The MDL Programming Environment

P. David Lebling

May, 1980

Laboratory for Computer Science
Massachuselts Institute of Technology
Cambridge, Massachusetts 02139

1. Overview of the MDL Prugramming'Envimnment

The ML, Programming Environment

Table of Contents

2. The Package System

21 |
2.2

4.3

The Theory of Lexical Blocking in MDL
Package System QOverview
2.2.1. Sample PACKAGE
PACKAGE

23.1. ENTRY

232. USE

2.3.3. USE-DATUM

234, DROP and 1.-UNUSE
2.3.5. ENDPACKAGE

2.3.6. PACKAGI: Restrictions
2.3.7. ENTRY Name Conflicts

3. Program Writing and Debugging Aids

3.l

3.2,

3.3,

Pretty-Printing
LL1. PPRINT Control Switches
3.1.2. Lower-level Pretty Printing
3.1.3. Ampersand Printing
J.14. Examining the Stack
‘The MDI. Editor
3.2.1. The Edit " LISTEN l.oop’
J.2.1.1. 'I'he Reader
3.2.1.2. 'The Ampersand Printer
3.2.2. Edit Commands
3.2.2.1. General
3.2.2.2. General Commands
32.2.3. Movement Commands
3.2.2.4. Printing Commands
3.2.2.5. Editing Commands
3.2.2.6. Macro Facility
3.22.7. Cursors
3.2.28. Breakpoints
3.2.2.9. Edit Monitors

3.2.2.10. User-defined Iidit Commands

32.3. Examples
3.2.3.1. Simple Editing
3.2.3.2. X and G Commands
3.2.3.3. Unconditional Breakpoints
3.2.34. Conditional Breakpoints
3.24, Idit Command Summary
Debugging and the Interpreter

Table of Contents

10
11
11
12
13
13
13
13
14
14

15

15
16
17
18
18
19

21
21
21

23
24
25
27

29

k3 |
k|
L)
32
13

36
37

34. Loading and Dumping
3.5. The One-step Debugger
15.1. MDI. Debugger Command Summary
3.5.2. MDL. Debugger Special Features
3.6. Execution Tracing
3.6.1. Using TRACE
3.6.2. Understanding TRACE
1.7. Monitors
3.7.1. Monitor Internals
3.7.2. Creating MONITORs
3.7.3. Monitor Fvents
374, Killing Monitors
3.7.5. Other Monitor Routines
3.7.6. What You Can't Do with Monitors
3.8. FINDATOM
1.9. "PINFO"
3.10. Debugging in a Run-time Environment
3101, DFL
3.10.2. RDFL
3.103. UN-DFL
3.104. UNLINK
J.11. CRITIC
3111, Global problems with the Group
3.11.2. Parameuer list problems
3113, Unused ATOMs
3.11.4. Function calling errors
3.1L5. SPECIAL/UNSPECIAL problems
3.1L6. DECLing problems
3.1L7. Miscellaneous
3.12. Program Environments

- The Library System

4.1. Program Libraries
4.1.1. Library Searching
4.1.2. Dynamic Loading
4.1.3. USE-DEFER
4.14. USE-TOTAL
4.1.5. Translations
4.1.6. “The Library Data File
4.1.7. Run-time Switches
4.1.8. Library Utility Functions
4.1.9. Internal Library Functions
4.1.10. Library Maintenance
4.2. The Purc-mapping Library
4.2.1. ‘The Demon

Table of Contents

‘The MDL Programming Environment

on
[

4.2.2. User Programs
4.2.2.1. Listing Functions
4.2.2.2. Find Functions
4223 Other Functions
423, Using DBMAIN
424, Garbage Collection
4.2.5. Intcrnal Structure

5. The Compiler

5.1

5.2.

3.3

Interfacing to the Compiler
5.1.1. Compiler Functions
5.1.2. Compiler Switches
COMBAT
5.2.1. User interface
5.2.1.1. Symbuolic input
5.2.1.2. Filc names
5213, Text
5.2.2. Combat Questions
5.2.3. Requesting Compilations
5.2.4. "How o Run’ Options
5.2.5. User Tailoring
5.2.5.1. Tailor files
5.2.5.2. Create type
5.2.5.3. Print type
5.2.54. Delete type
5.2.5.5. Alter type
5.2.5.6. Load wilor, Replace tailor
5.25.7. Xcrox tailor
The Compiler (Intcrnals)
5.3.1. How it Works
5.3.1.1. COMPILE and COMPILE-GROUP
5.3.2. Modeling Pass
5.3.3. Analysis Pass
5.34. ‘Ihe Type Analysis Model
5.3.5. Lifc-and-1)cath Analysis
5.3.6. 'Ihe Variable Allocation Pass
5.3.7. 'Ihe Code Genceration Pass

6. Making It Run Faster

6.1.

6.2.
6.3.
6.4.

GIL.UE

6.1.1. How to Glue

6.1.2. GI.UE as a Program
Giluc Bits

PDUMP

SUBRFY

Table of Contents

‘The MDL Programming Environment

T
=g

CRERRRRPLRREIZ 0 RIS

o
—

REYRRLLEE88888S

103

103
103
104
105
105
106

iv ' ‘The ML Programming Environment

6.5. Purification 107
6.5.1. Purifying RSUBRs 108

6.5.2. Purifying an Fnvironment 109

6.5.3. Purification Summary ' 110

6.6. TEMPLATEs 110
6.6.1. Uscof TEMPLATEs 111

6.6.2. Asseinbly of TEMPLATEs 113

7. The Assembler 115
1.1. The Assembler 115
1.L.1. General Organization 115

T.1.2. The Assembler as a Program 116

T.1.3. Format of Assembler’s Source 116

L.L4. Instruction Assembly 116

1.1.5. Initial Symbols 17

7.1.6. Macro Writing 117

T.1.7. Pseudo Operations 118

7.L.8. The T'ype RSUBR 120

7.1.9. Writing Gluable RSUBRs 121

1.2, Debugging Binary Code 121
7.3. Unassembling Binary Code 122

8. Informational Aids 125
8.1. File Comparison and Checking with MUDCOM 125
8.2. The M. Listing Program MAT 126
8.2.1. MAT Switches 127

8.2.2. Subutles 128

8.2.3. MAT Definition 128

8.2.4. MAT Record Files 131

8.3. The MDL-IPC Device Interface MUDINQ 131
Index 135

Table of Contents

The MDI. Programming Fnvironment - !

INTRODUCTION

The Mui. language is described in “The MII}I_ Programming Language' [3], but in addition w the language
itself, there is a rich and varied collection of software written in the language which facilitates the writing of
programs and systems of programs in Mbi. The information describing this programming environment has
been contained in various documents, some out of print or out of date, and in supplemental disk files
describing changes and additions. Some of the packages of functions used to deal with M1 code have never

been formally documented, This manual brings together soine of that scattered documentation.

The dncum:nl‘.'s. purpose is t flesh out the description of the language contained in “The MbL
Programming Language.’ giving a fuller description of the program writing and debugging aids available o
MDI. users. to describe the methods for producing code usable by others, to describe the MDi compiler and
the many other techniques for producing and speeding up MDIL object code,

‘Ihe imagined reader of this document is someonc who has read “The M. Programming l.anguage,” and
nbw proposes to write programs in Mni, possibly even very large programs. MDI. packages that he would
find uscful in the process of doing so are documented here: editors, debuggers, cte. Packages that he might

wish to use within his program are not included: data-management systems, command interpreters, eic.

This document is of necessity highly self-referent, as many of the componenis of the MDI programming
cnvironment refer to cach other and adhere to the same conventions. Additionally, this document assumces

that the reader is familiar with the language itself (at least to some degree) and with the IS, TENEX, or
' 1'01S-20 operating systems.

INTRODUCTION

T . L P o o aa e

The ML Programming Environment

ACKNOWLEDGMENTS

The MDIL. Programming Environment

ACKNOWLEDGMENTS

The programs described in this document are the products of many man-years of effort by many peaple.

Must have been “touched” by several programmers, added to and improved over the years.

Some of the people responsible for the programs mentioned i‘n this document are: Chris Reeve (MDI, the
compiler. GLUE): Brian Berkowitz (Mp1. the compiler. TEMPLATE, SUBRFY). Bruce Daniels (M, the
compiler. PACKAGE. PPRINT, DEBUGR, ASSEM): Tim Anderson (PACKAGE, the Library. FINDATOM. DF L.
CoMBAT, MUIsg): Nu::_ul Ryan (EDIT, PDUME, the 1PC interface); Mare Blank (MAT. MUDCOM, MONITR,
Compat, EDIT. CURSOR): David |.chling EEHI.TIC. EDIT): Michael Broos (the Library); Roger Banks
(TRACE): Gireg Phster (PPRINT): Juel Berez (EDIT).

(Mast of the documentation subsumed in this manual is from published and unpublished memos of the
Programming Technology Division of the ML, Laborawry for Computer Science. As a general rule,
updates and revisions to this and other 71D documents concerning M. are availuble online in the directory
"MUDMAN" at MI'T-1DMS).

ACKNOWI EDGMENTS

the M. Programming Environment

NOTATION

The MDIL. Programming Environment 3

NOTATION

Anything which is written in the MDIL language or which is Lyped on a computer console appears herein in
a typewriter font, as in PPRINT. A metasyntactic varisble -- something to be replaced in actual use by
something clsc -- appears as channel. in an italic font. Where a meta-syntactic variable is being used to denote

i reguired argument to some function, it appears as before, but underlined, as channel.

In the argument templates of M. functions, the individual arguments are often given in the form
arguntent:iype, where argronent is a “‘descriptive’ name for the argument, and fype is its MDL type (or range of
types). In such cises. the "type” boolean indicates an arguinent that is only examined for truth or Galsity, and

not for any of its other qualities. Such arguments in M. are ofien declared "¢OR ATOM FALSEZ'.

Finally, file names are given as though for the IS operating system:
device: sname; fiuml fam2
The analogous specification for TENEX or TOPS-20 would be
device: <sname> fuml . fum2
Note that in the TENEX/1'OPS-20 version of Mpi, the fum2 (which may include the generation number,
profection and acce -t fields) is by default "MUD™ as opposed to "> " for the I'TS version,

NOTATION

L0

the MBI, Programming Favironment

The ML Programming Environment - f

1. Overview of the MDL Programming
Environment
‘The parts of the MDI. programming environment described in this document are primarily those dealing
with the writing. dcbugging, sharing, and maintenance of code and programs written in Mi. Muost of the
packages described herein are written in MDI themselves: some are assembly language programs useful to

MDI programmers,

‘I'he document is divided into chapters dealing with the major issues facing the novice (or even the

experienced) MDI. programmer.

- “I'he Package System’ introduces the standard mechanism for lexical blocking and thercfore,
sharing of Ml code. Understanding its usc is fundamental to writing MDIL programs.

~ *Program Writing and Debugging Aids” is the largest chapter. It covers mechanisms for loading,
dumping,. cditing. and debugging M. code, whether interpreted or compiled. in a development
or i production environmenL

— “I'he Library System® discusses the usage of libraries of MDIL programs.

— “The Compiler” includes the specifics of interaction with the M compiler, as well as an overview
of the theory behind its operation.

— *‘Making 1t Run Faster’ covers the various methods for speeding up ‘production’” MDIL. code by
remuoving mediated calls and compacting data structures.

— “The Assembler’ documents the MDi assembler and some methods of debugging binary code.

— ‘Informational Aids’ discusscs a few programs, most written in assembly langnage rather than
MbL, which are useful to the M1, programmer,

10

10

e M. Programming Environment

The M. Programming Environment 9

2. The Package System
The portion of the M1 environment which provides a uniform facility for lexical blocking is known as the
Package System. In one sense it is the most basic part of the environment, since it enables many programmers

1o use cach other's code without identifier conflicts,

In addition, the Package System is interfaced to a library fadYhty (see section 4) by which ML code may
he stored and later loaded as needed.

The Package System is su basic to use of the ML environment that (with a few cxceptions) cvery

subsystem or family of M1 functions described in this document is a *package’.

2.1. The Theory of Lexical Blocking in MDL
I.exical blocking is implemented in M1 by means of OBLISTs and LI1STs of OBLISTs. Changes of
lexical context are performed using the SUBRs BLOCK and ENDBLOCK. ‘The Package System provides a

high-level interface to these low-level constructs.

The primary goal of a lexical blocking scheme is the prevention of identifier conflicts. Specifically, when
your program references the variable X, it should be your X und not that of some other program. At the same
time, it should not be necessary for a programmer to scarch every program previously written to verify that an

identifier he wishes (o use is not already "taken’.

It should be clear that the simplest solution, a single OBLIST, will not satisfy cither of these goals. With
unly one OBLIST there would necessarily be identifier conflicts. necessitating exhaustive scarching for unigue

identifiers.

Obviously, programmers could put their program’s identificrs on an OBLIST unique to that program.
Unfortunately, such a solution addresses only half the problem. What happens when some other programmer
wishes to use some of this code? He could insert the unique OBLIST for that program into the OBLIST path
for his program; but the moument that is donc he gets all the identifiers for that program, including local

viriables, internal data structures, and 50 on.

Conscquently, we move (o a situation where cach program uses two OBLISTs: one for the identifiers that
are local w the program, and one for the identifiers that are to be used by other programs. In the Package

System, these arc known as the ‘internal’ 0BLIST and the ‘entry’ OBLIST.
Most of the identifiers in a program are local to it, and want w be placed on the internal 0BLIST.

20

o ' The ML Programming Environment

Therefore, in terms of an argument to the BLOCK SUBR, when a program is being loaded into M, the
OBLIST path wants to be:

{ internal-oblist
entry-oblist
<ROOT>)

With this OBLIST path, most ATOMs (identifiers) will be on the internal OBLIST (as READ puts unknown
identifiers on <1 ,0BLIST>), but the ATOMs fur the entrics and the ATOMs fur the usual SUBRs will be

ivailable.

The only issue yet to be addressed is that of using an entry of a different program in your program, This is
accomplished by adding the entry OBLISTs of any such programs (o the path after ROOT:

{ fnternal-oblist
entry-oblist
<ROOT>
uther-program-entry-oblist
yet-another-program-entry-oblist

As only the entry OBLIST, and not the internal OBLIST, of the program being used is added to the path,

the chance of identifier conflict is lessened.

All that remains is to introduce the functions by which these various operations are performed.

2.2. Package System Overview
The functions which make up the Package System are: :

— PACKAGE. 'This indicates the start of a package of functions.
— ENDPACKAGE. 'T'his indicutes the end of the package of functions.

— ENTRY. This indicates an ATOM which is to be made available vutside the definition of this
package of functions. All other ATOMs will not be dircctly available vutside the package.

— USE. This indicates a reference by name to another package of functions.
— USE-DATUM. This indicates a reference by name to a data set

— DROP and L-UNUSE. These undo the effects of USE and USE-DATUM,

These functions are themselves part of a package named "PXG", which is preloaded into MpL.

The Theory of lexical Blocking in MDL 21

e ML Programming Environment 11

2.2.1. Sample PACKAGE
A sample MDI. PACKAGE is given with comments in order to demonstrate the usage of these functions.
{PACKAGE "HOUR-STRING"» '

;"PACKAGE begins the package called HOUR-STRING."
<ENTRY TIME-STRING>

:"The atom TIME-STRING is an entry to this package;
it may be referenced by other packages by
USEing HOUR-STRING."

<USE "DATIME">

;"Indicate that the package DATIME is
used within the current package."

<DEFINE TIME-STRING ()
{STRING <UNPARSE <HOURS>> " o'clock">>

;"Define this little function which returns a string
telling the last hour in a strange format."

¢DEFINE HOURS () <1 CRTIME>>>

:"Define an internal function which is available
only within the HOUR-STRING package, since its
name is not in any ENTRY statement.

Note that this function refers to RTIME,

which is an ENTRY in the DATIME package.”

<ENDPACKAGE?>

:"The end of this Tittle demonstration package."

2.3. PACKAGE
This function delimits the beginning of a package of functions. It takes one required argument, a STRING,
which is the name of the package. ‘This STRING uniguely identifics the package within a library of packages

{sce section 4).

In a PACKAGE those ATOMs which are specified as entrics live in a separate OBLIST of their own, called
the entry OBLIST. 'The ATOM naming this OBLIST is on the PACKAGE OBLIST and has the same name as
the PACKAGE itself. ‘Thus. an entryv. ‘X" of a PACKAGE Y™ would have as its ‘Tull-trailer’ name:
X!-Y!-PACKAGE!- .

PACKAGE blocks (sets up) the current OBLIST path so that the ATOMs which are internal to the PACKAGE

22 Package System Overview

12 I'he MIDL. Progranuning Environment

full into an OBLIST which is not otherwise used. The ATOM nauning this OBLIST is un the cntry OBLIST of
the PACKAGE. and is by default given a name created by putting the character '1' at the beginning of the
PACKAGE's name. An internal ATOM “Z° in the PACKAGE ‘Y’ previously mentioned would have as its
‘full-trailer” name: Z1-1Y!-Y!-PACKAGE! - .

PACKAGE also keeps track of the fact that the particular PACKARE numed hus been defined in this MDL
process, by putting its name on the PACKAGE OBLIST.

{PACKAGE pame:string
iname:siring

size:fix
isize:fix>
PACKAGE takes three optional yrguments in addition o the required vne (the optional arguments are
ignored if mome is already o PACKAGE):

meine is the name of the internal OBLIST of the PACKAGE : by default it is the name of the PACKAGE with
the letter *I” prefixed.

size is the number ol buckets in the entry ublist: by default 19,

isize is the number of buckets in the internal oblist: by default 23.

In addition o PACKAGE, there exists the obsulete function RPACKAGE, documented here only because
soine programs still use it. ‘The difference between them is that the entry OBLIST for an RPACKAGE is the
ROOT OBLIST. The implication of insering an cntry into the ROOT is that this requires that the name of the
entry be unique over all PACKAGES, because the entry is, in effect, being promoted to the status of a SUBR. [t
is (in rare cases) useful to do this, but the correct way is with the function RENTRY (sce section 2.3.1).

2.3.1. ENTRY

The ENTRY function applied to onc or mure ATOMs declares that these ATOMs are to be put into the
OBLIST reserved fur entries in this particular PACKAGE, Only ATOMs declared in this way will be accessible
(in the normal course of events) Lo functions outside this PACKAGE.

Itis possible w place some entrics of a PACKAGE on the ROOT OBLIST using the function RENTRY. It is

recommended that instead of using RPACKAGE in those rare cases where entrics must go on the ROOT.
RENTRY be used insicad.

All ENTRY statements should appear immediately after the PACKAGE or RPACKAGE statement. Note:
never put a USE statement before the ENTRY statements; if you do. you may get the ERROR message

PACKAGE 23

The ML, Programming Environment 13

ALREADY-USED-ELSEWHERE, mcaning that the name of an cntry is conflicting with an ENTRY in onc of the
PACKAGES you USEd. ENTRY will also give an ERROR if it is used outside the body of a PACKAGE.

2.3.2. USE

‘I'his function takes as arguments onc or more STRINGs which are the names (as given to PACKAGE) of
other PACKAGEs. EXTERNAL is a synonym of USE. USE causes the entry OBLISTs of the PACKAGESs named
t be spliced into the current OBLIST path. Thus, references w entries of those PACKAGES may be made
after the USE, until the next ENDPACKAGE (or the next DROP or L-UNUSE if USE is being invoked outside a
PACKAGE 10 load a file).

USE is consequently the mechanism for sharing code. If the PACKAGE being used is already loaded. its
entries are made available; il not. the PACKAGE is loaded st (sce section 4.1 Tor details on how this is
accomplished).

2.3.3. USE-DATUM

USE-DATUM requires onc STRING argument, the name of a data sct. If the data set is not loaded,
USE-DATUM loads it and creates an ATOM of the same name. on the USE-DATUM OBLIST, whose GVAL is the
dat set. USE-DATUM always EVALS to the data set named, regardiess of whether it had to be loaded or not.

2.3.4. DROP and L-UNUSE
These functions take the same arguments as USE and USE -DATUM and undo their effects.

DROP simply splices the named PACKAGEs out of the current OBLIST path. A USE of a DROPped
PACKAGE will not rcload the PACKAGE but simply splice it back into the OBLIST path.,

L=UNUSE splices the PACKAGE out and removes its name from the PACKAGE OBLIST, which will cause
the entire PACKAGE to be reloaded if it is USEd again, L-UNUSE of a data st will remove its ATOM from the
USE-DATUM OBLIST.

2.3.5. ENDPACKAGE

‘Ihe ENDPACKAGE function of no arguments terminates the definition of the current PACKAGE and
undoes the lexical blocking donc by the PACKAGE function. 'The ENDPACKAGE statement should be the last
one in the file.

2.3 PACKAGE

14 Ihe M. Programming Invironment

2.3.8. PACKAGE Restrictions
There arc some restrictions on what the user may do inside a PACKAGE. 'Thesc arc enforced by the Library
Systemn when the user attempts to submit a PACKAGE to a library.

A PACKAGE should not FLOAD or LOAD any file to obtain parts of iself. Al such cnvironment sctup
should be done with USE and USE-DATUM.

A PACKAGE may not reference any ATOM whose OBLIST path goes through the INITIAL OBLIST. All
uf a PACKAGE’s non-cniry ATOMs should fall naturally into the PACKAGEs internal OBL IST.

As mentinned before, the RENTRYs uf a PACKAGE have the samie OBLIST status as SUBRs, i.c.. they must
be unigue among both all SUBRs and all PACKAGE entries.

2.3.7. ENTRY Name Conflicts

It is pussible to have two or more PACKAGEs {(not RPACKAGESs) which have entries (not RENTRYs) with the
same PNAME. [f the user needs both PACKAGEs at the same time. he may USE them both and refer Lo the
ambiguous entrics by their “full trailer’ names. All of the non-ambiguous entrics in both PACKAGEs may still
be referenced by PNAMF only.

PACKAGE 3

e MDILL Programming Environment 15

3. Program Writing and Debugging Aids

T'his chapter concentrates on editing and debugging aids for MDi programming. ‘The basis for editing and
debugging in MDL is twofold: First, MDL is an interpreter, which permits interactive testing and debugging
of sofiware. Secondly, MDI. programs (even compiled MDI. programs) are structures and therefore may be

munipulated by other M. programs.

Packages useful in editing and debugging range from EDIT and PPRINT, which are preloaded, and which
furm the core of most editing or debugging systems, o more sophisticated aids such as DEBUGR and TRACE,

which are more powerful, and useful for more complicated debugging.

It should be noted that, in addition to the editors discussed below, RMoDE [5] and EMACS [2]. Tico based

text editors, understand much of the syntax and many of the conventions of M1 programs.

3.1. Pretty-Printing

The purpose of pretty printing is o clarify the structure of M1 objects by printing them in a more
human-readable format than that provided by the SUBRs PRINT, PRIN1, ctc. Objects arc pretty-printed
through the judicious insertion of spaces, tabs, and new-lines between tokens. Pretty-printed objects are
readable by the ML Reader. Pretty printing is an aid to understanding and debugging M1 FUNCT I0Ns or
other objects. You will probubly find pretty printing to be extremely helpful, especially if you are working
without a listing or with an old listing. In fact, pretty-printing is one way to make a new pretty listing after
cditing. PPRINT is pre-loaded in most initial Mbis. “The name of the package containing PPRINT is "PP".

CPPRINT anv channel>

pretty-prints any on channel. The second argument is optional, by default .OUTCHAN . If any is an ATOM,
PPRINT will enclose it in an application of DEFINE, DEFMAC, SETG, or SET, as scems appropriate.
COMMENTs found inside any are right-justificd. PPRINT cannot output an RSUBR without F IXUPs (that is,
une that was READ in while KEEP-FIXUPS (see scction 3.4) had no LVAL or had a FALSE LVAL); it will
give the ERROR message CAN-NOT-BE-DUMPED. PPRINT rcturns ,NULL, which is an ATOM whusc PNAME
i5 a single rubout, invisible on normal consoles,

<PPRINF pu:string-vr-atom-or-list outfile:string
widthzfix rval?:boolean®

pretty-prints all the contents of in into outfile.

If inis an ATOM or a LIST of ATOMs. its VALUE(s) arc the objects to be PPRINTed. In this case, oulfile is
by default a file whose first name is produced by taking the PNAME of in (or in’s first clement, if inisa LIST).

