
Preliminary Report on The Larch Shared Language*

J.V.Guttag
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, Massachusetts 02139

J. J. Horning
Xerox Corporation

3333 Coyote Hilt Road
Palo Alto, CaJifornia 94304

October 1983

ABSTRACT

. -·

Each member of the Larch family of formal specification languages has a component derived from a
programming language and another component common to all programming languages. We call the former

interface languages, and the latter the Larch Shared Language.

This report presents version 1.0 of the Larch Shared Language. It begins with a brief introduction to the

Larch Project and the Larch family of languages. The next chapter presents most of the features of the Larch .
Shared Language and briefly discusses how we expect these features to be used. It should be read before

reading either of the remaining two chapters, which are a self-contained reference manual and a set of

examples.

Keywords: Algebraic specification, specification language

©J. V. Guttag and J. J. Homing

MIT

•This work was supported at Mit's Laboratory for Computer Science by DARPA under contract N00014-75-C-0661, and by the

National Science Foundation under Grant MCS-811984 6, and at the Xerox Palo Alto Reaearch Center by the Computer Science
Laboratory.

2 THE LARCH SHARED LANGUAGE

Table of Contents

Context

The Larch Family of Languages

Status and Plans

An Introduction to the Larch Shared Lanaua&e

Simple Algebraic Specifications

Getting Richer Theories

Combining Independent Traits

Combining Interacting Traits

Renaming and Exclusion

Assumptions

Consequences

lfI'henElse and Equality

Some Further Examples

Larch Shared Lanau•&e Reference Manual

Structure of Manual

Kernel Syntax

Simple Traits

Consequences and Exemptions

Constrains Clauses

Implicit Signatures and Partial OpForms

Mix.fix Operators

T ~I • I ... ,.,.
I

Prr/tlct1

COllNllliotls

3

nm LAROI SHARED LANGUAGE

Context

The Larch Family of Lanpqes

= The Larch Project is developing tools and techniques intended to aid in the productive use of

f6rmal specifications of systems containing computer programs. Many of its premises and goals are

discUISed in [Outtaa, Horning, and Wing 82].

We view a system as consisting of a state and mechanisms for changing and extracting information

from that state. We choose to define the information contained in the state without reference to

either how that information was created or how it will be used. Our specifications consist of two

parts. In one, we specify the properties of values that may appear in system states, and in the second.

the program modules that deal with those states.

A major component of the Larch Project is a family of specification languages. Each Larch

language has a component particular to a specific programming language and another component

common to all programming languages. We call the former interface languages. and the latter the

shared language.

We use the interface languages to specify program modules. Speciftcations of the interface that

one module presents to other modules often rely on notions speciftc to the programming language,

e.g .• its denotable values or its exception handling mechanisms. Each interface language deals with

what can be observed about the behavior of programs written in a specific programming language.

Its simplicity or complexity is a direct consequence of the simplicity or complexity of the observable

state and state transformations of that programming language.

The shared language is algebraic. It is used to specify abstractions that are independent of both

the program state and the programming language. The operators defined by an algebraic specification

appear in specifications written in the interface languages, and in reasoning about such specifications,

but they are not directly available to users of programs. The role of shared language specifications

is similar to that of abstract models in some other styles of specification.

Some important aspects of the Larch family of specification languages are:

Composability of sp«ijications. We emphasize the incremental construction of specifications

from other specifications. The importance of such mechanisms is discussed in [Burstall

and Goguen 77). Larch has mechanisms for building upon and decomposing

specifications as well as for combining specifications.

Emphasis on presentation. Reading specifications is an important activity. To mist in this

process. we use composition mechanisms defined as operations on specifications, rather

than on theories or models.

Interactive and integrated with tools. The Larch languages are designed for interactive use.

They are intended to facilitate the interactive construction and incremental checking of

specifications. The decision to rely heavily on support tools has influenced our language

design in many ways.

CoNTEXT 5

Semantic checking. It is all too easy to write specifications ~th suprising implications. We

would like many such specifications to be detectably ill-formed. Extensive ~becking

while specifications are being constructed is an important aspect of our C)proach. Larch
was designed to be used with a powerfUI theorem prover for semantic checking to

supplement the syntactic checks commonly defined for specification · languqes. We

have been influenced here by our experience with Atftrm [Musser 80).

Programming language d~Nkncies localized. We feel that it is important to incorporate many

programming-language-dependent features into our specification languages. but to

isolate this aspect of specifications as much as possible. This prompted us to design a

single shared language that could be incorporated into dift'erent interface languages in

a uniform way.

Shared language bas«l on equations. The shared language has a simple semantic basis taken

from algebra. Because of the emphasis on composability. checkability and interaction.

however, it differs substantially from the .. a.JaebnUc" specification languages we have

used in the past.

Interface languages based on predicate calculus. F.ach interface language is based on assertions

written in typed first-order predicate calculus with equality, and incorporates

programming-language-specific features to deal with constructs such as side effects.

exception handling, and iterators. Equality over terms is defined in the shared language;

this provides the link between the two parts of a specification.

Status and Plans

We are still in the early phases of the Larch project In addition to the work described in this

report. interface languages for CLU and Mesa have been desiped. [Wing 83] contains a detailed

description of the semantics of the CLU interface language. The Mesa interface language has not

been documented, but we have used it. in conjunction with the shared language, to specify the

program level interface to the Cypress data base system. This is the largest specification we have

attempted.

A primitive checker for the Shared Language has been implemented [Kownacki 83). In addition

to parsing specifications. this program checks various context sensitive constraints and provides

mechanisms for "expanding" assumptions, imponations. and inclusions. This checker is an interim

tool. We designed our specification language in tandem with an editing and viewing tool. Many

language design decisions were influenced by the presumption that specifications would be produced

and read interactively using this tool. A first design is complete (Zachary 831 but implementation

has yet to begin.

We are in the process of implementing term rewriting software (Forgaard 83). [I.ftCanne 83] that

we hope will provide much of the theorem-proving capability needed for analyzing specifications.

The definition of the Larch Shared Language calls for a number of checks for which there can be

6 THE l.AR.OI SHARED LANGUAGE

no effective procedure. We have what we believe are useful proc~ures. based on sufficient or

neceuary (but not both) conditions. for some of these checks, e.g., consistency. We are working on

procedures for the others. e.g., checking constrains clauses. This is a difftcult task. Diaf1ostics present

a~y vexing problem: How should relatively complicated theorem·provina precedures report

ptpblems to users who are not familiar with either their internal structure or the thiory underlying

them?
It is always difficult to evaluate a language that has not been extensively used. The Larch Shared

Language is especially hard to evaluate because it has been designed for use in an environment that

we have not yet built In addition to the specification of Cypress, we have written a number of small

specifications. On the whole, we were pleased by the ease of constructing these specifications in

Larch, and with the specifications themselves. While constructing them, we uncovered several errors

by inspection; we are encourqed that most of these errors would have been detected automatically

by the checks called for in the language definition. It will be some time. however. before we can

draw any strong conclusions about the potential utility of Larch in software development

INTR.ODUCilON 7

An Introduction to tile Larch Shared Lanpage

1. Simple Alpbraic Specifications

Most of the constructs in the Larch Shared Language are designed to Est in structuring

SP-CCifications. for both reading and writing. The trait is our basic module of specification. Consider

the following specification for tables that store values in indexed places:

TableSpec: trait

introduces
new: -+Table
add: Table. Index. Val-+ Table
#€#: Index. Table-+ Boot
eval: Table, Index -+ Val
isEmpty: Table -+ Bool
size: Table-+ Card

coastraias new. add, €, eval, isEmpty, size so that
for all [ind, ind/: Index. val: Val, t: Table]

eval(add(t, ind, val), ind/) = if ind= ind/ then val else eval(t. ind/)

ind E new = false
ind€ add(t, indl, val) = (ind = indl) I (ind€ 1)

size(new) = 0
size(add(t, ind. val)) = if ind€ t then size(t) else size(t) + 1

isEmpty(t) = (size(I) = 0)

This example is similar to a conventional algebraic specification in the style of [Guttag and

Horning 80] and [Musser 80]. The part of the specification following introduces declares a set of

operators (function identifiers). each with its signature (the sorts of its domain and range). These

signatures are used to sort-check terms (expressions) in much the same way as function calls are

type-checked in programming languages. The remainder of the specification constrains the operators

by writing equations that relate sort-correct terms containing them.

There are two things (aside from syntactic amenities) that distinguish this specification from a

specification written in our earlier algebraic specification languages:

A name, TableSpec, is aaociated with the trait itself.

The axioms are preceded by a constrains list

The name of a trait is logically unrelated to any of the names appearing within it In particular,

we do not use sort identifiers to name units of specification. A trait need not correspond to a single
••abstract data type," and often does not

The constrains list contains all of the operators that the immediately following axioms are

intended to constrain. It is the responsibility of a specification checker to ensure that the specification

conforms to this intent The constrained operators will generally be a proper subset of the operators

appearing in the axioms. In this example the constrains list informs us that the axioms are not to

put any constraints on the properties of if then else, false, o. 1, +. I. and =, despite their occurrence

8 THE LARCH SHARED LANGUAGE

in the axioms. The judicious use of constrains lists is an important step in modularizing specifications.

We associate a theory with every trait A theory is a set of well-formed formulas (wff's) of typed

first-order predicate calculus with equations as atomic formulas.

The theory. call it Th. mociated with a trait written in the Larch Shared Lanaftaae is defined

by:
Axioms: Each equation. universally quantified by the variable declarations of the containing

constrains clause. is in Th.

/nequation: -(true = false) is in Th. AU other inequations in Th are derivable from this one

and the meaning of =.
First-order predicate calculus with equality: Th contains the axioms of conventional typed

first-order predicate calculus with equality and is closed under its rules of inference.

The equations and inequations in Th are derivable from the presence of axioms in the trait-never

from their absence. Th is deliberately small. because it is important to prove theorems before a

specification is complete, and we wanted to limit the circumstances under which the addition of new

operators and equations could invalidate previously proved theorems. Had we chosen to take the

theory associated with either the initial or final interpretation of a set of equations (as in [ADJ 78]

and [Wand 79D. this monotonicity property would have been lost.

2. Gettin& Richer Theories

While the relatively small theory described above is often a useful one to associate with a set of

axioms, there are times when a larger theory is needed. e.g., when specifying an "abstract data type."

Generated by and partitioned by give different ways of specifying larger theories.

