherence involves such factors as relevancy (the factor T2.4 violates), temporal relationships, and contrasting

or parallel relationships. These factors are used to determine which of the myriad facts available should be

presented in the discourse, which order they should be presented in, and the manner in which they should be

presented These are exactly the problems of utterance planning, while the problems addressed by cohesion,

how to mark old information from new, how to avoid repetitions, and how to link sentences together once

their contents are known, are exactly the problems of utterance realization. Therefore, coherence is the

phenomenon that enhances the quality of text at the utterance planning stage, while cohesion is the

phenomenon that increases the quality of text at the level of utterance realization.

26

2.5. Cohesive Devices

Several kinds of cohesive devices have been identified [11). A brief overview of these might prove

useful. However, it should be remembered that these classes are not strongly partitioned and that a good deal

of overlapping exists. The following discussions will use the classifications defined by [11).

2.5.1 Reference

Perhaps the most general and widely used form of cohesion is that of reference. As we have seen.

cohesion is created when the interpretation of an element is dependent on another. That is, the information

required to understand the current instance of the element must be obtained by retrieving the previous

instance. The class of devices known as reference are distinguished from other classes in that the information

being retrieved is the actual identity of the current element. The cohesion occurs from the continuity of

reference. Reference can be further divided into three types, demonstrative, comparative, and personal.

The class of demonstratives is the demonstrative pronouns, this. that, here, now, today, etc.
Ib...1..l is my favorite song •
.I.11.1.1 is a mean thing to sayl
Hl.!:t is your pen.
t{.Q.! is the time for all good men to come to the
aid of their country •
.I2..d.ll· is the first day if the rest of your life.

the general meaning of demonstratives is one of proximity (temporal proximity in the case of then. now, etc.).

This, these here, now imply a nearness, while that those, there, then imply a distance.

Demonstratives tend to be restricted to situational [38] or exophoric [11) contexts. That is, the

demonstrative refers to an item (or location or time)in the physical world. rather to elements specifically

mentioned in the text

T2.5: When do you want to go?
Now!

The nowofT2.5 refers to the moment when the person was speaking, not the present time in which this report

is being written or read. If this report is put down for a few days and then picked up again, the actual present

time has changed, but the now of TI.5 has remained constant. This is what is meant by exophoric reference.

The opposite is endophoric reference [11), in which the referent is in the text Of course, ultimately all

items refer to the physical world4• The words Fred. his elephant, and his car of TIA all refer to items in (some)

real world. However, they are not exophoric in that one does not have to consider the situation of that world

to understand the references, as one must do for TI.5. Demonstratives can be used in an endophoric role,

4or at least some hypothetical world. The distinction is irrelevant here.

27

although it is less common. Generally, they occur when the demonstrative is used to refer to the discourse

itself.
Ih.1..l is what is meant by endophoric.

Comparative references are those of similarity. Same, identical, equal, and their adverbial forms are

comparatives of identity, similar, additional, and their adverbial forms are of similarity, other, different. el~

are difference, and better, more, less and all comparative adjectives and adverbs are for particular comparison.

Comparatives are used to express the degree of likeness two items have (or lack). Particular comparatives are

used when the similarity with respect to a specific property is to be discussed.
That's the .1.1!111. th1ng l always say.
2.t..b..11:. people 1 i ke 1t .
New York has 11!2.C..t people than Boston.

The last kind of reference is the personal reference. This refers to the class of personal pronouns,

including subjective, he. she, it. they, objective, her. him, it, them, posses&ve, its. his. hers, and reflexive,

herself. itself. himself. themselves. Personal pronouns are used to refer directly to a specific entity, either

endophorically or exophorically. While the other types of reference expressed relationships of proximity or

similarity, personal reference expresses a relationship of identity. Personal pronouns simply refer to the

element in question without additional meaning.

2.5.2. Substitution

Substitution is the replacement of one item in the text with another. The distinction between

substitution and reference is subtle, but important Both reference and substitution require the listener to fh;ld

another instance of the cohesive item in order to interpret it The difference is in where that other instance can

be. With exophoric reference, we must look at the situational context, in the environment of the speaker.

Endophoric reference can be viewed the same way, if we accept the text as a special case of environment (11).

Out of context, a listener cannot tell if a specific usage of reference is exophoric or endophoric. Substitution,

on the other hand, can always be resolved within the text

same.

The three types of substitution are nominal, verbal, and clausal. Nominal substitutes are one, ones. and

These k1tes are expensive, but I want QJll.
The cherry pops are better than the orange AD.II.·
I'll have the .11111.

Nominal substitutions can be made for only the head nouns (38, 23] of noon phrases. Other elements of the

noun phrase, such as modifiers, can be replaced along wilh the head noun, but not without it

T2.6 1. Mary has a blue dress with stripes.
2a. Susie has a red .QB.A.

*2b. Cathy has a red dress with .2!llJ..

•· ,4 '" • " " •• ,. ~· " ., ~· .• •. ~1 "" ~· "" ''~">ti ,

28

Just as nominal substitutes can replace the head nouqs of noun phrases, verbal substitutes can replace

head verbs of verb phrases. The only verbal substitution in English is do.
Who wants this? I .dill
Jane likes Wagner, and Vickie does, too.

As with the restrictions on nominal substitutions, verbal substitutions can be used only on the head verbs of

verb phrases. Modifiers can be replaced only along with the head verb.
•sam likes to walk the dog, and Anastasia likes to .dsl. too.

Finally, clausal substitutions replace whole clauses. In English, the clausal substitutes are so and noL

George will be late. He told me .1.Q..
Will 1t rain? I hope .DA.1.

2.5.3. Ellipsis

Ellipsis. as with the other two types of cohesive devices, creates a presupposition dependency. Rather

than replacing an element with some device which conveys less meaning, ellipsis completely eliminates the

reference. Actually, this could be thought of as a special case of substitution, one in which the zero or null

element is used to replace the specific referent However, separating the classes is useful. Substitution uses a

variable (of sorts) for its replacement. This variable, while having less information than the actual referent,

still contains some, such as number for nominals, and tense for verbs. Ellipsis, on the other hand, by replacing

the referent with nothing, offers nothing in the way of information. The proper referent must be identified in

order to gain any information.

Since ellipsis is a special case of substitution, the two types of ellipsis bear strong parallels to their

counterparts in substitution, and the same restrictions that apply to ~ese substitutions ·apply to ellipsis.

Nominal ellipsis all9ws the deletion of the head noun from a noun phrase.
John went to the store and {John elliattd} bought a kite.
I 11ke this story. It's the beat {story 1ll1pttd} I've
ever read.

It is important to note that while the head noun is ellipted, it still requires agreement with the verb when

in the nominative position.
Phyllis goes to the store and {Phyllu alliptad}
.b.u.u a cake.
Julie and Ton1 go to the store and {JulieandToni e111pted}
11.u.x a cake.

In both of the second clauses of these sentences, the verbs must agree in number with the ellipted subjects.

Verbal ellipsis refers to ellipsis within the verb phrase. Again, the normal restriction is that the head

verb of the phrase must be ellipted, and other elements of the verb phrase can be ellipted only with the head

-- ------ -------------

29

verb.
Who broke this vase? Glenn. {broke this vase ell ipted}

There are also elliptical operators which are used to ellipt a verb. These operators consist of the modals, can,

could, will, would, shall, should, may, might musl
Who will wash the car? I lll.l. {washthecar ellipted}
Have you read this? You should. {readthis ellipted}

Note that do is not included in this modal list This is because do does not behave as a modal when used in

this context [38, 11, 1).

In addition to allowing the head verb to be ellipted, English allows some of the operators of the verb

phrase, modals and auxiliaries specifically, to be ellipted.
John.was laughing and {John ellipted} {was e111pted}
crying at the same time.
Fred should have been singing and Mary {shouldhavebeen al11ptad}
playing the piano when Kirk walked in.

2.5.4. Conjunction

Conjunction is the first kind of cohesive device that breaks away from the pattern of replacing some

element and creating a presupposition dependency. For this reason, conjunctive elements are not cohesive in

themselves, but indirectly. Conjunctions do not replace elements in the text, rather they connect them, and

this is where the dependencies arise. Since a conjunction spans the gap between two elements of a text, its use

creates the dependency that both the element being spanned from and the element being spanned to exist.

It is difficult to cleanly partition the various types of conjunction into distinct sets. Not only are the

differences subtle and the sets overlapping, but many words will fall into one category one time and another

the next, depending on their usage. However, four general categories for conjunction have been identified.

They are additive, adversative, causal, and temporal

Additive conjunctions continue thoughts by explicitly linking them, by explicitly stating such a link

doesn't exist, or by demonstrating possible alternatives. Simple additives· include and, and also. Negative

additives, those which show that a link doesn't exist, consist of negatives like not. nor, etc. Additives can be

used for emphasis, farthennore, in addition, besides. to de-emphasize, incidently, by the way, to express

alternatives, such as or, or else, alternatively, and many other functions.

Adversative conjunctions link elements in some way that is contrary to expectations or desires. These

expectations may come from general knowledge of the real world (so-called "common sense") or from the

specific context of the passage. Some example of adversative conjunctions are yet. though, but for simple

adversatives, actually, on the other hand, in fact for contrastives, and in any case, anyhow. at any rate for

30

dismissals. T2.7 h~ several examples showing how adversative conjunctions violate expectations.

T2.7 1. It was raining. But we went out, anyway.
2. We went out, though it was raining.
3. We usually don't let the rain stop us.

However, this time we stayed in.

TI.7-1 and TI.7·2 demonstrate the violation of "common sense" expectations. We expect people to be

intelligent enough to stay out of the rain. TI.7-3 violates expectations created by the previous two sentences.

After T2.7·1 and TI.7·2, the listener expects the speaker and her group to be people who frequently go out in

the rain. This is confirmed by the first sentence of T2.7·3, but this situational expectation is then violated by

the second sentence ofT2.7·3.

Causal conjunctions express a causal relationship between elements. As with other forms of

conjunction, causal conjunctions serve many functions. They can be used to state a forward flow of causality

with words like so, then. hence, consequently. A reversed causal flow, where the second element is the cause of

the first, is possible, for, because, it follows from being examples. Conditional causality makes use of then, in

that case, in such an event and others.

Finally, temporal conjunctions explicitly state the time sequence of tow elements. This temporal flow

can be sequential, then, next. after that, preceding, previously, before that. or simultaneous, just then, at once,

interrupted, soon, after a time, to name some of the possibilities.

2.S.S. Lexical Substitution

Lexical substitution is the final category of cohesive devices. Lexical substitution achieves cohesion

through the proper selection of vocabulary, rather than through grammatical constructions, as did the

previous cohesive devices. Cohesion is not created through reference, as it was with reference, substitution,

and ellipsis, nor through expressing links, as it was with conjunction, but through repetition. Chapter 3

discusses lexical substitution at length, describing the various kinds oflexical substitution, and how they were

implemented in Paul

----------- r - -- - ----- --- ----~-

31

3. Lexical Substitution

3.1. Reiteration

With the exception of conjunction, all the cohesive devices we have looked at so far involve multiple

references to the same item. Reference, substitution, and ellipsis replace these references with specific

"variables" or "place holders" such as pronouns, or in the case of ellipsis, empty strings. The proper selection

of these variables is based on grammatical rules, and not on semantic information concerning the items the

variables are replacing. For instance, in choosing the correct personal pronoun, all we need to know is the

gender, number, and case of the item to be replaced. We do not need pragmatic information, such as the

general class to which the item in question belongs, what other kinds of things are similar to the item in

question, or how is the item in question used. Nor do we need semantic information, how does the speaker or

the listener feel about this specific item, what overall role is the item playing in the text, what is its current role

in this sentence.

Lexkal substitution, on the other hand, makes use of pragmatic and semantic information to correctly

choose a replacement for the item. That is, rather than grammatically replacing an item to achieve cohesion,

lexical substitution lexically replaces the item [11]. We can call this lexical replacement reiteration (11).

Because the selection within grammatical cohesive devices is dictated by the grammar, there is no

difficult decision process involved. This is unfortunately not true in the case of lexical substitution. The

options are much more varied, and the decision process is consequently more difficult An example will help

demonstrate exactly what these options are.

---··------------------------.,------------------------
*VEHICLE•

*LAND-VEHICLE• *AIR-VEHICLE•

*SHIP• *SUBMARINE* *CAR* *TRUCK• *PLANE*

BOAT SHIP SUBMARINE CAR AUTO TRUCK PLANE

LEAKIN I LENA

Figure 3-1: Fragment of a Semantic Hierarchy

------- ---- - - ---

32

Figure 3-Lshows a fragment of a possible semantic hierarchy. Let us assume that it is desired to make a

reference to the .item BO AT If we want to use lexical substitution, we must find some semantic replacement

for BOAT. Given that our semantic structure is a two-dimensional hierarchical tree, we·have several .options

in how to move through the tree to find a suitable replacement. The first, and obviously easiest, way is to not

move at all, but stay at the node in the tree for BOAT. Another is to move across to a sibling node, in this case

to SHIP. A third is to move to up the hierarchy to a parent node. The immediate parent of BOAT is *SHIP*,

but we are not ruling out moving further up the hierarchy (at least for now), so we can also include

WATER-VEHICLE and *VEHICLE* We can move down the hierarchy to a child node, LEAKIN' LENA

in our example. Finally, we can move out of the hierarchy altogether, using some variable to mark the fact

that we've left the plane.

In fact, these very moves through the hierarchical structure are what lexical substitution performs.

Synonymous substitution moves across the hierarchy to a sibling. Superordinate substitution moves up the

hierarchy to an ancestor. General nouns and personal pronouns move us out of the plane of the hierarchy. And

definite noun phrases keep us at the same node. The next few sections will examine the various types of

lexical substitution, how they move through the hierarchy, and how Paul incorporates them into the

generated text.

3.2. Synonyms

Synonymous substitution is the replacement of an item with another that has the same meaning. This

corresponds to the lateral movement across a hierarchy to a sibling. But not all the siblings in the tree in

Figure 3-1 are synonyms. For instance, *SHIP* and *SUBMARINE* are clearly not synonymous. In Pau~

the semantic hierarchy can be divided into two levels, a conceptual level and a lexical level. Nodes in the

conceptual level represent concepts in the abstract, modeled after the so-called primitive actions {39) and

primitive objects [25]. In Figure 3-1, entries in the conceptual level are marked with asterisks. Entries in the

lexical level represent actual words in English. These are the words that can be used for the output. In Figure

3-1, these are the entries without asterisks. Only siblings of nodes in the lexical level are synonyms. Therefore,

SHIP and BOAT are synonyms, but *SHIP* and *SUBMARINE* are not.

Obtaining siblings in a tree is a fairly straightforward task, and mechanically generating synonyms

presents no problems. However, that does not mean incorporating synonyms into a text generation system is a

trivial task. The difficulty comes in the fact that true synonyms may not actually exist at all. Two words rarely

mean the exact same thing in every context. Even when the literal meanings are identical, words can convey

different moods and connotations. In addition to their meanings, words frequently have associated with them a

sense of "goodness" or "badness," "pleasantness" or "unpleasantness." This is what is meant by connotation.

' '\ "' • • H 0. •~ • •' '" -"' ;,f H r- '' "'' • -~ Ot •

33

As an example, if one were to look up "odor" in a thesaurus, one might find the entries in Figure 3·2. If

a system tried to use these words interchangeably, ignoring their connotations, the sentences of Figure 3· 3

could be erroneously generated as equivalent The problem is that while all the words of Figure 3· 2 have the

same general meaning, they clearly have different connotations. One possible classification of these words by

connotation is shown in Figure 3-4.

Odor
aroma

emanation
foulness
fragrance

odor
scent
smell
stench
stink

Figure 3-2: Synonyms for Odor

The aroma of her perfume filled the room.
The emanation of her perfume filled the room.
The foulness of her perfume filled the room.
The fragrance of her perfume filled the room.
The odor of her perfume filled the room.
The scent of her perfume filled the room.
The smell of her perfume filled the room.
The stench of her perfume filled the room.
The stink of her perfume filled the room.

Figure 3-3: Example of Uncontrolled Synonym Substitution

POSITIVE
aroma
emanation
fragrance

NEGATIVE
foulness
stench
stink

NEUTRAL
odor
scent
smell

Figure 3-4: Classification of Synonyms by Connotation

If the lexical dictionary is arranged in such a way that synonyms are partitioned into distinct sets based

on their connotative qualities, then simple synonym substitution is possible. The decision to use a word with a

particular connotation is one of utterance planning, while the specific choice is one of utterance realization.

Paul perfonns this selection randomly from within the proper set of synonyms. Since one of the purposes of

34

synonym substitution in the first place is to avoid unnecessary repetition, the random selection process uses a

global memory variable to "remember" the words it has already selected. Given a list of words to randomly

choose from, the system will not repeat itself unless every item on the list has already been used. If the entire

list has previously appeared, then every member of the list is "forgotten" by being removed from the global

memory variable, and the whole process is begun again.

While we've been mostly discussing cohesive devices as they apply to substitutions for nouns, most of

these devices can also be used for verbs. This is especially true for synonyms. By setting up a hierarchy of

primitive actions [39), Paul can choose from the correct list of verbs that mean the desired action that have the

required connotations. The same mechanisms used for selecting synonymous noun substitutions are used for

selecting synonymous verb substitutions. In this way, Paul achieves a great deal of variety in the text it

generates without creating sentences with erroneous connotations.

3.3. Superordinates

Superordinate substitution is the replacement of an element with a noun or phrase that is. a more

general term for the element For instance, in Figure 3-1, the superordinate of LEAKIN' LENA is BOAT,

that of BOAT is *SHIP*, and again for *SHIP* the superordinate is *WATER-VEHICLE*. Finally, the

superordinate for *WATER-VEHICLE* is *VEHICLE*. Superordinates can continue for as long as the

hierarchical tree will support

As with synonymous substitution, the mechanics for performing superordinate substitution is fairly

easy. All one needs to do is to create a list of superordinates by tracing up the hierarchical tree, and randomly

choosing from this list However, there are several issues that must be addressed to prevent superordinate

substitution from being ambiguous or making erroneous connotations. The erroneous connotations occur if

the list of superordinates is allowed to extend too long. An example will make this clear. Let us assume that

we have a hierarchy in which there is an entry FRED. The superordinate of FRED is MAN, for MAN

HUMAN, ANIMAL for HUMAN, and THING for ANIMAL Therefore, the superordinate list for FRED is

(MAN HUMAN ANIMAL THING). While referring to Fred as the man seems fine, calling him the human

seems a little strange. And furthermore, using the animal or the thing to refer to Fred is actually insulting.

The reason these superordinates have negative connotations, even though Fred is of course an animal

and a thing, is that there are essential qualities that humans possess that separate us from other animals.

Calling Fred "animal" implies that he lacks these qualities, and is therefore insulting. The reason "human"

sounds strange is that it is the highest entry in the semantic hierarchy that exhibits these qualities. Talking

about "the human" gives one the feeling that there are other creatures in the discourse that are not human.

35

Paul is sensitive to ·the connotations that are possible through superordinate substitution. The essential

quality identified for superordinate substitution is intelligence. The system first sees if the item to be replaced

with a superordinate substitution is intelligent, either directly or by semantic inheritance. If so, a

superordinate list is made only of those entries that have themselves the quality of intelligence, again either

directly or through inheritance. If the item to be replaced doesn '1 have intelligence, the list is allowed to

extend as far as the hierarchical entries will allow. Once the proper list of superordinates is established, Paul

.randomly chooses one, preventing repetition the same way it did in the random selection of synonyms.

The other problem of superordinate substitution is that it may introduce ambiguity. Consider the

semantic hierarchy of Figure 3-S. If we wanted to perform a superordinate substitution for POGO, we would

have the superordinate list (POSSUM MAMMAL ANIMAL) to choose from. But HEPZIBAH is also a

mammal, so the mammal could refer to either POGO or HEPZIBAH. And not only are both POGO and

HEPZIBAH animals, but so is CHURCHY, so the animal could be any one of them. Therefore, saying the

mammal or the animal would form an ambiguous reference which the listener or reader would have no way to

understand.

Paul recognizes this ambiguity. Once the superordinate has been selected, Paul tests it against all the

other nouns mentioned so far in the text If any other noun is a member of the superordinate set in question,

if the superordinate is an ancestor to any of the other nouns, the reference is ambiguous. However, by using a

feature of the element to be replaced as a modifier, the reference can be disambiguated. For instance, Figure

3-5 tells us that ~urns are grey, and that POGO is a possum. Additionally, neither HEPZIBA.H nor

CHU RC HY are grey. Therefore, while the mammal and the animal are ambiguous, the grey mammal and the

grey animal are not If the superordinate selection proves not to be ambiguous, such as if POSSUM were to be

chosen in this example, a disambiguating modifier is not necemry, and none is chosen.

