
The MDL Prog ramming Environment

P. David Leblil\g

May, 1980

Laboratory for Com puter Science

Massachusetts Institute of Technology

Cambridge , Massachusetts 02139

' Ilic MDI. Programming Environment

Table of Contents

1. Overview of the MOL Programming Environment

2. The Package System

2.1. ThcThcoryofl.cxical lllockingin MDL
2.2. Package System Overview

2.2.1. Sample PACKAG.E
2.3. PACKAGE

2.3.l. ENTRY
2.3.2. USE
2.3.3. USE-DATUM
2.3.4. DROP :ind 1.·UNUSE
2.3.5. ENDl'ACKAGE
2.J.6. PACKAGE Restrictions
2.3.7. ENTRY Name Connicts

3. Program Writing and Debugging Aids

3.l. l'reny·Printing
.l.1.1. Pt'R INT Control Switches
3.1.2. 1.owcr-levcl Preny Printing
3.1.3. Ampcrs.1nd Printing
3.1.4. 1-'.x~mining the Stack

3.2. The MDI. Edilor
3.2. l. The F.dit 'l.ISTEN Loop'

3.2.l.I. The Reader
3.2.1.2. 'Inc Ampersand Printer

3.2.2. r.dit Commands
3.2.2.1. General
3.2.2.2. General Commands
3.2.2.3. Movement Commands
3.2.2.4. Printing Commands
3.2.2.5. Editing Commands
3.2.2.6. Macro Facility
3.2.2.7. Cursors
3.2.2.8. Breakpoints
3.2.2.9. Edit Monitors
3.2.2.10. Uscr·dcfincd l:dit Commands

3.2.3. Examples
3.2.3.1. Simple Editing
3.2.3.2. X and G Commands
3.2.3.J. Uncondition;ol llrcakpoinis
3.2.3.4. Conditional Breakpoints

12.4. Edit Cmnirnrnd Summary
3.3. Debugging and the Interpreter

Table of Contents

7

9

9
JO
11
II
12
13
13
13
13
14
14

15

IS
16
17
18
18
19
20
20
21
21
21
22
23
24
25
27
28
29
30
31
31
31
32
33
34
36
37

ii

3.4. Loading and Oumping
3.5. ·111c Onc·stcp Debugger

3.5.l. MDI. Debugger Command Summary
3.5.2. Mf)J. lkbuggcr Special Features

J.6. F.xccution Tracing
J.6.1. Using TRACE
J.6.2. Understanding TRACE

3.7. Monitors
J.7.1. Monitor Internals
3.7.2. Creating MONITORs
3.7.J. Monitor F.vents
J.7.4. Killing Monitors
3.7.5. Other Monitor Routines
3.7.6. What You Can't f)o with Monitors

3.8. FIN])ATOM
3.9. "PINFO"

J.10. lkllugging in a Run-time Environment
J.10.1. OFI.
J.10.2. Rf)FL
J.10.J . UN-DFL
J.10.4. UNLINK

3.11. CR !TIC

3.11.1. Global problems with the Group
3.11.2. Parameter list problems
J. I l.J. Unused ATOMs
J.11.4. Function calling errors
3.11.5. Sl'ECIAJ./UNSPECIAL problems
J. l l.6. DECl.ing problems
3.1 l.7. Miscellaneous

J.12. Program Environments

4. The Library System

4.1. Program l.ibraries
4.1.1. Library Searching
4.1.2. f)ynamic Loading
4.1.J. USE-DEFER
4.1.4. USE-TOTAL
4.1.5. Translations
4.1.6. 'Ilic Library Daca file
4.l.7. Run-time Swi1rhcs
4.1.8. l.ibrnry Utility Functions
4.1.9. Internal Library Functions
4.1. IO. l.ibrary Maintenance

4.2. The Pure-mapping Library
4.2. l. The Demon

Table of Contents

The MDL Programming Environment

39
41
43
43
44
44
45
46
46
47
48
49
49
49
50
52
52
52
53
53
54
55
56
57
58
59
59
59
61
61

63

63
64
65
66
66
66
67
68
69
70
7l
72
73

iii The M UL l'mgramrmng Envrronmem

4.2.2. User Programs 14
4.2.2. I. I.isling Functions 74
4.2.2.2. Vind Functions 75
4.2.2.3. Olher functions 15

4.2.J. Using DllMAIN 76
4.2.4. Garbage Collection 76
4.2.5. Internal Structure 77

5. The Compiler 79

5.1. Interfacing lo the Compiler 79
5.1.l. Compiler Functions 79
5.1.2. Compiler.Switches 80

5.2. COMllAT SJ
5.2.1. User interface 83

5.2.1.1. Symbolic input 84
5.2. l.2. 1-ilc names 84
5.2. l.J. Text 85

5.2.2. Combat Questions 85
5.2.J. Requcs1ing Compilations 87
5.2.4. ·How to Ron· Options 90
5.2.5. User Tailoring 90

5.2.5. l. Tailor files 91
5.2.5.2. Create type 91
5.2.5.J. Print type 92
5.2.5.4. Oclctc type 92
5.2.5.5. Alter type 92
5.2.5.6. Lood tailor. Replace tailor 92
51.5.1. Xerox tailor 92

5.3. 1nc Compiler (Internals) 92
SJ.I. How it Worlts 93

5.3.l.l. COMPILE and COMPILE·GROUP 93
5.3.2. Modeling Pass 94
5.3.3. Analysis Pass 95
5.3.4. ·inc Type Analysis Model 96
5.3.5. 1.ife·and·Dcath Analysis 97
5.3.6. ·me Variable Allocation Pass 97
5.3.7. ·111e Code Generation Pass 98

6. Making It Run Faster 103

6.l. GLUE 103
6.1.l. llow to Gluc 103
6.1.2. Gl.UE as a Program 104

6.2. Gluc Bits 105
6.3. !'DUMP 105
6.4. SUORFY 106

Table of Contents

iv
The MDL Programming Environmcm

6.5. Puri ficalion
107

6.5.1. Purifying RSUBRs
108

6.5.2. Purifying an Environment·
109

6.5.3. Purification Summary
110 6.6. TF.MPl.ATEs
110

6.6.1. Use ofTEMPLATEs
111

6.6.2. Assembly of TEM Pl.A TEs
113

7. The Assembler
115

7. I. "Ilic Assembler
115

7.1.1. General Organization
115

7.l.2. ll1c Assembler as a Program
116

7.1.3. Fonnat of i\s.~embler's Source
116

7.1.4. lnstn1c1ion Assembly
116

7.1.5. Initial Symbols
117

7.1.6. M<icro Writing
117

7.1. 7. Pseudo Operations
118

7.1.8. The Type RSUBR
120

7.1.9. Writing Gluable RSUllRs
121 7.2. Debugging Binary Code
121 7.3. Unasscmbling Binary Code
U2

8. Info rmat ional Aids
125

8.1. File Comp:irison and Checking with M UDCOM
125 8.2. "Ilic MDI. Listing Program MAT
126

8.2.1. MAT Switches
127 8.2.2. Subtitles
128

8.2.3. MAT Definition
128

8.2.4. MAT Record Files
131

8.3. '111e MDL· I PC Device Interface MUDINQ
131

Index
135

Table of Contents

Inc MDI. Programming Environment · l

INTRODUCTION

111c Mill . language is described in .. Inc Mill. Programming l,1ngpagc· (J]. but in oddltion tu the language

itself, there is a rich and varied collection of software written in the language which facilitates the writing of

programs and s~stems of programs in Mm_ ·1ne infunnation describing ll1is prugrnmming environment has

been coniaincd in vanous documents. some out or prim or out or date. and in supplement.ii disk lilcs

dcscrihing changes and additions. Some of the pack:1gcs of functions used 111 deal with Mt >t cnde have never

been fum1;illy ducumemed. ·nils manual bring~ together some of that scattered documentation.

·n1c document's purpose is to flesh out the description of the langungc cuntnincd in .. Ille Mm.

l'rogmmming l.;mguagc.' gil'ing a fuller description uf the progrnm writing and debugging <tid~ available to

Ml>I. users. to describe 1hc methods for producing code u~blc hy oll1ers. tu describe' the Mn1 compiler and

!lie many other techniques for producing and speeding up MO!. object code.

' Ilic inwgincd reader nf 1l1is document is someone who has re<1d 'Inc MDI. Programming 1.anguage: and

now proposes to write pr<>grnms in Mm_ po~ibly even very large programs. Mn1 packages that he would

find useful in tho pro1:rss of doing so arc dcJCumentcd here: cdimrs. debuggers. etc. Packages that he might

wi~h to use withi11 his program arc nut included: d<lta·management systems. cumm.md interpreters, etc.

"lnis document is of necessity highly sclf·refercn~ as many of the com1>110ents of the M1>1 programming

environment refer to c:och other and adhere to the same conventions. Additionally. this document assumes

lltat the reader is familiar with the language itself (at least to some degree) and will1 the ITS. TENEX. or

TOPS· 20 operating systems.

INTRODUCrlON

2

'\CK NOWl.EDGMENTS

' Ilic MI }I. l'r.,grnmming l'nvironmcnt

AC l<NOWLEDGMENTS

The programs described in this document arc Lhc products of mm1y man-years of effon by many people.

Mnst have been 'touched ' by several programmers. mlded to nnd improved l)vcr the)•cars.

Some of the people responsible for the programs mcutiunc<I m this Jocument ;irc: Chris Reeve (Mill . the
'

cumpilcr. GLUE): ll1ian Berk,1wit1. (Ml>I. the compiler. TEMPLATE. SUORFYJ: Broce Daniels {MOL, the

co111pilcr. PACKAGE. PPR JNT. DEOUGR. ASSEM); Tim Ande™m {PACKAGE. the 1.ibr;1r). F !NDArOM. OF L.

CmlllAI. MUll11'Q): Neal Ry;111 (ED IT . POUMP, thc ll'C imcrface): Marc Jll;ink (M,11. MUIX'OM. MONITR.

CmlllA'I , EDIT. CURSOR): D;iriJ l.chling (CRJT IC. ED IT): Mithacl llr11os (the l.ihr;1ry): Ruger Banks

(TRACE): Greg !'lister !PPR I NT): Juel llcrcz(EO IT).

(M1>st of Lhe ducumcn1:i1itrn subsumed in this 111;1nulll i~ from published anJ unpublished memos of the

l'mgranuning l'cd111ulugi Division uf the M.l.T. l.:ihm;olOf)' for Curnputer Science. J\s a general rule.

updates ;md rcrisions to Lhis and other l'J'I) documcms concerning Mill. arc av•1ilahlc unline in the directory

"MUDMAN" at MIT-DMS).

J\CKNOWl.EDGMENTS

I he M l>l. l'rugramming Environment

NOTATION

·111r M ()I. Programming Envimnmenl 5

NOTATION

Anything which is written in the Ml)l. languagc or which is typed on a computer cunsolc appears herei n in

a typewriter fom. as in PPR I NT. A metasymactic variable ·· something 10 be replaced in acuml use b)'

something else ·· appears as c/1m111el. in an italic font. Where a meta·syntactic variable is being used lO denote

a requ ired argument 10 some function. ii appears as before. bu! underlined. as clinm1e/.

In the argument templates of Mill functions. the individual arguments arc nfien given in the form

11rg11111P111:1ypP. where arg11111P11t is a "descriptive· name for the :irgumcnt, and 1ype is il5 MDI type (or range of

1ypes). In such enses. the "type" boo/eon indicates an .irgumem that is only c~amincd for Lnllh ur folsily. and

not for any of its utl1cr qualities. Such argument~ in Mill. nre often declared «OR A TOM f ALSE> ".

Finally. lik names nrc given us though for the ITS operating system:

dp1·it-e: s1111111e ;fi1111 / fi11112

' llte analogous specification for TENEX or TOPS· 20 would be

de1•ice : < s11a111e> /11111 I .fim12

Nute Lhal in the TENEXfl"OPS·20 version of MDI, the fi1111l (which may include the grnemtiu11 number,

prvtectio11 and acn -1111 lie Ids) is by default • MUD• as opposed to • > " for the ITS version.

NOTATION

5
Ilic MDI. Programming Fnvironmcni

1.0

The MDL ProgrJn11ning Envimnmcnt

1. Overview of the MDL Programming
Environment

7

The pans of the MDI. programming environment described in this document arc primarily th()SC dealing

with the writing. debugging, sharing, and maintenance of code and programs wriuen in M 111.. Most of the

p:1dages described herein arc written in MDI themselves: some arc assembly language programs useful 10

M DJ programmers.

The document is divided · into chapters de:iling with the major issues facing the nnvicc (or even the

experienced) M Ill. programmer.

- "ll1e l~1ckage System' introduces the stnndard mechanism for lexical blocking ;md therefore,
slrnring of Mill . code. Understanding its use is fundamenwl to writing M 1)1 . programs.

- 'Progrnm Writing .md I >chugging 1\ids' is the 1.1rgcsl chapter. It covers mC'Chanisms fm loading.
dumping. editing. ""d debugging M1>1 code. whether interpreted or compiled. in a development
or a product inn environmcnL

- 'The Library System· discusses the usage of libr;1ries of M Ill programs.

- 'The Compiler' includes the specifics of inlcranlun with tlle Mrn compiler. as well as an overview
of the theory behind iL~operation.

- 'Making It Run Faster' covers the ' 'arious methods fur speeding up 'production' Mm. code by
removing mediated calls and compacting data stn1ctures.

- '111c Assembler' documents the MDI. assembler and some methods of debugging binary code.

- 'Informational Aids' discusses a few programs, mos1 wriucn in assembly lang11agc rather than
MDL. which arc useful lo the MDI. programmer.

1.0

8 Ille Ml >I. Prngrammmg Environment

l.O

The MDI. l'rogrnmming En,.ironment 9

2. The Package System
·111e ponilln of the MDI. environment which.provides a uniform facility for lexical blocking is known as the

Package System. ln one sense it is tl1e most basic pan of the envirunmenL since it enables many programmers

tu use each othcr"s code without identificrconnicts.

In addition. the Package System is interfaced lo a library fol)hty (sec section 4) by which Mill. code may

be stored ;ind later loaded as needed.

The P;ickage System is so basic Lo use of the MDI environment thm (with a fe11 exceptions) every

subsystem or family of MDI. functions described in this document is a 'package'.

2.1. The Theo ry of l exical Blocking in MDL

Lexical blocking is implemented in Mm by mc;ms uf OBLISTs and LISTs of OBLl STs. Changes of

lexical context arc performed using the SUBf1s BLOCK ;111<1 ENDBLOCK. 'lhe l';.:kage System provides a

high·levcl i111crface to these low·levcl construct~.

·me primary goal of a lexical blocking scheme is the prevention of identifier conflicts. Specifically, when

your program references the varial>lc X. it should be yllur X ;,ncl nm that of some other program. J\t the same

time, it should not be necessary fora programmer to search every program previously writt~n to verify that an

iden tifier he wishes 10 use is not already 'taken'.

IL should be clear that the simplest solution. a single OB LI ST. will nm s.1tisfy either of these gonls. With

only one OBLI ST there would neccs<;arily be identirier connicts. necessitating exhaustive searching for unique

identifiers.

Obviously, programmers could put their program's identifiers on an OBLIST unique to that program.

Unfonunatcly. such a solution addresses only half the problem. Whal happens when some other programmer

wishes to use some of this code? He could insert the unique OBLI ST forLhat program into the OBLIST path

for his program: but the moment that is clone he gets all the identifiers for that program, including local

variables. internal data structures. and so on.

Consequently. we move to a situation where each progrm~ uses two OBL IS Ts: one for the iclcntiliers that

arc local to the program, and one for the idcmifters that nre to be used by other progrnms. In the Package

System. these arc known as tlie 'internal' OBL IST and the 'entry' OBL I ST.

Most of the identifiers in a program arc local to il. and want to be placed on the internal OBLISl.

2.0

10 ' lhe M l>l. l'rogrnmmmg Environment

n1ereforc, in terms of an argument 10 lhe BLOCK SUBR, when a pwgram is being loadctl into Mm, the

OB LIST path wanlS to be:

(i111emal·oblisr
e/l/l)"Ob/is/
<ROOT>)

Witl1 th is OBL IST path. most ATOMs (identifiers) will he on the in ternul OBL !ST (as READ pu ts unknown

identifiers on <I . DBLIST>l. but the ATOMs for the entries ;md !he ATOMS fi1r tl1e usual SUB Rs will be

available.

·111e only issue yet 10 be addressed is that of using an entry of a different progrnm in your program. This is

accomplished by aduing the en1ry OBL I STs uf any such 1m>grams Ll• the path after ROOT:

(i111rm11/·oblis1
e111l)•oblist
<ROOT>
<11 /1 r1· progra 111-e111 rr obi isl
) ·e 1 ·a nm hr,. pro g ra 111 • r111 rr obli st

I ')

As only the entry OBLIST. and no1 the internal OBLIST. nfthe program being used is i!dded to lhc path,

the chance of identifier conflict is lessened.

All that rcm;iins is to imroduce the functions by which these various operations arc performed

2.2. Package System Overview

The functions which make up the Package System are:

- PACKAGE. This indicates the Slart ofa package of functions.

- ENDP~CKAGE. This indicates the end of the package of functions.

- ENTRY. This indicates an ATOM which is to be made available oulSide the definition of this
package of functions. All other ATOMs will nm be directly available outside the package.

- USE. This indicates a reference by name to <lllother package of functions.

- USE -DATUM. This indicates a reference by name to a data set

- DROP and L-UNUSE. These undo the effects of USE and USE - DATUM.

These functions arc themselves pan of a pnckagc named •PKG•. which is preloaded into Mm ..

·111e Theory ofl.exical Blocking in MDL 21

f'he MDI. Progr.unming Environment

2.2.1. Sample PACKAGE

/\sample Mrn PACKAGE is given with C<lmmenL~ in order to demonstrate Ilic usage of these fu nctions.

<PACKAGE "HOUR- STRING">

;"PACKAGE begins the package called HOUR- STRING."

<ENTRY TIME-STRING>

;"The atom TIME-STRI NG is an entry to this package;
it may be referenced by other packages by
USEing HOUR-STRING.•

<USE "DATIME">

;"Indicate that the package DATIME is
used within the current package.•

<DEFINE TIME-STRING ()
<STRING <U NPARSE <HOURS>> " o ' clock">>

; "Define this litt le function which returns a string
te ll ing the last hour in a strange format .•

<DEFI NE HOURS() (1 <RTIME>>>

;"Define an internal fun ction which is available
only within the HOUR- STRING package , since its
name is not in any ENTRY statement.
Note that this function refers to RTIME ,
which is an ENTRY in the OATIME package."

<ENDPACKAGE>

;"The end of thi s little demonstrat ion package.•

2.3. PACKAGE

l J

·mis function delimits the beginning of a p;ickage of functions. It takes one required argument, a STRING,

which is the name of the p<J<:kagc. 'll1is STRING uniquely identifies the package ll'ithin a library of packages

(sec section 4).

In a PACKAGE those ATOMS which arc specified as entries Ji ve in a separate OBLIST uf thdr own, called

the entry OBLIST. ·111c ATOM naming this OBLIST is on Ilic PACKAGE OBLIST antl has the same name as

the PACKAGE itself. Thus. an entry 'X' of a PACKAGE 'Y' would have as its 'fu ll·trailcr' name:

X! - YJ -PACKAGEI - .

PACKAGE blocks (seis up) the current OBLIST path so that lhc ATOMS which arc intcnwl to the PACKAGE

2.2 Package System Oven•icw

12 I he MDI. l'rogr.muning Environment

f.111 into an OB LIST which is not othcrwis<: used. The A TOH nammg this OBLIST is on tlie entl) OBL!ST oi

tile PACKAGE. and 1s by default given a n.ime created hy puttmg the cha racter · J' at the beginning of the

?llCKAGE's name. An intem~l ATOM T in the PACKAGE ·y pre\111usly menttuned would have 1s 11s

'fu lHra1lcr' name: Z ! -IY 1-Y I -PACKAGE 1- .

PllCKAGE also keeps trnck of the f.ict that the particuk1r PACKMiE n.uned hns been defined In this MDL

proces.'. h~ putting its name on the PllCKAGE OBLIST.

{PACKAG E 11ame:str111g
111a111r:vtri11g
riu:jix
1$/te:fix>

PACKllGE Likes thrt<' uptiuual ,1rguments m addition 10 the required one (the upuon.il .irguments ·Ire

ignorecJ if 11111111' i~ 11lrcady n P l\CKAG E):

11111mc 1s the name of the internal ODL IST uf the PACKAGE; by defoult JI is the name of the PACKAGE with
the lcucr . r prclhed.

me 1s the numher ufbuckeL~ in the entry ohlist: bi default 19.

isizr is the number of buckets in the internal ohlist: by dcrault 23.

In ottlditiun to PACKAGE. there exists the obsolete function RPACKAGE. documented here only because

some prugrnms still use it 'Ilic difTcrcncc between them is that the ent1y OBL l ST for an RPACKAGE is !.he

ROOT OBLI ST. The implication of msemng an entry into the ROOT 1s that tliiHcquircs that the name uf the

entry be unique over all PllCKAGEs. bccm1sc the entry is. in effect. hcin~ promoted to the status of a SUDR. It

is (in rare cases) useful 10 do this. but the correct "ay is "ith the functton RE NTRY (sec section 2.J. l).

2.3.1 . ENTRY

·nic ENTRY function applictl to one or more llTOMs declares that these ATOMs arc to be put into the

OBL !ST rcscf\cd for entries in this par11cular PACKAGE. Only ATOMS declared in this way will be oo:css1ble

(in the normal coul"IC of cvenl~) to function~ outside this PACKAGE.

It i~ possible 10 place some entries uf a PACKAGE on the ROOT OBL I ST using the function RENT RY. It is

rcconunended !.hut instead of using RPACKAGE in those r.irc cases where entries must go on the ROOT.

RENT RY be used in~tcad.

/\II ENTRY statements should appear immediately after 1hc PACKAGE or RPACKAGE statement Note:

never put a USE statemcnr before the ENTRY Sllltcmcnts: if you do. you may get the ERROR message

PACKAGE

Ilic MDI. l'rogramming Environment 13

ALREllDY-USED-E LSEWHERE. rnc;ming thm lhe name of an entl} isconnicting with an £NT RY in one oFlhe

PACKAGES }OU USEd. ENTRY will also gl\e an ERROR iFil is used ouiside lhc bod} uf a PACKAGE.

2.3.2. USE

' ll1is Function takes as argumenL~ one or more STR I NGs which arc the n;imes (as given Lu PllCKAGE) or
Olha PllC KAGEs. EXTERNAL is a synon)'tn of USE. USE ~auscs lhe entry OBL IS Ts of the PACKAGE S named

tu he spliced into lhc current OBL IST path. Thus. references LO entries of those PACKAGES may be made

aflcr lhc USE. until lhc nexl E NDPACK AGE (or lhc ncxl DROP or L -UNUSE if USE is being in\'Oked ouiside a

PACKAGE Ul load a file).

USE i~ consequently lhe rncchanL~m for sharing code. If the PACKAGE hcing used is already loaded. iis

cnmcs ;nc made available: if noL the PACKAGE is loaded first !sec section 4.1 fur dct.1ils on how lhis is

acwmplishcd).

2.3.3. USE-DATUM

USE-DATUM requires one srn I NG argument. the name of a dalll set. If the data set is not loaded,

USE ·DATUM loads it and crc;itcs an ATOM of the s.1me name. on lhc USE -DA TUM OBLI ST. whose GVAL is the

dau1 scl. USE -DATUM ;1lways EVA Ls 10 the da1.a set named. regardless nf whether il had 10 be loaded or not

2.3.4. DROP and L-UNUSE

'l11csc functions take lhe same argumcnlS as USE and USC-DATUM and undo their erfcclS.

DROP simply splices lhe named PACKAGES oul of lhe current OBLIST palh. A USE of a DROPpcd

PACKAGE will nol reload lhe PACKAGE bul simply splice il back into the OBLIST palh.

L·UNUSE splices the PACKAG E oul and removes ilS name From the PACKAGE OBLIST. which will cause

the entire PACKAGE lO be reloaded if il is US Ed again. L -UNUSE of a data set will remove it~ ATOM from the

USE-DATUM OBLIST.

2.3.5 . ENDPACKAGE

Ilic ENDPACKAGE function or no dtg11men1S terminates the definition of lhe current PACKllGE and

undoes lhe lexical blocking done b> lhe PACKAGE function. 'lbc ENDPACKAGE sunemem should be the last

one in lhe file.

2.3 PACKAGE

14 Inc MDI. l'rogramming Environment

2.3.6. PACKAGE Rest rictions

l'hcrc arc some restrictions on what the user may do inside a PACKAGE. These arc enforced by the Library

System when the user attempts to submit a PACKAGE to a library.

,\ PACKAGE should not FLOAD or LOAD any file to obtain parts of itself. /\II such cnvimnmcnt setup

should be dune with USE and USE-DA TUM.

I\ PACKAGE may not reference any ATOM whose OBLIST path goes through the I NITIAL OBLIST. All

of a PACKAGE·s nun·cntry ATOHs should foll naturally into the PACKAGE's internal OBLIST.

/\s 111cnth111cd before, the RENTRY~ ofa PACKAGE h;l\'e the same OBLIST sratus<1s SUBRs. i.e .. they must

be unique anmns hoth all SUB Rs ;111c.l .1ll PACKAGE entries.

2.3. 7. ENTRY Name Conflicts

It is (JQS~ihlc to have two or more PACKAGES (not RPACKAGEs) which have c111ries (nut RENTRYs) with the

~1me PNAME. If the user needs huUi PACKAGEs ;it the Sllmc time. he may USE them both ilnd refer to the

ambiguous entries by their 'full trnilcr' names. /\II of the non-ambiguous entries in both PAC K AG Es may stiU

be refcrcnccc.l by PNAHF only.

P/\CKAOE 2.3

111~ Ml>l. Programming Environmcni 15

3 . Program Writing and Debugging Aids
'l11is chapter conccntral<'S on cdi1ing and debugging aids for MDI programming. ·111~ basis for cdiLing and

debugging in MDI. is twofold: 1-'irst. MDL is an interpreter. which permits i111crac1ivc testing and debugging

of software. Secondly, MDI. programs (even compiled Mm. prngr;uns) arc structu res and therefore may be

m:mipulutcd ~Y other M Ill. programs.

Pack;igcs useful in editing and debugging range from EO IT and PPR I NT . which arc preloaded. and which

fonn the core 1>f most <'di1ing or debugging systems. 10 mnrc sophis1ica1cd aids such as DE BUGR and TRACE.

which arc mnrc powerful. :md useful for more complical<'d debugging.

h should he noted that, in addi1im11<1 thc cdiwrs discussed bch1w. RMOlll' [5] :md EMACS [2]. T ECO based

l<'•l editors. undcrs111nd much nflhc synwx and many oft he c1Hl\'Cl11i11ns ofMl>I programs.

3.1. Pretty- Printing

' Ilic puq>ose of prcuy priming is lU cl:1rify the structure 11f Mrn objects by printing them in a more

hunwn·readablc format than that provided by Lhc SUBRs PRI NT. PR INl. <'IC. Objects ar<' prrny-printed

through the judicious inscniun of sp:>ecs. tabs. and new· lines bc1wc<'n tokens. 1'rc11y·prin1ed objects arc

readable by the M1>1. RC'ader. l'reuy prinLing is an aid to understanding and debugging MD! FUNCT IONs or

other objects. You will probably fi11cl prmy printing to be eAlremC'ly h<'lpful. especially if you arc worki ng

without a listing or with an old listing. In focl, preuy-printing is one way IO make a new prcuy listing al\cr

<'ditl ng. PPR I NT is pre· loaded in mosL initial M1>1s. "111<' 1wm<' of the packag<' cont:1lning PPR I NT is "PP"_

<PPR INT am• channel>

preuy-prints a11y on channel. The second argument is opiional. by defoull .OUTCHAN. If n11y is an ATOM.

PPRINT will enclose it in an application <>fDEFINE, DHMAC, SETG. or SET. as seems appropriaLe.

COMMENT s found inside any arc righ1·jus1ificd. PPRI nT cannot output :m RSUBR without FI XUPs (that is,

one that was READ in while KEE P- FIXUPS (sec sccLion 3.4) had no LVAL or had a FALSE LVAL); ii will

give lh<' ERROR mcs-.1g<' CAN-NO T-BE-DUMPED. PPR INT returns . NULL. which is an ATOM whose PNAME

is a single rubout. invisible on normal consoles.

<PPR l N f in: stri11g·11r-m11111·11r-/is1 uutji/e:string
wiJth:fix <'••al?:boo/ean>

prc11y·prinl~ all the content~ of i11 i1110 outjile.

If in is an ATOM or a LI ST of A TOMS. lts VALUE(s) arc the objects w be PPRI NT ed. In t11is case. uutfile is

by default a file whose first name is produced by wking Ilic PNAME of i11 (or ;,,-s first clcmcnL if i11 is a l IST).

3.0

16 Inc MDI. l'rugramming l'nvironmcnt

i i11 is a STRING. if specifics a file containing objects to PPR INT. In this case. uutftlt is by deiault

'TPL: ".

width is the maximum width of uutput lines (illlhough omput lines urc prevented from being ex tremely

lung): it is optional. by default< 13 . OUTCHAN>.

t 1•a/? tells PPR INF whether or nm to EVAL el'crything in the tile: it is nptionul. by tlcfoult a FALSE (don't

EVA L). t1'tl/? is mcani nglcss if i111s nm a STR I NG.

PPRINF returns either "DONE" 11r a FALSE if it couldn't opl!n i11ftle or 1111tftlr. PPR INF inscr!S page

l>uund.1rics in u111jilr. bctv.ccn objects. C\Cf) 60 lines or fewer: you may w;rnt w mll\e thC'>C afit'rv. ard to more

tusic:ill pbccs. PPRI NF binds KEEP-FIXUPS ,md REDEFINE to l , .111d QUICKPRINT (sec lx:lowl to a

FALSE.

3.1.1. PPRINT Control Switches

r>PR I NT's output is affected by the local values of several A TOMs. Each value is exanlined only for truth .

. QUIOKPR INT

If th is AT OM's LVAL is a FALSE. you arc in slow mode: otherwise (including the case of no L VAL). you arc in

fost mode. 'Inc behavioral difference is this: in fost mode. tl1cre may be COMMENTS in the preuy·printcd

Clbjcc:t(s) which PPR INT misses. Also. fast mode is indeed faster than slow mode. Fast mode i~ the defaull

th.it is. OU ICKPR I NT is initially true. Ille modes arc really distinguished by lhc depth of recursion to which

PPR I HT rcsons. In slow mode. it recurses all lhc way down to C\CfY monad in !he 1hing prcuy-printcd: in

fast mode. it goes down only far enough to find something lha1 will tit on a line .

. LOOKAHEAD

PPR INT uses full recursive lookahead to avoid packing things agains1 !he right margin and. as a rcsull not

being able to lit lhings within the right margin. ' Inc lookahead rcsultS in very good form;111ing of

deeply-nested MAP Fcd and FUNCT IONs: all but 1he most bizarre cases should be very legible. However. it

can result in noticcitble ·pauses· in the printing npcmtinn and. in some cases, a net speed slightly less than with

limitc<l luokahcad. Since tltis can be a disadvanlage when using PPR fNT interactively on a hcavily·luadcd

;y~1cm. the loukahca<l can be disabled: if lhc LVAL of LOOKAHEAD is a FALSE. no lookahead will be

pcrfonncd: otherwise it happen!>. LOOKAHEAD is initially true, that is. lookahead happens by dcfaull

.VERT ICAL

If LOOKAHEAO is a FALSE. the forma1ting can cause too many objects to be squeezed ag;1inst the right

margin. So lhat particular cases can be made legible. 1he format when lookahead is not in use can be

manually set: if the LVAL of VERTICAL is non·F ALS~. PPRlNT will indent very little whenever indenting is

Pretty· Printing 3.1

'Ilic MDL Progrnmming Environment 17

called for. (VERT !CAL being true means a 'more vcnical' fonnal.) VERT I CAL is initial!) f ALSE. 1hc value

of VERTICAL is ignored when LOOKAHEAD is true; the lookahead errectivcly chooses different values for

vrnTI CAL fur dirrerem par1s of the object pretty· primed.

3.1.2. Lower-level Pretty Printing

It is sometimes desirable lO ·USe some of the functions thal PPR INT uses. lnll in a dirTerent way. For

e~ample. a specialized pretty-printer for Program Abs1rncts would wan! !Cl inscn indcn1cd field names into

the output and preny·print field values wilh the s.1me indenwtion. The names of luwer·IC\'el pretty-print

functions arc included in 1he ROOT OBLIST fur such purposes.

<EPRI NT !!!JX lrf1·111argi11:fix>

preuy·prinis any on . OUT CHAN to tl1e right of lrft·111argi11. ·n1e second argumen1 is optional. hy de foul I

<VALUE LEFT-MARGI N> (see below).

< E PR IN 1 ill.!.l: lrfl-margi11:fix>

[f'n IN 1 is t0 E PR! NT as PR IN 1 is 10 PRINT •

• LEFT ·MARGIN

This is the ATOM that EPR I NT binds 10 iis Sttond argument. You can SET it ou1side calls 10 E PR INT in order

10 make a pe1mm1crit left margin. lis initial LVAL is O.

<INDENT· TO ro/1111111:!ix channel>

outputs ~1bs and/or spaces to ;idvance the outp111 column (< 14 cha1111PI>) to co/1111111. if ii is nm already past.

<COLPP Q1!J!
channel
lrft·mnrgin:fix
righ1· 111argi11 :fix>

pre1ty·prints n11y on cha1111e/ (by default .OUTCHAN) between the margins le/1·111arg111 (by default

<14 cha1111el>. the current column) and rigl11·111argill (by dcfaull < 13 d1am1ef>. the rightmost column). All

arguments bu! the first arc optional. COLPP returns , NULL . For e~ample,

<COLPP any .OUTCHAN 10 70> would leave a IO·charnc1er margin at lefl and right on an 80-column

OUTCllAN. Also,

<PROG () <PRINT AAAAAAAAAAAAAAA> <COLPP ,FOO>>

would result in output like .

AAAAAAAAAAAAAAA #FUNCTION ((X GGGGGGGGGGGGGGGGGGGGGG)
(+ x 1>)

£PRINT, EPRINl , and COLPP arc affected by lhc truth of .QUICKPRINT, . LOOKAHEAD, and

. VERTICAL.

3.1 Pretty· Printing

18 !lie M!Jl.1'rugr.1m111ing rnvironmeni

3.1.3. Ampersand Printing

· ·\mpcrsand printing' consists of printing any object on <t single line by using the chnracter & (ampersand}

10 mean There's more stuff here: ('ll1is technique is burrowed from the lnterl.isp editor.)

·n1erc arc two ways in which & is used by this printer as an abbrc~iation:

l. An & appearing between some variety of brackets indicate-'that there is J big object of the
indicated TYPE there.

2. 'Inc chamcters .. & or & .. on the lcfl or right of a stntcturc mean that 01cre arc more objects to
the leli or right which hnve nut been printed.

F.x:1mplcs:

#FUNCTION ((AB C 0) <&>)

l11is L' .1 FUNC r ION with four nrgumcnts in its argument LI ST. and the fUNCT ION hody com;1ins one FORM

"'hich ""s mo big to print in the remainder of the line.

(PROG () <KRK <+ .A 5>> <PRINC .Q> <SET BAR <ORG>> <&> & .. >
·111 is is" litrge FORM, nnmely, u PROG. In ndditiun to the clement~ primed. 01crc ure murc clements to the

right. and there is one FORM which was too big to fiL

/\mpcrsand printing is effected by rwu pure RSUBRs: &. analogous lO PRINT. and &l. analogous to

PR IN I. 1\ related RSUBR, &LIS. can be applied to nt• arguments w put you into an endless READ - EVAL -&

loop. instead of the nom1al REAO-EVAL-PRJNT loop.

3.1.4. Examining the Stack

<FRM JM.>
returns lhefuth FRAME down from the top application uf ERROR or LISTEN.

<FRAMES ho,.,.111011y:fix starl:frx>

prcuy·pnnts ho,.,.111a11)' fRAMEs (by pnnting !he FRAME number (suitable as an argument 10 FRM). FUNCT.

;md ARGS of ti1e f RAME). st.1rting with < f RM s11ir1> • Both arguments arc oplionnl: start defaults tu O. and

bow-1111111y defaults to a large integer. I\ FRAME whose FUNCT is itn ATOM "'husc VALUE is an FSUBR is not

printed. if the s;,me information is found in the next lower FRAME.

<FR& how-mony:fix start:frx>

is like FRAMES but uses ampcrsomd printing instead ofprcuy printing. It is handy for summari1ing FUNCTs

and ARGS that arc large or unprmtablc (like RSUBRs with no lbups).

l'rcuy-l'rinting 3.1

I he MDI. l'mgrnmming r.nvironmen1 • 19

< f RAT M hot<·ma11y:fix s1an:fix>

is like FRAMES but gives nn abbreviated view of lhe stack. 1t prints FUNCTs unly. and only for FRAMES

lunncc1ed with named FUNCTIONS. RSUBRs. :ind RSUBR-ENTRYs. 11 is hnndy when a FRAME contains a

11un·LEGAL? objccL

<FRLVAL l!lfl!!l
hot<·111011y:ftx
S/Ort.jix)

prmts out the stXked bindings of atom. going through hm1•1111111)' FRAMES. starting "ith < F RM s1an>. ·me

tv.11 numeric argumems arc optional: ho.,...mmlJ' defaults to a forge integer. and ~wri defaullS to 0. ·nu:

lonnat of the printing is two columns: the lirs1 column is the number of 1hc FRAME in which 1m1111 h;1s a

ln11di11g: the sccunu column is the value bound. or 11 mcssnge proclaiming the lnck of a value.

< FR&V Al lllil1IJ
lto1i>111a11y:fix
S/Orl:jix)

is prccisclr the s.1mc ;is f Rl VAL. except that 1hc vnlue> arc ampcrs.1nd printed inste;1d of PRI NT ed.

F11wlly. the "F RMSP" PAC KAGE con1ains an:ilogucs of many of the preceding funwon,;. but each lakes as

i1~ first argumeni a PROCESS. by default <ME>. These arc all named by adding u ·p· to 1hc end of1hc usual

name. for example,

<FR&P <HAIN»

dues a <FR&> in the PROCESS MAIN.

There is one nddi1ional function ofin1crest in "FRMSP".

< F RT y PE lrCJkNllOny.jix s1ar1:jix>

is like FRAMES. bu1 gives only tlic TY PEs of tlic arguments to each. 111is is useful in those si1ua1ions when tlie

stack shows illegal FRAMES or otl1cr unprintnblc objccis.

3.2. The MDL Editor

EDIT allows a Mrn user 10 make incremcnial changes in Mrn. struemn.'d objects. without lea1•ing Ml>L

and with the ability w save 1hc results in a file. and tu set or clear conditional breakpoints of various sorts in

objects that will be evalu.11ed. s11ch as FUNCTIONS.

EDIT is an cdnor/dcbuggcr wri11en in, wri11cn for. and running under MDI.. It comprises the package

·con• and sc•eral smaller packages which 11oi11 be mentioned la1cr in tliis section. EDIT is preloaded in

mosl initial MOLs.