30

16 ' I'he MDI. Programming Fnvironment

If in s a STRING, if specifies a file containing objects to PPRINT. In this case, oulfile is by default
"TPL:",

width is the maximum width of output lines (although output lines are prevented from being extremely

lung); itis optivnal, by default <13 ,OUTCHAN?.

eval? tells PPRINF whether or not to EVAL cverything in the file; it is optional, by default a FALSE (don't
EVAL). ewal? is meaningless if in is nota STRING.

PPRINF returns cither "DONE™ or u FALSE if it couldn’t vpen infife or outfile. PPRINF inscrts page
boundarics in cutfile. between vbjects, every 60 lines or fewer; you may want to move these afterward to more
lngical places. PPRINF binds KEEP-FIXUPS and REDEFINE to T, and QUICKPRINT (scc helow) to a
FALSE.

3.1.1. PPRINT Control Switches

PPRINT'S output is affected by the local values of several ATOMs. Each value is examined only for truth.
JQUICKPRINT

If this ATOM's LVAL is a FALSE, you are in slow mode: otherwise (including the cuse of no LVAL), you are in
fust mode. "The behavioral difference is this: in fast mode, there may be COMMENTs in the pretty-printed
nbject(s) which PPRINT misscs. Also, fast mode is indeed faster than slow mode. Fast mode is the default,
that is, QUICKPRINT is initially true. The modes are really distinguished by the depth of recursion to which
PPRINT resornts. In slow mode, it recurses all the way down to every monad in the thing preuty-printed; in

fast mode, it goes down only far cnough to find something that will fit on a line.
. LOOKAHEAD

PPRINT uses full recursive lookahead to avoid packing things against the right margin and, as a result, not
being able to fit things within the right margin., The lookahead results in very good formatting of
deeply-nested MAPFed and FUNCT IONs: all but the most bizarre cases should be very legible. However, it
can result in noticeable "pauses’ in the printing operation and, in some cases, a net speed slightly less than with
limited lovkahead. Since this can be a disadvantage when using PPRINT interactively on a heavily-loaded
system, the lookahead can be disabled: if the LVAL of LOOKAHEAD is a FALSE, no lookahcad will be
performed; otherwise it happens. LOOKAHEAD is initially true, that is, lookahead happens by default
.VERTICAL

If LOOKAHEAD is a FALSE, the formatting can cause oo many objects to be squeczed against the right
margin, So that particular cases can be made legible, the format when lookahead is not in use can be
manually set; if the LVAL of VERTICAL is non-FALSE, PPRINT will indent very little whenever indenting is

Pretty-Printing 3l

The ML, Programming Environment : 17

called for, (VERTICAL being true means a ‘'more vertical” formal.) VERTICAL is initially FALSE . The value
of VERTICAL is ignored when LOOKAHEAD is true; the lookahecad effectively chooses different values for
VERT ICAL for different parts of the object pretty-printed.

3.1.2. Lower-level Pretty Printing
It is sometimes desirable to use some of the functions that PPRINT uses, but in a different w:!j-,r.. For

cxample, a specialized pretty-printer for Program Abstracts would want to inseri indented ficld names into
the output and pretty-print field values with the same indentation. ‘The names of lower-level pretty-print
functions are included in the ROOT OBLIST for such purposes.

SEPRINT guy lefi-margin;fixy
pretiy-prints any on . OUTCHAN to the right of leftomargin. The second argument is optional, by default
<VALUE LEFT-MARGIN?> (scc below).

CEPRINY any lefi-margin:fix>
EPRINT isto EPRINT as PRIN1 isto PRINT.

.LEFT-MARGIN

This is the ATOM that EPRINT binds to its second argument. You can SET it outside calls to EPRINT in order
to make a permanent left margin. Its initial LVAL is 0.

CINDENT-TO colwmn:fix channel»
outputs tabs and/or spaces o advance the output column (<14 channel>) to colummn, if it is not already past.

<COLPP agny
channel

lefi-margin:fix
right-margin:fix>

preity-prints any on channel (by default .QUTCHAN) between the margins lefrrmargin (by default
<14 channel>, the current column) and right-margin (by default <13 channel?, the rightmost column). All
arguments but the first are optional. COLPP returns , NULL. For cxample,
<COLPP any .OUTCHAN 10 70> would lcave a I0-character margin at left and right on an 80-column
OUTCHAN. Also,

<PROG () <PRINT AAAARAAAAAARAAA> <COLPP ,FOO>>

wild result in output like

AAAAAAAAAAARAAA HFUNCTION ((X GGGGGGGGGGGGGGGGGGEEEE)
G+ X 1)

EPRINT, EPRIN1, and COLPP arc affected by the truth of QUICKPRINT, .LOOKAHEAD, and
LVERTICAL.

il Pretty-Printing

18 Ihe M. Programming Fnvironment

3.1.3. Ampersand Printing
"Ampersand printing’ consists of printing any nbject on a single line by using the character & (ampersand)
to mean “There's more stuff here.” (This technique is borrowed from the Interl.isp editor.)

‘There arc two ways in which & is used by this printer as an abbreviation:

I. An & appearing between some vaniety of brackets indicates™hat there is a big object of the
indicated TYPE there,

2. The characters . . & or &. . on the lefl or right of a structure mean that there are more objects Lo
the left or right which have not been printed.

Examples:
#FUNCTION ((A B C D) <&>)
‘This is 4 FUNCTION with four arguiments in its argument LIST, and the FUNCT ION body contains onc FORM

which was too big to print in the remainder of the line.
(PROG () <KRK <+ .A 5>> (PRINC .Q> <SET BAR <ORG>> (&> &..>

‘I'his is « large FORM, namely, a PROG. In addition w the elements printed, there are more elements t the

right, and there is onc FORM which was too big to fit.

Ampersand printing is effected by two pure RSUBRs: &, analogous to PRINT, and &1, analogous to
PRIN1. A rclatcd RSUBR, &L 15, can be applicd to no arguments to put you into an endless READ-EVAL -&
lvop, instcad of the normal READ-EVAL-PRINT loop.

3.1.4. Examining the Stack

{FRM fix>
returns the fixth FRAME down from the top application of ERROR or LISTEN.

{FRAMES how-many.fix stari:fix>
pretty-prints how-many FRAMES (by printing the FRAME number (suitable as an argument to FRM), FUNCT,
and ARGS of the FRAME), starting with <FRM starr> . Both arguments arc optional; start defaults to 0, and
how-many defuults to a large integer, A FRAME whosce FUNCT is an ATOM whose VALUE is an FSUBR is not
printed. if the same information is found in the next lower FRAME .

{FR& how-many:fix stari:fix>
is like FRAMES but uses ampersand printing instead of pretty printing. It is handy for summarizing FUNCTs
and ARGS that arc large or unprintable (likc RSUBRs with no fixups).

Pretty-Printing il

I'he MDL. Programming Environment - 19

{FRATM how-many:fix siari:fix>
is like FRAMES but gives an abbreviated view of the stack. It prints FUNCTs only, and only for FRAMES
connected with numed FUNCT IONs, RSUBRS..und RSUBR-ENTRYs. It is handy when a FRAME contains a
non-LEGAL? object.

<FRLVAL giom

how-many:fix
stari:fix>

prints out the stacked bindings of atom. going through how-many FRAMES, starting with <FRM siarr>. The
two numeric arguments are optional; how-many defaults o a large integer, and siars defaults 1o 0. The
fonmat of the printing is two columns: the first column is the number of the FRAME in which «wom has a

binding; the second column is the value bound, or a message procliiming the lack of a value.

<FR&VAL afom
how-many:fix
start:fix>

is preciscly the same as FRLVAL, except that the values are ampersand printed instead of PRINTed.

Finally, the "FRMSP" PACKAGE contains analogues of many of the preceding functions, but cach takes as
its first argument a PROCESS, by default <ME>. These are all numed by adding 4 ‘P* to the end of the usual

name. For example,
<FREP <MAIN>

does a <FRE> in the PROCESS MAIN.

‘There is one additional function of interest in "FRMSP ",
<FRTYPE how-many:fix start:fix>
is like FRAMES, but gives only the TYPEs of the arguments to cach. This is uscful in those situations when the
stack shows illegal FRAMESs or uther unprintable objects.

3.2. The MDL Editor

EDIT allows a MDI. user 1o make incremental changes in M. structured objects, without leaving MDL
and with the ability to save the results in a file, and 1o sct or clear conditional breakpoints of various sorts in
uhjects that will be evaluated, such is FUNCT I0Ns.

EDIT is an cditor/dchugger written in, written for, and running under MDI. It comprises the package
“LDIT" and scveral smaller packages which will be mentioned kater in this section. EDIT is preloaded in
most initial MDLs.

To start cditing, apply EDIT to no arguments or Lo the name of the object you wish to edit: <EDIT>

3l Pretty-Printing

X ‘The MDI. Programming Environment

causes entry into EDIT and opens the last object edited; (EDIT object> causes entry into EDIT and vpens
obiect for editing. Permissible objecss include:

— ATOMs. The GVAL (preferably) ur the LVAL of the ATOM is opened. IF it has no value, EDIT
returns a FALSE.

— APRIMTYPE LIST. The PRIMTYPE LIST isopened.

— A FIX. The stack frame with that number is opened (i.c., CARGS <FRM fix>3).

Part of EDIT’s eficicncy comes from furbidding it to delve into objects that are not of PRIMTYPE LIST,
that is, not LTSTs, FORMs, FUNCTIONs, cic. Attempts to edit objects of uther PRIMTYPEs will result in error
messages. These ubjects can, however, be treated as units when inserting, scarching. ctc.: or they can be
changed into LISTs, edited, and then changed back to their original types.

3.2.1. The Edit 'LISTEN Loop’ |

3.2.1.1. The Reader
When in EDIT, you are typing at a special, non-standard, input function: The EDIT Reader.

The Reader allows you to type EDIT commands and have them exccuted, and also to evaluate MnL

eapressions normally, [Tts characieristics are as follows:

= Asin the normal MDL Reader, nothing is done until you type ESC. DEL, tL, 1D, +G, and ¢S also
work normally.

— All EDIT commands are terminated when an ESC is encountered in the input stream. (n
addition, most commands will terminate whenever the maximum aumber of arguments required
his been input or whenever an argument of the wrung type is encountered. In the former case the
next object is taken as a new command; in the latter case the object of the wrong type is taken as a
new command. EDIT commands may be typed in cither upper or lower case.

— If you type something that EDIT docs not recognize as a command. nonmal MDI. evaluation and
printing are performed on that something. This evaluation will have no effect on your position in
the object you are cditing.

— While editing a function which is part of a PACKAGE (determined from an examination of the
O0BLIST containing the ATOM whose value is the function), EDIT causes the OBLIST path to be
set up to what it was in the environment of that PACKAGE. ‘This has the advantage of reducing the
number of trailers printed, and causes newly entered ATOMs to [ull on the correct OBLIST (the
internal OBLIST of the PACKAGE). It has the slight disadvantage that it disables the dynamic
loader (which depends on unbound variables falling on the INITIAL OBLIST). If the GVAL of
E-PKG is a FALSE, this feature is disabled, and the normal OBLIST path is in effect during

The MDL Editor 12

Ihe MDL. Programming Environment 21

cditing.

Examples:
R 5%

Causes execution of EDIT command R, with argument S,
<R 6>§

Causcs application of the function Rto 5.

3.2.1.2. The Ampersand Printer
Your current position is displayed by “ampersand printing’ (see section 3.1.3). This consists of printing any

ubyject vn asingle line by using the character & (ampersand) 1o mean "There’s more stulT here.’

The ampersand printer used in EDIT is much like the standard one, with the addition that your current
position (see below) is displayed by the glyph B,

When you initially enter EDIT, you are in a mode called 'non-verhose,” in which smpersand printing is not
automatically done following execution of EDIT commands, The V command is used to toggle you in and out
of verbose mode (sce below).

Fxamples:

#FUNCTION (B (A B C D) <&
Indicates that your position is just to the left of a FUNCTION's argument list, and the FUNCTION body
contiains one FORM which was too big to print.

{..% <KRK <+ .A 6>> B <SET BAR <ORG>> <&> &..»
Indicates that you arc in the middie of a large FORM (c.g., 8 REPEAT or a PROG), positioned just to the left of
the <SET BAR <ORG>>. In addition to the objects printed, there are more objects to both the left and the
right, and there is one FORM which was too large to fit on the line.

3.2.2. Edit Commands

3.2.2.1. General

A sequence of EDIT commands is exccuted as soon as you type ESC. If onc command fails, subsoquent
commands up 1o the ESC are ignored, and EDIT types out an appropriate error message. A failing EDIT
command generally has no effect whatsoever; but see individual descriptions.

Note that all arguments lo EDIT functions must be legal MDL objects. In particular, vou can't search for

32 The MDL Editor

22 ; ‘The ML Programming Envirenment

¢SET .since the {>'s aren’t balanced. Nor can you insert it. (But you can, for instance, search for and insent
¢{SET THING 1>.)

[fa command expects an argument and doesn't get one, an error message will be printed.

Many EDIT commands take FIXes as arguments. Those that do interpret the ATOM * as an argument to

mean ‘as many as possible’,

Whenever you are in EDIT, you have a well-defined “position’. A position is a ‘place’ inside a MDI.
structure; this “place’ is cither between two clements of the structure, or besween an clement and cither end of
the structure, or inside an empty structure. All editing, movement. and printing commands operite relative to
your current position. The term ‘cursor” is used in the following descriptions to refer to an embodiment of a

pusition,

The format used in cach of the following command descriptions is:

Commund as Typed Fnglish Name

Description

3.2.2.2. General Commands

e ——— ——

7 duh?

Causes a short summary of all EDIT commands to be typed out. The same suminary appears later in this

chapter.

7 huh?

Similar to the above, but the summary is even shorter, and should fit entircly on the screen of an Tmlac

terminal.
Q Quit
Leave EDIT and return to M. (Causes EDIT to return the ATOM T.)

QR fix Quit and Retry

Quit from EDIT and then retry the frame specified. or by default, the one originally given to an open

command or, if none was given, the frame bencath the last ERROR or LISTEN frame.

+F Control-F

This Is not really an EDIT command; rather, it is 4 character, ubtained from the input stream at interrupt

The MIDL. Editor 2

e o BB EeEsE B =B B E BB D

Ihe ML Programiming Environment 23

level. which is used to return you to the EDIT Reader from some higher level of application. ¢.g.. an ERROR’s
LISTEN, Itisthe EDIT equivalent of ERRET with no arguments.

1F (or tS) typed during execution of an EDIT coimmand is similar to normal MpL t5 but retumns to the
EDTT Reader instead of the MDIL LISTEN loop.

0 wvbiect Open
Fquivalent to Q followed by <EDIT wbject>. Positions the cursor just to the left of the first clement of the

enhire ubject specified.

01 Open This

I the vhject w the right of the cursor is an ATOM, or a TORM whose first clement is an ATOM, and the
ATOM's valuc is openable. then it is opened. This command is useful when tracing a calling sequence through

severul functions.

3.2.2.3. Movement Commands

u Up to the Top
Places the curso: at the position # had following an 0.

R fix Right
Muoves the cursor fix vbjects w the right, by default one. If fix is wo large, ie.. there are not that many

positions to the right of the current position. EDLT prints an error commnent and the cursor stays where itis.

B Back

Muves the cursor as far to the right as possible.

L fix Left

Moves the cursor fix positions to the left, by default one. IT fix is (oo large, EDIT prints an crror message.

F Front

Muves the cursor as far to the left as possible,

DL Down Left

Pusitions the cursor just to the right ol the rightmust clement within the object to the left of the cursor, if

that object sof PRIMTYPE L1ST. Visually, the cursor moves ieft over one ‘close bracket'.

3.2 The MDI. Fditor

24 ‘The MDI. Programming Iinvironment

DR Down Right

Positions the cursor just w the left of the leftmost element within the object to the right of the cursor, if
that object is of PRIMTYPE LIST. Visually, the cursor muves right over one "open bracket”. If the cursor is
to the left of an clement that is not of PRIMTYPE LIST, EDIT prints an crror message.

] Down

Fquivalent to DR.

UR fix Up Right

Positions the cursor just to the right of the object the cursor is currently within, Duoes so fix times, by
default unce,

uL fix Up Left

Positions the cursor just to the lefi of the object the cursor is currently within, 1Jocs so fix times. by default

once.

U fix Up
Identical w UL.

5 object Search

Dues a depth-first, left-first tree-walk, (ie., lef-to-right) starting with the object to the right of the cursor,
until the cursor is just to the right of an object structurally equal (i.c., =?) to its argument. An occurrence of
the object will not be found if it is inside anything not of PRIMTYPE LIST. On failure, the cursor docs not
move, Ifthe argument is omitted, the last object scarched for is used.

SR object Search Right
Same as 5.
SL object Search Left

Same as S, but the tree-walk is depth-first, right-first (i.c., right-to-left) and you end up to the left of the
whject for which you were scarching.

3.2.2.4. Printing Commands

The Empty Command

The MDL Editor 12

I'he MDI. Prugramming Environment 25

Causes the normal "ampersand print’ to be done. This is principally useful when you are in ‘silent” mode:
sce the V command.

lly the way, an ‘empty’ command is typed by typing ESC without having typed any visible characters
before it

P Print

PPRINTs (not ‘ampersand prints’) the object to the right of the cursor.
PU Print Up
PPRINTs the ubject the cursor is in. This is similar 1o doing a U and then a P, although the cursor is not
muved.

P Print Top

PPRINTs the whale object you have open.

v Verbosity

Tuggles the verbosity mode between ‘verhose’ (most commands cause mmpersand printing) and ‘silent’
{printing of any sort is donc only when some explicit print command is used, or when an error occurs). The
current state of verbosity is the GVAL of E-VERBOSE.

In silent mode, absolutely nothing is printed after each command, not cven new-lines or prompts.

However, normal MDIL evaluation still causcs normial MDL printing.

3.2.2.5. Editing Commands

1 gny -.. Insert

Inserts all its arguments immediately to the right of the cursor. None of its arguments are evaluated; you
can insert uncvaluated FORMs without using QUOTE. The cursor ends up to the right of the last object
msered.

G gay ... Get

Same as 1, but its arguments are evaluated. This & useful in conjunction with the X command (see below),

1: ype:atom fix Insert Type

Grabs fix objects to the right of the cursor, inscrts them into a newly created object of TYPE 1ype, deletes
them from the original structure, and inserts the newly created object in their place. In other words, it ‘insens’

a2 The MDL. Editor

26 The MDI. Programming lnvironment

the appropriate open and close brackets for fype at the cursor and fix objects to the right.

Ry default fix is one, fype is LIST. An crror message is printed if fix is larger than the number of objects
to the right of the cursor.

There is no way to directly insert or delete single parcntheses, brackets, etc., using EDIT. Instead, use K:
(see below) to remove pairs of brackets, and 1 : to insert them.

I* indicator:atom pew-struclure Imbed

Imbed looks for all occurrences of indicator in new-structure and replaces these occurrences with objects
ttken and deleted from the right of the cursor. It then inserts the result

IFonly new-strucnere is given, the indicator is the ATOM *. If there aren’t enough objects to the right of the
cursor to replace cach indicator, remaining indicators are left untouched and a warning incssage is printed. If

no indticators are found, the new structure is inserted, but a warning message is printed.

I* is generally used to insert one or more structures into another complex structure in one vperation,

instead of several. For example:

<SET X B <12 .Y>»
[* <COND (<NOT <LENGTH? .Y 11>> *)>§
(SET X <COND (<NOT <LENGTH? .Y 11>> <12 .Y>)> 1>

places a protective conditional around an NTH to prevent an out-uf-bounds error.

16 any. Insert into Group

Inserts into a group. 16 is similar o 1, but assumes that ;hé: object you are in is a group (as pruduced by
SROUP-LOAD). Arguments to [G which are not ATOMs arc inserted as in I. Objects which arc ATOMs and
which have a value insert a FORM which DEF INEs, SETGs, or SETs the ATOM as appropriate. ‘Thus, to add a

new function F to a group 6, onc could type
0 GSIG FSQS

K fix Kin

Peletes fix vbjects to the right of the cursor. Defaults to one. Negative fix causes delction to the left of the
Cursor.

C agny Change

Changes the one ubject to the right of the cursor to its single argument. Docs not move the cursor. Docs

not evaluate its argument. C is more cfMicient than K plus I,

The MDI. Editor 32

e M. Programming Environment 27

C: Lypecatom Change Type

Changes the type of object to the right of-the cursor o0 fype. Attempis to do something reasonable for
cvery type change. If you tell it to change a STRING to a LIST. you get a LIST of CHARACTERs. If you
attlempt to change a structure whose elements are other than CHARACTERs and STRINGS to a STRING, you
will get a ML error,

K: Kill Type
Peletes the brackets around the object to the right of the cursor. Le. kills the object and inserts its
clements into the structure of which it was a parn.

SU new old Substitute

‘Ihe Substitute command takes two arguments. All occurrences of ofd from the current location to the end
ol the open object (actually a search-right is done) are replaced by new. Once the scarch for ol fails, the
command terminates, and the number of substitutions performed is printed. “The cursor is Teft after the last

uhject replaced.

X qlom Transfer

SETs the atom to the object to the right of the cursor. X can be used with K and G o move things around
within the object being edited.

Sw Swap
Swaps the two objects to right of the cursor, leaving the cursor pointing at the same object. The effectis to

muove the cursor and the object it points at one object to the right. Repeated SWs move cursor and object
further and further to the right.

3.2.2.6. Macro Facility
M nucre Macro

Takes cither a STRING or something which EVALs to a STRING and performs all of the commiinds in the
STRING. For complete assurance that your commands will be done properly, put an ESC between

commands.

11 fix macro Iterate

This command (also called DO) takes a fix and macro as if an argument to M, This command will loop

through the macro fix times or until an error is generated. When the iteration ends, the user is told how many

32 The MDIL. Editor

28 : I'he ML, Programming Environment

complete passes have been made of the macro,

In both of the above commands, if an EDTT error is gencrated, the macro will be terminated, and the
macro itself will be printed, with an arrow pointing to the offending command. The cursor will remain at the
place where the last legal command left it

The 5U command is, internally:
DO * "5 ol/SLSC news™

3.2.2.7. Cursors.

Cursors are locations in objects being EDITed. In addition to the main cursor, which is where editing
oeeurs, other locations (also called cursors) may be remembered. The man cursor may be moved to another
cursor in a single operation, potentially saving many motion commands. In large FUNCT IONs cursors may

also reduce confusion by distinguishing among several similar arcas of code,

ue Use Cursors

The PACKAGE for dealing with cursors is not normally loaded in an initial M, so the UC command loads
it and makes the cursor commands available, 'The PACKAGE lvaded is "CURSOR".

CU atom ' Cursor

CU whkes an ATOM argument and SETs the ATOM w an object of type CURSOR, which tries ty be cleverin
the event you change the object. Also. if you use the X command to name a substructure and then move copy

it with G or I, the cursors in the substructure will follow to the new location.

There are some restrictions. Cursors in empty LISTs arc okay but they will not follow the object to new
locations. Also this “following' feature is effective only at the first G or I after the X. To move the substructure

again you have to X again,
I* is somewhat incompatible with CURSORs. Cursors in linbedded structures will sometimes disappear.
GO cursor Go
GO takes a cursor (normally the LVAL of an ATOM previously given as an argument o CU) and GOes to that

position. If the cursor is illegal (not in the current top-level structure). an error message will be printed and
you will remain in your previous position.

KC alom Ki11 Cursor

The MDL Editor 32

‘Ihe MDI. Programming Environment 29

Kill the cursor assigned to atom,

PC . Print Cursors

Prints all cursors in the structure to the right of the main cursor.

PA Print A11 Cursors

Prints all cursors in the currently open structure.

3.2.2.8. Breakpoints
BY. predicate any ... Breakpoint

Inserts a breakpoint “around’ the ohject to the right of the cursor, ‘Takes any number of arguments.

Subsequently, whenever that object would have been evaluated. you instead hit a breakpoint function which:

L. Evaluates predicate. 1T the value is FALSE, evaluation continues as if there were no breakpoint, 1F
the value is non-FALSE, or if BK was given no arguments:

2. Types **BREAK®*,

3. For cach argument afier the first that you gave BK, types
arg = FVAL ofarg
4. Enters LISTEN.
You continue by applying ERRET to onc argument, just as from an ERROR; the argument’s value is ignored.
Breakpoints are implemented by inserting a BREAKR (2 PRIMTYPE LIST with APPLYTYPE FORM)
which consists of the funclion BREAKR and arguments, including the object breakpointed. A breakpoint
prints as a glyph similar to the cursor:

Bobject
If the ATOM SHORT-PRINT is assigned and FALSE, the actnal BREAKR L1S5T is printed.

