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ABSTRACT 

. -· 

Each member of the Larch family of formal specification languages has a component derived from a 
programming language and another component common to all programming languages. We call the former 

interface languages, and the latter the Larch Shared Language. 

This report presents version 1.0 of the Larch Shared Language. It begins with a brief introduction to the 

Larch Project and the Larch family of languages. The next chapter presents most of the features of the Larch . 
Shared Language and briefly discusses how we expect these features to be used. It should be read before 

reading either of the remaining two chapters, which are a self-contained reference manual and a set of 

examples. 
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nm LAROI SHARED LANGUAGE 

Context 

The Larch Family of Lanpqes 

= The Larch Project is developing tools and techniques intended to aid in the productive use of 

f6rmal specifications of systems containing computer programs. Many of its premises and goals are 

discUISed in [Outtaa, Horning, and Wing 82]. 

We view a system as consisting of a state and mechanisms for changing and extracting information 

from that state. We choose to define the information contained in the state without reference to 

either how that information was created or how it will be used. Our specifications consist of two 

parts. In one, we specify the properties of values that may appear in system states, and in the second. 

the program modules that deal with those states. 

A major component of the Larch Project is a family of specification languages. Each Larch 

language has a component particular to a specific programming language and another component 

common to all programming languages. We call the former interface languages. and the latter the 

shared language. 

We use the interface languages to specify program modules. Speciftcations of the interface that 

one module presents to other modules often rely on notions speciftc to the programming language, 

e.g .• its denotable values or its exception handling mechanisms. Each interface language deals with 

what can be observed about the behavior of programs written in a specific programming language. 

Its simplicity or complexity is a direct consequence of the simplicity or complexity of the observable 

state and state transformations of that programming language. 

The shared language is algebraic. It is used to specify abstractions that are independent of both 

the program state and the programming language. The operators defined by an algebraic specification 

appear in specifications written in the interface languages, and in reasoning about such specifications, 

but they are not directly available to users of programs. The role of shared language specifications 

is similar to that of abstract models in some other styles of specification. 

Some important aspects of the Larch family of specification languages are: 

Composability of sp«ijications. We emphasize the incremental construction of specifications 

from other specifications. The importance of such mechanisms is discussed in [Burstall 

and Goguen 77). Larch has mechanisms for building upon and decomposing 

specifications as well as for combining specifications. 

Emphasis on presentation. Reading specifications is an important activity. To mist in this 

process. we use composition mechanisms defined as operations on specifications, rather 

than on theories or models. 

Interactive and integrated with tools. The Larch languages are designed for interactive use. 

They are intended to facilitate the interactive construction and incremental checking of 

specifications. The decision to rely heavily on support tools has influenced our language 

design in many ways. 
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Semantic checking. It is all too easy to write specifications ~th suprising implications. We 

would like many such specifications to be detectably ill-formed. Extensive ~becking 

while specifications are being constructed is an important aspect of our C)proach. Larch 
was designed to be used with a powerfUI theorem prover for semantic checking to 

supplement the syntactic checks commonly defined for specification · languqes. We 

have been influenced here by our experience with Atftrm [Musser 80). 

Programming language d~Nkncies localized. We feel that it is important to incorporate many 

programming-language-dependent features into our specification languages. but to 

isolate this aspect of specifications as much as possible. This prompted us to design a 

single shared language that could be incorporated into dift'erent interface languages in 

a uniform way. 

Shared language bas«l on equations. The shared language has a simple semantic basis taken 

from algebra. Because of the emphasis on composability. checkability and interaction. 

however, it differs substantially from the .. a.JaebnUc" specification languages we have 

used in the past. 

Interface languages based on predicate calculus. F.ach interface language is based on assertions 

written in typed first-order predicate calculus with equality, and incorporates 

programming-language-specific features to deal with constructs such as side effects. 

exception handling, and iterators. Equality over terms is defined in the shared language; 

this provides the link between the two parts of a specification. 

Status and Plans 

We are still in the early phases of the Larch project In addition to the work described in this 

report. interface languages for CLU and Mesa have been desiped. [Wing 83] contains a detailed 

description of the semantics of the CLU interface language. The Mesa interface language has not 

been documented, but we have used it. in conjunction with the shared language, to specify the 

program level interface to the Cypress data base system. This is the largest specification we have 

attempted. 

A primitive checker for the Shared Language has been implemented [Kownacki 83). In addition 

to parsing specifications. this program checks various context sensitive constraints and provides 

mechanisms for "expanding" assumptions, imponations. and inclusions. This checker is an interim 

tool. We designed our specification language in tandem with an editing and viewing tool. Many 

language design decisions were influenced by the presumption that specifications would be produced 

and read interactively using this tool. A first design is complete (Zachary 831 but implementation 

has yet to begin. 

We are in the process of implementing term rewriting software (Forgaard 83). [I.ftCanne 83] that 

we hope will provide much of the theorem-proving capability needed for analyzing specifications. 

The definition of the Larch Shared Language calls for a number of checks for which there can be 
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no effective procedure. We have what we believe are useful proc~ures. based on sufficient or 

neceuary (but not both) conditions. for some of these checks, e.g., consistency. We are working on 

procedures for the others. e.g., checking constrains clauses. This is a difftcult task. Diaf1ostics present 

a~y vexing problem: How should relatively complicated theorem·provina precedures report 

ptpblems to users who are not familiar with either their internal structure or the thiory underlying 

them? 
It is always difficult to evaluate a language that has not been extensively used. The Larch Shared 

Language is especially hard to evaluate because it has been designed for use in an environment that 

we have not yet built In addition to the specification of Cypress, we have written a number of small 

specifications. On the whole, we were pleased by the ease of constructing these specifications in 

Larch, and with the specifications themselves. While constructing them, we uncovered several errors 

by inspection; we are encourqed that most of these errors would have been detected automatically 

by the checks called for in the language definition. It will be some time. however. before we can 

draw any strong conclusions about the potential utility of Larch in software development 
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An Introduction to tile Larch Shared Lanpage 

1. Simple Alpbraic Specifications 

Most of the constructs in the Larch Shared Language are designed to Est in structuring 

SP-CCifications. for both reading and writing. The trait is our basic module of specification. Consider 

the following specification for tables that store values in indexed places: 

TableSpec: trait 

introduces 
new: -+Table 
add: Table. Index. Val-+ Table 
#€#: Index. Table-+ Boot 
eval: Table, Index -+ Val 
isEmpty: Table -+ Bool 
size: Table-+ Card 

coastraias new. add, €, eval, isEmpty, size so that 
for all [ ind, ind/: Index. val: Val, t: Table ] 

eval(add(t, ind, val), ind/ ) = if ind= ind/ then val else eval(t. ind/) 

ind E new = false 
ind€ add(t, indl, val) = (ind = indl) I (ind€ 1) 

size(new) = 0 
size(add(t, ind. val)) = if ind€ t then size(t) else size(t) + 1 

isEmpty(t) = (size(I) = 0) 

This example is similar to a conventional algebraic specification in the style of [Guttag and 

Horning 80] and [Musser 80]. The part of the specification following introduces declares a set of 

operators (function identifiers). each with its signature (the sorts of its domain and range). These 

signatures are used to sort-check terms (expressions) in much the same way as function calls are 

type-checked in programming languages. The remainder of the specification constrains the operators 

by writing equations that relate sort-correct terms containing them. 

There are two things (aside from syntactic amenities) that distinguish this specification from a 

specification written in our earlier algebraic specification languages: 

A name, TableSpec, is aaociated with the trait itself. 

The axioms are preceded by a constrains list 

The name of a trait is logically unrelated to any of the names appearing within it In particular, 

we do not use sort identifiers to name units of specification. A trait need not correspond to a single 
••abstract data type," and often does not 

The constrains list contains all of the operators that the immediately following axioms are 

intended to constrain. It is the responsibility of a specification checker to ensure that the specification 

conforms to this intent The constrained operators will generally be a proper subset of the operators 

appearing in the axioms. In this example the constrains list informs us that the axioms are not to 

put any constraints on the properties of if then else, false, o. 1, +. I. and =, despite their occurrence 
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in the axioms. The judicious use of constrains lists is an important step in modularizing specifications. 

We associate a theory with every trait A theory is a set of well-formed formulas (wff's) of typed 

first-order predicate calculus with equations as atomic formulas. 

The theory. call it Th. mociated with a trait written in the Larch Shared Lanaftaae is defined 

by: 
Axioms: Each equation. universally quantified by the variable declarations of the containing 

constrains clause. is in Th. 

/nequation: -(true = false) is in Th. AU other inequations in Th are derivable from this one 

and the meaning of =. 
First-order predicate calculus with equality: Th contains the axioms of conventional typed 

first-order predicate calculus with equality and is closed under its rules of inference. 

The equations and inequations in Th are derivable from the presence of axioms in the trait-never 

from their absence. Th is deliberately small. because it is important to prove theorems before a 

specification is complete, and we wanted to limit the circumstances under which the addition of new 

operators and equations could invalidate previously proved theorems. Had we chosen to take the 

theory associated with either the initial or final interpretation of a set of equations (as in [ADJ 78] 

and [Wand 79D. this monotonicity property would have been lost. 

2. Gettin& Richer Theories 

While the relatively small theory described above is often a useful one to associate with a set of 

axioms, there are times when a larger theory is needed. e.g., when specifying an "abstract data type." 

Generated by and partitioned by give different ways of specifying larger theories. 

Section 1 does not include an induction schema. This is an appropriate limitation when the set 

of generators for a sort is incomplete. Saying that sort S is pnerated lty a set of operators, Ops, 

asserts that each term of sort S is equal to a term whose outermost operator is in Ops. One might, 

for example. say that the natural numbers are aenerated by 0 and successor and the integers pnerated 

by 0, successor, and predecessor. Generated by adds an inductive rule of inference. 

Th.is inductive rule and the clause Table aenerated by [new, add] can be used to derive theorems 

such as 

Vt: Table [ (t = new) I (3ind: Index [ ind€ t] ) ], 

that would otherwise not be in the theory. 

-------------.,,.-- -------------------------- -- -----
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Section 1 allows equations to be derived only by direct equa~onal substitution, not by the 

absence of inequations. This is an appropriate limitation when the set of observers for a sort is 

incomplete. Saying that sort S is partitioued "1 a set of operators, Ops, asserts that U two terms of 

SQrt S are unequal, a difference can be observed using an operator in Ops. Therefore. they must be 

equal if they cannot be dhltinguished using any of the operators in Ops. This rule of inference adds 

new equations to the theory lllOciated with a trait, thus reducing the number of equivalence classes 

in the equality relation. 

This rule and the clause Table partitioned by [ €, eval] can be used to derive theorems such as 

add(add(t, ind, l'), ind/, l') = add(add(t, ind/, l'), ind, l'), 

that would otherwise not be in the theory. 