The features that Paul recognizes for disambiguating superordinates in Pogo world are gender, size,

color, and skin type (furry, scaled, feathered). As with synonym selection and superordinate selection, choice

of the disambiguating feature is random, using the same function to prevent repetition of a feature until the

entire list has been exhausted. Once the feature is selected, the proper value of the feature for this element is

found through inheritance.

However, there is the further complication that the disambiguating modifier doesn't disambiguate.

Since the feature is selected randomly, the one for our example could have been skin type. The furry animal is

little better than the animal because both POGO and HEPZIBAH are furry, both being mammals. And the

furry mammal is uselessly redundant because all mammals are furry in this world Similarly, if size had been

the feature selected, the results would have been either the small mammal or the small animal and again the

36

ANIMAL

MAMMAL REPTILE

POSSUM SKUNK TURTLE

POGO HEPZIBAH CHURCHY

1. POGO IS A MALE POSSUM.

2. HEPZIBAH IS A FEMALE SKUNK.

3. CHURCHY IS A MALE TURTLE.

4. POSSUMS ARE SMALL, GREY MAMMALS.

5. SKUNKS ARE SMALL, BLACK MAMMALS.

6. TURTLES ARE SMALL, GREEN RFPI1LES.

7. MAMMALS ARE FURRY ANIMALS.

8. REPTILES ARE SCALED ANIMALS.

Figure 3-5: Another Sample Hierarehy

----------------------------------·---
phrase is as ambiguous as if no modification had occurred.

Paul avoids this problem by testing the selected modifier. When the chosen superordinate is found to be

ambiguous, a list is made of all the problem nouns that it could refer to. After the disambiguating feature is

selected and the proper value detennined, this value is checked against the values each of the problem nouns

on this list would inherit for the feature. If any one of the problem nouns inherits the same value for the

feature, the feature is rejected, and a different one is randomly selected. This process continues until a feature

is found which truly disambiguates the superordinate reference.

37

3.4. General Nouns

General nouns are the first kind of lexical substitution that move us out of the hierarchy plane. That is,

rather than attempt to find a node in the hierarchical tree that can be used as a substitute for the element in

question, general nouns serve as "tokens" that replace the element

General nouns consist of those nouns that can be used to replace the major noun classes. People. person,

man. woman, child. boy, girl are examples of general nouns for the hlllnan class. Creature, beast are

non-human animate general nouns. For inanimate concrete count nouns. we have thing. object. while for

inanimate concrete mass nouns we have stuff. Inanimate abstract nouns can be replaced by business q/fair,

matter. Nouns representing ~ have move for a general noun, while nouns of location have place, spot.

Finally .fa£t nouns use question, idea for general nouns.
Tom doesn't look well. The old boy must be sick.
I just danced with Grandmother. The dear girl still has 1t.
I just love Paris. This ~ is so alive.

These are very close to superordinates, and in fact originally derive from them. But they are not

identical. Superordinates are used only when the element to be replaced is an actual member of the

superordinate set. General nouns are not as strict in that close approximations of the proper superordinate are

allowed. In the second pair of sentences of the above example, the speaker is not really stating that

Grandmother is a female child. Additionally, general nouns tend to have "empty" modifiers. adjectives that

are not meant to be taken literally. In the first pair of sentences above, we are not being told that Tom is old,

and it would be a mistake to assume so.

This idea of using "tokens" or "variables" to replace elements of a sentence is very similar to the

grammatical cohesive device of reference. With both, cohesion is formed because the interpretation of the

element is dependent on the successful retrieval of another element The difference is in the type of "variable"

that is used. The selection of reference substitutes is purely grammatical. If one wants a personal pronoun for

Fred to serve in a subjective position, he must be used. General nouns. on the other hand, derive from the

superordinates hierarchy.

Another important difference between reference substitutes and general nouns is that general nouns

have connotations that reference substitutes do not. General nouns. especially those for the human class, give

a strong impression of familiarity. In business correspondence, one would probably not want to refer to a

client as "the old boy" or "the dear girl." Additionally, general nouns can be used epithetically to be insulting.

whereas reference substitutions are semantically neutral. (Most expletives can be used as general nouns in this

way.)

-------r - -----------------

38

3.5. Personal Pronouns

As do general nouns, personal pronouns represent movement out of the plane of the hierarchy by using

a "variable" to replace the element Strictly speaking, personal pronouns are not a device of lexical

substitution. They belong to the grammatical cohesion device of reference substitution. However, there were

several reasons for including pronouns in Paul. The first one, as explained above, is that reference substitution

is very close to general noun substitution, and the incorporation of general nouns while excluding personal

pronouns almost seems arbitrary. The second is that personal pronouns are probably the most widely used of

any of the cohesive devices used in English. Any attempt to approach natural text without the use of

pronominalization is almost doomed before it begins. For these reasons, Paul incorporates personal pronouns

in its lexical substitution devices.

Because the selection of the personal pronoun is strictly grammatical, the mechanism to perform this

task is very straightforward. Once the syntactic case, the gender,.and the number of the element in question

are determined, the correct pronoun is dictated by the language.

3.6. Definite Noun Phrases

The final lexical substitution available in Paul is the definite noun phrase. A definite noun phrase is

simply created using a definite article, the in English, as opposed to an indefinite article, a or some. Of course,

definite articles are used with the other types of lexical substitutions, but they can also be used with a

repetition of the exact same Yr10rd for the element This represents not moving at all in the hierarchy. In its

simplest form, the definite article refers to a speeific known element The way in which it is known can vary. It

could be exophoric, as in "the .man over there," or endophoric, as in "I bad a balloon, but the balloon broke."

When used endophorically, the definite article clearly marks an item as one that has been previously

mentioned, and is therefore old infonnation. The indefinite article similarly marks an item as not having been

previously mentioned, and therefore being new infonnation. Because English bas only one definite article,

the. the mechanism for definite article selection is not an issue.

The capacity of the definite article to mark an element as old information makes its use required with

superordinates and general nouns.
My sheepdog 1s smart. The dog fetches my newspaper every day.
•My sheepdog 11 smart. A dog fetches my newspaper every day.

George worries me. The poor boy works too hard.
•George worries ... A poor boy works too hard.

-- --- -·--------------

39

3.7. Controlling Lexical Substitution ,

While the mechanisms for performing the various lexical substitutions are conceptually straightforward,

they do solve the entire problem of using lexical substitution. So far, we've only discussed how to use these

cohesive devices once they've been selected. Nothing was said about how the system chooses which cohesive

device to use. This is a serious issue in that lexical substitution devices are not interchangeable. Consider the

story in Figure 3-6. This story is unintelligible, and of course unacceptable as output for computer generated

text. The problem is that the cohesive devices were chosen randomly. If the selection of lexical substitution

devices is not carefully controlled, the resulting passage will not be understandable, and certainly will not be

acceptable text

HE CARES FOR THE WOMAN. BETTY LIKES THE POLICENA•. TOO. THE OLD BOY
GIVES ONE TO HER. THE NURSE LIKES THE RllG.

Figure 3-6: Story with Uncontrolled Lexical Substitution

The reason why indiscriminately chosen lexical substitutions make a passage unintelligible is that lexical

substitutions, as do most cohesive devices, create text by using presupposed dependencles for their

interpretations, as we have seen. If those presupposed elements do not exist, or if it is not possible to correctly

identify which of the many possible elements is the one presupposed, then it is impossible to correctly

interpret the cohesive element, and the only possible result is confusion. A computer text generation system

that incorporates lexical substitution in its output must insure that the presupposed element exists, and that it

can be readily identified by the reader.

Paul controls the selection oflexical substitution devices by conceptually dividing the problem into two

tasks. The first is to identify the strength of antecedence recovery of the lexical substitution devices. The second

is to identify the strength of potential antecedence of each element in the passage, and determine which if any

lexical substitution would be appropriate.

3.7.1 Strength of Antecedence RecoYery

Each time a cohesive device is used, a presupposition dependency is created. In order to correctly

interpret the element, the item that is being presupposed must be correctly identified. The relative ease with

which one can recover this presupposed item from the cohesive element is called the strength of antecedence

recovery. The stronger an element's strength of antecedence recovery, the easier it is to identify. the

presupposed element

40

The lexical substitution with the highest strength of antecedence recovery is the definite noun. ·This is

because the element is actually a repetition of the original item, with a definite article to mark the fact that it is

old information. There is no real need to refer to the presupposed element, since all the information is being

repeated.

The next highest is the synonym. Since properly partitioned synonyms are semantically equivalent, they

can be treated as an extension of the repetition that occurs with the definite noun phrase. When used by

themselves, synonyms do not create the presupposition dependency that ties sentences together. Therefore

synonyms are not used by Paul to achieve cohesion between sentences. They are used to prevent repetition,

but this task is independent of the intersentential cohesion being controlled here. Therefore, synonymous

substitution is allowed to occur freely whenever possible.

Superordinate substitution is the lexical substitution device with the next highest strength of

antecedence recovery. Presupposition dependency does genuinely exist with the ·use of superordinates,

because some information is lost When we move up the semantic hierarchy; all the traits that are specific to

the element in question are lost The higher up we go, the more information is lost. To recover this, and fully

interpret the reference at hand, we must trace back to the original element in the hierarchy. Fortunately, the

manner in which Paul performs superordinate substitution facilitates this recovery. By insuring that the

superordinate substitution will never be ambiguous, the system only generates superordinate substitutions

that are readily recoverable.

The lexical substitution device with the next strength of antecedence recovery is the general noun.

These items provide almost no information. Since they move us out of the plane of the semantic hierarchy,

general nouns serve as little more than place holders for elements in the sentence. As we have seen, general

nouns have a large impact on the style of a passage, making it much more familiar and informal, and possibly

adding a derisive tone to the text Since such considerations of style are beyond the scope of this thesis. Paul

has been designed to not choose general nouns as a possible lexical substitution, although the mechanism for

generating general nouns has been incorporated into the program.

The final cohesion device used by Paul, personal pronouns, has the lowest strength of antecedence

recovery. Pronouns genuinely are nothing more than place holders, variables that maintain the positions of

the elements they're replacing. A pronoun contains absolutely no semantic information, only syntactic. The

only readily available pieces of information from a pronoun are the syntactic role in the current sentence, the

gender, and the number of the replaced item. For this reason, pronouns are the hardest to recover of the

substitutions discu~d.

L" >'' •\ d >' <I,,_,., .j/ 1 '•

41

3.7.2. Strength of Potential Antecedence

While the fonns of lexical substitution provide clues (to various degrees) that aid the reader in

recovering the presupposed element, the actual way in which the element is currently being used, how it was

previously used, its circumstances within the current sentence and within the entire text, can provide

additional clues. These factors combine to give the specific reference a strength of potential antecedence. Some

elements, by the nature of their current and previous usage, will be easier to recover independent of the

lexical substitution device selected

Strength of potential antecedence involves several factors. The syntactic role the element is playing in

the current sentence, as well as the previous reference, the distance of the previous reference from the current,

and the current focus of the text all affect an element's potential strength of antecedence. Paul identifies five

classes of potential antecedence strength, Class I being the strongest and Class V the weakest, as well as a sixth

"non-class" for elements being mentioned for the first time. These five classes are shown in Figure 3-7.

Qass I:

Class II:

Qass III:

OassIV:

OassV:

1. The sole referent of a given gender and number (singular or plural) last mentioned
within an acceptable distance, OR

2. The focus or the head of the expected focus list for the previous sentence.

The last referent of a given gender and number last mentioned within an acceptable
distance.

A focal point that filled the same syntactic role in the previous sentence.

1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned
within an acceptable distance.

A referent that is known to be a part of a previously mentioned item.

Figure 3-7: The Five Oasses of Potential Antecedence

Once an element's class of potential antecedence is identified, the selection of the proper lexical

substitution device is easy. The stronger an element's potential antecedence, the weaker the antecedence

recovery of the lexical substitution. Therefore, Oass I elements, those with the highest strength of potential

antecedence, are replaced with personal pronouns, the substitution with the lowest strength of antecedence

recovery. Class II elements, with the next highest strength of potential antecedence, are replaced with

42

superordinates, the next lowest cohesive device. Class III elements are unusual in that the device used to

replace them can . vary. If the previous instance of the element was of Class I, if it was replaced with a

pronoun, then the current instance is replaced with a pronoun, too. Otherwise, Class III elements are replaced

with superordinates, the same as Class II. Class IV and Class V elements are both replaced with definite noun

phrases. These mappings from potential antecedence classes to lexical substitution devices is illustrated in

Figure3·8.

Class I . Pronoun Substitution

Class II . Superordinate Substitution

Class III (previous reference Class I) Pronoun Substitution

Class III . Superordinate Substitution

Class IV . Definite Noun Phrase

Class V . Definite Noun Phrase
Figure 3-8:

Mapping of Potential Antecedence Classes to Lexical Substitutions

--·-·-----------·--

The decision on which lexical substitutions would be used to replace which potentiat antecedence

classes was made fairly arbitrarily. This mapping intuitively makes sense. As the strength of potential

antecedence gets weaker by class, the strength of antecedence recovery gets stronger with the associated

lexical substitution. However, there is no formal justification to this exact mapping. The choice of which

lexical substitution to use for an element, once that element's class has been identified, is a question of style.

There is usually more than one type of lexical substitution that will serve the goals of cohesion. The

difference between them is that they will have different impacts on the style and mood, the "feeling , " of the

text

T3.1 1. Hank lost Robin's book.
2a. She was heartbroken.
2b. The girl was heartbroken.
2c. The poor girl was heartbroken.

:Each of the responses ofT3.l·l are acceptable following D.1·1, but they have different impacts on the overall

style of D.1. T3.1·la has a more informal, conversational tone, while D.1·2b is more formal. And T3.1·lc is

very informal, and implies sympathy on the speaker's part As was stated above, the investigation of style and

its impact on lexical substitution selection and vice versa is beyond the scope of this report Therefore, an

arbitrary style was chosen for Paul, as reflected in Figure 3·8.

43

3. 7.3. Focus

One of the most important factors used in determining the potential antecedence class of an element is

focus (41, 35, 15, 16, 17). Focus is what a discourse is aboud38]. It is the central idea around which the

sentence revolves.

In order to id~ntify the current focus or expected focus list, Paul uses the detailed algorithm for focus

developed by Sidner (41). Figure 3-9 shows this algorithm.

Choose an expected focus as:

The subject of a sentence if the sentence is an is-a or a
there-insertion sentence.

The first element of the default expected focus list, computed from
the semantic case relations of the verb as follows:

3. 7.4. Distance

Order the set of phrases in the sentences using the following
preference schema:

affected case unless the affected case is a verb complement in
which case the affected case from the complement is ~sed

all other semantic case positions with the agent Jast

the verb phrase

Fipre 3-9: Expected Focus Algorithm

Another important factor in determining an element's class is distance. By this we mean the distance

between the current reference and the most recent previous reference for the same item. Distance affects our

ability to recover the antecedent for a lexical substitution. As the distance between the referent and its

antecedent increase, the number of possible referents is likely to increase, thus making the recovery a

confusing process. Additionally, as the distance increases, other elements are introduced and discussed. The

focus of these intermediate sentences is obviously not on the element in question. When this element is finally

brought back to the reader's attention, it has to be re-introduced as something pertinent to the discussion.

Perhaps an example would help make this clear.

44

T3.i 1. John sent a letter to Mari.
2. Fred found the letter and read it.
3. He told George about it.
4. George gave it to Pete.
5. Pete hid it.
6. She never got it.

The she in T3.2·6 must be Mary, since Mary is the only female mentioned in all of T3.2. However, there are

five clauses between the initial reference of Mary in T3.2· 1 and the pronoun in T3.2·6. With five sentences

consisting of six clauses, all of which have the letter as their focus, it seems strange to use the cohesive device

with the weakest antecedence recovery to refer to an element that was mentioned in passing (since Mary is not

the focus ofT3.2·1) six clauses ago.

On the other hand, not allowing any distance is too restrictive.

T3.3 1. John sent a letter to Mary.
2. The postman lost it.
3. She never got it.

Using the pronoun she in T3.3-3 seems perfectly natural and acceptable, even though the sentence it is in,

T3.3-3, does not immediately follow the sentence in which the first reference occurred, T3.3-1. There must be

some range in distance for which such pronominalization is acceptable, and beyond which it is not.

Unfortunately, linguists have not been able to determine the exact scope of this range. It seems that rather

than there being an exact cutoff line, there is a continuum of acceptability, as there is with most linguistic

features. An additional complication is that this continuum may be able to shift, extending the accepted range

for some contexts, and decreasing it for others. Unfortunately, investigation into this linguistic issue is beyond

the scope of this report. In Paul the acceptable distance was arbitrarily set at two clauses.

3. 7.5. Endophoric Limitations

A limitation of this use of focus and distance is that it assumes endophoric references. The possibility of'

shifting focus by simply gesturing at an object, the definition of distance based on an object's physical distance

to a referent, rather than its distance in the text, have been ignored To appreciate the significance of this.

consider the following as the first sentence of an instruction manual.
First, loosen the top screw on the carburetor.

Neither screw nor carburetor have been mentioned before in the text, yet both are presented as definite noun

phrases. This is correct because the references are meant to be exophoric, not endophoric. It is assumed that

the reader of this sentence has the proper engine in front of her, and can readily identify the carburetor and its

top screw by sight Since Paul assumes endophoric references, it would have incorrectly generated this

sentence.
First, loosen a top screw on a carburetor.

This one says to loosen any screw found on any carburetor, and implies that there are more than one of each,

45

a much differentmessage from the first. While the definition of potential antecedence classes used in,Paul is

adequate for strictly endophoric contexts such as children's stories, it would have to be greatly modified

before exophoric contexts could be properly generated.

3.8. Comparison with Another System

With all the elaborate mechanisms developed for Paul, and their theoretical justifications, as we have

been discussing, it may be ditlkult to judge just exactly what is gained by their inclusion. Therefore, this

chapter concludes with an example of a story generated by Paul and the same story as it would have been

generated with a much simpler algorithm for pronominalization. Figure 3-10 shows the sample story with no

form oflexical cohesion. (Figure 3-5 contained the semantic hierarchy for this world.)

-------------------------------·------------------------------------·--·--------------~-----------------·------------------------------

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES
A ROSE TO HEPZIBAH, WHICH PLEASES HEPZIBAH. HEPZIBAH OOES NOT
WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY PUNCHES POGO.
CHURCHY GIVES A ROSE TO HEPZIBAH. PEf ALS DROP OFF. THIS UPSEfS
HEPZIBAH. HEPZIBAH CRIES.

Figure 3-10: The Sample Story

-----------------------------------·---.---·----------

The simple pronominalization rule that will be compared with Paul is one that appeared in (22), and is

presented here in Figure 3-11. The rule only allows pronominalization if the last reference to the element was

in the last sentence. (In other words, this rule uses a maximum acceptable distance of one sentence.) The

previous-pronouns-list refers to the pronouns that would be used to replace the nouns of the previous

sentence. For instance, if the previous sentence were "Both Fred and George like Mary," the previous noun

list would be (Fred George Mary) and the previous-pronouns-list would be (M he she).

Pronominalization BHlc.: A repetitive noun phrase in the
cu"ent sentence is replaced by its pronoun only if the pronoun is
unique in the previous-pronouns-list (that is, no other noun
phrases in the previous sentence has the same pronoun).

Fipre 3-11: The Simple Pronominalization Rule

Let's see what tllC pronominalization rule of Figure 3-11 would do with the sample story of Figure 3-10.

With the first sentence, the previous nouns list is empty, as well as the previous-pronouns-list, and no

pronominalization occurs. However, with the second sentence, the previous nouns list is (Pogo Hepzibah) and

the previous-pronouns-list is (he she). Since Churchy of the second sentence is male, the pronoun for Churchy

46

is he. With another he on the previous-pronouns-list, pronominalization here is blocked. However, Htpzibah

has the only she on the previous-nouns-list, and the final sentence is Churchy likes her, too. With the next

sentence, Pogo cannot be pronominalized because he is not on the list of previous nouns, and even if he were,

Churchy has a he on the previous-pronouns-list, and no pronominalization would occur. Hepzibah is still on

the list of previous nouns, and is still the only she on the previous-pronouns-list, and the resulting sentence is

Pogo gives a rose to her, which pleases her. Similarly, the other sentences would be processed, and the final

story is in Figure 3-12.

