
Jean~ette Marie Wine

This blank page was inserted to presenie pagination.

A Two-Tiered Approach to Specifying Programs

by

Jeannette Marie Wing

© Massachusetts Institute of Technology 1983

This research was supported in rart hy the National Science Foundation under grant
MCS-8119846 and by tile Defense i\dvanced Re~,earch Projects Agency monitored by the
Office of Naval Research under Contract No. N0014-83-K-0125.

Massachus,::tts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

. 2.

A Two-Tiered Approach to Specifying Programs

by

Jeannette Marie Wing

Abstract

Current research in specifications is beginning to emphasize the practical use of formal
specifications in program design. This thesis presents a specification approach, a
specification language that supports that approach, and some ways to evaluate specifications
written in that language.

The two-tiered approach separates the specification of underlying abstractions from the
specification of state transformations. In this approach, state transformations and target
programming language dependencies are isolated into an interface language component Alf
interface specifications are built upon shared language specifications that describe the
underlying abstractions. This thesis presents an interface specification language for the CLU
programming language and presumes the use of the Larch shared language.

This thesis also suggests a number of kinds of analyses that one might want to perform
on two-tiered specifications. These are related to the consistency, completeness, and
strength of specifications, and are all presented in terms of the theories associated witti
specifications.

Thesis Supervisor: John V. Guttag
Title: Associate Professor of Computer Science and Engineering
Keywords: Formal Specifications, Program Design, Specification Languages, Specification
Analysis, Algebraic Specifications, Abstract Data Types, Programming Methodology.

This report is a revision of a thesis of the same title submitted to the Department of Electrical
Engineering and Computer Science on 19 May 1983 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

. 3.

Acknowledgments

I would like to express my foremost thanks to my advisor, John Guttag, for his sustaining
guidance and encouragement throughout my graduate career. His keen intuition helped me
separate the good ideas from the bad, the important from the trivial, the interesting from the
dull. I am deeply grateful to Jim Horning for his invaluable technical help on my thesis and for
the opportunities to share ideas with him at Xerox Pare. I would like to thank both John and
Jim for their help in formulating my thesis topic, and their constant faith and interest in it. I
would also like to thank Barbara Liskov for her perceptive comments on my final draft. All
three deserve many thanks for their careful and thorough readings of my thesis and their
suggestions for improving its presentation and organization. John deserves special credit for
patiently editing numerous drafts of many of the chapters.

I owe thanks to many people for their friendship and their help in providing a bearable
working environment. In particular, I am indebted to Bill Weihl for his te.chnical expertise, and
his willingness to discuss problems and suggest solutions. I am also thankful to Kathy Yelick
for diligently reading drafts of my entire thesis; to Maurice Herlihy, Gene Stark, Karen Sollins,
and Joe Zachary for various enlightening conversations and their feedback on some of my
chapters; to Pierre Lescanne for listening to my ideas, answering my questions, and
heightening my awareness of MIT parochialism. I would also like to express my appreciation
to Srivas Mandayam and Sriram Atreya for their open ear and encouragement at the start of
my thesis research; to Julie Lancaster, Randy Forgaard, Ron Kownacki, and Brian Oki, at the
end.

Finally, I wish to thank my parents with all my heart for their unceasing moral support,
optimism, and confidence in me.

------~~--

-4-

CONTENTS

1. Introduction .. 7

1.1 The Problem .. : .. 9
1.2 The Two-Tiered Approach ... , 10

1.2.1 The Approach••.. 1 o
1.2.2 Two-Tiered Specifications ... 11
1.2.3 Following the Approach ... 13

1.3 A Glimpse at a Particular Two-Tiered Specification Language 14
1.3.1 A Preview of the CLU Interface Language 15
1.3.2 An Overview of Larch 18

1.4 Related Work 21
1 .4.1 Program Verification 21
1.4.2 Program Development 22
1 .4.3 Abstract Data Types 23
1 .4.4 Specification Languages 24

1.5 What is in this Thesis 26
1.5.1 Approach to the Formalization 26
1.5.2 A Guide to the Rest of the Thesis 28

2. Kernel Interface Language•.....•.....•.....•...............•.•. 30

2.1 Classes of Models : 31
2.1.1 Traits and Algebras .. 32
2.1.2 Objects ... -........ 33
2.1.3 State .. : 33
2.1 .4 Procedures and Operations 34
2.1.5 Clusters and Abstract Data Types 36
2.1.6 Computations .. •.•. 36

2.2 Kernel Interface Language and Models 39
2.2.1 Interface Assertion Language ... 40
2.2.2 Procedure Specifications ... 47
2.2.3 Cluster Specifications 58

2.3 Summary•... 61

3. Theories•............. · .. 62

3.1 Definitions 62
3.2 Satisfaction ~ ... 64
3.3 Theory of a Specification ... : 65

3.3.1 Theory of a Trait ... 65
3.3.2 Theory of a Procedure Specification 68

. 5.

3.3.3 Theory of a Cluster Specification 71
3.4 Theory of an Implementation• 71

3.4.1 TheoF"Y" of a Procedure ... 71
3.4.2 Theory of a Cluster ... 74

3.5 Type Induction .. 74
3.5.1 Computational Induction ... 75
3.5.2 Type Induction Principle .. 76

3.6 Summary .. ·... ff!

4. Extended Interface Language for CLU ..•••...•.....•................ 88

4.1 Simple Extensions" ... 88
4.1.1 Default Used Trait ... 89
4.1.2 Mutates Ctause ... 90
4.1.3 Default Termination Condition Value .. , 92
4.1.4 Multiple Pre· and Post· Conditions .. 93

4.2 Handling Other CLU Features .. 94
4.2.1 Memory Objects ... 95
4.2.2 Iterators .. 98
4.2.3 Parameterized Specifications .. 105

5. Evaluating Specifications ... 113

5.1 Properties of Specifications 114
5.1.1 Consistency 115
5.1.2 Full-Coverage ... 118
5.1.3 Determinism 120
5.1.4 Protection 123

5.2 Comparing Specifications .. 126
5.2.1 Comparing Strength ... 127
5.2.2 Definition of Strength ... 128
5.2.3 Modifying a Specification With Respect To Strength 131

5.3 Essentiality : .. ·134
5.3.1 Definitions ... 135
5.3.2 Situations for Determining lnessentiality ... 136

6. Conclusions, Contributions, and Further Work 138

6.1 Summary of Conclusions and Contributions ... 138
6.2 Directions for Further Work ... 140

6.2.1 Development of Interface Languages ... 140
6.2.2 Evaluating Collections of Specification ... 141
6.2.3 Machine Support .. 142
6.2.4 Experimentation ... 143

. 6.

References 144

Appendix I. I nte rf ace and Trait Specifications 152

Appendix II. Proofs .. 156

11.1. Validity of a Type Induction Rule ... 156
11.2. Proof of Satisfaction ... 157

. 7.

1. Introduction

The goal of this thesis is to help people write formal specifications of pieces of large

software. To achieve this goal, we propose a two-tiered approach for formally specifying the

behavior of sequential programs, we describe a language that supports this approach, and we

suggest ways to evaluate specifications written in this language.

A specification describes a program's behavior; it is independent of the program itself. It

is formal if it is written in a language with explicitly and precisely defined syntax and

semantics. Two virtues of formal specifications are their precision and amenability to

machine-manipulation.

Current research in specifications is beginning to emphasize the practical use of formal

specifications in the programming process. People have already benefited from using

informal specifications in most phases of this process. Writing informal specifications is

widely accepted as a useful way of organizing ideas, documentating design decisions, and

informally arguing the correctness of programs. Software design methods that include some

form of informal specification have been in use in industry for some time [Caine7S,

Jackson75, Katzan76, Yourdon78).

Thus far, formal specifications have played a less influential role. in the programming

process than informal specifications. People have used them with limited success in program

verification, and have just begun using them in program design. We believe that formal

specifications can and should play a more important role in the 'programming process than

they do now.

Using formal specifications early in the programming process, i.e., the design phase,

should reduce the time, effort, and resources spent in the overall process, especially in the

costly testing, debugging, and maintenance phases. It is often· the act of specifying and not

the final product that is most useful in the design phase. Uncovering bugs early can save the

. 8.

cost of uncovering them later· in the testing and debugging phases. Also, as with informal

specifications, a formal specification serves as a valuable piece of documentation--a means of

communicating between a client and a specifier, between a specifier and programmers, and

among programmers.

There are many problems with trying to use formal specifications during program

design. Ironically, one is that the need to be precise intimidates many programmers. The

problem of programmers learning how to read and write formal specifications can be

gradually overcome. Every programmer has already learned to deal with at least one formal

language--a programming language. We need to make formal specifications more accessible

to programmers by supplying an easy-to-learn and easy-to-use specification language, and by

suggesting guidelines for reading and writing specifications.

Another problem is that much of the past research in formal specifications focused on

theory and not practice, so that specifications of small examples pervade literature, e.g., the

ubiquitous stack. The result of this theoretical focus is a collection of small and

self-contained specifications of the behavior of well-understood data structures or of small

and simple programs. Small examples are not convincing and the lack of larger ones

reinforces people's reluctance to accept the use of formal specifications. We need to

demonstrate the use of formal specifications on larger examples.

The problem of size has ·been addressed in programming. In the same way a large

program is constructed from program modules, the specification of a large program should be

constructed from specifications of the program modules. This technique introduces the two

subproblems of how to specify the pieces and how to combine them; this thesis focuses on

the former.

. 9.

Finally, another problem is that in the development of a specification the specifier is

usually not provided with any feedback as to whether the specification is in some sense

"correct." We need to identify and check for properties of the specification that relate to its

utility. Ideally, we would check individual components of the specification for local properties,

like sufficient-completeness [Guttag75), expressive-richness [Kapur80b], and

implementation-bias [Jones80], and the entire specification for global properties, like

modularity [Parnas72b] and coupling [Myers75]. Since we expect specifications to grow

incrementally, feedback needs to be provided on incomplete specifications.

We organize the rest of this chapter as follows. Section 1.1 contains a statement of the

problem and the essence of our solution. The next two sections describe in some detail, but

not formally, the key aspects of the specification approach, and the key features of a

particular specification language. We define the language precisely in later chapters.

Section 1.4 contains a discussion on related work. Section 1.5 presents the approach we take

for providing a formal basis for defining the specification language. It also contains a guide to

the rest of this thesis.

1.1 The Problem

The main problem specifiers face is that formal specifications are hard to write .. The

effort involved in writing them has thus far been disproportionate to the benefit gained from

having written them. We propose one step towards a solution to this problem by providing the

specifier with:

1. A specification approach,

2. A specification language, and

3. Ways to evaluate specifications.

. 10.

The most significant contribution of this thesis is the specification approach, the

two-tiered approach. It motivates the design of the specification language whose precise

definition constitutes the bulk of this thesis. In this chapter, we discuss the approach and give

an overview of the language; in Chapter 5, we address the evaluation of specifications.

We keep in mind the following two goals. First, we want to make specifications easier for

programmers to understand. This goal greatly affected our language design. Second, we

want to make it easier to reason about specifications with sufficient machine support.

Machine support, such as that provided by a theorem-prover, allows us to infer properties

about not only the specification, but also what it specifies. This goal greatly affected our

approach to our formalization.

1.2 The Two· Tiered Approach

Sections 1.2.1 and 1.2.2. describe, in general terms, the two-tiered approach and

two-tiered specifications, respectively; Section 1.2.3 outlines how a specifier would follow our

approach to write a specification.

1.2.1 The Approach

The two-tiered approach to specifying programs separates the specification of

underlying abstractions from the specification of state transformations. We use a shared

specification language to describe underlying abstractions, and an interface specification

language to describe state transformations. The specification of a program module is written
. .

in an interface language and consists of two parts: a shared language component (bottom

tier) and an interface language component (top tier). These two components correspond to

the two tiers in our approach.

. 11 .

The interface specification language is programming language dependent, while the

shared language is programming language independent. This allows us to keep separate the

description of programming language independent issues from the description of

programming language dependent ones, e.g., side effects, error handling, and resource

allocation. For example, if we were to implement arithmetic, we would describe ideal

arithmetic in the shared language, and we would describe boundary conditions constrained

by word and memory size in an interface language.

Since the invention and description of key abstractions is done in the shared language,

we expect most of the effort involved in writing a specification to be invested in the shared

language component. The interface language component should deal only with state

transformations and programming language dependent issues. One reason for separating

the two language components is that we expect many shared language components to be

reuseable by different interface language components. Some of them will be developed for

particular applications; a few central ones will be useful in many applications.

We use the term "interface" because an interface specification describes all the

information about the behavior of the program module. Any user of a program module need

only look at its interface specification to understand the module's behavior. We use the term

"shared" because in the design of a family of interface languages, each interface language is

derivable from a subset of a target programming language, and a common subset, which is

the shared language.

1.2 .2 Two-Tiered Specifications

In this thesis we focus on the description of an interface language for the programming

language CLU [Liskov77, Liskov81]. In this section, however, we discuss, in general terms,

syntactic and semantic properties of interface and shared language components.

. 12.

An interface language component has three parts: a header, a body, and a link to the

shared language component of the specification. The syntax of the header is based on the

syntax of the programming language. For example, the types of the input and output

arguments to a procedure are listed in the header information of a procedure specification as

they would be in an implementation. The body contains first-order assertions written in a

language based on its shared language component, plus special assertions, which are

jntroduced to handle issues dependent on the semantics of the programming language. The

meaning of the assertions is based on first-order predicate logic with equality, where equality

is defined by its shared language component. The link identifies the shared language

component to be used.

The crucial syntactic information provided by a shared language component to an

interface language component is a set of sort identifiers, and a set of function identifiers and

function signatures. The function identifiers are composed to build terms, which are used to

write the assertions appearing in the body of an interface language component. The sort

identifiers and function signatures are used to sort-check terms much in the same way as type

identifiers are used to type-check programs. The crucial semantic information provided by a

shared language component to an interface language component is a theory of equality for

terms.

By explicitly including a shared language component in an interface specification, we

gain the advantage that every symbol in an assertion is precisely defined within a

specification. In some other specification methods [Hoare72, Parnas72a], there is a reliance

on an interpretation for symbols in an assertion, .where the interpretation comes from outside

the specification. For example, the meanings of symbols like E and ~ might come from

textbooks on set theory. In contrast, some other methods [Robinsonn, Jones81) provide an

assertion language defined within the specification, but restrict the symbols to come from a

fixed set of primitives. We g~in the advantage that the user is able to provide just the symbols

. 13.

necessary to write the assertions in the body of a specification.

1.2.3 Following the Approach

When a designer begins to write specifications early in the programming process, the

act of specifying intertwines with the act of designing. One helps the other. We sketch below

a typical top-down design strategy that could be used in following the two-tiered approach.

1. Develop an approximate intuition of the problem to be solved.
This requires close, often verbal, interaction with the client who is
posing the problem.

2. Decide on the major abstractions.

1. Top tier: Write the header information of
the interface language components.

2. Bottom tier: Write the syntactic
information of the shared language
components of the specification, i.e., the
sort identifiers, and function identifiers and
signatures.

3. Fill in the blanks.

1. Top tier: Fill in the information in the
bodies of the interface language
components of the specification, e.g., write
the assertions in the body of a procedure
specification. Simultaneously generate
additional function and sort identifiers
needed from the shared language
components.

2. Link between top and bottom tiers:
Define the explicit link to the shared
language components of the specification.

3. Bottom tier: Fill in the semantic
information in the bodies of the shared
languages components of the specification,
i.e., the theory of equality for terms.·

. 14.

4. Check one's understanding of the problem and its formalization;
repeat previous steps until convergence is achieved.

There are two points worth observing in regard to following this approach, especially for

large pieces of software. First, as with any overall design method, many iterations over these

steps may be necessary. Writing a specification sharpens a specifier's intuition of the

problem. Hidden design decisions surface. Addressing postponed decisions often requires

modifications of decisions made earlier. Second, the specifier should be willing to discard

large chunks of a specification in the process of refining the abstractions. This is especially

true after the first iteration. Often after a large investment in time and effort, the specifier {or

designer or programmer) is reluctant to start anew or to try an alternate strategy. With

sufficient machine support the specifier should be able to save time and effort often spent in

managing and maintaining the consistency of a large specification.

During the process of writing a specification, the specifier should also evaluate it for

certain properties, e.g., consistency and CQmpleteness. Checking for these properties as a

specification develops can increase one's confidence that a specification is in some sense

"good." We discuss the evaluation of specifications in Chapter 5. Finally, as with any design,

the specifier should evaluate the overall structure of the specification, e.g., analyze the

interconnectivity among its components. We do not address this kind of specification

evaluation in this thesis.

1.3 A Glimpse at a Particular Two-Tiered Specification Language

In this section we provide an overview of the two-tiered specification language we define

more precisely in the rest of this thesis. By considering a specific programming language and

a specific shared language we gain the advantage of being concrete in defining our interface

language.

. 15.

The interface language we describe is for the programming language CLU. Section

1.3.1 gives a preview of the CLU interface language with those concepts from CLU required to

understand the interface language presented as needed.

The shared language we choose is the Larch Shared Specification Language

[Guttag83a], henceforth referred to as "Larch." Enough similarity between Larch and other

axiomatic specification languages (see Section 1.4.4 on related work) exists so that a different

specification language could be used as the shared language. Section 1.3.2 gives an informal

overview of Larch. We describe only the minimal subset of constructs in Larch needed to

understand the examples presented in this thesis. Details on Larch can be found in

[Guttag83b].

1.3.1 A Preview of the CLU Interface Language

CLU has the primitive notions of object and state. An object is an entity that can be

manipulated by a program. Two important properties of an object·are its type, which never

changes, and its value, which may change. A state consists of a set of objects, a mapping

from program variables (object identifiers) to objects, and a mapping from objects to values.

Two important observable state changes are when a new object is created and when the

value of an existing object changes. An object whose value can change is said to be mu(able.

A type is mutable if objects of that type are mutable.

It is important not to confu~ an object and its type, which are CLU concepts, with a term

and its sort, which are shared language concepts. The connection between the CLU a~d the

shared language concepts is that (typed) objects have values that are denotable by (sorted)

terms. Through the interface specifications of procedures and clusters, we establish a link

between the values that objects can have and the terms defined by shared language

components. We establish this link explicitly in the text of the interface specifications.

----- -~ . ~--·-----

- 16 -

ACLU program consists of a set of modules, each of which is either a procedure or

cluster. A procedure performs an action on a set of objects, and terminates returning a set of

objects. Communication between a procedure and its invoker generally occurs through these

objects. A cluster names a type and defines a set of procedures that create and manipulate

objects of that type .. Users of this type are constrained to treat objects of the type abstractly.

That is, objects can be manipulated onty via the procedures defined by the cluster so, in

particular, information about how objects are represented in storage may not be used.

A procedure specification consists of a header, a link to its shared language component,

and a body. Header information includes the types of the input and output arguments to the

procedure and a list of possible termination conditions. The link is the name of a shared

language component. Since the unit of encapsulation in Larch is called a trait, we call the link

in an interface specification the used trait. The body of the specification contains two

assertions that correspond to a pre-condition on the state when the procedure is invoked and

a post-condition on the state when the procedure terminates. Terms in these assertions are

constructed from function identifiers provided by the used trait. The pre- and post-conditions

may also contain other special assertions particular to CLU's semantics.

Figure 1 gives an example of a procedure specification. The identifiers, s and i, that

appear in the header denote objects of type set and int, respectively. The name of the shared

language component is SetOflnt, which is choose's used trait. The pre-condition is satisfied if

the initial value of the input argument is not empty. The post-condition contains an assertion

choose = proc (s: set) returns (i: int)
uses SetOflnt

pre -isEmpty(st)
post has(st,i+) As+ = remove(st,i+) A mutates s

end

Figure 1. Choose Procedure Specification

. 17.

about the initial and final values of the set object and the final value of the int object. An

object identifier that is followed by an up arrow (t) denotes the value of that object in the state

upon procedure invocation, i.e., the initial state; one followed by a down arrow (.J,) denotes the

value in the state upon procedure termination, i.e., the final state. The function identifiers,

isEmpty, has, remove, and A, and the meaning of the equality symbol, =, all come from

SetOflnt. The last conjunct in the post-condition, mutates s, is an example of a special

assertion; it states that the choose procedure may mutate no object other than that denoted

bys.

A cluster specification consists of a header, a link to the shared language component,

and a body. The header is a list of procedure identifiers. The body of the specification

consists of a set of procedure specifications. The link from the interface component to the

shared component is given by a used trait and a provides clause. The used trait supplies all

function identifiers that appear in the assertions of the procedure specifications of the cluster

sp~cification. The provides clause gives a mapping from a type identifier to a sort identifier.

This mapping determines the values over which objects of the type defined by the cluster can

range. All objects of the type are restricted to values denotable by terms of that sort. The sort

identifier must appear in the used trait. The provides clause also indicates whether the type

is mutable or not.

Figure 2 gives a skeleton of a cluster specification that defines the type, set. The used

trait is SetOflnt. The provides clause gives a mapping from the type identifier, set, to the sort

identifier, SI, which comes from SetOflnt. The keyword mutable indicates that objects of the

set type are mutable. Specifications for create, insert, remove, and member are of the form

described for procedure specifications.

- 18.

set = cluster is create, insert, remove, member
uses SetOflnt
provides mutable set from SI

create = proc () returns (s: set)

end

insert = proc (s: set, i: int)

end

remove = proc (s: set, i: int)

end

member = proc (s: set, i: int) returns (b: bool)

end

end

Figure 2. Set Cluster Specification

1.3.2 An Overview of Larch

The unit of encapsulation in Larch is called a trait. The identifier appearing before the

keyword trait is the name of the trait and is distinct from the sort and function identifiers

appearing in the trait. We will refer to Figures 3 and 4 to help illustrate the meanings of

constructs appearing in traits. We repeat these figures in Appendix I for future reference.

Equivalence: trait
introduces

eq: E, E - Boal
constrains [eq] so that for all [x, y, z: E]

eq(x,x) = true
eq(x,y) = eq(y,x)
((eq(x,y) A eq(y,z)) ~ eq(x,z)) = true

· Figure 3. Equivalence Trait

SetOfE: trait
includes Integer, Equivalence
introduces

empty:-+ C
add:C, E-+ C
remove: C, E -+ C
has: C, E -+ Bool
isEmpty: C -+ Bool
card: C -+ Int

closes Cover [empty, add].

. 19.

constrains (CJ so that for all [s: C, e, e1: E]
remove(empty, e) = empty
remove(add(s,e), e1) = if eq(e,e1) then remove(s,e1) else add(remove(s,e1),e)
has(empty, e) = false
has(add(s,e), e1) = if eq(e,e1) then true else has(s,e1)
isEmpty(empty) = true
isEmpty(add(s,e)) = false
card(empty) = O
card(add(s,e)) = If has(s,e) then card(s) else 1 + card(s)

SetOflnt: trait
includes SetOfE with [SI for C, Int for E]

Figure 4. SetOfE and SetOflnt Traits

A trait contains a set of function declarations, which follows the keyword int roducea,

and a set of axioms, which follows a constrains clause. A function is declared by giving its

name (an identifier) along with its signature, i.e., a domain and range. A domain is a list of

sort identifiers, and a range is a single sort identifier. In the Equivalence trait (Figure 3), the

eq function has two arguments of sort E, and returns a result of sort Boo/. All traits may use

boolean connectives, e.g., A and~ in Equivalence, with their usual first-order propositional

logic meanings. Functions can be declared to be mixfix or prefix: For example, if .eq is to be

used as an infix function, we would write "# .eq #: E, E -+ Bool" in its declaration.

There are two kinds of axioms that can appear after a constrains clause. One kind of

axiom is an equation relating two terms. The " = " symbol denotes an equivalence relation on

terms. The second kind of axiom, not seen in either Figure 3 or Figure 4, is of the form ".,.

exempt" where .,. is a term. This indicates that the lack of an equation is not an oversight and

- 20-

is an aid to "completeness" checking. An example of an axiom of this form is "pop(null)

exempt," which might appear in a trait that defines a theory of stacks.

A function identifier is constrained if it appears in the bracketed list following the

keyword constrains. If a sort identifier appears in the bracketed list (e.g., in the SetOfE trait

of Figure 4), each function identifier whose signature contains that sort identifier is

constrained. A constrains clause indicates the function identifiers that are intended to be

constrained in the equations.

A trait denotes a theory, i.e., a set of formulae closed under a set of inference rules.

Each equation appearing in a trait is a formula in the trait's theory. An axiom of the form .. .,.

exempt" adds nothing to a trait's theory. We can enrich the theory denoted by a set of

equations by adding closes clauses (explained below). Together the Introduces,

constrains, and closes clauses, the "inequation" -(true = false), and propositional and

quantified tautologies define a first-order theory of a trait.

A closes clause adds an inductive rule of inference to a trait. Closing a sort, S, over a

set of function identifiers, F, ~rts that there is a representative member, .,., of each

equivalence class of terms of sort S, where each function identifier with range sort S

appearing in T is in F. The inductive rule of inference is used to add formulae to a trait's

theory that cannot be shown using purely equational logic. For example, the closes clause in

the SetOf E trait asserts that each term of sort c is equal to a term, T, where each function

identifier with range sort C appearing in Tis either empty or add. The associated inductive

rule of inference can be used to derive theorems like Vs:C card(s) > O.

Larch also provides ways of putting traits together, one of which is an includes clause.

A trait that includes another trait is textually expanded to contain all function declarations,

constrains clauses, closes clauses, and axioms of the included trait. The meaning of the

including trait is the meaning of the textually expanded trait. In SetOfE, the signature of eq,

. 21.

which is used in the axioms of SetOfE, comes from that given in the included Equivalence

trait.

Finally, function and sort identifiers that appear in an included trait can be renamed. An

explicit renaming is given in brackets following the keyword, with. In the SetOflnt trait the

sort identifiers C and E of SetOfE are respectively renamed to be SI and Int. Renaming is used

both to collide identifiers intentionally and to prevent identifiers from colliding.

1.4 Related Work

Work related to this thesis falls into two broad categories: specification languages and

uses of formal specifications. Various specification languages have developed in parallel with

different roles of formal specifications in the programming process and with the evolution of

higher-level languages. We now discuss each of the following topics as they relate to this

thesis: using specifications in program verification, using specifications elsewhere in program

development, specifying abstract data types, and specification languages.

1.4.1 Program Verification

Origins of the use of formal specifications can be traced to early work done on proofs of

program correctness [Floyd67,· Hoare69], and later work done on machine-aided program

verification (e.g., see [King69, Deutsch73, Boyer75, Good75, vonHenke75, London75,

Suzuki75]). Most of the work is based on Floyd's inductive assertions technique [Floyd67]

and on Hoare's axiomatic approach to specifying the meaning of programs [Hoare69} (for an

excellent review of subsequent developments based on Hoare's approach, see [Apt81]).

Early proofs were of programs written in simple programming languages (e.g., while

programs) or manageable subsets of higher-level languages like Pascal. Most of the work

does not focus on the approach for the construction of specifications nor on the specification

language itself; in contrast, our work focuses on both.

. 22.

In the mid 1970's, the focus of program verification turned to problems of specifying

programs using data structures like pointers, arrays, and records [Suzuki76, Luckham76,

Wegbreit76, Reynolds77], and using shared data [Burstatl72, Oppen75, Yonezawa77,

Schaffert81]. Of these, Schaffert's work is most closely related to ours.

Schaffert studies the problem of specifying and verifying programs that use abstract

data types and shared data with an emphasis on verification. Although his specification

language is not particular to CLU, its design is motivated by CLU semantics. One difference

between his specification language and ours is that he combines the specification of

properties of objects of an abstract data type with the specification of properties of their

values into one specification rather than separating them into two parts as in our two-tiered

. approach. Another difference is that his assertions are not restricted to first-order logic so

mechanization of his proofs would be more difficult than of ours.