‘I'he breakpoint function returns EVAL of the thing it is put ‘around,” and there are cases where this does

nut work. There are always equivalent places that do work.

1. Breakpoint on the first element of a FORM does not work, Put it on the whole FORM,

1. Breakpoint on a LIST which is an argument o a COND dues not work. Put it on the first FORM in
the LIST.

BA predicate any ... Ereak After

32 The MDL Editer

3 The MDI, Programming Environment

Similar to BK, but puts the breakpoint affer the object at the cursor. Its action is fike that of BX except that
the break occurs after the object it is on is EVALed.

‘T'his sort of breakpoint prints like the *before’ sort, but with the glyph after the object broken:

ubjecr§
Ihe predicate for a BA breakpoint may check the value returned by FVAL for the object the breakpoint is on.
This value is assigned by BREAKR to the ATOM VALUE.

KT £i11 This

Remuoves the breakpoint (if any) from the object to the right of the cursor.

KB Kill Breakpoints

Removes all breakpoints in the currently open object.

3.2.2.9. Edit Monitors
There are several commands in EDIT which provide a simple interface o the "MONITOR" PACKAGE.
I'hese allow placing of monitors on references to or modifications of LVALSs in interpreted MDI. code.

For a more complete discussion of the use of monitors, see secuon 3.7,

UM Use Monitors

The PACKAGEs for dealing with monitors are not normally loaded in an initial MDL,, so the UM command
loads them and makes the three commands for creating monitors available. ‘I'he PACKAGEs loaded are
"MONITR", which is the gencral monitor PACKAGE, and "EMONIT"™, which is the interface between EDIT
and "MONITR",

RW aiom predicate any . . . Read-writes Monitor

The most general type of monitor that can be set is a read-write monitor. It will catch any reference to or
attempt to modify the LVAL of the atom specified. The restrictions on placement of breakpoints also apply to
monitors, with the addition that a monitor on an LVAL must be placed after that LVAL has become
ASSIGNED?.

The second. third (and so on) arguments t RW arc the same as those for BK. The predicate may be
dependent on cither the new or old value of the variable: These are available as the LVALs of NEWVAL and

OLDVAL, respectively,

The MDL. Editor 32

‘The ML, Programming Environment - 31

When a monitor is triggered, it prints the type of monitor, the variable being monitored, and any other

information requested by the user, and then calls LISTEN.

A monitor prints as yet another glyph:
M[atom]object
where atom is the ATOM being monitored. and object is the object on which the call to MONITOR is placed.

Edit monitors are objects of type BREAKR, and thus they are killed by the same commands that kill normal

breakpoints: KB, KT, and so on.

RM atom predicate 11‘!!']]’ P Read Monitor

RAM is analogous 1o RW, but is only triggered by reading the variable,

WM atom predicate any ... ‘Write Monitor

WM is analogous to RW, but is only triggered by writing the variable,

3.2.2.10. User-defined Edit Commands

It is possible to add user-defined commands to EDIT. The valuc of EDIT-TABLE should be a VECTOR of
STRINGs (commands) and APPLICABLE objects. EDIT will scarch EDIT-TABLE before its own command
table. If a match is found, the APPLICABLE will be applied to three arguments: the command string, the
LOCATIVE containing the item currently being edited (the immediately surrounding object) and the position

in that item.

Note that uscr-defined commands should not be added except by constructing a new value of
[DIT-TABLE from the commands to be added and the old value. Otherwise, any cxisting user-defined

commands may be lost when new ones are added.

The Monitor commands described in section 3.2.2.9 are effectively “installed’ user-defined commands.

ey add elements to EDIT-TABLE when loaded by the UM command.

3.2.3. Examples

3.2.3.1. Simple Editing
Suppose vou have the FUNCTION

12 The ML Editor

2 The MDIL. Programming Environment

#FUNCTION (('A) CEVAL .A))

5 the global value of the ATOM SIMP. and you wish to change it to
#FUNCTION (("BIND" B 'A) (CEVAL .A .3> .A))

using EDIT. ‘The following example does just that: it includes doing the cditing and applying of SIMP to an
sgument. Console input and output are shown below exactly as they would be in non-silent mode. (Console
nput consists of thuse characters to the lelt of cvery $). Note that there is nothing in SIMP which is big

enough to warrant usc of an &.

(EDIT SIMP>S

Vs

#FUNCTION (8 ('A) <EVAL .A>)
D$

(8 'A)

I "BIND" BS

(“BIND* B W ‘A)

5 .AS

CEVAL .A 8 >

I .BS

CEVAL A B >

URS

#FUNCTION (("BIND" B 'A) CEVAL .A .B> 1)

I .AS

AFUNCTION (("BIND" B 'A) CEVAL .A .B> .A)
L 28

HTUNCTION ((“BIND" B 'A) 8 CEVAL .A .B> .A)
I: LIST 2§

#FUNCTION (("BIND" B 'A) B (CEVAL .A .B> .A))
(SIMP ¢+ 1 2>>8

(3 ¢+ 1 2))

#FUNCTION (("BIND" B 'A) W (<EVAL .A .8> .A))
QsT

3.2.3.2. X and G Commands

In this example we have the FUNCTION

DEFINE F (X)
6 .X 10>
CH 23 ¢- X 1S

By applying the X and G commands to the appropriate FORMs. we are able to swap the FORMs within the
FUNCT ION.

The MDIL. Editor 32

e ML Programming Environment

3.2.

10> E)

<DEFINE F (X)
<G .X 103
CH 23 <= .X 13333

f

<EDIT F>$

L]

HFUNCTION (B (X) <G .X 10> <H 23 <- .X 1))

RS S

A#FUNCTION ((X) B <G .¥ 10> <H 23 <-

X MOVER$

H#FUNCTION ((X) B <G .X 10> <H 23 <-

K$4

#FUNCTION ((X) B <H 22 <- X 1)

R§S '

H#FUNCTION ((X) <H 23 <- X 133 B)

G .MOVERSS

H#TUNCTION ((X) <H 22 <- X 13> <G .X

Q%1

.MOVERS

<G .X 10

3.3. Unconditional Breakpoints

Tonsert unconditional breakpoints into the FUNCT I0N in the next example, do the following:

!

Fad

e

I

. Define FIB and test the FUNCT ION a few times.
.Enter EDIT and position the cursor appropriately.,

- Insert the breakpoint.

during this run.

The MDD

et
"ak

leave EDIT and run the FUNCTIOR again for the value 3. The breakpoint is exercised 5 times

Edito:

4 ITe MIN. Programming Environment

DEFINE FIB (X)
<COND (<L=? .X 1> .X)
[ELSE <+ <FIB <- .X 2>> {FIB <- .% 1>1§%
F1B
(FIB 558
5
{FIB 6>%
3
¢FIB 10>3
55
CEDIT FIBY>S
1541
#FUNCTION {(X) B <&>)
BK T .XQST
(FIB 3>$
**BREAK®*
A3
LISTENING-AT-LEVEL 2 PROCESS 1
CERRET T>$
“*BREAK®*
X =1
LISTENING-AT-LEVEL 2 PROCESS 1
CERRET T>$
llB“ElK-i
A ap
LISTENING-AT-LEVEL 2 PROCESS 1
CERRET T>%
--BRE“-‘
X =0
LISTENING-AT-LEVEL 2 PROCESS 1
CERRET T>$
.-SREA-‘-.
% =
LISTENING-AT-LEVEL 2 PROCESS 1
CERRET T>§
2

3.2.3.4. Conditional Breakpoints

We continue from the previous example and demonstrate conditional hreakpoints with the following:

1. Enter EDIT and kill the breakpoint from the previous cxample.
2, Pusition the cursor and insert a conditional breakpoint with a predicare of <07 . X>.
3. Leave EDIT and run the FUNCT [ON again for the value 10.

4. Enter EDIT and remove the breakpoint.

The MDL Editor 32

i Fhe MDL. Programming Environment

CEDIT>S

$

#FUNCTION ((X) B §<&>)

KBSS

#FUNCTION ((X) B <&>)

BK <07 .X> <TIME>SQST

<FIB 10>$

**BREAK®*

CTIME> = 14,794538
LISTENING-AT-LEVEL 2 PROCESS 1
.X$

0

CERRET T>§

--EHEAK.'

<TIME> = 15.252387
LISTENING-AT-LEVEL 2 PROCESS 1
XS

0

CERRET T>$

L] .BHE‘K‘-

CTIME> = 15.716037
LISTENING-AT-LEVEL 2 PROCESS 1

and so on. Eventually we reach the last breakpoint, and re-enter EDIT

CEDIT>S

s

HFUNCTION ((X) B §<&)
KBSQST

CERRET T>§

55

32

35

The MDL. Editor

e ML, Programming Environment

J.2.4, Edit Command Summary

NAME ARGS
? none
T none

0 any
or none

Q none
QR fix

'} none
Movement commands
L fix

R fix

u fix

D none

8 none

F none
UR fix

DL fix
uT none
Editing commands
I any...

] lype fix
I* atom,object
iG Y.
su new.old
X alem
G aAnYeus
5w none
c any
C: {upe
X fix
K: none
Scarch Commands
5/SR any
SL any
Macro Commands

The MDL Editor

MEANING

type out short summary

type out this summary

Open object or the value of an atom
Open object at the cursor

Quit and return to MDL

Quit and Retry frame

oggle Verbosity

maove |eft fix objects

muove Right fix objects

muove Up fix levels

muve 1own one level

maove to Back of object

muove Lo Front of object

move Up fix objects and to the Right

move Down fix objects and to the Left

Up Top - go to the place you were after you did 0

Insert argumcnts to the right of cursor

make next i objects into a fype

Imbed command: replace all occurrences of arom (default *)
in ohject with objects to right of cursor

Insert into group

SUbstitute new for old

set the atom to the object to right of cursor

Get EVAL of arguments, insert to right of cursor
SWap the two objects to the right of cursor
Change the next object toarg

Change the type of the next object to fype

Kill (deleie) the next fix objects

Kill (remuve) the “brackets’ around the next object

Search (Right) until match (=7) is found for any
Search Left as above

- -

ment

I'he MDIL. Programming Environment

3

M siring exccute the string as if typed to EDIT
IT/DO fix string ITerate the execute string fix times
Printing commands

P none PPRINT the next object

PU none PPRINT the next Upper level

PT none PPRINT the whole object open

Cursor commands

uc none Use Cursors

cu alom set atom 1o CUrrent cursor position

GO CLrspr GO 1 the specified cursor position

PC nong Print Cursor positions in the current object
PA none Print All cursor pusitions in the wp-level object
KC alom Kill the Cursor assigned to the atom

Debugeing commands

BK pred.any... set BreaK point at next object; if pred evaluates to FALSE,
don’t break; rest of arguments are printed out at break

BA pred,any... sct Breakpoint After next object

KB none Kill all Breakpoints in open object

KT none Kill 'This breakpoint in the object to the right of cursor

Monitor commands

UM none Use Monitors

itw atom,pred.any... sct Read-Write monitor on afom

RM atom,pred.any... set Read Monitor on atom

WM alom, pred,any... sct Write Monitor on afom

+F and 15 return you to EDIT from a higher level.

The ATOM * may be used as a fix argument whose valuc is the largest legal value for that command.

3.3. Debugging and the Interpreter

Before continuing the discussion of the various packages that are used in the debugging of MDI. code, we
will expand on the discussion of ERROR, FRAME, (and so on) in Chapter 16 of [3]. To summarize that chapter,
whenever an ATOM is bound or a FUNCTION or RSUBR is MCALLed in ML, information is added to the
contol stack. This information, normally ‘invisible’, may be cxamined using the functions described in &

previous scction (FRAMES, FRE&, FRLVAL, etc.). ‘An invocation of ERROR puts MDL. into a LISTEN-like loop.

32 The MDL Editor

38 1he ML, Programiming Environment

Successive ERRORs stack up and are rellected in the LISTENING-AT-LEVEL message printed whenever
ERROR or LISTEN is called.

In addition to being examined, the stack may be muodified as pant of the debugging procedure. For
axample, the SUBRs SET and LVAL take an optional second argument which may be (amung several pussible
TYPEs)a FRAME. EVALing

{SET X 10 <FRAM n>>
would change the LVAL of X in the nearest binding lower in the stack than the FRAME n FRAMES lower than
the most recent call to ERROR or LISTEN, Similarly

CLVAL X <FRM m>>
examings the LVAL in a particular FRAME,

The most comnmon use of the ML, interpreter in debugging is invoke the SUBR ERRET. With no
arguments, it drops all the way to the bottom of the stack and then culls LISTEN: It says ‘| give up’ (although
side effects are not undone). More commonly, ERRET is given a single argument, which causes the last
invocation of ERROR or LISTEN o return that argument. For example, suppose o program contains , FOQ

but FOO has no GVAL. MDI would respond

ERROR

UNASSIGNED-VARIABLE

FOO

GVAL

LISTENING-AT-LEVEL 2 PROCESS 1

You could give up, saying <ERRETY, but it is uften more reasonable to say "Oh, yes. FOO was supposed to be

1000, and then
{ERRET 1000>

Siill beuter is
CERRET <3ETG FOO 1000>>

which will prevent future ERRORs from the same cause.

Finally, ERRET may be given a second argument of a FRAME, which means to return the first argument as
the value of the invocation of that FRAME. [n the previous example, the programmer might look at the stack
(with FRE& or FRAME 5) and sce

Debugging and the Interpreter i3

I he ML, Programming Environment 3o

1 GVAL [FO0]

Z EVAL [.FOO]

3 EVAL [<+ .X .Y ,FO0>]

4 EVAL [<LOSER .A .8>]

5 EVAL [</ ,GOOD-GVAL <LOSER .A .B>>]
6 EVAL [<WINNER 1.0 2.05]

7 LISTEN [

After sume thought. he may just suy ‘Well, LOSER apparently needs some debugging. but for now I'm

mteresied in WINNER', in which case he can “fake” a reasonable return from LOSER by typing
<ERRET 342.0 <FRM 43}

which returns 342. 0 exactly as though LOSER had returned it.

Muore complex errurs are sometimes more difficult 1o fix. requiring tic use of EDIT (at least). In the above
cuumple, the programmer might decide o debug LOSER afier all. There are two ways to go about this: First,
il the probiem is localized. the FRAME itself may be edited (which is to say, the conrents of the FRAME may be
cdited). Changes will show up in the FUNCT ION from which the FRAME s contents were derived. The newily

vorrected FRAME may then be RETRYed. FFor example,

<EDIT 3>§
. various editing commands
QRS

Second, the function itself may be cdited. In the prucess, it may be so changed that the FORM which
vaused the ERROR no longer even exists, Ofien, the casiest solution is to retry the invocation of the EDITed
TUNCT ION from scraich: in this case

<RETRY <FRM 4>>%

\s always, the major restriction to remember is that side-cffects are not undone by RETRY.

J.4. Loading and Dumping

GROUP-LOAD and GROUP-DUMP arc used w load and dump files of M1 programs in such a way that the
contents of the file are made available in a MDIL structure called a group. Many other PACKAGES in the MDL
civironment operate on or change groups: Amaong them arc "EDIT™. "GLUE", "PDUMP", and the MDL
compiler,

GROUP-LOAD and GROUE-DUMP are almust as widely uscd as FLOAD as 2 way of dealing with groups of
Mpi functions, Conscguenily, they are already loaded m most initial Mids, as part of the package
"GRLOAD®

33 Debugging and the Interpreier

) the ML, Programiming Invirement

GROUP-LOAD fiiengmie siring

Froup-mne; aloms
Te=name:string s the file to load.

sronpename:atom 15 the name to give the group. It is optionul and by default the ATOM formed by PARSE of
the first name of the file to load. The group will be stored as the LVAL of group-name.

JNOUP-DUMP is the opposite of GROUP-LOAD. Tt vutputs the group from the Mbi w the file given as is
first argument. Functions unchanged since the last GROUP-LOAD are copicd from the original input file.
Funetions that have been edited are vutput using the routine given as the third argument 1 GROUP - DUMP.

(GROUP-DUMP fllc-name:slring

crp-rame: atom
orinf-roufing
kill-brenk pounes®

He=name:stiring is the only reguired argument. s the file w which w output the group.

growp-nameatont is optonal, and defaults as it does for GROUP-LOAD. but of course gives an ERROR if the
group doesn’t afready exist.

artit-routine is vptional, and defaults 1w , PPRINT unless the group contiined NBIN formul RSUBRs, in which
cnse , PRINC is used.

bill-breakpoints? s optional. by default 7. in which casc GROUP-DUMP kills all EDIT breakpoints and
monitors in objects being dumped. Giving a fourth argument of 2 FALSE o GROUP-DUMP prevents this.

On the surface. it appears that little happens in the process of loading a file and making it into a group.
However, a great deal of information about the group has been stored away in associations for later use.
Some of this information is of use to the ML programmer:

|, On an association between growp-name and the ATOM CHANNEL is stored a LIST giving the name
of the file that was GROUP-LOADed to form the group. Removing this association before
GROUP-DUMPing has the effect of making the entire group be vutput from core rather than
cupied from the original source.

1. On an association between group-name and the ATOM MAGIC-RSUBR the ATOM T is stored if the
group contained any RSUBRs in fost (NBIN) format. It is this association which is used to
determine the default prov-routine in GROUP -DUMP,

3. The OBLIST path in effect at any time during the load is available. The vriginal path is stored on
an ussociation between group-name and the ATOM BLOCK. Within the group, the path changes are
stored in an association between the group RESTed to the point of change and the ATOM BLOCK.

4. If the second element of o FUNCTION definition is not an ATOM, the actual FUNCTION name
gutten by EVAL of that ¢lement is stored as an association between the original element and the

"_oading and Dumping 34

(e gkl

nent

tof

ile.

1€

e ML Programming Environment 4]

ATOM VALUE.

5. The location of a function within the input file is stored as a LIST of the starting and ending
offsets (in characters) of the function, under an association between a locative wo the GVAL of the
FUNCTION name and the indicator DEFINE. 'This association is removed by EDIT (and other
editors) to indicate that the FUNCTION has been changed.

There are additionally several switches that affect the operation ol GROUP-LOAD:
.KEEP-FIXUPS
[l the LVAL of KEEP-FIXUPS is truc (ind GROUP-LOAD hinds it that wav during loading). the hxups of
t5UBRs GROUP-LOADed will be kept.
.EXPFLOAD
I the LVAL of EXPFLOAD is true. FLOADs will be expanded. That is. the objects in the [ile FLOADed will be

added i ie group in place of the FLOAD, The initial setting of EXPFLOAD isa FALSE,
.EXPSPLICE
Il the LVAL ol EXPSPLICE is truc. any objects returmed within SPLICEs will be inserted directly inte the

proup as described above. The initial seuing of EXPSPLICE isa FALSE.

3.5. The One-step Debugger

e M1 One-step debugger allows the user to step through the evaluation of any MDIL expression one
aperation’ at a time. Between steps, variables may be cxamined or changed. functions edited, and so on.
s 15 possible because the debugger runs ina different M1 PROCESS than the expression being stepped.
and a MDI. PROCESS may 1STEP another [3]. T'o load the Debugger, <USE "DEBUGR™?>.

e M. Debugger can be in any of three states. In the initial state, OF F, no one-stepping occurs and the
I whugger does not listen for any special interrupt characters. The Debugger is, therefore, completely inactive.
Iy typing <DEBUG> to MDIL., vou leave the OFF state and cnter the READY state. In the READY state no
vhe-siepping occurs, however the [Debugger does listen for interrupt characters. By typing the interrupt
luaencter 1B, you enter the ON state and vne-stepping begins. In addition. I you were stopped at an EDIT
eeakpoint when the B was typed, the breakpoint will automatically be exited and evaluation continued in

i onc-stepping state.

While in the ON state, the Debugger will proceed through the exccution of any MbL. objects one step at &
In essence, the Debugeer stops just before and just after every call to EVAL. At cach step the Debugger
11 dicaie its current condition as foliows. 11 EVAL is recursively entered at level, s, with input, obiect. the

[ty will be:

14 Loading and Dumping

42 Ihe MDI. Programming Hnvironment

w=> obfect

(where vbject is ampersand printed). If EVAL is returning fron level, o, with result, object. the display will be:
né= objfect

{where ebject is ampersand printed).

'The 1Debugger will stop at cach such step and wait for directions. ,There are four interrupt characters that
may be typed o proceed further in the program: M, 0, +R and tA. They cach take an optional prefix

argument that serves as a repeat count
N

causes the ebugger to perform the next siep of the current evaluation.

0
causes the current object to be completely evaluated without any vne-stepping and then stops with the result
of that evaluation. 0 is useful for siepping vver COND predicates that you know will not succeed. or more
generally, uninteresting parts of a program,

tA
is similar to +0. but specific to the evaluation of the argument list of a FUNCTION, PROG. or REPEAT. Typing
*A during such evaluation allows the rest of the argument list to he evaluated without one-stepping and then
stops before evaluating the budy of 4 FUNCT TON, PROG, or REPEAT or retuming of a result.

tR
is most cffectively used in a REPEAT or PROG loup. T'yping tR causes evaluation to proceed until control
returns o the point in the body of the REPEAT /PROG at which *R was typed. It thus allows you to go once
around a loop.

It should be noticed that, when stopped at one of these steps, you can cxamine and modify program
variables. do a FRAMES or FR&. EDIT FUNCT IONs and sct breakpoints, and in general perform any valid
MDL operations. Also. when you stop, the LVAL of the ATOM LAST-OUT will be set to the vbject the
[ebugger last typed out. This is useful if the & performed by the Debugger did not show a particular detail
that you are interested in.

Use the interrupt character t€ (o leave the ON state and return to the READY state. Use the interrupt
character +Q to leave cither the ON state or the READY state and return o the OFF state. When leaving the ON
state #s described, the exceution currently heing une-sicpped will be finished in the usual manner.

The function REPATR attempts to fix any crrors in the Debugger that you might happen to invoke. These

errors are casily distinguished since they never occur in MDL's MAIN PROCESS. Therefore, you will see:

The One-step Debugger 35

v

The ML, Programming Environment - 43

LISTENING-AT-LEVEL m PROCESS n
(where o is not 1). REPAIR wms ofT the Debugger and returns you to running in the MAIN PROCESS (no

longer one-stepping). Because REPAIR turns off the Debugger, you must do <DEBUG> again if you wish to
try any further one-stepping.

3.5.1. MDL Debugger Command Summary

<USE "DEBUGR"> loads the Debugger.

<DEBUG> makes the Debugger ready.

B begins onc-sicpping.

N performs the nexi step of the computation.

10 steps completely over the next computation. then stops and continues one-siepping.
tA evaluates the arguments of the current object then stops and continues one-stepping through the body.
tR continues evaluation until you return o this point.

tE ends one-stepping.

tQ quits one-stepping and makes the Debugger unready (turned off).

{HELP> prints 2 command summary.

¢REPAIR> attempts to repair any Debugger errors vou might invoke,

3.5.2. MDL Debugger Special Features

The following flags have special imporance 1o the Debugger:
. INDENT-INC

i the amount by which to indent for cach level (by default 2 spaces).
+ INDENT-MOD

The indentation-level is the real level aken modulo this number. The default is 10, Indentation ‘restarts’

when level gets here. IF vou don’t like this feature, make the number large.
LINDENT-DIF

is the minimum amount of free space to reserve on cach line that indentation must not wuch (by default 20).
Imerefore at level L the indentation is exactly:

5 The One-step ebugger

- Ihe MDI. Programming Environment

‘MIN <* ,INDENT-INC <MOD .L ,INDENT-MOD>>
t- €13 ,QUTCHAN> ,INDENT-DIF>>

,OUT-FAST

if true the Debugger will not stop when leaving a level with a result. The defaultis T,
,OUT-UNIQUE

if both this and previous flag are true successive ‘outs’ of the same item will not be displayed (defaults to T).
+SELF-FAST

if true the Debugger will not stop when entering a level with an object which EVALS to itself (c.g. ATOMs,
FIXes. STRINGs). The defaultis T. The display will be:

n: object

,FORM-FAST
iFuucilhr: Iebugger will not stop when entering a level with any of the “short” FORMs (e.g. <>, .F00. ,BAR.
"ANY TIHING). The defaultis T. The display will be:

n: JFOD = lval
Any of these flags can be SETGed by you to tilor the Debugger t your own tastes.

