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1. Introduction 

The tremendous engineering advances made in Very Large Scale Integration (VLSI) fabrication 
technology have stimulated considerable theoretical interest in VLSI circuit layout problems. 
Most or this effort has centered on minimizing the layout area of a circuit on a chip. This is due, 
in part, to the fact that layouts which consume large amounts of chip area are more expensive 
to fabricate, less reliable and harder to test than layouts which consume smaller amounts of chip 
area. 

Other layout-related issues that have been studied include: minimizing propagation delay 
(either by decreasing wire lengths or by increasing transistor sizes), minimizing the number or 
wire crossings in a layout, producing regular layouts for gate-arrays, designing chips that can 
later be configured to realize a large number or circuits, configuring networks around defective 
cells on a wafer, and assembling large systems of processors from copies or a single basic chip 
which has few external pin connections. 

Most theoretical techniques devised thus far are based on the divide-and-conquer paradigm 
and require the use of a separator theorem to recursively partition a given circuit. Although 
separator-based techniques work well for some graphs, they perform very poorly for others. 

In this paper we propose an alternative framework for solving VLSI graph layout problems. 
Like previous approaches, the new framework is based on the divide-and-conquer paradigm. 
Instead of using a separator theorem to recursively partition a graph, the new framework requires 
the use or a bifurcator. The difference between bifurcators and separators will, or course, be 
explained in the paper, but the two primary advantages or bifurcatora over separators may be 
stated here. First, unlike separators, birurcators may be efficiently computed using either a good 
graph partitioning heuristic, or from a layout with small area. Second, buurcators can be used 
to produce layouts that are efficient in a variety of respects, not layout area alone. 

For example, using the notion or bifurcators, an area-efficient layout can be transformed into 
a layout which is both area-efficient and also has small propagation delay. The same result 
can also be achieved if, instead of an area-efficient layout, we use an eftlc:ient graph biaection 
heuristic. Separator theorems are inherently weaker than birurcatora for such purposes, and no 
other approach is known to enjoy the versatility of birurcaton. 

This paper is based on, and unifies the work contained in three extended abstracts by Bhatt 
and Leis.erson [3, 4) and Leighton [21J. Although the resulta are self-contained, some familiarity 
with recent results in VLSI layout theory would be helpful in reading this paper. A fairly 
comprehensive list of recent research papen is included in the referencea. In particular, Ullman 
[43) provides a good introduction to iuuea in VLSI layout theory. 

-

The paper is divided into nine sections. In Section 2, we review the layout model and the 
separator-based approach to VLSI layout. In Section 3, we formally state eight VLSI layout 
problems and briefty review the progress made on each problem. The combinatorial lemmas 
proved in Section 4 provide the basis of the new framework deecribed in Section 5. In Section 
6, we describe how the framework can be used to efficiently solve the eight layout problema 
described in Section 3. Section 7 shows how a good graph bisection heuriatic can be used to 
produce a provably good layout strategy. In Section 8, we prove that the upper bounds for area, 
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crossing number and minimax edge length found in Section 6 are existentially optimal. The paper 
concludes with some remarks and open questions in Section 9. 

2. Background 

Thomspon (41, 42) provided the first formal model for VLSI circuit layout. The model ia 
limply stated and captures the important aspects of ·layout -problems in a realistic manner. A 
brief description of the model is included in Section 2.1. In addition, Thompson also proved 
10me elementary upper and lower bounds on the area required to lay out an arbitrary graph, 
which are discussed in Section 2.2. More general bounds were obtained later by Leiserson (26, 
27) and Valiant (45), who independently developed a divide-and-conquer layout strategy baaed 
on separator theorems. Section 2.3 summarizes their results and highlights a major deficiency of 
any layout scheme based on separator theorems. 

2.1. The Layout Model 

In order to cast VLSI layout problems within a mathematical framework, Thompson [41, 42) 
developed a formal model for VLSI graph layout. The model is.based on, and is consistent with, 
the VLSI design rules established by Mead and Conway (31). It is also similar to the widely used 
Manhattan wiring model. In the Thomspon grid mode~ a layout for a graph is characterized as 
an embedding within a two-dimenaional grid. A two-dimensional grid is a collection of horizontal 
and vertical tracks spaced apart at unit intervals. A layout for a graph G is specified by an 
embedding which assigns nodes of G to points in the grid where horizontal and vertical tracks 

··intersect, _together with an (incidence-preserving) assignment of the edges of G to paths in the 
grid. The paths of the layout are restricted to follow along grid tracks and are not allowed to 
O'lerlap for any distance (although a vertical path segment may cross a horizontal path segment). 
In addition, the paths may not cross nodes to which they Fe not adjacent. For obvious reasona, 
we restrict our attention to graphs in which no node has degree greater than four. As an example, 
Figure 1 shows a layout for the complete graph on four nodes. 

I I -r I 
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Figure 1. A layout with area 15. 
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Figure 2. Every N-node graph can be laid out in O{N2} area. 

Remark. The results in this paper easily extend to variants of the Thomspon grid model. For 
example, graphs with bounded valence greater than four may be laid out by mapping each node 
to a region of the grid, instead of a single grid point. The results are also applicable to networks 
with large processors. Techniques for dealing with large processors are described more fully in 
the discussion of Problem 5 in Sections 3 and 6. 

2.2. Elementary Bounds on Layout Area 

Although there are a variety of important engineering considerations in choosing one layout 
for a graph over other possible layouts, the best understood, and perhaps the most desirable 
cost measure to minimize is layout area. The area of a layout is most naturally defined as the 
area of the "bounding-box" around the layout, and equals the product of the number of vertical 
tracks and the number of horizontal tracks that contain a node or wire segment of the graph. For 
example, the layout of Figure 1 bas area 15. Thia is not the minimum possible; there is another 
layout with area 9. 

How much area does an N-node graph require? Clearly, the area cannot be less than the 
number N_ of nodes. On the other hand, by embedding nodes at equally spaced intervals along 
a line, and using a distinct horizontal track for each edge (as shown in Figure 2), it is clear that 
the area required for an N-node graph is no greater than O{N2 ). These bounds are independent 
of the structure of the graph and hold for all N-node graphs. In general, however, the minimum 
area needed to lay out a graph depends on the graph. 

Thompson [41, 42} identified bi.section width as an important property of graphs that aifecta 
minimum layout area. The bisection width of a graph is the minimum number of edges which 
must be removed from the graph in order to disconnect it into two equal-size pieces. (Two 
graphs are said to be of equal size if the difference in the numbers of nodes is no more than one.) 
Thompson showed that, up to a constant factor, the layout area can be no less than the square 
of the bisection width. Therefore, if the bisection width for a graph is known, a lower bound 
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on area can be easily computed. By showing that certain computationally powerful graphs such 
as the shuffle-exchange graph have large bisection width, Thompson showed that these graphs 
require large area. In fact, Thompson extended this observation to obtain area-time tradeoft's for 
computing certain functions. 

Leighton [19, 20] identified crosaing number as another general property that affects layout 
area. The crossing number of a graph is defined as the minimum number of edge croBBings in 
any drawing of the graph in the plane. It is easy to 'see that the cro11ing number of a graph is 
a lower bound on layout area. Using more sophisticated arguments for special graphs, Leighton 
also directly obtained lower bounds on total wire length (the sum of the lengths of the wires in a 
layout), which of course is a lower bound on layout area. These techniques are heavily dependent 
on the recursive structure of the special graphs and will be generalized in Section 8. 

2.3. Layouts Based on Separator Theorems 

Leiserson [26, 27] and Valiant [45J investigated general properties that provide effective upper 
bounds on layout area. They independently developed a divide-and-conquer strategy for graph 
layout and showed, for example, that every N-node tree can be laid out in O(N) area and that 
every N-node planar graph can be laid out in O(N log2 N) area. Their technique is ba1ed on the 
notion of separator theorems for graphs. 

Definition: A class of graphs which is closed under the subgraph relation is said to have 
an f(x)-separator theorem if there exist constants a and b where 0 < a < 1/2 and b > 0 
such that every N-node graph in the class can be partitioned (by the removal of at most 
bf(N) edges of the graph) into disjoint subgraphs having a' N and (1 - a')N nodes where 
a< a'~ 1-a. 

Given a class of graphs for which a separator theorem is known (e.g., trees have a 1-separator 
theorem [28] and planar graphs have a '\/'i-separator theorem [29]), it is po11ible to construct a 
layout for any N-node graph in the class by using a simple divide-and-conquer approach. For 
example, Leiserson [26, 27] proved the following upper bounds on layout area. 

x0 -separator theorem 

Q < 1/2 
Q = 1/2 
Q > 1/2 

Layout Area 

O(N) 
O(Nlog2 N) 

O(N20) 

Remark. The complete recursive decomposition of a graph must be provided as input before 
layouts achieving the desired area bounds can be constructed by the procedure. There is no 
polynomial time algorithm known that achieves the area bounds if the decomposition is not 
provided. This severely limits the applicability of separator-based layout strategies to classes or 
graphs (such as trees or planar graphs) for which actual decompositions are known. 

How good are the preceding area bounds? Thompson [41, 42) and Leighton [19, 20) showed 
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that none of the bounds can be improved. More precisely, they showed that within each claaa 
there is a graph for which the bound is optimal. But this does not mean that the bounds are 
optimal for every graph within a class. In fact, while the bounds are existentially optimal, they 
are not universally optimal. For example, an N-node square grid requires area N, but since the 
minimum separator theorem for the class or square grids is 'l/Z, the best bound obtainable by 
separator-based layouts is O(N log2 N), which is off by a factor of O(log2 N) from the optimal. 
or course, since N-node graphs require area at least N, the bounds for graphs with x0 -separator 
theorems, where Q < 1/2, are asymptotically universally optimal. 

For graphs with larger separator theorems, the discrepancy between the minimum layout area 
and that given in the table can be much worse. Consider, for example, the N-node graph SN 
which consists of N /log N disjoint log N-node expander graphs. We define an m-node expander 
graph to be a graph for which any subset of k nodes is linked by 0(min(k, m - k)) edges to the 
m - k nodes outside the subset. The bisection width of such a graph is O(m), and hence the 
minimum separator theorem is 0(x). The existence of trivalent graphs that satisfy this defintion 
has been known for a long time [12, 15, 44). In fact, almost all trivalent graphs satisfy this 
definition. We caution the reader that the term "expander graph" has two definitions in the 
literature. The other definition is sufficient for our purposes and probably more standard but 
requires graphs with higher node degrees. Since each log N-node expander graph can be trivially 
laid out in O(log2 N) area, the layout area of SN is no greater than O(N log N). However, 
Leighton [21] showed that the minimum separator theorem for the class of graphs SN exceeds 
n(x/ log2 x), so that the area bound from the table above is O(N2 / log4 N), which is much worae 
than the optimal bound of O(N log N). 

Remark. The careful reader will notice (as did the referee) that any class of graphs closed 
under the subgraph relation and containing SN, must also contain expander graphs. Hence, the 
minimum separator for the class is 0(x). In order to get around such technicalities with the 
definition, the concept of a separator is often just applied to a single graph and the subgraphs 
produced by its recursive decomposition. Using the less restrictive (but more useful) definition, 
it is possible to show that SN has an O(N /log N)-separator. The log N-node expander graphs 
are split in the upper levels of the decomposition and never appear intact as subgraphs in the 
lower levels of the decomposition. Leighton proved that even using the most liberal definition, 
the minimum separator for SN is at least O(N / log2 N). Any bound on layout area for SN based 
on the rajnimum separator can be no less than O(N2 / log4 N). 

Thus, while the divide-and-conquer strategy based on separator theorems gives existentially 
optimal bounds, the bounds can be unacceptably poor in a universal sense. It was the discovery 
of such large discrepancies that led to the search for an alternative framework for VLSI layout. 
Within the new framework presented in Section 5 we shall see how these large discrepancies are 
overcome. 

3. Eight VLSI Graph Layout Problems 

As mentioned earlier, there are many important considerations in choosing one layout over a 
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multitude of other possible layouts. The problems in this section are motivated by some of the 
basic engineering concerns. Although this list is not meant to be exhaustive, it covers most of 
the theoretical issues studied recently. Many of the problems are known to be NP-Complete, IO 

the solutions we later obtain will, of course, not be optimal. Rather, the major emphasis or this 
paper is the development of a general framework for handling layout problems efficiently and in 
a uniform manner. Within the framework, solutions to some problems are close to optimal. For 
other problems, good heuristics are developed and/or general bounds are obtained. 