1.4.2 Program Development

Philosophical discussions on the practical use of formal specifications can. be found in

[Parnas77] and, more recently, in [Guttag82]. Guttag and Horning advocate the use of formal

specifications in the design phase of program development in [Guttag80b], where they hint at

the two-leveled approach to specifying programs. They specify routines using

weakest-preconditions [Dijkstra76], but the main example of their paper contains no

specifications of routines. More importantly, they do not make explicit, as we do,

programming language dependencies in their routine specifications nor do they make explicit

a connection between routine specifications and their algebraic specification components.

Jones also advocates the use of formal specifications for program development; his formal

method stems from the Vienna Definition Method (VDM) (see [Bjorner78] for extensive

coverage and related references on VDM).

. 23.

The use of specifications.to enforce "modular" programming gave rise to the distinction

between a "specification part" and "implementation part" in the encapsulation units of

programming languages such as Mesa modules (Mitchell78] and Ada packages [Ada79].

Each encapsulation unit has a specification part that defines how implementation parts of

other encapsulation units can use it. Specification parts contain syntactic information that

the compiler can use, such as the types of input and output arguments, and possible

termination conditions of a procedure, but no formal semantic information about the

encapsulation unit, such as the input-output behavior of a procedure. The design of the CLU

library includes this kind of specification information as well. Specifications in CLU, however,

are not part of the syntax of the language. Specifications written in our interface language are

like "specification parts" except that we provide not only syntactic, but also semantic,

information about program modules.

1.4.3 Abstract Data Types

Formal specifications have been used extensively to describe abstract data types,

leading to two different approaches, sometimes referred to as "operational" and

"definitional." A survey of these approaches can be found in [Liskov79). In the operational

approach, one gives a method of constructing the abstract data type.. Examples of the

operational approach include Parnas's work on state-machines [Parnas72a], Robinson and

Roubine's extensions to them with V·, Q., and OV-functlons [Robinson77], Berzins's abstract

models [Berzins79], and Jones's model-oriented specifications [Jones80].

In the definitional approach, one gives a list of properties of the abstract data type, not a

method of constructing the type. The definitional approach can be broken into two

categories, sometimes referred to as "axiomatic" and "algebraic." The axiomatic approach

stems from Hoare's work on proofs of correctness of implementations of data types

[Hoare72], where predicate logic pre· and post-conditions are used for the specification of

each operation of the type. Other work using the axiomatic approach is in [Standish73) and

- 24-

[Nakajima80]. In the algebraic approach data types are defined to be hetereogeneous

algebras [Birkhoff?O]. This approach uses axioms to specify properties of abstract data types,

but the axioms .are restricted to equations. Much work has been done on the algebraic

specification of abstract data types [Goguen75, Guttag75, Zilles75, Burstall77, Ehrich78,

Wand79, Kamin83] including the handling of error values [Gogtien77, Goguen78, Kapur80a],

nondeterminism [Kapur80a], and parameterization [Thatcher78, Goguen81, Ehrig80].

Our work is related to both the axiomatic and algebraic approaches. At the interface

language level, a cluster Specification that defines a data type is written in an axiomatic style

since pre· and post-conditions are associated with each of the procedure specifications. At

the shared language level, a trait specification is written in an algebraic style where axioms

appearing in a trait are restricted to be primarily equational.

One significant difference between the axiomatic part of our approach and other

axiomatic approaches is that we define the truth of an assertion with respect to two states.

Since a program is normally viewed as an input-output relation, a post-condition often needs

to refer to both the initial and final values of objects. Usual Hoare logic, in which each

predicate in a triple is interpreted with respect to a single state [Hoare69], uses a standard

trick of introducing free variables in pre-conditions to "save" the initial values. Jones avoids

this by defining pre-conditions on one state and post-conditions on two [Jones80]. 'we' also

avoid this by interpreting all assertions, found in both pre- and post-conditions with respect to

two states.

1.4.4 Specification Languages

Much of the work on specification languages has evolved from work done on the

specification of abstract data types. The more widely-known specification languages that

have resulted from this research are CLEAR [Burstall77, Burstall81], Iota [Nakajima80], Z

[Abrial80], SPECIAL [Robinson??], and VDM's Meta-IV (Bjorner78]. CLEAR, Iota, and Z stem

-25·

from the definitional approach of describing abstract data types. SPECIAL and Meta-IV stem

from the operational approach, so we discuss them separate from the other three.

CLEAR, Iota, and Z distinguish between a "syntactic part" and a "semantic part" where

the syntactic part defines the signatures of functions. The semantic part of a CLEAR

specification is a set of equations with universally quantified variables, and a possible

induction rule. Models of a theory in CLEAR are based on initial algebras. The semantic part

of an Iota specification is a set of axioms written in first-order predicate logic, and a possible

induction rule. A model for an Iota specification is also an algebra, but since Iota does not

restrict axioms to be equations, the existence of an initial algebra is not guaranteed. The

semantic part of a Z specification is a set of predicates on sets, relations, and functions. A

model for a Z specification is a set that satisfies those predicates together with an

interpretation of the relation and function symbols.

One important difference between these three specification languages and ours is that.

specifications written in CLEAR, Iota, and Z have no simple way of specifying side effects and

error handling of procedures that implement the specified functions. As stated in Section

1.2.1 we use the interface language component of a two-tiered specification to deal with

issues like side effects and errors. As an intended consequence of our separation of

concerns, CLEAR, Iota, and Z can be substituted for Larch as a shared language although

doing so would correspondingly change the underlying models of interface specifications.

Each, however, provides the required syntactic and semantic properties of the shared

language that we discussed in Section 1.2.2.

SPECIAL's viewpoint is similar to our two-tiered viewpoint; it separates the "assertion"

part, analogous to our shared language component, from the "specification" part, analogous

to our interface language component. A major difference between SPECIAL and our work is

that in SPECIAL, types used in the specification part are defined in the assertion part. A type

is restricted to be either a primitive type, a subtype, or a structured type, each of which comes

. 26.

with a set of pre-defined functions. Hence, since the assertion language is so restricted, most

of the work of writing a specification is done in the specification part, where their 0-, V-, and

CV-function definitions correspond to our procedure specifications. We take the opposite

viewpoint and expect most of the work of writing a specification to be done in the "assertion"

part (shared language component).

The most significant difference between Meta-IV, which is the language of the Vienna

Definition Method, and our language is that we do not use an operational approach to writing

specifications. In Meta-IV, a model of an abstract data type is given in terms of previously

defined types. Constraints on the properties of such a model are given in terms of

"meta-programs," which include the use of declarations, assignment statements, and

conditionals.

1.5 What is in this Thesis

We reemphasize that the most important contribution of this thesis is the two-tiered

approach and the particular separation made between the two components of a specification.

This thesis lays out a basis for this approach by formally defining a two-tiered specification

language (Chapters 2, 3, and 4), and describes ways to evaluate two-tiered specifications

(Chapter 5). In Section 1.5.1 we discuss our approach to defining the language formally, and

in Section 1.5.2 we give a guide to the rest of this thesis.

1.5.1 Approach to the Formalization

This thesis deals with specifications, i.e., strings of symbols. A string of symbols may be

viewed in two ways: as a sentence of a language, or as the meaning of that sentence.

Logicians sometimes call the first point of view "syntactic" and the second point of view

"semantic." From the syntactic viewpoint, a precise description of sentences is given by

defining a formal system: a set of symbols, a set of well-formed formulae, Ei set of axioms, and

a set of rules of inference. A theory associated with a formal system is the set of well-formed

. 27.

formulae derivable from the axioms and rules. From the semantic viewpoint, a precise

description of sentences is given by defining a model for the language. A model consists of a

universe of mathematical entities such as sets and functions, and a mapping (sometimes

called an interpretation) from sentences in the language to the mathematical entities. These

mathematical entities are called meanings of the sentences.

The syntactic and semantic views are related. A sentence, u, in a language, L, is valid if

it is true in every model for L. We write "MI= u" to denote that the sentence a is true in the

model M (or equivalently: "u holds in M," "M satisfies u," and "Mis a model of u"). Mis a

model for a set of sentences, I, if it is a model for each uE.I. Since a theory is a set of

sentences in a language, it also makes sense to talk about a model of a theory.

In this thesis, we concentrate on describing specifications and implementations from a

syntactic viewpoint because we can treat them as concrete objects, i.e., text written down on

a piece of paper, as opposed to abstract mathematical entities. Furthermore, we define a

satisfies relation between an implementation and a specification in terms of their theories.

Chapter 3 contains the definitions of satisfies and the formal systems associated with

specifications and implementations.

It is important to establish the soundness of these formal systems. Informally, a formal

system, F, is sound if no invalid formula is deducible from the axioms and rules of inference of

F. That is, any theorem in the theory, T, specified by Fis valid in all models of T. Formally, Fis

sound if all the axioms of the formal system are valid and the rules of inference are sound. A

rule is sound if the validity of each of its hypotheses implies the validity of the conclusion.

Therefore, to show the soundness of the formal systems we will define, it is necessary to

define (1) the classes of models of the theories of the formal systems and (2) the validity

relation (I=) between models and theories. Chapter 2 contains the definitions of these

classes of models, which are the same for specifications as for implementations, and the

. 28.

definition of the validity relation for specifications. Although we lay out the foundations to be

able to prove the soundness of the formal systems we describe, it is outside the scope of this

thesis to present the proof.

We choose to present the semantic viewpoint first (Chapter 2) and the syntactic one

later (Chapter 3) because we believe that it is easier to understand the meanings of

specifications and implementations in terms of familiar mathematical entities such as sets,

functions, and relations, rather than in terms of strings of symbols and rules that manipulate

them. We hope that it is easier for the reader to compare whether his intuition matches ours,

i.e., whether the models we define reflect the same intuitive concepts he has about the

meaning of a program and its behavior.

1.5.2 A Guide to the Rest of the Thesis

In Chapters 2 and 4, we view specifications semantically. We give meanings to

specifications in terms of mathematical entities that include, among other things, algebras

and relations. In Chapter 2, we define a kernel interface language, and in Chapter 4, we

define extensions to the kernel. The kernel language is defined to serve as a basis for other

interface languages and also to reduce the number of linguistic constructs to consider when

viewing specifications syntactically. The extensions in Chapter 4 are syntactic amenities to

the kernel and additional constructs to handle particular features in CLU, e.g., iterators.

In Chapters 3 and 5, we view specifications syntactically. The formal systems associated

with specifications are defined by using the axiomatic semantics of CLU, which associates

proof rules with individual CLU statements and expressions, and the semantics of Larch. In

Chapter 3, we define the theory denoted by a specification written in the kernel interface

language. In Chapter 5, we describe evaluation properties of specifications in terms of these

theories.

- 29-

Clnrters 2 and 3 can be read together for a formal clescription, in terms of both models

and theories, of the kernel interface language. Chapters 2 and 4 can be read together for a

description of the entire interface language for CLU. Chapters 3 and 5 can be read together

for an idea of the benefits gained from treating the meanings of specifications as pure text.

Finally, in Chapter 6 we summarize our conclusions and main contributions of this

research, and discuss directions for future work.

- 30-

2. Kernel Interface Language

This chapter defines a kernel language that can be used to write specifications of CLU

programs consisting of procedures and clusters. A procedure specification specifies the set

of procedures that implement it; a cluster specification specifies the set of clusters that

implement it.

We would like the kernel language to have the following properties:

1. Rich enough to allow us to specify any operation or type one
might want to implement in CLU.

2. A small number of constructs. In Chapter 4, in order to make
reading and writing specifications easier, we introduce some
syntactic sugar and add other constructs to the kernel. The
additions will be defined by translating them into constructs of the
kernel language.

3. A syntax that maps easily into the well-formed formulae of the
theory that a specification denotes. This is to simplify the formal
definitions presented in Chapters 3 and 5.

A goal for the entire interface language, not just the kernel, is that it be adaptable to

programming languages other than CLU. The particular concrete syntax presented, not

surprisingly, borrows heavily from CLU, but the abstract syntax of the interface language can
' '

serve as a basis for an interface language for other programming languages.

Section 2.1 presents the classes of models for theories associated with specifications

and implementations. Section 2.2 presents the (kernel) interface language. The two main

objectives of Section 2.2 are (1) to define the validity relation (t=) between a model and a

specification, and (2) to present the precise syntax and (model-oriented) semantics of

procedure and cluster specifications. The presentation is bottom-up. Assertions constitute

the body of a procedure specification, and procedure specifications constitute the body of a

cluster specification. Hence, we start by defining an assertion language based on Larch, then

- 31 -

procedure specifications, then special assertions that are additions to the assertion language

particular to CLU, and finally, cluster specifications. We warn the reader that we sometimes

digress from our two main objectives of Section 2.2 in order to present some necessary detail

for the sake of precision.

2.1 Classes of Models

A theory defines a class of models. In this section, we are interested in describing the

classes of models for the theories of specifications and implementations. To do so we use the

basic mathematical entities of values, functions, and relations to define the notions of objects,

states, operations, and abstract data types.

Let us first motivate the kinds of models we will introduce to model the computation of a

CLU program. The execution of a program begins with the invocation of some operation in

some initial state. The execution of the operation and of subsequent operations invoked in a

computation can change the state. We thus need to characterize carefully what information is

in a state and what possible changes to a state may arise because of the execution of an

operation. An operation can change a state by creating new objects and changing the values

of existing ones. Each CLU object can be accessed only through certain operations,

depending on the abstract data type it belongs to.

We present our classes of models in a bottom-up fashion: we start off by describing

values, then objects, states, operations, abstract data types, and finally, computations. In

Section 2.1.1, we define when an algebra is a model of a trait theory. In Sections 2.1.2 and

2.1.3, we discuss the domains of objects and states, which underlie the models of procedures

and clusters. In Sections 2.1.4 and 2.1.5, we define the classes of models for procedures and

clusters, respectively. We call these models operations and abstract data types. The classes

of models for specifications are the same as for their implementations. The chart in Figure 5

summarizes the syntactic and semantic domains we will be dealing with. Finally, in Section

. 32.

2.1.6 we define our model of computation.

Syntactic Conventions

For an n-tuple, x = <v1, ... , vn>, we write x.vi for the ith component of x. For a function of

one argument, f, we write dom(f) for the domain off and ran(f) for its range.

2.1.1 Traits and Algebras

A trait defines a set of equations, propositional formulae, and first-order quantified

formulae that makes up the trait's first-order theory with equality. The class of models of the

theory of a trait is a set of many-sort.ed algebras. We use the usual definition of satisfaction

between an algebra and a first-order theory that has equality [Birkhoff70, Enderton72). We

define an algebra to be a model of a trait Tr if it satisfies the theory of Tr.

A many-sorted algebra is a pair consisting of a set of values, Val, partitioned according

to their sorts, and a set of total functions, fun, over these values. We use the set of terms,

Term, to denote values in Val. Terms are of the form "x" where x is in the set of (sorted)

variable identifiers, Varld, or of the form "f(t1, ... , tn)" where f denotes a function in Fun, and

t1, ... , tn are terms. Let Sortld be an infinite set of sort identifiers (not associated with any

Syntax (text)

Trait
Procedure specification
Cluster specification

Procedure
Cluster

Specifications

Implementations

Semantics(models)

Algebra = <values, functions>
Operation = <relation, algebra>
Abstract Data Type == <objects, operations>

Operation
Abstract Data Type

Figure 5. Syntax and Semantics

. 33.

particular algebra). Henceforth, when we say "algebra," we mean a many-sorted algebra.

2.1.2 Objects

Let Obj be an infinite set of objects partitioned into subsets according to their types.

Each object has exactly one type, which cannot be changed. We call Obj the universe; it is

the set of all potentially existing objects. A state (defined below) defines a value for each

object. When an object's value changes, we say the object is "mutated." Let Typeld be an

infinite set of type identifi.ers (not associated with any particular universe), and let TtoS be a

many-to-one function that maps type identifiers to sort identifiers. For an object, x, of type T,

the sort of the value of x is TtoS(T).

In CLU, an object, A, can be the value of another object, B, in which case we say "A

contains B." Sharing of objects arises when two or more objects contain the same object.

Because of sharing of mutable objects, it is not sufficient that the value of a containing object

refer to the value of the contained object; it must refer to the contained object itself, te., its

identity.

In order to treat a contained object as part of the value of the containing object, we treat

objects as special kinds of values. We always include implicitly in every trait a trait defining

this infinite set of objects. Therefore, any model (i.e., an algebra, A = <Val, Fun>) of the

theory of a trait will have the property that Obj k Val. Treating objects as values raises a

sticky technical issue: what i~ t.he sort of a term that denotes an object? We answer this

question in Section 2.2.1 where we carefully define how to sort check terms.

2.1.3 State

Objects can be created and manipulated in the course of program execution. We model

the state of a program at an instant in time by a state. We model CLU states as follows, where

P(Obj) is the powerset of the set Obj.

State = P(Obj) X Env X Store
Env =· Obj/d - Obj
Store = Obj - Val

- 34-

Def: A state, a = <O, e, s>, is a triple consisting of a finite set of existing objects, 0, which is a
proper subset of Obj; an environment, e, which is a mapping from Objld to O; and a store, s,
which is a mapping from 0 to Val.

We call Val, the value set of a. The identifiers in Obj/dare CLU program variables, which

always range over objects. Whenever we refer to "an object in a" we mean an object in u.O.

We use I(Va/) to denote the set of states with Val as their value set. That is, I(Va/) =

{<O, e, s> Is: 0 - Val}. We do this to avoid having four components in a state. A particular

state, a, is an element of some set of states, I{Va/), and thus each state is always associated

with some fixed set of values.

A state can change over time in three ways: the set of existing objects grows because

new objects are added from the universe; the environment changes because the mapping

from CLU program variables (i.e., object,identifiers) to objects changes; or the store changes,

because the values of existing objects change.

2.1.4 Procedures and Operations

· We model a procedure as an operation, where an operation is a pair, <R, A>, consisting

of a relation and an algebra. We refer to the relation of an operation modeling a procedure as

the input-output behavior of the procedure. A relation, R, is a set of pairs of states:

R ~ I(Va/) X l:(Va/) where A = <Val, Fun>

We call the first component of a pair in the relation the input state; the second, the

output state. Let dom(R) be the set of input states of R; ran(R) be the set of output states of R.

The relation viewed as a set of pairs of states is more general than we need. In particular, we

can and should be specific about the arguments passed to and from a procedure.

.35.

Def: The object identifiers in a procedure heading are input formals of the procedure. The
objects the formals denote are input arguments of the procedure. The objects returned by a
procedure are output arguments.

A relation, R, which is a component of an operation, has the following properties:

1. dom(R) = {<O, e, s> I dom(e) = set of input formals A
ran(e) = set of input arguments}

2. ran(R) = {<O, e, s> I ra~(e) = set of output arguments}

where dom(e) is the domain of the environment e, and ran(e) is the range. The first property

states that the environment of all input states is the set of bindings from input formals (object

identifiers) of a procedure to the arguments passed to it. The second property states that the

range of the environment of all output states is the set of output arguments. (CLU procedures

do not list identifiers for output arguments. Since our specifications do, we will strengthen the

second property when we define a model of a procedure specification.)

The algebra A of a model of a procedure provides the set of values, Val, over which

objects manipulated by the procedure can range. Val is the same set as the value set of each

state of the pairs in the relation.

Procedures can terminate in more than one way. Let TermCond be a set of special

values called termination conditions, and let terminates be a special object in the state that

can take on a value from TermCond. For simplicity, we henceforth view that included

implicitly in all traits is the trait ·defining the values in TermCond and that termlnates€0 for

all states <O, e, s>. We reserve the special value normal for the normal termination condition.

A procedure may also never terminate. For a given input state, if the set of output states is

non-empty, then the procedure must terminate for that input state.1

1. In CLU, a procedure may also terminate because of an unhandled exception thereby sigRaling failure. We view
this situation as a programmer error and we choose not to provide the ability to specify such procedures. Hence, a
procedure that signals failure satisfies no specification.

. 36.

2.1.5 Clusters and Abstract Data Types

We model a cluster as an abstract data type, where an abstract data type is a pair, T =

<Obs, Ops>, consisting of a set of objects and a set of operations. The set of objects, Obs, is

the subset of the objects of Obj whose elements are of type T. _An operation in Ops is a pair

consisting of a relation and an algebra, as previously defined. We require that all the

operations of the type have the same algebra.

2.1.6 Computations

We model a computation as an alternating sequence of states and statements starting in

some initial state, a0. Each statement, S, of a computation sequence is a partial function on

states:

S: l:(Va/) - I(Va/)

For the states, ai, and the statements, Si, 1 ~i<n, let a computation sequence be:

and for all 1 <i<n <ai_1, ai> E Si. We refer to the states a0, ... , an above as "states of a

computation sequence." We could also view a computation sequence as a sequence of

states, and dispense with references to individual statements. However, in defining

computational induction, which we do in Chapter 3, we need to be able to refer to the

statements that cause the changes to states.

We are interested in only two kinds of CLU statements: assignment and procedure

invocation. All other statements can be defined in terms of these two. In CLU, a simple

assignment statement can change the environment of a state by changing the mapping from

an object identifier to an object. A procedure invocation can change the set of existing

objects of a state by adding new objects to it, and it can change the store of a state by

. 37-

changing the values of objects. All objects returned from a procedure as a result of a

procedure invocation can be assigned to object identifiers in an assignment statement. So,

when assignment is combined with procedure invocation, an assignment statement, in

general, can change all components of a state.

Properties of Computations

1. Successive states: A property that holds between two successive states of all

computation sequences is:

This property states that new objects can possibly be added to, but not removed from, a state

as a result of a procedure invocation.

2. Procedure invocation:. For all 1 ~i<n, if Si is or contains the invocation of a

procedure, Pr, the following two properties hold. Let Op = <R, A> be the operation modeling

Pr. For all <in, out> pairs of states in R (recall that the range of an environment is a set of

objects):

2.1. ran(in.e) U {Pr} C awO
2.2. ran(out.e) C ai.O

The first property states that all input arguments and the procedure Pr are in the set of

existing objects of the state before the invocation of Pr. Pr is included because a procedure is

also an object in CLU and must exist before it is invoked. The second property states that all

output arguments are in the set of existing objects upon the termination of Pr.

We summarize the models we have described in Section 2.1 in Figure 6.

Syntax

Trait

Procedure

Cluster

- 38-

Semantics

A model of a trait is a (many-sorted) algebra,
where for an algebra A = <Val, Fun>,

Val is a set of values and Fun is a set of functions.

A model of a procedure is an operation,
where for an operation Op = <R, A>,

R is an input-output relation on pairs of states (see below),
and A is an algebra.

A model of a cluster is an abstract data type,
where for a type T = <Obs, Ops>,

Obs is a set of objects (of type n, and Ops is a set of operations.

Some Syntactic Domains

Sortld
Type Id
Obi Id

set of sort identifier8
set of type identifiers
set of object identifiers

Some Semantic Domains

State = P(Obj) X Env X Store
l:(Va/) set of states over value domain, Val.
Obi set of all potentially existing objects
TermCond set of termination conditions

Facts

For all states, a = <O, e, s>, where aEl:(Va/),

OCObj
e: Objld-O
s:O-+ Val

set of existing objects
an environment
a store

TermCond ~ Val
terminatesEO
normalETermCond

Figure 6. Summary of Models, Syntactic and Semantic Domains

. 39.

2.2 Kernel Interface Language and Models

We now turn to describing in detail the interface language. We have already defined the

underlying models for traits, described the domains of objects and states, and described the

underlying models for procedures and clusters. What remains is to present the syntax of the

kernel language and to define the validity relationship 0=), which we do in Section 2.2.2 for

procedure specifications and in section 2.2.3 for cluster specifications.

Syntactic Conventions

We use extended BNF to define the syntax of our language with the following syntactic

conventions:

alternative separator
a+ one or more a's
a+ , one or more a's separated by commas
<a> an optional a

Nonterminals are italicized. Terminal symbols include parentheses, square brackets, curly

braces, and boldface items. Comments in specifications begin with "%" and end with a

newline.

In the next three sections, 2.2.1 through 2.2.3, we describe the interface ass~rtion

language, procedure specifications, and cluster specifications. Section 2.2.1 contains the

basis of the assertion language tor writing the bodies of procedure specifications. Section

2.2.2 on procedure specifications is further broken down into five subsections describing

various parts of the interface language that are germane to procedures. It introduces special

assertions that are additions to the base assertion language described in Section 2.2.1. In

Sections 2.2.2 and 2.2.3, for each part of the interface language we will present four sections:

its syntax, its syntactic checks, its meaning, and an example. Some of the syntactic checks

that we require would be unnecessary if we added more complexity to the grammar that we

present. We choose not to put the complexity in the grammar in order to simplify our

. 40.

description of the meanings of the various parts of the language.

2.2.1 Interface Assertion Language

In this section we describe the language we use to make assertions about objects and

their values in a state. These assertions appear in the bodies of specifications and can refer

to both initial and final values of objects. After presenting the syntax of interface assertions,

we present a lengthy section on the syntax checking of assertions. It is long because we

discuss in depth the issue of sort checking a term that refers to an object. Finally, we present

the meaning of an interface assertion by giving a truth value function. Since an assertion can

refer to the initial and final value of an object, the truth function is defined with respect to two

states, corresponding to the input and output states of an input-output relation.

Syntax

Assn :: = true I false I -Assn I Assn Connective Assn I (Assn)
I Quantifier Varld: Sortld Assn
I Term = Term

Term::= Varld I Objld I Opld<(Term +,)>I Termt f Term~
Connective :: = A I V I =t I -
Quantifier :: = V I 3

We allow parentheses to be omitted by relying on the following conventions:

1. Outermost parentheses may be dropped.
E.g., "A A 8" is "(A A 8)."

2. The precedence of the operators and quantifiers from highest to
lowest is-, V, 3, A, V •. =-, -· .
E.g., "Vx A=> 8" is (Vx A=> 8), and not "Vx (A=> B); "-A AB=>
C" is "((-A) A 8) =t C."

3. When one connective is used repeatedly, the expression is
grouped to the right.
E.g., "A=> B =t C" is "A =t (8 => C)."

We allow the use of other delimiters, such as square brackets, for parentheses. An assertion

of the form -r = true is abbreviated to -r; -r = false, --r, where -r is in Term.

. 41 .

Assertions in specifications can refer to both the initial and final values of objects. We

use xt to denote the initial value and x+ to denote the final value of object x. The

interpretation of these terms will be defined rigorously in the Meaning section.

In order to define precisely how to sort check an assertion we need to define the

subterms of an assertion or term:

Def: The subterms of an assertion,· a, in Assn are defined as follows:
1. a is a subterm of itself.
2. If a is of the form t1 = t2, the subterms of both t1 and t2 are subterms of a.
3. If a is of the form -a, the subterms of a are subterms of a.
4. If a is of the form a1 #a2, where # is in Connective, the subterms of both a1 and

a2 are subterms of a.
5. If a is of the form (a), the subterms of a are subterms of a.
6. If a is of the form Vv:S a or 3v:S a, the subterms of a are subterms of a.

Def: The subterms of a term, T, in Term are defined inductively as follows:
1. T is a subterm of itself.
2. If T is of the form (f(t1, ... , tn)), where f is in Opld and t1, ... , tn are in Term, the

subterms of t1, ... , tn are subterms of T.

3. If Tis of the form tt or t•t.°, the subterms oft are subterms of 1.

Checking

We check that all assertions sort check, where alt trivial subterms, i.e., terms that are in

either Varld or Objld, sort check. The second definition below relies on understanding the

discussion, Sorts for Objects and Values; we present it here to keep the definitions involving

the syntax checking of an assertion together.

Def: An assertion, a, sort checks:
1. If a is of the form t1 = t2, the sorts of both t1 and t2 are the same.
2. All subterms of a sort check.

Def: A term, T, sort checks if and only if:
1. All subterms of T sort check.
2. If Tis of the form g(s1, ... , sm), where g is in Opld and s1, ... , sm are in Term, the

domain of g must be a sequence of the sorts of them terms in s1, ... , sm where
a. The sort of a term of the form f(t1, ... , tn), is the range off, where f is in

Opld and t1, ... ,tn are in Term, .
b. The sort of a term of the form v is S, where v is in Varld-and is bound in an

assertion of the form Vv:S a or 3v:S a, for a in Assn,
c. The sort of a term of the form o is the sort T _obj where o is in Objld and T

• 42.

is the type of the object denoted by o, and
d. The sort of a term of the form tt or t.t. is the sort TtoS(T) where tis in Term

and T is the type of the object denoted by t.
3. If Tis of the form tt or t.t., t must denote an object, where tis in Term.

