
.'., '"··· · ... . ,,.,. 

Reliable Object Storage 

to Support Atomic Actions 

by 

Brian Masao Oki 

May 1983 

© ·Massachusetts Institute of Technology 1983 

This research was supported in part by the Advanced Research Projects Agency of the 
Department of Defense, monitored by the Office of Naval Research under contract number 
N0001~83-K-0125, and in part by the National Science Foundation under grant number 
82-03486MCS. 

Massachusetts Institute of Technology 
Laboratory for Computer Science 
Cambridgei Massachusetts 02139 



2 

Reliable Object Storage 
to Support Atomic Actions 

by 

Brian Masao Oki 

Submitted to the 
Department of Electrical Engineering and Computer Science 

on May 19, 1983 in partial fulfillment of the requirements 
for the Degree of 

Master of Science in Computer Science 

Abstract 

To preserve the consistency of on-line, long-lived, distributed data in the presence of 
concurrency and in the event of hardware failures, it is necessary to ensure atomicity and 
data resiliency in applications. The programming language Argus is designed to support 
such applications. This thesis investigates the mechanism needed to support the notion of 
data resiliency present in Argus. Data resiliency means that the probability Is very high that 
the crash of a node or storage device in a distributed system does not cause the loss of vital 
data. Data resiliency requires the use of stable storage devices, memory devices .that 
survive failure to a high probability. This thesis is not concerned with how to implement 
stable storage devices, but rather with how to organize the use of stable storage. The thesis 
presents a new organization of stable storage called the hybrid log that provides ·fast writing 
of information to stable storage and reasonably fast recovery of Information from stable 
storage. In the context of this scheme, various algorithms are developed for writing objects , 
to the log, recovering objects from the log, and housekeeping the log. 
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Figure 1-1: Shadowed objects 

1.2.2 The Approach 

Let us summarize the advantages and disadvantages of these two schemes: 

1. Log => fast writing, but slow recovery 

2. Shadowing => slow writing, but fast recovery 

In comparing the two approaches we assume that crashes do not happen very often 

and that we would like normal processing to be fast at the possible expense of a slow 

recovery after a crash. 

For reasons to be discussed in tater chapters, we have chosen an organization of 

stable storage that falls between these two extremes, which we call the hybrid log. As the 

name suggests, it is a hybrid of the pure log and the shadowing schemes that combines the 

advantageous characteristics of either scheme. Hence, writing is almost as fast as the pure 

log, and recovery is faster than the pure log scheme but not quite comparable with the 

shadowing scheme. The map in the shadowing scheme is now written incrementally to the 

hybrid log and is distributed over the entire log; this means that the extra cost associated 

with updating the map at every action commit in the shadowing scheme is just part of the 

cost of writing entries to the log. 

Given this hybrid organization, we have also developed three kinds of algorithms: (1) 

writing objects to the hybrid log, (2) recovering objects from the hybrid log, (3) and 
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shadowing schemes considered alone. We then explain the writing and recovery algorithms 

for the hybrid log. Finally, we point out the complications introduced by the notion of early 

prepare. 

Chapter 5 considers the problem of reorganizing the hybrid log to make recovery from 

crashes more efficient. Two methods are discussed and compared: log compaction and 

stable state snapshot. 

Finally, in Chapter 6 we summarize the foregoing, draw conclusions, and suggest 

directions for further research. 
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If a coordinator crashed before the, committing record was written to stable storage 

for some committing action, then it will remember nothing about the action after recovery, 

and the action will be aborted. If the coordinator receives a query about the action from a 

participant, it will tell the participant to abort the action. When the committing record 

appears in stable storage the action has really committed; this entry marks the point of no 

return for the coordinator, after which it must commit. Suppose, however, a coordinator 

crashed after the committing record was written to stable storage, but before the done 

record was written. Then upon recovery the action is still committing and the recovery 

system restores the guardian's state as it had been before the crash. 

If a coordinator crashed after the done record was written to stable storage for some 

committing action, then this action has completed and nothing special need be done. 

2.3 The Recovery System 

prepare{aid,MOS) 

The commit( aid) OT 
The 

abort( aid) 
.... The 

.... 