Problem 1. Given a graph G, produce an area-efficient layout for G. 

As mentioned before, minimizing area is a critical concern in VLSI circuit layout. In addition 
to the work on area-efficient layouts described in the previous section, Dolev, Leighton, and 
Trickey !9) have shown that determining the min~mum layout area or a forest of trees is NP
Complete. 

Problem 2. Given a graph G, produce an area-efficient layout for G with minimax edge length. 

Besides area, speed is another critical factor in chip performance. Signals do not propagate 
instantaneously across wires, and the longer the wire, the longer the propagation delay. In 
pipelined or systolic systems, the effect of propagation delays is even more dramatic. The 
maximum delay determines the clockperiod, and hence the throughput, of the system. To 
maximize throughput we need to minimize the maximum delay. In short, we must produce 
layouts so that the longest edge is as short as posslble. The minimum, over all layouts, of the 
length of the longest edge is called the minimax edge length. 

Paterson, Ruzzo and Snyder (34) studied the problem of minimizing edge lengths for complete 
binary trees. They showed that the minimax edge length of an N-node complete binary tree is 
9( v'N /lg N). Adopting a different strategy based on separator theorems, Bhatt and Leiserson 
[3) subsequently extended the upper bound portion of the result to arbitrary trees, and to all 
graphs with small (i.e., :r:a, Q < 1/2) separator theorems. Bhatt and Coamadakis [2) showed that 
computing the minimax edge length of a tree is NP-Complete. 

Problem 3. Given a graph, produce an area-efficient layout in which each wire has bounded 
delay in the capacitive model. 

Although it is certainly true that propagation delay acro11 a wire depends on the length 
or the wire, there has been little consensus on how fast propagation delay grows as a function 
of wire length. Thompson (41, 42) assumes propagation delay to be constant, independent or 
wire length. This might seem unreasonable given the ultimate speed-of-light limitation which 
indicates that the delay increases linearly with length. The spped-of-light limitation, however, 
greatly exaggerates the importance of wire delay in determining the speed of circuits. Mead and 
Conway [31 J take into account some of the electrical characteristics of interconnectiona on MOS 
integrated circuits, and emphasize the role of wire capacitance in determining propagation delay. 
Recent analysis by Bilardi, Pracchi, and Preparata [SJ strongly supports the belief that capacitive 
effects play the predominant role in determining the speed of MOS circuits. 
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In a capacitive model, each wire is assumed to present a purely capacitive load to the transistor 
that drives a signal across thewire. This load is proportional to the length of the wire plus the 
area of the transistor that receives the signal. The delay is proportional to this load divided by 
the area of the driving transistor. By increasing the size of the driving transistor it is therefore 
possible to bound the propagation delay, independent of the length of the wire. A second well
known technique for reducing delay across a long wire is to "ramp" the wire with a geometrically 
increasing series of inverters [31). The number of intermediate drivers, and hence the delay, is 
logarithmic in the length of the wire, but an attractive feature is that this proceas can be carried 
out without the need to resize the original transistors in the circuit. 

Of course, increasing the size of one transistor or introducing new transistors might force some 
wires to be stretched to avoid the enlarged transistor area. In other words, decreasing the delay 
across one wire might force an increase in delay over other wires. Leiserson [24) and Mehlhorn [32) 
independently posed the question of whether or not the transistors in a layout could be resized so 
that every wire in the layout has constant propagation delay. Ramachandran [36) investigated 
the problem of introducing intermediate drivers along long wires to decrease delays, but under 
the constraint that the topology of the layout remain unchanged. With the restriction that wires 
can not be rerouted, she showed that logarithmic delay can be achieved, but at the expense of 
squaring the layout area in the worst case. We allow the layout topology to be changed, and 
obtain significantly better results. 

Problem 4. Given a graph G, produce a layout for G with few wire croaainga. 

An undesirable feature of layouts is the presence of a large number of wire crossings. When 
two wires cross, they must be on different layers. For faster operation, and less power dissipation, 
it is advantageous to maximize the total amount of wiring on a layer of low resistance, e.g. the 
metal layer, while minimizing the wiring on a layer of high resistance, e.g. the polysilicon layer. 
The net wiring on one layer may be reduced by laying wires on that layer only just before and 
after two wires cross. If the number of wire crossings is small, the number of contact-cuts which 
connect wire segments on different layers is small so that the area of the layout is not blown up 
by the contact cuts which occupy large area. In addition, long wires that are crossed by many 
other wires are susceptible to cross-talk when all the crossing wires simultaneously carry the same 
signal. 

The crossing number of a graph is defined to be the minimum number of wire crossings in any 
drawing of the graph on the plane. Leighton [19, 20) proved upper and lower bounds on croHing 
numbers and then used the results to find bounds on layout area. Garey and Johnson (14) showed 
that determining the crossing number of bipartite graphs is NP-Complete. 

Problem 5. Given a graph, produce an area-efficient regular layout for the graph. 

Some design methodologies, most notably gate-arrays, require that processors be located at 
fixed positions on a chip. In gate-arrays the processors are placed in a grid pattern with uniform 
spacing between processors adjacent along every row and column. Such layouts are said to be 
regular. An important advantage of this design restriction is its flexibility: even if the size or 
every processor is increased, the wiring between processors remains unaffected and the total 

8 



area remains proportional to the sum of the wire area (as computed with unit-size processors) 
and the processor area. This is because only the VN rows and columns containing the N unit. 
size processors need to be expanded to accomodate the non-unit-size processors. In non-regular 
layouts, every row and column might have to be expanded since there might be a node in every 
row and in every column. Increasing the linear dimension of the processors by a factor of s could 
result in an 0(s2 ) increase in layout area. 

Previous divide-and-conquer layout strategies do ·not produce regular layouts. Hence, they 
are not useful in laying out circuits with non-unit-size processors. A good strategy for producing 
regular layouts would solve the nagging problem of how to cope with variable-size processors. 

Problem 6. Design area-efficient chips that can be configured to realize a large number of graphs. 

Because it is expensive to make one chip but cheap to make many copies, manufacturers of 
custom chips have been encouraged to make configurable designs such as gate-arrays, ROM's and 
PLA's. In such designs, the entire chip is prefabricated except for one layer. The customer then 
specifies a configuration for the chip, and the final layer of metalization connects up the circuitry 
in that particular way. Hence, most of the design and fabrication costs can be factored over 
many custom chips. Similarly, the fast emerging laser-restructuring technology [35) provides 
another economical way to customize chips after fabrication is complete. Laser restructuring 
allows connections between wires to be made or broken after the chip has been fabricated. In 
either case, it is desirable to design layouts that can be configured from one of a few basic patterns. 

Problem 7. On a wafer which has arbitraril71 diatributed defective cells, realize a given graph 
on the good cells. 

In any fabrication process, it is expected that some of the processing cells will be defective. 
In a two-dimensional array of cells on a wafer in which defective cells are arbitrarily distributed, 
it may still be possible to use the wafer by configuring wires around the defective cells. This 
may, for example, be performed by laser restructuring techniques [35). Given this ability to 
isolate defective cells, it is important to consider how a graph may be realized on the remaining 
good cells. This problem has received considerable attention recently [17, 22, 38). The problem 
is similar to thP. general graph layout problem in the Thompson model but with the important 
restriction that nodes of the circuit can only be mapped to a restricted set of nodes in the grid. 

Problem 8. Given a graph G, assemble G u.sing the minimum number of copies of a single chip 
having few external pin connectiona. 

A number of very large networks have been proposed in recent years for implementing priority 
queues (25), for searching [1], for direct execution of applicative programming languages [30), and 
for recognizing regular expresions [11). Some of these networks are too large to fit on a single chip. 
For example, the tree-structured network of [30) is envisioned to contain u many as one million 
processing elements. Clearly, such networks must be partitioned over many interconnected chips, 
so that each chip realizes a small portion of the network. 

The technology for packaging chips severely limits the number of external pin connection• 
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on a chip. While chips with over a million components are forseeable in the near future, no one 
predicts a chip with over two hundred external pin connections. This poaes a pressing problem 
in assembling large networks of processors. 

Even if a network could be partitioned 10 that each portion has only .a f-ew external connec· 
tions, it would be economically infeasible to design each chip individually. For instance, it would 
be prohibitively expensive to design one thousand different chipa, each containing a thousand 
processing elements, to assemble a network of one million proce11ors. For this ~n, it.is nece .. 
sary to assemble large systems using copies of .a few configurable or reatructurable chipL One 
solution to the problem of assemblin& large tree structures u$ing copies of a single, ar~·efticient, 
restructurable chip with few external pin connections was given by Bhatt and Leiserson (4]. 

Within the new framework, efficient solutions are provided for each of these problems. In fact, 
a single layout simultaneously solves many of these problems effi,ciently. The framework providea 
a two-step strategy for solving these problems. First, the graph to be laid out is embedded within 
a very special network called the tree of meshes. For the .tree of meshes it is possjble to solve all 
these problems efficiently. In the second step therefore, a good layout for the tree of meshea al.so 
solves these problems for the embedded graph. 

4. Combinatorial I.. .. emmas 

This section contains three combinatorial lemmas which provide the foundation for the framework 
presented in the next section. 

Lemma 1. Consider an:v two-ended string of n colored pearls of k different colors, and let na 
be the number of pearls which are color i for 1 s;; i s;; k. For an:v integef' r ~ 2, the pearZ. can 
be partitioned into two sets by cutting the string in no more th.an 9rk places such that the total 
number of pearls in each set is ln/2J or f n/21, the number of pearls of color 1 in each aet is Ln1/2J 
or r ni /21, and such that the number of pearls of color i > 1 in each set lies between f( 1- fr )n, 1 
and Hi+ i;)n,J. 

Proot. Let i be a number between 1 and k and let T(i) denote the number or cuts necessary 
to divide the set of all pearls into two sets that satisfy the constraints of the theorem for colora 
1, 2, ... , i. Other than requiring that the total number or pearls be split in half by the cuts, we 
hav! made no constraints on the distribution of pearls with colors greater than i. We wish to 
find a good bound on T( i) in tbe worst case, i.e., over all choices of n, k > i, and all possible 
colorings. In what follows,.we will show that T(l) = 2 and that 

T(i) < rT(i-1)+4r+7 

for i > 1. As a consequence, we can solve the recurrence to conclude that T(i) < 9r' - 15 for 
r > 2. Thus for i = k, at most 9rk cuts are required, as claimed. 

For i = 1, it is easy to show that two cuts are sufficient. Consider a "window" of size Ln/2J 
positioned at the left end of the string. Without loss of generality, assume that the window 
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covers less than l nif 2 J of the pearls colored 1. Move the window to the right, one pearl at a 
time until the window covers lni/2J pearls of color 1. Since the right half of the string contain• 
more than one-half of all pearls of color 1, there must, by continuity, exi1t a placement when the 
window covers exactly one-half of all pearls of color 1. By cutting the string at the endpoint. of 
the window, the portion of the string under the window will contain half of the total number of 
pearls and half of the pearls colored 1. Hence T(l) = 2, u claimed. 

For a given i > 1, break the string into r segments 8,, 1 < j ~ r, (making r - 1 cuts) so 
that each segment contains at least ln1/rJ pearls of color i. Next split each 8i into two subsets 
8,0 and S,i (making a total of rT(i -1) cuts) so that each split satisfies the theorem locally for 
colors 1, 2, ... , i - 1. 

Without loss of generality, assume that 8i0 contains no fewer pearls of color i than 8j1· At 
this stage, we divide the set C of all pearls into two subsets Ci and C2 as follows. Initially, let 
Ci = U S10 . If Ci contains more than l( ! + fr )niJ pearls of color i, remove Sio from C1 and 
add S11 . Repeat this procedure, successively switching 8 20 with 8 211 830 with 8311 and so on 
until the first time C 1 has at most L( ! + .j; )niJ pearls of color i. Such a stage must occur since 
the number of pearls of color i in C1 will eventually fall below r n,/21 if C1 and C2 are completely 
interchanged. The number of pearls of color i in C1 after the final switch cannot be less than 
H ! - fr )n, l - 2 since every s, contains no more than r n,/r l pearls of color i. If the number 
of pearls of color i in C1 is r(! - fr )n, l - 1 or r( ! - fr )Fii l - 2, then move either one or two 
pearls of color i from C2 to C11 making no more than four cuts. 

