Preliminary Report on The Larch Shared Language*

J. V. Guttag
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, Massachusetts 02139

J. J. Horning
Xerox Corporation
3333 Coyote Hill Road
Palo Alto, California 94304

October 1983

Abstract

Each member of the Larch family of formal specification languages has a component derived from a programming language and another component common to all programming languages. We call the former interface languages, and the latter the Larch Shared Language.

This report presents version 1.0 of the Larch Shared Language. It begins with a brief introduction to the Larch Project and the Larch family of languages. The next chapter presents most of the features of the Larch Shared Language and briefly discusses how we expect these features to be used. It should be read before reading either of the remaining two chapters, which are a self-contained reference manual and a set of examples.

Keywords: Algebraic specification, specification language
©J. V. Guttag and J. J. Horning
MIT

[^0]
Table of Contents

Context
The Larch Family of Languages
Status and Plans
An Introduction to the Larch Shared Language
Simple Algebraic Specifications
Getting Richer Theories
Combining Independent Traits
Combining Interacting Traits
Renaming and Exclusion
Assumptions
Consequences
IfThenElse and Equality
Some Further Examples
Larch Shared Language Reference Manual
Structure of Manual
Kernel Syntax
Simple Traits
Consequences and Exemptions
Constrains Clauses
Implicit Signatures and Partial OpForms
Mixfix Operators
Boolam Terms as Equations
Externat Refenences
Modifications
Implicil incorponaion of Boolom, Iflunation and Envoluy
Semantic Checking
Refennce Grammar for Lerch Shared Languare
1
Praface
Conventions

Ordering Relations
Grow Theory
Simple Numeric Types
Simple Depa Structunes
Contatiner Properties
Container Classes
Generic Operators on Conminers
Nonlinear Structures
Ringr Fiolds and Numbers
Lattices
Enumerated Data Types
Display Traits
Reformect

Context

The Larch Family of Languages

$=$ The Larch Project is developing tools and techniques intended to aid in the productive use of formal specifications of systems containing computer programs. Many of its premises and goals are discussed in [Guttag, Horning, and Wing 82].

We view a system as consisting of a state and mechanisms for changing and extracting information from that state. We choose to define the information contained in the state without reference to either how that information was created or how it will be used. Our specifications consist of two parts. In one, we specify the properties of values that may appear in system states, and in the second, the program modules that deal with those states.

A major component of the Larch Project is a family of specification languages. Each Larch language has a component particular to a specific programming language and another component common to all programming languages. We call the former interface languages, and the latter the shared language.

We use the interface languages to specify program modules. Specifications of the interface that one module presents to other modules often rely on notions specific to the programming language. e.g., its denotable values or its exception handling mechanisms. Each interface language deals with what can be observed about the behavior of programs written in a specific programming language. Its simplicity or complexity is a direct consequence of the simplicity or complexity of the observable state and state transformations of that programming language.

The shared language is algebraic. It is used to specify abstractions that are independent of both the program state and the programming language. The operators defined by an algebraic specification appear in specifications written in the interface languages, and in reasoning about such specifications, but they are not directly available to users of programs. The role of shared language specifications is similar to that of abstract models in some other styles of specification.

Some important aspects of the Larch family of specification languages are:
Composability of specifications. We emphasize the incremental construction of specifications from other specifications. The importance of such mechanisms is discussed in [Burstall and Goguen 77]. Larch has mechanisms for building upon and decomposing specifications as well as for combining specifications.
Emphasis on presentation Reading specifications is an important activity. To assist in this process, we use composition mechanisms defined as operations on specifications, rather than on theories or models.
Interactive and integrated with tools. The Larch languages are designed for interactive use. They are intended to facilitate the interactive construction and incremental checking of specifications. The decision to rely heavily on support tools has influenced our language design in many ways.

Semantic checking It is all too easy to write specifications with suprising implications. We would like many such specifications to be detectably ill-formed. Extensive checking while specifications are being constructed is an important aspect of our \ddagger proach. Larch was designed to be used with a powerful theorem prover for semantic checking to supplement the syntactic checks commonly defined for specification languages. We have been influenced here by our experience with Affirm [Musser 80].
Programming language dependencies localized. We feel that it is important to incorporate many programming-language-dependent features into our specification languages, but to isolate this aspect of specifications as much as possible. This prompted us to design a single shared language that could be incorporated into different interface languages in a uniform way.
Shared language based on equations. The shared language has a simple semantic basis taken from algebra. Because of the emphasis on composability, checkability and interaction, however, it differs substantially from the "algebraic" specification languages we have used in the past.
Interface languages based on predicate calculus. Each interface language is based on assertions written in typed first-order predicate calculus with equality, and incorporates programming-language-specific features to deal with constructs such as side effects, exception handling, and iterators. Equality over terms is defined in the shared language; this provides the link between the two parts of a specification.

Status and Plans

We are still in the early phases of the Larch project. In addition to the work described in this report, interface languages for CLU and Mesa have been designed. [Wing 83] contains a detailed description of the semantics of the CLU interface language. The Mesa interface language has not been documented, but we have used it, in conjunction with the shared language, to specify the program level interface to the Cypress data base system. This is the largest specification we have attempted.

A primitive checker for the Shared Language has been implemented [Kownacki 83]. In addition to parsing specifications, this program checks various context sensitive constraints and provides mechanisms for "expanding" assumptions, importations, and inclusions. This checker is an interim tool. We designed our specification language in tandem with an editing and viewing tool. Many language design decisions were influenced by the presumption that specifications would be produced and read interactively using this tool. A first design is complete [Zachary 83], but implementation has yet to begin.

We are in the process of implementing term rewriting software [Forgaard 83], [Lescanne 83] that we hope will provide much of the theorem-proving capability needed for analyzing specifications. The definition of the Larch Shared Language calls for a number of checks for which there can be
no effective procedure. We have what we believe are useful procedures, based on sufficient or necessary (but not both) conditions, for some of these checks, e.g., consistency. We are working on procedures for the others, e.g., checking constrains clauses. This is a difficult task. Diainostics present a particularly vexing problem: How should relatively complicated theorem-proving precedures report problems to users who are not familiar with either their internal structure or the theory underlying them?

It is always difficult to evaluate a language that has not been extensively used. The Larch Shared Language is especially hard to evaluate because it has been designed for use in an environment that we have not yet built. In addition to the specification of Cypress, we have written a number of small specifications. On the whole, we were pleased by the ease of constructing these specifications in Larch, and with the specifications themselves. While constructing them, we uncovered several errors by inspection; we are encouraged that most of these errors would have been detected automatically by the checks called for in the language definition. It will be some time, however, before we can draw any strong conclusions about the potential utility of Larch in software development.

An Introduction to the Larch Shared Language

1. Simple Algebraic Specifications

Most of the constructs in the Larch Shared Language are designed to assist in structuring specifications, for both reading and writing. The trait is our basic module of specification. Consider the following specification for tables that store values in indexed places:

TableSpec: trait
introduces
new: \rightarrow Table
add: Table, Index, Val \rightarrow Table
$\# \in \#$: Index, Table \rightarrow Bool
eval: Table, Index \rightarrow Val
isEmpty: Table \rightarrow Bool
size: Table \rightarrow Card
constrains new, add, ϵ, eval, isEmpty, size so that
for all [ind, indl: Index, val: Val, t : Table]
eval(add(t, ind, val), indl) $=$ if ind $=$ indl then val else eval(t, indl)
ind \in new $=$ false
ind $\in \operatorname{add}(t$, indl, val) $=($ ind $=$ ind $l) \mid($ ind $\in i)$
size(new) $=0$
size(add $(t$, ind, val) $=$ if ind $\in t$ then size (t) else $\operatorname{size}(t)+1$
isEmpty $(t)=(\operatorname{size}(t)=0)$
This example is similar to a conventional algebraic specification in the style of [Guttag and Horning 80] and [Musser 80]. The part of the specification following introduces declares a set of operators (function identifiers), each with its signature (the sorts of its domain and range). These signatures are used to sort-check terms (expressions) in much the same way as function calls are type-checked in programming languages. The remainder of the specification constrains the operators by writing equations that relate sort-correct terms containing them.

There are two things (aside from syntactic amenities) that distinguish this specification from a specification written in our earlier algebraic specification languages:

A name, TableSpec, is associated with the trait itself.
The axioms are preceded by a constrains list.
The name of a trait is logically unrelated to any of the names appearing within it. In particular, we do not use sort identifiers to name units of specification. A trait need not correspond to a single "abstract data type," and often does not.

The constrains list contains all of the operators that the immediately following axioms are intended to constrain. It is the responsibility of a specification checker to ensure that the specification conforms to this intent. The constrained operators will generally be a proper subset of the operators appearing in the axioms. In this example the constrains list informs us that the axioms are not to put any constraints on the properties of if then else, false, $0,1,+, 1$, and $=$, despite their occurrence
in the axioms. The judicious use of constrains lists is an important step in modularizing specifications.
We associate a theory with every trait. A theory is a set of well-formed formulas (wff's) of typed first-order predicate calculus with equations as atomic formulas.

The theory, call it Th, associated with a trait written in the Larch Shared Langilage is defined by:

Axioms: Each equation, universally quantified by the variable declarations of the containing constrains clause, is in Th.
Inequation: \sim (true $=$ false) is in Th. All other inequations in Th are derivable from this one and the meaning of $=$.
First-order predicate calculus with equality: Th contains the axioms of conventional typed first-order predicate calculus with equality and is closed under its rules of inference.
The equations and inequations in Th are derivable from the presence of axioms in the trait-never from their absence. Th is deliberately small, because it is important to prove theorems before a specification is complete, and we wanted to limit the circumstances under which the addition of new operators and equations could invalidate previously proved theorems. Had we chosen to take the theory associated with either the initial or final interpretation of a set of equations (as in [ADJ 78] and [Wand 79]), this monotonicity property would have been lost

2. Getting Richer Theories

While the relatively small theory described above is often a useful one to associate with a set of axioms, there are times when a larger theory is needed, e.g., when specifying an "abstract data type." Generated by and partitioned by give different ways of specifying larger theories.

Section 1 does not include an induction schema. This is an appropriate limitation when the set of generators for a sort is incomplete. Saying that sort S is generated by a set of operators, Ops, asserts that each term of sort S is equal to a term whose outermost operator is in Ops. One might, for example, say that the natural numbers are generated by 0 and successor and the integers generated by 0 , successor, and predecessor. Generated by adds an inductive rule of inference.

This inductive rule and the clause Table generated by [new, add] can be used to derive theorems such as

$$
\forall t: \text { Table }[(t=\text { new }) \mid(3 \text { ind: Index }[\text { ind } \in t])],
$$

that would otherwise not be in the theory.

Section 1 allows equations to be derived only by direct equational substitution, not by the absence of inequations. This is an appropriate limitation when the set of observers for a sort is incomplete. Saying that sort S is partitioned by a set of operators, Ops, asserts that if two terms of sart S are unequal, a difference can be observed using an operator in Ops. Therefort, they must be equal if they cannot be distinguished using any of the operators in Ops. This rule of inference adds new equations to the theory associated with a trait, thus reducing the number of equivalence classes in the equality relation.

This rule and the clause Table partitioned by [ϵ, eval] can be used to derive theorems such as $\operatorname{add}(\operatorname{add}(t$, ind, $v)$, ind1, $v)=\operatorname{add}(\operatorname{add}(t$, indl, $v)$, ind, $v)$, that would otherwise not be in the theory.