3. Combinin& Independent Traits 

Our example contains a number of totally unconstrained operators, e.g., false and +. Such traits 

are not very use.fut The most straightforward thing to do would be to augment the specification with 

additional clauses dealing with these operators. One way to do this is by trait importation. We might 

add to trait TableSpec: 

imports Cardinal, Boolean 
The theory associated with the importing trait is the theory associated with the union of all of 

the introduces and constrains clauses of the trait body and the imported traits. 

Importation is used both to structure specifications to make them easier to read and to introduce 

extra checking. Operators appearing in imported traits may not be constrained in either the importing 

trait or any other imported trait This guarantees that imported traits don't "interfere" with one 

another in unexpected ways. I.e., it guarantees that the theory associated with a trait is a consenati1e 
extension of each of the theories associated with its imported traits. (An extension, Thl. of a theory, 

Th2, is conservative if and only if every wtT of the language of Th2 which is in Thl is also in Th2.) 

Each imported trait can. therefore, be fully understood independently of the context into which it is 

imported. 

As a syntactic amenity, trait Boolean is automatically imported into all other traits. 
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4. Comhinin& Interactina Traits 

While the modularity imposed by importation is often helpful. it can sometimes be too restrictive. 

It is often convenient to combine several traits dealing with different aspects of the' iame operator. 

1bis is common when specifyina something that is not easily thought of as an abl1ract data type. 

Ttait inclusion involves the same union of clauses as trait importation. but allows the included 

oi>erators to be further constrained. Consider, for example: 

Reflexive: trait 

introduces #.rel#: T, T - Bool 
constrains .rel so that for all [ 1: T ] 

1 .rel t = true 

Symmetric: trait 

introduces #.rel#: T, T - Bool 
constrains .rel so that for all [ ti, t2: T ] 

ti .rel 12 = 12 .rel ti 

Transitive: trait 

introduces #.rel#: T, T - Bool 
canstrains .rel so that for all [ ti, 12, 13: T ] 

(((ti .rel 12) & (12 .rel tJ)) ~ (II .rel t3)) = true 

.Equivalence: trait 

includes Reflexive, Symmetric, Transitive 

Equivalence has the same associated theory as the less strucrured trait 

Equivalence!: trait 

introduces #.rel#: T, T - Bool 
constrains .rel so that for all [ ti, t2, 13: T ] 

ti .rel ti = true 

ti .rel t2 = t2 .rel ti 

(((ti .rel 12) & (t2 .rel t3)) -. (ti .rel t3)) = true 

Any legal trait importation may be replaced by trait inclusion without either making the trait 

illegal or changing the associated theory. It does involve the sacrifice of the checking that ensures 

that the imported traits may be understood independently of the context in which they are used. We 

use importation when we can incorporate a theory unchanged, inclusion when we cannot 

5. Reoamiq and Exclusion 

The specification of Equivalence in the previous section relied heavily on the coincidental use 

of the operator .rel and the sort identifier T in three separate traits. In the absence of such happy 

coincidences., renaming can force names to coincide, keep them from coinciding, or simply replace 

them with more suitable names. 
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The phrase 

Tr with [ x for y ] 

stands for the trait Tr with every occurrence of y (which must be either a sort or <>PCSator identifier) 

replaced by x. Notice that if y is a sort identifier this rcnamina may change the signatures associated 

wjth some operators. 

-: Occasionally we wish to eliminate an operator altogether. The phrase 

Tr without [ op ] 
stands for the trait Tr without the decJaration of op and without each axiom, aenerated by, and 

partitioned by in which op appears. We use without to remove an operator either so that we can later 

add another operator with the same name and signature but different properties or merely because 

it is superfluous and we want to spare readers the bother of looting at it. 

If TableSpec contains the 1enerated lty and partitioned by of section 2, the specification 

ArraySpec: trait 
imports lntegerSpec 
includes TableSpec without [ size ] 

with [ defined for # € #, assign for add, read for eval. 
Array for Table, Integer for Index ] 

stands for 

ArraySpec: trait 

imports lntegerSpec 
introduces 

new: - Array 
-assign: Array, Integer, Val - Array 
defined: Integer, Array - Boot 
read: Array, Integer - Val 
isEmpty: Array - Dool 

constrains new, assign, defined. read, isEmpty so that 
Array aenerated lty [new, assign] 
Array partitioned by [ defined. read ] 
for all [ ind, ind/: Integer, val: Val. t: Array ] 

read(assign(t, ind, val), ind/) = 
if ind = ind/ then val else read(t. indl) 

defined(ind, new) = false 

defined(ind/, asmgn(I, ind, val)) = ((ind = ind/) I defined(ind/, t)) 

Notice that in this specification isEmpty is totally unconstrained. In section 7 we discuss a 

checking mechanism that would call the lack of constraints on isEmpty to the specifier's attention. 

This would. presumably, provoke him either to add the axioms 

isEmpty(new) = true 
isEmpty(assign(I, ind, val)) = false 

to his specification. or to add isEmpty to the without clause. 

The use of without rather than some sort of hiding mechanism (as in [Burstall and Goguen 81D 

may thus involve some extra work for the specifier. In return for this work, usen of the specification 

are spared having to deal with the "hidden" operators, e.g., in proofs that use the specification. This 
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is consistent with our belief that specifiers should be encouraged ~ do things that will make life 

easier for users of their specifications. 

The definition of without should make it clear that we are indeed operating on te text of traits 

(luesentations) rather than on their associated theories. Consider addina these isE.appty axioms to 

~leSpec to form another trait, TableSpecl. TableSpec and TableSpecl have the same associated 

theories, but 

TableSpec without size 

and 

TableSpecl without size 

have rather different associated theories-in the latter, isEmpty is fully defined. 

A final point raised by the examples of this section is the importance of distinguishing between 

the history of a specification (how it was constructed) and the structure presented to a reader. A 

reader familiar with TableSpec might prefer to read the tint version of ArraySpec; others might find 

it distracting to have to understand the more general structure before understanding ArraySpec. 

6. Assumptions 

We often construct fairly general specifications that we anticipate will later be specialized in a 

variety of ways. Consider, for example, 

MultiSetSpec: trait 

introduces 
{}: - MultiSet 
insert: MultiSet, Elem - MultiSet 
delete: MultiSet, Elem - MultiSet 
# € #: MultiSet, Elem - Dool 

constrains {}, insert, delete, € so that 
M ultiSet aenerated hy [ {}, insert 1 
MultiSet partitioned by [ delete, € 1 
for all [ m: MultiSet, e, el: Elem) 

e E {} = false 

e E insert(m, el) = (e = el) I (e E m) 

delete({}, e) = {} 
delete(insert(m, e), el) = 

if e = el then m else insert(delete(m, el). e) 

We might specialize this to lntMultiSet by renaming Elem to Integer and including it in a trait 

in which operators dealing with Integer are specified, e.g., 

IntMultiSet: trait 

imports lntegerSpec 
includes MultiSetSpec with [ Integer for Elem ) 
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The interactions between MultiSetSpec and IntegerSpec are very limited. Nothing in 

MultiSetSpec places any constraints on the meaning of the operaton that occur in lntegerSpec, e.g., 

0, +, and <. Consider, however, extending MultiSetSpec to MultiSetSpecl by addrbg an operator 

rangeCount, 

MultiSetSpecl: trait 

imports MultiSetSpec, Cardinal 
introdaces 

rangeCount: MultiSet, Elem, Elem-+ Integer 
# < #: Elem, Flem -+ Bool 

constrains rangeCount • dlat for aU [ el, e2. e3: Elem, m: MultiSet ] 

rangeCounl({}, el, e1) = 0 

rangeCounl(insert(m, eJ), el, e1) = 
rangeCounl(m, el, e1) + (if (el < e3) & (d < el) then 1 else 0) 

MultiSetSpecl places no constraints on the< operator. Suppose, however, that this is not what 

we intend We might have definite ideas about the properties that< must have in any specialization, 

e.g., that it should define a total ordering. We could specify such a ratriction by adding to 

MultiSetSpecl the assumption (Ordered is defined in the Handbook section, on page 36): 

assumes Ordered with [ Flem for T ] 

In constructing the theory associated with MultiSetSpecl, the assumption would be treated as if 

Ordered with [ Flem for T ] bad been included. This could be used to derive various properties of 

MultiSetSpecl, e.g., that rangeCount is monotonic in its last argument. 

Whenever the augmented MultiSetSpecl is imported or included in another trait, however, the 

assumption will have to be be discharged. In 

IntMultiSetl: trait 

indwles MultiSetSpecl with [ Integer for Elem] 
imports lntegerSpec 

this would amount to showina that the (renamed) theory aaociated with Ordered is a subset of the 

theory associated with lntegerSpec. Often, the assumptions of a trait are used to discharge the 

assumptions of traits it imports or includes. 

7. Consequences 

We have now looked at those parts of the Larch Shared Lanauage that determine the theory 

associated with a valid trail lbat subset of the language contains some checkable redundancy; e.g., 

assumptions are checked when a trait is included or imponed, and comtrains lists are checked against 

the axioms associated with them. We now turn to a pan of the language whose only purpose is to 

introduce checkable redundancy, in the form of assertions about the theory associated with a trait. 

There are two kinds of consequence assertions: 

That the theory associated with a trait contains another theory. 

That the theory associated with a trait "adequately" defines a set of operators in terms of 
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other operators. 

The first kind of assertion is made using implies. Consider, for exainple, adding to the augmented 

MultiSetSpecl, 

implies for aU [m: MultiSet, el, e2, e3: Elem] 

(e2 < eJ) _. (rangeCount(m. el, el)~ rangeCount(m. el, eJ)) 

Implies can be used to indicate intended consequences of a specification, both for checking and 

to increase the reader's insight The theory to be implied can be specified using the full power of 

the language, e.g., by using aenerated by and partitioaed ltJ, or by referring to traits defined elsewhere. 

The second kind of assertion is made using conYerts [ Ops ). This asserts that each term is 

provably equal to a term that does not contain operators in Ops. (We do not require this for terms 

containing variables of sorts appearing in aeneratetl fly clauses.) Converts is used to say that the 

specification adequately defines a collection of operators. 

A common problem with axiomatic systems is deciding whether there are "enough" axioms. 

Converts provides a way of making a check.able statement about the adequacy of a set of axioms. 

Consider, for example, adding to TableSpec: 

converts [ isEmpty ]. 

This says that each term containing isEmpty, such as isEmpty(new) or isEmpty(add(new), ind, val)), 

is equal to another term that does not contain isEmpty. 

Now consider adding to TableSpec the stronger assertion: 

converts [ isEmpty, eval ]. 

Terms containing subterms of the form eval(new, ind) are not convertible to terms that do not contain 

eval, so an error message of the form 

eval(new, ind) not convertible 

would be generated. This would present a problem if we did not wish to add an axiom to resolve 

this incompleteneu. We therefore provide a mechanism to allow specifiers to indicate that the 

unconvertibility of certain terms is acceptable. If TableSpec were modifed to include 

exempts for all [ ind: Index] eval(new, ind) 

the checking associated with the conYerts would now require that the theory associated with TableSpec 

must contain either 

an equation, t = tl, where t1 has no occurrences of isF.mpty or eval, or 

an equation t' = tl, where t' is a subterm oft, and tl is an instantiation of eval(new, ind). 