We also have to ensure that the total set of pearls and the pearls of the first i - 1 colors are 
divided as required. The pearls with colors between 2 and i - 1 are divided correctly becauae 
they were divided correctly at the recursive step. The counts of pearls of color 1 in C1 and C2 
may differ in size by r, however. To balance the number of pearls with color 1 in each set, we 
need only remove up to lr/2J pearls colored 1 from the excess set (making at most r cuts) and 
put them in the deficient set. To balance the difference in the overall sizes of the sets (which 
now might be as large as 2r + 4), we need only extract up to r + 2 pearls from the larger set 
(making no more than 2r + 4 cuts) and put them in the smaller set. Of course, these pearls must 
be chosen carefully so that each set retains the required minimum number of pearls of each color. 
Since pearls are extracted only from the larger set, it is clear that this requirement may be easily 
satisfied. 

The ~otal number of cuts made by the procedure is rT(i -1) + 4r + 7, as claimed. I 

Using an elegant topological argument, Goldberg and West (16) recently proved that k cuts 
suffice to divide the pearls of each color exactly in half. In contrast to Lemma 1, this is a dramatic 
reduction in the number of cuts. We state their result in Lemma 2, although we cannot include 
the proof here. We will use the stronger result in the paper since it facilitates the proofs and 
results in far smaller constants. It is very important to note, however, that all of our layout resultl 
may be proved with the weaker Lemma 1. (In fact, we have done so using r = 3, but will not 
go through the details in this paper.) Since the Goldberg-West result has not yet appeared, we 
have included Lemma 1 both for completeness and so that our results will not depend on a•yet 
unpublished work. Both results are implementable in polynomial time when the number of colora 
is fixed, as is the case throughout this paper. 
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Lemma 2. Consider any two-ended string of n pearls, ni of which are colored i, 1 < i < le. 
By cutting the string in le places it is possible to divide the pearls into two 1ets so that each 1et ha1 
a total of L n/2 J or r n/21 pearls, and L ni/2 J or r n,/21 pearl1 of color i for all i, 1 < i < 1e. 

The following lemma recasts Lemma 2 in terms of complete binary trees. This form is 
particularly useful since the recursive decomposition of a graph may be viewed as a tree. In the 
following we define the height of a tree to be the length of the longest path from the root to a 
leaf. The height of a forest is defined to be the maximum height of a tree in the forest. Finally, 
the level of a node in the forest is defined to be the height of the forest minus the length of the 
longest path from the node to a leaf. (Note that the top level is level zero.) 

Lemma 3. Consider a forest of complete binary trees whose n leaves are colored arbitrarily with 
le colors. Let n, be the number of leaves colored i for 1 ~ i ~ le. By removing no more than le 
nodes (as well as all incident edges) from each internal level of the forest, it is possible to produce 
a new forest of complete binary trees, some subset of which contains ln/2J or f n/21 leaves, and 
Ln,/2J or f n,/21 nodes of color i for each i, 1 < i ~ le. 

Proof. Draw the trees in the canonical manner and place'them side-by-side, in any order, 
so that the leaves of all trees are placed along a line. By applying Lemma 2 to the induced 
left-to-right ordering on the leaves of the forest, it is possible to break the ordering in no more 
than k places such that the union of the leaves contained in every other segment contains the 
desired total number of leaves and the desired number of leaves of each color. 

For each break, remove the nodes (and incident edges) which are simultaneously ancestors of 
the leaf immediately to the left of the break and the leaf immediately to the right of the break. 
It is easily seen that at most one node is removed from each internal level of the forest for each 
break. Therefore, no more than k total nodes are removed from each internal level. In addition, 
the removal of the common ancestors of the leaves neighboring a break divides the associated 
tree into two or more complete binary trees, at least one on each side of the break. Thus the 
removal of all such nodes produces a forest of complete binary trees, subsets of which correspond 
precisely to the sets of leaves between pairs of adjacent break points. Thus the union of the 
subsets of trees corresponding to every other segment of leaves contains the desired number of 
leaves of each color. I 

Figure 3 illustrates the proof of the preceeding lemma with a simple example. Initially, the 
forest consists of four complete binary trees with seven leaves colored 1, four colored 2, and four 
colored 3. Figure 3a shows a leveled drawing of the forest along with three breaks (denoted by 
dashed vertical lines} in the line of leaves. The union of leaves in the ftrat and third interval• 
contains three leaves colored 1, two of color 2, and two of color 3. In Figure 3b the internal node1 
to be removed are marked X. Figure 3c shows the new forest produced by the removal of the 
marked internal nodes. 
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Figure 3. An illuatration of the procedure de1cribed in Lemma 9. 

5. The New Framework 

In this section, we describe the new framework for solving VLSI graph layout problems. 
We start by defining the notions of decompoaition treea and bifurcatora (or graphs. Using the 
combinatorial lemmas from Section 4, we devise procedures for balancing decomposition tree• 
and bifurcators. In Section 5.3, balanced decomposition trees are used to embed graphs within 
the tree of meshe1. Section 5.4 provide• efficient layouts for the tree of meahes. Taken together, 
the embedding of a graph in the tree of meshes and the layout for the tree of meshes induce a 
layout for the original graph. 

5.1. Decomposition Trees and Bifurcators 

The recursive decomposition of a graph into smaller and smaller subgraphs may be viewed as 
a decomposition tree. In particular, we say that a graph G has an (Fo,F1, •.. , Fr )-decompo1ition 
tree if G can be decomposed into two subgraphs Go and G1 by removing no more than Fo edge• 
from G, and, in turn, both Go and G1 can be decomposed into smaller subgraphs by removing 
no more than F1 edges from each, and so on until each 1ubgraph i1 either empty or an isolated 
node. Figure 4 illustrates this recursive decomposition. 

As one might expect, the decomposition of a graph by separator theorems may be viewed 
as a decomposition tree. It follows by definition that if a class of graphs has an /(x)-separator 
theorem, then there are constants a and /3 such that each graph in the class has a decomposition 
tree of the form (fif(N), {Jf(aN), fif(a 2 N), ... , {J/(1)). The converse is not necessarily true. 
Subgraphs generated at each step of a decomposition by a separator theorem are constrained to 
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Figure 4. An (F0 , F1, ••• , Fr )-decomposition tree. 

be proportional in size, whereas decomposition trees need not satisfy this constraint. Of course, 
if the decomposition tree has precisely log N levels, then subgraphs at each level must be equal 
in size. 

We shall be particularly interested in a special class of decomposition trees, namely bifurcatora, 
that is distinct from the class of separators. 

Definition. An N -node graph has an a-bifurcator of .size F (more simpl111 an (F, a)-bi/urcator) 
if it has an (F,F/et,F/a 2, ••• ,1)-decomposition tree. 

Of particular interest is the class of "2-bifurcators. By the definition, we know that an N-node 
graph has a "2-bifurcator of size F if and only if it has an (F,F/Vi',F/2, •. . ,1)-decomposition 
tree. The depth of this tree is no greater than 2 log F. In order to completely decompose an 
N-node graph into individual nodes, the height of any decomposition tree cannot be less than 
the log N: Thus, F must always be at least ,/N. On the other hand, F is always less than 2N 
since every N-node graph with maximum node degree four has at most 2N edges. 

Ir a class of graphs has an x"-separator theorem, where Ct ~ 1/2, and the corresponding 
decomposition is balanced in that every graph is always decomposed into equal-size subgraph•, 
then it is straightforward to show that every N-node graph in the class has a "2-bifurcator of 
size O(v'N). Similarly, if a class of graphs has a balanced separator theorem of size x"' with 
a > 1/2, then every N-node graph in the class has a "2-bifurcator of size O(N"'). · 

The converse is not true even if we consider only bifurcators whose corresponding decomposi
tion trees are balanced so that every graph is decomposed into equal-size subgraphs. For example, 
the N-node graph SN defined in Section 2.3 has a balanced "2-bifurcator of size O(y'NlogN) 
but the smallest separator for this class of graphs is O(x/ log2 z). 
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When translated into bounds on layout area, this seemingly minor difference between bifur
cators and separators is greatly magnified. Graphs with small layout area always have amall V2-
bifurcators, but do not alwaya have amall aeparators. This is formalized in the following lemma. 
Later on we will prove the converse: graphs with small V2-bifurcators always have small layout 
area. 

Lemma 4. If a graph G can be laid out in area A, then G haa a (./A, V2)-bifurcator. 

Proof. Consider a vertical cut of length ./A through the center or the layout. Next, cut 
each of the sublayouts horizontally through the center. Continuing this sequence of alternating 
vertical and horizontal cuts, it is easy to see that at the ith step no more than ./A/2Li/2J edges 
are cut from each subgraph. This sequence of cuts yields a (VA, v'2)-bifurcator for G. I 

5.1.1 Special Cases 
. 

Many graphs have decomposition trees in which the number of cuts decreases very slowly as 
we go lower down the tree. In such cases the number of cuts at higher levels of the tree may be 
very small. On the other hand, in decomposition trees correspo,nding to bifurcators, the number 
of cuts permitted decreases smoothly as we go down the tree. It is conceivable then, that the 
bifurcator permits far more cuts at higher levels than are necessary. For example, N-node binary 
trees have decomposition trees of height O(log N) in which no more than 1 cut is required at 
every level. Since the minimum bifurcator is at least Vfii, the decomposition tree corresponding 
to the bifurcator allows far more cuts at the top levels than needed. 

Similarly, some graphs have decomposition trees in which many cuts are required at the top 
levels, but this number decreases very quickly as we go down the decomposition tree. In such 
cnses, the minimum bifurcator is large so that decomposition trees corresponding to the bifurcator 
do not underestimate the number of cuts required at the top level. However, they do greatly 
overestimate the number of cuts at lower levels. 

It is useful to separate such extreme cases from a general discussion. Of course, general upper 
bounds are valid for graphs with extreme decompositions, but they may overestimate the true 
bound. A particularly important reason for separating these classes is that many computationally 
useful graphs such as binary trees fall into the first category while cube-connected-cycles and 
multidim~nsional meshes fall into the second category. 

An N-node graph is defined to have a t11Pe A V2-bifurcator if it bas an {O{VJii), v'2}-bifurcator 
such that no more than O((N /2i)0

) cuts, a < 1/2, are required for each partition at the ith level 
of the associated decomposition tree. Observe that at the higher levels of the tree, i < < log N, 
the number of cuts is far less than the O{VJii/2i/2) cuts allowed by the usual bifurcator. 

Similarly, an N-node graph is defined to have a type B V2-bifurcator if it has an (O(N°), "2)· 
bifurcator, a > 1/2, such that only O((N /2')0

) edges are cut in any partition at the ith level. 
Observe that for the lower levels of the tree, i > > 1, this quantity ii far smaller than the 
O(N° /2112 ) cuts allowed by the usual bifurcator. 

For simplicity, we will prove results only for general V2-bifurcators in this paper. However, 
whenever there is a significant difference, results for the special cases are stated separately. The 
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proofs for these special cases are easily worked out, and closely follow the proofs for the general 
cases. We leave such details to the interested reader. 

5.2 Balanced Decomposition Trees 

or particular interest to the layout results reported in this paper are decomposition trees 
where at each step of the decomposition, the two subgraphs are nearly equal in size. This section 
considers such balanced decompositions and gives an effective procedure for tr an sf orming an 
arbitrary decomposition tree into one that is balanced. 

Formally, a decomposition tree for a graph G is balanced if each subgraph Gw in the tree is 
the father of two subgraphs Gwo and Gw1 such that the number of nodes in the subgraphs differ 
by at most 1. In addition, we say that a decomposition tree is fully balanced if it is balanced, and 
if for every subgraph Gw in the tree, the set of edges connecting G - Gw to Gw is divided into 
two subsets of nearly equal size by the partition of Gw into Gwo and Gwi· (Here we allow the 
number of edge connections in the two subgraphs to differ by a small constant, say 5. For the 
purposes of simplicity, however, we shall often ignore such small differences and assume that the 
nodes and connections are split evenly between the two subgraphs.) 