Section 1 does not include an induction schema. This is an appropriate limitation when the set

of generators for a sort is incomplete. Saying that sort S is pnerated lty a set of operators, Ops,

asserts that each term of sort S is equal to a term whose outermost operator is in Ops. One might,

for example. say that the natural numbers are aenerated by 0 and successor and the integers pnerated

by 0, successor, and predecessor. Generated by adds an inductive rule of inference.

Th.is inductive rule and the clause Table aenerated by [new, add] can be used to derive theorems

such as

Vt: Table [(t = new) I (3ind: Index [ind€ t])],

that would otherwise not be in the theory.

-------------.,,.-- -------------------------- -- -----

INTRODUCTION 9

Section 1 allows equations to be derived only by direct equa~onal substitution, not by the

absence of inequations. This is an appropriate limitation when the set of observers for a sort is

incomplete. Saying that sort S is partitioued "1 a set of operators, Ops, asserts that U two terms of

SQrt S are unequal, a difference can be observed using an operator in Ops. Therefore. they must be

equal if they cannot be dhltinguished using any of the operators in Ops. This rule of inference adds

new equations to the theory lllOciated with a trait, thus reducing the number of equivalence classes

in the equality relation.

This rule and the clause Table partitioned by [€, eval] can be used to derive theorems such as

add(add(t, ind, l'), ind/, l') = add(add(t, ind/, l'), ind, l'),

that would otherwise not be in the theory.

3. Combinin& Independent Traits

Our example contains a number of totally unconstrained operators, e.g., false and +. Such traits

are not very use.fut The most straightforward thing to do would be to augment the specification with

additional clauses dealing with these operators. One way to do this is by trait importation. We might

add to trait TableSpec:

imports Cardinal, Boolean
The theory associated with the importing trait is the theory associated with the union of all of

the introduces and constrains clauses of the trait body and the imported traits.

Importation is used both to structure specifications to make them easier to read and to introduce

extra checking. Operators appearing in imported traits may not be constrained in either the importing

trait or any other imported trait This guarantees that imported traits don't "interfere" with one

another in unexpected ways. I.e., it guarantees that the theory associated with a trait is a consenati1e
extension of each of the theories associated with its imported traits. (An extension, Thl. of a theory,

Th2, is conservative if and only if every wtT of the language of Th2 which is in Thl is also in Th2.)

Each imported trait can. therefore, be fully understood independently of the context into which it is

imported.

As a syntactic amenity, trait Boolean is automatically imported into all other traits.

10 THE LARCH SHARED .LANGUAGE

4. Comhinin& Interactina Traits

While the modularity imposed by importation is often helpful. it can sometimes be too restrictive.

It is often convenient to combine several traits dealing with different aspects of the' iame operator.

1bis is common when specifyina something that is not easily thought of as an abl1ract data type.

Ttait inclusion involves the same union of clauses as trait importation. but allows the included

oi>erators to be further constrained. Consider, for example:

Reflexive: trait

introduces #.rel#: T, T - Bool
constrains .rel so that for all [1: T]

1 .rel t = true

Symmetric: trait

introduces #.rel#: T, T - Bool
constrains .rel so that for all [ti, t2: T]

ti .rel 12 = 12 .rel ti

Transitive: trait

introduces #.rel#: T, T - Bool
canstrains .rel so that for all [ti, 12, 13: T]

(((ti .rel 12) & (12 .rel tJ)) ~ (II .rel t3)) = true

.Equivalence: trait

includes Reflexive, Symmetric, Transitive

Equivalence has the same associated theory as the less strucrured trait

Equivalence!: trait

introduces #.rel#: T, T - Bool
constrains .rel so that for all [ti, t2, 13: T]

ti .rel ti = true

ti .rel t2 = t2 .rel ti

(((ti .rel 12) & (t2 .rel t3)) -. (ti .rel t3)) = true

Any legal trait importation may be replaced by trait inclusion without either making the trait

illegal or changing the associated theory. It does involve the sacrifice of the checking that ensures

that the imported traits may be understood independently of the context in which they are used. We

use importation when we can incorporate a theory unchanged, inclusion when we cannot

5. Reoamiq and Exclusion

The specification of Equivalence in the previous section relied heavily on the coincidental use

of the operator .rel and the sort identifier T in three separate traits. In the absence of such happy

coincidences., renaming can force names to coincide, keep them from coinciding, or simply replace

them with more suitable names.

INTR.ooucnoN 11

The phrase

Tr with [x for y]

stands for the trait Tr with every occurrence of y (which must be either a sort or <>PCSator identifier)

replaced by x. Notice that if y is a sort identifier this rcnamina may change the signatures associated

wjth some operators.

-: Occasionally we wish to eliminate an operator altogether. The phrase

Tr without [op]
stands for the trait Tr without the decJaration of op and without each axiom, aenerated by, and

partitioned by in which op appears. We use without to remove an operator either so that we can later

add another operator with the same name and signature but different properties or merely because

it is superfluous and we want to spare readers the bother of looting at it.

If TableSpec contains the 1enerated lty and partitioned by of section 2, the specification

ArraySpec: trait
imports lntegerSpec
includes TableSpec without [size]

with [defined for # € #, assign for add, read for eval.
Array for Table, Integer for Index]

stands for

ArraySpec: trait

imports lntegerSpec
introduces

new: - Array
-assign: Array, Integer, Val - Array
defined: Integer, Array - Boot
read: Array, Integer - Val
isEmpty: Array - Dool

constrains new, assign, defined. read, isEmpty so that
Array aenerated lty [new, assign]
Array partitioned by [defined. read]
for all [ind, ind/: Integer, val: Val. t: Array]

read(assign(t, ind, val), ind/) =
if ind = ind/ then val else read(t. indl)

defined(ind, new) = false

defined(ind/, asmgn(I, ind, val)) = ((ind = ind/) I defined(ind/, t))

Notice that in this specification isEmpty is totally unconstrained. In section 7 we discuss a

checking mechanism that would call the lack of constraints on isEmpty to the specifier's attention.

This would. presumably, provoke him either to add the axioms

isEmpty(new) = true
isEmpty(assign(I, ind, val)) = false

to his specification. or to add isEmpty to the without clause.

The use of without rather than some sort of hiding mechanism (as in [Burstall and Goguen 81D

may thus involve some extra work for the specifier. In return for this work, usen of the specification

are spared having to deal with the "hidden" operators, e.g., in proofs that use the specification. This

12 THE LARCH SHARED LANGUAGE

is consistent with our belief that specifiers should be encouraged ~ do things that will make life

easier for users of their specifications.

The definition of without should make it clear that we are indeed operating on te text of traits

(luesentations) rather than on their associated theories. Consider addina these isE.appty axioms to

~leSpec to form another trait, TableSpecl. TableSpec and TableSpecl have the same associated

theories, but

TableSpec without size

and

TableSpecl without size

have rather different associated theories-in the latter, isEmpty is fully defined.

A final point raised by the examples of this section is the importance of distinguishing between

the history of a specification (how it was constructed) and the structure presented to a reader. A

reader familiar with TableSpec might prefer to read the tint version of ArraySpec; others might find

it distracting to have to understand the more general structure before understanding ArraySpec.

6. Assumptions

We often construct fairly general specifications that we anticipate will later be specialized in a

variety of ways. Consider, for example,

MultiSetSpec: trait

introduces
{}: - MultiSet
insert: MultiSet, Elem - MultiSet
delete: MultiSet, Elem - MultiSet
€ #: MultiSet, Elem - Dool

constrains {}, insert, delete, € so that
M ultiSet aenerated hy [{}, insert 1
MultiSet partitioned by [delete, € 1
for all [m: MultiSet, e, el: Elem)

e E {} = false

e E insert(m, el) = (e = el) I (e E m)

delete({}, e) = {}
delete(insert(m, e), el) =

if e = el then m else insert(delete(m, el). e)

We might specialize this to lntMultiSet by renaming Elem to Integer and including it in a trait

in which operators dealing with Integer are specified, e.g.,

IntMultiSet: trait

imports lntegerSpec
includes MultiSetSpec with [Integer for Elem)

INTRODUCTION 13

The interactions between MultiSetSpec and IntegerSpec are very limited. Nothing in

MultiSetSpec places any constraints on the meaning of the operaton that occur in lntegerSpec, e.g.,

0, +, and <. Consider, however, extending MultiSetSpec to MultiSetSpecl by addrbg an operator

rangeCount,

MultiSetSpecl: trait

imports MultiSetSpec, Cardinal
introdaces

rangeCount: MultiSet, Elem, Elem-+ Integer
< #: Elem, Flem -+ Bool

constrains rangeCount • dlat for aU [el, e2. e3: Elem, m: MultiSet]

rangeCounl({}, el, e1) = 0

rangeCounl(insert(m, eJ), el, e1) =
rangeCounl(m, el, e1) + (if (el < e3) & (d < el) then 1 else 0)

MultiSetSpecl places no constraints on the< operator. Suppose, however, that this is not what

we intend We might have definite ideas about the properties that< must have in any specialization,

e.g., that it should define a total ordering. We could specify such a ratriction by adding to

MultiSetSpecl the assumption (Ordered is defined in the Handbook section, on page 36):

assumes Ordered with [Flem for T]

In constructing the theory associated with MultiSetSpecl, the assumption would be treated as if

Ordered with [Flem for T] bad been included. This could be used to derive various properties of

MultiSetSpecl, e.g., that rangeCount is monotonic in its last argument.

Whenever the augmented MultiSetSpecl is imported or included in another trait, however, the

assumption will have to be be discharged. In

IntMultiSetl: trait

indwles MultiSetSpecl with [Integer for Elem]
imports lntegerSpec

this would amount to showina that the (renamed) theory aaociated with Ordered is a subset of the

theory associated with lntegerSpec. Often, the assumptions of a trait are used to discharge the

assumptions of traits it imports or includes.

7. Consequences

We have now looked at those parts of the Larch Shared Lanauage that determine the theory

associated with a valid trail lbat subset of the language contains some checkable redundancy; e.g.,

assumptions are checked when a trait is included or imponed, and comtrains lists are checked against

the axioms associated with them. We now turn to a pan of the language whose only purpose is to

introduce checkable redundancy, in the form of assertions about the theory associated with a trait.

There are two kinds of consequence assertions:

That the theory associated with a trait contains another theory.

That the theory associated with a trait "adequately" defines a set of operators in terms of

14 THE LARCH SHARED LANGUAGE

other operators.

The first kind of assertion is made using implies. Consider, for exainple, adding to the augmented

MultiSetSpecl,

implies for aU [m: MultiSet, el, e2, e3: Elem]

(e2 < eJ) _. (rangeCount(m. el, el)~ rangeCount(m. el, eJ))

Implies can be used to indicate intended consequences of a specification, both for checking and

to increase the reader's insight The theory to be implied can be specified using the full power of

the language, e.g., by using aenerated by and partitioaed ltJ, or by referring to traits defined elsewhere.