3. Combining Independent Traits

Our example contains a number of totally unconstrained operators, e.g., false and + . Such traits are not very useful. The most straightforward thing to do would be to augment the specification with additional clauses dealing with these operators. One way to do this is by trait importation. We might add to trait TableSpec:
imports Cardinal, Boolean
The theory associated with the importing trait is the theory associated with the union of all of the introduces and constrains clauses of the trait body and the imported traits.

Importation is used both to structure specifications to make them easier to read and to introduce extra checking. Operators appearing in imported traits may not be constrained in either the importing trait or any other imported trait. This guarantees that imported traits don't "interfere" with one another in unexpected ways. I.e., it guarantees that the theory associated with a trait is a conservative extension of each of the theories associated with its imported traits. (An extension, Thl, of a theory, Th2, is conservative if and only if every wff of the language of Th2 which is in Th1 is also in Th2.) Each imported trait can, therefore, be fully understood independently of the context into which it is imported.

As a syntactic amenity, trait Boolean is automatically imported into all other traits.

4. Combining Interacting Traits

While the modularity imposed by importation is often helpful, it can sometimes be too restrictive. It is often convenient to combine several traits dealing with different aspects of the' same operator. This is common when specifying something that is not easily thought of as an abstract data type. Trait inclusion involves the same union of clauses as trait importation, but allows the included operators to be further constrained. Consider, for example:

Reflexive: trait
introduces \#.rel\#: T, T \rightarrow Bool constrains .rel so that for all [t : T]
t.rel $t=$ true
Symmetric: trait
introduces \#.rel\#: T, T \rightarrow Bool constrains .rel so that for all [$11, t 2: \mathrm{T}$]
$\boldsymbol{t 1}$. rel $\boldsymbol{t 2}=\boldsymbol{t 2}$.rel \boldsymbol{t}
Transitive: trait
introduces \#.rel\#: T, T \rightarrow Bool constrains .rel so that for all [$t 1, t 2, t 3: \mathrm{T}]$
$(((t 1$.rel $t 2) \&(t 2 . r e l t s)) \Rightarrow(t l$ rel $t 3))=$ true
Equivalence: trait
includes Reflexive, Symmetric, Transitive
Equivalence has the same associated theory as the less structured trait
Equivalencel: trait

$$
\begin{aligned}
& \text { introduces \#.rel \# : T, T } \rightarrow \text { Bool } \\
& \text { constrains .rel so that for all }[t 1, t 2, t 3 \text { : T] } \\
& t l . \text { rel } t l=\text { true } \\
& t \mid . \text { rel } t 2=t 2 \mathrm{rel} t l \\
& (((t l . \mathrm{rel} t 2) \&(t 2 \mathrm{rel} t 3)) \Rightarrow(t l . \mathrm{rel} t 3))=\text { true }
\end{aligned}
$$

Any legal trait importation may be replaced by trait inclusion without either making the trait illegal or changing the associated theory. It does involve the sacrifice of the checking that ensures that the imported traits may be understood independently of the context in which they are used. We use importation when we can incorporate a theory unchanged, inclusion when we cannot.

5. Renaming and Exclusion

The specification of Equivalence in the previous section relied heavily on the coincidental use of the operator .rel and the sort identifier T in three separate traits. In the absence of such happy coincidences, renaming can force names to coincide, keep them from coinciding, or simply replace them with more suitable names.

The phrase
Tr with [x for y]
stands for the trait Tr with every occurrence of y (which must be either a sort or opqiator identifier) replaced by x . Notice that if y is a sort identifier this renaming may change the signatures associated with some operators.
: Occasionally we wish to eliminate an operator altogether. The phrase
Tr without [op]
stands for the trait Tr without the declaration of op and without each axiom, generated by, and partitioned by in which op appears. We use without to remove an operator either so that we can later add another operator with the same name and signature but different properties or merely because it is superfluous and we want to spare readers the bother of looking at it.

If TableSpec contains the generated by and partitioned by of section 2, the specification
ArraySpec: trait
imports IntegerSpec
includes TableSpec without [size]
with [defined for \# $\in \#$, assign for add, read for eval, Array for Table, Integer for Index]
stands for
ArraySpec: trait
imports IntegerSpec introduces
new: \rightarrow Array
assign: Array, Integer, Val \rightarrow Array
defined: Integer, Array \rightarrow Bool
read: Array, Integer $\rightarrow \mathrm{Val}$
isEmpty: Array \rightarrow Bool
constrains new, assign, defined, read, isEmpty so that
Array generated by [new, assign]
Array partitioned by [defined, read]
for all [ind, indl: Integer, val: Val, t : Array]
read(assign(t, ind, val), indI) $=$
if ind $=$ indl then val else read $(\mathrm{t}$, indl $)$
defined (ind, new) $=$ false
defined(indl, assign(t, ind, val $)=(($ ind $=$ indl $) \mid$ defined $($ ind $l, t))$
Notice that in this specification isEmpty is totally unconstrained. In section 7 we discuss a checking mechanism that would call the lack of constraints on isEmpty to the specifier's attention. This would, presumably, provoke him either to add the axioms

> isEmpty $($ new $)=$ true
> isEmpty $(a s s i g n(t$, ind, vaf) $)=$ false
to his specification, or to add isEmpty to the without clause.
The use of without rather than some sort of hiding mechanism (as in [Burstall and Goguen 81]) may thus involve some extra work for the specifier. In return for this work, users of the specification are spared having to deal with the "hidden" operators, e.g., in proofs that use the specification. This
is consistent with our belief that specifiers should be encouraged to do things that will make life easier for users of their specifications.

The definition of without should make it clear that we are indeed operating on text of traits (presentations) rather than on their associated theories. Consider adding these isEmpty axioms to TableSpec to form another trait, TableSpecl. TableSpec and TableSpecl have the same associated theories, but

TableSpec without size
and
TableSpecl without size
have rather different associated theories-in the latter, isEmpty is fully defined.
A final point raised by the examples of this section is the importance of distinguishing between the history of a specification (how it was constructed) and the structure presented to a reader. A reader familiar with TableSpec might prefer to read the first version of ArraySpec; others might find it distracting to have to understand the more general structure before understanding ArraySpec.

6. Assumptions

We often construct fairly general specifications that we anticipate will later be specialized in a variety of ways. Consider, for example,

MultiSetSpec: trait
introduces
\{\}: \rightarrow MultiSet
insert: MultiSet, Elem \rightarrow MultiSet
delete: MultiSet, Elem \rightarrow MultiSet
$\# \in \#:$ MultiSet, Elem \rightarrow Bool
constrains \{\}, insert, delete, \in so that
MultiSet generated by [\{\}, insert]
MultiSet partitioned by [delete, $\boldsymbol{\epsilon}$]
for all [m: MultiSet, e, el: Elem]

$$
e \in\}=\text { false }
$$

$e \in \operatorname{insert}(m, e l)=(e=e l) \mid(e \in m)$
delete($\}, e)=\{ \}$
delete(insert $(m, e), e l)=$
if $e=e l$ then m else insert(delete $(m, e l), e$)
We might specialize this to IntMultiSet by renaming Elem to Integer and including it in a trait in which operators dealing with Integer are specified, e.g.,

IntMultiSet: trait
imports IntegerSpec
includes MultiSetSpec with [Integer for Elem]

The interactions between MultiSetSpec and IntegerSpec are very limited. Nothing in MultiSetSpec places any constraints on the meaning of the operators that occur in IntegerSpec, e.g., $0,+$, and <. Consider, however, extending MultiSetSpec to MultiSetSpecl by addming an operator rangeCount,

MultiSetSpecl: trait
imports MultiSetSpec, Cardinal introtuces
rangeCount: MultiSet, Elem, Elem \rightarrow Integer \# < \# : Elem, Elem \rightarrow Bool
constrains rangeCount so that for all [el, e2, es: Elem, m: MultiSet] rangeCount (\{\}, el, e2) $=0$
rangeCount(insert $(m, e 3), e l, e 2)=$
rangeCount $(m, e 1, e 2)+($ if $(e l<e 3) \&(e 3<e 2)$ then 1 else 0)
MultiSetSpecl places no constraints on the < operator. Suppose, however, that this is not what we intend. We might have definite ideas about the properties that $<$ must have in any specialization, e.g., that it should define a total ordering. We could specify such a restriction by adding to MultiSetSpecl the assumption (Ordered is defined in the Handbook section, on page 36):

assumes Ordered with [Elem for T]

In constructing the theory associated with MultiSetSpecl, the assumption would be treated as if Ordered with [Elem for T] had been included. This could be used to derive various properties of MultiSetSpecl, e.g., that rangeCount is monotonic in its last argument.

Whenever the augmented MultiSetSpecl is imported or included in another trait, however, the assumption will have to be be discharged. In

IntMultiSetl: trait
includes MultiSetSpecl with [Integer for Elem]
imports IntegerSpec
this would amount to showing that the (renamed) theory associated with Ordered is a subset of the theory associated with IntegerSpec. Often, the assumptions of a trait are used to discharge the assumptions of traits it imports or includes.

7. Consequences

We have now looked at those parts of the Larch Shared Language that determine the theory associated with a valid trait. That subset of the language contains some checkable redundancy; e.g., assumptions are checked when a trait is included or imported, and comstrains lists are checked against the axioms associated with them. We now turn to a part of the language whose only purpose is to introduce checkable redundancy, in the form of assertions about the theory associated with a trait.

There are two kinds of consequence assertions:
That the theory associated with a trait contains another theory.
That the theory associated with a trait "adequately" defines a set of operators in terms of
other operators.
The first kind of assertion is made using implies. Consider, for example, adding to the augmented MultiSetSpecl,
implies for all [m : MultiSet, e1, e2, e3: Elem]

$$
(e 2<e 3) \Rightarrow(\text { range Count }(m, e l, e 2) \leq \operatorname{rangeCount}(m, e l, e 3))
$$

Implies can be used to indicate intended consequences of a specification, both for checking and to increase the reader's insight. The theory to be implied can be specified using the full power of the language, e.g., by using generated by and partitioned by, or by referring to traits defined elsewhere.

The second kind of assertion is made using converts [Ops]. This asserts that each term is provably equal to a term that does not contain operators in Ops. (We do not require this for terms containing variables of sorts appearing in generated by clauses.) Converts is used to say that the specification adequately defines a collection of operators.

A common problem with axiomatic systems is deciding whether there are "enough" axioms. Converts provides a way of making a checkable statement about the adequacy of a set of axioms. Consider, for example, adding to TableSpec:
converts [isEmpty].
This says that each term containing isEmpty, such as isEmpty(new) or isEmpty(add(new), ind, val), is equal to another term that does not contain isEmpty.

Now consider adding to TableSpec the stronger assertion:
converts [isEmpty, eval].
Terms containing subterms of the form eval(new, ind) are not convertible to terms that do not contain eval, so an error message of the form
eval(new, ind) not convertible
would be generated. This would present a problem if we did not wish to add an axiom to resolve this incompleteness. We therefore provide a mechanism to allow specifiers to indicate that the unconvertibility of certain terms is acceptable. If TableSpec were modifed to include
exempts for all [ind: Index] eval(new, ind)
the checking associated with the converts would now require that the theory associated with TableSpec must contain either
an equation, $\mathrm{t}=\mathrm{tl}$, where tl has no occurrences of isEmpty or eval, or
an equation $t^{\prime}=t l$, where t^{\prime} is a subterm of t, and $t l$ is an instantiation of eval(new, ind).
This checking ensures that each term containing operators in the converts list is either defined by the axioms (in terms of operators not in the list) or explicitly exempted. One use of converts is to allow the specification checker to notice unintended effects of without. As suggested in section 6 , the failure of ArraySpec to fulfill the converts inherited from TableSpec would trigger error messages of the form:
isEmpty(new) not convertible
isEmpty(assign(, ind, val)) not convertible.