Argus recovery Recovery CT Argus • 
System 

housekeeping 

committing(aid,gids) System PT System 
done{ aid) • 

Figure 2·1: The Recovery System 

The job of the recovery system is to write information to stable storage as needed by 

two-phase commit, to restore a guardian's stable state after a crash. and to reorganize 

stable storage in order to make recovery more efficient. The recovery system provides 

operations that the Argus system calls at appropriate times in order to carry out these tasks. 

See Figure 2-1. The Argus system itself is distributed, every guardian containing a portion of 

it; the recovery system also exists at each guardian and is called by the portion of the Argus 

system at that guardian. 
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·. recoverable object but not any contained recoverable objects; these will be 
copied separately it they were modified. The sharing of objects is preserved 
only for shared recoverable objects or for a group of unrecoverable objects 
entirely contained within a recoverable object. 

3. Once the recoverable object, including its contained non-recoverable objects, 
has been copied, the recovery system releases possession and continues. 

To copy a recoverable object, the system invokes a routine that linearizes (or flattens) 

the data in the modified object and in any contained non-recoverable objects. Any 

references to other recoverable objects are transJated from their volatile addresses to their 

corresponding stable storage references. Figure 2-2 illustrates this technique. In copying 

the object referred to by variable z, we copy x but not y (since y is atomic but x is not); 

instead, we place a stable storage reference for y in the copy of z, and copy y separately if 

necessary (if it was modified or was new). 

z: atomic record[x: int, y: atomic array[int]] 
Figure 2·2: An Atomic Record 

In short, the system gains possession of each recoverable object that had been 

modified by the action, copies it, releases possession, and continues. 

·----~--------------------
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(uid) Qf the recoverable object, (2) the object type--mutex or atomic, (3) the object value, and 

(4) the action identifier (aid) of the top-level action that is preparing. The object "value" is 

not the actual object itself residing in volatile memory but a copy of the object's version. 

Data entry 

objectuid 

object type 

object value 

action id 

Outcome entries for partlcipanta 

prepared committed 

action id action Id 

base committed prepared data 

objectuid objectuid 

object value object value 

action Id 

Outcome entries for coordinators 

committing 

_guardian ida 

action Id 

d'bne 

action id 

aborted 

action Id 

Figure 3· 1 : Data entries and Outcome entries 

The object's unique identifier is some identifier that will never be reused and is unique 

with respect to the object's guardian. Since this identifier will not serve any other purpose 

except to distinguish recoverable objects from one another, the unique object generator can 

be a stable counter associated with each guardian, that is, an integer that is incremented 

whenever a recoverable object needs a uid. There is no danger of a uid being reused after a 

crash because the recovery system knows after recovery of each guardian the last uld that 

was generated and assigned to a recoverable object at that guardian; the stable counter can 
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eithera coordinator or a participant; thus, a guardian's log could contain outcome entries 

for a coordinator when the guardian acts as coordinator and for a participant when the 

guardian behaves like a participant. 

We will elaborate further on these different outcome entries in the next several 

sections when we discuss the writing of objects to the log. 
! 

3.3 Writing objects to the log 

Recoverable objects are written to the log only when top-level actions commit and to 

ensure that effects of top-level actions are made permanent, the system goes through the 

standard two-phase commit protocol described in the previous chapter. 

3.3.1 The Coordinator 

After sending out prepare messages to all the participants (including itself since it is 

also a participant), the coordinator waits for replies. If any participant replies aborted, or if 

the coordinator aborts unilaterally, then the coordinator tells the participants tQ abort via 

abort messages. If it hears from each participant that each has prepared it st~rts the 

committing phase. 

If all participants respond prepared, the recovery system creates a committing 

outcome entry and forces it to the coordinator's log. (Whenever we say that a log entry Is 

forced to the log, we mean that the force_write operation on the log object is invoked with 

the log entry.) At this point the action is committed. The coordinator then sends commit 

messages to all the participants (including itself), informing them of its verdict, and waits for 

them to respond. When all have responded committed the coordinator creates a done 

coordinator outcome entry and forces it to the coordinator's log. Two-phase commit Is now 

complete. 

