
MLT/LC:S/TR-:102

A 'lULTlPT\ClCFSSClR F'llJT 1\TTCl\T F:\C:TLITY

J\rvincl
\lichael L. Dertouzos

Pohcrt :"'.. Iannucci

This blank page was inserted to presenie pagination.

A Multiprocessor Emulation Facility

Laboratory for Computer Science
Technical Report 302

24 October 1983

Arvind

Michael L Dertouzos

Robert A. Iannucci

This report is an excerpt from a Proposal submitted by the Laboratory for Computer Science of the
Massachusetts Institute of Technology to the Advanced Research Projects Agency of the Departtnent of
Defense. Current funding is provided in part by the Defense Advanced Research Projects Agency of the
[)epartment of Defense and monitored by the Office of Naval Research under contract N00014·7S.:C-Q661.
The third author is supported by the International Business Machines Corporation.

A Multiprocessor Emulation Facility

Abstract

Interest in multiprocessor computer architectures has increased dramatically in the last ten years.
However, it has become clear that, in order to effectively use multiprocessors in a general way, some
fundamental changes in the model of computation are n~ry. Moreover, experimentation in the
field is hindered by low-performance simulation tools and high-cost hardware modeling schemes.

We present our approach to solving both of these problems: Data.flow Architecture, which
provides an inherently parallel model of computation, and a Multiprocessor Emulation Facility,
which is a general purpose tool for evaluating multiprocessor architectures at low alSt. We also
discuss our scheme for using the Emulation Facility to validate our claims about dataflow
architecture.

Key words and phrases: computer architecture, dataflow, emulation, multiprocessor systems, packet
communication, simulation

~·Mt4Q.'1J,Al1·•¥,·"'·~~"'tt\!ff1Mt.l!it M!lf1ll,,,lil1JY,¥.•~~i.•!i!lll~~···OJ#'J~ll !l!.l llWllJfJ!.t.llOl&\,!W,tP t&r•iL l'*.~·M*~~~11~ i - ',' ·- ' - ·- ' .. ' . ' "' . ' - ,

+

TaWe of Canteats

1. Introduction and Objectives
2 . .Emulalioll ; :, .

2.L The S&ate"Of-the--Art in Simulatiolr~ F.mulidOn
_ 2.2. Goals of the Emulaiioa Facility .

. 1 ~ • ~ 2.3. The Multiprocmor Eanulation FacilitJ
• 1 .. 2.4. Ute of the Fadllty
\ \' ·, '2.5. Benc:lllnartiacllKI Memaremeat

3. The Tagpd·Token [)ateftow MMhine
3.1. The .Dataftow Mllemative

4. Fmtalating the Dltaftow·Madliae and Beyond
4.1. The Overall Pim
4.2. The Fint Experiment .
4.3. Elpeded Bmulator Performance
4.4. Summary

.,

1
2
3
s
6

10
ll
13
14
18
11
19
20
20

A Multiprocessor Emulation Facility

1. Introduction and Objectives

The nation is currently at a critical turning point concerning the formulation of appropriate
research and development strategies in information technology for the following reasons:

1. The ongoing improvements of some 30% per year in the performance/price of the mlid
state circuits that make up computer processors and memories has created a new
opportunity for aggregating thousands of procesoors at reasonable cost in architectures
dedicated to the performance of a single task.

2. The research which has been performed to date on multiprocessor architectures has
resulted in several promising technological avenues for achieving such architectures:
The concepts of architectures that (1) are paired with associated programming
languages; (2) are quasi-linearly scalable; and (3) are fault-tolerant, have reached a stage
that calls for development-oriented experimentation.

3. The generic applications expected to become ~ible on these machines include
machine vision, speech understanding, intelligent filing and retrieval systems, intelligent
signal processing and computationally intensive simulations. These generic applications
when further specialized into military or civilian uses. will lead to qualitatively different
and previously impossible computer uses that will induce revolutionary changes into
every sector of our military and civilian structures.

4. In information technology, Japan has undertaken the challenge of leap-frogging the
U.S. within ten years by pursuing ambitious long-term goals which involve super
computers. Our industries, by virtue of their shorter-term orientation, have not
embarked on any similarly ambitious strategies. As a result, the geopolitical balance
which will necessarily rest progressively more on information technology in the fbture
than it has in the past, is in danger of shifting away from the U.S.

At the MIT Laboratory for Computer Science, we have been fortunate in identifying these
reasons as very significant nearly four years ago when Japan announced itS early plans for the Fifth
Generation Computer Project (The Jipdec Plan). Prior to that time, we have had a strong scientific
interest in multiprocesoor architectures and associated languages for about 15 years, and have
carried out specific research projects in the field (Dataflow and MuNet architectures).

Our plan for an integrated project in the super-computer field consists of two principal parts: (1)
an emulation facility for multiprocessor architectures; and (2) a datajlow architecture which
constitutes the first targeted use of this facility. These two parts are summarized below.

The emulation facility is a system consisting of 64 powerful computers and 64 8 x 8 network
switches that interconnect these machines. These computers and switches can be programmed
either through a high-level language (so as to reduce programming effort) or at the micro-code level
(for increased performance) to emulate a variety of multiprocessor systems. Additional advanced

Emulation Facility -2- Introduction and Objectives

personal computers are used via a local network to access and control the centralized 64-p~r
and network aggregate. The emulation of such multiprocessor machines prior to their construction
is deemed essential for the following reasons:

1. Analytical/theoretical or single-processor simulation techniques alone are not adequate
for solving a variety of problems that must be addressed prior to implementation of a
multiprocessor system. such as determining the size of buffer memories in each
processor.

2. The alternative of implementing a proposed multiprocessor architecture directly with
custom silicon chips is costly. time consuming and good for testing only one architecture
ata time.

3. The emulation facility fosters a multiprocessor design orientation - in effect. the
designers of multiprocessor systems become accustomed to "thinking parallel" precisely
because their experimental base is the parallel structure of the emulation facility.

4. The availability of such a powerful emulation facility for use by members of the
research community will stimulate the"' design of numerous architectures by top-level
designers while simultaneously scrutinizing the potential success of these machines at a
small fraction of the implementation costs.

The emulation facility is discu~d in more detail in Section 2 of this paper.

The dataflow architecture that we propose to test on this facility is. in our view. the most
promising potential multiprocessor architecture among the alternatives before us. It consists of a
tightly-coupled network of processors and an associated programming language through which the
dataflow machine is tailored to specific applications. Though internal architecture of a dataflow
processor is different from that of the processors in the emulation facility, the overall architecture of
the dataflow machine closely parallels the structure of our proposed emulation facility. The
dataflow architecture is discussed in more detail in Section 3.