This checking ensures that each term containing operators in the conveJ1:5 list is either defined 

by the axioms (in terms of operators not in the list) or explicitly exempted. One use of conYerts is 

to allow the specification checker to notice unintended effects of without. As suggested in section 6, 

the failure of ArraySpec to fulfill the conYerts inherited from TableSpec would trigger error messages 

of the form: 

isF.mpty(new) not convertible 

isEmpty(assign(t. ind. val)) not convertible. 
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•• lffhenElte and Equality 

In our examples we made use of some apparently unconstrained operators: if tt.en else and =, 
with a variety of signatures. In fact, the appearance of these operators leads ~ the implicit 

incorporation of the traits lffhenElse and Equality. 

Whenever a term of the form if b then t1 else t2 occurs in a trait we replace the mixfix symbol 

If ·then else by the prefix symbol ifibenFlse. If t1 and t2 are of the same sort, Tl, we also import 

the trait lflbenFlse with ( Tl for T ] into the enclosing trait 

Whenever a term of the form t1 = a occurs in a trait. if t1 and t2 are of the same s0rt, Tl, we 

append the trait Equality with [ Tl for T ] to the consequences of the enclosing trait 

Specifications of these traits are: 

IfibenElse: trait 

introftca iflbenElse: Bool. T, T - T 
constrains iflbenE1se so that for all [ ti, 12: T ] 

iflbenElse(true, ti, t1) = ti 

iflbenElse(false, ti, t1) = 12 

implies con•erts [ iflbenElse ] 

Equality: trait 

includes Equivalence with [ = for .rel] 
constrains = so that T partitioned by ( = ). 

9. Some Further Eumpla 

The following series of examples is adapted from the Handbook chapter. We include them here 

to illustrate some ways in which the facilities introduced above can be used. In reading these 

specifications. keep in mind that they are not themselves ends, but rather means to write interface 

specifications. 

Our first example is an abstraction of those data structures that "contain" elements, e.g., Set, 

Bag. Queue, Stack. We have found it useful both as a startina point for specifications of various 

kinds of containers, and as an assumption for generic operations. The CJUCial part of the trait is the 

pnerated by. It indicates that any term of sort C is equal to some term in which new and insert are 

the only operators with range C-even if this trait is included in one that introduces additional 

operators that return values of sort C. This means that any theorems proved by induction over new 

and insert will remain valid. 

Container: trait 

introduces 
new: - C 
insert: C, E - C 

% C's contain E's 

constrains C so that C aeaerated by [new, insert] 

The next example incorporates Container as an assumption. Notice that it constrains new and 

insert as well as the operator it introduces, isEmpty. The CODYerts indicates that this trait contains 
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enough axioms to adequately specify isEmpty. Because of the paerated bJ. this can be proved by 

induction over terms of sort c. using new as the basis and insert(c. e) in the induction step. 

lsF.mpty: trait 

aaumes Container 
introduces isEmpty: C ... Boot 
constrains isEmpty. new. insert so that for all [ c: C. e: E ] 

isEmpty(new) = true 

isEmpty(insert(c. e)) = false 

implies coaverts [ isEmpty ] 

The next two examples assume Container. The exempts indicate that should these traits be 

included into a trait that claims the convertibility of next or rest, that trait needn•t convert the terms 

next(new) or rest(new). 

Next: trait 

assumes Container 
introduces next: C - E 
con.strains next. insert so that for all [ e: E ] 

next(insert(new. e)) = e 
exempts next(new) 

Rest: trait 

assumes Container 
introduces rest: C - C 
constrains rest. insert so that for all ( e: E ] 

rest(insert(new, e)) = new 

exempts rest(new) 

The next example specifies properties common to various data structures such as stacks. queues, 

priority queues. sequences, and vectors. It augments Container by combining it with IsEmpty, Next, 

and Rest The partitioned by indicates that next, rest, and isF.mpty are sufficient to define equality 

over terms of sort C. Since we have little information about next and rest. the partitioned by does 

not yet add much to the associated theory. 

Enumerable: trait 

imports lsEmpty, Next, Rest 
includes Container 
constrains C so that C partitioned by [ next, rest, isEmpty ] 

The next example specializes Enumerable by further constraining next, rest, and insert Sufficient 

axioms are given to convert next and rest The axioms that convert isEmpty are inherited from the 

trait Enumerable, which inherited them from the trait lsF.mpty. 
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PriorityQueue: trait 

wmnes TotalOrder with [ E for T ] 
inclatles Enumerable 
coastnins next, rest, insert so that for all [ q: C, e: E ] 

next(insert(q, e)) = 
if isEmpty( q) then e 
else if next(q) S e then next(q) else e 

rest(insert(q, e)) = 
if isEmpty( q) then new 

else if next(q) S e then insert(rest(q), e) else q 

implies conYerts [ next, rest. isEmpty ] 
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In a trait, such as PriorityQueue, that defines an .. abstract data type" there will generally be a 

distinguished sort (C in this case) corresponding to the .. type of interest" of [Guttag 75] or "data 

sort" of [Burstall and Goguen 81]. In such traits, it is usually possible to partition the operaton whose 

range is the distinguished son into .. generators," those operaton which the sort is aenerated by, and 

.. extensions," which can be converted into generaton. Operaton whose domain includes the 

distinguished sort and whose range is some other sort are called "observen." Observen are usually 

convertible, and the sort is usually partitioned by one or more subsets of the observers and extensions. 

The next example illustrates a specialization of Container that does not satisfy Enumerable. It 

augments Container by combining it with IsEmpty and Cardinal, and introducing two new operaton. 

Notice that we include Container, because we intend to constrain operaton inherited from it, but 

import IsEmpty and Cardinal, because we do not intend to constrain any operator inherited from 

them. Constrains C is a shorthand for a constrains clause listing all the operators whose signature 

includes C. The partitioned by indicates that count alone is sufticient to distinguish unequal terms of 

sort C. ConYerts [ isEmpty, count, delete ] is a stronger assertion than the combination of an explicit 

converts [ count, delete ) with the inherited conlerts [ isEmpty ]. 

MultiSet: trait 

assumes Equality with [ Elem for T ] 
imports IsEmpty, Cardinal 
includes Container with [ empty for new ] 
introduces count: Elem, C - Dool 

delete: Elem. C - C 
constrains C so that 

C partitioned by [count] 
for all [ c: C, el, el: E ] 

count(empty, el) = 0 

count(insert(c, el), e2) = count(c, el) + (if el = e2 then 1 else 0) 

delete( empty. e I) = empty 

delete(insert(c, el), el) = 
if el = el then c else insert(delete(c, e2), el) 

implies conYerts [ isEmpty, count, delete ) 

-------------,,-~------



18 THE LAR.OI SHARED LANGUAGE 

The next example specifies a generic operator. It uses Enumel'al!le as an assumption to delimit 
the applicability of this operator to containers for which it is possible to enumerate the contained 
elements. (I'o understand why we assume Enumerable rather than Container, ~fining ext()p 

far a MultiSet) The exempts indictates that we do not intend to tblly define the meaqjng of applying 

~tOp to containers of unequal size. Notice that elemOp is totally unco~ in this trait This 

p~vents us from having many interesting implications to state at this stage. 

Pairwise&tension: trait 

assumes Enumerable 
introduces 

elemOp: E, E - E 
extOp: C, C - C 

constrains extOp so that for all [ cl, cl: C, el, el: E ) 
extOp(new, new) = new 

extOp(insert(cl, el), insert(cl, el)) = insert(extOp(cl, c1), elemOp(el, el)) 
implies conlerts [ extOp ) 
exempts for all [ c: C, e: E ) 

extOp(new, insert(c, e)), 

extOp(insert(c. e), new) 

Now we specialize Pairwise&tension by binding elemOp to + over Cardinals: 
PairwisePlus: trait 

assumes Enumerable 
imports Cardinal 
includes Pairwise&tension with [ # + # for elemOp, # + # for extOp, Card for E ] 
implies Commutative with [ # + # for 0, C for T ) 

The validity of the implication that + for sort C is commutative stems from the replacement of 

elemOp by + for sort Card, whose constraints (in trait Cardinal) imply its commutativity. 
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Larch Sllarecl Language Reference Manual 

o. Structure or Manual 

In section 1 we present a grammar for the kernel subset of the Larch Shared Language. 

In · section 2 we define the context sensitive checking and the theory associated with each 

specification written in the kernel subset 

In section 3 we extend the kernel subset by introducing mechanisms for specifying intended 

consequences of a specification written in the kernel subset 

In sections 4· 10 we define successive extensions of the language. We modify the grammar to 

introduce additional aspects of the languaae and describe any additional context sensitive checking 

required. We also provide a translation from the newly extended Janauaae to the previously defined 

subset The result of this translation is subjected to all the applicable checking. The theory associated 

with any specification written in the full language is the same as the theory associated with its 

translation. 

Section 11 describes additional checks. defined in terms of the theories associated with traits, 

that are associated with various language features. To be lepl. a specification and each of the parts 

from which it is built must satisfy these checks as well as the context sensitive checks described 

earlier. 

Finally. section 12 collects the reference grammar for the entire language. 
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1. Kernel Syntax 

I.I. Syntactic conventions 

1-
{e} 

e* 
e*, 

e+ 

alpha 

alpha 

'( ') 

(e) 

alternative separator 

e is optional 

zero or more e's 

zero or more e's, separated by commas 

one or more e's 

alpha is a nonterminal symbol 

alpha is a terminal symbol 

parentheses as tenninal symbols 

parentheses for grouping syntactic expressions 

1.2. Grammar 

trait : : = trait Id : trait traitBody 

traitBody :: = simple Trait 

simple Trait :: = {opPart} propPart• 

opPart :: = introduces opDcl* 

opDcl 

signature 

domain 

range 

propPart 

props 

generators 

partitions 

bylist 

sortedOp 

axioms 

varDcl 

equation 

term 

opld 

opForm 

opSym 

trait Id 

sortld 

: : = opld : signature 

::=domain - range 

:: = sortld*, 

::= sortld 

: : = asserts props 

:: =generators• partitions• axioms• 

: : = sortld aenerated bylist*, 

: : = sortld partitioned bylist•, 

: : = by ( sortedOp*, ) 

::= opDcl 

:: = for all ( varDcl*, ) equation• 

: : = varld*, : sortld 

::= term = term 

:: = sortedOp { '( term*, ') } I varld 

: : = alpha Numeric + I opForm 

: : = { # } opSym ( # opSym )* { # } 

: : = specia/Char + I . alphaNumeric + 

: : = alpha Numeric + 

: : = alpha Numeric + 

varld : : = alpha Numeric + 

Comments start with % and terminate with end of line. They may appear after any token. 
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2. Simple Traits 

2.1. Context sensitive checking 

simple Trait: 

The sets of varld's. sortld's and opld's appearing in a trait must be disjoint 

Every sortld appearing anywhere in a simpleTrait must appear in its opPart. 