To s1an editing, appl) EDIT lo no arguments or lo lite name of the object you wish lo edit: <EDIT>

3.1 Pret1y·Prln1lng

20 lhe Ml>l. l'nigramming Environment

causes entry imo EDIT and opens the last object edited: <EDIT objcc1> causes emry imo EDIT and opens

r1bjrc1 for editing. Permissible objcc/S include:

- ATOHs. Inc GVAL (prcfcrabl)) or the LVAL of the ATOM is opened. If it has no 1atuc:. EDIT
returns a f ALSE.

- "PR IMTYPE LIST. ·111c PRIMTYPE LIST is opened.

- /\ FIX. ·inc s1ack frame wilh lhal number is opened (i.e .. <ARGS < F RM fix»).

l'art of ED n·s efficiency comes fmm forbidding it to delve into objec1s 1.h.1t arc not of PR IHTYPE LI ST.

lhJt is. not L ISTs. FORMs. FUNCTION-;. etc. /\nempL~ to edit ohjccts of other PR IMTYPEs will result in error

messages. ThC\C ohjecl~ can. however. be treated a~ units when inserting. searching. etc.: or they can be

change<.! into LI STs. edited. an<.! then changed bad to their original types.

3.2.1. The Edit 'LISTEN Loop'

3.2.1.1. The Reader

When in ED IT.)OU arc typing at o special. nun·standard. input function: The ED IT Reader.

The Reader allows you to type ED IT commands and have them executed. and also to e'aluatc MOL

c~prcssions normally. Its characteristics arc as follows:

- As in the normal MDL Reader. nothing is dune until you type ESC. DEL. tl. tD. tG. and tS also
work normally.

- /\II ED IT commands arc tcnmnatcd when an ESC is encountered in the input stream. In
addition, most commaml~ will terminate whenever the maximum number of arguments required
has been input or whenever an argument oflhe wrong type is encountered. In the former cusc the
next object is taken as a new command: in the latter cnsc Lhe object of the wrong type is taken as a
new command. ED IT commands may be ty~d in either upper or lower case.

- If you type something that EDIT docs not rccogni1.c as a command. nonnal Mm. evaluation and
printing arc performed on that something. This evaluation will ha"e nu effect on your PQSiLion in
the object you arc editing.

- While edi ting a function whkh is part of" PACKAGE (detcnnincd from ~n cxaminminn of the
OBL IST conuiining the ATOM whose value is the function), EDIT caus•'S the OBL !ST path to be
set up to what it was in the environment of lh•t PACKAGE. This has the ml vantage of reducing the
number of trailers printed. and causes newly entered ATOHs 10 fall on the correct OBL !ST (the
intcrnJI OBLIST of the PACKAGE). h has the slight disadvantage lhat it disables the dynamic

loader (which depends on unhound variabl~ falling on the !NIT JAL OB LIST). If the GVAL of
E-PKG is a FALSE, this fc11turc is disabled, and the nonnal OBLI ST path is in effect during

The MOL Editor 3.2

I h~ MDI. l'rogrnmming Environment

editing.

Examples:

R 5$

Causes execution of ED IT command R. with argument 5.

<R 5)$

Causes applicminn of the function R to 5.

3.2.1.2. The Ampersand Printer

21

Ynur currcm positimi is dl,playcd by ·nmpcrs:md priming·<= section 3.1.3). This cn"'ists uf priming any

•~>JCCI on" single line h) using the char.icier g. (.1mpcNmd) to mean 'lllcrc·s more stuff here."

The ampcrsnnd printer used in EDIT is mu~h like the ~tandard one, with the ;iJditiun that your current

flt"itinn (sec below) is displ:1ycd by 1hc glyph I .

When ynu initially enter ED IT. >•R• arc in a mode called ·mm·,crhnsc: in which ;imrx-r1;md printing is not

.1111oma1ically done following execution nf ED IT commond~. ·n1c V command is useJ to t11gglc you in and out

nf verbose mode (sec below).

faamplcs:

#FUNCTION (I (A B C D) <&>>

Indicates that)our position is juSl to the ten of a FUNCT ION"s argument lisL and the FUNCTION body

c11nu1ins one FORM which was too big to print.

< •• & <KRK <+ .A 6>> I <SET BAR <ORG> > <&> & .. >
Indicates that you arc in the middle of a litrge FORM (e.g .. a RE PEAT or a PROG). p<»illoncd juSl 10 01c ten of

the <SET BAR <ORG». In addition m lhe objects printed. there arc more objccis 10 both the ten and Ille

lighL and there is one FORM which was too large to fit on the line.

3.2.2. Edit Commands

3.2.2.1. General

A sequence of EDIT commands is executed as soon as)OU type ESC. If one c1xmn.111d fails, Sl1bscq11cn1

rnmmands up t1> the ESC arc ignored, and EDIT types out an appropriate error message. fl foiling EDIT

rnmmand gcncmlly has no effect whatstll'\'Cr: but sec individual descriptions.

Note that all argumctlls tu EDIT funcuons mus1 be legal Mm objects. In pantcular. ~ou can't search for

3.2 ·me MDL Editor

22 ·111e MI ll. l'rogramming Environme111

<SET . since the <> 's aren "t balanced. N1ir can you insert iL (Out you can. for instance. search for and insert

<SET THING l>.)

ff a command expects an argument and docs1i"t gel one. an error message will be printed.

M;my ED IT commands take f I Xes as arguments. Those that du interpret the ATOM • as an argument to

mean ·as many as possible·.

Whenever you arc in EDIT. you have a wcll·dctincd ·position·. A position is a ·place· inside" MDI.

Sl111Clllrc: this "place· is citl1cr befll'een two clements of the s1ruccurc. or betwee11 an clemcm ;md eill1er end of

the structure. or inside an empty structure. All editing. movemcnL und printing rnmrnands uperme relative to

your current position. ·111c term ·cursor' is used in the following descriptions to refer tu an emhodiment of a

position.

The format used in e;ic:h oflhc folluwingcommand descriptions is:

C11111111and as Typed

Descriplion

3.2.2.2. General Commands

?

fng/isli Nnme

duh?

Causes a short summary of all ED IT c11mmands Ul be typed ouL The same summary appears later in lhis

chapter.

7? huh?

Similar to lhe above. but lhe summary is even shorter. and should fit entirely on lhe screen of an lrnlac

terminal.

Q

Leave EDIT and relurn to Mm. (Causes ED IT lo return 1hc ATOM T.)

QR fix

Quit

Quit and Retry

Qui! from ED IT and lhen rclry lhc frame specified. or by defoull. the one originally given to an open

command or. if none was given. the frame bcncalh lhc last ERROR or LISTEN frame.

tf Control - F

This is not renlly an ED IT command; rather, it is a character, obtained from the input stream at interrupt

0

1l1c MDL P.ditor 3.2

I Ii.• /\1 DI l'rugrnn11ning Environment 23

level."' hich is used 111 return ~nu tu the ED IT Reader from some higher level of applicllum. e.g .. :to ERROR's

LIS 1E N. It is 1hc EO IT equivalent of E RRET with no Mguments.

• r (11r t S) 1ypcd during etccution 11f an EO IT comm:md is similar 10 nunnal MDL t S but returns 10 !he

CD IT Reader instead of the Mlll. LIS TEN loop.

o~ Open

l'fluivalen1 111 Q followed by <ED IT ubject>. Positions the cursor jus1 10 die ten uf the first clcmcnt nf !he

enurc 11bjcct specified.

01 Open This

If die object tu die right 11f !he rnrsor is Jn ATOM. or a ronM v.husc fiN clement is .111 ATOM. and !he

f\ l OM's 1alue is upcnahlc. thcn 1t 1s opened. ·nus comm:md is useful v.hcn tr.ic111g a calling sequence through

'e' er:1I functions.

3.2.2.3. Movement Commands

Ul

Pl.ice-; !he cur.;.1: at !he posi1i11n !t had follo.,.ing an 0.

R fix

Up lo the Top

Right

Moves the cursor fix objects to !he right. b} default one. If fix is too brgc. 1.e .. !here arc 110 1 !hat many

pu,itinns tu the nghl of the current position. ED IT prints an error crnmnent and the cursor stays where it is.

B Back

Moves d1e cursor as far 10 I.he right as possible.

L fix Left

Moves die cursor fix posithms tu d1e lcfl. by default one. If fix is too large. ED IT pri n t~ nn error mcss.1gc.

r Front

Moves die cursor os far to I.he len as possible.

OL Down Left

Position~ the cursor just m I.he right ur the rightmost clement within !he object tu Ille lcfl of I.he cursor. if

mat object is of PR IMTYPE LI ST. Visually. the cursor mo"cs kn 01er one 'clusc bracket'

~-2 The MDI. Editor

24 'Ilic Mill. Programming Envirunmcm

DR Down Right

Positions the cursor just to Oic lcfi of.the lcfimost clement within the object to the right of the cursor. if

that object is ur PR IHTYPE LI ST. Visually. the cursor mo' es right 0>cr one 'upcn bracket'. lflhc cursor is

111 the lcfi of an clement that is nut or PR I MTY PE LI ST. ED IT prints an error message.

D Down

l'.quivalcnt 10 DR.

UR fix Up Righ t

Pushions the cursor just 10 the right ur !he object the cursor is currently 11i1hi11. Does so fix times. by

dcfouh once.

UL fix Up Le f t

Positions the cursor just to 01~ left of !he object 01c cursor is curre111ly within. Does so fix timC'S. by default

once.

U fix

ldcn1ical IO UL.

s objttt

Up

Search

11ocs a dcpth·fi rsl lcfi·first lrce·walk. (i.e .. lcfi·to·right) starting with the object lo !he right 11f !he cursor.

until !he curwr is just to the ri~ht or an object stnicturally equal (i.e., •7) to its argument. J\n occurrence of

01c object will not be found if ii is i11>ide anything not ur PR IHTYPE LIST. On failure. the cursor docs not

move. Ir the argument is omitt.:d. the last object searched for is used.

SR objtt:I Search Righ t

Same ass.

SL ubjtt:I Search Le ft

Same as S, but !he lrcc·walk is depth·firsl ri&ht·first (i.e .. risht·to-lefi) and you end up to 01e lcfi of the

object for which you were searching.

3 .2 .2.4 . Printing Commands

The Empty Co1T111and

The MDL F..ditor 3.2

l11c M 1)1 l'rugramming Environment 2.'

C:iuscs the normal ';1mpcrs.1nd print' 10 be done. This is principally uS<-fol when ynu arc in 'silent' mode:

we the V crnnmand.

lly the way. an ·empty' command is typed by typing £SC without ha' ing typed any visible char:icters

~fore iL

p Print

PPR I Nl s (nut 'ampcrs.1nd prinlS') the object 10 the right of lhc cur.;or.

PU Prinl Up

PPR ltlls the object the cursor is in. ·n1is i~ similar In doing a U :md then a P. although the cursor is not

moved.

Pl Pr i nl lop

PPR I N h lhe whole object you have open.

v Verbosity

Tngglcs the verbosity mode between 'verbose' tmost commands cau!;C ampersand printing) and 'silent'

(l>r'inting or any :.ort is done only when some eAplicit print command is used. or v.hcn :in error occurs). The

current state of,crbosity is the GVAL ofE · VERBOSL

In silent mode. absolutely not/ting is printed after c:ich command. not even new·lincs or prompts.

I h"«'vcr. normal Mo1.cvaluation still causes nnm1al MDL printing.

3. 2 .2 .5. Ed iting Commands

ll!lJ! .. . Insert

Inserts all its arguments immediately to ll1c right of the cursor. None of its arguments arc cvahrntcd; you

rnn insert unevaluated FORMS without using QUOH. 'Ille cursor ends up 10 the right of the last object

111!;<.'ncd.

Get

Same as I. but Its ar~umcnts arc c,·aluated. This is uS<-ful in conjunction v.ith lhc X command (sec below).

I : type:atom fl' Jnserl lype

Gmbs fi~ objects 10 lhe ri~ht of lhe cursor. inserts lhem into a ncv. ly created obJCCl of TY PE 1y~. deletes

them rrnm lhr ongmal s1rnrturc. and inscns the newly crr31cd object in their place. In other words. ii 'inscns'

3.2 1bc M DJ. EdilOr

26 Ilic MDI. l'rogrnmmmg Envimnment

the ;ippropriate open and close brdCkcts for IJ'pe at the cursor and fv: objects to the righL

fly default fix is one. t)'pe is LI ST. An error message is printed if fix is larger than the number of objects

tu the right of the cursor.

There is no way to directly inscn or delete single parentheses. brackets. etc .. using ED IT. Instead. use K:

(sec below) to remove pairs of brackets. and l: to insert them.

1 • i11dimtor:ato111 11c1<•st111cturc lmbed

lmbcd looks for all occurrences of i11dicat11r in 11ew-s1111rt11re and replaces these occurrences with objects

t;1ken and deleted from the right of the cursor. h then inserts the rcsu!L

If only 11eK·.rtn1rt11re is given. the iitdimtur is Che ATOM • . If there aren't enough objects to the right of the

cursor to rcpl:ice cn.:h i11dirntur. remaining indicators arc lcn untouched and a warning message ls printed. If

nu indica111rs arc found, the new structure is inserted. but a warning mcss11ge is printed.

r • is generally used to Insert one or more stnictures into another complex scructurc in one op.!ration.

instcud of several. l'or example:

<SE T X I <12 .Y>>
[• <CONO (<NOT <LENGTH? .Y 11>> •)>$
<SE T X <COND (<NOT <LENGTH? .Y 11>> <12 .Y>)> I >

p~iccs a protective conditional around an NTH w prevent an uut·uf-bounds error.

lG Q!l.l!,.. Insert in to Group

ln:>cns iniu a group. IG is similar to I, but assumes thac the object you arc in is a group (as produced by

GROUP-LOAD). Arguments to IG which arc not ATOMS arc inserted as in I. Objects which an: ATOMS and

which h<lve a value insert a FORM which DEF INEs. SETGs. or SE Ts the ATOM as appropriate. Thus. to add a

new func1ion F to a group G, one could type

0 GSIG FSQS

IC fix K 111

Deletes fix objects to 1he risht ufthe cursor. Defaults to one. Negative fix C'JUSCS delccion to the len or the

cursor.

c '1!ll Change

Chnnges the one object 10 the right of the cursur to its single argument. Oocs not move the cursor. Docs

not evaluate ils argument. C is more cfficienc than K plus I.

lhc MDI. Editor 3.2

I he MI >I . Programming Environment 27

C : l!'PfoO/Qn! Change Type

Changes the type or objix-t to the right or the cu™>r m 1ypr. llnempts 10 do <;omething reasonable for

r1ery L)pechnnge. lryou tell it toch:mgr a STR ING In a LIST. you ge1 a LIST urCHARACTERs. Ir you

;111cmrL to change a s1mc1urc whose clements arc other than CllARllCTE Rs and ST RI NGs to a STRING. you

will get a Mill . error.

K: Kill Type

Ddctcs the brackets around the objix-t 111 the right of the cursor. I.e .. kilb 01c object and inserts its

l'kmenL~ intu the structure of which it wa.~ a pan.

Substitute

'Ilic Suh,tittttc command ~.1kcs two ar~umcnt<;. J11l occ11rrenccs of 11/tl from the current kication to the end

of the open object (actually a scarrh·right is dune) :ire replaced by 11~w. Once thr sc.in::h for 11/d foils. the

rn1111n:111d terminates. and the numhcr of subs1 i1utions pcrfom1etl is printt'tl. The cursor is ten ancr the last

1•hJt'Cl replaced.

Transfe r

SE Ts 01e atom to lhc object to 01c right or 1hc cursor. X can be used with K and G to move 1hings around

w11hon 1hc object being edited.

sv Swap

Sw.1ps the t"'o ubjccts to right or the cursor. lea' ing the cursor pointing at the Mme object ·111c erfcct is to

11111vc the cursor and the object it points at one objix-t 10 the right Repeated SWs mo1·c cursor and object

lunher :md further 10 the righL

3.2.2.6 . Macro Facility

Macro

l'alcs rilher a ST RI NG or somethmg which EVALs to a STRING and performs all or Ilic commands in the

'd RI NG. For complete ;issurnncc th.it your commands will be dune propcrl). put an ESC bet .. ccn

, ,)1nm:inds.

Iterate

'1111~ command (also called DO) ~1kcs ~fix and 11111cro as ir an argument 10 M. This command will loop

lhro11ph the macro fix limes or until an error is gcncrutcd. When the itcralion end~. the user is wld how man)'

3.2 111c M r>L Editor

28 I Ile MDI. l'rogr.unmi11g Environment

complete passes have been made of the macro.

In both of the above commands. if an EDIT error is generated. the mncm will be terminated. and the

111nc·m itself will be printed. wid1 an arrow pointing to the offending commnnd. The cursor will remain at the

place where the last legal command lei\ iL

' ll1e SU command is. internally:

DO • ·s u/dSLSC ntwS"

3.2.2. 7. Cursors.

Cursors arc locations in objects bcmg ED !Ted. In addition w the main cursor. which is where editing

occurs. uther lcicatiuns (also culled cur~ors) may be remembered. The m:un cursor may be mu•cd to another

cur.sor ma ~mglc orcration. p11tcnt~1lly sa\ing many motion command~. In large FUNCT IONs cursors may

ulso reduce confusion by distinguishing amung scvcrnl similur areas of code.

UC Use Cursors

'Ilic PACKAGE fur dculing with cursors is not nonn;1lly loaded in an initial Mot. so lhc UC comm:ond loads

it and makes the cursorcommnndsa,a1!Jb!e. The PAC KAGE lo.1dcd is "CURSOR".

cu ll{QLIJ Cur sor

cu ~1kcs an ATOM argument and SE Ts the ATOM to an object of type CURSOR. which lries m be clever m

the event you change the object. Also. if you use the X command to name a substructure and then move copy

it with G or I. the cursors in the substructure will follow to the new location.

There arc some restrictions. Cursors in empty LI STs arc okay but they will not follow the object 10 new

kJCatiuns. Also this 'following· feature 1s effective only at the first G or I ancr the X. To move the substructure

again you have to X again.

I • is somewhat incompatible with CURSORs. Cursors in lmbcdded structures will sometimes disappear.

GO rJjagl Go

GO t.1kes a cur:wr(normally lhc LVAL ofnn ATOM previously given as an argument tu CU) and GOes to lhat

position. If the eunor is illcg,11 (not in the current top·lcvel structure). an error message will be printed and

you will remain in your previous position.

KC gfQ!ll K111 Cursor

lbc M l)L Editor 3.2

'Ilic M l>l. l'rogr.imming r.nvironment 29

Kill the cursor assigned to atom.

PC Print Cursors

Prints all cursors in the stmcture to the right ur the main cursor.

PA Print All Cursors

Prints ;ill cursors in the currently open structure.

3.2.2 .8. Breakpoints

BK predicme any ... Breakpoint

lnserL~ a breakpoint 'around' the ohjcc1 to the right or the cursor. Takes any number uf ;irguments.

Suhscqucntly. whenever !lwt ubjcct woukl have licen e\·aluatcd.)Ou instead hit a bm1kpoint function which:

l. Evaluates predicate. If the v;1Juc is FALSE. evahwtion continues as if ll1cre were no breakpoint. If
the ralue is non·FALSE. or ifDK was given no argu ments:

2. Types • • BREAK••.

3. For each argument after the first that you gave BK. types

arg ; T:VAL ofarg

4. Enters LISTEN.

Yuu continue by applying E RRET to one ;1rgument. just as from an ERROR: ll1c argument's value is ignored.

llrcakpoints arc implemented by inscning a BREAKR (a PRIMTYPE LIST with APPL YTYPE FORM)

which consists of the function BREAKR and arguments, including the object brcakpoimcd. II breakpoint

prints as a glyph similar to the cursor:

•object

If the A TOM SHORT-PRINT is assigned and FALSE, the acwal BREA KR LI ST is primed.

The breakpoint function moms EVAL of the thing it is put 'around." and there arc cases where this does

nu1 work. There arc always equivalent places that 'do work.

I. Brc~kpoilll on the first clement ofa FORM docs not work. Put il on the whole FORM.

2. Breakpoint on a LI ST whiC'h is an argument to a COND docs not work. Put it on the first FORM in
the LI ST.

OA predicate any Break After

3.2 111c MDL Editor

Ille MDI. l'rogrmnm 1 ng En vironmenl

Similar lo BK. bul pulS the brcakpoinl ofter the object auhe cursor. llS action is like lhal of BK e~cepl thal

the bre<1k occurs after lhc object il is un is EVALcd.

This son ofbrcakpoilll prinlS like the 'before· sort. but with lhe glyph after lhc object broken:

ubjeclf

The prr,Jimtt for a BA brcakpmnl may check the \Jlue returned b) F,VAL for ll1c object the breakpoint is on.

' l11is value is;~~igncd by BREAKR to the ATOM VALUE.

KT ~ill This

Remuves the hrc.1kp11int (if any) frnm Ilic object tu the right of the cursor.

KB Kill Breakpoints

Remove:; .111 breakpoint~ in 1he currently open object.

3.2.2.9. Edit Monitors

There arc scvcml commands in EDIT which provide u simple interface tu the "MON! TOR" PAC KAGE.

l11csc allow placing of monitors on n:fcrentts to or mo<.lilic:1tions of LVALs in interpreted MDI. code.

For a morccomplc1e discussion of the use ofmoniiors. sec sccuon 3.7.

UM Use Monitors

fhe PACKAGES for dealing w1ll1 moniiors arc 1101 normally loaded 1n an initial Ml>I. so !he UM command

loads them nod makes the lhrcc commands for creating moniwrs available. ' Ilic PACKAGES loaded are

"MONITR", which is lhe general monitor PACKAGE. and "EMONIT". which Is the inlerfacc between EDIT

Jnd "MON ITR•.

RW {liQa1 pmlicatt any Read-write Monitor

The most general iypc of muniwr that can be set is a rcad·wme monuor. II will ca1eh any reference IO or

nuempt 10 modify the LVAL of1he atom specified. The rcstric1ions on placemen! ofbrcakpoinlS also apply to

moniiors. with the addition that a monitor on an LVAL must be placed ufkr thOI LVAL hns become

ASSIGNED?.

The second. third (and so 1111) af%uments to RW an: 1he same as those for BK. 1lle predicate may be

dcpendeni on either the new or old value of lhe variable: These arc a•ailablc as !he LVALs of NEWVAL and

OLDVAL. respectively.

Ille MDL F.dltor 3.2

·nic MDI. Programming Environment · 31

When a monitor is triggered. it prints the type of monitor. the variable bcing monitored. and any 0U1er

information requested by the user. and then ca.lls LISTEN.

A monitor prints as yet another glyph:

Ill[atom]abjeCI

where awm is the ATOM being monitored. and obje<1 is the object on which Uic call to MONITOR is placed.

Edit moniwrs arc objects of type BREAKR, and thus they arc killed hy the same commands that kill normal

breakpoints: KB . KT, and so on.

RM a/0111 predicate any . .• Read Mon it or

RM is analogous Lo RW. but is only triggered by reading the variable.

WM !1.!11111 predicate any . . . ·wr ite Monito r

WM is nn<1logous to RW. but is only triggered by writing the variable.

3 .2 .2.10. User-defined Edit Commands

It is possible to add user-defined commands to EDIT. ·nit' \'alue of EDIT-TABLE shuuld be a VECTOR of

Sl RI NGs (commands) and llPPLICABLE objects. EDIT will sc:irch EDIT-TABLE before its own command

rnhle. If a match is found. the APP L I CABLE will bt' applied Lo three arguments: the command string, the

LOCATIVE containing the item currently being edited (the immediately surn>unding object) and the position

in that item.

Note that user-defined commands should not be added except by constructing a new value of

LO IT-TABLE from the commands LO be added and the old value. Otherwise, any existing user-defined

cummands may be lost when new ones arc added.

The Mon_iLor commands described in section 3.2.2.9 arc effectively 'installed' uscr·detincd commands.

ll1cy add clement~ to EDIT - TABLE when lo~ded by the UM command.

3.2.3. Examples

3.2.3.1. Simple Editing

Suppose you have the FUNCTION

3.2 ·n1c MDL Editor

J2 Ille M l>I. Prugrnmm1ng Environment

lffUNCTION (('A) <EVAL . A>)

is the global •;iluc uf lhc AT OM S I MP and ;ou wish to change it to

¥FUNCTION (("BI ND" 8 ' A) (< EVAL .A .a> .A})

usmg EDIT The 1iJll0"1ng C\.implc docs just lha1: it includes doing the editing and •PPhing LliS IMP co an

>rgumenL Con"1le input and output arc ~huwn belo" ~"icll; :is 111cy "'' 1uld be in non-silent mlldC. (Console

input cunsisl~ uf th1KC char.ictcrs to the Jen of c•ery 5). 'lute that !here is nothing in SIMP •hich is big

~nllugh to " arr.int use oian &.

<EDIT SIMP>S
vs
#FUNCT ION (I (' A) <EVAL .A>)
OS
{ I 'A)
I "BI ND" BS
{"DI NO" 8 I 'A)
S . AS
<EVAL .A I >
I . BS
<EVAL .A . B I >
URS
#F UNCT ION {("DINO"
I .AS
#FUNCTION ((" DIN O"
L 2S

B , A) <EVAL

B ' A) <EVAL

.A

.A

#F UN CT ION {{"B IND "
I : LIST 2$
#FUNCTION (("DCNO"
<S IMP <+ I 2»S

B ' A) I <EVAL

B ' II) I (<EVAL

(3 < + 1 2>)
#FUNCT ION (("BI ND"
QST

B 'A) I (< EVAL

3.2 .3.2. X and G Commands

In thi~ example " c h:t•e the f UNCT I OH

~ DEFINE f {X)
<G . X 10>
<H 23 <- .X t >> >S

.B> I)

.B> .A I)

.A . B> . A)

. A .B> . A))

.A .B> .A})

lh appl) ing the X and G commands to the appropriate fORMs. we arc able to swap the FORMs within the

FUNCT ION.

1'11c MDI. Editor 12

1"11c M l>I l'rogrnmming 1-'.nvironmcm

<DHINE F (X)
<G .X 10>
<H 23 <· .X t>»l

r
<ED IT F>S
1
#FUNCTION (ll(X)<G . X 10> <H 23 <- .x I>>)
R$$
#F UNCTION ((X) I <G .x 10> <H 23 <- . x l~ >)
X MOVERS
#FUNCTION ((x) I <G .x 10) <H 23 <- .x 1»)
K$l
llFUNCT ION ((~) I <H 23 (- . X I»)
R$l
#FUNCTION ((X) <H 23 < - .XJ»I)
G .MOVERS$
/trUNCTION {(X) <H 23 ' - . X l » <G . X IO > l
Qtl
. MOVERS
<G .X 10>

3.2.3.3 . Unconditional Breakpoints

Tn inscn unconditional brcnkp"ims mto the FUNCT JON in the ncAt cAamplc. do the following:

1. l)cfmc FIB and test the FUNCTION a few times.

2. Enter ED IT ond position the cursor appropriately.

J. lnsen the brcnkpoim.

4.1.ca\'c EOIT and nm the FUNCTION ngain for the value j_ The brcakpoinl is exercised 5 time!
during this run.

3.:

3.l The MDL FA 1101

1l1c M l>l. l'rngrammmg Env1ronmenc

OEFI NE FIB (X)
<CONO (<L•? . X L> •. :()

(ELSE <+ <FIB <- .X 2» <F IB <- .i t>!S
FIB
<F IB 6)$
5
<FIB 6)$
8
<FIB IO>S
55
<EDIT FIB>S
RSS
#FUNCTION ((X) I <&>)
BK T . XSQST
<FIB 3>S
••BREAK••
. i • 3
LISTENING-AT-LEVEL 2 PROCESS I
<E RRET T>S
.. BREAK••
. 1. • I
LISTENING-AT-LEVEL 2 PROCESS I
<ERRET T>S
.. BREAK••
.x • 2
LISTENING-AT-LEVEL 2 PROCESS 1
<ERRET T>S
.. BREAK••
. X • 0
LISTENING-AT-LEVEL 2 PROCESS I
<ERRET T>S
.. BREAK ••
. i • I
LISTENI NG-AT-LEVEL 2 PROCESS I
<ERRET T>S
?

3.2.3.4. Conditional Breakpoints

We continue from che previous example and demonstrate conditional breakpoints with the following:

I. Enter ED IT and kill the breakpoint from the previous example.

2. Position the cursor and insert a cunditiona1 breakpoint with a predicate of< 0? • X >.

3. l.ea.vc EDIT and run the FUNCTION again forthe value 10.

4. Enter ED IT and remove the breakpoint

The MDL F.ditor J.2

!Ol Inc MDI. Programming Environment

<EDIT>S
s
#FUNCTION ((X) I•<&>)
KBSS
#FUNCTION ((X) I <&>)
BK <O? .X> <TI ME>SOST
<FIB IO>S
.. BREAK••
<TINE> • 14.794538
LISTENING-AT-LEVEL 2 PROCESS 1
.XS
0
<ERRET T>S
••BREAK••
<TIME> • 15.252382
LISTENING-AT- LEVEL 2 PROCESS 1
.XS
0
<ERRET T>S
••BREAK••
<TIME> • 16.716037
LISTENI NG-AT-LEVEL 2 PROCESS 1

and so on. E\'Cntually we reach ~le last brc:ikpoinl, and rc·cntcr EDIT
<EDIT>S
s
#FUNCTION ((X) I•<&>)
KOSQST
<ERRET T>S
66 .

3.2

35

The MDI. Editor

Ilic MDI. Programming Environmcm

3.2.4. Edit Command Summary

'l/\ME a&QS

? none
1? none
0 !!ID!
OT 110/lt

Q none
QR fix
v none

Mmsmcnt commands

l fix
R fix
u fix
0 none
8 none
F none
UR fix
OL fix
UT none

Editing commands

any ...
I : lypejix
[• alum.object

IG any ...

SU !!!J!,Q}g
x g{I/lll

G any ...
SW no11~

c ll!J.X
C: ~
J(fix
J(: none

~Commands

3/SR
SL

~Command3

lhc MOL Editor

'll!fa\NING

type out shon summary
type uu1 !his summary
Open object or the value of an a1om
Open object a1 the cursor
Quit •tnd rc1um to MDL
Quit and Rcuy frame
toggle Vcrbosi1y

mm e I .en fix objects
m11\c R1gh1jir objcclS
mme Up fix levels
mll\ e Down one level
ITIU\e hi flack of object

mm e tu r ro111 uf obj eel
m111e UpjixobjccL~and to the Righi
mo\'e Down fix ubjcclS and U> !he Left
Up Top·· go 10 the pl1Ce)till were after you did 0

Insert argumcnlS 10 !he right of cursor
make neu 11 objcclS into a lype
lmbcd command: replace all occurrcnctS of alum (default •)
in ubjeCI wilh objcclS to right of cursor
Insert into group

iUbstilutc new for old
;ct the atom 101he objecl !O right of cursor
Get EVAL ofargumenis. insert to righl of cursor
SWap !he 1woobjccts IO !he righ1 of cursor
Change the ncxl object to arg
Change the 1ypc of the next object to 1ype
Kill (delete) !he next/ix objects
Kill (remove) !he 'brackets" Jround !he next object

Search (Right) until match (•?)is found for any
Search I.en as above

31

c

mcnt
·inc MDL Programming Environment·

M

IT / DO

Printing commands

p

PU
PT

none
none
none

~commands

UC llOni

cu Q1Qlli
GO (.J!.!W

PC 11011e
PA nont
KC filQm

!)chugging commands

BK

BA
KB
KT

pred,auy ...

pred,a11y ...
none
none

Monitor commands

UM
RW
RM
WM

none
atom.pred.any .. .
ata111.pred.any .. .
!Y.!ll!l.pred,a11y .. .

execute the string as if typed to ED IT
ITerate the execute str i11gfix times

PPR I HT the next object
PPR INT the next Upper level
PPR INT the whole object open

Use Curso~
sci atom 10 current cursor posi1ion
GO m the spl'Cilkd cursor position
!'rill! Curs11r posi1 iuns in the current objccl
Prill! All cursor positions in the top· level object
Kill the Cursur assigned In the atom

SCI OrcaK point al ncxl objecl: if predcvaluates to f ALSE,
dun·1 break: rcsl of argLU11cn1S arc printed out at break
set Breakpoint A ftcr next object
Kill all llreakpoinis in open object
Kill "lnis brcakpoinl in the object to the right of cursor

Use Manito~
set Read· Write monitor on a/om
set l~ead Monitor on atom
set Write Monitor on Olom

• F and t S mum you to ED IT !Tom a higher level.

37

The ATOM • may be used as a/ix argument whose value is the largest legal value for that command.

3 .3. Debugging and the Interpreter

lleforc continuing the dis.:ussion of the various p11ckagcs that arc used in the debugging of Ml>I. code, we

will expand on 1hc discussion uf ERROR, FRAME, (and so on) in Chapter 16 of[3]. To summari1.e that chapter.

whenever an A TOM is bound or a FUN CT ION or RSUBR is MCAL Lcd in MDL. infonnation is added lo the

cc>ntol stack. 1nis infonnation, nonnally 'invisible', may be examined using the fu nctions described in a

previous section (f RAMES, FR&, FRL VAL, etc.). ·t\n invocation of ERROR puis MDL in!O a LI STEN-like loop.

3.2 The MDL Editor

18 Ilic \11)1. l'r,>grannnmg Environment

Sucrcs.~"c E RRORs swck up and arc rcOcctcd in the LC STEN ING-AT -LEVEL mcs.-;agc ?fintcd whenever

ERROR ur LISTEN is called.

In Jddiuon to lleing examined. the ~tack may be modified dS pan oi the debugging prucedur~. For

:1ample. t11c SUB Rs SET 3nd LVAL wke an opuonal second argument "'hich may be (among sc'cral possible

rYPEsl a F RAHE. EVALing

<SET X 10 <FRM n>>
would change the LVAL oi X in the nearesr binding lower m the staek than the FRAME n FRAMES lower than

the most recent call to ERROR ur LISTEN. Similarly

<LVAL X <FRM 11»
~•amines the LVAL 111 a pami:ular FRAME.

The must cummun use of the \Im interpreter m dchugging 1s tu &n\ukc the SUOR ERRE I. With no

1rgumc11L~.1t drop> all the v.a1 tu the bouum ufthc srack and t11cn ~;ills l ISTEN: h >ays I gi,·e up· (.1lthu11gh

side clTccL~ arc nnt undone). More cummnnly, ERRE T is given a single argument. which causes the last

invocati<>11 of ERROR ur LISTEN m rcrurn that argument. For example. suppose n program contnins. FOO

but FOO has nn GVAL. \.11>1 would respond

• ERROR•
UNASSIGNEO-VARlABLE
FOO
GVAL
LISTENING-AT-LEVEL 2 PROCESS 1

You could give up. saying <ERRED. but it is uften more reasonable to say ·oh. yes. FOO was supposed to be

1000'. and then

<ERRET 1000>

Still bcuer is

<ERRET <SETG FOO 1000>>

which will prevent future ERRORs from the same cause.

FinJlly. ERRE I may be given a sccund argument of a FRAME. which means to return the first argument as

tl1c value of the invoc;iuon of that f RAME. In the previous example. the programmer might look at the stack

(wirh FR& ur FRAMES) and see

Debugging and the Interpreter

I h~· M l>I Progrnmming Environmem

I GVAL (FOO]
2 EVAL (,FOO]
3 EVAL [<+ .X .Y ,FOO>]
4 EVAL [<LOSER .A .6>]
b EVAL [<I ,GOOD-GVAL <LOSER .A .a»:
6 EVAL [<WINNER 1.0 2.0>]
7 LISTEN []

/lf1er some thought he may just Su) 'Well, LOSER ap~arcmly needs ~>me dchugging. but for now rm

1111ercsted in WINNER·. in which cnsc he can 'foke· a rcusonahlc return from LOSER by typing

<ERRET 342. 0 <FRM 4>>

• h1d1 returns 342. O cx:ictly a~ thn1t£h LOSER had returned iL

Mure complcl emirs arc sometimes mure difficult to th. requiring tJ1c u'iC uf EDIT (.tt least). In the abc1,·c

, "unplc. the programmer might Jcc1d<' ti• debug LOSER .iftcr all. lncrc arc two "">S to go ahout this: l-1rst.

•I the problem 1s loc;ili1cd. the F RAHE 1t,,clf rn.1) be edited (which is tu S.1). the 1·u111r11f.\ of the f RAHE may be

<111eJ). Ch.mg<'\ will show up in the FUNCTION frum which the F RAHE ·s cuntc1m were derhcd. ·n1e new()

111nccted F RAHE may ~1en be RETRYed. l·or example,

<EDIT 3>S
... Mrious rdlti11g cu111111a11ds
QRS

Second. the function itself may be edited. In ~le process. it ma) be so changed that the FORM "'hich

.111..cd the ERROR no longer even exists. One11. the easies! soluuon is to retry the invocation of the EDJTcd

JUNCTION from scratch: in this case
<RETRY <FRM 4»S

'' ah••lYS. thc major restriction to remember is that side-effects an.• not undone by RETRY.

3.4. Loading and Dumping

GROUP-LOAD and GROUP-DUMP arc used tu 1011d 11nd dump files ofMl>I. progrnms In such a way that the

0111tcnL~ of the file arc made available in a Ml>I st111cturc called a gruup. Many other PACKAGES in u1e MOL

''"mnmcnt operate on or change groups: Among them arc ·eon·. "GLUE" "POUMP", and the MOL

'"mpilcr

GROUP-LOAD and GROUP-DUMP arc almo~t as"' idcly u<ed as FLOAD ~ ~ W~) of dc.1ling with groups of

\11)1 luncunns. Con5Cquent]), lhci arc alrc.id) loaded m mosi initial \11)1.S, as part of lhc pack3!!e

GRLOAD'

3.3 Debugging nnd the lntcrprcre!

10 he .\ll>l. l1rogrJ1111111ni l'nv1ronmcnt

GROUP -LOAD iii('- 'i<'OI•~: srt1n1

';!"JU p-111.llll e: a IOI">

'ile""n11111r:strr11g is the file m load.

; rottf>·>111111e:11111111 is the mime tu ~l\'C lhe gri•up It is u1i11on.1I .md by default the ATOM furi11cd lw PARSE oi
'.he lirst nilme uf Llie fLle to load. ·1 he group will be smrc<! l> the L VAL of gmup·11a111e.

;nouP-DUMP is the oppoSll~ of GROUP· LOAD. It uutpulS the ~roup from Ul~ \1111 It• the lilc &l\ell O\S 115

•irst .1rgumcnL Functions unch.mged smcc the la~t GROUP-LOAD arc copied from the ongmill input tile.

h111ct1<>nS that ha>c been ~dited arc output u;ing tl1e routine ~"en JS the third ~rgument t<J GllOUP ·DUMP.

<GROUP-DUMP lifr-11amr-stm1g
~,..,,,,.. 11c1111e:a1c>111

pr111/·rvu1111t
~ill·bm1 ~ {X)ttll s?>

'lr·1111111r:s1r111~ 1s tl1e only rcou1rcd or~u01ent. 11 ;, the file to \\hich :o ""'PU! the group.