3.6. Execution Tracing
I'he *TRACE™ PACKAGE provides a facility for observing the arguments and returned values of sclected
FUNCTIONs and RSUBRs. It is pussible to print the arguments on entry to the function. print the value
returned, and to break on entry w and exit from the function. All actions may be perfurmed conditionally.
Tu load TRACE. type
<{USE "TRACE=>

3.6.1. Using TRACE

TRACE is invoked by
(TRACE wha! options>

what is cither an ATOM or a LIST of ATOMs, naming the things to be traced. These may include SUBRs,
FUNCTIONs, and RSUBRs: however, anything which is traced must EVAL all of its arguments. options

specifics the behavior of TRACE with respect to the specified function. There are five switches, as follows:
IN-BREAK

means break (cause a M1 ERROR) before culling the function. Normally off.

The One-step Debugger 35

Ihe MDI. Programiming Environment 45

IN-PRINT

means & function arguments on entry. Normally on.
OUT-PRINT '

means & function value on exit. Normally on.
OUT-BREAK

hreak after executing the function call. Normally off.
VERBOSE

means & the arguments to the function one per line. This is useful if the arguments are long. Normally off.

T'o cause a given option (o be unconditionally on, include its name (an ATOM) in the opfions TUPLE. To
cause an option ta be unconditionally off, include a two-clement LTST. composed of the option name and a
FALSE. If the second element of the LIST is neither FALSE nor an ATOM, it will be EVALed cach time
TRACE cxamines the setting of the given option for the function. This allows conditional breakpoints, for

cxample.

Thus:
<TRACE FOO (OUT-PRINT {3y

will cause FOO's arguments t be printed on entry, but the value will not be printed.
<TRACE FOO (OUT-PRINT '<G? <TIME> 4.03)>

will cause printing of the value after four seconds of cpu time have been used. Printing of the arguments will

uccur cach time FOO is called.

UNTRACE turns off tracing of the specified functions:
<UNTRACE whairarom-or-fisi>

What defaults w a LIST of all functions which have been traced.

3.6.2. Understanding TRACE
TRACE works by CHTYPEing the specified functions o new types which have an APPLYTYPE associated
with them. This means that one cannot trace calls o RSUBRs or RSUBR-ENTRYs which are already linked.
In addition, it means that UNTRACE must be used tw get the old value back. To determine the status of a
function with respect to tracing, say
<GET applicalle TRACE:
Fhis returns FALSE if applicable is not traced: otherwise, it returns an object which describes the settings of

the various options. ‘The ohject hasa PRINTTYPE which associaics the name of cach oplion with Its setting:

36 Exccution ‘I'racing

46 e M. Programaung Environment

{GET ,FDO TRACE>$S

FOO

IN-BREAK: #FALSE ()
IN-PRINT: T

OUT-PRINT: <G? <TIME> 4.0>
OUT-BREAK: #FALSE ()
VERBOSE: #FALSE ()

Individual settings for a particular function may be changed by PUTting into this structure:
<PUT <GET ,FO0 TRACE> ,IN-BREAK T>

causes a break whenever FOO is called.

3.7. Monitors

A common problem in debugging is the mysterious ‘clobbering” of some value or clement of a dita
aructure. M1 has imbedded in it & mechanism for triggering interrupts on references, cither for reading or
writing, to valucs of varables and ciements of structures.

The "MONITOR" PACKAGE is designed to be a readily accessible user interface to these "READ" and
"WRITE" interrupts in the MDIL interpreter.

To obtain "MONITOR",
<USE "MONITOR">

There are three basic kinds of ‘things' which can be monitored: values of ATOMs, clements of
STRUCTUREDs (the TYPE of the clement is not important), and ASSOCIATIONs.

For ATOMs, the LVAL or the GVAL may be monitored, [F the LVAL is to be monitored, tne ATOM must be
ASSIGNED?. Ior the GVAL, the ATOM must be GBOUND?. If these conditions cannot be met, a monitor
cannot be generated.

For STRUCTUREDs, the monitor is on the sth clement, where n is specified when the monitor is created.
Remember, the monitor is on aslot of the STRUCTURED, not un the contents of that slot!

For ASS0C IATI0Ns. the monitor is on the association itself,

3.7.1. Monitor Internais
This section expands on the discussion of monitors in the MDL. document itsclf[3].

M. defines two types of monitors: Read and Write. [hese are implemented in the language by two

Execution Tracing 16

I'he MDIL. Programming Environment 47

interrupts, READ! - INTERRUPTS and WRITE ! - INTERRUPTS, respectively. In addition, the "MONITOR™
PACKAGE can allow read-write monitors. 'ITH_'HDHIIGR' PACKAGE is at base a sct of functions to create
and handle these interrupts. A monitor is triggered in the following cases:
Read monitor:

lFor LVALs -- via LVAL

For GVALSs - via GVAL

For STRUCTUREDs -- via NTH
For ASSOCIATIONs -- via GET and GETPROP

Write monitor:
For LVALs -~ via SET or "AUX " bindings
For GVALs -- via SETG
IF'or STRUCTUREDs — via PUT. SUBSTRUC
For ASSOCIATIONs -~ via PUT and PUTPROF

Note that PUTRESTs of LISTs which may alter the sth clement of a LIST, do not access the old nth

clement of the LIST and therefore do nol cause a wrile monitor Lo trigger.

Internally, Mpl. perfurms monitoring on LOCATIVES to STRUCTUREDs. In fact, LVAL and GVAL are
really pointers to an internal structure. ‘This need not concern the user exeept in the case of LVALS of ATOMs.
In this case, M1 will monitor a LOCATIVE to that (exactly that unique) hinding of the ATOM. When that
hinding becomes invalid, or more precisely,

<NOT <LEGAL? localive>>
a function in the "MONITOR™ PACKAGE will make the monitor vanish. lllegal monitors print as
#MONITOR [ILLEGAL] (if vou cver get a pointer 1o one). Remember that if you want to monitor the LVAL
of an ATOM bound in a FUNCTION (or PROG. cic.). vou must create a new monitor cach time. as a new
binding is created cach time. One way o do this is to edit into the FUNCT ION a call to MONITOR (sce below)
after the ATOM becomes ASSIGNED?, Fortunately, EDIT (see section 3.2.2.9) has commands to do exactly
that,

3.7.2. Creating MONITORs

Creation of all monitors is done through a call 1w MONITOR (which returns an object of TYPE MONITOR),
as follows:

37 Monitors

3 The ML, Programming Environment

{MONITOR ppe:siring
wbject
where

predicate
todo:tuple >
where:
rypeisonc of "READ", "WRITE", or "RW™.
ubject is cither an ATOM or a STRUCTURED, or an ASSOCIATION item.

where is cither LVAL or GVAL (if object is un ATOM) or a FIX. (if objecs is 4« STRUCTURED), or an
ASSOCTATION INDICATOR.

predicate is something which is EVALed o determine whether the monitor is (v be triggered: this defaults to
I. The "MONITOR™ PACKAGE defines three variables which can be referenced in the test:

OLOVAL is the uld value of the ubject monitored.

NEWVAL is the new value of the object monitored.

MONOBJ is the ubject monitored (ATOM or STRUCTURED).

Here value means LVAL, GVAL. ur clement. Obviously, NEWVAL is not sct for *"READ™ monitors.
fodo is any number of things to be EVALed and PRINTed when the monitor is triggered.

Note that predicate and todo are identical to the analogous arguments of the EDIT BK command.

3.7.3. Monitor Events
When a monitor is triggered, the following is printed (remember the predicale is cvaluated before this),
and then LISTEN is called. To continue, <ERRET T).

Read:

READ of where of objeci
Value: oldval
todel = result]
todo? = result2

- -

Write:

Monitors 37

The M. Programming Environment 4%

**WRITE of where of objeci*®
01d value: oldval

New value: mnewval

todel = result]

fodo? resuli2

A slightly different first line format is used for associations.

3.7.4. Killing Monitors
Killing a MONITOR is accomplished by calling KILL-MONITOR as follows:
<KILL-MONITOR monitor’
or
<KILL-MONITOR npe objcct where

In the latter case, fype. vbject, and where arc as given in the original call to MONITOR.

Tu kill ull MON ITORs, use
{KILL-ALL-MONITORS:.

3.7.5. Other Monitor Routines
<MONOBJ mionitor>

returns the object monitored.
{MONSPEC monitor>

returns the where of the MONITOR.
{CLEAN-MONITORS>

flushes invalid MONITORs from the MONITOR LIST. ‘This is done internally and nced not be called
routinely,
,MONITORS

isa LIST ofall current MONITORs.

3.7.6. What You Can’t Do with Monitors
You can't monitor the LVAL of something BOUND? but not ASSIGNED?. E.g.,

37 Monitors

50 Ihe ML Programming Environment

{DEFINE WRONG ("AUX" BAR)
{MONITOR "READ" BAR LVAL>
ol P

You can't expect compiled code to cause monitors to be triggered. Natwrally, you can’t place monitors in
compiled code; however, a compiled reference w a monitored ATOM will not usually cause the monitor to
trigger cither.

3.8. FINDATOM
Ihe "FINDATOM® PACKAGE is intended to reduce the problems caused by multiple OBLISTs and
lengthy ATOM names in MDI. It allows one to find all ATOMs whose PNAME s match some specification, which

need not be exact: in addition. one may place constraints on the values of the ATOMs found.

FINDATOM is invoked as:

{FINDATOM specsir:string
searchlist

constrainis
outobl:listy

speesir 1S # STRING describing the PNAMEs of the ATOMs one wishes w find. Three special characters are
recognized in this STRING:

*: malches anything including an empty string

=: matches any single character

tQ: quotes the following character

Scarch strings may be an arbitrary concatenation of normal and special characters. For example:
"*SDM*": matches any ATOM containing " SOM™ anywhere in its PNAME.

“*=50M*": matches any ATOM containing "SDM" in its PNAME, provided that at least one character
precedes the "SDM™.

+0Q": matches any ATOM with PNAME "*",
**=: matchcs any ATOM.

If £Q is the only special character in the string, it need not be quoted: " +Q" scarches for ATOMs with
PNAME "tQ".

searchlisi specifics the OBLISTs toscarch. Possible values are:

#FALSE (): scarchall OBLISTsin .0BLIST

Monitors 37

Ihe MIDL. Programming Environment 51

#FALSE (oblists-ur-forms): scarch all bul the OBL I5Ts specified.
oblisr; scarch only this OBLIST,

list-ufoblists: scarch only the OBLISTs in this list.

else; scarch all OBLISTs. This is the default

constraints is a TUPLE describing the value of cach ATOM found. 1t may consist of any number of valid TYPE
names. along with arbitrary structures and the following special objects:

T: if present. overrides any other constraints: if no other constraints are specified, this is assumed. Any
ATOM matching specsrr will be accepted.

ANY: overrides any constraint other than 7. Any ATOM matching specsir which has a value (cither GVAL
or LVAL) will be accepted.

<>: any ATOM which has no value will be accepted. Note that giving both ANY and <> is equivalent to
giving T.

LINK: any L INK will be accepted.

If other constraints are provided, they work as follows: all valid TYPE names given (ones for whom
VALID=-TYPE? rcturns T) are stored in a structure; when a value is encountered. its TYPE is MEMQed

on this structure. If the ATOM docs not succeed here, it is next checked against the “arbitrary
structures.’

thin

Anything in constraints which is neither one of the above “special objects’ nor a valid type is treated as &
DECL specification. All such objects are put in o FORM starting with OR. which has the effect of
generating a single DECL specification. When a value is found. DECL? is called with the value as its
first argument and the generated FORM as its second. IFDECLT rewirns T, meaning that the FORM is
valid as a DECL for the VALUE, the ATOM is accepted.

Examples:
ATOM FALSE *<LIST [REST FIX]>

specifics that any ATOM accepted must have cither a GVAL or an LVAL which is of type ATOM or
FALSE, or whichisa LIST of FIXes.

"{OR ATOM FALSE> '<LIST [REST OBLIST]>
specifies that any ATOM accepted must maich the DECL
<OR <OR ATOM FALSE> <LIST [REST OBLIST]>>

outobl, if present, is 2 LIST of OBLISTs which is the LVAL of 0BLIST when FINDATOM prints things, Thus,
one may force all ATOMs w be printed with full wrailers by providing an empty LIST here. The last
argument given w FINDATOM, provided itis a LIST, is assumed 1o be vwiobl,

FINDATOM prints the name of cach ATOM it accepts, followed by the STRING "Gassigned® and the
type of GVAL if the ATOM has one; this will be followed by the STRING "Assigned® and the type of the

38 FINDATOM

32 : ‘The MDI. Programming Environment

LVAL if the ATOM has one. It prints the number of ATOMs found when it finishes.

3.9. "PINFO"
"PINFO" is an informational PACKAGE. It is used to examine the OBLIS5Ts of the PACKAGEs loaded into

an MDi., There are two major entrics in PINFO.

{PCK-INFO package:string
internal?: booleany

Both arguments to PCK- INFO arc optional. If neither argument is given, the names of the PACKAGESs loaded
into the MpL are listed. [fa package is given, the contents of the package’s ENTRY OBL IST are listed, as well
as information about the VALUE of cach ENTRY. [f imternal? is provided and non-FALSE the contents of the
internal OBLIST are also listed. PCK-TNFO prints an errur message if package is not loaded.

{PCK-USES package:siring>
fists the names of PACKAGEs USEd by package or returns a FALSE if package is not loaded.

3.10. Debuggingin a Run-time Environment

A fairly common occurrence when running ‘debugged’ code is (o find that if was not after all completely
debugged. It is uscful to be able to load interpreted versions of some FUNCTIONs in a PACKAGE into the
compiled environment for debugging. "DFL", "RDFL", and "UNLINK" arc PACKAGESs written to simplify
this procedure.

3.10.1. DFL
The "DFL" (")ebugging Fluad') PACKAGE is a sct of routines fur loading and dumping of small numbers
of FUNCT IONs from a larger file. It is useful in debugging already running systems, or ones which have not

been GROUP-LOADed. To get "DFL"
{USE “DFL">

The main entry of the "DFL" PACKAGE isDFL:
<DFL func-names file-name:siring unlink?:boolean>
where all arguments are optional and
Sune-names is the name(s) of the DEF INEd FUNCT ION(s) to he obtained from this file. [t may be an ATOM, 2

STRING., or a structure of ATOMs or STRINGs; if ATOMs arc given, their SPNAMES arc used, 'The default is
the argument last given to DFL or RDFL.

file-name is the file to obuin the FUNCTION(s) from. The default is the last file DFLed or RDFLed. An ATOM
may be given, in which case its SPNAME is used for the first file name.

unlink? If this is true, and if one or more of the values replaced by the DFLed FUNCT 10Ns were RSUBRs or

FINDATOM 38

|4

By

G

X

B S

‘The MDI. Programming Environment 53

RSUBR-ENTRYs, the reference VECTORs of all RSUBRs, including pure ones, will be scarched for
occurrences of the old value: such occurrences will be replaced by the ATOM. This is the inverse of
RSUBR-LINKing. Purc structurcs will be unpurified; this does not change their address in core, but
simply makes the page they live in read/write.

In the normal case, if an RSUBR or RSUBR-ENTRY is being replaced. unlinking will occur automatically in
garbage-collector space only if RSUBR-LINK is T. Also, remember that unlinking is not the same as
substituting: only RSUBRs stored at top level in reference VECTORS are found: if the old value itself was in a

structure (such as a dispatch table), it will not be replaced.

3.10.2. RDFL
RDFL is similar to DFL but is for reloading RSUBRs rather than FUNCTIONs. RDFL is contained in the
PACKAGE "RDFL".
<ROFL func-names fil-name wnlink? glue®
‘The first three arguments are us for DFL, The only difference between RDFL and DFL (barring the effect of
the fourth argument) is that RDFL searches in the file for *¢SETG " rather than "<DEFINE °

glue? If non-FALSE. RDFL will READ and EVAL the next object in the file following cach RSUBR read. This
will in the normal case obtain the “glue bits” for the RSUBR (see section 6.1). The default for plue?is

<AND <ASSIGNED? GLUE!- > .GLUE!- >
This is the FORM used in NBIN files to determine whether glue bits should be kept.

Note that RDFL will work to rcload any SETGed object, not just RSUBRs.

RDFLing an RSUBR-ENTRY docs not work and may well be fatal: you must ROFL the RSUBR in which
the RSUBR-ENTRY is an cntry, as well.

3.10.3. UN-DFL
UN-DFL is for writing out DF Led FUNCT TONs after EDITing.
<UN-DFL gtoms filnam force?>

atoms is an ATOM or a list of ATOMs, which will be UN-DF Led. “I'he FUNCT I0Ns defined must all be from the
same file, or UN-DFL will not work. UN-DFL can only UN-DFL things which were previously loaded by
DFL.

Sinam The default is the file the ATOMs originally came from.

Jorce? Normally. UN-DFL will object if there is a version between the file the FUNCT IONs came from and the
file which UN-DFL will create: it thinks it will likely destroy uscful information. Providing an ATOM here
causes this scruple to be ignored. 1t is almost always unwise to do so. For cxample;

ilo Debugging in a Run-time Environment

4 I'he M. Prugramming Environment

{DFL (FOO BAR)> <(UN-DFL FOO> <{UN-DFL BAR>
#ill cause UN-DFL to fail. Moral: DFL and UN-DFL your FUNCT IONs together.

3.10.4. UNLINK

The "UNLINK® PACKAGE contains three cntrics: UNLINK, PURE?, and UNPURIFY. UNLINK is
sometimes called by DFL; PURE? and UNPURTFY arc good ways to Ihuratively defeat the safety interlock’ of
MbDi.

UNLINK is used to unlink RSUBRs afler they have been linked. (See the discussion of RSUBR-LINK in

(3D
(UNLINK groms pure?>

atoms is i list of the ATOMS t be unlinked, vr a FALSE, meaning unfink every RSUBR in the Mbi, or a
zroup-name, meaning unlink calls to all FUNCT IONs and RSUBRSs in the group.

pure? is optional and defaults to FALSE, but if true, cven purc RSUBRs will be scarched. UMNLINK
examines all the OBLISTs in the MDI, louking for RSUBRs; if an RSUBR exists only in a structure, and not at
wp level in any RSUBR's reference VECTOR, it will not be found.
CUNPURIFY pure-obiect:any?

PURE? takes an object and determines if the right half of the value word is greater than the number
contained in the MDL location PURBOT. which is the lowest pure location in MDL. Ergo, ‘Is the object | gave
you purc?' Itis only meaningful for structures.

CUNPURIFY pure-objecizany>

UNPURIFY takes a single argument. which must be of PRIMTYPE VECTOR or UVECTOR (i.c.. it must have
an ADBJN pointer for its value word). It causcs the pages in which that object lives to become impure, and
retums T.

Recause there is no way on I'TS to make a read-only page an impure page directly, the following algorithm
is used by UNPURIFY:

1, Is the ohject pure, according to PURE? If not, leave.
2 ISUNPURTIFY-PAGE! - TUNL INK GASSIGNED? IF not, get a page from the interpreter, and SETG

the aforementioned ATOM to its number. le., the page is more or less permanently taken for use
uf UNPURIFY,

3. For cach page occupied by the vbject; a) If the page is afrcady impure, do nothing: b) otherwise,

Debugging in a Run-time Environment 3.10

The ML, Programming Environment 55

map the page on top of UNPURIFY-PAGE: c) create a new, impure page where the old page was,
d) copy the contents of UNPURIFY-PAGE back to the old, now impure page.
"Thus, no pointers are changed: as far as MDI is concerned, in fact, nothing has changed. ‘The unpurified

pages are still pure, according to its page map. However, you may freely change the unpurified object.

If your change to the newly unpurified object consists of PUTing a pointer into garbage-collected space
into the object, you may lose completely unless the pointer points to a frozen object. The Mni. garbage
collector does nor examine unpurified objects. UMLINK can only use UNPURIFY because all ATOMs

referenced by pure H‘EUERS are indeed frozen.

For the above reason. use of UNPURIFY is not recommended for the general user.

3.11. CRITIC

"CRITIC" is a PACKAGE designed to aid the user in debugging (and perhaps increasing the efficiency of)
his programs. Tt accumulates and prints in a readable format information about the interactions of the various
FUNCTIONs (and LVALS and GVALS) in a group. 1t also warns the user about various conditions it considers
to be cither non-optimal or erroneous, such as incorrect use of SPECIAL, forgetting to QUOTE some structurc,
and so on. Like most critics, it is sometimes wrong, but it trics to perform a useful service. To load

"CRITIC" say
<USE "CRITIC">

There are two major entrics, one of which prints more information than the other.

{CRITIC group-name
vulput-file>

where group-name is the ATOM returned by a GROUP-LOAD, and the optional oufput-file is a STRING giving
the name of the file to output to (by default with second file name "CRITIC"). This can also be a CHANNEL
if you arc planning to do several CRITICs into one file. CRITIC prints information about intcractions
among the FUNCTIONS in a group {as described below).

{CRITIC-NOTES group-name
outpul-file>

is similar but only prints *errors’ and ‘warnings’ -- things that might be problems with the FUNCT IONs in the
group,

The output format (for cach FUNCT ION and for the group as a whole) is as follows:

Junction (object number of function in group)

Called-by: alist of all the functions which call function

310 Debugging in a Run-time Environment

3% I'he MIDI. Programming Fnvironment

Calls:alist of all the functions called by function
SETG: external globals SETGed by function

GVAL: external globals referenced by fiunction

SET: cxternal variables SET by function

LVAL: external variables referenced by finction
SPECIAL: variables declared SPECIAL by function
USE-DATUM: DATUMs used by function

The above table is printed by CRITIC but not by CRITIC-NOTES. “External’ as uscd above means

‘External o function’,

CRITIC-NOTES and CRITIC both print information about possible defects or errors in cach FUNCTION.
“These can be any or all of the following (explanations follow where needed).

3.11.1. Global problems with the Group
FLOAD in file.
‘This is pretty minor: FLOADs at top level are discouraged if you can avoid them.

BLOCK or ENDBLOCK at top level in PACKAGE.

PACKAGESs should not have to resort to this.
atom-name: MANIFESTed structura,

The ATOM given is a structure but was MANTFESTed. Since a MANTFEST is copicd within the reference
VECTOR uf any RSUBR that uscs it, it is usually not a good idea..

ENTRYs not bound, assumed locals: atom-lisi

The ATOMs given were made ENTRYs in the PACKAGE, but were not bound, so CRITIC has assumed they
are locals, for lack of something better to do.

Packages USEd but never referenced: package-names

These PACKAGEs were in USE statements but no ATOM was cver found which fell on their OBLISTs
‘There will sometimes be incorrect entrics in this list if you USE a PACKAGE which scts up a funny ENTRY
OBLIST (RPACKAGEs included) or no OBLISTs atall.

Internal functions unused: afomelist

These are FUNCT IONs DEF INEd but apparcntly never referenced and not entrics. There will sometimes
be incorrect entrics in this list if you have FUNCT TONs invoked only by funny dispatching methods, such as

CRITIC i1l

The MDI. Programming Environment 57

APPLYing or EVALing an clement of a structure.

Internal globals unused: atonrlist

ATOMs SE TGed at top level but never referenced.

Internal manifests unused: atom-lisi

ATOMs SETGed and MANTFESTed at top level but never referenced.

3.11.2. Parameter list problems
ATOM arom-name used twice in parameter 1ist.

‘I'he ATOM named was bound twice in the same parameter LIST within the FUNCTION. MbDI doesn’t
worry about this, but you might.

Untasteful re-use of ATOM aiowrname in ROOT.

An ATOM was bound which happened 1o be in the ROOT OBLIST and happened to have a GVAL that is 2
SUBR or FSUBR. This is repurted because the ATOM will have to be unpurified, which is expensive.

"BIND" illegally located.

A "BIND"™ was found other than at the beginning of a parameter LIST.
"CALL"/"ARGS" illegally located.

A "CALL" or "ARGS"™ was found after the "AUX " in a parameter LIST.

"OPTIONAL" illegally located.

"OPTIONAL " was found after "AUX" in a parameter LIST.
“TUPLE" 1llegally located.

"TUPLE" was found after " AUX" in a parameter LIST.

atom "AUX" illegally QUOTEd.

The ATOM named was given as a quoted argument in the "AUX™ par of the parameter LIST,
External locals set but unbound and unDECLed: arom-list

External locals set but unbound: atom-list
Two different classes of hacking an external local. In both cases it means that the ATOMs did not appear to

i1 CRITIC

58 ' ‘The ML, Programming Environment

be improperly SPEC TALed, since no one bound them higher in the call tree (or at top level), These are most

often indications of misspelling or forgetting to put a temporary in the parameter LIST.
External locals used but unbound and wnDECLad: arom-lisi
Extarnal locals usad but unbound: atom-list

A reference to an external local which was not bound anywhere is probably a misspelling of a SPECIAL
bound clsewhere or the result of forgetting to put the ATOMs in the FUNCT ION's parameter LIST.