The second kind of assertion is made using conYerts [Ops). This asserts that each term is

provably equal to a term that does not contain operators in Ops. (We do not require this for terms

containing variables of sorts appearing in aeneratetl fly clauses.) Converts is used to say that the

specification adequately defines a collection of operators.

A common problem with axiomatic systems is deciding whether there are "enough" axioms.

Converts provides a way of making a check.able statement about the adequacy of a set of axioms.

Consider, for example, adding to TableSpec:

converts [isEmpty].

This says that each term containing isEmpty, such as isEmpty(new) or isEmpty(add(new), ind, val)),

is equal to another term that does not contain isEmpty.

Now consider adding to TableSpec the stronger assertion:

converts [isEmpty, eval].

Terms containing subterms of the form eval(new, ind) are not convertible to terms that do not contain

eval, so an error message of the form

eval(new, ind) not convertible

would be generated. This would present a problem if we did not wish to add an axiom to resolve

this incompleteneu. We therefore provide a mechanism to allow specifiers to indicate that the

unconvertibility of certain terms is acceptable. If TableSpec were modifed to include

exempts for all [ind: Index] eval(new, ind)

the checking associated with the conYerts would now require that the theory associated with TableSpec

must contain either

an equation, t = tl, where t1 has no occurrences of isF.mpty or eval, or

an equation t' = tl, where t' is a subterm oft, and tl is an instantiation of eval(new, ind).

This checking ensures that each term containing operators in the conveJ1:5 list is either defined

by the axioms (in terms of operators not in the list) or explicitly exempted. One use of conYerts is

to allow the specification checker to notice unintended effects of without. As suggested in section 6,

the failure of ArraySpec to fulfill the conYerts inherited from TableSpec would trigger error messages

of the form:

isF.mpty(new) not convertible

isEmpty(assign(t. ind. val)) not convertible.

INTRODUCilON 15

•• lffhenElte and Equality

In our examples we made use of some apparently unconstrained operators: if tt.en else and =,
with a variety of signatures. In fact, the appearance of these operators leads ~ the implicit

incorporation of the traits lffhenElse and Equality.

Whenever a term of the form if b then t1 else t2 occurs in a trait we replace the mixfix symbol

If ·then else by the prefix symbol ifibenFlse. If t1 and t2 are of the same sort, Tl, we also import

the trait lflbenFlse with (Tl for T] into the enclosing trait

Whenever a term of the form t1 = a occurs in a trait. if t1 and t2 are of the same s0rt, Tl, we

append the trait Equality with [Tl for T] to the consequences of the enclosing trait

Specifications of these traits are:

IfibenElse: trait

introftca iflbenElse: Bool. T, T - T
constrains iflbenE1se so that for all [ti, 12: T]

iflbenElse(true, ti, t1) = ti

iflbenElse(false, ti, t1) = 12

implies con•erts [iflbenElse]

Equality: trait

includes Equivalence with [= for .rel]
constrains = so that T partitioned by (=).

9. Some Further Eumpla

The following series of examples is adapted from the Handbook chapter. We include them here

to illustrate some ways in which the facilities introduced above can be used. In reading these

specifications. keep in mind that they are not themselves ends, but rather means to write interface

specifications.

Our first example is an abstraction of those data structures that "contain" elements, e.g., Set,

Bag. Queue, Stack. We have found it useful both as a startina point for specifications of various

kinds of containers, and as an assumption for generic operations. The CJUCial part of the trait is the

pnerated by. It indicates that any term of sort C is equal to some term in which new and insert are

the only operators with range C-even if this trait is included in one that introduces additional

operators that return values of sort C. This means that any theorems proved by induction over new

and insert will remain valid.

Container: trait

introduces
new: - C
insert: C, E - C

% C's contain E's

constrains C so that C aeaerated by [new, insert]

The next example incorporates Container as an assumption. Notice that it constrains new and

insert as well as the operator it introduces, isEmpty. The CODYerts indicates that this trait contains

16 THE LAROI SHARED LANGUAGE

enough axioms to adequately specify isEmpty. Because of the paerated bJ. this can be proved by

induction over terms of sort c. using new as the basis and insert(c. e) in the induction step.

lsF.mpty: trait

aaumes Container
introduces isEmpty: C ... Boot
constrains isEmpty. new. insert so that for all [c: C. e: E]

isEmpty(new) = true

isEmpty(insert(c. e)) = false

implies coaverts [isEmpty]

The next two examples assume Container. The exempts indicate that should these traits be

included into a trait that claims the convertibility of next or rest, that trait needn•t convert the terms

next(new) or rest(new).

Next: trait

assumes Container
introduces next: C - E
con.strains next. insert so that for all [e: E]

next(insert(new. e)) = e
exempts next(new)

Rest: trait

assumes Container
introduces rest: C - C
constrains rest. insert so that for all (e: E]

rest(insert(new, e)) = new

exempts rest(new)

The next example specifies properties common to various data structures such as stacks. queues,

priority queues. sequences, and vectors. It augments Container by combining it with IsEmpty, Next,

and Rest The partitioned by indicates that next, rest, and isF.mpty are sufficient to define equality

over terms of sort C. Since we have little information about next and rest. the partitioned by does

not yet add much to the associated theory.

Enumerable: trait

imports lsEmpty, Next, Rest
includes Container
constrains C so that C partitioned by [next, rest, isEmpty]

The next example specializes Enumerable by further constraining next, rest, and insert Sufficient

axioms are given to convert next and rest The axioms that convert isEmpty are inherited from the

trait Enumerable, which inherited them from the trait lsF.mpty.

INTRODUcnON

PriorityQueue: trait

wmnes TotalOrder with [E for T]
inclatles Enumerable
coastnins next, rest, insert so that for all [q: C, e: E]

next(insert(q, e)) =
if isEmpty(q) then e
else if next(q) S e then next(q) else e

rest(insert(q, e)) =
if isEmpty(q) then new

else if next(q) S e then insert(rest(q), e) else q

implies conYerts [next, rest. isEmpty]

17

In a trait, such as PriorityQueue, that defines an .. abstract data type" there will generally be a

distinguished sort (C in this case) corresponding to the .. type of interest" of [Guttag 75] or "data

sort" of [Burstall and Goguen 81]. In such traits, it is usually possible to partition the operaton whose

range is the distinguished son into .. generators," those operaton which the sort is aenerated by, and

.. extensions," which can be converted into generaton. Operaton whose domain includes the

distinguished sort and whose range is some other sort are called "observen." Observen are usually

convertible, and the sort is usually partitioned by one or more subsets of the observers and extensions.

The next example illustrates a specialization of Container that does not satisfy Enumerable. It

augments Container by combining it with IsEmpty and Cardinal, and introducing two new operaton.

Notice that we include Container, because we intend to constrain operaton inherited from it, but

import IsEmpty and Cardinal, because we do not intend to constrain any operator inherited from

them. Constrains C is a shorthand for a constrains clause listing all the operators whose signature

includes C. The partitioned by indicates that count alone is sufticient to distinguish unequal terms of

sort C. ConYerts [isEmpty, count, delete] is a stronger assertion than the combination of an explicit

converts [count, delete) with the inherited conlerts [isEmpty].

MultiSet: trait

assumes Equality with [Elem for T]
imports IsEmpty, Cardinal
includes Container with [empty for new]
introduces count: Elem, C - Dool

delete: Elem. C - C
constrains C so that

C partitioned by [count]
for all [c: C, el, el: E]

count(empty, el) = 0

count(insert(c, el), e2) = count(c, el) + (if el = e2 then 1 else 0)

delete(empty. e I) = empty

delete(insert(c, el), el) =
if el = el then c else insert(delete(c, e2), el)

implies conYerts [isEmpty, count, delete)

-------------,,-~------

18 THE LAR.OI SHARED LANGUAGE

The next example specifies a generic operator. It uses Enumel'al!le as an assumption to delimit
the applicability of this operator to containers for which it is possible to enumerate the contained
elements. (I'o understand why we assume Enumerable rather than Container, ~fining ext()p

far a MultiSet) The exempts indictates that we do not intend to tblly define the meaqjng of applying

~tOp to containers of unequal size. Notice that elemOp is totally unco~ in this trait This

p~vents us from having many interesting implications to state at this stage.

Pairwise&tension: trait

assumes Enumerable
introduces

elemOp: E, E - E
extOp: C, C - C

constrains extOp so that for all [cl, cl: C, el, el: E)
extOp(new, new) = new

extOp(insert(cl, el), insert(cl, el)) = insert(extOp(cl, c1), elemOp(el, el))
implies conlerts [extOp)
exempts for all [c: C, e: E)

extOp(new, insert(c, e)),

extOp(insert(c. e), new)

Now we specialize Pairwise&tension by binding elemOp to + over Cardinals:
PairwisePlus: trait

assumes Enumerable
imports Cardinal
includes Pairwise&tension with [# + # for elemOp, # + # for extOp, Card for E]
implies Commutative with [# + # for 0, C for T)

The validity of the implication that + for sort C is commutative stems from the replacement of

elemOp by + for sort Card, whose constraints (in trait Cardinal) imply its commutativity.

REFERENCE MANUAL 19

Larch Sllarecl Language Reference Manual

o. Structure or Manual

In section 1 we present a grammar for the kernel subset of the Larch Shared Language.

In · section 2 we define the context sensitive checking and the theory associated with each

specification written in the kernel subset

In section 3 we extend the kernel subset by introducing mechanisms for specifying intended

consequences of a specification written in the kernel subset

In sections 4· 10 we define successive extensions of the language. We modify the grammar to

introduce additional aspects of the languaae and describe any additional context sensitive checking

required. We also provide a translation from the newly extended Janauaae to the previously defined

subset The result of this translation is subjected to all the applicable checking. The theory associated

with any specification written in the full language is the same as the theory associated with its

translation.

Section 11 describes additional checks. defined in terms of the theories associated with traits,

that are associated with various language features. To be lepl. a specification and each of the parts

from which it is built must satisfy these checks as well as the context sensitive checks described

earlier.

Finally. section 12 collects the reference grammar for the entire language.