8. IfThenElse and Equality

In our examples we made use of some apparently unconstrained operators: if then else and $=$, with a variety of signatures. In fact, the appearance of these operators leads to the implicit incorporation of the traits IfThenElse and Equality.

Whenever a term of the form if b then $t 1$ else $t 2$ occurs in a trait we replace the mixfix symbol if then else by the prefix symbol ifThenElse. If tl and t 2 are of the same sort, T 1 , we also import the trait IfThenElse with [T1 for T] into the enclosing trait.

Whenever a term of the form $\mathrm{tl}=\mathrm{t} 2$ occurs in a trait, if tl and t 2 are of the same sort, Tl , we append the trait Equality with [T1 for T] to the consequences of the enclosing trait.

Specifications of these traits are:
IfThenElse: trait
introduces ifThenEise: Bool, T, T \rightarrow T constrains ifThenElse so that for all [t1, t2: T]
ifThenElse(true, $t 1, t 2)=t 1$
ifThenElse(false, $t, t 2$) $=t 2$
implies converts [ifThenElse]
Equality: trait
includes Equivalence with [= for .rel]
constrains $=$ so that T partitioned by [$=\mathrm{]}$.

9. Some Further Examples

The following series of examples is adapted from the Handbook chapter. We include them here to illustrate some ways in which the facilities introduced above can be used. In reading these specifications, keep in mind that they are not themselves ends, but rather means to write interface specifications.

Our first example is an abstraction of those data structures that "contain" elements, e.g., Set, Bag, Queue, Stack. We have found it useful both as a starting point for specifications of various kinds of containers, and as an assumption for generic operations. The crucial part of the trait is the generated by. It indicates that any term of sort C is equal to some term in which new and insert are the only operators with range C -even if this trait is included in one that introduces additional operators that return values of sort C . This means that any theorems proved by induction over new and insert will remain valid.

Container: trait \% C's contain E's introduces
new: \rightarrow C
insert: $\mathrm{C}, \mathrm{E} \rightarrow \mathrm{C}$
constrains C so that C generated by [new, insert]
The next example incorporates Container as an assumption. Notice that it constrains new and insert as well as the operator it introduces, isEmpty. The converts indicates that this trait contains
enough axioms to adequately specify isEmpty. Because of the geaerated by, this can be proved by induction over terms of sort C , using new as the basis and insert (c, e) in the induction step.

IsEmpty: trait
assumes Container
introduces isEmpty: $\mathbf{C} \rightarrow$ Bool
constrains isEmpty, new, insert so that for all [$c: C, e: E]$

$$
\begin{aligned}
& \text { isEmpty(new) }=\text { true } \\
& \text { isEmpty(insert(c, e)) }=\text { false }
\end{aligned}
$$

implies converts [isEmpty]
The next two examples assume Container. The exempts indicate that should these traits be included into a trait that claims the convertibility of next or rest, that trait needn't convert the terms next(new) or rest(new).

Next: trait

```
assumes Container
introduces next: C }->\textrm{E
constrains next, insert so that for all [ e: E ]
            next(insert(new,e)) =e
exempts next(new)
```

Rest: trait
assumes Container
introduces rest: $\mathrm{C} \rightarrow \mathrm{C}$
constrains rest, insert so that for all [e : E]

$$
\operatorname{rest}(\text { insert(new, e)) }=\text { new }
$$

exempts rest(new)
The next example specifies properties common to various data structures such as stacks, queues, priority queues, sequences, and vectors. It augments Container by combining it with IsEmpty, Next, and Rest The partitioned by indicates that next, rest, and isEmpty are sufficient to define equality over terms of sort \mathbf{C}. Since we have little information about next and rest, the partitioned by does not yet add much to the associated theory.

Enumerable: trait
imports IsEmpty, Next, Rest
includes Container
constrains C so that C partitioned by [next, rest, isEmpty]
The next example specializes Enumerable by further constraining next, rest, and insert. Sufficient axioms are given to convert next and rest. The axioms that convert isEmpty are inherited from the trait Enumerable, which inherited them from the trait IsEmpty.

```
PriorityQueue: trait
assumes TotalOrder with [ E for T ]
includes Enumerable
constrains next, rest, insert so that for all [q: C, e: E ]
    next(insert(q,e)) =
    if isEmpty(q) then e
    else if next(q) \leqe then next(q) else e
rest(insert(q, e)) =
    if isEmpty(q) then new
    else if next(q) \leqe then insert(rest(q), e) else q
implies converts [ next, rest, isEmpty]
```

In a trait, such as PriorityQueue, that defines an "abstract data type" there will generally be a distinguished sort (C in this case) corresponding to the "type of interest" of [Guttag 75] or "data sort" of [Burstall and Goguen 81]. In such traits, it is usually possible to partition the operators whose range is the distinguished sort into "generators," those operators which the sort is generated by, and "extensions," which can be converted into generators. Operators whose domain includes the distinguished sort and whose range is some other sort are called "observers." Observers are usually convertible, and the sort is usually partitioned by one or more subsets of the observers and extensions.

The next example illustrates a specialization of Container that does not satisfy Enumerable. It augments Container by combining it with IsEmpty and Cardinal, and introducing two new operators. Notice that we include Container, because we intend to constrain operators inherited from it, but import IsEmpty and Cardinal, because we do not intend to constrain any operator inherited from them. Constrains \mathbf{C} is a shorthand for a constrains clause listing all the operators whose signature includes C . The partitioned by indicates that count alone is sufficient to distinguish unequal terms of sort C. Converts [isEmpty, count, delete] is a stronger assertion than the combination of an explicit converts [count, delete] with the inherited converts [isEmpty].

MultiSet: trait

```
assumes Equality with [ Elem for T ]
imports IsEmpty, Cardinal
includes Container with [ empty for new]
introduces count: Elem, \(\mathrm{C} \rightarrow\) Bool
    delete: Elem, C \(\rightarrow\) C
constrains C so that
    C partitioned by [ count ]
    for all [ \(c:\) C, el, e2: E ]
        count(empty, el) \(=0\)
        \(\operatorname{count}(\) insert \((c, e l), \mathrm{e} 2)=\operatorname{count}(c, e 2)+(\) if \(e l=e 2\) then 1 else 0\()\)
        delete(empty, el) \(=\) empty
        delete(insert( \(c, e l\) ), e2) \(=\)
        if \(e 1=e 2\) then \(c\) else insert(delete( \(c, e 2\) ), el)
implies converts [ isEmpty, count, delete ]
```

The next example specifies a generic operator. It uses Enumerable as an assumption to delimit the applicability of this operator to containers for which it is possible to enumerate the contained elements. (To understand why we assume Enumerable rather than Container, imaginesdefining extOp for a MultiSet.) The exempts indictates that we do not intend to fully define the meaning of applying extOp to containers of unequal size. Notice that elemOp is totally unconstrained in this trait. This prevents us from having many interesting implications to state at this stage.

PairwiseExtension: trait

assumes Enumerable

 introduceselemOp: E, $\mathrm{E} \rightarrow \mathrm{E}$
extOp: C, C \rightarrow C
constrains extop so that for all [$c 1, c 2: \mathrm{C}, ~ e 1, ~ e 2: \mathrm{E}]$
extOp(new, new) $=$ new
extOp(insert(cl, el), insert(c2, e2)) $=\operatorname{insert(extOp(cl,~c2),~elemOp(el,~e2))~}$
implies converts [extOp]
exempts for all [$c: C, e: E]$
extOp(new, insert($c, e)$),
extOp(insert(c, e), new)
Now we specialize PairwiseExtension by binding elemOp to + over Cardinals:
PairwisePlus: trait

```
assumes Enumerable
imports Cardinal
inchudes PairwiseExtension with [ # + # for elemOp, # + # for extOp, Card for E ]
implies Commutative with [#+# for O, C for T ]
```

The validity of the implication that + for sort C is commutative stems from the replacement of elemOp by + for sort Card, whose constraints (in trait Cardinal) imply its commutativity.

Larch Shared Language Reference Manual

0. Structure of Manual

In section 1 we present a grammar for the kernel subset of the Larch Shared Language.
In section 2 we define the context sensitive checking and the theory associated with each specification written in the kernel subset.

In section 3 we extend the kernel subset by introducing mechanisms for specifying intended consequences of a specification written in the kernel subset.

In sections 4-10 we define successive extensions of the language. We modify the grammar to introduce additional aspects of the language and describe any additional context sensitive checking required. We also provide a translation from the newly extended language to the previously defined subset. The result of this translation is subjected to all the applicable checking. The theory associated with any specification written in the full language is the same as the theory associated with its translation.

Section 11 describes additional checks, defined in terms of the theories associated with traits, that are associated with various language features. To be legal, a specification and each of the parts from which it is built must satisfy these checks as well as the context sensitive checks described earlier.

Finally, section 12 collects the reference grammar for the entire language.

1. Kemel Syntax

1.I. Syntactic conventions

1^{-}
\{e\}
e*
e^{*},
e+
alpha
alpha
'()
(e)
alternative separator
\mathbf{e} is optional
zero or more e's
zero or more e's, separated by commas
one or more e's
alpha is a nonterminal symbol
alpha is a terminal symbol
parentheses as terminal symbols
parentheses for grouping syntactic expressions

1.2. Grammar

Comments start with \% and terminate with end of line. They may appear after any token.

2. Simple Traits

2.1. Context sensitive checking

simpleTrait:
= The sets of varld's, sortld's and opld's appearing in a trait must be disjoint.
: Every sortld appearing anywhere in a simpleTrait must appear in its opPart.
Every sortedOp appearing anywhere in a simpleTrait must appear in its opPart.
opDcl:
Each opForm must have the same number of \#'s as the number of occurrences of sortld's in the domain.
generators:
The range of each sortedOp must be the sortld of the generators.
At least one sortedOp in each bylist must have a domain in which the sortld of the generators does not occur.
partitions:
The domain of each sortedOp must include the sortld of the partitions.
The range of at least one sortedOp in each bylist must be different from the sortld of the partitions.
axioms:
Each varld used in a term must appear in exactly one varDcl.
No varld may occur more than once in [varDc/*,].
equation:
The sorts of both term's must be the same, where
The sort of a term of the form sortedOp $\left\{{ }^{\prime}\left(\right.\right.$ term$\left.\left.^{*}, '\right)\right\}$ is the range of the sortedOp.
The sort of a term of the form varld is the sortld of the varDcl in which the varld is declared.
term:
In sortedOp \{ '(term*, ') \} the domain of the sortedOp must be the sequence of the sorts of the terms in term*, .

2.2. Associated theory

We associate a theory with each trait. This section defines the theory associated with a simpleTrait.

A theory is a subset of the language:
wit $::=$ term $=$ term
| "propositional formula"
| "first order quantified (with sorts) formula"
We adopt the conventional meanings of the equality symbol $(=)$, the propositional connectives ($\&, \mid, \sim, \Rightarrow, \ldots$), and the quantifiers (\forall and 3).