External locals set but unDECLed: arom-list

External locals used but unDECLed: atom-list

An external used but not DECLed usually means that the compiler will produce poorer code,

3.11.3. Unused ATOMs
Argument unused: atom-list
The arguments listed were never referenced.

Unused: atom-lisi

The ATOMs listed were bound at p level of the FUNCT TON and never referenced.

Unused in PROG: atom-list

Similar to the ahove, but the ATOMs were bound within a PROG.

Unused in REPEAT: atom-list

Similar to the above, but the ATOMs were bound within a REPEAT.

Unused in FUNCTION: atom-list

Similar t the above. but the ATOMs were bound within a nameless FUNCTION, such as the sccond
argument w a MAPF /MAPR,

Unused SPECIALs: arom-list

‘The same as above (including® ... in FUNCTION', cic.), cxcept that the ATOM was SPECIAL. This
message results from really looking down the call tree, so it is more accurate about this problem than the
compiler, which only looks at the FUNCT ION in which the ATOM is bound.

CRITIC 311

e B

The MDL. Programming Environment 59

3.11.4. Function calling errors
Calls undefined function aiom.
The FUNCTION calls an undefined FUNCT 10N (undcfined at the time CRITIC ran).
Calls function with too few arguments.
Calls function with too many arguments.

External FUNCTION function

I'he FUNCT 10N named is called but doesn't scem 1o fall on any of the OBLISTs associated with the group.

3.11.5. SPECIAL/UNSPECIAL problems
SPECIALs never used as SPECIALs: wom-list
The ATOMs were made SPECTAL but never used owtside the FUNCT ION in which they were bound.

alonr-name is unused or sShould be SPECIAL.

A very specific error which means that the ATOM given (always one of INCHAN, OUTCHAN, or OBLIST)
was bound but never referenced within the FUNCTION, and was not SPECIAL: Fither you bound it for
ciTect and forgot o SPECIAL it, or you didn’t need to bind it

atomt unbound in paths: paeh-list

If the FUNCTION is called by onc of the paths given, the aiomn will be unbound. A path is just a list of calls
CRITIC has found are possible, such as (FOO BAR BLECH), meaning ‘FOQ is called by BAR which is called
by BLECH'.

The ATOM atom used in fenl should be special in fend.

T'his note will appear with both FUNCT IONs mentioned. 1t means that atom is referenced in fen/ and the
nearcst FUNCT 10N that binds it and calls down to fen/ is fend,

3.11.6. DECLing problems
RSUBR has no DECL.
FUNCTION has no DECL.

Parameters not DECLed: aiwm-list

The ATOMs given were bound but not DECLed in the parameter list of a FUNCT ION, PROG, or REPEAT.

il CRITIC

60 Ihe MDI. Prugramming Environmeni

No DECL in DECL for: afom-list

The ATOMs in the arem-list given had no associated declarations.

NEWTYPE not DECLed: type-name

A NEWTYPE of a structurcd type was made but no DECL argument was included. In a structured
NEWTYPE. including a DECL of the interivr can greatly increase the efficiency of compiled code.

I'I'I.Ega'l DECL: arom-fist deel reason

I'he DECL pair given had illegal syntax fur the reason given. These can include:
"Not a lagal type": Anohbject appeared ina DECL that was notan ATOM, FORM, or SEGMENT.
"Type-name not a type: atem": Something vther than a type-nume or special symbol (such as ANY)
appeiared where a type was expected. This is sometimes caused by nut having your environment
completely set up when CRITIC is run.
"FORM/SEGMENT too short": A FORM/SEGMENT constructivn of only one clement was found.
"SPECIAL/UNSPECIAL with three or more elements”
"Bad PRIMTYPE type™: Thetypegivenina PRIMTYPE was ..ol a type-name.

"PRIMTYPE with three or more elements”

"Bad type of structured type”: The type-name given as the type of a structured type was not a
type. For cxampic, <FO0 FIX> where FOO is not a type.

"Bad BYTES specification”: A BYTES specification was not of the furm <BYTES fix fix>, or the
byle size was greater than 36.

"BYTES DECL too short™ A BYTES cunstruction of only one element was encountered.

"BYTES DECL too long": A BYTES construction uf more than three clements was encountered.
"VECTOR 1in OR specification™: An NTH/REST/OPT construction was found at top level of an OR.
"Nth/REST/0PT too short"™: A onc-clement NTH/REST/0PT,

"Only REST or OPT may follow OPT": Somcthing other than a REST or OPT was found after an
OPT.

"REST must terminate DECL": Sumething was found after a REST in the DECL.

CRITIC i

The MDL. Programming Environment bl

3.11.7. Miscellaneous
Possibly should be QUOTEd: struciure.

The structure given will be =7 w itself if EVALed. CRITIC lists these under the assumption that you
might have forgotten to QUOTE a structure that should have been. It says “possibly” because you obviously
want to build new structure sometimes. One way to do this without offending CRITIC is to build new
structure with explicitcalls o LIST, VECTOR, cic.

3.12. Program Environments
The ENV PACKAGE makes it casicr w load programs into different environments. 1t allows certain actions
o be taken during loading only if a given “feature” is present. ENV has three ENTRYs, and is preloaded.
<FEATURES feanures:iuples
If given no arguments, FEATURES returns the current feature LIST. Ifits first argument is ot a FALSE, the
arguments are added w the feature LIST. IF the first argument is FALSE, the remaining arguments are

removed from the feature LIST. Thus.
{FEATURES "COMPILER">

says that we arc currently in a compiler. All of the “feature” arguments may be cither STRINGs or ATOMs:
internally features are stored us STRINGS to avoid 0BL1ST problems.
{FEATURE? fratures:tuple>

returns T if any of its arguments is on the feature LIST.

CEVAL-WHEN fearures
conscguences:iuple>

uses the first argument o decide whether to evaluate the remaining arguments,

Jeatures specifies which feature(s) to look for. It may be a single feature or a LIST of features. In the latter
casc, if the first clement is a FALSE, what is checked for is the absence of the features listed. Note that this
argument is often a LIST created out of arguments to FEATURE?.

consequences-are things to be evaluated only if the features are present (or absent, in the FALSE case).

For cxample,
<EVAL-WHEN GLUE <SETG FOO 1>>

would perform the SETG only if it’s evaluated in a GLUE (or some other environment defining that feature),
<EVAL-WHEN (<> COMPILER) <SETG BAR 2>’

would not perform the SETG in the compiler environment

Unfortunately, the ENV PACKAGE is a relatively recent innovation, and so many programs do not set up

appropriate environmens.

i1l CRITIC

62

“The MDI. Programming Environment

T

The M. Programming Environment 63

4. The Library System

A coherent unified library system serves to-facilitate the sharing of algorithms and data by imposing 2
discipline appropriate for the particular environment. 'The MD1 Library System provides:

—~ A uniform access method for referring to functions and data outside of the current logical group;

— l.exical blocking. eliminating difficulties arising from overlap of names between different logical
groups;

— Automatic lnading of functions for the uscr who knows only the name of the function which is
wanted:

— A fucility wherehy functions which may be necessary only in unusual situations are loaded only in
the event that they are needed.

The M Library System may be divided into distinet parts. These are:

— ‘I'he Package System. the collection of routines used to provide lexical blocking for a logical group
(see section 2);

— The "explicit’ loading facility, the routines used to explicitly indicate that references are being
made (0 a particular logical group;

— The “implicit” (or "dynamic’) loading facility, the machinery for automatically loading functions
when they are needed during consule interaction.

4.1. Program Libraries

In the previous discussion of the Package System and USE (sce section 2.32), we glossed over the
mechanism by which a PACKAGE is loaded when another PACKAGE (or the user at his terminal) refers to it
We will now give the details.

There are two types of loading common in MDI. programming: ‘cexplicit’ loading, such as USE may
initiate, and “implicit’ or *dynamic’ loading. initiated by auempting to call or examine a function that is not
currenily loaded.

In the case of “explicit’ loading, it is necessary sumehow to map the name of a PACKAGE into a file name
which contains the body of that PACKAGE. 'Ihe mechanism for doing so must be flexible enough to allow
both “installed” programs (those that have been debugged and submiued (o the library) and developmental
programs o be loaded. It must also be tailorable for special needs, such as librarics for specific systems and
personal libraries for individual users.

4.0

64 ‘The ML Programming Environment

In the case of "implicit” loading, the further mapping from the specific ENTRY of a PACKAGE referenced to
the PACXAGE itsclf must be performed. It must deal with the case of two or more PACKAGESs cach containing
an ENTRY with the same PNAME.

For programs that are ‘public’ or “installed’, both of these mappings arc performed by a library, A library
is a file which contains pointers between the names of ENTRYs of PACKAGEs and the PACKAGES containing
them, and froin PACKAGE and DATUM names to the files containing themn,

The standard library is named L IBMUD and lives on a directory named L IBMUD (on I'I'S) or MOLLIB (on
‘Tenex/Tops-20). but other librarics, personal or special purpuse, may also exist; the mechanisms for creating
and maintaining them are the same in both cases.

4.1.1. Library Searching

When a PACKAGE is USEd, MDt first checks tw see if the PACKAGE is already lvaded. by looking up the
PACKAGE name on the PACKAGE OBLIST. If the PACKAGE is not yet loaded. M1 must search for the file
containing the body of the PACKAGE.

When MbL searches, it does so under the direction of a scarch path stored as the LVAL of the ATOM
L-SEARCH-PATH. 'This LVAL is a LIST, cach clement of which specifics "a place to look’ for the PACKAGE.
These clements may be:

 file-name"
A STRING refers to a library file; L IBMUD ; LIBMUD" for example.
(1

An empty VECTOR refers to the ¢<SNAME > directory. The directory will be searched for files whose names are
the name of the PACKAGE being loaded (truncated to six characters on ITS) and sccond names from the
LVAL of the ATOM L-SECOND-NAMES, which is a VECTOR of STRINGs which arc possible second names for
the file.
[dir:string-or-false]

A non-empty VECTOR specifics a directory. The first element of the VECTOR gives the directory as a STRING
or a FALSE, the latter case mecaning <SNAME>, If that is the only clement, L-SECOND-NAMES specifics the
file names to look for. If there arc other clements, they should be STRINGs to usc in place of
L-SECOND-NAMES.

A scarch path may consist of any number of such clements. The loader will examine them sequentially,
attempting to find the PACKAGE being loaded.

Program Libraries 41

EECSRRE

!if:

r

The MDI. Programming Environment 65

‘The initial LVAL of L-SEARCH-PATH (on ITS) is

("LIBMUD™ "LIBMUD;LIBMUD"™ [] ["MBPROG"] ["MPROG"™ ">"])
and on Tenex/TOPS-20, it is)

("LIBMUD"™ "<MDLLIB>LIBMUD™ [] ["MDLLIB"])
This instructs the loader to first search the user's persanal library (if it exists), then the “public” library. Neat,
scarch the user's directory for a file whose first name is the PACKAGE name. and whose sccond name is
specified by L-SECOND-MAMES. I that fails, perform the same scarch on the library directory, and finally
{on I'TS), look for a source version of the PACKAGE on the source directory.

‘Ihe initial LVAL of L=-SECOND-NAMES (on I'TS) is
["FBIN" "GBIN" "NBIN" ">"]

and on Tenex/710PS-20, it is
["FBIN" "GBIN" "NBIN" "MUD"]

To give a simple cxample of how this mechanism may be wilored for individual needs, consider a
programmer debugging a subsystem. If he wants his debugging versions of various PACKAGEs to be loaded

befure the installed versions, he CONSes a new clement onto L-SEARCH-PATH so that it contains
([] "LIBMUD" "LIBMUD:LIBMUD" [] ["MBPROG"] ["MPROG" ">"])

(assuming the files with his debugging versions are on the <SNAME> dircctory).

4.1.2. Dynamic Loading

To ease the use of "top level’ routines from the console, a feature is provided whereby the Library System
can load a PACKAGE of functions automatically when one of the functions which is an ENTRY in that
PACKAGE is invoked by name. This facility is not available for use by other PACKAGEs of functions, which
must refer explicitly, via USE, to PACKAGEs which they require: while a human can resolve the difficulty of
possible multiplec PACKAGESs with ENTRYs of the same name, a program cannot.

When an error is gencrated because a FORM is evaluated, and the first clement of that FORM is an ATOM
which has no value, and the particular ATOM is in the INITIAL OBLIST, an error handler established by the
Library System determines if there are any PACKAGEs in the current librarics which contain an ENTRY with
the same name as the PNAME of that ATOM. If there is one such PACKAGE, it is loaded, and the evaluation
which got the error is continued with the correct value. IT there is maore than one such PACKAGE, the possible
choices are displayed, the user is asked which is the desired PACKAGE, and it is loaded. If there are no
PACKAGEs with ENTRYs of the correct name, the error is not handled, and so it will fall into the standard
error mechanism. This same procedure is also invoked when GVAL is applicd Lo an ATOM on the INITIAL

4.1 Program Libraries

66 Ihe ML Programming Environment

OBLIST and the ATOM has no value.

4.1.3. USE-DEFER

It is sometimes desirable to have available functions that are rarcly invoked. but are nonctheless available.
{Onc example would be certain error handling routines.)

The USE-DEFER function sets up the OBLIST path so that, when a reference is made to an ENTRY in the
specified file. the correet ATOM is found, but the PACKAGE is not actually loaded at that time. When a
function at a luer time tries to call the function which is the value of one of the entries in this PACKAGE, the
whole PACKAGE will be automatically loaded. USE-DEFER has two constraints which USE docs not. First, the
PACKAGE musi be in one of the currently active librarics; it may not simply be a file as in the case of USE.
Second. no reference may be made tw ATOMs which are entries but do not have values which are applicable. In
other words. ATOMs which are entrics because they are data (rather than functions) may not be referenced
when USE-DEFER is emiployed instead of USE,

Decause USE-DEFER utilizes the dynamic loader, which utilizes the ERROR interrupts, USE-DEFER will
not work in a demon or any other MDI. program which sets up its own error handlers. All such MbL
programs should SETG the ATOM L-NO-DEFER w a non-FALSE, which (as explained previously) will cause
USE-DEFER o behave exactly like USE. Then, PACKAGES containing a2 USE-DEFER can be used without

muodification in demons and the like.

4.1.4. USE-TOTAL

USE-TOTAL is analogous to USE, but instead of splicing in only the ENTRY OBLIST of the PACKAGE, it
additionally splices in the internal OBLIST. This is useful in some dchugging situations, as it reduces the
number of trailers pninted and also makes the internal identifiers of the PACKAGE more accessible.

4.1.5. Translations

It is vccasionally useful to have more than one copy of a particular PACKAGE lpaded at once. One
example that comes to mind is the case of debugging a debugging PACKAGE. 'The L.ibrary System contains a
mechanism for ‘translating’ a PACKAGE name into another one. More specifically, it is possible to tell USE: *If
you ever load the PACKAGE named fio, pretend it was named bar instead.” Note that this does not change the
scarching and lvading procedure described above, only the namcs of the 0BL ISTs and so on used to store the
ATOMs in the PACKAGE.

Program Libraries 41

‘The M. Programming Environment - 67

<TRANSLATE old:siring new:siring-orfalse’
causes the PACKAGE old. when it is USEd, to behave as if it were named new. If new is FALSE. it means that

old should be lvaded as though it were not a PACKAGE at all: its ATOMs will appear on the DEFAULT OBLIST
or<l .0OBLIST>(normally INITIAL).
CUNTRANSLATE old:string>

causes any translation of old 1o be removed,
{TRANSLATIONS>

lists all translations currently in existence,
,L-TRANSLAT IONS

is & LIST containing all the translations.

4.1.6. The Library Data File

In addition tw its ability to map between PACKAGES, ENTRYs, und the files which contiin them, the library
serves another purpose. [fa user is compiling a function which USEs a given PACKAGE, that PACKAGE is not
usually going to be run. All that is necessary is to examine the calling sequences of its functions, and make
sure that all “side-cffects’ (such as the definition of new TYPEs) occur. If only these necessary parts of the

PACKAGE are loaded, a great saving of time and space is cffected.

The library data file provides a way of achicving this cnd. When a PACKAGE is added to the library, more
information than the list of ENTRYs and the file contining the PACKAGE is collected. In particular,
MANIFEST GVALs, NEWTYPE definitions, some MACROs, and RSUBR DECLs arc stored. Since this is the
information used by the compiler, one can save a great deal of space and time by using information from the

library where possible.

If ,L-USE-DATFILE is true, USE of a PACKAGE will load from the data file if possible. It is impossible if
the PACKAGE has changed since the data file entry was created. In those cases, the PACKAGE itsclf is loaded
instead. If ,L-ALWAYS-DATFILE is truc, an ERROR will result if the data file entry is putdated; one can
ERRET T to cause the real PACKAGE to be loaded.

USE-DATFILE is just like USE, cxcept that it temporarily SETGs L-USE-DATFILE and
L-ALWAYS-DATFILE toT.

The data file containg, for each PACKAGE, information lor cach interesting ENTRY: MANIFEST GVALs,
NEWTYPE definitions, RSUBR DECLs, and MACROs. It also has, of course, the lists of ENTRYs and RENTRYs

needed by the dynamic loader. It docs not contain other structures, nor does it contain functions. When a

41 Program Libraries

68 Ihe ML, Programming Environment

PACKAGE is loaded from the data file, it is effectively USE-DEFERed: if you end up needing to run part of
the PACKAGE. it will be loaded dynamically.

Some PACKAGESs can not have data file entrics. 1fa PACKAGE defincs MACROs that use data not stored in
the data file (if the MACRO calls a FUNCTION, for cxample), the PACKAGE will not get a data file entry: it

would normally end up being loaded from the file anyway.

It is pussible for a data file entry to become vbsolete (if a new version of a PACKAGE is created without the
library entry being updated). For this reason, the library is examined periodically for such entries and an

attempt is made to update the appropriate cntries.

4.1.7. Run-time Switches
‘There are a number of variables which may be set dynamically to tilor the Library System’s perfonnance.
.L-SEARCH-PATH
as described above (see section 4.1.1) is a LIST specifying the libraries and dircctories to look in. and the files
tw look for when trying to luad a PACKAGE. This variable is used by USE, USE-DEFER, USE-DATUM, and the
dynamic loader.
.L-SECOND-NAIES
as described above (sec section 4.1.1) is a VECTOR of the sccond names of files to look for when attempting to
load o PACKAGE from a directory.
JL-NOISY
If the GVAL of L-NOISY is nun-FALSE, the namoes of PACKAGEs and DATUMs arce printed whenever they are
loaded, dynamically or otherwise. This feature may be turned off by SETGing L-NOISY w #FALSE ().
L-NQISY has an initial GVAL of T.
,L=-NO-MAGIC
Dynamic lvading may be disabled by SETGing L-NO-MAGIC to a non-FALSE. L-NO-MAGIC has an initial
GVAL of a FALSE.
LL-ALWAYS-INQUIRE
If the GVAL of L-ALWAYS~INQUIRE is non-FALSE, the dynamic luader will always ask the user before it
lpads anything. The GVAL of L-ALWAYS- INQUIRE is initially a FALSE.
,L-NO-DEFER
If the GVAL of L-NO-DEFER is non-FALSE, USE-DEFER will work exactly like USE. L-NO-DEFER is
initially SETGed to #FALSE ().

Program Libraries 41

e T |

T

e

The MDL. Programming Environment 69

4.1.8. Library Utility Functions
A number of functions cxist which allow the user 1o examine libraries, list their contents, and retrieve their
entrics. All of the functions below except L-PATH and L-0BL accept an optional STRING argument, a

library specification. If it is defaulied, they operate on the public library, specified by the string "LIBMUD;
LIBMUD™ or "<MDLLIB>LIBMUD".

<L-LOAD package:siring library:siring?
L-LOAD recquires a STRING (the name of a PACKAGE or DATUM) and attempts to load it from library (if
given) or the current librarics, as per L-SEARCH-PATH.

<L-FIND function-name:siring library:string>
L-FIND requires a STRING (the name of an ENTRY), returning a UVECTOR of two-clement VECTORS of the
form:

[package-in-which-function-exists:string
library=in-which-package-exisis:string]

This finds all of the entries which have the same PNAME but are in different PACKAGES.

The remaining functions arc in the PACKAGE "L ", rather than in the PACKAGE "PKG". For cach of

these, the optional library argument is by default rhe library: that is, "LIBMUD;LIBMUD" or
"{MDLLIB>LIBMUD".

<L-FILE package:siring library:siringd

L-FILE requircs a STRING (the name of a PACKAGE or DATUM) and returns a STRING which is the file

specification of the file, pointed to by the library, which contains the body of that PACKAGE or DATUM.
{L-WHERE package:siring library:string>

L-WHERE is similar to L-FILE but returns a VECTOR of STRINGs which is the actual complete file

specification of the file containing the PACKAGE (i.c., the "real’ slots in a CHANNEL open to the file).
{L-LISTE [library:string>

L-LISTE prints the names of all of the entries of all of the PACKAGESs in the library.
{L-LISTP library:string>

L-LISTP prints the names of all of the PACKAGEs and DATUMs in the library.
{L-COUNTE library:string>

L-COUNTE returns a FIX, the number of entries defined by all of the PACKAGES in the library.
<L-COUNTP [ibrary:string’

L-COUNTP returns a FIX. the number of PACKAGES and DATUMs in the library.

4.1 Program Libraries

10 The MIM. Programming Environment

¢{L-LISTPE package-siring library:string>
L-LISTPE requircs a STRING (the name of a PACKAGE) and prints the names of all of its entries.
{L-PATH>

L-PATH prints a list of the names of all of the OBLISTs in the user's current OBLIST path.
<L-0BL atom>

L-0BL requires an ATOM and returns an ATOM, the name of the first ATOM's OBLIST. L-0BL is in fact
CGET <OBLIST? arom> OBLIST>

4.1.9. Internal Library Functions

‘There arc several internal functions used for scarching librarics (which is. after all, all the Library System

ever does).

(PACKAGE-FIND packagc-string [ibran:siring>
scarches library for package. |IF there 5 no such PACKAGE or DATUM in library, it returns a FALSE.
Otherwise, it returns a STRING, which is the name of the file containing package.

CENTRY-FIND gmtrycstring-oratum library:siring?
scarches library for PACKAGES containing enfry. It returns a FALSE if there arc none, otherwise a LIST some
multiple of four clements long, where each set of four elements describes a package containing an ENTRY
with that PNAME. These clements are:

package:string is the PACKAGE being described.
file-name:string is the file-name containing the package.
rpackage?:atom-or-false indicates. if non-FALSE, that the package is in fact an RPACKAGE.

rentry?:atom-or-false indicates, if non-FALSE, that the entry is an RENTRY,

CDEFER-FIND package:siring library:siring>
returns a FALSE if the PACKAGE ur DATUM is not found, or a VECTOR of five elements describing the
PACKAGE,

rpackage?:atom-or-false indicates, as above, whether the package is an RPACKAGE.
name:siring is the name of the package.

Sile-name:string is the file containing the package.

entries:list is a LIST of the PNAMEs of the ENTRYs of the package.

rentries:listisa LIST of the PNAMEs of the RENTRYs of the package.

Program Librarics 41

- ————— ™

‘The MDL. Programming Environment 11

This is all the information about the package that the library contains.

4.1.10. Library Maintenance

The PACKAGE called "LUP*" contains functions used to modify librarics, and o add, update and delete
PACKAGEs and DATUMs. It should be noted that librarics do not contain the bodies of PACKAGEs and
DATUMs. Rather. they point o files which contain these,

<{LUP-ACT [ibrary:siring>

requires one argument. a library specification STRING, and activates the library so specified. If the library
doesn’t exist, it is created. In order o protect the library from Joss due to system or MDI. crashes, activating 2
library for modification copics the library data files and locks the library so that no one clse may modify it
Modifications arc made to the copics. which are renamed back over the originals only when the library is
caplicitly deactivated. Obviously, PACKAGEs added 10 a library aren’t available, even to the person adding

them, until the library is deactivated.
<LUP-DCT>

deactivates the currently active library.