20 THE LARCH SHARED LANGUAGE

1. Kernel Syntax

I.I. Syntactic conventions

1-
{e}

e*
e*,

e+

alpha

alpha

'(')

(e)

alternative separator

e is optional

zero or more e's

zero or more e's, separated by commas

one or more e's

alpha is a nonterminal symbol

alpha is a terminal symbol

parentheses as tenninal symbols

parentheses for grouping syntactic expressions

1.2. Grammar

trait : : = trait Id : trait traitBody

traitBody :: = simple Trait

simple Trait :: = {opPart} propPart•

opPart :: = introduces opDcl*

opDcl

signature

domain

range

propPart

props

generators

partitions

bylist

sortedOp

axioms

varDcl

equation

term

opld

opForm

opSym

trait Id

sortld

: : = opld : signature

::=domain - range

:: = sortld*,

::= sortld

: : = asserts props

:: =generators• partitions• axioms•

: : = sortld aenerated bylist*,

: : = sortld partitioned bylist•,

: : = by (sortedOp*,)

::= opDcl

:: = for all (varDcl*,) equation•

: : = varld*, : sortld

::= term = term

:: = sortedOp { '(term*, ') } I varld

: : = alpha Numeric + I opForm

: : = { # } opSym (# opSym)* { # }

: : = specia/Char + I . alphaNumeric +

: : = alpha Numeric +

: : = alpha Numeric +

varld : : = alpha Numeric +

Comments start with % and terminate with end of line. They may appear after any token.

REFEllENCE MANUAL

2. Simple Traits

2.1. Context sensitive checking

simple Trait:

The sets of varld's. sortld's and opld's appearing in a trait must be disjoint

Every sortld appearing anywhere in a simpleTrait must appear in its opPart.

Every sortedOp appearing anywhere in a simpleTrait must appear in its opPart.

opDcl:

21

Each opForm must have the same number of #'s as the number of occurrences of sort/d's in

the domain.

generators:

The range of each sortedOp must be the sortld of the generators.

At least one sortedOp in each bylist must have a domain in which the sortld of the generators

does not occur.

partitions:

The domain of each sortedOp must include the sortld of the partitions.

The range of at least one sortedOp in each bylist must be different from the sortld of the

partitions.

axioms:

Each varld used in a term must appear in exactly one varDcl.

No varld may occur more than once in (varDct•,).

equation:

The sorts of both term's must be the same, where

The sort of a term of the form sortedOp { '(term•, ') } is the range of the sortedOp.

The sort of a term of the form varld is the sortld of the varDcl in which the varld is declared.

term:

In sortedOp { '(term•, ') } the domain of the sortedOp must be the sequence of the sorts of

the terms in term•, .

22 THE LARCH SHARED LANGUAGE

2.2. Associated theory

We associate a theory with each trait. This section defines the theory assQCiated with a

simple Trait.

- A theory is a subset of the language:

wff : : = term = term

I "propositional formula"
I "first order quantified (with sorts) formula"

We adopt the conventional meanings of the equality symbol (=), the propositional connectives

(ct, I. -. • •...),and the quantifiers (V and 3).
The subset of wff that is the theory, call it Th, associated with a simple Trait is defined by:

Axioms: Each equation, universally quantified by the varDcfs of its containing axioms, is in

Th.

Inequation: -(true:-+Bool = false:-+Bool) is in Th.

First order predicate calculus with equality: Th contains the axioms of conventional typed­

first-order predicate calculus with equality and is closed under its rules of inference.

Induction: If the trait has a generators with sortld Sand a bylist by [op1, ... , opnJ, and P(s)

is a wff with a free variable, s, of son S, Th contains the wff

V[s: SJ P(s)

if for each OJ>i in [op1, . . . , opnJ

Qi =-- P(opi(x1, ... , xt)) is in Th, where

k is the arity of opi.

the xj's are variables that do not appear free in P, and

Qi is the conjunction of P(xj), for each j such that the jtb argument of opi

is of son S.

Reduction: If the trait has a partitions with sortld S and a bylist hy [opi. ... , oprJ, Th contains

the wff

V[s1. s2: SJ (Q =- s1 = si)

where Q is the conjunction, for each OJ>i in (opi, ... , oprJ and each j such that the jtll

argument of opi is of son S, of

V[x1: Si. ... , Xk: St] (Subst(oJ>i, j, ti) = Subst(OJ>i, j, ti)), where

S1 , Sk is the domain of opi. and

Subst(op, j, t) is op(x1 •...• xt) with t substituted for Xj.

REFERENCE MANUAL 23

3. Consequences and Exemptions

Exempts and consequences affect only the checkina (see section 11.S) and dQ not affect the

~eory. We add to the grammar the productions:

trait

c~nsequences

conseqProps

converts

conversion

exempts

exemptTerms

:: = traitld : trait traitBody {consequences} {exempts}

:: = implies conseqProps {converts}

::=props

:: = CODYerts conversion*,

:: = (sortedOp*, I
:: = exempts exemptTerms*

:: = { for all [vsrDcl*, I } term*,

3.1. Context sensitive checking

conseqProps:

If the props of the conseqProps is appended to the propPart of the containing trait, the

resulting trait must satisfy the checks of section 2.

exempts:

Each term must satisfy the checks of section 2.1.

4. Constrains Clauses

Constrains clauses affect only the checking (see section 11.4), not the theory. We add to the

grammar the productions:

propPart

constrains

4. I. Translation

constrains:

: : = (asserts I constrains) props

:: = coutrains (sortld I sortedOp*,) so that

Replace the constrains by asserts.

24 THE LA.ROI SHARED LANGUAGE

5. Implicit Sipatures and Partial OpFonm

In the kernel language each sortedOp is an opDcl. Here we relax this restriction to allow

omitted and partial signatures and omitted # 's. We add to the grammar the production:

slJrtedOp :: = opld { -+ range }

5.~J. Context sensitive checking

There must be a unique mapping from occurrences of sortedOp's to opDcf s of the traitBody

such that the translation described in section S.2. produces a legal traitBody and for each sortedOp,

opDcl pair:

The op/d's match, i.e.,

They are the same, or

They are both opForms and the one in the sortedOp is the same as the one iil -the

opDcl with all #'s removed.

If the sortedOp includes -+ range, it is the same as the range of the opDcl.

5.2. Translation

The checking ensures that each occurrence of a sortedOp corresponds to a unique opDcl. The

translation is simply to replace it by that opDcl.

6. Mixfix Operators

In the language presented thus far, all operators are treated as either nullary or prefix. Here we

relax that restriction. We replace the grammar for term by:

term : : = secondary I if secondary then secondary else term

secondary : : = { opSym } primary (opSym primary)* { opSym }

primary : : = sortedOp { '(term•, ') } I varld I '(term ')

6.1. Translation

equation:

It is necessary to resolve the grammatical ambiguity between the = connective in equations

and the = opSym. In any equation the first occurrence of = that is not bracketed by parentheses

or within an if then else is the equation connective, the remainder are opSyms. Parentheses can be

used to enforce any desired parsing.

25

term:
Translate eadl term of the tbrm If b dlell t1 elll t2 into a term of tbe form ifl'btDEllll(b. t1, tl).

~ondary:

- - Tram'ate each secondary containing opSym's into a ptlmary of the form op7d '(term•, '),
where .

opld is derived by repllciD& eadl primary in the aecollRry by #.

term•, is die sequence of primary's.

primary:
After the previous tramlaaioDI have been pe:r(onned. rmiove the outer parentheles from

primary's of the form '(term ').

7. Boole& Terms • Equatioas

It is convenient to use terms of tort Boo1 as axioms. We add to the pammar the production:

equation : : = term

7.1. Cont~xt sensitiff checking

The term must be of son Dool.

7.2. Translation

Replace the term by the equation

term = true

26 THE LARCH SHARED LANGUAGE

8. External References

We add to the kernel grammar the productions:

tr~itBody

eiternals

assumes

imports

includes

traltRef

conseqProps

:: = externals simple Trait

:: = {assumes} {imports} {includes}

: : = assumes traitRef*,

: : = imports traitRef*,

:: = includes traitRef*,

:: = traitld

:: = traitRef*, props

8.1. Context sensitive checking

externals:

Recursive externals are not pemritted; i.e., the traitld of the containing trait may not appear in

an externals, nor in any partial translation of a traitRef in ilS externals.

8.2. Translation

The translation of a trait is derived bottom-up; i.e .• before a trait with traitRefs is translated.

each of its traitRefs is replaced by the translation of the trait labeled by that traitRefs traitld. Let

T be a trait whose simpleTrait is S and let E consist of the translations of the traitRefs in Ts

externals. The translation of T consists of:

An opPart containing S's opDcls and E's opDcls,

A propPart• containing S's propPart's and E's propPart's,

An exempts containing Ts exemptTerms and E's exemptTerms, and

A consequences containing the props of

Ts conseqProps,

the propParts of the translations of the traitRefs in Ts conseqProps, and

E's consequences.

REFER.ENCE MANUAL

9. Modifications

We add to the grammar the productions:

traitRef

egc/usion

rtinaming

:: = traitld {exclusion} {renaming}

:: = without [oldOp*,)

:: = with [(sortRename I opRename)*,)

sortRename :: = sortld for oldSort

oldSort : : = sortld

opRename : : = opld for oldOp

oldOp :: = sortedOp

9.1. Context sensitive checking

traitRef:

No sortedOp may occur more than once as an oldOp.

No sortld may occur more than once as an oldSort.

27

Each oldSort must appear in an opDcl in the translation of the trait labeled by the traitld.

There must be a unique mapping from oldOp's to opDcfs of the translation of the trait labeled

by the traitld, such that for each o/dOp, opDcl pair:

The op/d's mat.ch (see section 5.1),

If the oldOp includes domain, it is the same as the domain of the opDcl.

If the oldOp includes - range, it is the same as the range of the opDcl.

9.2. Translation

The translation of the trait labeled by the traitld of the traitRef is modified by applying first

the exclusion, then the opRename's, and finally the sortRename's:

For each oldOp in the exclusion, delete each by/1st, equation, and term containing the

opDcl to which it maps and then delete all remaining occurrences of that opDcl.

Then, simultaneously, for each opRename, replace the opld part of each occurrence of the

opDcl to which the oldOp maps by the opld of the opRename.

Finally, simultaneously, for each sortRename, replace each occurrence of its oldSort by its

sortld.

28 THE !..AR.CH SHARED LANGUAGE

10. Implicit Incorporation of Boolean. IfThenElse. and Equality

Three traits, Boolean. IflbenElse. and Equality, are implicitly incorporated into various other

traits to assure uniform me.anings for the operators they constrain. -
19.1. Translation

Append the traitRef Boolean to the imports of each trait except Boolean.

Append the traitRef IflbenElse with (Tl for T] to the imports of each trait containing a term

of the form if b then t1 else t2 in which t1 and t2 have the same sort. Tl.