Sorts for Objects and Values

We now address the sticky technical issue raised earlier in Section 2.1.2 where we

discussed objects: if an object is a value, what is the sort of a term denoting such a value?

Before we answer this, let us look at an example. Let the value of some array (of sets) object

be denoted by the term, addh(addh(create(1),s1),s2), where the signatures of addh and

create are (addh and create are trait function identifiers):

create: Int-+ A
addh: A, ? -+ A

What sort is "?"? The object identifiers s1 and s2 denote objects since the value of an array

object refers to the set objects the array contains, not just the values of the set objects.

We introduce a special subset of Sortld called ObjSortld. For each different type in the

set, Obj, there is a sort identifier in ObjSortld. Each sort identifier in ObjSortld is called an obj

sort; each in Sortld is called a value sort. (Just as an object is a special kind of value, an obj

sort is a special kind of value sort.) So, in our array example, s1 and s2 are of some obj sort.

Therefore, an object has two sorts associated with it: its obj sort and its value sort. The

sort of a term denoting the value of an object is a value sort--it can be an obj sort since objects

can contain other objects. The sort of a term denoting the object itself must be an obj sort.

There is a one-to-one correspondence between the type of an object and its obj sort. We use

the naming convention that T _obj is the name of the obj sort for objects of type T. In our.array

value example, s1 and s2 are of the obj sort, set_obj. There is a one-to-one correspondence

between the type of an object and the sort of a term denoting its value. The function, TtoS,

gives us this mapping from. type names to (value) sort names. (TtoS can be many-to-one

. 43.

because more than one type can be defined with respect to the same sort.) In our array

example, the term addh(addh(create(1),s1),s2) is of (value) sort, A.

We emphasize that the reason we introduce an obj sort of the form "T _obj" instead of

simply using the type identifier "T" is to keep the set of sort identifiers disjoint from the set of

type identifiers. We do this to be consistent with the facts that the set of values, Val, is

partitioned by sorts and the set of objects, Obj, is partitioned by types. We also emphasize

that the only reason we need to introduce obj sorts for objects is that objects are treated es

values (because of sharing and mutability); for sort checking to work, we need to be able to

refer sensibly to "the sort of an object," or more precisely, "the sort of a term denoting an

object."

. Def: A term denotes an object if and only if the sort of the term is some obj sort.

Figure 7 summarizes the various sets of identifiers for objects, values, obj sorts, value

sorts, and types; some facts relating these sets; and some questions that are reasonable to
"•

ask of objects and values, and their answers.

Returning to the array example, the signature of the addh function is:

addh: A, seLobj - A

Suppose we also have a fetch function for arrays with the following signature:

fetch: A, Int - set_obj

with TtoS defined as follows:

TtoS(array[set]) = A
TtoS(set) = S
TtoS(integer) = Int

. 44.

Syntactic Domains

Va rid
Obj/d
Sortld
ObjSortld
Type Id

variable identifiers denoting values, some of which may be objects
object identifiers denoting objects, which are special kinds of values
value sort identifiers
obj sort identifiers, each of the form T _obj, for type identifier T
type identifiers

Facts

Varld n Obj/d = 0
Sortld n Typeld = 0
ObjSortld ~ Sortld
ITypeldl = IObjSortldl, where "IXI" is the cardinality of set X.
3 bijection: Typeld ++ ObjSortld
VTETypeld 3SESort/d TtoS(T) = S

Questions

For an object, x, of type T:

What is the type of x?
What is the value of x in a state, a ~ <O, e, s>?
What is the obj sort of object x?
What is the value sort of the value of x?

Answers

T
o.s(x).
T_obj
TtoS(T)

Figure 7. Sorts and Types, Objects and Values

For an array[set] object, a, let a:t be the value of a, and for an integer object, i, let it be the

value of i:

The type of a is array[set].
The obj sort of a is array[set]_obj.
The (value) sort of the value of a is A.

The type of the object denoted by fetch(at,it) is set.
The obj sort of fetch(at,it) is seLobj.
The (value) sort of fetch(at,it)t is S.

. 45.

Suppose instead that addh and fetch were declared as:

addh: A, S -+ A
fetch: A, Int-+ S

In this case, it would not make sense to ask for the type of fetch(at,it) since fetch(at,it) does

not denote an object. It does make sense to ask for the sort of fetch(at ,it); the sort is S.

An Important Shorthand

It is important to realize that we can quantify over objects because we are treating

objects as values. It makes sense to write an assertion Vx:T _obj a or 3x:T _obf a, where x

ranges over objects of type T and a is in Assn. In our examples, we abbreviate these to the

forms Vx:T a and 3x:T a.

Meaning

Assertions are well-formed formulae in first-order predicate calculus with equality,

where equality is denoted by the symbol, = . We will define the truth of an assertion with

respect to.two states, an algebra, and a variable-to-value mapping. Before·we define the truth

function, T, we explain why we need these various pieces of information.

As mentioned in the beginning of Section 2.2.1 , we need to interpret interface a5sertions

with respect to two states because assertions in specifications can refer to both the initial and

final values of objects. The two states correspond to the input state and the output state in a

relation of an operation.

A model of a procedure specification is an operation that includes the same algebra

used to interpret an interface assertion. The algebra provides a set of values, Val, and a set of

functions, Fun, to which we refer below.

- 46-

Finally, in order to handle the free variables in an assertion, we include a

variable-to-value mapping. This is a standard "trick" used to keep track of the variable

identifiers that are introduced in quantified assertions. (The following definition is adapted

from [de8akker80}.)

Def: Let VarMap be the set of functions, I': Varld - Val (the same Val as for the algebra
discussed above). For all p.EVarMap, vEVarld, xEVa/, we write "1t[x/v]" (read "substitute x
for v in p. ") for the element of VarMap that satisfies, for each yE Varld:

1. p.[x/v](y) = x, if y = v
2. p.[x/v](y) = p.(y), if y -:I: v

We are now ready to give the truth function, T.

T: Assn X I(Val) X I(Val) X Alg X VarMap - {TRUE, FALSE}.

We write "T{P](u, u', A, p.)" for the truth of an assertion P in states, a, u'; algebra, A; and

variable-to-value mapping, I'· The states a and a' are elements of I(Va/), where Val is the

same set Val as for the algebra A. For al! a, a1, a2 E Assn, and t1, t2 E Term,

1{true](u, u', A,#') = TRUE
1{false](C1, u', A, p.) = FALSE

1{-a](a, a', A, 11) = -T[a](a, a', A, 11>
T{a1 #a2}(a, u', A, 11) = T[a1](u, a', A,µ.)# T[a2](o, a', A, p.),

where #is in Connective.
1{(a)](a, u', A, p.) = T[a](u, a', A, p.)
1{Vv:S a](u, a', A,µ.) = Vx:S T[a](u, u', A, µ.[x/v]),

where x is of sort S and does not appear free in a.
T{3v:S a](a, u', A, p.) = 3x:S T[a](u, u', A, µ.[x/v]),

where x is of sort S and does not appear free in a.
T{t1 = t2](u, u', A,µ.) = TRUE, if V[t1](u, a', A, 11) = V(t2](u, u', A, p.);

FALSE, otherwise;
where " = " between values is the equality relation on values in algebra, A.

. 47.

The value of a term is deti'ned by the following function,

V: Term X l:(Val) X l".:(Va/) X Alg X VarMap-+ Val.·

For all yEVarld, xEObjld, fEOpld, and t, t1, ... , tn E Term,

Example

V[y](a, a', A,µ) = µ(y)
V[x](a, a', A,µ.) = x, where xis neither an input nor output formal
V[x](a, a', A,µ.) = a.e(x}, "where xis an input formal
V[x](a, a', A, µ.) = a' .e(x), where x is an output formal
V[f(t1, ... , tn)](a, a', A, p.) = fl(V[t1](a, a', A, µ), .. ., V[tn](o-, a', A,#'))

where fl is the function EA.Fun denoted by f.
V[tt}(a, a', A, Ji) = a.s(V[t](u, u', A, p.))
V[t+](o-, a', A, Ji) = a' .s(V[t](o-, a', A, p.))

As an example, let us apply the value function, V, to the term, fetch(a-t,it), where a and i

are input formals of a procedure specification.

V[fetch(at,it)](o-, a', A,#-') .
= fetchl(V[a-t](a,a',A,J.t), V[it](a, a',A,p.))
= fetchl(o-.s(V[a](a, a', A, Ji}), o-.s(V[i](a, a', A,µ)))
= fetchl(a.s(a.e(a)), a.s(a.e(i)))

Here, fetch! is a function in A.Fun; a.s(a.e(a}) and a.s(a.e(i)) are values in A. Val.

2.2.2 Procedure Specifications

A procedure specification ·specifies a subset of the set of all the possible operations that

are models of procedures. In this section, we define when an operation is a model of a

procedure specification.

In the next five subsections we will describe the language and the validity relation for

procedure specifications. First we consider procedure specifications ignoring exceptional

termination; second, we consider those with exceptional termination. In the subsequent three

sections, we describe special assertions to handle the creation of new objects, the mutation

. 48·

of existing objects, and procedure objects.

2.2.2.1 Procedure Specifications Without Signals

A procedure specification includes a name, a heading, a link, and a body. The heading

specifies the types of the input and output arguments. The link identifies the name of the trait

that defines an algebra that provides the values over which the input and output arguments

can range. The body is a pair of assertions that specify conditions relating the initial and final

values of the input and ou_tput arguments.

Syntax

ProcSpec :: = Procld = ProcHead Link ProcBody end
ProcHead :: = proc Args <Rets>
Link :: = uses Traitld
ProcBody :: = Pree PostC
Pree :: = pre Assn
Paste :: = post Assn

Args :: = (<Deel+,>)
Re ts :: = returns (Deel+ ,)
Deel :: = Objld + ,: TypeSpec
TypeSpec :: = Typeld ·

Some definitions:

Def: The object identifiers in a procedure heading are formals of the procedure specification.
The objects the formals denote are arguments.

Def: Object identifiers in an Args are called input formals, and their objects, input arguments;
object identifiers in a Rets are ~!led output formals and their objects, output arguments.

Def: The trait named in a procedure specification, pr, is called the used trait of pr.

. 49.

Checking

For a procedure specification to be syntactically well-formed, we check that:

1. Each object identifier appearing in a pre-condition or
post-condition appears in the list of formals. The sets of input
formals and output formals are disjoint.

2. The assertions· appearing in the pre- and post-conditions sort
check according to the function declarations of the used trait.

3. Output formals appear only in a post-condition.

4. Terms of the form T.i., where TETerm, appear only in the
post-condition.

The header of a procedure specification is the same as that for· a CLU procedure except that

. identifiers are introduced in the returns clause for output arguments.

Meaning

Informally, the pre-condition of a procedure specification defines a subset of the

universe of states over which the procedure must terminate. The procedure specification

does not say anything about those states which do not satisfy the pre-condition. The

post-condition defines for any valid initial state the final states that are acceptable.

Formally, a model of a procedure specification, Pr, is an operation. An operation is a

pair, <R, A>, where Risa relation on pairs of states, and A, is an algebra. Each relation, R, of

an operation has the following properties {compare with Section 2.1.4):

1. dom{R) = {<O, e, s> I dom{e) = set of input formals A
ran(e) = set of input arguments}

2. ran(R) = {<O, e, s> I dom(e) = set of output formals A
ran(e) = set of output arguments}

The first property states that the environment of alt input states is the set of bindings from

input formals (object identifiers) of a procedure specification to input arguments {objects).

The second property states that the range of the environment of all output states is the set of

. 50.

bindings from output formals (object identifiers) to output arguments (objects).

We now define when an operation is a model of a procedure specification, Pr. Let Pr

have a pre-condition P, post-condition Q, and used trait Tr.

Def: For an operation, Op = <R, A>, Op is a model of Pr, i.e., Op I= Pr, if and only if:
1. A is a model of Tr, and
2. <R, A> I= <P, O> (defined below).

Def: Let A = <Val, Fun>. <R, A> I= <P, O> if and only if:

'rJ I': Va rid -+ Val
Vu llPJ(u, p, A, Ji)=> [3a' <a, a'>ER A Va'(<u, a'>ER => llOJ(u, a', A, I')]]

This says that for all variable-to-value mappings (needed to handle free variables that appear

in assertions), for all states in which the pre-condition is satisfied, there exists some output

state in the relation (this gives us termination) and for all such output states (reached from an

input state in which the pre-condition is satisfied), the post-condition is satisfied. In the above

predicate, we define p to be some constant state (e.g., the null state) because although all

assertions are interpreted with respect to two states, it makes sense to refer to only initial

values of objects in a pre-condition. By the syntactic restrictions we place on whatassertions

may appear in pre-conditions, ttie evaluation of an assertion in a pre-condition can ignore the

second state.

Example

choose = proc (s: set) returns {i: int)
uses SetOflnt

pre -isEmpty(st)
post has(st,i.j,)
end

This procedure specification specifies that the choose procedure takes in one input object of

type set and returns one output object of type int. The pre-condition is satisfied only when the

value of the input set object is not empty. The post-condition asserts that the value of the

output integer object is in the value of the input set object. The function identifiers, isEmpty

- 51 -

and has, appear in the SetOfE trait, which is included in the SetOflnt trait (Appendix A).

2.2.2.2 Termination Conditions

A CLU procedure may terminate in more than one way, depending on the input state.

We distinguish exceptional termination from normal termination by including in the procedure

heading all possible exceptional termination conditions of the procedure and each of their

associated returned objects.

Syntax

We add to the procedure specification heading a signals clause: ·

ProcHead :: = proc Args <Rets> <Sigs>
Sigs :: = signals (Exception + ,)
Exception :: = Sigld <(Deel+ ,)>

and to the assertion language:

Assn :: = ... I returns I signals Sig Id

As with a Rets clause, object identifiers in a Sigs clause are called output formals and their

objects, output arguments.

Checking

We additionally check for. a.well-formed procedure specification that:

1. Each signal identifier appearing in some signals assertion in the
post-condition appears in the heading.

2. signals and returns assertions appear only in the post-condition.

. 52.

Meaning

Recall that a special terminates object is included as part of the set of existing objects

of all states. Upon normal termination of the procedure, the value of terminates is equal to

normal; upon exceptional termination, the value of terminates is equal to the Sigld in some

signals assertion. Formally, we extend the truth function, T, such that for all xESig/d:

T[returnsJ(a, er', A,µ.) = a'.s(terminates) =normal
T(signals x](a, er', A,µ.) = a'.s(termlnates) = x

The set, TermCond, is the union of Sigld and {normal}.

Example

choose = proc (s1: set) retu ms (i: int) signals (emptySet(s2: set))
uses SetOflnt

pre true
post [-isEmpty(s1t) = has(s1t,i") A returns] A

[isEmpty(s1t) =signals emptySet A s2 = s1]
end

When choose terminates normally, terminates" = normal and returns an int object; when it

terminates exceptionally, terminates+ = emptySet and returns a set object.

2.2.2.3 New Objects

Procedures can create new objects. When a new object is created, the set of existing

objects, 0, of the input state is extended by adding an element from the universe to 0 that was

previously not in 0.

Syntax

Assn::= ... I new 01 new Term+,

. 53-

Checking

A new assertion can appear only in a post-condition. Let a be an assertion of the form

new t1, ... , tn, where t1, ... , tn are in Term. Subterms of a are the subterms of each term in the

list t1, ... , tn. We check that for the assertion a:

1. Each subterm of each term listed in t 1, ... , tn sort checks.

2. Each term listed in t1, ... , tn denotes an object. ·

Meaning

Recall that a state has three components, one of which is the set of existing objects, 0.

We extend the truth function, T, such that for all terms t1, ... , tn in Term:

Example

T[new fZl](a, a', A,µ) = a.O = a'.O.
T[new t1 I ... , tn](a, a' I A, p.) = (a.On {t1 I ... , tn} = fZI) /\(a' .0 = a.Ou {t1, ... , tn}).

create= proc() returns (s: set)
uses SetOflnt

pre true
post s+ = empty /\ new s /\ returns
end

This procedure specification specifies that the create procedure when invoked returns a new,

initially empty set object. The previous examples can be strengthened by adding a new fZI

assertion to their post-conditions.

2.2.2.4 Mutation

A procedure can mutate objects as well as return them. We add an assertion that

specifies that no objects are allowed to be mutated and an assertion that specifies what

objects a procedure is allowed to mutate.

-54-

Syntax

Assn :: = ... I mutates 0 I mutates Term +,

Checking

A mutates assertion can appear only in a post-condition. Let a be an assertion of the

form mutates t1, .. ., tn, where t1, ... , tn are in Term. Subterms of a are the subterms of each

term in the list t1, ... , tn. We check that for the assertion a:

1. Each subterm of each term in the list t1, ... , tn sort checks.

2. Each term in the list t1, ... , tn denotes an object.

Meaning

We extend the truth function Tas follows:

Example

T[mutates rzl](a, a', A,µ) = T(Vy:T_obj (yEa.O = y,j, = yt)](a, a', A,/.')
T[mutates t1, ... , tn](a, a', A,µ) =

T{'t/y:T _obj ((y€a.O /\ -(y = t1) /\ ... /\ -(y = tn)) = (y+ = yt))](a, a', A, p)

intersect = proc (s1, s2: set)
uses SetOflnt

pre true
post Vi:lnt [has(s2+,i) = has(s1t,i) /\ has(s2t,i)]

/\mutates s2 A returns
end

This procedure specification specifies that intersect may change only the value of the second

input argument. Since s 1 and s2 might denote the same input actual and s2 might be

mutated, we cannot guarantee that s1 is not mutated; the final value of s1 is not necessarily

equal to its initial value. The previous examples can be strengthened by adding the mutates

0 assertion to the post-conditions.

. 55.

2.2.2.5 Procedures as Objects

In CLU, procedures are also considered as objects that can be passed to or returned

from procedures. For example, an input procedure argument, arg, to a procedure, pr, can be

applied to other input arguments of pr.

Syntax

The type of a procedure object is given by its procedure heading. We add to the syntax

of the interface language:

TypeSpec :: = ... I ProcHead

. We add to the syntax of the assertion language:

Assn::= ... 1 Assn {Term} Assn

We call this new kind of assertion a "procedure object assertion (poa). " 2

Checking

Let a be a poa, P{ -r }Q, where P and Q are assertions and ,,. is a term. Subterms of a are

subterms of P, 0, and -r. We check that the procedure specification,

pre P
postQ

is syntactically well-formed. We also check that the subterms of -r sort-check.

2. Poa's should not be confused with partial or total correctness assertions that deal with procedure invocations.
Poa's deal with procedure objects.

. 56.

Meaning

Recall that the meaning of a procedure object is a pair consisting of a relation and an

algebra. The meaning of a poa, i.e., an assertion that refers to a procedure object is given in

terms of the relation of the procedure object. We extend the truth function T as follows:

7{P{T}0](a, a', A, p.) = ~T)(a, a', A, p.) I= <P, Q)

where I= was defined in Section 2.2.2.1.

Example

Suppose we specify a procedure that copies the elements of an array using the

copyE/em procedure as an input argument. If we wish to place a restriction on the copyE/em

procedure object, we would write it in the pre-condition of copyArray. The ArrayOfE/emObj

trait, which uses the Array trait, is given in Figure 8.

copy Array = proc (a1: array[elem], copyEtem: proc (e1: elem) returns (e2: elem))
returns (a2: array[etem])

uses ArrayOfEtemObj
pre true{copyEtem}(e1t = e2~ A new e2 A mutates 0 A returns)
post new a2 A length(a1t) = length(a2~) A low(a1t) = tow(a2~)

end

A (Vj:lnt low(a1t)<j~high(a1t)
[fetch(a1t,j) = fetch(a2~,j) A new fetch(a2~,j)]

A mutates 0 A returns

We are not able in our specification language to specify the invocation of another

procedure. That is, we are not able to make an assertion in the procedure specification, Pr1,

about the application of a procedure, Pr2, to a list of arguments, Arglist, such as:

appty(Pr2, Arglist)

The reason is that we cannot ~now in which states to evaluate (i.e., apply V) the objects in

Arglist. To specify the effect we would want, because Pr2 may have side effects, we would

. 57.

ArrayOfElemObj: trait
includes Array with [AOE for A, elem_obj for E]

Array: trait
includes Integer, Elem
introduces

create: Int - A
addh: A,E-A
remh: A-+ A
low: A-+lnt
high: A-+ Int
fetch: A, Int-+ E
store: A, Int, E -+ A
size: A -+ Boot ·

closes A over [create, addh]
constrains [A] so that for all [i,i1 ,i2: Int, e,e1 ,e2: E, a: A]

remh(create(i)) exempt
remh(addh(a,e)) = a
low(create(i)) = i
low(addh(a,e)) = low(a)
high(a) = low(a) + size(a) - 1
fetch(create(i1),i2) exempt
fetch(addh(a,e),i) = If i .eq (low(a)+ size(a)) then e else fetch(a,I)
store(create(i1),i2,e) exempt
store(addh(a,e1),i,e2) = If i .eq (low(a) + size(a)) then addh(a,e2)

else addh(store(a,i,e2),e1)
size(create(i)) = O
size(addh(a,e)) = size(a) + 1

Figure 8. ArrayOfElemObj Trait

want to evaluate Arglist with respect to pairs of intermediate states of the invocation of Pr1,

and not the initial and final states.

The copyArray example illustrates this failure of expressive power in our specification

language. We would like to be able to specify. that any implementation of copyArray must

invoke the copyElem procedure such that the effects of executing the copyArray procedure

include the effects of executing the copyElem procedure. We specified in copyArray's

post-condition, what the behavior of copyArray would be as if copyE/em were invoked from

copyArray. Nowhere, however, do we actually state in the post-condition that copyElem must

. 58.

be used--it is as if the copyEtem argument were ignored. Hence, a procedure whose behavior

is the same as specified above, but is implemented without using the copyEtem procedure

argument, would satisfy the procedure specification. In order to rule out such procedures, we

would need to be able to make an assertion such as:

Vj:lnt low(a1t)<i:$;high(a1t) apply(copyElem, fetch(a1t,j)).

2.2.3 Cluster Specifications

A model of a cluster specification is an abstract data type. A cluster specification

includes a type identifier, a list of procedure specification identifiers, a link, and a body. The

link includes the name of a trait and a mapping from the type identifier to a sort identifier. The

body includes a set of procedure specifications.

Syntax

ClusSpec :: = Typeld = cluster is Procld +, ClusLink C/usBody end
ClusLink :: = Link ClusMap
ClusMap :: = provides MutFlag Type Id from Sort Id
ClusBody :: = ProcSpec +
MutF/ag :: = mutable I immutable

Def: The type identifier named by a cluster specification is called the defined type.

Def: The trait named in the uses clause of a cluster specification, cl, is called the used trait of
cl.

Def: A procedure specification defined within a cluster specification is called a bound
procedure specification. A procedure specification defined outside of all cluster
specifications is called a free procedure specification.

Checking

We check that:

1. All procedure specifications whose identifiers appear in the
heading of a cluster specification are defined in the body of the
cluster specification, and all identifiers of procedure specifications in
the body of the cluster specification appear in the heading.

Meaning

. 59.

2. The type identifier found in the type-to-sort mapping is the same
as the type identifier that names the cluster specification.

3. The sort identifier in the type-to-sort mapping· is the name of a sort
provided by the used trait.

4. If the "flag" (in MutFlag) is mutable, some mutates t1, ... , tn
assertion must appear in a procedure specification in the cluster
specification where the defined type of the cluster specification is
the type of the object denoted by some term in t1, , tn. If the "flag"
is immutable, none .of the objects denoted by terms in mutates
assertions in any of the procedure specifications can be of the
defined type.

5. Each procedure specification is well-formed.

A model of a cluster specification is an abstract data type, which consists of a pair of a

set of objects and a set of operations. Let Cl be a cluster specification; Prs, the set of

procedure specifications of Cl; Tr, the used trait of Cl.

Def: For an abstract data type, T = <Obs, Ops>, Tis a model of Cl, i.e., T F= Cl, if and only if:
1. Obs = {o I oEObj /\the sort of o is T _obj},
2. VprEPrs 3opEOps, op F= pr,
3. Vop1 = <R1, ~>EOps, A= ~.where A is a model of Tr.

The type-to-sort mapping of the form, "provides(...) T from S," of the cluster specification

tells us that the value of TtoS for type T is S.

Example

The set cluster specification (Figure 9) defines a mutable set abstract data type.

Singleton and union return new nonempty set objec1s. Delete might mutate its input set

argument, if doing so does not empty it; otherwise, it terminates exceptionally, signaling

emptiesSet. From the theory (Chapter 3) associated with this cluster specification, we can

show that no set object can be empty. Size returns the cardinality of its inp~t set argument.

. 60.

set = cluster is singleton, union, delete, size
uses SetOflnt
provides mutable set from SI

end

singleton = proc (i: int) returns (s: set)
uses SetOflnt

pre true
post s+ = add(empty, it) /\ new s /\ mutates 0 /\ returns
end

union = p roe (s1, s2: set) retu ms (s3: set)
uses SetOflnt ·

pre true
post Vi:lnt [has(s3+,i) = has(s1t,i) V has(s2t,i)J

/\ new s3 /\ mutates 0 /\ returns
end

delete = proc (s: set, i: int) signals (emptiesSet)
uses SetOflnt

pre true
post [((card(st) ~ 2) V -has(st,it)) ::::::t

(s+ = remove(st,it) /\mutates s /\returns)] A
[((card(st) .eq 1) /\ has(st,it)) ::::::t

mutates 0 A signals emptiesSet] A
new0

end

size = proc (s: set) returns (i: int)
uses SetOflnt

pre true
post i+ = card(st) A new 0 A mutates 0 A returns
end

Figure 9. Set Cluster Specification (SetClusSpec)

The set cluster specification example illustrates a clear distinction between a (value) sort

identifier and a type identifier. Although the trait"SetOflnt defines an "empty" value of sort SI,

no object of set type will ever have such a value since operations on objects of set type

construct only nonempty set objects. One could have specified a more conventional set type

with operations create and insert, so that a possible value for a set object would be "empty."

. 61 .

We will be returning to this somewhat contrived example in later chapters. We

henceforth refer to the specification of Figure 9 as SetClusSpec and repeat it in Appendix I for

future reference.

2.3 Summary

In this chapter we described models of specifications and implementations, and we

described a kernel interface language. Models of traits are many-sorted algebras; models of

procedures and procedure specifications are operations, each of which is a pair consisting of

a relation on states, and an algebra; models of clusters and cluster specifications are abstract

data types, each of which is a pair consisting of a set of objects and a set of operations.

The kernel interface language contains procedure specifications and cluster

specifications. Interface assertions constitute the body of a procedure specification;

procedure specifications constitute the body of a cluster specification. The language of

interface assertions is built from the language of Larch assertions. We added notation (t and

i) to be able to refer to the initial and final values of objects, since interface assertions are

interpreted with respect to two states. A procedure specification basically consists of a used

trait and a pair of assertions. We introduced special assertions to handle multiple termination

conditions, creation of new objects, mutation of existing objects, and procedure objects as

arguments. A cluster specification basically consists of a type name, a used trait, a

type-to-sort mapping, and a set of procedure specifications. In the next chapter we see how

to map a specification into the set of well-formed formulae of the theory it denotes.

. 62.

3. Theories

In this chapter we switch to the syntactic viewpoint of specifications and

implementations. The two main objectives of this chapter are (1) to define when an

implementation satisfies a specification, and (2) to define precisely the theories denoted by

specifications and implementations.

Section 3.1 contains some definitions dealing with first-order theories. From these basic

definitions, in Section 3.2 we define the satisfaction relation between implementations and

specifications. Section 3.3 and 3.4 define the theory of a specification and the theory of an

implementation, respectively. Their ~efinitions depend on the definition of a type induction

principle, which we defer defining to Section 3.5. Section 3.5 builds up to defining this

principle, which is complicated because of the possibility of "exposing the rep" in CLU.