3.3.2 The Participant 

When a participant receives a prepare message from the the coordinator it prepares in 

the following way. In general, for each object in the MOS the recovery system constructs 

data entries and writes them to the log. If the data entries were written successfully to the 
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discussed in Chapter 2 on the data portion of the recoverable object, in particular, on the 

appropriate version (current or base version if the object is atomic, or the current version if 

the object is mutex). As the copy proceeds, the algorithm follows volatile memory 

references, replacing references to recoverable objects with their uids and simply copying 

any regular objects. The data is now flattened. The recovery system then creates a data 

entry containing the object uid, the action id of the action that is preparing, the object type, 

and the flattened data. And it is this data entry that is written to the log. 

Figure 3-3 shows a possible situation involving atomic, mutex, and regular objects. 

02 

mutex 

regular 

data 

01 

atomic 

regular 

data 

atomic 

data 

03 

atomic 

Figure 3-3: Objects in volatile memory 

Suppose object 0 1, which was modified by action T1, is to be copied to the log. The 

incremental copying algorithm follows pointers in the data portion of the object. The 

reference to object 0 2 {a mutex object) is replaced with the uid 0 2 itself. The algorithm 

copies the regular object and in so doing discovers that It contains a reference to yet 

another recoverable object, namely 0 4, an atomic object; it replaces the reference with 0 4 

itself. And finally, the algorithm replaces the reference to object 0 3, an atomic object, with 

the uid 0 3. 

In flattened form, 0 1 looks like Figure 3-4. 
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01 

atomic 

T1 

02 

data 

04 

03 

Figure 3·4: Flattened Object 

3.3.3.2 What to Write 

Having discussed the manner in which data is copied to the log as data entries, let us 

consider the question of what actually gets written. As we mentioned before, we are 

interested only in those recoverable objects that are accessible from the stable variables 

because these make up the stable state of the guardian and only the stable state survives 

crashes. Recall that, for each action, the Argus system keeps track of both modiffed objects 

and newly created objects in the MOS and does not distinguish between objects accessible 

from the stable variables and objects accessible from the volatile variables. It is the job of 

the recovery system, then, to separate the objects in the MOS that are accessible from the 

stable variables from those objects that are inaccessible and to write the accessible objects 

to the log. 

Notice that this concern with accessible objects is really an optimization because we 

could simply write out all the recoverable objects at a guardian without regard for 

accessibility or inaccessibility; if some inaccessible object were written out to stable storage 

it would not matter since it was unreachable anyway, but it would clutter the log with 

irrelevant information. 

The Problem of Newly Accessible Objects 

Recoverable objects are either previously accessible from the stable variables or 

newly accessible. 

Let us consider previously accessible recoverable objects. If the previously 
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Figure 3-5: Newly Accessible Objects Example 

x y 
01 cp 02Cf 

int int 

1. Initial situation 

x y 

3. T3 modifies 02 ·> 03 

x y 

01T 
i t 

02~1nt 

03[i] •int 

7. AfterT2 aborts 

x y 

q::io2 
i*t 

2. T2 modifies 01 -> 03 

x y 

03 C!:3-+ int 
~int 

4. T2 modifies 03 
5. T2 prepares 
6. T3 prepares 

x y 

01cr 02cp 
i t 

03[i] •int 

8. After T3 commits 
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,treated differently. Since the object is an atomic object that the actien has a 
read lock on (and thus there is only a single version), the recovery system 
creates an outcome entry, base_committed, consisting of object uid 0 3, and the 
copied object version. The recovery system writes the entry to the log, deletes 
object 03 from the NAOS, and inserts uid 0 3 into the AS. 

6. The NAOS is empty, so the recovery system is done. It has determined which of 
the objects in the MOS were accessible and has written the corresponding data 
entries to the log. It forces a prepared outcome entry to the log. 

7. The AS now consists of object uids 0 1, 0 2, 0 3• 

x 

Cf 03 

int 

a. T1 gets write lock on 02 

x 

02~1nt 

oac:p 
1it 

b. T1 modifies 02 to point to 03 
Figure 3·6: Newly Accessible Objects 

Notice that there are two phases. First, the recovery system processes every object in 

the MOS (which was one of the two arguments in the call of the prepare operation}, copying 

current object versions and writing data entries to the log as it goes along. As these object 

versions are copied, recoverable objects not previously accessible (that is, their uids are not 

already in the AS) may be revealed as newly accessible; these objects are placed in another 

set, the NAOS, consisting of just newly accessible objects. 