Somewhat surprisingly, any decomposition tree may be transformed into a fully balanced one 
at little or no cost. We prove this in the following theorem which generalizes earlier results in (4, 
19, 20, 21]. 

Theorem 5. Let G be any N-node graph with an (F0 , Fi, ... , Fr )-decompoaition tree T. Then 
G has a fully balanced(F0,F'i., ... ,F{01 N)-decomposition tree, au.ch thatforO < i :s; logN, 

r 

F~ = 6 l:F •. 

·-· 
Proor. Let r be a forest of complete binary trees consisting initially of the decomposition tree 

T. Color the leaves of T with two colors according to whether or not the subgraph of G associated 
with the leaf is empty. Apply Lemma 3 (k = 2) tor, removing the indicated nodes and edges of 
T. Each node of T corresponds naturally to a set of edges of G, namely the edges whose removal 
splits the associated subgraph in two. Removing a node of T corresponds to removing this cutset 
of edges·from G. Since no more than 2 nodes are removed from each level of r, the number of 
edges removed from G in applying Lemma 3 does not exceed 2 E: .... 0 F 11 , which is less than F~. 

Further note that G is divided into two disjoint subgraphs of nearly-equal-size by the removal 
of these edges. Each subgraph, in tum, corresponds in a natural way to a subforest of complete 
binary trees in r. Consider one such subgraph Go and color the leaves of the associated forest of 
complete binary trees r 0 using six colors as f ollow1: 

If the leaf corresponds to an empty subgraph, color the leaf with color 1. Otherwise, if the 
single node corresponding to the leaf is incident to exactly j edge1 of G removed earlier, 
0 :s; j ::; 4, then color the leaf with color j + 2. 

By applying Lemma 3 (k = 6) to r 0 , it is clear that Go can be decomposed into two disjoint 
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subgraphs Goo and Go1 of nearly-equal-size such that the number of edges from G - G0 to Goo 
is nearly-equal to the number of edges from G- Go to Go1· Since at most 6 nodes were removed 
from each level of fo and since r 0 does not contain the root of T, we can conclude that no more · 

r • 
than 6 .Ea=l F. = F~ edges were removed from Go. 

By applying the above argument recursively, the desired fully-balanced decomposition tree is 
easily obtained. The only point to observe is that wit~ each application or Lemma 3, the biggest 
tree in any forest corresponding to a subgraph decreases in height by at least one. This is because 
the total number of leaves in each forest is cut in half at each step. A total of log N + 1 levels 
are sufficient for the decomposition since the number or nodes in each subgraph is also split in 
half at each step. I 

Theorem 6. Every graph with a ./2-bifurcator of size F has a fully balanced ,/2-bifurcator of 
size 6(2 + ,/2)F. 

Proof. The result follows immediately from the preceeding theorem, with the observation 
that .E1~ 0 2-1

/ 2 < 2 + "2. I 

Remark. The procedure described in Theorems 5 and 6 can be implemented in polynomial time. 

5.3 Embeddings in the Tree of Meshes 

Leighton [19, 20] introduced the tree of meshes as an example of a planar graph that cannot 
be laid out in linear area. He also showed that every N-node planar graph can be embedded in 

· · an O(N log N)-node tree of meshes. In this section, we define the tree of meshes and describe a 
general strategy for embedding a graph in the tree of meshes. 

The tree of meshes is formed by replacing each node of a complete binary tree with a mesh 
and each edge by several edges which connect meshes at consecutive levels. More precisely, the 
root of the complete binary tree is replaced by an n X n mesh (it is assumed that n is a power 
of 2), the nodes at the second level are replaced by n X n/2 meshes, those at the third level by 

Figure 5. The 4 X 4 tree of meshes T4 • 
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n/2 X n/2 meshes, and so on until the leaves of the tree are replaced by 1 X 1 meshes. As shown 
in Figure 5, each edge of the tree is replaced with edges connecting nodes on one side of the 
higher-level mesh to the top row of the mesh at the lower level. The resulting graph is called the 
n X n tree of meshes Tn. It is not difficult to see that Tn, has N = 2n2 log n + n2 nodes. 

For some applications, we need to consider only the top levels of the tree of meshes. We 
call the subgraph consisting of levels 0, 1, ... , p of Tn a truncated tree of meshes Tn,;,. Note that 
p < 2logN. . 

Theorem 7. There is a constant c such that every N-node graph G with an (F, v'2)-bifurcator 
can be embedded in TcF ,2 101 ~. Moreover, the embedding is regular in the sense that F 2 / N nodes 
of G are embedded in a regular fashion each of the N 2 / F 2 bottom-level meshes of TcF,2101 ~. 

Proof. We first use Theorem 6 to construct a fully-balanced v'2-bifurcator of size 6(2 + v'2)F 
for G. We then use the internal meshes of TcF,2101 lf to route the edges that were removed in 
the upper 2 log lj levels of the fully balanced decomposition tree for G. The subgraphs in the 
(2 log Jt.-)th level of the decomposition tree (each of which has l F2 IN J or r F2 I Nl nodes) are then 
embedded in the meshes on the bottom level of the truncated tree of meshes. , 

The internal meshes are used in the same manner that complete crossbar switches are used 
in switching networks. For example, in Figure 6 six wires enter the mesh through the top, of 
which four exit from the left side and two from the right. In addition, four wires enter and e::it 
from the sides. No matter what the ordering of the wires, they can easily be routed through the 
mesh as shown. In general, if the number of wires routed through a mesh does not exceed any 
side-length of the mesh, a routing may always be found. Similarly, a graph with M nodes can 
always be embedded in a 4M X 4M mesh with nodes placed in a regular fashion. 

Consider only the top 2logJ+1 levels of a fully balanced decomposition tree for G. Each of 
the subgraphs at level 2 log If.- of the decomposition tree has N(l/2)210• ~ = F 2 / N nodes. (For 
simplicity we shall assume that F 2 / N is an integer.) Furthermore, if E, is the maximuin number 
of edges between G - G1 and G,, where G, is a subgraph in the decomposition tree at level i, 
then it is easy to see that Eo = 0 and by Theorem 6, that 

E, ~ -
2

1 
E1-1 + 6(2 + Vl)-. F_ 

2<•-1)/2 

for 1 < i < 2 log lj. Solving the above recurrence, we obtain: 

E, ~ 6(2 + v'2) . F L(v'2/2)•, 
2<•-1)/2 •2'!0 

and thu1 

E, < 6(2 + \1'2)2 F 
- 2Ci-t)/2 

We now embed G in TcF,2101 ~ • First, embed each of the (2 log J)-level subgraphs of the 
decomposition tree in the bottom level meshes. This can be done if the side of each mesh at level 
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Figure 6. Using a mesh in the tree of meshes as a crossbar awitch. 

2 log lj.- exceeds 4F2 / N. This is true provided 

cF/../22101 )'- > 4F2/N. 

For c ~ 4, this inequality is easily satisfied. 

Next embed the additional edges through the upper-level meshes in the natural way. No more 
than 2Ei+l edges pass through any ith level mesh. Thus the routing can be performed if the 
smaller side of the ith level meshes exceeds 2Ei+1, In other words, we must have: 

cF /2f i/2l > 12(2 + ../2)3 F /2'12. 

A simple calculation shows that the inequality is satisfied for sufficiently large c. I 

Remark. Throughout the paper, we express bounds using the term log ~· For all practical 
purposes, Fis much smaller than N and this term is greater than one. Should the value of F be 
larger, however, we ~hall still define log 11 to be at least one. Similar interpretations are assumed 
for log log lji- and for log log log ljr. The conventions avoid the annoying (and trivial) cases when 
Fis very large without complicating the analysis further. 

In the preceding embedding, all the nodes of G were mapped to meshes at the bottom level 
of the truncated tree of meshes. Thus, edges between nodes in different meshes might have to 
be routed through as many as 4log1!r meshes. Such long edges are undesirable for a variety of 
reasons. It is natural to ask whether an embedding can be found in which each edge can be 
routed through fewer intermediate meshes. This is answered in the following theorem. 

19 



Theorem 8. There are constants c and k such that every N-node graph G with an (F, v'2)
bifurcator can be embedded in TcF ,2101 ~ and such that no edge ii routed through more than k 
intermediate meahea. 

Proor. We adopt a slight variant of the strategy used in Theorems 5-7. The balancing 
and embedding are done simultaneously and in the same manner as before, except at levels O, 
k, 2k, 3k, ... (where k is a constant specified later). At these levels, we embed the nodes that are 
incident to edges previously cut, and we cut the previously uncut edges incident to these nodes. 
or course, this could triple the number or cut .. edgea every Jc levels but if k is sufficiently large, 
this happens infrequently and is not harmrut At all othet levels the procedure is the same as . . . 
before, using 6 colors and Lemma 3 to partition the decomposition tree. The process terminates 
after 2 log lj.. levels. 

As before, the embedding is accomplished by using Jntshea. as switching boxes for routing 
edges. We must ensure that the number of edges routed through any mesh does not exceed the 
side lengths of the mesh. The calculation is the same as before except that the number of cut 
edges is tripled at every kth level. Thus the recurrence for E, i1 

E, < !(3t/1c)E1-1 + 6(2 + v'2) F . 
- 2 2(i-1)/2 

Here, we have (without loss of generality) increased number of cut edges by a factor of 3 initially 
and by a factor of 3l/lc at each level instead of increasing the number of cuts by a factor of 3 at 
every kth level. Solving the recurrence, we find 

Ei < 18{2 + v'2) F L: (v'2 311")•. 
- 2~-1u2.~0 2 

For k ~ 4, the sum converges to a constant. The remaining analysis is the same as in Th~rems 
5-7, except that the con9tants a.re larger. I 

Remark. It is worthwhile to point out here that Theorems 7 and 8 could also have been 
prqved using Lemma 1 as instead of Lemma 2. The nodes of G would •till be balanced in the 
decomposition tree but the cut edges could only be split 1/3 - '2/3 at eacli decomposition. While 
this increases the.. value of the awn, it still converges toe. c;o,nstf.I1t. (Thia i~ because for sufficiently 

large k, ¥at/k < 1.) Hence, k and c would be larger but the statem~nts or the theorems remain 
the same. 

5.4 Layouts for the Tree of Mealiea 

Tbua far we .have considered ogzy the problem of embeddinc. graphs in the tree of meshes. 
How do· we lay out the tree or meah1t1 efficiently? Clearly,, a.ny l~out f()J' the tree. of meshes also 
giv• a layout roi every graph tbat can.be embedded witlilil 'Uie ti:~ ot nieshea. In this section 
we develop two different layouts for the tree of meshes. 

The first layout is a straightforward modification of the "H-tree" layout for complete binary 
trees [31). The modified layout is obtained by expanding each node of the complete binary tree 
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Figure 7. The H-layout of the tree of meshes. 

into a mesh of the appropriate size. Figure 7 shows this layout. It is easy to see that if S(F) 
denotes the side of the layout for TF, then S(l) = 1, and 

S(F) < 2S(F /2) + O(F), 

which gives S(F) = O(FlogF). This means that the area of the layout for TF is bounded by 
O(F2 log2 F). As shown in [19, 20), this bound is optimal. 

For truncated trees of meshes, such as considered in Theorems 7 and 8, a similar result holds. 

Theorem 9. The truncated tree of meshes T F,2101 )'- has a layout of area O(F2 log2 J). 

Proor. The obvious restriction of the H-layout to the top levels suffices. I 

Although the mesh edges in the layout shown in Figure 7 have length 1, the edges between 
meshes can be quite long (nearly half the side of the layout). By pulling in meshes closer towards 
the top level, we can reduce the length of the longest edge considerably. This technique was 
introduced in [3] to produce minimax edge length layouts for trees, and generalized to graphs 
with known separators. In the following theorem we lay out the truncated tree of meshes. with 
shorter edges, using a simplified version of the argument introduced in [3). This layout will later 
be used to find layouts with short edges for graphs embedded within the truncated tree of meshes. 
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Figure 8. An improved la.71out for the tree of meshea. 

Theorem 10. The truncated tree of meshes TF,2101 ~ can be laid out in area. O(F2 log2 J) so 
.. that mesh edges have length 1 a.nd edges between meshes have length a.t most O(F log J /log log J ). 