3.1 Definitions

The following definitions dealing with theories and formal systems are provided as a

review of basic concepts in logic. We borrow from three introductory logic texts

[Shoenfield67, Mendelson64, Enderton72].

Theory and Formal System

A theory is specified by giving a formal system, which has three parts:

1. Its language. To specify a language, we specify its set of symbols,
and its set of well-formed formulae (wff's). We denote the language
of a formal system F by L(F).

2. Its axioms. Each axiom must be a well-formed formula of the
language of the formal system.

3. Its rules of inference, which we sometimes call rules. Each rule of
inference states tnat under certain conditions, one formula,. called
the conclusion of the rule, can be inferred from certain other
formulae, called the hypotheses of the rule. Each rule is an

-63-

inference relation among wff's.

A proof in F is a finite sequence of wff's, each of which is either an axiom or is the

conclusion of a rule whose hypotheses precede that wff in the proof. A theorem of Fis a wff,

A, such that there is a proof whose last wff is A. Such a proof is called a proof of A. The

theory specified by a formal system F is the smallest set of formulae reflexively and transitively

closed over the set of axioms under the rules of F.

The logical symbols.of a first-order language are the usual connectives, quantifiers, and

possibly an equality symbol, =. All other symbols, e.g., ·function symbols,· are called

nonlogical. A first-order language L' is an extension of the first-order language L if every

nonlogical symbol of L is a nonlogical symbol of L'. Let F and F' denote formal systems that

respectively sPec:ify the first-order theories T and T'. T' is an extension of T if L(F') is an

extension of L(F} and every theorem of T is a theorem of T'. A conservative extension of T is

an extension T' of T such that every formula of F which is a theorem of T' is also a theorem of

T.

Used and Imported Types

The following definitions are based on the interface language.

A used type of a procedure specification is a type whose identifier appears in its

heading. The type of any object that is an input or an output argument of that procedure is a

used type. A used type of a cluster specification is a used type of each of its procedure

specifications.

For a used type, T, the sort, TtoS{T}, is called the used sort. For a rep type, T, the sort,

TtoS(T}, is called the rep sort. For an abstract type, T, the sort, TtoS(T}, is called the abstract

sort.

- 64 -

Recall from Chapter 2, a bound procedure specification is a procedure specification that

is defined within a cluster specification. A free procedure specification is a procedure

specification that is defined outside all cluster specifications.

An imported type of a cluster specification is a used type of a cluster specification that is

not the defined type. An imported type of a bound procedure specification is a used type of

the procedure specification that is not the defined type of the cluster specification. So that we

can use the same terminology for free and bound procedure specifications, we define an

imported type of a free procedure specification as a used type of the procedure specification.

Syntactic Conventions

For a predicate, P, of n arguments, we write P[X] to denote P(x1, ... , xn). For a predicate

P of 1 argument, and a list, X = x1, ... , xn, we write ~P(X) to denote P(x1) /\ ... /\ P(xn). For

two lists of equal length, X = x1 .•... , xn, and A = a1, ... , an, we write X = A for x1 = a1 A ... /\

xn = an. We write "Pr.pre" and "Pr.post" to denote the pre-condition and the post-condition

of the procedure specification Pr.

3.2 Satisfaction

We define satisfaction of an implementation with respect to a specification in terms of

theories so we need not directly refer to states. This point of view of couching definitions in

terms of theories will lead to subsequent definitions of properties of specifications given in

Chapter 5. We choose to use the term "satisfaction" instead of "correctness" because it

better suggests that a relation exists between an implementation and a specification, and

because in terms of theories, the notion of a "correct" theory seems strange.

.65.

Def: A procedure, Proclmp, saUsfies the procedure specification, Pr, if and only if Th(Pr) ~
Th(Proclmp).

Def: A cluster, Cluslmp, satisfies the cluster specification, Ci, if there exists a homomorphism,
A, from terms of the rep sort to terms of the abstract sort such that Th(CI) ~ Th(Cluslmp)
[T /R)A.

[T /R)A (read "T for A under A") means that T, the identifier denoting the abstract type, is

substituted for every occurrenc~ of R, the identifier denoting the rep type, and A(r) is

substituted for every occurrence of a term of rep sort denoted by r.

We discuss how one would prove that an implementation satisfies a specification after

we have formally defined the theories of specifications and implementation. In Section 3.4.1

we discuss this for procedures; in 3.4.2, for clusters.

3.3 Theory of a Specification

We are very careful to separate the trait language from the interface language, and the

interface language from the programming language. We must similarly be careful to

distinguish among the theory of a trait, the theories of procedure and cluster specifications,

and the theory of an implementation. In this section we begin with a formal definition of the

theory of a trait and then define the theories of procedure and cluster specifications.

3.3.1 Theory of a Trait

Let Th(tr) denote the theory of the trait tr. Th(tr) is a conservative extension of first-order

many-sorted predicate calculus with equality. It is an extension by the addition of the function

identifiers of tr, the axioms of tr, and two rules of inference. The formal system is as follows:

Symbols

Logical symbols:-,/\, V, :::=, ~. V, 3, =;the set of variable identifiers, Varld; true, false;

Nonlogical symbols: the set of function identifiers, Opld; the punctuation marks: comma,

colon, and parentheses.

. 66.

Wff's

Wff :: =Assn

Assn :: = true I false I -Assn I Assn A Assn I Assn V Assn

I Assn==> Assn I Assn(:::::> Assn I (Assn)

I V Varld: Sortld Assn I 3 Var/d: Sortld Assn

I Term == Term

Term :: = Varld I Op/d<(Term + ,)>

The precedence of the operators and quantifiers from highest to lowest is-, 'ti, 3, A, V, ~.

~. When one connective is used repeatedly, the expression is grouped to the right.

Axioms

1. All logical axioms of first-order predicate calculus with equality.

a. All propositional axioms. E.g., -P VP.

b. Substitution axiom: 't/x:S (P) ==> (P[tlx]), where term tis substitutable for variable

identifier x in P (defined precisely below), and t and x are of sort S.

c. Identity axiom: t = t.

d. Equality axiom: s1 = t1 A ... A sn = tn ~ f(s1, ... , sn) = f(t1, ... , tn).

2. All equations of the form t1 = t2 in tr.

3. -(true = false). All other inequations in Th(tr) are derivable from this one ·and the

meaning of = .

. 67.

Rules of Inference

1. Rules for first-order predicate calculus with equality:

a. Modus ponens

b. Generalization

P,P~O
Q

p
Vx:SP

Here Vx:S stands for universal quantification over all sorted variables xi in P with

corresponding sorts S.·

2. Sort Induction

If "closes S over [op1, ... , opn]" appears in tr, the following is the corresponding

sort induction rule for predicate P(t) with free variable t of sort S.

P(x1) A ... A P(xkn> ~ P(opn(x1, .. , xkn))
Vt:S P(t)

where ki is the arity of opi, P(xi) = true if xi is not of sort S.

3. Sort Reduction3

If "reduces S over [op1, ... , opn]" appears in tr, the following is the corresponding

sort reduction rule.

opn(x1, ... , xi_ 1, t1, ... , xk) = opn(x1, ... , xi_1, t2, ... , xk)
t1 = t2

3. Although in Chapter 1 we did not discuss sort reduction because we do not need it for our example traits, we
include it here for completeness.

. 68.

where t1 and t2 are terms of sort S, and the xi's do not occur in t1 or t2, and the ti's appear in

all argument positions of sort S.

Substitution

In the substitution axiom we used the phrase "a term that is substitutable for a variable

in a predicate," which we now define.

Def: An occurrence of x in a formula P is bound if it occurs in a part of P of the form Vx:S Assn
or 3x:S Assn; otherwise, it is free in P.

Def: A term, T, is substitutable for x in P if for each variable identifier y occurring in T, no part
of P of the form "Vy:S B" or "3y:S B" contains an occurrence of x that is free in 8.

We write "P[T/x]" {read "substitute T for x in P") to denote the formula P obtained from

the substitution of T for free occurrences of x in P, restricted to the cases where T is

substitutable for x in P. We extend this notation for lists (of equal length) of terms and

identifiers, A and X, so that P[A/X] stands for the formula obtained from P by respectively

replacing all occurrences of x1, ... , xn by terms a1, ... , an, where each term ai is substitutable

for xi in P.

3.3.2 Theory of a Procedure Specification

Let Th(Pr) denote the theory of the procedure specification Pr. Th(Pr) is a conservative

extension of the theory of the used trait of Pr. We extend the theory of the used trait of Pr by

adding to the formal system:

Symbols

The identifier, Pr; terminal symbols of Assn's; the set of object identifiers, Objld; curly

braces, t and .i..

Wff's

Wff :: = Assn I Assn {Procld} Assn

Assn :: = % as in Section 3.3.1

I returns I signals Sig Id

I new 01 new Term+,

I mutates 0 I mutates Term+,

I Assn {Term} Assn

Term::= % as in Section 3.3.1

I Objld I Termt I Term+

Axiom

-69-

Pr.pre[X] {Pr} Pr.post(X,Y]

where Xis the list of input formals of Pr; Y, the list of output formals.

Rules of Inference

1. Rule of Consequence

where P, P1, Q, and 01 are assertions. Recall that the validity of the assertions of the

hypotheses of this rule is with respect to two states. tn particular, 01 can refer to initial v!llues

of objects referred to in P1.

2. Simplified Invocation Rule.

Xis the list of input formals of Pr; Y, the list of output formals; A is the list of terms denoting

objects that are input arguments; B, the list of output arguments. This is a simplified case of

. 70.

the CLU procedure invocation rule (see [Schaffert81]}.4

3. All type induction rules of each imported type. We define this set of type induction rules

in Section 3.5.2.

Th(Pr) contains the theories of all of Pr's imported types. We intentionally excluded the

defined type from the set of imported types of a bound procedure specification so that its

theory would not include the theory of its defined type. This is done to avoid a circular

definition of the theory of a cluster specification (Section 3.3.3).

Example

Recall the choose procedure specification:

choose = proc (s: set) returns (i: int)
uses SetOflnt

pre -isEmpty(S't)
post has(st,i.f.) A new 0 A mutates 0 A returns
end

Th(choose) includes the trait theory, Th(SetOflnt), which contains some axioms, e.g.,

isEmpty(empty) = true, and Vx:SI e:E [isEmpty(add{x,e)) = false]; and the sort induction rule

with the hypotheses P(empty) and P(x) ~ P(add(x,e)), and the conclusion Vt:SI P(t). An

example theorem that is derivable from the axioms and the rules in Th(SetOflnt) is Vt:S

card(s) > O. Since the Integer trait is imported in the SetOflnt trait, Th(choose) includes all

theorems on terms of Int sort.

An additional theorem in Th(choose) is -isEmpty(st){choose}(has(st,i.f.) A new 0 A

mutates 0 A retu ms). Given the simplified invocation rule, and the rule of consequence,

we derive theorems from this axiom. For example, the formula

4. We do not need the part of the rule that handles recursive invocations.

- 71 -

- isEmpty(add(empty, 1))

{choose}
has(add(empty, 1),1) /\ new 0 /\ mutates 0 /\ returns

is in Th(choose).

3.3.3 Theory of a Cluster Specification

Let Th(CI) denote the theo~ of the cluster specification Cl. Th(CI) is the union of the

theories of its procedure specifications closed under the following:

Rules of Inference

1. All type induction rules of the defined type, T. See Section 3.5.2.

Sometimes it is useful to include the theory of the defined type of the cluster

specification with the theory of a bound procedure specification. We denote this theory by

"Th(Pr +). " For notational convenience, if Pr is a free procedure, let Th(Pr +) be Th(Pr).

3.4 Theory of an Implementation

3.4.1 Theory of a Procedure

Let Proclmp be a procedure and Th(Proclmp) denote the theory of the procedure

Proclmp. The formal system that specifies Th(Proclmp) is as follows:

Symbols

Identifiers that appear in the procedure body; keywords of CLU and Assn's; curly braces, t

and +; Proclmp (the name of the procedure), if the body of Proclmp contains a recursive

invocation.

- 72·

Wff's

Wff :: = Assn I Assn {Stmt} Assn

Stmt :: = CLU statements or expressions in the body of Proclmp

Assn::= % as in Section 3.3.2

Axioms

All valid formulae of the form Assn {Stmt} Assn; in particular, consequences of the

simplified invocation rule for the procedure specifications that specify the behavior of the

procedures called from within the body of the procedure, Proclmp.

Rules of Inference

1. Rule of Consequence

2. All proof rules of CLU [Schaffert81], including those for sequential, iterative, and

conditional statements.

3. All type induction rules of each imported type of Proclmp.

If Proclmp is defined within a cluster we also add:

4. All type induction rules for the rep type of the cluster.

From the proof rules of. CLU and the rule of consequence, given the body . of a

procedure, we derive the set of formulae involving the body of the procedure that are valid in

all models of Proclmp. These formulae comprise Th(Proclmp).

Proving Satisfaction

In order to show that a procedure (implementation), Proclmp, satisfies a procedure

specification, Pr, we need to show that each theorem in Th(Pr) is in Th(Proclmp). Let Pr be:

-13.

Pr = proc (x1, ... , xn) returns (y1, ... , ym) signals(..)
pre·P
preQ
end

and an implementation of Pr be:

Proclmp = proc (x1, ... , xn) returns (...) signals (..)
BODY
end

Let A and B be lists of terms denoting input and output objects, and X and Y be the lists

of input and output formals. Assume P[A/X] {Pr} Q[A/X, B/Y] is a theorem in Th(Pr). We

must show that P[A/X] {Pr} Q[A/X, BIY] E Th(Proclmp). To show this, we use the following

(non-recursive) procedure definition CLU proof rule,

x1 = a1 A ... A xn = an A P1 {BODY} 01
P1{Pr}01

where P1 and 01 are assertions, ai are terms denoting objects, and the procedure's local (not

own) variables must not occur free in P1 or 01. Notice that Vi(xi = ai] ~ Vi(xit = ai1]. Any

local variables are freshly created on each invocation of the procedure, and are discarded

when it returns, so P1 and 01 must not refer to them.

The conclusion of the procedure definition rule produces a specification of Pr.

Typically, we must then show that (1) P[A/X] => P1, and (2) 01 ~ Q[A/X, B/Y). Then from

the rule of consequence, we have:

which gives us that P[A/X] {Pr} O[A/X, B/Y] E Th(Proclmp).

. 74.

3.4.2 Theory of a Cluster

Let Th(Cluslmp) denote the theory of the cluster Cluslmp. (Cluslmp) is the union of the

theories of its procedures closed under the CLU proof rules. There are no type induction

rules associated with a cluster.

Proving Satisfaction

Carrying out the following steps is sufficient to show that a cluster satisfies a cluster

specification.

1. Define a homomorphism A that maps terms of the rep sort to terms of the abstract

sort.

2. Define a rep invariant on terms of the rep sort used to help prove satisfaction of

each procedure.

3. For each procedure, show it satisfies its corresponding procedure specification

under A and that the rep invariant is maintained.

These steps are no different from those used in usual proofs of satisfaction, where A is

called an abstraction function [Hoare72, Guttag78, Guttag80a]. For our purposes, however,

the abstraction function is defined on (sorted) terms and not on (typed) objects. We give an

example of a proof of satisfaction between a cluster and a cluster specification in Appendix

11.2.

3.5 Type Induction

In the definitions of the formal systems that specify the theories of specifications and

implementations, we referred to the "type induction rules" of a type. We derive each rule

syntactically from cluster specifications. We argue that each rule is sound, however, because

it is derivable from the computational induction rule for CLU, which we assume is sound. In

Section 3.5.1 , we define this computational induction rule. In Section 3.5.2, we define how to

. 75.

derive syntactically a set of type induction rules for a cluster specification.

3.5.1 Computational Induction

Recall that our model of computation is an alternating sequence of states and

statements starting in some initial state, u0. For the states, ui, and the statements, Si, 1 <i<n,

let a computation sequence be:

Informally, if some predicate P is true for each successive pair of states in the

computation, then P is true of a computation. P is essentially an invariant over the

computation sequence. We need to introduce a function, flip, on assertions because we want

P to be true for all successive pairs of states in the computation, where the final state of one

pair becomes the initial state of the next pair. Since assertions are interpreted with respect to

two states, in order to use the same truth function T, which we defined in Chapter 2, we need

to ignore one of the two states in which an invariant is interpreted. Hence, we use flip to make

all the arrows in an assertion point in the same direction.

Formally, we state the computational rule as follows. For some predicate P:

for all statements S of the computation.

true {S1} f/ip(P)

P {S2} f/ip(P)

P {Sn} flip(P)
true {S} f/ip(P)

f/ip(P) is P with all occurrences oft replaced by.£., with a restriction on the form of P to

which flip is applicable, and a restriction on the flipping of arrows in a procedure object

assertion (poa):

- 76.

1. Only assertions whose value depends on a single state can appear
in·P. Specifically, no returns, signals, new, or mutates assertions
are allowed in P. Otherwise, we could not properly ignore one of the
two states in which an assertion is interpreted.

2. If P contains an assertion about a procedure object of the form
P1 { -r }01 , where P1 and 01 are assertions and ,,. is a term denoting a
procedure object, we do not replace t by + in P1 or 01. This is
because P1 and 01 are not interpreted with respect to the same
state as that for P1 {,,. }01 . 5

We emphasize that the first restriction is only for the computational induction rule and

not on all assertions. For example, formulae of the form P {Pr} 0 where 0 has returns,

signals, new, or mutates assertions are still well-formed, as in the axiom of Th(Pr), Pr.pre

{Pr} Pr.post.

Henceforth, we write pf for flip(P). Notice we must also be careful when using the usual

Hoare proof rules for statements like sequential composition, conditional, and loops. For

example, the sequential composition rule should be:

P {51} Cl, 0 {82} Rf
P {S1;S2} Rf

Similar syntactic transformations must be performed on all other proof rules so that they can

be applied appropriately in proofs.

3.5.2 Type Induction Principle

A cluster specification is ideally more than just a syntactic way of grouping together a
. .

set of procedure specifications. It gives us a way of localizing the specifications of the

behaviors (input-output relations) of all operations on objects of the defined type. This

modularization should give a means of localizing the proof of invariant properties of all

5. Recall that the truth of such a poa is defined to be true if the value of T, i.e., some relation-algebra pair, satisfies
the pair of assertions <P1, 01> (Section 2.2.2.5).

. 77.

objects of the defined type. We would like to associate with a cluster specification a type

induction rule and assert that it is a sound rule in any cluster that satisfies the cluster

specification. This rule would allow us to infer that some property is true of all objects of type

T by considering only a subset of the procedures that create and mutate objects of type T. In

this section we see that defining such an induction rule is not quite so straightforward

because of situations that arise in implementations that "expose the rep."

In Section 3.5.2.1 we show how to derive this desired type induction rule for a cluster

specification and give an example of a derivation. In Section 3.5.2.2, we explain the problem

of exposing the rep that can invalidate this type induction rule, and so in Section 3.5.2.3 we

extend the derivation procedure to allow for some implementations that expose the rep.

3.5.2.1 A Type Induction Rule

We first state how to derive the type induction rule for a type T, then explain the rule,

then justify it.

For a procedure specification, let T1 be the sublist of its input formals that are of type T;

T2, the sublist of output formals that are of type T. (Recall by our definitions in Chapter 2,

formals in a signals clause are included as output formals of a procedure header.) T1 and T2

are sublists because some input and output formals may not be of type T. Let i and j be the

lengths of the lists T1 and T2, r~pectively.

. 78.

Method: Derivation of a type induction rule for predicate, P(t), with free variable t of type T.

Hypotheses: The hypotheses are named HB, HP, and HM for basic, producing, and mutating

constructors (to be defined), respectively.

1. For each bcEBC(T), add an HB hypothesis of the form:

true {be} '}P'(T2)

2. For each pcEPC(T), add an HP hypothesis of the form:

~P(T1) {pc} '}pf(T2)

3. For each mcEMC(T), add an HM hypothesis of the form:

~P(T1) {me} {'pf(T1) /\ '}P1(T2)

where Pis restricted as for the computational induction rule (Section 3.5.1). 1'P'(T1) can be

conjoined to 'i'P'(T2) to the right of the braces in the first two kinds of hypotheses, but by the

definitions of basic and producing constructors (defined below), it would be vacuously true.

Conclusion: true {S} Vt:T pf (t) for all statements S. -

(end of Method)I

The sets, BC(n, PC(T), and MC(T), represent the sets of specifications of procedures

that can create and mutate objects of type T. These sets are not necessarily disjoint since a

procedure might do both. Roughly speaking, the differences among the three are whether

any input arguments are of type T, whether any output arguments are of type T, and whether

any objects of type Tare mutat~. BC(T) is the set of basic constructors of type T. A basic

constructor of type T is a procedure specification that has no input arguments of type T;

whose pre-condition contains no explicit assertions about objects of type T; and whose

post-condition specifies the return of a new object of type T. For example, singleton of

SetClusSpec (Appendix I, Figure 9) is a basic constructor of type set. PC(T) is the set of

producing constructors of type T. A producing constructor of type T is a· procedure

specification that has both in.Put and output formals of type T; whose post-condition specifies

------""--------- ---- -

. 79.

the return of a new object of type T; and for all assertions in its post-condition of the form

mutates t1 , ... , tn, none of the types of the objects denoted by the terms in the list t1, ... , tn is

T. For example, union of SetClusSpec is a producing constructor of type set. MC(T) is the set

of mutating constructors of type T. A mutating constructor of type T is a procedure

specification that has an assertion in its post-condition of the form mutates t1, ... , tn, and Tis

the type of the object denoted by some term in the list t1 , ... , tn. For example, delete of

SetClusSpec is a mutating constructor of type set.

To justify the rule, consider the computational induction rule given a predicate, P(t), on

objects of type T. We need be concerned only with invocations of procedures that create and

manipulate objects of type T. We reduce the number of hypotheses of the computational

. induction rule to obtain a type induction rule by retaining only those relevant hypotheses.

Notice we have available, however, only the procedure specifications and not their

implementations. Hence, the hypotheses we select from the computational induction rule can

be based solely on the specification of the procedures, and not their implementations.

Example 1

Consider our simple example, SetClusSpec. Following the method given, we have

instances of each of the three kinds of hypotheses, HB, HP, and HM, to obtain the following

type induction rule:

true {singleton} P'(s)

P(s1) /\ P(s2) {union} pf(s3)

PCs) {delete} pf(s)
true {S} Vt:set P'(t)

- BO.

Suppose P(t) is card(tt) > o. The hypotheses are:

HB true {singleton} card(s.J.) > 0
HP card(s1t) > 0 /\ card(s2t) > 0 {union} card(s3.J.) > 0
HM card(st) > O {delete} card(s.J.) > O

The conclusion is true {S} Vt:set[int] card(t.J.) > O for all statements S.

We use the axiom of the. theory of the procedure· specification and the rule of

consequence to show the validity of each of these hypotheses. For example, to show the

validity of HP above, we have:

1. Assume [card(s1 t) > O /\ card(s2t) > O].
2. From the above assumption and·the sort induction rule associated with Th(SetOflnt),

Vi:lnt [has(s3.J.,i) = has(s1t,i) V has(s2t,i)] => card(s3.J.) > O
3. Th(union) contains the axiom,

true {union} [new s3 /\ mutates 0 /\ returns
/\ Vi:lnt [has(s3.J.,i) = has(s1t,i) V has(s2t,i)].

4. So, by the rule of consequence (union.post ~ 2) we have:
HP: card(s1t) > O /\ card(s2t) > O {union} card(s3.J.) > O

Similar reasoning is used to show the validity of HB and HM for singleton and delete.

Therefore, we can conclude that the size of all objects of type set is greater than zero. Notice

that this is a very different theorem from that in Th(SetOflnt), Vx:SI card(x) .~ 0.

3.5.2.2 Exposing the Rep

We have defined an object to belong to only one type. In CLU, however, this property of

objects does not always hold since one can write programs where an object belongs to more

than one type, e.g., both the abstract and the rep type. CLU type checking does not prevent

this situation from arising because it cannot detect it syntactically. Since operations of both

types might possibly mutate such an object, the desired locality principle of a cluster can be

violated; our single type induction rule might be invalid.

. 81 .

When some operations besides those specified in the cluster specification defining T

can mutate objects of type T (by means other than invoking procedures of the cluster), we say

that "the rep is. exposed." There are two ways in which such a situation may arise. Both

involve sharing of objects of mutable type.6 One way is when the rep type object and the

abstract type object are the same object. We call this "exposing the whole rep." Any mutating

operation of the rep type can then mutate an object of the abstract type, and vice versa. A

simple example of this in shown in Figure 10. Exposing the whole rep can (and most of the

time should) be avoided .. In the queue example, the make procedure should copy the array

before returning the queue to avoid exposing the rep. Since it does not, a mutating array

operation, e.g., addh, that changes the original input array object also.changes the returned

queue object since they are the same object.

A second way an object of type T can be mutated by an operation other than those

specified in the cluster specification defining T is by establishing sharing with an object of

type T1 whose value is incorporated in the value of the rep of type T. We call this "exposing

the subrep." Whether or not an implementation exposes its subrep is relative to a

specification. For example, the read procedure in Figure 11 would be exposing the subrep if

the specification of read were to require that the top of the input stack returned be a new

queue = cluster is ... , make, ...
rep = array[elem]

make = proc (r: rep) returns (cvt)
return(r)
end make

end queue
Figure 10. Exposing the Whole Rep for Queues

6. If we had only immutable types or if we eliminated sharing in CLU, the problem of exposing the rep would not
exist.

. 82.

object. Since read returns the top of the input stack argument, without copying, then any

changes made to that set would appear to change the value of the stack. Again, to avoid this

sharing, a copy of the top of the sequence should be made before returning it or pushing it.

One could argue that implementations that expose the rep (of any kind) should be

banned. There are two reasons why such a restriction is too severe. The first is that in

practice, one sometimes intentionally wants such sharing among objects, perhaps for

stack = cluster is empty, grow, read, ...
rep = sequence[set]

empty = proc () returns (cvt)
return (rep$new())
end new

% grow will only push on the input stack a set whose size is less than 64
grow = proc (s1: cvt, s: set) returns (cvt)

if set$size(s) > 64 then return (s1)
seq: rep : = rep$new()
fore: set in rep$elements(s1)

seq : = rep$addh(seq, e)
end

return (seq)
end grow

read = proc (t: cvt) returns (set) signals (bounds)
return (rep$top(t)) resignal (bounds)
end read

end stack

set = cluster is ... , delete, ...
rep = array[int]

% delete mutates s if i is in s
delete = proc (s: cvt, i: int)

end delete

end set

Figure 11. Exposing the Subrep for Stacks

- 83-

efficiency reasons, and cleverly exploits it. The second is that there is no reasonable way to

ban such sharing, i.e., to detect it syntactically. Before we proceed with the definitions of

these induction rules, we point out that CLU, which cannot completely enforce a restriction

against exposing the rep type, can still be used to construct "true" abstract types. The

programmer need only follow a programming discipline that ensures that reps are not

exposed or that sharing of mutable objects is not abused.

3.5.2.3 Type Induction Rule Revisited

If we were to associate a type induction rule as thus far defined with each cluster

specification then an implementation that exposes the rep might violate this rule and not

necessarily satisfy the cluster specification. In deciding whether an implementation satisfies a

specification, we could either be very restrictive and outlaw any implementations that expose

the rep or be less demanding. We choose to be less demanding and allow for some

implementations that expose their subrep. In doing so, we choose not to associate a single

type induction rule with a cluster specification, but rather a set of rules. We call this set of

rules, the type induction principle of the cluster specification. Each rule is dependent on the

form of a predicate, P(t), which· we would like to assert holds true for all objects of type T

between all pairs of successive states in any computation. In essence, the predicate is shown

to be an invariant for the cluster specification. Since there is one rule per predicate, one

could take an alternative viewpoint that we are associating a set of invariants with a cluster

specification, where each invariant is a predicate corresponding to a rule.