Our overall plan. which is discussed in Section 4. calls for a staged buildup of the emulation
facility and for subsequent use of this facility by other members of the DARPA community via the
ARPANET. Our plan also calls for simulation of the dataflow machine by an IBM 4341 computer
loaned to us by IBM. The continuing involvement of IBM as our major industrial partner since the
first day of this project is a key ingredient of our overall plan, for it will make posgble a joint
development effort of a VLSI version of this novel architecture when it has been adequately
modified and verified through the emulation process.

2. Emulation

Recent advances in methodologies for designing custom VLSI circuits and the greatly reduced
cost of their fabrication has made large parallel machines seem realizable in the near future.
However. designs of large systems can be cast in hardware only after proper evaluation by

Emulation Facility -3- Emulation

simulation, emulation. or the mnstruction of a prototype of the system. The absence of extensive
evaluation prior to construction may result in wasteful post-construction design changes.

Emulation is a powerful pre-construction evaluation technique which allows the system architect
to abstract away from some of the low-level details of an implementation so that attention may be
focused on the higher-level behavior of the system being designed. For the purposes of this paper.
we define emulation as the process of reconfiguring a base computer system via programming. so
that it behaves according to a target architectural specification. The programming may talce the
form of micro-coding. higher-level programming, or some mixture. To make the base machine
behave according to the architecture of the target machine means that the base machine will accept
the target machine-level programs and data structures, and will produce results identical to those of
the target architecture, although not necessarily with the same level of performance. Unlike a
simulation program, an emulator usually does not carry timing information explicitly.

2.1. The State·of·the·Art in Simulation and Emulation
Simulation basically requires as large a number of machine cycles as one can get, and some

software for utilizing the cycles. The Cray-1 has dominated the high-speed computer market and
can be taken as a representative of the class of machines that includes the Cyber 205, the Cray-xmp.
and Hitachi and Fujitsu super-computers scheduled for delivery this year. All these machines
provide substantial raw computing power but primarily in the context of numerical problem·
solving. Their programming environments are strictly tailored to Fortran and assembly language.
both of which are adequate for writing simulations. However, neither virtual memory nor Simula.
which is generally considered to be the best language for writing simulation programs, is available
on these machines. We do not consider this to be a serious drawback because our experience has
shown that for a large simulation program a programmer has to write his own storage management
routines. Fine grain control over what information resides in primary memory is essential for the
efficiency of many simulation programs. A detailed simulation program for an earlier version of
the dataflow machine was written by Gostelow and Thomas [7] in Simula on a PDP-10. The
program would run out of add~ space in executing a matrix multiply program involving two 7x7
matrices. Problems 4 to 10 tomes larger could have been run if the simulation program had been
written in Pascal or C. Of course, a much greater effort would have been required to write the same
program in Pascal as opposed to Simula.

There are no more than 70 to 80 Cray class machines in the world because such machines are·
expensive (approximately $8 million to $ll million). These machines are generally not available to
university researchers for remote program development Even though the applicability of super
computers for simulation in undeniable, given the option of acquiring a Cray-1 or Cray·xmp versus
putting together the less expensive proposed Multiprocessor Emulation Facility (MEF). we
consider the MEF superior for the reasons outlined below.

As emulators, current super-computers are far from suitable because of their rigid internal
structure. These machines are designed to exploit inner loop parallelism, and parallelism present in
straight-line scalar code fragments. Their performance degrades rapidly if the control structure of

-------~ -----~~

Emulation Facility -4- Emulation

the program involves too many conditional branches. Emulating a multiprocessor architecture, by
its very nature, involves testing the state of an emulated processor and its memory, and taking

appropriate action. In addition, modeling of conflicts in interprocessor communication can not be
done without explicitly "simulating" the passage of target-system time. The MEF, on the other
hand, by providing physical interconnections that are very close to the target network, can emulate
these conflicts substantially faster than a simulator.

One of the most successful simulation/emulation engines built to date is the 256 procesoor
Yorktown Simulation Engine (YSE) [4, 14, 15] used by IBM to simulate proposed computer
architectures prior to construction. Here, after the instruction set. performance goals. and
technology for a new machine have been set, a block level simulation of the architecture is
undertaken. In particular, the logical design of each subsystem is done by a different development
group which checks the design of its subsystem by simulation. Gate level design is begun only after
the logic simulation shows satisfactory results. Ultimately, the whole machine is simulated at the
gate level, requiring enormous amounts of computing power. The YSE was designed specifically to
speed up the gate level simulation, and is capable of simulating two million gates at three billion
gate computations per second. At this rate, the YSE can simulate in eight hours a gate level system
that would require one year of simulation on an IBM 370/168. Such enormous speeds are achieved
because the YSE does not carry any timing information explicitly. The timing information is
"compiled" into a YSE program which essentially behaves like a versatile 80 nanosecond gate
machine. Since the YSE is a gate level emulation machine, it cannot be used for functional level or
logic level simulation and hence would be useful to multiproceS&>r system designers only in later
stages of logic design.

Recently, proposals have been made to use Control Data's Advanced Aexible Processors (AFP's)
connected by a fast ring-bus into an emulation/simulation facility. As far as computation cycles go,
there are few machines that can match the AFP's raw computing power. However. AFP's do not
have any program development environment - a user is supposed to do program development on
the AFP simulator that runs on Cyber machines. Programming an AFP can be best described as
horizontal micro-coding which is at least an order of magnitude harder than assembly language
programming. Accordingly, a 200 line program on AFP would be considered very large given the
current programming aids. Under these circumstances, AFPs cannot be effectively used for
simulation programs which often run to several tens of thousands of lines of rode. The AFP may
eventually become suitable as a buildil).8 block for an emulation facility but the lact of
programming and debugging aids and the need for an aswciated Cyber machine may pose difficult
practical problems in such use.

One of the most interesting multiprocessor systems built to date is the BBN Butterfly machine
[17]. It currently consists of 10 M68000 boards connected by a circuit switched network of butterfly

(Le, FFT or shuffle exchange) topology. The machine can be extended to several hundred
M68000s because the network is easily expanded. however larger systems would be more difficult
because of the reliance on a single, central clock. Work is also underway to build a faster version of
the switch in custom VLSI. The machine was designed for voice funnel applications. and two
copies of the machine are successfully running that application. The program development for a

Emulation Facility -5- Emulation

single M68000 can be done in C or in any of the ever growing programming aids for the M68000.
Our main concern with the Butterfly machine is its lack of computing power. An M68000
processor, while adequate for many applications, is equivalent to only 1/10 of its computing power
in emulating another procesoor architecture. Thus, even a 64-proces.50r emulation facility based on
the M68000 will be barely equivalent to a DEC 2060, and will not be sufficiently powerful to
emulate· large multiprocessor aggregates. Along these lines, it should be noted that one reason why
Cm* (20, 21] did not tum out to be very useful was its lack of adequate computing power.

2.2. Goals of the Emulation Facility
An emulator should be easy to use and should provide early feedback to the designers

- information which cannot be practically obtained in any other way. In what follows we summarize
our goals for such an emulation facility; we propose its structure in more detail and show how it will
be useful to researchers in the United States.

