
.'., '"··· · ,,.,.

Reliable Object Storage

to Support Atomic Actions

by

Brian Masao Oki

May 1983

© ·Massachusetts Institute of Technology 1983

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract number
N0001~83-K-0125, and in part by the National Science Foundation under grant number
82-03486MCS.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridgei Massachusetts 02139

2

Reliable Object Storage
to Support Atomic Actions

by

Brian Masao Oki

Submitted to the
Department of Electrical Engineering and Computer Science

on May 19, 1983 in partial fulfillment of the requirements
for the Degree of

Master of Science in Computer Science

Abstract

To preserve the consistency of on-line, long-lived, distributed data in the presence of
concurrency and in the event of hardware failures, it is necessary to ensure atomicity and
data resiliency in applications. The programming language Argus is designed to support
such applications. This thesis investigates the mechanism needed to support the notion of
data resiliency present in Argus. Data resiliency means that the probability Is very high that
the crash of a node or storage device in a distributed system does not cause the loss of vital
data. Data resiliency requires the use of stable storage devices, memory devices .that
survive failure to a high probability. This thesis is not concerned with how to implement
stable storage devices, but rather with how to organize the use of stable storage. The thesis
presents a new organization of stable storage called the hybrid log that provides ·fast writing
of information to stable storage and reasonably fast recovery of Information from stable
storage. In the context of this scheme, various algorithms are developed for writing objects ,
to the log, recovering objects from the log, and housekeeping the log.

Thesis supervisor: Barbara H. Liskov
Title: Professor of Computer Science and Engineering

Keywords: Atomic actions, atomic objects, distributed systems, logs, recovery, shadowing,
stable storage, transactions

4

Table of Contents

Chapter One: Introduction

1.1 Stable Storage
1.2 Organizing Stable Storage

1.2.1 Logging versus Shadowing
1.2.2 The Approach

1.3 Related Work
1.3.1 System R Recovery Manager
1.3.2 Swallow

1.4 Outline of thesis

Chapter Two: Background

2.1 The Programming Language Argus
2.2 Two-phase Commit Protocol

2.2.1 The Coordinator
2.2.2 The Participant
2.2.3 Effects of crashes on Two-phase commit

2.3 The Recovery System
2.4 Recoverable Objects

2.4.1 Atomic Objects
2.4.2 Mutex Objects
2.4.3 Incremental Copying Algorithm

Chapter Three: Simple Log·· Writing and Recovery Algorithms

3.1 Log abstraction interface to stable storage
3.2 Structure of the simple log
3.3 Writing objects to the log

3.3.1 The Coordinator
3.3.2 The Participant
3.3.3 Writing data entries

3.3.3.1 Copying Data
3.3.3.2 What to Write
3.3.3.3 The Writing Algorithm

3.4 Recovering objects from the log
3.4.1 Sketch of the General Algorithm
3.4.2 Log Scenarios
3.4.3 Turning uids into pointers
3.4.4 The General Recovery Algorithm

Chapter Four: Hybrid Log·· Writing and Recovery Algorithms

4.1 Simple log versus Hybrid log

7

8
9
9

11
12
12
13
·14

16

16
18
18
19
19
20
22
22
23
23

25

25
26
29
29
29
3)

3)

32
39
40
41
42
50
51

54

54

5

4.2 Writing objects to the log
4.3 Recovering objects from the log

4.3.1 Sketch of the General Algorithm
4.3.2 Log Scenario and Recovery
4.3.3 The General Recovery Algorithm

4.4 Early prepare

Chapter Five: Hybrid Log •• Housekeeping Algorithms

5.1 Compacting the log
5.1.1 The Compaction Algorithm
5.1.2 The New Recovery Algorithm

5.2 Taking a snapshot of the stable state
5.3Summary

Chapter Six: Conclusions

References

...