Every sortedOp appearing anywhere in a simpleTrait must appear in its opPart. 

opDcl: 
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Each opForm must have the same number of #'s as the number of occurrences of sort/d's in 

the domain. 

generators: 

The range of each sortedOp must be the sortld of the generators. 

At least one sortedOp in each bylist must have a domain in which the sortld of the generators 

does not occur. 

partitions: 

The domain of each sortedOp must include the sortld of the partitions. 

The range of at least one sortedOp in each bylist must be different from the sortld of the 

partitions. 

axioms: 

Each varld used in a term must appear in exactly one varDcl. 

No varld may occur more than once in ( varDct•, ). 

equation: 

The sorts of both term's must be the same, where 

The sort of a term of the form sortedOp { '( term•, ') } is the range of the sortedOp. 

The sort of a term of the form varld is the sortld of the varDcl in which the varld is declared. 

term: 

In sortedOp { '( term•, ') } the domain of the sortedOp must be the sequence of the sorts of 

the terms in term•, . 
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2.2. Associated theory 

We associate a theory with each trait. This section defines the theory assQCiated with a 

simple Trait. 

- A theory is a subset of the language: 

wff : : = term = term 

I "propositional formula" 
I "first order quantified (with sorts) formula" 

We adopt the conventional meanings of the equality symbol ( = ), the propositional connectives 

(ct, I. -. • •... ),and the quantifiers (V and 3). 
The subset of wff that is the theory, call it Th, associated with a simple Trait is defined by: 

Axioms: Each equation, universally quantified by the varDcfs of its containing axioms, is in 

Th. 

Inequation: -(true:-+Bool = false:-+Bool) is in Th. 

First order predicate calculus with equality: Th contains the axioms of conventional typed­

first-order predicate calculus with equality and is closed under its rules of inference. 

Induction: If the trait has a generators with sortld Sand a bylist by [op1, ... , opnJ, and P(s) 

is a wff with a free variable, s, of son S, Th contains the wff 

V[s: SJ P(s) 

if for each OJ>i in [op1, . . . , opnJ 

Qi =-- P(opi(x1, ... , xt)) is in Th, where 

k is the arity of opi. 

the xj's are variables that do not appear free in P, and 

Qi is the conjunction of P(xj), for each j such that the jtb argument of opi 

is of son S. 

Reduction: If the trait has a partitions with sortld S and a bylist hy [opi. ... , oprJ, Th contains 

the wff 

V[s1. s2: SJ (Q =- s1 = si) 

where Q is the conjunction, for each OJ>i in (opi, ... , oprJ and each j such that the jtll 

argument of opi is of son S, of 

V[x1: Si. ... , Xk: St] (Subst(oJ>i, j, ti) = Subst(OJ>i, j, ti)), where 

S1 .... , Sk is the domain of opi. and 

Subst(op, j, t) is op(x1 •...• xt) with t substituted for Xj. 
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3. Consequences and Exemptions 

Exempts and consequences affect only the checkina (see section 11.S) and dQ not affect the 

~eory. We add to the grammar the productions: 

trait 

c~nsequences 

conseqProps 

converts 

conversion 

exempts 

exemptTerms 

:: = traitld : trait traitBody {consequences} {exempts} 

:: = implies conseqProps {converts} 

::=props 

:: = CODYerts conversion*, 

:: = ( sortedOp*, I 
:: = exempts exemptTerms* 

:: = { for all [ vsrDcl*, I } term*, 

3.1. Context sensitive checking 

conseqProps: 

If the props of the conseqProps is appended to the propPart of the containing trait, the 

resulting trait must satisfy the checks of section 2. 

exempts: 

Each term must satisfy the checks of section 2.1. 

4. Constrains Clauses 

Constrains clauses affect only the checking (see section 11.4), not the theory. We add to the 

grammar the productions: 

propPart 

constrains 

4. I. Translation 

constrains: 

: : = ( asserts I constrains ) props 

:: = coutrains ( sortld I sortedOp*,) so that 

Replace the constrains by asserts. 
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5. Implicit Sipatures and Partial OpFonm 

In the kernel language each sortedOp is an opDcl. Here we relax this restriction to allow 

omitted and partial signatures and omitted # 's. We add to the grammar the production: 

slJrtedOp :: = opld { -+ range } 

5.~J. Context sensitive checking 

There must be a unique mapping from occurrences of sortedOp's to opDcf s of the traitBody 

such that the translation described in section S.2. produces a legal traitBody and for each sortedOp, 

opDcl pair: 

The op/d's match, i.e., 

They are the same, or 

They are both opForms and the one in the sortedOp is the same as the one iil -the 

opDcl with all #'s removed. 

If the sortedOp includes -+ range, it is the same as the range of the opDcl. 

5.2. Translation 

The checking ensures that each occurrence of a sortedOp corresponds to a unique opDcl. The 

translation is simply to replace it by that opDcl. 

6. Mixfix Operators 

In the language presented thus far, all operators are treated as either nullary or prefix. Here we 

relax that restriction. We replace the grammar for term by: 

term : : = secondary I if secondary then secondary else term 

secondary : : = { opSym } primary ( opSym primary )* { opSym } 

primary : : = sortedOp { '( term•, ') } I varld I '( term ') 

6.1. Translation 

equation: 

It is necessary to resolve the grammatical ambiguity between the = connective in equations 

and the = opSym. In any equation the first occurrence of = that is not bracketed by parentheses 

or within an if then else is the equation connective, the remainder are opSyms. Parentheses can be 

used to enforce any desired parsing. 
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term: 
Translate eadl term of the tbrm If b dlell t1 elll t2 into a term of tbe form ifl'btDEllll(b. t1, tl). 

~ondary: 

- - Tram'ate each secondary containing opSym's into a ptlmary of the form op7d '(term•, '), 
where . 

opld is derived by repllciD& eadl primary in the aecollRry by #. 

term•, is die sequence of primary's. 

primary: 
After the previous tramlaaioDI have been pe:r(onned. rmiove the outer parentheles from 

primary's of the form '( term '). 

7. Boole& Terms • Equatioas 

It is convenient to use terms of tort Boo1 as axioms. We add to the pammar the production: 

equation : : = term 

7.1. Cont~xt sensitiff checking 

The term must be of son Dool. 

7.2. Translation 

Replace the term by the equation 

term = true 
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8. External References 

We add to the kernel grammar the productions: 

tr~itBody 

eiternals 

assumes 

imports 

includes 

traltRef 

conseqProps 

:: = externals simple Trait 

:: = {assumes} {imports} {includes} 

: : = assumes traitRef*, 

: : = imports traitRef*, 

:: = includes traitRef*, 

:: = traitld 

:: = traitRef*, props 

8.1. Context sensitive checking 

externals: 

Recursive externals are not pemritted; i.e., the traitld of the containing trait may not appear in 

an externals, nor in any partial translation of a traitRef in ilS externals. 

8.2. Translation 

The translation of a trait is derived bottom-up; i.e .• before a trait with traitRefs is translated. 

each of its traitRefs is replaced by the translation of the trait labeled by that traitRefs traitld. Let 

T be a trait whose simpleTrait is S and let E consist of the translations of the traitRefs in Ts 

externals. The translation of T consists of: 

An opPart containing S's opDcls and E's opDcls, 

A propPart• containing S's propPart's and E's propPart's, 

An exempts containing Ts exemptTerms and E's exemptTerms, and 

A consequences containing the props of 

Ts conseqProps, 

the propParts of the translations of the traitRefs in Ts conseqProps, and 

E's consequences. 
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9. Modifications 

We add to the grammar the productions: 

traitRef 

egc/usion 

rtinaming 

:: = traitld {exclusion} {renaming} 

:: = without [ oldOp*, ) 

:: = with [ ( sortRename I opRename )*,) 

sortRename :: = sortld for oldSort 

oldSort : : = sortld 

opRename : : = opld for oldOp 

oldOp :: = sortedOp 

9.1. Context sensitive checking 

traitRef: 

No sortedOp may occur more than once as an oldOp. 

No sortld may occur more than once as an oldSort. 
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Each oldSort must appear in an opDcl in the translation of the trait labeled by the traitld. 

There must be a unique mapping from oldOp's to opDcfs of the translation of the trait labeled 

by the traitld, such that for each o/dOp, opDcl pair: 

The op/d's mat.ch (see section 5.1), 

If the oldOp includes domain, it is the same as the domain of the opDcl. 

If the oldOp includes - range, it is the same as the range of the opDcl. 

9.2. Translation 

The translation of the trait labeled by the traitld of the traitRef is modified by applying first 

the exclusion, then the opRename's, and finally the sortRename's: 

For each oldOp in the exclusion, delete each by/1st, equation, and term containing the 

opDcl to which it maps and then delete all remaining occurrences of that opDcl. 

Then, simultaneously, for each opRename, replace the opld part of each occurrence of the 

opDcl to which the oldOp maps by the opld of the opRename. 

Finally, simultaneously, for each sortRename, replace each occurrence of its oldSort by its 

sortld. 
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10. Implicit Incorporation of Boolean. IfThenElse. and Equality 

Three traits, Boolean. IflbenElse. and Equality, are implicitly incorporated into various other 

traits to assure uniform me.anings for the operators they constrain. -
19.1. Translation 

Append the traitRef Boolean to the imports of each trait except Boolean. 

Append the traitRef IflbenElse with ( Tl for T ] to the imports of each trait containing a term 

of the form if b then t1 else t2 in which t1 and t2 have the same sort. Tl. 

Append the traltRef Equality with [ Tl for T ] to the traitRef* of the conseqProps of each 

trait (except Equality) containing a term of the form t1 = t2 in which t1 and t2 have the same sort. 
Tl. 

10.2. Built-in traits 

Boolean: trait 

introduces 
true: -+Boot 
false: -+ Dool 
-#:Dool .... Boot 
#&.#: Dool. Dool .... Dool 
#I#: Boot. Boot .... Dool 
# - #: Boot. Dool .... Dool 
#.equal#: Dool. Dool -+ Dool 

85.1erts Boot aenerated by [ true. false J 
for all [ b: Bool ] 

-true = false 

-false = true 

(true &. b) = b 

(false &. b) = false 

(true I b) = true 

(false I b) = b 

(true =- b) = b 

(false =- b) = true 

(true .equal b) = b 

(false .equal b) = -b 

implies converts [ - , &., I. •, .equal ] 

IflbenElse: trait 

introduces iflbenElse: Boot, T, T-+ T 
85.1erts for all [ ti, t2: T ) 

iflbenElse(true, ti, 12) = ti 

iflbenEtse(false, ti, t2) = t2 

implies converts [ iflbenElse ] 
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F.quality: trait 

introduces # = #: T, T -+ Dool 
userts T partitioaed lty [ = ) 

forall[x,y,z:T) 
(x=x) 

(x=y) = {y=x) 

((x= y) & {y= z)) • (x= z) 

11. Semantic Checldna 
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In addition to the syntactic constraints specified above, we require that each trait be logically 

consistent. discharge the assumptions of the traits it is built from. be a conservative extension of its 

imports, be properly constraining, and imply its consequences. 

ll.l. Consistency 

A traitBody is consistent if its emaciated theory does not contain the equation 

true:-+Bool = false:-+Bool 

l 1.2. Assumptions 

Let A(T) be all of the assumes of the traits imported or included in T, and R(T) be the result 

of translating T after removing these assumes. A(T) is discharged by T if the theory associated with 

the translation of each traitRef of A(T) is a subset of the theory associated with R(T). 

l 1.3. Imports 

The theory emaciated with a trait must be a consenative extension of the theory emaciated with 

the translation of each traitRef in its imports; i.e., if trait TI imports T2 and W is a w1f of Tl, W 

is in the theory emaciated with Tl if and only if it is in the theory associated with T2. 

l 1.4. Constraints 

A propPart is properly-constraining if it implies properties of only the operators in its constrains. 