Notice that hypotheses (1), (2), and (3) of the derivation method (Section 3.5.2.1) are

independent of the form of the predicate P(t). However, an object of type T might contain

objects of mutable type, M, and for any predicate containing a term that refers to values of

these subobjects, the truth of the predicate depends on the behavior of all procedures that

possibly change the values of objects of type M. We need to show that the predicate P(t)

remains invariant for each mutating constructor of type M, and hence include a hypothesis for

. 84.

each mcEMC(M).

Thus, we add the following rule to the derivation ~f a type induction rule.

Method (continued): Derivation of a Type Induction Rule

4. For each subterm, .,. , in P(t) that denotes an object of mutable type M (:;t T) i1.i..Hi

followed by tor+, add a T·instance (defined below) of HM for each mcEMC(M).

(end of Method)I

Def: Let P(t) be a predicate with t a free variable in P. Let .,. be a subterm of P, · and t be a
subterm of .,. , where .,. denotes an object of type M. A .,..instance of HM for Pr and predicate
P(t) is:

X1 = T[V1/t] /\ ... /\ Xn = T[Vn/t] /\
[P[v1/t] /\ ... /\ P[vn/t]]

{Pr}
[P'[v1/t] /\ .. ~ /\ P'[vn/t] /\ P'[vn+ 1/t] /\ ... /\ P'Cvn+m/t]]

where
1. Each vi in P[v/t] or P'[v/t] is a fresh variable. There is a vi for each of Pr's input

and output formals xi of type M. We need these fresh variables because Pr might have more
than one argument of type M.

2. P'[v/t] is (P[v/t])'. I.e., substitute v1 fort; then flip.

Example2

Suppose we specify the type stack of small sets, where sets are mutable, and that the

identities of set objects are pushed onto the stack, not just their values. Figures 12 and 137

give the cluster specification for the type stack of small sets and for the trait it uses. The

implementation of Figure 11 satisfies the cluster specification of Figure 12, even though the

implementation exposes its subrep. An implementation that does not expose its rep, e.g., one

in which the read procedure returns a copy of the top of the stack, would also satisfy the

specification since the post-condition of the read procedure specification specifies only that

7. These two figures with minor variations are repeated In Appendix I for future reference.

. 85.

stack = clust~r is empty, grow, read
uses StackOfSS
provides immutable stack from SSS

empty = proc () returns (st: stack)
pre true
post st+ = null/\ new st/\ mutates flJ /\ returns
end

grow = proc (s1: stack, s: set) returns (s2: stack)
pre card(st) < 64
post s2+ = push(s1t, s) /\new s2 /\mutates flJ /\ returns
end

read = proc (t: stack) returns (s: set)
pre -isNull(tt)
posts+ = top(tt)t /\mutates flJ /\ returns
end

end stack

Figure 12. Stack Cluster Specification

the value of the set object returned be. the same as the value of the top of the input stack

object.

Suppose instead we specified in read's post-condition:

s.i. = top(tt)t A~/\ mutates flJ /\returns

i.e., that not only the value of the set object returned be the same as the value of the top of the

stack, but also that the set object be new, then the implementation of Figure 11 would not
. .

satisfy the specification.

Returning to the specification of Figure 12, for any predicate, P, involving the values of

sets as well as the values of stacks, it would be incorrect to assume we could prove P without

considering the cluster specification for sets--we must include hypotheses for all procedure

specifications that mutate set objects.

. as.

StackOfSS: trait
includes SetOflnt,

StackOfE with [SSS for C, set[int]_obj for E)

StackOfE: trail
includes Integer
introduces

null: -c
push: c, E-c
top:C-E
pop:c-c
isNull: C __. Bool
isln: C, E __. Bool
size:C-lnt

closes Cover [null, push]
constrains [C] so that for all [s: C, e: E]

top(null) exempt
top(push(s,e)) = e
pop(null) exempt
pop(push(s,e)) = s
isNull(null} = true
isNull(push(s,e}) = false
isln(null,e} = false .
isln(push(s,e),e1) = if e .eq e1 then true else isln(s,e1)
size(null) = 0
size(push(s,e}) = size(s) + 1

Figure 13. Traits for Stacks

Hence, our induction rule must include a hypothesis for the delete procedure

specification of sets. For example, suppose we want to prove -isNull(tt) => [card(top(tt)t) <

64] fort of type stack. We have-instances of HB and HP for empty and grow as follows:

HB true {empty} -isNull(st+) => [card(top(st+)+) < 64)
HP -isNull(s1t) => [card(top(s1t)t) < 64) {grow}

-isNull(s2+) => [card(top(s2~ H) < 64)

We also need to add T·instances of HM for the term, T = top(tt), since top(tt) denotes an

object of mutable type set and top(tt) is followed by an t in P. The delete procedure

specification is the only mutating constructor of type set so we have a top(tt)-instance of HM

with the fresh variable, v1, substituted in fort in top(tt).

- 87 -

HM s = top(v1 t) A -isNull(v1t) = [card(top(v1t)t) < 64] {delete}
-isNull(v1 +) = [card(top(v1 +).(,) < 64]

The conclusion.of this rule is true {S} Vt:stack[set] -isNull(t.(.) = card(top(t.{.)+) < 64 for all

statements S. We show the validity of the hypotheses of this rule in Appendix 11.1.

If we do not include the hypotheses for mutating constructors of type set, we could

possibly prove a statement that is not true. For example, suppose SetC/usSpec has a

procedure that mutates its input set argument by inserting integers into it. If called, this

procedure could possibly change the value of a set pushed on the stack and we could not

ensure that the size of all sets in the stack would be less than 64. If we had not included the

hypothesis for this add procedure, we could have proved a false statement--that the size of

the top of all stacks is less than 64.

3.6 Summary

In this chapter we gave a precise definition of when an implementation satisfies a

specification in terms of their theories. We defined theories of specifications and

implementations by precisely defining their formal systems. We also described in detail the

derivation of a type induction principle associated with a cluster specification and gave

examples of its use.

- 88-

4. Extended Interface Language for CLU

In this chapter we describe some extensions to the kernel interface language that make

it easier to read and write specifications, and some that make it easier to specify certain

features particular to CLU. The design objectives in extending the kernel interface language

were:

1. To enhance the readability of specifications,

2. To encourage a stylized form of writing specifications,

3. To be applicable to interface languages for other programming languages.

Section 4.1 presents four simple syntactic extensions. The prime motivation for

introducing them is to enhance the readability of specifications. The meaning of each new

construct is given a translation into the kernel language. For each extension we also give any

necessary additions to the syntax and checking of specifications. Section 4.2 discusses

extensions to both the syntax and semantics of the interface language to handle three

features particular to CLU: own variables, iterators, and parameterization.

4. 1 Simple Extensions

The assertions in the pre- and post-conditions of a procedure specification tend to be

unwieldy and long. In order to streamline the appearance of each of these assertions and to

highlight the significant ones (e.g., mutates), we introduce the following four changes to the

kernel language: a default used trait, a separate mutates clause, a default termination

condition value, and multiple pre- and post-conditions.

. 89-

4.1.1 Default Used Trait

Naming the used trait in a procedure specification becomes optional. For a free

procedure specification, since the theory of the used trait must include the theories of each of

the used traits of the cluster specifications that define the. used types of the procedure

specification, we can always introduce a new trait that includes (in the Larch sense) the used

traits associated with the used types. For bound procedure specifications, if the name of the

used trait does not explicitly appear, we define the default used trait to be the used trait of the

cluster specification to which the procedure specification is bound.

Syntax

ProcSpec :: = Procld = ProcHead <Link> ProcBody end

Translation

For the following free procedure specif!cation,

Pr = proc (...)returns(...) signals(...)
pre P
postQ
end

let {Tr 1, ... , Tr nl be the set of used traits of the used types of the input and output arguments

to Pr. The above translates to:

Pr = proc (...)returns(...) signals(...)
uses Tr

preP
postQ
end

where Tr is the trait:

. 90.

Tr: trait
includes Tr1, ... , Tr0

A bound procedure specification, Pr, appearing in a cluster specification, Cl,

Cl = cluster is ... , Pr, ...
uses Tr

end

translates to:

Pr = proc (...) returns(...) signals(...)
preP
postQ.
end

Cl = cluster Is ... , Pr, ...
uses Tr

end

Pr = proc (...) returns(...) signals(...)
uses Tr

preP
postQ
end

4.1.2 Mutates Clause

We highlight a pr~edure's potential effect of mutation of objects by lifting from the

post-condition a mutates assertion of the form mutates t1, ... , tn and setting it off as a

clause on its own. If no explicit mutates clause appears, we conjoin the mutates 0

assertion to the post-condition.

- 91 -

Syntax

We modify the syntax to allow for a mutates clause:

ProcBody :: = Triple
Triple :: = Pree <Muts> PostC
Muts :: = mutates Term+,

Recall that a procedure object assertion is of the form "P{Pr}Q" where P and Q are

assertions; hence the syntax must still allow mutates assertions to appear in post-conditions.

Translation

A triple of the form:

pre P
postQ

where Q has no mutates assertion, translates to:

pre P
post Q A mutates fZJ

A triple of the form:

preP
mutates Term + ,
postQ

where Q has no mutates assertion, translates to:

preP
post Q A mutates Term + ,

. 92.

4.1.3 Default Termination Condition Value

We choose normal to be the default value for the terminates object of a procedure

specification. If no returns or signals assertion appears in a post-condition, then there is an

implicit returns assertion in that post-condition.

Translation

A procedure specification of the form:

Pr = proc (...) returns(...) signals(...)
preP
postO
end

where 0 has neither a returns nor a signals assertion translates to:

Example

Pr = proc (...) returns(.. ,) signals(...)
preP
post Q /\ returns
end

intersect = proc (s1: set, s2: set)
pre true
mutatess2
post Vi: Int [has(s2i,i) = has(s1t,i) A has(s2t,i)]
end

This specification has an implicit used trait, a separate mutates clause, and an implicit

termination condition value (i.e., normal). The reader should compare the above intersect

procedure specification with that in Section 2.2.2.4.

. 93.

4.1.4 Multiple Pre- and Post- Conditions

The behavior of a procedure can often be broken down into several cases depending on

the input state. Demarcating these individual cases enhances the readability of the

specification and also disciplines the specifier to consider au possible cases in a stylized way.

We introduce the use of multiple pre- and post-conditions.

Syntax

We modify the syntax as follows:

ProcBody :: = Triple+

Translation

A procedure specification, Pr, of the form:

Pr = proc (...)returns(...) signals(...)
preP1

translates to:

postQ1

pre Pn
post On
end

Pr = proc (...)returns(...) signals(...)
pre Pl V ... V Pn
post (P1=01) A ... A (Pn ~ Qn)
end

We do not require that the pre-conditions cover all cases nor that they be disjoint.

-94-

Example

absVal = proc (i: int) returns (j: int)
pre it> 0
post j~ = it

pre it(0
post H =-it
end

Multiple pre- and post-conditions are most useful in distinguishing among the various

termination conditions of a procedure and in conjunction with an implicit returns assertion.

Typically, one pre- and post-condition pair is written for each distinct termination condition.

Example

choose = proc (s: set) returns (i: int) signals (isEmpty)
pre -isEmpty(st)
post has(st,i~)

pre isEmpty(st)
post signals isEmpty
end

The reader should compare the above choose procedure specification with that in Section

2.2.2.2.

4.2 Handling Other CLU Features

We have so far ignored the following three features of CLU: own variabJes, iterators, and

parameterization. We discuss an own variable as a particular kind of "memory object" in

Section 4.2.1, and the other two features in the subsequent two sections. We add some

extensions to CLU computation sequences and to procedure invocations to handle memory

and iterators, and we add a semantic check for one kind of restriction on type parameters ·of

parameterized specifications.

. 95.

4.2.1 Memory Objects

A procedure's behavior may depend on the values of objects in the input state not

explicitly bound to the formals. We call these "memory objects." In CLU, for example, an own

variable is an object whose value is "remembered" from invocation to invocation. In other

programming languages, a global variable is an example of another kind of memory object

accessible from all procedures.

We need to specify the behavior of a procedure with memory, which we cannot do in the

framework presented so far. Hence, we extend the syntax and semantics of procedure and

cluster specifications. We use CLU own variables to model these extensions.8

Specifying memory raises two problems. The first is that unlike for input and output

formals, we need to be able to specify the possibility of changing the bindings of memory

object identifiers. Thus far, we did not need to specify this because the effect of changing

bindings of formals does not affect the bindings of the actuals. That is, except for own

variables, bindings from CLU program variables to objects can be changed only through CLU

assignment and not through procedure invocation. Hence, analogous to a mutates

assertion for stating a possible change to the store component of a state, we introduce a

changes assertion for stating a possible change to the environment component. One subtle

difference between changes and mutates is that whereas only terms denoting mutable

objects can follow the mutates keyword, identifiers for both immutable and mutable objects

can follow the changes keyword.

8. As a matter of programming style, the use of own variables in CLU is discouraged because they add semantic
complexity. Their use can always be avoided by retaining state information in a "dummy" cluster; however, own
variables are often used to save overhead in extra procedure calls.

. 96.

The second problem deals with keeping track of whether a memory object has been

initialized. In CLU, initialization of a procedure's memory occurs at (possibly) the procedure's

first invocation .. It may not occur if the initialization code within the procedure is not executed

(e.g., because of a conditional), in which case memory is left uninitialized. Hence, we

associate with each memory object, x, an implicit memory boolean object that is initially false

and denoted by the identifier x$init. If x$init is false, x is uninitialized; if true, x is initialized.

Syntax

We modify the syntax as follows:

ClusBody :: = <Rmbr> ProcSpec +
ProcBody :: = <Rmbr> Quad+
Rmbr :: = remembers RemDecl+
RemDecl :: = Objld: TypeSpec
Quad :: = Pree <Chgs> <Muts> PostC
Chgs :: = changes Obj/d + ,

The remembers clause simply allows the user to introduce object identmers for memory. We

emphasize that the declaration of memory objects in a specification does not imply the use of

memory (e.g., own variables). in a corresponding implementation. As with a mutates

assertion, we make a changes assertion a separate clause in the body of a procedure

specification.

We add to the syntax of the assertion language,

Assn :: = ... I changes Objld + ,

with truth value:

T[changes x1, ... , xn](a, a', A, p.) =
'r/y [-(y = x1) A ... A -(y = xn) => (a .e(y) = a' .e(y))]

. 97.

Checking

We check that

1. Object identifiers appearing in a remembers clause of a
procedure specification, Pr, are disjoint from Pr's input and output
formals.-

2. Object identifiers appearing in a remembers clause of a cluster
specification, Cl, are disjoint from the sets of input formals, output
formals, and memory object identifiers of all of Cl's procedure
specifications.

3. Only memory object identifiers can appear after the changes
keyword.

Meaning

We treat memory objects as implicit input and output arguments to a procedure. We

modify the structure of an operation (a relation-algebra pair) so that the domain and range of

the environment components of the input and output states of the relation includes memory

(compare with Section 2.2.2.1) and their corresponding "init" objects. Let Memld be the set

{x I x is a memory object identifier} U {x$init I x is a memory object identifier}, and let

MemObj be the set of objects denoted by identifiers in Memld.

1. dom(R) = {<D, e, s> I dom(e) = set of input formals U Memld A
ran(e) = set of input arguments U MemObj}

2. ran(R) = {<D, e, s> I dom(e) = set of output formals U Memld A
ran(e) = set of output arguments U MemObj}

The first equation states that the environment of each input state includes the bindings from

memory object identifiers to memory objects and the bindings for the corresponding "init"

objects as well as the set of bindings from input formals (object identifiers) to input arguments

(objects). The second equation states a similar property for the environment of each output

state.

. 98.

We add the following two properties to the initial state of a computation, u0, for all

memory objects, x,

1. {x, x$init} ~ a0.0
2. a0.s(o0.e(x$init)) = FALSE

The first property states that all memory objects and their associated boolean "init" object are

in the set of existing objects of the initial state. The second property states that the "init"

objects are initialized to the boolean value false. Notice that since x$init denotes an

immutable boolean object, it makes sense to change x$init, but not to mutate it.

Example

increment = proc () returns (j: int)
uses Integer
remembers ctr: int

end

pre ctr$initt = false
changes ctr, ctr$init
post ctr.i. = 1 A j.J. = 1 A ctr$init.£. = true

pre ctr$initt = true
changes ctr
post ctr.£. = ctrt + 1 A j"- = ctr.£.

The first time the increment procedure is called, the value of the integer object, ctr, is

initialized to 1 and returned. Subsequent invocations will return successive integers.

4.2.2 Iterators

An iterator computes a sequence of items of objects, one item at a time, where an item is

a set of zero or more objects .. We amend our model of a computation sequence to include

iterator invocations, which we . treat similarly to procedure invocations. The only way an

iterator can be invoked is by use of a for statement. The execution of the for statement

includes one or more invocations of the iterator and is terminated when the iterator

terminates.

. 99.

elements = iter (a: array[int]) yields (int)
next: int : = array[int]$1ow(a) % 1
while true do % 2

yield (a[next]) % 3
next : = next + 1 % 4
~d %5
except when bounds: return % 6

end %7
end elements

flip_sign = p roe (a: array[int]) returns (array[int])
b : = array[int]$create(array[int]$1ow(a))
for i: int in elements(a) do

addh(b, -i)
end

return (b)
end flip_sign

Figure 14. Elements Iterator, Implementation and Use

An example of an elements iterator and its use are given in Figure 14. Elements

computes a sequence of integers. The flip_sign procedure creates a new array with the same

low bound as a, the input array, and returns an array with the signs of all the integers of a

reversed .. The first time elem,,nts is invoked, the integer at the low bound of a is yielded

(statement 3). A subsequent invocation of elements yields the next integer of a. This process

continues until a bounds exception is raised, in which case elements terminates (statement

6).

We need to distinguish between two kinds of termination for iterators. The first is when

an iterator yields an item following an invocation from a for statement, e.g. statement 3 of

elements. An alternate view of this situation is ~at the iterator does not "terminate," but is

just in a "suspended" state. The additional piece of semantics we need for the specification

of an iterator is a special termination condition. We reserve the identifier, suspend E

TermCond, for the value of this termination condition, and we add a corresponding

suspends assertion to the assertion language. The second kind of termination is when the

. 100.

iterator returns, causing the for statement to terminate, e.g., statement 6 of elements. As with

procedure specifications, we use the termination condition normal for this kind of

termination.

Syntax

The syntax for an iterator specification is as follows:

lterSpec :: = lterld = lterHead <Link> lterBody end
lterHead :: = iter Args <Yields> <Sigs>
lterBody :: = <Rmbr> Quad+
Yields :: = yields Args

As with a Rets clause in procedure specifications, an object identifier in a Yields clause is an

output formal; the object it denotes is an output argument.

Recall that we list in the header of a cluster specification the identifiers of procedure

specifications that are specified in the body. We also include iterator specifications in a

cluster specification. We modify the syn~ax as follows:

ClusSpec :: = Typeld = cluster is Routld +, ClusLink ClusBody end
ClusBody :: = RoutSpec +
Routld :: = Procld I lterld
RoutSpec :: = ProcSpec I lterSpec

A routine specification is either a procedure or iterator specification. Bound and free routine

specifications are defined in a similar way to bound and free procedure specifications.

We add to the syntax of the assertion language:

Assn :: = ... 1 suspends

with truth value:

T{suspends](a, a', A, JL) = a'.s(terminates) = susp~nd

. 101 .

Checking

The syntax-checking of the body of an iterator specification is as defined for procedure

specifications. A suspends assertion can appear in only post-conditions. We also allow the

use of all syntactic amenities introduced in Section 4.1 for iterator specifications.

Translation

An iterator specification of the form:

It = iter (x1: S1, ... , xm: Sm) yields (y1: T1, ... , yn: Tn) signals (e1, ... , ep)
uses Tr

preP
postQ

end

translates to:

It = proc (x1: 51, ... , xm: Sm) signals (suspend (y1: T1, ... , yn: Tn), e1, ... , ep)
uses Tr

preP
postQ

end

Example

tokens = iter (s: stream) yields (t: token)
uses StreamTralt

end

pre -isEmpty(st)
mutates s
post u. = head(st) As~ = rest(st) A suspends

pre isEmpty(st)
post returns

Each time the iterator is invoked with a nonempty input stream object, tokens mutates the

stream and yields a token from. it. The specification does not forbid the possibility that s be

changed in the body of a for statement. Recall that a returns assertion in the second

- 102 -

post-condition is equivalent to the assertion terminates+ = normal.

Memory Used With Iterators

The specification of memory objects in iterator specifications requires making additions

to our model of CLU computations. Because we are modeling each individual invocation of

an iterator, and not each for statement that invokes an iterator, we need to be careful about

specifying the effect of an iterator on its memory. In particular, initialization of memory for an

iterator is done at the first invocation of that iterator in the first for statement of the

computation that invokes it. Subsequent for statements that invoke it do not "reinitialize"

memory.

We distinguish a use from an invocation of an iterator, lter. Each for statement that

invokes lter is a use of it. Each iteration within a for statement that uses lter is an invocation

of it. For example, in Figure 14, flip_sign uses elements once but invokes it (possibly) many

times.

Meaning

Let first denote a special memory object that enables us to distinguish the first

invocation of an iterator from subsequent invocations in a for statement. We view first. as a

"global" or "ghost" variable accessible in all states in a computation. At the first invocation

of each use of an iterator, first is true; otherwise, it is false. Therefore, at the first invocation

of an iterator of each of its uses, first is true; at each intermediate invocation of each use,

first is false. Immediately before each use first is true.

To achieve the desired effect of first being true before each use of an iterator, we

associate an implicit assignment statement "first : = true" before the (syntactic) appearance

of each for statement in the program text. This ensures that if a statement, ~. in a

computation is the first invocation of an iterator the value of fl rst is true in the state preceding

- 103.

Si. For a computation sequence,

we have:

1. firstEa0.0
2. For all i > 1, if Si is a first invocation of an iterator, ai_1.s(ai_1.e(first)) = TRUE;

otherwise, ai.1.s(ai_1.e(first)) = FALSE;

We extend the domain and range of the relations of all iterators to include first as we

did for other memory objects.

Syntax

Since we often need to check whether or not we are at the first invocation of an iterator,

we add to the assertion language:

Assn::= ... I flrstlnv

with truth value

7{firstlnv](a, a', A, I') = a.s(a.e(first)) = TRUE

We do not provide an assertion to check whether we are at the first use of an iterator for

the same reason we do not provide an assertion to check whether we are at the first

invocation of a procedure. The only reason we might (incorrectly) think we would need the

ability to make these distinctions is because of the initialization of memory. Recall, however,

that initialization of memory objects is not necessarily done at the first use of an iterator or at

the first invocation of a procedure. It is necessary only to distinguish between whether

memory has been initialized, which we can do using the "init" boolean object associated with

each memory object.

. 104.

We do provide two implidt assertions with iterator specifications. First, note that after

the first invocation of any use of an iterator, the final value of first should be false, and after

subsequent invocations, its value can remain false. Hence, we implicitly append the assertion

firsU = false to each post-condition of a quadruple of an iterator specification.

Second, since one of the possible effects of an iterator invocation is to change the

binding of first, we implicitly append first to the list of object identifiers of each changes

clause in each quadruple of an iterator specification. If a changes clause does not explicitly

appear, we implicitly include one in each quadruple.

Translation

A body of the form:

preP
mutates M
postQ

where Q has no changes assertion, translates to:

pre P
changes first
mutates M
post QA. firsU = false

A body of the form:

translates to:

pre P
changesC
mutates M
postQ

Example

pre P
changes C, first
mutates M
post Q A fi rsU = false

. 105.

One use of memory with iterators is to specify that the initial value of an argument to the

iterator is the same as the final value from the previous invocation.

elements = iter (s: set) yields (e: elem)
uses SetOfEle·m
remembers myset: set

pre -isEmpty(st) A [firstlnv V st = mysett]
mutates myset, s
post has(st,e°") As°" = remove(st,e~) A myset°" = s+ A suspends

end

pre isEmpty(st) A [firstlnv V st = mysett]
post returns

In the above elements specification, myset is a set object used to remember the value of

the set object from invocation to invocatton. The st = mysett conjunct that appears in both

pre-conditions requires that the initial value of the set object at each invocation be the same

as the "remembered" value from the previous invocation. The first triple handles the cases
. .

when the set argument is not empty and either (1) it is the first invocation of elements, or (2) it

is not the first invocation and the initial value of s is the same as the remembered value. The

second triple handles the cases whens is either initially empty, i.e., at its first use, or becomes

empty from the previous invocation of any of its uses.

4.2.3 Parameterized Specifications

Procedures, iterators, and clusters may all be parameterized in two ways: over certain

types of objects and over type identifiers. We call a parameter of the first kind an object

parameter; the second, a typ~ parameter. An integer object parameter, n, for example, can be

. 106.

used in a procedure that computes the average of a list of numbers, where n is the length of

the list. Type parameters are far more common in CLU than object parameters. A list cluster,

for example, can be parameterized over a type parameter, T, to stand for a set of clusters,

each defining a list[A] type for some actual type identifier, A. Type parameters can also have

restrictions. In Section 4.2.3.1 we discuss parameterized specifications without restrictions;

in Section 4.2.3.2 we describe the kinds of restrictions that we can impose on type

parameters.

4.2.3.1 Parameterization Without Restrictions

Syntax

We modify the syntax as follows:

ProcHead :: = proc <Parms> Args <Rets> <Sigs>
lterHead :: = iter <Parms> Args <Yields> <Sigs>
ClusSpec :: = Typeld = cluster <Parms> is Routld + , ClusUnk ClusBody end
ClusMap :: = provides MutFlag Type Id from Sort Id

Parms :: = [ParmDecl + ,]
ParmDecl :: = Objld: TypeSpec I ldn: type
Where::= where Restriction+,

Object parameters are of the form Objld: TypeSpec; type parameters are of the form ldn:

type. Parameters of a procedure or iterator specification should not be confused with the

input and output formals (object identifiers) of the specification, nor with objects bound to the

formals.

Checking

Meaning

. 107.

1. Object parameters are of only the following ·types: null, bool, int,
real, char, and string.

2. The body of a parameterized specification sort checks. For a
term, T, denoting an object of type T, where Tis a type parameter,
the sort of T is T _obj. The sort of the terms, Tt and T~, is TtoS(T). As
usual, the names of these sorts must appear in th~ used trait.

A model of a parameterized procedure specification is a set of operations

(relation-algebra pairs). Each operation in the set is a model of an instantiated specification,

obtained by textually substituting a list of actual parameters, A, for the list of (object and type)

parameters, F, of the parameterized procedure specification. For the following parameterized

procedure specification,

Pr = proc [F] (lnlist) returns (Outlist) signals (Siglist)
uusn ·

preP
postQ
end

an instantiated specification is of the form:

Pr[A] = proc (lnlist [A/F]) returns (Outlist [A/F])
signals (Siglist [A/F])

uses Tr'
pre P [A_obj/F _obj, TtoS(A)/TtoS(F)]
post Q (A_obj/F _obj, TtoS(A)/TtoS(F)]
end

where Tr' is the trait,

Tr': trait
includes Tr with (A_obj for F _obj, TtoS(A) for TtoS(F)]

We adopt the convention of naming each of these instantiations "Pr[A]." We do the

renamings in the pre- and post-conditions because sort identifiers can appear in quantified

. '

. 108.

expressions in the assertions. The first list of renamings handles obj sort identifiers; the

second, value sort identifiers.

A model of a parameterized cluster specification is a set of abstract data types (recall

that an abstract data type is a pair consisting of a set of objects and a set of operations). Each

abstract data type is a model of an instantiated cluster specification. For the parameterized

cluster specification (Mutflag is either the keyword mutable or Immutable),

C = cluster [F] !s Routldlist
uses Tr

end

provides Mutflag C from S
RoutSpecs

each instantiation is of the form:

C[A] = cluster is Routldlist
uses Tr'

provides Mutflag C[A] from S
RoutSpecs [A/F, A_obj/f ..;obj, TtoS(A)/TtoS(F)]

end

where again Tr' is the trait,

Tr': trait
includes Tr with [A_obj for F _obj, TtoS(A) for TtoS(F)]

The first list of renamings for RoutSpecs (A/F) is used to rename type identifiers in the

headers; the second and third lists are used to rename the sort identifiers in the pre· and

post-conditions of each of the routine specifications. We adopt the convention of naming

each of these cluster specifications "C[A]." Notice that each type, C[AJ, maps to the· same

sort identifier, S.