The subset of wff that is the theory, call it Th, associated with a simpleTrait is defined by:
Axioms: Each equation, universally quantified by the varDef's of its containing axioms, is in Th.
Inequation: \sim (true \rightarrow Bool $=$ false \rightarrow Bool) is in Th.
First order predicate calculus with equality: Th contains the axioms of conventional typed first-order predicate calculus with equality and is closed under its rules of inference.
Induction: If the trait has a generators with sortld S and a bylist by [op_{1}, ..., op op_{n}, and $\mathrm{P}(\mathrm{s})$ is a wff with a free variable, s, of sort S , Th contains the wff
$\forall[\mathrm{s}: \mathrm{S}] \mathrm{P}(\mathrm{s})$
if for each $o p_{i}$ in $\left[0 p_{1}, \ldots, o p_{n}\right]$
$Q_{i} \Rightarrow P\left(p_{i}\left(x_{1}, \ldots, x_{k}\right)\right)$ is in Th, where \mathbf{k} is the arity of op_{i}, the x_{j} 's are variables that do not appear free in P, and Q_{i} is the conjunction of $P\left(x_{j}\right)$, for each j such that the $j^{\text {d }}$ argument of op_{i} is of sort S .
Reduction: If the trait has a partitions with sortld S and a bylist by [$\mathrm{op}_{1}, \ldots, \mathrm{op}_{\mathrm{n}}$], Th contains the wff
$\forall\left[s_{1}, s_{2}: S\right]\left(Q \Rightarrow s_{1}=s_{2}\right)$
where Q is the conjunction, for each $o p_{i}$ in $\left[\mathrm{op}_{1}, \ldots, o p_{n}\right]$ and each j such that the $j^{\text {th }}$
argument of $o p_{i}$ is of sort S, of
$\forall\left[x_{1}: S_{1}, \ldots, x_{k}: S_{k}\right]\left(S_{b}\right)$
S_{1}, \ldots, S_{k} is the domain of $o p_{i}$, and
Subst($\mathrm{op}, \mathrm{j}, \mathrm{t}$) is $\mathrm{op}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathbf{k}}\right)$ with t substituted for x_{j}.

3. Consequences and Exemptions

Exempts and consequences affect only the checking (see section 11.5) and do not affect the theory. We add to the grammar the productions:

trät	$::=$ traitld : trait traitBody \{consequences\} \{exempts\}
cönsequences	$::=$ implies conseqProps \{converts\}
conseqProps	:: = props
converts	:: = converts conversion*,
conversion	$::=[$ sortedOp*,]
exempts	::= exempts exemptTerms*
exemptTerms	:: = \{ for all [varDc/*,] \} term*,

3.1. Context sensitive checking

conseqProps:
If the props of the conseqProps is appended to the propPart of the containing trait, the resulting trait must satisfy the checks of section 2.
exempts:
Each term must satisfy the checks of section 2.1.

4. Constrains Clauses

Constrains clauses affect only the checking (see section 11.4), not the theory. We add to the grammar the productions:

```
propPart ::= ( asserts | constrains ) props
constrains ::= constrains (sortld | sortedOp*,) so that
```


4.1. Translation

constrains:
Replace the constrains by asserts.

5. Implicit Signatures and Partial OpForms

In the kernel language each sortedOp is an opDcl. Here we relax this restriction to allow omitted and partial signatures and omitted \#'s. We add to the grammar the production:
sörtedOp $::=$ opld $\{\rightarrow$ range $\}$

5:1. Context sensitive checking

There must be a unique mapping from occurrences of sortedOp's to opDcr's of the traitBody such that the translation described in section 5.2. produces a legal traitBody and for each sorted $O p$, opDcl pair:

The oplo's match, i.e.,
They are the same, or
They are both opForms and the one in the sortedOp is the same as the one in the opDcl with all \#'s removed.
If the sortedOp includes \rightarrow range, it is the same as the range of the opDcl.

5.2. Translation

The checking ensures that each occurrence of a sortedOp corresponds to a unique opDcl. The translation is simply to replace it by that opDcl.

6. Mixfix Operators

In the language presented thus far, all operators are treated as either nullary or prefix. Here we relax that restriction. We replace the grammar for term by:
term $\quad::=$ secondary | if secondary then secondary else term
secondary $::=\{$ opSym $\}$ primary (opSym primary $)^{*}\{$ opSym \}
primary $\quad::=$ sortedOp \{ '(term*, ') \}|varld |'(term ')

6.1. Translation

equation:
It is necessary to resolve the grammatical ambiguity between the $=$ connective in equations and the $=$ opSym. In any equation the first occurrence of $=$ that is not bracketed by parentheses or within an if then else is the equation connective, the remainder are opSyms. Parentheses can be used to enforce any desired parsing.
term:
Translate each term of the form if b thea t_{1} elee t_{2} into a term of the form ifThenElee(b, t_{1}, t_{2}).

secondary:

Translate each secondary containing opSym's into a primary of the form opld '(term", '), where
opld is derived by replacing each primary in the sacondary by \#. term ${ }^{*}$, is the sequence of primary's.
primary:
After the previous translations have been performed, remove the outer parentheses from primary's of the form '(form ').

7. Boolen Terms as Equations

It is convenient to use terms of sort Bool as axioms. We add to the grammar the production: equation $::=$ term

7.1. Context sensitive checking

The term must be of sort Bool.

7.2. Translation

Replace the term by the equation
term = true

8. External References

We add to the kernel grammar the productions:
traitBody

$$
::=\text { externals simpleTrait }
$$

ex̀ternals $\quad::=$ \{assumes $\}$ \{imports\} $\{$ includes $\}$
as̄̀sumes $\quad::=$ assumes traitRef*,
imports $\quad::=$ imports traitRef*,
includes $\quad::=$ includes traitRef*,
traitRef $\quad::=$ traitld
conseqProps $\quad::=$ traitRef*, props
8.1. Context sensitive checking
externals:
Recursive externals are not permitted; i.e., the traitld of the containing trait may not appear in an externals, nor in any partial translation of a traitRef in its externals.

8.2. Translation

The translation of a trait is derived bottom-up; i.e., before a trait with traitRefs is translated, each of its traitRefs is replaced by the translation of the trait labeled by that traitRef's traitld. Let T be a trait whose simpleTrait is \mathbf{S} and let E consist of the translations of the traitRef's in T's externa/s. The translation of T consists of:

An opPart containing S's opDc/s and E's opDc/s,
A propPart* containing S's propPart's and E's propPart's,
An exempts containing T's exemptTerms and E's exemptTerms, and
A consequences containing the props of
T's conseqProps,
the propParts of the translations of the traitRef's in T's conseqProps, and E's consequences.

9. Modifications

We add to the grammar the productions:

```
traitRef ::= traitld {exclusion} {renaming}
exclusion ::= without [ oldOp*,]
renaming ::= with [( sortRename | opRename )*,]
sortRename ::= sortld for oldSort
oldSort ::= sortld
opRename ::= opld for oldOp
oldOp ::= sortedOp
```


9.1. Context sensitive checking

traitRef:

No sortedOp may occur more than once as an oldOp.
No sortld may occur more than once as an oldSort.
Each oldSort must appear in an opDcl in the translation of the trait labeled by the traitld.
There must be a unique mapping from oldOp's to opDcf's of the translation of the trait labeled by the traitld, such that for each oldOp, opDcl pair:

The opld's match (see section 5.1),
If the oldOp includes domain, it is the same as the domain of the opDcl.
If the oldOp includes \rightarrow range, it is the same as the range of the opDcl.

9.2. Translation

The translation of the trait labeled by the traitld of the traitRef is modified by applying first the exclusion, then the opRename's, and finally the sortRename's:

For each oldOp in the exclusion, delete each bylist, equation, and term containing the opDcl to which it maps and then delete all remaining occurrences of that opDcl.
Then, simultaneously, for each opRename, replace the opld part of each occurrence of the opDcl to which the oldOp maps by the opld of the opRename.
Finally, simultaneously, for each sortRename, replace each occurrence of its oldSort by its sortld.
10. Implicit Incorporation of Boolean, IfThenElse, and Equality

Three traits, Boolean, IfThenElse, and Equality, are implicitly incorporated into various other traits to assure uniform meanings for the operators they constrain.
10.1. Translation

Append the traitRef Boolean to the imports of each trait except Boolean.
Append the traitRef IfThenElse with [Tl for T] to the imports of each trait containing a term of the form if b then t_{1} else t_{2} in which t_{1} and t_{2} have the same sort, $T 1$.

Append the traitRef Equality with [T1 for T] to the traitRef* of the conseqProps of each trait (except Equality) containing a term of the form $\mathrm{t}_{1}=\mathrm{t}_{2}$ in which t_{1} and t_{2} have the same sort, T1.

10.2. Built-in traits

Boolean: trait
introduces
true: \rightarrow Bool
false: \rightarrow Bool
~\#: Bool \rightarrow Bool
\#\&\#: Bool, Bool \rightarrow Bool
\#|\#: Bool, Bool \rightarrow Bool
\# \# \#: Bool, Bool \rightarrow Bool
\#.equal\#: Bool, Bool \rightarrow Bool
asserts Bool generated by [true, false]
for all [b : Bool]
~true $=$ false
\sim false $=$ true
(true \& b) $=b$
(false \& b) $=$ false
(true $\mid b$) $=$ true
(false |b) $=b$
(true $\Rightarrow b$) $=b$
(false $\Rightarrow b$) $=$ true
(true .equal b) $=b$
(false .equal b) $=\sim b$
implies converts [$\sim, \&, \mid, \Rightarrow$, equal]
IfThenElse: trait
introduces ifThenElse: Bool, T, T \rightarrow T
asserts for all [$t 1, t 2: \mathrm{T}$]
ifThenElse(true, $t 1, t 2)=t 1$
ifThenElse(false, $t, t 2)=t 2$
implies converts [ifThenElse]

Equality: trait

$$
\begin{aligned}
& \text { introduces \# \# \# T, T } \rightarrow \text { Bool } \\
& \text { asserts } \mathrm{T} \text { partitioned by }[=1 \\
& \text { for all }[x, y, z: \mathrm{T}] \\
& \qquad \begin{array}{l}
(x=x) \\
\\
\quad(x=y)=(y=x) \\
\\
((x=y) \&(y=z)) \Rightarrow(x=z)
\end{array}
\end{aligned}
$$

11. Semantic Checking

In addition to the syntactic constraints specified above, we require that each trait be logically consistent, discharge the assumptions of the traits it is built from, be a conservative extension of its imports, be properly constraining, and imply its consequences.

11.1. Consistency

A traitBody is consistent if its associated theory does not contain the equation true: \rightarrow Bool $=$ false: \rightarrow Bool

11.2. Assumptions

Let $A(T)$ be all of the assumes of the traits imported or included in T, and $R(T)$ be the result of translating T after removing these assumes. $\mathrm{A}(\mathrm{T})$ is discharged by T if the theory associated with the translation of each traitRef of $\mathbf{A}(\mathrm{T})$ is a subset of the theory associated with $\mathbf{R}(\mathrm{T})$.

11.3. Imports

The theory associated with a trait must be a conservative extension of the theory associated with the translation of each traitRef in its imports; i.e., if trait Tl imports T and W is a wff of $\mathrm{T} 2, \mathrm{~W}$ is in the theory associated with T 1 if and only if it is in the theory associated with T 2 .

11.4. Constraints

A propPart is properly-constraining if it implies properties of only the operators in its constrains. The occurrence of a sortd in a constrains stands for the list of all sortedOp's in the containing trait's opPart whose signatures include that sortld.

Let T be a trait and P be the propPart constrains sortedOp*, so that props. P is properly-constraining in the trait consisting of T plus P if and only if each wff in the theory associated with T plus P is also in the theory associated with T or else contains ops in sortedOp*.

Note that, since the translation of a traitRef converts constrains to asserts, this check is performed only on traits in which constrains appears explicitly.

11.5. Consequences

A trait implies its consequences if the theory associated with its conseqProps is a subset of the theory associated with the trait and the [sortedOp*) 】 in each converts is convertible. Convertibility is defined using the theory and exempts of a trait.
$=$
conseqProps:
The theory associated with conseqProps must be a subset of the theory of the trait in which the consequences appears. The theory associated with a conseqProps is the theory associated with the traitbody:
includes traitRef*, opPart asserts props
where traitRef*, and props form the conseqProps, and opPart is the opPart of the trait in which the consequences appears.