55
57
57
58
59
60

63

64
65
68
69
71

73

75

6

Table of Figures

Figure 1 • 1 : Shadowed objects
Figure 2· 1: The Recovery System
Figure 2·2: An Atomic Record
Figure 3·1: Data entries and Outcome entries
Figure 3-2: Format of recoverable objects in volatile memory
Figure 3-3: Objects in volatile memory
Figure 3·4: Flattened Object
Figure 3·5: Newly Accessible Objects Example
Figure 3-6: Newly Accessible Objects
Figure 3· 7: Log of atomic objects after a crash
Figure 3-8: Log of mutex objects following a crash
Figure 3-9: Log following a crash
Figure 3-10: Coordinator's log following a crash
Figure 4-1: New format of log entries
Figure 4-2: Log after the prepare phase
Figure 4-3: Hybrid tog after T1 prepares and T2 commits

11
20
24
'l7
30
31
32
34
38
42
45
46
48
56
57
62

11

~ uid
0

0 01

02

03

04

05

Map
Figure 1-1: Shadowed objects

1.2.2 The Approach

Let us summarize the advantages and disadvantages of these two schemes:

1. Log => fast writing, but slow recovery

2. Shadowing => slow writing, but fast recovery

In comparing the two approaches we assume that crashes do not happen very often

and that we would like normal processing to be fast at the possible expense of a slow

recovery after a crash.

For reasons to be discussed in tater chapters, we have chosen an organization of

stable storage that falls between these two extremes, which we call the hybrid log. As the

name suggests, it is a hybrid of the pure log and the shadowing schemes that combines the

advantageous characteristics of either scheme. Hence, writing is almost as fast as the pure

log, and recovery is faster than the pure log scheme but not quite comparable with the

shadowing scheme. The map in the shadowing scheme is now written incrementally to the

hybrid log and is distributed over the entire log; this means that the extra cost associated

with updating the map at every action commit in the shadowing scheme is just part of the

cost of writing entries to the log.

Given this hybrid organization, we have also developed three kinds of algorithms: (1)

writing objects to the hybrid log, (2) recovering objects from the hybrid log, (3) and

15

shadowing schemes considered alone. We then explain the writing and recovery algorithms

for the hybrid log. Finally, we point out the complications introduced by the notion of early

prepare.

Chapter 5 considers the problem of reorganizing the hybrid log to make recovery from

crashes more efficient. Two methods are discussed and compared: log compaction and

stable state snapshot.

Finally, in Chapter 6 we summarize the foregoing, draw conclusions, and suggest

directions for further research.

20

If a coordinator crashed before the, committing record was written to stable storage

for some committing action, then it will remember nothing about the action after recovery,

and the action will be aborted. If the coordinator receives a query about the action from a

participant, it will tell the participant to abort the action. When the committing record

appears in stable storage the action has really committed; this entry marks the point of no

return for the coordinator, after which it must commit. Suppose, however, a coordinator

crashed after the committing record was written to stable storage, but before the done

record was written. Then upon recovery the action is still committing and the recovery

system restores the guardian's state as it had been before the crash.

If a coordinator crashed after the done record was written to stable storage for some

committing action, then this action has completed and nothing special need be done.

2.3 The Recovery System

prepare{aid,MOS)

The commit(aid) OT
The

abort(aid)
.... The

....

Argus recovery Recovery CT Argus •
System

housekeeping

committing(aid,gids) System PT System
done{ aid) •

Figure 2·1: The Recovery System

The job of the recovery system is to write information to stable storage as needed by

two-phase commit, to restore a guardian's stable state after a crash. and to reorganize

stable storage in order to make recovery more efficient. The recovery system provides

operations that the Argus system calls at appropriate times in order to carry out these tasks.

See Figure 2-1. The Argus system itself is distributed, every guardian containing a portion of

it; the recovery system also exists at each guardian and is called by the portion of the Argus

system at that guardian.

24

·. recoverable object but not any contained recoverable objects; these will be
copied separately it they were modified. The sharing of objects is preserved
only for shared recoverable objects or for a group of unrecoverable objects
entirely contained within a recoverable object.

3. Once the recoverable object, including its contained non-recoverable objects,
has been copied, the recovery system releases possession and continues.