$fllU/1• 1111111r:at11111 is up1i1111al ,1114.J JefoulLS as ii dtlCS for GROUP - LOl\D. but of course gi\CS iln ERROR if the
Jn>Up docsn"t already CJ1ist.

ml11·rr1111i11r is op11011al. and default~ to , PPR IN r unless the group con111ined NO I N form.11 RSUBRs. in which
;asc , PR I NC is used.

Wl·/Jrrakpoi111s? is optional. by def Ju It T. in "hich c= GROUP-DUMP kills ~II E 0 IT brcakpmms and
nonuoi"l in objects being dumped Gh111g ,, fuurth argument l)f a f ALSE to GROUP-DUMP prevents this.

On lltc surface. it .1ppcars th it liulc h.1ppcns in the procco.~ oi loading a file and m<1i.in!I tt into a group.

1 luwe,er. a 5rcat deal of infonnauon .1b1111t the group has been swrcd away in .is><X:iations iur later use.

5ome of this information 1s of use 10 the Mill. programmer:

On an .t5~ociation between sr,,u11·1111111r and the ATOM CliANNEL is stored a L !ST giving the name
.if the tile that wa:. GROUP·LOAOed to fom1 the group. Renmvmg this association before
GROUP-OUMPing has the effect of making the entire group be output from core rather than
cupied from the original source.

!. On an as.~iation between r;r1111rt-1111111e lnd tl1c ATOM MAG IC- RSUBR the ATOM T is stored if the
ir11up contained any RSUBRs on fN (NB IN) funnaL It is this aswciauun which is used to
dctcm1ine the default pr1111·r11u1111c in GROUP-DUMP.

J. Ille DBL r ST path m effect at any tune during the luau is a'ailablc. Ille original path is swrcd on
in aS.'\ltCiation hctwccn gm111ri111111r .ind the A TOM BLOCK. Within the gro11p. the p.11h changes arc
mired in an aswciauon between the group RES Ted tu the pomt of change and the ATOM BLOCK.

t If the second clement oi J FUNCTION definition is not an ATOM. the actual FUNCTION name

gotten by EVAL of thnl clement is stored as an ;1ssoc1ation between the original clement and the

.ooding and Dumping 3.4

nem

: of

ilc.

I he MDL Programming Environment

ATOM VALUE.

5. The location of a function within the input file is stored as a LI ST of the starting and endin~
offsets (in characters) ur Ilic funcuon. under ;m association between a locative 10 lhc GVAL of Lh~
FU NCTION name :ind the in<licmor DE f ! NE. ' lll is associ;ition is removed by ED IT (and other
editors) lo indic<tlC lli<1l lhe f UNCTl ON has been changed.

·111crc Jrc nddi1ion<1lly several switches 1h~1 affect the openuion of GROUP- LOAD:

. KEEP - F I XUPS

4l

II the LVAL of KEEP - FIXUPS is true (and GROUP-LOAD hinds il that w<1y during lnading). the lixups of

llSUB Rs GROUP- LO/\Ded will be kepL

. EX PFLOAD

Ii the LV/\L nfEXPFLOAO is true. FLO/IDs will he expanded. 'l11al is. Lhe obJCCL~ i111hc file FLOADcd will be

.uh.led 111 lltc group in place uf lite f LOAD. Ilic initial SClling uf EXP FLOAO JS a FALSE .

. EXPSPLI CE

i' II the L VAL 11f EXPSPLI CE is true. any nbjccts re111rned within SPLI CEs will be inserted directly inlO the

r11n1p as described above. 'Ilic initial scmng of EXPSPLI CE is a FALSE. .

h

d

3.5. The Onf'·step Debugger

Ilic Mrn One-step debugger allows the user m step ll1rough the evalua1ion or any MDI expression one

••11c1;i1ion' al a time. Between steps, variables may be examined or clwngcd, functions edited. and so on.

l111s is possible because the debugger nms 1n ;i diffcrcm MDI. PROCESS than the expre,;,~ion being stepped,

.111J a MDI PROCESS ma) lSTEP anuther[3). Tu load the Debugger <USE "OEBUGR">.

111" M Ill. Debugger can he 1n any or three sw1es. In the initial s1.1re. Off . 110 one-stepping OCC\11'$ and tl1c

I ~·hugger docs nm listen for any special interrupt characters. The Dehugger is, therefore. completely inacti ve.

Ill 1yplng <DE BUG> to Mrn. you leave the OFF slate and enter the READY state. In lhe READY state no

"""·~1epping occurs. however the Debugger docs listen for interrupt charnctcrs. By typing the interrupt

lt.tr.1cter •8, you enter the ON srmc and one-stepping begins. In addition. if you were stopped at an EOlT

"" .1~1101111 when the •B was typed. the brenkpoint will au1omatically be exited and evaluation cominucd in

II•• one-stepping stale.

Whik- in the ON s~1tc, the lkhusger will proceed th mugh the excc ruion or an) MDI. objects one step at ;,.

In cssrncc, the Debugger stops,1us1 before and just after every c.111 lo EVAL. Al each step the DebuggCI

di 1nd1cate tlS currcm cundiuon as follows. If EVAL is recursively entered m level. 11. with inpuL ubjr(I. the

·l'l.11· will be:

3.4 l..oadmg and Dompmf

~2 he MDL l'rogramming Env1mnmenl

·r• > object

(where c.bJr<'t ~' .1mpcrs.md primed). Ir EVAL ts returning from le' el. n. w11h rcsulr.. ob1cc1. I.he display wtll be:

•< • ob1ect

("here object is ampersand printed).

·111c Debugger will stop al e:.c:h such step and wail for dirtelions , lllerc arc four interrupl chM:iclers thal

nhl) be typed lO pmcecd further in lhe pmgram: t N. tO. r R and t A. They Cuch take an optional prefix

~rgumcnt lhat ~rvcs as a repcnl counL

•H

cau'cs the I l<:bugger to perform the nc~t \lCi> of I.he current evalumion.

rO

c.111ses the current uhjcct to be ct•m rle1el1 cv<1lumed 11 itlwut any unc-stcpp111g :md Lhen 'tups 11 ith 1he result

of that c\aluauun. tO is u~ful for s1epp111g uver CONO prctlicmcs that ~uu know will not succc.:d. or more

generally. uninterc:-1ing parts uf u program.

•A

is simil.ir tu •0. but sped lie Lo the evaluation of the argument list uf u FUN CT ION. PROG. or RE PEAT. Typing

'A during such evalumion allows the rest uf the argument list to be e"alu~ted without one-stepping and I.hen

stups hciure cv;iluating the body of 11 FU NC T 1 OH. PROG. ur RE PH. T or rctuming of a resulL

tR

L~ most clTcclllely used in a REPEAT or PROG loup. Typing tR causes cvuluatic>n to proceed unul control

returns tu the point in I.he bod) uf I.he REPEAT /PROG at which •R was typed. It thus nllows you to go once

around a loop.

It should be nouccd lhat. when ,topped at one or these Steps, you can examine and modify program

'anablc-;. do a FRAMES or FR&. EDIT fUHCTlOHs and set brcakpoin!S. and in general pcrfonn any valid

\.IDL opcrauons. Also. when)OU >IOp. die LVAL of I.he A TOM LAST-OUT will be set 10 I.he objccl I.he

Debugger last 1ypcd out lllis is userirl 1f the & pcrfom1ed by the Debugger did not show a particular detail

I.hat you arc interested in.

Use the 1ntern1pt character •E to lea'c the ON st:ote and return to the READY srnte. Use I.he interrupt

~har:icter •Q m le;1ve either the OH swte ur the REAOY state ;111d return to lhe OFF s~te. When leaving the OH

;~tc ;IS tlcsi;ribcd. the e~ccution currently heing nnc·stepped will be finished in the usual manner.

·111e func11011 REPAIR attempts to fix any errors in the lxbugger that yo11 might happen to invoke. These

error.> arc easily distinguished since they never <x:tur in Mo1:s MAIN PROCESS. Therefore, you will see:

·inc One·stcp f)cbuggcr 3.S

'Ille MDI. Programming Environment · 43

LISTENING-AT- LEVEL /11 PROCESS r.

(where /1 is not J). REPAIR turns o!T the Ocbu~er and returns you to mnmng in the MA IN PROCESS (no

longer one·stepping). lkcausc REPAIR turns uff the Debugger. you must do <DEBUG> again if you wish to

try any further one-stepping.

3.5.1. MDL Debugger Command Summary

<USE "DEBUGR"> lo.ids the Debugger.

<DEBUG> mJkCS the Debugger ready.

• B i><'1:i11s one-stepping.

• N pcrfonns the 11rx1 step of the computation.

• 0 steps ernnplctcly ovrrthe next computation. then stops and continues one·steppmg.

1 A cvalumcs the arguments of ~le current object then 'lops and continues nne·stepping through the body.

• R continues evaluation until you mum to this point.

• E tmfs one·stepping.

•Q quitsone·stcpping and makes the Ocbugger unready (turned of'f).

<HELP> pnnLS a command summary.

<REPAIR> auempLS to repair any Debugger errors you might in\'oke.

3.5.2. MDL Debugger Special Features

TI1e follnwi ng flags have special imponance to the Debugger:

, INDENT-INC

is Lhc amount by which to indent for each level (by default 2 spaces).

, l NO ENT-MOD

Ilic indcnt.1tion·lcvcl is the real lc\cl taken moduln this number. 'lhc default is 10. lnde11tation ' rest.ins'

when level geLS here. Ir }OU don't like this feature. make the number large.

, I NOE NT- Olf

1s ~1e minimum amount of free space to rcscl"e on e,och hne that indentation must not touch (by default 20).

·n1ercforc at level L the indentation is exactly:

3.S The One·step Debugger

MIN <• ,INDENT- INC <MOD .L ,INDENT-HOD>>
<- (13 ,OUTCHAH> ,INDE NT-DI F>>

,OUT-FAST

Ille MDI. l'rogrammmg t'nvironmem

if true the Ocbuggcr will nm Slop when leaving a level with a result Ille deiaull is T.

,OUT-UNIQUE

ifhoth Lhis nnd previous flag arc true successive ·outs" oflhe s.1me item will not he displayed (defaults to T) .

• SELF-FAST

1f true lhe Debugger will not stup 14hen entering a level with an ubjccl which EVALs lO 11sclf (e.g. ATOMS.

Fl Xcs. STR I NGs). The tlefnull is T. "Ille display will be:

•r: obj«/

• FORM-FAST

if true lh~ Debugger will nul s1u11 "hen entering" lc1cl with an) of lhe ·..tiort" FORMS (e.g. <> .. FOO. , BAR.

l\PI Y fll I NG). "Ilic default is T. Ille d"play will be:

11: . FOO = Iva/

\11y of these fl;ogHan be SETGed by you tu tuilor the l>chuggeno yuur own tastes.

3.6. Execution Tracing

Inc ·TRACE• PACl<..\GE provides a foc1lil) for observing the arguments and returned 1alucs of schxtcd

FUNCT IONs and RSUBRs. h 1> possible tc1 print the argument~ llO entry lo the function. pnnt the value

returned. and to break on entry to and cut from the funcuun. \II acuuns may be performed cunditionaUy.

Tu load TRACE. type

<USE "TRACE">

3.6. 1. Using TRACE

rRACE is invoked by

<T RACE wlrat options>

.vlrat is either an ATOM or a LIST of ATOMS. naming the things t0 be traced. lllcsc may mclutle SUBRs.

FUNCTIONS. and RSUBRs: ho,.cver. an~lhing \\hich is traced mUSt EVAL all of ilS argument' options

;p«10c-. the bcha,1or of r RACE wrth respect to the spcc11icd funcuun. lllcrc arc live switches. as follows:

IN- BREAK

mc;ios brc~k {cause a M ilt ERROR) before c.illing lhe function. Nunnally off.

3.5

I he MDI. Programming !-;nvironment 45

IN-PRINT

means & function arguments on entry. Nonnally on.

OUT-PRINT

means & function value on exit. Nunnally on.

OUT - BREAK

hrcak after executing the fu nction call. Nonnally off.

VERBOSE

means & the arguments to the funcuon one per line. This is useful if the arguments <ire long. Nunnally orr.

To cause a given option tu be uncondition:olly on. include its name (an ATOM) in the 111>tiu11s TUPLE. To

r:ouse an option 10 he unconditimrnlly orr. include a two·clemem L 1 ST. composed uf the op1itm n;ime and a

FALSE. If the sc..·untl clement l>f the LIST is neither FALSE nor an ATOM. it will be EVALcd each time

TflACE ex;unincs the Selling of the gi ven option for the function. "Jnis allows crnidiLirnrnl brcakpuin1s. for

example.

·111us:

<TRACE FOO (OUT-PRI NT <>)>

will c;1use FOO"s arguments IO be printed on entry. hut the l'alue -..ill not be printed.

<TRACE FOO (OUT-PRINT '<G? <TIME> 4.0>) >

will c;mse printing of the v;oJuc after four seconds of cpu time have been used. Printing of the arguments will

1x:cureach Lime FOO is called.

UN TRACE turns off tracing of the specified functions:

<UN TRACE wh<11:a10111·or-lis1>

What tlef.1ults to a LI ST of all functions which have been traced.

3.6 .2. Understanding TRACE

TRACE works by CflTYPElng the specified functions to new types wh ich have an APPL YTYPE associmcd

with them. This means that une cannot trace calls to RSUORs or RSUBR-ENTRYs which arc nlre;1dy linked.

In addition, i1 mc;ms 1ha1 UNT RACE must be used tu get the old l'ahte bad. To dc1cm1in~ the status of a

function with respecl tu tracing, say

<GET appltroblt TRAC E>

llus returns FALSE if npplicable is not lrnccd: otherwise. ii returns an llbjec1 which describes the settings of

the various up1ion:.. The ohjcc1 has a PRINT TY PE which associates the name of each option with Its seuingc

3.6 faecutton Tracing

Inc Ml>I l'rogramnung f.m1ronmcm

<GE T , FOO TRACE>S

FOO
IN- BREAK: NFALSE ()
IN-PRINT: T
OUT-PRINT: <G? <TIME> 4.0>
OUT- BREAK: #FALSE ()
VERBOSE: #FALSE ()

Individual scuings for a pJrticular functit>n may be changed by PU Tting into this structure:

<PUT <GET .FOO TRACE> ,IN-BREAK T>

causes a break "hcncvcr FOO is called.

3.7. Monitors

\ common prohlcm in dch11ggi11g is the mi·stcrious 'clobbering' of some 1 aluc or clement of a dnta

.tnicturc. \-llll has imbeddcd 111 it .1 mcch;onism fur 1rigsenn1J 1111crrupcs on rcicrcnccs. cnhcr fur rc.1ding or

;. ming. 10 values of van.1blcs .md clements of suuciures.

The "MONITOR" PAC KAGE is de~ig11ed to be a readily .1cce~1blc user int~rfoce m these "READ" and

"WRITE· intcrrupcs in the Mrn. interpreter.

To obtain "MONITOR".

<USE "MONITOR">

rhcrc arc three basic kinds of ' things' which can be mo1111ored: values of ATOMS. clements of

S TRUCTU REDs (lhc TYPE of the clement is not important}. and ASSOC I AT IONs.

For ATOMS. the LVAL or the GVAL may be mon11orcd. If the LVAL IS to be muni1orcd. tnc ATOM must be

ASSIG NED?. For the GVAL. the ATOM must be GBOUNO? If 1hcsc conditions cannot be met. a monitor

cannot be generated.

For STRUCTURE Os. the monitor 1s on the lllh clement. where 11 is specified when Lhc monitor is created.

Remember. the monitor 1s on a slot of the Sr RUCTURED. not on the contents of that slot!

Fur ASSOC !AT IONs. the munitor is on the association 1csclf.

3. 7 .1. Monitor Inte rnals

rhis scc1ion expands on the discus.~111n of monitors in U1c MDI document icsclf{3).

Mm defines lWO Lypcs of moni1ors: Re~d and Wntc. l'hcsc arc implemented in the lan~agc by two

faccution Tracing J.6

I he MDI Programming Environment 47

m1ern1plS, READ!-INTERRUPTS and WRITE!-lNHRRUPTS. respectively. In addlllon. the "MONITOR"

PAC KAGE can allow rcad·write monitors. The ·MONITOR" PACKAGE is at base a set of functions 10 create

and handle these intcrrup!S. I\ monitor is uiggcrcd in the following cases:

Re:id monitor:
For LVALs ··vial VAL
For GVALs ··via GVAL
For STRUCTUREDs ·· via NTH
For ASSOC I AT I ONs ·• via GET and GET PROP

Write monitor:
Fur LVALs - via SET or• AUX" bindings
Fur GVALS ··via SETG
For STRUCTUREOs ·- vi;i PUT. SUBSTRUC
I-or ASSOCIATION~·· 'ia PUT Jnd PUTPROF

Nute 1h.11 PUTRESls of LISTs which may aher ~ic 11th clement of a LIST. do 11111 access the old 11th

clement of1hc LI ST and therefore do not cause a write monuur 10 trigger.

l111ernally, MDI. performs monitoring on LOCATIVES 10 STRUCTUREDs. In foci. LVAL nnd GVAL are

really poi111ers 10 an internal s1n1c1ure. "lliis need m11 concern the user except in the ca~c of LVAL$ of A TOMS.

In this case. Mrn will monimr a LOCATIVE 10 1ha1 (exactly lhal unique) hindmg of the ATOM. When that

bind mg becomes invalid. or more precisely.

<NOT <LEGAL? locative»

a func1.ion in !he "MONITOR" PACKAGE will m:ikc !he monitor vanish. lllcttal monimrs print as

#MON !TOR (ILLEGAL] (if you e'er gcta pointer IO one). Remember lhal if you want lu monitor the LVAL

of an ATOM bound in a FUNCTION (or PROG. etc.). }Ou must create a new monitor cxh time. as a new

binding is created each time. One way lo do this is lo edit mto the FUNCTION a call lll MONITOR (sec below)

after the ATOM becomes ASSIGNED?. Fonunatcly. EDIT (sec section 3.2.2.9) has commands 10 do exactly

that.

3. 7 .2. Creating MONITORS

Crc.11ion of ;ill monilors is done lhrough n c;ill to MON !TOR (which returns an object ofTYPE MON !TOR).

as follows:

3.1 Monitors

~8 I he MI JI. Progrmmmng f-.nv1ronment

where:

<MONITOR 11pe:s1ring
~
rdH!I
predicale
todo: 1up/e >

IJ"PI' is one of• READ", "WRITE". or• RW".

11bjtt·11s eithN an A TOM or a STRUCTURED. or ,111 ASSOCIATION item.

whrrr is either LVAL or GVAL (if ob)IXI is an ATOM) or o FIX. (if obje(·/ is a STRUCTURED), or an
ASSOC IATION I NDICATOR.

weJu .11r 1<; •orncthing "'hich ;, £VI\ Led to dctcn111ne "hcd1er the monitor 1s to he trigger~· thi< defiiuhs 10
r. Ilic "MOii ITOR" PACKl\G E i.lclines three 1..rmbles 1<l11d1 c;m l>e referenced in the test:

OLDVAL is the uid 1alue nfthc object monitored.

NEWVAL is the new 1aluc of the object monitored.

HONOBJ is the uhjcct monitored (ATOM ur STRUC TURED).

lcrc 1·cJ/ue means LVAL, GVAL or clement Obviously, NEWVAL is not SCI for "READ" monitors.

todo is any numberof things tu be EVALcd and PR! NTcd when the monitor is triggered.

'lute thnt prrdirotr and todo arc identical 10 the analogous arguments of the ED IT BK command.

3.7.3. MonitorEvents

When a moniwr is triggered. the following is printed (remember the prrdicotr is evaluated before !his),

Jnd then LISTE N is called. Tocontmue. <ERRET T>.

Read:

Write:

.. READ or where of objtc1• •
Val ue: oldval
10</o/ = resul!I
1odo2 = resu/12

\1onicors J.7

"lhe MDI. Progrnmming Environment ·

••WR IT E of where of object••
Old value : oldval
New value : 11ewva/
todo/ = result/
todo2 ; resu/12

A slightly dilTerent first line format is used for associations.

3. 7 .4 . Ki lling Monitors

or

Killing a MONITOR is accomplished by calling KILL-MONITOR as follows:

<KILL-MONiTOR 11w11itor>

<KILL-MONI TOR !.J1!f obkct tt11ere>

In the latter case. type. object. and w/1ere arc ~s given in lhc original call m MONITOR.

To kill all MON ITO Rs, use

<KILL-ALL-MONITORS>.

3.7.5 . Othe r Monitor Routines

<MONOBJ monitor>

retums lhe object monitored.

<MONSPEC monitor>

returns the 1vhere of the MON IT OR.

<CLE AN- MONITORS>

49

nushcs invalid MONITORS from lhc MONITOR LIST. This is done internally and need not be called

routinely.

,MONITORS

is a LI ST of all current MO N ITORs.

3.7.6. What You Can't Do with Monitors

You can't monitor the L VAL of something BOU ND? but not ASS IGNEO?. F..g.,

3.7 Monitors

50

DEFI NE WRONG ("AUX" SAR)
<MONITOR "READ" BAR LVAL>
•• & •• >

l'hc Ml>l. l'rogranuning E1w1mnmcnt

You can"t cxpc-=t cmnpilcd code tu cause monitors Ill be triggered. Namrnlly. yuu can"t place monitors tn

c<>111p1lcd code: h<>wevcr. a compiled reference to a ntuniuircd ATOM will nm usually cause the mo111lor to

trigger either.

3.8. FINOATOM

Ilic "FI NOATOM" PACKAGE is intended tu reduce the problems caused bt multiple OBLISTs and

lengthy A TOM names m M1>1. It allo .. s 1inc to find all ATOM' Y.ho..c PNAHE s match some spcciflciltton. "'hich

need nut be exact: in addition. one ma) pb:e conm;unts on the values of 1hc ATOMs found.

f I NOA TOH is invoked as:

(F INOATOM svecs1r,strj11g
sron:hlist
co11s1rai111s
011robl:lis1>

spr<'sfr Is a STR illG describing the PNAMEs of the ATOMs one wishes w find. ·nirce s~ial characters arc
rccugn11ed in this s·1 RING:

• · matches anything. including an emp1y siring

•: matches any single character

rQ: quotes the following character

Scarth string... may be an arbitrary concatenation of normal and special characters. For example:

·•soM• " : matches any ATOM containing ·sow anywhere in its PNAME.

···SOM• •: matches any ATOM con1nining "SOM" in its PNllME. provided 1hat at least one character
precedes lhc •SOM".

"rQ .. : matches any ATOM with PNAME • • •

- • • · matches any ATOM.

If rQ is the only special character m the string, 11 need nut be qu01cd: "•Q" searches fur ATOMs w1lh
PNAME "tQ".

searchlist s~1r.es the OBL I STs to SCJrth. Possible values arc:

#FALSE (): scarchallOBLISTsin .OBLIST

Monitors 17

lhc Ml>L l'mgr:imming Environment 51

NF ALSE (oblis1:r-ur-fon11s): search all but !he OBLI STs specified.

oblis1: 5earch only this OB LIST.

Jis1·ofoblis1s. search only the OBLISTsin this list.

else: search all OBL I STs. This is !he default

c1111s1rai111s is a TUPLE describing the value of each ATOM found. It ma} consist of any number of \•a lid TY PE
names. along with arbitrnry strucmrcs and the following special objects·

T: if present 01crridcs :my <llhcr cons1r.11nts: if no other constraints arc specified. this is a.ssumcd. An)
ATOM matching spec.wrwill be accepted.

ANY: 01crridcs an1 constraim other lhan 1. Any ATOM matching sper.11r which h:l'> a 1·ah1c (either GVAL
or LVAL) v.ill be accepted.

<>: .111) ATOM which has no v;ilue 11ill be ncceptcd . Note that giving both ANY and<> is cquivalc11110
giving T.

LINK: any LI NK 11ill be acccplcd.

If other constraints arc provided. they work as follows: all valid TYPE names given (nncs for whom
VALi D-TYPE? returns T) arc stored in a strucmrc: when a value 1s encountered. its TYPE is MEMQcd
on this structure. If !he ATOM docs not succeed here. it is n~x1 checked against the ·arbitra~
structures."

An) thing in m11s1rai111s "·hich is neither unc of the ahovc ·special objects' nor a v;ilid type is 1re;itcd as a
DECL specification. All such objects arc put in a FORM s1:1r11ng with OR. 11hich has the effect of
gcncr.11ing a single DECL spccifacauon. When a 1aluc is round. DECI.? is called wilh the value ns ns
first ~rsu111cn1 ;11\d the generated FORM as its second. If DECL? rc1urns T. meaning that !he FORM 1s
valid as a DECL forthe VALUE, the Al OM is accepted.

fa am pies:

ATOM FALSE '<LIST [REST FIX)>

specifics that any ATOM al"CCptcd must have either a GVAL or an LVAL which is of 1ype ATOM or
FALSE. or which is a LI ST of FI Xcs.

'<OR ATOM FALSE> '<LIST [REST OBLIST)>

spcciries that uny ATOM llCC'cptcd must match the DECL

<OR <OR ATOM FALSE> <LIST [REST OBLIST)>>

outubl. if present 1s a LI ST of OBLI Sl~ 1.1hid1 IS !he LVAL of OBLI ST 1.1hcn F lllOATOM prints !lungs. Thus
one may fon:c all ATOMS 10 be printed "ith full trailer.; hy prO\ id1ns :in empty LI ST here. The lasi
argument given m F INDA TOM. pro1•idcd u 1s :1 LI ST. is assumed to be uu1obl.

FJNDATOM prints the name of each ATOM 11 :iccepts. folh11.1cd b~ !he STR ING "Gassigned" and lhf

!)'pc ofGVAL if the ATOM has one· !his will bt' followed by the STRING "As signed" and !he type of the

3.8 FIND/\ TOM

52 The MDI. i'rugrammlng r.nvironmcnt

l VAL if the ATOM has one. It prints Ille number of ATOMS found when it finishes.

3.9. " PINFO"

"P INFO" is Jn informational PACKAGE. It is used to examine !he OBL I STs of !he PACKAGES loaded into

an MUI . There arc two major en1ries In P INFO.

<PCK-INFO package:string
i111enial?:boolean>

lloth arguments IO PCK- INFO arc optional. If neither argument is given. the n.uncs uf thc PACKAGES loaded

into the ~Im. arc li~tcd. I.fa /1<1ckagc is given. the contents of the package's ENT RY OBL !ST arc listed. as well

a'> infonnation about the VALUE of e.11:h ENT RY . If i111m10/? is prm idcd .111d non·f ALSE the Clmtcnis of the

inicnwl OBL I ST .ire ;olso listed. PCK- INFO prints an error message ifp;ickngc 1s not loaded.

<PCK-USES pack11ge:s1ri11g>

lists the names of PACK AG Es USEd by p;1dagc or returns a FALSE if package is not loaded.

3 .10. De bugging i n a Run-time Environment

II fairly common occurrence when running 'debugged' cooc is to find !llat if w:is not after ull co111plt1e/y

debugged. h is useful to be able tu luad imcrprcted \Crsiuns ufsome FUNCTION; in a PACKAGE into the

compiled environment fur debugging. "DFL ·."ROFL·. and "UNLI NK " arc PACKAGES wriucn to simplify

this procedure.

3.10. 1. OFL

lhc "OFL" ('Debugging Flood') PACKAGE is a set of routines for loading aud dumping of small numbers

of FUN CT IONs from a larger file. It is useful in debugging already running systems. or ones which have not

been GROUP-LOADcd. To get "OFL"

<USE "OFL ">

The main entry of the "DFL •PACKAGE is OFL:

<OF L fu111:·1111mes ji/e-11a111e:s1ri11g unlink?:boolton>

where all arguments arc optional and

fu1u-11a111es is the Mmc{s) of the DEF I NEd F UNCT ION(s) to be obtained from this file. It may be an ATOM. a
STR ING. or a wucturc of A TOMs or STR r NGs: if A TOMs arc given, their SP NAMEs arc used. 'Ilic default is
the ~rgumcnt last given to DFL or ROFL.

ji/e-11a111r is the file to obwin the FUNCHON(s)fmm. Ille default is the last file OF Led or ROFLcd. An ATOM
may be given. in which case its SP NAME is used for lhc first file n(IJlle.

u11/i11k?lf this is uuc. and if one or more of the values replaced by the Df Led f UNCTIONS were RSUBRs or

FINDATOM 3.8

The MDL Programming Environment .S3

RSUB R-ENTRYs. the reference VECTORs of all RSUBRs, including pure ones. will be searched for
ocrurrenccs of the old value: such occurrences will be replaced by the ATOM. 'l11is is the inverse of
RSUBR-Ll NKing. Pure structures will be unpurified; this dues not change their address in cure. but
simply makes the page they live in read/write.

In the normal case. if an RSUBR or RSUBR-ENTRY is being replaced. unlinking will occur automMically in

garbage-collector space only if RSUBR-LI NK is T. Also. remember that unlinking is not the same as

sut?stituting: onli· RSUBRs stored at top level in reference VE'CTORs arc found; if the old 1;1lue ilSClfwas in a

structure (such as a dispatch table). it will not be replaced.

3.10.2. ROFL

ROFL is similar to DFL but ls fur reloading RSUIJRs nithcr tl1an FUNCT IONs. ROFL is conwined in !he

PACKAGE "ROFL".

<ROFL fu11c-11amrs filr-110111e unlink? glue?>

'Ilic first three arguments arc as fur Ofl. The only difference between ROFL and DFL (barring the effect of

1he founh argumen t) is that ROFL searches in the file for'< SETG · rather tlian '<DEF !NE '.

glue? lfnon·FALSE. llDFL will READ and EVAL the next object in the file following each RSUBR read. This
will in the nonnal case obtain the 'glue llil~- for the RSUBR (sec section 6.1). 'Ilic default for glue? is

<ANO <ASSIGNED? GLUE!- > .GLUE!- >
This is the FORM used in Nil IN files to detennine whether glue bits should be kept.

Note that RD F L will work to reload any SETGed object, nut just RSUBRs.

ROFLing an RSUBR-ENTRY docs not work and may well be fatal: you must ROFL the RSUBR in which

lhc RSUBR-E NTRY is an entry, as well.

3.10.3. UN·DFL

UN-Dfl is for writing out Of Led FUNCT IONs aficr EOITing.

<U N-Dfl (lfoms fil11a111 force?>

ow111s is an ATOM or a list of II TOMs. which will be UN-OF Led. 'lhc F UNCT IONs defined must all be from the
same file. or UN-OFL will not work. UN-Ofl can only UN-OFL things which were previously loaded by
DFL

fi/110111 'lhe default is the file tl1c ATOMS originally came from.

jiJrce? Normally. UN - OFL will object if there is a version between the file the FUNCT IONs c:1mc from and the
file which UN- Ofl will create: it thinks it will likely destroy useful information. Providing an ATOM here
causes this scruple to be ignored. It is almost always unwise to do so. For example:

3.10 Debugging in a Run-lime Environment

rhc MDI. Programming ~nv1runment

<DFL (FOO BAR)> <UN- OFL FOO> <UN- OFL BAR>

Nill cause UN-OF L to foil. Mural: Of L and UN-Of L your f UNCTIONS togelher.

3. 10.4. UNLINK
The "UNLINK" PACKAGE contains three entries: UNLI NK. PURE?. and UNPURIFY. UNLI NK is

sometimes called by Of L: PURE 7 ,u1d UNPUR I FY arc good ways to li~uratively defeat the s:ifC'ty •interlock· of

Mot_

UNLI NK i~ used to unlink RSUBRs ancr the; ha1c ~n linked. (Sec the discussion of RSUBR-L INK in

(3)).

<UNLI NK 1USJ.UJJ pure?>

e1w111s b .1 llst uflhc ATOMS tu be unlinked. ur" FALSE. meaning unlink e\'cry RSUIJR in the Ml>I, or a

gmup·name. 1neamng unlink calls to .111 FUNCTIONS and RSUBRs m the group.

p11rt.' is optional nncJ defouhs to FllLSE. but if tnte, even pure RSUBRs will be searched. UNLIN K

examines all the OBLISTs in the Mrn , louking for RSUBRs: if an RSUBR exists only in " stn1cture. and not at

top le1·el in any RSUIJR's reference VEC TOR. it will not be found.

<UNPURI FY nureubiec('q11y>

PURE? takes an object and detemuncs if tl1e right half of the 1·alue word is greater lhan the number

contained in the MDL locmion ruRBOT. which is the lowest pure location in MnL Ergo. ·1s the object I gave

you pure?' It is only meaningful for Structures.

<UNPURI FY oureobject;aay>

UNPUR IFY takes a single argumenL which must be of PR IMTYPE VEC TOR or UVECTOR (i.e .. it must have

Jn AOBJN pointer for i!S value 1< ord). It causes the pages in which that object lives to become impure, and

returns r.

Because there is no way on ITS tu make a rcad·only page an impure page directly. !he following algorithm

is used by UNPURIFY:

I. Is the uhjcct pure. according to PURE 7 If not. leave.

!. Is UNPUR IFY- PAGE t - ! UNLINK GASS I GNEO? If not. get a page from the interpreter. and SETG
the aforementioned ATOM to its number. I.e .. the page is more or less pcnnanently taken for use
uf UNPURIFY.

J. For each page oo:upicd by ~1c object: a) If the page is already impure, do nothing: b) ulhcrwise,

Debugging in a Run·timc Environment 3.10

The MDI. Programming Environment ·

map the page on top of UNPUR I FY-PAGE: c) create a new. impure page where the old page was.
d) copy the contents ofUNPURIFY-PAGE back to the old. now impure page.

55

'Illus. no pointers arc changed: as far as MIJI is concerned, in foct, nothing has changed. The unpurificd

pages arc still pure. according to its page map. However. you may freely change the unpuriticd objccL

If your change to the newly unpurificd ohjcct consists of PUTing a pointer into garbagc·collcctcd space

inm the object, you may lose completely unless the poimcr poims to a frozen object lnc Mot. garbag<'

collector docs nut examine unpuriticd objccL~. UNLINK can only use UNPUR IF Y because all A TOMS

referenced hy pure R.SUBRs arc indeed frozen.

for the above reason. use of UNPUR If Y is nm recommended for ll1e general user.

3.11 . CRITIC

"CRITIC" is a PACKAGE designed to aid the user in debugging (;md perhaps increasing the emciency 111)

his programs. II accumulates ;md prints in a readable fonna1 infonnmion ahuut the i111crac1ions of the various

FUNCT IONs (and L VA Ls and GVALs) in a group. 11 also w:irns Ille user about v:irinus conditions it consillcrs

to be either non·optimal or erroneous. such as incorrect use of SPECIAL, forgetting 10 QUOTE some structur(:.

and so on. Like most critics, it is sometimes wrong, but it tries to perform a useful service. To load

"CRITIC" say

<USE "CRITIC">

'lllere arc two major entries. one of which prinis more infonnatiun than the other.

<CRIT JC grouo-11a111e
uutput·/ile>

where group·11a111e is the ATOM returned by a GROUP-LOAD. and the optional oiuput·file is a STRING giving

the name of the file to output w (b) default with second file name •CRITIC"). This can also be a CHAN NH

if you arc planning to do scvcrnl CRITICS into one tile. CRITIC print~ infonnation about interactions

amnng the f UNCTIONS in a group (as described below).

<CRITIC - NOTES grmm-11ame
uutput·file>

is similar but only pri n L~ 'errors' and 'warnings··· things that might be problems with the FUNCT IONs in die

group.

·me output fom1at (for each FUNCTION and for d1c group as a whole) is as follows:

fu11ctiu11 (objec111umber of function in group)

Cal 1 ed-by: a list of all the functions which callfunc1ion

J.10 ' Debugging in a Run·timc F.nvironmen1

Ca 11 s: .i list uf all the functiuns e<11lcd by function
SETG: cucm.11 globals SETGcd by function
GVAL: external globals n:fercnced by fi111c11on
SET: external \ariablcs SET by function
LVAL: external variables referenced by function
SPEC 11\L: 'anablcs declared SPECIAL by function
USE-DATUM: DATUMs used by fimction

Inc MDI. Programming l'.n,ironmcni

·me above l:lblc is printed by CR IT l C but not by CR IT I C-NDTES. 'fatcmar as used above means

·fa tern al to fimction'.

CR IT IC- NOTES and CR IT IC bul11 pnnt infonnatinn :tboul ~blc defcclS or emirs in ca<:h FU NCTION.

These can be any or all nf lhe following (cxplanations follow where needed).

3.11. 1. Global problems with the Group

FLOAD In file.

·n1is is prcny minor: FLOADs lll lnp level arc discouraged if you can avoid them.

BLOCK or ENDBLOCK at top level in PACKAGE.

PACKAGES should not have to resort Ul this.

n10111·1rn111e: MAN If ES Ted structure.

·me ATOM given is a structun: but was MANIFESTcd. Since a MANIFEST is copied within the reference

VECTOR of an} RSUBR that uses it. it is usually not a good idea •.

ENTRYs not bound. assu111ed loca Is: a1om-lis1

The ATOMS given were made ENTRYs in the PAC KAGE. but were not bound. so CR IT IC has assumed they

arc locals. for l.xk of something better lO do.

Packages USEd but never referenced: packnge-11a111es

These PACKAGEs were in USE si.1u:mcnts but no ATOM was ever found which fell on l11cir OBLISTs.

lllcrc will sometimes be incorrect enmcs 111 this list if you USE a PACKAGE which sets up a funny ENTRY

OBLI ST (RPACKAGEs included) or nu OBLISTs at all.

Internal functions unused: 010111·/lst

Thc:sc arc FUNC T I ONs DEF IN Ed but apparently never referenced and not entries. Then: will sometimes

be incorrtct entries in this list if you have FU NCT IONs invoked only by funny disp;lll:hing methods, such as

CRITIC 3.11

The MDI. Programming Environment

APPL Ying or EVALing an clement of a structurt

Internal globals unused: a1onr-lis1

ATOMS SETGcd at lop level but never referenced.

Internal manifests unused: atom-list

ATOMS SETGed and MANIFESTed al top level but never referenced.

3.11.2. Parameter list problems

ATOM mo11~11ame used twice in parameter 1 isl.

51

·me ATOM named was brnmd t\lice in lhe same parameter LIST 11ithin the rU NCl JON. Mrn doesn't

worry about this. but you might.

Un tasteful re -use of ATOM 01n11~110111e in ROOT.

i\n ATOM was bound which happened 10 he in the ROOT OBLJST ;md happened to hnve n GVAL that is a

SUBR or f SUBR. This is reported because the ATOM will have lO be unpurificu, which is expensive.

"BI ND" illegally located.

i\ "BI ND • was found other than at the beginning of a parameter LIST.

"CALL"/"ARGS" illegally located.

i\ "CALL• or• ARGS" was found aner the ·AUX· in a parameter LIST.

"OPTIONAL" illegally located.

"OPT JOHAL• was found ancr "AUX· in a parameter LIST.

"TUPLE" illegally located.

"TUPLE" was found after "AUX" in a parameter LIST.

otom "AUX" illegally QUOTEd.

The ATOM named was ghen as a quoted a~ument in the· AUX" pan of the parameter LIST.

External locals set but unbound and unOECLed: otom·list

External locals set but unbound: atom-list

Two different classes of hacking an external local. In both cases it means that the ATOMS did not ap~arto

3.11 CRITIC

58 The MDI. Pmgramnung Environment

be improperly SPEC I Alcd. since no one bound them higher m !he call tree (or at top level). Thci;c nre most

often indications of misspelling or forgct~ng to put a temporary in !he parameter LIST.