The existence of an emulation vehicle will help establish the feasibility of a concept at
substantially lower-risk and cost than the actual construction of the target machine. Therefore it is
imperative that the emulation facility provide its user with these benefits. This requirement
necessitates, for example, an effective programming and debugging environment beyond raw
computation power.

We believe that the proposed general-purpose emulation facility should meet the following goals:

• High Capacity: The facility should be composed of an adequately large number (64) of
him-speed (200 nsec. micro-cycle) processors, each having a large virtual address space
(2!2) and a large physical memory (1-8 megabytes with a bandwidth of 20 megabytes
per second). The idea is to provide as close to state of the art basic machine
performance as is practical, to reduce the performance gap between the emulator and
the target architectures. The facility should not only be powerful by today's standards.
but should also be useful to its users - only then can· users be expected to put in the
required effort for their architectural experiments.

The facility that we propose in Section 2.3 is a 64 processor machine with 2 megabytes
of memory per p~r (le., a total real storage size of US megabytes) and the
capability of executing 320 million micro-instructions per second

· • Reliability and Fault Tolerance: The emulator machinery should be inherently reliable.
Thus, dependence on exotic and unproven technologies should be avoided The facility
should be designed to tolerate and mask certain inevitable failures. This implies that
the hardware must have at least minimal failure detection circuitry. and the rest of the
system must be able to effectively make use of this information to correct aberrant
behavior.

• Reconfigurability and PartitionabiHty: The facility should be easily tailored to suit a
wide variety of emulation . tasks. This includes the necessary reprogramming of the
processors and the pomble reoonfiguration of the interconnection network to suit the

Emulation Facility -6- Emulation

task at hand. Also, the facility should be easily subdivided into several smaller, disjoint
facilities so that more than one smaller architectural experiment can be run at one time.

• Ease of Implementation: Implementation of the emulation facility must be easier than
implementation of the functioning target systems that the facility will emulate. This is
an important goal that we discuss later in the context of implementing dataflow
machines.

• Ease of Use: Perhaps the most important objective of an emulator, which encompasses
the foregoing goals, is that it be easily used by architects of prospective architectures.

2.3. The Multiprocessor Emulation Facility
The proposed emulation facility is made up of two integrated parts - the microprogrammab/e

processor and the packet communication switch module. The former is available commercially; the
latter is not and will be developed by us. The facility will consist of 64 total processors, eight of
which will be fully configured as software development stations (with display, keyboard, paging
disk, and local network interface). The other 56 processors will be stripped down versions (with
memory but without display/keyboard or disk). From the software point of view, all 64 machines
will be programmed as if they were identical for emulation purposes. :Each processor, fully
configured or not, will have an integrated switch module. These switches will be interconnected
under user control to a variety of inter-processor communication network configurations.

In more detail, the proposed processors and networks along with the reasons for our choices are
as follows:

Processor: In addition to examining the raw power and cost of candidate processors, our selection
criteria included the availability, and the human effort required to make the facility usable. We
considered three classes of machines:

1. Commercially available Motorola M68000-based single board computers.

2. Our own design of an AMD2903 based multi-tasking micro-machine [U], and

3. Commercially available single user machines such as Three Rivers' PERQs, Xerox Altos
and Dorados, DEC VAX 750s, and various Lisp Machines.

Machines of Class 1, though initially attractive, were rejected primarily because of inadequate
comi'ftting power for emulation and the difficulty of integrating a communication network into
already existing boards. There were also serious questions about the lack of error correcting
memories in commercially available memory boards. Machines of Class 3 were originally not
considered because of the aB>Ciated expense. Our own design (U] was partially inspired by the
machines of Class 3, and would have involved a major d~gn effort and subst.antial risk only to
produce something which is commercially available.

As a result of these considerations and aft.er a considerable amount of research, we identified the

Emulation Facility -7- Emulation

Symbolics 3600 as the clear choice for our emulation facility. It is a state-of-the-art machine which
is user microprogrammable. and meets all the performance and capacity needs of the project It
also has the potential of expansion, particularly of its physical memory. which we feel is importa
for the future of the facility. Other important features include error-correcting m · mory,
parity checked registers and buses, 36 bit data paths (32 plus 4 tag bits), high I isticated LISP
based programming and debugging environment, ava,ilability of a 1llgh-speed floating point
processor, local network interface, micro-coding and micro-tasking, and a pluggable bus/backplane.

The tag bit feature of this machine's main memory will provide a significant performance benefit
for the dataflow emulation. Further, the micro-tasking processor will make possible the writing of
the the dataflow emulator as a set of communicating processes - one per ~ubsystem. This approach,
in turn, will improve the fidelity of emulation without introducing a corresponding time penalty.

Network: The network that we propose is intended to make possible the attachment of a large
number of microprogrammable processors. It will be made up of individual modules which will be
integrated with the processors on a one-on-one basis. Each module will provide a direct memory
access path to and from its processor's main storage as well as a sta~us and control interface to that
processor.

The design of the network is built around the concept of packet switching. In such a network. a
processor formats information to be transmitted into data packets by the addition of some routing
and control information (analogous to putting a letter into an addressed envelope) and hands it off
to the network. The sending processor is then free to perform other work while the network goes
about the task of delivering the packet to the proper destination. Such networks vary. in their
interconnection topology, but have the property that a packet may go through several links. Rather
than reserving a complete path from source to destination for the entire duration of tlie packet's
transit time called circuit switching, such networks allow packets to be stored at interm~diate points
until a path is available to the next intermediate point The network then forwards the packet and
frees the storage space used for the next packet

The proposed design is optimized for. but not limited to, the binary n-cube topology. Referring
to Figure 2-1, it can be seen that for a cube of dimensionality n, a node must act like the logical
equivalent of an (n+ 1) X (n+ 1) crosspoint switch. One of the input/output pairs is connected to
the processor mociated with the node while the other n input/output pairs are connected to the
nodes immediately adjacent in the cube. The Figure illustrates this with a 3-dimensional cube
(23 = 8 p.rocewr nodes).

A simple algorithm exists for routing memges in then-cube that can easily exploit the inherent
redundancy for fault tolerance. While this. algorithm is simple, it can be made more general by
using a table-based routing scheme. By using such table, static reconfiguration and partitioning of
the network can be facilitated. Depending on the table contents, the switch can implement a
routing algorithm based on local. dynamic traffic information or it can implement a purely source
based (fixed path) algorithm. Specifically, a node may have many alias addnses, each denoting a
unique path through the network. The mes&lge source may then predetermine the path a packet
takes by suitable selection of an address. This flexibility is essential if the network is to be useful in

Emulation Facility -8- Emulation

Node

n-Cube (n = 3) Node Structure

Figure 2·1: The Binary n-Cube and Node Structure

emulating several target interconnections.