The occurrence of a sortld in a constrains stands for the list of all sortedOp's in the containing 

trait's opPart whose signatures include that sortld. 

Let T be a trait and P be the propPart constrains sortedOp*, so that props. P is 

properly-constraining in the trait consisting of T plus P if and only if each wff in the theory emaciated 

with T plus P is also in the theory emaciated with T or else contains ops in sortedOp*. 

Note that. since the translation of a traitRef converts constrains to asserts. this check is performed 

only on traits in which constrains appears explicitly. 
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I 1.5. Consequences 

A trait implies its consequences if the theory associated with its conseqProps is a subset of 

the theory associated with the trait and the ( sortedOp*, ] in each converts, is convertible. 

cenvertibility is defined using the theory and exempts of a trait. 

= 
ctimseqProps: 

The theory associated with conseqProps must be a subset of the theory of the trait in which 

the consequences appears. The theory associated with a conseqProps is the theory associated with 

the traitbody: 

includes trait Ref*, opPart URrts props 

where traitRet•, and props form the conseqProps, and opPart is the opPart of the trait in which 

the consequences appears. 

Note that an exclusion, but not a renaming, can invalidate a consequence that has been locally 

checked. 

conversion: 

Let C be a conversion. For each term, t, that contains no variables of any sort appearing in a 

generators in the containing trait, the theory of the containing trait must either 

contain an equation t = u, 

where u contains no sortedOp appearing in C's sortedOp*, or 

contain an equation t' = u, 

where t' is a subterm of t, and u is an instantiation of a term appearing in an exempts 

of the containing trait 
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12. Reference Grammar for The Larch Shared Lanauaae 

trait 

trait Body 

externals 

assumes 
imports 
includes 
traitRef 
exclusion 
renaming 
sortRename 
oldSort 
opRename 
oldOp 
sortedOp 

simple Trait 

opPart 

opDcl 
signature 
domain 
range 

propPart 

constrains 
props 
generators 
partitions 
bylist 
axioms 
varDcl 

equation 

term 
secondary 
primary 
opld 
opForm 
opSym 
trait Id 
sortld 
varld 

consequences 

conseqProps 
converts 
conversion 

exempts 

exemptTerms 

:: = traitld : trait traitBody {consequences} {exempts} 

:: = externals simple Trait 

:: = {assumes} {imports} {includes} 

:: = assumes traitRet•, 
: : = imports traitRet•, 
:: = inclll4les traitRef*, 
::= traitld {exclusion} {renaming} 
: : = without [ oldOp*, ) 
:: = with ( ( sortRename I opRename )*,) 
:: = sortld for oldSort 
::= sortld 
:: = opld for oldOp 
: : = sortedOp 
: : = opDcl I opld { - range } 

:: = {opPart} propPart• 

: : = introduces opDcl* 

:: = opld : slgnature 
:: = domain - range 
:: = sortld*, 
:: = sortld 

: : = ( asserts I constrains ) props 

:: = constrains ( sortld I sortedOp*,) so that 
:: = generators• partitions• axloms• 
: : = sortld aenerated bylist*, 
:: = sortld partitioned bylist•, 
:: = lty [ sortedOp*, ) 
:: = for all [ varDcl*,) equation• 
: : = varld*, : sort Id 

: : = term { = term } 

:: = secondary I if secondary then secondary else term 
:: = { opSym } primary ( opSym primary )* { opSym } 
: : = sortedOp { '( term•, ') } I varld I '( term ') 
:: = alphaNumeric + I opForm 
: : = { # } opSym ( # opSym )* { # } 
: : = specie/Char+ I . alpha Numeric + 
:: = alphaNumeric + 
:: = alphaNumeric + 
:: = alphaNumeric + 

:: = implies conseqProps {converts} 

: : = traitRef*, props 
: : = COD'ferts conversion•, 
:: = [ sortedOp*,) 

:: = exempts exemptTerms• 

:: = { for all [ varDcl*, ) } term•, 

31 
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Towards A Larch Shared Language Handbook 

Contents 

Basic properties of single operators. including binary relations 

Associative, Commutative, Idempotent, Relation. TotalRelation, Reflexive. Irreflexive, 

Transitive, RetlexiveTransitive, Symmetric, Antisymmetric, Equivalence 

Ordering relations 

PartialOrder, TotalOrder. OrderEquivalence, OrderEquality. PartialOrderWith.Equality. 

TotalOrderWith.Equality, DerivedOrders, PartiallyOrdered, Ordered 

Group theory 

Leftldentity, Rightldentity, Identity, Leftlnverse, Rightlnverse, Inverse, Abelian, Semigroup, 

Monoid, Group, AbelianSemigroup, AbelianMonoid, AbelianGroup, Distributive 

Simple numeric types 

Ordinal, Cardinal, Cardinal2 

Simple data structures 

Pair, Triple. FiniteMapping 

Container properties 

Container, Singleton. lsEmpty, Size, Add.itiveSize, Join. ElementEquality, Member, 

ElemCount, Delete, Containment. Next. Rest, Remainder. Index 

Container classes 

SetBasics, BagBasics, CollectionExtensions. Setlntersection. Set, Bag, Enumerable, 

lnsertionOrdered, Stack. Queue. Dequeue, Sequence. SubSequence, String. PriorityQueue 

Generic operators on containers 

CoerceContainer, Reduce, SomePass, AllPass, Sift. PairwiseExtension. Pointwiselmage 



HANDBOOK 

Nonlinear structures 

BinaryTree, BasicGraph, Connectivity, Graph 

Rings, fields, and numbers 

Ring, RingWithUnit, Infixlnverse, Integer, Field, Rational 

Lattices 

ExtremalBound, Semilattice, Lattice 

Enumerated data types 

Enumerated, Rainbow, Character 

Display traits 
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Coordinate, Illumination, Boundary, Transform, Displayable, Picture, Contents, Component, 

ComponentCoercion, View, Display 
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Preface 

This collection of traits is a companion to the Larch Shared Language Refere~e Manual. We 

hc:>PC that it will serve three distinct purposes: 

Provide a set of components that can be directly incorporated into other specifications, 

Provide a set of models upon which other specifications can be based, and 

Heli> people to better understand the Larch Shared Language by providing a set of illustrative 

examples. 

In line with our first goal. we have tried to isolate the '"smallest useful increments" of specification 

that it might be reasonable to use in other specifications. In particular, we have tried to provide traits 

that will make it convenient to specify the weak assumptions that characterize many of the more 

widely applicable specifications. This is particularly evident in the sections titled "Container 

properties" and Container classes." The traits in these sections are smaller and more numerous than 

is typical in "from scratch" specifications. This sometimes leads to a somewhat overstructured 

appearance. 

In line with our second goal, in addition to traits that we expect to be directly incorporated in 

specifications, we have included a number of traits intended primarily as patterns. The section titled 

'"Generic operators on containers'" contains several such traits. &cause of the arity of the operators. 

it will frequently be awkward to incorporate these tfaits. 

In line with our third goal we have stressed familiar examples. Since they describe well-understood 

mathematical entities, many of the traits, e.g., Integer, are atypically complete. In general, we expect 

most specifications to supply constraints, rather than complete definitions. The section on Display 

traits is more typical in this respect 

The support tools envisioned for Larch are not yet available. Transcriptions of traits in this 

chapter have been mechanically checked for some properties; some errors may not have been detected 

and some transcription errors may have crept in. They should be given the same son of credence as 
carefully written programs that have not been checked by a compiler. 

Comments on the clarity of these specifications and on their "correctness" (relative to generally 

accepted definitions of the names used) are welcome. We also solicit contributions of further widely 

useful traits-either accompanied by specifications, or as challenges to specifiers. 

CooYentions 

If a generic trait constrains only one interesting son. the identifier T is used to denote it 

If a trait constrains a "containing'" son and an '"element" sort, the identifiers C and E are used. 

If a trait constrains a single binary operation, the infix symbol # 0 # is used. 

If a trait constrains a single binary relation, the infix identifier #CID# is used. 

If there would be no information in a constrains (e.g., because there is only one operator), 

aaerts is used. 



HANDBOOK 

Basic Properties of Sin&le Operators, lncludina Binary Relations 

Associative: trait 
introduces #0#: T, T-+ T 
asserts for au [ .x, y, z: T ] 

Commutative: trait 

introduces #0 #: T, T -+ Range 
asserts for au [ x, y: T ] 

Idempotent: trait 

introduces op: T -+ T 
asserts for all [ x: T ] 

Relation: trait 

introduces #9#: T, T-+ Bool 
TotalRelation: trait 

includes Relation 
asserts for all [ x, y: T ] 

Reflexive: trait 

includes Relation 
asHrts for all [ x: T ] 

Irreflexive: trait 

includes Relation 
asserts for all [ x: T ] 

Transitive: trait 

includes Relation 
asserts for all [ x, y, z: T ] 

ReflexiveTransitive: trait 

includes Reflexive, Transitive 
Symmetric: trait 

includes Relation 

(x 0 y) 0 z = x 0 (y 0 z) 

xOy=yOx 

op(op(x)) = op(x) 

(x e y) I (y e x> 

xex 

-(x ex) 

((x e y) & (y e z)) =- (x e z) 

asHrts for all [ x, y: T ] (x 9 y) = (y 9 x) 
implies Commutative with [ 9 for 0, Bool for Range ] 

Antisymmetric: trait 

includes Relation 
asserts for all [ x. y: T ] 
implies Irreflexive 

Equivalence: trait 

-((x e y) & (y e x)) 

includes ReflexiveTransitive with [ .eq for 9 ], 
Symmetric with [ .eq for 9 ] 

35 



36 THE l...A.R.CH SHARED LANGUAGE 

Orderin& Relations 

PartialOrder: trait 

imports RetlexiveTransitive with [ < for 8 ] 
TotalOrder: trait 

includes PartialOrder, TotalRelation with [ S for 8 ] 
OrderEquivalence: trait 

assumes PartialOrder 
introduces #.eq#: T, T - Boot 
constrains .eq so that for all [ x, y: T ] (x .eq y) = (x < y) & (y < x) 
implies Equivalence 
CODYerts ( .eq ) 