<LUP-ADD-PACK package-file:string
update?:boolean
datfile-entry?:boolean>

package-file is a file specification of the file containing the body of the PACKAGE to be added.
LUP-ADD-PACK will find the PACKAGE statcment within the file (or complain if it can't).

update? is optional, and if non-FALSE. it allows the PACKAGE to update an older version of itself,
something which is not otherwise allowed. Note that, since the library points to the file which contains the
body of the PACKAGE. that file should not be deleted later, clsc the Tibrary won’t be able to find it

dalfile-entry? is by default T, but if it is FALSE, no cntry will be created in the datfile for this PACKAGE.
Since datfile entries arc generally useful only in the compiler (and similar environments), it doesn't do much
good to have them for PACKAGES that are only called from top level (e.g., FINDATOM).

When adding a PACKAGE to the public library, the PACKAGE's object file should be copied to the
appropriate library directory ("LIBRMr® on I'TS, or "<MDLLIB>" on Tops-20) and the library pointed at
that copy of the file. If no library is activated when LUP-ADD-PACK runs, it will activate "LIBMUD;
LIBMUD" or "<MDLLIB>LIBMUD".

4] Program Libraries

n I'he MDI. Programming Environment

{LUP-ADD-DATUM pame:siring
P~
updaie?:boolean>
is analogous w LUP-ADD-PACK. adding a DATUM to the active library. LUP-ADD-DATUM requires two
STRING arguments, the name of the DATUM and the specification of the file which comtains the body of the
DATUM. LUP-ADD-DATUM will accept the same optivnal argument thut LUP-ADD-PACK accepts, with the
same meaning and default. The same restrictions concerning the file w hich contains the DATUM also apply.
(LUP-DEL package:string>
LUP-DEL reguires one STRING argument, the name of a PACKAGE or data sct. and deletes that PACKAGE or
DATUM from the currently active library, LUP-DEL does not touch the file containing the body of the
PACKAGE or DATUM.
CLUP-MOVE packapesiring file:string>
causes the file pointer of package 1o be changed to point to file. This & a Faster operation than re-adding the
PACKAGE., and it is intended for situations in which an existing library [ile has been moved for some reason.
(LIB-GC [ibran;string>
garbage-collects the library in question, if this is required. Garbage-collection is occasionally useful since it
causes all the clements of cach hash bucket to live near cach other in the library file. thus improving

performance during scarches. 1t also allocates some free storage ir cach page of the file.

4.2. The Pure-mapping Library

The basic idea behind MDU pure mapping is to separate out the code part of RSUBRs in compiled
programs. The RSUBRs themselves are kept in a file known as an FBIN (scc 6.3). These RSUBRs do not
contain the code but instead point to a file which contains the code. This scheme has several advantages.
First, the code can be dynamically mapped in when needed. ‘This allows MDI. to use more code than will fit
in the virtual address space of the machine it is running on. Secondly, since the code is pure it can be shared
between several MDLs using it Finally, the FBIN file itself is smaller than a corresponding NBIN file and
therefore FLOADs more rapidly.

In the most basic implementation uf FBINs, there are three files: the FBIN, the SAV file (which contains
the cude), and the FIXUP file, which contains the information necessary to update the SAV FILE for new
releases of MDL. As is obvious, this entails a lot of files, and potentially a lot of file directorics. The MbL
Pure-mapping Library reduces this storage overhead by collecting all of the SAV and FIXUP files together.

The scheme uses two large data bases, cach contained in onc file. The data bascs arc called *SAV' and
'FIXUP', These files store all currently cxistent SAVs and F I XUPs for all existing versions of MDI. Each data

Program Libraries 4.1

1
I
[
|
3
|

The MDI. Programming Environment 13

base is structured like a file system. There is a main “directory” that points to a number of other “dircctorics’,
cach of which points to a number of 'files” inside the data basc, In this section the word *file” or ‘directory’ in
quotes refers to an object inside a data base. The files containing the data bases are named (on ITS)
"MUDSAV;SAV FILE" and “"MUDSAV:FIXUP FILE". On Tenex/TOPS-20, they are
"{MDL>SAV.FILE" and "<MDL>FIXUP.FILE",

4.2.1. The Demon

While all M1 s can read from the Purc-mapping |ibrary, there is only one program which can write into
it. ‘This is a maintainer demon which runs once a day to keep the Library updated. This demon can add ‘files’,
delete *files’, and add “subdirectorics’ to both dima bases.

To facilitate updating of the Library there is a directory on which to put files to be added as well as filesto
indicate what is to be deleted. “I'his is the "MUDTMP™ dircctory on I'1S and the "<MDLLIB>" directory on
Tenex/TOPS-20. Any file on it with the second name of SAVunn or F IXnunn (where nunis a 2 or 3 digit MbL.
release number) will be added o the appropriaie data basc. I the files "DELETE SAVS"™ or "DELETE
FIXUPS™ exist, then they will be used to delete *files” from the data bases. These files must be ASCII files of
the form

filename | [SPACE] filename 2 [CRLF]

An example of a valid delete file is as follows

NCODGE SAV53
1INCODGE SAVS3

The demon will ignore any deletion requests for *files’ not in the data base.

‘Ihe demon does its work in several passes. The basic passes are the delete pass, the planning pass, the
update pass. and the salvage pass. The delete pass deletes “files” if either a "DELETE SAVS™ or "DELETE
FIXUPS" file exists on its working directory. The planning pass builds a plan file by examining the working
directory and calculating where new “files’ will be placed in the data bases. "The planning pass builds two files
using a special internal format. These files will be used by the update pass to add “files’ to the data bases. The
planning pass also enlarges the data base files as much as necessary Lo accomaodate the new “files”. The update
phase reads the plan files and adds new SAV and F IXUP ‘files’ to the data bascs, If a “directory” overflows, a
new “directory” is added during this pass, and all the “dircctorics’ are recreated (i.e., all the *files’ have to be
rchashed, since they were originally placed in a “directory’ according o a hashing algurithm based on the
number of “directories’). The salvage pass is used to pick up any free storage that has been lost through system
crashes or lost through holes created during the updating of the data bases.

4.2 The Pure-mapping Library

4 Ihe MDIL. Programming Environment

Throughout the entire processing of the data bases attempts arc made tv keep the data bascs in a consistent
state. "1ircctories’ arc updated only after “files’ are guaranteed to be in the data bases. The plan files described

are used to keep the data bases consistent in case the system crashes while the demon is in the update pass.

A major goal in the design of the data bases is to allow recovery in case of demon errors or system disk
crashes. To this end the data bases are backed up on tape every other week. (It would be dumped more often
but the file is currently over two million words lung). This of course leaves the problem that *files’ added to
the data bases hetween dumps could be lost in a disk crash, To aid in recovery from such a crash, all “files’
ndded between dumps are copied to the "MUDRST™ directory (on I'T'S) or the "<MDL.5V>" dircctory (on
Tenex/TOPS-20). Morcover a file is kept listing all the *files’ added during the previous week. This file is
cilled "ADDED FILES™. All this infurmation is deleted once the data base is dumped 1o tape.

4.2.2. User Programs
Occasionally it is useful for a user to list the data base ‘directories’, o see if certain “files’ arc in it. and copy

“files” vut of the data base. DBMA LN is a program which allows the user to do these things.

The folluwing are functions available to the user.

4.2.2.1. Listing Functions

{CLISTF data-base:siring>
is used to list all the *files” in a data base. It takes one optional argument which is the name of the data base
{cither "SAV™ or "FIXUP"). If no arguinent is supplied, "SAV" is uscd by default. (This is always the
default whenever a function takes an optional argument specif'ying the data basc,) CLISTF prints cach “file’,
its length, and where it is located. The format of a line of listing is as follows:

fal fu2 size block .
where fal is the first *file’ name, fir? is the second “file’ name, size is the length of the *file’ in blocks (1024.
words for SAVs, 256. words for F IXUPs), and block is the block at which the ‘file’ starts. This is the format
used whenever listing ‘files'.

{LISTF data-base:string directories>
15 used to list all the "directories’ of un entire data base. It tikes two optional arguments, the data-base t be
listed. and a specification of which *direciories” to list. "I'he *directories’ may be:

a F IX: list the "dircctory” specified by the FIX;
aLIST of FIXs: list the ‘dircctorics’ specified in the LIST:

the ATOM ALL: list all the “directorics’ (this is the default).

‘I'he Purc-mapping Library 42

T

Ihe ML Programming Environment 15

<FLIST daia-base:siringd
lists free arcas of storage in the data base. It lists the free storage in the form:

length block |
where length is the length of the arca of free storage and block is the block number of the starting block. "This
function takes one optional argument which is the name of the data basc (o be examined. At the end of the

listing it will tell the total amount of free storage.

4.2.2.2. Find Functions
CFIND-FILE [ile:siring data-base:siringd
is used to find a specific *file’. 1t takes as its argument a ‘file’ specification and prints the "file’ name along with
the information printed by the listing functions il the ‘file” cxists, otherwise it returns an object of type
FALSE. The "file” specification must be of the form:
“dir;fml fal"
where dir is cither SAV or F1XUP and i/ and fir are the first and second *file’ nmnes respectively,
<SPEC-FIND fiil;siring data-base:siring
is used to find all *files” with the same basic name, disregarding the leading digiu(s) which are added to make
‘file’ names unique. It takes one required argument which is the i/ to look for, It takes an optional sccond

argument which is the data-base to look in. For example the call
{SPEC-FIND "MAIL">
might print:

MAIL SAV53 8 140
IMAIL SAV63 8 360

4.2.2.3. Other Functions
<DELETE file:string data-base:stringd
allows the user to delete a “file” from a data base. It takes the same type of file’ specification that FIND-FILE
takes. The “file” you specify will be deleted the next time the demon that maintains the data base runs.
<GET-FILE file;siring output:siring data-base:siring>
allows the user to retrieve a ‘file’ from the data base. It takes two arguments. e first is the *file’ specification

of the file o retrieve oul of the data base and the second is the vurpur file you wish to copy it to.
<STATUS>

gives the information aboul the state of the data bases. It tells the number of “files” and the amount of free
storage in cach data basc. STATUS takes no arguments.

4.2 The Purc-mapping Library

76) ‘I'he MDI. Programming Environment

4.2.3. Using DBMAIN
There are several ways to use DBMAIN. ltcan be used by typing
:DBMAIN jfunction argl ... argn
to DDT. The jeiline is of the form finction argl ... argn, where finction is the name of the function to be used.

For example
:DBMAIN FLIST "FIXUP"

will list the free storage block for the "F IXUP" data basc. DBMAIN will kill itself after finishing and can be
killed carlier by typing tS.

‘e jicl-line mentioned above can be modified to allow output to be routed to a file. This can be done by

preceding the normal jiclline with a string specifying the file name of the output file.
:DBMAIN "LISTOF SAVS™ CLISTF

will produce a listing of the files in the SAV data base and will print this information to the file "LISTOF
SAVS".

4.2.4. Garbage Collection

One problem of the MDI. Pure-mapping Library is that many uscless SAV and F IXUP *files’ remain as new
revisions of user programs are created. To alleviate this problem there is a garbage cullection system for the
data bases.

The major goal of this scheme is to determine which “files” in the data bases are no longer useful. To do
this all files in the system are scanned to see what SAV files are still pointed to (nof including those pointed to
only from within ITS archive files). A SAV ‘file’ can be pointed tw from FBIN files and SAVE files. A SAVE
file contains pointers in its PURVEC (Purc VECTOR). All FBIN files should begin with something of the form

'<PCODE file:string>
where file is the name of the SAV ‘file’ associated with this FBIN. If an FBIN has more than one SAV ‘file’
associated with it then there can be several PCODE FORMs at the beginning of the file. For purposes of
garbage collection, this FORM (or FORMS) must be retained whenever an FBIN file is edited. IF these PCODE
FORMs disappear, their pointers to the SAV ‘files’ will go with them, and the SAV “files’ might be garbage
collected.

Garbage collections proceed hy looking at every file on the disk, building a list of all *files’ pointed to. The
program then examines the data bases and any "files’ which are not pointed to arc deleted.

[t is pussible that deletions can fragment the frec arca in the data bases. If compaction becomes necessary,

The Purc-mapping Library 42

‘The MDI. Programming Environment 7

there exists a routine to do in-place compaction of the data bases.

4.2.5. Internal Structure
The "SAV" and "FIXUP" data bases have similar formats. The 'files' in the data basc are pointed w by
entrics in what is cssentially a hash table. Associated with cach data base is a main "directory’ (the hash table).

This ‘directory’ is located in the first 1024 words of the file. This main “directory’ points to other ‘directories’

in the data basc (the hashing buckets). Fach of these *directories’ is 1024 words long. The first *file’ name is
used Lo determine which “directory’ the *file” is on, The structure of the main “dircctory” is as follows.

word 0/ number i of entries in the main *directory”
words 1-n/ block number of cach “directory’

‘There can be up to 1023 “directorics’ and cach of these can contain approximatcly 500 “files’. This provides a
virtually unlimited ‘directory’.

Word 0 of cach *dircctory’ gives its length in words. From Word 1 on are ‘directory’ entries. All entries
have the same two word format The first word contains the the first "file” name in SIXBIT, The second word
contains the following ficlds:

length of the *file’ iu blocks (a block for a SAV “file’ is 1024 words long while a block for a F IXUP “file” is 256
words long) (bits 1-6)

version revision of MDL this *file’ belongs to (bits 8-17)

block in the data base where this ‘file’ starts (bits 18-35)
“I'he *directories’ are sorted by strict numerical order (¢.g., AAA SAV53 comes before 1AAA SAVS3).

Fach data basc contains a free storage table. This table occupies the secund 1024 words of the data base.
The first word of the table is the number of entrics in the free storage table. The remaining cntrics define
arcas of free storage. These arc of the form

length, , block
where length is the number of blocks for this free arca, and block is the block number at which it starts.

There are two major differences between the ®SAV® data basc and the *F IXUP*® data base. The first deals
with block sizes. In the "SAV* data base the bluck size is 1024 words. In the "FIXUP*" data base the block
size is 256 words. This smaller size allows for more compaction of these small *files'.

The second major difference is that while there can be many versions of the same “file” in the " SAV" data
base (c.g. NCODGE SAV53 and NCODGE SAVS4), there can only be onc version in the "FIXUP™ data base.

42 ‘The Purc-mapping Library

78 1he MIJL. Programming Environment

I'his will be the £ IXUP *file’ most recently added. The corresponding SAV ‘file” for this FIXUP “file’ should

exist to allow the SAV file to be updated for future M. revisions.

‘The Pure-mapping Library 42

S ——

i‘hf "

|
|

The M. Programming Environment - 79

5. The Compiler
The purpose of the MDI. compiler is to transform interpreted MDL code into assembly language. The
compiler comes in several incarnations for various purposes.

PCOMP is a program which runs the “installed’ compiler == that is. the one which is most debugged, supported,
and otherwise official. The *P” stands for ‘purified,’ incidentally.

NPCOMP is a program which runs a newer, less well-debugged compiler, if there is one. NPCOMP is often
where development work of one sort or another is being debugged.

The *Bawch Compiler.” ofien called CoMBA'T, though strictly speaking the name refers wya different program
(sce section 5.2) is o program that compiles, at night, those compilations that have heen qucucd for it

The remainder of this chapter describes the specifics of interaction with the compiler, including u scction on

its internals.

S5.1. Interfacing to the Compiler

The vperation of the ML compiler is cuntrolled by a few very high-level functions and a sometimes
bewildering array of ATOMs whose values are switches and data. “I'his section will describe cach such ATOM
and its use. The reader should bear in mind that in the normal ease he will be using COMBAT to set up his

compilations and thus will not have to deal directly with these ATOMs and calls.,

5.1.1. Compiler Functions
SCOMPILE source:firnction-orlist owiput:channel>

is the lowest level call to the compiler. It compiles exactly one FUNCTION (ora LIST of them) and prints the

generated code on the CHANNEL given as the second argument. COMPILE is used primarily for compiler
debugging.

SFILE-COMPILE inpui:siring owipul siring>
FILE-COMPILE attempis to provide a convenient interface between the user and the compiler. ‘The user
simply gives FILE-COMPILE the name of an input file, and it can do all the rest. The user may specify other

information about output files. compiler modes, cte.. but if he doesn't, reasonable assumptions are made.

FILE-COMPILE works in the following way. First it reads in the input file and collects into a LIST the
names of all of the defined FUNCT IONs that it finds, It sorts this LIST based on which FUNCT IONs call
which other FUNCTIONs. ‘The FUNCTIONs which call no other FUNCTIONs are at the beginning of the
LIST, fullowed by those that only call FUNCTIONs that call no other FUNCTIONs, and so on. Groups of

FUNCT IONs that are mutually recursive are collected in LISTs subordinate to the main LIST,

50

|

|

|

t

|
|

1

]

|
|

I

|

|

.,'J

|
|

|

|

|

1

i

80 'he M. Programming Environiment

Each FUNCTION will produce a separute RSUBR. COMPILE is called successively on each member of the

LIST of FUNCTIONs. L1STs of mutually recursive FUNCT 10Ms are also pussed o COMPILE,

After each FUNCTION or LIST of FUNCTIONS is compiled, the resulting RSUBR is written into a
tempuerary file w enable more convenicnt crash recovery. This file is written in such & way that. no matter

when the system crashes, the contents of the tempuorary file are guarantced o beina consistent state.

When all is compiled, FILE-COMPILE writes out an oulput file which is identical to the input file except
that all FUNCT IDNs have been replaced with their compiled counterparts. [Fany of the FUNCTIONs did not

compile due to programmer errors or compiler bugs, those FUNCTIONs arc lefi unchanged in the output file.

1During its operation, FILE .COMPILE maintains a "RECORD" file which contains all of the messages,
warnings and ¢rror messages p roduced by the compiler. It may uptionally produce a listing of the object code
produced, in M assembler format. Dhis is primarily useful for compiler debugging. (MNote that a simewhat

less complete listing may be made at a later time. See section 7.3.)

On I'I'S. FILE-COMPILE usually runs as a demon called COMBAT ZOME. In this casc anuther interface
called FCOMP resides above FILE-COMPILE. 'lhis interface reads files that are compilation specifications
and passcs them to FILE-COMPILE.

CFCOMP %. INCHAMN jupui-file putpui-fife>

As must compiler usage is based on CoMBAI plan files, FCOMP is the most-scon driver of the compiler. (MNote
that the % in front of . INCHAN causcs the CHANMEL the PLAN Ffle is being read from o be passed as one

argument to FCOMP.)
LSTATUS>
s an informational function; it tells how far the compilation of a given group has progressed, which

FUNCT ION is being worked on, and how many FUNCTIONs remain te be compiled. It also prints the
accumulated real time and cpu time since the beginning of the compilation. Obviously, you must *G the

compilation to use it, but see section 8.3,

5.1.2. Compiler Switches

The calls to the various compiler drivers are rather short, for the simple reason that the controlling

information is passed to the compiler as the LVALS of a set of ATOMs,

Interfacing to the Compiler 5.1

I'he MIDL. Programming Environment g1

<SET DEBUG-COMPILE!- boolean>
{by default FALSE) causcs the compiler to generate ¢xtra information about what it's doing. ‘This information
it in the form of ‘warnings” produced when the Il:umpﬂnr was forced to generate less than optimal code. For
example, invocations of the arithmetic SUBRs can be open-compiled if the variables used can be determined
v be exclusively FIXes. “The debugging compiler will warn you if it is forced 1o resort to less officient
arithmetic calls.

<SET PRECOMPILED!- file:string>
Often, a file of FUNCTIONs has been compiled before, and now only a fow FUNCT IONs have been updated
and need o be compiled-again. Muost of the file is already correctly compiled: it is quite wasteful 1o recompile
the entire thing. If a PRECOMPILED is given, the file is loaded before compilation: any Rimctions which have
correspanding RSUBRS in the precompilation. and which are not on the REDO list, arc not recompiled. It is
appropriate wy specifly the temporary file as a precompilation if your previous compilation was interrupted by
a system crash.,

<S5ET REDO! - [fst-ofatomns?
REDO isa LIST of FUNCT ION names to he recompiled. regardless of whether or not they are compiled in the
precompilation. In conjunction with PRECOMPILED and PACKAGE-MODE, REDO allows compilation of
preciscly thuse FUNCT I0Ns which have been changed since the last compilation. Mote that CoMBaT will set
up these values more-or-less automatically in most situations.

<3ET PACKAGE-MODE! - siring>
This should be the name of a PACKAGE, which is assumed to be the PACKAGE being compiled. FUNCTION
names in the REDD LIST will be looked up in the appropriate PACKAGE OBLISTs if this fag is sct, thercby
saving some typing of trailers.

<SET TEMPNAME! - file:siring>
The compiler writes intermediate results to the temporary file, which is normally the file "sname; firn *" on
I'TS, where fiim is the first name of the input file. It is rarcly (if ever) necessary to change that default

CSET SOURCE!- fiHlesirings
Sctting this switch causes the compiler t write out the assecmbler input it generates. This is sometimes uscful
for compiler debugging. On I'TS, such output normally gucs o "smanre; iy SOURCE", where finn is the
first name of the input file.

CSET SPECIAL!- Meolean>
The compiler normally assumes that varinbles which aren’t declured SPECTAL aren't SPECIAL. ‘This means
that they will be available only to the RSUBR in which they are declared: SPECIAL variables are bound on
the control stack, just as all variables are in interpreted code. If this Mag is T (by default FALSE), all variables

will be assumed to be SPECIAL unless declured otherwise. This is analogous w SPECIAL-MODE being

51 Interfacing o the Compiler

82 ' I'he MIJI. Programming Environment

SPECIAL. and it is not recommended that any code be written using this convention.

<SET EXPFLOAD!- boolean>
If true. FLOADs in the file being ::umplh:ﬁ will be expanded at load time: what was FLOADed before will be
treated as part of the file. EXPFLOAD is examined by GROUP-LOAD, and not the compiler itself. The default
is FALSE.

<SET EXPSPLICE!- boolean>
If true. objects of type SPLICE (primtype LIST) which are encountered in the course of EVALing the forms
processed by GROUP-LOAD will be spliced directly inte the group: it is therefore a lot like EXPFLOAD.
EXPSPLICE is examincd by GROUP-LOAD, and not the compiler itself. ‘I'he default is therefore FALSE. lis
only known use has been to make functions ot Toad time and have them compiled.

¢SET CAREFUL!=- boovlean>
Defaults o T. IF FALSE, the compiler will omit most of the bounds-checking code it normally generates for
NTHs. PUTs, and su on. ‘This obviously will make the compiled code run faster. but also makes debugging the
compiled code nearly impossible.

<SET REASONABLE!- boolean>
Defaults to T. If FALSE, the compiler will gencrate reasonable code only if everything ever called from the
functions being compiled is loaded into the compiler. A call to a functivn not loaded produces an EVAL of a
FORM, thereby ensuring that such constructs as "CALL* in the called function will work correctly. This is
admittedly pretty unreasonable (if not paranoid), whence the name of the switch.

€SET GLUE!- boolean>
Defaulis to T. IFFALSE, the compiler will not generate GLUE bits. As you always want GLUE bits, there is no
reason to ever change this.

<SET MACRO-COMPILE!- boclean>
Defaults to FALSE. I non-FALSE, the compiler will compile MACROs into RSUBRs. This docsn’t change
anything produced by macro cxpansions, but docs cause the cxpansion to speed up. Since the compiler
expands the inacro and then compiles the expansion, this is rarcly uscful.

<S5ET MACRO-FLUSHI- boolean>
Defaults to FALSE. If non-FALSE, MACROs which appear in the file being compiled will not appear in the
resulting NB IN. This saves space, at the expense of making debugging harder.

<SET MAX-SPACE |- buolean>
Defauls to FALSE. IF non-FALSE, the compiler flushes from core most of each RSUBR once it has been
compiled; only the DECL is nceded to help compile other functions. Since the entire RSUBR is written out in
the temporary file, no information is lost. ‘This can, for compilations which are too large, result in

considerable improvements in speed, primarily because more space is available in the MDL and less time is

Interfacing to the Compiler 51

e ——

Ihe MIJ. Programming Environment 83

spent in the garbage collector.