The switch design, as mentioned, can be adapted to other topologies through physical
reconfiguration by re-plugging of interconnection cables. Small, fully-connected networks (eight
processors) can be constructed because each switch module provides seven bidirectional serial ports
in addition to the direct connection to the local processor.

By treating inputs and outputs separately, a 7X7 butterfly switch can be configured This
topology gives up hardware-level redundancy in the network, but any of the traditional n X log n
networks with a processor per butterfly can be constructed. Routing tables would have to be set
appropriately.

For our 8X8 switch, we can implement a 7 dimensional cube with 27=128 processors. Due to the
internal byte-oriented architecture of the design, packets can only name 28 = 256 distinct
destinations for the purpose of routing. This is a "soft" upper limit on the number of processors
that the switch can interconnect - with processor intervention (e.g., altering the routing add~). an
unlimited number of processors can be named. By altering the topology (e.g., cube-connected
cycles [16D. arbitrarily large networks can be composed.

The proposed switch implements extensive failure detection through analog and digital domain
checks, and relies on the ~iated microprogrammable processor for error recovery operations.
This approach reduces the complexity of the switch, while simultaneously raising the level of fault
tolerance. The switch has also been systematically designed to minimize the chance for failure by
relying only on robust techniques.

The overall structure of the switch is shown in Figure 2-2 (see (13] for more details). It is modular
in character, and is organized around eight major control and data buses. Connected to the buses
are eight input FIFOs, eight output buffers. and a Sequencer I Scheduler. Seven of the input

" 1 •I <i) ,,, _....,,. '"* •· -~ ;,'f',. ~l ;.,)' ·~ •• • • ,,. -, • ' •< • I ' < • >t , , - • • '' « ~ • ., c" ,, • > d " > • > •

---------~-~--------- ---

Emulation Facility -9-

Bit serial Bit serial

11 11
[s-P E [s.p
i • • • 1

[Sequencer I
Scheduler

[Input
FIFO J [Input

FIFO
~ ~ ~ l ...

·~
...

+
7 1

~ ...
• 7 1

. , '
..

·~
,

~Output ••• ~Output
Buffer Buffer

j_ 1
[P·S E [P-s E

II II
Bit aerial Bit serial

E [Bus

j_
[Input

FIFO .-
1

...
1

0

...

,

.~~

0

..

Emulation

]
_t

OutEnable[7 .. O]

OutData(E, 7 .. OJ

OutLatchEnable[7 .. O]

FlowControl (wired-OR)

..
Out

SchedE nable[7 .. 0]

r[7 .. 0] SchedAdd

SchedResu lt(7 .. 0]

BusyOutputs[7 .. 0] (wired-OR)

•·
OuJl!ut
B er

1
Bua]

I

Figure 2·2: Basic Structure of the Packet Switch

FIFOs and seven of the output buffers are connected to serial - parallel conversion logic. The
eighth input I output pair interfaces to the data bus of the attached microprogrammable p~r.
Internally, the switch is totally synchronous. Resynchronization of incoming data with the local
clock is done by the serial-to-parallel conversion logic.

The Emulator as a Shared Memory Multiprocessor: Conceptually, an ideal way to build a large
emulation facility would be to construct a machine in which a number of autonomous processors
could cooperate using a single, contention free shared memory. Unfortunately, nobody knows how
to build such a machine without incurring either very high cost, or severe performance degradation.
or both.

Our emulator provides a clean model of communication which can easily be made to look like
shared memory. The packet switch is designed for both high throughput and low latency. Thus, it
would be posgble to formulate a remote memory request into a network packet of small size (say,
eight bytes) and to forward it to the appropriate remote processor. :Each processor would be

Emulation Facility -10- Emulation

prepared to process such incoming requests by dedicating a high priority micro-task to the job.

The exact perfonnance of such a remote reference depends on locality in the interconnection
network. traffic intensity, and routing conflicts. In the best case, a one-way message of eight data
bytes from one proceS&>r to one of its nearest-neighbor proceS&>rs without conflicts and in a low
traffic situation will take approximately 2.7 µ.sec. from processor memory to proceS&>r memory. A
micro-task switch can, in the best case, be done on a single micro-instruction basis (approximately
200 nsec.). Allowing 10 micro-instructions for processing the request and building the result packet,
it should be possible to execute such a remote request in under 7.5 J'sec. from the time the request is
fonnulated until the result is received. Deviations from the best case are likely to increase this
delay. Pipelining will improve the throughput, limited only by the raw bandwidth of the network
which is four megabytes per second per link. This leads to a theoretical upper bound of 500,000
memory references per second with the practical upper limit being probably a factor of four lower
than this theoretical bound.

2.4. Use of the Facility
Local Access: Use of the facility at MIT will rely on the development of the target interpreter

(software for the proceS&>rs and configuration tables for the network) on a Symbolics 3600. This is
an interactive task that does not require the emulation facility, and is best done on one of the eight
software development stations that are included in the facility.

Running an emulation can be done interactively if it is at all meaningful to do so. Since the eight
development stations are integrated into the total system, they make natural emulation "consoles"
from which to monitor the emulated system's behavior. The developed interpreter will be loaded
onto some subset of the total facility and executed. Partitioning makes ~ible use of the facility by
more than one user at the same time and assures that packets from two separate emulations will
never mix in the network.

Remote Access: Once the emulator is established we envision several ways for making it useful to
other U.S. researchers. One approach would be to duplicate the machine in whole or in part This
effort would only involve securing of the necessary hardware from the manufacturer and of the
necessary software from us.

Alternatively, the target interpreter could be developed remotely on another Symbolics 3600.
Symbolics LM-2, LMI Lambda, or MIT CADR and then transmitted via local area network or
ARP ANEf to the emulation facility for processing. (See Figure 2-3.) The emulation results would
be then communicated in reverse to the remote user.

-
Due to the flexibility of the Symbolics 3600 hardware. it is possible to keep complete memory

core images of several target interpreters at the emulation facility site. This flexibility would allow
usage of the emulation facility by researchers elsewhere in our Laboratory and throughout the
United States.

The scenario for remote usage of the emulation facility is straightforward: A researcher designs.
generates, and debugs code for the facility at the remote site. using another Symbolics 3600.

Emulation Facility

Multiprocessor
Emulation
Facility

Local Consoles
• Personality Development
•Interactive Processing

-11- Fmulation

MIT Local Area Networks

Remote Development
• Personality Development

Local I Dialup ASCII Terminals
• Interactive Processing

• Remote Processing

Figure 2-3: Use of the Multiprocessor Emulation Facility

Symboli~ LM-2, LMI Lambda, or MIT CADR Lisp Machine. Since the dialects of LISP provided
by these three machines are approximately compatible, this presents no translation hardship at a
later date. When the researcher's program is completed, it is transmitted to the emulation facility
maintainers (via the ARPANET) in the form of a compiled LISP program or a group of programs.