OrderEquality: trait 

as.mmes PartialOrder 
· includes OrderEquivalence with [ = for .eq ], Equality 

PartialOrderWithEquality: trait 

includes PartialOrder, OrderEquality 

TotalOrderWithEquality: trait 

includes TotalOrder, OrderEquality 

DerivedOrders: trait 

assumes PartialOrder 
introduces 

#<#: T, T - Boot 
#~#: T, T- Boot 
#>#: T, T - Boot 

constrains < so that for all [ x, y: T ] (x < y) = ((x < y) & (-(y S x))) 
constrains ~ so that for all [ x, y: T ] (x > y) = (y S x) 
constrains > so that ror all [ X, y: T 1 (x > y) = (y < x) 
implies Transitive with [ < for 8 ], 

Transitive with [ > for 8 ], 
Antisymmetric with [ < for 8 ), 
Antisymmetric with ( > for 8 ), 
PartialOrder with [ > ror < J 

CODYerts ( <, ~. > ) 
PartiallyOrdered: trait 

imports PartialOrderWithEquality 
includes DerivedOrders 
implies PartialOrderWithEquality with [ ~ for < ] 

Ordered: trait 

imports TotalOrderWithEquality 
includes Derived.Orders 
implies PartiallyOrdered, TotalOrderWithEquality with [ > for < ] 



Group Theory 

Leftldentity: trait 

introduces 
#0#: T, T-T 
unit: - T 

asserts for all [ x: T ] 

Rightldentity: trait 
introduces 

#0#: T, T-T 
unit: - T 

HANDBOOK 

unit 0 x = x 

asserts for all [ x: T ] x 0 unit = x 
Identity: trait inclutles Leftldentity, Rightldentity 

Leftlnverse: trait 
assumes Leftldentity 
introduces inv: T - T 
asserts for all [ x: T ] 

Rightlnverse: trait 

as..umes Rightldentity 
introduces inv: T - T 
asserts for all [ x: T ] 

Inverse: trait 
aswnes Identity 

inv(x) 0 x = unit 

x 0 inv(x) = unit 

includes Leftlnverse, Rightlnverse 

Abelian: trait imports Commutative with I T for Range ] 

Semigroup: trait includes Associative, F.quality 

Monoid: trait includes Semigroup, Leftldentity 

Group: trait 

includes Monoid, Leftlnverse 
implies Rightldentity, Rightlnverse 

AbelianSemigroup: trait includes Abelian, Semigroup 

AbelianMonoid: trait 
includes Abelian, Monoid 
implies Rightldentity 

AbelianGroup: trait includes ASelian, Group 

Distributive: trait 

introduces 
#+#: T, T-T 
#•#: T, T-T 

asserts for all I x, y, z: T ] 
x-(y + z) = (X-y) + (X-z) 
(y + z)•x = (y-x) + (Z-x) 
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Simple Numeric Types 

Ordinal: trait 

includes PartialOrder with [ = for .eq, Ord for T 1 
OrderEquivalence with [ = for .eq, Ord for T ] 

introduces 
first: - Ord 
succ: Ord - Ord 

asserts Ord paerated by [ first, succ ] 
Ord partitioned by [ S ] 
for all [ x. y: Ord ] 

first< x 
-(succ(x) < first) 
succ(x) S succ(y) = x < y 

implies TotalOrderWithEquality with [ Ord for T ] 
CODYerts ( S, = ) 

Cardinal: trait 
imports Ordinal with [ 0 for first. Card for Ord ] 
inclwles DerivedOrders with [Card for T] 
introduces 

1: - Card 
# + #: Card. Card - Card 
#. #: Card. Card - Card 
# 9 #: Card, Card - Card 

constrains I so that I = succ(O) 
constrains +, • so that for all [ x. y: Card ] 

x+O=x 
x + succ(y) = succ(x + y) 
x*O = 0 
x*succ(y) = x + (x*y) 

constrains 9 so that for all [ x. y: Card ] 
09x=O 
x90=x 
succ(x) e succ(y) = x e y 

implies Cardinal2 
· Card aenerated by [ I. +. e J 

Card partitioned by [ ~ ]. by [ = ]. by [ < ], by [ > ] 
for all [ x. y: Card 1 x < y = ((x e y) = 0) 

converts [ 1, e. +, •. =. <. >. <. > ] 



HANDBOOK 

Cardina12: trait % Alternate definition for comparison 

includes AbelianMonoid with [ + for 0, 0 for unit, Card for T ], 
AbelianMonoid with [ * for 0, 1 for unit, Card for T ], 
Distributive with [ Card for T ], 
Ordered with [ Card for T ] 

introduces 
# 8 #: Card, Card -+ Card 
succ: Card -+ Card 

asserts Card generated by [ 0, 1, + ] 
for all [ x, y: Card ] 

x < (x + 1) 
(x + y) e y = x 
08x=0 
succ(x) = x + 1 

implies Cardinal 
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Simple Data Structures 

Pair: trait 

introduces 
(#,#>:Tl, Tl - C 
#.first: C - Tl 
#.second: C - Tl 

asserts c aeaerated by l <#. # > 1 
C partitiwd by [.first. .second] 
for aD Ct Tl, s: Tl] 

<t: s>.ftrst = f 
<f. s>.second = s 

implies converts [ .first, .second ] 

Triple: trait 

introduces 
(#, #,#):Tl, Tl, T3 - C 
#.first: C - Tl 
#.second: C - Tl 
#.third: C - T3 

asserts C paerated lty [ < #, #, # > ] 
C partitioned by [ .first, .second, .third ] 
for all [ t Tl, s: Tl, t: T3 ] 

(f. S, t>.ftrst = f 
<f. s, t>.second = s 
(f, S, t>.third = t 

implies converts [ .first, ,.second, .third] 

FiniteMapping: trait 

aaumes Equality with [ Index for T ] 
introduces 

new: - C 
bind: C, Index, E - C 
#[#]: C, Index - E 
defined: C, Index - Boot 

asserts C aenerated lty [new, bind] 
C partitioaed lty [ # [ # ], defined ] 

constrains C so that 
for all [ c: C, ~ ii: Index, e: E ) 

bind(c, ii, eX11 = if i = ii then e else c[z) 
-defined(new, 1) 
defined(bind(c, ii, e), 1) = (i = il) I defined(c, 1) 

implies converts [ #(#), defined) 
exempts for all [ i: Index ] new[ 1) 



Container Properties 

Container: trait 

introduces 
new: - C 
insert: C, E - C 

HANDBOOK 

asserts C aeneratell lty [ new, insert ) 

Singleton: trait 

assumes Container 
introduces singleton: E - C 
constrains singleton so that for all [ e: E) 

singleton(e) = insen(new, e) 
implies coa•erts [ singleton ) 

IsF.mpty: trait 

assumes Container 
introduces isEmpty: C - Bool 
asserts for all [ c: C, e: E ) 

isF.mpty(new) 
-isF.mpty(insen(~ e)) 

implies con.erts [ isF.mpty ] 

Size: trait 

assumes Container 
imports Cardinal 
introduces size: C - Card 
constrains size so that 

size(new) = 0 

AdditiveSize: trait 

assumes Container 
includes Size 
constrains size, insert so that for all [ c: C, e: E ] 

size(insen(c, e)) = size(c) + 1 
implies CODYerts ( size ) 

Join: trait 

assumes Container 
introduces #.join#: C, C - C 
constrains .join so that for all [ c, cl: C, e: E ] 

c .join new = c 
c .join insen(c/, e) = insen(c .join cl, e) 

implies con•erts [ .join ] 

ElementEquality: trait imports Equality with [ E for T ] 

Member: trait 
assumes Container, ElementEquality 
introduces # € #: E, C - Bool 
constrains €, insert so that for all [ c: C, e, el: E] 

-(e €new) 
e € insen(c, el) = (e = el) I (e € c) 

implies COD\'erts ( € ) 

41 



42 THE LARCH SHARED LANGUAGE 

ElemCount: trait 
11911111es Container, ElementEquality 
imports Cardinal 
introduces count: C, E - Card 
constrains count, insert so that for all [ e, el: E. c: C ] 

count(new, e) = 0 
count(insert(c, e), el) = count(c, e) + (if e = el then 1 else 0) 

implies coHerts [ count ] 

Delete: trait 
aaumes Container 
iatroduces delete: C, E - C 
constrains delete so that for all [ e: E ] 

Containment: trait 
UIAUDes Container 

delete(new, e) = new 

includes PartiallyOrdered with [ C for<. :::>for>. t;;; for ;S, ~for~. C for T] 
coutrains C so that for all [ e: E. c: C ] c ~ insert( c, e) 
implies for all [ c: C ] new t;;; c 

Next: trait 

assumes Container 
iatroduces next: C - E 
constrains next, insert so that for all [ e: E ] 
exempts next(new) 

Rest: trait 
assumes Container 
introduces rest: C - C 
constrains rest, insert so that for all [ e: E ] 
exempts rest(new) 

Remainder: trait 
asRDles Container, Rest 
imports Cardinal 
introduces remainder: C, Card - C 
constrains remainder so that for all [ c: C, i: Card ] 

remainder(c, 0) = c 
remainder(c, i + 1) = remainder(rest(c), 1) 

implies converts [ remainder ] 

Index: trait 

assumes Container, Next, Rest 
imports Cardinal 
introduces #(#]: C, Card - E 
constrains #[#]so that for all [ c: C, i: Card] 

c[l] = next(c) 
c((i + l)] = rest(c)[1] 

implies converts [ #( #] ] 
exempts for all [ c: C ) c[O) 

next(insert(new, e)) = e 

rest(insert(new, e)) = new 



HANDBOOK 

Container Classes 

SetBasics: trait 
aaumes ElementEquality, Cont.ainer with [ {} for new ) 
includes Size with [ {} for new ), 

Member witb [ {} for new ] 
introduces delete: C, E - C 
constrains C IO that 

C partitioned tty [ E ] 
for all [ s: C, e. el: E ] 

size(insert(s. e)) = size(s) + (if e € s then 0 else 1) 
el E delete(s. e) = (el E s) ct (-(e = el)) 

implies Delete with [ {} for new ] 
coa•erts [ size, delete, E ) 

BagBasics: trait 

aaumes ElementEquality, Container with [{}for new) 
imports AdditiveSize witb [ {} for new ], 

ElemCount with [ {} for new ) 
includes Member with [ {} for new ] 
introduces delete: C, E - C 
constrains c so that 

C partitioned 1t1 [ count ] 
for all [ b: C, e. el: E ] 

count(delete(b, e), el) = count(b, el) - (if e = el then 1 else 0) 
implies Delete with [ {} for new ] 
con•erts [ size, delete, count, E ) 

CollectionExtensions: trait 
aaumes ElementEquality, Container with [{}for new] 
imports lsF.mpty with [ {} for new ], 

Singleton with [ {} for new, { #} for singleton ], 
Containment with [ {} for new ], 
Join with [ {} for new, U for .join ) 

includes F.quality with [ C for T ) 
implies COD•erts ( { #}, isF.mpty, U ) 

Setlntersection: trait 

assumes SetBasics 
introduces n: C, C - C 
constrains C so that for all [ s. sf: C, e. el: E ] 

e € (s n sf) = (e E s) ct (e E sf) 
con•erts [ n ] 