Append the traltRef Equality with [Tl for T] to the traitRef* of the conseqProps of each

trait (except Equality) containing a term of the form t1 = t2 in which t1 and t2 have the same sort.
Tl.

10.2. Built-in traits

Boolean: trait

introduces
true: -+Boot
false: -+ Dool
-#:Dool Boot
#&.#: Dool. Dool Dool
#I#: Boot. Boot Dool
- #: Boot. Dool Dool
#.equal#: Dool. Dool -+ Dool

85.1erts Boot aenerated by [true. false J
for all [b: Bool]

-true = false

-false = true

(true &. b) = b

(false &. b) = false

(true I b) = true

(false I b) = b

(true =- b) = b

(false =- b) = true

(true .equal b) = b

(false .equal b) = -b

implies converts [- , &., I. •, .equal]

IflbenElse: trait

introduces iflbenElse: Boot, T, T-+ T
85.1erts for all [ti, t2: T)

iflbenElse(true, ti, 12) = ti

iflbenEtse(false, ti, t2) = t2

implies converts [iflbenElse]

REFERENCE MANUAL

F.quality: trait

introduces # = #: T, T -+ Dool
userts T partitioaed lty [=)

forall[x,y,z:T)
(x=x)

(x=y) = {y=x)

((x= y) & {y= z)) • (x= z)

11. Semantic Checldna

29

In addition to the syntactic constraints specified above, we require that each trait be logically

consistent. discharge the assumptions of the traits it is built from. be a conservative extension of its

imports, be properly constraining, and imply its consequences.

ll.l. Consistency

A traitBody is consistent if its emaciated theory does not contain the equation

true:-+Bool = false:-+Bool

l 1.2. Assumptions

Let A(T) be all of the assumes of the traits imported or included in T, and R(T) be the result

of translating T after removing these assumes. A(T) is discharged by T if the theory associated with

the translation of each traitRef of A(T) is a subset of the theory associated with R(T).

l 1.3. Imports

The theory emaciated with a trait must be a consenative extension of the theory emaciated with

the translation of each traitRef in its imports; i.e., if trait TI imports T2 and W is a w1f of Tl, W

is in the theory emaciated with Tl if and only if it is in the theory associated with T2.

l 1.4. Constraints

A propPart is properly-constraining if it implies properties of only the operators in its constrains.

The occurrence of a sortld in a constrains stands for the list of all sortedOp's in the containing

trait's opPart whose signatures include that sortld.

Let T be a trait and P be the propPart constrains sortedOp*, so that props. P is

properly-constraining in the trait consisting of T plus P if and only if each wff in the theory emaciated

with T plus P is also in the theory emaciated with T or else contains ops in sortedOp*.

Note that. since the translation of a traitRef converts constrains to asserts. this check is performed

only on traits in which constrains appears explicitly.

30 THE LARCH SHARED LANGUAGE

I 1.5. Consequences

A trait implies its consequences if the theory associated with its conseqProps is a subset of

the theory associated with the trait and the (sortedOp*,] in each converts, is convertible.

cenvertibility is defined using the theory and exempts of a trait.

=
ctimseqProps:

The theory associated with conseqProps must be a subset of the theory of the trait in which

the consequences appears. The theory associated with a conseqProps is the theory associated with

the traitbody:

includes trait Ref*, opPart URrts props

where traitRet•, and props form the conseqProps, and opPart is the opPart of the trait in which

the consequences appears.

Note that an exclusion, but not a renaming, can invalidate a consequence that has been locally

checked.

conversion:

Let C be a conversion. For each term, t, that contains no variables of any sort appearing in a

generators in the containing trait, the theory of the containing trait must either

contain an equation t = u,

where u contains no sortedOp appearing in C's sortedOp*, or

contain an equation t' = u,

where t' is a subterm of t, and u is an instantiation of a term appearing in an exempts

of the containing trait

REFERENCE MANUAL

12. Reference Grammar for The Larch Shared Lanauaae

trait

trait Body

externals

assumes
imports
includes
traitRef
exclusion
renaming
sortRename
oldSort
opRename
oldOp
sortedOp

simple Trait

opPart

opDcl
signature
domain
range

propPart

constrains
props
generators
partitions
bylist
axioms
varDcl

equation

term
secondary
primary
opld
opForm
opSym
trait Id
sortld
varld

consequences

conseqProps
converts
conversion

exempts

exemptTerms

:: = traitld : trait traitBody {consequences} {exempts}

:: = externals simple Trait

:: = {assumes} {imports} {includes}

:: = assumes traitRet•,
: : = imports traitRet•,
:: = inclll4les traitRef*,
::= traitld {exclusion} {renaming}
: : = without [oldOp*,)
:: = with ((sortRename I opRename)*,)
:: = sortld for oldSort
::= sortld
:: = opld for oldOp
: : = sortedOp
: : = opDcl I opld { - range }

:: = {opPart} propPart•

: : = introduces opDcl*

:: = opld : slgnature
:: = domain - range
:: = sortld*,
:: = sortld

: : = (asserts I constrains) props

:: = constrains (sortld I sortedOp*,) so that
:: = generators• partitions• axloms•
: : = sortld aenerated bylist*,
:: = sortld partitioned bylist•,
:: = lty [sortedOp*,)
:: = for all [varDcl*,) equation•
: : = varld*, : sort Id

: : = term { = term }

:: = secondary I if secondary then secondary else term
:: = { opSym } primary (opSym primary)* { opSym }
: : = sortedOp { '(term•, ') } I varld I '(term ')
:: = alphaNumeric + I opForm
: : = { # } opSym (# opSym)* { # }
: : = specie/Char+ I . alpha Numeric +
:: = alphaNumeric +
:: = alphaNumeric +
:: = alphaNumeric +

:: = implies conseqProps {converts}

: : = traitRef*, props
: : = COD'ferts conversion•,
:: = [sortedOp*,)

:: = exempts exemptTerms•

:: = { for all [varDcl*,) } term•,

31

32 THE l...AR.OI SHARED LANGUAGE

Towards A Larch Shared Language Handbook

Contents

Basic properties of single operators. including binary relations

Associative, Commutative, Idempotent, Relation. TotalRelation, Reflexive. Irreflexive,

Transitive, RetlexiveTransitive, Symmetric, Antisymmetric, Equivalence

Ordering relations

PartialOrder, TotalOrder. OrderEquivalence, OrderEquality. PartialOrderWith.Equality.

TotalOrderWith.Equality, DerivedOrders, PartiallyOrdered, Ordered

Group theory

Leftldentity, Rightldentity, Identity, Leftlnverse, Rightlnverse, Inverse, Abelian, Semigroup,

Monoid, Group, AbelianSemigroup, AbelianMonoid, AbelianGroup, Distributive

Simple numeric types

Ordinal, Cardinal, Cardinal2

Simple data structures

Pair, Triple. FiniteMapping

Container properties

Container, Singleton. lsEmpty, Size, Add.itiveSize, Join. ElementEquality, Member,

ElemCount, Delete, Containment. Next. Rest, Remainder. Index

Container classes

SetBasics, BagBasics, CollectionExtensions. Setlntersection. Set, Bag, Enumerable,

lnsertionOrdered, Stack. Queue. Dequeue, Sequence. SubSequence, String. PriorityQueue

Generic operators on containers

CoerceContainer, Reduce, SomePass, AllPass, Sift. PairwiseExtension. Pointwiselmage

HANDBOOK

Nonlinear structures

BinaryTree, BasicGraph, Connectivity, Graph

Rings, fields, and numbers

Ring, RingWithUnit, Infixlnverse, Integer, Field, Rational

Lattices

ExtremalBound, Semilattice, Lattice

Enumerated data types

Enumerated, Rainbow, Character

Display traits

33

Coordinate, Illumination, Boundary, Transform, Displayable, Picture, Contents, Component,

ComponentCoercion, View, Display

34 THE l.AR.CH SHARED LANGUAGE

Preface

This collection of traits is a companion to the Larch Shared Language Refere~e Manual. We

hc:>PC that it will serve three distinct purposes:

Provide a set of components that can be directly incorporated into other specifications,

Provide a set of models upon which other specifications can be based, and

Heli> people to better understand the Larch Shared Language by providing a set of illustrative

examples.

In line with our first goal. we have tried to isolate the '"smallest useful increments" of specification

that it might be reasonable to use in other specifications. In particular, we have tried to provide traits

that will make it convenient to specify the weak assumptions that characterize many of the more

widely applicable specifications. This is particularly evident in the sections titled "Container

properties" and Container classes." The traits in these sections are smaller and more numerous than

is typical in "from scratch" specifications. This sometimes leads to a somewhat overstructured

appearance.

In line with our second goal, in addition to traits that we expect to be directly incorporated in

specifications, we have included a number of traits intended primarily as patterns. The section titled

'"Generic operators on containers'" contains several such traits. &cause of the arity of the operators.

it will frequently be awkward to incorporate these tfaits.

In line with our third goal we have stressed familiar examples. Since they describe well-understood

mathematical entities, many of the traits, e.g., Integer, are atypically complete. In general, we expect

most specifications to supply constraints, rather than complete definitions. The section on Display

traits is more typical in this respect

The support tools envisioned for Larch are not yet available. Transcriptions of traits in this

chapter have been mechanically checked for some properties; some errors may not have been detected

and some transcription errors may have crept in. They should be given the same son of credence as
carefully written programs that have not been checked by a compiler.

Comments on the clarity of these specifications and on their "correctness" (relative to generally

accepted definitions of the names used) are welcome. We also solicit contributions of further widely

useful traits-either accompanied by specifications, or as challenges to specifiers.

CooYentions

If a generic trait constrains only one interesting son. the identifier T is used to denote it

If a trait constrains a "containing'" son and an '"element" sort, the identifiers C and E are used.

If a trait constrains a single binary operation, the infix symbol # 0 # is used.

If a trait constrains a single binary relation, the infix identifier #CID# is used.

If there would be no information in a constrains (e.g., because there is only one operator),

aaerts is used.