At the MIT emulation site, a "simple" 3600 machine core image is developed and stored. This
simple core image will contain only the bare minimum to implement the LISP interpreter and
compiler. together with the lower-level primitives of the emulation system. Upon reception of a
researcher's system (Le.. target interpreter), a new core image is built from this base and the user's
program. This core image is then loaded into each of the p~g elements of the system. and
emulation is activated.

Emulation Facility -12- &nutation

This solution to the problem of remote usage of the system was chosen for its natural simplicity
and flexibility. It allows the aearcher to develop programs in a leisurely way, on a foreign host
Remote users need only know the barest minimum about the facility itself - primarily that it runs
standard Lisp Machine LISP with some added primitives but without any program development
tools (such as an editor, disaaembler, etc.).

Software Structure of the MFF. We propose to provide users of the emulation facility with all the
necessary primitives for constnaing a target interpreter. F.ach user will initially view the emulator
as 64 separate but interconneckd processors. It will then be up to each such user to piece together
the supplied routines for remole memory reference or message-based communication. in order to
form the target system.

In developing the software structure of the MEF. our first goal will be to produce a LISP
environment that can run without virtual memory. This is essential because initially 56 out of the
64 Symbolics 3600s would be without any disk or 1/0 subsystem. This LISP environment includes
LISP primitives that provide (1) access to memory of other proceswrs. and (2) capability of sending
and receiving messages to/from other processes. In developing this environment. we will explore
the possibility of providing a P>f>al uniform address space in which the eight higher order bits of an
address will name the pl'OreB>I' and the 24 lower order bits will be the local address within the
so-named processor. Ideally. we would like to modify the addressing architecture of Symbolics
3600's so that a remote memory reference is automatically (Le.. without invoking any primitive
functions) processed by the kJcal processor. The technical chatlenge of implementing such a
scheme arises from the fact that remote memory references must be pipelined for the MEF to
exhibit high perfmmance emulation. Thus. not only does a remote reference have to be
automatically generated, but the micro-task requesting such a reference must be automatically set
aside in favor of a task that is ready to execute.

Beyond these factors, there are several quesf:ions regarding synchronization primitives. garbage
collection and management of eight separate 1/0 subsystems that will be addr~ in the course of
developing the MEFs software subsystems.

Since Symbolics 3600s come with a sophisticated LISP programming environment, we do not
plan to expend any effort in writing utility programs such as editors. fonnatters, local area network
software, display managemen'9 single disk 1/0 subsystems, or LISP compilers.

2.S. Benchmarking and Mewement
An important measurement of the effectiveness of an emulation is the ratio of emulated machine

cycles to real machine cycles. While it is difficult to quantify precisely this ratio we believe that the
power and generality of the Symbolics 3600 micro-machine (viz., tagged architecture, 32 bit barrel
shifter I mask unit. powerful micro-tasking, high-speed memory) should keep the ratio between 100
(very simple target architectures) and 5000 (very complex target architectures). Thus. with a micro
cycle time of 200 nsec., we can expect an emulated machine cycle for reasonable applications (Le.,
one that implements a substantially different instruction set) to be in the neighborhood of20 l'sec.
to 1 msec. For a 64-processor configuration, then. we can anticipate an upper bound of

Emulation Facility -13- Emulation

approximately 3.2 million emulated cycles per second.

Arithmetic speed of the base machine is a less important measure than the emulated-to-real ratio,
primarily because arithmetic is generally a small percentage of the overall emulator code - more
time is spent in doing data movement and reformatting than in doing arithmetic for all but the most
arithmetic-intensive target architectures. Fixed-point addition of 32 bit numbers is done in a single
micro-cycle on the 3600; floating point arithmetic has been specified to run at approximatetY one
million floating point operations per second (hardware assisted - not quite an order of magnitude
slower if done in micro-code).

Memory size is an important measure, and has already been discussed. . The facility has the
potential to grow to 512 megabytes of real storage (64 processors with 8 megabytes per proceBlr).
Because of the switch design, it is also ~ible to add another 64 p~rs to this base with the
attendant increase in overall capacity.

The overall efficiency of emulating other architectures of current interest (e.g., the Connection
Machine (11], Columbia University's Non-Von (191 University of Texas' TRAC (18]. NYU
Ultracomputer [8], MuNets (9) and the BBN Butterfly machine [l 7D on the MEF is open to
question. The interconnection schemes used in all these machines can be more or less directly
emulated on the MEF (the only exception is the Ultracomputer which requires a fundamentally
different switch). A lack of global clock type synchronization between p~rs may pore
difficulty in modeling those architectures which make heavy use of a global clock. However two
facts should be noted that (1) in all cases, the MEF would provide a far superior
emulation/simulation vehicle (both in terms of performance as well as the ease of use) than what is
available to researchers of these groups, and (2) applications to be run on these novel architectures
can be directly implemented on the MEF. It should come as no surprise that the MEF may not
easily out perform a machine which is a direct implementation of a specific architecture.

3. The Tagged· Token Dataflow Machine

The architecture of an effective multiple processor system, it has been argued (2], must address
two basic issues. The first is the ability to tolerate memory latency, i.e., the time between issuing a
memory request and getting a response. The second is the ability to share data between processes
without constraining parallelism. We believe that the traditional von Neumann model precludes a
satisfactory solution to these problems.

The dataflow architecture on the other hand addresses theseproblems at a fundamental level- its
model of computation. The goal of dataflow research is to solve these problems and to establish
that linear computation speedup can be achieved with linear increase in hardware romplexity.

Emulation Facility -14- Dataflow Machine

3.1. The Dataflow Alternative
When one desires to build a machine capable of issuing multiple memory requests and of

tolerating long latencies, the DQt troublesome aspect of the von Neumann architecture is the built
in sequentiality (viz., the program counter). By eliminating the notion of control flow for program
sequencing, we can circumvent this problem directly. One alternative to sequential control flow is
data.flow, where the execution of instructions is triggered solely by the availability of the operands
[5]. In order to explain the operation of a dataflow processor, we proceed next with a discussion of
program, data and structure representations.

Program Representation: Dataflow compilers translate high-level programs into directed graphs;
vertices in the graph correspond to machine instructions, and edges correspond to the data
dependencies which exist between the instructions.

The implication is, quite simply, that instructions which depend on other instructions should be
sequenced accordingly; but where no dependence (edge) exists, instructions can be executed in
parallel. A simple example of this graphical translation is shown in Figure 3-1, compiled from the
following ID program which integrates a function f from a to b over n intervals of size h by the
trapezoidal rule: ~ .

(initials+- (f{a)+f{b))/2;
X+-a+h

for i from 1 to n-1 do
new x +- x+h;
news+- s+f{x)

retum s)*h
,

The graph shown is somewhat stylized; the box marked /represents the subgraph necessary for
invoking function f (which is, itself, a graph). Instructions D, n·1, L, and L-l are included to
provide proper entry, iteration, and exit by manipulating context-identifying information (discu~
in the next section). The remainder of the operators are arithmetic, relational. and conditional
instructions whose function should be self-evident The graph generated by the compiler is
reentrant and is shown in Figure 3-1.