--·----
POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES
A ROSE TO HER, WHICH PLEASES HER. SHE OOES NOT WANT CHURCHY'S
ROSE. HE IS JEALOUS. HE PUNCHES POGO. CHURCHY GIVES A ROSE TO
HEPZIBAH. PETALS DROP OFF. THIS UPSETS HEPZIBAH. SHE CRIES.

Figure 3-12: Results of Simple Pronominalization Rule

The sample story as generated by Paul is in Figure 3-13. (The details of the generation of this story are

discussed at length in Chapter 5.)

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES A
ROSE TO HER, WHICH PLEASES HER. SHE OOES NOT WANT CHURCHY'S ROSE.
HE IS JEALOUS. HE PUNCHES POGO. HE GIVES A ROSE TO HFPZIBAH.
THE PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

F~re 3-13: Paul's Version of Sample Story

---·--~------------------------------

The differences between the two algorithms do not manifest until the seventh sentence, Churchy gives a rose

to Hepzibah. Because the sixth sentence mentions both Churchy and Pogo, the previous-pronouns-list during

the seventh sentence is (he he), and the algorithm does not allow Churchy to be pronominalized in this

sentence. With PauL though, Churchy in the seventh sentence is Oass Ill because the referent repeats the

syntactic role it had in the previous sentence, in this case subject When the previous reference was realized as

a pronoun, Class III referents are also realized by pronouns, and the resulting sentence is He gives a rose to

Hepzibah.

47

The next difference is in the ninth sentence5. Because Hepzibah wasn't mentioned in the eighth

sentence, and the simple pronominalization rule only allows a distance of one sentence for pronominalization,

the element is left untouched. Paul, on the other hand, uses a distance of two, and the referent is replaced

with the appropriate pronoun in Paul's version.

This brief example shows that Paul is much richer in creating pronominalization than the simple rule of

Figure 3· 11. And of course, providing other forms of lexical substitution and carefully controlling their use

allows Paul to generate a large variety of quite natural text Appendix III contains several examples of actual

texts generated by Paul

5or course, the eighth sentence is also different in the two versions. But this difference is because Paul identifies parts of previously
mentioned elements, and classifies them as Oass V. Since this is independent of pronominalization and the rule we are contrasting
against Paul is one for only pronominalimtion, a comparison for the eighth sentence wouldn't be fair.

48

4. NLP·
4.1. Introduction

This chapter presents an introduction to NLP (for Natural Language Processor) as it was implemented

for Paul. The reader is introduced to the major constructs of the language, and the syntax and semantics of

those constructs. A working knowledge of LISP is required to gain a complete comprehension of the

presented material, but programming expertise is not necessary--·and the reader will certainly not be asked to

trace through lines of code. Additionally, after the description the algorithm used in NLP to generate

sentences will be discussed, and an example will be provided.

It should be understood that this chapter is nol intended to serve as a manual or users' guide to NLP,

but simply an introduction to some of the concepts central to the language's use. Furthermore, opinions

expressed in this chapter are solely this author's and do not necessarily have the agreement or the approval of

my colleagues, nor of George Heidorn, the creator ofNLP.

NLP is a language created by George Heidorn specifically for natural language processing. The

language allows the user to write and execute production rules on frame-like data structures which Heidorn

calls records. Since Heidorn's original version of NLP as reported in 1972 (13) was supported by a FORTRAN

program, it reflected many of the constraints and special properties of a numerical computational language.

By using LISP, a subset of NLP was implemented---essentially the instructions necessary for language

generation---without the artificial numerical orientation of Heidorn's version. Consequently, the current

version of NLP used for Paul is not completely compatible with Heidorn's, and the following descriptions.of

NLP, while agreeing with Heidom's for the most part, will be specifically based on Paul's version.

4.2. NLP Records

The primitive data structure in NLP is the record. Records are entity-attribute-value elements, lal'gely

borrowed from the realm of system simulation [8}. NLP records are based on the belief that objects in the

world, entities, can be adequately described by their distinguishing properties, attributes. and the specific

values these properties have. In NLP, entities are referred to as records, while attributes and values keep their

names.

This approach of entity-attribute-value data structure is very similar to the frame idea (36}. Records are

analogous to frames, attributes correspond to slots, and the notion of values is the same for both. Just as a

given frame can have more than one slot, an NLP record can have an. arbitrary number of attributes. And

because the value of a specific attribute for a given record can be another record with its own attributes and

values, it is possible to use NLP to implement the information retrieval network speculated about in (36i

. . . , ~-v:._- ,

49

There are several ways to implement an entity-attribute-value data structure in LISP. In, Paul, property

lists were chosen because they seem most natural for this application. Therefore, each record can be thought

of as a property list where the attributes are properties and the. values are of course the corresponding

property values. Using property lists for records necessitates each record to have a unique name, either

supplied by the user, in which case the record is called a named record, or generated by the system when it

creates the record. This requirement would not be found in a version that might use another implementation

of records such as association lists. However, it was found that having a name for every record was more of a

benefit than a burden. In the act of debugging, both of the code for the NLP system and of subsequent NI.P

programs, it has often been necessary to examine the contents of specific records, and these records always

having readily obtainable names have made them immediately accessible.

4.3. Augmented Phrase Structure Rules

As mentioned earlier, NLP uses production rules (46) to manipulate and generate text. In many ways.

this is a logical choice of methods. Many linguistic theories of grammars, including transformational

grammars pioneered by Chomsky [4), employ phrase structure rules, which are generally replacement rules. If

a specific set of elements is encountered under the proper circumstances, the set is replaced with another.

Production rules follow exactly the same format. If a certain situation exists, then a specific action is to be

performed. Therefore, production rules are a natural choice for implementing natural language.

To reflect this natural correspondence between production rules and linguistic grammars. the syntax of

NLP is very similar to the syntax of phrase structure rules [4]. A typical phrase structure rule might be
SENTENCE::•NOUNPHRASE VERBPHRASE

which says that when a SENTENCE is encountered, replace it with a NOUNPHRASE followed by a

VERBPHRASE. The equivalent NLP rule might be
SENTENCE --> NOUNPHRASE VERBPHRASE;

This rule can be read as: "If a record associated with the segment type6 SENTENCE is encountered, replace it

with a record of the segment type NOUNPHRASE followed by a record of the segment type

VERBPHRASE. ..

The syntax for NLP rules as explained up to this point is far too restricted to be useful. An example will

clearly demonstrate this, and help provide the motivation for the chosen solution in NLP. If we were to write

a set of rules for generating "The. boy flies the kite." we might try the following. Ignoring for the now the

problem of inserting the actual words into the structure, using the program fragment of Figure 4· l. we could

easily construct the following tree.

6Segment type in NLP corresponds to symbol in phrase structure rules, both tenninal and nonterminal.

--~,--.,-~-------

50

---:---·-----------------111t··--..----------
SENT --> NOUNPHRASE VERBPHRASE •
NOUNPHRASE --> DETR NOUN;
VERBPHRASE --> VERB NOUNPHRASE;

Figure 4· 1: Fragment of an NLP Program

SENT

NOUN PHRASE VERB PHRASE

DETR NOUN VERB NOUN PHRASE

DETR NOUN

THE BOY FLIES THE KITE

Figure 4-2: Generated Phrase Structure Tree

----·--·-··-----------------------------·--------

Now what. happens if, instead of the example sentence, we wanted to say "John flies the kite."? Our

rules insist that every nounphrase consists of a determiner (DETR in the rules) and a noun. Therefore, if we

tried to generate this sentence, we would get ''The John flies the kite.", which is not at all what we want A

possible solution would be to allow more than one rule for each nonterminal, and adding the following rule to

our set
NOUNPHRASE --> NOUN;

Now we could generate "John flies the kite." However, ''The John flies the kite." is still possible from our

rules, and now such sentences as "Boy flies kite." can be generated. Adding more rules by themselves is not

the answer.

One might think that the problem comes from using the nonterminal symbol NOUNPHRASE for noun

phrases both with and without determiners, and that distinct nonterminal symbols for the two distinct

phenomena would provide a solution. In addition to losing significant generalities by using such a scheme, the

logical conclusion of this is to have a separate nonterminal for every possible terminal string, an impossible

feat since there are an infinite number of possible sentences. If one restricts the number of sentences to those

51

anticipated as needed, one is actually providing an elaborate system of canned messages, which we have

already dismissed in Chapter One as impractical and linguistically uninteresting.

Somehow, we must be able to choose from among the various rules for each nonterminal symbol. NLP

does this through the use of augmented phrase structure rules [13, 45). A list of condition specifications is

allowed after the segment type to the left of the arrow, the one being replaced. The syntax for condition

specifications is quite rich, allowing the user to test for the presence or absence of specific attributes, whether

or not attributes have specific values, whether the attribute values of given records are the same or different

from the attribute values of other records, whether or not records can inherit specific properties, and just

about any other condition the user might care to test

Furthermore, augmented phrase structure rules allow the user to specify how the records that will

replace the original will be created by using a list of creation specifications. Again, the syntax is rich, and the

options are myriad. All this results in the. fact that NLP rules are not merely rewrite rules, changing the

labeling of a record from one segment type to another, but that they create new records for the new segment

types. A more complete example (which we will begin to understand as each syntactic option is explained)

might be

SENT{PASSIVE) --> NOUNPH{IGOAL{SENT))
VERBPH(ISENT,NUMB:•NUMB{GOAL),-GOAL)
I B Y NOUNPH(IAGENT(SENT)) • :

Figure 4-3: Example ofNLP Rule

4.4. Condition Specifications

The condition specifications form a series of tests which the current record must satisfy before the rule

can be triggered. These tests are mostly variations on determining whether specific attributes have desired

values. The simplest test is whether an attribute has any value at all, which is specified by merely naming the

attribute to be tested. The example of Figure 4-3 demonstrates this. If the SENT record has any non-false

value for the attribute PASSIVE, the rule will be triggered; To understand why the value has to be "non·

false" instead of simply "true," we must recall how Boolean logic works in LISP. Rather than testing for true

or false, LISP conditional statements test for NIL (false) or non-NIL. Non-NIL values are not restricted to T

(true), but can have any value other than NIL. While the PASSIVE attribute could have a value of T, any

non-NIL value is sufficient to trigger the rule. *RECORD* is a variable whose value will be the name of the

current record during execution time. It is through this variable that the system accesses the current record to

-~ .:::·-·~- - ... '

52

see if it has the appropriate attribute (by seeing if it has a nontNIL value for the appropriate property). ·

The NLP syntax also allows the user to specify tests on records other than the one currently on the stack.

Recall that the value for an attribute of a given record might itself be a record with its own attributes and

values. The user is able to access this "nested" record and its attributes for tests, too. By following the test

attribute with a parenthesized pointer value (or PV) to another record, the user informs the system that an

indirect test is to be performed. For example
EXAMPLE(ALPHA(BETA))

might be read as: "If the current record has a segment type of EXAMPLE and the ALPHA value of the

record which is the BET A value of the current record is non-NIL, then trigger the rule." In other words, the

BETA value of the current record will itself be a record, say RECORD2. If the ALPHA value ofRECORD2,

not the ALPHA value of the current record, is non-NIL1
, then the rule is to be triggered. This is implemented

in LISP through nested GET statements.
(GET {GET *RECORD• 'BETA) 'ALPHA)

The syntax is not limited to a single nesting of attributes. The user can specify as many levels as she

wants.
EXAMPLE(ALPHA(BETA(... (OMEGA) ...)))

becomes
(GET (GET (... (GET *RECORD• 'OMEGA) ...) 'BETA) 'ALPHA)

Notice that the nested hierarchy has originated with the current record *RECORD* in all of the above

examples. This is not required by NLP, but is the default origin. The user can specify a named record by

following the attribute with the parenthesized name enclosed in single quotes. Therefore the test
EXAMPLE(ALPHA('LETTERS'))

is read as: "If the current record has a segment type EXAMPLE, and the named record LE'ITERS has a

non-NIL, ALPHA value, trigger the rule." Nested attribute references are also allowed with specific named

records, such as
EXAMPLE(ALPHA(BETA(... (OMEGA('LETTERS')) ...)))

Collectively, these attribute calls are known as attribute references.

In addition to determining whether an attribute reference has a non-NIL value, the user can test for a

specific value. This is written by placing an equal sign between the attribute reference and the specific value,

which is enclosed in single quotes. It doesn't matter which precedes and which follows the equal sign.

Therefore
EXAMPLE(ALPHA•'BETA')

and
EXAMPLE('BETA'•ALPHA)

·"'o--;,;',.,_-. .;,•_i•

53

are logically equivalent Any of the forms of attribute mfcrcncing discussed above arc allowed in these

equality tests. Additionally, the user can test if the values of two attribute references are equal.
EXAMPLE(GAMMA•DELTA)

Again, any legal attribute reference may be used here.

There is only one standard attribute in NLP, the SUP attribute. Heidorn conceptually arranged his

records into SUPersets, and each record's SUP attribute specifies the superset that record belongs to. A

superset is a more general class of entities to which a record belongs, and corresponds to the idea of

superordinates. For instance, a record representing "BRIDGET" could have a SUP attribute pointing to a

record for "FEMALE." The FEMALE record might have "PERSON" for its SUP attribute, and so on. Such

a series of SUP values is known as a SUP chain. This specific chain could be interpreted as saying BRIDGET

has FEMALE as a superordinate, FEMALE has a superordinate of PERSON, and so forth. The notion of

supersets and a specific attribute SUP to represent them is similar to the "AKO" or "a-kind-of' slot that has

been suggested for implementing frames (47).

Since the SUP attribute is so prevalent in record definitions, NLP has several conventions for

facilitating their use. In attribute tests, rather than explicitly specifying that a value is to be compared to the

current record's SUP attribute by using the syntax described above, the user can simply give the value within

single quotes. NLP will assume the value is meant for the SUP attribute by defaulL Therefore
EXAMPLE('ALPHA')

is exactly equivalent to
EXAMPLE(SUP•'ALPHA')

In addition to nested attribute referencing, NLP allows indirect attribute referencing. Frequently, the

user may want to use the value of an attribute reference as part of another attribute reference. For example,

assume the value of the ALPHA attribute of the current record is either BET A or GAMMA. If the ALPHA

value is BET A, the user wants to test the BET A value of the current record. On the other hand, if the AI.PHA

value is GAMMA, the user wants to test the current record's GAMMA value. In LISP this would be
(GET •RECORD• (GET •RECORD• 'ALPHA))

The difference between this and the nesting discussed above is that before we were nesting the GET

statements along the first argument, the atom, while now we're nesting the OET statements along the second

argument, the property.

The user specifies this second kind of nesting by using the commercial at sign,"@". The~@ symbol tells

the system that the following attribute reference, enclosed in brackets, is an indirect reference. Returning to

our previous example, the NLP statement that would represent this test is
EXAMPLE(l[ALPHA])

54

Any legal attribut~ reference can be included between the brackets (including another indirect reference with

an @ symbol}, and an indirect reference with an @ symbol may be used wherever an attribute is expected.

The @ symbol completes the syntax for attribute references.

Another potentially confusing but extremely important test is that of chaining. Recall that records are

conceptually arranged into supersets, with each record's SUP attribute specifying the superset that record

belongs to, and that a series of SUP values fonns a SUP chain. Frequently, it is necessary to detennine if the

current record belongs to a specific superset, that is, if the name of the superset is anywhere on the current

record's SUP chain.

A concrete example should clarify this. Returning to our record for BRIOOET, we remember that its

SUP is FEMALE. and the SUP for FEMALE is PERSON. Assume that PERSON has a SUP of HUMAN,

that the SUP for HUMAN is MAMMAL, and that the MAMMAL record's SUP is ANIMAL. In other

words, we are saying that BRIOOET is a FEMALE. all FEMALES are PERSONS, all PERSONS are

HUMANS, all HUMANS are MAMMALS, and all MAMMALS are ANIMALS. We are now ready to test

along this SUP chain.

The symbol for tests along chains is the dollar sign, "$". A test to see if the current record is a member

of the MAMMAL superset of the MAMMAL superset mi&ht be
EXAMPLE(S•'MAMMAL')

When this test is executed, the SUP of the current record is compared to MAMMAL. If they are equal, the

test returns T. Otherwise, we move up one on the SUP chain, and test that record's SUP with MAMMAL If

that test fails, we again move up one on the chain. This process continues until either a record is found on the

chain whose SUP is equal to MAMMAL, in which case the test succeeds, or until the end of the SUP chain is

reached by encountering a record with no SUP value, in which case the test fails. Conceptually in LISP what

we want is
(OR (EQUAL (GET (•RECORD• 'SUP) 'MAMMAL)

(EQUAL (GET (GET •RECORD• 'SUP) 'SUP) 'NAtllAL)
(EQUAL (GET (GET (G£T •RECORD• 'SUP) 'SUP) 'SUP) 'MAMMAL) ...)

As with any equality test, the ordering of the chaining reference and the value being tested for is not

crucial. Therefore,
EXAMPLE(S•'MAMMAL')

and
EXAMPLE('MAMMAL'•S)

are equivalent Furthennore, the value being tested for can take the fonn of any of the attribute references we

have already seen. Thus

55

EXAMPLE(S•ALPHA(BETA('LETTER')))
is completely legal. Additionally, we can ·specify the search to start elsewhere than the current record. This is

done by placing the desired attribute reference immediately before the $. An example might be
EXAMPLE(ALPHA(BETA)$•0NE(TWO))

In addition to seeing whether a record is a member of a superset, it is often necessary to test whether the

record or any member of its superset has a specific value for an attribute other than the SUP attribute. This

brings in the notion of inheritance (47). Returning to our BRIOOET SUP chain example, we know that

mammals exhibit certain traits that are not generally found in every animal. For instance, mammals are warm

blooded. Since Bridget is a mammal, she is also warm blooded. Ifwe wanted to include this fact in our system,

we could add a BLOOD attribute to the BRIOOET record with a value of WARM. However, we would then

have to explicitly include this attribute and same value for every. record that is a member of the MAMMAL

superset. It would be much more general to give the MAMMAL record the BLOOD attribute and the

WARM value. Then every member of the MAMMAL superset could inherit this attribute and value. That is,

every member of the superset is known to have the attributes and values of the superset, including the

BLOOD attribute with the WARM value, unless we are told explicitly otherwise.

In order to test if the current record can inherit the value for the WARM attribute, the following NLP

syntax is used.
EXAMPLE(S['BLOOD']•'WARM')

The brackets inform the system that an argument is being given to the chaining function called for by the $. It

is important to think of this as a function with an argument Notice that the BLOOD attribute in the example

is in single quotes. This is necessary because we want to use the literal BLOOD as the argument to the

chaining function. If BLOOD were not in quotes, the value of the current record's BLOOD attribute would

be given as an argument to the chaining function. As always, any attribute reference can be used within the

brackets.

Actually, the chaining function always has this argument. When it isn't supplied explicitly by the user,

as we saw when the $ was first introduced, the argument defaults to SUP. Therefore
EXAMPLE(S•'MAMMAL')

and
EXAMPLE(S['SUP')•'MAMMAL')

are identical. Again, ordering around the equal sign is unimportant, and any attribute reference can serve as

the value being tested as well as the starting point for the chaining test.

In addition to having chains along the SUP attribute, there's no reason why the records can't have

chains along other attributes, and there's no reason why the chaining function can't use these other chains. By

,_.. -· •• ,. .. ' •• "' .. , ••. ~1 .. " ,, ... ' ' ... , ~ •' ~' , .. , ~ ••• ~· " ~· ~· ., •• t• " " "· ~ .. "\. t· •.• , ,.,

--~ ,--- -- ------~- ------

56

supplying the function with a second argument, the user can specify which attribute chain she wants to

exploit. An example might be
EXAMPLE($('ALPHA', 'BETA']•'GAMMA')

This says to chain along the BETA attribute, looking for a record whose ALPHA value is equal to GAMMA.

Notice that the second argument is also in quotes for the same reasons that the first is {as explained above),

and that the arguments are separated by a comma.

As with the first argument, the second argument is required by the chaining function, and when it is not

explicitly supplied, the argument defaults to SUP. Therefore,
EXAMPLE(S['BLOOD']•'WARM')

and
EXAMPLE($['8LOOD','SUP']•'WARM')

are equivalent, as are
EXAMPLE(S•'WARN')

and
EXAMPLE($['SUP','SUP']•'WARN')

An important restriction on the second argument is that it can not be specified if the first argument is not. If

the user wants to specify the second argument, she must supply the first, even if it is to be SUP.