To copy a recoverable object, the system invokes a routine that linearizes (or flattens)

the data in the modified object and in any contained non-recoverable objects. Any

references to other recoverable objects are transJated from their volatile addresses to their

corresponding stable storage references. Figure 2-2 illustrates this technique. In copying

the object referred to by variable z, we copy x but not y (since y is atomic but x is not);

instead, we place a stable storage reference for y in the copy of z, and copy y separately if

necessary (if it was modified or was new).

z: atomic record[x: int, y: atomic array[int]]
Figure 2·2: An Atomic Record

In short, the system gains possession of each recoverable object that had been

modified by the action, copies it, releases possession, and continues.

·----~--------------------

27

(uid) Qf the recoverable object, (2) the object type--mutex or atomic, (3) the object value, and

(4) the action identifier (aid) of the top-level action that is preparing. The object "value" is

not the actual object itself residing in volatile memory but a copy of the object's version.

Data entry

objectuid

object type

object value

action id

Outcome entries for partlcipanta

prepared committed

action id action Id

base committed prepared data

objectuid objectuid

object value object value

action Id

Outcome entries for coordinators

committing

_guardian ida

action Id

d'bne

action id

aborted

action Id

Figure 3· 1 : Data entries and Outcome entries

The object's unique identifier is some identifier that will never be reused and is unique

with respect to the object's guardian. Since this identifier will not serve any other purpose

except to distinguish recoverable objects from one another, the unique object generator can

be a stable counter associated with each guardian, that is, an integer that is incremented

whenever a recoverable object needs a uid. There is no danger of a uid being reused after a

crash because the recovery system knows after recovery of each guardian the last uld that

was generated and assigned to a recoverable object at that guardian; the stable counter can

29

eithera coordinator or a participant; thus, a guardian's log could contain outcome entries

for a coordinator when the guardian acts as coordinator and for a participant when the

guardian behaves like a participant.

We will elaborate further on these different outcome entries in the next several

sections when we discuss the writing of objects to the log.
!

3.3 Writing objects to the log

Recoverable objects are written to the log only when top-level actions commit and to

ensure that effects of top-level actions are made permanent, the system goes through the

standard two-phase commit protocol described in the previous chapter.

3.3.1 The Coordinator

After sending out prepare messages to all the participants (including itself since it is

also a participant), the coordinator waits for replies. If any participant replies aborted, or if

the coordinator aborts unilaterally, then the coordinator tells the participants tQ abort via

abort messages. If it hears from each participant that each has prepared it st~rts the

committing phase.

If all participants respond prepared, the recovery system creates a committing

outcome entry and forces it to the coordinator's log. (Whenever we say that a log entry Is

forced to the log, we mean that the force_write operation on the log object is invoked with

the log entry.) At this point the action is committed. The coordinator then sends commit

messages to all the participants (including itself), informing them of its verdict, and waits for

them to respond. When all have responded committed the coordinator creates a done

coordinator outcome entry and forces it to the coordinator's log. Two-phase commit Is now

complete.

3.3.2 The Participant

When a participant receives a prepare message from the the coordinator it prepares in

the following way. In general, for each object in the MOS the recovery system constructs

data entries and writes them to the log. If the data entries were written successfully to the

31

discussed in Chapter 2 on the data portion of the recoverable object, in particular, on the

appropriate version (current or base version if the object is atomic, or the current version if

the object is mutex). As the copy proceeds, the algorithm follows volatile memory

references, replacing references to recoverable objects with their uids and simply copying

any regular objects. The data is now flattened. The recovery system then creates a data

entry containing the object uid, the action id of the action that is preparing, the object type,

and the flattened data. And it is this data entry that is written to the log.

Figure 3-3 shows a possible situation involving atomic, mutex, and regular objects.

02

mutex

regular

data

01

atomic

regular

data

atomic

data

03

atomic

Figure 3-3: Objects in volatile memory

Suppose object 0 1, which was modified by action T1, is to be copied to the log. The

incremental copying algorithm follows pointers in the data portion of the object. The

reference to object 0 2 {a mutex object) is replaced with the uid 0 2 itself. The algorithm

copies the regular object and in so doing discovers that It contains a reference to yet

another recoverable object, namely 0 4, an atomic object; it replaces the reference with 0 4

itself. And finally, the algorithm replaces the reference to object 0 3, an atomic object, with

the uid 0 3.