Note that an exclusion, but not a renaming, can invalidate a consequence that has been locally checked.
conversion:
Let C be a conversion. For each term, t , that contains no variables of any sort appearing in a generators in the containing trait, the theory of the containing trait must either contain an equation $t=u$,
where u contains no sortedOp appearing in C's sortedOp*, or contain an equation $t^{\prime}=u$,
where t^{\prime} is a subterm of t and u is an instantiation of a term appearing in an exempts of the containing trait.
12. Reference Grammar for The Larch Shared Language

trait	:: = traitld : trait traitBody \{consequences\} \{exempts\}	
traitBody	::= externals simpleTrait	
externals	:: = \{assumes\} \{imports\} \{includes\}	
assumes	$::=$ assumes traitRef**,	
imports	:: = imports traitRef*,	
includes	$::=$ includes traitRef*,	
traitRet	$::=$ traitld \{exclusion\} \{renaming\}	
exclusion	$::=$ without [oldOp*,]	
renaming	:: = with [(sortRename \|opRename)*,]	
sortRename	:: = sortld for oldSort	
oldSort	:: = sortld	
opRename	:: = opld for oldop	
oldop	:: = sortedOp	
sortedOp	$::=$ opDcl \mid opld $\{\rightarrow$ range $\}$	
simpleTrait	:: = \{opPart\} propPart*	
opPart	:: = introduces opDc/*	
opDcl	$::=$ opld : signature	
signature	$::=$ domain \rightarrow range	
domain	:: = sorth**,	
range	= sortld	
propPart	:: = (asserts \| constrains) props	
constrains	$::=$ constrains (sortld \| sortedOp*,) so that	
props	:: = generators* partitions* axioms*	
generators	:: = sortid generated bylist*,	
partitions	:: = sortld partitioned bylist*,	
bylist	:: = by [sortedOp*,]	
axioms	:: = for all [varDc/*,] equation*	
varDcl	$::=$ varld ${ }^{\text {, }}$: sortld	
equation	:: = term \{ = term \}	
term	:: = secondary \| if secondary then secondary else term	
secondary	$::=\left\{\right.$ opSym \} primary (opSym primary)* ${ }^{*}$ opSym $\}$	
primary	:: = sortedOp \{ '(term*',) \} \| varld	'(term')
opld	:: = alphaNumeric + \| opform	
opForm	$::=$ \{ \} opSym (\# opSym)* \{ \# \}	
opSym	$::=$ specialChar + \| . alphaNumeric +	
traitld	::= alphaNumeric +	
sortld	:: = alphaNumeric +	
varid	:: = alphaNumeric +	
consequences	$::=$ implies conseqProps \{converts\}	
conseqProps	:: = traitRef*, props	
converts	:: = converts conversion*,	
conversion	$::=$ [sortedOp*,]	
exempts	$::=$ exempts exemptTerms*	
exemptTerms	$::=\{$ for all [varDci*,] \} term*,	

Towards A Larch Shared Language Handbook

Contents

Basic properties of single operators including binary relations
Associative, Commutative, Idempotent, Relation, TotalRelation, Reflexive, Irreflexive, Transitive, ReflexiveTransitive, Symmetric, Antisymmetric, Equivalence

Ordering relations

PartialOrder, TotalOrder, OrderEquivalence, OrderEquality, PartialOrderWithEquality, TotalOrderWithEquality, DerivedOrders, PartiallyOrdered, Ordered

Group theory
LeftIdentity, RightIdentity, Identity, Leftinverse, RightInverse, Inverse, Abelian, Semigroup,
Monoid, Group, AbelianSemigroup, AbelianMonoid, AbelianGroup, Distributive
Simple numeric types
Ordinal, Cardinal, Cardinal2
Simple data structures
Pair, Triple, FiniteMapping
Container properties
Container, Singleton, IsEmpty, Size, AdditiveSize, Join, ElementEquality, Member,
ElemCount, Delete, Containment, Next, Rest, Remainder, Index
Container classes
SetBasics, BagBasics, CollectionExtensions, SetIntersection, Set, Bag, Enumerable,
InsertionOrdered, Stack, Queue, Dequeue, Sequence, SubSequence, String, PriorityQueue
Generic operators on containers
CoerceContainer, Reduce, SomePass, AllPass, Sif, PairwiseExtension, PointwiseImage

Nonlinear structures

BinaryTree, BasicGraph, Connectivity, Graph
Rings, fields, and numbers
Ring, RingWithUnit, InfixInverse, Integer, Field, Rational

Lattices

ExtremalBound, Semilattice, Lattice
Enumerated data types

Enumerated, Rainbow, Character
Display traits

Coordinate, Illumination, Boundary, Transform, Displayable, Picture, Contents, Component, ComponentCoercion, View, Display

Preface

This collection of traits is a companion to the Larch Shared Language Reference Manual. We hope that it will serve three distinct purposes:

Provide a set of components that can be directly incorporated into other specifications,
Provide a set of models upon which other specifications can be based, and
Helip people to better understand the Larch Shared Language by providing a set of illustrative examples.
In line with our first goal, we have tried to isolate the "smallest useful increments" of specification that it might be reasonable to use in other specifications. In particular, we have tried to provide traits that will make it convenient to specify the weak assumptions that characterize many of the more widely applicable specifications. This is particularly evident in the sections titled "Container properties" and Container classes." The traits in these sections are smaller and more numerous than is typical in "from scratch" specifications. This sometimes leads to a somewhat overstructured appearance.

In line with our second goal, in addition to traits that we expect to be directly incorporated in specifications, we have included a number of traits intended primarily as patterns. The section titled "Generic operators on containers" contains several such traits. Because of the arity of the operators, it will frequently be awkward to incorporate these traits.

In line with our third goal we have stressed familiar examples. Since they describe well-understood mathematical entities, many of the traits, e.g., Integer, are atypically complete. In general, we expect most specifications to supply constraints, rather than complete definitions. The section on Display traits is more typical in this respect.

The support tools envisioned for Larch are not yet available. Transcriptions of traits in this chapter have been mechanically checked for some properties; some errors may not have been detected and some transcription errors may have crept in. They should be given the same sort of credence as carefully written programs that have not been checked by a compiler.

Comments on the clarity of these specifications and on their "correctness" (relative to generally accepted definitions of the names used) are welcome. We also solicit contributions of further widely useful trait--either accompanied by specifications, or as challenges to specifiers.

Conventions

If a generic trait constrains only one interesting sort, the identifier T is used to denote it.
If a trait constrains a "containing" sort and an "element" sort, the identifiers C and E are used.
If a trait constrains a single binary operation, the infix symbol \#O\# is used.
If a trait constrains a single binary relation, the infix identifier \# () \# is used.
If there would be no information in a constrains (e.g., because there is only one operator), asserts is used.

Basic Properties of Single Operators, Including Binary Relations

Associative: trait
introduces \# O \#: T, T \rightarrow T
asserts for all $[x, y, z: T] \quad(x O y) O z=x O(y O z)$
Commutative: trait
introduces \#O\#: T, T \rightarrow Range
asserts for all $[x, y: T] \quad x O y=y O x$
Idempotent: trait
introduces op: $\mathrm{T} \rightarrow \mathrm{T}$
asserts for all $[x: T] \quad \operatorname{op}(\operatorname{op}(x))=\operatorname{op}(x)$
Relation: trait
introduces \#(4) \#: T, T \rightarrow Bool
TotalRelation: trait
includes Relation
asserts for all $[x, y: T] \quad(x \in y) \mid(y$ © $x)$
Reflexive: trait
includes Relation
asserts for all $[x: T$] x (6) x
Irreflexive: trait
includes Relation
asserts for all $[x: T] \quad \sim(x$ © $x)$
Transitive: trait
includes Relation
asserts for all $[x, y, z: T] \quad((x$ © $y) \&(y$ (1) $z)) \Rightarrow(x$ (B) $z)$
ReflexiveTransitive: trait
includes Reflexive, Transitive
Symmetric: trait
includes Relation
asserts for all [$x, y: \mathrm{T}$]
$(x$ (1) $y)=(y$ (B) $x)$
implies Commutative with [© for O , Bool for Range]
Antisymmetric: trait
includes Relation
asserts for all $[x, y: T] \quad \sim((x \odot y) \&(y \oplus x))$
implies Irreflexive
Equivalence: trait
includes ReflexiveTransitive with [.eq for (3)], Symmetric with [eq for (B)]

Ordering Relations

PartialOrder: trait imports ReflexiveTransitive with [\leq for (7)]
TotalOrder: trait includes PartialOrder, TotalRelation with [\leq for (©)]
OrderEquivalence: trait
assumes PartialOrder introduces \#.eq\#: T, T \rightarrow Bool constrains .eq so that for all $[x, y$: T] $(x$.eq $y)=(x \leq y) \&(y \leq x)$ implies Equivalence converts [.eq]
OrderEquality: trait assumes PartialOrder includes OrderEquivalence with [= for .eq], Equality
PartialOrderWithEquality: trait includes PartialOrder, OrderEquality
TotalOrderWithEquality: trait includes TotalOrder, OrderEquality
DerivedOrders: trait
assumes PartialOrder
introduces
\#<\#: T, T \rightarrow Bool
$\# \geq \#: T, T \rightarrow$ Bool
\#>\#: T, T \rightarrow Bool
constrains < so that for all $[x, y$: T] $(x<y)=((x \leq y) \&(\sim(y \leq x)))$
constrains \geq so that for all $[x, y: T](x \geq y)=(y \leq x)$
constrains $>$ so that for all $[x, y: T](x>y)=(y<x)$ implies Transitive with [$<$ for (8)],

Transitive with $[>$ for (8)],
Antisymmetric with [< for (3)],
Antisymmetric with [$>$ for (*)],
PartialOrder with [\geq for \leq]
converts [$<, \geq,>$]
PartiallyOrdered: trait
imports PartialOrderWithEquality
includes DerivedOrders
implies PartialOrderWithEquality with [\geq for \leq]
Ordered: trait
imports TotalOrderWithEquality
includes DerivedOrders
implies PartiallyOrdered, TotalOrderWithEquality with [\geq for \leq]

Group Theory

LefIIdentity: trait
introduces
\# O\#: T, T \rightarrow T
unit: \rightarrow T
asserts for all $[x$: T] unit $O x=x$
RightIdentity: trait
introduces
\# O \#: T, T \rightarrow T
unit: \rightarrow T
asserts for all $[x$: T] $\quad x \bigcirc$ unit $=x$
Identity: trait includes LeftIdentity, RightIdentity
LeftInverse: trait
assumes Leftidentity
introduces inv: $\mathrm{T} \rightarrow \mathrm{T}$
asserts for all $[x: T] \quad \operatorname{inv}(x) O x=$ unit
RightInverse: trait
assumes RightIdentity
introduces inv: $\mathrm{T} \rightarrow \mathrm{T}$
asserts for all $[x: T] \quad x O \operatorname{inv}(x)=$ unit
Inverse: trait
assumes Identity
includes Leftinverse, RightInverse
Abelian: trait imports Commutative with [T for Range]
Semigroup: trait includes Associative, Equality
Monoid: trait includes Semigroup, LefIIdentity
Group: trait
includes Monoid, LeftInverse
implies RightIdentity, RightInverse
AbelianSemigroup: trait inctudes Abelian, Semigroup
AbelianMonoid: trait
includes Abelian, Monoid
implies RightIdentity
AbelianGroup: trait includes Abelian, Group
Distributive: trait
introduces
\#+\#: T, T $\rightarrow \mathrm{T}$
\#*\#: $\mathrm{T}, \mathrm{T} \rightarrow \mathrm{T}$
asserts for all [$x, y, z: T$]

$$
\begin{aligned}
& x^{*}(y+z)=\left(x^{*} y\right)+\left(x^{*} z\right) \\
& (y+z)^{*} x=\left(y^{*} x\right)+\left(z^{*} x\right)
\end{aligned}
$$