Finally, the user can specify the record the chain is to start with by giving the appropriate attribute

reference or literal before the dollar sign. As usual, if none is supplied, the system defaults to the current

record being tested.

This completes the syntax for chaining references. The first argument, whose value is the attribute being

tested for along the chain, is known as the test attribute. while the second, whose value is the attribute being

chained along, is called the chain allribute.

Just as we could use attribute references without equal signs to test if they had any non-NIL value, we

can use chaining references without equal signs to test if they return any non-NIL values. In this case, the first

non-NIL value for the test attribute found along the chain specified by the chain attribute is returned. If none

is found, NIL is returned and the test fails. If the BRIDGET record were the current record, execution of the

test

EXAMPLE(S['BLOOO'])
would return WARM, assuming none of the records between BRIDGET and MAMMAL had a non-NIL

BLOOD value. The same defaults and restrictions described above for chaining references apply for this use

of them. A good test to see whether chaining references and their defaults are understood would be to

describe what is specified in the following test 7

EXAMPLE($)

57

Finally, two chaining references may be used in the same equality test An example could be
EXANPLE(S['ALPHA' I 'BETA']•S['ONE' I 'TWO'])

This says that if the ALPHA value inherited along the BET A chain of the current record is equal to the ONE

value inherited along the TWO chain, the test succeeds.

So far we have only seen tests consisting of a single condition specification. NLP allows the user to

combine an arbitrary number of condition specifications into a single test One way is to separate condition

specifications by commas. This has the effect of inserting logical ANDs between each individual test
EXAMPLE(ALPHA.BETA)

becomes in LISP
(AND (GET •RECORD• 'ALPHA)

(GET •RECORD• 'BETA))
Any of the types of condition specifications discussed above are allowed, as well as any number of condition

specifications in a single test

By placing a vertical bar "I" between two condition specifications, the user states that either the first test

OR the second is sufficient to trigger the test
EXANPLE(ALPHAIBETA}

As with AND, any number and type of condition specifications can be combined with OR.

Logical ANDs and ORs may be combined in the same test
EXAMPLE(ALPHA,BETAIGAMMA)

becomes
(AND (GET •RECORD• 'ALPHA)

(OR (GET •RECORD• 'BETA)
(GET •RECORD• 'GAMMA)))

Notice that the vertical bar OR has precedence over the comma AND. This is true throughout condition

specifications in this NLP system. Heidorn 's version did not explicitly address the question of precedence, and

7 ANSWER: With the defaults, this test becomes
EXAMPLE(S['SUP','SUP'])

and says to test the current record for a SUP value along the SUP chain. In other words, if the current record has any non·ML SUP
value, the test succeeds. Otherwise go to the record specified by the current record's SUP value and repeat the test, amtinuing until either
a record is found whose SUP value (as the test attribute) is non· ML and the test succeeds. or until its SUP value (as the chain attribute) is
NIL and the test fails. Obviously, either the current record has a non·ND.. SUP value for the test attribute, in which case the test
immediately succeeds without chaining, or it has a ML SUP value for the chain attribute, in which case the test immediately fails beawse
it can't chain. In either case, no chaining is performed. This test is therefore identical to

EXAMPLE(SUP)

58

his resulting Boolean operators have an ad hoc precedence. When the current version of NLP was developed,

it was felt that an explicit precedence would help create unifonn rules.

While an explicit precedence exists in this system, the user can override it through the standard use of

parentheses. Therefore,
EXAMPLE((ALPHA,BETA)IGAMMA)

becomes
(OR (AND (GET •RECORD• 'ALPHA)

(GET •RECORD• 'BETA))
(GET •RECORD• 'GAMMA))

giving the comma AND precedence over the vertical bar OR. Superfluous parentheses are ignored, provided

they are correctly balanced.

Completing the Boolean entourage is the logical NOT. The current system allows two symbols, the

caret, "t", and the tilde, " ... ", to be used for NOT. Both the caret and the tilde perform the exact same

function. (In fact, the system converts all tildes to carets before processing rules.) The tilde was included to

accommodate users who were accustomed to the tilde as the symbol for logical NOT. A NOT symbol before

any condition specification states that the test is to succeed if and only if the condition specification fails.
EXAMPLE(1'ALPHA)
EXAMPLE(1'(ALPHA•BETA))
EXAMPLE(t$['0NE','TW0'])

NOT has precedence over AND and OR. but parentheses can again override this. So while
EXAMPLE(tALPHA,BETA)

becomes
(AND (NOT (GET *RECORD• 'ALPHA))

(GET •RECORD• 'BETA))
the following test

EXAMPLE(t(ALPHA,BETA))
becomes

(NOT (AND (GET *RECORD• 'ALPHA)
(GET *RECORD• 'BETA)))

The Boolean operators complete the syntax for condition specifications as explained in the original report.

NLP has been extended since that report, however. One of the extensions included in Paul's version of

NLP is the exclamation point,"!". When the system encounters an!, the element immediately following it is

treated as a LISP s-expression, not an NLP element Therefore
EXAMPLE(ALPHA,l(NUMBERP BETA))

becomes
(AND (GET *RECORD• 'ALPHA)

(NUMBERP BETA))

59

The s-exprcssion i~ inserted directly into the LISP code just as it appeared in the rule.

Another addition that has been added is to allow explicit function calls in NLP rules. The system

recognizes function calls by the parameter list enclosed in aagle brackets"()" directly following the function

name. The distinction between this kind of function call and the insertion of a LISP function directly into the

code through the use of! is that the parameters in the angle bracket list are N LP allributes and are resolved in

the normal way. An example might help to make this clear.
EXAMPLE(l(NUMBERP ALPHA))

as we know, simply becomes
(NUMBERP ALPHA)

On the other hand, in our new function call,
EXAMPLE(NUMBERP<ALPHA>)

ALPHA is treated as an attribute, and the result is
(NUMBERP (GET •RECORD• 'ALPHA))

This allows the user to use function calls with attribute values as parameters without requiring her to know

these values ahead of time.

The user is also allowed to have a segment type without condition specifications. In this case, any record

of this segment type would trigger the rule. The syntax for the condition part of NLP rules is now complete.

4.5. Creation Specifications

In addition to specifying the conditions under which a rule is to be triggered, augmented phrase

structure rules allow the user to designate the specifications for creating a new record. The first element of this

part of an NLP rule is a segment type. This is the segment type that will be associated with the new record

when it is placed on the control stack, and will be used when it's that record's tum to trigger rules.

Following the segment type is an optional list of creation specifications which spell out in detail how the

new record is to be created. The syntax for many of the creation specifications is similar to that for condition

specifications, but the meaning is slightly different The simplest creation specification is once again the name

of an attribute.
EXAMPLE(ALPHA)

However, rather than testing to see if the current record has a non-NIL value for the ALPHA attribute, here

we want to assign a non-NIL value to the new record's ALPHA attribute. In other words, instead of retrieving

a property value with a GET statement, we want to assign a property value with a PUTPROP statement. Since

the user hasn't specified the value to be assigned, only that it be non·NIL, the system uses the simplest

non-NIL value available, namely T. As with condition specifications, pointer values may be used.
EXAMPLE(ALPHA(BETA})

is legal and is read as "Create a new record of segment type EXAMPLE whose ALPHA value of the record

60

which is this new. record's BETA value is T." In other words, the BETA value of the new record is obtained,

and that record's ALPHA value is set to T. The LISP code to do this is
(PUTPROP (GET •RECORD• 'BETA) T 'ALPHA)

Of course, if the new record does not yet have a BET A value, the nested GET will return NIL and the

command will put the value T and the property ALPHA on the property list of NIL, which is probably not

what the user intended. Notice that whether or not the new record has a BET A value, the property list of the

new record is not affected in any way. This means the rule would have no direct effect on the new record.

Since this kind of specification is usable on all types of attribute references, it can be used on those for

specifically named record, and with indirect referencing.
EXAMPLE(ALPHA('LETTERS'))

EXAMPLE(8[ALPHA])

There is one convention in creation specification attributes that is not found in those of condition

specifications. In condition specifications, the default record was the current one being tested. In creation

specifications, the default is the record being created. In order to use attributes of the record that caused the

rule to trigger, NLP has the convention of using the segment type of that record, the condition segment type,

for the name of this triggering record. As an example, if we had a rule whose condition segment type were

SENT, then
EXAMPLE(8(ALPHA(SENT)])

would become
(PUTPROP •RECORD• T (GET •OLD-RECORD• 'ALPHA))

At the time of execution, the LISP variable *RECORD* will still contain the name of the record being

created, and *OLD-RECORD* will contain the name of the record that triggered this rule.

Just as NLP allows the testing of attribute references for specific values, the system allows the

assignment of specific values in creation specifications. The operator .for mignment, ": = ," immediately

follows the attribute reference that is to receive a value, and the actual value to be assigned.next appears. For

instance,
EXAMPLE(ALPHA:•'BETA')

says to create a new record of segment type EXAMPLE with an ALPHA attribute whose value is BET A. In

addition to literals, attribute references may be used, since they eventually return values.
EXAMPLE(ALPHA:•BETA)

Any legal attribute references, including arbitrary nesting, indirect references through the use of the

@ symbol, and using explicitly named records are allowed, and these attribute references use the same syntax

that condition specifications use.

- ----~---~---------

61

One significant difference, though, is that order around the assignment operator is crucial. Unlike

equality tests, wbere, as in all tests, no record is actually being altered, assignment clearly changes the value of

an attribute for some record. The left part of an assignment designates where a new value is to be stored, and

the right part states what that value is. The two parts serve very different purposes, and the assignment

operator, unlike the equality operator, is therefore not symmetric. Furthennore, the left part of an assignment

must be able to receive a value. In other words, it must be an attribute reference, not a literal in single quotes,

a chaining reference, or an explicit function call.

As there was a simplified syntax for testing a record's SUP value, there is a simplified syntax for

assigning a value to a record's SUP attribute. The syntax is the same, the literal value simply appearing within

single quotes.
EXAMPLE('ALPHA')

is equivalent to
EXAMPLE(SUP:•'ALPHA'}

Chaining can also occur in creation specifications. The same symbol, the dollar sign, is used for

chaining, and the same syntax, defaults, and restrictions for chaining references in condition specifications

apply to their use in creation specifications. Additionally, since chaining references can only obtain values,

they can not receive values; they can only appear on the right side of assignments (unless they are being used

as an indirect reference within an @).

The exclamation point extension discussed above may be used in creation specifications as well as in

condition specifications. The LISP s-expression immediately following the ! is read in as such and is placed as

is directly into the LISP code being generated. The NLP system does not attempt to convert the s-expres&on

into LISP (it already is in LISP), nor is the s-expression evaluated at this time.

There is an additional creation specification operator that has no corresponding condition operator, the

per cent sign, ''%". Frequently, the user will want to give a new record all the attributes and values of some

other record. Listing each attribute assignment individually is too cumbersome, and there is no reason to

assume that the user will know at the time the rule is being written every attribute the record being copied will

have at the time of execution. The % solves this problem. The % followed by any legal attribute reference tells

the system to copy into the new record all the attributes and corresponding values of the record pointed to by

the attribute reference. For instance,
EXAMPLE(XALPHA('LETTERS'))

copies the entire record found at
(GET 'LETTERS 'ALPHA)

into the new record. That is, each property found on the plist of the item returned by (GET 'LETTERS

62

'ALPHA) is put onto the plist of *RECORD* with the same property value.

There is also an automatic use of the copying function. If the segment type of the record being newly

created is the same as the segment type of the record that triggered this rule, the triggering record is

automatically copied into the newly created record as the first action of the creation specification. The only

time this doesn't occur is when the creation specification of the new record has an explicit command to copy

some record (signified by the use of the% operator).

More than one creation specification may be included in the same list by separating them with commas.

The actions designated by the creation specifications are performed sequentially from left to right As an

example,
EXAMPLE('ALPHA',BETA:•BETA('LETTERS'))

says the following: "Create a new record of segment type EXAMPLE, assign the value ALPHA to the SUP

attribute of this new record, and assign to its BET A attribute the BET A value of the named record

LEITERS."

After copying an existing record into the new one, the user has no problem adding or reassigning

attributes to the new record
EXAMPLE(l'LETTERS',ALPHA:•'ONE')

copies the attributes of the record LEITER$ into the new record, then changes the new record's ALPHA

value to ONE. However, the user will frequently want to eliminate or "tum off" some attribute after copying

a record. She can do this by using the minus sign or hyphen,"·". A hyphen followed by an attribute reference

tells NLP to remove that attribute reference, giving it a NIL value. Therefore
EXAMPLE(-ALPHA)

becomes
(REMPROP •RECORD• 'ALPHA)

The hyphen can be used with any legal attribute reference.
EXAMPLE(-ALPHA(BETA))

EXAMPLE(-ALPHA('LETTERS'))

Earlier it was said that the list of creation specifications following the segment type is optional. If no list

of creation specifications is given, the segment type is pushed onto the control stack without creating a new

record to be associated with this segment type. When such a segment type is encountered, the system treats it as

a terminal symbol, and the segment type is placed directly into the output stream.

63

4.6. The Complete NLP Rule

Now that we know the syntax for the individual parts of an NLP rule, let's see what the fonnat is for

putting these parts together. An NLP rule is made up of the condition part (consisting of a segment type

followed by an optional list of condition specifications), followed by an arrow and then one or more creation

parts (each consisting of a segment type followed by an optional list of creation specifications). A new record

is created for each creation part that calls for it (by having a list of creation specifications), and these records

are pushed onto the control stack with the first one being created on top. The arrow consists of a greater· than

symbol ")" preceded by at least one hyphen"·". This arrow is not strictly necessary, since in a rule the only

thing allowed on the condition si4e after the segment type is at most one list of condition specifications

enclosed in parentheses, and the first element of the creation side of a rule must be another segment type,

there can be no ambiguity as to where the condition part stops and the creation part starts. However, the

arrow improves readability of rules, especially complicated ones in which both condition and creation

specifications take up several lines, and the arrow helps make the analogy between NLP rules and phrase

structure rules more apparent

The exact number of hyphens in the arrow is not important, as long as there is at least one. This allows

the user to line up her rules as she wants them, in effect pennitting so-called "pretty printing." Additionally,

spaces, line feeds, and returns are ignored by the input system, further enhancing the user's capability to

pretty print In fact, spaces, line feeds, and returns are ignored throughout the NLP system. Consequently, the

user must tell NLP when a rule (or any input segment) is finished. She does this by ending each input

segment with a semi-colon. Ending a rule with an empty bracket list "D'' tells NLP that not only is the rule

finished, but this is in fact the last rule to be processed.

NLP also allows the user to put comments in her rules. These comments are delimited by braces "{}"

and may appear anywhere within or between rules. Everything within the braces will be ignored by the

system.

Let's return to our first example of a complete NLP rule.

SENT(PASSIVE) --> NOUNPH(XGOAL(SENT))
VERBPH(XSENT,NUMB:•NUMB(GOAL),-GOAL)
I B Y NOUNPH(IAGENT(SENT)) • :

Figure 4·4: Example of NLP Rule

This says: "If the current record (call it TRIGGER) has a segment type of SENT and a non·NIL PASSIVE

------------~---~

64

value, do the following. Create a new record (call it RECORD!) which is a copy of the record found in the

GOAL attribute of TRIGGER (recall that in the creation part the condition segment type (SENT in this case)

is the convention for referring to the record that triggered the rule), and associate this record with a segment

type of NOUNPH. Create a second record (call it RECORD2) by copying TRIGGER, assigning to the

NUMB attribute of RECORD2 the NUMB value of the GOAL of RECORD2, next removing the GOAL

attribute from RECORD2 (note that the order in which these operations are performed is critical), and

associate RECORD2 with the segment type VERBPH. Insert each of the segment types, # 8, B, and Y onto

the stack without creating records for them. Create a last record (call it RECORD3) by copying the AGENT

value of TRIGGER, and give RECORD3 a segment type of NOUNPH. Finally, insert a period onto the stack

without a record." If the control stack consisted of
((SENT TRIGGER))

before executing this rule , it would be
((NOUNPH RECORD!) (VERBPH RECORD2)
(#) (8) (Y) (NOUNPH RECORD3) (.))

after execution.

4. 7. Named Records

In addition to writing rules to test, create, and manipulate records, NLP allows the user to explicitly

define named records for her program to use. Since this action is in reality the creation of records, it is

virtually the same as the creation part of an NLP rule. Therefore the syntax for creating records is nearly

identical to that of the creation part ofNLP rules. The main difference is that the record definition starts with

the name for the record rather than an associated segment type. Therefore if the following were a record

definition
EXAMPLE('ALPHA',BETA:•'GANMA');

the named record EXAMPLE would be created with a SUP value of ALPHA and a BET A value of GAMMA.

The specifications for a record definition are identical to creation specifications. As with rules, record

definitions must end in either a semi-colon or an empty bracket list.

4.8. Cover Attributes

Finally, the user is allowed to define what are called cover attributes. Frequently a set of attributes can

be logically grouped together. For instance, the attributes MALE, FEMALE, and NEUTER all refer to

GENDER. While specifications could be explicitly written to deal with each of these, it would be more

convenient when the same action is to be performed on each of these attributes if we could write one

specification to perform all these operations. Additionally, it would make clear the fact that these attributes

are associated in some way.

8 As ·we shall see later, NLP uses this symbol in the output stream to represent a space.

65

By defining cover attributes, the user can associate attributes this way. The user defines cover attributes

by giving the name of the cover attribute followed by a list of the attributes to be grouped together und.er this

"cover." Again, each definition ends with a semi-colon except the last, which ends with an empty bracket list

Any attribute name is allowed in this list, including another cover attribute.
GENDER (MALE FEMALE NEUTER);
PRONOUNS (GENDER NUMBER CASE);
COVER1 (ALPHA BETA GAMMA);
COVER2 (ONE TWO THREE)[]

When NLP encounters a cover attribute in either a rule or a record definition, the specification is replaced by

specifications containing each of the attributes being covered For instance, using the COVERl and COVER2

examples from above,
EXAMPLE(COVER1)

as a creation specification becomes
EXAMPLE(ALPHA,BETA,GAMMA)

That is, in the newly created record, the attributes ALPHA, BET A, and GAMMA will each have a value of T.
EXAMPLE(COVER2:•'NUMBER')

would become
EXAMPLE(ONE:•'NUMBER',TWO:•'NUMBER',THREE:•'NUMBER')

In condition specifications, cover attributes are handled slightly differently. A creation specification test

involving a cover attribute will succeed if the specified test succeeds for any one member of the cover

attribute. That is,
EXAMPLE(COVER1)

will succeed if ALPHA is non-NIL, or if BET A is non-NIL, or if GAMMA is non-NIL. Instead of repl~

COVERl with its member attributes separated by commas, which signifies ANDS, COVERl is replaced by

these attributes separated by vertical bar ORS.
EXAMPLE(ALPHAIBETAIGAMMA)

If the cover attributes appear on both sides of an equality test or an assignment, first one cover attribute,

then the other is expanded, resulting in every possible pairing of the attributes.
EXAMPLE(COVER1•COVER2)

would be expanded into nine tests, and
EXAMPLE(COVER1:•COVER2)

would become nine separate assignments. An exception to this is when the same cover attribute is used on

both sides. Then, rather than expanding to every possible combination, only the pairings of the same attribute

on both sides are used.
EXAMPLE(COVER1:•COVER1('LETTERS'))

becomes

EXAMPLE(ALPHA:=ALPHA('LETTERS'),
BETA:•BETA('LETTERS'),
GAMMA:•GAMMA('LETTERS'))

66

Note that in the above example the second use of the cover attribute referred to a named record. Cover

attributes can be used wherever a regular attribute name is allowed

Because cover attributes affect the meaning of rules and record definitions that they appear in, any

cover attributes to be used must be defined before rules or records.

4.9. Record Definitions

NLP allows the user to create records very easily . Each record definition consists merely of the name of

the record followed by a list of attributes and their values in parentheses. Since we are creating records, which

is exactly the same function performed by creation specifications of rules, we would want record definitions to

have the same syntax and meaning as creation specifications. This is precisely the case. All the syntax for

creation specifications, including assignment of attributes, default assignment for SUP, use of%, @, $, !, and

cover attributes, is allowed in record definitions with exactly the same meaning.

As an example, suppose we wanted an record to represent our friend Bridget We might want to note

that she is female, that she has blond hair, that her age is four, and that she is alive. The following record

definition would accomplish this:
BRIDGET ('FEMALE',HAIRCOLOR:•'BLOND',AGE:•'4',ALIVE):

This definition would create a record BRIOOET with a SUP attribute whose value is FEMALE, a

HAIRCOLOR with a value of BLOND, an AGE attribute with a value of 4, and an ALIVE attribute whose

value is T.