Proof. Consider the H-tree layout of a complete binary tree of height 2 log log log 11, and 
having (log log J)2 leaves. Expand each linear dimension by a factor /J = 9(Flog 11r-/loglog J), 
so that each edge of the H-tree layout becomes a channel of width /J and each node becomes a 
/J X {J square. The resulting area is (P log log J)2 = 9(F2 log2 J). 

Since the channels are much wider than the side of any mesh, we can stack many meshes 
within one channel. In particular, as seen in Figure 8, we embed the top level mesh at the center 
of the layout with the second-level meshes on either side. In the first stage of the layout, the 
meshes in the top levels are placed together in a breadth-first manner. Meshes at succeuive levela 
are equally spaced at distance 9(F log 11 /log log 11) apart. 

We need to ensure that every channel is wide enough to accomodate the meshes stacked within 
it. To this end, let us suppose that all meahes embedded in the first stage are stacked together in 
the same channel. Of course, this is a groSB overestimate, but suffices ror our argument. Since the 
path Crom the root to a leaf in the original (log log J)2-leaf H-layout has length 9(1oglog J), a 
total of clog log 1jr- levels of T F ,2101 ~ are embedded in the first stage. The value of the constant 
c depends on the values of the other constants in the 0-terms and can be made as small aa 
necessary. 

The total number of meshes embedded in the first stage is no more than 21+c 101 101 ~. Each 
mesh has side length no greater than F, so to stack all these meshes within one channel of side 
/J, it suffices to have: 
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F21+c101101 lf < o( Flog J ) 
- log log 11 ' 

which is easily satisfied when c ~ 1/2. Hence every channel has sufficient width to stack all the · 
ith level meshes across the channel for any i ~ clog log J. 

In the second stage, we embed the remaining meshes in the {:J X fJ squares. A total of 
(log 'j)c /(log log 'j)2 copies of an O(log lj) level (log f>•/z X Clot J>•/a truncated tree of meshea 

must be embedded in each of the (log log ljr-)2 fj X fj regions to accomplish this. Using the layout 
described in Theorem 9 for each copy, the total area required in each region ia 

0 log2 
- = 0 T . 

( 
(log lj)c F2 (N)) ( F2 log

2 
H ) 

(log log lj )2 (log lj )c F (log log 11 )2 

This is precisely the amount of area available in each fj X fJ region. Hence the embedding i1 
possible. 

It remains to verify that the edges between meshes have length O(F log ~/log log lj ). Thia 
is easily done since meshes in adjacent levels were spaced distance 0(Flog 'j/loglog 'j) apart in 
the first stage, and since meshes in adjacent levels were located in the same {:J X {J region in the 
second stage. I 

6. Solutions to the Eight Problems 

Using the framework described in the previous section, we are now ready to present general 
solutions to the eight problems posed in Section 3. Not surprisingly, the methods of the previous 
section apply almost directly to these diverse problems. This supports the belief that the divide
and-conquer strategy based on bifurcators is an efficient paradigm for VLSI graph layout, and 
that the tree of meshes is a versatile network for solving layout problems. The solutions presented 
in this section are evaluated by comparing them with lower bounds. Some of the lower bounds 
are new; to maintain continuity, their proofs are deferred to Section 8. 

The first two problems, concerning area-efficient layouts and minimax edge length layouts, 
were already addressed directly in the previous section. 

Problem 1. Given a graph G, produce an area-efficient layout /or G. 

By Theorem 7 in Section 5.3, every N-node graph with an (F, ./2)-bifurcator can be embedded 
in the truncated tree of meshes To(F),2101 11. Next, by Theorem 9 in Section 5.4, the truncated 

tree of meshes can be laid outin O(F2log2 'j) area. Therefore, every N-node graph with an 
(F, v'2)-bifurcator can be laid out in O(F2 log2 J) area. 

As a simple consequence of Lemma 4, every N-node graph whose smallest v'2-bifurcator i1 
F, must occupy at least F 2 area. For otherwise the graph would have a v'2-bifurcator strictly 
smaller than F. Therefore, for every graph the upper bound is at most a factor of O(log2 J) 
worse than optimal. As we shall see in Section 8, the upper bound is allO e:ristentiall11 optimal 
in that there are N-node graphs with (F, v'2)-bifurcators for all N and F with minimum area 
O(F2 log2 f ). 
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Special Cases. Graphs with (F, v'2)-bifurcators with either of the special forms described in 
Section 5.1.1 have O(F2)-area layouts. 

Problem 2. Given a graph G, produce an area-efficient layout for G with minimal!"edge length. 

From Theorem 8 we know that every N-node graph with an (F, v'2)-bifurcator can be 
embedded in the truncated tree of meshes T O(F),2101 /f so that no edge passes through more 
than a constant number of intermediate meshes. Furthermore, the layout for the truncated tree 
of meshes given in Theorem 10 guarantees that every edge between meshes has length bounded by 
O(F log ~/log log~), and that every edge within a mesh has length one. Combining these two 
theorems, we see that every N-node graph with an (F, v'2)-bifurcator has an O(F2 log2 ~)-area 
layout with maximum edge length bounded by O(Flog ~/loglog J). 

This bound is also existentially optimal, as will be seen in Section 8. However, the bounds are 
not guaranteed to be universally close. The only general lower bound on minimax edge length 
for N-node graphs whose minimum v'2-bifurcator is F, is O(F2 / N). (This lower bound is also 
existentially optimal, as will be shown in Section 8.) 

The problem of minimizing maximum edge length appears to quite difficult. Although the 
preceding bounds are disappointingly weak, they are the best known. Bhatt and Cosmadakis 
[2) show that even determining if a tree can be laid out with minimax edge length one, is NP
complete. 

Special Cases. The minimax edge length bounds for graphs with special (F, v'2)-bifurcators are 
0( ./N /log N) for type A v'2-bifurcators and O(F) for type B v'2-bifurcaton. 

Problem 3. Given a graph, produce an area-efficient layout in which each wire has bounded 
delay in the capacitive model. 

First we formalize some details of the model. As usual, a graph describes a connection of 
processors, with an edge corresponding to a bidirectional link between two processors. Each 
node is a processing element which contains one driver and one receiver for each incident edge. 
Every transistor in a processing element has the same size. Thus, in our layouts, a node may be 
represented by a long and skinny box of constant thickness, with length equal to the area of an 
internal transistor. Since each node has bounded degree, a box will be just big enough to contain 
all the transistors in the corresponding processor. Note that different nodes in the layout will 
have different lengths, but the same thickness. We assume that the grid spacing is adjusted ao 
that nodes and edges have unit thickness and may be laid along grid lines. Although wires are 
allowed to cross, we_ will. not allow nodes to cross; this corresponds to transistors not overlapping. 
Similarly, wires and nodes may not cross. The propagation delay over a wire of length l driven 
by a transistor of area D with capacitive load A is proportional to (l +A)/ D. -The capacitive load 
presented to a transistor equals the sum of incident wire lengths and areaa of adjacent transistors. 

Theorem 11. Every N-node graph G with an (F, v'2)-bifurcator has a bounded-delay layout of 
area O(F2 log3 J). 
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Figure 9. Laying out expanded nodes in a meah. 

' 
Proof. As in Theorem 8 of Section 5.4, embed G in a tree of meshes so that adjacent node1 

are mapped to meshes no more than a constant number of levels apart. Since the dimension• 
of meshes at successive levels, as well as the lengths of edges connecting adjacent meshes in the 
layout of Theorem 9, decrease at the same geometric rate, we know that the length of an edge of 
G is proportional to the side lengths of the meshes that contain the corresponding nodes. Assign 
to each node an area that is proportional to the side lengths of the mesh in which it is embedded. 

·Thus, the .capacitive load on. any node, which equals the sum of the areas of all the incident edge1 
and adjacent nodes, is proportional to the area of the node. In other words, every wire in the 
layout has bounded delay .. 

We need to ensure that each_ enlarged node can be accomodated in its assigned mesh without 
blowing up the area of the layout by more than a constant factor. This can be done by increasing 
the dimensions of each mesh by a constant factor, and laying out the nodea and incident edges 
as shown in Figure 9. Notice that the nodes do not overlap other nodes or wires. The area of 
each node remains proportional to the side lengths of the mesh containing it, and thus the delay 
across every wire is bounded. I 

Special Cases. Similarly, graphs with special (F, ../2)-bifurcators have O(F2)-area bounded-delay 
layouta. 

Theorem 11 means that the area bounds for bounded-delay layouts are no worse than the 
best known general area bounds described for Problem 1. However, it is not known whether or 
not there exists a graph for which any bounded-delay layout requires asymptotically greater area 
than the minimum area layout. In the following corollary, we show that the required increase in 
area is not very large. 

Corollary 12. Any layout of area A for an N-node graph can be tranaformed into a bounded
delay layout of area O(Alog2 ~). 
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Proof. By Lemma 4 of Section 5.1, every graph with a layout of area A has a (VA, v'2)
bifurcator which can be quickly found. Then by Theorem 11, we can construct a bounded-delay 

layout with area O(Alog2 ~). I 

Remark. Unlike the previous area bounds which can be obtained only when the bifurcator for a 
graph is already known, the preceding corollary for transforming a layout into a bounded-delay 
layout can be efficiently implemented. 

Problem 4. Given a graph G1 produce a layout for G with few wire croa1ing1. 

The layouts for the truncated tree. of meshes in Theorems 9 and 10 do not have any edge 
crossings. Since every N-node graph G with an (F, v'2)-bifurcator can be embedded within the 
truncated tree of meshes T O(F),2101 ~, this means that the number of crossings in the layout for 
G cannot exceed the number of nodes in T O(F),2101 f. In other words, the number of crossings 
in the layout for G is bounded by O(F2 log J). 

In Section 8 we will see that this bound too is existentially optimal. We will also show that 
for every N-node graph with a minimum v'2-bifurcator of size F, the number or crossings plua 
the number of nodes is at least O(F2). Thus, if Fis asymptotically greater than ..[iii, the number 
of crossings in the layout for G is no worse than a factor O(log J) times optimal. 

Special Cases. Graphs with special (F, v'2)-bifurcators can be laid out with O(F2) crossings. 

Problem 5. Given a graph, produce an area-efficient regular la71out for the graph. 

In Theorem 7, we showed how to embed any N-node graph G with an (F, v'2)-bifurcator in 
TcF,2101·~ for some constant c. Moreover, the nodes of G were divided evenly among the N 2/F2 

bottom-level meshes or TcF ,2101 f and in each bottom-level mesh, the nodes or G were embedded 

in a regular fashion. Thus to produce an O(F2 log2 f )-area layout for G that is regular, we need 
only produce a layout for Tc/ ,2101 J for which the nodes at the (2 log J )th level are located in a 
regular fashion. In fact, we can do much better, as we show in the following theorem. 

Theorem 13. The truncated tree of me1he1 To(F),2101 J can be laid out in O(F2 log2 f) area 
10 that, for every level i, all nodea within ith level meahea are placed in a regular faahion. 

Proof. The first step is to construct a 9(log f )-layer three-dimensional layout (23) of the 
truncated tree of meshes. Fold the connections between the root or the tree or meshes and each 
of its two sons so that the sons fit naturally on a second layer over the root mesh. Fold the 
connections to each.of the meshes at the next lower level so they fit, on the third layer, directly 
over the meshes on the second layer, and 10 forth. This generates a log f-layer three-dimensional 
layout, with each layer occupying linear area. By projecting the three-dimen1ional layout onto 
the plane in the manner of Thompaon [42, pp. 36-38], the result follows. (The same layout can 
be constructed by interleaving the meshes at each level.) I 

Special Cases. The O(F2)-area layouts for graphs with special v'2-bifurcators are also regular. 
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Problem 6. Design area-efficient chips that can be configured to realize a large number of graphs. 

In section 5.3 we showed that every N-node graph with an (F, v'2)-bifurcator can be embedded 
in a truncated tree of meshes such that the nodes of the graph are embedded in a reguhtr fashion in 
the bottom-level meshes of TcF ,2101 ~. In fact, the nodes can be mapped to fixed positions within 
the meshes. Therefore, if we lay out the truncated tree of meshes on a chip with processors at 
these fixed positions, we have a configurable chip for all graphs with the corresponding bifurcator. 
This yields the following result. Observe that the area bounds for configurable layouts are the 
same as for unrestricted layouts. 

Theorem 14. Every N-node graph with an (F, V2)-bifurcator has a configurable layout of area 
O{F2 log2 lifr ). 