HANDBOOK

Basic Properties of Sin&le Operators, lncludina Binary Relations

Associative: trait
introduces #0#: T, T-+ T
asserts for au [.x, y, z: T]

Commutative: trait

introduces #0 #: T, T -+ Range
asserts for au [x, y: T]

Idempotent: trait

introduces op: T -+ T
asserts for all [x: T]

Relation: trait

introduces #9#: T, T-+ Bool
TotalRelation: trait

includes Relation
asserts for all [x, y: T]

Reflexive: trait

includes Relation
asHrts for all [x: T]

Irreflexive: trait

includes Relation
asserts for all [x: T]

Transitive: trait

includes Relation
asserts for all [x, y, z: T]

ReflexiveTransitive: trait

includes Reflexive, Transitive
Symmetric: trait

includes Relation

(x 0 y) 0 z = x 0 (y 0 z)

xOy=yOx

op(op(x)) = op(x)

(x e y) I (y e x>

xex

-(x ex)

((x e y) & (y e z)) =- (x e z)

asHrts for all [x, y: T] (x 9 y) = (y 9 x)
implies Commutative with [9 for 0, Bool for Range]

Antisymmetric: trait

includes Relation
asserts for all [x. y: T]
implies Irreflexive

Equivalence: trait

-((x e y) & (y e x))

includes ReflexiveTransitive with [.eq for 9],
Symmetric with [.eq for 9]

35

36 THE l...A.R.CH SHARED LANGUAGE

Orderin& Relations

PartialOrder: trait

imports RetlexiveTransitive with [< for 8]
TotalOrder: trait

includes PartialOrder, TotalRelation with [S for 8]
OrderEquivalence: trait

assumes PartialOrder
introduces #.eq#: T, T - Boot
constrains .eq so that for all [x, y: T] (x .eq y) = (x < y) & (y < x)
implies Equivalence
CODYerts (.eq)

OrderEquality: trait

as.mmes PartialOrder
· includes OrderEquivalence with [= for .eq], Equality

PartialOrderWithEquality: trait

includes PartialOrder, OrderEquality

TotalOrderWithEquality: trait

includes TotalOrder, OrderEquality

DerivedOrders: trait

assumes PartialOrder
introduces

#<#: T, T - Boot
#~#: T, T- Boot
#>#: T, T - Boot

constrains < so that for all [x, y: T] (x < y) = ((x < y) & (-(y S x)))
constrains ~ so that for all [x, y: T] (x > y) = (y S x)
constrains > so that ror all [X, y: T 1 (x > y) = (y < x)
implies Transitive with [< for 8],

Transitive with [> for 8],
Antisymmetric with [< for 8),
Antisymmetric with (> for 8),
PartialOrder with [> ror < J

CODYerts (<, ~. >)
PartiallyOrdered: trait

imports PartialOrderWithEquality
includes DerivedOrders
implies PartialOrderWithEquality with [~ for <]

Ordered: trait

imports TotalOrderWithEquality
includes Derived.Orders
implies PartiallyOrdered, TotalOrderWithEquality with [> for <]

Group Theory

Leftldentity: trait

introduces
#0#: T, T-T
unit: - T

asserts for all [x: T]

Rightldentity: trait
introduces

#0#: T, T-T
unit: - T

HANDBOOK

unit 0 x = x

asserts for all [x: T] x 0 unit = x
Identity: trait inclutles Leftldentity, Rightldentity

Leftlnverse: trait
assumes Leftldentity
introduces inv: T - T
asserts for all [x: T]

Rightlnverse: trait

as..umes Rightldentity
introduces inv: T - T
asserts for all [x: T]

Inverse: trait
aswnes Identity

inv(x) 0 x = unit

x 0 inv(x) = unit

includes Leftlnverse, Rightlnverse

Abelian: trait imports Commutative with I T for Range]

Semigroup: trait includes Associative, F.quality

Monoid: trait includes Semigroup, Leftldentity

Group: trait

includes Monoid, Leftlnverse
implies Rightldentity, Rightlnverse

AbelianSemigroup: trait includes Abelian, Semigroup

AbelianMonoid: trait
includes Abelian, Monoid
implies Rightldentity

AbelianGroup: trait includes ASelian, Group

Distributive: trait

introduces
#+#: T, T-T
#•#: T, T-T

asserts for all I x, y, z: T]
x-(y + z) = (X-y) + (X-z)
(y + z)•x = (y-x) + (Z-x)

37

38 DIE LARCH SHARED LANGUAGE

Simple Numeric Types

Ordinal: trait

includes PartialOrder with [= for .eq, Ord for T 1
OrderEquivalence with [= for .eq, Ord for T]

introduces
first: - Ord
succ: Ord - Ord

asserts Ord paerated by [first, succ]
Ord partitioned by [S]
for all [x. y: Ord]

first< x
-(succ(x) < first)
succ(x) S succ(y) = x < y

implies TotalOrderWithEquality with [Ord for T]
CODYerts (S, =)

Cardinal: trait
imports Ordinal with [0 for first. Card for Ord]
inclwles DerivedOrders with [Card for T]
introduces

1: - Card
+ #: Card. Card - Card
#. #: Card. Card - Card
9 #: Card, Card - Card

constrains I so that I = succ(O)
constrains +, • so that for all [x. y: Card]

x+O=x
x + succ(y) = succ(x + y)
x*O = 0
x*succ(y) = x + (x*y)

constrains 9 so that for all [x. y: Card]
09x=O
x90=x
succ(x) e succ(y) = x e y

implies Cardinal2
· Card aenerated by [I. +. e J

Card partitioned by [~]. by [=]. by [<], by [>]
for all [x. y: Card 1 x < y = ((x e y) = 0)

converts [1, e. +, •. =. <. >. <. >]

HANDBOOK

Cardina12: trait % Alternate definition for comparison

includes AbelianMonoid with [+ for 0, 0 for unit, Card for T],
AbelianMonoid with [* for 0, 1 for unit, Card for T],
Distributive with [Card for T],
Ordered with [Card for T]

introduces
8 #: Card, Card -+ Card
succ: Card -+ Card

asserts Card generated by [0, 1, +]
for all [x, y: Card]

x < (x + 1)
(x + y) e y = x
08x=0
succ(x) = x + 1

implies Cardinal

39

THE LARCH SHARED LANGUAGE

Simple Data Structures

Pair: trait

introduces
(#,#>:Tl, Tl - C
#.first: C - Tl
#.second: C - Tl

asserts c aeaerated by l <#. # > 1
C partitiwd by [.first. .second]
for aD Ct Tl, s: Tl]

<t: s>.ftrst = f
<f. s>.second = s

implies converts [.first, .second]

Triple: trait

introduces
(#, #,#):Tl, Tl, T3 - C
#.first: C - Tl
#.second: C - Tl
#.third: C - T3

asserts C paerated lty [< #, #, # >]
C partitioned by [.first, .second, .third]
for all [t Tl, s: Tl, t: T3]

(f. S, t>.ftrst = f
<f. s, t>.second = s
(f, S, t>.third = t

implies converts [.first, ,.second, .third]

FiniteMapping: trait

aaumes Equality with [Index for T]
introduces

new: - C
bind: C, Index, E - C
#[#]: C, Index - E
defined: C, Index - Boot

asserts C aenerated lty [new, bind]
C partitioaed lty [# [#], defined]

constrains C so that
for all [c: C, ~ ii: Index, e: E)

bind(c, ii, eX11 = if i = ii then e else c[z)
-defined(new, 1)
defined(bind(c, ii, e), 1) = (i = il) I defined(c, 1)

implies converts [#(#), defined)
exempts for all [i: Index] new[1)

Container Properties

Container: trait

introduces
new: - C
insert: C, E - C

HANDBOOK

asserts C aeneratell lty [new, insert)

Singleton: trait

assumes Container
introduces singleton: E - C
constrains singleton so that for all [e: E)

singleton(e) = insen(new, e)
implies coa•erts [singleton)

IsF.mpty: trait

assumes Container
introduces isEmpty: C - Bool
asserts for all [c: C, e: E)

isF.mpty(new)
-isF.mpty(insen(~ e))

implies con.erts [isF.mpty]

Size: trait

assumes Container
imports Cardinal
introduces size: C - Card
constrains size so that

size(new) = 0

AdditiveSize: trait

assumes Container
includes Size
constrains size, insert so that for all [c: C, e: E]

size(insen(c, e)) = size(c) + 1
implies CODYerts (size)

Join: trait

assumes Container
introduces #.join#: C, C - C
constrains .join so that for all [c, cl: C, e: E]

c .join new = c
c .join insen(c/, e) = insen(c .join cl, e)

implies con•erts [.join]

ElementEquality: trait imports Equality with [E for T]

Member: trait
assumes Container, ElementEquality
introduces # € #: E, C - Bool
constrains €, insert so that for all [c: C, e, el: E]

-(e €new)
e € insen(c, el) = (e = el) I (e € c)

implies COD\'erts (€)

41

42 THE LARCH SHARED LANGUAGE

ElemCount: trait
11911111es Container, ElementEquality
imports Cardinal
introduces count: C, E - Card
constrains count, insert so that for all [e, el: E. c: C]

count(new, e) = 0
count(insert(c, e), el) = count(c, e) + (if e = el then 1 else 0)

implies coHerts [count]

Delete: trait
aaumes Container
iatroduces delete: C, E - C
constrains delete so that for all [e: E]

Containment: trait
UIAUDes Container

delete(new, e) = new

includes PartiallyOrdered with [C for<. :::>for>. t;;; for ;S, ~for~. C for T]
coutrains C so that for all [e: E. c: C] c ~ insert(c, e)
implies for all [c: C] new t;;; c

Next: trait

assumes Container
iatroduces next: C - E
constrains next, insert so that for all [e: E]
exempts next(new)

Rest: trait
assumes Container
introduces rest: C - C
constrains rest, insert so that for all [e: E]
exempts rest(new)

Remainder: trait
asRDles Container, Rest
imports Cardinal
introduces remainder: C, Card - C
constrains remainder so that for all [c: C, i: Card]

remainder(c, 0) = c
remainder(c, i + 1) = remainder(rest(c), 1)

implies converts [remainder]

Index: trait

assumes Container, Next, Rest
imports Cardinal
introduces #(#]: C, Card - E
constrains #[#]so that for all [c: C, i: Card]

c[l] = next(c)
c((i + l)] = rest(c)[1]

implies converts [#(#]]
exempts for all [c: C) c[O)

next(insert(new, e)) = e

rest(insert(new, e)) = new

HANDBOOK

Container Classes

SetBasics: trait
aaumes ElementEquality, Cont.ainer with [{} for new)
includes Size with [{} for new),

Member witb [{} for new]
introduces delete: C, E - C
constrains C IO that

C partitioned tty [E]
for all [s: C, e. el: E]

size(insert(s. e)) = size(s) + (if e € s then 0 else 1)
el E delete(s. e) = (el E s) ct (-(e = el))

implies Delete with [{} for new]
coa•erts [size, delete, E)

BagBasics: trait

aaumes ElementEquality, Container with [{}for new)
imports AdditiveSize witb [{} for new],

ElemCount with [{} for new)
includes Member with [{} for new]
introduces delete: C, E - C
constrains c so that