A typical program first defines the cover attributes to be used. Next the actual rules to be executed are

given. Then any named records the user wants are defined. The control stack is initialized with record(s) and

their associated segment types. Finally, the user invokes her NLP program to encode or generate text The

command BYE then leaves the NLP system and returns the user to the host environment Appendix IV

contains a BNF for NLP, and Appendix V contains the complete NLP program for Paul

4.10. The Generation Algorithm

Now that we know how to write NLP rules, we can see how the system executes these rules, and

examine the control mechanisms which determine the order in which the actions of the rules will be

performed. The central control mechanism for NLP is a stack of segment types and associated records. As the

generation process proceeds, the stack is popped one item at a time. The appropriate action based on the

specific item is taken, and the results are either pushed back onto the stack or inserted into the output stream.

When.the stack is finally empty, the process is finished

• ,,._. '.-. ,., - .. ! •: ~ •• " ••••• "' , ••• :.:

67

The generation algorithm used in Paul is the one found in the original NLP report (13). This algorithm

is repeated here in Figure 4-5.

1. Put a segment type name and_ a record on the stack to begin.

2. Take the top segment type name and associated record (if
there is one) ott the stack, and examine the segment type:

a. if it is a terminal sagMnt type (known by there not
being an associated record), put its name into the
ouiput stream.

b. if it is one of the spacial OUTPUT segment types,
perform the spacifie~ output operation.

c. otherwise, examine each rule that has this segment type
on the left as the condition segment type until either
a rule is found for which the conditions specified in
parentheses are met, or until the list of rules is
exhausted: ·

i. if a rule 1s found, create segment records
according to the specifications given in
parentheses on the right side, and put the segm&l't
type names, along with their newly created
associated records, onto the stack.

ii. otherwise, put into the output stream the value of
the SUP attribute of the record which was taken
oft the stack.

3. Repeat step 2 until the stack is 911Pty.

Figure 4-5: The Generation Algorithm

As is readily apparent, the control algorithm is conceptually simple. The system basically searches

through the ordered rules sequentially until it either finds one to use (determined by the condition

specification tests applied to the segment record), or the list of rules is exhausted. The associated segment type

is used to restrict this search by limiting the rules that are considered to only those that have the correct

condition segment type. The first rule of the correct segment type whose conditions -are satisfied by the

segment record is applied.

It is important to realize that these rules are not merely rewrite rules. The significant difference is that

this algorithm uses augmented phrase structure grammar, which deals with segment records in addition to the

segment types, instead of just manipulating and replacing nonterminal and terminal symbols. The difference

between augmented phrase structure rules and context free phrase structure rules is similar to the difference

- - ----------------- - -~- -~- ----------

68

between A TNs and RTNs [45). Just as an ATN has feature registers associated with the nodes of the tree it is

buiJding, an augmented phrase structure system has records associated with the nodes of the tree it is

building. ATNs have conditions and actions associated with their arcs which can test and modify the contents

of feature registers, and augmented phrase structure rules have condition and creation specifications which

can modify the contents of the records. These characteristics, which are the chief properties that distinguish

ATNs from RTNs, are similarly the main properties that distinguish augmented phrase structure rules from

context free phrase structure rules.

In (2b) of the algorithm, special OUTPUT segment types are mentioned. Currently, Paul has three such

segment types. The first one, also appearing in the original NLP report, is the sharp sign "# ". This is used in

rules to represent a space in the output. Recall that the NLP system ignores spaces, linefeeds, and returns in

its input If the user wants to have a space inserted into the output stream, she cannot simply put a space in

the appropriate place in the rule; it will be ignored. Instead, she should put a # there. When this symbol is

popped off the control stack by Paul section (2b) of the generation algorithm applies, and a blank is inserted

into the output stream. Similarly, if the user wants a linefeed in her text (if she wants to start on a new line, for

instance), she again needs a special output segment type, LINE. This will insert a linefeed into the output

when encountered. Finally, the special output segment type NULL inserts a NULL string into the output

This is used for rules for "zeroing out" some item, that is, replacing some nonterminal symbol (a segment type

and its associated record) with nothing.

4.11. The Generation Paradigm

It is important to distinguish the generation algorithm from the generation paradigm. The former is ~e

control mechanism behind the selection of the rules, and as such, is an integral part of NLP. But NLP is only

a programming language, and as with all programming languages, it can be used in many different ways to

perform many different tasks. While an understanding of the language of NLP and the control mechanism

that drives it is important. it is not a goal onto itself, but a means for seeing how the language is used. The

generation paradigm, on the other hand, is the theoretical base from which Paul converts conceptual

representations into surface language.

Paul uses augmented phrase structure grammar to construct a syntactic tree in a strict left-right top

down fashion. Perhaps the best way to proceed is to present an example, then discu~ the various aspects of

the paradigm.

------------ -,---- ----- ------------

69

---·-----------------~--·---·----

COVER ATTR;

NUMB
PERS
TENSE
DET
ENDING

(SING PLUR);
(PERS1 PERS2 PERS3);
(PAST PRESENT FUTURE);
(DEF INDEF DEM POSSESS):
(ED ING)[]

Figure 4-6: Cover Attributes for Example

RECORDS:

{vocabulary records}
BUY1 ('ACQUIRE',WORD:•'BUY');
JOHN ('BOY',GENDER:•'MALE',PROPER);
KITE ('TOY');
TOY ('THING'):
THING (GENDER:•'NEUTER'};
BOY ('HUMAN');
BUY (PAST:•'BOUGHT'):

{sentence records}
A1 ('BUY1',AGNT:•'A2',AFF:•'A3');
A2 ('JOHN');
A3 (KITE)[]

Figure 4-7: NLP Re.cords for Example

Figures 4-6 through 4-8 contain a small NLP program to generate the sentence "John buys a kite." One

thing that we notice right away about the rules of Figure 4·8 is that they are recursive. That is, some rules

replace segment types with the same segment types. For instance, rule {S},
VP(~NUMI) --> VP(SIIG):

replaces a VP (verb phrase) with a VP. The thing that prevents this rule from endlessly looping is the fact that

it is augmented with both condition and creation spe.cifications. It is not allowed to apply to any record that

has a VP segment type. The record must also not have a non-NIL value for either of the attributes that are

members of the NUMB cover attribute (SING and PLUR). If this is true, then a new re.cord is created and

associated with the VP segment type. This new re.cord. in addition to having all the attributes of the triggering

re.cord (recall that when a segment type on the creation side is the same as the segment type from the

condition side, an automatic copy is performed). has the additional attribute of SING with the value T.

70

----------------------.. --·t··---·---------

RULES FOR ENCODING:

{SENT 1s Sentence}
{1} SENT -------------------> NP(XAGNT(SENT))

VP(SSEIT,

{NP 1s Noun Phrase}

NUMl:•IUMB(AGNT),
-AGIT) • :

{2} NP(tDET,tS['PROPER']) --> NP(INOEF):
{3} NP(DET,tOETR) ----------> DETR(XIP) NP(OETR);
{4} NP ---------------------> NOUl(XIP):

{VP 1s Verb Phrase}
{6} VP(tNUMB) --------------> VP(SING):
{6} VP(tPERS) --------------> VP(PERS3):
{7} VP(tTENSE) -------------> VP(PRESEIT):
{8} VP(AFF) ----------------> VP(-AfF)

NP(IAFF{VP)):
{AFF 1s for the AFFECTED case role}

{9} VP ---------------------> VERB(IVP):

{DETR 1s Determiner}
{10} DETR(INDEF,PLUR) -------> NULL:
{11} DETR(INOEF) ------------> WORO('A'):
{12} DETR(OEF) --------------> WORD('THE'):

{13} NOUN -------------------> NOUNP{llOUI):

{14} VERB -"'·----------------> VERBP(IVERB,SUP:•WORD(SUP)):

{NOUNP 1s Noun Part}
{15} NOUNP(PLUR) ------------> WORD(UOUIP) S:
{16} IOUNP ------------------> WORD(llOUIP):

{VERBP 11 Verb Part}
{17} VERBP(PLURIPERS2) ------> WORO(IVER8P}:
{18} VERBP(PERS1) -----------> WORD("SVERBP):
{19} VERBP ------------------> WORO(IVEUP) S;

{20} WORD('NULL') -----------> NULL:
{21} WORD(E(SUP),tENDING) ---> I OUTPUT(IWORD) E:
{22} WORD ----------------·--> I OUTPUT(IWORO)[]

Figure 4·8: NLP Rules for Example

71

Therefore, Rule {5} is 1101 truly recursive. In fact, none of the rules of Figure 4-8 are, nor are they in Paul (as

can be seen in Appendix V).

That is not to say that augmented phrase structure rules can't be recursive. Consider the following rule.
SENT --> I I AM # VERY I LONG I SENT:

If this were the first rule of segment type SENT and a record of segment type SENT ever entered the stack.

this rule would be executed without ever halting, resulting in the output, I AM VERY LONG I AM VERY

LONG I AM VERY LONG I AM VERY ... It is only because the rules of Paul are carefully defined that such

types of recursion, and subtler versions where the recursion loops through several rules, are avoided.9

Figure 4-9 is a trace of the stack and rules that would be used in running this program. The stack is

intialized with the segment type SENT and the associated record Al. Al is the deep case structure for the

sentence, and contains all the semantic information needed for generation. Figure 4-10 shows the contents

(plists) of the records that would be created.

9 As a consequence of this restriction, certain left-branching sentences cannot be generated by Paul An example of such a sentence is
"John's cousin's friend's brother's neighbor knows Marvin Minsky."

72

RULE OUTPUT STACK
((SENT Al))

1 ((NP A2) (VP *l *) {.))
4 ((NOUN A2) {VP *I*)){.))
13 ((NOUNP A2) {VP *l *) {.))
16 ({WORD A2) (VP *I*)(.))
22 ((#) (OUfPUT A2) (VP *l *) (.))

((OUTPUT A2)(VP *!*)(.))
JOHN ((VP •1 •) (.)}

s ((VP •2•) (.))
6 ((VP *3*) (.))
7 ((VP *4*)(.))
8 ((VP •s•) {NP A3) (.))
9 ((VERB *5*) (NP A3) (.))
14 ((VERBP *6*) {NP A3) (.))
19 ((WORD *6*) (S) (NP A3) (.))
22 ((#) (OUfPUT *6*) (S) (NP A3) (.))

((OUfPUT *6*) (S) (NP AJ) (.))
BUY ((S) (NP A3) (.))
s ((NP A3) (.))

2 ((NP *7*) (.))
3 ((DETR *8*) (NP *9*) {.)}
11 ((WORD *10*) {NP *9*) (.))
22 ((#) (OUl'PUT *10*) (NP 419*) (.))

((OUTPUT *10*) (NP 419*) (.))
A ((NP *9*) (.))

4 ((NOUN *9*) (.))
13 {(NOUNP 419*) (.))
16 {(WORD 419•)(.))
22 ((#)(OUTPUT 419•) (.))

((OUTPUT 419*)(.))
KITE {(.))

Fi1ure 4·9: Trace of Control Stack for Example

•,:0- ,;, ~· ~· ~ ' ' l • ' •• " ,., " "'

73

------------:----------------------------------··----------------~--·----------

•t• (SUP BUYt AFF A3)
•2• (SUP BUYt AFF A3 SING T)
•3• (SUP BUYt AFF A3 SING T PERS3 T)
•4• (SUP BUYt AFF A3 SING T PERS3 T PRESENT T)
•5• (SUP BUYt SING T PERS3 T PRESENT T)
•e• (SUP BUY SING T PERS3 T PRESENT T)
•7• (SUP KITE INDEF T)
•a• (SUP KITE INDEF T)
•g• (SUP KITE INDEF T_ DETR T)
•to• (SUP A)

Figure 4· 10: Created Records for Example Sentence

These rules can be thought of as building a tree from the top down to achieve the proper syntactic

surface structure. Figure 4-11 shows the tree for our example sentence.

Because the generated tree has records containing additional information associated with the

appropriate nodes, augmented phrase structure rule systems are able to achieve indelibility [32, 34). That is,

once a decision has been made and a node is incorporated into the tree, it cannot be taken back. When a

decision point is arrived at and not enough information is available at the time to choose the proper path, one

of two approaches is commonly taken. The first is to arbitrarily choose one path over the others and proceed.

If this decision proves later on to be wrong, the steps taken since then are retraced to that decision point, and

another path is selected. This is known as backtracking. The other alternative is to explore all the paths

simultaneously, abandoning only those which prove to be dead ends, until finally one is discovered as the true

way. An indelible system is one that avoids both backtracking and parallel expansion by insuring that all the

necessary information is available at the time the decision has to be made.

Computationally, an indelible system is to be preferred. In memory considerations, an indelible system

is obviously more efficient than one that runs choices in parallel because competing paths do not have to be

maintained until the correct one is found. Indelible systems are also superior to backtracking systems in this

respect. Backtracking systems typically need to remember decision points and the options available at each

one. Furthermore, they need to remember the state they were in at each decision point, and must undo all

actions after the decision point when backtracking. The solutions to these problems require both memory and

computational time, while indelible systems avoid the problems altogether.

There are two chief reasons why Paul is able to maintain indelibility. The first is that its augmented

phrase structure rules generate trees augmented with records associated with each node. These records

contain important semantic information that cari be used during the decision process. Furthermore, since

74

-------------------.;. ___________________________________ ., ___ . _________ _ . .

(SENT Al)

(NP A2) (VP •t•) (.)

(NOUN A2) (VP •2•)

(NOUNP A2) (VP *3*)

(WORD A2) (VP *4*)

(#) (OUTPUT A2) {VP •s•) (NP A3)

JOHN {VERB *6*)

{VERBP *6*) {DETR *8*) (NP *9*)

(WORD •6•) {S) {WORD *10*)

{#) {OUTPUT *6*) S (#) {OUTPUT *10*) {NOUNP •9•)

II BUY ' A (WORD *9*)

(#) (OUTPUT •9•)

II KITE

Figure 4· 11: The Generated Tree

Paul is an utterance realization system. most of the difficult decisions are not of issue here. Paul does not have

to try to find a tree structure that will fit a given sentence, as do parsing systems. nor does it have to attempt

the selection and ordering of sentences to convey a desired message, as do utterance planning systems. and

these are where the ditllcult decisions tend to lie.

Additionally, Paul exhibits the constraint of locality (32, 34). Each decision can only make reference to

information which is local to it The system is not allowed to search through the existing tree for desired

---- --------

15

infonnation. Relevant infonnation must be explicitly passed on through local variables. A distinction between

the use of locality here and its use in the MUMBLE system [32] is that in MUMBLE, physical locality was

used, whereas in Paul. conceptual locality is used. Rather than using a node's position in a tree to detennine

what infonnation is local to it, Paul uses the records associated with the tree nodes. These records contain the

infonnation local to their nodes. Nodes that represent more general structures have a wider scope of locality.

For instance, the root node (representing the entire sentence) has all the semantic infonnation known about

the sentence local to it As an example, assume we wanted to have a rule for sentences starting with

subordinate clauses such that if the subject of the subordinate clause is the same as that for the main clause,

the element should be pronominalized in the subordinate clause.
Because .b.t doesn't like dogs, 8111 kicked Carol's puppy.

Because MUMBLE depends on physical locality, it could not perfonn this rule unless it was explicitly

stated to do so in the message. At the time the first reference to Bill is to be made in the subordinate clause,

only those items that are physically located near this node in the tree are accessible. The subject of the main

clause is not, and the decision whether to pronominalize based on this rule cannot be made. The only way

MUMBLE could perfonn this task would be if the message explicitly stated that the subject of the

subordinate clause were available for pronominalization. This would mean that the decision were no longer in

the utterance realization stage, but forced upon the utterance planning stage.

Paul. on the other hand, uses conceptual locality. Before the tree is split up into the subordinate clause

and the main clause, all the infonnation that is local to the abstract node representing the sentence is

available. This is true because the record representing the entire semantic infonnation for the sentence

already exists and is associated with this sentence node. (This would also be true with MUMBLE's message if

it weren't processed strictly sequentially.) Therefore, it is an easy matter to check the element that will become

the subject of the subordinate clause and compare it with that of the main clause. If they are the same, the

subordinate clause can be marked to pronominalize its subject, and the desired sentence will be generated.

Thus Paul is able to keep the decision within the realm of utterance realization.

The fact that Paul has semantic records associated with each of its nodes as it builds the tree allows the

system to avoid the necessity for the constraint-precedes stipulation that is required for MUMBLE. The

constraint-precedes stipulation dittates that the enumeration order of a sentence must be such that any

element that causes constraints on other elements must be realized first Paul doesn't require this because the

infonnation that such constraints exist is conceptually local to the node at the level where the decision has to

be made. Thus, the concept of indelibility is maintained without adding the burden of the constraint-precedes

stipulation.

I-----------

76

By followi~ the constraints of indelibility and locality, Paul also has the feature of running in bounded

time between each output token. The number of operations required on a record before it is realized by

surface output is fixed, and bears no relationship to the final length of the output sentence. In our above

example, each ruie can be applied only once to a record or its direct descendants. No looping occurs because

the rules were carefully defined to avoid recursion. Therefore, there is a maximum of 22 rules that can be

applied to any given record before it is realized into surface output This time bound, which is stronger than a

linear time constraint, IO reflects the intuition that the generation process should proceed at a constant rate.

In summary, the generation paradigm for Paul is a bounded time, left-right, top down generator using

an augmented phrase structure grammar. A surface structure tree is created of syntactic nodes with associated

records. These records provide conceptually local semantic information, and allow the process to be indelible

without the constraint of the constraint-precedes stipulation. This allows the process to proceed with a

bounded number of operations between each entry into the output stream that is independent of the length of

the final sentence.

1°'rhe linear time constraint states that the entire sentence must be processed within a time prq><>rtional to the length of the sentence.
Other than this, there is no restriction to the amount of time spent between the output of each token. The cUfference between linear time
and bounded time between each token is most evident on structures like left-branching sentences. The linear time system would have a
long period ootputting nothing, and then it would output the entire left-branching structure 11 once. The bounded time system would
output each token at a relatively steady rate.

77

5. An Example

To help make the ideas discussed so far more concrete, an example is provided. The following is an

actual example of text generated by Paul. In order to clearly demonstrate the system's ability at lexical

substitution, the text to be generated should contain numerous references to various entities, both animate

and inanimate. Therefore, Paul generates so-called children's stories, rather than something of more

immediate applicability, such as explanation generation for an expert system or business letter generation, as

was the original intention for Epistle. Unfortunately, these media generally do not offer the wealth of

references to entities that is desired. Business letters typically refer to only the author of the letter, the

recipient, the companies they respectively represent, and possibly some items sold by one or the other

company. Justifications for expert systems are obviously restricted to the domain of expertise for the system.

The explanations basically consist of causal links that form the knowledge of the system. Neither form of text

offers the opportunity to describe several entities in varying manners, the way children's stories do. Therefore,

the children's story is the most appropriate form of text for Paul to generate in order to demonstrate the full

extent of its capabilities in lexical substitution.

The example discussed here is one about characters from Walt Kelly's Pogo comic strips. Of the

characters mentioned in this example, Pogo is a male possum, Churchy is a male turtle, and Hepzibah is a

female skunk.

Figure 5· 1 contains the semantic representation for the example story to be generated, in the syntax of

NLP records. After this comes Figure 5-2, showing the example story generated by Paul without any le~

substitution. While the version of the story in Figure 5-2 would be unacceptable as the final product of a text

generator, it is shown here so that the reader can more easily understand the story represented semantically in

Figure 5-1.

Even though this story is without lexical substitution, some simple forms of cohesion are exhibited.

Because synonym substitution is not one of Paul's options for lexical substitution, the system uses synonyms

throughout generation. This is demonstrated in the first two sentences. Note in Figure 5-1 that while the first

two sentences of the story have the same primitive action as their heads ('like' in records al and bl), they are

realized by different words, "cares for" in the first sentence, and "likes" in the second sentence. This also

shows that Paul takes advantage of the fact that synonyms exist in all parts of speech, not just for nouns.

Additionally, when two consecutive sentences have the same primitive action as their heads, the system checks

to see if any of the thematic roles, agent, affected, recipient, and attribute, are filled by the same entity. If any

are, the word "too" is appended to the end of the second sentence, as the example demonstrates.