Data Representation: It is the processor's task to propagate data values through the graph of
Figure 3-1, triggering instructions when the operands are available. Data v3tues are carried on
logical entities called tokens-. a token contains not only a data value but also the name of the
instruction to which it belongs. Conceptually, tokens move about on the vertices of the graph.
Instructions are enabled for execution when tokens are present on all input vertices. Upon
execution, the instruction absorbs the input tokens, and produces an output token for the next
instruction in the graph. A program is said to terminate when no enabled instructions are left.

Our execution model allows more than one token to be present on an arc; and, therefore, the
next-instruction label also contains some dynamic. or context-sensitive information. In their full
generality. these next-instruction labels or activity names contain four parts:

• u: The context field, which uniquely identifies the context in which a code block is
invoked. The context itself is specified by an activity name. thus making the definition

-----~-------

Emulation Facility -15- Dataflow Machine

a b

L L L

new a
new x

Figure 3· 1: Compilation of the Loop Expression for the Trapezoidal Rule

recursive.

• c: The code block name. Each procedure and each loop h• a unique code block name.

• s: The statement(insttuction) number within the code block.

• i: The initiation number. which identifies the loop iteration in which this activity OCCUJS.

Emulation Facility -16- Dataflow Machine

This field is 1 if the activity occurs outside a loop.

Activity names, then, define an unbounded namespace. Names in this space are mapped
dynamically into a finite namespace. The activity name plus some mapping information uniquely
define the runtime tag and processing element (PE) number. ·

Since instructions may have more than one input operand, we also include two more pieces of
information on each token: the total number of operands required by its target instruction (called nt
- number of tokens), and an index value (called the port) which specifies the operand number
associated with this token. Tokens of this type are called normal tokens, abbreviated as d=0.1 (A
more complete discussion of formats is given in [1].) The complete token, then, looks like this:

<d = O,PE,tag,nt,port.data>

Structure Representatioa: An important property for data structures of interest is that the
mechanics of their creation and use should also be highly parallel. To achieve this, we associate
with each memory cell in the machine special flags (called presence bits) which indicate the memory
cell's status - written or unwritten. This gives us the ability to solve the read-before-write
synchronization problem as foOows: Assume_ that a memory module has just received a request to
read a particular memory location and to forward the contents to instruction x. The memory
module interrogates the presence bits associated with that location. If the bits indicate that the cell
has already been written into, the contents are retrieved and forwarded to instruction x. If the bits
indicate that the location is empty, the memory module puts the read request aside, and marks the
empty location to indicate that a read request is outstanding.

This mechanism, when ooupled with a processor which is able to issue multiple, overlapped
memory requests and which can tolerate out-of-order responses, allows the uncoupling of memory
latency from the performance of a multiprocessor. We call such a memory I-structure storage
[3.10].

Organization of the DataOow Machine: Figure 3-2 is a block diagram of an abstract datatlow
machine and its processing element Assume that the program to be executed has been compiled
into a directed graph. and an encoding of this graph is stored in the program memory. As tokens
arrive at the machine's input, they are cl~ified according to type. The d=O tokens (above) which
require partners (nt~2) are routed to the the waiting- matching section.

Since each token carries the name of its target instruction, we can match up related tokens (e.g.,
the· two input operands for an addition) by comparing the tags that they carry. This is the function
of the waiting-matching section. When a match is found, the pair is passed on to the instruction
fetch unit When a match is expected but not found, the token remains in the waiting-matching
unit's as&>ciative memory until its partner arriv~ The instruction fetch unit also directly receives
d = 0 tokens which require no partners (nt= 1).

The instruction fetch unit looks up the operation code and other information associated with the

1The reason for this notation hm been lost in historical obscurity.

-----·-~---..

Emulation Facility -17-

I-structure
Storage

,
Waiting
Matching

Output

Dataflow Machine

Figure 3·2: Organization of the Tagged-Token Dataflow Machine

token-carried names, and p~ this enabled instruction on to the ALU. At this point, no other
information is needed to carry out the operation save that which is in this enabled instruction
pack.et.

The ALU output represents a datum which is ready to move off to its target instruction; but first.
it h~ to be put in a token. We build this output token by computing a new tag, using the old tag

along with information stored in the instruction itself. The output section handles these operations.

Emulation Facility -18- Dataflow Machine

The output section also computes the PE number for the new token. A routing translation table
turns this PE number into a network routing add~

The second major data path in the machines is for the processing of fetch and store requests in the
I-structure storage unit Since these memories collectively form a ·global address space in the
dataflow multiprocessor, the I-structure storage unit will receive both local and nonlocal requests.
and must be able to forward the results accordingly. ·

State of the Research: The previous paragraphs have briefly described the proposed solution that
is indicated by many years of investigation into dataflow architectures. The details are sufficiently
well understood that it is appropriate at this time to construct a prototype tagged-token datatlow
machine for the purpose of experimentation and evaluation.

At present, we have a working compiler which translates programs written in our high-level
dataflow language ID into directed graphs. We also have several application programs (such as a
PDE Simulation - SIMPLE, and a MOS circuit simulation - MOSSIM) already coded in ID. In
addition to these engineering and scientific applications we are interested in artificial intelligence
applications that can be modeled as marker propagation on semantic networks (e.g., NEfL [6D.

4. Emulating the Dataflow Machine and Beyond

4.1. The Overall Plan
Our overall plan calls for: (1) constructing the emulation facility; (2) emulating our proposed

dataflow architecture; (3) making the emulation facility available via ARP ANET for the emulation
of architectures proposed by other members of our Laboratory and of the DARPA community; (4)
simulating the dataflow machine (discussed next) and finally (5) proceeding beyond the activities
proposed here with VLSI implementation of the suitably redesigned machine. .

We are currently writing a simulator that describes the internal behavior and timing of the
dataflow machine at the subsystem level. Though internals of a subsystem (e.g., waiting-matching
section, ALU section in Figure 3-2) are not modeled in the simulator, data-dependent timing to

process a token in any subsystem can be specified. The simulator will. also model token traffic
congestion and resolution of routing conflicts in the communication network. The simulation will
run on IBM processors - an IBM 3081 at I~M Yorktown and, an IBM 4341 (loaned to us by IBM
Endicott) located in our Laboratory. The simulator, when it is run in stand alone mode on an IBM
system, will be a simulated dataflow machine in the sense that it will directly accept graphs generated
by our ID compiler, and produce results like a real, albeit very slow, dataflow machine. In addition,
it will also produce timing information which will be invaluable for understanding and evaluating
the architecture.