External locals used but unbound and unOECLad: atom-list

External locals used but unbound: atom·llst

II reference to an external local which was not bound anywhere is pmbahly a misspelling of a SPEC IAL

bound elsewhere or the result of forgetting to put the ATOMs in the FU NCTION"s parameter LIST.

External locals set but unOECLed: utom·list

Ex ternal locals used but unDECLed: atom·list

i\n external used but nut DEC Led usually means !hat the compiler v.ill produce poorer rode.

3.11.3. Unused ATOMs

Argument unused: atom· list

The arguments listed were never referenced.

Unused: atom-list

The ATOMS listed were bound at top level of U1e FUNCTION and never referenced.

Unused in PROO: atom·list

Similar m lhe above. but the ATOMs were bound within a PROG.

Unused in REPEAT: atom-fill

Similar to !he above. but the ATOMs were bound within a REPEAT.

Unused in FU NCTION: atom-list

Similar to !he above. but the ATOMs were bound within a nameless FUNCTION. such as the second

argument to a MAPF / MAPR.

Unused SPEC IA Ls: atom·list

The same ;is above (including· ..• in FUNCTION". etc.). except U1at !he ATOM wa.~ SPECIAL. This

message results frum really looking down the call tree. so 11 is more accurate about this problem than !he

compiler. which only looks at the FUN CT ION in which the A TOM is bound.

cRrnc 3.J I

•

I

llu.• MDL PmgrJmming Environment

3.11.4. Function calling errors

Call s undef ine d function atom.

The FUNCT ION calls an undefined FUN CT I ON (undefined a1 lhe 1ime CR IT IC ran).

Cal 1 s fi111r1io11 with too few a rguments .

Calls fu11r1io11 with too many a rguments.

Ex le rna 1 FUNCTION fu11r1ion

59

·111e FU NCT JON named isc:111ed butdoc:;n·1 seem tu foll on anyoftl1e OBLISTsassociated with lhe group.

3.11 .5. SPECIAL/ UNSPECIAL problems

SPECIALS never used as SPECIALS: tttom-list

'Jl1e AT OMS w~re mude SPECIAL but never used ou1sidc the FUNCTIO N in which lhey were bound.

atom·11a111e is unused or should be SPECIAL.

A very specific error which means tl1m the ATOM given (always one of JNCHAN. OUTCllAN. or OBLIST)

was bound but never referenced wilhin the FUNCTION. and "as not SPECIAL: rn1her }OU bound it for

effect and forgut to SPEC I AL ll. or you didn't need to bind iL

aium unbound in pa ths: path-list

If the FUNCTION is called by one of tlic paths given. the atom will be unbound. A palh is just a list of calls

CRITIC has found arc possible. such as (FOO BAR BLE CH). meaning "FOO is called by BAR which Is called

by BLECH'.

The ATOM atom used in fc11/ should be s pecial in frn2.

This note will appear wi1h bolh FUNCTIONS meminncd. It means thal at11111 is referenced in fr11/ and the

nearel.1 FUN CT I ON that binds ii and calls down to fc11/ isfcn1.

3.11.6. DECLing pro blems

RSUBR has no OECL.

FUNCTION has no OECL .

Parameters not DECLed: atum·list

The ATOMS gi•en were bound but not OECLcd in the parameter list of a FUNCTION. PROG, or REPEAT.

3.11 CRITIC

60 Ilic MDI. Programming Environment

No DECL in DECL for : a/Om·lilt

The A TOMs in the a10111· /is1 gil'en had nu associated declarations.

NEWTYPE not DECled: type-name

1\ NEWTYPE of a stmctured type was made but no OECL argument w;is included. In a s1mctured

NEWTYPE. including a DEC L of the inicrim can greatly increase the efficiency of compiled rode.

Illegal OECL: 010111·/ist ded reason

·11ic OECL pair given had illegal syntax fur the reason gi ven. ·1ncsc can include:

"Not a l egal type" : J\nobjectappearcdin;iOECLtha1wasnota11ATOM.fORM,orSEGMENT.

• T ype·n ame not a type: mom": S.•mething 111her than a 1ypc·name or special symbol (such as ANY)
appeared "here a 1ypc was expcc1cd. This is somclimcs caused by tl\11 h:" ing your cnvirnnmcm
completely sci 111> when CRITIC is run.

"FORM/SEGMENT too short": J\ FORM/ SEGMENT construction ofnnly one elcmcn1 was found.

"SPECIAL/UNSPECIAL with three or more elements "

"Bad PRIMTYPE t ype": "llletypcgil'cninaPR IMTYPEwas .:otatypc·namc.

"PRIMTYPE with th ree or more elements "

"Bad type of structured type ": The 1ypc·namc given as t11c type llf a stmcturcd type was not a
type. Fur example.< FOO FIX> where FOO is not a type.

"Bad BY TES specification": J\ BYTES specification was not of the form <BYTES fix fu>,or the
byte size was greater than 36.

"BYTES DECL too short": J\ BYTES consiructiun of only one clement was encountered.

"BYTES OECL too 1 ong " : A BYTES construction of more lhan three clements was encountered.

"V ECTOR i n OR specifi ca t i on": An NTH/REST /OPT construction was found at top level of an OR.

"Nth/REST /OPT t oo short": A one-clement NTll/REST /OP T.

"Only REST or OPT may ro l low OPT ": Something olhcr than a REST or OPT was found after an
OPT.

"REST mus t te rmi na te OEC L ": Something was fou nd after a REST in the OECL.

CRITIC J.11

111~ MDI. J>mgr:unming Environmcm 61

3.11. 7 . Miscellaneous

Pos sibly should be QUOTEd: s1ruc1ure.

'Ille structure given will be=? to itSClf ifEVALe1L CRITIC lists these under the assumptit'n that you

might have forgoucn lO QUOTE a structure that should ha1c been. It says "possibl)" because you obviously

":1111 10 build new structure sometimes. One way to do this without offending CRITIC is to build new

s1n1cture with explicit calls to LI ST. VECTOR. etc.

3.12. Progra'!l Environments

·me ENV PACKAGE makes it c:isicr tu load 1>rngr:11ns into different environments. It allows certain actions

U> he t:tkcn Juring 1ti:1ding only if a ~hen 'feature' is prC!;Cnl E NV ha~ three ENT RYs. and•~ prd1~1ded.

<FEATURES fr11111res:1uple>

If given n11,1rgume11L\. FEATURES rc111ms thccurrcm feature LIST. If its fir11 ilrgmnent IS nut a FALSE. the

arguments nrc atldcd 111 ll1c feature LIST. If the first urg,umcnt is FALSE. the rem:tining argument~ arc

removed fnHn the fcniure LI ST. Thus.

<FEAT URES "COMPIL ER">

says that we arc currc1uly in a compiler. All of l11e 'feature' arguments may be either STRI NGS ur ATOMs:

internally features arc stored as S TRI NGs to avoid OOLI ST problems.

<FEATURE? (e111ures:wple>

returns T if any of its arguments is on the feature LI ST.

< E VAL -WllE N (en1ura
nmm1tt1m: tuplf >

uses tile first argument to deddc whell1cr to evaluat<.' the remaining arguments.

fra1urel specifics which fcaturc(s) tu look for. It ma) be a smgk feature or a LIST of features. In the laner
c~se. if the fir~t clement is a FALSE. what ischcck<.'d for 1s th<.' absence of the features listed. Note that this
argument is often a LISl created out of arguments to FEATURE?.

C1J11sequC11ccs arc ll1ing.~ 10 be evaluated only if the fca111rcs Jrc present (or abscnL in the FALSE case).

For example.

<EVAL-WHEN GLUE <SETG FOO 1>>

"'mild perform the SETG only 1f it'se1aluatcd in a GLUE (or some other cn"inmmcnt defining that feature).

<EVAL-WttEN (<> COMPILER) <SETG BAR 2»

"t>old nut perform the SETG m the compiler environment

Unfonunatcly. the ENV PACKAGE is a relatively recent innova1ion. and so many prn~rams do not set up

~pproprinlc environments.

lll CRITIC

62 The MDI. l'rngrunmung Environment

4.0

Inc MI >1 . Pro~r:unming 1-'J1vironment 63

4. The Library System
A coherent unified library system scn·cs 10· facilitate lite sharing or algorithms and daia by imposing a

discipline appropriate for I.he panicular environment. The MDI Library System provides:

- A uniform access mcll1od for referring IO functmns and data outside of1he currem logical group:

- Lexical blocking. eliminating difficulties arising from o'·~rlap of names between dilTcrcnt logical
groups:

- AulOmatic loading of functions for 1hc user who knows only 1hc name of !he function which is
wamcd:

- A foci111y whereh)' functions v. hich may be ncccssmy only in unusual si111ation~ arc loaded only in
1hc event that they arc needed.

·me Mill Library System may~ dh·i<k'd inm di\1inc1 pans. These arc:

- "Inc l';ockagc System. I he collection or rouuncs used m provide lexical bloding for :1 logical group
(sec section 2):

- 'Ilic ·explicil" lrn1ding facility. the routines used 10 explicitly intlica1c 1hm references arc being
m:ide to a particular logical group:

- The ·miplicit" (or "dyn:unic") lo.1ding fociht). 1hc m:ichincry for autom:itically l<><Kfing functions
v. hen they arc needed during console inter:iction.

4.1 . Programlib raries

In the previous discussion of I.he Package System and USE (sec section 2.3.2). v.e glossed over the

mechanism by v.hich a PACKAGE is loaded when another PACKAGE (or the user a1 his terminal) refers to iL

We will now give 1he details.

111erc arc 1wo types or h>nding common in Mlll . programming: 'cxplicil" loading, such as USE may

initia1c. and "implicit' or "dynamic" loading. ini1ia1cd by aucmpting 10 call or examine a func1ion that is not

currcmly loaded.

In the case of·cxplici1· lmdina. it is necessary somehow Ill m:tp the name or a PACKAGE inm a file name

which contains Lhc body of 1ha1 PACKAGE. 'llte mechanism for doing so must be ncxiblc enough LO allow

both 'inst.11lcd' programs (l110se th~I have been dehuggcd and submiucd 10 the library) and Jcvclopmcntal

programs tu be loodcd. It must also be tailorable for special needs. such ns libraries for specific systems and

personal libraries for individual users.

4.0

64 The MDI. Programming FJwironmcnl

In the case of"implicit" loading. the further mapping from the specific ENTRY of a PACKAGE referenced to

the PACKAGE itself must be pcrfonncd. h must deal with the case of two or more PACKAGES each conmining

an ENTRY with the same PNAME.

For programs that arc 'puhlic" or 'installed', both of these mappings arc performed by a librnry. A library

Is~ f11c which conmins pointers between the names uf ENTRYs of PACKAGES and the PACKAGES eonlllining

them. nnd from PACKAGE and DATUM names to the f11escontaining them.

The standard libr.iry is named LIBMUD and li•cs on a directory named LIBMUD (un ITS) or MDLLIB (on

Tcnexrl ops·20). but other libraries. personal or ~ial purpose. may also exist; the mechanisms for creating

and m;iimaming them arc the same in both cases.

4.1.1 . Library Searching

Wh~n a PACKAGE is US Ed. Mm first checks to sec if the PACKAGE is already luac.lcd. by looking up the

PAC KAG E nnntc on the PACKAGE DBL tST. If the PACKAGE Is not yet loaded. Mill must search for the f11e

containing the body ufthc PACKAGE.

When MDL searches. it tlocs so under ~ie direction of a search path stored as the LVAL of the ATOii

L-SEARCH-PATH. This LVAL is a LIST. each elcmcm of which specifics 'a place to look' fur the PACKAGE.

·nicsc clements may be:

•ji/~11am~·

A STRI NG refers to a library file: "LlBMUO: LIBMUO" for example.

[]

/\n empty VECTOR refers to the <S HAME> dirtetory. The direclOry will be searched for files whose names are

the nnmc of the PACKAGE being loaded (truncated to six characters on ITS) and second names from the

LVAL of the A TOM L-SECONO- NAMES. which is a VECTOR of STRINGS which arc possible second Mmes for

the file.

[dir:$/ring-orfa/%]

A non·cmpty VECTOR specifics a directory. fhc first clement or the VECTOR ghcs the directory as a STRI NG

or a FALSE. the taucr case meaning <SHAME>. If that is the only clement. L -SE CONO- NAM ES specifics the

file names to look for. If there arc o01cr clements. they should be STRINGS to use in place of

L-SECONO - llAMES.

A search path may consist of any number of such clements. The loader will examine them sequentially,

attempting U> find !he PACKAGE being loaded.

Program Libraries 4.1

l

'Ilic MDI. l'rogrnmming Environment

The initi.~l LVAL ofl-SEARCH - PATH (on ITS) 1~

("LIBMUO • "L IBMUD;LIBMUD " [] ["HBPROG"] ["MPROG" ">"])

and on Tenexf l'OPS·20. it is

("LIBMOD" "CMDLLIB>LIBMUD" [] ("MDLLIB"])

65

This inslructs '111e loader LO first search the user's pc~mal library (if it exists). then the 'public' library. Next.

sc.irrh !he user's directory for a file whose first name is the PACKAGE name. and whose =ond name is

s~Tificd by L-SECOND-NAMES. lflha1 fails. perform the same search on the libr.n; directory. and finally

(on ITS). look for a source version of the PACKAGE on the S<iurrc directory.

·111e initial LVAL ofl-SECOND-NAMES (on ITS) i~

["FBI N" "GBIN" "NBIN" ">")

and on Tenexfl'OPS· 20. ii is

["FBIN" "GBIN" "NBI N" "HUD")

To give a simple ex.1111plc of how this mcdrnnhm ma> be tailored for indh idual needs. consider a

programmer debugging a subsystem. lfhe wants his debugging versions of 'ariou' PACKAGES to be loaded

before the instnllctl versions. he CONScs a new clement onto L -SEARCH- PA Tll so 1ha1 ii contains

([) "LIBHUD" "LIBMUO;LIBMUD" [) ["MBPROG") ["MPROG" ">"))

(assuming the files with his debugging versions arc on the <SNAME> directory).

4 .1 .2. Dynamic Loading

To case the use of 'lop lcvd' routines from the console. a feature is provided whereby the Library System

can load a PACKAGE of functions au1oma1ically when one of the fu nctions which is an EN TRY in tl1a1

PACKAGE is invoked by name. 'Ib is facility is not Hvailablc for use by other PACKAGES of functions, which

must refer explicitly, via USE. 10 PACKAGES which they require: while a human can rcsoll'c the difficulty of

possible multiple PACKAGES with ENT RYs of the same name. a program cannot.

When an error 1s generated because a FORM is e'alumcd. and !he first clement of 1ha1 FORM is an ATOM

which has no value. and the panicular ATOM i~ in the IN IT I Al OBLI ST. an error handler es1.1blishcd by the

l.ihrary System determines if there arc any l'ACKAGh in 1he current libraries which con ~1in an ENTRY with

the 11.1me nume as the f'NllME nfthat ATOM. If there is one such PACKAGC. it is loaded. and !he Cl'aluation

which go11he ermr is continued with the correct value. If there is more than one such PACKJ\GE, lhe possible

choices arc displayed. the user is asked which is the d~ircd PACKllGE. and ii i; loaded. If lhcre arc no

PJ\CKAGEs wilh ENTRYs of the correct name. the error 1s not handled, and so 11 v..ill fall into !he stan<brd

error mechanism. This s.1me procedure is also invoked when GVAL is applied 10 :m ATOM on !he I NIT IAL

4.1 Program Libraries

66 Ille M Ill. Programming Environment

OBLI ST and the AT OM has no value.

4.1.3. USE-DEFER

It is sometimes desirable to have available functions that arc rarely invoked. but arc nonetheless available.

(One example "ould be certain error handling rouuncs.)

The USE -DEFER funcuon scis up the OBLIST path so that. when a reference is made to an ENTRY in the

specified file. the Cl•rrcct ATOM is found. but the PACKAGE is not actually lu~dcd at that lime. When a

fo11c1io11 at a later time tries lo c:ill the function which is the value of one uf the entries in this PACKAGE, the

"hole PACKAGE will be auwmatic;illy loaded. USE ·DEF ER h:is twu constr:tintS 1< hich USE dues not. First. the

PACKAGE must be m one of the cum:ntly :icti1c lihrari~: it may not simply be a tile as in the c;isc of USE.

Second, no reference m;i) be mat.le to A TOMs which arc entnC\ but do ml! have "1luc-; "hoch ;ire a1>plicablc. In

other "urds. ATOMs which arc entries bo:ausc they arc d;it.1 (rather lhan function~) ma~ nut be referenced

when USE-DEFER is employed instead ofUSE.

llccausc USE -DEF ER uti li ies the dynamic loader. which utilizes the ERROR internipts, USE ·OE FER will

not work in a demon or any other Mm program which SCIS up i!S own error handlers. All such MOL

pmgram~ should SETG the ATOM L-NO-OEFER to a nun· FALSE. which (as explained prc1iuusly) will cause

USE-DEFER to behave e1actly like USE. Then. PACKAGES containing a USE ·DEFER can be used wilhoul

modification in demons and the like.

4. 1 .4. USE· TOT AL

USE -TOTAL is analogous II> USE, but instead of splicing in only lhe ENTRY OBLIST ofLhe PACKAGE. it

additionally splices m the i111emal OBL IS T. This 1s useful in some debugging silU;llions. as it reducrs the

number of trailers pnnlcd and also makes the internal identifiers of the PACKAGE more <>eecssiblc.

4 .1 .5. Translations

11 is occasionally useful 10 have morc than one copy of n particular PACKAG E loaded al once. One

example that comes 10 mind is the case of debugging a debugging PACKAGE. The I .ibrary System con~1ins a

mechanism for'transla1ing' <e PACKAGE name inw another one. More specifically, it is Jl<IS.~iblc to tell USE: 'If

you ever load the PAC KAGE narncdji>0. pretend it was named bar Instead.' Nmc that this dues not change the

searching and loading procedure described abo1e. only lhe names oflhe OBLISTs and so on used Lo store lhe

ATOMS in the PACKAGE.

Program Libraries

I

' Inc MDI. Programming Environment · 67

<TRANSLATE o/tf:slring ncw:s1riwcor-folse>

causes the PACKAGE old. when it is US Ed. to b;chavc as if it were named new. If new is f ALSE. it means that

old should be lo;idcd as though it were not a PAC KAGl at all: its A TOMs will appear on the DEF AULT OBLI ST

or <I .OBLIST> (nonnally INITIAL).

<UNTRANS LATE o/d:s1ring>

causes any translation of old 10 be removed.

<TRANSLATIONS >

lists all trnnslations currently in existence.

, L-TRANSLA.T IONS

is a LI ST containing all the tmnslations.

4.1.6. The Lib rary Data File

In additinn to its abl111y to map between PACK AG Es. E NTRYs. :md Llic files which contain them. the library

scr\'cS another purpose. If u user is compiling a functic\n which US Es a given PACKAGE. that PAC KAGE is· not

usually going to be run. All that is necessary is tu examine the calling sequences of its fu nctions. and make

sure that all 'side·effects" (such as the definition of new TYPEs) occur. If only Llicsc necessary pares of the

PACKAGE arc loaded. a great saving of lime and space is effected.

'Inc library data lilc provides a way of achieving this end. When a PACKAGE is added 10 the library. more

information than the list of ENTRYs and the file cont.iinin~ the PACKAGE is collected. In particular,

MANI FEST GVALs. NEWTYPf definitions. some MACROs. and RSUBR DEC Ls arc stored. Since this is the

information used by i:hc compiler. one can save a great deal of space and time by using infonnntion from the

library where possible.

If , L - USE - DA Tf I LE is true, USE of a PACKAGE will load from lhc data file if possible. II is impossible if

the PACKAGE has changed since the data file entry was created. In those cases, the PACKAGE itself is loaded

instead. If , L -ALWAYS-DA Tf I LE is true. an ERROR will result if the data file cnuy is outdated; one can

ERRET T 10 cause lhe real PACKAGE to be loaded.

USE - DATFI LE is just like USE, except 1ha1 ii temporarily SETGs L-USE - DATFILE and

L-ALWAYS - DATFILE to l.

'lhc data file contains. for each PAC KAGE , infonnalion for each interesting ENTRY: MANIFEST GVALs,

NEWTYPE definitions. RSUBR DEC Ls. and MACROS. 1t also has, of course, the lists of ENTRYs and RENTRYs

needed by the dynamic loader. II docs nol contain other structures, nor does it contain funclions. When a

4.1 Program Libraries

68 Ille MDI. Programming 1-:nvlronment

PACKAGE is loaded from the d;tta file. it is effectively USE-DE FE Red; if you end up needing lO run pan of

!he PACKAGE. it will be loaded dynamica)ly.

Some PACKAGES can not hal'e data file entries. lfa PACKAGE defines MACROs !hat use data not stored in

!he data file (if !he MACRO calls a FUNCTION. for ex;unple), the PACKAGE will not gel a data file entry: it

would normally end up being loaded from the file anyway.

It is possible for a data file entry to become obsolete (if a new version of a PACKAGE is crc:11ed without !he

library entry being updated). Fur this reason. the library is examined periodically for such cmrics and an

m1emp1 is made tu update the appropriate entries.

4. 1. 7. Run-time Switches

' lllcre arc a number of variables which may be set dynmnit:ally LO tailor the I .ihrary System's pcrfonnance .

. L-SEARCH-PATH

as described above (sec section 4.1.1) is a LIST specifying !he libraries and directories tn look in. and !he files

lo hx>k for when trying LU load a PACKAGE. This variable is used by USE. USE-DEF ER. USE -DA TUM. and !he

dynamic loader .

. L-SECOND-HA!IES

as described above (sec section 4.1.1) is a VE CT OR of !he second names of files 10 look for when attempting to

load a PACKAGE from a directory .

. L-NOISY

If the GVAL of l-NO ISY is mm·f ALSE. the names of PACKAGEs and DATUMS arc primed whenever !hey are

loaded. dynamically or mherwisc. This feature may be turned off by SETGing L-NOISY w #FALSE {).

L-NO !SY has an initial GVAL of T.

, L-NO-MAGIC

Dynamic loading may be disabled by SETGing l-NO-MAGIC to a non·FALSE. L-NO-MAGIC has an initial

GVAL ofa f.ALSE .

• L-ALWAYS-I NQUIRE

If tl1e GVAL of L-ALWAYS- INQUIRE ls non·f ALSE. !he dynamic loader will always ask !he user before it

loads anything. 'Ille GVllL of L - ALWAYS-INQUIRE is initially a f ALSE.

, L-HO-DEFER

If the GVAL of L- NO-DEFER is non·fALSE. USE-DEfER will work cxaclly like USE. L-NO- DEfER is

initially SETGed to#FALSE {).

Program Libraries 4.1

' l11e MDI. Programming Environment 69

4.1.8. Library Utility Functions

II numbcroffUnctinnscxist which allow the uscrto examine librJries, list their contents. and retrieve their

entries. 1111 of the functions below except L-PATH nnd L-OBL accept an optional STRING ;irgumcnt. a

lihrary specification. If it is defaulted, they uperate un the public librnry. specified by the string ·LI BMUD:

LIBMUD" ur "<MDLLIB>LIBMUD".

<L -LOAD oodwgr:S/(j11g library:string>

L-LOAD requires a STRI NG (the name of a PACKAGE or DATUM) and attempts to load it from library• (if

ghcn) or the current libraries. as per L -SEARCH-PATH.

<L-F I ND fu11rtjow1111111r:.1·1ri11g library•:s1ri11g>

l -FI ND requires a STRI NG (the name or an ENTRY), returning a UVECTOR of two·elcment VE CT ORS of the

fonn:

(park age-i1r 11"1icJ,. fi111r1 w1,.ex is1s: s1ri11g
libru ,.,-",. "'"I(Ir par/,; age-ex is IS: SI ri II g]

This finds all of the entries which ha"e the s.1me PNAME but arc in dilfcrcnt PACK AG Es.

·nic remaining functions arc in the PACKAGE "L •. ralher lhan in the PACKAGE "PKG". For cnch of

these, the optional library argument is by defoult the library: that is. "LI BMUD: LI BMUD • or

"<MOLL IB>L IBMUD".

< L - FI LE oocl<Mr:S(ri11g library•: siring>

L-FILE requires a STRING (the name ofa PACKAGE or DATUM) and returns a STRING which is the file

spccificaliun of the file. pointed to by the library. which cuntains lhc bod)' of that PACKAGE ur DA TUM.

<L -WHERE ooclrl!l:e:l(ri11g library:slring>

L-WHERE is similar to L-FILE bm returns 11 VECTOR of STRI NGS which is the acmal complete file

specification or the Ole containing the PAC KAGE (i.e .. tile ·rear sluts in a CHANNEL open to the file).

<L-LISTE libmry:s1ri11g>

l -LI STE prints the names of all of the entries of ;ill uf lhe PACKAGEs in lhe library.

<L- LISTP library:s1ri11g>

L-LISTP prints the names of all of the PACKAGES and DATUMs in the library.

<L-COUNTE libmry•:srring>

L-COUNTE returns a FIX. lhc number of entries defined by all of the PACKAGES in ll1c library.

<L -COUNT P librnry•:string)

L -COUNT P returns a FIX. ll1c number of PACKAGES and DATUMs in lhc library.

4.1 Program l.ibrnrics

70 The MDI. Pmgrnmming Environment

< L - LI ST PE oockaer;s1ri11g library:striag>

L -LIS TPE requires a STRI NG (the name. of a PACKAGE) and printS the names ui all ofits cnLncs.

<L-PATH>

L -PA TH prints a list of the names of all of the OBL! STs In the user's current OBL! ST path.

<L-OBL filQlll)

L -OB L requires an A TOM and returns an A TOM. the name of the first AT OM's OB LIST. L -OB L is in fact

<GET <OBLIST? a10111> OBL!ST>

4.1.9. Internal library Functions

·mere are se•cral imcmal fuoctions used for sc:irching librnrics (which is. after all. ;111 the I .ibr.ary System

e•cr docs).

<PACKAGE-f IND oock11gc:.rrr111g Jibmoo;staag>

senrchcs /ibr111J fnr pnckage. If there iS nu such PACKAGE or DATUM in library. it returns a FALSE.

Otherwise. it returns a STRI NG. which is the name of the file containing package.

<ENTRY-FI ND c11m•:stril1M·tJr-atu111 library:s(Cil1g>

searches libra,,· for PACKAGES cunwining CtJlrJ'. It returns a FALSE if there arc none. otherwise a L lST some

multiple of four clements long. when.• each set of four clements describes a pacbgc containing an ENTRY

with that P NAME. These clements are:

/lQCkagr:s1ri11g is the PACKAGE being described.

fi/e-11amc:s1ring is the file-name containing the package.

tpackagt?:atom-orfalse indicates. if non·f ALSE. that the package is in fact an RPAC KAGE.

re111ry?:a1oai-or-false indicates, if non· FALSE, that the entry is an RENT RY.

<DEFER-FINO vacknee:string /ibrarv:slflng>

rcLUrns a FALSE if the PACKAGE or DATUM is not found. or a VECTOR of nvc clements describing the

PACKAGE.

rpackage?:a101wor-false indicates. as above. whether the package is an RPACKAGE.

1111me:stri11g is the name ufthc package.

file-11amr:s1ring is the file containing the package.

etJ1ries:lis1 is a LI ST of the PNAMEs of the ENTRYs of the package.

rtnlrits:list is a LI ST of the PNAMEs of the RENTRYs of the package.

Program Libraries

'l11e M llL Programming t'Jlvironment 71

·n1is is all the information about the package that the library contains..

4.1.10. Library Maintenance

·111e PACKAGE called "LUP" contains functions used to modify libraries. and to add. update and delete

PACKAGES and DATUMS. It should be noted that libraries do not cont.1in the hodies of PAC KAGES and

DATU Ms. Rm her. they point to files which contain these.

<LUP-ACT library:strjng>

requires one argument a libr<iry spccificmion STR ING. and activates the library so specified. If the library

duesn·t exist it is created. In urdcr to protect the librnry from loss due to system or M 01 crashes. activating 2

lihrar) f11r modification copies the librar) dat.i files and locks the librar) 50 that no one else may modify it

MudifK"atmns arc made to the copies. "luch arc renamed back u'er the originals only "hen the library is

explic1tl) deacthated. Obviously. PACKAGlS added to a library arcn·t available. e1en to the pc™>n adding

1hem. until the library is deactivated.

<LUP-OCT>

deactivates the currently active library.

< LUP-ADD -PACK pqckqgefile:strjog
11pda te?: boolean
datji/~r111ry?:baoleon>

package-file is a file specification of the file containing the body of the PACKAGE to be added.

LUP-ADD-PACK will !ind the PACKAGE statement within the file (or complain if it can't).

update? 1s optional, and if non·FALSE. it allows the PACKAGE to update an older >crsion of itself,

something which is not otherwise allowed. Note that. since the library points to the file "hich contains the

body of the PACKAGE. that file should nol be deleted later. else the library won·t be able to find it

dalfil~e111ry? is by default T. but if it is FALSE. no entry will be created in the datfilc for this PAC KAGL

Since datlilc entries arc generally useful only in the compiler (and similnr environments). it doesn't do much

good to have them for PACKAGES that arc only cnlled from top level (e.g .. F I NDA TOM).

When adding a PACKAGE to the public library. the PACKAGE 0s object lile should be copied to thf

itppmpriate library dirtttory ("LIBRM11" on ITS. or "<MDLLIB>" on Tops·20) and the library pointed at

that copy of the file. If no librar) 1s acmated when LUP -ADD-PACK runs. it will activate "LIBMUD:

LIBMUD" or "<MDLLIB>LI BMUD".

4.1 Program l.ibrari~

n I he MDI. Programming Environment

<LUP-ADD-DATUM 11qmr:string
@e:stri11g
update?:booffan>

is analogous lo LUP- ADD-PACK. adding a DAfUM to the acthc libral'}. LUP-ADD-DATUM requires two

ST R 1 NG arguments. the name of the DA fUM and the specification uf the file which contains the body of lhe

DATUM. LUP-ADD-DllTUM will 3CCept the same optional argument tl1Jt LUP-ADD-PACK accepts. with the

o;;imc mc11nmg and default. The s.imc rcsuictlons concerning the file v. hich con win~ the DATUM also apply.

<LUP-DEL oackqgrstrjng>

LUP-DEL requires one STRING argumcnL the name of a PACKAGE or data sci. nnd deletes th:u PACKAGE or

DATUM from the currently active library. LUP-DEL docs nut touch the file containing the body of the

PACKAGE or DA TUM.

<LUP-MOVE P!!('kcigc·strfttg @r:stri11g>

cam.cs the tile pomtcr of package t(l ~ changed to point to file. l'his is a foster operation than rc-.1dding the

PACKAGE. ;ind it is intended for ~ituauons in which an existing lihr,1ry file has hecn moved for so111c reason.

<L 18-GC Ubrarr:string>

garhage'(;ollcclS the librwy in question. 1f this L~ required. Garbagc-colkction is occasionally useful since it

causes all the elemcnlS of each hash bucket to live near each other in the library file. thus improving

performance during searches. It also allocates some free storage ir each p.ige of the file.

4.2. The Pure-mapping Library

'Ille basic idea behind Mm pure mapping is to separate out the code part of RSUBRs in compiled

programs. The RSUBRs themselves arc kept in a file known as an FBI N (sec 6.3). 111csc RSUBRs do not

contain the code but instead point to a file which cont.iins the code. l'his scheme has several advantages..

l-1rsL the code can be dynamically mapped in when needed. 'l'his allows MDI. to use more code than will fit

in the vinual address space of the machine 11 is running on. Secondly, Since the code is pure it can be shared

between several MDIS using ii. Finally, the FBI N file ilSClf is smaller tlian a corresponding NB IN file and

therefore F LOADS more rapidly.

In the most basic implementation oi FBI Ns, there arc three files: the f B 1 N. the SAV file (which contains

the code), and the F IXUP file, which contains lhc information necessary to update the SAV F 1 LE fur new

releases of MDL. As is obvious. this enwils a tut or files. and potentially a lot of file directories. 'l'he MDL

Pure·mapping Library reduces this storage overhead by collecting ~II of the SAV and F IXUP files together.

The scheme uses two large data bases. each contained in one file. The data bases ~re called 'SAV' and

'F IXUP'. ' lliesc tiles store all currenlly existent SA Vs and F IXUPs for all c~isting versions of MDl_ Each data

Program Libraries 4.1

·111e MDI. Programming i:.nvironmcnt 73

base is s1mc1ured like a lile system. Ther<! is a main "directory· that points 10 a number or ulhcr "directories'.

each of which points 10 a number of"files" insi.dc lhe data base. In this section the word ·me· or "directory' in

quotes refers to an object inside a data base. The files containing the data bases arc named (on ITS)

"MUOSAV; SAV f I LE" and "MUDSAV ; f IXUP f I LE". On Tencx/TOl'S·20. they are

"<MDL >SAV.FILE" and "<MDL >FIXUP.F ILE" .

4.2.1. The Demon

While all Ml>ls can read from tl1c Pure-mapping Library. tl1crc is only one program wh ich can write into

it. "lnis is a maintainer demon which runs once a <lay 10 keep the Lihrary updated. "lnis demon can add "files".

delete 'files". and add ·subdirectories· w both data bases.

Tu fociliUJle updllling of the I Jbrary tl1ere is a directory on which 10 pul files lo he ad<kd ,JS well ;1S files to

indicate what is to be delc1cd. This is the "MUDTMP" di rcctol) on ITS and the "<HOLU B>" directory on

Tcncx/'f'OPS-20. Any file on 11 wi1h the second name ofSAV111111 or FI X111111(where111111 is a 2 or J digit Mill.

rclca.;c number) v.ill be added to the appropriate data ba..;c. lf lhe files "DELETE SAVS" or "DE LETE

FI XUPS • exist. then they will be used 10 delete ·mes· from the data bases. 1l1csc files m11s1 be ASCII files of

the fonn

jilenome I [SPACE) file110111e} [CRLF)

An example of a valid dclcte lilc is as follows

NCODGE SAV53
lNCODGE SAV53

'111c demon will ignore any deletion requests for ·mes· not in the data base.

'Inc demon docs its work in several passes. 1nc basic passes arc the delete pass. the planning pass. lhc

upda1c pass. and the salvage pass. Tnc delete pass deletes "files" if either a "DELETE SAVS" or "DELETE

FIXUPS" file exists on its working dircctory.111c planning pass builds a plan file by examining the working

directory and ~lcula1ing where new "files' will be placed in the data bases. "Inc planning pass builds 1wo files

using a special intcmal fonnaL These files will be used by lhc update pass 10 add 'files. to the data bases. The

planning pass alS-O enlarges tl1e data base files as much as necessary to accomodme lhc new 'files". 'Ilic update

phase reads the plan files and adds nev. SAV and FI XUP ·mes· w lhc <lat.a bases. If a 'dirccm~ · o'crnows, a

new 'd1rcc1ory' is added during !his pas.~ and all the 'dircc1urics" arc recreated (i.e .. all the ·mes· have 10 be

rehashed, since they were originally placed in a 'di recto~ · according 10 a hashing algurithm based on lhe

number of"dircc1ories'). ·me sahagc pass 1s used 10 pick up any free storage 1ha1 has been lost through system

crashes or lost through holes created during the updating oflhc data bases.

4.2 'Ilic Pure·mapping Library

74 Ille Ml>l. l'rogrammmg Environment

111roughout the entire processing uithc data ba~ attempts arc made co keep the da(.;] bases in a cunsistcnt

state. ·llircctorics' arc updated only aftcr."liles' arc guaranteed to be in the da(.;] bases. 'Ille plan files described

arc used to keep the data bases consistent in case I.he system crashes .. hilc the demon is in the update pass.

\ major gml in the design of the da(.;] b<JSCS is to allow recovery m case of demon errors ur S>Stem disk

crashes. To this end the data bases arc b.xkcd up on tape every other week. (h "uuld be dumped more often

but the file is cu rrently over two m11hon words lung). This of cou~ lca'cs the problem that ·mes· added to

the data bases between dumps could be lost in a disk crnsh. To aid in recover)' from such a crash, all ·mes'

added between dumps arc copied to the "MUDRST" directory (on ITS) or the "<MDL. SV>" directory {on

Tenex/rOJ>S·20). Moreover a tile is kcr>t listing all the ·me~· added during the previous week. lllis file is

Cilllcd ·ADDED FI LES·. All this infonnmion is deleted once the data b.i.~ is dumped t1> (.;]pt.

4.2.2. User Programs

Occ.1sio11all)' it is useful for a user to list the d:1t;1 base ·directories·. to sec if ccnain ·mes· arc in it and copy

·mes' out of the daw base. DBMA IN I~ a program which allows the user w do these things.

1llc fol lowing are functions available to the user.

4.2.2.1. Listing Functions

<CLISTF data·ba~:stri11g>

is used to list all the ·mes· in a daui base. It rates one option~! argument which is the nnme of the data base

(either • SAV" or ·fl XUP"). If no ;irguincm is supplied. "SAV" is used by default (l11is is always the

default whenever a function takes Jn optional argument ~pccifying the daw base.) Cl I STF prints each 'file'.

its length. and where it is located. The format ofa line of listing is as follows:

fn l fi12 size black

where fi1/ is the first 'file' name. ji1} is the second 'file' name. s1u rs the length of the 'file' in blocks (1024.

words for SAVs. 256. words fur F !XUPs). and block is the block at which the 'file' Stans. This is the fonnat

used whenever listing 'files'.

<LISTF data·base:strlng directories>

is used to list all the ·directories· of :111 entire data bllSC. It t:1kes two optional arguments. the data-bose to be

listed. and a specification of which ·directories' to list. ·1lle 'dir«tories' may be:

a FIX: list the'dircctory'spccified by the FIX;

a LI ST of F IXs: list the ·directories' specified in the LIST:

I.he ATOM All: list all the ·direc(()ncs· (this is the default).

The Pure-mapping library 41

Inc MDL l'mgr:1mmlng Environment 75

<FLIST da1o·bose:string>

lisis free areas of storage in the data base. It lislS the free storage in the fonn:

lmgrh block

where lrngrh is !he length of the area of free stornge and bl<Xk is the bl1ick numb~r of the staning block. This

function takes one optional argument which is the name of lhc data base to be examined. At the end of the

li~ting it will tell the total amnunt of free storage.

4.2.2.2. Find Functions

<FIND-FILE fi/c'.Wjug tfaro·base:srriug>

is used w find a specific 'file'. It takes as its argument a 'file' srecificaiion and prinL~ the ·me· name altmg with

the information rrinted hy the listing functions if the 'file" exists. otherwise it returns :m object of type

FALSE. ·111c ·file' spccific.11iun must be of the form:

"tfir;fnl fn1"

where''" is either SAV or FI XUP and fi1/ and fi12 arc the first and second 'file' naincs respectively.