Second, when the recovery system has processed the MOS, it then proceeds to 

process the NAOS, if it is not empty. After each object is processed it is deleted from the 

NAOS and added to the AS. Other recoverable objects may become newly accessible and 
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3.4.2. Log Scenarios 

Scenario 1--atomic objects 

Suppose the situation depicted in Figure 3-7 exists at a participant's stable log after a 

crash. 

+----+----+----+--------+---------+----+--------+ 
I be I be I 02 lpreparedlcommittedl 01 lpreparedf 
I 01 I 02 I at I I I at I I 
I Vl I V2 I V2 I I I Vl I I 
I I I Tl I Tl I Tl I T2 I T2 I 
+----+----+----+--------+---------+----+--------+ 
t 

log's beginning 
t 

log's end 

Figure 3-7: Log of atomic objects after a crash 

In this figure (and all figures of this sort) the beginning of the log is on the left and the end of 

the log is on the right; the log grows to the right. The symbols in the log depicted have the 

following meaning~ T 1 and T 2 are actions. Action T 1 has committed; action T 2 has 

prepared. 0 1 and 0 2 represent unique object identifiers; and V1 and V2 are the object 

values, that is, the versions of objects. 

Let us develop some notation to make it easier to talk about data entries and outcome 

entries in a log. Let data entries be represented as quadruples: 

<object uid, object type, ot)ject version, action identifier> 

so a data entry might look like <01,atomic,V1,T1>, where 0 1 is the object uid, atomic 

indicates that the object version is atomic, V1 is the object version, and T 1 is the action id. 

Let us represent outcome entries as doubles of 

<outcome, action identifier> 

and so the first two outcome entries would look like <prepared,T1> and <committed,T1>. The 

only exception is committing, which also includes a list of guardian ids. Furthermore, we 

represent the special outcome entries in the following way: 
<be, object uid, object version> 

where "be" is short for base_committed; 

<pd, object uid, object version,action id> 

where "pd" is short for prepared_data. 

--------------- ----
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' At algorithm's end, the PT and OT ~ontain the following information. 

PT 

committed 
aborted 
committed 

OT 

01 restored 
02 restored 
03. restored 

vm address 
vm address 
vm address 

Notice that the stable state of the guardian in volatile memory following recovery will 

look exactly like the situation that existed before the crash in Step 8 of Figure 3-5, which is 

what we wanted. 

Scenario 4 

Suppose the situation depicted in Figure 3-1 O exists at a guardian's log, after a crash. 

+--+--+--+--------+---------+--+--------+----------+---------+----+ 
lbcl01lbclpreparedlcommittedl02lpreparedjcommittinglcommittedldonel 
1011at1021 I latl ., I I I I 
1v11v11v21 I 1v21 I P1,P2,P3 I I I 
I I T1 I I Tl I Tl I T2 I T2 I T2 I T2 I T2 I 
+--+--+--+--------+---------+--+--------+----------+---------+----+ 
1' 1' 

log's beginning log's end 

Figure 3-1 O: Coordinator's log following a crash 

In this scenario we show the entries that are written to the log for the coordinator of an 

action during two-phase commit. 

To recover the objects from the guardian's log in Figure 3-10, we need to extend the 

algorithm to include coordinators. Let us add a third table, which stores information about 

coordinator states. Thus, 

CT: action id -+ coordinator action state 

where coordinator action state = {committing, done}. committing contains a list of the 

guardian identifiers that were involved in the action. 

Notice that in the guardian's log a particular ordering of outcome entries holds true If 

the top-level action committed successfully: prepared, committing, committed, and done. 

Why? When each participant has prepared, it forces the prepared outcome entry to its log. 