. 109.

Example

The following is a parameterized set cluster specification:

set = cluster [T: type] is ... , insert, ...
uses SetOfT
provides mutable set from ST

insert = proc (s: set[T], t: T)
pre true
mutates s
post s.i. = add(st,t)

end

end

where the SetOfT trait is given below using the SetOfE trait of previous chapters.

SetOfT: trait
includes SetOfE with [ST for C, T _obj for E]

An instantiation of the above parameterized cluster specification is as follows, where the·

actual type identifier is int, and SetOfT' is the SetOfT trait with int_obj substituted for T _obj.

set[int] = cluster is ... , insert, ...
uses SetOfT'

provides mutable set[int] from ST

insert = proc (s: set[int], t: int)
pre true
mutates s
post s.i. = add(st,t)

end

end

- 110 -

4.2.3.2 Parameterization With Restrictions

We often find it useful to place restrictions on type parameters. These restrictions play a

similar role to that of the assumptions of a trait in Larch. We write these restrictions in a

Where clause. We modify the syntax:

Syntax

ProcHead :: = proc <Parms> Args <Rets> <Sigs> <Where>
lterHead :: = iter <Parms> Args <Yields> <Sigs> <Where>
ClusSpec :: = Typeld = cluster <Parms> is Routld +,

<Where> ClusLink ClusBody end

Where :: = where RestrictioR +,
Restriction :: = BasicRestriction I Typeld In Typeset
BasicRestriction :: = Typeld immutable I Typeld has RoutHead

I Typeld has RoutSpec
TypeSet :: = {Typeld I BasicRestriction + ,}
RoutHead :: = ProcHead I 1terHead

The where clause is removed upon an instantiation of a parameterized specification. The "I".

symbol9 in the Typeset production should not be confused with the "I" symbol used as an

alternative separator in the grammar.

Checking

We check that the actuals substituted for type parameters satisfy the restrictions in the

where clause. There are four .kinds of restrictions on a type parameter. Three are "basic"

restrictions, two of which require only syntax checks; the third requires a semantic check.

The fourth kind of restriction is built up from these basic restrictions and hence, may also

require semantic checks. In the following discussion on these four restrictions, let T be a type

parameter, A be a type, and CIA be the cluster specification defining A.

9. It is a reserved symbol in CLU.

. 111.

The first kind of restriction is of the form, T immutable. To check that A satisfies this

restriction, we check that the type flag of CIA is immutable. It is not a kind of restriction that

can be placed on type parameters in CLU, but we include it in the specification language

because proofs (e.g., those that use the type induction principle of A) may depend on a type

being immutable.

The second kind of restriction is of the form, T has R = Sig, where R is in Routld and

Sig is in RoutHead. To check that A satisfies this restriction, we check that CIA contains a

routine named R with the signature Sig.

The third kind of restriction, stricter than the second, is of the form, T has R, where A is

in RoutSpec (R includes a signature and a body). To check that A satisfies this restriction, we

check that the theory of R is a subset of the theory of A. This restriction is not present in CLU

because it involves semantic checking. The second kind of restriction is a special case of the

third where the pre- and post-conditions are both identically true.

The fourth kind of restriction is included for completeness since it is allowed, but rarely

used, in CLU. It is of the form, Tin {XIX has r1, ... , m}, where r1, ... , mare restrictions of the

three forms just described. To check that A satisfies this restriction, we check that A satisfies

all the restrictions, r1, ... , m.

- 112 -

Examples

set = cluster [T] is ...
where T has

equal = proc (t1, t2: T) returns (b: bool)
pre true
post b.t. = (t1 = t2)

end

uses SetOfT
provides mutable set from ST
....

end

The implementations that satisfy this specification would differ from those that would a

specification in which the post-condition of equal was replaced by

post b.t. = (t1 t = t2t)

The difference is that the first specifies that the elements to the equal procedure be the same

objects whereas the second specifies only that the elements have the same value. There-

would be fewer implementations satisfying each of these two specifications than those

satisfying a specification in which we do not specify the behavior of equal at all.

·----- ·-·-· -·· ------------------

. 113.

5. ·Evaluating Specifications

In the incremental development of a large specification, providing useful feedback to a

specifier can increase his confidence that his specification is on the right track. For example,

a specifier may wish to know if his specification is in some sense "correct," i.e., that it

captures his intuition of what he is trying to specify, or that it is in some sense "good," i.e.,

that it satisfies a set of desired objective and possibly subjective properties.

We distinguish a specification from what it specifies, i.e., from the specificand set of a

specification [Guttag82]. Providing feedback to a specifier may help him better understand

both the specification and its specifi~and set, and consequently may cause him to modify or

improve the specification. Depending on how informative the feedback is, it may even point to

a place in the specification where an improvement can be made.

One way of providing such feedback is to provide the specifier ways of evaluating a

specification. In this chapter, we consider ~o forms of evaluation: checking specifications

for various properties, and comparing specifications with respect to various qualities. For

example, we might like to check .if a specification is consistent or compare the strength of two

specifications.

Checking is performed on a single specification; in Section 5.1 we discuss checking for

the following four properties: consistency, full-coverage, determinism, and protection.

Comparing is performed on two specifications; in Section 5.2 we discuss comparing two

specifications with respect to the quality strength. In Section 5.3, we discuss checking a

specification for a property, essentiality, with respect to a theory. All definitions are in terms

of theories.

We do not give an extensive enumeration of properties and qualities, but just a sample to

suggest the usefulness of evaluating specifications and to illustrate our aJ)proach. We leave

for future work the tasks of identifying and defining additional properties and qualities,

. 114.

analyzing the tradeoffs among them, and finding other methods of evaluating specifications.

5.1 Properties of Specifications

Following our specification approach, we put together pieces of existing specifications

to create a larger specification targeted for a particular problem or problem domain. As the

specification grows incrementally, we might invoke a "checker" to test for a property of the

specification. In the process of ·tuning a specification, we would probably invoke such a

checker many times. If ~ specification does not have a property, we can choose either to

modify the specification so that it does, or accept the fact that it does not--a checker is used

only to provide information, not to inhibit the progress of writing the specification. Checking

for a property might also necessitate a clarification in the client's problem statement. For

example, discovering that a specification is inconsistent may point to a contradiction in the

problem statement--the specification merely reflected the mistake. The signatures of the

properties we will discuss are shown in Figure 15.

Two properties of a specification that might be of interest are consistency and

completeness. The ability to check for consistency is probably of more use than the ability to

check for completeness. Knowing a specification is inconsistent informs the specifier that no

consistent: trait -+ boolean
consistent: procedure specification -+ boolean
consistent: cluster sp~c~fication -+ boolean

fully-covering: procedure specification-+ boolean
fully-covering: cluster specification -+ boolean

deterministic: procedure specification-+ boolean
deterministic: cluster specification-+ boolean

protective: procedure specification -+ boolean
protective: cluster specification -+ boolean

Figure 15. Signatures of Properties

- 115 -

implementation could be written to satisfy the specification. We define consistency in Section

5.1.1.

We do not define completeness because we expect most specifications to be incomplete

in the logical sense 10 as well as in the practical sense--in the development of a large

specification, we may have no intention of ever "finishing" it. We usually want to know when

we have said "enough" as opposed to "everything." In Sections 5.1.2-5.1.4 we define three

properties: full-coverage, determinism, and protection. Each gets at a different notion of

sufficiency as a different kind of approximation to completeness.

For each property, we first motivate it, then define it, and then discuss specifications

with that property. When we define each property we also motivate our definition.

5.1.1 Consistency

5.1.1.1 Definition

The usual notion of consistency of a formal system refers to the inability to derive an

explicit contradiction. For a given first-order predicate logic formal system, a set of formulae,

ip, is inconsistent if and only if for some A, both A and -A are theorems in 'P· Equivalently, q>

is inconsistent if and only if false is in 'P· We will use the second definition to build the notion

of an inconsistent specification.

Def: A trait, Tr, is inconsistent if and only if the formula (true = false) or the formula false is in
. Th(Tr).

Def: A procedure specification, Pr, is inconsistent if and onty· if (1) there exists a satisfiable
formula P such that the formula P{Pr}false is in Th(Pr), or (2) Pr's used trait is inconsistent.

Def: A cluster specification, Cl, is inconsistent if and only if (1) true{S}false is in Th(Cl), or (2)
for any of Cl's procedure specifications, Pr, there exists a satisfiable formula P such that the
formula P{Pr}false is in Th(CI), where Pis satisfiable, or (3) Cl's used trait is inconsistent.

10. Given a formal system, its theory is complete if for all formulae, F, we can determine whether F or ~F is in the
theory.

- 116 -

Def: A specification is consistent if and only if it is not inconsistent.

Checking for consistency is in general undecidable since first-order logic is

undecidable. Under certain conditions, however, we may be able to show that a specification

is consistent or inconsistent. For example, for equational theories, on which trait theories are

based, a semi-decision procedure exists that checks for inconsistency by generating the

contradiction true = false (and checks for consistency by generating true) for some sets of

equations when treated as sets of rewrite rules [Knuth69, Musser77].

From the way we construct procedure and cluster specifications, it would be useful to

know under what conditions putt!ng smaller consistent pieces together results in a

specification that is guaranteed to be consistent, or, on the other hand, to know when

inconsistencies may be introduced.

A procedure or cluster specification cannot add formulae that would be inconsistent

with a consistent used trait. The theory .of a procedure specification is a conservative

extension of the theory of its used trait; it adds formulae only of the form P{Pr }0, and none of

the form t1 = t2 or Vx:S P(x). Therefore, the procedure specification cannot add the formula

true = false or false, either of which would be inconsistent with a consistent trait.

To check a procedure specification for consistency, if the used trait is consistent, we

need to check only that no formula P{Pr}false, where Pis a satisfiable predicate, is in Th(Pr).

Notice also we define inconsistency of a procedure specification in terms of Th(Pr) and not

Th(Pr +) so as not to include the theory of the defined type when Pr is a bound procedure

specification. Since the theory of a cluster specification is defined in terms of the theories of

its procedure specifications, we.avoid a circular definition.

To check a cluster specification for consistency, if the used trait is consistent, we need

to check that each bound procedure specification is consistent and that their union is

consistent (both cases covered by clause 2 of the definition of an inconsistent cluster

. 117.

specification), and that the addition of the type induction principle for the defined type does

not introduce any inconsistencies (covered by clause 1). This matches our intuition since

even if the theorjes of the procedure specifications are individually consistent, their union may

not be; moreover, an additional rule of inference may be used to introduce an inconsistency.

5. 1.1 .2 Consistent Specifications

Consistency is a desirable property of all specifications. Inconsistent specifications are

more common than one ll)ight imagine, as the following example illustrates.

intersect = proc (s1, s2: set) returns {s3: set)
uses SetOflnt

pre true
post Vi:int [has(s3.j.,i) = has(s1t,i) A has(s2t,i)]
end

Suppose intersect is a free procedure specification. We show that Th(intersect) is

inconsistent, given the set cluster specification is SetC/usSpec. It is inconsistent because

there is no set object that can be returned as the intersection of disjoint input arguments.

Notice that step 5 uses the theorem, true {intersect} Vs:set card(s.j.) > O, from Th{set)

derivable from the type induction principle for sets.

1. Let s1 t = add(empty, 1) A s2t = add(empty,2).
2. true {intersect} Vi [has(s3.i.,i) = has(s1t,i) A has(s2t,i)]

··axiom of Th(intersect)
3. true {intersect} Vi [has(s3.i.,i) = has(acld(empty,1),i) A has(add(empty,2),i)]

··simplified invocation rule with the substitution as indicated
4. true {intersect} card(s3.i.) = O

--Vx:SI [Vi:lnt has(x,i) = false=> card(x) = O] E Th(SetOf/nt)
5. true {intersect} Vs:set card(s.i.) > O

··Induction rule from Th(set) .
6. true {intersect} V :s card(s.j.) > O A card(s3.j.) = O

--conjunction of two post-conditions (Hoare proof rule)
7. true {intersect} false .

··Lets = s3.

. 11a.

Notice that if intersect were bound, it would be consistent because the theorem of step 5

would no longer hold. Th(set) would be different (e.g., we could construct an empty set

object) because it would include Th(intersect) and so set's type induction principle would

have a weaker form.

5. 1 .2 Full-Coverage

In this section and the next two, we will define three properties that are related to the

"completeness" property of a specification. These three represent examples of the kinds of

approximations to completeness a specifier might want to check of his specification.

A common error in programming is forgetting to cover all the cases. As a result, a

. program may behave in an erroneous or surprising manner on some inputs. We would like to

be able to prevent the occurrence of these errors before coding begins, i.e., in the design

phase, by making sure our specification covers all the cases that can arise. For example, the

following specification,

search = proc (a: array, e: elem) returns (index: int)
uses ArrayOfElem

pre isSorted(at)
post et = fetch(at, inded)
end

is not fully-covering because the case for the unsorted array is not covered. A checker for

full-coverage invoked on search might prompt us to add another pre/post pair to handle the

unsorted array.

Unlike consistency, however, full-coverage is not always desired. We may intentionally

want to leave some cases unspecified because we know they will never arise or because we

want to let the programmer decide how to handle them. In the example above, we may

decide not to add another pre/post pair if we expect search to be invoked always with a

sorted array.

. 119.

5.1.2.1 Definition

We want the definition of full-coverage to capture the notion that the behavior of a

procedure is specified for all "reachable" input states. In terms of models, a procedure is

fully-covering if the domain of the input-output relation of any operation modeling a

procedure is the entire set of states, l:(Va/). One way of capturing the notion of full-coverage

of a procedure specification in terms of theories is that if the pre-condition of the procedure

specification is equivalent to true, then the relation is defined for all input states, and so the

procedure specification is fully-covering. That is,

Def: A procedure specification, Pr, is fully-covering if and only if true {Pr} Pr.post is in
Th(Pr+).

Def: A cluster specification is fully-covering if and only if all its procedure specifications are
fully-covering.

5.1.2.2 Fully-Covering Specifications

A specification may not appear to be fully-covering when it is. Consider SetClusSpec, in

which each of its procedure specifications, in particular, delete, is fully-covering. Although

the disjunction 11 of delete's pre-conditions is not identically true, it is provably true from the

Th(set), which is contained in Th(delete +). The proof that delete is fully-covering would use

the theorem, true {S} Vx:set card(d) > O, which comes from the type induction principle for

SetClusSpec.

In practice, writing a procedure specification that is fully-covering is similar to

generating sufficient test cases for a program (Goodenough75, McMullin82]. A helpful

guideline to follow is for the specifier to use in a stylized manner, multiple

pre/changes/mutates/post quadruples in conjunction with signals assertions (for multiple

11. Recall from Chapter• that the appearance of multiple pre-conditions translates to the disjunction of all the
pre-conditions.

. 120.

termination conditions) to cover all the cases. If one pre-condition places a restriction on the

input state, then other pre-conditions should cover the cases for which the restriction does

not hold. For each separate case, there is typically a different termination condition. As a

result, the behavior of the procedure is "fully" specified.

5.1.3 Determinism

In specifying a program, it is not always easy to separate decisions that should be made

at design time from thos~ that should be delayed to implementation time. A specification

should impose as few constraints as possible to avoid unnecessarily overspecifying the

behavior of the program. An intentional lack of constraint can be regarded as an intentional

incompleteness.

Nondeterminism gets at the notion of introducing an intentional incompleteness in a

specification. It says that the values of input and output objects of a procedure specification

are not predictable in the final state. A nondeterministic specification al1ows the implementor

the freedom to choose the most convenient (e.g., efficient to implement) values. For example,

in implementing a choose procedure for sets, returning the last integer inserted may be more

efficient than returning the largest integer.

In contrast, determinism requires that the final values of the input and output objects be

predictable. Whereas the fully-covering property deals with the "completeness" of a

specification with respect to i_nput states, determinism deals with it with respect to output

states.

5.1.3.1 Definition

A specification is deterministic if for each state that satisfies the pre-condition, only one

set of final values for the input and output objects satisfies the post-condition. We define this

property in terms of theories1 analogously to the usual definition for a function. A relation, f,

. 121 .

on X X Y is a partial function if for all xEX, y1 ,y2EY [(<x, y1>Ef /\. <x, y2>Ef) = y1 = y2]. For

determinism, we require the relation between the values of input and output objects defined

by a procedure specification to be a partial function.

Let X be the list of input formals and Y be the list of output formals for the procedure

specification Pr. To simplify the following discussion and definitions, we will treat memory

objects as (implicit) input objects and require that all memory object identifiers be included in

X. All formals in the signals clauses are included in Y (by definition). Let Pr.pre(Xt) be the

pre-condition on the initial values of input objects, and Pr.post(Xt, x+, Y+) be the

post-condition on the initial and final values of input and output objects.

Def: A procedure specification, Pr, is deterministic if and only if Th(Pr +) contains the
following formula:

VA, A1, A2: T-in, 81, 82: T-out
Pr.pre(At) =>

(Pr.post(At, A1+,81 +) /\. Pr.post(A1', A2+, 82+)] =>

AH ::: A2.t. /\. BH = 82.t..

where T-in is the list of types of the input objects and T-out is the list of types of the output
objects.

Def: A cluster specification is deterministic if and only if all of its procedure specifications are
deterministic.

Def: A specification is nondeterministic if it is not deterministic.

Recall that a state consists of not only a store (mapping from objects to values), but also

a set of (existing) objects, and an environment (mapping from object identifiers to objects).

The definition of deterministic places no constraints on the set of.objects or the environment

of the final states. A more restrictive definition could require that for each input state in which

the pre-condition is satisfied, there exists a unique output state in which the post-condition is

satisfied--restricting the set of output states satisfying a post-condition to be a singleton set.

We see no reason, however, to rule out a procedure that may, for example, create in the

process of execution new objects that may be inaccessible upon termination of the

- 122 -

procedure. Similarly, we should not rule out a procedure that may change the bindings of its

formals since those changes are not observable outside the procedure. In these cases, the

sets of objects or the environments of the possible output states satisfying the post-condition

may differ.

5.1.3.2 Deterministic Specifications

A specifier may intend a specification to be deterministic or not. A procedure

specification may turn out to be nondeterministic because of an unintentional oversight on

the part of the specifier. The following procedure specification,

choose1 = proc (s: stack) returns (i: int)
uses StackOflnt

pre -isNull(st)
mutates s
post i~ = top(st)
end

is nondeterministic--the final value of s is indeterminate because of the presence of the

mutates clause. To make choose1 deterministic, the specifier could add the conjuncts~ ..

pop(st) to the post-condition, or remove the mutates clause. On the other hand, the

specifier may have intended to let the implementer decide whether or not to pop the stack,

and therefore may have intended choose 1 to be nondeterministic.

Checking for determinism requires showing that a formula is in a theory; checking for

nondeterminism, that it is not. A specifier could show the latter by assuming the formula is in

the theory and finding a contradiction to show otherwise. For example, the following

procedure specification,

-123.

choose2 = proc (s: stack) returns (i: int)
uses StackOflnt

pre -isNull(st)
post isln(st, i·O

·end

is nondeterministic. Suppose

Vs:stack, i1,i2:int
-isNull(st) ==>

[isln(st,i1 .t.) A isln(st,i2.t.) A mutates 0] ==>

[iH = i2.t.]

is in Th(choose2 +). Then let st be push(push(null, 5), 7), i1 .t. be 5, and i2.t. be 7 to derive a

contradiction.

5. 1 .4 Protection

By partitioning a specification into two tiers, we can avoid at the top tier an

incompleteness at the bottom tier. In particular, a procedure specification should be able to

use a trait even if the trait is not sufficiently-complete [Guttag75]. It is the procedure

specification's responsibility to protect any of its users from the incompletenesses of the trait

by ensuring that the meaning of the procedure specification is independent of those

incompletenesses.

Axioms of the form ".,. exempt" are included in a trait to inform the specifier: of an

intentional incompleteness. We would like to ensure such incompletenesses do not show

through to the interface level. .For example, since the axiom top(null) exempt is in the

StackOflnt trait, the following procedure specification is not protective.

read1 = proc (st: stack) returns (i: int)
uses StackOflnt

pre true
post i.t. = top(stt)
end

If the initial value of st were null, then the incompleteness of the stack trait would show

- 124 -

through to the interface level because the value of the integer returned would be denoted by

the exempt term top(null).

Factoring a specification into two tiers allows us to factor our checks as well. If upon

checking a trait for sufficient-completeness, we discover it is not sufficiently-complete, we

may be inclined to invoke our checker for protection. For example, invoking a checker for

protection on read 1 might cause us to modify it to be:

read2 = proc (st: stack) returns (i: int)
uses StackOff nt

pre -isNull(stt)
post i+ = top(stt)
end

Read2's pre-condition is sufficiently strong so that the value of the returned integer object

would never be denoted by the term top(null); hence, the incompleteness at the trait level

would not show through to the interface level.

5.1.4. 1 Definition

We say that a procedure specification is protective if it is independent of the set of

exempt terms of its used trait. We build up to the definition of protection by first

characterizing the set, E(Tr), of exempt terms of a trait, Tr, and then defining "independent of

a set of terms."

Def: For a trait, Tr, the set, E(Tr), of exempt terms of Tr is

E(Tr) = {t I 3t'3u such that (t' = u)ETh(Tr), where t' is a subterm oft,
and u is an instantiation of a term appearing exempt in Tr}

E(Tr) includes all terms that have a subterm that is provably equal to an instantiation of

an exempt term. For example, for the StackOfE trait (Appendix I, Figure 13), E(StackOfE) ""

{top(null), pop(null), size(top(null)), top(pop(push(null,e))), ... }. E(Tr) does not include terms

about which the trait does not say anything. For example,· if the last equation in StackOfE

were removed, it then would not constrain the term size(push(s,e)). The reason we do not

-125·

include these kinds of terms in E{Tr) is that given a set of axioms in a trait, we cannot, in

general, generate all the terms that are "intentionally" and "implicitly" not constrained. It is

easy, however, to know what terms are explicitly exempt.

We now give the definition of "independent of a set of terms." Intuitively, it captures the

notion of never having to deal with certain terms. We follow it with the definition of protection.

Def: Let S be a set of terms. An assertion, A, appearing in Pr is independent of S, if
1. No subterm of A is in S, or
2. 38 ([A~ B] E Th(Pr)), and Bis independent of S.

Def: Pr is protective if
1. Pr.pre is independent of E(Tr), and
2. Pr.pre==> Pr.post is independent of E(Tr).

Def: A cluster specification is protective if each of its procedure specifications is protective.

5.1 .4.2 Protective Specifications

Protection is a desirable property of an interface specification. The specification should

not be dependent on properties of the values denoted by exempt terms, and in reasoning

about It the specifier does not want to be "stuck" with terms that are exempt. If upon

checking to see if a specification is protective, we find that it is not, we may be able to find the

dependency in the specification and then fix the specification to remove it.·

Checking may require some cleverness on the specifier's part. It may involve finding an

assertion equivalent to the one being shown independent of a set of exempt terms.

Checking that the pre-condition is protective is usually easy because pre-conditions are

usually simple. Checking the post-condition, however, is likely to be more difficult. Consider

again the following example:

. 126.

read2 = proc (st: stack) returns (i: int)
uses StackOflnt

pre -isNull(stt)
post i+ = top(stt)
end

To show that read2 is protective, we show that it is independent of the set of terms

E(StackOflnt).

1. Show -isNull(stt) is in~ependent of E(StackOf/nt). Trivial.

2. Show -isNull(stt) = i+ = top(stt) is independent of E(StackOflnt).
Referring to part.(2) of the definition of when an assertion is independent of
a set of terms, let B be [isNull(stt) V 3s1 :SI, i1 :Int [stt = push(s1 ,i1) /\ i+· =
i1]].

In practice, writing a protective procedure specification is straightforward provided that

the trait is actually strong enough to specify the desired properties. Strong enough

pre-conditions are written to make sure that even if a post-condition alone is not independent

of an exempt term, the assertion "Pre= Post" is. Often enriching the set of functions of the

used trait makes it easier to read and write pre-conditions to handle these cases. For

example, the function isNull is included in the StackOflnt trait instead of writing in the

pre-condition the equivalent assertion, -(stt = null).

5.2 Comparing Specifications

In the context of developing a large specification, one kind of evaluation we intend to

perform is to compare specifications. For example, we might want to compare specifications

with respect to their restrictivity, concision, elegance, or lucidity. (Judging a specification for

some of these qualities is purely subjective, e.g., elegance and lucidity, and so we would not

attempt to define these qualities formally.) We might invoke a "comparator" to compare

specifications with respect to these qualities. As with checkers, we would invoke a

comparator many times during the development of the specification. Comparators can be

used to help us decide between two specifications. For example, we often want to choose the

less restrictive (constraining) of two specifications. Comparators can also be used to check

-127 -

whether a change we make to a specification had some expected or unexpected effect on

one of its qualities. For example, if we add something to a specification, we might like to know

whether we have made it more restrictive or left its restrictivity unchanged.

We discuss comparing specifications with respect to one quality, strength, of which

restrictivity is a special case. Figure 16 gives the signatures of the corresponding

comparators. In Section 5.2.1 we motivate comparing the relative strength between

specifications. In Section 5.2.2 we define strength. In Section 5.2.3 we discuss the effect

certain modifications to a specification has on its strength.

5.2.1 Comparing Strength

Intuitively, the stronger or more restrictive a specification, the fewer the number of

implementations that satisfy it. In writing a specification, we may want to know whether one

specification is as strong as or ~tronger than another. We may discover that after modifying a

specification the new one is incomparable to the original.

There are at least two situations in which it is useful to know when a specification is as

strong as another. One is where we modify a specification but want to ensure its strength is

unchanged. For example, if we rename identifiers of a specification in order to have

mnemonic names, we would want to make sure we have made only a syntactic and not a

semantic change. A second situation is in determining if it is permissible to replace a

specification with another without affecting any of its users. If one specification is as strong

as another, then under certain circumstances we should be .abte to substitute one for the

as strong as: specification, specification - boolean
stronger: specification, specification-+ boolean
restrictive: specification, specification -+ boolean

Figure 16. Signatures of Comparators

- 128-

other. Comparing the strengths of the two specifications can help determine legality of

replacement. This situation is addressed in [Bloom83] in the context of distributed programs.

Sometimes, we may want a stronger specification. We might realize the specification is

not strong enough in trying to prove a property of the specification or its specificand set. We

could choose to either weaken the statement of what we were trying to prove or strengthen

the specification. If we were to decide to strengthen the specification, we might want to

compare the new and original specifications to make sure we did not make them

incomparable. For example; if we were unsuccessfully trying to prove a cardinality property

about sets based on a specification for bags, we might realize that either our axioms are not

sufficient to prove it or that they are wrong. We might choose to strengthen the specification

for bags to obtain one for sets that allows us to prove the desired cardinality property. When

we discuss the essentiality of a specification in Section 5.3, we rely on the notion of strength

in determining whether a specification is strong enough to prove some property.

5.2.2 Definition of Strength

The intuition we want to ~pture formally is that the stronger the specification, the fewer

the number of implementations that satisfy it. We borrow the analogous concept from logic

that the stronger a theory, the fewer the number of models that satisfy it, and define a strength

relation between specifications in terms of strength between their theories. For example, the

theory of <Z, +, ->is as strong as <N, 0, succ>, but not vice versa, where z is the set of all

integers, and N is the set of all natural numbers.

We could define a theory, Th1, to be as strong as or stronger than another theory, Th2, if

the two theories are in the same language and Th2 ~ Th1. Theory containment, however, is

not sufficient to capture the notion of relative strength between two theories for two reasons.

The first is that the two theories may be in different languages; thus, they may be disjoint, but

still be as strong as each other. The second is that even if the two theories are in the same

. 129.

language, a formula that is in Th1, but not in Th2, may be translatable to one in Th2; thus Th1,

although larger, may not be stronger than Th2.