<SPEC-FI ND fi1f:w111g tf<11a·base:s1ri11g>

is used tn find all 'files' with the S<imc hasic nnme. disregarding the leading dlgit(s) which arc ;iddcd to make

'file' names unique. It takes one required argument which is the fi1/ In look for. It t:1kcs an optitmal second

argument which is lhe da1o·b.1se to look in. For example the c.'\ll

<SPEC- FIND "MA IL">

might print:

MAI L SAV53 8 140
!MAI L SAV63 8 360

4.2.2.3. Other Functions

<DELETE filr:s1d11g Jo1a-base:s1ring>

allows !he user to delete a ·me· from a data base. It lllkcs the same type or·me· specification that FIND-FI LE

takes. ·111c ·me· you specify will be deleted the next time lhe demon that maint.1ins the dat.1 base runs.

<GET - f ILE fi/r:S!nug 11111nu1:s1ring tla1a-basf:s1ring>

allows the user 10 retrieve a 'file' from the data base. It wkcs two arg11me111s. ·111e fil'Sl is the 'file' specification

of01e fllr to retrieve 0111 of the data base and the second is the <1utpu1 file you wish to copy it to.

<STATUS>

gil·cs the infonnalion aliout the st.1tc of the data bases. It tells the number of 'files' and the amount of free

storage in each data liase. ST/\ TUS takes no argumen~.

4.2 The Purc·m;ipping Library

76

4.2.3. Using DBMAIN

There arc several w:1ys to use DBMA I N.,h can be used by typing

:OBMAIN fu11c1io11argl ... argn

'Ilic M J)l. l'rogrJmming Environment

to DDT. Thcjcl·li11e is oflhc formfa11c1ion (lrgl ... arg11. whcrcfu11c1io11 is lhc name oflhc function IO be used.

For example

:DBMAIN FLIST "FIXUP"

wi ll list the free storage block for the "FIXUP" data base. DBMAI N will kill itself after finishing and can be

killed earlier by typing t S.

Ilic jcHi11e mentioned abmc can he modincd to allow output Ill be muted IO a file. 'lliis can be done by

prccc,ling the n11nnaljd·/i11e with a string specifying the file name of the output file.

:DOMAIN "LISTOF SAVS" CLISTf

will produce a listing of !he files in the SAV duta base and will print this infom1ation to lhc file "LISTOF

SAVS ".

4.2.4 . Garbage Collection
One problem of the Mrn. Pure· mapping Library is that many useless SAV and FI XUP ·mes· remain as new

revisions of user programs arc created. To alleviate this problem there is a garbage collection system for !he

data bases.

The major goal ur this scheme is tu dctcnmine which ·mes· in the data bases arc no longer useful. To do

!his all files in the system arc scanned to sec what SAV files arc still pointed to (1101 including those pointed to

only from within ITS archive files). A SAV 'file' can be poimcd w from FBIN files and SAVE files. A SAVE

file con wins pointers in it~ PU RV EC (Pure VECTOR). All FBI H files should begin with somctl1ing uf thc fonm

'<PCOOE jile:s1ri11g>

where file is tl1c name of the SAV 'file' as,<;iicintcd with this FB IN. If an FB IN has more than one SAV 'file'

associated with it then there can be scvcrnl PCODE FORMs at the beginning of the file. For purposes of

g;1rbagc cutlcction. this FORM (ur FORMS) must be rcLaincd whenever an FBIN file is edited. If these PCODE

fORMs disappear. t11eir pointers to the SAV 'files' will go with tlicm. and the SAV ·mes· might be garbage

cullcctcd.

Garbage collections proceed hy looking ~t every file on the disk. building a list of all 'files' pointed to. 'Ille

program then examines the data bases and any 'files' which arc not pointed to arc deleted.

It is possible that deletions can frngmem the free area in the data bases. If compaction becomes necessary,

·111c Pure-mapping Library 41

' Ille MUI. Programming Environment n

there exists a rouline lO do in·plac:c compaction orlhc data bases.

4.2.5. Internal Structure

'Ille " SAV" and "f IXUP" data .bases have similar formats. The 'tiles' in !he data base arc pointed to by

cnlrics in whal is essentially a hash table. Associated with each data base is a main 'directory' (the hash table).

'lllis 'directory' is located in the first 1024 words or U1e file. 1nis main 'directory' points 10 mher 'directories'

in lhe data base (lhc hashing buckets). l'.ich or these 'directories' is 1024 words long. 111e first ·me· name is

used to determine which 'dirccwry' the 'file' is on. The stmcturc or the main 'directory' is as follows.

word 0/ number 11 or entries in the main 'directory'
v.ord~ l·n/ block numbcrorc.ich 'directory'

There can be up to 1023 'directories' and each of lhcsc can contain .1pproximmely 500 ·mes·. ' lnis provides a

virtually unlimited 'directory'.

Word 0 of each 'directory' gives its length in words. From Word I on arc 'directory· entries. All entries

have the same tv.o word formal "Inc first word contains U1c the first ·me· name in S IXS IT. ' Inc second word

contains the following fields:

lrngth of 01c 'file' i.1 blocks (a block for a SAV 'file' is 1024 words long while a block for a f IXUP 'file' is 256
words long) (bitS l ~)

version revision of MDL this 'tile' belong,$ to (biL~ 8· 17)

bl<Xk in U1c data base where this ·me· St.arts (bits 18· JS)

'Ilic 'directories' arc sorted by strict numerical order (e.g., AAA SAV63 comes before !AAA SAV63).

P.ach dntn base contains a free storage table. This table occupies the second 1024 words of the data b;ise.

The first word of the table is the number of entries in lhe free Slornge table. 1nc remaining enlries define

areas of free storage. These arc of the form

le11gtlt, • block

where length is the number of blocks for lhis free area, and block is the block number at which it starts.

lncrc are two major differences between the "SAV" data b;i.-;c and the "FI xup• data base."lne first deals

with block sizes. In lhc "SAV" data base the block si~c is 1024 words. In the "f IXUP" data base the block

size is 256 words. ·111is smullersize allows for more compaction uf these small 'files'.

·1ne second major difference is that while there can be many versions of the same 'file' in the "SAV" data

base (e.g. NCODGE SAV53 and NCODGE SAV54), there can only be one version in the "FIXUP" data base.

4.2 'Inc Pure· mapping Library

78 ·11·1c Ml)l . l'rogramnling Environment

·n1is will be the FIXUP ·me· mo« recently odded.111e corrcspunding SAV · me· for this FIXUP ·me· should

exist to al1ow the SAV file to be updated f~r future M111. revisions.

"lhe Pure-mopping Library 4.2

'll1c M 1)1 . 1>n>gr.1mming t--:Ovironmcnt · 79

5. The Compiler
"Ille purpose of the MDL compiler is to t ransrorm interpreted MOL code intO assembly language. -i"'hc

c.01npilcr comes in several inc-Jrnations for various purposes.

PCOMP is a program which runs the 'instn11cd' compiler -- that is. the one whtch is mosl debugged. supported.
and oLhcrwise: official. '111c ·p· stands fur 'purified.· incidentally.

NPCOMP is a progra1n which runs a newer. less well-debugged compiler. if there is one. NPCOMP is often
where dcvclopnient work or one sort or another is being debugged.

' Ille 'lliilCh Co1n piler: 00c1\ called Co~iRA'f, though strictly spcakir~g lhe name refers tu a difTcrcnt pr<>gram
(see section 5.2) is a prusr~un lhul coin piles. nt night, those curnpilntions that hn,•c hccn queued for iL

"Ille rcm~indcr of this chapter d~ribcs the spccifil."S of internction with the co1n piler. int:luding u section on

its it~rernals.

5.1. Interfacing to the Compiler

·inc ui.>eration or the M1>1 ccunpifcr is cunuvlled by a fcv.• very high-level runclions Htld a sometimes

bewildering ;;1rray of ATOM$ whose values ore switches :ind dnta. ·11·1is section will describe c~ch su..;h ATOM

ilnd its use. llie 1·eadcr should bear in mind that in the normal c.a-;c he will be using Co~H1A·r to set 11p his

co1npilntions and thu~ will not have to deal dircctJy with these ATOMs and calls.

5.1.1. Compiler Functions

<COMPILE source·fi1nctiq11 ... gclltt output:c/zgune/)

is the lowest level ca11 to the compiler. It compiles cx~ctly one FUNCT tON (or a LI ST uf them) a nd prints the

generated code on the CHANNEL given as the second argumcnl. COMPILE is used primarily for compiler

debugging.

<FILE-COMPILE l11nu1·striug gutnut·strjng>

FILE-COMPILE attempcs to provide a convenient interface between the user :.nd I.he compiler. ·n1c user

s i111pty sivcs FI LE - COMP l LE tJ1c name of on input n1c. and it c.-.n do all tJ1c rcsl. ' Ille user m:ty specify other

information about vutput flies. compiler modes., etc .. but if he doesn't. reasonable assumptions a.re made.

FI LE-COMP ILE works in the following way. 1-'irst it reads in the input file and c;ollccts into a LI ST lhc

names ufall of the defined FUNCTlONs that it finds. It sorts this LIST based on which FUNCTIONscall

which oihcr FUNCTIONS. The FUNCTIONS wh ich call no other FUNCTIONS arc al !.he beginning of the

LIST. followed by !.hose !.hat only c.111 FUNCTIONs that call no olhcr fUNCTIONs, :md so on. Groups of

fUNCT IONS that arc mutually rccur.;ivc are collcctcd in LIS Ts subordinate tu the main LI ST.

S.O

.':.l.,_

80
' l"hc M l)I. 1->rogn1n11nin& Envi rOll1ncnt

F.ach FUNCTION will produce a separate RSUOR. COMP I LE is c~111cd succcs.<ti\'cly on each mc1nbcr of the

L 1 ST of FUNCTIONS. L l STs of mutually recursive FUNCTIONS arc nlso passed to COMP ILE.

After each FUNCTION or LIST of FUNC TIONS is compiled. the resulting RSUBR is written into a

temporary file to enable mol'C convenient crash recovery. This file is v .. rittcn in such o way lhtil. no maucr

wJ"lcn the system crashes. the contents ufthc temporary file 3rC guaranteed to be in a consistent state.

When ttll is compiled. Fl LE-COMP lLE writes oilt an output file which is identical to the input file except

Lh:ll ull FUN CT JONs have been replaced with their compiled counterparts. tr uny uf the FUNCT lONs did not

cn1npilc due to programmer errors or cnsnpilcr bugs. those FUNCl 1 ONs ate lcn unchangc<J in lhC oulplll file.

t)uring its opcrulion. FlLE ... COMl'llE 1nnint.nin~ a ··RECORD'' file which conlnins all of the 1nes..~gcs.

• .. vun1ings unJ CN'or n1cssagcs prod\lCCd by the co1npi1c:r. IL n1;1y np1h1nally produce a li~ling of lhc object code

proc.h1ccd. in M111 nssc1nbtcr fom1t1L ' l'llis is prinn1rily useful for con1pilcr debugging. (Note that a su1newhat

less co1npletc listing mny be n1;.1dc- at a later time. Sec section 7 .3.)

On l'l'S, FILE-COMPILE usually run.s as a dcnton called COMBAT ZONE. In this case another interface

CJ tied f COMP rcsidc-s above f 1 LE -COMP I l E. 'J11is interface rc.utls files lhat ore con1pit:i.1ion specifications.

and paS.<CS them to F IL<-COMPILE.

<FCOMP % . I NCHAN i1uu11~filc qu1puc-@e>

As mOSL compiler usage is based on Co~1n.A·r plnn files. FCOMP is the 1nost·sccn driver o f lhc con1pi1er. (Note

Lhat the -z in front of. I NCHAN en.uses the CHANNEL the PLAN file is being rc:.d fro1n to be passed as one

arg\lmcnt to F COMP.)

<STATUS>
i.o:; an infom1utinnal function: it tells how far the co1npilation of a given group h:ls progressed. which

FUNC T IO N is being worked on. and how mnny FUNCTIONS remain w be cornpi1cd. lt also prints the

accutnulatcd real lime and cpu time since the be-ginning of the compilalion. Obvious1y. you must ,.G the

compilation to use it. b ut sec section 8.3.

5.1.2. Compiler S w i tche s
~11\c c-J.lls to the vnrious cornpiler drivers arc r-..tthcr shun. for the simple reason that the controlling

in fonnation is passed to the co1npih:r as the l VA Ls ofa set of ATOMs.

Interfacing to the Compncr S.l

~ =
,.,,. "':"

:::: ::=:

~

'

·1hc M l)J . Prugr.imming Environment 81

<SET DEBUG-COMPILE I - boolean>

(by default FALSE) causes lhc compiler lo generate extra information about wh"t it's doing. ·111is infi>r111ation

ls in the form or·wamings· produced when the compi19r was forced to generate Jess than opthnal code. For

ex:unplc. in\·ocations of the ~arithmetic SUB Rs can he opcn-cornpHcd if the variable~ u~d c.nn be detcnnincd

tu be exclusively FI Xes. ·111c debugging compiler will warn you if it is forced to resort to less efficient

{1rith1nccic cans.

<SET PRE COMP l LEO 1- Jile:stri11g>

Ortcn. a tile uf FUNCTIONS has be<-n con1pilcd before. and now only a rcw fUNC T IONS have been updated

and need to be ccnnpilcd ·again. Most of t..h c tile is already curttttly cnn1pi lcd; it is quite WELl\teful tu rccon1pitc

the cnlil"C 1hing.. If a PRE COMP I LED is given. the file is loaded hcforc con1pilation: 0111y functions which hnvc

corrc....-punding RSUBRs in the prceomri1:1lion. ;tnd "''hich are no' on the REOO list.. :ire not rccn1npilcd. It is

t1pprupriatc LU snccify the tcn1porary Ille a~ u p1·cco1npi1ation if your previous co1npilatlon wns inl<!'rtup1cd by

a sysrcm cra.~h.

<SET REDO I - /ist-o.fOloms>

RE DO is a l I ST ur f UNCT JON n;imcs LO be tC<:o1npilcd. rcg.ardle1$ of whether or not they :ire compiled in the

prcco111pil:u..ion. In conjunction with PRECOMPI LEO ;ind PACKAGE-MO.DE. REDO afh.>\\'S cun1pilntiun of

pl'CCiscly those FUNCT IONS \\•hich have been changed sin«" the last cornpiln1ion. Note tha t COMnAr will set

up these \';1lucs murc·or·l~'S nuto1natica11y in most shuations.

<SET PACKAGE-MODE I - string>

This should be lhe name of a PACKAGE. which is nssumcd to be 01e PACKAGE being compiled. FUNCTION

nan1cs in tJ1c REDO LIST wilJ be looked up in the appropriate PACKAGE OBLISTs if this flag is set. 1hercby

S<lving so1nc typing of trailers.

<SET TEMPNAME I - jile:string>

'Ille con1pilcr wrilCS inlcnncdiatc results to the tcmpornry rile. which is normally the file "'s11a111e :j}_1111 > .. on

l'l'S. whcrcfi1n1 is the first name or the input file. It is rarely (if ever) nCCCSS-:lry to change that default.

<SET SOURCE! - }ile:stri11g>

Setting this switch causes the co1npiler to write oul the assembler input it gcncra1cs. 'fllis L~ sometimes useful

for compiler debugging. On rrs. such output norn1ally goes to .. snanre;ji1111 SOURCE". where jinn is the

first nan1c or the input Jile.

<SET SPECIAL!- boolean>

·111e con1pilc r nonnally assumes thttt v;1riablcs wh ich arcn'1 dCc:lnrcd SPECIAL aren't SPEC IAL. ·1nis 1ncans

l11.nt they will be available only to the RSUB R in which they arc declared: SPEC lAL vnr-iablcs arc bound on

01e control stack.juSl as <>II variables arc in interpreted code. If tl1is Oas is T (l>y dcfaull FALSE). all vuriablcs

will be assumed to be SPECIAL unless declared otherwise. This is analogous tu SPECIAL- MOOE being

5.1 Interfacing to the Compiler

82 ·rhc MIJI l'rogram1ning E.nvironmcnt

SPECIAL. and it is not recommended that nny code be written using this convention.

<SET DPFLOAO!- boolean>

If true. FLOAOs in lhe file being compiled will be c.panded at load time: what was FLOAOed bcfure will be

treated as p a rt or 1hc file. E XPF LOAD is examined by GROUP-LOAD. and not the con1pilcr itself. ' 11\c default

is FALSE.

<SET EXPSPLICE ! - boolean>

rr true. objects o f type SPLICE (pri mtypc LI ST) which arc cncouotcrcd in lhc coul"SC' of EVALing the forms

processed b y GROUP- LOAD will be spliced directly into the g roup: It is therefore • k>t like EXPFLOAO.

EXPSPLICE i~ exa mined .by GROUP- LOAO. and not the con1pilCf' iLSCJr. 'the dcn1u1t is Lhcrcforc FALSE. Its

only k1H)\vn use has been to n1~1kc runctions ut Jo:nJ time :.nd have them compiled.

<SET CARE FULl - boolean>

l)cf;_1u1L'i LO T. If f ALSE . Lhc co1npilcr will <unit n1ust of the boun<ls-chccking c<ldc it nunnally ge nerates for

NTl<ls. PUTs. ~nd SU on . ·111is o bviously will malcc the compiled code run r:t.;;tcr. but also n1ak:cs debugging the

compiled code nearly ilnpossib1e.

<SET REASONABLE! - boolean>

llcfaullS to 'f. (f FALSE. the compilcl' will gencr;.Hc reasonable code only if e1·r l')•1hi11g e'•erc-allcd from the

functions being cornpiled is lo;tdcd into the compiler. A call to a function not lo:1dcd produces <tn EVAL. of :t

FORM. thereby ensuring that such cons tructs as "CALL., in the culled funcliu11 will wnrk co rrectly. ' lliis is

;'dtniucdly prcuy unrcasonnblc (if not paranoid). whence the name oflhc switch.

<SET GLUE! - boo/eon>

Defaults to T. If F Al.SE. the co1npHcr will not gcncntte GLUE bits. As you always want GLUE bils. there is no

reason to ~"'er change this.

<SET MACRO-COMP I LE I - b<Jolean>

()cfaults to FALSE. If non·FALSE. the co1npilcr will co1npi1c MACROS inlO RSUBRs. Tilis dOCSr'l"t change

anything produced by macro cxp:tnsions. but docs cause: the expansion to speed up. Since the co1npiler

expands 1he tnacro and then con1pilcs I.he expansion~ lhis Is rarely uscfu1.

<SET MACRO-FLUSH!- boolean>

l)cfoulLS tu FALSE. If non·F ALSE, MACROS which appear in lhc file being compiled will not appear In lhe

resulting NB IN. 11lis saves space. nt lhC expense or making debugging harder.

<SET MAX-SPACE 1- boo/Mn>

DcfaolLS to FALSE. If non-FALSE. <he compiler Oushes from core most ufc.och RSUBR once il has been

compiled: only the OECL is needed tu help compile olhcr functions. Since the entire RSUBR is written out in

the tempor.iry file, no information is lost. 111is can. for compilations which arc too large. result in

considerable improvements in speed. primarily bccau.sc more space is available in the MDL and less time is

Interfacing to lhe Compiler S.1

·111c MI >I. f>rogran1ming 1~:nvironmcnt 83

spent i n lhe garbage eo11cctor.

<SE T HAIRY-ANALYSIS!- boolean>

l)cfuults to T. If this is not SCL the compiler will not pcrfonn the complex cypc checking it usually docs. If

HAfRY-ANl\LYSIS is FALSE. Lhc code will be gcncr:ucd f.lstcr. as type-analysis is c>pcnsivc. but will noL

CJl.CCUtC as fast.

5.2. COMBAT

"Ille usual 1ncthod of dCilting with the co1npilcr is through the progr:1n1 CoMOA'I'. whOS<' spcci:lhy ls the

prcpnration of"pltin files· Lo he loaded by the compilc:r. C0/\1RA r is n progra111 which knows about c:1ch of the

prcviou~ly de~ribed compiler switches and the interac1ions u1nung thc1n. It has an cnsy-to-usc intcrfhcc. nn

<)bility to store co1n1no nly used ·pion files" as C"o111pilatio11 l)"fJC'J.. a nd in general is dcsig•1cd to ninke using the

M1>1 . C(>111pi lcr a l~-cumhcrsome task.

5.2.1. User interface

C0~1:11A1 .. S user iruerf:)ce Js p;ltterned ancr. though not idc1ulcal to. 41 CAL J co intc1·focc (1). In pnrticu1ar. it

expects in response to nn y given prompt n particular type of input rrom the user, which 1nay he :i file name. a

'syn1bor. <lr texL Vrdinarily, the type of input expected is indiccited by the ·synu1ctic prompt" which follows

the nonn;1I pron1p1: th is is one o f'(rt LESPEC) .. · (SYM) .. and · (TEXT)'. ·111c ""l'og,gle verbosity' co1npilation

cypc turns the printing or the !>ynuJctic prompt on and ofT. and cuuscs a ruilor file robe written out when used.

A uun1bcr of spec int char.K;ters arc defined for any of these types of input

1'8: Clc3rs the input buffer. :is in MDL

'f0: l~cdisplays the input burrer. as in M DL-

<tL : CJc.nrs the screen nnd redisplays the input buffer. as in MDL.

<tG: When given as the first character of :in answer. ~llows one to get the answer from a user-de fined type.
See the scc:iion on wHoring.

1'Q: Has spcci<ll effects when a compil ation pl:tn is being mndc (sec below). Sec also the section on file nnmc
input.

1'R: Cnuscs Co~tnA1· to ·brick up·. 1~ypicafly this 1ncans go to the previous question ~slccd, but in certain
1nod~ it may have :l slightly different effect. When a M UIX"O;\t is running. this kills it and backs up to the
last question asked.

t S: Abnonnafly e nc.ls whatever is being done, and returns to the .. J'ype or compilation· quL"Stion. If a
MUIJCOM is running. it will be killed. When n long compilation plan ('How to run' is 'Many") is being

5.1 Interfacing to the Compiler

84 ·tl\c M lJI . Progn.•m1ning Hnvironmcnt

mt1dc. Lhc portions already nladc will be saved. Sec t..hc ·Flush 1na.ny' compilation type.

7: When gi\'CO as the firsl ch;1rnctcr or an :..inswcr. this causes a more dc-L.1ilcd description of what is cxpccccd
to be printed, along "'ith the current dcrnult rind hnv.• to obtnin iL

\: ' 111is quotes whatever char(tetcr follows h. including DEL. ESC. etc. h docs 1101 have lhc effect o(quoting
str:lngc characters in file numcs: sec the section on file name inpuL \, used as a quote chntuctcr. never
cchOC'S. and c-annut be rubbed out.

In .1tldit.iun. whc1'\ the syntactic prompt is (SYM), 'f>f is useful (sec below).

5.2.1 .1. Symbolic input
If you arc r.unili:'r with CAL !CO. thi$ section CiUl pr1)ba.bly be skipped. When entering sy1nbolic input.

one need only lYPC the characlcl":\ required h) uniquely specify the desired choice: the interface will Cntnptclc

the response. und In ndditiun c:in di.,.play the avnilahle: choices tit uny poinL

SPACE cun1plctes the response as ra.r as ii c~n. If the response i" uniquely spcc:ifi-cd. it will be t..lisplaye:d in

iLS entirety. fol1nwcd by· 1 ·: ifn1orc Uu1n one- choice is still possible. then 'he portion of those choices \vhich is

un.n1nbiguousl)' Sp\.-Cified will be displayc<.l, fo1Jowcd by "8/. f"or instance. if "Exp;-1nd Ounds· and 'F.xpand

splices' arc among the choices. and '1:.X SPACE' has been typed. ·1-:xpnnd &" will be displayed if the 'F.x'

reduces the chuic:cs to those two.

In some cases. if SPAC~ is the first chan1cter typed. it will scl~t thc default Cftrst) choice nnd tcnninatc.

When ..,. F is typed. all remaining chuiccs will be diSplayed.

To tcnninate responses i1'l this mode. cit.her ESC or CRLF may be used. In either case. t,hc current

rc-:::ponsc is completed :as far as il can be. Ir on1y one choice then remains. the answer is tennino1cd and the

sing.le choice will be used. If more th;1n one choice is possible. it is just as if SPACE h:id been typed.

Typing ESC or CRLF before any other characters have bcc1'l entered causes the dcrault answer tc> be used.

5.2.1.2. File names
File n3JTICS ure expected in the standard dev: SJlt'lllttt;fuantel fi1on1('l ronn:H on rrs: Oil ·rcncx/1'0PS-20.

st..."\ndard tile nurnc recognition is u~cd. ·rypically. t.yping sin'lply ESC or CALF answers ·no' to the qucstio~

\\•hilc SPACE ESC S.'lyS "use the default'. In cerL1in special cct.SCS rlnput file' ~ind 'Output tile'), when some

answer to the question is imperative. Lhc def.'lult will be used in either c.nsc. File names should 1101 be

surrounded by quotes i.n this mode; they arc not M1>L STRINGst

COMllAT 5.2

·111c M l)J . l'rogra1nming Environment • 85

IL is r.uhcr painru l to get funny characters (such as SPACE) into fi le names. When the filc·nil1ne purser

secs •t 1'Q. it uses the following chantetcr in the nam e being generated regurd lcss. Unfortunately. lhc 1'Q must

be quoted to get it past the reader, since it has special effect~ in the nonnal case. ~11u.1s. the ti le name g-ivcn to

M DLns "TAA : FOO)" hnstolxtypedtoCOMll/\TnsTAA ;\•Q FOO >.

5 . 2.1 .3. Text

·rcxt is just thae relatively arbitrnry chnrnctcrs. lermhu1ted by ESC. Since CRLf' is a11owed in tcxl. it docs

nol u:rmin:uc input. "rext ty1:>c input is used in a nun1bcr of cases where it iso't quite appropriate. suf:h as the

·itcdo list' and 'Po.1ck\ISC 1nodc' questions. l fit is known th•n the expected response is a LIST or STRI NG. as

in those ca.~s. the nppropria tc brackets or quotes sho uld 11c11 be typed.

5.2.2 . Comba t Questions

' J'l1iS S<:elic1n discusses the questions th:n C:Jn be nskcd of the US<'r d uri ng the prcp:1ralio n Of tJ CO~nA·r plan

fi le. ,..,hich is FLOAOcd by the COf\ill/\T dcn1on ur hy PC OMP to cJTcct a con111ilatio n. ' 111c pcrccprivc reader

will notice n strong rcscn1blance &O section 5 . 1.2. in which the sv.dtches rclcvunt to the compiler ttrc ti.sled.

Oucstic.>1\S asked b y the pre·cxisting co n1pilation types ('Verbose· ond 'Short') arc so indicated. All questions

;ire available in u~r·defined compilarion types (sec section S.2.5).

'Snu1nc~: sets the defauh directory fo r questions ll>;:1t want a file name as an answer : a lso causes the FORM
<SN AME snanre>. where ,\·1101nt' is rhc :lnswcr g iven. to be included in the plal'1. '111is SClS the dcfJult
directory for fi les referenced by the compiler: it a lsn causes the tcn1pornry fi le (sec below) to go to the
snt1111c dircetory.

·use new compiler?· (Verbose and Short); specifics whee.her the •new· com piler or the ' o ld' co1npilcr should
be used. Often. when there is only one compiler. this question will not be asked ff nnswcrcd
nffirmalivcly, it causes the FORM

<OR <GASSIGNEO? EXPERIMENTAL ! - > < NEWCOMPI - >>

Ct> be included in the plan. 'n1is FORM wi lt JOild a new compiler o n top of the o ld if necessary.

'Debugging C'o1npi1cr?' (Verbose): causes DEBUG-COMP J LE I - to be set to T. which causes the new compiler
ln gcncr;uc extrn infonnntinn about what it's doing. "f'his currently is nskcd o nly if the new·co1npilcr
question is a nswered nfli nn:'llively.

·rnput fro m · (Verbose and Short): the fi le lo be compiled. 10is nppcars in two places in the plnn: as

<SETG COMBAT I - i11put-flle>

and in l he call tu FCOMP described below.

·ou1.pu t 10· (Verbose): the Ole name to be used fi>r the NBI N. 1l1c default is the input file name. with NBI N as
the second file nnme instead of whatever it was for the input. ' l'his con tple tcs the call to FCOMP tho.tends
every p lan :

S.2 COM BAT

86

<FCOMP lL INCHAN i11put-Jlle 011/put-fll~>

1llis call is what actu~111y invokes lhC c~mpitcr.

·111c Ml>I . Progrfl1nn1ing, r .nvironmcnt

•J>rcco1npilation fro1n· (Verbose): specifics a file containing a prc iously conlpilcd version o f lhc input file.
Any fUNCT lONs which hCi\'C corresponding RSUBRs in the prcco1npi1ntion. nnd ,,·hieh arc not on I.he
·1tcdn' lisL arc noL rccompi1cd. h is :1pproprl:ttc to specify the 1cmpor.1ry rate ~s a prccon1pilation if your
prc"•iuus c:o1npilation was intcrrupccd by a system c rash. SclS PRE COMP I LEO I -.

'Con1pnrc " 'ith" (Verbose): ' l"his qu~tion is asked only if n prccompili11iun fi le is specified. 1r answered
nnim1u.ti,:cly (user lypcs cichcr SPACE ESC nr n file nnnu:) Mu1x·o~1 (,;e<- section 8. l) will be run with jcl
of the in rut Ole n;unc. :.1nd the file n:11nc provided here (the dcfuult is as l't•r prCCc."ln1pi1rith.•n). plus some
extr:-. s1urrspccificd below. lf'fOO NB I N. is given her'C. then f\.1UOC'Ol\1 '"ill look ror the newest revision
of FOO which Y..3"\ ca-cat~d bcfi•rc the NBlN. M UIX'Ol\1 dctcrn,in~ which FUNCT lONs in the rile have
chans,cd .itnd therefore need to he rcc:on1pilcd. It ulw dctcrn1incs "'hCther the Ole is n PACKAGE. and
:tnsv.•cf"S the 'P;1-ckas,c n1oclc' qu1:stion :1ppropriatcly. ll i-i therefore not usually ncccs.c;ary for the user to

~",""'er 1hc ·1<.cuo· 41nd 'Puckage nlodc' questions directly.

'Check n1acn.lS'?. (Verbose): a.'\lr:cd only if'Cotnparc with' is nnswcrcd ;tffi rmntivc1y. ' 11lis :idds: ' /M' to thcjc/
p:i...scd UJ Ml!IX'O~l. which causes il to check ror MACflOs nnd MAN IFESTS which h11vc c ho1nged: if a
FUNCT l ON uses n MACRO or MAN 1 FE ST which h:1s changed. 1hc f UNCT I ON v.·ill be l isted as chnng,ed.

MUIX'O~t dues not nonna11y check for this.

·i-:.xtra JCL.* (Verbose): asked only 1r·Compnrc with' is nnswcrcd uffirnnHi\'eJy. Wh:atcvcr is supplied here will
be passed to Mu1>Ct·M asj,:l. before the fi1cs to co1np..1rc. ·111is c.,n be used lo lo.."ld macro files: sec section

8.1.

-a~edo· (Verbose): a~ked only if a prccompila.tion file wus gi"cn. 1'akcs a bunch nr FUNCTION names. which
" ·ill be rcc,•n1piled. Note that the names supplied here will be appended to the list returned by Muoco:i-.1.
iruny. a11d thnt duplii:ations in the list a rc ignored. Sets REDO 1-.

·package mode' (Verbose): asked if a prcc:ontpilation file wa.c:;. given ;ind ~1 u1x·o~• was not run (MUtX'O~t wi11
set this if run). ·1nis should be the nt,mc of a PACKAGE. which is :1s.su1ncd to be the PACKAGE being
compiled.FU NCTION nan1es in the 'Rcdt>' list will be looked up in t he approprititc PACKAG E OBL ISTS if
this 11ag is set. thereby wving some lyping or1rallers. SelS PAC KAGE-MOOE t - -

·Temp0mry file w·: 'l'hc compiler writes intcm1cdititc rcsu1ts to the b:1nr>c.>rJry file, which is normally

" s11n111e :JJ..rnn1el >" (on ITS)
" <sm1111c> ;JJ.rnme . TEMP.. (on TencxrrOl'S·20)

You n1ay chnngc lh:tl by flnswcring lhis question: there is rarely a good reason 10 do so. Sets

TEMPNAME l •.

'Soun:c file tc.>": ' fllc co1npilcr cnn be caused to wr1lc out the asscn1blcr input it generates by ans.wcring this
question. Assembler output no1111a1ly goes to

COMBAT S.2

· rllC fllll)I . l'rogntnllning Envir<)IHllCnt 87

"S11t1111t>;j'1n111c/ SOURCE" (on 11'$)
"<suame) ;Jiu1111c. SOURCE" (on Tcncx/TOPS-20)

v.•h ich is the dcfi1uh ror Lhis quc:;.tinn; anothCr name may be provided if desired. Sets SOURCE J -.

·special?·: · inc co1npitcr nom1nlly assumes that variilblcs which aren·t OECLcJ SPEC I Al :-1rc1ft SPEC I Al. tr
tJ1is n:.g is T (dcf;1ults h1 FALSE). a ll v<lriublcs will be assumed U> be S PECI AL unless declared otherwise.
Sets SPECIAL!-.

·f.xp;uld noads?·: (Verbose) If tn1c. FlOAOs in the file being t.:u1npilcd will be expanded at load time. Sers
EX PF LOAD 1-.

'F.xpand splices?': If trt1~. obje\:ts or type SPl IC E (PR IMTYPE LI ST) will be cxpanJed nnd insencd into the
group. Sec< EXPSPL ICE 1-.

' CLir..:fu l?': (Verbt,sc) ll}' dcfuuh T. hut ir FALSE. the co1npilcr v..ill on1il n'lu:\l of the bound$-chccking code it
nut'rn:11ly generates fiJr NTH~. PUTS. ~nd so un. ·11,is <lb\'iouSI.) \vill nlake the c:u1npilcd coJc n1n faster: it
nl.:~o n'lakc-s debugging the t.:n1upilcd code nc:1rly i rnpOS\iblc. Sets CAREFUL ! - .

·1~casonablc?': By dcf'hu1t T. but ir FALSE, the compiler \viii gcncrt1lc rcnson.1blc code only if everything you
c~tll front the functions being co1npilcd ~s londcd into Lhc conll>ilcr. Seu;. Rt:ASONABl E J -.

"Gluc?': Uy default T , but if FAL SE. the compiler" il1 nor gencnuc GLUE bits. ·11,crc ls"'' good reason to
f'vrrn11swcrthis. SctsGLU£t-.

'Mncro compile?': Oy default FALSE, bul i f true. lhe cornpilcr will compile MACROs. Sets
MACRO-COMPlLEI-.

'Macro flush?': By default FALSE. but if true. MACROS which ~1ppcat' in the file being co1npilcd will not
appear in lhe NBJN. SctsMACRO-FLUSHl-.

' Max :;pace?': Uy default FALSE. but if true. the conlpilcr flushes from core nlos1 or c:'lch RSUBR once it has
been con1pilcd; only the DECL is needed to help compile other func1 ions. ·11,is C.'ln. for co1npil:uions
which arc very large. result in considerable improve"!'lcn~ in Speed. Sets MAX-SPACE J - .

'First Lhings lO do". ··1nings to do' (Verbose). ond 'J.ast things to do': ft frequently is necessary 10 per-fnrm
some action:; before u con1pil:uion c.an be run : definitions files must be to~tdcd. s1>cci:ll cnviron1ncnt setup
n1igh1 have tu be pcrfbrn1cd, :.nd so on. All thrcC' of Lhcse questions urc designed to ;illow 1hat: whntcvcr
you supply is put out ancr C\·crything else in the pl:.111 but before the c:.11 10 FCOMP. 11lcrc arc three
question!\, instead of one, w nllow S<nnc things tu he spcciOcd in ri t~tifon:-d conlpilation type, while others
arc proviJ¢<l at compile time, or p~ibly from anoLhcr Lnilurcc.J ty f'{'. '11l~ ll1rce quc~tinns do not depend
l)n each other; they nrc asked in the order given here. and the answers ~1ppcur in the pl:111 in the sa1ne
order.

5.2.3. Requesting Compilations

The first question asked by C0Mn11.T Js "rypc of compilation·. In nddition to a 11umbcr of special

possibilities described later. U1ere arc two answers to this question (in addition to any provided by the user

S.2 COMBAT

88 The MDI. Programming P.nvironmcnt

through the tailoring racility) which request prc~dcfincd tailored compiltition 1ypes. 11'1C:SC arc ·verbose· and

·s11ori·.

·verbose· causes all the normal questions to be asked: 'New compiler?". ·input (ilc', "Prccompilation·.

switches, ··nlings to do". and so o n . 'Short .. on the othe r h.tlnd. dcfaullS the answers tu all questions except

'New compiler?', 'lnput file', and 'How to run·.

When requesting n c<nnpilation. one may type: 'tQ nt :.ny time. ·1ltis has the s.·unc immediate effect as an

ESC. but in addition causes ull questions bctwcco the one just answered and the ··niings to do' question to be

defaulted. ' f1lis is p.articufarly uscrul in the ·verbose· sequence of questions..

lf'tv1any' was gi\·cn as 'How to run' f()r :1 prc\'iou~ compilation rcqucs-c. :ind the resulting plan has not yet

been written out. subscqucnl plnns will be appended to it. Using "Mnny' \viii so1nc1i1ncs effect a tnajor

savings of time if !\CvCl'al con'lpilntions wish 10 perform the s..1.n1c cn,•irc,nrnc-ou11 ~lup: if thc-y USE many of

the stunc PACKAGES. fur example. When using 'M\lny· in cumbinatitul "Aith ptcdcfincd co1npllntion types.. it

is useful to rcn1c1nbcr that wh:ucvcr ii> specified under •'J'hings LO do' mny C!nd up being. pcrfc>m1cd fur each

plan. You 1nighc modify your con1pilncio11 types to rcncct this. or altern:uivcly. cdit the plu1-. file produced by

COMD/\ r to remove redu ndnnt operations.

·me on/)' way to get rid of the 'Mnny' pl;.in is to answer 'Many Oush' tu lhc "Type' question. 'fyping .,.5 or

answering "Abort' to the 'How to n ,1n· question will abort the current portion of the 'Many' cumpilation, but

not the whole thing.

If 'Many· was n1istakcnly g;vcn as 'How 10 run'. :ind you don't wish to destroy the plan you have

generated. il is possible to (in essence) go back to the ' How to run' question by answering "Many print" ror lhe

con1pil:nion type. Jn this case. you ii re 1101 bock in lhc plan·makin.g loop: ,.R acts just like ,. S.

,. R, here. backs up to the last question nskcd. 'IOerc nre two qua1ific~tions. First. ir tQ has been typed.

Chen il backs up to the last question that would have been asked ir 1'Q had not been typed. Second. lhe four

questions 'Prccompilation'. ' Con1p::1re·. "llcdo·. and 'Package 1nodc' arc treated as a group: if the "Pnckage

mode" question has not yet been answered. it is possible lO back up no1nu11Jy: but once that question has been

answered. backing up to it will go to the nrst mc1nbcr of the group, 'Prccompilalion•.

-...G allows o ne to obtain the answer to the current question from any uscr·dcnned conlpi1ation type. It

requests n type name. and uses the answer or dcf:.ult supplied therein. printing the infonntltiun so ob1.aincd.