Simple Numeric Types

Ordinal: trait
includes PartialOrder with [= for .eq, Ord for T],
OrderEquivalence with [= for .eq, Ord for T]
introduces
first: \rightarrow Ord
succ: Ord \rightarrow Ord
asserts Ord generated by [first, succ]
Ord partitioned by [\leq]
for all [x, y : Ord]
first $\leq x$
$\sim(\operatorname{succ}(x) \leq$ first)
$\operatorname{succ}(x) \leq \operatorname{succ}(y)=x \leq y$
implies TotalOrderWithEquality with [Ord for T]
converts [$\leq,=$]
Cardinal: trait
imports Ordinal with [0 for first, Card for Ord] includes DerivedOrders with [Card for T]
introduces
$1: \rightarrow$ Card
\# + \#: Card, Card \rightarrow Card
\#*\#: Card, Card \rightarrow Card
\# Ө \#: Card, Card \rightarrow Card
constrains 1 so that $1=\operatorname{succ}(0)$
constrains + , ${ }^{*}$ so that for all [x, y : Card]
$x+0=x$
$x+\operatorname{succ}(y)=\operatorname{succ}(x+y)$
$x^{*} 0=0$
$x^{*} \operatorname{succ}(y)=x+\left(x^{*} y\right)$
constrains Θ so that for all [x, y : Card]
$0 \Theta x=0$
$x \Theta 0=x$
$\operatorname{succ}(x) \Theta \operatorname{succ}(y)=x \Theta y$
implies Cardinal2
Card generated by [$1,+, \Theta$]
Card partitioned by [\geq], by [$=$], by [<], by [>]
for all [x, y : Card] $x \leq y=((x \Theta y)=0)$
converts [$1, \Theta,+,{ }^{*},=, \leq, \geq,<,>$]

```
Cardinal2: trait
% Alternate definition for comparison
includes AbelianMonoid with [ + for O, 0 for unit, Card for T ],
        AbelianMonoid with [ * for O, 1 for unit, Card for T ],
        Distributive with [ Card for T ],
        Ordered with [ Card for T ]
    introduces
        #Ө #: Card, Card -> Card
        succ: Card }->\mathrm{ Card
    asserts Card generated by [ 0, 1, + ]
    for all [ }x,y\mathrm{ : Card ]
        x<(x+1)
        (x+y)\ominus y = x
        0\Thetax=0
        succ}(x)=x+
    implies Cardinal
```


Simple Data Structures

Pair：trait

introduces

$$
\langle \#, \#\rangle: \mathrm{T}, \mathrm{~T} 2 \rightarrow \mathrm{C}
$$

$$
\text { \#.first: } \mathbf{C} \rightarrow \mathrm{Tl}
$$

\＃．second：C T T
asserts C generated by［〈\＃，\＃〉］
C partitioned by［．first，second］ for all［ $f: \mathrm{T} 1, \mathrm{~s}: \mathrm{T} 2$ ］
$\langle f, s\rangle$ ．first $=f$
$\langle\mathrm{f}, \mathrm{s}\rangle$ ．second $=\mathrm{s}$
implies converts［ first，．second］
Triple：trait
introduces
$\langle \#, \#, \#\rangle: T 1, \mathrm{~T}, \mathrm{~T} 3 \rightarrow \mathrm{C}$
\＃．first： $\mathrm{C} \rightarrow \mathrm{T} 1$
\＃second： $\mathrm{C} \rightarrow$ T2
\＃．third：C \rightarrow T3
asserts C generated by［＜\＃，\＃，\＃〉］
C partitioned by［．first，second，．third］
for all［ $f: \mathrm{Tl}, \mathrm{s}: \mathrm{T} 2, t: \mathrm{T} 3]$
$\langle\mathrm{f}, \mathrm{s}, \mathrm{b}$ ．first $=\mathbf{f}$
$\langle\mathrm{f}, \mathrm{s}, \mathrm{t}$ ．second $=\mathrm{s}$
＜f， s, D ．third $=\mathrm{t}$
implies converts［ ．first．second，．third］
FiniteMapping：trait
assumes Equality with［ Index for T］
introduces
new：$\rightarrow C$
bind：C ，Index， $\mathrm{E} \rightarrow \mathrm{C}$
\＃［\＃］：C，Index \rightarrow E
defined：C，Index \rightarrow Bool
asserts C generated by［ new，bind ］
C partitioned by［ \＃［\＃］，defined］
constrains C so that
for all［ $c: \mathrm{C}, i, i l:$ Index，$e: \mathrm{E}$ ］
bind $(c, i l, e)[i]=$ if $i=i l$ then e else $c[i]$
～defined（new，i）
defined $(\operatorname{bind}(c, i l, e), i)=(i=i l) \mid \operatorname{defined}(c, i)$
implies converts［\＃［\＃］，defined ］
exempts for all［ i ：Index ］new［i］

Container Properties

Container: trait
introduces
new: \rightarrow C insert: $\mathrm{C}, \mathrm{E} \rightarrow \mathrm{C}$
asserts C generated by [new, insert]
Singleton: trait
assumes Container
introduces singleton: $\mathrm{E} \rightarrow \mathrm{C}$
constrains singleton so that for all [e: E]
singleton $(e)=$ insert(new, e)
implies converts [singleton]
IsEmpty: trait
assumes Container
introduces isEmpty: $\mathrm{C} \rightarrow$ Bool
asserts for all [$c: C, e$: $]$
isEmpty(new)
\sim isEmpty(insert(c, e))
implies converts [isEmpty]
Size: trait
assumes Container
imports Cardinal
introduces size: $\mathrm{C} \rightarrow$ Card
constrains size so that
size(new) $=0$
AdditiveSize: trait
assumes Container
includes Size
constrains size, insert so that for all [c: C, e: E]
size $($ insert $(c, e))=\operatorname{size}(c)+1$
implies converts [size]
Join: trait
assumes Container
introduces \#.join\#: C, C \rightarrow C
constrains join so that for all [$c, c l: \mathrm{C}, e: \mathrm{E}]$
c join new $=c$
c join insert $(c l, e)=\operatorname{insert}(c$.join $c l, e)$
implies converts [join]
ElementEquality: trait imports Equality with [E for T]
Member: trait
assumes Container, ElementEquality
introduces \# $\in \#: \mathrm{E}, \mathrm{C} \rightarrow$ Bool
constrains \in, insert so that for all [$c: C, e, e l: \mathrm{E}]$
$\sim(e \in$ new)
$e \in \operatorname{insert}(c, e l)=(e=e l) \mid(e \in c)$
implies converts [ϵ]

ElemCount: trait

```
assumes Container, ElementEquality
imports Cardinal
introduces count: C, E }->\mathrm{ Card
constrains count, insert so that for all [ e, el: E, c: C ]
    count(new, e)=0
    count(insert(c,e),el)= count(c,e)+(if e=el then 1 else 0)
implies converts [ count]
```


Delete: trait

```
assumes Container
introduces delete: \(\mathrm{C}, \mathrm{E} \rightarrow \mathrm{C}\)
constrains delete so that for all \([e: E] \quad\) delete \((n e w, e)=\) new
```

Containment: trait

```
astames Container
inctudes PartiallyOrdered with [ \(\subset\) for \(<, \supset\) for \(>, \subseteq\) for \(\leq, \supseteq\) for \(\geq, C\) for T]
constrains C so that for all [ \(e: \mathrm{E}, c: \mathrm{C}] \quad c \subseteq\) insert \((c, e)\)
implies for all [ \(c: C\) ] new \(\subseteq c\)
```

Next: trait
assumes Container
introduces next: $\mathrm{C} \rightarrow \mathrm{E}$
constrains next, insert so that for all [$e: \mathrm{E}] \quad$ next(insert(new, e)) $=e$
exempts next(new)
Rest: trait
assumes Container
introduces rest: $\mathrm{C} \rightarrow \mathrm{C}$
constrains rest, insert so that for all [$e: \mathrm{E}] \quad$ rest(insert(new, e)) $=$ new
exempts rest(new)
Remainder: trait
assumes Container, Rest
imports Cardinal
introduces remainder: C , Card $\rightarrow \mathrm{C}$
constrains remainder so that for all [$c: \mathrm{C}, i$: Card]
remainder $(c, 0)=c$
remainder $(c, i+1)=\operatorname{remainder}(\operatorname{rest}(c), i)$
implies converts [remainder]
Index: trait
assumes Container, Next. Rest
imports Cardinal
introduces \#[\#]: C, Card \rightarrow E
constrains \#[\#] so that for all [c : C, i : Card]
$c[1]=\operatorname{next}(c)$
$c[(i+1)]=\operatorname{rest}(c)[i]$
implies converts [\#[\#]]
exempts for all [$c:$ C] c[0]

Container Classes

SetBasics: trait
assumes ElementEquality, Container with [\{\} for new]
includes Size with [\{\} for new],
Member with [$\}$ for new]
introduces delete: C, E \rightarrow C
constrains C so that
C partitioned by [ϵ]
for all [s:C, e, el: E]
size (insert(s, e)) $=\operatorname{size}(s)+$ (if $e \in s$ then 0 else 1)
$e l \in \operatorname{delete}(s, e)=(e l \in s) \&(\sim(e=e l))$
implies Delete with [\{\} for new]
converts [size, delete, \in]
BagBasics: trait
assumes ElementEquality, Container with [\{\} for new]
imports AdditiveSize with [\{\} for new],
ElemCount with [\{\} for new]
includes Member with [\{ $\}$ for new]
introduces delete: C, E \rightarrow C
constrains C so that
C partitioned by [count]
for all [$b: C, c, e l: E$]
$\operatorname{count}(\operatorname{delete}(b, e), e l)=\operatorname{count}(b, e l)-($ if $e=e l$ then 1 else 0$)$
implies Delete with [\{\} for new]
converts [size, delete, count, \in]
CollectionExtensions: trait
assumes ElementEquality, Container with [\{\} for new]
imports IsEmpty with [\{\} for new].
Singleton with [$\}$ for new, $\{\#\}$ for singleton],
Containment with [$\}$ for new].
Join with [\{\} for new, U for join]
includes Equality with [C for T]
implies converts [$\{\#\}$, isEmpty, \cup]
SetIntersection: trait
assumes SetBasics
introduces \cap : $C, C \rightarrow C$
constrains C so that for all $[s, s l: \mathrm{C}, e$, el: E]
$e \in(s \cap s I)=(e \in s) \&(e \in s l)$
converts [\cap]
Set: trait
assumes ElementEquality
imports SetBasics, SetIntersection
includes CollectionExtensions
implies Abelian with [\cup for O, C for T],
Abelian with [\cap for O, C for T]
converts [size, delete, $\in, \cap, \cup,\{\#\}$, isEmpty, $=, \subset, \supset, \subseteq, \supseteq]$

Bag: trait

```
assumes ElementEquality
imports BagBasics
includes CollectionExtensions
implies Abelian with [ U for O, C for T ]
converts [ size, delete, count, \in, \cup,{#}, isEmpty, =, C, Ј, C, ?]
```