Set: trait 

asnmes ElementEquality 
imports SetBasics, Setlntersection 
includes CollectionExtensions 
implies Abelian with [ U for 0, C for T ), 

Abelian with [ n for 0, C for T ] 
converts [size, delete, E, n. U. {#}, isEmpty, =. C, :::>, t";. :2] 
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Bag: trait 
asaunes ElementEquality 
imports BagBasio 
includes CollectionExtensions 
implies Abelian with [ U for 0, C for T 1 
converts [ size, delete, count. €, U, { # }, isEmpty, =, C, ::::>, t;, :2 1 

Enumerable: trait 

imports IsF.mpty, Next. Rest 
includes Container 
constrains C 50 dlat C partitioned by [ next, rest, isEmpty ] 

InsertionOrdered: trait % For assuming "Stack or Queue" 

includes Enumerable 
introduces isFIFO: - Bool 
constrains next. rest, insert so that for all [ c: C, e: E] 

next(insert(c, e)) = if isEmpty(c) I isFIFO tbeD e else next(c) 
rest(insert(c, e)) = if isEmpty(c) I isFIFO then c else insert(rest(c}, e) 

implies con"Yerts [ next. rest ) 

Stack: trait 

includes lnsertionOrdered with [ push for insert. top for next. pop for rest. 
true for isFIFO ] 

implies for all [ stk: C, e: E ) 
top(push(.stk, e}) = e 
pop(push(.stk, e)) = stk 

Queue: trait 

includes lnsertionOrdered with [ first for next, false for isFIFO ] . 
implies for all [ q: C, e: E ] 

first(insert(q, e)) = if isF.mpty(q) then e else first(q) 
rest(insert(q, e)) = if isF.mpty(q) then new else insert(rest(q), e) 

Dequeue: trait 

includes Stack with [ insert for push, first for top, rest for pop ], 
Stack with [ enter for push, last for top, prefix for pop ] 

constrains C 50 dlat for all [ c: C, e, el: E ] 
insert(new, e) = enter(new, e) 
insert(enter(c, e), el) = enteI(insert(c, el), e) 

implies Queue, Queue with [ enter for insert, last for first, prefix for rest ] 
converts [ insert, first, last, rest. prefix], [ enter, first, last, rest, prefix ] 

Sequence: trait 

imports Dequeue, AdditiveSize 
includes Index with [ first for next ], 

Join with [ II for .join ) 
implies C partitioned by ( size, #[ #] ] 

SubSequence: trait 
imports Sequence 
includes Remainder with [ #[ # ... ] for remainder ), 

Remainder with [ #[ ... #)for remainder, prefix for rest] 



HANDBOOK 

String: trait 

imports Character 
includes Sequence with [ length for size, Char for E ] 

PriorityQueue: trait 
assumes TotalOrder with [ E for T] 
incWes Enumerable 
comtrains next, rest, insert so dlat for aD [ q: C, e: E ) 

next(illlert(q, e)) = if isF.mpty(q) dlea e 
elte if next(q) S e tllea next(q) a e 

rest(insert(q. e)) = if isFmpty(q) theD new 
else if next(q) S e tlM!ll imen(rest(q), e) else q 

implies CODlerts ( next, mt, isf.mpty ) 

Generic Operators on Containers 

CoerceContainer: trait 

assumes Container with [ DC for C ]. 
Container with [ RC for C ] 

introduces coeree: DC - RC 
constrains coerce so that for all [ de: DC, e: E ] 

coerce(new) = new 
coerce(illlert(dc, e)) = insert(coerce(dc), e) 

implies coalerts [ coerce ] 

Reduce: trait 

assumes Enumerable, 
Rightldentity with [ E for T ), 
Associative with [ E for T ] 

introduces reduce: C - E 
constrains reduce so that for all [ c: C ] 

reduce(c) = if isF.mpty(c) then unit else next(c) 0 reduce(rest(c)) 
implies CODYerts [ reduce ] 

SomePass: trait 

a.wnes Container 
introduces 

test: E, T - Bool 
somePass: C, T - Bool 

constrains somePass so that for all [ c: C, e: E, 1: T ] 
-somePass(new, 1) 
somePass(insert(c, e), 1) = test(e, I) I somePass(c, 1) 

implies CODYerts [ somePass ] 
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AllPass:trait 

assumes Container 
introduces 

test: E, T - Bool 
allPass: C, T - Bool 

constrains allPass so that for all [ c: C, e: E, t: T ] 
allPass(new, t) 
allPass(insert( c, e). t) = test( e, t) & allPass( c, t) 

implies converts [ allPass ] 

Sift: trait 

aaumes Container 
introduces 

test: E, T - Bool 
sift: C, T - C 

constrains sift so that for all [ c: C, e: E, t: T ] 
sift(new, I) = new 
sift(insert(c, e), t) = if test(e, t) then insert(sift(c, t), e) else sift(c, t) 

implies CODYerts ( sift ) 

PairwiseExtension: trait 

assumes InsertionOrdered 
introduces 

extOp: C, C - C 
elemOp: E, E - E 

constrains extOp so that for all [cl, cl: C, el, el: E] 
extOp(new, new) = new 
extOp(insert(c/, el), insert(c2, e2)) = insert(extOp(c/, cl), elemOp(el, e2)) 

implies converts [ extOp ] 
exempts for all [ c: C, e: E ] 

extOp(new, insert(c, e)), 
extOp(insert(c, e), new) 

Pointwiselmage: trait 

assumes Container with [ DC for C, DE for E ], 
Container with [ RC for C, RE for E ] 

introduces 
extOp: DC - RC 
pointOp: DE - RE 

constrains extOp so that for all [ de: DC. de: DE ] 
extOp(new) = new 
extOp(insert(dc, de)) = insert(extOp(dc), pointOp(de)) 

implies converts [ extOp ] 



Nonlinear Structures 

BinaryTree: trait 

imports Cardinal 
introduces 

<#>: E- C 
(#. #): c. c - c 
#.left: C - C 
#.right: c - c 
size: C - Card 
isLeaf: c- Bool 
content: C - E 

constrains C so that 

HANDBOOK 

C paerated lly [ <#>, (#. #) ] 
C partitioned "1 [ .left, .right. content. isLeaf ) 
for all [ ti, tr: C, e: E ] 

(<ti, tr>).left = ti 
(<ti, tr>).right = tr 
size(<e>) = 1 
size(<tl, tr>) = size(tl) + size(tr) 
isLeat{ (e)) 

-isLeat(<tl, tr>) 
content(<e>) = e 

implies for all [ t: C ] isLeaf(t) = (size(t) = 1) 
conYerts [ .left, .right. size, isLeaf. content ] 
exempts for all [ ti, tr: C. e: E] (<e>).left, (<e>).right. content(<tl, tr>) 

BasicGraph: trait 

assumes Equality with [ Node for T ] 
imports Set with [ NodeSet for C, Node for E ]. 

Pair with [ Edge for C. Node for Tl, Node for T2 ] 
introduces 

empty: - Graph 
addNode: Graph. Node - Graph 
addEdge: Graph. Edge - Graph 
nodes: Graph - NodeSet 
adj: Node, Graph - NodeSet 

constrains Graph so that 
Graph pnerated by [empty, addNode, addEdge] 
Graph partitionetl "1 [ nodes. adj ] 
for all [ g: Graph. e: Edge, n, nl: Node ] 

nodes( empty) = {} 
nodes(addNode(g, n)) = insert(nodes(g), n) 
nodes(addEdge(g, e)) = insert(insert(nodes(g), e.first), e.second) 
adj( n, empty) = {} 
adj(n, addNode(& n/)) = adj(n, g) 
adj( n, addEdge(g, e)) = 

if n = (e.first) then insert(adj(n, g), e.second) else adj(n, g) 
implies conYerts [ nodes, adj ] 
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Connectivity: trait 

assumes Equality with [ Node for T ], BasicGraph 
iatroduces 

reach: NodeSet. Graph -+ NodeSet 
allReach: NodeSet. NodeSet, Graph -+ Dool 
connected: Graph - Bool 

constrains reach, allReacb, connected so that 
for aH [ g: Graph, e: F.dge, ns, nsl: NodeSet. n: Node ] 

reacb(ns, empty) = {} 
reach(ns, addNode(g, n)) = reach(ns, g) 
allReacb( {}. ns, g) 
allReach(inserc(ns, n), nsl, g) = 
allReacb(ns, nsl, g) cl (ns/ C reach({n}, g)) 
connected(g) = allReach(nodes(g), nodes(g), g) 

implies CODYerts [ allReacb, connected ] 

Graph: trait 

assumes Equality with [ Node for T ] 
imports BasicGraph 
inclwles Connectivity. 

Connectivity with [ stronglyConnected for connected, pathReach for reach, 
allPathReach for allReach ] 

constrains reach, allReach, connected so that 
for aH [ g: Graph, e: F.dge, ns: NodeSet ] 

reacb(ns, addEdge(g, e)) = reach(ns, g) U 
(if (e.tirst) E ns then insert(reach({(e.second)}, g), (e.second)) 
else if (e.second) E ns then insert(reach({(e.tirst)}, g), (e.first)) 
else{}) 

constrains pathReach, allPathReach, stronaiyConnected so that 
for all [ g: Graph, e: Edge, ns: NodeSet ] 

pathReach(ns, addEdge(g, e)) = pathReach(ns, g) U 
(if ( e.first) E ns 

then insert(pathReach({ ( e.second)}, g), ( e.second)) 
else{}) 

implies conYerts [ reach, allReach, connected, pathReach, allPathReach, 
stronglyConnected ] 



Rinp, Fields. and Numbers 

Ring: trait 

HANDBOOK 

includes AbelianGroup with [ + for 0, 0 for unit, -# for inv ]. 
Semigroup with [ • for 0 ], 
Distributive 

RingWithUnit: trait 
includes Ring, Identity with [ • for 0, l for unit ] 

lntixlnverse: trait 

assumes Inverse 
introduces #0#: T, T - T 
constrains # 0 # so that for all [ x, y: T ] 

x 0 y = x 0 inv(y) 
implies COD'ferts ( # 0 # ) 

Integer: trait 
includes RingWithUnit with [ Int for T ], 

Ordered with [ Int for T ], 
lnfixlnverse with [ + for 0, - # for inv, - for 0, Int for T] 

asHrts Int aenerated hy [ 1. +, - # 1 
for all [ x: Int ] 

x < (x + 1) 
implies Rational without [ -1• I] with [ Int for R] 
COD'ferts ( 0, *, #-#, =, S. >. <, >) 

Field: trait 
includes RingWithUnit 
introduces #" 1 : T - T 
constrains •, -l so that for all [ x: T ] 

(x = 0) I ((x*(x"1)) = 1) 
exempts cr1 

Rational: trait 
includes Field with [ R for T ], 

Ordered with [ R for T ], 

asserts 

lnfixlnverse with [ + for 0, - # for inv, - for 0, R for T ]. 
Infixlnverse with [ • for 0, #"1 for inv, I for 0, R for T] 