In flattened form, 0 1 looks like Figure 3-4.

32

01

atomic

T1

02

data

04

03

Figure 3·4: Flattened Object

3.3.3.2 What to Write

Having discussed the manner in which data is copied to the log as data entries, let us

consider the question of what actually gets written. As we mentioned before, we are

interested only in those recoverable objects that are accessible from the stable variables

because these make up the stable state of the guardian and only the stable state survives

crashes. Recall that, for each action, the Argus system keeps track of both modiffed objects

and newly created objects in the MOS and does not distinguish between objects accessible

from the stable variables and objects accessible from the volatile variables. It is the job of

the recovery system, then, to separate the objects in the MOS that are accessible from the

stable variables from those objects that are inaccessible and to write the accessible objects

to the log.

Notice that this concern with accessible objects is really an optimization because we

could simply write out all the recoverable objects at a guardian without regard for

accessibility or inaccessibility; if some inaccessible object were written out to stable storage

it would not matter since it was unreachable anyway, but it would clutter the log with

irrelevant information.

The Problem of Newly Accessible Objects

Recoverable objects are either previously accessible from the stable variables or

newly accessible.

Let us consider previously accessible recoverable objects. If the previously

34

Figure 3-5: Newly Accessible Objects Example

x y
01 cp 02Cf

int int

1. Initial situation

x y

3. T3 modifies 02 ·> 03

x y

01T
i t

02~1nt

03[i] •int

7. AfterT2 aborts

x y

q::io2
i*t

2. T2 modifies 01 -> 03

x y

03 C!:3-+ int
~int

4. T2 modifies 03
5. T2 prepares
6. T3 prepares

x y

01cr 02cp
i t

03[i] •int

8. After T3 commits

38

,treated differently. Since the object is an atomic object that the actien has a
read lock on (and thus there is only a single version), the recovery system
creates an outcome entry, base_committed, consisting of object uid 0 3, and the
copied object version. The recovery system writes the entry to the log, deletes
object 03 from the NAOS, and inserts uid 0 3 into the AS.

6. The NAOS is empty, so the recovery system is done. It has determined which of
the objects in the MOS were accessible and has written the corresponding data
entries to the log. It forces a prepared outcome entry to the log.

7. The AS now consists of object uids 0 1, 0 2, 0 3•

x

Cf 03

int

a. T1 gets write lock on 02

x

02~1nt

oac:p
1it

b. T1 modifies 02 to point to 03
Figure 3·6: Newly Accessible Objects

Notice that there are two phases. First, the recovery system processes every object in

the MOS (which was one of the two arguments in the call of the prepare operation}, copying

current object versions and writing data entries to the log as it goes along. As these object

versions are copied, recoverable objects not previously accessible (that is, their uids are not

already in the AS) may be revealed as newly accessible; these objects are placed in another

set, the NAOS, consisting of just newly accessible objects.

Second, when the recovery system has processed the MOS, it then proceeds to

process the NAOS, if it is not empty. After each object is processed it is deleted from the

NAOS and added to the AS. Other recoverable objects may become newly accessible and

42

3.4.2. Log Scenarios

Scenario 1--atomic objects

Suppose the situation depicted in Figure 3-7 exists at a participant's stable log after a

crash.

+----+----+----+--------+---------+----+--------+
I be I be I 02 lpreparedlcommittedl 01 lpreparedf
I 01 I 02 I at I I I at I I
I Vl I V2 I V2 I I I Vl I I
I I I Tl I Tl I Tl I T2 I T2 I
+----+----+----+--------+---------+----+--------+
t

log's beginning
t

log's end

Figure 3-7: Log of atomic objects after a crash

In this figure (and all figures of this sort) the beginning of the log is on the left and the end of

the log is on the right; the log grows to the right. The symbols in the log depicted have the

following meaning~ T 1 and T 2 are actions. Action T 1 has committed; action T 2 has

prepared. 0 1 and 0 2 represent unique object identifiers; and V1 and V2 are the object

values, that is, the versions of objects.