-----------~----------------- ---------------

78

--· ---. --.. -----------------.... .._.. --------------------------------------...... ---------·--------
al ('like',exp: = 'a2',recip: = 'a3',stative);
a2 ('pogo');
a3 ('hepzibah');

bl ('like',exp: = 'b2',recip: = 'a3',stative);
b2 ('churchy');

cl ('give',agnt: = 'a2',aff: = 'c2',recip: = 'a3',active,effect: = 'c3');
c2 ('rose');
c3 ('enjoy\',recip: = 'a3',stative);

dl ('want\',exp: = 'a3',recip: = 'd2',neg,stative);
d2 ('rose',possess: = 'b2');

el ('b2',char: = 'jealous',entity);

fl ('hit\',agnt: = 'b2',aff: = 'a2',active);

gl ('give',agnt: = 'b2',aff: = 'g2',recip: = 'a3',active);
g2 ('rose');

hl ('drop\',exp: = 'h2',stative);
h2 ('petal',partof: = 'g2',plur);

il ('upset\',recip: = 'a3',cause: = 'hl',stative);

jl ('cry\',agnt: = 'a3',active)[]

Figure 5"1: NLP Records for Example Story

----------·----------,.·--·---------------------------------
POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES
A ROSE TO HEPZIBAH, WHICH PLEASES HEPZIBAH. HFPZIBAH OOES NOT
WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY HITS POGO.
CHURCHY GIVES A ROSE TO HEPZIBAH. PETALS DROP OFF. THIS UPSETS
HEPZIBAR HEPZIBAH CRIES.

Figure 5-2: Example Story without Lexical Substitution

Figure 5-3 is the story generated with pronoun substitution indiscriminately perfonned, and Figure S-4

is the same with superordinate substitution. Just as with Figure 5-2, these versions are not acceptable text, and

should not be mistaken to be the final output of Paul. Rather, they are presented here to dramatize the effects

uncontrolled lexical substitution can have.

----r--- - - -----

79

POGO LIKES HEPZIBAH. CHURCHY CARES FOR HER, TOO. HE GIVES A ROSE
TO HER, WHICH PLEASES HER. SHE DOES NOT WANT HIS ROSE. HE IS
JEALOUS. HE SLUGS HIM. HE GIVES A ROSE TO HER. PETALS DROP OFF.
THIS UPSETS HER. SHE CRIES.

Figure 5-3: Example Story with Uncontrolled Pronoun Substitution

POGO LIKES HEPZIBAH. CHURCHY CARES FOR THE FEMALE ANIMAL, TOO.
THE POSSUM GIVES A ROSE TO THE SKUNK, WHICH PLEASES THE BLACK
MAMMAL. THE BLACK ANIMAL DOES NOT WANT THE REPI'ILE'S ROSE. TIIE
TURTLE IS JEALOUS. THE SCALED ANIMAL PUNCHES THE MALE MAMMAL
THE REPTILE GIVES A ROSE TO THE SKUNK. PETALS FALL OFF. THIS
UPSETS THE FEMALE MAMMAL. THE BLACK ANIMAL WEEPS.

Figure 5-4: Example Story with Uncontrolled Superordinate Substitution

For superordinate substitution, Paul assumes that its hierarchical database about the characters is

common knowledge. Since this might not be true for all readers in this case, Figure 5·5 gives the pertinent

information.

Once the system has determined that a superordinate substitution is to be made, several tasks must be

accomplished. First of all, the superordinate must be selected for the referent Paul searches up the

hierarchical chain from the original record, making a list of all the records that are encountered along the way.

For most types of entities, the chain stops with the record THING. However, this is not always the

appropriate place to stop. Often going that far will produce superordinate substitutions that will sound

insulting. For instance, referring to one's brother as "the boy" is not the same as referring to him as "the

animal" or "the thing." The distinction seems to be that important attributes are lost with the last two, leaving

the reader with the impression that these attributes are not to be found in the brother. The distinguishing

attribute in the Pogo World is intelligence, and it is assumed that all animals in this world are indeed

intelligent. Therefore, when going through the hierarchical chain, Paul will not go past the last attribute that

has or can inherit the intelligence attribute.

After the list of acceptable superordinates has been created, one is selected randomly. Now Paul checks

this superordinate against the other entities that have been used to date in the text If none of the other

entities are members of this superordinate set, or superset [131 the reference is unambiguous as it stands, and

,. "'I Hi>' 'lo' oH ~· " ' ·' ,, •' o ~· i 1> f' ~· ~· < ;, "-' ~! "'I , '' ' •• •> •' ·• '' -

80

-----··--------------·---·.--·----------
ANIMAL

MAMMAL REPTILE

POSSUM SKUNK TURTLE

POGO HEPZIBAH CHURCHY

1. POGO IS A MALE POSSUM.

2. HEPZIBAH IS A FEMALE SKUNK.

3. CHURCHY IS A MALE TURTLE.

4. POSSUMS ARE SMALL, GREY MAMMALS.

5. SKUNKS ARE SMALL, BLACK MAMMALS.

6. TURTLES ARE SMALL, GREEN REPTILES.

7. MAMMALS ARE FURRY ANIMALS.

8. REPTILES ARE SCALED ANIMALS.

Figure 5-5: The World in which the Example Story F.xists

it is generated without modification. The first clause in the third sentence of Figure 5-4, THE POSSUM

GIVES A ROSE TO THE SKUNK ... , is an example of this. Since this world contains only one possum, J>Oso,
and only one skunk, Hepzibah, these superordinates can only refer to them, and Paul has generated them

with no attempt to further disambiguate them.

However, if it turns out that entities other than the focal point being replaced are members of the

chosen superset, the substitution must be modified to disambiguate the reference. Paul achieves this by

selecting a physical attribute of the entity to be used as a modifier of the superordinate. The physical

attributes that Paul looks for in the Pogo World are gender, color, size, and skin (furry, scaled, or feathered).

-" -- ..• ~·

81

One of these attributes is randomly selected, and the focal point's inherited value for this attribute is

generated as an adjective before the superordinate. The second phrase of the third sentence in Figure 5·4,

... WHICH PLEASES THE BLACK MAMMAL is an example of this. After MAMMAL has been selected

as a superordinate substitution for Hepzibah, the system checked the remaining entities mentioned in the

discourse so far. These were Pogo, Churchy, and a rose. Of the three, Pogo is a member of the Mammal

superset, so the reference must be made unambiguous. The color attribute is randomly selected, and

Hepzibah inherits the value black for this attribute. The system then generates the modified, and now

unambiguous, noun phrase.

There is a problem, though, in that the attribute selected may not disambiguate the superordinate. For

instance, what would have happened if, instead of selecting color as the disambiguating attribute, the system

had chosen size? Rather than generating THE BLACK MAMMAL. the phrase THE SMALL MAMMAL

would have been produced. Since Pogo is small, he is also a small mammal, and the modifying attribute has

done nothing to disambiguate the superordinate. Similarly, a choice of skin as the modifying attribute would

have led to the generation of THE FURRY MAMMAL, which is not only still ambiguous, but redundant,

since in this world all mammals are furry. Paul avoids this problem by testing the inherited value for the

selected attribute before generating it If any of the previously mentioned entities that are members of the

superset have the same value, this attribute is rejected, and another one is selected. This insures that the final

result will be an unambiguous superordinate substitution.

Figure 5·6 is the example story without any lexical substitution again, but with each sentence's focus or

expected focus list, obtained through the use of the Sidner algori~ Now we are ready to follow Paul in the

generation of this story with lexical substitution.

We start by initializing all the control variables to NIL. Then the first sentence is generated. Because

there are no previously generated references, there can be no focal points, and the sentence Pogo cam for

Hepzibah. is out put Additionally, the relevant facts about these references are stored, as shown in Figure S-7.

When the next sentence is generated, the first noun phrase encountered is Churchy. Since this is not a

member of the list of noun phrases mentioned in the text, it is not a focal point, and not subject to lexical

substitution. When the system comes to Hepzibah, however, we do have a focal point, since Hepzibah is a

member of the MENTIONED IN THE TEXT list, and Paul must detennine the class of this focal point

Since Hepzibah is the last female to have been mentioned within an acceptable distance, the focal point is

aass I. (Note that because Hepzibah was also the focus of the previous sentence, this would also make it a

aass I focal point) Therefore, a pronoun Sl!bstitution is required.

~-- ----~-, -------------- ------

82

--·---
1. POGO LIKES HEPZIBAH.

expected focus list: "Hepzibah': "Pogo"

2. CHURCHY LIKES HEPZIBAH, TOO.

expected focus list: "Hepzibah': "Churchy"

3. POGO GIVES A ROSE TO HEPZIBAH,

expected focus list: "a rose': "Hepzibah': "Pogo"

4. WHICH PLEASES HEPZIBAH.

expected focus list: "Hepzibah': "Pogo gives a rose to Hepzibah"

5. HEPZIBAH DOES NOT WANT CHURCHY'S ROSE.

expected focus list: "Churchy's rose': "Hepzibah"

6. CHURCHY IS JEALOUS.

focus: "Churchy"

7. CHURCHY HITS POGO.

expected focus list: "Pogo", "Churchy"

8. CHURCHY GIVES A ROSE TO HEPZIBAH.

expected focus list: "a rose': "Hepzibah': "Churchy"

9. PETALS FALL OFF.

focus: ''petals"

10. THIS UPSETS HEPZIBAH.

expected focus list: "Hepzibah", "Petalsfall off."

11. HEPZIBAH CRIES.

focus: "Hepzibah"

Figure 5-6: Expected Focus Lists

With the third sentence, we have have three entities, Pogo, Hepzibah, and a rose, which we will refer to

as rose/. Of these, Pogo and Hepzibah are focal points. Hepzibah is still the only female mentioned within two

sentences, and is still the focal point of the previous sentence, so it is still a Om I focal point, subject to

pronominalization. Pogo, however, is neither of these, and is not Oass I. Nor was it the last male mentioned,

so the focal point is not Oass II. Similarly, Pogo fails the criteria for Oass Ill, leaving us with Oass IV, and

allowing only a definite noun phrase to be generated In the case of proper nouns, they already are definite

. ; . ; .. ~' -.) '""' " ,. •· " ~ ' " ...)' ~· , .

83

SENTENCE GENERATED: POGO CARES FOR HEPZIBAH.

LAST MALES: POGO NIL
LAST NEUTERS: NIL NIL

AGENT: POGO
RECIPIENT: HEPZIBA.H

FOCUS: HEPZIBAH

LAST FEMALES: HEPZI BAH NIL
LAST PLURALS: NIL NIL

AFFECTED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: NIL
MENTIONED THIS SENTENCE: POGO HEPZIBA.H

MENTIONED IN THE TEXT: POGO HEPZIBA.H
Figure 5-7: Control Variables After First Sentence

SENTENCE GENERATED: CHURCHY LIKES HER, TOO.

LAST MALES: CHURCHY POGO
LAST NEUTERS: NIL NIL

AGENT: CHURCHY
RECIPIENT: HEPZIBA.H

FOCUS: HEPZIBA.H

LAST FEMALES: HEPZIBAH HEPZIBA.H
LAST PLURALS: NIL NIL

AFFECTED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: POGO HEPZIBA.H
MENTIONED THIS SENTENCE: CHU RC HY HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY

Figure 5-8: Control Variables After Second Sentence

84

noun phrases, so ''.Pogo" is simply generated .

. ---·-·--
SENTENCE GENERATED: POGO GIVES A ROSE TO HER,

LAST MALES: POGO CHURCHY
LAST NEUTERS: ROSEi NIL

AGENT: POGO
RECIPIENT: HEPZ/BAH

FOCUS: ROSEi

LAST FEMALES: HEPZIBAH HEPZ/BA.H
LAST PLURALS: N/LNIL

AFFECfED: ROSEi
ATIRIBUI'E: Nil

MENTIONED LAST SENTENCE: CHURCHY HEPZIBA.H
MENTIONED THIS SENTENCE: POGO ROSEi HEPZIBA.H

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSEi

Figure 5-9: Control Variables After Third Sentence

The second clause of this sentence (which for our purposes constitutes a distinct sentence) starts with a

relative pronoun. When a record has an effect attribute (such as cl in Figure S· l) which is itself another clause

(such as c3 in Figure S· l), the second clause is generated as a relative clause, and fte result is in Figure S-10.

The details of the next few sentences are similar enough that it would be worth our while to skip

forward a bit to the ninth sentence. The only entity mentioned in this sentence is petals, which have not yet

been mentioned in the discourse. However, if we look at record hl in Figure S· l. we see that these petals are

part of the rose from sentence 8. Therefore, we are not really referring to a new entity, but rather a part of an

old one, and.our generated text should make this clear. We actually do have a focal point, even though the

entity is not on the MENTIONED IN THE TEXT list after the previous sentence. In order to determine if an

entity is a Oass V focal point, Paul checks each member of the MENTIONED IN THE TEXT lisL If the item

is a part of one of the members, we genuinely do have a Class V focal point If not. then we simply have an

item that is being mentioned for the first time, and it can be treated in the usual fashion. Figure S· 11

demonstrates how the aass v focal point was handled in this specific example.

""~'"''"' .. '·f"l;j"•I. ,,, J••·~·••' ~'"'~,~ .;,.. "'':.'H'•~~f •''" .,,,_,_., .. ,., .. i ,,.,, ,,.,_, . .,, ... ~t-'OJ·,.• .• ,~••·•••l·~•·H-1,,~,. •.. ,;i:.j.o<,,.•>~l .. <•-~; •. , . ._,_.~,.,.,,;.,.,. ~,~,.~.,·~·<>•!•• .. l""l"••••~ll->~

r ----------

85

--------------------~--:"""---·----------

SENTENCE GENERATED: WHICH PLEASES HER.

LAST MALES: NIL POGO
LAST NEUTERS: NIL ROSE/

AGENf:NIL
RECIPIENf: HEPZIBAH

FOCUS: HEPZIBAH

LAST FEMALES: HEPZIBAH HEPZIBAH
LAST PLURALS: NIL NIL

AFFECTED: NIL
ATIRIBUTE: NIL

MENTIONED LAST SENTENCE: POGO ROSEi HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE/

Figure 5· 10: Control Variables After Fourth Sentence

SENfENCE GENERATED: THE PETALS DROP OFF.

LAST MALES: NIL CHURCHY
LAST NEUTERS: NIL ROSE3

AGENf: PET A.LS
RECIPIENT: NIL

FOCUS: PEI' ALS

LAST FEMALES: NIL HEPZIBAH
LAST PLURALS: PETALS NIL

AFFECTED: NIL
ATIRIBUTE: NIL

MENTIONED LAST SENfENCE: CHURCHY ROSE3 HEPZIBAH
MENTIONED THIS SENTENCE: PETALS

MENTIONED IN THE TEXT:
POGO HEPZIBAH CHURCHYROSEJ ROSE2 ROSE3 PETALS

Fi1ure S-11: Control Variables After Ninth Sentence

--------------------- ------------

86

This should be sufficient to provide the reader with an understanding of how lexical substitution is

controlled in Paul. The "snapshots" of the control variables after each sentence can be found in Appendix II.

The final complete text for t11is story is:

POGO CARES FOR HFP/InAH. CHURCHY LIKES HER, TOO. POGO GIVES A
ROSE TO HER. WHICII Pl.EASES HER. SI-IF DOES NOT WANT CHURCHY'S ROSE.
HE JS JEALOUS. HE PUNCHES POGO. HE GIVES A ROSE TO HEPZIBAH.
THE PETALS FALL OFF. THIS UPSETS HER. SHE CRIES.

Appendix III contains additional examples of text generated by Paul.

87

6. Related Work

While natural language processing has been a subject of investigation for decades, text generation has

only recently enjoyed serious research endeavors [30]. That is not to say that work in text generation did not

exist before a few years ago. In 1969, Harper and Su reported a system that composed paragraphs in Russian

on topics in the domain of physics [12). The system was designed to demonstrate the development of the

chosen theme and exhibit cohesion between the generated sentences. All this was achieved with the random

selection of constituents.

The system first randomly chooses a syntactic sentence pattern which has restrictions as to what can

appear in each of its slots. Then based on those restrictions, words of the proper syntactic categories are

randomly selected to fill the slots and create a sentence. The weights of elements for future random selections

(both sentence patterns and words) are altered based on previous selections. This way, the system favors

constructions that the authors feel reflect development of theme and cohesion between the sentences. The

words for this system are arranged into syntactic classes. Additionally, some semantic information is stored in

that each word entry has pointers to other words that are synonyms, antonyms, and superordinates.

An important shortcoming of this system is that it has no semantic representation of what has been or

should be said. After randomly selecting a sentence pattern. words are randomly selected and fitted into this

pattern. Cohesion is attempted by weighting random selections to favor those words and constructions that

seem to provide reference preference, and style isn't considered at all. While the system's dictionary is

arranged in a superordinate hierarchy, the semantic information the dictionary contains is very limited and

inadequate. The entries consist of the words themselves, rather than the conceptual actions and objects these

words represent. This approach violates almost all of the six criteria for natural language generation. While it

is an important first step in the field, it is impractical for further development

The HAM-RPM system [44) is an interesting advance in natural language generation. HAM-RPM was

designed to be a question-answer system about visible scenes. Given an appropriate internal representation of

some scene, its objects, and their spatial relationships to each other, HAM-RPM will answer questions about

this scene. For its generation component, the research emphasis was on noun phrase generation, specifically,

the generation of noun phrases that would not be ambiguous to a human witntSing the scene.

HAM-RPM was designed to give single sentence responses to queries. Therefore, most of the issues of

cohesion generally don't apply to the problem the system addresses. What cohesion it did express was only for

noun phrases, and was heavily based on spatial relationships, which is part of exophoric reference. However,

exophoric reference can only be used in conversational applications, where both parties are present and

88

witnessing the S3J11e scene. In a context such as business letters or medical diagnosis based on test results,

exophoric reference cannot be used, and endophoric reference [11] must be used to achieve cohesion. HAM·

RPM is an interesting system, but it addressed a problem that is significantly different from the problem Paul

attempts to address, and the approach ofHAM·RPM is incompatible with Paul.

Since HAM-RPM, Jameson and Wahlster have reported the development of HAM-ANS [18], a

dialogue system designed to employ a user model in anaphora generation. The system is a question/answering

system in which the program plays the part of a hotel clerk answering questions about available rooms. In

order to make the responses seem more natural, a capability for anaphora in the form of ellipsis and definite

description has been incorporated into the system. Before an elliptic response is generated, the proposed

answer is passed back to the system's parser by what is known as an afllicipalionfeedback loop. If the response

can be unambiguously parsed, it is actually given as output If, however, the response proves to be ambiguous,

a less elliptic response is created and fed to the feedback loop. This way, the system ensures that the user will

not be confused by ambiguous answers. The generation of definite description is based on both the

occurrence of previous references to the object in question, and a desire of the system (in its role as hotel

clerk) to describe the available room to the user (in her role as potential customer) in a manner designed to

maximize the apparent desirability of the room, based on the system's model of the particular user.

HAM-ANS is once again a strictly conversational language generator. The ellipsis it employs is not one

designed to avoid tedious repetition, as is proposed by the syntactic transformation of Equi NP Deletion [I).

Rather, this ellipsis reflects the natural tendency of people to use incomplete, though acceptable and

unambiguous, sentences. The use of definite description that the system demonstrates also does not have

cohesion as its main goal. The user model gives the system a basis in order to describe hotel rooms in the best

possible light according to a specific user model. Instead of trying to be completely clear and unambiguous,

the system will often use a definite description where one isn't appropriate or deliberately not use one where

it should be so that the user can be misled without the system actually lying. Of course, this is not a linguistic

phenomenon, but a PsYchological one that employs language.

CES (26) is another system that attempted some cohesion in generation. CES recognized that text

generation consists of the two subtasks mentioned above, and the authors chose to concentrate mainly on the

first one of utterance planning. The system works very hard at determining the minimum that is required to

be said and still be unambiguously clear. This is achieved by giving the system a representation of the context

in which a single sentence is to be generated. While only single sentences are being generated, by being in a

context the sentences can exhibit cohesion suitable for that context

" • • ~ "'' ' ' i • • ' ' ' ' ' ' ' . • .. ' • , ' j • ' 'I ' • • < • " ' , ·, ' "1- . .

-----,-------------

89

Unfortunately, the only cohesive devices that were explored at all were pronominalization and ellipsis.

While context is used to achieve some cohesion, no stylistic considerations are made. Furthermore, the system

has been only partially implemented.

The GEN system (22] divides text generation into three subtasks. The first is to create the knowledge

structures representing what is to be said. (Katz calls these structures kernel phrase markers.) The second is to

determine which linguistic transformations [1] are to be performed on the kernels, based on syntactic and

thematic considerations. The final step, which is the one GEN is designed to perform, is to perform the

transformations specified in the second step and translate the transformed kernel phrase markers into the

target natural language. It is assumed that all semantic and pragmatic knowledge is represented as a set of

frames.