·111c 1'G muSl be typed as the first character of the answer for this tO occur. 11liS allows one to use parts of a

COMOAT S.2

' l'hc Ml)I. Prvg,mm1ning 1:'.-:n"ironmcnt 89

defined type wilhoul cilhcr using the cypc itSclf or alLcring it for the occasioo. For ·1·cxt' lypc Input (such as

··rllings to do"), the string is placed in the input ~urror but nvt co1nplctcd. so it 1nay be edited before an ESC is

typed. Sec also lhc ·xerox type· co1nmand.

Note that there is 3 distinction aniidc between 'Compare· and 'Redo': the former causes a MUIX'OM to be

run. and the latter asks for the names uf FUNCT I ONs to be recompiled. It is p~ihlc to do both. in which case

the two groups of FUNCT JONS nre appended 10 form lhc ' Redo' lisc for the compilntion. Note also that if a

Mul.>COT\i has been run. the 'Package 1nodc' question will not be <\Sked. since the .-inswer is supp1icd by the

~IUIX'Or>.i. l~ithcr 1'R or -r s may be used to kill a running MUOCOM.

One or the rcspon~"S to tJ1c 'flow to n1n' question is 'Abort-. y,•hich returns dit<:'Ctly tu the "fypc or

co1npihHiun' question wi1.hn1.1t writing out u plnn. starting up a PCOMP. or an) lhing else. Its cffec:t is ¢x:tclly

llHll of a t-S. In particular. if you nre making a long plan, t>nl}' the portion just con1plclcd. not the entire

co1npilatiun. will be aborted.

It is nl:i<i po~it>lc nt the 'tl uw to n1n· quescion to supply an answer to any or the curnpil:stion qucslions

(lnpllt file. etc.). ' Ilic "Question· response asks for the name of a question. then nsks that question. Any

nu1nber of questions e::1n be: ;iskcd in this manner. one at a time. "Jltis Is pa11icularl) uscrul for fi11ing in the

bh1nks left by a 'Shorl' type cu1npih1tion. or by uscr·dcflncd compilatinn types..

When a compilation request has been fi11ishcd. CO~iUAT nonnnlly loops back to the .. rypc of co1npilation·

q uestion, but changes the dcf:1ull fro1n 'Verbose· to 'None' (meoioing "Quit'), unless another compilation may

rcaS<>n<1bly be cxpcc;::ted. TI1us. one mny leave by typing a ~inglc ESC.

lt is possible to modify CO~ifJA'l .. s behavior such thal il either kills iL'iClf aner finishing the con1pilation

plan. or loops back with 'Vetbosc' us the dcfauh for the "rypc ofcumpik\cion' qucscion.

COl\11lA r first dcc;::idcs whether a. long compilation ph~n is being made; irso. rhc default remains 'Verbose."

If not.. it then examines the cut1•cnt compi1o:etion lypc: if 'Ano ther co1npilntion?' htt:S been set to 'Yes', the

quest.ion will be asked with dcfi'luh ·verbose": if il has been set to 'No·. Co11.1UA' l ' will kill Itself: if to "l\sJC.

furthcrconsidcrntlon is required.

tr the user is in "Multiple' anode (the 'Multiple' co1npil:uion type). the type of compilation wi ll be asked

whh lhc 'Verbose' defaulL OLllcrwisc. Co~1nA r cxa1nincs the state of two tailorable switches. set by 1he

"Anothcrco1npila.tion?' con1piltuion lype. lf'Anotherco1npl1atiun?· has been set to 'No', C0~1UAT will die: if

to 'Yes', t.he type queStion will be asked with defaul t •verbose·: if to 'Ask~. the type question will be asked

5.2 COMBAT

90 ·111c Mllt4' Prugn:11nn1ing Environment

with dcraull "None·. Nunnally lhis is 0 Ask
0

•

Note that 'Another compilntion?· is l ike ·1·ogglc verbosity' in that it will hnvc no cffcet unless uscr~dcfincd

compihHion types exist.

5.2.4. 'How to Run ' Options
• 'tl\crc nt"c finir options available when nuswcring, the 'Ii<>"'' to H.un· question which dc1crminc where your

plan fife wi ll be wrincn nnd when thcco1npilation h specifics will be run.

'Pcomp' plncc-s tl'lc pl:i.n rile dn the <SHAME> directory. nn<J ntuncs it .. PCOMP >". /\dJitio1'l:ll1y. COMBAT
will ~tHrt a PCOMP (or NP COMP. ns appropri:1tc) pruccss lf lt is exited ~1ficr \\•riting :1 PCOMP tile-. 'Pcomp' is
th~ standard 1ncthod ror 1·unniog"' compilation in one's own process.

'<.'Ol\IJS;\1° v.•rhcs the ph1n file lo "COMBAT:PLAN > ... "Ille CO~tHA'I' dc1non succC',iveJy co1npilcs all such
p1:111s al nigl11. inrt1rn1ing the persons v.•ltt, St1hn1i1tctl them t>r the rcsulL

·was t.e' is like ·co~H\AT'. except 1h:n the plan is written to "'COMBAT: WASTE > ••. ' Ille ·waste• queue is only
n1n uncr 1nidnight. which is usually suOicicnt ror th•l:)C who :t(C doing 00\crnight' compilntions. ·waste"
is the answer used by default ror ·trow to Run'.

·F i 1 e' plnccs the plan nlc on I.he < SNAME> dirccrt>ry. and nantcs it ''PLAN >"'. '111is means that it will not
be run until you cx.pliC'illy 1o .. "ld it into a compiler process.

5.2.5. User Tailoring

ll is oncn the Case thi'\l a pan.icular file is C01npilcd quite ORCn, Of that some SCQUCOCC or llClionS M\ISl be

pcrfonncd as the "11lings tu du' before ruany contpilntions. Co~1nA·1 nllows the user to define his own

·compil:ition types". each of which specifics cxnctly those questions which should be asked and the answers

ror those which should not. Fo(ex~mple, one could have a type n4.1mccJ ·t--:Sign", which says that lhc input file

is alwoys •SEND: ES IGN > • and in addition provides for lhc FLOADing uf cwo files in .,.hings to do'.

Further. since 1nost questions are defaulted. one might choose to answer only those questions which arc

interesting. such as 'Prccompilation·. lt is also possible to supply a default answer for n q1.1cslion which will be

asked.

In addition. there arc some question~ which :ire not asked by the 'Verbose' compilation type. but which

nevertheless :.re available tt> uscr·dcrincd types. 'lllcse arc: "Mx:ro compile", "Macro nush'. 'Max space".

·r:.xpand splices'. ·spcci'11 mode·. ·c;1uc·. and olhcr.;.

One asn sc.lcct nny or one' s own defined compilation types ns an answer to the "fype of compilation'

question. just like ·verbose· and 'Shon·. F.xccpt that lhc questions asked may differ. uscr·dcfincd types are

COMBAT S.2

l'he Ml)l. l'rogramming E.nvlronmcnt · 91

identical lo the predefined types.

5.2.5 .1. Tailo r mes

User-denned lypes arc saved (nnd loaded) from Lhe file "s11an1l': '%COMBl TAILOR". ll i$ possible to load

o ther u1ilur fi les. but the .. !C.COMBT" file in sna111e is loaded during swrlup. ·ruilor files .ire quite similar to

Ml)J . GC-OUMPcd files and lhus cannot be edi ted other lhan wilh COMBAT.

5.2 .5 .2 . C reate t ype

111is special cvrnpil::uion type requests a name for the rype being made. then enters :l loop 'vith the prompc

'Question'. One 1nay c hoose any of the uvailable questions. and eilher supply an answer o r (by default)

request that Lhc question be asked when a co11111ilntion or this t)'pc is being subn1iued. Not<- that only the

' I low to 1·un' llnd the following ··rrpe or t"on1pilntion1· questions will he n . .;kcd unless others arc cxpUcitly

supplied; but one may supply nnswers to "Jiow to run· when creating a type.

In this n1odc. 1'R will 1·ctum to the 'Question· loop if one is abt>lll to supply an answer. Olhcrwisc. it returns

to the ··..-·ypc ofco1npilation' loop. al'Ji)rting thc type creation.

tG behaves cx:.ctly as it docs in the nonn~11 1txlp.1'o indicate that one is finished. one should answer •Flnis'

to the 'Quest.ion' prompL It is possible to supply scvcrtil different versions of t.hc a11swcr to a particular

question: the last one given wil l be used. One 111ay wisJ' tu default a particulnr question. uficr specifying that

It was to be asked or ancr s:upplying some difTcrcnt default. ·111is nu1y be done by answering 'f)eletc question'

to tl1e 'Quc-stion· prompL w hereupon one wlll be asked for OJ particular' question to ignore. ·11,is question will

lhen be cumplcccly ignored~ Note that. all intc.rcsting questions arc lnill:dly In this state.

There is also a 'Scl question default" 'Question'. This requests a question nanle. then asks lhc user to

supply an answer. 'll1e question will be asked. wilh 1hc dcfaulL supplied. "l'hus default scuings of switches can

be:- changed~ and ooc can supply a tile name for the prccompilntion wh ile still being oskcd whether

prccornpilation is desired. Unfortunately. u!\et--suppJicd defaults for "l"cxl'-type q uestions arc used ir ESC is

unswcred: to get rid uf l11c default. type SPAC E ESC. Note thnt this is exactly the inverse of the convention

for dcfuuhing file names.

Whc11 'J .. "inis· has been typed. a new copy of one·s tailor file is wriucn out. 1'hi.s may, in combin:nion with

'Lond tailor· and 'Replace c.ailor·. have undcsirJblc side effects.

5 .2 COMBAT

92 '111c Ml)I . Program1ning Environment

5.2.5.3. Print type

111is requests the name of one of the types currently loaded .. and prints our ror ii all questions which either

will be asked when ;i <::01npi1;;ttion is bcii1g subrniucd or which have user-supplied dcraulL<lt. If a particular

question hus been globally 'turned off (such as the 'New compiler?' question. when there is no new compiler),

an asterisk will be printed on the nppropriatc line to indie3tc that the inrormation there is currently not used.

5.2.5.4. Delete type

' ll1is request..._. the n:.me or one of the currcr1tly-loaded types. ancl deletes it. A new cupy of the tailor file is

written uut. ~o nll tnicc of the type will vanish when thiscommnnd is used.

5.2.5.5. Alter type

' 111is rc(111c:-sts a ty~ n:une. then bcco1nes identical tu 'Create type'. except th:u St>•ne qucs1ic)n~ :ilrc.ady

have nnswen-. Aguin . •J.'inis' nu1st be typed to leave the loop nnd cause the 1nodilieations tn be filcc.J: typing

1' R nr 't-$ " ·ill lcttvc the loop. but the modificntioos will be forgotten.

5.2.5.6. Load tailor, Replace tailor

lloth oflhesc request a file n:imc. dcfauhing tu cl1e last one used fur either a "I .o;u.I L."lilol'' or 'll.eplocc la.Hor·

eo1nniand. lnitiully thb, is "'snantc ; %COM8T TA l LOR". 'I .oad tailor· n1>pcods Lhc types defined in lhc

specified file to those already h~1ded. while 'H.eplace tnilor· first throws away those nlready loaded. ·1 11e 1ypcs

defined in this way arc not distinguished rrom those loaded from one's own CO~iUA r tuilur n1e~ in poartieular.

using ··rogglc verbosity' or any of'Cre.ate'. '/\her', and 'l>clctc cypc' wi11 ca.use :.ill the types currently loaded to

be written out to the COMflAT tailor file. lf. therefore. one h<.1s.donc a 'R.epJace l:kflor', one can ea~ily lose all

of one's own types in Lhis manner. I.e •. it is very easy to d(,,.-stroy yourself.

5.2.5.7. Xerox tailor

11lis requests the name or an existing t1scr·derined type, ::ind a new type name. 'fllc new type becomes an

exact copy of the prcviously·exisling type. 'Jllis is punicularly useful when one has several different types

which do ttlmost the same lhing.

5.3. The Compiler (Internals)

'Jl1e compiler's job is to take a Ml)l FUNCTION or group or FUNCTIONS .and produce an opcrntionally

equivalent n1achinc-lnnguagc subroutine {RSUBR) using whatever inform::ition can be extracted from the

source code and whatever additional information t.hc user wishes to supply. ·111c efficiency of the output code

produced is dircctJy proportional to the ::imount of infonnat.ion supplied by t.hc programmer nnd inversely

COMUAT 52

-

-

'll'IC Mt)l. Prngram1'ning l~vironmcnl 93

proportiona1 to the generality of the suu rcc program.

·11i.c infonnation suppJicd by Lhc programmer ls usua11y in Lhc form of optional dnta·Lypc declarations

(DEC Ls) and the use of prograni.mcr·dcfincd data type:; (NEWTYPEs) that h;1vc built-in dccJar:nions. Unlike

n1any programming langu:i.gcs. however. dcclnrntions arc never required_ 'l11c compiler will compile

prograni.s with no dccJarntions at .l'11. buL l hC resulting output v. iU not run ns fnst as with wcll·dcclarcd code.

·11i.c currcn1 compiler can achieve speed-up fnctors of uny\l.•herc ftom nbout 4 to 100. The factor of' 4

rcprcsc1ns the speed-up for a very general progn1m with ,·cry poor declarations. On the 01hcr hand. the factor

of 100 rcprcscnL.; a prog'r-;1n1 with il very nnrrow n1ngc of npplic:1tion that ha.~ very good (tlltll is.. restrictive)

declafi.11iuns. ·rypical progro1ns can expect lo ~1chicvc fn<;tors or20~40.

5.3.1. How it Works

' ll1c cc'nnpiler .is It currently exists Js rc;1Jly lwo dislinct pn1gn1ms. GE TO ROE R is ba~ically :-in intcrfecc

bcL,vecn files uf M l'>I. funclio1i.s and l.hC' compiler. It ls a rclutivcly snu1ll p rogmrn th:1t rends In t h e file. SC(S up

the various compiler swi1chcs. calls the compiler 01i.c or- more thnes a1'1d writes out the fi11ul file of RSUBRs.

COMP I LE itself is basi<..·ally n co1npi1cr with three mnjor ::.nd three lninor passes. Pttss 1 b uilds a model of

the program, pn.ss 2 nnalyzcs each node nfthc tree and docs data type an;11ysis. pass 2.S (n1inor) a llocates s~k

space for variables and tC1r'lpor:itics.. pass 3 scncmtcs output code and two minor passes do finuJ stack

allocation and pecp·holc optimi:--.ation.

5.3.1.1. COMPILE and COMPILE-GROUP

·n1crc arc two distinct 1nodcs of compilation available. "Jl'ley arc sin'lplc a nd mulliplc. Si1nplc con1pilation

occurs when COMPILE is called with one FUNCTION. h si1nply eoo1piles that FU NCTION nnd returns.

Multiple compilation occurs when COMP I LE is called with a list of FUNCT I ONs. It compiles each FUNCTION

inco a separate RSUBR. It differs fron1 multiple calls to COMP I LE in lhat it sometimes partially compiles a

FUNCTION out o f order u-. determine its C;ctlling, sequence and do nrgumcnt typc'"'Chccldng. ' l'his behavior is

ncce:ssory when compiling mutually recursive FUNCT IONS..

In all modes of compifntion. COMPILE-FUNCTION is called to actually compile the individual

FUNCT IONs. It calls the various con1piler passes.

5.3 The Compiler (Internals)

·11ie Ml)I. l'rogran11ning l~nvinutmcnt

5.3.2. Modeling Pass

The first poss of the compiler takes ~· input fUNCT ION and builds an cxpnnded model of iL In the

process of doing this. il produces a symbol table entry for every local variable bound nnd/or declared in the

FUNCTION. any of its PROGs/REPEATs or MAPF/MAPR FUNCTIONS. It olso produces t.he RSUBR DECL for

the fin:il output. Pass 1 also tries to decide if an intcmol enu·y (that is. an entry which can be culled efficiently

(sec section 6.1)) can ~ used with this FUNCTION. If an internal entry tun1s out LC be possible. Pnss t

gcncrntcs "n "ppropritite calling sequence for intcrn3I calls to use.

' Ille n1odcl built by P?ss 1 look~ like the origin:il fUNCTION with 1111 of the nudes in the fUNCTION·s

s tructure replaced will1 objects of type NOOE (u new type defined fur the ecunpilcr). /\ nude in the model may

huvc Jnywhere fro1n S tt> 30 clcn1ents. ' l'hc 5 clc1ncnt nude is for sin1plc qutHcd objects like rixcd·poinl

nun1t>crs._ A TOMs etc. ·inc 30 cle1nent nudes a.re for major e lc-1nc1ns of the progrnn1 such as the node for the

fUNCT ION itself and nodes for PROGs und RE PEATs. ·111e m:ijurity of the nt1des arc gcncrJI SU8R nodes •

...,.hich have 10 clements.

111e Pass 1 structure ioi; buih in lhc fo11owiog way. The top level PJ'Ogt:un in Pas.s 1 generates a node for the

entire fUNCT ION. ~ll'tiS node &CL~ the following informntion put into it

1. A cudc specifying that this is a FUNCTION node.

2. llic dut.a C)•pe that this FUNCT JON is declared to rctum (or ANY).

3. /\LI ST that will cvcntLu11ly cont.ain the nodes co1nprising the body of the FUNCTION.

4. A UVECTOR ofintcmal names for internal .,.,us to tl1is FUN CT ION.

S. A symbol table for the variables declared and/or bound in this FUNCTION.

6. /\ list or entries in the symbol tnb1c specifying how the arguments arc to be set up (whether they
arc optional. QUOT Ed. TUPLE etc.).

7. The final RSUBR DECLs.

8. /\ specification of how to pass nrgumcnts to this FUNCTION when it is compiled (whether the
arguments should be in registers or on the slOC:k).

9. "l'hc nu1nbcr or required arguments and Lhc total numb<::r of possible arguments..

In addition to the .:above infonnatiun, slots exist in the node for ndditional information to be supplied by

later compiler passes.

The Compilcr(lntcmals) S.3

'll1c Ml)I .. Progrom ming l~nvironmcnt 9S

AR.er lhc n1nin node fur Lile FUNCTION is bullL. the sub-nodes for the FORMs co1nprising the body of the

FUNCTION arc built. 111is is done by first dispa~ching to special t>as."l l code for the first clemen t of th e FORM.

tr no spccia1 code ex. ists for this first clc1ncnt. a dispatch is made on Lhe TYPE of tJ"IC firs t clcl'nent of the f ORM

(chat is. ATOM. FIX , FU NCTION etc.). If no special code exists for either the first e1e1nent or its TY PE. a

gcncrnl FORM nude is built. tn the case of an ATOM as the firs t clement of the FORM. the normal lookup rules

;'lfC in voked on the ATOM ;ind it Is dispatc.hcd again based on iLS \'aluc. ATOMS with no vnlucs e ither cause

con1pilation warni ngs or arc assu1ncd to be RSUBRs (depending on cornpiler s·witc.h RE ASONABLE).

All f$UGRs (CO ND. AND. OR.FUNCTION. PROG. REPEAT. UNWIND. c1c.) have special l'ass I code and

produce very specific 1iodcs. Musl SUB Rs Jon't dispatch to specific codC' d u ring this pass. ·111c exceptions arc

lhings like MAPF. IL I ST. GE l Cle .• which hnvc son1cwhat no1t·s1;iodar<l trcattncot of their nrgu111cnts.

(/\ctua11y, MAPF' ;i nd MAPR don'l trc:it their ;ir.gu1ttcnts non·st.:ut<lardly. bu t they arc treated specially in Psss 1

so 1hnt the inner FUNCTION ntay be upcn c:utnpiled.)

As n1entioncd prc\'iously. all nodes have HI least S c lements. ' l'hcsc ilrC as follo ws:

I. i\ node type code.

2. I\ pointer to the parent node {if one exists).

3. A ~pccificatlnn ttf the dBttt lYpc the- node wil l gene-rate.

4. I\ l isL ofsuh-nodcs referred to as kids.

S. I\ n.tunc for tli c oodc. which may have dirfercnt 1neanlngs for different nodes.

In addilion. nodes o ther than nodes for QUOT Ed objcclS h~ve additional c lemcnlS that arc tilled in during

Inter passes of the comp iler.

Afc:cr Pass l all addition.al passes work on t.hc rnodcl built during Pass I. '(be original fU NCT ION is no

longer even C::Onsidcrcd.

5.3 .3. A nalysis P as s

l")uriog Pass 1, very Huie inf,t1'lnation is detennincd regarding the resulting da1a types or vntious nodes.

Indeed. wilh the except.ion of nodes produced by quoted objects, structu red objce~ which will produce code

to build copies of th emselves. and FUN CT I ONs. PROGs nnd RE PEA Ts with declared val ues. no type

inform;ttion is produced. t--:\'cn in the cases where type information is produced during Pass 1. it is usunlly not

as dcUJilcd as other passes would like. ·nic i\nalysis Pass has the job of refini ng the r.Sult type of each

S.3 The Compiler (J mcmals)

'll1c Ml>l. l>rogram1ning Environment
96

individual node bMCd on various criteria

1. ·nie declared <ypes of the variobles.uscd in <he progrurn including GDECls and MAN IFESTs.

2. 'lllc known type t.ransfonnations produced by varioltS SUB Rs. (For cxnmp1c. it is known that

lENGTH always produces a FIX rcsulL)

3. Some an;1lysis of the context of the nodes within the progr:un. (l-'or example in the follnwing

code:
<COND (<AND <TY PE? .X llST> <HOT <E MPTY? . X>>>

<1 _)(})>

rcs-'lrdlcs.."' of how X is dccl:1rcd. it is obviously a Lt ST v..·hcn the EMPTY? is n1n. and it obviously ls

not c1n p ty when the< 1 • x> i.s ruri.)

'l'hc /\nalysi~ Puss perfonns ~ st:indnrd dcpth· tirst lcf\·tu·tit;ht tree v..·ulk on the Pass l nu.>del. ' t1ie moin

dispatch function during this pa..:;s is cnlletl ANA. 1t doc.:, un initial llis1>atch ba«:-d on Lhc node type of each

node. Since 1nost n\ldcs ;:ire still considered 'SUBR t'lodcs·. most uf Lhc cJispati:hes end up at the SUBR call

analyzer. ·111e SUBR call onnly1.cr has two types of further dispatch avt1Hable. 1-'in>i it ht\11<.s iii a t:1blc for

SUB Rs that urc cap'-lb1c or being con1plctc\y opcn·Ctxlcd: if it finds an entry in the table. lhe ana1yz.cr for that

SUBR is invoked. lrthis SUBR i~ incapnblc o f being. open-coded. ANA checks another table to sec if this SUBR

h ns nn intemot entry availnhte. lfit docs. the nod·e is changed fro111 a SUBR node to an internal SUBR node. tr
both dispatches ran. another wblc is checked to sec if th-c object type returned by thi:> SUBR is known. and if it

is the result is put inh> the SUBR node.

Most of the work done by the An31ysis Pass happens when the first dispau:h occurs and special SUBR

analy1.crs arc invoked. Generally speaking. these anatyi.crs check to see: if they know enough about their

arguments to transform their nodes to an open"'Code specificution. For example. an invocation of tJ1c SUBR

REST only trnnsforms lo un open-code node lf both the PR IMTVPE o f the first ~ugumcnt is known at compile

time and there arc no SEGMENTS in the call to RESl. If a special SUBR analyzer decides that it can't

opcn~compiJc in this ease. it either leaves the node ns a SUBR node or transforms it won internal SUBR node.

5.3.4. The Type Analysis Model
In addition to the model of the FUNCTION built in Pass l~ tlic Analysis Pass adds ndditir11lal ioform:nion to

the 1nodel concerning the current states of local v;\riabtcs. As the !'nnty:1.cr plunges down into the tree. it tries

to keep track of the current OECL ur cuch variable. Spccll1calty, there is n slot in each symbol table entry

c;;Jlled CURRENT-TYPE. The analyzer updates that slot based on its current knowledge. A call «>SET causes

the CURRENT-TYPE slot to be changed to the analy7.cd type of SET"s second argument. When multiple

The Compiler (Internals) 5.3

·111c M I)I . Programming Environment · 97

contro l paths meet. the CURR EN T-TYPE slotS o f a variable arc OR"d wgcthcr at the joining poinL

Conditional con trol SU'\JClure nodes for CONO. ANO and OR also mnintaill two tisLS or trnnsicnt information.

These arc called TRUTH and UNTRUTH. They specify what infonnation will be valid if the tn1e o r false

branches arc taken rcspcc:Livcly. For instance. a CONO clause compila tion can MSume I.hat any TRUTH

informalion generated in lhc prcdicale oflhe CONO will be valid for the rest of the clause.

Some o f the analy1.ers for the more widely used predicates have special code in &.hem to add infonn:uion tO

the cu rrent TRUTH and UN TRUTH values. ' l11csc predicates include TYPE 7 , EMPTY?, LENG Tll? and NOT .

I .ouping conLrol st ructures pose additional 1>roblcms for th!! type analysis model . ' rhc approach taken by

Lhc type analy;i-.er is to build a copy of the current types of all v-.1rh.1blcs b<-fore .1nnly1.ing ll1c loop structure.

'11t iS; copy of the local type infurmotion co nstiLutcs the assump1ions curren tly in effect. A O:er the hx>p analysis

is compete. the ass.utnptions arc checked against the current s tate of Lhe variab1cs. lf ally of che usstunptions

have bcer1 vioh1tcd. t he assum ptions arc updated and the loop is rc·analyzcd.

5.3. 5 . Life-and- Death Analysis
·rhc Analysis Pass :tlso pcrfonns a lire-and·death analysis on lhc locnl vari:tblcs. ~lllis is done by ass11ming

that the \!arh1ble's value is dead at each LVAL node for tha' variable. If a nother LVAL node for Lhis variable is

discovered that is reachable rrom this one be fore any interveni ng SET nodes for this variab1c. the original

node is updated tu be alive. '111is tifc-and· dcath information is used during the Code Generation Pass.

5.3 .6. The V aria ble A llocation Pass

The Variable Allocatio n Pass (V i\P) ls a relatively simple one. lis purpose is to allocate stack space for all

of the variables bound in the FUNCTION. itS PROGs and REPEATS and ilS MAPF / MAPR FUNCTIONS. There

arc various switches that control the manner in which this :tllocation is performed.

"fhe most i1nportanl swileh specifics whether or not this FUNCTION needs a FRAME or not. 'Jhc VAP

al ways st.ans out ass.urning it docs not need to build a FRAME. '111is assumptlon will be changed if it is

discovered th~t cxtcrrfally acccssib1e named ACT IVAT I ONs exist in the FUN CT ION or any o f its inner blocks

(PROGs or RE PEATS or FUNCT I ONs) or if" al 01ny time it is discovered thi.'ll the address or a vnriable cannot be

specified as a fixed offset from the top or the stack. Whenever this assum ption is changed, the VAP starts
over again with lhc new assu mption in affect.

Another switch that controls the behavior of the VAP specifics whether or not lhc stack slots ror inner

S.3 The Compile r (Internals)

98
"l'hc Ml>I . Prug.rilmming Environment

blocks will be pre-allocated because the stack will be in a 'fUi'.1~Y· st.ale when these blocks nrc running. The

sc.ack is said to be in ~ *fu:r..zy" state whc~ the number of slots currently being used cannot be determined at

con'lpilc time. "!Mis usuu11y occurs y,•hcn a "TUPLE is being constructed fur a MAPF. l :or instance, in

<DEFINE f (X Z)
<MAPf . VECTOR <FUNCTION (Y) <••7 .Y .Z>> .X>>

the clcmcnlSOfL.hc VECTOR wfll be between the top oft.llc stack iJnd th<" loc.atinn ufvariablc 2. Even iff has

o F'RAME. the 1ocnt1on uf Y will not be knoYo•n relative lo the FRAME pointer nt compile time. ·1ncrcforc. the

initializ.ation cndc for f \Viii prc-alltxatc the s-tack space for Y.

l)uring the VAP. each sy1nbol table entry gets its address field set based on where that variable will be on

the swck. Also nodes for PROGs. REPEATS ~1ntl MAPF/MAPR FUNCTIONS th.it have bound \•ariablcs get

addicional lnrunnation in.:;cru~d in themselves. 1'his infonnalion inclu<lcs where the SPECIAL \'arinb1cs stan

;.ind \\'here the UMSPEC 1 AL \':SrinblCS S-t3rt.

5.3 .7. The Code Generation Pass
' rhc C ode Gencrntion J'.>;1ss (CGP) is probtibly the most co1nptic:-.tcd c.•f all the passes. Fortunately, the

Annlysis Pa~ h"s (t\rcady refined the model Sf.) that the CGP cnn dispalch imn-1cdiatcl)' to the special-purpose

code gcncrntors. Ocsid1i.:J build Ing a list o f assembly·langu:.ge inscructions a~ output. the CGP keeps track of

the current stntc of the st...'lCk. the contents of the registers. the current st.ate of varh•blcs (whether they arc in

registers or on the stack or both) and the contents of the temporaries.

·111e gcnerul dispatch rouline during the CGP is ca11ed GEN. It takes two arguments: /\ NOOE and a

spccifica1ion ofwhctc 10 le:ivc the tC$ulL 'The SCC~lnd argun1cnfcnn be any of lhc following:

1. "Ille ATOM FLUSHED. meaning that the code will be executed for cfTccl rather lhan value.

2. "lbe ATOM OONT-CARE. me:uting th;iL the caller of GEN is leaving the decision up to the specific

generator as to where lo le.ave the result.

J. An object of lype DA TUM which specifics a place for the lypc and value of the result to be left..

'f'ypc DATUM is of PRIMTYPE LIST and contain~ two ctcmcntS. one for the type and the other ror the

value. 1l'IC' clements of :i DATUM may take on a variety of values in different circumstances. ·1ncsc include:

1.. A TYPE name. ·rnis c.an only occur in lhe type s1ol :ind it mcrins that the type of the object is
known at compile ti1nc and this is it. It indicates that the code gcnerowr need not put the

type-code anywhere.

2. The ATOM DONT-CARE. ·1nis mc.,ns that the caller doesn' t care where the result for this field is

The Compiler (Internals) 5.3

· rite Mlll. J>(ogram1nin& l~nvironmcnt

le ft.

) . "fl1c ATOM ANY- AC. ·111is tells the gcneratnr to leave the resul t in nny available AC.

4. J\n object uf' type AC. ·111is tells the generato r tu force the resuh into a specific AC.

$.An ohjCCl o f lype AOORESS:C or AOORESS: PA IR. Both of 1hcsc specify "ddrcsses on the Slack
or in the interpreter.

6. An objocl of 1ypc OFFPTR. An OFFPT R hns 1hree fields: a OATUM. an offset (a FIX). and a
PRIMTYPE. A n OfFPTR tells t he gcocrator to lcr1 vc the r~u l t in lhc "''Ord pointed to by the inner
DATUM ond off.<el by 1hc offscL

If Hn clcmcnc c.•f' a DATUM is ANY- AC or OONT-CARE. thC' generato r is r<:"quircd to upd;nc the DA TUM to

rc-ncct the ;1ctun1 locuti on or the rcsulL I f the c lc1nc1u is a TYPE. the scncrntor m:.y ch:ingc it tn an AC \l.'hich

1nca11s that it hnppcncd to end up with Lhc TYPE i n tJ1at AC.

·me generators a lways return :1 DATUM specifying where the result \v~s actunlly len. unless the caller

"'nntcd the result FLUSHED. ·111crc is o ne special DATUM thHt can be rcu1rncd. It is Che GVAL of the ATOM

NO-DA TUM nnd it means tlu.1t 1..hc spcciOcd nude will noc return a value (that is. it is a RETURN o r an AGAIN o r

sorne thing).

There arc six ubjcclS of type AC in the compiler. co rresponding to ACs 0, A. n. C. I> and J"t AC O Is special

since it can' t be used as a pointer. aJ)d it :.lw:tys cc.,n tains very u-nnsicnt infom1ation. It is never used to fi ll in

nn ANY - AC slo t in :i DATUM. ·rhc o ther nvc ACs a rc in I.he pool ofavaik1ble ACs. Objccu; of type AC have

nbout ten different slots associa ted with them. ·r hcy arc used for lirtding tt\'3il..-blc l\Cs and _gcncr::iting output

code t.hot uses them. ·111c s lots used in AC alloc:ulon are ns follows:

1. ACLINK. If this is FALSE, the AC cont..~ins no temJ)(}r.ary value for the current compu tation.
Otherwise. it is a list of active DATUMS Lh::ttcosltain iL

2. ACAGE. ·1nis is only used when the ACLI NK is non-FALSE. It is updated to a higher number at
each use urlhc AC and is used i n ;1n J,R U algorithm when an active AC must be Oushed.

3 . ACRESlDUE. If this AC is currently equivalent to some local varinblcs.. this slot contnins a list of
the sy1nbol4 tttblc entries for these vuri:1blcs. ' 111c syn1bul· t.ahle cntr iC$ the111sclvcs h ave a slot
c~lllcd I NACS that r <'i11ts hack to the ACs that con Lain llS type ;,n<.J/nr v:iluc. ·111e)' a lso contain a
slot c:11led STORED tJ1at specifics whether the only copy of the \•uriab1c is in the A Cs or it is also in
memory.

4. ACPROT. 'Jllis slot is a buolean s.1ying whether th is AC is prot«ted or not. If the AC is protected . it
c.nn't be allocated for any reason. Protection is only in voked for very stretches of code.

5.3 The Compiler (ln1e rnals)

100
·111c M Ill. l'rogramnling F.nvironmcnl

5. ACPREf. "'f'his slul says lhi1c this AC deserves slightly 1>rcfcrcntial trc..·u.mcnt. It mcan.'i, all other

l.hings cquol. don•t choose I.his AC.

·inc AC nllocation algt,rith1n consists primarily of Crying to find the best possible candidate " 'hen an AC is

needed. 1~hc routine GE lREG is u~d to find an av;,ilablc AC . First it rcj<:<:lS all ACS thnt urc protected (if they

all arc protected. the conlpilcr gcncn:ucs nn internal crrur since lhis should never hl'lppcn). Ir there ar<: one or

more ACs with their ACLlNKs FALSE. GETREG will choose fron1 among them. h win prefer ACs with no

AC RES 1 O UE. that ore numcrica11y adjacent io another free AC (because some Pl)p~ I 0 h1structions dcsuoy the

ucxt AC), and which do not have their ACPREfs on. If the AC chosen hl'ls an ACRESIOUE. code is generated

if ncc<."SS.'lry to Slorc any of the variahlcs lhat nrc only in ACs.

If no AC c~istS with un ACL INK lh:ll is FALSE. GET REG finds U'lc AC with the sn1ttllcst ACAGE. Code is

gcncr:1Lcd tu store the contents uf the l\C ii\ a tcn1pornry $4-'l that his a\•ailnblc. ·111c DATUMS that '"ere in t.hc

ACL INK arc updntcd to indicntc that they ::ire now pointing to temporaries as opposed to ACs. 'l1u1s it is

possible that o generator could need sub-results in ACs. aud ancr causing one to be g,c11cr:ncd in nn AC. find

I.hat while generating the second one the first slipped back into o te1npornty. ' Ille generator would then have

to generate code to re loud an AC fro1n the tc1nponiry.

The CGP invokes variOu$ spc:cial-casc tlptimi1 .. 1tions by passing lnforn1ntion up and down the tree as code

is generated- ·111e gcncr.ttt'H"S for condition:1I branching FSU8Rs like OR. AND and CONO employ a predicate

g.cncr:ltor whenevc.r possible. ' Otis gcncr:nor is like GEN except that it t.o.k:C'S three additional arguments: a

label u> branch to. a nn.g saying whetJ1cr to bmnch on truth or falseness.. and a Oas S.'lying whether this

prediconc is being NOT ed. 1'hc gcncraJ predi~tc gcner.ttor then looks at t.hc predicate node lo sec if it can

take the nddith>nal arguments for prcdic.'ltc gcncr.ition. If it can. the general predicate gencr.3tor just passes al1

the arguments down~ otherwise it calls GEN and gcnctntcs the nddition:ll testing and branching code itself.

Currently AND. OR. COHO.==?. N-=7 . G?. G=?. L?. L=?. 07. 17. TYPE?. NOT. ASSIGNED?. MEMQ.

LE NG TH? and EMPTY 1 have speciol predicate code ossoclated with their generators. Others may be oddcd os

I.he need develops.

Other optimizations arc invoked by simply rCCt)goi7.ing. common pnuerns of MD1 . code. For instanc.c.. the

compiler rccogni1.cs <SET X < + . X 1 > > as a Pl)P· l 0 AOS instruction und it generates very efficient code

for<REST .X <-<LENGTH .X> i>>byrccogni1.ingl.hepouernofcodc.

~Ille compiler nlways takes advan1.age of as much knowledge as il has about the types generated by

particular nodes to generate good code. ·1bis is especially lhc case when it is handling the code for NTH. REST

and PUT in structures. It uses type information concerning the lcngr.h of the structure and the amount being

111e Compiler (Internals) S.3

·111c MlJI . Pr0gmn1n1ing Environmenl IOl

RESTcd for Lhe NTH. REST or PUT. to figure out whether or not lo generate bounds checks In the compiled

code. It also uses infom1ation about the current ~ypc of the slot being read or written [U decide whether not to

tt'<-1d or write the type word. Obviously. a lo t of this type infonnntion was the Stunc info1·matjon obtc'lincd

during the Analysis Pass of the compilation.

Son1e code generation routines arc c:apilblc of changing the order of generation of the sub· nodes. This is

done to try to get the nt.xte requiring the must ACs compiled first so I.hut it wnn"t interfere with ilny AC

rcquirc1ncnts of the current node. ' lliis obviOu$ly requires that the comn111tc<l nodes h:1ve no interacting side

effects ..

5.3 The Compiler (Internals)

102 ·111c Ml>I. Prc>g ramming l~nvin>nmcnt

6.0

·rlle M l)L J>rogrnnuning Environment 103

6 . Making It Run Faster
Once you have a working program. you will 'probably want it lo run fast 'Ille most obvious way of doing

this is lo compile it. Mn1 . provides other ways lo speed up code. chiCny by eliminnting mediated subroutine

calls. ;Jnd by reducing the size orgart>agc· collccted space.

Mediated subroutine calls (or 'MCALLs') arc the standard 1ncthod of function calling in MOL. ' llley

provide a great deal of infonnation und control during prugrnm dcvclop1ncnt and debugging. but the

ovcrhcnd oft1n MCALL is superfluous in dcbugge<l production progr:uns. Consequently. several rncthods exist
for rc1noving th is overhead.

/\subtle hnpcdilncnt lO incren~d speed in a production progr.un is the umount u r thnc devoted tu garbage

collection. As this is propu1'Liona1 lO the Si7.C of the g.f'trbagc collected space. it is ~1dvnnt.ngcous to nlakc that

spnce as small as possible. One way to do this is to purify ~·s many of the suuic d:ua structures in the Mnt.. as
possible.

One by·product of the procedures mentioned nbovc is thnt much of the resulting code ttnd structure

becomes pure and therefore sharenble between 1nany MDI. processes.

6.1. GLUE

A racility c.xists to allow separately co111pilcd and assembled RSUBRs ro be 'glued' together. ·111is makes

ca11s between RSUBRs in the group much faster. as MCALLs arc replaced by PUSHJs.. ·me many instn.u:::tions

of an MCALL arc replaced by the single PUSHJ. but the mediation provided by MCALL is lost: No FRAME is

produced. GLUEing is accon1pl ishcd by the concatenu.Lion of the code a11d reference VECTORS of the RSUBRs

being GLUEd. which gives lhc1n a common 'frame of reference.'

l\ddit.ionally. GLUE is interfaced wilh the compiler such that:

1. ·rhc RSUBRs can be n1n unGLUEd for co11vcnient tracing and debugging. After debug.sing. Lhey
can be GLUEd together and run much faster.