<SET HAIRY-ANALYSIS!- bBoolean>
Defaults w T. I this is not set. the compiler ;vill not perform the complex type checking it usually does. IF
HAIRY -ANALYSIS is FALSE. the code will be generated faster, as type-analysis is cxpensive, but will not
execule as fast,

5.2. COMBAT

I'he usual method of dealing with the compiler is through the program CoMBatT, whose specialty is the
preparation of "plan files’ to be loaded by the compiler. COMBAT is a program which knows about each of the
previously described compiler switches and the interactions among them. It has an easy-to-use interface, an
ability to store commuonly used “plan files” as compilarion types. and in general is designed o make using the

M, compiler a less-cumbersome task,

5.2.1. User interface

CoMBa1’s user interface is patterned after, though not identical to, 1 CALICO interface [1]. In particular, it
cxpects in response Lo any given prompl a particular type of input from the user, which may be a file name, a
‘symbol’, or text. Jrdinarily, the wpe of input expected is indicated by the “syntactic prompt’ which fullows
the normal prompt: this is one of *(FILESPEC), "(SYM)', and "(TEXTY. The *Tugele verbosity’ compilation

type turns the printing of the syntactic prompt on and off, and causes a tiilor file to be written out when used.
A number of special characters arc defined for any of these types of input

t@: Clears the input buffer, as in MDL

TD: Redisplays the input buffer, as in MDL.

tL: Clears the screen and redisplays the input buffer, as in MDL.

tG: When given as the first character of an answer, allows one to get the answer from a user-defined type.
See the section on tiloring,.

tQ: Has special effects when a compilation plan is being made (scc below). See also the section an file name
input.

tR: Causcs COMBAT to ‘back up’. Typically this means go to the previous gucstion asked, but in certain
modes it may have a slightly different effect. When a MupcoMm is running, this kills it and backs up to the
last question asked.

t3: Abnormally ends whatever is being done, and returns to the “I'ype of compilation’ guestion. If a

MUDCOM is running, it will be killed. When a long compilation plan (*"How to run’ is ‘Many') is being

3l Interfacing o the Compiler

LEUERUR LR LRUR UYL —

g4 The M. Programming FEnvironment

made. the portions already made will be saved. See the *Flush many” compilation type.

?: When given as the first character of an answer. this causes a more detailed description of what is cxpected

to be printed. along with the current default and haw to obtain it

%: ‘This quotes whatever character follows it, including DEL, ESC, ctc. It does not have the effect of quoting

strange charaeters in file nomes: sce the section on file name input %, used as a quote character, never
echoes, and cannot be rubbed oul

In addition. when the syntactic prompt is { SYM), *F is uscful (sec below).

5.2.1.1. Symbolic input
IT you are familiar with CALICO, this section can probably be skipped. When cntering symbaolic input,
one need only type the characters required to uniguely specifly the desired choice: the interface w ill complete

the response, and in addition can display the available chuices at any point

SPACE completes the response as far as it can. I the response is uniguely specified. it w il be displayed in
its entirety. followed by *17; iFmore than one choice is still pussible, then the portion of those choices which is
unambiguously specified will be displayed, followed by "&". For instance, if ‘Expand Noads” and “Expand
splices” are among the choices, and ‘Ex SPACE’ has been typed. "Expand & will be displayed if the "Ex’

reduces the choices to those two.

In some cascs. iF SPACE is the first charncter typed, it will select the default (first) choice and terminate.
When *F is typed, all remaining choices will be displayed.

To terminate responscs in this mode, cither ESC or CRLF may be used. In cither case, the current
response is completed as far as it can be, 17 only one choice then remains, the answer is terminated and the

single choice will be used. If more than one choice is possible, it is just as iFSPACE had been typed.

Typing ESC or CRLF before any other characters have been entered causces the default answer o be used.

5.2.1.2. File names

File names sre expecied in the standard devs: smnie s firamel firame? format on IS0 on Tenex/TOPS-20,
standard file nyme recognition is used. Vypically. typing simply ESC or CRLF answers 'no’ to the question,
while SPACE ESC says 'usc the default’. In certain special r:i'lﬂ:!’-rl‘lllpl.ll file” and *Outpul file’), when some
answer to the guestion is imperative, the default will be used in either case. File names should net be

surrounded by guotes in this mode; they are not ML STRINGs!

COMBAT 5.2

!

I'he MID. Programming Environment - 25

Itis rnher painful o get funny characters (such as SPACE) into file names. When the file-name parser
sces i *Q. it uses the following character in the name being generated regardless. Unfortunately, the *Q must
be quoted e get it past the reader, since it has special effects in the normal case. Thus, the file name given to

ML as "TAA: FOD >" has to be typed to COMBAT as TAA:\TQ FOO >.

5.2.1.3. Text

Text is just that: relatively arbitrary characters, terminated by ESC. Since CRLF is allowed in text, it docs
not terminate input. Text type input is used in a number of cases where it isn't quite appropriate, such as the
“Redo list” and “Package mode’ questions. I it is known that the expected response is a LIST or STRING, as

in those cases, the appropriate brackets or quotes should sor be typed.

5.2.2. Combat Questions

This section discusses the questions that can be asked of the user during the preparation of a CoMBAT plan
file. which is FLOADed by the CoMmnaT deman or by PCOMP to offect a compilation. ‘lhe perceptive reader
will notice a strong resemblance o section 5.1.2. in which the switches relevant o the compiler are listed.
Quiestions asked by the pre-cxisting compilation types ("Verbose” and “Short') are so indicated, Al questions
are available in user-defined compilation types (see section 5.2.5).

"‘Sname™ sets the default directory for questions that want a file name as an answer: also causes the FORM

CSNAME sname>, where sname is the answer given, to be included in the plan. ‘This sets the default

directory for files referenced by the compiler; it also causes the temporary file (see below) to go to the
sertente directory.,

"Lise new compiler? (Verbuse and Short): specifies whether the “new’ compiler or the “old' compiler should
be used. Often, when there is only one compiler, this question will not be asked. IF answered
affirmatively, it causes the FORM

“OR <GASSIGNED? EXPERIMENTAL!-> <NEWCOMP|-3>>
o be included in the plan. This FORM will load a new compiler on tup of the old if nccessary.

‘Debugging compiler? (Verbose): causes DEBUG-COMPILE | - to be sot to T. which causes the new compiler
i gencrate cxtra information about what it's doing. This currently is asked only if the new-compiler

question is answered affirmatively.
“Input from” (Verbose and Short): the file to be compiled. This appcars in two places in the plan: as
<SETG COMBAT!- inpui-file>
and in the call to FCOMP described below,
"Output to’ (Verbose): the file name to be used for the NB IN. The default is the input file name, with NBIN as

the second file name instead of whatever it was for the input. This completes the call to FCOMP that ends
cvery plan:

52 COMBAT

1

||[_

1
|

Y

il

1

|

1

|

11

ih}

| |

1

Il

;L

‘
(il

Il

I

|
|

|
|

86 The ML Programming Environment

£FCOMP %. INCHAN inpul-file ouipul-file>

This call is what actunlly invokes the compiler.

‘Precompilation from® (Verbose): specifics a file containing a previously compiled version of the input file.
Any FUNCTIONs which have corresponding RSUBRs in the precompilation. and which are not on the
‘Redi” lisL are not recompiled. [t is appropriate to specify the tempaoriry file as a precompilation if your
previous compilation was interrupted by a system crash. Scis PRECOMPILED! -,

‘Compare with' (Verboseh: This question is asked only if a precompilation file is specified. If answered
affirmatively (user types cither SPACE ESC or a file name) MUK DM (see section 8.1) will be run with jel
of the input file name, and the file name provided here (the default is as for precompilation), plus some
extra siuff specified below. 1P FO0 NBIN is given here, then MUDCOM will look For the newest revision
of FOO which was ereated before the NBIN, MUDCOM determines which FUNCT IONs in the file have
chunged and therefore need to be recompiled. 1t also determines whether the file is a PACKAGE. and
answers the "Puckuge mode’ gquestion appropriately, 1t is therefore not usually necessary for the user to
answer the *Redo” and "Package mode’ questions directly.

‘Check macrus? (Verbose): asked only if ‘Compare with” is answered alMirmatively. “This adds " /M to the jel
passcd o MUDBCOM, which causes it to check Tor MACRODs and MANIFESTs which have changed: if a
FUNCTION uscs a MACRO or MANIFEST which has changed, the FUNCT 10N will be listed as changed.
Mucom does not normally check for this.

Extra JCL (Verbose): asked only if "Compare with” s answered affirmatively. Wiunever is supplied here will
be passed to MUDCC-M as jiel, before the files w compare. This can be used tw load macro files: sce section
8.1.

~tedo’ (Verbose): asked only if a precompilation file was given, Takes a bunch of FUNCTION names, which
will be recompiled. Note that the names supplied here will be appended tw the list returned by MUDRCOM,
i uny. and that duplications in the list arc ignored. Sets REDO -,

‘Package mode’ (Verbose): asked ifa precompilation file was given and MupcoM was not run (Muncom will
set this if run). ‘This should be the name of a PACKAGE, which is assumed to be the PACKAGE being
compiled. FUNCT ION namcs in the "Redo’ list will be looked up in the appropriatc PACKAGE OBLISTs if
this flag is set, thereby saving some typing of trailers. Seis PAC KAGE-MODE! -.

“Temporary file w': The compiler writes intermediate results to the tempuorary file, which is normally

» snaime; fiamel >" (on ITS)
" & snane> firame . TEMP™ (on Tenex/ TOPS-20)

You may change that by answering this question; there is rarcly a good reason to do so. Sets
TEMPHAME | -.

‘Source file to': The compiler can be caused to write out the assembler input it gencrates by answering this
question. Assembler output normally goes to

COMBAT 52

e M. Progranuning Environment 87

" sherrnre; fivvned SOURCE™ (on IT'S)
*Lename? 3 fhame . SOURCE " (on Tenex/ 1'0PS-20)

which is the default for this question: another name may be provided if desired. Scis SOURCE 1 -,

‘Special?’: The compiler normally assumes that varinbles which aren’t DECLed SPECTAL aren’t SPECTAL. If
this flag is T (defaults oy FALSE), all variables will be assumed to be SPECIAL unless declared utherwise.,
Scts SPECIALL-.

‘Fxpand Moads?: (Verbose) IF true, FLOADS in the file being compiled will be expanded at load time. Sets
EXPFLOAD!-.

‘Expand splices?: IF true, objects of type SPLICE (PRIMTYPE LIST) will be expanded and inserted into the
group. Scis EXPSPLICE! -.

‘Carclul?: (Verbose) By defuult T, but il FALSE. the compiler will omit most of the bounds-checking code it
normally generates for NTHs, PUTs, and so on. “Ihis obviously will make the compiled code run faster: it
alsn makes debugging the compiled code nearly impossible, Scis CAREFULY -,

Reasunable?: By default T, but if FALSE, the compiler will generate reasanable code only if everything vou
call From the functions being compiled is loaded into the compiler. Seis REASONABLE] -,

‘Glue?: By default T, but if FALSE, the compiler will not generate GLUE bits. There is so good reason to
ever answer this. Scis GLUE | -,

‘Macro compile?’: By default FALSE, but if true. the compiler will compilec MACROs. Scis
MACRO-COMPILE | -.

‘Macro flush?: By default FALSE. but if true, MACROs which appear in the filc being compiled will not
appear in the NBIN, Scts MACRO-FLUSH ! -.

‘Max space?: By default FALSE, but if true, the compiler Mushes from core most of each RSUBR once it has
been compiled; only the DECL is needed to help compile other functions. ‘This can, for compilations
which are very large, result in considerable improvements in speed. Scis MAX-SPACE ! -.

"First things to do’, "Things to do’ (Verbose), and “lLast things to do’: It frequently is necessary to perform
some actions before a compilation can be run: definitions files must be loaded, special environment sctup
might have o be performed, and so on. All three of these questions are designed to allow that: whatever
you supply is put out after everything else in the plan but before the call o FCOMP. ‘There are three
questions, instead of ane, to allow some things to be specificd in a tiilored compilation type. while others
are provided at compile time, or pussibly from another wilored type. ‘I'he three questions do not depend
un cach other; they arc asked in the order given here, and the answers appeur in the plan in the same
order.

5.2.3. Requesting Compilations

The first question asked by COMBAT is “Type of compilation’. In addition to a number of special

possibilities described later, there are two answers to this question (in addition to any provided by the user

5.2 COMBAT

?-u—
i

I/
i

|

|

L]

LR

[

!

1
|

88 ' I'he M. Programming Environment

through the tailoring facility) which request pre-defined tailored compilation types. These are "Verbose™ and

‘Short’,

“WVerbose' causes all the normal questions to be asked: “MNew compiler?, ‘Input file’, "*Precompilation’,
switches, “Things to do’,. and s0 on. ‘Short’, on the other hand, defaults the answers to all questions except

‘New compiler?, *Input file’, and "How 1o run’.

When requesting a compilation, one may type tQ at any time. This has the same immediate effect as an
ESC, but in addition causes ull questions between the one just answered and the "Things to do” question to be

defaulted. This is particularly useful in the *Verbose® sequence of questions.

If " Many” was given as "How to run’ for a previous compilation request, and the resulting plan has not yet
been written out, subsequent plans will be appended o it Using *Many® will sometimes cffect a major
savings of time il several compilations wish to perform the same environmental setup; if they USE many of
the siime PACKAGEs, for example, When using "Many’ in combination with predelined compiliation types, it
is useful o remember that whatever is specified under "Things to do” may end up being performed for each
plan. You might modify your compilation types to reflect this, or alternatively, edit the plun file produced by

COoOMBAT to remove redundant operations.

The only way to get rid of the *Many” plan is (o answer *Many flush® w the “Type® question. Typing +5 or
answering *Abort’ to the "How to run’ question will abort the current portion of the *Many” compilation, but

not the whaole thing.

If ‘Many" was mistakenly given as *‘How to run’, and you don’t wish to destroy the plan you have
gencerated, it is possible to (in essence) go back to the *How to run’ question by answering *Many print” for the

compilation type. In this case, you are nos back in the plan-making loop; *R acts just like +5.

tR, here, backs up to the last question asked. “There are two qualifications. First, if +Q has been typed,
then it backs up to the last guestion that would have been asked if +Q had not been typed. Sccond, the four
questions "Precompilation”, "Compare’, *Redo’, and *Package mode’ arc treated as a group: if the *Package
mode’ question has not yet been answered, it is possible (o back up normally: but once that question has been

answered, backing up to it will go wo the first member of the group, "Precompilation’.

+G allows one to obtain the answer to the current question from any uscr-defined compilation type. It

requests a type name, and uses the answer or default supplied therein, printing the information so obtained.

The G must be wyped as the first characier of the answer for this o occur. This allows one to use paris of a

COMBAT 52

I'he M. Programming Environment 89

defined type without cither using the type itself or altering it for the occasion. For “Text type input (such as
“Things to do’), the string is placed in the input buffer but not completed, so it may be edited before an ESC is

typed. Sce also the *Xerox type’ command.

MNote that there is a distinction made between ‘Compare” and "Redao’; the former causes a MUDRCOM o be
run, and the latter asks for the names of FUNCT IONs to be recompiled. It is possible to do both, in which case
the two groups of FUNCT IONs are appended to form the ‘Redo’ list for the compilation. Note also that if a
MupcoM has been run, the “Package mode” question will not be asked, since the answer is supplied by the

Mucos. Either TR or +S may be used to kill a running MUDCoMm,

One of the responses to the ‘How o run’ question is *Abort’, which returns directly o the “T'ype of
compilation” question withoul writing out a plan, starting up a PCOMP, or anything clse. Its effect is exactly
that of o +5. In particular, if you are making a long plan, only the portion just completed, not the entire

compilation, will be aborted.

It is also possible at the "How to run® guestion o supply an answer to any of the eompilation questions
(Input file, ete.). The "Question’ response asks for the name of a guestion, then asks that question. Any
number of questions can be asked in this manner, one at a time. “This is particularly useful for flling in the

blunks left by a *Short” type compilation, or by user-defined compilation types.

When a compilation request has been finished, CoMBat normally loops back to the “T'ype of compilation”
question, but changes the defult from “Verbose™ w "None” (meaning "Quit’), unless another compilation may

reasonably be expected. Thus, one may leave by typing a single ESC.

It is possible o modify CoMBaT's behavior such that it either kills itself after finishing the compilation

plan, or loops back with *Verbose” as the default for the “T'ype of compilation® question.

Compat first decides whether a long compilation plan is being made; if so, the default remains ‘Verbose.!
If not, it then cxamines the current compilation type: if ‘Another compilation? has been sct to ‘Yes', the
question will be asked with default *Verbose™ iF it has been set o "No®, Comiat will kill itscll: if o "Ask’,

further consideration is required.

IF the user is in "Multiple® mode {the *Multiple’ compilation type), the type of compilation will be asked
with the ‘Verbose® default. Otherwise, COMBAT examines the state of two tailorable switches, set by the
“Another compilaton? compilation type. 1F*Another compilation?” has been set to *‘No', ComMnaT will die; if

to "Yes', the wype question will be asked with default *Verbose™; if to "Ask’, the type question will be asked

52 COMBAT

——
—
- 5
:
:
:
:
.
:
:
:
- — .
— .
—— —
:
= 5
- :
— :
— .
.
:
:
— :
= .

o The ML Programming Environment

with defuult *None®. Mormally this is "Ask’.

MNote that *Another compilation? is like "Toggle verbosity” in that it will have no cffect unless user-defined

compilation Lypes exist

5.2.4. 'How to Run® Options

There are four options available when answering the ‘"How to Run® question which determine where your
plan file will be written and when the compilation it specifies will be Tun.
‘Peomp’ places the plan file on the ¢SNAME> directory, and names it "PCOMP >". Additionally. CoOMBAT

will stitrt ot PCOMP (or NPCOMP, as appropriate) process iF i is exited after writing a PCOMP file. "Pcomp’ is
the standard method for running a compilation in one’s own process,

COMBAT writes the plan file 0 "COMBAT : PLAN >". ‘The COMBAT demon successively compiles all such
plans at pight. informing the persuns who submitted them ol the result.

‘Waste is like ‘COMBAT, except that the plan is written to "COMBAT ; WASTE > ™. The “waste” queue is only
run after midnight, which is usually sufficient for those whe are doing “overnight’ compilations. "Waste’
is the answer usced by default for "How to Run’.

*File’ places the plan file on the <SNAME> dircciory, and names it "PLAN >". “Ihis means that it will not
be run until you explicitly load it into o compiler process.

5.2.5. User Tailoring

It is often the case that a particular file is compiled quite often, or that some sequence of actions must be
performed as the “Things w du” before many compilations. Cosnat allows the user o defline his own
‘Compilation types’, cach of which specifies exactly those questions which should be asked and the answers
for those which should not. For example, one could have a type named *Esign’, which says that the input file
is always "SEND:ESIGN >" and in addition provides for the FLOADIng of two files in "Things o do’.
Further, since most questions are defaulted, one might choose o answer only those guestions which are
interesting, such as *‘Precompilation”. It is also possible to supply a default answer for a question which will be

asked.

In addition, there are some questions which are not asked by the *Verbose” compilation type, but which
nevertheless are available w user-defined types. ‘These are: “Macro compile’, *Macro flush®, ‘Max space’,

"Fapand splices’, "Special mode’, *Glue®, and others.

One can select any of one’s own defined compilation types as an answer to the “Type of compilation’

question, just like *Verbose® and *Short”. Except that the questions asked may differ, user-defined types are

COMBAT 52

I'he MIDI. Programming Environment 91

identical to the predefined types.

5.2.5.1. Tailor files
User-defined types are saved (and loaded) from the file "sname: %COMBT TAILOR". It is possible to load
uther tailor files, but the "%COMBT" file in sname is loaded during startup. 'Tailor files are quite similar to

M3, GC-DUMPed files and thus cannot be edited other than with COMBAT.

5.2.5.2. Create type

This special compilation type requests a name for the type being made, then enters a loop with the prompt
‘Question’. One may choose any of the available questions, and cither supply an answer or {(by default)
reguest that the question be asked when a compilation of this type is being submitied. MNote that only the
HMow to run” and the following “I'vpe of compilation?” guestions will be asked unless others are explicitly

supplied; but one may supply answers to "How to run® when creating a type.

In this mode, TR will return to the *Question’ loop if one is about to supply an answer: otherwise, it returns

tr the “"Type of compilation” loop, aborting the type creation.

tG behaves exactly as it dues in the normal loop. To indicate that one is finished, one should answer *Finis®
 the 'Question” prompt. It is possible to supply several different versions of the answer to a particular
question: the last one given will be used. One may wish to default a particular question, after specifying that
it was to be asked or after supplying some different default. ‘This may be done by answering “Delete guestion®
w the "Question” prompt, whercupon ane will be asked for a particular question o ignore. T'his gquestion will

then be complerely ignored. Note that alf interesting questions are initially in this state.

There is also a "Set question default” "Question”. This requests a question name, then asks the user to
supply an answer. The question will be asked, with the default supplied. Thus default sellings of switches can
be changed. and one can supply a file name for the precompilation while still being asked whether
precompilation is desired. Unfortunacely, user-supplied defaults for "Text™type questions are uscd if ESC is
answered; to get rid of the default, type SPACE ESC. Note that this is exactly the inverse of the convention

for defaulting file names.

When “Finis® has been typed, a new copy of onc’s tailor file is written out. This may, in combination with

"l.oad tailor” and *Replace tailor”, have undesirable side effects.

5.2 COMBAT
S
e —
e —
—_— e —
e — __

|\

92 ‘The ML, Programming linvironment

5.2.5.3. Printtype

This requests the name of one of the types currently loaded, and prints out for it all questions which cither
will be asked when a compilation is being submitted or which have user-supplicd defaults, IF a particular
question has been globally “turned of T (such as the *New compiler?” question, when there is no new compiler),

an asterisk will be printed on the appropriate line to indicate that the information there is currently not used.

5.2.5.4. Delete type
I'his requests the name of one of the currently-loaded types. and deletes it A new copy of the tailor file is

written out. 5o all trace of the type will vanish when this command is used.

5.2.5.5. Altertype
This requesis o type name, then becomes identical to "Create type’, except that some questions already
have answers. Again, “FFinis” must be tvped to leave the loop and cause the modifications to be fled; typing

tR or +5 will lecave the loop, but the modifications will be forgotien.

5.2.5.6. Load tailor, Replace tailor

BBoth of these request a file name, defiulting to the last one used for either a *l.oad tilor’ or "Replace tailor’
command. Initially this is "swame; XCOMBT TAILOR™. ‘“l.aad tailor appends the wypes defined in the
specilicd file to those already loaded. while "Replace tailor® first throws away those already loaded. 'The types
defined in this way arce not distinguished from those loaded from one’s own COMBAT tailor file: in particular,
using "Toggle verbosity’ or any of *Create’, "Alter’, and *[elete type” will cause all the types currently loaded to
be written oul to the CoMBAT tailor file. [IF, therefore, one has done a “"Replace tailor’, one can casily lose all

of onc’s own types in this manner. le., it is very casy to destroy yourself,

5.2.5.7. Xerox tailor
This requests the name of an existing user-deflined type, and a new type name. The new type becomes an
exact copy of the previously-cxisting type. This is particularly useful when one has several different types

which do almost the same thing.

5.3. The Compiler (Internals)

The compiler's jub is to take a M1 FUNCTION or group of FUNCTIONs and produce an operationally
cquivalent machine-language subroutine (RSUBR) using whatever information can be extracted from the
source code and whatever additional information the user wishes to supply. ‘Ihe efficiency of the output code

praduced is directly proportional to the amount of information supplied by the programmer and inversely

COMBAT 52

AU

Ihe ML, Programming Environment 3

proportional to the generality of the source program.

The information supplied by the programmer is usually in the form of optional data-type declarations
(DECLs) and the use of programmer-defined data types (NEWTYPEs) that have built-in declarations. Unlike
miny programming languages, however, declarations are never required. The compiler will compile

programs with no declarations at all, but the resulting output will not run as fast as with well-declared code.

The current compiler can achieve speed-up factors of anywhere from about 4 to 100, The factor of 4
represents the speced-up fora very general program with very poor declarations. On the other hand, the factor
of 100 represents a program with a very narrow range of application that has very good (that is, restrictive)

declarations. Typical progromms can expect to achicve factors of 20-40,

5.3.1. How it Works
The compiler as it currently exists s really two distinct programs. GETORDER is basically an interface
between files of Min. functions and the compiler. It is a relatively small program that reads in the file, sets up

the various compiler switches, calls the compiler one or more times and writes out the final file of RSUBRs.

COMPILE iwself is basically a compiler with three major snd three minor passcs. Pass 1 builds o model of
the pragram, pass 2 analyzes each node of the tree and docs data type analysis, pass 2.5 (minor) allocates stack
space for variables and temporarics, pass 3 gencrates output code and two minor passes do Minal stack

allocation and peep-hole aptimization.