The most critical parameters to be determined by the simulation experiments are: the size of
buffers in the machine; size of the waiting-matching store to reduce the probability of overflow to
an acceptable level; the size of the deferred read section_ in the I-structure storage; and the effect of
the relative speeds of various subsystems and of the communication system on the overall

Emulation Facility -19- Emulating the Dataftow Machine

perfonnance. We plan to execute 20 million dataflow instructions per experiment. and our
preliminary estimates show that it will take approximately 24 CPU hours on the IBM 4341 (stand
alone) to conduct one experiment. These experiments are to be conducted in rooperation with IBM
(Yorktown) whose personnel are involved in designing the experiments as well as modifying the
architecture based on the outcome of experiments.

As discussed earlier, the emulation of the Tagged-Token machine on the proposed emulation
facility will be done by modeling each subsystem as a micro-task on each Symbolics 3600. A
conservative estimate shows that the emulated dataflow machine should run appromnately 100
times faster than the simulated dataflow machine because of multiple processors and because no
time,-related information will be carried explicitly. A 100-fold speedup will allow us to study the
dynamic behavior of programs for a longer duration. Without the emulated version of the datatlow
machine, it is unlikely that end-users will get involved directly in writing code for the dataflow
machine. All claims about the ease of programming of dataflow machines will be suspect if
applications are not written by end-users.

It is likely that we may want to estimate the improvement in the oY-erall performance of the
dataflow machine by speeding up a subsystem (e.g., waiting-matching section. I-structure
controller), and such speeding up may be ruled out by the architecture of the emulation facility.
Under such circumstances, we will have to rely on the simulator to study the desired effects. The
simulator will also be crucial for fine tuning the emulated version of the dataflow machine. Thus.
we think that emulated and simulated dataflow machines will eomplement each odJer and we
consider both essential to establishing the viability and the programmability of the Tagged-Token
dataflow machine.

Currently we are cooperating with Dr. Tilak Agerwala and his research group in Dr. Herb
Schorr's organization at IBM Yorktown2. Our joint efforts are in the following areas: (1) simulation
experiments including the development of Pf"?Srams to monitor the behavior of the datatlow
machine; (2) paper designs of high performance versions of the Processing Element; and (3)
compiler related work to decompose programs for mapping on multiple processors.

4.2. The First Experiment
The first experiment will be an emulation of the dataflow architecture. Because ofdae complexity

of the target architecture, we have dev!sed a three stage strategy. Stage one will be the
implementation of the complete architecture on the emulator and will be written entirely in LISP.
By doing so, we retain a significant degree of flexibility at a time when such fle:ubility is most
crucial, le., during the early testing and evaluation of the taggecf.tnken machine.

One implication of this approach is that data would be stored in simulated memory. i.e., in LISP
arrays. Operations }>med between the major blocks of the dataflow p~ng elanent will be
represented by flavor instances, or at least structures. to give us the maximum roding simplicity and

2Dr. Schorr is Vice President, Systems in IBM's Research Division.

Emulation Facility -20- Emulating the Dataflow Machine

flexibility.

Since LISP-simulated storage will, in the long run, be too costly· in terms of access time penalty
for our purposes, the second stage would be to use the innate 3600 store. In addition, since most of
the processors in the completed machine will not have virtual memory, this is the first stage in
which we can run real computations. PE memory will be represented directly by wired pages, which
the LISP code deposits into and reads from with the standard 3600 micro-coded primitives. We
should be able to set aside wired, non-garbage-collected, untouched-by-LISP, permanent pages to
hold I-structure memory, program memory, and the waiting-matching store. Most or all of the
code at this stage, however, would still be in LISP.

The last stage of code migration would be the translation of some of the LISP code into micro
code. Before we come to this point, many test runs will be executed to determine any hot spots in
the target interpreter code, that is, LISP code fragments which are executed oft.en and which can be
executed faster by micro-coding.

4.3. Expected Emulator Performance
Due to the complexity of the Tagged-Token architecture, we are estimating mean code paths on

the order of 500 to 5000 micro-instructions per emulated machine cycle (including the overhead of
those functions implemented in LISP rather than in micro-code). This implies that the facility will
interpret dataflow graphs at a rate of approximately 64,000 to 640,000 instructions per second

It should be clear that the proposed emulation facility will be substantially easier to oonstruct than
a VLSI version of the intended target systems (especially the Tagged-Token dataflow machine).
"Cost" of construction, aside from the necessary financial support, involves designing, building.
testing, and replicating the packet switch module along with the necessary micro-code routines for
using the switch and for error recovery.

4.4. Summary
This paper has presented our plan for constructing a Multiprocessor Fmulation Facility

comprised of 64 user-microprogrammable processors interconnected with a high bandwidth,
reconfigurable communications network. The Facility will be used by a number of projects. but our
primary interest will be its use in studying the Tagged Token dataflow architecture. To that end. we
expect to have a small piece of the Facility operational (i.e., only a few processors hooked together
by a preliminary network) by the middle of 1984. The full facility will be available to the MIT
community late in 1985. By then, a full dataflow emulator will have been completed including the
necessary microcoding of hot spots. The Facility and the dataflow emulator will be ready for
demonstration and use outside MIT by the end of 1985.

-21-

References

1. Arvind, and R. A. Iannucci. Instruction Set Definition for a Tagged-Token Data Flow Machine.
Memo 212, Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge,
Mass., December, 1981. revised February, 1983

2. Arvind, and R. A. Iannucci. A Critique of Multiprocessing von Neumann Style. Proc. of the
10th International Symposium on Computer Architecture, June, 1983.

3. Arvind, and R. E. Thomas. I-Structures: An Efficient Data Type for Functional Languages.
Tech. Rep. TM-178, Laboratory for Computer Science, MIT, Cambridge, Mass., September, 1980.

4. Denneau, M. M. The Yorktown Simulation Engine. 19th Design Automation Conference, Las
Vegas, Nevada, Institute of Electrical and Electronics Engineers, Piscataway, N. J., 08854, 1982.

5. Dennis, J.B. First Version of a Data Flow Procedure Language. In Lecture Notes in Compitter
Science, Volume 19: Programming Symposium: Proceedings, Co/loque sur la Programmation,
B. Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

6. Fahlman, S. E. NETL: A System for Representing and Using Real World Knowledge. MIT Prts,
1979.

7. Gostelow, K. P., and R. E. Thomas. Performance of a Simulated Dataflow Computer. IEEE
Transactions on Computers C-29, 10(October1980), 905·919.

8. Gottlieb, A., R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir. The NYU
Ultracomputer - Designing an MIMD Shared Memory Parallel Computer. IEEE Transactions on
Computers C-32, 2(February1983), 175-189.

9. Halstead, R. H. The Architecture of a Myriaprocessor. Proceedin~ of COMPCON 81,
September, 1981, pp. 299-302.

10. Heller, S. K. An I-Structure Memory Controller. Master Th., Dept of Electrical Engineering
and Computer Science, MIT, Cambridge, Mass., June, 1983.

11. Hillis, W. D. The Connection Machine: Computer Architectue for the New Wave. Tech. Rep.
646, Artificial Intelligence Laboratory, MIT, Cambridge, Mass., September, 1981.