2. An individual FUNCTION can be recompiled wilhoul the overhead or rcc:ornpiting everything
GLUEd wits RSUBR. After the rccompi1:1tion. the entire set can be rcGLUEd.

6.1.1. How t o Glue

"GLUE• is a PACKAGE and it may be obtained by doing

6.0

·11,c Mtll. Progrnmn1ing Environment
104

(USE "GLUE">

The coll l(l glue a gmup orRSUBRS ond/'!r RSUBR-ENTRYS is:

<GROUP-GLUE grvuq-narzre;ntom
subs1iru1e:boolean
script:channel
/'>t'IC'kag~:srring-orUSI
surv1\ .. -or.s:list
victi111s:llst>

where:

group-1101111" is nn ATOM ns returned by GROUP-L.OAO. und it is the only required :irgumcnL

.rubs1ilutl' is n nag: ifiL is true. the current RSUBRs Jnd RSUBR - ENTRYs will b<: fixed St• thut they inay still ru·n
in the current Mn1.. ·1'his is expensive but nc<:CS.<\.:1ry if PR INTlYPEs or h1tcrrupt h::indlcrs arc among the
RSUBRs in the group. If the nag is FALSE or not suppticd. 1.hc g,toup 1nust be GROUP-OUMPcd and

reloaded before use.

s('rfµt ir supplied and a CHANNEL is used by GROUP-GLUE to print out its progress through i1s task.

Otherwise. GROUP-GLUE works silently.

pnrkagc-. if provided nnd non·F ALSE. iinplic-s PACKAGE mode " 'ill be used. ·11,is ~1rgu1ncol should be a
STRING s1>ccifyi11g the PACKAGE that is hcins glued. In PACKAGE inndc only the ENTRYs of lhal
PACKAGE will be preserved :.ntl 3ll RSUBR - ENTRYs associntcd with lnterntil funcliuns wi11 be removed.
' ll\is option C{lll ;.\ISO :,,c used by setting the ATOM PKG to the name of lhe PACKAGE. Package nlay also be
a LI ST or PACKAGE nomcs. in which co.~ lhC ENT RVS of all the PACKAGES listed will be preserved.

survh'tJTS ;r provjdcd indicntcs thnl SURVIVOR mode will be used. 'Ibis :irp.u1ncnt should be a 1ist or lhose
RSUBR-ENT RYS lO be preserved. All nthcr RSUBR-ENTRYS wi11 he nushcd. ' llliS oplion overrides
PACKAGE mode. This option con also be used by SClling lhC ATOM SURV lO the LI ST of RSUBR-ENTRYs

being preserved.

1·icfiu1s allows ·survivors· to be specified by default: that is. it js a LIST of those functions which sho\11d not
sun·ivc ancr GLUE has n1n. ·1nis. is somclin1cs more convenient to specify than cxplicil survivors.

' l"herc arc two advantages to removing unneeded RSUOR-ENTRYs. ' l'hc group is n1ndc s1nnllcr by the absence

of lhe RSU~R-ENTRYs. Also the code for lhe group is reduced, as lhc code fM ht1ndling MCALL$ lo those

RSUBR - ENTRYs i~ removed. In general only the ENT RYS need lo be kept for n PACKAGE. 'rhiscan be done

hy spcxlfying the PACKAGE using PACKAGE mode. SURVIVOR mode should be used if the user wishes to

explicitly suttc which RSUBR-(NTRYS arc to be kepL

6.1 . 2. GLUE as a Program
In uddition to the "GLUE" PACKAGE. Lhcre is a progrmn in which GLUE ond PDUMP (sec section 6.3) arc

preloaded. It will prompt for each or the uSl•nl argu1ncnts to GROUP-GLUE. pcm1itting the user to

conveniently GLUE (and PDUMP) several PACKAGES in one session.

GLUE
6.1

J he MIJI . Prognunming Environment
105

6.2. Glue Bits

GLUE is able to Perform it~ tran$fhrm;.1tions on compiled or assembled code wilh the aid ofa dnw structure

produced during a<e;scmbly. ·111is structure is caltc<l thc "GLUE nits'. his an nssociation pl:i<:cd on the RSUBR
by this FORM:

<AND <ASSIGNED? GLUE>
.£LUE
<PUT rsubr GLUE ;lue-bits:uvector> >

1ltus if . GLUE is uon·f ALSE the a.ssoci:uion v.•ill be nvailablc to programs wishing to use iL

Internally. the GLUE ,biL~ consist of two bits for c~ch word of cudc in the CODE efcn1c1u of lhc RSUBR.

followed by words spccirying calling. in(hrmt1lion. J·"ur each INTERNAL-ENTRY in the cOOc. there is a word

giving the number of argu1ncnts It tukcs and thc orr.sct of lhc J NTE RNAL-ENTRY in the CODE UVECTOR.

·inc two bi LS for indi,·idut1l instn1ctitn1s arc i11tcrprctcd with the ind~x fie ld oft.he instn1ction as follows:

flits 0 ln1111ics the instruction is uninteresting;

Index field (M) and bhs I i1nplics the instruction is a reference tn lhc code itsclf (n jump, perhaps):

Jndcx field (R) and bics t implies a reference to an hnp:Jre slot of 1.hc RVECTOR (the co1npiler docs not
gcncrotc such references):

Index field (R) and bits 2 impHes the instruclion is an MCALL:

Index field (R) and bits J implies the instruction isa reference to a pufc slot of the RV ECTOR.

Sec section 7 for more dcwils on the fonnnt Or Mor. Assembly c-Ode.

6.3. PDUMP

MDL provides a mechanism far shnrfng compiled programs among several Mr>I. proecsscs, and for

dynan1ica1Jy moving the co1npi1cd code in and out of the virtu:.1 nddress space as space is needed in the

interpreter. ~lllis n1cchanisn1 is described in detail in section 4.2. 111is scclion describes huw to convert a

compiled program into a sh:i111blc version. kno"''" as an FBIN (1 .. ast~JJINary) version of the program.

F·irst lo:1d lhc group·purificr.

6.2 Gluc Olis

l06

<USE "PDUMP">

Next. GROUP-LOAD your group (or groups).

<GROUP-LOAD bingrefile.·scring.)

·111c Ml)I . Progmmmin.g l::nvironmcnt

'A•hich returns the group·namc or the g roup. 'f'his (and any other groups to be dun1pcd together) is lhcn

passed to Lhe pure-dumper:

<PDUMP t:rt>Uf?:UOllU'tl·q10111 grou~11an1t'l:a1om • • • >
' lllis crcntcs several flies. only one ofv.•hic.h you need be concerned with:

snan1e: sruup-nanJe/ f8 IN

ff given 1norc than one group-n~n1c. PO UMP wil l create one FB IN lilc for each group. hut only a single Ft XUP

and i' sing.le SAV Ole conL,ining the fix.ups nod code for 0111 of I.he groups numcd. 'Ilic f I XUP nnd SAV mes

a.re pul on the "MUOTMP .. directory nnd C\•cnwally nrc inserted in the pure cuclc library. as described in

sCC'don 4.l.

/\hcrnati\'C methods of POUMPing arc to specify Lhat as an optlon in to lhc ptugrilm GLUE (sec section

6.1.2). urto use IL< preloaded PDUMP directly nfler exiting Its RE ADER with •S.

A warning abouL con1bining GLUE a nd PDUMP: if you a uen1pt to POUMP several grou ps that have been

GLUEd together, you wilJ lose. ' lliis is because t.he references to the 'gl'uup· RSU6R' will rall on the wron::

DBL tSTs.

POUMP also produces a stn1c-u1rc analogous w the GLUE bilS (sec section 6.2) produced by the compncr,

but cont.1ining only infonmttiun about the RV ECTOR or the RSUBR. for the use <,f PURI FY (sec section 6.5).

6.4. SUBR FY
SUBRiftcat.ion is a way of getting rid of many of the MCALLs wh ich could not be practically removed using

GLUE. If a FUNCTION is called by many separate groups. it is difficult to GLUE itto all U1c groups or<o GLUE

all the sroups together.

Whnt is really ncc·dcd is to be able to allow something 10 be called with PUSHJ from separate groups

without forci-ng it to be part of those groups. This ;s indeed the case with PUSHJ entries to Mtll. SUORs (in

the interpreter)~ A user can m~kc his RSUBRs look lite SUB Rs in this rcspccL

SUBRFY tokes a group. which must be ia NBIN formnL It purifies the RSUBRsand RSUBR- ENTRYs in the

group 3nd changes ihcm so that they can be caned with PUS HJ. It also prOOuccsa tile. known as the 'prctoad'

file. which can be used b y the compiler to generate PUSHJs to the functions in the SUBRified group.

POU MP 6.3

' Ille MOL l'rogn1mming Environment 107

SUBRFY should be loaded before loading the group to be processed. The reason for this is !hat it

suorantccs thot GLUE bits stay around. To load ;SUBRFY

<USE "SUBRFY">

You should !hen GROUP-LOAD the group. Your group should be GLUEd already, since SUBRFY docs not

GLUE the group togelhcr.

SUBRFY can lhen be called in the following manner.

<SUBRFY grgun·n10n1
fl/~ nante:string
ou1pu1:eha11ueD

where

~rtJUJ> is the name of the gtOup.

ji/t"-11f.11ue is the n:unc orlhc file in v.·hich SUBRFY Should put the inf()nnntion filr the co1npilcr . . ll'liS defaults
to the name of the inpul file with !\CCond n:unc "PRELOD ...

uutpul is an optional argu1'11Cnt which spcci(ics a CHANNEL 011 which to prinl infon11atil>n about SUBRFY~s
progress. ·111c default is noL to prinl anything.

111c file produced by SUBRFY should be FLOAOcd for compilalluns where functions in the SUBRificd group

arc c:nllcd. This ca11 be done by f LOADing it in the '"ll1ings to do· part of a ('Of\IRAT plan.

Like purification. SUBRificalion changes the Ml)L. 111c only way to preserve the SUBRificd group ls LO

SAVE the MDL llcfore SAVEing the Mm. the "SUBRFY" PACKAGE should be removed. This can be done

by doing a

<KILL-SUBRFY>

followed by a

<GC 0 T>.

SUBRfYing a g roup ilnplics that the group is not going to change at aH frequently. if ever. /\. new

SUBRFYcd SAVE rile may be c-rc:ttcd at ;iny tilnc. anti clemcnlS of the group may be recompiled. 1-lowcver. if

the calling sequences of any of the functions in that group ch:tngc. you invnlidatc any functions compiled

using lhe ·prcload' file for that group. ln short. think twice before tying yourself down with SUORf Y.

6.5. Purification

A facHity cxislS to pcnnit the purification of M1>t. objects. Purified objects ca11 be shnrcd between MDL

processes and also arc not cxnmincd by the garbage collector. What follows ls a description of how this

focility can be used.

6.4 SUllRFY

108 ' ll1c M 1)1 # l'rogrnm1ning Environment

·111c pul'iftention facility in M1>1 . is mos1 useful in lhc erc3tion ofsuhsystcsns. Nun·purincd RVECTORs of

RSUBRs nnd tnb1cs used by subsystc1ns. arc kcpl in Si1rbagc co1Jcctcd spxc. ' ll1is rncans lh:it these objects.

which wiU OC'\Cr b<'<:OmC garbage, afC Cxtimincd nl C41Ch gurbagc collcctiun, Slowing down the garbage

collection process .• Also. if two people nrc using the same subsystc1n. they canno1 share the t<.ablcs a11d rt SUB Rs

kept in garbngc collected sp~c. By using puririCi.1tion these two problems can be alleviate~

To purify most objects the user c:1n c:ill thc PURI FY SUBR. 'll'lc object will be purified. nnd ;111 references

to Lh01t object irt the Ml)I core iln:1gc will be ch:u1gcd 10 point to the new purc dbjcct. This siniplc method

c<tnnot be used in the case <?f RSUBRs. l')urification of RSUBRs is tJ sever.ii step proc~"S beginning with

co1npilarion.

6.5.1. Purifying RSUBRs

Once yuul' FB lN or NB IN is ready you c~n actually d o purification. ' l'o do Lhis first

<USE '"PURITY"">

·r11is PACKAGE contt1ins the r-ou1incs needed 1.0 purify RSUBRs. ·111en GROUP - LOAD the fifes you wish to

have pul'ificd. Once this is done type

<GROUP-PURI FY gro111rnto111 outpul:chnnnel>

1llis will purify nnd link all RSUBRs .and RSUBR-ENTRYS in the group ou1d v-·ill also attempt to purify n,ny

RSUBRs or RSUBR-ENTRYs called by I.he grou11. Oiving the optional r'1a11nel will C..'1USC GROUP-PURI f V to

print infonnation concerning the progress oflhc purificouion.

GROUP-PURIFY will only purify RSUDRs and RSUBR-ENTRYs. In Order 10 puriry !ables. etc. use the

PURIFY SUSA directly. Since purification is an cxtrcn1-c1y expensive operation, it is rccon1mcndcd that you

collect together Lhc things you wish co purify int0 a LI ST. VECTOR, etc. and purify lh:it strvcturcd object.

Once purification has occurred .• several things may be dune to recover wasted garbage collected space.

The user can ge<rid of the •·PURITY" PACKAGE by doing a
<KILL:PURITY>

·111e user can also rc1novc much of the overhead of keeping a group nruund by UNASSIGNing the

gruup~n:une. Removals of this type should be foTJwcd by an expl icit call hl the gnrbtlgc collector invoking the

"hairy' GC feacurc. as much of the storage to be rcg:1incd is pointed to by associ:nions.. ~lltis cnn be done by
<GC 0 T>

In order 10 save a file with pulified M1>1 . objects you must SAVE. Restoring a SAVEd file with purified MDI.

objects will cause those objects 10 share with any other Mm. RESTOREd frum the same SAVE file.

Purification 6.S

IC

\C

·111c Ml)I. Programming Envlron,.;1cot IQ9

6.5.2. Purifying an Environment

Many subsystems 1naint.0in a list conUtini~g pointers to all the srotic data structures buJlt by that

subsystem: dispatch tables. data bases. and.so on. The list can be given Ul PURI FY to mt>vc all its components

into the pure area. However~ there arc o ther structures in garbage collected space that m:sy be purified: e.g.,

lhc RVECTORs of RSUBRs. RSUBR DEC Ls. and so on.

·inc .. CLEAN" PACKAGE examines these structures. looking for rJ1osc which may be purified. It 01ay also

be used fc)r infonnaLional purposes. To get it

<USE "CLEAN">

"CLEAN., has one 1najor ENTRY. CL EANUP, which examines every ATOM of every OBLIST in the Ml)I _ It

may pcrf(>ml a variety of functions. but il is most often used Lt> n\akc DEC Ls share storage and to accumulate a

LI ST of purinnblc s.tn1ctu rcs. All of ilS nrgumenlS arc optional.

<CLEANUP prl111?:boulean
rese1?:1J<wlca11
dee/?: boolean
gdecl?:booieaJ1
pure?: boolean
check?:boolean
avoid:/ist-u,f-oblists>

print? i:; by dcf ... ult FALSE. Jf non~FALSE. information about each ATOM examined will be printed as
CLEANUP runs. ~lliis is a lul or infonnation.

reset? is by default T. ff non-FALSE. Lhc L ISTs of ohjcccs previousl y collect ed w i ll be reset before CLEANUP
runs.

dee/? is by default T. If non- f ALSE. each DECL clement will be made to exist cx:K:t1y once in the c.ntirc core
image. r_ g .• <here will be only one copy or1hc DECL <LIST (REST FIX]> in lh~ core image.

gded? is by dcfaull T. It is similar to decl?. but rcrcrs to GOECLs.

pure? tells whet.her to make a LI ST of all the purifiabtc objects in the core image. It is by default T.

check? tells whether to make L ISls of oil the TYPES. RSUBRS. RSUBR - ENTRYS. ClC. in the core image. It is
by default T.

01•oid is a LIST of OBLISTs not to look In: ii is by dcfauh <he ODLISTs associated with "CLEAN" and
"PURITY".

CLEANUP returns (if pure? is non-FALSE) o Slructure (also stored as the GVAL of PURELST) which may be

given to PURI FY.

·n,-c rcsulcs of running CLEANUP may be examined by

6.S Purification

110 'Jbc Ml>J . Program1ning r.nvironment

<PRINT-CLEANUP>

/\s the object in running CLEANUP is to shrink the size of one's Ml)L and its garbo.gc-collcctcd spaee. it is

useful to be ab1c to remove CLEAN ancr it has done its work.

<FLUSH-CLEANUP>

removes everything associated wilh the PACKAGE rrom the MDL-

6.5.3. Purification Summary

In a $i1nplc case. one can puriry a ·subsys.tcrn· of one group maximally by

<USE "PURITY" "CLEAN">
<GROUP-LOAD "foo">
<CLEANUP>
<GROUP · PURI FY foo>
<KILL:PURITY>
<FLUSH-CLEANUP>
<GC 0 T>
<SAVE "foo">

6.6. TEMPLATES
·111c PRIMTYPE TEMPLATE cutS down nn the need for stora,gc by n11owing the user to specify exactly what

he wa.nts a structured ob;cct to c:o1nain. similar co 'stn1ccurcs' in Pl ./J or C

To use this feature one must crcntc a new TYPE of PR lMT Y PE TEMPLATE . 'fhis cnn be acco1nplishcd by

using the RSU6R TEMPLATE. ' Inc proc:cdurc fur doing so is:

<USE "TEMPLATE">

<TEMPLATE uqure.·qtou1 = --· >
where nauut is the name of the new TYPE and specs arc specifications for Cc'\ch clement of the TEMPLATE.

1l1is rctums the TYPE name of the TCMPLATE and creates~ creator of TEMPLATEs of TYPE 110111e. c..--tlled

11a1ne itself. which can be applied to argumcncs to crc~tc objects of that TYPE of TEMPLATE.

The spccific.ltion for the clcmcnl'i can be of several forms. It can be one of

a TYPE: ty~:atom

a 2-clcmcnt LIST: (1Y1>e:t11()111 /mgth:fvc)

a J ... clcmcnt L l ST: (1ype:a1u111 /~11g1h:fix cuunt:fix)

lklow arc some examples along with cxplanntions:

Purification 6.S

·111c MIJl . llrogrnmming Environm-cnt

LIST

is an 18 bit LI ST pointer.

(FIX 18)

is a halfword FIX (can be bolh positive und ncgalivc and is checked for overflow).

(FLOAT 18)

11 l

is an l8 bil FLOAT (which is lhc left halfword of a ·nomtar .fLOAT and therefore so1ncwhal restrlccs the

precision).

(FIX n)

(where n is less than 18) Js a positive f IX of lengtJ1 ,, bilS (is nol checked for O\'crflow).

BOOLEAN

is not n Ml>I . TYPE. but :a one! bil FALSE or non·f ALSE dc~nding on whether lhc bil is 0 or 1.

(UVECTOR 18 n)

is nn 18 bil UVECTOR pointer. ·11\c UVECTOR is oflcng,lh n. -inc sa1nc can be done for VECTORs.

(STRING 36 n)

is a J6 bil string byte pointer. The STRING is of length n.
ANY

is not a Mo1. TYPE. rather anything c-an go here. 111is is relatively inefficient to use in TEMPLATES i'lS it u1kes

up 2 words_

ht order to provide rnorc ncxibiJi[y in using TEMPLATEs. two uthcr fields arc allowed. an optional field

and a rest field. *Ille op1io11a/ field allows the oscr locrcntc TEMPLATE TYPES which will hnvc the snmc b:isic

structure but which can hnvc optional clements determined when lhc actual TEMPLATE ls crc.atcd. 'rhc rest

Ocld. li ke 1he CJJ>lio11al field. nllows clements to be optionol but specifics a pulccrn for any cle111cnts tJtat are

added on. ll is analogous to REST in DEC Ls. Scpar..1tion of fields is accomplished by the use of the strin.g.s

"REST" and "OPTIONAL". For example:

<TEMPLl\TE FOO FIX "OPTIONAL" LIST BOOLEAN "REST" FLOllT>

This creates a TYPE FOO ufPRIMTYPE TEMPLATE which always has a FIX as the firslelement,can have a

L 1 ST as a sceo1td clement.. can have a one bil T or #FALSE ()us the third clement and can have any number

off LOA Ts rrom 1hc filurlh clement on.

6.6.1. Use of TEMPL ATES

TEMPLATE TYPES 1nay be lltought of as primitive TYPES. in U1at they c.ach have a unique storage

rcprcscntaliun. On the other hand. the TYPEPRIM of any TEMPLATE TYPE is TEMPLATE. /\ primilive

TEMPLATE (which cannot truly exist in tl1c langun.gc) would look like

6.6 TEMPL/\TEs

ll2
'Ille Ml>L Programrning ~nvironmcnt

{ e/e111t11J·I ele111en1 .. 2 ... ele111e111--n)

Real TEMP LA TE TYPES arc represented as NEWTYPES of this primitive TEMPLATE TYPE.

II type-nonre { . .. elen1tnts . . . }

'111is method is silnilar to the usual method in Mo1. for representing 3ny new TYPE. in lhal a RESTcd

TEMPLATE will be printed "CHTYPEd to Its PR lMTYPE: Note that a TEMPLATE so printed cannot be read by

READ: n 'primili\'C TEMPLATE' cannot exist. It is best to avoid printing RESTctl T EMPLATEs.

Below arc some examples of the use of TEMPLATES.

<TEMPLATE BAR·
FIX
"OPTIONAL" BOOLEAN
"REST" (FIX 18} (FLOAT 18}>$

BAR

<BAR t>S
#BAR {1}

<BAR l T>S
#BAR {1 T}

<BAR 1 <> 1 t .O>S
#BAR {t #FALSE () 1 LO}

<SET A <BAR 1 <> 1 1.9 2»$
#BAR { 1 #FALSE () 1 1.8984376 2 }

<PUT .A 1 6>$
#SAR {8 #FALSE () 1 1.8984376 2}

<PUT .A 4 1.999)$
#BAR (6 #FALSE () 1 1.9960937 2}

<TEMPLATE BAR (STRlNG 38 4) •REST• ANY>S

#FALSE ("ALREADY A TEMPLATE")

<TEMPLATE BARI (STRING 36 4) "REST" ANY>S
BAR1

TF.MPl.ATEs 6.6

'll1e Ml>I ~ Progr-J1n1ning f~ vironmcnt

< SE T A <BARI "HELP" 2 () <>>>S
#BARI {"HELP" 2 ()#FALSE ()}

(PUT .A l "GOOD">S
#BARI {"GOOD" Z () #FALSE ()}

<PUT .A I "GOOD·BYE">S

• ERROR•
TEMPLATE-TYPE - VIOLATION
PUT
LISTENING-AT-LEVEL 2 PROCESS I

6.6.2. Assembly of TEMPLATES

113

O nec u ~l of TEMPLATE TYPEs is created. as for the TYPE dcfinilions of a subsystem. it saves dn\c to

store 01wuy the 'co1npilcd· TEMPLA T£ gcncrtitors nnd nol recreate then\ c~t.:h tin1c 1hc dctinhions urc to be

used.

·111c •'TEMllAK" PACKAGE n1c>difics files which define TEMPLATE TYPEs to contain the TEMPLATE

descriptions a.nd RSUB Rs r:tther 1hnn the calls to TEMPLATE. It is unly \1SCful. of course. when the

TE MPLATES arc d..:tincd in a file which will not normally be edited. since the new fll es nre in 'NBIN' fonnaL

Tu load this PACKAGE.

<USE " TEMHAK">

·111c PACKAGE has two entries.

<TEMPLATE - DUMP grpua=11n11ura1on1>

takes the gruup and modifies it such lllat <USE "TEMPLATE""> becomes <USE '"TEMHLP">. and nil

/up-fa1•el invo<:ations or TEMPLATE arc rcph1ccd by coils to BUILD-TEMPLATE (for LhC TEMPLl\TE

ucscr i1nions). SETGs of the TEMPLATE-generating RSUBRs. and the GLUE b i ts for the RSUBRs.

<FILE-TEMPLATE i11q11ttstci11g uutput:string>

take..~ an input file and pcrfonns the S.'lmC service. GROUP-OUMPing the result to the optional ou1pu1 file (by

dcf:1ult the sr1mc file with second name '"NB IN"}. ·rnis is useful for files which cnntnin nothing but TYPE

definitions. J common practice in lntge subsystems.

If the TEMPLATE TYPEs ~re defined Jn u file which will be edited frequently. :t different set of routines is

used oner crc.,ting Ilic TEMPLATE TYPEs:

6.6 TEMPLATEs

l 14 '111c Ml)I . Pros,ramnling Environn1cnt

<OUMP-T EMPLAT ES Jrscriv1io11t:.~1n'11t>

pJaccs the TEMPLATE descriptions {11u1 lhc RSUBRsj in the specified JesC'riptions Ole. It dues so for all

TEMPLATE TYPES currcnlly defined.

<OUMP -RSUORS cwbrs·urinr 1cn1pla1r-11•ne·a1om . •• >
will rx:rronn the s.unc service fbr the TEMPLATE·gcucra.ting RSUBRs of Lhc TYPEs given as lhc second and

later al'g\11nC1HS to DUMP-RSUBRS.

'l'hcl'C will now be two files. one cont.nining the TEMPLATE descriptions nnd Lhc o ther 1hc RSUBRs. ' Jllesc

m:iynt)W hcu~cd tocrcntcth~TEMPLATE TYPEswithoutUSEing "'TEMPLATE". To do so:

<USE "TEMHLP">

' Ill is defines the RSUBRs needed to tnkc Lhc TEMPLATE descriptions n nd intake thc111 useful to MDL

< F LOAD 1/rS<·rip1io11s:s11i,,g>

the fi le of <lc-scriplions (the file cl"Cutcd wilh OUMP-TEMPLATES): t.his 1n11st be lo.1<lcd before lltc llSU6Rs

file. Then load lh< RSUBRS file (~ie me ere;lled by OUHP - RSUBRS);

< F LOAD 1'31'brs:s1ri11g>

F'or nH1ximurn convcnicl\cc ... it may be necessary t<> put a FORM In fill.!S tl\:tl c rc.;uc TEMPLA TES: if lhe

TEMPLllTE files des<:ribed here exist. FLOAD Lhcm; otherwise. <USE '"TEMPLATE"> and create lhe

TEMPLATES from sc-rau:h. It is t>f t:"oursc possible to 1nanu~11ly merge the two TEMPLATE dcflrlition files

(prcfer:1bly by using GROUP - LOAD and GROUP-DUMP). S<> long as lhc TEMPLATE descriptions precede lhe

TEMPLATE RSUBRs.

TEMPLATE RSUBRs arc created with GLUE bits. soil i~ possible to glue Lhcn1 into groups and co purify

them.

TEMPI.ATE& 6.6

' l'hc M Ill , Progrnmming Environment · 115

7. The Assembler
It is occasionally necessary to write MDL rot:1tincs i n assembly language. usually to interface with a. feature

of the operating system not ,available in the inte rpreter. lllc MOL assembler (which is also used by the Ml)L

compiler) provides this ability.

7.1 . The Assembler

'111c Mn1. assembler p rovides the Mt)J user w ith a means of ...,•riling RSUBRs directly in mach ine language.

'fhc assembler is also used a.s lh.c u hjcct language o f the compiler. 11lis section is a dcscriptjon of Lhe

assc1nblcr, its use. nnd some of i ts p~udo·npcrti.tions.

7. L 1 . Gener a l O rganizat ion

'111c Mot assembler is written in Mn1. t(') p roduce cOdc thnt n 1ns in the M1>1 en viro11 1ncn t. It takes

i"1rgumcncs in rhc fol1owing form

< F 1 LE-ASSEMBLE b1nu1·mr·srring
ou 111ur·jile: string
quick: boolean>

·me a1"gumcnts arc an inpur·filc containing MDI. assembly code (possibly for ~vcral RSUBRs). an o plionat

outpur~jile in which to J)ul the binary ouLput {by dcrauh the san1c file as lttJJUt bul wilh second file name

.. NBIN ..), and an optional lhird argument which tells whether to use NB IN fonnntoutput. and w hich under

nonnnl clrcumsrances should always be f . ~rhcrc nr-c four other optional argumcnlS which arc lhc same as the

second through finh argumcots of ASSE MBLE.

<A SSEMBLE llilitJi
lucals
1nessoges
list
sy111bols>

(II II lhc arguments arc opLional with lhc c•ccption of body.)

lxxJ;-may be a CHANN EL. in which case n11 insLn1ctions in the (ile ass<>eiatcd with the CHANNEL arc assembled.
ur it may be ,a structu red object, in which case all instn1ctions in lhC object arc assembled~

locals <t>«ifics the OBL !ST to use for local symbol lookup when the bud)' is a CHA NN EL. ·111c dcf~oll is
<1 .OBLIST> when lhcnsscmblcriscallcd.

1ncssages is u CHANNEL to receive error mcss.'lgcs., e tc. l l defi1ullS to . MESSAGE-CHANNEL.

list is a CHANNEL to receive an as:SC'mbly list ing. If list is not supplied. nu listing is generated. 1r list is a
non ~ FALSE non·CHANN EL . and lll('SSOges is a CHANNEL. then the IJle!;Sagcs CllANNEL will receive the
address of each label. If lis1 is a FALSE. thc_n no listing is produced. The defau lt is . LINE - CHANNEL

7.0

116 'Ilic M Ill . Programming f-!nvironmcnt

(Initially LI NE-CHANNEL is FALSE.)

sy111bols indicates ir true that (t DDT sy1nbol t.ablc of all Lhc labels for use with .. ROB .. (sec section 7 .2) will be
genernted. ·111c default is • MAK E-SYM- T ABLE (Initially MAK E- SYM-TABLE is FALSE.)

7.1.2. The Assembler as a Program

·n1c assembler nlso exists a~ progra1n callt"d ASSEM. which encapsulates FI LE-ASSEMBLE.

7.1.3. Format of Assembler's Source

·1nc Ml)J. assembler's cquh·;.ilcnt ofn line ofC4.'<.IC is i'l FORM. It asscmhlcs FOR:Ms into instructions in 1nuch

the s.:unc way that a typical as.'\c1nblcr trc~1t.:;. lines of source c:o<lc. ATOMS at the tup level (i.e. not in FORMS) are

treated.-..~ label::.. ·111c FORMs arc assc111btcd bascJ t1n the TYPE uf the GVAL of Lhc first ATOM in the FORM.

·111c GVALS of ATOMS whose PNl\MES :ire the Pl)P· 10 insu·uc:tions arc of TYPE OPCODE CPR IMTYPE WORD:

the ·value wor<.I· has the 36 bit value of the instn1ction. For e.xarnp1e., in

<MOVE A" 1 (8)>

the value of MOVE (in tl'C OP OBLIST) is #OPCODE •200000000000•. ·mis FORM is as.<embled directly

inh> tu'I ins-tn1clion.

Ir the GVAL of the lirsl ATOM in . FORM is somelhing npplicable (SUBR. FUNCTION. RSUBR etc.) the

FORM is EVA Led and the resulting SPLICE of FORMS is as.c.;cmb1cd. ·111is is how macros and pseudo-ops are

implemented. Notice that a pseudo-up or m:ic:ro may pruducc no code by returning an empty SPLICE.

7. 1 . 4. Inst ruction Assembly

Having c.Jctc1mincd chat a FORM is going to asscmb1c into an instn1ction. the assc1nb1cr busic~lly a<lds up

the v81ucs uf all the items in the FORM. In lhe case of ilems of TYPE OPCODE. o full 36 bit odd is ix:rformcd.

Items of TYPE ADORE SS refer to labels in lhe program. Since the code is all location insensitive and will

move around during garbage c;o11cc:tiun. references to labels must be indexed by accumul:i:tor M. the base

register. 'fhcrcforc. l;;abel symbols include an M in the lcfl httlf ;ind must u1so be added in with a full·word add.

llcms of PR IMTYPE WORD other than OPCODES and AOORESScs arc ANOBed wilh • 777777• before being

nddcd. and the carry from right half 10 ten ha1ris suppressed. When ATOMS arc fhund in FORMs that arc being

nssc1nblcd intu inscntetions, special lcK)kup rules arc In ctTccL l(thc ATOM has a global value. th<Jl value is

used. l(thc ATOM docs not have a glob.-.1 value but has a lt>e..'l1 value. it is used. If the ATOM has neither a local

or globa1 value, it is assu1ncd to be n local symb<>1 for this assembly. In ~is caS;C the symbol value is used if il
has already been defined. ot11crwisc it is added to a list uf as yet undefined symbols.

·111e Assembler 7.l

' l'hc MUI. l'rogmmming Environment

Objccrs other thnn ATOM.s or PR IMTYPE WOROs cause the asscn1b1cr lO take special aclion ..

- LISTsarc used to indicate swapping left. a.nd right halves. For example
<MOVE (l)>

would put the J in the index field oflhc MOVE instruction ("imilar t0 MIDAS).

- /\ VECTOR indic;itcs a constant. 1lic VECTOR may conc.'lin :1ny number of FORMs to be assembled
at the chd of the program. J-.'ur Cxa.JnpJc:

<PUSH TP• (<t (1)>]>

pushes a conslant coni.•1ining I in t.hc rigl'll and rcn halves.

- /\ FORM is sitnply EV I\ Led ~nd the value returned is used.

7. 1 .5. Initial Symbol s

'Ille 08L1 ST structure in cffcc1 during aSSC"1nbly is

(op 111<11 DEFAULT local root)

117

' f"hc OB LIST op is na1ncd OP and co1uai11s th<.> Pr)l'· JO opcodes. the Ml)I nccu1nulatur definitions (in both

accu111ulntor :lnd addrC'SS fields). nnd the pseudo-ops. ·rhe OBL J ST 111dl is nun1ed MUDDLE nnd contains values

uf nnu1y labels in the interpreter. ·r11is cn:abtcs prog,r.1111s tu do things like <JRST FIN t S>. the st:1ndnrd way

to exit from :ln RSUBR. When an instruction is asscrnblcd using a symbol frorn the MUDDLE OBL IST, .a fix up

Lo,; also generntcd so thaL if the sy1nl'>ol gcrs a difTcrcnt value in a new Ml)I., the code can be (jx.cd up when it is

loaded. Locul is the uscr•s local syn1b<.>1 OBL IST and root is the ROOT OBL IST.

As suited earlier. every a1.:cun1ulator has two symbols nssociaced with it. one fhr the address field and one

for the accun1ulator field. 1'his is because there is no synta.it to specif)' which field is inlcndcd ... Ille- address

symbol is simply the accun1ulator·s name, and the accumulator symbol is the n•1mc with an as1crisk (•)
appended to it: e.g., A versus A•.

7.1.6 . Macro Writing

Whenever. an clcn1ent or subctcment or an instruction is a FORM nnd the first clement of the FORM has an

APPL lCA8LE GVAL. the FORM is evalu::ucd and the result (unless it i.~ n SPLICE) is rc·C\aluatcd ns if it were

in place of the FORM. 'l11is fc:1turc cunstitutcs the asscmbler·s macro facility.

For cumpatibility between "top-level' macros, which generate whole instructions. :tnd macros which

generate pans of an instruction. lup·lcvcJ macros may wish tu return several in~1ructions. 'J'u indicate that

what is rccurncd is several in<truclinns. It is ncccssnry co return an object of type SPLICE (PRIMTYPE LIST).

' lhc clcmcncs of the SPLICE arc rrc.;.1tcd as individunl instructions. An empty SPLICE may be returned from

7.1 The Assembler

118 '111c Ml)I. 1->rognimming Environment

a macro which is pnrt of an instruction. and the effect iJ; as if a 0 were returned. ' 111is is the only SPLICE

which may be rctun1cd from a macro which is :i pan. of an instruction.

7. 1. 7. Pseudo Ope rations
111c next part of this docu1ncnt will describe pseudo-ops avaihiblc in the MOL assembler. ·nicrc is no

dlrfcrcncc between n pseudo-op and 1nacr<.1 in the .=isscmblcr except that U1c pscudo-opcratio11s arc supplied

by the system ..

<TITLE uqn1r·5tring>

' rhis le; nbout the only required p$Cud&op. It rnust be the first lnstn1ction to be assembled. It takes one

;.1rgumcnL the name or the RSUnR being asscznblcd. 1r Hddition:il Tl TL Es nrc fhund in a file being

ass.crnblcd. they arc assu111cd to l'x.>th end the previous RSUBR nnd begin lhc nc.>.L ' Ille asscn1blcr prinrs each

TITLE on the n1cssugcs CHANNEL i\S it is encountered.

<SUB-ENTRY c1uo•·qrqn1 dee!>

'lliis pscudo·op is used to deOnc additional RSUOR-ENTRYs for chc RSUBR being assc1nblcd. ·f'hc e111ry

a.rgu1nenc is the nn1nc of che RSUBR - ENTRY and lhe opliunal dee! argL1n1ent is u OE CL for the entry.

(INTERN AL-ENTRY e11/ry.•nta111 qrgs.·fix>

is used lo crc:1tc an INTERNAL-ENTRY for a GLUEab1c RSUBR. Its arguments arc lhc name of lh,.

INTERNAL-ENTRY and the nu1nber of arguments thtH will have been pushed on lhc sr..i.ck for it when it is

called. Sec also sect.ion 7. l.9 for details on writing GLUE~1blc RSUBRs.

<DECLARE ("VALUE .. !kd dee/ decl ..•• »
is used to supply dcclamtions for t.hc RSUBR named in the TITLE. 1 L rnust occur before any code-generating

instructions. DECLARE takes a L lST as ils one a.rgu1nent.. ·nu~ fl;Jnnat of the LIST is as described in (3). The

string "VALUE .. is optional: if supplied it causes the first dee/ to d.cclare the TYPE of the value of the RSUBR.

r .. ach additional dee/ is associatc<.1 with one argumcnL Special STR I NGs may also ~ppcar in the LIST with the

following meanings:

"QUOTE• The next argument is QUOT£d (not EVALed).

"OPT ION AL• The rest of the arguments arc optional (the RSUBR must supply any defaults for these).

"CALL .. If this appears.. it must he directly after the ••vALUE .. dee!. It says there is one argument and it is the
FORM gcncmting the call (sec "CALL. for FUNCTIONS in 13D-

"ARGS" ·111is must be the Inst STRING. It says treat the rest of the arguments in the FORM as a LIST and
pass ii a.<thc argument (sec • ARG S • for FUN CTI ONs in (JD.

"TUPLE" EVAL lhc restoflheargumcntsand passlhem.

The Assembler 7.1

·111e Ml)J _ J>rogramming Environment 119

<ENO>

indic<tlCS lhc end of :tn RSU8R or group of RSU8Rs. Only !he text between TITLE and END pseudo-opS wiU

be processed hy the assembler. ·rnis makes il
0

possiblc to 'in1cr1nix asscn1blcr source code and normal MDL

source code in lhc same fiJc (although assembly rnust be done before co1npilarion in sueh c-ascs).
<TYPE-CODE 1ypt·gw1n>

:illows references to the intcrnul TYPE codes for both syslcm and user defined TYPEs. It takes one argutncnt.

the Mo1 TYPE name. 1::-orcxample:

<MOVSI A• <TYPE-CODE FIX>>

puts the TYPE code for FIX into lhe lcn hair or accumulalor A.