Enumerable: trait
imports IsEmpty, Next, Rest
includes Container
constrains C so that C partitioned by [next, rest, isEmpty]
InsertionOrdered: trait \% For assuming "Stack or Queue"
includes Enumerable
introduces isFIFO: \rightarrow Bool
constrains next, rest, insert so that for all [$c: \mathrm{C}, \mathrm{e}: \mathrm{E}]$
next(insert(c, e)) $=$ if isEmpty (c) | isFIFO then e else next (c)
rest(insert $(c, e))=$ if isEmpty $(c) \mid$ isFIFO then c else insert(rest(c), e)
implies converts [next, rest]
Stack: trait
includes InsertionOrdered with [push for insert, top for next, pop for rest, true for isFIFO]
implies for all [stk: C, e: E]
top(push(stk,e)) $=e$
$\operatorname{pop(push}(s t k, e))=s t k$
Queue: trait
includes InsertionOrdered with [first for next, false for isFIFO]
implies for all [q : C, e: E]
first(insert $(q, e))=$ if isEmpty(q) then e else first (q)
rest(insert $(q, e))=$ if isEmpty (q) then new else insert(rest(q), $e)$
Dequeue: trait
includes Stack with [insert for push, first for top, rest for pop],
Stack with [enter for push, last for top, prefix for pop]
constrains C so that for all [$c: \mathrm{C}, e, e l: \mathrm{E}$]
insert(new, e) $=\operatorname{enter}($ new, e)
insert(enter $(c, e), e l)=\operatorname{enter}(\operatorname{insert}(c, e l), e)$
implies Queue, Queue with [enter for insert, last for first, prefix for rest]
converts [insert, first, last, rest, prefix], [enter, first, last, rest, prefix]
Sequence: trait
imports Dequeue, AdditiveSize
includes Index with [first for next],
Join with [|| for join]
implies C partitioned by [size, \#[\#]]
SubSequence: trait
imports Sequence
includes Remainder with [\# [\# ...] for remainder],
Remainder with [\#[...\#] for remainder, prefix for rest]

String: trait
imports Character
includes Sequence with [length for size, Char for E]
PriorityQueue: trait
assumes TotalOrder with [E for T] includes Enumerable constrains next, rest, insert so that for all [$q: C, e: E]$ next(insert (q, e)) $=$ if isEmpty (q) then e
else if next $(q) \leq e$ then next (q) else e
rest(insert (q, e)) $=$ if isEmpty (q) thein new
else if $\operatorname{nexu}(q) \leq e$ them insert $\operatorname{rest}(q)$, e) else q implies converts [next, rest, isEmpty]

Generic Operators on Containers

CoerceContainer: trait

assumes Container with [DC for C],

Container with [RC for C]
introduces coerce: DC \rightarrow RC
constrains coerce so that for all [dc: DC, e: E]
coerce(new) = new
coerce(insert($d c, e))=\operatorname{insert}(\operatorname{coerce}(d c), e)$
implies converts [coerce]
Reduce: trait
assumes Enumerable,
RightIdentity with [E for T],
Associative with [E for T]
introduces reduce: $\mathrm{C} \rightarrow \mathrm{E}$
constrains reduce so that for all [$c: \mathrm{C}$]
reduce $(c)=$ if isEmpty (c) then unit else next (c) O reduce(rest (c))
implies converts [reduce]
SomePass: trait
assumes Container
introduces
test: E, T \rightarrow Bool
somePass: C, T \rightarrow Bool
constrains somePass so that for all [$c: \mathrm{C}, e: \mathrm{E}, t: \mathrm{T}]$
~somePass(new, t)
somePass(insert $(c, e), t)=\operatorname{test}(e, t) \mid \operatorname{somePass}(c, t)$
implies converts [somePass]

AllPass: trait
assumes Container introduces
test: E, T \rightarrow Bool
allPass: C, T \rightarrow Bool
constrains allPass so that for all [$c: \mathrm{C}, e: \mathrm{E}, t: \mathrm{T}$]
allPass(new, t)
allPass(insert $(c, e), t)=\operatorname{test}(e, t)$ \& allPass (c, t)
implies converts [allPass]
Sift: trait
assumes Container
introduces
test: E, T \rightarrow Bool
sift: C, T \rightarrow C
constrains sift so that for all [$c: \mathrm{C}, e: \mathrm{E}, \boldsymbol{t}: \mathrm{T}]$
sift(new, t) $=$ new
$\operatorname{sift}(\operatorname{insert}(c, e), t)=$ if test (e, t) then insert $(\operatorname{siff}(c, t), e)$ else $\operatorname{sift}(c, t)$
implies converts [sift]
PairwiseExtension: trait
assumes InsertionOrdered introduces
extOp: $\mathrm{C}, \mathrm{C} \rightarrow \mathrm{C}$
elemOp: $\mathrm{E}, \mathrm{E} \rightarrow \mathrm{E}$
constrains extOp so that for all [$c 1, c 2: \mathrm{C}, e 1, e 2: \mathrm{E}]$
extOp(new, new) = new
extop(insert($c 1, e l)$, insert $(c 2, e 2))=\operatorname{insert(extOp}(c 1, c 2)$, elemOp($(e 1, e 2))$
implies converts [extOp]
exempts for all [$c: \mathrm{C}, \mathrm{e}: \mathrm{E}]$
extOp(new, insert($c, e)$),
extOp(insert(c, e), new)
PointwiseImage: trait
assumes Container with [DC for C, DE for E], Container with [RC for C, RE for E]
introduces
extOp: DC \rightarrow RC
pointOp: DE \rightarrow RE
constrains extOp so that for all [dc: DC, de: DE] extOp(new) $=$ new
$\operatorname{extOp}(\operatorname{insert}(d c, d e))=\operatorname{insert}(\operatorname{extOp}(d c), \operatorname{pointOp}(d e))$
implies converts [extOp]

Nonlinear Structures

BinaryTree：trait
imports Cardinal introduces

〈\＃〉：E $\rightarrow \mathrm{C}$
$\langle \#, \#\rangle: \mathrm{C}, \mathrm{C} \rightarrow \mathrm{C}$
\＃．lef：C \rightarrow C
\＃．right：C \rightarrow C
size： $\mathrm{C} \rightarrow$ Card
isLeaf： $\mathrm{C} \rightarrow$ Bool
content： $\mathbf{C} \rightarrow \mathrm{E}$
constrains C so that
C generated by［＜\＃〉，〈\＃，\＃＞］
C partitioned by［ ．left，right，content，isLeaf ］
for all［ t, tr：C，e：E ］
$(\langle t l, t r\rangle)$. left $=t l$
$(\langle t l, t r\rangle)$ ．right $=t r$
size（＜e＞）$=1$
$\operatorname{size}(\langle l l, t r\rangle)=\operatorname{size}(t)+\operatorname{size}(t r)$
isLeaf（＜e＞）
～isLeaf（ $\langle t$, tr＞）
content（〈e＞）$=e$
implies for all［ t ：C］isLeaf $(t)=(\operatorname{size}(t)=1)$
converts［ left，．right，size，isLeaf，content ］
exempts for all［ th，tr：C，e：E ］（＜e＞）．left，（＜e〉）．right，content（＜tl，tr＞）
BasicGraph：trait
assumes Equality with［ Node for T ］
imports Set with［ NodeSet for C，Node for E ］，
Pair with［ Edge for C，Node for T1，Node for T2］
introduces
empty：\rightarrow Graph
addNode：Graph，Node \rightarrow Graph
addEdge：Graph，Edge \rightarrow Graph
nodes：Graph \rightarrow NodeSet
adj：Node，Graph \rightarrow NodeSet
constrains Graph so that
Graph generated by［ empty，addNode，addEdge ］
Graph partitioned by［ nodes，adj］
for all［ g：Graph，e：Edge，$n, n /$ ：Node ］
nodes（empty）$=\{ \}$
nodes（addNode $(g, n))=\operatorname{insert(nodes}(g), n)$
nodes（addEdge（g，e））$=$ insert（insert（nodes（g），e．first），e．second）
$\operatorname{adj}(n$, empty）$=\{ \}$
$\operatorname{adj}(n, \operatorname{addNode}(g \quad n I))=\operatorname{adj}(n, g)$
$\operatorname{adj}(n, \operatorname{addEdge}(g, e))=$
if $n=(e . f i r s t)$ then $\operatorname{insert}(\operatorname{adj}(n, g), e . \operatorname{second})$ else $\operatorname{adj}(n, g)$
implies converts［ nodes，adj］

Connectivity: trait

```
assumes Equality with [ Node for T ], BasicGraph
introduces
    reach: NodeSet, Graph \(\rightarrow\) NodeSet
    allReach: NodeSet, NodeSet, Graph \(\rightarrow\) Bool
    connected: Graph \(\rightarrow\) Bool
constrains reach, allReach, connected so that
    for all [g: Graph, e: Edge, ns, nsl: NodeSet, n: Node ]
        \(\operatorname{reach}(n s\), empty) \(=\{ \}\)
        \(\operatorname{reach}(n s, \operatorname{addNode}(g, n))=\operatorname{reach}(n s, g)\)
        allReach( \(\}, n s, g\) )
        \(\operatorname{allR}\) each(insert \((n s, n), n s 1, g)=\)
        \(\operatorname{allReach}(n s, n s I, g) \&(n s l \subseteq \operatorname{reach}(\{n\}, g))\)
        connected \((\mathrm{g})=\operatorname{allReach}(\) nodes \((\mathrm{g}), \operatorname{nodes}(\mathrm{g}), \mathrm{g})\)
implies converts [ allReach, connected ]
```


Graph: trait

assumes Equality with [Node for T]
imports BasicGraph
includes Connectivity,
Connectivity with [stronglyConnected for connected, pathReach for reach,
allPathReach for allReach]
constrains reach, allReach, connected so that
for all [g: Graph, e: Edge, ns: NodeSet]
$\operatorname{reach}(n s, \operatorname{addEdge}(g, e))=\operatorname{reach}(n s, g) \cup$
(if (e.first) \in ns then insert(reach(\{(e.second)\}, g), (e.second))
else if (e.second) \in ns then insert(reach(\{(e.first)\}, g), (e.first))
else \{\})
constrains pathReach, allPathReach, stronglyConnected so that for all [g: Graph, e: Edge, ns: NodeSet]
pathReach $(n s, \operatorname{addEdge}(g, e))=\operatorname{path} R e a c h(n s, g) \cup$
(if (e.first) $\in n s$
then insert(pathReach(\{(e.second) \}, g), (e.second))
else \{\})
implies converts [reach, allReach, connected, pathReach, allPathReach, stronglyConnected]

Rings, Fields, and Numbers

Ring: trait
includes AbelianGroup with [+ for $\mathrm{O}, 0$ for unit, $-\#$ for inv],
Semigroup with [${ }^{*}$ for O],
Distributive
RingWithUnit: trait
includes Ring, Identity with [* for $O, 1$ for unit]
InfixInverse: trait
assumes Inverse
introduces \# O $_{\text {\# }}: \mathrm{T}, \mathrm{T} \rightarrow \mathrm{T}$
constrains \# O \# so that for all $[x, y: T]$
$x \oslash y=x \bigcirc \operatorname{inv}(y)$
implies converts [\# 0 \#]
Integer: trait
includes RingWithUnit with [Int for T],
Ordered with [Int for T],
InfixInverse with [+ for O, - \# for inv, - for Θ, Int for $T]$
asserts Int generated by [$1,+,-\#$]
for all [x : Int]
$x<(x+1)$
implies Rational without [${ }^{-1}, /$] with [Int for R]
converts [$0, *$, \# \# , $=, \leq, \geq,<,>$]
Field: trait
includes RingWithUnit
introduces $\#^{-1}: T \rightarrow T$
constrains *, ${ }^{-1}$ so that for all [x : T] $(x=0) \mid\left(\left(x^{*}\left(x^{-1}\right)\right)=1\right)$
exempts 0^{-1}
Rational: trait
includes Field with [R for T],
Ordered with [R for T],
InfixInverse with $[+$ for $O,-\#$ for inv, - for Θ, R for $T]$,
InfixInverse with [${ }^{*}$ for $O, \#^{-1}$ for inv, / for Θ, R for T]
asserts
\mathbf{R} generated by [$1,+,-\#^{-1}$]
for all [$x, y, z: R]$
$0<1$
$((x+z)<(y+z))=(x<y)$
$(x=0) \mid\left(\left(0<\left(x^{-1}\right)\right)=(0<x)\right)$
implies converts [$0, *$, \# - \#, $/,=, \leq, \geq,<,>]$