In general, even if the theories are in different languages, there may exist a way of

translating from one language· to the other such that theorems of Th1 are translations of

theorems of Th2. One reasonable way of translating from one language, L 1, to another, L2 is

to map symbols of L 1 to those of L2; Mapping symbols is not sufficient because in some

cases we could then show that one theory is stronger than another when they really are as

strong as each other. For example, adding a new function symbol to L 1 ·to obtain L2 may not

strengthen Th1 because the new function symbol can be defined in terms of symbols of L 1.

We will give an example of this situation in the next subsection.

Therefore, more generally, determining when one theory is as strong as another

depends on finding an interpretation that translates formulae of one theory into those of

another. Most of the following definitions are adapted from [Enderton72]. Notice that an

interpretation is a generalization of the notion of theory morphisms from algebraic theories

[Burstall80, Burstall81] to theories in full first-order logic with equality.

Let Th1 be a theory in a language L 1 and Th2 be a theory in a (possibly different)

language L2.12 Let ,,, be a mapping from L 1 into L2.

Def: If VaEL1 [er E Th1 ~ w(cr) E Th2], then,,. is an interpretation of Th1 into Th2.

Def: Th 1 is as strong as Th2 if there exists an interpretation of Th2 into Th1 .

Def: Th1 is stronger than Th2 if Th1 is as strong as Th2 and Th2 is not as strong as Th1.

Def: Th1 and Th2 are incomparable if Th1 is not.as strong as Th2 and Th2 is not as strong as
Th1.

Def: If Th1 and Th2 are in the same language, Th1 is more restrictive than Th2 if Th1 is
stronger than Th2.

12. L2 must include equality for technical reasons.

- 130 -

We extend the last four definitions to two specifications in the obvious way. For

example, given two specifications, Spec1 and Spec2, Spec1 is as strong as Spec2 if

Th(Spec1) is as strong as Th(Spec2).

Showing that Th1 is as strong as Th2 requires showing the existence of an interpretation

from L2 into L 1. Showing that Th1 is stronger than Th2 is much harder; it requires showing

not only the existence of an interpretation from L2 into L 1, but also that there does not exist

any interpretation from L 1 into L2. Notice that showing that Th1 is not stronger than Th2 is

easier than showing Th1 is stronger than Th2 since for the former it suffices to show the

existence of an interpretation from L 1 into L2.

Finding an interpretation or showing the nonexistence of one is difficult in general. If we

were to base our definition of strength on the simpler, but more restricted, definition of an

interpretation that is defined to map symbols of one language into those of another, then it

would be easier to find an interpretation or show the nonexistence of one when comparing.

relative strengths of specifications. As previously mentioned, the alternate definition may be

simpler, but it does not capture the strength relation we want.

Finally, showing that two theories are incomparable requires showing the nonexistence

of interpretations between the two languages in both directions. In some cases, however, to

convince ourselves of incomparability, it suffices to show that there is a formula in L 1 nl2 that

is in Th1 and not in Th2, and a formula in L 1 nL2 that is in Th2 and not in Th1. For interface

specifications, the language of a shared trait can often be used as a basis for L 1 nL2. We give

an example of this situation in the next section.

. 131 .

5.2.3 Modifying a Specification With Respect To Strength

It would be useful to characterize changes we can make to a specification by their effect

on the strength of the original specification. Adding equations, reduces clauses, or closes

clauses can strengthen a trait. Selecting a stronger used trait, or changing its pre· or

post-condition can strengthen a procedure specification.

To strengthen a cluster specification, we could select a stronger used trait or add a

procedure specification. Adding a procedure specification does not necessarily strengthen a

cluster specification. Doing so might leave the strength of the cluster specification

unchanged or weaken it. It might even make the original and new cluster specifications

incomparable because type induction rules of the original cluster specification might become

invalid. We later give examples of each of these cases.

The kind of procedure specification that is added to a cluster specification can restrict

the poslible effects on its strength. If T is the type defined by the cluster specification, a

procedure specification can be classified according to whether it specifies a procedure to

construct or to observe objects.of type T. A constructor returns or mutates objects of type T

while an observer returns or mutates objects of type other than T. Using the terminology from

Chapter 3, we can further classify constructors into basic, producing, and mutating

constructors. In general, a procedure specification might both construct and observe objects

of type T, as well as do combinations of all three kinds of construction. For the present

discussion, we only consider the "pure" cases In which a procedure specification specifies

either the construction or observation of objects of type T, but not both. For example, a "pure

observer" specifies that a procedure takes in objects of type T, does not mutate any objects,

and only returns objects other than type T. Figure 17 shows the possible effect adding a pure

constructor or observer has on the strength of a cluster specification.

. 132.

stronger as strong as incomparable weaker

constructor ? yes yes yes

observer yes yes no no

Figure 17. Effect of Adding a Constructor or Obs_erver on Strength

Adding any kind of "pure constructor" has the possible effect of leaving the original

specification unchanged, making it incomparable to the new, or weakening it. We conjecture

that adding a constructor cannot strengthen a cluster specification because adding a

constructor adds a hypothesis to each of the type induction rules. Adding a hypothesis to a

rule might leave unchanged, weaken, or invalidate an existing rule; it cannot allow us to

conclude a stronger invariant. We leave the proof of our conjecture as an open problem.

We now give some examples. Let Spec1 be SetClusSpec and Spec2 be the result of

adding a constructor to Spec1. As an example of adding a constructor that leaves a

specification's strength unchanged, consider adding a pair procedure specification that takes

in two (possibly equal) integers, i and j, and returns a set that is the union of {i} and {j}. Since
. .

formulae involving pair can be expressed in terms of singleton and union, no theorems of

Th(Spec1) are invalidated and no new theorems are added. If, however, we had chosen our

alternate definition that defines an interpretation to map between symbols, then adding the

identifier, "pair," would strengthen SetClusSpec because pair could not be mapped to any

identifier, id, in SetClusSpec such that formulae involving pair in Spec2 couid be translated

into formulae in Spec1 with id substituted in for pair. This example motivated our choosing

the definition of strength as given since we intuitively believe that adding a constructor that

does not change the invariant of a type should not strengthen the cluster specification.

Adding to Spec1 a create procedure specification that takes in no arguments and

returns an empty set makes Spec1 and Spec2 incomparable. One might think that by the

addition of create Th(Spec2) would be strictly larger than Th(Spec1) and so Th(Spec2) would

-133.

be stronger than Th(Spec1). This is not true, however, since the formula, true{S} Vs:set

card(s"') > O, which is in Th(Spec1), is not in Th(Spec2) and the formula, true{S}3s:set

card(s"') = O, which is in Th(Spec2), is not in Th{Spec1). This example illustrates a perhaps

surprising consequence of our definition. Intuitively, we would think that adding a constructor

that increases the value set of a type should strictly strengthen the cluster specification.

Strength, however, is defined in terms of theories, i.e., what is derivable from specifications,

and not in terms of the "expressive" power of specifications.13

As an example of adding a constructor that weakens the strength of a specification,

consider a stack[elemJ cluster specification, Spec1, that has a pop procedure specification

that returns a new stack whose value is that of the input stack with the top element removed.

Let an invariant of Spec1 be that no stack object is mutated. Adding a mutating constructor,

shrink, that mutates the input stack by removing the top element invalidates that invariant.

Adding a "pure observer," can strengthen a cluster specification or leave it unchanged.

It cannot weaken the original cluster specification nor make the original and new

specifications incomparable. Adding an observer can at most add formulae of the form

P{Pr}Q to the theory of a cluster specification. Since hypotheses of type induction rules deal

with only constructors, adding an observer has no effect on the type induction rules of the

cluster specification. Hence, the addition of a (pure) observer cannot weaken or invalidate

any of the rules.

As an example of strengthening with an observer, consider adding a size procedure

specification to a stack[elem] cluster specification that has only constructors. Doing so adds

theorems about integers to the Th(stack[elem]). As an example of leaving the strength

unchanged, suppose stack[elem] has null, push, and top, where top mutates its stack

13. This observation suggests pursuing the definition of a different property of specifications that might be related to
"expressive-completeness" [Kapur80b].

-134 -

argument. Adding a read procedure specification that is like top except that it does not

mutate its stack argument, does not change the strength of the original specification.

5.3 Essentiality

In the construction of a specification, we often want it to be "minimal" in a given

context. That is, we would like to able to pare down a specification to just the "essential part"

necessary for a desired set of properties to hold. Removing parts that have been shown to be

inessential gives us a way of paring down a specification.

A part, P, of a specification, Spec, is inessential for a theory, T, if Spec with P removed

can still be used to deduce the theorems in T. We say "P is an inessential part of Spec for T."

Identifying a part of a specification that is inessential to prove a property means that we can

freely remove or alter that part of the specification and still be ensured that the desired

property holds. On the other hand, if we were to change some part that is essential then We

might have to reverify that the property holds.

Whereas checking for properties defined in Section 5.1 is performed on a single

specification, checking essentiality and inessentiality is performed on two specifications and a

theory, where the second specification is defined to be a "part" of the second. The

signatures for checkers for essentiality and inessentiality are as follows:

essential: specification, specification, theory-+ boolean
inessential: specification, specification, theory-+ boolean

In Section 5.3.1 we define essentiality and inessentiality by first defining what we mean

by a part of a specification. In Section 5.3.2 we give some situations for when we might want

to determine inessential parts of a specification.

. 135.

5.3.1 Definitions

In the following discussion we treat a specification as a formal system, which is a set of

symbols, a set of wff's, a set of axioms, and a set of rules. (See Chapter 3 for the

correspondence between a specification and its formal system.) Thus, it makes sense to talk

about the language (set of symbols and set of wff's), axioms, and rules of a specification. For

a specification, Spec = <L, A, R>, Lis its language, A is its set of axioms and R is its set of

rules.

Def: A part of Spec is a specification with a language, L'~L. a set of axioms, A'~A. and a set
of rules, R'~R.

Examples of parts of a specification are the used trait of a procedure or cluster

specification, and each of the bound procedure specifications of a cluster specification.

Notice also that the type induction principle is a part of a cluster specification. Let two parts

of Spec be P1 = <L1, A 1, RD and P2 = <L2, A2, R2>.

Equal: P1 = P2 if and only if L 1 = L2, A 1 = A2, and R1 = R2.

Subset: P1~P2 if and c;mly if L1~L2, A1~A2, and R1~R2.

Proper subset: P1 CP2 if and only if P1 ~P2 but P1 *' P2.

Difference: (Spec • P1) is the specification whose language is (L · L 1), whose.
set of axioms is (A · A 1), and whose set of rules is (R • A1).

We require that subsets of sets of axioms and sets of rules are well-formed. For example, if L 1

C L2, all axioms in A2 and all hypotheses and conclusions of rules in R2 are re8tricted to be in

L2. Notice that P1 C P2 does not imply Th(P1) C Th(P2).

Let P be a part of a specification, Spec. Let T be a theory such that each formula in T is

deducible from Spec. We write this "Spec I- T."

Def: Pis an inessential part of Spec for T if and only if (Spec . P) I- T.

Def: An inessential part P of Spec for T is maximal if no part properly containing P is
inessential. ·

· 136.

Notice that there can be more than one maximal inessential part of a specification for a given
theory.

Def: Pis an essential part of Spec for T if and only if (Spec· P) is a maximal inessential part of
Spec forT.

Checking for essentiality or inessentiality must be done with respect to a theory since a

part of a specification that is essential for one theory might be inessential for a different

theory. Given a theory, T, if a part, P, of a specification, Spec, is purported to be inessential

for T, then one method for checking the inessentiality of P would be to remove P from Spec

and check if the remaining specification is strong enough to prove each theorem in T. If each

theorem in Tis provable from (Spec· P), then Pis inessential. If there is some theorem in T

such that it is not provable from (Spec. P), then some subset of Pis essential for T.

5.3.2 Situations for Determining lnessentiallty

Here are three situations in which it would be useful to determine whether a part of a

specification is inessential. One situation is to check if some part of a specification is

inessential to prove some property of the specification itself. For example, we might want to

know what part of a specification is inessential to proving it is fully-covering or deterministic.

We might want to make a specification weaker, but ensure that it is still fully-covering. or

deterministic.

A second situation is to check if some part of a specification is inessential to prove

particular properties of its specificand set. For example, suppose we want to determine if
. .

some part of our trait for sets is inessential for proving the property, has(delete(s,i),j) = -(i .eq

j) A has(s,j). We see, in particular, that the axioms about card are inessential to prove it.

Another example of this second situation is to determine what part of a trait is inessential to

establishing one of the hypotheses of a type induction rule associated with a cluster

specification. For example, in Chapter 3 when we showed the property that the size of all set

objects is greater than zero (for sets as defined by SetClusSpec), we used the property from

-137.

the SetOflnt trait that the cardinality of values of set objects is greater than or equal to zero. In

this case, sort induction is essential, but, for instance, axioms about delete are not.

A third situation is to determine what part of a specification is inessential in the proof of

satisfaction between an implementation, Imp, and a specification, Spec. Let T be {Imp

satisfies Spec}. Suppose in showing T we use a specification S, whose theory is a subset of

Th(lmp). We might be interested in knowing what an inessential part of Sis that is not needed

to prove T. In knowing what part of Sis inessential to the proof of satisfaction, we can change

that part of S and be guaranteed that Imp still satisfies Spec.

- 138-

6. Conclusions, Contributions, and Further Work

6.1 Summary of Conclusions and Contributions

In Chapter 1 we observed. that at present formal specifications are difficult to write and

to apply in the design of software. We believe that the two-tiered approach presented in this

thesis is one step toward a solution to this problem.

Our presentation included an approach to writing specifications, a specification

language, and some ways to evaluate specifications. The approach separates the

specification of state transformations and target programming language dependencies from

the specification of underlying abstractions. The language supports this approach and was

designed with the programmer in mind. The ways to evaluate specifications, i.e., checking

and comparing, give a specifier means of convincing himself that his specification reflects his

understanding of the problem statement. The distinguishing aspects of our solution are (1)

the separation of concerns in the specification approach, (2) the incorporation of

programming language dependencies in the specification language, and (3) a theory-oriented

framework that provides a basis to reason about specifications independently of their

underlying models.

The four main contributions of this thesis are:

1. The rigorous semantics for the two-tiered approach,

2. The design of a CLU interface language,

3. A framework for reasoning about two-tiered specifications and
what they specify, and

4. Exploiting the framework for evaluating specifications.

. 139.

The complex part of doing the semantics was in carefully fitting the two tiers together,

and at the same time, keeping the separation clean. Mathematical entities such as algebras

and relations serve as a basis for defining our model-oriented semantics. Although the

models chosen are motivated by CLU, they can be used to model the semantics of interface

languages for other programming languages. The models are relatively independent of

Larch.

The key contribution behind the design of the interface specification language for CLU

was isolating programming language dependencies into one component of a specification. In

doing so, we shed light on what aspects of a programming language should show through to

an interface specification language, and on what aspects were complex to handle (e.g., own

. variables). Another related contribution is the factorization of the presentation of the

interface language into a kernel part and an extended part. Although we presented a design

targeted for a particular programming language, we believe it is general enough to be

adapted for others.

We also defined a proof-theoretic framework for reasoning about specifications. This

reflected the same clean separation between the two tiers as the model-oriented semantics. It

was designed to allow one to reason about what is being specified completely in terms of the

text of the specifications. This advantage is especially significant if one has appropriate

machine support, e.g., a theorem prover.

In exploring the utility of this framework, we defined some sample properties of

specifications and ways to compare them. In making these definitions, we illustrated how to

state their definitions within the proof -theoretic framework. Identifying these properties is of

concern t-0 a specifier who wants to know if some developing specification is getting "better."

Experimentation is needed to see if we have focused on the right properties, but we have

provided here at least some of the properties that might be of use to a specifier, and an

indication of how to define them.

-140.

6.2 Directions for Further Work

We first discuss two areas of "basic" research: deve1oping other interface languages

and evaluating collections of specifications. We then discuss two areas of "experimental"

research: building machine support and applying the two-tiered approach to examples.

6.2.1 Development of Interface Languages

One test of our two-tiered approach is to develop interface languages for other

programming languages, both sequential and concurrent. We have not discussed

concurrency at all in this thesis, and would be interested to see how easily the kernel interface

language can be extended to handle concurrent programming Issues. A first step to take is to

extend our model to concurrent programming and then add syntactic extensions to the kernel

language. Stark [Stark83] defines a model of the behavior of concurrent systems, which

could serve as a reasonable basis for such a specification language. Jones extends his own

work for sequential programs to concurrent ones [Jones81].

Development of interface languages for other sequential programming languages is

currently being done for Cedar Mesa [Horning83]. Its design borrows directly from the kernel

language we defined in Chapter 2.

Finally, we mention with hindsight a change we might make to the CLU interface

language. Instead of giving two assertions in a procedure spe(:ification, since they are both

interpreted with respect to two states, we could give only one assertion [Horning83, Yelick83].

Hence, instead of writing a pair, <pre, post>, in the body of a procedure specification, we write

a single assertion. We also mention an obvious extension to the language. Instead of listing a

single used trait in a uses clause of a procedure or cluster specification, we can list a set of

used traits. Furthermore, we can perform operations on each of the traits in the list, e.g.,

renaming and inclusion. This extension does not change the semantics" of a procedure or

cluster specification because a single trait can be defined to include (i.e., Includes in Larch)

. 141 .

each trait in a set of traits.

6.2.2 Evaluating Collections of Specification

In Chapter 5, we concentrated on individual specifications, and not at all on collections

of specifications. As a collection of specifications grows, the issue of evaluating it becomes

just as important as, and probably harder than, evaluating each of its individual components.

We briefly mention some relations among specifications that are easily derived from the

formalism we have described for the interface language.

A specifier usually has in mind some structure among the mass of specifications written.

Depicting this structure is good practice in the design of a large specification as well as good

documentation for the reader. For example, we define uses to be a relation on a collection of

specifications, where a specification, Spec, uses a trait, Tr, if Tr is Spec's used trait. Similarly,

we define imports to be a relation on a collection of specifications, where a specification,

Spec, imports a cluster specification, Cius, if Spec imports the type defined by Cius.

These relations indicate global, or interconnection complexity, as opposed to the local

complexity that can be seen in individual specification units. Evaluating the complexity of

each of these kinds of relations can give the reader and writer of specifications an idea of the

complexity of the specification. We might treat the relation associated with each of these

kinds of specificat1ons as a graph and then analyze the complexity of the specification in

terms of properties of the gr~P'1· Some properties to check of a graph are whether it is

acyclic, whether it is hierarchical (no sharing), or whether it is a tree (one root, no sh~ring).

Whether a property is desirable or not would depend on the use of the specification. For

example, one can argue that in writing a good specification one should have a uses relation

that has a lot of sharing of the used traits to avoid repetition and to reuse work already done.

On the other hand, care must be taken when changes are made to a shared trait; a

specification with a hierarchical uses relation might be easier to modify.

. 142.

6.2.3 Machine Support

The limited experience we have had in writing specifications makes evident the need for

machine-support. Without machine-support, we have no hope of expecting either specifiers

to write or programmers to use specifications, except as an academic exercise.

Minimally, machine-support should provide ways to manage the text of specifications;

ideally, it should provide ways to reason about their meaning as well. Our list of tools includes

(see [Guttag82]}:

1. A syntax checker.

2. A library. Both traits and interface specifications, and both
problem independent and dependent specifications should be
included. Traits should be included for possible reuse; interfaces,
primarily to provide examples.

3. An editor. A syntax-directed, interactive editor should supply
templates, generate redundant information, and keep track of
missing information.

4. A semantic checker. Theorem proving technology can be applied
to the manipulation of specifications for checking properties of both
specifications and what they specify. Much work remains in finding
algorithms and heuristics that check for these properties.

The Larch project at M.l.T. has started on the development of these tools as part of a

specification environment. Included in this development effort are implementations of a

syntax and static semantics checker [Kownacki83] and a semantic checker that can

manipulate equations in traits [Lescanne83, Forgaard83], and designs of a library [Atreya82]

and a syntax-directed editor [Zachary83].

· 143.

6.2.4 Experimentation

The two-tiered approach needs to be tested on realistic examples of substantial size.

We can test the utility of the formal framework we set up only by trying it out. In doing so, we

can then evaluate whether the two level partitioning is good, whether it makes it easier to read

and write specifications, and whether it leads to better specifications. We can also see

whether the separation of concerns leads to a better understanding of the specificands.

We may discover that we need to make changes to the design of the interface language.

Identifying the language constructs that are used frequently, those that are rarely used, and

those that would be nice to have in order to enhance expressibility can help in the designs of

future interface languages.

We also need to discover other ways to evaluate a specification, other properties and

qualities, and ways to analyze tradeoffs among them. We should test whether the properties

we have discussed or variations of them are, of any use or interest to a specifier. We should

see under what circumstances a specifier tends to perform evaluation and classify what kinds

of changes to a specification ar~ made as a result of evaluation.

Finally, with more experimentation, we hope to show the utility of using formal

specifications; in particular, to demonstrate that forcing precision in the design process has a

beneficial effect on the overall programming process.

. 144.

References

[Abrial80] Abrial, J.R., "The Specification Language Z: Syntax and
Semantics," Programming Research Group, Oxford
University, 1980.

[Ada79] Preliminary Ada Reference Manual, SIGPLAN Notices, Vol. 14,
No. 6, Part A, June 1979.

[Apt81] Apt, K.R., "Ten Years of Hoare's Logic: A Survey--Part I,"
Transactions on Programming Languages and Systems, Vol.
3, No. 4, October 1981, pp. 431-483.

[Atreya82] Atreya, S.K., "Formal Specification of a Specification Library,"
S.M. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1982.

[Berzins79] Berzins, V.A., "Abstract Model Specifications for Data
Abstractions," MIT Laboratory for Computer Science, TR-221,
Cambridge, MA, July 1979.

(Birkhoff70] Birkhoff, G., and J.D. Lipson, "Heterogeneous Algebras,"
Journal of Combinatorial Theory, Vol. 8, 1970, pp. 115-133.

[Bjorner78] Bjorner, 0., and C.B. Jones (eds.), The Vienna Development
Method: the Meta-language, Springer-Verlag, Lecture Notes in
Computer Science 61, Berlin-Heidelberg-New York, 1978.

[Bloom83] Bloom,. T., "Dynamic Module Replacement in a Distributed
Programming System," Ph.D. Thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge,
MA, May 1983.

[Boyer75] Boyer, R.S., and J.S. Moore, "Proving Theorems About Lisp
Functions," Journal of the ACM, Vol. 22, January 1975, pp.
1975.

[Burstall72] Burstall, RM., "Some Techniques for Proving Correctness of.
Programs Which Alter Data Structures," Machine Intelligence
7, Halstead Press, 1972, pp. 23-50.

[Burstall77] Burstall, R.M., and J.A. Goguen, "Putting Theories Together
To Make Specifications," Invited Paper at the Fifth
International Joint Conference on Artificial Intelligence,
Cambridge, MA, August 1977, pp. 1045-1058.

. 145.

[Burstall80] Burstall,. R.M., and J.A. Goguen, "The Semantics of CLEAR, a
Specification Language," Proceedings of 1979 Copenhagen
Winter School on Abstract Software Specifications,
Springer-Verlag, ed. Bjorner, 1980.

[Burstall81] Burstall, R.M., and J.A. Goguen, "An Informal Introduction to
Specifications Using CLEAR," The Correctness Problem in
Computer Science, eds. Boyer and Moore, Academic Press,
1981.

[Caine75] Caine, S.H., and E.K. Gordon, "PDL--A ·Tool for Software
Design," Proceedings of the 1975 National Computer
Conference, Vol. 44, Montvale, NJ., AFIPS Press, 1975, pp.
271-276.

[Chang73] Chang, C.C., and H.J. Keisler, Model Theory, North-Holland
Publishing Company, 1973.

[deBakker80] deBakker, J., Mathematical Theory of Program Correctness,
Prentice/Hall International, Englewood Cliffs, 1980.

[Deutsch73] Deutsch, LP., "An Interactive Program Verifier," Ph.D. Thesis,
University of California, Berkeley, 1973.

[Dijkstra76] Dijkstra E.W., A Discipline of Programming, Prentice-Hall,
1976.

[Ehrich78] Ehrich, H.-D., "Extensions and Implementations of Abstract
Data Type Specifications," Mathematical Foundations of
Computer Science 1978 Proceedings, Lecture Notes in
Computer Science 64, 7th Symposium, Springer-Verlag,
Poland, 1978, pp. 155-164.

[Ehrig80] Ehrig, H., H.-J. Kreowski, J. Thatcher, E. Wagner, and J.
Wright, "Parameterized Data Types in Algebraic Specification
Languages," Automata, Languages, and Programming,
Lecture Notes in Computer Science 85, 7th Colloquium,
Springer-Verlag, Noordwijkerhout, July 1980, pp. 157-168.

[Enderton72] Enderton, H.B., A Mathematical Introduction to Logic,
Academic Press, New York, 1972.

[Floyd67] Floyd, R.W., "Assigning Meanings to Programs," Proceedings
of Symposium in Applied Mathematics", Vol. 19, American
Mathematical Society, 1967, pp. 19-32.

- 146 -

[Forgaard83] Forgaardi R., "A Program for Generating and Analyzing Term
Rewriting Systems," S.M. Thesis, MIT Department of Electrical
Engineering and Computer Science, 1983 (forthcoming).

[Goguen75) Goguen, J.A., J.W. Thatcher, E.G Wagner, and J.B. Wright,
"Abstract Data-Types as Initial Algebras and Correctness of
Data Representations," Proceedings from the Conference of
Computer Graphics, Pattern Recognition and Data Structures,
May 1975, pp. 89-93.

[Goguen77) Goguen, J.A., "Abstract Errors for Abstract Data Types,"
Proceedings of the IFIP Working Conference on Formal Basis
of Programming Concepts, Vol. 2, August 1977, pp.
21.1-21.32.

[Goguen78) Goguen, J.A., J.W., Thatcher, and E.G. Wagner, "lnital
Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types," Current Trends in
Programming Methodology, Vol. IV, Data Structuring, ed. R.T.
Yeh, Prentice-Hall, Englewood Cliffs, NJ, 1978.

[Goguen81) Goguen, J.A., and K. Parsaye-Ghomi, "Algebraic Denotational
Semantics Using Parameterized Abstract Modules," Stanford
Research Institute, TR CSL-119, Stanford, CA, February 1981.

[Good75) Good, D.I., R.L. London, and W.W. Bledsoe, "An Interactive
Program Verification System," IEEE Transactions on Software
Engineering, Vol. 1, No. 1, 1975, pp. 59-67.

[Good78] Good, D:t., R.M. Cohen, C.G. Hoch, L.W. Hunter, and D.F.
Hare, "Report on the the Language Gypsy, Version 2.0,"
Technical Report ICSCA-CMP-10, Certifiable Minicomputer
Project, ICSCA, The University of Texas at Austin, September
1978.

[Goodenough75) Goodenough, J.B. and S.L. Gerhart, "Toward a Theory of
Test Data Selection," IEEE Transactions on Software
Engineering, Vol. 1, No. 2, June 1975, pp. 156-173.

[Guttag75]

[Guttag78)

Guttag, J.V., "The Specification and Application to
Programming of Abstract Data Types," Ph.D. Thesis,
University of Toronto, Toronto, Canada, September 1975.

Guttag, J.V., E. Horowitz, and D.R. Musser, "Abstract Data
Types and Software Validation," Communications of the ACM,
Vol. 21, ~· 12, December 1978, pp. 1048-1064.

. 147.

[Guttag80a] Guttag, J.V., "Notes on Type Abstraction (Version 2)," IEEE
Transactions on Software Engineering, Vol. 6, No. 1, January
1980, pp. 13-23.

[Guttag80b] Guttag, J.V., and J.J. Horning, "Formal Specification As a
Design Tool," Proceedings on the Seventh ACM Symposium
on Principles of Programming Languages, Las Vegas, Nevada,
January 1980, pp. 251-261.