C partitioned 1t1 [count]
for all [b: C, e. el: E]

count(delete(b, e), el) = count(b, el) - (if e = el then 1 else 0)
implies Delete with [{} for new]
con•erts [size, delete, count, E)

CollectionExtensions: trait
aaumes ElementEquality, Container with [{}for new]
imports lsF.mpty with [{} for new],

Singleton with [{} for new, { #} for singleton],
Containment with [{} for new],
Join with [{} for new, U for .join)

includes F.quality with [C for T)
implies COD•erts ({ #}, isF.mpty, U)

Setlntersection: trait

assumes SetBasics
introduces n: C, C - C
constrains C so that for all [s. sf: C, e. el: E]

e € (s n sf) = (e E s) ct (e E sf)
con•erts [n]

Set: trait

asnmes ElementEquality
imports SetBasics, Setlntersection
includes CollectionExtensions
implies Abelian with [U for 0, C for T),

Abelian with [n for 0, C for T]
converts [size, delete, E, n. U. {#}, isEmpty, =. C, :::>, t";. :2]

43

44 THE LARCH SHARED LANGUAGE

Bag: trait
asaunes ElementEquality
imports BagBasio
includes CollectionExtensions
implies Abelian with [U for 0, C for T 1
converts [size, delete, count. €, U, { # }, isEmpty, =, C, ::::>, t;, :2 1

Enumerable: trait

imports IsF.mpty, Next. Rest
includes Container
constrains C 50 dlat C partitioned by [next, rest, isEmpty]

InsertionOrdered: trait % For assuming "Stack or Queue"

includes Enumerable
introduces isFIFO: - Bool
constrains next. rest, insert so that for all [c: C, e: E]

next(insert(c, e)) = if isEmpty(c) I isFIFO tbeD e else next(c)
rest(insert(c, e)) = if isEmpty(c) I isFIFO then c else insert(rest(c}, e)

implies con"Yerts [next. rest)

Stack: trait

includes lnsertionOrdered with [push for insert. top for next. pop for rest.
true for isFIFO]

implies for all [stk: C, e: E)
top(push(.stk, e}) = e
pop(push(.stk, e)) = stk

Queue: trait

includes lnsertionOrdered with [first for next, false for isFIFO] .
implies for all [q: C, e: E]

first(insert(q, e)) = if isF.mpty(q) then e else first(q)
rest(insert(q, e)) = if isF.mpty(q) then new else insert(rest(q), e)

Dequeue: trait

includes Stack with [insert for push, first for top, rest for pop],
Stack with [enter for push, last for top, prefix for pop]

constrains C 50 dlat for all [c: C, e, el: E]
insert(new, e) = enter(new, e)
insert(enter(c, e), el) = enteI(insert(c, el), e)

implies Queue, Queue with [enter for insert, last for first, prefix for rest]
converts [insert, first, last, rest. prefix], [enter, first, last, rest, prefix]

Sequence: trait

imports Dequeue, AdditiveSize
includes Index with [first for next],

Join with [II for .join)
implies C partitioned by (size, #[#]]

SubSequence: trait
imports Sequence
includes Remainder with [#[# ...] for remainder),

Remainder with [#[... #)for remainder, prefix for rest]

HANDBOOK

String: trait

imports Character
includes Sequence with [length for size, Char for E]

PriorityQueue: trait
assumes TotalOrder with [E for T]
incWes Enumerable
comtrains next, rest, insert so dlat for aD [q: C, e: E)

next(illlert(q, e)) = if isF.mpty(q) dlea e
elte if next(q) S e tllea next(q) a e

rest(insert(q. e)) = if isFmpty(q) theD new
else if next(q) S e tlM!ll imen(rest(q), e) else q

implies CODlerts (next, mt, isf.mpty)

Generic Operators on Containers

CoerceContainer: trait

assumes Container with [DC for C].
Container with [RC for C]

introduces coeree: DC - RC
constrains coerce so that for all [de: DC, e: E]

coerce(new) = new
coerce(illlert(dc, e)) = insert(coerce(dc), e)

implies coalerts [coerce]

Reduce: trait

assumes Enumerable,
Rightldentity with [E for T),
Associative with [E for T]

introduces reduce: C - E
constrains reduce so that for all [c: C]

reduce(c) = if isF.mpty(c) then unit else next(c) 0 reduce(rest(c))
implies CODYerts [reduce]

SomePass: trait

a.wnes Container
introduces

test: E, T - Bool
somePass: C, T - Bool

constrains somePass so that for all [c: C, e: E, 1: T]
-somePass(new, 1)
somePass(insert(c, e), 1) = test(e, I) I somePass(c, 1)

implies CODYerts [somePass]

45

46 THE LARCH SHARED LANGUAGE

AllPass:trait

assumes Container
introduces

test: E, T - Bool
allPass: C, T - Bool

constrains allPass so that for all [c: C, e: E, t: T]
allPass(new, t)
allPass(insert(c, e). t) = test(e, t) & allPass(c, t)

implies converts [allPass]

Sift: trait

aaumes Container
introduces

test: E, T - Bool
sift: C, T - C

constrains sift so that for all [c: C, e: E, t: T]
sift(new, I) = new
sift(insert(c, e), t) = if test(e, t) then insert(sift(c, t), e) else sift(c, t)

implies CODYerts (sift)

PairwiseExtension: trait

assumes InsertionOrdered
introduces

extOp: C, C - C
elemOp: E, E - E

constrains extOp so that for all [cl, cl: C, el, el: E]
extOp(new, new) = new
extOp(insert(c/, el), insert(c2, e2)) = insert(extOp(c/, cl), elemOp(el, e2))

implies converts [extOp]
exempts for all [c: C, e: E]

extOp(new, insert(c, e)),
extOp(insert(c, e), new)

Pointwiselmage: trait

assumes Container with [DC for C, DE for E],
Container with [RC for C, RE for E]

introduces
extOp: DC - RC
pointOp: DE - RE

constrains extOp so that for all [de: DC. de: DE]
extOp(new) = new
extOp(insert(dc, de)) = insert(extOp(dc), pointOp(de))

implies converts [extOp]

Nonlinear Structures

BinaryTree: trait

imports Cardinal
introduces

<#>: E- C
(#. #): c. c - c
#.left: C - C
#.right: c - c
size: C - Card
isLeaf: c- Bool
content: C - E

constrains C so that

HANDBOOK

C paerated lly [<#>, (#. #)]
C partitioned "1 [.left, .right. content. isLeaf)
for all [ti, tr: C, e: E]

(<ti, tr>).left = ti
(<ti, tr>).right = tr
size(<e>) = 1
size(<tl, tr>) = size(tl) + size(tr)
isLeat{ (e))

-isLeat(<tl, tr>)
content(<e>) = e

implies for all [t: C] isLeaf(t) = (size(t) = 1)
conYerts [.left, .right. size, isLeaf. content]
exempts for all [ti, tr: C. e: E] (<e>).left, (<e>).right. content(<tl, tr>)

BasicGraph: trait

assumes Equality with [Node for T]
imports Set with [NodeSet for C, Node for E].

Pair with [Edge for C. Node for Tl, Node for T2]
introduces

empty: - Graph
addNode: Graph. Node - Graph
addEdge: Graph. Edge - Graph
nodes: Graph - NodeSet
adj: Node, Graph - NodeSet

constrains Graph so that
Graph pnerated by [empty, addNode, addEdge]
Graph partitionetl "1 [nodes. adj]
for all [g: Graph. e: Edge, n, nl: Node]

nodes(empty) = {}
nodes(addNode(g, n)) = insert(nodes(g), n)
nodes(addEdge(g, e)) = insert(insert(nodes(g), e.first), e.second)
adj(n, empty) = {}
adj(n, addNode(& n/)) = adj(n, g)
adj(n, addEdge(g, e)) =

if n = (e.first) then insert(adj(n, g), e.second) else adj(n, g)
implies conYerts [nodes, adj]

47

48 THE LARCH SHARED LANGUAGE

Connectivity: trait

assumes Equality with [Node for T], BasicGraph
iatroduces

reach: NodeSet. Graph -+ NodeSet
allReach: NodeSet. NodeSet, Graph -+ Dool
connected: Graph - Bool

constrains reach, allReacb, connected so that
for aH [g: Graph, e: F.dge, ns, nsl: NodeSet. n: Node]

reacb(ns, empty) = {}
reach(ns, addNode(g, n)) = reach(ns, g)
allReacb({}. ns, g)
allReach(inserc(ns, n), nsl, g) =
allReacb(ns, nsl, g) cl (ns/ C reach({n}, g))
connected(g) = allReach(nodes(g), nodes(g), g)

implies CODYerts [allReacb, connected]

Graph: trait

assumes Equality with [Node for T]
imports BasicGraph
inclwles Connectivity.

Connectivity with [stronglyConnected for connected, pathReach for reach,
allPathReach for allReach]

constrains reach, allReach, connected so that
for aH [g: Graph, e: F.dge, ns: NodeSet]

reacb(ns, addEdge(g, e)) = reach(ns, g) U
(if (e.tirst) E ns then insert(reach({(e.second)}, g), (e.second))
else if (e.second) E ns then insert(reach({(e.tirst)}, g), (e.first))
else{})

constrains pathReach, allPathReach, stronaiyConnected so that
for all [g: Graph, e: Edge, ns: NodeSet]

pathReach(ns, addEdge(g, e)) = pathReach(ns, g) U
(if (e.first) E ns

then insert(pathReach({ (e.second)}, g), (e.second))
else{})

implies conYerts [reach, allReach, connected, pathReach, allPathReach,
stronglyConnected]

Rinp, Fields. and Numbers

Ring: trait

HANDBOOK

includes AbelianGroup with [+ for 0, 0 for unit, -# for inv].
Semigroup with [• for 0],
Distributive

RingWithUnit: trait
includes Ring, Identity with [• for 0, l for unit]

lntixlnverse: trait

assumes Inverse
introduces #0#: T, T - T
constrains # 0 # so that for all [x, y: T]

x 0 y = x 0 inv(y)
implies COD'ferts (# 0 #)

Integer: trait
includes RingWithUnit with [Int for T],

Ordered with [Int for T],
lnfixlnverse with [+ for 0, - # for inv, - for 0, Int for T]

asHrts Int aenerated hy [1. +, - # 1
for all [x: Int]

x < (x + 1)
implies Rational without [-1• I] with [Int for R]
COD'ferts (0, *, #-#, =, S. >. <, >)

Field: trait
includes RingWithUnit
introduces #" 1 : T - T
constrains •, -l so that for all [x: T]