Lattices

ExtremalBound: trait

> assumes PartialOrder
includes AbelianSemigroup with [.glb for O]
constrains .glb so that for all [$x, y, z:$ T]
$(x . g \mathrm{gb} y) \leq x$
$((z \leq x) \&(z \leq y)) \Rightarrow(z \leq(x . g l b y))$
Semilattice: trait
includes PartiallyOrdered,
ExtremalBound,
ExtremalBound with [\geq for \leq, lub for .glb]
introduces $1: \rightarrow \mathrm{T}$
constrains \perp so that for all [$x:$ T]
$x \geq \perp$
implies AbelianMonoid with [\perp for unit, .lub for O]
Lattice: trait
includes Semilattice
introduces $\mathrm{T}: \rightarrow \mathrm{T}$
constrains T so that for all [x : T]
$x \leq \mathrm{T}$
implies Lattice with [T for \perp, \perp for T, ,glb for .lub, .lub for.$g l b$, \geq for \leq, \leq for $\geq,>$ for $<,<$ for $>$]

Enumerated Data Types

Enumerated: trait
imports Ordinal
includes Ordered
introduces
first: $\rightarrow \mathrm{T}$
last: $\rightarrow \mathrm{T}$
succ: $\mathrm{T} \rightarrow \mathrm{T}$
pred: $\mathrm{T} \rightarrow \mathrm{T}$
ord: $T \rightarrow$ Ord
asserts T generated by [first, succ]
T partitioned by [ord]
for all [x, y : T]
$\operatorname{ord}($ first $)=$ first
$\operatorname{ord}(\operatorname{succ}(x))=$ if $x=$ last then $\operatorname{ord}($ last $)$ else succ(ord $(x))$
$\operatorname{pred}(\operatorname{succ}(x))=$ if $x=$ last then pred(last) else x
$x \leq y=\operatorname{ord}(x) \leq \operatorname{ord}(y)$
implies T generated by [last, pred]
for all [\boldsymbol{x} : T]
$\operatorname{succ}(\operatorname{pred}(x))=$ if $x=$ first then succ(first) else x
first $\leq x$
$x \leq$ last
converts [$=, \leq, \geq,<,>]$
Rainbow: trait
includes Enumerated with [Color for T]
introduces
red: \rightarrow Color
orange: \rightarrow Color
yellow: \rightarrow Color
green: \rightarrow Color
blue: \rightarrow Color
violet: \rightarrow Color
asserts
Color generated by [red, orange, yellow, green, blue, violet]
first $=$ red
last $=$ violet
succ(red) $=$ orange
succ(orange) $=$ yellow
succ(yellow) $=$ green
succ(green) $=$ blue
succ(blue) $=$ violet
implies converts [pred, last, ord, $=, \leq, \geq,<,>$, red, orange, yellow, green, blue,
violet],
[succ, first, ord, $=, \leq, \geq,<$,$\rangle , red, orange, yellow, green, blue, violet]$
Character: trait includes Enumerated with [Char for T]
\% For each programming language there will be mappings from character and string constants to \% terms in the shared language. Because of the variety of character orderings and notations for \% constants, these definitions are not likely to be portable across programming languages.

Display Traits

\% The following traits represent a fairly straightforward translation of the specifications in \% "Formal Specification as a Design Tool" (CSL-80-1). We have not attempted to improve the \% design presented there, merely to translate it into Larch.

Coordinate: trait introduces minus: Coordinate, Coordinate \rightarrow Coordinate
Illumination: trait introluces combine: Illumination, Illumination \rightarrow Illumination
Boundary: trait introduces apply: Boundary, Coordinate \rightarrow Bool
Transform: trait introduces apply: Transformation, Coordinate \rightarrow Coordinate
Displayable: trait
introduces appearance: T, Coordinate \rightarrow Illumination in: T, Coordinate \rightarrow Bool
Picture: trait
assumes Boundary, Transform, Illumination,
Displayable with [Contents for T]
includes Displayabie with [Picture for T]
introduces makePicture: Contents, Boundary, Transformation \rightarrow Picture
constrains Picture so that
Picture gemerated by [makePicture]
for all [$c n$: Contents, b : Boundary, t : Transformation, cd: Coordinate]
appearance(makePicture(cn, b, $t), c d)=$
appearance(cn, apply($t, c d$)
$\operatorname{in}($ makePicture $(c m, b, t), c d)=\operatorname{apply}(b, c d)$
implies converts [appearance: Picture, Coordinate \rightarrow Illumination, in: Picture, Coordinate \rightarrow Bool]
Contents: trait
assumes Coordinate, Illumination, Displayable with [Component for T]
includes Displayable with [Contents for T]
introduces
empty: \rightarrow Contents
addComponent: Contents, Component, Coordinate \rightarrow Contents constrains Contents so that

Contents generated by [empty, addComponent]
for all [cn: Contents, cm: Component, cd, cdl: Coordinate]
appearance(addComponent $(c n, c m, c d l), c d)=$
if $\mathbf{i n}(c m$, minus($c d, c d /)$)
then (if in(cn, cd)
then combine(appearance ($c m$, minus $(c d, c d l)$),
appearance(cn, cd))
else appearance($(c m$, minus($c d, c d I)$))
else appearance(cn, cd)
~in(empty, cd)
in(addComponent $(c n, c m, c d l), c d)=$ in(cm, minus(cd, cdl)) |in(cn, cd)
implies converts [appearance: Contents, Coordinate \rightarrow Illumination,
in: Contents, Coordinate \rightarrow Bool]
exempts for all [$c d$: Coordinate] appearance(empty, cd)

Component: trait
assumes Displayable with [View for T].
Displayable with [Text for T],
Displayable with [Figure for T]
includes ComponentCoercion with [View for T, coerceView for coerce], ComponentCoercion with [Text for T, coenceText for coerce], ComponentCoercion with [Figure for T, coerceFigure for coerce]
ComponentCoercion: trait
assumes Displayable
includes Displayable with [Component for T]
introduces coerce: $\mathrm{T} \rightarrow$ Component
constrains Component so that for all [t : T, cd: Coordinate]
appearance(coerce($t), c d)=$ appearance $(t, c d)$
$\operatorname{in}(\operatorname{coserce}(t), c d)=\operatorname{in}(t, c d)$
View: trait
assumes Displayable with [Picture for T].
Equality with [Pictureld for T]
Container with [IdList for C, PictureId for E],
Coordinate
includes Displayable with [View for T]
introduces
empty: \rightarrow View
addPicture: View, Coordinate, PictureId, Picture \rightarrow View
findPictures: View, Coordinate \rightarrow IdList
deletePicture: View, PictureId \rightarrow View
constrains View so that
View generated by [empty, addPicture]
for all [v : View, $c d$, cdl: Coordinate, id, idl: PictureId, p: Picture]
appearance(addPicture (v, cdl, id, p), cd) $=$
if in(p, minus($c d, c d l)$) then appearance(p, minus($c d, c d l)$)
else appearance $(v, c d)$
~in(empty, cd)
in(addPicture $(v, c d l, i d, p), c d)=(i n(p, \operatorname{minus}(c d, c d 1)) \mid \operatorname{in}(v, c d))$
findPictures(empty, $c d$) $=$ new
findPictures(addPicture $(v, c d l, i d, p), c d)=$
if in($p, \operatorname{minus}(c d, c d 1)$) then insert($i d$, findPictures $(v, c d)$)
else findPictures $(v, c d)$
deletePicture(empty, id) $=$ empty deletePicture(addPicture($v, c d l, i d l, p), i d)=$
if id .eq idl then v else addPicture(deletePicture $(v, i d), c d, i d l, p$)
implies converts [findPictures, deletePicture,
appearance: View, Coordinate \rightarrow Illumination,
in: View, Coordinate \rightarrow Bool]
exempts for all [$c d$: Coordinate] appearance (empty, $c d$)
Display: trait
assumes Boundary, Transform, Illumination, Coordinate,
Equality with [Pictureld for T].
Container with [IdList for C, PictureId for E]
includes Picture, Contents, Component, View

References

[ADJ 78]
J.A. Goguen, J.W. Thatcher, and E.G. Wagner, "Initial Algebra Approach to the Specification, Correctness, and Implementation of Abstract Data Types," in R.T. Yeh (ed.), Cürrent Trends in Programming Methodology, Vol. IV, Data Structuring, Prentice-Hall, Englewood Cliffs, 1978.
[Burstall and Goguen 77]
R.M. Burstall and J.A. Goguen, "Putting Theories Together to Make Specifications,"

Proc. Sth International Joint Conference on Arificial Intelligence, Cambridge, MA, 1977, 1045-1058.
[Burstall and Goguen 81]
R.M. Burstall and J.A. Goguen, "An Informal Introduction to Specifications Using CLEAR," in R. Boyer and J. Moore (eds.), The Correctness Problem in Computer Science, Academic Press, New York, 1981, 185-213.
[Forgaard 83]
R. Forgaard, "A Program for Generating and Analyzing Term Rewriting Systems,"
S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, to appear, 1983.
[Guttag 75]
J.V. Guttag, "The Specification and Application to Programming of Abstract Data Types,"

Ph.D. Thesis, Computer Science Department, University of Toronto, 1975, 1-149.
[Guttag and Horning 80]
J.V. Guttag and J.J. Horning, "Formal Specification as a Design Tool,"

Proc. ACM Symposium on Principles of Programming Languages, Las Vegas, Jan. 1980, 251-261.
[Guttag and Horning 83]
J.V. Guttag and J.J. Horning, "An Introduction to the Larch Shared Language,"

Proc. IFIP Congress '83, Paris, 1983.
[Guttag, Horning, and Wing 82]
J.V. Guttag, J.J. Horning, and J.M. Wing, "Some Notes on Putting Formal Specifications to Productive Use," Science of Computer Programming, vol. 2, Dec. 1982, 53-68.

[Kownacki 83]

R. Kownacki, "A User's Guide to the Larch Shared Language Specification Checker," Laboratory for Computer Science, Massachusetts Institute of Technology, to appear. 1983.
[Lescanne 83]
P. Lescanne, "Computer Experiments with the REVE Term Rewriting System Generator,"

Proc. ACM Symposium on Principles of Programming Languages, Austin, Jan. 1983, 99-108.

Muser 80]
D.R. Muser, "Absurca Din Type Spelfoction in the Amma 8ymme,"

[Wand 79]

[Wing 83]
JM. Wing. "A Two-Tiered Apreosch to Specipine Prusmen"
 May 1983.
[Zechary 83]
JL. 2chary, "A Symar-Dinactod Specificntion EUApr,"
 Mar. 1983.

[^0]: *This work was supported at Mit's Laboratory for Computer Science by DARPA under contract NO0014-75-C-0661, and by the National Science Foundation under Grant MCS-811984 6, and at the Xerox Palo Atio Research Center by the Computer Sclence Laboratory.