[Guttag82] Guttag, J.V., J.J. Horning, and J.M. Wing, "Some Notes on
Putting Formal Specifications to Productive Use," Science of
Computer· Programming, Vol. 2, No. 1, October 1982, pp.
53-68.

[Guttag83a] Guttag, J.V., and J.J. Horning, An Introduction to the Larch
Shared Language, IFIP 83, Paris, France, September 1°983
(forthcoming).

[Guttag83b] Guttag, J.V., and J.J. Horning, Preliminary Report on the Larch
Shared Language, Xerox PARC Technical Report, 1983
(forthcoming).

[Hoare69] Hoare, . C.A.R., "An Axiomatic Basis for Computer
Programming," Communications of the ACM, Vol. 12, No. 10,
October 1969, pp. 576-580.

[Hoare72] Hoare, C.A.R., "Proof of Correctness of Data
Representations," Acta Informatica, Vol. 1, No. 1, 1972, pp.
271-281..

[Horning83] Horning, J.J., private communication.

[Jackson75] Jackson, M.A., Principles of Program Design, London; .
Academic Press, 1975.

[Jones80] Jones, C.8., Software Development: A Rigorous Approach,
Prentice-Hall, 1980.

[Jones81] Jones, C.8., "Development Methods for Computer Programs
Including a Notion of Interference," Ph.D. Thesis, Oxford ·
University, England, June 1981.

[Kamin83] Kamin, S., "Final Data Types and Their Specification,"
Transactions on Programming Languages and Systems, Vol.
5, No. 1, January 1983, pp. 97-121.

(Kapur80a]

[Kapur80b]

[Katzan76]

(King69]

-148.

Kapur, D., "Towards a Theory for Abstract Data Types," MIT
Laboratory for Computer Science, TR-237, Cambridge, MA,
May 1980.

Kapur, D., and S. Mandayam, "Expressiveness of the
Operation Set of a Data Abstraction," Proceedings of the
Seventh ACM Symposium on Principles of Programming
Languages", Las Vegas, Nevada, January 1980, pp. 139-153.

Katzan •. H., Jr., Systems Design and Documentation: An
Introduction to the HIPO Method, New York, Van Nostrand
Reinhold, 1976.

King, J.C., "A Program Verifier," Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, PA, 1969.

[Knuth69] Knuth, D.E., and P.B. Bendix, "Simple Word Problems in
Universal Algebras," Computational Problems in Abstract
Algebra, Pergamon Press, Oxford, ed. J. Leech, 1969.

[Kownacki83} Kownacki, R.W., "A Tool for Partial Semantic Analysis of
Formal Specifications," S.M. Thesis, MIT Department of
Electrical Engineering and Computer Science 1983
(forthcoming).

[Lescanne83] Lescanne, P., "Computer Experiments with The REVE Term
Rewriting System Generator," Proceedings of the Tenth ACM
Symposium on Principles of Programming Languages",
Austin, TX, January 1983, pp. 99-108.

[Liskov77] Liskov, B.H., A. Snyder, R. Atkinson, and C. Schaffert,
"Abstraction Mechanisms in CLU," Communications of the
ACM, Vol. 20, No. 8, August 1977, pp. 564·576.

[Liskov79] Liskov, B.H., and Berzins, V., "An Appraisal of Program
Specifications," Research Directions in Software Technology,
MIT Press, Cambridge, MA, 1979. .

[Liskov81] Liskov, B.H.,· et al., CLU Reference Manual, Lecture Notes in
Computer Science 114, Springer-Verlag, 1981.

[London75] London, R.L., "A View of Program Verification," Proceedings
of the International Conference on Reliable Software, April
1975, pp. 534-545.

[Luckham76] Luckham, D., and N. Suzuki, "Automatic Program Verification
V: Verification-Oriented Proof Rules for .Arrays, Records, and
Pointers," Stanford University, AIM-278, Stanford, CA, March
1976.

------------ ·-

-149.

[McMullin82] McMullln, P.R., "DAISTS: A System for Using Specifications to
Test Implementations," University of Maryland, Ph.D. thesis,
1982.

[Mendelson64] Mendelson, E., Introduction to Mathematical Logic, D. Van
Nostrand Co., New York, 1964.

(Mitchell78) Mitchell, J.G., W. Maybury, and R. Sweet, Mesa Language
Manual, Xerox Palo Alto Research Center, CSL-78-1, Palo
Alto, CA, February 1978.

(Musser77] Musser, D.R., "A Data Type Verification System Based on
Rewrite Rules," Proceedings of the Sixth Texas Conference
on Computing Systems, Austin, TX, November 1977, pp.
1A-22·1 A-31.

(Musser80] Musser, D.R., "Abstract Data Type Specification in the Affirm
System," IEEE Transactions on Software Engineering, Vol. 6,
No. 1, January 1980, pp. 24-32.

[Myers75) Myers, G.J., Reliable Software Through Composite Design,
Petrocelli/Charter, New York, 1975.

(Nakajima80] Nakajima, R., M. Honda, and H. Nakahara, "Hierarchical
Program Specification and Verification--A Many-sorted
Logical Approach,". Acta Informatica, Vol. 14, 1980, pp.
135-155.

(Oppen75] Oppen, D.C., "On Logic and Program Verification," University
of Toronto, TR 82, Toronto, Canada, April 1975.

[Pamas72a] Pamas, D.L., "A Technique for Software Module Specification
with Examples," Communications of the ACM, Vol 15., No. 5,
May 1972, pp. 330-336.

[Parnas72b] Parnas, · D.L., "On the Criteria To Be Used in Decomposing
Systems into Modules," Communications of the ACM", Vol 15,
No. 12, December 1972, pp. 1053-1058.

[Parnas77] Parnas, D.L., "The Use of Precise Specifications in the
Development of Software," Information Processing 77, ed. B.
Gilchrist, North-Holland Publishing Company, 1977, pp.
861-867.

[Reynolds77) Reynolds, J.C., "Reasoning About Arrays," University of
Edinburgh, CSR-6-77, July 1977.

. 150.

[Robinson77] Robinson, L., and 0. Roubine, "SPECIAL--A Specification and
Assertion Language," Stanford Research Institute, Stanford,
CA, TR CSL-46, January 1977.

[Schaffert81] Schaffert, J.S., "Specification and Verification of Programs
using Data Abstraction and Sharing," Ph.D. Thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, September 1981.

[Shoenfield67] Shoenfield, J.R., Mathematical Logic, Addison-Wesley, 1967.

[Standish73) Standish, -T.A., "Data Structures: An Axiomatic Approach,"
Bolt, Beranek and Newman, Inc., Report # 2639, Cambridge,
MA, August 1973.

[Stark83] Stark, E.W., "Foundations of a Theory of Specification· for
Distributed Systems," Ph.D. Thesis, MIT qepartment of
Electrical Engineering and Computer Science, 1983
(forthcoming).

[Suzuki75] Suzuki, N., "Verifying Programs by Algebraic and· Logical
Reduction," Proceedings International Conference on
Reliable Software, 1975.

[Suzuki76] Suzuki, N., "Automatic Verification of Programs with Complex
Data Structures," Stanford University, AIM-279, Stanford, CA,
February 1976.

[Thatcher78] Thatcher, J.W., E.G. Wagner, and J.B. Wright, "Data Type
Specification: Parameterization and the Power of
Specification Techniques," Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, May 1978, pp.
119-132.

[vonHenke75] von Henke, F.W., and D.C. Luckham, "A Methodology for
Verifying Programs," Proceedings International Conference
on Reliable Software, 1975.

[Wand79) Wand, M., "Final Algebra Semantics and Data Type
Extensions," Journal of Computer and System Sciences, Vol.
19, No. 1, August 1979, pp. 27·44.

[Wegbreit76] Wegbreit, 8., and J.M. Spitzen, "Proving Properties of
Complex Data Structures," Journal of the ACM, Vol. 23, No. 2,
April 1976, pp. 389·396.

[Yelick83]

. 151 .

Yelick, K.A, "The CLU Interface Language Reference
Manual," MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, August 1983
(forthcoming).

(Yonezawa77] Yonezawa, A., "Specification and Verification Techniques for
Paratlel Programs Based on Message Passing Semantics,"
MIT Laboratory for Computer Science, TR-191, Cambridge,
MA, December 1977.

[Yourdon78] Yourdon, E., and LL. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Programs and
Systems Design, 2nd ed., Yourdon Press, New York, 1978.

[Zachary83] Zachary, J.L., "A Syntax-Directed Tool for Constructing
Specifications," S.M. Thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, March
1983.

[Zilles75] Zilles, S.N., "Abstract Specifications for Data Types," IBM
Research Laboratory, San Jose, 1975.

. 152.

Appendix 1 ·-Interface and Trait Specifications

Equivalence: trait
introduces

eq: E, E - Bool
constrains [eq) so that for all [x, y, z: E}

eq(x,x) = true
eq(x,y) = eq(y,x)
((eq(x,y) /\ eq(y,z)) = eq(x,z)) = true

Figure 3. Equivalence Trait

SetOfE: trait
includes Integer, Equivalence
introduces

empty:-C
add:C,E-C
remove: C, E - C
has: C, E - Bool
isEmpty: C - Bool
card: c-tnt

closes Cover [empty, add]
constrains [C] so that for all [s: C, e, e1: E]

remove(empty, e) = empty
remove(add(s,e), e1) = if eq(e,e1) then remove(s,e1) else add(remove(s,e1),e)
has(empty, e) = false
has(add(s,e), e1) = If eq(e,e1) then true else has(s,e1)
isEmpty(empty) = true
isEmpty(add(s,e)) = false
card(empty) = O
card(add(s,e)) = if has(s,e) then card(s) else 1 + card(s)

SetOflnt: trait
includes SetOfE with [SI for C, Int for EJ

Figure 4. SetOfE and SetOflnt Traits

- 153-

set = cluster is singleton, union, delete, size
uses SetOflnt
provides mutable set from SI

end

singleton = proc (i: int) returns (s: set)
uses SetOflnt

pre true .
post s+ = add(empty, it) A news/\ mutates 0 A returns
end

union = proc (s1, s2: set) returns (s3: set)
uses SetOflnt ·

pre true
post Vi:"lnt [has(s3+,i) = has(s1t,i) V has(s2t,i)]

/\ new s3 /\ mutates 0 A returns
end

delete = proc (s: set, i: int) signals (emptiesSet)
uses SetOflnt

pre true
post [((card(st) > 2) V -has(st,it)) ~

(s+ = remove(st,it) A mutates s /\ returns)]/\
[((card(st) .eq 1) A has(st,it)) ~

mutates 0 A signals emptiesSet] /\
new0

end

size = proc (s: set) returns (i: int)
·uses SetOflnt

pre true
post i.I. = card(st) /\new 0 A mutates 0 A returns
end

Figure 9. Set Cluster Specification (SetClusSpec)

------------ -----~

stack = cluster is empty, grow, read
uses StackOflnt
provides mutable stack from Stkl

- 154.

empty = proc () returns (st: stack)
pre true
post sU = null /\ new st
end

grow = p roe (st: stack, i: int)
pre true
mutates st
post sU = push(stt, it)
end

read = p roe (st: stack) re tu ms (i: int)
pre -isNull(stt)
post i-1- = top(stt)
end

end stack

Figure 12. Stack Cluster Specification

- 155-

StackOflnt: trait
includes StackOfE with [Stkl for C, Integer for E]

StackOfE: trait
includes Integer
introduces

nuU:-. C
push:C, e-c
top: C-+E
pop:c-c
isNull: C -. Boal
isln: C, E -. Boal
size: c-1nt

closes Cover [null, push}
constrains [C] so that for all [s: C, e,e1: E]

top(null) exempt
top(push(s,e)) = e
pop(null) exempt
pop(push(s,e)) = s
isNull(null) = true
isNull(push(s,e)) = false
isln(null,e) = false
isln(push(s,e),e1) = if e .eq e1 then true else isln(s,e1)
size(null) = O
size(push(s,e)) = size(s) + 1

Figure 13. Traits for Stacks

- 156 -

Appendix II - Proofs

11.1. Validity of a Type Induction Rule

For the predicate,

P(t) = -isNull(tt) = card(top(tt)t) < 64.

we show the validity of the hypotheses of the following type induction rule.

Hypotheses:

HB true {empty} -isNull(st.J.) = [card(top(st+).J,) < 64)
HP -isNull(sH) => [card(top(s1t)t) < 64] {grow}

-isNull(s2+) = [card(top(s2+ H) < 64)
HM s = top(v1t) A -isNull(v1t) = [card(top(v1t)t)<64) {delete}

-isNull(v1 +) = [card(top(v1.J,H)<64)

Conclusion: true {S} 'lt:stack[set] -isNull(t.&.) = card(top(t.&. H) < 64 for all

Proof:

1. HB: true {empty} -isNull(st+) = [card(top(st.J. H) < 64]
Th(empty) gives the axiom true {empty} empty.post(st)

where empty.post(st) =st.a. = null/\ new st/\ mutates 0 A returns

empty.post(st) = P[st/t] is valid because
st+ = null=> [-isEmpty(st.&.) = card(top(st.&.).i.) <64),
which is true since -isEmpty(st+) is false.

HB is valid by the rule of consequence.

2. HP: -isNull(s1 t) => [card(top(s1 t)t) < 64) {grow}
-isNull(s2+) = [card(top(s2+).a.)< 64]

Assume -isNull(s1t) = card(top(s1t)t) < 64
We have the axiom, card(st) < 64 {grow} grow.post(s1, s2, s)

where grow.post(s1, s2, s) =
s2+ = push(s1t,s) /\new s2 A mutates 0 A returns

We have that card(st) < 64
=> card(s.&.) < 64, from mutates 0
=> card(top(push(stt,s))+) < 64, from Th(StackOfSS)

-157.

= card(tap(s2+),J,) < 64, from substitution for s2+ from grow.post(s1, s2, s)
= [-isNull(s2+) = [card(top(s2+ H) < 64]] (a weaker assertion)

HP is valid by the rule of consequence.

3. HM: s = top(v1t) /\ -isNull(v1t) = [card(top(v1t)t) < 64] {delete}
-isNull(v1 +) = [card(top(v1 + H) < 64]

Assume -isNull(v1t) = [card(top(v1t)t) < 64). The post-condition of delete is:
[((card(st) > 2) V -has(st ,it)) = - .

(s+ = remove(st,it) /\mutates s /\returns)] A
[((card(st) .eq 1) /\ has(st,it)) =

mutates flJ /\ signals emptiesSet] A
new flJ

Assume -isNull(v1t). With the term top(v1 t) substituted in for s, we have:

(a) ((card(top(v1t)t) ~ 2) V -has(top(v1t)t,it)) =
[top(v1t)+ = remove(top(v1t)t,it) A mutates top(v1t) A returns]

Since card(top(v1t)t) < 64 (from the assumptions),
card(remove(top(v1t)t,it)) < 64 by Th(SetOflnt)
card(top(v1 t) +) < 64 by substitution,
card(top(vH H) < 64 since the object v1 is not mutated.

(Only top(v1t) is possibly mutated.)

(b) ((card(top(v1t)t) .eq 1) A has(top(vfr)t,it)) =
/\ card(top(v1t)t) .eq 1 /\ mutates 0 A signals emptiesSet

Since card(top(v1t)t) < 64 (again, from the assumptions),
card(top(vH)+) < 64, from mutates 0.

HM is valid by the rule of consequence.

11.2. Proof of Satisfaction

I

We now give an example of a cluster that satisfies a cluster specification. Figure 18

gives a set cluster specification. Figure 19 gives an implementation of this cluster

specification. The implementation uses the rep type, array[int], for which a cluster

specification is given in Figure 20. The ArrayOflnt trait used to define the array[int] type is

given in Figure 21.

- 158-

set = cluster is create, insert, size, member
uses SetOflnt
provides mutable set from SI

create = proc ()returns (s: set)
pre true
post s+ = empty A new s A mutates flJ A returns
end

insert = proc (s: set, i: int)
pre true
posts+ = add(s-t,i) A new flJ A mutates s A returns
end

size = proc (s: set) returns (i: int)
pre true
post i+ = card(s1') A new flJ A mutates flJ A returns
end ·

member = proc (s: set, i: int) returns (b: bool)
pre true
post has(s-t, i) = b+ A new flJ A mutates flJ A returns
end member

end

Figure 18. Set Cluster Specification

We sketch the proof of satisfaction below. We prefix procedure names by "T$" to

distinguish them from trait function names. We expect machine tools to aid the implementor

in performing much of the symbol manipulation found in these kinds of proofs (Boyer79,

Good75, Good78, Musser77, Musser80].

1. Let the abstraction function be:

A: TtoS(array[int]) -+ TtoS(set)

A(a) = if size(a) = 0 then empty
else if size(a)> 0 add(A(remh(a)), top(a))

2. The rep invariant, Rl(a), is:

Va:AI [low(a) = 1 A size(a)>O A NoDups(a)],
where NoDups(a) = Vi,j [fetch(a,i) = fetch(a,j) ==> i = j].

-159-

set = cluster is empty, insert, size, member

rep = array[int]

create = proc () returns (cvt)
return (rep$create(1)}
end create

insert = proc (c: cvt, i: Int)
if -member(up(c), i) then rep$addh(c,i) end
end insert

size = proc (c: cvt) returns (int)
retu rn(i"ep$size(c})
end size

member = proc (c: cvt, i: int) returns (bool)
k: int : = rep$1ow(c)

end set

while k < rep$high(c) do
if i = rep$fetch(c,k) then

retu rn(true) end
k:= k+1
end

retu rn(false)
end member

Figure 19. Implementation of the Set Cluster Specification

.-~

3. For each procedure in the set cluster we must show it satisfies its corresponding procedure

specification in the set cluster specification under A. For our simple example, in most cases

this reduces to showing that the past-condition of some procedure specification of the

array[int] cluster specification implies the post-condition of the corresponding procedure

specification of the set cluster specification. V'(e also need to show that the rep invariant

holds for each procedure of the set cluster implementation.

3.1. set$create: Let c.J. = create(1) from array[int]'s create.post. Show that s.J. = empty.
s.J. = A(c.J.)

= A(create(1)) by substitution
= empty by the definition of A, since size(create(1}) = 0.

-160.

array[int] = cl~ster is create, addh, size, low, high, fetch
uses ArrayOflnt
provides mutable array[int] from Al

create = proc O: int) returns (a: array(int])
pre true
post a~ = create(1) /\ new a /\ mutates 0 /\ retu ms
end

addh = proc (a: array[int], i: int)
pre true
post a~ = addh(at ,i) /\ new 0 /\ mutates a /\ returns
end

size = proc (a: array[int]) returns (i: int)
pre true
post i~ = size(st) /\new 0 /\mutates 0 /\returns
end

low = proc (a: array[int]) returns (i: int)
pre true
post i~ = low(st) /\ new 0 /\ mutates 0 /\ returns
end

high = proc (a: array[int]) returns (i: int)
pre true
post i.j. = high(st) /\new 0 /\mutates 0 /\returns
end

fetch = proc (a: array[int], i: int) returns (j: int) signals (bounds)
pre true
post (Jow(at)<i<high(at) ~ (j.j. = fetch(at,i) /\mutates 0 /\ returns]/\

[(i<low(at) V i>high(at)) =t (signals bounds /\ mutates flJ)]
/\new 0

end array[int]

Figure 20. Array Cluster Specification

We know thats is new since rep$create returns a new object, i.e., new c ~news. Since
rep$create does not mutate any object, the mutates 0 assertion is true. Thus, the
post-condition of create is satisfied. We show that the rep invariant, Rlf(c~), is established:

low(c~) = low(create(1)) = 1, from Th(ArrayOflnt).
size(c.j.) = size(create{1)) = O from Th(ArrayOflnt).
NoDups(c~) = NoDups(create(1)) = Vi,j:lnt[fetch(c.j.,i) = fetch(c~,j) ~ i = j),

In Th(ArrayOflnt), fetch(create(x),y) is defined, but exempt.
Let v = fetch(create(1),i) and w = fetch(create(1),j).

ArrayOflnt trait
includes Array [Al for A, inLobj for E]
introduces

empty: Al -+ Bool
size: Al -+ Int
isin: Al, inLobj -+ Bool

. 161.

constrains [Al] so that for V [k: Int, i,j: inLobj, a: Al)
empty(create(k)} = true , .
empty(addh(a,i)) = false
size(create(k)) = O
size(addh(a,i)) = size(a) + 1
isin(create(k)) = false
isin(addh(a,i),j) = if i .eq j then true else isin(aj)

Array: trait
includes Integer, Elem
introduces

create: Int -+ A
addh: A, E -+ A
remh: A-+ A
low: A-+ Int
high: A- Int
fetch: A, Int-+ E
store: A, Int, E - A
size: A -+ Bool

closes A over [create, addh]
constrains [A] so that for all [i,i1 ,i2: Int, e,e1 ,e2: E, a: A]

remh(create(i)) exempt
remh(addh(a,e)) = a .
low(create(i)) = i
low(addh(a,e)) = low(a)
high(a) = low(a) + size(a) • 1
fetch(create(i1),i2) exempt
fetch(addh(a,e),i) = if i .eq (low(a) + size(a)} then e else fetch(a,i)
store(create(i1),i2,e) .exempt
store(addh(a,e1),i,e2) ;,, if i .eq (low(a)+ size(a)) then addh(a,e2)

else addh(store(a,i,e2),e1)
size(create(i)) = 0
size(addh(a,e)) = size(a) + 1

Figure 21. ArrayOflnt and Array Traits

Then v = w ~ i = j, and so NoDups(c.i.) holds.

3.2. set$insert: Let st = A(ct). Show that s.J. = add(st, i).
Case 1: -member(st, i)

Let c.J. = addh(ct,i) from addh.post.

. 162.

si- = A(ci-)
= add(A(remh(c+),top(c+)))
= add(A(remh(addh(ct ,i))), top(addh(c1',i)))
= add(A(ct), i)
= add(st, i)

Case 2: member(s't, i)
~ has(st, i)·
~ add(st, i) = st from Th(SetOf/nt)

s+ = A(c.t.)
= A(c't) since ct = c+
=st
= add(st, i) .

Since set$member (see 3.4 below) and rep$acldh do not create new objects, the new f6
assertion of insert's post-condition is true. The mutates assertion is true since the value of
the input set object, s, might be changed. Thus, the post-condition of insert is satisfied. We
show that the rep invariant is maintained:

low(c+) = low(addh(ct,i)) = low{ct) = 1
size(c+) = size(addh(ct,i)) = 1 + size(ct), which is true since size(c't) > O.
NoDups(c+) = No0ups(addh(c1',i))

Vj,k:lnt [fetch(addh(ct,i),j) = fetch(addh(c1',i),k)]
= Vj,k:lnt [(if j = low(c't) +size(ct) then i else fetch(ct,j)) =

(if k = low(c't) +size(ct) then i else fetch{ ct ,k))]
~ j = k since NoDups(c't).

3.3. set$size: Let st = A(ct). Show that size(ct) = card(st). We prove this by induction.
Case 1: ct = create(i).

size(ct) = O
= card(empty)
= card(A(ct))
= card(st)

Case 2: ct = addh(x,y). The induction hypothesis (IH) is size(x) = card(A(x)).
From NoDups, we know that -isin(x,y).
From Lemma (below) -isin(x,y) ~ -has(A(x),y)
Show size(ct) = card(st).
size(ct) = 1 + size(x)

= 1 + card(A(x)), by IH
= card(add(A(x),y)) since -has(A(x),y)
= card(add(A(remh(addh(x,y))),top(addh(x,y))))
= card(A(addh(x,y)))
= card(A(ct))
= card(st)

Since rep$size neither creates new objects nor mutates existing ones, the new 1ZJ and
mutates 0 assertions of size's post-condition are both true. Thus, the post-condition of size
is satisfied. We show that the rep invariant is maintained. Since rep$size mutates nothing, c.t.
=ct.

low(c+) = low(ct) = 1,
size(c+) = size(ct) > O,

-163-

NoDups(c+) = NoDups(ct).

3.4. set$member: Let st = A(ct) and let b be the boolean returned by member. Show that
has(st,i) = b+.

Case 1: empty(ct') == (isin(ct,i) = false)=
(has(A(ct),i) = false), by Lemma below.

Case 2: The loop invariant is inbounds(k) and Vd:lnt low(ct)<d<k [fetch(ct,d) :I: i]
where inbounds(k) = low(ct);S;kt;S;high(ct) ·

Case2.1: i = j
At the retu rn(true) statement we know
that b+ = true A isin(ct,i) = b+.
isin(ct,i) = has(A(ct),i) == has(st,i), by Lemma below.

Case 2.2: i :1: j
We increment k and go to the start of the loop.

At termination of loop, kt = high{c-t) + 1 A
Vd:lnt low(ct)<d<high(ct) + 1 [fetch(ct,d) *- i)

= Vd:lnt low(ct)<d~high(ct) [fetch(ct,d) :1: i]
== (isin(ct,i) = false)
== (has(A(ct),i) = false), by Lemma below.

Since rep$1ow, rep$high, rep$fetch, and int$add do not create new objects nor mutate
existing ones, the new 0 and mutates 0 assertions of member's post-condition are both
true. Thus, the post-condition of member is satisfied. The rep invariant is maintained
because rep$1ow, rep$high, rep$fetch do not mutate any objects, and so c.i. = ct, as in the
case for set$size.

Lemma: Vx:AI [isin(x,i) = has(A(x),i)]
Pf: By sort induction.

Case 1: Let x = create(k)
isin(x,i) "" false
has(A(create(k)},i) = has(empty,i) = false

Case 2: Let x = addh(y,k)
isin(x,i)
= isin(addh(y,k),i)
= if i = k then true else isin(y,i)

has(A(addh(y ,k),i)
= has(add(y,k),i)
= if i = k then true else has(y,I)
True, by induction. (Proof of lemma)I

(Proof of set)I

SECU'ITY CLASSIFICATION OF THIS PAGE (When Dat" Entered) "

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR-299

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A Two-Tiered Approach to Specifying Ph.D. Thesis, June '83
Programs

6 MITfLCISG ORG. REPORT NUMBER

7. AU THOR(s) B. CONTRACT OR GRANT NUMBER(•)

Jeannette Marie Wing DARPA/ONR N0014-83-K-
0125

NSF MCS-8119846
9, PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

MIT Laboratory for Computer Science
AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/Dept. of Defense June 1983
Information Processi~g Techniuqes Office 13. NUMBER OF PAGES
1400 Wilson ~oulevar 163 A_r_lin_o:_:t_n n -IT ? ?) n Q

14. MONITO-RfNG AGENCY NAMEa A(i"ORESS(if different from Controlllnll Of/Ice) 15. SECURITY CLASS. (of this report)

Office of Naval Research/Dept. of Navy
Information Systems Program Unclassified
Arlington, VA 22217 15a, OECL ASSI Fl CATION/ DOWN GRAOIN G

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Report)

Unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Formal Specifications,
Specification

Program Design, Specification Languages,
Analysis, Algebraic Specifications, Abstract Data

Types, Programming Methodology

20. ABSTRACT (Continue on reverse side If necessary and ldrmtify by block number)

Current research in specifications is to the beginning emphasize
~ractical use of formal specifications in program design. This
thesis presents a specification approach,
that supports that approach, and some
tions written in that language.

The two-tiered approach separates the
abstractions

DD FORM
1 JAN 73 1473

from the specification
EDITION OF 1 NOV 65 IS OBSOLETE

::o 'N 01 02-U -014-6601

of

a specification language
ways to evaluate specifica-

specification of underlying
state transformations In

IIn c 1 as s i f i e d

.,

SECURITY CLASSIFICATION OF THIS P..._GE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. .. continued

this approach, state transformations and target proRramming
language dependencies are isolated into an interface language
component. All interface snecifications are built unon shared
language snecifications that describe the underlying
abstractions. This thesis presents an interface specification
language for the CUT programming language and presumes the
Larch shared language.

This thesis also suggests a number of kinds of analyses
that one might want to nerform on two-tiered specifications.
These are related to the consistency, comnleteness, and
strength of specifications, and are all nresented in terms
of the theories associated with specifications.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