Because GEN is heavily based on the syntactic aspects of transformational grammar, it exhibits all the

limitations of this approach to linguistics. Transformational grammar is designed to take as input a syntactic

tree, representing the deep structure of a sentence, to perform syntactic transformations on this tree, and

translate the transformed tree into a surface sentence. This is exactly the approach GEN takes. Therefore,

little semantic knowledge is incorporated. Cohesion is shown only through the use of pronouns, and only one

rule of pronominalization is employed.

Another system based on transformational grammar is the transformational generator <Jescribed in [2).

Designed to generate examples of good English as an aid in teaching the deaf and learners of English as a

second language, the generator is divided into three parts. First, a set of context free rules, called the ~

component, creates a tree structure. A transformer then applies transformational rules to the trees to derive a

surface tree. A multilevel control mechanism helps constrain the tasks of the other two components. A

dictionary and semantic network prevent the generation of syntactically correct but semantically meaningle§

sentences, such as "Colorless green ideas sleep furiously."

As with GEN, the transformational generator has severe limitations in semantic applications. The

emphasis on this work is in generating grammatically correct English sentences, and the semantic meaning

behind those sentences is completely ignored. Furthermore, isolated sentences are once again being

generated. so the problems of cohesion and style, which are more important for multisentential text, have not

been addressed.

The X_PLAIN system [43] proposed a solution to a significant problem to text generation as it is applied

to expert systems. It has long been recognized that expert systems must be able to explain their conclusions

and how these conclusions were derived. However, XPLAIN realized that in addition, expert systems need to

90

justify their methods for arriving at their conclusions, rather than merely giving these methods as an

explanation. This was achieved by having the system generate its own rules and then applying those rules to

specific cases. In essence, in addition to knowing what to do in a given situation, XPLAIN knows why it

should be done.

Swartout states that the focus of)\PLAIN is in utterance planning based on the information the system

has behind its rule base creation, although some cohesive devices are used in the system. Relative clauses can

be created to describe causal chains. However, these devices are used only in specific circumstances in a very

ad hoc manner. Style is addressed to some extent in that the system is able to generate explanations at

different levels of complexity. But this is done strictly by first generating different knowledge structures at

different levels of complexity. Once the structures are created, no further consideration is given to the impact

of vocabulary selection on style.

KDS [28, 29) is a recent system that proposes a new paradigm for natural language generation. This

approach, called the fragment-and-compose paradigm, takes a semantic data structure, fragments it into little

pieces, each of which could represent a simple sentence, and composes full sentences and paragraphs from

these pieces. The system selects from all the myriad ways of expressing a concept by creating each of the

possible abstract representations (which the authors call protosentences), and evaluating each one. Eventually,

a final set of protosentences is created and fed to a generator. The generator produces sentences one at a time

with very little consideration of the previously produced sentences.

Obviously, the center of research for KDS is utterance planning, and once again the authors admit little

work in utterance realization. Some cohesion is achieved through pronouns and incomplete descriptions. but

the possibilities have not been fully explored While one of the modules of KDS is responsible for selecting a

text presentation style and organizing the fragmented pieces into a text content consistent with the selected

style, no consideration is given to style during the actual generation.

One system that addressed the problems of utterance realization is the MUMBLE system (32, 34).

MUMBLE again divides the natural language task into two separate subtasks. An expert program, known as

the speaker, performs the subtask of utterance planning by creating messages representing what needs to be

said, and the generator, consisting of a dictionary and a linguistic component, turns these sentences into surface

English. The representation of these messages should be determined by the speaker, not the linguistic

component. The linguistic component should be able to accept and process messages in the representation

that is most natural for the domain of the speaker, rather than dictating an arbitrary representation for all

speakers in all domains. The dictionary is. the component that contains the knowledge for translating the

domain specific representation into English, and therefore each representation must have its own compiled

---·-~------------

91

dictionary. This ~heme allows the generator to be driven by the goals of the speaker, rather than by the

structure of the grammar. The speaker is able to state explicit goals (such as emphasizing a specific point or

contrasting two items) in its messages, and the linguistic component is driven to achieve these goals.

Additionally, MUMBLE exhibits several constraints included to provide both efficiency in generation and a

theory that was grounded on psycholinguistically plausible hypotheses. These constraints include indelibility,

locality, and running in bounded time, as they have been discussed in Chapter 4.

The chief emphasis of MUMBLE was the idea of driving the linguistic component by the explicitly

stated goals of the expert system speaker. Cohesive devices were used as one of the means for achieving these

goals, but they were not the central issue of the work. Nor were they used to specifically perform the two

major tasks of cohesive devices, the avoidance of boring redundancy and the distinction of new information

from old. Furthermore, no theory was offered to provide control over the use of cohesive devices such as

lexical substitution.

The differences between MUMBLE and Paul concerning their uses of computational constraints have

already been discussed in Chapter 4. To briefly recap, by using an augmented phrase rule grammar, Paul is

able to maintain the constraints of indclibility and locality. Furthermore, the notion of locality has been

extended to define locality as conceptual instead of physical This, with the proper use of augmented phrase

structure rules, frees Paul from some of the limitations exhibited. in MUMBLE, such as the constraint

precedes stipulation.

A recent system that made significant progress towards fulfilling the six criteria for natural language

generation is TEXT [35). In this work, the language generation process is again divided into the utterance

planning and the utterance realization tasks. TEXT addresses the problems of what to say and how to

organize it effectively, using the principles of discourse structure, discourse coherency, and relevancy criteria.

The system was developed to respond to data base queries. Once a question is received, a relevant knowledge

pool is constructed. This is a subset of the data base and contains all the information that can be included in

the response. Next a schema is selected, based on the type of question and the information in the relevant

knowledge pool. The schema dictates the structure of the response, and is used to determine the order in

which the sentences are to be generated. Finally, focus is used to obtain an overall coherency in the generated

text

A significant difference between TEXT and Paul is their use of focus. TEXT uses focus for coherency in

text, making the text seem to have a logical flow in it Paul uses focus with other factors to achieve

cohesiveness in the text, making the sentences of the text to be interconnected and part of a larger unit

Furthermore, the emphasis on TEXT is again in utterance planning and the problems of that realm. Cohesive

92

devices such as l~xical substitution are used to achieve the goals of the specific schema and the general.ones of

controlling focus. The utterance realization aspects of cohesion, of avoiding redundancy and marking of new

information through the controlled use oflexical substitution, are not discussed.

In conclusion, none of the above systems addresses all six of the criteria necessary for good natural

language generation. This is true because for the most part these systems have focused on utterance planning

rather than on utterance realization and the problems associated with this task. In particular, none of these

systems address the problem of cohesion in a methodical manner. As we have seen, Paul is a system that

specifically addresses the utterance realization problem of cohesion by presenting an orderly approach to

lexical substitution.

, '' 1• >~ .,., f' ~l- 'Ii -!, ~ ~. '• ,_ •• ~· H e ~· l ·• ;;.< ~ •· , -> ''

93

7. Conclusions

7.1. Contributions of Paul

Paul is one of the few text generation systems designed specifically to address issues of utterance

realization. As such, several advances in the field were made with this work.

1. This is the first system to perform a full range of lexical substitutions. No other existing system
offers synonymous substitution, superordinate substitution, pronominalization, and definite noun
phrases. This was achieved by identifying the minimal features of the elements, and determining
the least amount of information required to generate unambiguous references.

2. Paul is the first system that offers a theory for controlling the selection of lexical substitutions.
This theory identifies five classes of potential antecedence, and associates a strength of
antecedence recovery with each type of lexical substitution. Paul is capable of determining the
potential antecedence class for each element in the discourse, and selecting the appropriate lexical
substitution based on this class.

3. Paul is able to use these lexical substitutions to generate cohesive text Specifically, Paul avoids
unnecessary repetition and marks old information from new by the judicious application of lexical
substitutions. These functions are required before a passage can be recognized as text

4. Paul uses augmented phrase structure rules to achieve indelibility in generation. By associating
records of semantic information with each node in the syntactic structure tree as it is being
created, decisions can be confidently made that would otherwise require backtracking or
expansion in parallel

5. Augmented phrase structure rules are also used in Paul to fulfill the constraint of conceptual
locality. In order to avoid searches throughout the entii'e syntactic structure tree (which might not
completely exist at the time of the search), the locality constraint dictates that a decision at a node
can only use information local to that node. But rather than defining local information as that
physically near in the tree, Paul defines local information conceptually, through the use of the
semantic rec0rds associated with each node. This way, locality is achieved without further
constraints.

6. Paul is able to run in bounded time. There are a fixed number of steps that will be taken before
the next word is generated. This was achieved because Paul is indelible and follows the locality
constraint, while avoiding recursive rules through careful application of condition and creation
specifications.

7.2. Limitations of Paul

No program can do everything, and Paul is certainly no exception to this rule. There are several

·limitations exhibited in Paul

1. Paul performs utterance realization only. It is completely incapable of performing utterance
planning tasks. The system takes semantic records of what to say as input Currently these records
have to be created by hand.

' · I• '• ~.. , ,., • <> •, '1 I.

94

2. Of the many cohesive devices discussed in this report, Paul only perfonns those of lexical
substitution. Ellipsis, conjunction, reference and substitution are beyond the ken of this system.

3. Paul assumes an endophoric context when selecting cohesive devices. The system cannot correctly
generate exophoric references. It cannot talk about its world.

4. The system does not have a user model of the reader's knowledge and beliefs. Paul currently
assumes that the user knows what it knows, that the facts in its data base are common knowledge.

7.3. Future Research

1. One important issue not addressed in Paul is the question of style. F.specially when the
applications of text generators move toward more serious fields, such as expert systems
explanations and justifications, and business correspondence, it will be necessary to be able to vary
the style and mood of the text being generated. As we have seen with general nouns, lexical
substitution can have a very great impact on the style, and maintaining a specific style will add
unexplored constraints on the lexical substitution selection process.

2. As we have stated above, the theory used for controlling lexical substitution in Paul has been
applied only to lexical substitution. It remains to be seen if this theory can be extended to control
the selection of other cohesive devices, and whether a general theory can be found to control all
cohesive devices. This extension would hopefully include exophoric reference. This would require
the program having a sense of the "world" it "exists" in.

3. Paul only generates texts of single paragraph size, and the cohesive devices discussed apply to
binding sentences together within that paragraph. The issues of multi-paragraph text generation
remain to be researched. Are the cohesive devices that tie sentences together be used to associate
paragraphs? Are there other cohesive devices that are used only to bind paragraphs? Do
paragraphs have an ordered surface structure, the way sentences have? These questions remain to
be answered.

In conclusion, the field of text generation, and especially the branch dealing with utterance realiz.ation,

is rich with interesting topics to explore. With the growing necessity for expert systems to be able to explain

themselves, and the increasing demand for programs with human factor considerations, the need for good text

generators is one of the most dynamically expanding fields of artificial intelligence.

95

APPENl)IX I

from Alice's Adrcntures in Wonderland by Lewis Carroll

96

The White l,labbit put on his spectacles. 'Where shall I begin, please your Majesty?' he asked.

'Begin at the beginning,' the King said, very gravely, 'and go on till you come to the end: then stop.'

There was a dead silence in the court, whilst the White rabbit read out these verses:

'They told me you had been to her,
And mentioned me to him:

She gave me a good character,
But said I could not swim.

He sent them word I had not gone
(We know it to be true):

If she should push the matter on,
What would become of you?

I gave her one, they gave him two,
You gave us three or more;

They all returned from him to you,
Though they were mine before.

lfl or she should chance to be
Involved in this affair,

He trusts to you to set them free,
Exactly as we were.

My notion was that you had been
(Before she had this fit)

An obstacle that came between
Him, and ourselves. and iL

Don't let him know she liked them best,
For this must ever be

A secret, kept from all the rest,
Between yourself and me.'

That's the most important piece of evidence we've heard yet,' said the King, rubbing his hands ...

• ----· '"' .. '. - " ~.l " •• "' ,, ,, .. • . • ., " ,,., " 4l •• , 1 q ,. ' Appendix J .. , .. « ~. ,f H '" f't rl H ;, • ., o >I >, ;; •'- ~,. '" ., "' ,· " ,., ·,1• «-• n ~

---------------r---------~----

97

Appendix II

Trace of Control Variables for the Example Story

98

SENTENCE GENERATED: POGO CARES FOR HEPZIBAH.

LAST MALES: POGO NIL
LAST NEUTERS: NILNIL

AGENf: POGO
RECIPIENT: HEPZIBAH

FOCUS: HEPZIBAH

LAST FEMALES: HEPZIBAH NIL
LAST PLURALS: NIL NIL

AFFECfED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: NIL
MENTIONED THIS SENfENCE: POGO HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH

Control Variables After First Sentence

SENTENCE GENERATED: CHURCHY LIKES HER, TOO.

LAST MALES: CHURCHY POGO
LASTNEUTERS: NIL NIL

AGENf: CHURCHY
RECIPIENT: HEPZIBAH

FOCUS: HEPZIBAH

LAST FEMALES: HEPZ/BAH HEPZIBAH
LAST PLURALS: NIL NIL

AFFECfED: NIL
ATTRIBUTE: NIL

MENfIONED LAST SENfENCE: POGO HEPZIBAH
MENTIONED THIS SENTENCE: CHURCHY HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY

Control Variables After Second Sentence

Appendix II

99

SENTENCE GENERATED: POGO GIVF.S A ROSE TO HER.

LAST MALES: POGO CHURCHY
LAST NEUTERS: ROSE/ NIL

AGENf:POGO
RECIPIENT: HEPZIBAH

FOCUS: ROSEi

LAST FEMALES: HEPZ/BAH HEPZIBAH
LAST PLURALS: NIL NIL

AFFECTED: ROSEi
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: CHURCHY HEPZIBAH
MENTIONED THIS SENTENCE: POGO ROSEi HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSEi

Control Variables After Third Sentence

SENTENCE GENERA TED: WHICH PLEASFS HER.

LAST MALES: NIL POGO
LAST NEUTERS: NIL ROSEi

AGENf:N/L
RECIPIENT: HEPZIBAH

FOCUS: HEPZIBAH

LAST FEMALES: HEPZIBAH HEPZIBAH
LAST PLURALS: NIL NIL

AFFECTED: NIL
ATIRIBUTE: NIL

MENTIONED LAST SENTENCE: POGO ROSEi HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE/

Control Variables After Fourth Sentence

.... ~ . ~. ,, ... ;; ~. . •' ~, ~· ' ~· •' "' ,; AppendixU .. · ·

---·- ------------------

100

SENTENCE GENERATED: SHE DOES NOT WANT CHURCHY'S ROSE.

LAST MALES: CHURCHY NIL
LAST NEUTERS: ROSE2 NIL

AGENT: HEPZIBAH
RECIPIENT: ROSE1

FOCUS: ROSE1

LAST FEMALES: HEPZIBAH HEPZIBAH
LAST PLURALS: NIL NIL

AFFECTED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH ROSE2 CHURCHY

MENTIONED IN THE TEXT: POGO HEPZIBAH CHU RC HY ROSE/ ROSE1

Control Variables After Fifth Sentence

SENTENCE GENERA TED: HE IS JEALOUS.

LAST MALES: CHU RC HY CHURCHY
LAST NEUTERS: NIL ROSE1

AGENT: CHURCHY
RECIPIENT: NIL

FOCUS: CHURCHY

LAST FEMALES: NIL HEPZIBAH
LAST PLURALS: NIL NIL

AFFECTED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: HEPZIBAH ROSE2 CHURCHY
MENTIONED TIIIS SENTENCE: CHURCHY

MENTIONED IN TIIE TEXT: POGO HEPZIBAH CHURCHY ROSE/ ROSE1

Control Variables After Sixth Sentence

Appendix II " .. · · " " ,. .. -- ~ , " ,, ~

101

SENTENCE GENERA TED: HE PUNCHES POGO.

LAST MALES: POGOCHURCHY
LAST NEUTERS: NIL NIL

AGENT: CHURCHY
RECIPIENT: NIL

FOCUS: POGO

LAST FEMALES: NIL NIL
LAST PLURALS: NIL NIL

AFFECfED:POGO
AITRIBUTE: NIL

MENTIONED LAST SENTENCE: CHURCHY
MENTIONED THIS SENTENCE: CHURCHY POGO

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE! ROSE2

Control Variables After Seventh Sentence

SENTENCE GENERATED: HE GIVES A ROSE TO HEPZIBAH.

LAST MALES: CHURCHY POGO
LAST NEUTERS: ROSE3 NIL

AGENT: CHURCHY
RECIPIENT: HEPZIBAH

FOCUS: ROSEJ

LAST FEMALES: HEPZIBAH Nil
. LASTPLURALS: NIL NIL

AFFECIBD: ROSEJ
AITRIBUTE: NIL

MENTIONED LAST SENTENCE: CHU RC HY POGO
MENTIONED THIS SENTENCE: CHU RC HY ROSE3 HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHU RC HY ROSE! ROSE2 ROSEJ

Control Variables After Eighth Sentence

Appendix II ,. " ,. ~··., , .. ~ ~ · .,. · · , · · .. · ··*

102

SENTENCE GENERATED: THE PETALS FALL OFF.

LAST MALES: NIL CHURCHY
LAST NEUTERS: NIL ROSE3

AGENT: PETALS
RECIPIENT: NIL

FOCUS: PETALS

LAST FEMALES: NIL HEPZIBAH
LAST PLURALS: PETALS NIL

AFFECTED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: CHU RC HY ROSE3 HEPZIBAH
MENTIONED THIS SENTENCE: PETALS

MENTIONED IN THE TEXT:
POGO HEPZIBAH CHURCHY ROSE/ ROSE2 ROSE3 PETALS

Control Variables After Ninth Sentence

SENTENCE GENERA TED: THIS UPSETS HER.

LAST MALES: NIL NIL
LAST NEUTERS: NIL NIL

AGENT: NIL
RECIPIENT: HEPZIBAH

FOCUS: HEPZIBA.H

LAST FEMALES: HEPZIBAH NIL
LAST PLURALS: NIL PETALS

AFFECTED: NIL
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: PET A.LS
MENTIONED THIS SENTENCE: HEPZIBAH

MENTIONED IN THE TEXT:
POGO HEPZIBAH CHURCHY ROSE/ ROSE2 ROSE3 PETALS

Control Variables After Tenth Sentence

AppendixJJ,, .. · · ~

----- -- .. ----'------~~

SENTENCE GENERATED: SI IE CRIES.

Li\ST MALES: NIL NIL
LAST NEUTERS: NILNIL

AGENT: HEPZIBAH
RECIPIENT: Nil

FOCUS: HEPZIBAH

103

LAST FEMALES: llEI'ZIBli!J HEPZIBAH
LAST PLURALS: Nil NIL

AFFECTED: Nil
ATTRIBUTE: NIL

MENTIONED LAST SENTENCE: l!EPZIBAH
MENTIONED Tl-llS SENTENCE: llEPZIBAH

MENTIONED IN THE TEXT:
POGO HFPZIBA!J CHURCHY ROST! ROSE2 ROSE3 PETALS

Control Variables After Eleventh Sentence

Appendix II

104

Appendix III

Additional Fxamplcs of Generated Stories

105

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES A
ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S ROSR
HE IS JEALOUS. HE PUNCHES POGO. HE GIVES A ROSE TO HEPZIBAH.
THE PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

CHURCHY LIKES HEPZIBAH. SHE DOES NOT CARE FOR HIM. THIS UPSE'IB
HIM. HE KISSES HER. SHE WEEPS. THIS ANGERS POGO. HE HITS CHURCHY.

POGO AND CHURCHY GO TO THE STORE. CHURCHY PURCHASES A KITE. HE
GIVES IT TO POGO. THE POSSUM GIVES IT TO HEPZIBAH, WHICH PLEASES
HER. SHE KISSES HIM. THIS UPSETS CHURCHY. HE WEF.PS.

CHURCHY AND POGO GO TO THE STORE. HEPZIBAH GOES, TOO. POGO BUYS
A KITE. HE GIVES IT TO HER, WHICH PLEASES HER. SHE KISSES HIM.
THIS ANGERS CHURCHY. HE TAKES THE KITR HE BREAKS IT. THIS UPSE'IB
HEPZIBAH. SHE CRIES. POGO SLUGS CHURCHY.