Proof. Simply make the connections in the meshes after the rest of the chip has been 
fabricated. Recall that we used the meshes as crossbar switches in Theorem 7. I 

Special Cases. Similarly, graphs with special bifurcators have O(F2)-area configurable layouts. 

Problem 7. On a wafer which has arbitrarily distributed defective cells, realize a given graph 
on the good cells. 

In Section 5.3 (Theorem 7) we showed how to embed any N-node graph G with an (F, ~)
bifurcator in the truncated tree of meshes To(F),2101 f. The embedding had the property that 
nodes of the graph could be mapped to fixed positions within the meshes at the bottom level. 
Accordingly, we fixed processors at each of these positions. 

Faulty processors on a wafer therefore correspond to faulty processors in the truncated tree 
of meshes, the correspondence being induced via the layout for the tree of meshes. It is clearly 
no longer possible to realize G in the faulty tree of meshes. However, it is possible to realize a 
smaller graph with a similar structure using only the functioning processors. 

More formally, consider a class of graphs for which any N-node graph in the class has a 
v'2-bifurcator of size O(f(N)) where the function f is such that f(x)/y'X is nondecreasing for 
increasing x. For example, f(x) = y'X for the class of square meshes (as well as for the class of 
trees or the class of planar graphs). In what follows, we will show how to embed any M-node 
graph frc:>m the class in any Tc/(N),2101 Jffvr that has M functioning processors where N > M 
and c is a sufficiently large constant. In particular, we will show how to embed T/(M),2101 7fhr 
in the structure. By the results in Section 5.3 of the paper, this will be sufficient to prove the 
claim. Thus the layout strategy developed in Section 5 is impervious to the existence of faulty 
processors. This result substantially generalizes and simplifies a similar result proved by Leighton 
and Leiserson for embedding meshes around faults in [22). 

Theorem 15. Given the preceding constraints on N, M, c and f, a completely functioning trun
cated tree of meshes Tf(M),2101 Tf/;iJ with M processors can be embedded in any partially functioning 

truncated tree of meshes Tc/(N),2101 1fkJ with N processors {M of which are functioning) so that 
the processors of the former are mapped onto the functioning processors of the latter. 
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Proof. Label the functioning processors in each tree of meshes from 1 to M by counting from 
left to right across the bottom level of each graph. (Recall that the processors are evenly dis
tributed on the bottom level.) Map the kth processor of T/(M),2101 Jt(,) onto the kth functioning . 

processor of Tc/(N),2101 ~. Route the edges of the former graph through the meshes of the 
latter in the usual way, at the same time embedding meshes of the former in blocks within the 
meshes of the latter. 

It remains to show that the capacity of each mesh in Tc/(N),2101 JfNr is sufficient for the 

embedding. Consider a mesh X on the ith level of Tc/(N),2101 Wn. This mesh has side lengths 

c/(N)/2i/2 and at most N /2' functioning processors below it in the bottom level of the graph. 
The only meshes and edges of T/(M),2101 ithki that are embedded in X are those that correspond to 

roots of the forest of complete binary trees formed by removing the corresponding interval of (at 
most N /2') processors in T/(M), 2101 Tf/;;J. These roots are identified by splitting T/(M),2101 -,f/;;r 
(as in Lemma 3) at the two endpoints of the interval. There are at most two roots at each 
level in the resulting forest and the sum of their side lengths (a geometrically decreasing sum) 
is proportional to f(M)/211 2 where j is such that M /2' < N /2'. (Remember that there are at 
most N /2' processors in the leaves of the forest so that the height of the largest complete binary 
tree in the forest is j where M /2' ~ N /2' .) Thus the sum of the aide lengths of the meshes 

embedded in X is o( 12</'f.} Ji) which, for sufficiently large c, is less than c/(N)/2i/2 (this is 

the side length of X), since N ;;:::: Mand /(x)/y'x is a nondecreasing function. Hence Xis large 
enough and the embedding is possible. I 

Special Cases. A similar argument works for graphs with special bifurcatora. 

Problem 8. Given a graph G1 asaemble G U8ing the minimum number of copies of a .single chip 
having few external pin connection1. 

Suppose that we wish to assemble N-node graphs with (F, \1'2)-bifurcators but that each chip 
contains only m nodes, where m < N. Consider a chip consisting of a truncated tree of meshes 
T0 <'(%>,0(Ioi -¥>'with them processors divided equally among the bottom-level meshes, and 

external pin connections to the top of the top level mesh. Two copies of this chip may be wired 
together to form a truncated tree of meshes with 2m processors. Thus, graphs with twice u 
many processors can be assembled with two chips than can be assembled on a single chip. More 
generally, we have the following result. 

Theorem 16. T~re is a universal restructu.rable chip with m processors and 0( $;') external 

pin.s1 occupying area 0( E];Jn. log2 y''FN), such that every N-node graph with a71 (F, \1'2)-bifurcator 
can be assembled using multiple copies of the universal chip. Furthermore, the number of chips 
used in the assembly is as small as poaaible. 

Proof. Consider the top log N - log m levels of a fully balanced decomposition tree of G. 
Each of the subgraphs at level logN- logm has N/2101N-lo1m = m nodes, and has a \1'2-
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bifurcator of size O{ ~ ). By Theorem 7, each of these subgraphs can be realized with a 

single universal chip consisting of a truncated tree of meshes TO( '(hr ),O(loi ~) whose area i1 

bounded by O{ ~ log2 ~ ), and which has O{ $') external pin connections. !fo complete 
the assembly, the chips are wired up by making connections between pins on different chips aa 
given by the decomposition tree. I 

A noteworthy consequence of this result is that when F = 0( ./N), the restructurable chip 
has 0( y'm) pins, which is independent of the size of the network to be assembled. This is_ the 
best possible. To realize networks with larger bifurcatora, the parametera of the restructurable 
chip depend on the size of the network aBSembled. 

Special Cases. For graphs with special bifurcators, the same is true except that only O{F2) area 
is used on each chip. For typ~ A \1'2-bifurcators, the number of pins needed is much lower. For 
example, N-node trees require only O(log m) pins per chip 14]. (As ia the case for all planar 
graphs, the number of pins does not depend on the number of nodes. This is because N-node 
planar graphs have ¥2-bifurcators of size O{v'N).) Recently, we improved this result to 6 pins 
for trees by using slightly different techniques {but by giving up the use of a small portion of the 
processors on some chips). Hence, pin count constraints place no limit at all on the size of trees 
that can be fabricated with a single configurable chip, no matter how many processors are placed 
on each chip. 

7. Layout Algorithms Based on Graph Bisection Heuristics 

In the previous section we saw how a variety of layout problems could be efficiently solved 
once the decomposition tree of a graph was known. All the results were of the flavor: ''If G has 
an (F, ¥2)-bifurcator, then .... " But, given a graph, how do we find a small \1'2-bifurcator or a 
suitable decomposition tree for the graph? 

Some graphs are easy to decompose, so that a small bifurcator can be found relatively 
easily. Such graphs include trees, cube-connected cycles, and, more generally, graphs that are 
constructed recursively. It is also easy to find a small bifurcator if a small-area layout is known. 
(From Lemma 4, recall that graphs with layout area A have a (VA, \1'2)-bifurcator.) 

In general however, it is extremely difficult to find small bifurcators for graphs. The reason 
is that the process of graph decomposition involves the problem of graph partitioning, or graph 
bisection. The graph bisection problem, also known as the "min-cut" problem, requires a graph 
to be _partitioned in~ two components of equal size, removing the minimum possible number of 
edges. This problem is known to be NP-complete [13]. 

There are, however, a large number of heuristics for bisecting graphs which appear to perform 
well in practice 16, 7, 10, 18, 37, 40]. Many automated layout systems uae these and other· 
partitioning heuristics. Is there any theoretical justification for this? In what follows, we answer 
affirmatively by showing that a provably good algorithm for graph bisection can be tailored into 
a provably good layout algorithm. 

The key idea is to convert a bisection width heuristic into a heuristic for drawing graphs 
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with few crossings. (Determining the crossing number is also NP-Complete [14].) Like small-area 
layouts, such drawings can be used to find small v'2-bifurcators. The following theorem shows 
that with a provably good bisection heuristic, the number of crossings is provably small (i.e., . 
within guaranteed bounds from optimal). ·· 

Theorem 17. Suppose there is an algorithm which, for every N -node graph with bisection width 
B, finds a bisection of size at most 1(N)B in polynomial time. ("l(N) is some nondecretJSing 
functional measure of error.) Then there is a polynomial time algorithm which, for every N
node graph with crossing number C, produces a drawing with at most 0(( C + N)"!2(N) log2 N) 
crossings. 

Proof. Use the bisection width algorithm to produce a decomposition tree for G by recursively 
bisecting each subgraph in the tree. As in Figure 4, define Gwo and G,.,1 to be the left and right 
sons of G,., in the decomposition tree. Further define B,., to be the bisection width of G111 , C,., to 
be the crossing number of G111 and Nw to be the number of nodes in G,.,. Clearly, Nw = N/2lwl, 
A simple application of the planar separator theorem shows that C + N ~ O(B2) for any graph 
and thus C111 + Nw ~ O(B!) for every w [19, 20]. Since G,,, contains G,,,,,,, for every w', we also 
know that Cw ~ C.ww' and thus that Cw+ Nw ~ O(B!w,) for every w'. 

The algorithm for drawing G is recursive. At each step, we will use drawings of Gwo and Gw1 
to construct a drawing of G,,,. In addition, we will store a path from each node to the exterior 
face of the drawing which has a small number of crossings. These paths are used when inserting 
edges at each recursive step, but are otherwise only remembered and updated (i.e., they do not 
count in the crossing totals). Let C~ be the number of cro11ings in the constructed drawing 
of Gw and let Pw be the maximum number of edges that would have to be croHed. to draw an 
edge from any node in the constructed drawing of Gw to the exterior or the drawing. Using a 
straightforward divide-and-conquer analysis similar to that used to prove Theorem 7-8 or [19], 
we can see that 

and 
Pw < ma:x:(Pwo, P,.,1) + 'Y(N)B. 

for every w. Solving the latter recurrence, we find that 

and thus that 

- C~ < C~0 + C~1 +0("12(N)(C,., + N.)logN.). 

It is now a straightforward matter to prove by induction on I w I (atarting with I w I= log N and 
decreasing) that 

thus proving the theorem. I 

As a consequence of Theorem 17, we can prove the following result on finding v'2-bifurcatora. 
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Theorem 18. If there exists a polynomial time algorithm whi::h finds a 1(N)B-bisection of 
any N -node graph with bisection width B, then there is a polynomial time algorithm for finding a 
(p(N)F, .../2)-bifurcator for any graph G where F is the size of the minimum .../2-bifurcator for G . 
and p( N) = 0( 'Y( N) log312 N). 

Proof. First use Theorem 17 to construct a drawing for G with C' = 0( 1 2 ( N) log2 N( C + N)) 
crossings where C is the minimal crossing number of G. In what follows, we show how thia 
drawing can be used to construct a .../2-bifurcator for G of size O('Y(N)logN.jC + N). 

Consider the graph G' formed by replacing the C' edge crossing• in the drawing of G with 
artificial nodes. This graph is planar and has M = N + C' nodes. By the Lipton-Tarjan 
planar separator theorem [29), we can conclude that G' has a v'2-bifurcator of size O(v'M) = 
O(.../N + C'). Thus G has a v'2-bifurcator of size O(.../N + C1) = 0(1(N)logN.../C + N). 

By the optimality of C and the solution to Problem 4 in Section 6, we know that C + 
N ~ O(F2 log~) where F is the size of the minimal v'2-bifurcator of G. Hence, we have 

constructed a .../2-bifurcator for G of size a( 1(N){logN) FJlog ~) = p(N)F where p{N) = 
0( 1(N) log312 N). I 

Although Theorem 18 can be easily applied to the layout area problem, better bisection
width-based bounds can be derived directly from Theorem 17. These bounds are stated in the 
following theorem. 

Theorem 19. If there exists a polynomial time algorithm that findJ a 1(N)B-bisection for any 
N-node .graph with bisection width B, then there exists a polynomial time algorithm that produce• 
a layout for any N -node graph G with area at most 1/J(N)A where A is the minimum layout area 
of G and 1/J(N) = O('Y2(N)log4 N). 