Let us develop some notation to make it easier to talk about data entries and outcome

entries in a log. Let data entries be represented as quadruples:

<object uid, object type, ot)ject version, action identifier>

so a data entry might look like <01,atomic,V1,T1>, where 0 1 is the object uid, atomic

indicates that the object version is atomic, V1 is the object version, and T 1 is the action id.

Let us represent outcome entries as doubles of

<outcome, action identifier>

and so the first two outcome entries would look like <prepared,T1> and <committed,T1>. The

only exception is committing, which also includes a list of guardian ids. Furthermore, we

represent the special outcome entries in the following way:
<be, object uid, object version>

where "be" is short for base_committed;

<pd, object uid, object version,action id>

where "pd" is short for prepared_data.

--------------- ----

Tl
T2
T3

48

' At algorithm's end, the PT and OT ~ontain the following information.

PT

committed
aborted
committed

OT

01 restored
02 restored
03. restored

vm address
vm address
vm address

Notice that the stable state of the guardian in volatile memory following recovery will

look exactly like the situation that existed before the crash in Step 8 of Figure 3-5, which is

what we wanted.

Scenario 4

Suppose the situation depicted in Figure 3-1 O exists at a guardian's log, after a crash.

+--+--+--+--------+---------+--+--------+----------+---------+----+
lbcl01lbclpreparedlcommittedl02lpreparedjcommittinglcommittedldonel
1011at1021 I latl ., I I I I
1v11v11v21 I 1v21 I P1,P2,P3 I I I
I I T1 I I Tl I Tl I T2 I T2 I T2 I T2 I T2 I
+--+--+--+--------+---------+--+--------+----------+---------+----+
1' 1'

log's beginning log's end

Figure 3-1 O: Coordinator's log following a crash

In this scenario we show the entries that are written to the log for the coordinator of an

action during two-phase commit.

To recover the objects from the guardian's log in Figure 3-10, we need to extend the

algorithm to include coordinators. Let us add a third table, which stores information about

coordinator states. Thus,

CT: action id -+ coordinator action state

where coordinator action state = {committing, done}. committing contains a list of the

guardian identifiers that were involved in the action.

Notice that in the guardian's log a particular ordering of outcome entries holds true If

the top-level action committed successfully: prepared, committing, committed, and done.

Why? When each participant has prepared, it forces the prepared outcome entry to its log.

The coordinator, upon hearing that everyone has prepared, forces the committing entry to

53

of the participants and coordinators.

56

Data entry

object type

object value

Outcome entries for participants

prepared committed

<uid,log address> action id

log pointer

action id

log pointer

base committed prepared data

objectuid object uld

object value object value

log pointer action Id

Outcome entries for coordinators

committing

_g_uardian ids
action Id I~~

•

Figure 4·1 : New format of log entries

the participant's log for some action and internally keeps track of the object uids and the log

addresses of the data entries. When it is finished, it creates a prepared outcome entry

consisting of the list of <uid, log address> pairs and the log address of the previous outcome

entry and forces the entry to the log. Notice that the recovery system must keep track of this

information for every preparing action. The only other difference is that each of the other

outcome entries is linked via the log pointer field to the previous outcome entry before It Is

forced to the log.

57

A
log's end

Figure 4-2: Log after the prepare phase

4.3 Recovering objects from the log

In this section we present a sketch of the general recovery algorithm. One log

scenario demonstrates the manner in which the new recovery algorithm recovers objects

from the log. We then give a detailed explanation of the differences between this recovery

algorithm and the simple log's recovery algorithm.

4.3.1 Sketch of the General Algorithm

1. Create three tables: (1) an object table {OT) that maps object uids to both object
states (prepared or restored) and object locations in volatile memory, (2) a
coordinator action table (CT) that maps action ids to coordinator action states
{committing and done, where committing atso has a list of guardian Ids of
guardians involved in the action), and (3) a participant action table (PT) that
maps action ids to participant action states (prepared, committed, and aborted).