<TYPE - WORD 11·nc ·ntn111 any • • • >
g,cncrntcs a reference u1 n word containing the TYPE code for J)'pe in t.hc lcfl hnlf nnd possibly oLher junk in

the r'ight hu1f. ·111e first a.rguntcnl is the TYPE nnmc 0:1nd the rest ofthC' urgu1nc-nts lire C>plion:JI but ir">upplic-d

•11"C' uddcd into the right h:ilr. lrthc TYPE is nil inilia1 TYPE and no right hal risgcncrutcd. a reference ro lhc

'ST IJ•pr" locarion in che interpreter is gencraced. r~or example.
<PUSH TP• <TYPE·WORD FIX>>
<PUSH TP• [OJ>

would push 0:1 FIX 0 on the st.aek.

<GETYP .aL tvnc.•grom>

has the same fonn ns a Pl)P .. JO instruct.ion. lt gets the TYPE code for t)pe into the- rlghc half of its

accumulator from lcs addrc~ This is done by generating a.r1 appropri.11lc LOB (load byte) instl'uction.

<MQUOTE obiect·g11v>

allows the RSUBR to reference garbage collected spnce. It adds it.."> argument to the RV ECTOR (if it isn'c

already there) and evaluates to an address or t.hc form offse1(R). poinLing to the value word for object.
<PQUOTE oblrc1·a11y>

is identical to < <HQUOTE object:any> • 1 > i.e. it points to the type-word. not lhc value· word. 'Ibis is a more

consistent way to Jook at things.

<!QUOTE objrct ·q11•• fabel:otum>

is like PQUOTE except th~tl this will add a new cle111cnt to che reference VECTOR caclt t in1c c.i:1llcd. The

opcionnl falX'f if given defines the ATOM lo be a 1abc1 referring to thnt clcmenL 'Ibis is the only wny to rercr to

that clement again.

<PSEUDO qm·anv>

C\••1luntcs its argument ror iL'\ side effect') and assembles no code~

7.1 ·me Assembler

120
'l'hc M l>L. Programming Environment

< S I X B IT 1f.Li.!1g >
m"kes SI XB IT of the legal characters of,s1rl11g.

<SQUOZE W!JZ. sqbits:word>
makes SQUOZE of the lcg,a.1 chutactcrs or string and sticks the low-order four bitS of the optional sqbits in Lhe

high·order four bllS of the value. Sec the MIDAS Manuol (4] for an explanation of the SQUDZE code.

<BYTE bf'uudqo·:fix b1•1e-slzr.·fix location>

Eumple: <BYTE 1 35 (C) 1> islikc<(•0\4300•) (C) t>.

<ARG qu11u111•fix>

is like <(AB) < • 2 <- . nrg11u»1 1> » . ARG should not be used in GLUEablc code.

<STACK r1•111/•qtn111 ~y1112:n10111 5J•111J:o101n ••• >
mnkes .fy1nl a symhol for <(TB) O>. syn12 a syrnbu1 fiu <(TB) 2>. sy111J a S)lmhol for <(TB) 4> . etc.

STACK should not be used in GLUEnbtccode.

<DPUSH t1J'. =>
<OPOP aJ: Q.CD>
<DMOVE QJ: =>
<OMOVEM ru;. au,r>

1.1rc lhc double· word PDP-10 instructions. ,,.·or example.

<DPUSH oc args>

expands into
#SPLICE (<PUSH ac args> <PUSH oc orgs 1>)

<UNOEF? SJ•tnbol·qtotn>

cvnlu.ates to true on1y if the syu1bol has previously in the code been used ;.lS a symbol. bul has nc,t been

defined.
<IF - NEEDED n•111b<J/·qtq11i iustOlctjons __ • >

lf <UNDE F? S)'JIJbol> c.vruunlCS to lruc. then all the ;n5truc1ions arc inscned at the current location. otherwise

they arc not.

<•INSERT fik=sprc;string>

rakes 3 file and reads instructions from il and inserts the instructions rc.nd at the current place.

7 .1 .8. The Type RSUBR
/\11 RSUBR is a Ml>I. object of PRIMTYPE VECTOR. The lirst clement of un RSUBR is always of TYPE

CODE (or PCODE). CODE is of PRIMTYPE UVECTOR. consisting of words or instrw:tions. The second element

of :in RSUBR is an ATOM which is the RSUBR's name. If the RSUBR has dcclarntions they arc U'e third

elcmenL 'Ille rest oflhc RSUBR contains MDL objcclS which must b<: referenced by the code

The /\sscmblcr 7.1

·r hc MOJ _ Progr~n1ming Environment •
121

An RSUBR- ENTRY i::: a VECTOR of two or t h ree i tems. ' Ille firsc iLCln is Cilhcr an RSUBR or ilO ATOM

whose GVAL is nn RSUBR. the second is an ATOM which is the cntry•s nan1c ~'Ind lhc third is a OECL for the

en try. "11lC dirrcrcncc between an RSUBR and nn RSUBR- ENTRY is that a.n RSUBR .oly,.·ays Sl...'lrts running at

the beginning oft.he code when it is called whBc an RSUBR- ENTRY usually St..'lrts n1nning somewhere in rhe
m iddle of the code.

7 .1.9. Writing Glua ble RSUBRs

Cen t1in conventions n1ust be followed when wricing hand coded RSUBRs in order to get the n1ost benefit

from GLUEing. lftl1e R.SUBR (or RSUOR-ENTRY) has "TUPLE" in i is OE CL. il is alrc11dy in the hCSl shape

possible. In all other cases. rhc code afier the TITLE or SUB- ENTRY p~eudo·opcn1Liu11 shotlld shnply push

th e nrgu1nenlS 01110 the TP stack and PUSHJ P • to one of the fn1crnal entries hased on the nu111hcr of hems

on the stack. After lhc PUSHJ it should do a <JRST fl NTS>. An intcrn:sl entry is set up by using t he

l NTE RNAL - ENTRY p~cudo-op which takes two argt,unen ts: an n10111 arid a.fa. "Ille t11u 111 acL<; as if it were a

label on the ncxr Instruction and 1nay be used as a label. 'f hc fix specifics how 1rtany itc1ns Ctype·valuc pni rs)

arc on th e stack at this in1cn1nl entry. In the sin1plc cnse where there urc no up1iunal :.rgu111cn[s. only one

inrcrnnl entry e>.iSL'i and its number <Jrgument is exactly the requi red n un1ber of nrguments. If oprionpl

<'lrgun1cntS cxisL. some k ind of dispc)tch will have to be done.

In the rest of the body of Che RSUBR. nu references to AB or TB (thro1.1gh the ARG or ST AC K pseudo-ops or

directly) can be mndc, because after GLUEing their contents m:iy be mcnninglcss. All rcrcrcnccs to the TP

smck mu!l:t be i11dcxcd by TP. 11lc usual precautions concerning the possibJc 1novcn1cnc of code if :ul ! NTGO

or MCALL is done also apply (i.e. lhc use of <SUBM M• (P)> a< lhe bt-gl11 ning and <J RST MPOPJ> at lhc

end of the code arc essentially m.:tndacory).

7 .2 . D ebugging B ina r y Code

Uinary co,:Jc produced by the Ml)J. nsse1nblcr or the M or. con1pilcr may be debugged with DOT. like nny

other binary code. However, an intcrfhcc between thut code nnd the DDT environment 1nust exist. ·fhat

interface is the• ROB• PACKAGE. It is ob<nined by

<USE "ROB">

'J"he sy1nbol rable optionally produced by lhc assembler can be passed to DOT and at the sa1nc tirnc the

RSUBR rro~.cn (moved out ofnonnnl garbage"'Cullcctcd space} by:

7.1 The Assembler

122

<Rf REE Z E nqn1eofrsubr·qtom>

Note that na111c-of-rs11br may also refer to an RSUBR - ENTRY.

<RB RE AK 11g1nt-ofrs11br~·a101n>

'll\C M 1)1 . Programming l~nvironmcnl

is si1ni1nr. but in addition causes CDT to put a breakpoint nt the first instruction oftJ1c RSUBR.

1 f there is no symbol table. RF REE l E and RB R EAK merely freeze Lhe RSUB R and pass up symbols for the

RSUBR n~n1c and any sub-entries.

tn n.11 c~~ the sy1nbols pas..c;cd up arc made up or the lcgul SQUOZE characu:rs (Jcucrs.. digitf\. ! ,S. 1 '%.
1'.) of the nnmc. up u.-. six chnrnctcrs.. For cxnn1p1c the ATOM fOO-•BLECH bCClHTICS the syn1bol FOOBLE.

<AOR oblrct·qnv>

rct\H'OS lhc ;.1ddrcss of object ns n f 1 X. l;-or example. <ADR l'Subr> would return the location or t.hc ,-subr in

core.
(RUNS RE AK 11au1eqf!rs11br:•qto1n>

clears the brc0:1kpoint(s) at the beginning of lhe RSUBR and of any of its ~b·cntrics.

7.3. Unassembling Binary Code
c,,nvcrtiog compile i or assembled hinary code bnck into sonlclhing rcsc1nbling the urigin\\1 as.wmbler

source code is ;;,n npcrntion that is perfonncd prhnarily in one situation : tracking down :i. P..fl)l . co1npi1cr bug.

It is. llowcvcr. u1t'11osl invaluable in lhal situation. ·nlc PACKAGE cun~ining the unasscn1blcr is "UNASSM".

·inc main entry is
<UNASSEMBLE rodc,-rsub,...ocgrouo

out pu I: c hau nel· o,... S1 ring
g/ue?:boolean>

code is the object being unasscrnblcd. ll is either an RSUSR (not an RSUBR-ENTRY. note), or an ATOM whose

LVAL is a group (nscrcaled by GROUP-LOAD).

oulpul is where to put the output: if it is n STRING. then the ot1tput is put in a Ole with that name. If output is
a CHANNEL. Lhen oulpul is done on Lhal CHANNEi:. "ll1c Ille is -,·ode UNASSM" by dcfaulL

g/ue?(by dcfauh T) tells whether there arc glue bitS for the code lo<1dcd. 1f there arc none. this argument

•huuld be given asa FALSE.

1l'tc output produced by UNASSEMBLE is like the Ml>I . compiler's assembler input. with thc uddilioo of

con101ents which give code and stack olTscts for stack slots rcfcrenccd. ' Ibis information is use rut in tracing

exactly what is going on in the codc. but it '5 not always accurate. since the compiler's St..."lck model is

somctilncs wo curnp1cx for lhc unas.scmblcr to understand..

Debugging Binary Code 7.2

' I he MDI . f'rogrnmming Environment
123

MDL eon1pilcr bt.'S rcpOJ'lS arc cxpccrcd co conl.3in Ml>L source and UNASS£MBLEd cc.Hnpilcd code if
possible.

7.3 Unasscmbling Binary Code

124 'Ilic M 1)1. Programming Environment

8.0

·me M DJ. Programming Environment 125

8. Informational Aids
'lllis ch:iptcr djscusscs a few programs. mosi wriuco in ~clnb1y lnnguagc rather than MOL. which are

nonetheless or use lo MOL- programmers. Most a.tc infom1ational aids of one son or anolher. 'Oley include:

MLlOC:Ol\1, a program for comparing versions of a Mn1. progrnm. It is used by co~tnAT (sec section 5.2) to aid
in the prcpuration of compiler plan files. it has severa l useful aliases.

MAT. the MOL "atc;ign· progn.un. produces listings. index.cs and cross·rcfcrcncc files for Ml)! programs. @.a
similar program which is not Mn1.-spccific. will perform apptoxhnatcly Lhc same tasks.

Mur)INC) is an interface co the ITS IPC device tlnd Is therefore n means of intcrnccing whh :.ny Mt>I . that has
lhc IPC device enabled. ll has an a1ins. STATUS. which is particularly useful for determining the progress
ofcon1pih.1tions.

8.1. File Comparison and Checking with MUDCOM

MUIX'OM is an as..w1nb1y language prx>.gra1n (nol written in Mot.), which nuoclhc1cs.s u11dCtSt3nds the

synlax of Ml)T programs. It ls used for co1np:iring two ve~iuns of Lhc srin1c prugra1n, and also (under the

n:unc M u r>CllK) for checking the syntax of Mot. source files more rnpidly Olan they can be loaded into a

MOI.- MuOCOM is not interactive: 311 instructions mu~t be passed on thcjc/line.

MUlX'OM underswnds the following M1-,1 .. scructurcs at top level:

FUNCTIONS
MACROS
GVALs
LVALS
MAN IFEST
PACKAGE
ENTRY
ENDPACKAGE
MSETG

<DEFINE FOO >
<DEFMAC BAR >
<SETG MUMBLE >
<SET MUMBLE ·····?

<MSETG FOO l)is<SETG FOO l> <MANIFEST FOO>

~Jnc }cl for MUOCOI\~ in the simplest case is filenauu1/ ,fl1e11tu11eL Mur>COM will compnrc the two files and

print out infotmntion concerning those srructurcs it understonds which have been removed. changed. or

inserted.

Mu1X.'OM has a number of switches which can be scL "rhey nrc given :is /switch. where S'K'itch is I.he name

oflhc swilch. Currently the following swhchcs arc useful:

T prints totals at cJ1c end of the comparison.

l prinlS all FUNCTIONS and GVAls in lhc file.

8.0

126 ·1·11c tvtl>I . Programming Environment

C checks the file given ror syntax. (only one file name at a time).

M checks the files for changed MACRO» and MANIFESTS In this mode. MUt)(;()M will make a second pass
through Lhc first file &i"cn in the }cl. looking for ull oc::c1.1rrcnccs of c~11ls to chungcd MACROs and
MAN l FESTs.. MUOC'O~t will consider FUNCTIONS 1naking such calls :is having been "changed' und wiH ten
which MllCRO or MANIFEST caused the 'change'.

'11'c following other jd is understood by MUOCOM:

(atonr . . .) appearing before the fi le n:l1ncs in lhcjc/ will cause: MUOCO~t lO think thal those FUNCTIONS
ha\'C tx:cn changed. and wiJI print thcrn as such.

"file11nn1e .. np~:lring anywhere in the fr/ cau~ commands to be read fron1 that file unlit the cnd·of-fil c is

reached.

{filentune . . •) is used to spcciry fi les to sc.:irch ir\ c;111s to ~tUlll'Nll (sec below).

Aliases ofMuOCOM:

1. M u 1x·111<. MUOCHK ji/('nt1.1n~chccks a file for M l)L syntax crrul'S.. ~rhis is the same as

MUOCOM IC fil~narne

2 . Mum.ST. MUOLST fil~J/(11111! lists all FUNCTIONS and GVALS found in the file. This is the same as

MUOCOM /L filename

3. MUDPND. :MUOFNO 010111 ••• (filr file} searches files for FUNCTIONs/GVALs called Q/OmS. It
can be used for finding n FUNCTION in a haystack. ·1bis is the s..-i.mc as

MUDCOM (010111 alom) {file file}

Since typing this can be tedious. it is easier to use the .. f i 1 ename" convention and have a disk
file containing the files to be S<>archcd (surrounded by (}s). Thus.

MUOFNO FOO BAR 8LETCH " MARC;ZORK FILES"

will look for the typical FUNCTION names in the files specified in MARC; ZORK FILES.

8 . 2 . The M D L Listin g Program M A T

MAT is a program for producing listings of Mm. pmg.rtuns on the Xerox Graphics Printer (XGP) or a

Jincprintcr. (MAT is short for •Mtll. At'iign· , ancr the gcncta_l listing program named 9).

llcsidcs a listing of the program iLsclf, MAT includes a symb<>I table ·· a lisL of defined •>bjccts (arguments to

DE fl NE. SETG. etc.) and optionally a cross·rcfercncc IL.ting ·- a list of every place in the progr-.un each ATOM

is used. MAT can also a produce a rceord fie. so that the next time MAT ts run on the same program. only pages

that have changed will be p rinled.

Fil e Comparison and Checking with MUDCOM 8.1

·Ille MOL t>rogrnrnrning Hnvironmcnt ' 127

MA1· is invoked wicJ1 O:jc/tinc in lhc fo11owing format:

MAT lrrr:outputf..!1put·files • • . I switcJr.es •• .

More specifically. it takes any number of input files (separated on the jc/ Hnc b y commas) a:nd produces a

listing of them in lhe ou11>u1 file. with options specified by lhc switches (ca.ch preceded by~ I. and optionally a

record file /rec (sec scc1ion 8.2.4).

'"'1lc ou tput file- nnrnc defaults on ITS to xuno,,1e: Input Ct o r @XGP depending on whether the x switch is

used. and on ·renc-x.rrol>S-20 to input. MAT o r i11p111. XGP in the connected directory.

8.2. 1 . MAT Switches

·rhc spcc:ifJc sorts or options av<-1ilablc in M,\T arc controlled by a variety o r switches which detcrn1inc such

thinJtS tts whether lO produce o:i cross·refercncc listing. whether to use the XGP as cJ1c output device. nnd so

on. '111c following swiLChcs arc in1plc1nentcd:

/C

causes n crc.lSS·rcrcrcncc l isting to be produced. ·111is is a table showing ct1ch reference to each ATOM {other

lhau SUB Rs. FSUBRs. and locals) in the iupul files.

/D[file-name]

spcci ficsjile-110111eas the file containing the uscr·s definitions. Definitions arc discussed in detail below.

IF [1ex1-fe111. header-font. co1111ne111·font]

specifics the XGP font.-; to use in the output tile. They arc rcspcclivcly lhc ront to use for the program itself.

Lhc font for subtilles and other headers. and the font for M1>1 COMMENTS and tup · levcJ STRINGS. ·rhc

de~1ult dinxtory is FONTS and thcdcfau1t second Ole na1nc is KST. The default font is 20FG. /Falso causes

a / x c.o be pcrfonned

/I [file-name]

specifics a file which cont.ttins r.hc names of input files . .. £'his is in lieu or typing them all i
0

n each time MAT is

run. useful for large subsystems Incorporating many fUC$. ·nic input files listcc.I should be separated by

commas or carriage-returns.
/H

causes output of only the symbol tables and cross- rcfcrcocc listing (i f spcc:ifled). No heading or title pages are

produced.

/P

On ITS. VALRETs a : PROCED lO DDT and continues. Useful for long MAT nms.

8.2 The MDL Lisling Program MAT

128 ' l'hc Ml>l. Progrnmming Environment

IQ(message]

prints 111cssage ut the bottom of each page: ·inc dcrault is a copyright message.

/R

crc.ntcs a record file (this is automatic if' /rec=' is used). Sec below for details about record files.

/S

output~ cnch lite in a multiple f'ilc listing separately.

IT[11a111el 11a1ne2]

specifics na1ncs to use on the titJc p3gc (in lieu of the file names of first input fi le).

/U

print.s n scpor.1tc symbol 1ablc for each type or defined item in the input Olc.'(s} (e.g. FUNCTION. GVAL. etc.).

/X

declares th<H output is to be for the XGP. ' lltis ch:1ngcs the default uurpul rile second name lo 8XGP. If /F is

used. IX is done automatically.

8.2.2. Subtitles

Subtitles can be used by including ST R IN Gs in on input Ole which begin with the word SUCT t TLE. The

rcmnindcr or the STR J NG will be used :is parl of the hc;ldcr of cnc;h oulpul pag.c vn1il s1:11cnhcr subtitle is

found. "11'1c STRING need not be a COMMENT. Subtit1cs may have a maximum of79 characters.

Any file containing subtitles will huvc at.able ofcontcnlS al tl1c beginning oflhc listing.

8.2.3. MAT Definition

"fllc facilily cxi.sts in MAT to cnuse user specified actions to occur at the time a specific.: ATOM is about to be

cross-referenced. 1llc most importanl use of this ls ror functions whic:h define things \vhich the user would

like MA·r to recognize. for ex.ample. a function one of whose sidc*cfTccts is to SE TG one of its arguments.

When MA·r entliuntcrs un invoca1ion of the function FOO. where FOO has been defined to MAT. it runs

code generuted by tho uscr·s MA·1 definition f(Jr FOO. which cnuscs v.nrious actions to be pc:rfonncd.

Ml\·r definitions arc ;ilways located in n disk file which is specified by the /O switch. F..ach definition muSt

be of the fonn:

[name argl arg2 arg3 . ..]

where 11a111e is the n.nmc of the itcnl which is bcil'•8 defined and the <1rgs arc action spccifi~lions as described

below.

The MDL I.isling Program MAT 8.2

·me MDL l'rogramming Environment 129

The syntax ofa MAT definition i$ somewhat complex. Rasknlly. 1hcrc arc two types or nc:tions which can

take place: ·scuing' an ATOM to be equivalent to a Specified type (i.e .• FUNCTION. MACRO. etc.) or

·cross·rcfcrcncing· 1..hc ATOM (i.e .• muking i~ appc;ar in the cruss·rcfcrcncc listing).

·nic actua1 dcllnition for an ATOM is a string of MAT action s-p(.'(;ifications. one ror c;1c:h argument in a call
to that A TOM. For example. defining FOO to be

[FOO SETG SKIP SETG)

implies at least three argu1nc1us to FOO. lhc first and third uf which ~hould be treated as if they were SE TGcd.
Thus. if

<FOO FROB I MUMBLE>

were encountered in an input Ole. ic would be U'Catcd :1S though

<SETG FROS a11y>
< SETG MUMB LE any>

had been cncou1ucrcd. ·me sy1nbol table would tJ1cn point to lhc line 011 which the :1pplication of FOO

~flPC<-ltCd as the location of the definitions of FROB and MUMBLE.

·me following tokens arc mcaningrul action specifications:

CRE F means to cruss-rcrcrcncc this ATOM.

SKIP means to do nothing with this arg:u1nent (a place holder).

REST means thcit the rest oflhe action spccificalions may be repeated for the rest of the arguments.

11(1111c (where ntune is lhe nan1c of a Mlll . SUBR which causes some action to be routinely performed) means co
act as though the ATOM had had that SUBR applied lO it. J-'orcxan1plc. SETG will cause MA·r lo treat the
item as if a SETG had been performed on iL Sinillnrly. MANIFEST will cause MA1· co believe it
MANIFESTed.

ALSO means"' do another thing tu U1l.s ATOM. 11tus. [SETG ALSO MAN I FEST] spe<:ifics that the argument
should be treated :is though it were bolh SETGed ond MAN I FE ST ed.

=xy where xj• arc two charact<"rs. cau~ a user defined symbol type to be created_ In the cross-reference. this
will tlppcar as xy in front of the name of the ATOM.

Any of the preceding tokens may have t -cblist added. ' fllis means that instead of the ATOM being set to

the specified type. atcn11l -ub!t''.s1 wJll be SCL ~llius, for example.
REST SETG l -FLAGS

might spa:ify a function which uikcsa LIST uf ATOMs and performs

8.2 ·roe MDL I .isting Program MAT

130

<SETG <INSERT atom <GET FLAGS OBLIST>> any>

on each of them.

·1'he M l)l. l'rogr.1mming Environment

[SPEC xy 11a111t'] spcciflcs naute to be the e xpansion of .xy for purpoSCS"of the symbol table. Na111ecannot
have spaces in iL

Since not all items to be recognized within a function call arc at top level. there is a facility for telling MAT

to rccvgnizc structures. This is done by inserting the correct bracket (whfch MA'I will encounter) nround the

part of 1hc action specification rcfcM'ing to a structure. f-'or cltamplc. '1 definition for GDECL (which i$

handled intcmo1Jy. howcv.cr) might be

REST (REST GDECL) SKIP

which specifics tl'lac the argu1nc11ts <trc ahcmatcly a LIST of things to GDECL i\nd :in argument which is

t1nimponanL

/\ special ens<: of bracketing is when Lhc luct1tion of the structure is not known. In this C.."lSC, bracket!

mcnns 'find the next object thac stnns: with this brockcf. An e,;amplc later dcmunslratcs this.

What rollows arc some examples from a real definition file.

[NEWSTRUC NEWTYPE SKIP REST SETG SKIP]

NEWSTRUC "'kcs an ATOM which becomes the name of a NEWTYPE, the DECL for lhol TYPE (which is not

interesting to MA1') and an arbitrary nu1nbcr of p3irs of ATOMs (names or offsets in the str\lcturc) :ind their

OECLs (again, not interesting).

[FLAGWORD REST SETG]

FLAGWORD tnkcs an arbitrary number or ATOMS and S£TGs I.hem something.

[SPEC PG Pure-Gval]
[SPEC OB Object]
[SPEC AC Action]
[SPEC VB Verb]
[SPEC OS Object - Synony •]
[SPEC AO Adjective]

¥1llcsc define the Jong descriptions for the ncwJy defined symbol types created in the e,;amples.

(PSETG .•PG]

PSETG i,,kcs an ATOM and a value and SETGs the ATOM (also putting il in a LIST of ATOMS LO purify).

[GET-OBJ "CREF"]

GET - OBJ takes a STRI NG PNAME of an obje<:.t and returns the ubjccL This definition nllows • obje<:I" to be

cross-referenced here. Note Lhill CRE F is in quOtcs because the clement being dealt with is a STRI NG.

The MOI_ Listing Program MAT 8.2

·111e MJ)L ProgramJning l'!nvironment
l31

[OBJECT ("•08" REST "•OS") [REST "=AO"))

OBJECT creates objects which arc referenced by GET-OBJ. OBJECT first takes a VECTOR of STRINGs. the

first of which is the true object spccincr (OB) arid lhc rest of which arc synonyms (OS). ·1nc second argument

is a VECTOR of STR INGs. which arc PNAMEs of adjcccivcs referring to 1hc object (AD).

[ADD-ACTION "=AC I-ACT.IONS• SKIP REST [[!"•VB !-WORDS" SKlP)])

ADD-ACT JON creates ·verbs". The n:unc of lhe verb is lhc first argunicnt. whic1i is n STRING. ADO-ACT ION

SET Gs srring! -ACT IONS to an itcn1 of type ACT ION (AC). ·rnc sccund ::irguJncnt is not intcrcstlng. 1llc rest

of the nrgu1ncnts arc VECTORs. somewhere in which is a VECTOR of :..1 ST RI NG ~nd an uninteresting object.

ADD-ACTION SETGs <his loller STRING (the PNAME of an ATOI' in the WORDS OBLIST) [() S<>ine1hing of

type verb (VB).
0

ll1is is obouL as cornpticatcd as a MAT type specification is likely to get.

[1A00-ACTION ·=AC!-ACTIONS ALSO =VB!-WOROS")

1A00-ACT (ON UJ.kcs :is ics first argu1ncnt a ST RI NG which is SE TGed hulh in the ACTIONS OBL I ST and in

tl1e WORDS OB LIST. 10 an ACTION (AC) and a verb (VB). rcspcclivcly.

8.2.4. MAT Record Files

Listing Rccurd (or LREC) files.. akin l<J@ LREC files. Ci1n be produced in MA·r by includingfi/e:a: in lhejc/

li11c. Use of an LREC file has the :adv:int.ugc lhnt future invocations of MAT using it need only output lhe

changed pages of the lisi..ing. ·rhc LREC file produced will be placed in flltt and contains :tll relevant]cl

information. S() thaL future calls to MAT for comparison listings need only havcfl/t!= in thejc/ linc. Additional

jcl may Lhen be appended. ·nierc is, however. no way t.0 ium ofT nags once set up. ·1licreforc, ir a

cross·rcfcrcncc fiJc is tO be used only occasionally. leaving the cross-reference (/C) O:ig off for the initial

listing ::ind app<:nding it at other times is preferable.

An altemar.c way ofcrc.ating a t .isting Rcc:ol'd file is to use /R which is equivalent to

inpu1-fi/~jirst·flle--11a111~ LREC-:a:

in the jcl. Obviously, /R is not sufficient for future comparisons.

8.3. The MOL-I PC Device Interface MUOINQ

Mun1NQ is a srnnll progra1n that fonnulntcs. sends. and receives mcsS.'.lgcs LO °'"d fron1 Ml>t.s over Lhc 11'S

IPC ('I ntcr-proccss Co1n1nu11 ico1tion') device. ·1"hc user specifics a target fVl 1>1 . pr't')CCSS by its u1111111e tind }name~

either on thej<:/linc or to M Ul>INQ directly. f fc then inpucs the n1cs.~1ge to be sent to that M1>1 .. 1l1c mcs.~gc

sent is enclosed in an irlvisiblc protective shield (an ERROil handler ;1ild so forth) to prevent it from

incerfcring in the opcrM.ion of <he c.1rgcL The mc55'1gc is PARSEd and EVA Led by the rarge~ and the result

pUl in a file which is printed by MUDINQ when it appears.

8.2 lbc MDI, Listing Program Ml\T

132 "111c Ml>l~ Programming Environment

·me mOSl c:u1nmon use of this program is to answer the question ·what could my compilation (or

wh.itcvcr) be doing aftc.r all I.his tlmc?' "Otc answer may be obwincd by Mu1>1NQiog a <FR&> or <f RAMES>

at it.

Inquiring ancr lhc state of a compilar.ion ls such a contmon use of MUOINQ 1hat there ls an alias of it.

s ·rATUS. which Mu1>1NQS a <STATUS> (sec section S.l. l) al a compiler process and waits for o response.

Finally, an a.tins or MUOINQCilllcd WllOf\1 listS tlloSC MDI jobs listening on Lhc IPC device.

r.;or more details on the operation oflhC Mt)I. 1PC interface. sec (3).

TI1e MDL·IPC Device Interface MUDJNQ 8.3

133

(I J

(2)

(3)

(4)

(SJ

·inc Ml>J . l'rogrnmming Environment

References

r.dwnrd H. Olack.
Us;ng Al DI. S Calleo User lnte.iface'4

Technical Report SYS. I 1.2 t. MIT LCS Programming Technology Division. 1976.

Richard M. Stallman.
IIMACS.
Technical RcpartSl9. MIT /\I Lahoratory. i\ugusL 1979.

S. W. Galley and Greg Plis1er.
ThC' Al/)/. I'rogranunlug / .(lnguage.
M.1.T. 1.abor:uory fur Computer Science. 1979.

Peter Samson.
MIDAS.
Technical Report 90. MIT i\l l.aborawry. Oc1obcr. 1965.

P. David Lcbling. R. V. Onron and Orucc K. Daniels.
RMODE: A Real· time Edit Fnci/it)I.
Technical Report SYS.04.07·1. MIT I.CS Programming Technology Division. Oc1ubcr, 1977.

Table of Con ten IS

134 ' J11e Ml)l . J>1·ogr~unn1ing Environmenl

Table of Conrcnlli

-

- = -

135

Index
"XCOMBT TAILOR" 91
"<MDl.. . SV>" 74
"<HOL>FlXUP . FILE" 73
"<MOL>SAV. Fl LE" 73
"<MOLLIB> " 73
"AOOEO f ILES• 74
•CLEAN.. 109
"CRITIC" SS
"OEOUGR" 41
"DELETE FIXUPS• 73
"'DELETE SAVS" 73
"EDIT" 19
"fJNOATOM" SO
"FRMSP" 19
"GLUE" tOl
"GRLOAO" 39
"L" 69
"LUP" 71
"'NONlfOR"')(),46
"NUOMAN")
"MVORST"" 74
"MUOSAV :FJXUP FILE" 73
"MUOSAV:SAV FIL(" 73
"MUOTMP" 73. 106
"PDUNP" 1()6

"PKC" 10
"PP" lS
"PRELOO• 107
"PUR lTY" 108
"ROB" 116.121
'"RECORD" 80
"SUBRFV" 107
"TEMHAIC'" lU
"YEMllLP" 113
'"T[HPLAT£" 110
" TRACE" 44
"UHASSM" 122
"UlfLINK"' S4
a. 18. 21
&1 18
&LIS lJI
• 22
•INSERT 120
.HULL JS
.OUTCHAN lS
? 22
1? 22
ADDRESS 116
AOR l2l
ALREAOY-US[O·ELSEWHERE 11
ARG l20
ASSEN 116
ASSEMBLE l lS
ASSIGNE-07 49
8 23
SA 29

Table of Contents

' Ille Ml)l, Programming Environment

OK 29
&LOCK 9. 40
BOOLEAN lll
OOUNO? 49
BAEAKR 29
BUJLO-TEMPLATE ll3
BYTE llO
c 26
c, 26
CAN•NOT .. BE-OUMPEO lS
CAREFUL 82. 87
CHANNEL 4()

CLCAN .. MO~ (TORS 49
CL(ANUP 109
C:Ll$TF 74
COMBAT 79, 83. as. 90
COMMENT IS, 16
COMPILE 79,92,9)
COMPILE-TUNCTJOM 9)
CfllTIC SS
en IT IC-NOTES SS
cu 28
0 24
DOMAIN 74.?6
OCBVG 41
OCBUG• COMPILE 81. SS
DtOUGR JS
DECLARE ll8
ocrcn-rtND 70
OEr1NE 41
DELETE 7S
OL 23
OMOVE 120
DMOVEM 120
DO 27
DPOP 120
DPUSH U0
DR 23
DROP 10. 1)
DUMP ... RSVBRS 114
OUMP-TCNPLATES ll.4
E • PICG 20
E·VERBOSE 25
EDIT IS.19,41
EOll-TABlE Jl
ENO US
ENDOLOCK 9
ENOPACKAGE 10, 13
ENTRY 10. 12. 63
ENlRY-f'IND 70
ENV 61
EPRINl 17
£PRINT 17
ERRET 38
EVAL-WH£11 61
EXPERIMENTAL 85
EXPfLOAO 41.82.87

137

OUT-FAST 44
OUT-PRINf 4S
OUT-UNlOUE 44
OUTCHAN 59
p 25
PA 29
PACKAGE 10. U. 12. 14, 63
PACkACE- F IND ?0
PACK ACE- MOOE 81. 36
PC 29
PCOOE 16
PCOMP 79. 90
POUMP 104., 106
PNAME 14
PPRINF 16
PPRINT l$
PQUOTE 119
PRCCOMPllEO 81.86
PRJNt 17
PR fN1-CLEANUP llO
PSCUOO 119
PT 25
PU 25
PURE? SC
PURElST 109
PURIFY 107
0 22
OR 22
QUICKPRtNT 16
• 23
ROREAK 122
R(AOJ-INTERRUPTS 46
RCAS0NA8L E 82, 87
RCOEFJN(16
RCOO 81. 86
RENTRY 12
REPAIR 42.
RETRY 39
RFREEZE Ul
RM 31
ROOT 12
RPACKAG(12
RUNBR£AK 112
RVECTOR 107
RW . 30
s 24
SAV 72. 106
SAVE 108
SELF-FAST 44
SllORT-PAJNT 29
SIXOIT 119
SL 24
SOURCE 81. 87
SPEC- r UtD 7S
SPECIAL 81.87
SOUOZE 120, 122
SR 24
STACK 120
STATUS 75, 80

Table ofCon1cntS

·111c Ml)I . Progmrnming Hnvironmc·nc

SU l7
SUB-ENTRY US
SUBRfY 106.107
SURV 104
SW 27
TEMPLATE 110
TEMPLATE -01.»!P LU
TEMPNAME 81.86
TITLE 118
TRACE 1.S, 44. 4,5
TRANSLATE 67
TRANSl,.AT JONS 67
TYPE - CODE l l9
fYPE · WORD l l9
u 2A
UC 28
UL 24
UM JO
UNASSEMDLE. 122
UNDtF'7 120
UNLINK 54
UNPURJ FY S4
UN.rURirY- PAGl l·I UNLJNK S4
UNfRACE 4S
UNTRANSLATE 67
u• 24
USE 10. 12. ll. 14. 63
USE • OATIJM 10. IJ, l~
USE• OEFf.R 66
USE -TOT Al 66
UT 23
v 21. 25
VALUE 40
VERBOSE 4S
VERT ICAl,. 16
WM 31
WRITE! -INTERRUPTS 46
x 27

'" 42
1'E 42
,, Z2

tN 42
tO 42
1'Q 42
TR 42
,5 23

MA1' 126
,\iUOCtlK 126
MUIX.OM 86. l2.S
Mun1<Nn 126
~iUt>INQ 131
M IJl.M trr 126

136

EXPSPLICf 41.,82,87
fXTERNAL 1)
F 23
re I N 72. !OS
FCOMP 80,SS
FEA1URE7 61
FEATURES 61
flll-ASSlMBLE 11.S
fl LE-COMPILf 79
F JlE-TEMPLATE U3
r tHD- f llE 1S
FINOATON SO
flXUP IS. 72. 106
fllST 1S
FLO.AO 14. 107
rtUSH-ClCANUP 110
FORM-FAST 4<4
FR& 18. 37
FR&-P l9
FA&VAL 19

' rRANES 18. 17
FRATM 19
FALVAL 19, 37
FAM 18. 20
FATYPE 19
G 2S
GET• flLE 7$
G£TYP 119
GLU(82, 87, 101. 104, 107.121
GO 28
GROUP-Ol.94P 39, 104, UJ
GROUP-GLUC UM
GROUP-LOAD 26, ~. 82. 106. 107.108
GROUP-PURIFY 108
HAIRY-ANALYSIS 83
HELP 4)
I 2S
,. 26
, , 2S
lf• NEEOED 120
IG 26
IM-OREAJC. 44
111 ... PRlllT 43
INCH.A• S9
INOEWT .. Olf 41
I NOEMT - lNC 43
lllDfMT - MOO 4)

INITIAL 14,65
lllTtRMAL- fMTRY 118. J21
IQUOTE ill
IT 7J
I(26
a: n
ltB lO
ltC 28
1<ECP·FIXUPS 15, 16,41
kllt-All-MO•ITORS 49
klll-MOtllTOfl 49
1.ILL-SUBRFY 107

Table ofContenlll

·rnc Ml)I , J)rognimming Environment

KILL:PURITY 108
KT lO
L 2)
L · ALWAYS-INQUIAE 68
L•COUNl'E 69
l - COUNTP 69
L-fILE 69
l - f1NO 69
L-LISTE 69
L-l 1STP 69
L - LJSTPE 70
L-LOAO 69
l-NO-OCFCR 66.68
L - NO-MAGlC 68
L-NOJSY 68
L · 08L 70
L · PATH 70
L · SCARCll-PATH 64. 68.69
L-SfCONO-lrlANES 64. 6$. 68
L -TAANSLAT10WS 61
L-UNUSE J0.13
L-WHERE 69
LAST -OUT •2
LIB-GC 7l
LIBMUO 64
l. lNt> CHANMEL US
L JSTF 74
l.OAD 11'
LOOKAHEAD 16
LUP• ACT 71
LUP· AOD- DATLIM 72
LUP- OCT 71
LUP-Dl!L 72
LUP-NOV[72
.. 7J
MACRO 86
MACRO-COMPILE 12. 81
MACRO- FLUSH 82.17
MAGIC-RSU8R 40
MIJC.E·SYN•TABLE 116
MA.MlfEST 86
MAX-SPACE 8::2. 87
MCALL 1.03
MOMITOR 47
MOMJTORS 49
MO-~ 48.49
MOMSP£C 49
MC)UOTE 119
MUOOLE 137
N£WAL 48
NOOE 94
NP-COMP 19
0 23
OBLlSl 9.$9
OLDYAL 41
OP 117
OPCOOE 136
OT 23
OUT ·BREAK 4$