Appendix III

----------~--" "-"" ------ -----~--------------

106

Appendix IV

BNF forNLP

107

<COMMAND> ::=<LEFT>--> <RIGHT> <ENO>

<LEFT> ::= <SEG-TYPE> I <SEG-TYPE> (<TEST>)

<SEG-TYPE> ::=<IDENTIFIER>

<TEST> ::= <ATTR-CONOITION> I <TEST> • <TEST> I <TEST> <OR> <TEST> I
(<TEST>) I t <TEST>

<ATTR-CONOITION> ::=<ATTRIBUTE> <PV> I <VALUE> =<VALUE>
I <S-EXPRESSION> I <FUNCTION-CALL> I
<$REFERENCE> I I <IDENTIFIER> I

<ATTRIBUTE> ::=<IDENTIFIER> I I[<ATTRIBUTE> <PV>] I 8[<$REFERENCE>]

<PV> ::= <O> I (<VALUE>)

<VALUE> ::= I <IDENTIFIER> ' I <ATTRIBUTE> <PV> I <$REFERENCE>

<RIGHT> ::= <SEG-TYPE> I <SEG-TYPE> (<CREATION>) I <RIGHT> <RIGHT>

<CREATION> ::= <ATTR-CREATION> I <CREATION> ' <CREATION>

<ATTR-CREATION> ::=<ATTRIBUTE> <PV> I <ATTRIBUTE> <PV> :=<VALUE>
<$REFERENCE> I % <ATTRIBUTE> <PV> I
- <ATTRIBUTE> <PV> I I <IDENTIFIER> I

<ATTRIBUTE> <PV> := <$REFERENCE> I .
<ATTRIBUTE> <PV> := <FUNCTION-CALL> I
I <S-EXPRESS.ION>

<$REFERENCE> ::= <SLEFT-PART> $ <SRIGHT-PART>

<SLEFT-PART> ::= <O> I <ATTRIBUTE> <PV>

<SRIGHT-PART> ::= <O> I [<VALUE>] I [<VALUE> • <VALUE>]

<FUNCTION-CALL> ::=<IDENTIFIER>< <PARAMETERS>>

<PARAMETERS> ::=<VALUE> I <PARAMETERS> • <VALUE>

<IDENTIFIER> : := any LISP atom not containing a <OELIMETER>

<S-EXPRESSION> ::=any legal LISP s-expression

<DELIMETER> : : = I I 8 I ., I s I x I t I { I) I - I • I
- I < I > I I [I l I [] I { I } I {} I
I I • I . I <OR> I <BLANK>

<OR> ::=the ve~tical bar "1"

<BLANK> ::=the blank space " "

<O> ::=the empty string, a zeroing out

<RECORD> ::=<RECORD-NAME> (<CREATION>)

.,~ . ., .. ,..~, ,,, "'' ., "•• "'' • •<t~• ~, ,,, ;·"«,_.,~ ft •"I''' Appendix IV " " " ,, ~ .. · ..

-----· --·-- -------------

108

<RECORD-NAME> - <IDENTIFIER>

Appendix IV

109

Appendix V

NLP Program for Paul

COVER ATTR;
vform (main auxil);
main· (numb nonfinite pers tense neg);
numb (sing plur);
nonfinite (inf prespart pastpart);
pers (persl pers2 pers3);
tense (past present future);
auxil (passive prog perfect);
det (def indef dem possess);
case (common genitive);
common (subjective objective);
roles (agnt aff recip attr dest):

110

syntaxroles (subject dobject iobject prepobject genitive);
mode (active stative entity);
ending (ed ing);
sub (relative submark)[]

RULES FOR ENCODING;
{agnt is "agent," aff is "affected," recip is "recipient,"

and attr is "attribute"}

story(para) --> paragraph(%top<para(story)>) 1 ine story(para: =rest< para>);

story --> null;

paragraph(concepts) --) concept(%top<concepts(paragraph)>,
ref :=top<concepts(paragraph)>) .

paragraph(concepts:=rest<concepts>);
paragraph --> null;

concept(tprocessed) -->
concept(processed,

focus('previous'):=focus('current'),-focus('current'),
male('previous'):•

list<male('current'),top<male('previous')>>,
-male('current'),
female('previous'):•

list<female('current'),top<female('previous')»,
-female('current'),
neuter('previous'):•

list<neuter('current'),neuter('previous')>>,
-neuter('current'),
plur('previous'):=

list<plur('current'),top<plur('previous')>>,
-plur('current'),
syntaxroles('previous'):=syntaxroles('current'),
-syntaxroles('current'),
pronoun('previous'):=pronoun('current'),
-pronoun('current'));

concept(tsub) -->
concept(submark,idea('previous'):=idea('current'),idea('current'):=ref);

· concept(sup=sup(idea(' previous·•)), roles= roles(idea(' previous')),
neg=neg{idea('previous')),teffect,tmarked) -->

..... ..,, '"' ... ~· >• "' ,.., ~' ,; _., •• '' ~ ·• I• h ,., •• f.! •• "" • Appendix V · . .. ·· " .. "' · ·· ·· ·· . " • ·· , .. " .. " ·· ,. ,.. ·· .. · · · ·~ · ·· ,. .. " .. •· •·

111

concept(marked) , word('too');
concept(stative,stative(sup)} -->

clause(%concept,sup:=myrandom<stative(sup(concept))>):
concept(stative) --> clause(%concept,sup:=myrandom<active(sup)>,passive):
concept(entity) --> clause(%concept,'be1',subject:=sup(concept),

focus('current'):=sup(concept)):
concept --> clause(%concept,sup:=myrandom<active(sup)>,active):

clause(cause,cause=idea('previous')) --> pronoun(sentential) vp(%clause):
clause(relative) --> , pronoun(relative) vp(Xclause):
clause(subject) --> np(%subject(clause),ref:•subject(clause),

subject('current'):•ref,subject,subjective)
vp(%clause,numb:=numb(subject),

pers:=pers(subject));
clause(passive,recip) --> clause(subject:•racip,-recip):
clause(passive) --> clause(subjact:=aff ,-aff):
clause(stative,cause) --> clausa(subject:=cause,-cause):
clause(stat1ve,exp) --> clause(subject:=exp,-exp):
clause(stative) --> clause(subject:=recip,-recip);
clause --> clause(subject:=agnt,-agnt):

np(tclass) --> np(class:=classify<ref>):
np(tremembered,plur) --> np(remembered,plur('currant'):=ref);
np(tremembered} --> np(remembered, 8(ref$[' gender']](' current'): =ref);
np(mode} --> concept(%np,prespart,sub):
np(tmember<ref,nouns('said')>,tflagged) -->

np(nouns('said'}:=cons<ref ,nouns('said')>,flagged):
np(and,greaterp<length<and>,12 >) --> np(Xtop<and(np)>,remembered) ,

np(and:=rest<and(np)>):
np(and) --> np(%top<and(np)>,remembered,class:•clasa(np))

word{' and')
np(%botta11<and(np)>,remembered, cl ass: •cl ass(np)):

np(class='I') --> pronoun(Xnp,pronoun('currant'):•raf);
np(class='III',pronoun('pravious')•raf) -->

pronoun(%np,pronoun('current'):•ref);
np(tdet,tS('proper'],tclass•'NONE') --> np(def);
np(tdet,tS('proper']) --> np(indef);
np(det,tdetr) --> detr(Xnp) np(datr):
np(class='II'lclass='III',S['intelligent'],tflaggad) -->

np(sup:•randomchain<sup(sup),'intelligent'>,daf,flaggad,subst):
np(class='Il'lclass='llI',tflagged) -->

np(sup:=randomchain<sup(sup),lnil>,def,flagged,subst);
np(subst,ambiguous&superordinate&test<sup,ref>) -->

adj(sup: •di sambiguate<ref (np) ,sup(np)>) np(-subst):
np --> noun(Xnp,-flaggad,-remembered):

vp(aff,tfocus('current')) --> vp(focus('current'):•aff):
vp(rec ip, tfocus('current')) --> vp(focus(' current'): •recip);
vp(agnt,tfocus('current')) --> vp(focus('currant'):•agnt):
vp(exp,tfocus('current')) --> vp(focus('current'):•exp):
vp(subject,tfocus('current')) --> vp(focus('currant'):•subject);
vp(tnumb,tnonfinite) --> vp(sing);
vp(tpers,tnonfinite) --> vp(pers3);
vp(ttense,tnonfinite) --> vp(present);
vp(neg,tauxil,t'dol') --> vp('dol',-auxil,-roles) vp(-main,inf);

AppendixV,,~, ~1•1 l ,.~···· .' ... ,. ~ ·~·. _,, ,,, ... i-.""'~"J., •.•• ~t· .. ··~•1 , •• , ... "~ ..

112

vp(perfect) .--> vp('havel' ,-auxil,-roles) vp(-main,-perfect,pastpart):
vp(prog) --> vp('bel' ,-auxil,-roles) vp(-main,-prog,-prespart):
vp(passive) --> vp('bel' ,-auxil,-roles) vp(-main,-passive,pastpart):
vp(char) --> vp(-char) adj(sup:=char(vp)):
vp(effect) --> vp(-effect) concept(Xeffect(vp),relative):
vp(agnt,agntprep(sup)) --> vp(-agnt)

pp(Xagnt(vp),ref:=agnt(vp),
prep:=agntprep(sup(vp))):

vp(agnt) --> vp(-agnt) pp(Xagnt(vp),ref:=agnt{vp),prep:='by'):
vp(recip,recipprep(sup)) --> vp(-recip)

pp(%recip(vp),ref:=recip(vp),
prep:=recipprep(sup(vp)),dobject):

vp(recip,active) --> vp(-recip)
pp(%recip(vp),ref:=recip(vp),

prep:='to' ,iobject):
vp(recip) --> vp(-recip)

np(%recip(vp),ref:=recip(vp),
objective,dobject('current'):=ref);

vp(dest,dest=dest(idea('previous'))) --> vp(-dest);
vp(dest) --> vp(-dest)

pp(Xdest(vp),ref:=dest(vp),prep:='to',dast);
vp(aff) --> vp(-aff)

np(%aff(vp),ref:=aff(vp),objective,
dobject('current'}:=raf);

vp(phrasalprep(sup),tmarked) --> vp(markad)
prep(sup:=phrasalprap(sup(vp)));

vp(neg,S='auxiliary') --> vp(-neg) word('not'):
vp --> verb(%vp);

pp(dobjact) --> prep(sup:•prep(pp)):
np(Xpp,-prep,objective,dobject('currant'):•ref):

pp(iobject) --> prep(sup:•prep(pp)}
np(Xpp,-prep,objective,iobject('current'}:=ref);

pp --> prep(sup:=prep(pp}} np(Xpp,-prep,objective);

noun(word(sup}) --> nounp(Xnoun, sup: •word(sup(noun))};
noun --> nounp(Xnoun}:
verb --> verbp(%verb,sup:=word(sup(verb)}};
adj(det) --> detr(Xadj) adj(-det);
adj --> word(Xadj};
detr(possess,tclass) --> detr(class:=classify<sup>);
detr(possess,class•'I') -->

pronoun(sup:=possess(detr),genitive,
genitive('current'}:•sup,
l[supS[1gender']]('current'):=sup,
pronoun('current'):•raf);

detr(possess) --> np(sup:•sup(possess(detr)),ref:•possess(detr),
genitive ,genitive(• current'): •ref)

morphea('possess');
detr(indef ,plur) --> null;
detr(indef ,vowel(sup)l(tconsonant(sup),vowel<sup>)) --> word('an');
detr(indef) --> word('a');
detr(def) --> word('the');
prep --> word(Xprep);

113

pronoun{rela~ive) --> word{'which'):
pronoun{sentential) --> word{'this'):
pronoun{pers2,common) --> word('you'):
pronoun(pers2) -> word('your'):

pronoun(persl,plur,subjective) --> word{'we'):
pronoun(pers1,plur,object1ve) --> word('us'):
pronoun(pers1,plur) -> word{'our'):
pronoun(pers1,subjective) --> word{'i'):
pronoun(persl,objective) --> word('me'):
pronoun{persl) --> word{'my'):

pronoun(plur.subjective) --> word('they'):
pronnun(plur,objective) --> word{'them'):
pronoun(plur) --> word('their'):
proooun(subjective) --> word{sup:=&($('gender']]('subjective')):
pronoun(objective) --> word(sup:=&[$['gender']]('objective')):
pronoun --> word(sup:=l[S('gender']]('genitive'));

nounp(plur,plur(sup)) --> word(%nounp,sup:=plur(sup)):
nounp(plur) --> word(%nounp) s:
nounp --> word(Xnounp):

verbp{ inf) --> word(%verbp);
verbp(past,plur,pastplur(sup)) --> word(Xverbp,sup:=pastplur(sup)):
verbp(past,past(sup)) --> word{%verbp,sup:•past(sup)):
verbp(pastpart ,pastpart(sup}) --> word(%verbp, sup: •pastpart(sup)):
verbp(pastf pastpart) --> word{%verbp,ed) ed:
verbp(prespart) --> word(Xverbp,ing) ing;
verbp(plurf pers2,plur(sup)) --> word(%verbp,sup:•plur(sup)):
verbp(plurfpers2) --> word(Xverbp);
verbp(persl,perst(sup)) --> word(%verbp,sup:•pers1(sup)):
verbp{persl) --> word(Xverbp);
verbp(pers3,pers3(sup)) --> word(%verbp,sup:•pers3(sup));
verbp(pers3,es(sup)) --> word{Xverbp) as:
verbp --> word(Xverbp) s;

word{'null') --> null;
word(ending,fincon(sup)) --> # word(-ending)

output(sup:•double<sup(word)>):
{FINCON and DOUBLE are for doubling the final CC)nsonant}
word{e(sup),tending) --> # output(%word) e:
word --> II output(Xword);

morpheme('possess') --> • s[]

RECORDS;

{verbs}
anger\ ('feelbad',stative:•list<'angert'>);
anger1 ('anger\',word:•'anger');
bet {'auxHiary•,word::s'be'):
break\ ('destroy',active:•list<'breakl'>);
breakl {'break\' ,word:•'break);

Appendix ·v -. ..,, ... , ,, ... ~. ·~ ., ,. ~~ ., .. ·~ .. •1 •I¥ ~- ,,_ ·- ~· ~- , ... ,, ,.. -- •• , ~~ .. ·- ~ 1 .1 ... '\

114

buy\ {'acquire' ,active:=l ist<'purchasel', ',buyl '>):
buyl {'buy\' ,word:='buy'):
carel ('like' ,word:='car' ,recipprep:='for'):
cryl {'cry\' ,word:='cry');
cry\ {'selfexpress' ,active:=list<'cryl' ,'weepl'>);
dol { 'auxi 1 iary', word:=' do');
dropl ('drop\',word:='drop',phrasalprep:='off'):
drop\ ('tumble' ,stative:•list<'dropl', 'fa111'>);
enjoyl {'enjoy\ ' .• word:• 'enjoy');
enjoy\ ('feel+',active:=list<'enjoyl'>,stative:•list<'pleaset'>):
falll ('drop\',word:•'fall',phrasalprep:='off'):
give ('transfer' ,active:•list<'givet'>,stative:=list<'receivet'>):
givel ('give' ,word:•'giv'):
go\ ('move',active:=list<'gol'>):
gol {'go\',word:•'go');
havel {'auxiliary',word:•'hav');
hitl {'hit\' ,word:='hit');
hit\ ('phys\abuse' ,active:•list<'hitl' ,'punchl','slugl'>);
kiss\ {'phys\love',active:=list<'kissl'>);
kissl ('kiss\' ,word:•'kiss');
like {'feel+' ,stative:•list<'like1','care1'>);
likel ('like',word:='lik');
pleasel ('enjoy\',word:•'pleas');
punchl ('hit\',word:='p,unch');
purchase 1 { 'buy\' • word:•' purchas •):
receivel ('give' ,word:•'receiv' ,agntprep:='froe'):
slugl ('hit\',word:•'slug');
take ('acquire',active:•list<'taket'>):
takel ('take' ,word:•'tak'):
upsetl ('upset\',word:•'upset'):
upset\ ('feelbad',stative:•list<'upsett'>);
want\ ('desire\' • stative: •1 ist<' wantl '>,active: •1 ist<' lustt '>):
wantl ('want\',word:•'want');
weept {'cry\' .word:•'weep'):

{nouns}
animal {'living',intelligent,ani•ate):
bird ('animal',skin:•'feathered',blood:='war11');
boombah ('chicken' ,size:•'large',color:•'red',gender:•'female',proper);
chicken ('bird',color:•'brown',siza:•'small'):
churchy ('turtle' ,gender:•'male' ,proper);
hepzibah ('skunk',gender:•'f .. ale',proper);
howland ('owl',gender:•'male'.proper):
kite ('toy');
living ('thing'):
ma1111al ('animal',skin:•'furry',blood:='warm');
owl ('bird',color:='brown',size:•'small');
petal ('living',partof:•'rose');
place ('thing');
plant ('living');
pogo ('possum',gender:•'male',proper);
possum ('ma111111al',color:•'grey',size:•'small'):
reptile ('animal',skin:•'scaled',blood:='cold');
rose ('plant');
skunk ('mam111al',color:•'black',feature:='whitestriped',size:='small');

JU. .a

117

21. Jensen.. ICaren. .a.Demae F.. Heidorn. The Futed. Pane: - .·J'Msing Capability in a Syntacdc
Grammar of English. Tech. Rep. ItC 9129(#42958). IBM ,__J. w-. Reseatdl Center, 19tt

21. Kaplan. Ronakl M., and Joan W. ·Baaan. Lexical F\T• 1'"'91 ~ A Formal System for
Orammadcal Rep1WQtation, la Tl# Jlln"11 RepmenkltiolJ ,, •• Ju. -#"~Oil\ J. W. Bresnan, Ed.,
The MIT Press, Caadni48t. tlO":tie:Pl!*IMdo

22. Katz, Boris. A~~ for Language o~:~tep. Artiftcial Intelligence Memo
No. 599. MIT.~ -

11. l;mpcker, Ronald W. ,.,,,,.,,altlls of Linguistic Anaiyll&......,.. Jovanovich, ~ New York,
1972.

24. Legett, Glenn. C. DIYicl Mead. -4 William CharvaL ,f'1iJ?U"411tfttl: 11"""'°°1 for Writers. Plen.tlce-
Hall, Inc., l!aglewoocl an. N..f., - <

25. Lebno1t. Wendy 0. TM '1vull o.f(Jaotion Answering. <J"1~· !t%!fra.iHiJlsdate. NJ .. 1971.

16. Levin. James A., and N J4.~ Procea& r'liri.;uin.e ia .Coarext. Tech. Rep.

ISI/RR~71·7t ~--···h·--~ u.rlna del Re,*
. '· . . . "'.. . . . - ._ -~~~ : ~ ' ... : '

27. Luria. Marc. Dividing UpaeQu.-. AA&wering ~<,..•.-•1.JI'• National Conference on
Artifidal fntelliaeacQ, NadOAat~-Artificial lnteftil1fti~t. ('.

21. MaDD. WiJJiam c. two air:oune a.rators. ProcJn••lf .. ot _. • Amltlal MteUna or the
AflOCiaUon for~' tnMf1Jtsl.•1'ilJ:Wion forOw.1J•··:-fljJllJ1il981.
»• Mann. WU. ·~ aa4 ...;.,,·~Mtalll·. Computer , ···. . :. iii..Jal£m;i&flPll. fiaalish Ten
~Jowm/.qfC,,,,.,,....~,lilif1, l(Janual'y"'.

31. ·Mana. WDJimn(:., Miad~til:a.... ... I.Orosz, J~Mbleea ft.. Mclt.eoWD.1841
W-. It~: T•Et11J. rt• 1if;._ of the Art: ~.~ a. lllAUt·ll·lOI.

· Seiwell · • '"''~Ifs '· '.; ";~ ~ 1981 · · ..-.d"llle. ·-0 1-9. ~ fTlJ11¥ lfilaf"..,.~ ·~ . .. ~ -,- ' - -. . . ··.· ·- .

34. t.fcDonald. DaY¥ D. .~ I•••• ~ • ~,, Problem: An Introduction.
'J''fdl.·Rep.COJNl,T4d1akll ... ll~ of . ,. ... DIL

.35._..Ke'-8ltale. 0.-ttj Lanauale _ .teQuescJonsaboutDatabase
Structure-. . . Ph.D."" • 1~. ~ · . .JN T11J"1·: 'alil ,...,. . a-.~~w,.,. YIJJ!I .'1'tuo.c..

31. MiaatJ .. - ;_A F••wn fir~ KnowtW. M~ Artificial lllfdliaence Memo
Nflj· Mll'.C........ .