The coordinator, upon hearing that everyone has prepared, forces the committing entry to 
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of the participants and coordinators. 
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Data entry 

object type 

object value 

Outcome entries for participants 

prepared committed 

<uid,log address> action id 

log pointer 

action id 

log pointer 

base committed prepared data 

objectuid object uld 

object value object value 

log pointer action Id 

Outcome entries for coordinators 

committing 

_g_uardian ids 
action Id I~~ 

• 

Figure 4·1 : New format of log entries 

the participant's log for some action and internally keeps track of the object uids and the log 

addresses of the data entries. When it is finished, it creates a prepared outcome entry 

consisting of the list of <uid, log address> pairs and the log address of the previous outcome 

entry and forces the entry to the log. Notice that the recovery system must keep track of this 

information for every preparing action. The only other difference is that each of the other 

outcome entries is linked via the log pointer field to the previous outcome entry before It Is 

forced to the log. 
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A 
log's end 

Figure 4-2: Log after the prepare phase 

4.3 Recovering objects from the log 

In this section we present a sketch of the general recovery algorithm. One log 

scenario demonstrates the manner in which the new recovery algorithm recovers objects 

from the log. We then give a detailed explanation of the differences between this recovery 

algorithm and the simple log's recovery algorithm. 

4.3.1 Sketch of the General Algorithm 

1. Create three tables: (1) an object table {OT) that maps object uids to both object 
states (prepared or restored) and object locations in volatile memory, (2) a 
coordinator action table (CT) that maps action ids to coordinator action states 
{committing and done, where committing atso has a list of guardian Ids of 
guardians involved in the action), and (3) a participant action table (PT) that 
maps action ids to participant action states (prepared, committed, and aborted). 

2. Read the log backwards, starting with the last outcome entry in the log. For 
every outcome entry on the backward chain of outcome entries, process it in the 
following way: 

a. If the outcome entry is aborted, committed, committing, or done then fill 
the three tables with appropriate information (action ids and action states 
like prepared). 

b. If the outcome entry is a prepared entry, then for each <uid, log address> 
pair in the entry check the OT and determine whether or not to copy the 
object version into volatile memory; if it needs to copy the object version it 
follows the log address pointer to the data entry itself. 
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~~ ~~ ~~ _l 1 
V1 V1 V2 V3 prepared 

mut mut mut mut <01,L1> 
<02,L2> 
(03,l.3> 

T2 • 
~ 

l: 1 
V4 prepared 

mut <01,L1> 
<04,L4> 

T1 

_1 J ,_ 

committed 

12 

J. 
I 

A 
log's end 

Figure 4-3: Hybrid log after T1 prepares and T2 commits 

information and forced it to the log for action T 1• 

7. The participant received a commit message for T1 from its coordinator. The 
recovery system created the committed outcome entry with the proper 
information and forced it to the log. 

8. The Argus system crashed. 

On recovery we see that the earlier version, rather than the latest version, of 0 1 gets 

copied to volatile memory, which is wrong. To solve this problem, we need to keep some 

extra information in the OT for mutex objects, namely, the log address of the "latest" data 

entry for that object that had been copied from the log. When we encounter another data 

entry for that object, we compare its log address with the one stored in the OT. If the new 

address is less than the old one, then the recovery system ignores the entry. If the new 

address is greater, then the recovery system copies the object version in the data entry to 

volatile memory and updates the OT with this data entry's log address. Also, the vm address 

field is updated with the new address of the object version. 
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accessible objects. The disadvantage of the snapshot is the space required for the MT and 

the time used in keeping the MT up to date in volatile memory. The time required to update 

the MT should be insignificant since the MT can be organized as a hash table; therefore, 

only the space consumed by the MT is significant. We expect that it will be worthwhile to 

trade this space for the time saved. 
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behave as they should. More work remains to be done, however. At one;.extreme is the 

verification of the algorithms. We need to state precisely what the correctness properties 

are for the algorithms and then verify that the algorithms preserve those properties. For 

atomic objects the property is that the state of each object after a crash is exactly what is 

obtained from running all actions that committed at a guardian in their serial order. For 

mutex objects, however, the property is not so easy to state because of the semantics of 

Argus that requires recovery of all mutex versions written for a prepared action. 

At the other extreme is a real implementation of the recovery system and its 

algorithms. The system must then be run in support of "realistic" applications and its 

performance measured. In this way we will be able to evaluate the efficiency of the 

algorithms, and we will be able to validate or disprove the assumptions on which the 

recovery system is based. 

Finally, the recovery system is based on an abstraction of stable storage, the stable 

log. This abstraction must be implemented using real storage devices in a way that provides 

the needed reliability. 
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