Proof. First use the algorithm described in Theorem 17 to find a drawing for G with at moat 
</>(N)(C + N) crossings where C is the crossing number of G and ;(N) = O('Y2(N}log2 N). 
Convert the drawing into a planar graph by replacing each crouing with an artificial node as in 
Theorem 18. Using the algorithm developed by Leiserson (26J and Valiant (45J, this graph can be 
laid out using at most O(</>(N)(C + N) log2 N) area. The construction is completed by replacing 
the arti~cial nodes with their original edge crossings. Since A > C + N, it is clear that the 
layout has area at most 1/J(N)A where 1/J(N) = O('Y2(N) log4 N). I 

8. Area, Crossing Number and Edge Length Bounds 

In Section 6, we argued that the new framework is univeraally good in the sense that no graph 
with an {F, v'2)-bifurcator has a much better layout than that provided by the framework. In 
this section, we show that the framework is existentially optimal inasmuch as there exist grapha 
with (F, .../2)-bifurcators that are laid out optimally by the framework. 
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8.1. Universal Bounds 

In the fallowing theorem, we characterize the layout area, crossing number and minimax edge 
length of a graph in terms of its minimal \1'2-bifurcator. Most of the bounds have already been. 
proved but we state them together again for convenience. 

Theorem 20. Let F be the minimum ../2-bifurcator of an N-node graph G, which has minimum 
layout area A, minimax edge length L, and crossing number C. The following inequalities hold, 
and the upper bounds can all be realized simultaneously. 

F 2 < A < o(F2 log2 N) - - F, 

O(F2
) ~ C + N < o(F2 log;) 

and 

O(F2 IN) ~ L ~ o(F log; I log log~} 

Proof. The upper bounds were proved in the solutions to Problems 1, 2 and 4 in Section 6. 
Note that the bounds are all realized for the same layout. 

The .area lower bound is from Lemma 4. The crossing number lower bound foliows from 
the analysis in Theorem 18. In particular, any N-node graph with crouing number Chas a v'2-
bifurcator of size 0( ../ N + C). The edge length lower bound follows from the crossing number 
lower bound. Since C + N 2: O(F2), the wire area of the layout is at least that large and thus 
at least one of the 6(N) wires in the network must have length O(F2 / N). (In fact, the average 
edge length is O(F2 / N).) I 

As we have noted throughout the paper, it is possible to improve the upper bounds in Theorem 
20 for special classes of graphs. As we show in the next section however, such improvements are 
not alwa.ys possible. 

8.2. Existential Bounds 

We next show that the universal upper and lower bounds given in Theorem 20 are everywhere 
existentially tight. We first define the expander-connected mesh and show that it achieves 
(simultaneously) the universal lower bounds on area, crossing number and edge length for any 
N and F. Then we define the expander-connected mesh of trees and show that it attains the 
corresponding universal upper bounds. 

An expander-connected mesh Pm,n with N = mn2 nodes is formed by superimposing n2 

copies of an m-node expander graph on m copies of an n X n mesh. More precisely, define Pm,n 
to be the graph consisting of m disjoint n-by-n meshes which are interlinked with additional 
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Figure 10. The expander-connected muh P214 • 

edges so that for each i and j (1 ~ i,j ~ n), the subgraph induced on them nodes which are in 
the ( i, j) position of some mesh is an expander graph. For example, P2,4 is shown in Figure 10. 

· ·The dotted lines represent edges in the expander graphs while the solid lines represent edges in 
the meshes: 

Remark. Strictly speaking, the expander-connected mesh has node degree 1 and does not fit into 
our layout model. This problem can be dealt with in a variety of ways but the simplest is to 
replace each degree 7 node with a 7-leaf binary tree. The area, crossing number and minimax 
edge length bounds for the resulting degree 3 graph differ by at most a constant factor from those 
derived below for the unaltered graph. A similar fact is also true for the expander-connected mesh 
or trees. 

In the following we show that the size of the smallest v'2-bifurc2tor of Pm,n is at least O(mn). 
This is accomplished using the lower bound techniques developed in [19, 201 to prove that the 
bisection width of Pm,n is at least O(mn). This means that the smallest v'2-bifurcator for P,,.,,. 
has size O(mn). 

Lemma 21. The bisection width of Pm,n is at least O(mn). 

Proof. Let (i,j, k} denote the (i,j) node of the kth mesh of Pm,n· In addition, let P:,.,,. denote 
the graph formed by extending each expander graph of Pm.,n to a complete graph (i.e., to the 
graph formed by inserting edges between nodes (i,j,k) and (i,j,k') for every 1 < i,j ~ n and 
1 ~ k, k' < m). In what follows, we will use the methods of [19, 201 to find a lower bound on 
the bisection width of P:,.,n. This, in turn, will be used to find a lower bound on the bisection 
width of Pm,,.. 
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Consider the embedding of the complete graph on mn2 nodel! (Kmn2) in P~" which links 
' node (i,j,k) to node (i',j',k') via the path 

(i,j, k)-+ (i ± 1,j, k)-+ (i ± 2,j, k)-+ ... -+ (i',j, k) 

-+ (i',j ± 1, k)-+ (i',j ± 2, k}-+ ... -+ (i',j', k) 

-+ (i',j', k'). 

(Note that the notion of an embedding used here is different than that defined in Section 2, where 
edges were mapped to edge-disjoint paths in the grid.) 

A simple counting argument reveals that each mesh edge of P~,n is utilized at most O(mn3) 

times by the embedding of Km.n2 while each complete graph edge is uaed at most O(n2) timea. 
Since at least m2n4 /4 edges of Km.,,.2, must cross any bisection of Km,n2, we can thus conclude 
that any bisection of P~" must cut at least O(mn) mesh edges or at least O(m2n2) complete 
graph edges. Clearly, any' bisection of P~,n which cuts O(mn) mesh edges must also cut O(mn) 
mesh edges of Pm.,n· In what follows, we will show that any bisection of P~,n which cuts B 

complete graph edges must cut at least O(s/m) expander edges of Pm,n· This will imply that any 
bisection of P~" which cuts O(m2n 2) complete graph edges must cut O(mn2) expander graph , 
edges of Pm.,ni thus completing the proof. 

Consider a bisection of P'm,n which cuts s complete graph edges. Let Bi,f denote the number 
of edges cut in the (i,j) complete graph of P~,n for 1 < i,j ~ n. Clearly, s = :E~i-l Bs,f• 

As each node in an m-node complete graph is incident to at most m - 1 edges, we know that 
the bisection of P~ n divides the (i, j) complete graph into two subgraphs which contain at least 
s1,f/m nodes each. Thus at least O(s1,f/m) edges of the (i,j) expander graph of Pm.,n are cut by 
the bisection. Summing, we find that the bisection cuts at least O(s/ffl) expander edges of Pm,n 
in total. I 

We can construct an expander-connected mesh with N nodes and minimum v'2-bifurcator F 
for any N and F such that n(V'N) < F ~ O(N), by setting n = 9(N/F) and m = 9(F2 /N). 
We now show how to construct a layout for Pm,n which achieves (up to a constant) the universal 
lower bounds for area, crossing number and minimax edge length of Theorem 20. 

Theorem 22. There is a layout for Pm.,n which has area and crossing number at mostO(m2n2) = 
O(F2) and maximum edge length at most O(m) = O(F2 / N). 

Proof. Lay out each expander graph in an O(m)-by-O(m) grid so that the node in the kth 
mesh is in the (k, k) position of the grid. Arrange these sublayouts in a mesh-like pattern so as 
to be consistent with the mesh structure of Pm,n· Next insert the mesh edges in the natural way. 
The resulting layout should look like Figure 10. It is easily verified that the area of this layout 
(and hence its crossing number) is at most O(n2) X O(m2) = O(m2n2), and that every edge has 
length at most O(m). I 

Before defining the expander-connected mesh of trees, it is useful to review the definition of a 
mesh of trees as proposed by Leighton in [19, 20]. (An equivalent structure, the orthogonal trees 
network, has been studied by Nath, Maheshwari and Bhatt in [33). Cappello and Stieglitz have 
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Figure 11. The 4 X 4 mesh of treea M2,4. 

also studied this graph, which they call the orthogonalforeata, in (8).) The 2-dimensional mesh of 
trees M 2,n (where n is assumed to be a power of 2) is defined as follows. Starting with an n X n 
matrix of nodes and adding nodes wherever necessary, construct a complete binary tree in every 
row and column of the matrix. The trees should be constructed so that 

• the leaves in each tree are precisely the nodes in the corresponding row or column of the 
original matrix, and 

•the subgraph induced on the nodes in each quadrant is M2,n/2 • 

For example, we have drawn M 2,4 in Figure 11. The nodes in the original 4 X 4 matrix are 
represented by dots. The nodes which were added in order to form row trees are drawn as small 
triangles while those added to form column trees are shown as small squares. Solid lines indicate 
row tree edges while dashed lines indicate column tree edges. 

The expander-connected mesh or trees is similar to the expander-connected mesh Pm,n except 
that the meshes are replaced by meshes of trees. More precisely, the ezpander-connected mesh of 
treea (denoted by Qm,n) is defined to be the graph consisting or m disjoint n x n meshes or trees 
which are interlinked with additional edges so that for each i and j (1 ~ i,j < n), the subgraph 
induced on those leavea in the (i,j) position of some mesh or trees is an expander graph. For 
example, we have drawn Q2,2 in Figure 12. The dotted lines represent edges in the expander 
graphs while the dashed and solid lines represent edges in the meshes or trees. 

It is not difficult to check that Qm,n has N = 0(mn2) nodes and a v'2-bifurcator of size F = 
mn. In the following theorem, we will show that Qm,n has layout area at least O(m2n2 log2 n) = 
O(F2 log2 ~), crossing number at least O(m2n2 log n) = O(F2 log~) and minimax edge length 
at least O(mnlogn/loglogn} = O(Flog ~/log log~). Thus the universal upper bounds proved 
in Theorem 20 are existentially tight for every N and F. 

Theorem 23. The expander-connected meah of treea haa layout area 0(m2n2 log2 n), croaaing 
number 0{m2n2Jogn} and minimax edge length 0(mnlogn/loglogn). 
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Proof. The upper bounds follow trivially from Theorem 20 and the fact that Qm,n hu a 
v'2-bifurcator of size O(mn). The lower bounds are substantially more difficult. In fact, we 
suggest that the reader be familiar with the lower bound techniques described in [19, 20] for the 
case when m = 1 before wading through the following proof for general m. We commence with 
the area lower bound. 

8.2.1. Area Bound 

Let Wm(n) denote the minimum wire area of Qm,n· We will show that for a sufficiently small 
(but positive) constant a, 

for all m and n. This will, of course, imply the desired lower bound for layout area. 

The proof is by induction of n. Since Qm,n contains n2 disjoint m-node expander graphs, the 
hypothesis is clearly true for n :s; 16 provided that Q is a sufficiently small constant. In what 
follows, we will assume that the hypothesis is true for all values less than n in order to prove it 
for n. 

Consider any layout for Qm,n which uses Wm(n) wire. Partition the layout into three vertical 
strips V0 , Vi and V2 so that the center strip contains 7mn2 /8 leaves and each outer strip contain& 
mn2 /16 leaves. Similarly partition the layout into three horizontal strips Ho, Hi and H2 ao 
that the middle strip contains 7mn2 /8 leaves and each outer strip contains mn2 /16 leaves. For 
example, see Figure 13. 

Let d denote the length of the longest side of the center block formed by the intersection of 
Vi and H1 • Without loss of generality, we assume that the longest side is horizontal. In what 
follows, we will show that d > f,...j'Qmn log n. 

Since each of the regions Von Hi and V2 n H 1 can contain at most mn2 /16 leaves, it is clear 
that Vin Hi contains at least 3mn2 /4 leaves. Consider the n312 subgraph• of Qm,n produced by 
eliminating the top i log n levels of the row and column tree& of Q"'•"" Each of these subgraphs 

Figure 12. The expander-connected mesh of treea Q2,2 • 
- ' 
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Figure 13. Partitioning a layout. 

is isomorphic to Qm,"1 14. By the pigeonhole principle, at least 1/4 of these subgraphs have at 
least 1/2 of their leaves inside Vi nH1. Ir d < nYcimnlogn {otherwise, we are done), then at 

··most 4d < lYcimnlogn edges can cross the boundary of Vi nH1• Thus, at most lcoVcinlogn 
or the subgraphs which have most of their leaves in Vi nn1 can have m or more nodes or part• 
of edges outside of Vi n H 1 • (This is because every partition of Qm,n•/4 for n > 16 into two 
subsets, each of which contains m or more nodes, requires the removal of at least m/ co edges 
where c0 is a constant.) 