(x = 0) I ((x*(x"1)) = 1)
exempts cr1

Rational: trait
includes Field with [R for T],

Ordered with [R for T],

asserts

lnfixlnverse with [+ for 0, - # for inv, - for 0, R for T].
Infixlnverse with [• for 0, #"1 for inv, I for 0, R for T]

R aenerated by (1, +. - #. -1]
for all [x. y. z: R]

0 < l
((x + z) < (y + z)) = (x < y)
(x = 0) I ((0 < (x"1)) = (0 < x))

implies con'ferts [0, •, #-#,I, =. <. >. <. >]

49

50 THE LARCH SHARED LANGUAGE

Lattices

ExtremalBound: trait
assumes PartialOrder
includes AbelianSemigroup with [.glb for 0]
constrains .glb so that for all [x, y, z: T]

(x .glb y) :S x
((z S x) 8' (z < y)~(z :S (x .glb y))

Semilattice: trait
includes PartiallyOrdered,

ExtremalBound,
ExtremalBound with [~ for < . .lub for .glb]

introduces J..: - T
constrains J.. so that for all [x: T]

x ~ J..
implies AbelianMonoid with [J.. for unit, .lub for 0]

Lattice: trait
includes Semilattice
introduces T: - T
constrains T so that for all [x: T]

x<T
implies Lattice with [T for J.., J.. for T, .glb for .tub, .lub for .glb,

>for :S. <for>.> for<.< for>]

HANDBOOK

Enumerated Data Types

Enumerated: trait

hnforts Ordinal
incWes Ordered
intmduces

first: - T
last: - T
succ: T- T
pred: T - T
ord: T- Ord

asserts T aenerated 1ty [first. succ]
T partitioned by [ord]
for all [x. y: T]

ord(first) = first
ord(succ(x)) = if x = last then ord(last) else succ(ord(x))
pred(succ(x)) = if x = last thea pred(last) else x
x S y = ord(x) :S ord(y)

implies T aenerated 1ty [last. pred 1
forall[x:T]

succ(pred(x)) = if x = first then succ(first) else x
first :S x
x <last

CODYerts (=, <-:>. <, >)
Rainbow: trait

includes Enumerated with [Color for T]
introduces

asserts

red: - Color
orange: - Color
yellow: - Color
green: - Color
blue: - Color
violet: - Color

Color aenerated by [red, orange, yellow, green, blue, violet]
first = red
last = violet
succ(red) = orange
succ(orange) = yellow
succ(yellow) = green
succ(green) = blue
succ(blue) = violet

implies con•erts [pred, last, ord, =. :S. >. <.>.red, orange, yellow, green, blue,
violet],
[succ, first, ord, =. <. >. <. >.red, orange, yellow, green. blue, violet]

Character: trait includes Enumerated with [Char for T]

% For each programming language there will be mappings from character and string constants to

% terms in the shared language. Because of the variety of character orderings and notations for

% constants, these definitions are not likely to be portable acl'O§ programming languages.

51

52 THE LARCH SHARED LANGUAGE

Display Traits

% The following traits represent a fairly straightforward translation of the specificatiQns in
%_"Formal Specification as a Design Tool" (CSL-80-1). We have not attempted to btiprove the
% 1esign presented there, merely to translate it into ~h.

Coordinate: trait introdul'eS minus: Coordinate, Coordinate - Coordinate
mumination: trait introduces combine: Illumination. Illumination - Illumination

Boundary: trait introduces apply: Boundary, Coordinate - Dool
Transform: trait introduces apply: Transformation. Coordinate - Coordinate
Displayable: trait

introduces

Picture: trait

appearance: T. Coordinate - Illumination
in: T, Coordinate - Boot

aamnes Boundary. Transform. Illumination.
Displayable with (Contents for T)

includes Displayable with [Picture for T)
introduces makePicture: Contents, Boundary, Transformation - Picture
constrains Picture so that

Picture paerated lty [makePicture I
for all [en: Contents. b: Boundary, 1: Transformation, cd: Coordinate]

appearance(makePicture(en, b. 1), cd'J =
appearance(cn, apply{t, cdJ)

in(makePicture{cn, b, 1), cdJ = apply(b, cdJ
implies con•erts [appearance: Picture. Coordinate - Illumination,

in: Picture, Coordinate - Dool)
Contents: trait

aamnes Coordinate, Illumination. Displayable with [Component for T]
includes Displayable with [Contents for T]
introduces

empty: - Contents
addComponent: Contents. Component. Coordinate - Contents

constrains Contents so that
Contents paerated lty [empty, addComponent)
for all [en: Contents, cm: Component, ed. cdl: Coordinate)

appearance(addComponent(cn, cm. cdl), cdJ =
if in(cm. minus(cd cdl))
then (if in(cn, cd)

then combine(appearance(cm. minus(cd, Clfl)),
appearan¢e(cn, cdJ)
else appearance(cm, minus(cd cdl)))

else appearance(cn, cdJ
-in(empty, cdJ
in(addComponent(cn, cm, cdl), cd) =

in(cm. minus(Clf. cdl)) I in(cn, cd)
implies con•erts [appearance: Contents. Coordinate - Illumination.

in: Contents. Coordinate - Dool)
exempts for all (cd· Coordinate] appearance(empty, ed)

HANDBOOK

Component: trait

assumes Displayable with [View for T].
Displayable with [Text for T].
Displayable with [Figure for T] -

includes ComponentCoercion with [View for T. coerce View for coerce 1.
ComponentCoercion with (Text for T, coerceText for coerce].
ComponentCoercion with (Fipre for T, coerceripre for coerce]

ComponentCoercion: trait
assmaes Displayable
includes Displayable with [Component for T)
introduces coerce: T - Component
constrains Component so that fer all [t: T, ed: Coordinate]

appearance(coerce(t), et/J = appearance(t. ed)
in(coerce(t), cdj = in('· eel)

View: trait

usumes Displayable with (Picture for T].
Equality with (Pictureld for T].
Container with [IdList for C. Pictureld for E],
Coordinate

includes Displayable with [View for T]
introduces

empty: - View
addPicture: View. Coordinate. Pictureld, Picture - View
findPictures: View. Coordinate - IdList
deletePicture: View, Pictureld - View

constrains View so that
View paerated lty [empty. addPicture]
for all [v: View, ed. all: Coordinate. id. id/: Pictureld, p: Picture]

appearance(addPicture(v, all, id. p), ed) =
if in(p, minwr(~ al/)) then appearance(p, minus(ed. edl))
else appearance(v, ed)

-in(empty, eel)
in(addPicture(v, all, id. p), ed) = (in(p, minwr(ed. edl)) I in(v, ed))
findPicture9(empty, ed) = new
findPicturel(addPicture(v, edl. id. p). ed) =

if in(p. minwr(ed. all)) thea insert(id. findPictures(v, ed))
else ftndPictures(v. et/J

deletePicture(empty, id) = empty
deletePicture(addPicture(v, edl, id/, p), id) =

53

if id .eq id/ then v else addPicture(deletePicture(v, id). ed. id/, p)
implies coolerts [findPictures, deletePicture,

appearance: View, Coordinate - Wumination,
in: View, Coordinate -+ Boot]

exempts for all [ed: Coordinate] appearance(empty, ed)

Display: trait

assumes Boundary, Transform. Illumination. Coordinate.
Equality with [Pictureld for T),
Container with (IdList for C, Pictureld for E]

includes Picture, Contents, Component, View

54 DIE l..AR.OI SHARED LANGUAGE

References

(ADJ 78]
J.A. Goguen. J.W. Thatcher, and E.G. Wagner, .. Initial Algebra Approach to the Specification.
Correctness, and Implementation of Abstract Data Types." in R.T. Yeh (ed.), C'Wrent Trends in
Programming Methodology, Vol JV. Data Structuring, Prentice-Hall. f.nglewood Cliffs. 1978.

[Surstall and Goguen 77]
R.M. Burstal1 and J .A. Goguen. .. Putting Theories Together to Make Specifications."

Proc. 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, 1977,
1045-1058.

[Burstall and Goguen 81]

R.M. Burstall and J.A. Goguen, .. An Informal Introduction to Specifications Using CLEAR,"
in R. Boyer and J. Moore (eds.), The Correctness Problem in Computer Science, Academic PreSS,
New York. 1981, 185-213.

[Forgaard 83)
R. Forgaard, "A Program for Generating and Analyzing Temi Rewriting Systems,"
S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,
to appear, 1983.

[Guttag 75)

J.V. Guttag, ''The Specification and Application to Programming of Abstract Data Types,"
Ph.D. Thesis, Computer Science Department, University of Toronto, 1975, 1-149.

[Guttag and Horning 80)

J.V. Guttag and J.J. Horning, "Fomial Specification as a Design Tool,"
Proc. A.CM Symposium on Principles of Programming Languages, Las Vegas, Jan. 1980, 251-261.

[Guttag and Homing 83]

J.V. Guttag and J.J. Horning, "An Introduction to the Larch Shared Language,"
Proc. /FIP Congress '83, Paris, 1983.

[Guttag, Horning, and Wing 82)

J.V. Guttag, JJ. Horning, and J.M. Wing, "Some Notes on Putting Fomial Specifications to
Productive Use," Science of Computer Programming, vol. 2, Dec. 1982, 53-68.

[Kownacki 83)

R. Kownacki, "A User's Guide to the Larch Shared Language Specification Checker,"
Laboratory for Computer Science, Massachusetts Institute of Technology, to appear. 1983.

[Lescanne 83)

P. Lescanne, "Computer Experiments with the REVE Temi Rewriting System Generator,"
Proc. ACM Symposium on Principles of Programming Languages, Austin, Jan. 1983, 99-108.

fM-80)
DJl. .. _. ... Abllaut Diii...,,. ,, ,,
IEEE Tnn11iiou • &tutr•• .l:G11111 11W \1111. 1. 1-»a

(Wllld 79)
;... M. Wad. ~ Atar'1• S•wm'ce _.Dita.,.. Iii .lf'D•"

·:-: ,/.,./"1'0PIU'l,_._,,._Sdtllllll._lf.
·IWIDI Ill

J.M. W"Jlll. "A Two-n..l AIJ•-* fO lplri l't $1 "

Pb.I>. Tllllil. I •• .., Ill c 11 111rr •111•• •• 1.•1u.m1 · lt1111• ofT~.
May 1913.

(Z8Cblry ll)
JJ... z.Mry, •A S,._·D11111• lpui&:ltimt..._,.

s.w. '1111111. '..,'"' .,Ct ... •rtc••••· .,.,. ra111n11Pl••ofT....._.
Ma'.1913.