R aenerated by ( 1, +. - #. -1] 
for all [ x. y. z: R ] 

0 < l 
((x + z) < (y + z)) = (x < y) 
(x = 0) I ((0 < (x"1)) = (0 < x)) 

implies con'ferts [ 0, •, #-#,I, =. <. >. <. >] 

-----------------
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Lattices 

ExtremalBound: trait 
assumes PartialOrder 
includes AbelianSemigroup with [ .glb for 0 ] 
constrains .glb so that for all [ x, y, z: T ] 

(x .glb y) :S x 
((z S x) 8' (z < y)~(z :S (x .glb y)) 

Semilattice: trait 
includes PartiallyOrdered, 

ExtremalBound, 
ExtremalBound with [ ~ for < . .lub for .glb ] 

introduces J..: - T 
constrains J.. so that for all [ x: T ] 

x ~ J.. 
implies AbelianMonoid with [ J.. for unit, .lub for 0 ] 

Lattice: trait 
includes Semilattice 
introduces T: - T 
constrains T so that for all [ x: T ] 

x<T 
implies Lattice with [ T for J.., J.. for T, .glb for .tub, .lub for .glb, 

>for :S. <for>.> for<.< for>] 
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Enumerated Data Types 

Enumerated: trait 

hnforts Ordinal 
incWes Ordered 
intmduces 

first: - T 
last: - T 
succ: T- T 
pred: T - T 
ord: T- Ord 

asserts T aenerated 1ty [ first. succ ] 
T partitioned by [ ord ] 
for all [ x. y: T ] 

ord(first) = first 
ord(succ(x)) = if x = last then ord(last) else succ(ord(x)) 
pred(succ(x)) = if x = last thea pred(last) else x 
x S y = ord(x) :S ord(y) 

implies T aenerated 1ty [ last. pred 1 
forall[x:T] 

succ(pred(x)) = if x = first then succ(first) else x 
first :S x 
x <last 

CODYerts ( =, <-:>. <, > ) 
Rainbow: trait 

includes Enumerated with [ Color for T ] 
introduces 

asserts 

red: - Color 
orange: - Color 
yellow: - Color 
green: - Color 
blue: - Color 
violet: - Color 

Color aenerated by [ red, orange, yellow, green, blue, violet ] 
first = red 
last = violet 
succ(red) = orange 
succ( orange) = yellow 
succ(yellow) = green 
succ(green) = blue 
succ(blue) = violet 

implies con•erts [ pred, last, ord, =. :S. >. <.>.red, orange, yellow, green, blue, 
violet], 
[ succ, first, ord, =. <. >. <. >.red, orange, yellow, green. blue, violet] 

Character: trait includes Enumerated with [ Char for T ] 

% For each programming language there will be mappings from character and string constants to 

% terms in the shared language. Because of the variety of character orderings and notations for 

% constants, these definitions are not likely to be portable acl'O§ programming languages. 
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Display Traits 

% The following traits represent a fairly straightforward translation of the specificatiQns in 
%_"Formal Specification as a Design Tool" (CSL-80-1). We have not attempted to btiprove the 
% 1esign presented there, merely to translate it into ~h. 

Coordinate: trait introdul'eS minus: Coordinate, Coordinate - Coordinate 
mumination: trait introduces combine: Illumination. Illumination - Illumination 

Boundary: trait introduces apply: Boundary, Coordinate - Dool 
Transform: trait introduces apply: Transformation. Coordinate - Coordinate 
Displayable: trait 

introduces 

Picture: trait 

appearance: T. Coordinate - Illumination 
in: T, Coordinate - Boot 

aamnes Boundary. Transform. Illumination. 
Displayable with ( Contents for T ) 

includes Displayable with [ Picture for T ) 
introduces makePicture: Contents, Boundary, Transformation - Picture 
constrains Picture so that 

Picture paerated lty [ makePicture I 
for all [en: Contents. b: Boundary, 1: Transformation, cd: Coordinate] 

appearance(makePicture( en, b. 1), cd'J = 
appearance(cn, apply{t, cdJ) 

in(makePicture{cn, b, 1), cdJ = apply(b, cdJ 
implies con•erts [ appearance: Picture. Coordinate - Illumination, 

in: Picture, Coordinate - Dool) 
Contents: trait 

aamnes Coordinate, Illumination. Displayable with [ Component for T ] 
includes Displayable with [ Contents for T ] 
introduces 

empty: - Contents 
addComponent: Contents. Component. Coordinate - Contents 

constrains Contents so that 
Contents paerated lty [ empty, addComponent ) 
for all [ en: Contents, cm: Component, ed. cdl: Coordinate ) 

appearance(addComponent(cn, cm. cdl), cdJ = 
if in(cm. minus(cd cdl)) 
then (if in(cn, cd) 

then combine(appearance(cm. minus(cd, Clfl)), 
appearan¢e(cn, cdJ) 
else appearance(cm, minus(cd cdl))) 

else appearance(cn, cdJ 
-in(empty, cdJ 
in(addComponent(cn, cm, cdl), cd) = 

in(cm. minus(Clf. cdl)) I in(cn, cd) 
implies con•erts [ appearance: Contents. Coordinate - Illumination. 

in: Contents. Coordinate - Dool ) 
exempts for all ( cd· Coordinate ] appearance( empty, ed) 
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Component: trait 

assumes Displayable with [ View for T ]. 
Displayable with [Text for T]. 
Displayable with [ Figure for T ] -

includes ComponentCoercion with [ View for T. coerce View for coerce 1. 
ComponentCoercion with (Text for T, coerceText for coerce]. 
ComponentCoercion with ( Fipre for T, coerceripre for coerce ] 

ComponentCoercion: trait 
assmaes Displayable 
includes Displayable with [ Component for T ) 
introduces coerce: T - Component 
constrains Component so that fer all [ t: T, ed: Coordinate ] 

appearance(coerce(t), et/J = appearance(t. ed) 
in( coerce( t), cdj = in('· eel) 

View: trait 

usumes Displayable with ( Picture for T ]. 
Equality with ( Pictureld for T ]. 
Container with [ IdList for C. Pictureld for E ], 
Coordinate 

includes Displayable with [ View for T ] 
introduces 

empty: - View 
addPicture: View. Coordinate. Pictureld, Picture - View 
findPictures: View. Coordinate - IdList 
deletePicture: View, Pictureld - View 

constrains View so that 
View paerated lty [ empty. addPicture ] 
for all [ v: View, ed. all: Coordinate. id. id/: Pictureld, p: Picture] 

appearance(addPicture(v, all, id. p), ed) = 
if in(p, minwr(~ al/)) then appearance(p, minus(ed. edl)) 
else appearance( v, ed) 

-in(empty, eel) 
in(addPicture(v, all, id. p), ed) = (in(p, minwr(ed. edl)) I in(v, ed)) 
findPicture9( empty, ed) = new 
findPicturel(addPicture(v, edl. id. p). ed) = 

if in(p. minwr(ed. all)) thea insert(id. findPictures(v, ed)) 
else ftndPictures(v. et/J 

deletePicture(empty, id) = empty 
deletePicture(addPicture(v, edl, id/, p), id) = 
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if id .eq id/ then v else addPicture(deletePicture(v, id). ed. id/, p) 
implies coolerts [ findPictures, deletePicture, 

appearance: View, Coordinate - Wumination, 
in: View, Coordinate -+ Boot ] 

exempts for all [ ed: Coordinate ] appearance( empty, ed) 

Display: trait 

assumes Boundary, Transform. Illumination. Coordinate. 
Equality with [ Pictureld for T ), 
Container with ( IdList for C, Pictureld for E ] 

includes Picture, Contents, Component, View 



54 DIE l..AR.OI SHARED LANGUAGE 

References 

(ADJ 78] 
J.A. Goguen. J.W. Thatcher, and E.G. Wagner, .. Initial Algebra Approach to the Specification. 
Correctness, and Implementation of Abstract Data Types." in R.T. Yeh (ed.), C'Wrent Trends in 
Programming Methodology, Vol JV. Data Structuring, Prentice-Hall. f.nglewood Cliffs. 1978. 

[Surstall and Goguen 77] 
R.M. Burstal1 and J .A. Goguen. .. Putting Theories Together to Make Specifications." 

Proc. 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, 1977, 
1045-1058. 

[Burstall and Goguen 81] 

R.M. Burstall and J.A. Goguen, .. An Informal Introduction to Specifications Using CLEAR," 
in R. Boyer and J. Moore (eds.), The Correctness Problem in Computer Science, Academic PreSS, 
New York. 1981, 185-213. 

[Forgaard 83) 
R. Forgaard, "A Program for Generating and Analyzing Temi Rewriting Systems," 
S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, 
to appear, 1983. 

[Guttag 75) 

J.V. Guttag, ''The Specification and Application to Programming of Abstract Data Types," 
Ph.D. Thesis, Computer Science Department, University of Toronto, 1975, 1-149. 

[Guttag and Horning 80) 

J.V. Guttag and J.J. Horning, "Fomial Specification as a Design Tool," 
Proc. A.CM Symposium on Principles of Programming Languages, Las Vegas, Jan. 1980, 251-261. 

[Guttag and Homing 83] 

J.V. Guttag and J.J. Horning, "An Introduction to the Larch Shared Language," 
Proc. /FIP Congress '83, Paris, 1983. 

[Guttag, Horning, and Wing 82) 

J.V. Guttag, JJ. Horning, and J.M. Wing, "Some Notes on Putting Fomial Specifications to 
Productive Use," Science of Computer Programming, vol. 2, Dec. 1982, 53-68. 

[Kownacki 83) 

R. Kownacki, "A User's Guide to the Larch Shared Language Specification Checker," 
Laboratory for Computer Science, Massachusetts Institute of Technology, to appear. 1983. 

[Lescanne 83) 

P. Lescanne, "Computer Experiments with the REVE Temi Rewriting System Generator," 
Proc. ACM Symposium on Principles of Programming Languages, Austin, Jan. 1983, 99-108. 



fM-80) 
DJl. .. _. ... Abllaut Diii...,,. ,, ,, ......... . 
IEEE Tnn11iiou • &tutr•• .l:G11111 11W \1111. 1. 1-»a 

(Wllld 79) 
;... M. Wad. ~ Atar'1• S•wm'ce _.Dita.,.. Iii .lf'D•" 

·:-: ,/.,./"1'0PIU'l,_._,,._Sdtllllll._lf. ..... 
·IWIDI Ill 

J.M. W"Jlll. "A Two-n..l AIJ•-* fO lplri .... l't $1 " 

Pb.I>. Tllllil. I •• .., Ill c 11 111rr •111•• •• 1.•1u.m1 · lt1111• ofT~. 
May 1913. 

(Z8Cblry ll) 
JJ... z.Mry, •A S,._·D11111• lpui&:ltimt..._,. 

s.w. '1111111. '..,'"' .,Ct ... •rtc••••· .,.,. ra111n11Pl••ofT....._. 
Ma'.1913. 