12. Iannucci, R. A. Implementation Stra~ies for a Tagged-Token Data Flow Machine. Memo
218, Computation Structures Group, Laboratory for Computer Science, MIT. Cambridge, Mass.,
June, 1982.

13. Iannucci, R. A. Packet Communication Switch for a Multiprocessor Computer Architecture
Emulation Facility. Memo 220, Computation Structures Group, Laboratory for Computer Science,
MIT, Cambridge, M~. October, 1982.

14. Kronstadt, E., and G. Pfister. Software Support for the Yorktown Simulation Engine. 19'11
Design Automation Conference. Las Vegas, Nevada, Institute of Electrical and Electronics
Engineers, Piscataway, N. J., 08854, 1982.

-22-

15. Pfister G. F. The Yorktown Simulation Engine: ·Introduction. 19th Design Automation
Conference, Las Vegas, Nevada. Institute of Electrical and Electronics Engineers, Piscataway, N. J.,
08854, 1982.

16. Preparata, F. P., and J. Vuillemin. The Cube-Connected Cycles: a Versatile Network rot1

Parallel Computation. Comm. ACM 24, 5 (May 1981), pp. 300-309. ·

17. Rettberg, R., C. Wyman, D. Hunt, M. Hoffinan, P. Carvey, B. Hyde, W. Clark, and M. Kraley.
Development of a Voice Funnel System: Design Report. Tech. Rep. 4098, Bolt Beranek and
Newman Inc., August, 1979.

18. Sejnowski, M. C., et. aL. Overview of the Texas Reconfigurable Array Computer. Proc.
AFIPS, Vol. 49, 1980, pp. 631-642.

19. Shaw, E. D. The Non-Von Supercomputer. Department of Computer Science, Columbia
University, August, 1982.

20. Swan, R. J., S. H. Fuller, and D. P. Siewiorek. Cm* - A Modular Multiprocesoor. Proceedings
of the National Computer Conference, 1977~

21. Swan, R. J., A. Bechtolsheim, K-W. Lai, and and J. Ousterhout The Implementation of the
Cm• Multi-microprocessor. Proceedings of the Nationai Computer Conference.1977.

This blank page was inserted to presenie pagination.

CS-TR Scanning Protect
Document Control Form Date : :LJ I 4 I flf 5

Report t Le. S -Th-30~

Each of the following should be identified by a checkmark:
Originating Department:

0 Artificial lntellegence Laboratory (Al)
M, Laboratory for Computer Science (LCS)

Document Type:

)!:°Technical Report {TR) 0 Technical Memo (TM)
0 Other: _________ _

Document Information Number of pages: J)(.f3.,JmAG"£5)
Nat to Include DOD ram., prNlr lnlllrilctlarW, lie ... ~pages rrif.

Originals are: Intended to be printed as :

~ Single-sided or O Single-sided or

D Double-sided

Print type:

]l(Double-sided

0 ,._...... 0 0..... Prw 0 Print

D,. Prlnls ~ Unlcnown O Oltw.. _____ _

Check each if included with document:

x DOD Fonn (l.) 0 Funding Agent Fonn)3:. Cover Page

D Spine D Printers Notes D Photo negatives

D Other:
----------~

Page Data:

Blank Pages..,,.........,: _________ _

Photographs/Tonal Material "',..........,: _______ _

Other ..-11. •• ,,,:
Description : Page Number: l.-\.1\/ # J ;ro

@ I m!G' mAct { I 1-'t) (JN#'~o TiTLA) }\ G STBe(.T) ') UN fF~D 't51 PAG.lr'

(s-J$ J fAc;;As lf1•D J..- '-.L

@ A6=>Tf\AtT HAJ ~ IAfl\" /Q~Ftoss To~ TIJi'R.D.
Scanning Agent Signoff:

Date Received:__]_/ l~1 't5" Date Scanned: .1_1I81~ Date Retumed: .21JJJ I t5"

Scanning Agent Signature:. __ _,~ ' 14..1_A+--'j1t,,____ Gal ~
\

------- --- -----

SECURITY CLASSIFICATION oir THIS PAGI! (W'llM D•• &nt•Hd)

REPORT OOCUMENTATION PAGE
r-t"· REPORT NU ... Ulf , ·~ ji..odfl'r

MIT/LCS/TR-302
4. TITLE (Md Subllll•) S. TYPE OF -fllEPORT I. .. ERlclD COV£REC

A ~ul ~_ipr_ocessor Emu la ti on F~_c_il i ty Interim Research

7. AUTHOR(•) ·- a. CONTRACT' OR GRANT Nut18£R(•J

Arvind_, Michael L. Deitouzos, Robett'<A. ·t-Jooo14-7-S.;c-=-o661
- · - " · ·· - I an:n.Uccff ·• ~ -· · · -

9 PERFORMING ORGANIZATION NAME AND ADDRESS ,._, ~Ct. ·1'.°~GRQELEMENT,P*>Jl!CT, TASK
• ARttA I WORK UNIT NU'liOIERS

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS

DARPA/DOD/IPTO
1400-Wilson Boulevard
Arlin_g_toni VA 22209

T4. MONITORING AGENCY NAME 6 ADDRESl(lf dlll•Hnl lroot Controlllq Olllc:•)

Off ice of Naval Research/Dept of Navy
Information Systems Program
Arlington, VA 22217

16. DISTRIBUTION STATEMENT (ol Ihle R9florl)

12. REPORT DATE

Se_p_tember 1983
13. NUM8ER oir PAGES

2Jl
II. SECURITY CLASS. (ol lhl• ••Port)

Unclassified

TSa. Dl!CLASSlirlCATIOWDOWNGRADING
SCHEDULE

Approved for Public Release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (ol lh• abatract Mt•r•d In Blool< :10, II dllt.r•t tr.. Report)

Unlimited

18. SUPPLEMENTARY NOTES

19. KEV WO ROS (Contlnu• on r•v•r•• aid• II n•c:•••..,.. _,d Id-lily by bloc:lr numhr)

Computer Architecture, datafluw, emulation multiprocessor
systems, packet communication, .simulation.

20. ABSTRACT (Conllnu• on , • .,., •• aid• II n•c:•••_,. -d ld•nllly by bloc:lr mmtb•r)

Interest in multiprocessor computer architectures has increased
dramatically in the last ten years. However, it has become clear
that in order to effectively use multiprocessors,. in a genetal.1·1
way, some fundamental changes in the model of compuation are
necessary. Moreover, experimentation in the field is hindered by
'low-performance simulation tools and high-cost hardware modeling
schemes.

..h.. continued
DD FORM

1 JAN 73 EDITION Of' I NOV II IS 08SOLETE 1473 Unclassified

Unclassifie'd ..
. ~ I\ ' , Y \ 1....,...

O. Continued •..

-- I

~. \ ~ -

r - -'· - ~ ~

- j .,,-

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