This means that Vi nH1 contains at least in312 - }coJCinlogn nearly complete copies of 
Qm,nl/4· Since (by induction), Wm(n114 ) > na:m2n112 Iog2 n, and since each nearly complete 
copy of Q"" nl/4 is missing at most m nodes and edges, it is not difficult to show that the wire area 
of each nea~ly complete copy of Q"'•"114 is at least .,ba:m2n 112 log2 n. Thus Vi nH1 contains at 
least· 

1 1 1 
(-n312 - -covfanlog n) X -a:m2n112 log2 n 
4 4 32 

wire area. For constant a: sufficiently small, this is at least 2h-a:m2n2 log2 n. Hence d > 
nJOmn log n, as claimed. 

We next use the layout for Qm," to construct a drawing for the complete graph on mn2 nodes 
(namely, the mn2 leaves of Qm,"). In particular, the edge from leaf (i,j, k) to leaf (i',j', k') is 
drawn from (i,j, k) to (i',j', k) along the path from (i,j, k) to (i',j, k) in the jth row tree of the 
kth tree of meshes and from {i',j, k) to (i',j', k) in the i'th row tree of the kth tree of meshes. 
The edge to ( i', }', k') is completed by drawing a line from ( i', i', k) to { i', j', k') directly. (Notice 
that we have traced over the mesh of trees edges but not the expander edges.) No matter how 
the edges are drawn in the plane, however, (e.g., they may cross or overlap) it is clear from 
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Figure 13 that the sum of the lengths of the edges (as measured in Euclidean space) is at leut 
(mn2 /16)2d 2 2-12 y'Qm3n5 log n. This is due to the fact that (mn2 /16)2 edges pass from region 
V0 to region V2 and that these regions are separated by a distance d. 

Let Li denote the sum of the lengths of the edges in the ith levels of the binary tree1 in 
the layout of Qm,n· In addition, let R denote the sum E:,.i=l Ri,.i where Ri..i is the sum over 
1 ~ k, k' s; m of the distance between (i,j, k) and (i,j, k'). Each level i edge is traced over at 
most mn3 2-i times in the drawing of the complete graph. In addition, the straight-line path 
between (i,j,k) and (i,j,k') is traced over at most n2 times for any i, j, k and k'. Thu1, 

logn 

Rn2 + L Lin3m2-i > 2-12 v'Qm3n5 logn. 
i-1 

This means that one of the following inequalities must be true: 

or 

logn 

L Li2-1 > 2-13 v'Qm2n2 logn. 
i=-1 

In the first case, we observe that there is a constant c1 such that R' > ~R where R' = 
E::',=1 R~.i and R~.i is the sum of the lengths of the edges in the (i,j} expander graph of Q"'•"" 
This observation follows from the fact that R~.i ~ ~R,,, for every i and j. (This fact can 
be proved by integrating the values of Ri,, and Rt,. over all vertical and horizontal cuts of the 
layout. Each cut will contain r(m - r) pieces of edges of R,,, and ~r(m - r} pieces of edges of 
R~..i where rand m- r are the number of nodes on opposite sides of the cut.) Since Wm(n) > R' 
and since R' > 2-13c1 y'Qm2n3 log n, we can conclude that (for a sufficiently small constant a) 
Wm(n) ~ am2n2 log n, thus proving the inductive hypotheai1. 

In the second case, we can show by a simple contradiction argument (just plug the claimed 
value back into the sum) that there exists an i such that 

2-13 v'Qm2n2 logn2' 
L, > pi2 

where f3 is the constant E;:1 1/i2• Using the straightforward relation 

we can conclude that 

2-13_ r,:: 2 21 2' 
Wm(n) > 22iam2(n2-1) 2(1ogn - i)2 + vc:t~i: ogn 

> am2n2log2n-2iam2n2logn+ 2-13y'Qm2n2Iogn2' 
- pi2 
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which is at least om2n2 log2 n for a sufficiently small constant Q. This completes the proof of 
the area lower bound. We next prove the minimax wire length lower bound. 

8.2.2. Wire Length Bound 

From the proof of the wire area lower bound, we know that one of the foil owing inequalities 
must hold: 

R ~ 2-13 y'Qm3n3 logn, or 

101" 

L Li2-• ~ 2-13 y'Qm2n2 logn. 
i=l 

When the first inequality holds, we showed that Wm(n) ~ O(m2n3 log n). Since Qm,n 
has 9(mn2) edges, this means that at least one of the edges in the layout must have length 
O(mnlogn) ~ O(mnlogn/loglogn). When the second inequality holds, a simple contradiction 
argument (as before, just plug the values back into the sum) can be used to show that either 

1) there is an i ~ 6loglogn such that L; ~ O(m2n2 logn21/loglogn), or 

2) there is an i > 6 log log n such that Li ~ O(m2n2 log n 2; /i2). 

Since there are mn2•+ 1 level i edges in Qm,ni the first condition insures that the layout 
contains a wire of length O(mnlogn/loglogn). The analysis of the second case is somewhat 
more difficult. 

Consider a layout for Qm,n which achieves the minimax edge length and (among layouts which 
satisfy this constraint) has minimum area. Since Wm(n) ~ Li for all i, the second inequality 
implies that 

Wm(n) > O(m2n2 log7 n/ loglog2 n) 

> O(m2n2 log8 n) 

for this layout. Thus (without loss of generality) the horizontal length of the layout is at leaat 
n(mn log3 n). 

Partition the layout into three equal.area vertical strips. By the minimality of the layout area, 
we can conclude that each of the outer strips contains O(mnlog3 n) nodes. (Otherwise, a smaller 
layout with identical minimax edge length could be constructed.) 

Since· each mesh of trees has diameter O(log n}, each mesh of trees must be entirely contained 
in an O(mn log2 n) by O(mn log2 n) rectangle. (Otherwise, there would be an edge of length 
0( mn log n) and we would be done.) Thus nodes in the same mesh of trees must be grouped 
together in the layout. Since each mesh of trees contains 9(n2 ) nodes, the outer strips must 

• ( mlog
3 

n} mlog
3 

n ( ) contain n n complete meshes of trees. Thus at leaat 0( " } > n ': nodes of each 
expander graph are contained in the left and right outer strips of the layout. Since any two sets 
of r1 and r2 nodes are linked by a path of length O(log ~+log ~) in an m·node expander graph, 
this means that there is a path of length O(log n) connecting the left outer strip to the right outer 
strip. As the strips are separated by a distance O(mnlog3 n), we can conclude that the layout 
contains an edge of length O(mnlog2 n). This completes the proof of the minimax wire length 
lower bound .. We next prove the crossing number lower bound. 
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8.2.3. Crossing Number Bound 

Let Cm(n) denote the minimum crossing number of Qm,n· As was the case with the wire area 
lower bound, we will show by induction on n that 

for a sufficiently small (but positive) constant et. The basis of the induction follows from the 
fact that C ~ O(B2 ) for any N-node graph with bisection width B > > O(v'N). This fact 
immediately implies that the crossing number of an m-node expander graph is O(m2). In what 
follows, we will assume that the hypothesis is true for all values less than n in order to prove it 
for n. 

Consider a drawing of Qm,n in the plane which has Cm(n) crossings. By the optimality of 
Cm(n), we can assume that no pair of edges cross more than once and that pairs of edges incident 
to the same node do not cross at all. Using the drawing for Qm,ni construct a drawing for a 
graph with O(m2n 4) edges and mn2 nodes as follows. 

1. Draw an edge between every pair of nodes in the same expander graph which are incident 
to crossing expander graph edges. 

2. Draw an edge between pairs of leaves in the same mesh of trees. 

3. Draw an edge between pairs of leaves separated by a path of length 1 or 2 in the graph 
formed by steps 1 and 2 above. 

4. Eliminate multiple edges. 

Each edge in the new graph should be drawn along the edges of Qm,n in the natural way (e.g., 
the edges introduced in step 1 are drawn along the corresponding crossing edges of Qm,n)· It is 
not difficult to check that each expander edge is traced over at most m times during step 1 and 
that each level i mesh of trees edge is traced over at most n32-i times in step 2. These values 
are multiplied by a factor of O(n2) for expander edges and O(m) for mesh of trees edges by step 
3. 

Since every drawing of an m-node expander graph has O(m2) crossings, it is not difficult to 
see that the resulting graph (even after step 4) has E = O(m2n4 ) edges and N = mn2 nodes. In 
Theorem-7-6 of [19), Leighton shows that any drawing of such a graph must have O(E3/N2) = 
O{m4n8) crossings. Thus 

loin loin 

sm2n4 + I: r;m2n52-i + I: ti,,.m2n82-•-i > O(m4n8) 

•-1 i,j-1 

where t,,,. is the number of crossings in the drawing of Qm,n involving a level i edge and a level 
j edge, r, is the number of crossings involving a level i edge and an expander edge, and B is 
the number of crossings involving two expander edges. This means that one of the fallowing 
inequalities must be true: 



loan 

L ri2-i > O{m2n 3) 

1 .... 1 

or 

If the first inequality holds, then we can conclude that 

for sufficiently small Cl. If the second inequality holds, then 

loan loan 

Cm(n) ~ Lr,> L r,2-1 > O(m2n 3
) > Clm2n2 logn 

1-1 i-1 

for sufficiently small Cl. The analysis for the third case is somewhat more difficult. 

Let t, = E~01 7 t,,1 be the number of crossings involving a level i edge and a level j edge 

where j > i. When the third inequality holds, it is clear that E~~~ t,2-2i > O(m2n 2). Thus 
there is an i such that ti ~ O(m2n 22'). Using the inductive hypothesis, we can thus conclude 
that 

Cm(n) ~ 221Cm(n2-i) +ti 

~ 22iClm2(n2-i)2(1ogn- i) + t, 
= Qm2n2 log n - fom 2n 2 + O(m2n221

) 

which is at least am2n 2 log n for a sufficiently small constant Q. This concludes the proof or the 
crossing number lower bound and of the theorem. I 

9. Remarks 

The divide-and-conquer strategy based on bifurcators has also been successfully applied to 
the study of three-dimensional VLSI layouts !23}. In addition, the techniques and results are 
applicable to graph and data-structure embeddings, and also provide bounds on one- and two
dimensional bandwidth minimization. 

There are a number or problems left unresolved in this paper. Some of the more important 
ones are mentioned below. 

1. How much area is needed to lay out an N-node planar graph? The best universal upper 
bound is O(N log2 N) [26, 45} while the best existential lower bound {for the tree of meshes) is 
O(N log N) [19, 20}. 

2. Is there a polynomial time algorithm for laying out trees with edges not much longer than 
the minimax edge length? The best tree layout algorithm known produces layouts with edges or 
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length 0( VN flog N}[3]. Although this is optimal for some trees, it is. way off for others. On the 
other hand, it is NP-Complete to determine if a tree can be laid out with all edges of length one 
[2]. 

3. Is there a better way to realize a network in an environment that contains defective 
processors? Theorem 15 guarantees that any graph can be realized using the good processora 
provided the "channels" have width 0( -fN log ljr) jn a regular layout. This bound is clearly 

optimal for some networks (such as expander-connected meshes of trees) but is not known to be 
optimal for simpler networks. In particular, it is not known whether or not a constant number 
of tracks per channel suffices to configure a mesh from the good processors. Since F = ./N for 
an N-node mesh, the best known upper bound on channel width is O(log N). 

-i. Is there a provably good, polynomial time algorithm for the bisection width problem? 
Although the bisection width problem is known to be NP-complete [13), there are many heuristics 
which do quite well in practice 16, 7, 10, 18, 37, 40]. Analyzing these or developing new heuristics 
along similar lines may help solve the layout problem. 

5. Is there a provably good, polynomial time algorithm (or the crossing number problem? 
This problem was recently shown to be NP-complete 114], but the possibility of approximation 
algorithms is not ruled out. The arguments of Section 7 suggest that graph bisection algorithm• 
might be effective for this problem. 
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