2. Read the log backwards, starting with the last outcome entry in the log. For
every outcome entry on the backward chain of outcome entries, process it in the
following way:

a. If the outcome entry is aborted, committed, committing, or done then fill
the three tables with appropriate information (action ids and action states
like prepared).

b. If the outcome entry is a prepared entry, then for each <uid, log address>
pair in the entry check the OT and determine whether or not to copy the
object version into volatile memory; if it needs to copy the object version it
follows the log address pointer to the data entry itself.

62

~~ ~~ ~~ _l 1
V1 V1 V2 V3 prepared

mut mut mut mut <01,L1>
<02,L2>
(03,l.3>

T2 •
~

l: 1
V4 prepared

mut <01,L1>
<04,L4>

T1

1 J ,

committed

12

J.
I

A
log's end

Figure 4-3: Hybrid log after T1 prepares and T2 commits

information and forced it to the log for action T 1•

7. The participant received a commit message for T1 from its coordinator. The
recovery system created the committed outcome entry with the proper
information and forced it to the log.

8. The Argus system crashed.

On recovery we see that the earlier version, rather than the latest version, of 0 1 gets

copied to volatile memory, which is wrong. To solve this problem, we need to keep some

extra information in the OT for mutex objects, namely, the log address of the "latest" data

entry for that object that had been copied from the log. When we encounter another data

entry for that object, we compare its log address with the one stored in the OT. If the new

address is less than the old one, then the recovery system ignores the entry. If the new

address is greater, then the recovery system copies the object version in the data entry to

volatile memory and updates the OT with this data entry's log address. Also, the vm address

field is updated with the new address of the object version.

72

accessible objects. The disadvantage of the snapshot is the space required for the MT and

the time used in keeping the MT up to date in volatile memory. The time required to update

the MT should be insignificant since the MT can be organized as a hash table; therefore,

only the space consumed by the MT is significant. We expect that it will be worthwhile to

trade this space for the time saved.

74

behave as they should. More work remains to be done, however. At one;.extreme is the

verification of the algorithms. We need to state precisely what the correctness properties

are for the algorithms and then verify that the algorithms preserve those properties. For

atomic objects the property is that the state of each object after a crash is exactly what is

obtained from running all actions that committed at a guardian in their serial order. For

mutex objects, however, the property is not so easy to state because of the semantics of

Argus that requires recovery of all mutex versions written for a prepared action.

At the other extreme is a real implementation of the recovery system and its

algorithms. The system must then be run in support of "realistic" applications and its

performance measured. In this way we will be able to evaluate the efficiency of the

algorithms, and we will be able to validate or disprove the assumptions on which the

recovery system is based.

Finally, the recovery system is based on an abstraction of stable storage, the stable

log. This abstraction must be implemented using real storage devices in a way that provides

the needed reliability.

[Raibl~83]

[Reed 81]

76

Raible, Eric. "A Log-based Interface to Stable Storage for the Argus
Language". 1983.Bachelor's Thesis, M.l.T. Department of Electrical
Engineering and Computer Science. May, 1983.

Reed, David P. and Svobodova, Liba. "Swallow: A Distributed Data
Storage System for a Local Network". In West, A. and Janson,,
P. {editors), Local Networks for Computer Communication, pa~
355-373. North Hofland Publishing Company, 1981. -

[Svobodova 80] Svobodova, Liba. Management of Object Histories in the Swallow
Repository. Technical Report MIT /LCS/TR-243, M.l.T. Laboratory for
Computer Science, July, 1980. '

[Weihl 82] Weihl, William E. and Liskov, Barbara H. "Specification and
Implementation of Resilient Atomic Data Types". 1982.Available as
Computation Structures Group Memo 223, M.l.T. Laboratory for
Computer Science, December, 1982. To appear in ACM SIGPLAN '83: a
Symposium on Programming Language Issues in Software Systems.