53.1.1. COMPILE and COMPILE-GROUP

There are two distinct modes of compilation avaitable. They are simple and multiple. Simple compilation
occurs when COMPILE is called with one FUNCTION. It simply compiles that FUNCTION and returns.
Multiple compilation occurs when COMPILE is called with a list of FUNCT IONs. It compiles cach FUNCTION
into a scparate RSUBR. It differs from multiple calls to COMPILE in that it sometimes partially compiles a
FUNCT ION out of order to determine its calling sequence and do argument type-checking. "U'his behavior is

necessary when compiling mutually recursive FUNCT I0ONs.

In all modes of compilation, COMPILE-FUNCTION is called to actually compile the individual

FUNCT IONs. ltcalls the various compiler passes,

5.3 The Compiler (Internals)

94 b I'he M., Programming Environmoent

5.3.2. Modeling Pass

The first pass of the compiler takes the input FUNCTION and builds an expanded model of it. In the
process of doing this, it produces a symbol table entry for every local variable bound and/or declared in the
FUNCTION, any of its PROGS/REPEATs or MAPF/MAPR FUNCT I0Ns. It also produces the RSUBR DECL for
the final output. Pass 1 also tries to decide if an internal entry (that is, an entry which can be called cfficiently
{(sec section 6.1)) can be used with this FUNCTION. IF an internal entry turns out t¢ be possible. Pass 1

generates an appropriate calling seguence for internal calls to use,

e model built by Pass 1 looks like the original FUNCTION with all of the nodes in the FUNCTION's
structure replaced with objects of type NODE (a new type delined for the compiler). A node in the model may
have anywhere frim S to 30 clements. The 5 clement node is for simple guoted objects like MNixed-point
numbers, ATOMs cic. ‘The 30 clement nodes are for major elements of the program such as the node for the
FUNCTION itsclf and nodes fior PROGs and REPEATs. “The majority of the nodes are gencral SUBR nodes,

which have 10 clements.

The Pass 1 structure is built in the following way. The wp level program in Pass 1 generates a node for the

entire FUNCT ION. This node gets the following information put into it

1. A code specifying that this isa FUNCT ION node.

b

. The data ty pe that this FUNCT ION is declared to return (or ANY)L
3. A LIST that will eventually contain the nodes comprising the body of the FUNCT ION.

4, A UWECTOR of internal names for internal calls to this FUNCT ION.

LA

. A symbuol table For the variables declared and/or bound in this FUNCT I0NM.

6. A list of entrics in the symbol able specifying how the arguments are to be sct up (whether they
arc optional, QUOTEd, TUPLE erc.).

~J

. The final RSUBR DECLs.

oo

. A specifieation of how o pass arguments w this FUNCT ION when it is compiled (whether the
arguments should be in registers or on the stack).

9. The number uf required arguments and the total number of pessible arguments.

In addition to the above information, slots exist in the node for additional information to be supplicd by

later compiler passes.

The Compiler (Internals) 53

The M. Programming Environment 95

After the main node for the FUNCTION is built, the sub-nodes for the FORMs comprising the body of the
FUNCT ION are built. This is done by first dispatching to special Pass | code for the first clement of the FORM.
If no special code exists for this first clement, a dispatch is made on the TYPE of the first elemaent of the FORM
(that is, ATOM. FIX, FUNCTION cic.). If no special code exists for cither the first element or its TYPE, a
general FORM node is built. In the case of an ATOM as the first clement of the FORM, the normal leokup rules
are invoked on the ATOM and it is dispatched again based on its value. ATOMs with no values cither cause

compilation warnings or arc assumed to be RSUBRs (depending un compiler switch REASONABLE).

All FSUBRs (COND, AND, OR, FUNCTION. PROG, REPEAT, UNWIND. ctc.) have special 1*ass 1 code and
produce very specific nodes. Most SUBRs don’t dispaich o specific code during this pass. “Ihe exceptions arc
things like MAPF, ILIST. GET ctc.. which have somewhat non-standard treatment of their arguments.
(Actually, MAPF and MAPR don’t treat their arguments non-standardly, but they are treated specially in Pass 1

s (hat the inner FUNCT ION may be open compiled.)
As mentioned previously, all nodes have al least 5 cloements. These are as follows:
1. A node type code,
2. A pointer to the parent node (if one exists).
3. A specification of the data type the node will generate,
4. A hst of sub-nodes referred to as kids.

5. A name Tor the node, which may have different meanings for different nodes.

In addition, nodes other than nodes for QUOTEd objects have additional clements that are filled in during

later passes of the compiler.

After Pass 1 all additional passes work on the model built during Pass 1. The original FUNCTION is no

longer even considered.

5.3.3. Analysis Pass

During Pass 1, very little information is determined regarding the resulting data types of various nodes.
Indeed, with the exception of nodes produced by quoted objects, structured abjects which will produce code
to build copies of themselves, and FUNCTIONs, PROGs and REPEATs with declared valuecs, no type
information is produced. Fven in the cascs where type information is produced during Pass 1, it is usually not

as detailed as other passes would like. The Analysis Pass has the job of refining the result type of cach

5.3 The Compiler (Internals)

“The ML, Programming Environment

individual node based on various criteria
1. ‘e declared types of the varinbles used in the program including GDECLs and MAN IFESTs.

2. 'The known ype transformations produced by various SUBRs. (For example, it is known that

LENGTH always producesa FIX result.)

3, Sume analysis of the conlcxt of the nodes within the prograii (For example in the following

code:
<COND (<AND ¢TYPE? .X LIST> LHOT <EMPTYT K>3>
<1 JX¥)

regardloss of how X is declared. it is obwiously a LIST when the EMPTY? is run. and it obviously is
not empty when the €1 . X2 i5 Fun.)

‘I'he Analysis Pass performs a standard depth-first lef-to-right tree wilk on the Pass 1 model, "The main

dispatch function during this pass is called ANA. It does an initial dispaich based un the node type of cach

node. Since must nodes are still considercd “SUBR nodes’, most of the dispatches end up at the SUBR call

analyzer. The SUBR call analyzer has twu types of further dispach guailable. First it Tooks in o table for

SUBRs that are capable of being completely open-coded: iF it finds an entry in the table, the analyzer for that
SUBR is invoked. 17 this SUBR is incapable of being open-coded, ANA checks another wble w see if this SUBR
has an internal entry available. 1Tt does. the node is changed fronn a SUBR node o an internal SUBR node. Lf
buth dispaiches fail. anuther table is checked to sce if the object Lype returned by this SUBR is known, and if it

is the result is put into the SUBR node.

Most of the work done by the Analysis Pass happens when the first dispatch occurs and spec ial SUBR
analyzers are invoked. Generally speaking, these analyzers check to see if they know enuugh about their
arguments to transform their nodes o an ppen-code specification. For example, an invocation of the SUBR
REST only transforms to an open-code node if both the PRIMTYPE of the first argument is known at compile
time and therc are no SEGMENTS in the call o REST. (fa spociul SUBR analyzer decides that it can’t

open-compile in this case, it aither leaves the node as a SUBR node or transForms it to an internal SUBR node.

5.3.4. The Type Analysis Model
In addition to the model of the FUMCT ION built in Pass 1, the Analysis Pass adds additional infurmation to

the model concerning the current stales of local variables. As the .::n:uyxl:r plunges down into the trec, it trics
o keep track of the current DECL of each variable. Specifically, there is a slot in cach symbul table entry
called CURRENT-TYPE. The analyzer updates that slot based on its current knowledge. A call to SET causcs
the CURRENT-TYPE slot to be changed to the analyzed type of SET's sccond argument. When mutltiple

The Compiler (Internals) 53

The MIJ. Programming Environment 97

control paths meet, the CURRENT - TY¥PE slots of a variable are OR'd together at the joining point.

Conditional control structure nodes for COND. AND and OR also maintain two lists of transient information.
These are called TRUTH and UNTRUTH. They specify what information will be valid if the true or false
branches are taken respectively. For instance. a COND clause compilation can assumc that any TRUTH

information generated in the predicate of the COND will be valid for the rest of the clause,

Some of the analyzers for the more widely used predicates have special code in them to add information o

the current TRUTH and UNTRUTH values. These predicates include TYPET, EMPTY?, LENGTHT and NOT.

I .ouping control structurcs pose additional problems for the type analysis model, The approach taken by
the type analyzer is to build a copy of the current types of all variables before analyzing the loop structure.
T'his copy of the local type information constitutes the assumptions currently in effect. Alter the loop analysis
is compete, the assumptions are checked against the current state of the variables, 1T any of the assumptions

have been violated, the assumptions are updated and the loop is re-analyzed.

5.3.5. Life-and-Death Analysis

‘I'ne Analysis Pass also performs a life-and-death analysis on the local variables. ‘This is donc by assi'ming
that the variuble's value is dead at each LVAL node for that variable. If another LVAL node for this variable is
discovered that is reachable from this one before any intervening SET nodces for this variable, the original

node is updated to be alive. This life-and-death information is used during the Code Generation Pass.

5.3.6. The Variable Allocation Pass
The Variable Allocation Pass (VAFP) is a relatively simple one. 1ts purpose is to allocate stack space for all
of the variables bound in the FUNCT ION, its PROGs and REPEATs and its MAPF /MAPR FUNCTIONs. There

are various switches that control the manner in which this allocation is performed.

e most important switch specifics whether or not this FUNCTION needs a FRAME or not. The VAP
always starts out assuming it does not need to build a FRAME. ‘This assumplion will be changed if it is
discovered that exterrially accessible named ACT IVAT IONs cxist in the FUNCT ION or any of its inner blocks
{(PROGs or REPEATs or FUNCT IONs) or if at any time it is discovered that the address of a variable cannot be
specified as a fixed offset from the top of the stack. Whenever this assumption is changed, the VAP starts

over again with the new assumption in affect.

Another switch that controls the behavior of the VAP specifics whether or not the stack slots for inner

5.3 The Compiler (Internals)

98 Ihe M. Programming Environment

blocks will be pre-allocated because the stack will be in a “fuzzy’ state when these blocks are running. The
stack is said to be in a ‘fuzzy® state when the number of slots currently being used cannot be determined at
compile time. This usually occurs when a TUPLE is being constructed fuor a MAPF, For instance, in

CDEFINE F (X Z)
¢MAPF .VECTOR <FUNCTION (¥) <==7 .Y .I>> .X3>

the clements of the VECTOR will be between the top of the stack and the location uf variable Z. Even il F has

a FRAME. the location of ¥ will not be known relative to the FRAME pointer at compile time. ‘Therefore, the

initialization code for F will pre-allocate the stack space for ¥,

uring the VAP, each symbol table entry gets its address field set based on where that variable will be on
the stack. Also nodes for PROGs, REPEATs and MAPF/MAPR FUNCTIONs that have bound variables get
additional information inserted in themselves, This information includes where the SPECIAL variables start

and where the UNSPEC TAL variables start.

5.3.7. The Code Generation Pass

‘The Code Generation Pass (CGP) is probably the most complicated of all the passes. Fortunately, the
Analysis Pass has already refined the model so that the CGP can dispaich immediately to the special-purpose
code gencrators. Besides building a list of assembly-language instructions as output, the CGP keeps track of
the current state of the stack. the contents of the registers, the current state of variables (whether they are in

registers or on the stack or both) and the contents of the temporaries.

The general dispatch routine during the CGP is called GEM. It takes two arguments: A NODE and a

specification of where o leave the result. The second argument can be any of the following:

1. ‘The ATOM FLUSHED, meaning that the code will be executed for cffect rather than value.

The ATOM DONT-CARE, meaning that the caller of GEN is leaving the decision up to the specific
generator as to where to lcave the result

I

3. An object of type DATUM which specifics a place for the type and value of the result to be lefL
'I'ype DATUM is of PRIMTYPE LIST and contains two clements, one for the type and the other for the
value. The clements of a DATUM may take on a variety of values in different circumstances. ‘These include:

1. A TYPE name. This can only occur in the type siot and it means that the type of the object is
known at compile time and this is it It indicates that the code gencrator need not put the
type-code anywhere.

3. ‘I'he ATOM DONT-CARE. ‘This means that the caller doesn't care where the result for this field is

The Caompiler (Internals) 5.3

"

I'he MIM. Programming Environment 99

left.
3.°Ihe ATOM ANY -AC. 'This tells the generator to leave the result in any available AC,
4. An object of type AC. 'This tells the gencrator to force the result into a specific AC.

5. An ubject of type ADDRESS : C or ADDRESS : PAIR. Both of these specify addresses on the stack
or in the interpreter.

6. An object of type OFFPTR. An OFFPTR has three fields: a DATUM, an offsct {(a FIX), and a
PRIMTYPE. An OFFPTR tells the generator to leave the result in the word pointed to by the inner
DATUM and offset by the offset,

If un element of 5 DATUM is ANY-AC or DONT-CARE. the gencrator is required to update the DATUM to
reflect the actual location of the result. IF the element is a TYPE, the generator may change it to an AC which

means that it happened to end up with the TYPE in that AC.

I'he gencrators always return a DATUM specifving where the result was actually left. unless the caller
waniced the result FLUSHED. “There is one special DATUM that can be returned, It is the GVAL ol the ATOM
NO-DATUM and it means that the specified node will not return a value (that is, it isa RETURN or an AGAIN or

something).

There are six objects of type AC in the compiler, corresponding to ACs 0, A, B, C, 12 and E. AC 0 is special
since it can’t be used as a puinter, and it always contains very transient information. It is never uscd to fill in
an ANY=-AC slot in a DATUM. The other five ACs are in the pool of available ACs. Objects of type AC have
abuout ten different slots associated with them. “They are used For linding available ACs and gencrating output
code thot uscs them. ‘The slots used in AC allocation are as follows:

l. ACLINK. IF this is FALSE, the AC contains no temporary value for the current computation.
Otherwisc, it is a list of active DATUMs that contain it

B

. ACAGE. 'This is only used when the ACLINK is non-FALSE. [t is updated to a higher number at
cach use of the AC and is used inan LRU algorithm when an active AC must be Mushed.

3. ACRESIDUE. IF this AC is currently cquivalent to some local variables, this slot containg a list of
the symbol-table entries for these variables. ‘The symbol-table entries themselves have a slot
cialled TNACS thal points back to the ACS thal contain iis type and/or value. They also contain a
slot called STORED that specifies whether the only copy of the variable iz in the ACs or it is also in
momaory.

4. ACPROT. This slot is a boolean saying whether this AC is protected or not. 1Fthe AC is protected, it
can't be allocated for any reason, Protection is only invoked for very stretches of code.

5.3 The Compiler (Internals)

1y

|||'I'II||-

i

J
|'

|

|

||

|

Il

(I

|

|
|

1y

{0

|

100 The M1 Programming Environment

5. ACPREF. This slot says that this AT deserves slightly preferential treatment. 1t means, all other
things equal, don’t choose this AC.

‘e AC allucation algorithm consists primarily of trving to find the best possible candidate when an AC is
needed. The routine GE TREG is used to lind an available AC. First it rejects all ACs that are protected (if they
all are protected, the compiler generates an internal error since this should never happen). If there are one or
more ACs with their ACLINKs FALSE, GETREG will choose from among them. It will prefer ACs with no
ACRESIDUE, that are numerically adjacent o another free AC (because sume PLP- 10 instructions destroy the
next ACY and which do not have their ACPREFs on. If the AC chosen has an ACRESTDUE, code is generated

if necessary to store any of the variables that are only in ACs.

If no AC exists with un ACLINK that is FALSE, GETREG finds the AC with the smallest ACAGE. Code is
generated o store the contents of the AC in a lemporary so that it iz available. The DATUMs that were in the
ACLINK arc updated to indicate that thoy arc now painting o temporarics as opposed o ACs Thus it is
pussible that a generator could need sub-results in ACs. and after causing une to be gencrated in an AC, find
that while generating the second one the first slipped back into o lemporary. ‘I'he generator would then have

to gencrate code to reload an AC from the Lemporary.

The OGP invokes various special-case optimizations by passing information up and down the tree as code
is gencrated. The generators for conditional branching FSUBRs like OR, AND and COND employ a predicate
generator whenever possible. This generator is like GEN cxcept thal it takes three additional arguments: a
label 1o branch to. a flag saying whether to branch on truth or falseness, and a flag saying whether this
predicate is being NOTed. The general predicate generator then looks at the predicate node to see if it can
take the additional arguments for predicate generation. 17t can, the general predicate generator just passcs all
the arguments down; otherwise it calls GEN and generates the additional testing and branching code itself.
Currently AND, OR, COND, ==7, N==7. G7, G=7. L7, L=7, 07, 17, TYPE?, NOT, ASS IGNEDT, MEMQ,
LENGTH? and EMPTY? havc special predicate code associated with their generators. Others may be added as
the necd develops.

Other optimizations arc invoked by simply recognizing commaon patierns of MDi. code. For instance, the
compiler recognizes <SET X <+ X 1>>asa PHP-10 A0S instruction and it gencrates very cfficient code
for CREST .X <- <LENGTH .X> 13>2> by recognizing the pattern of code.

The compiler always takes advantage of as much knowledge as it has about the types gencrated by
particular nodes to generate good code. ‘Ihis is cspecially the case when it is handling the code fur NTH, REST

and PUT in structurcs. 1t uscs type information cancerning the length of the structure and the amount being

The Compiler (Internals) 53

The ML, Programming Environment 101

RESTed fur the NTH, REST or PUT. to figure out whether or not to gencrate bounds checks in the compiled
code: It also uses information about the current type of the slot being read or written to decide whether not to
read or write the type word. Obviously, a lot of this type information was the sume information obained

during the Analysis Pass of the compilation.

Some code generation routings are capable of changing the order of generation of the sub-nodes. This is
done to uy (o get the node requiring the most ACs compiled first so that it won't interfere with any AC
requirements of the current node. ‘This obviously requires that the commuted nodes have no interacting side

effects.

5.3 The Compiler (Internals)

‘The MIN. Programming Environment

102

— r.r;jJJEJ;J#rI{

6.0

ﬂﬂﬂi1ﬁﬂ1¢%

==
— 3
—

J |

o

I'he ML Programming Environment 103

6. Making It Run Faster

Once you have a warking program, you will probably want it to run fast. ‘The most abvious way of doing
this is to compile it. MDI. provides other ways to speed up code. chiefly by eliminating mediated subroutine

calls, and by reducing the size of garbage-collected space.

Mediated subroutine calls (or "MCALLS') arc the standard method of function calling in MDL. They
provide a great deal of information and control during program development and debugging, but the

averhead of an MCALL is superfluous in debugged production programs. Consequently, several methods exist

for removing this overhead.

A subtle impediment to increased speed in a production program is the amount of time devaoted o garbage
collection. As this is proportional to the size of the garbage collecied space, it is advantageous to make that
space as small as possible. One way o do this is o purify as muny of the stalic data structures in the ML as

possible.

One by-product of the procedures mentioned above is that much of the resulting code and structure

becomes purc and therefore shareable between many MDI. processes.

6.1. GLUE

A facility exists to allow scparately compiled and assembled RSUBRs to be ‘glued’ together. “This makes
calls between RSUBRs in the group much Faster, as MCALLs are replaced by PUSHJs. The many instructions
of an MCALL are rcplaced by the single PUSHJ, but the mediation provided by MCALL is lost: No FRAME is
produced. GLUEing is accomplished by the concatentation of the code and refercnce VECTORs of the RSUBRs

being GLUE, which gives them a common *frame of referonce.

Additonally, GLUE is interfaced with the compiler such that:

1.'T'he RSUBRs can be run unGLUEd for convenient tracing and decbugging. Afier debugging, they
can be GLUE together and run much faster.

2. An individual FUNCTION can be recompiled without the overhead of recompiling everything
GLUEd to its RSUBR. ARer the recompilation, the entire set can be reGLUE,

6.1.1. How to Glue
"GLUE" is a PACKAGE and it may be obtained by doing

6.0

‘\I
!.

N

1

‘|
|

I

|

N

|l

|

|

|

M

|
l

é

||

|

ll

104

<USE "GLUE">

The call o glue a g
(GROUP-GLUE growp-namesalon
substitute: boolean
scriptzchannel
package:string-ar-lisi
survivors:list
victims: lisi>

where:
group-name is an ATOM as returnce

cubstinue s o Mag: iFit is true, the current RSUBRs
in the current M. Thisis exponsive bhut nec
RSUBRS in the group.
reloaded before use.

seripe il suppliecd and
Otherwise, GROUP-GLUE works silently.

package, if provided and non-FALSE.

STRING specifying the PACKAGE that is being glued.
ENTRYs associnted with internal functions will be removed.

PACKAGE will be preserved and all RSUBR-

‘I'his option can also we used by seling the ATOM PEG (o
c ENTRYs of all the PACKAGES listed will be preserved.

4 LIST of PACKAGE names, in which case th

survivors if provided indics
RSUBR-ENTRYs to be proserved.
PACKAGE mode. This option can also be use
being preserved.

victims allows ‘survivors’ o be specified by default; that is, it is
survive after GLUE has run. This is sometimes mure convenient 1o specify

‘Ihere are two advantages o removing unnceded RSUBR-ENT

of the RSUBR-ENTRYs. Also the code for the group is reduced, as the code for handling MCALLs to those

In general only the ENTRYs need to be kept for u PACKAGE.

RSUBR-ENTRYSs is removed.

hy specifying the

explicitly state which RSUBR-ENTRYs arc lo be kepl.

6.1.2. GLUE as a Program

In addition to the "GLUE * PACKAGE, therc is a program in which
al arguments 0 GROUP-GLUE, permilling the uscr to

preloaded. It will prompt for cach of the usu

If the fMag is FALSE or not supplicd. the group mus
4 CHAMMEL is uscd by GROUP-GLUE print outl {ls Progress throug

implics PACKAGE maode will be used,

tes that SURVIVOR muode will be usecd.
All other RSUBR-ENTRYs will be flushed.
d by seiting the ATOM SURV Lo the L1ST of RSUBR-ENTRYs

PACKAGE using PACKAGE maode. SURVIVOR mode should be uscc

Ihe ML Programming Environment

roup of RSUBRs and/or RSUBR-ENTRYS is:

1 by GROUP-LOAD, and it is the only reguired argument.

ind RSUBR-ENTRYS will be fixed so that they may still run
cssiry iFPRINTTYPES or mtern upt handlers arc among the

{ be GROUP-DUMPed and
h its task.

This argument should be a
In PACKAGE mode only the ENTRYs af that

the name of the PACKAGE. Package may also be

I'his argument should be a list of those
Iis option overrides

a4 LIST of those functions which should nor
than explicit survivors.

RYs. The group is made smaller by the absence

‘This can be done

1 if the user wishes o

GLUE and PDUMP (scc scction 6.3) are

conveniently GLUE (and PDUMP) several PACKAGES in one session.

GLUE

Lhe MDI. Progriunming Environment

6.2. Glue Bits

GLUE is able to perform its transformations on compiled or assembled code with the aid of a data structure

produced during assembly. ‘Ihis structure is called the ‘GLUE Rits".
by this FORM:

<AND <ASSIGNED? GLUE>
LGLUE

SPUT rswbr GLUE glue-bits:uvector>>

It is an sssociation placed on the RSUBR

Thus il . GLUE is non-FALSE the association will be available o programs wishing to use it

Internully, the GLUE bits consist of two bits for each word of code in the CODE clement of the RSUBR,

fullowed by words specifying calling information. For cach INTERNAL-ENTRY in the code, there is a word

giving the number of arguments it tukes and the offsel of the INTERNAL-ENTRY in the CODE UVECTOR.

The two bits for individual instructions are interpreted with the index field of the instruction as follows:

Rits 0 implics the instruction is uninteresting;

Index field (M) and bits 1 implics the instruction is a reference to the code itself(a jump, perhaps):

Index field (R) and bits | implics a reference to an impure slot of the RVECTOR (the compiler does not

generate such references);
Index ficld (R) and bits 2 implies the instruction is an MCAL L:

Index field (R) and bits 3 implics the instruction isa reference o a pure slot of the RVECTOR.

See section 7 for more details on the format of Mot Asscmbly code,

6.3. PDUMP

MDL provides a mechanism for sharing compiled programs among scveral MDI. processes, and for

dynamically moving the compiled code in and out of the virtual address space as space is necded in the

interpreter. ‘This mechanism is described in detail in section 4.2, This section describes how to convert a

compiled program intwo a sharable version, know nasan FBIN (FFast- I Nary) version of the program.

First load the group-purifier,

6.2 Gluc Bits

106 * e ML, Programming Environment

<USE "PDUMP">
Mext, GROUP-LOAD your group (or groups).

¢GROUP-LOAD binan-file:string>
which returns the group-name of the group. ‘This (and any other groups o be dumped together) is then
passcd [-“ the pure-dumper:

SPDUMP group-namel :alun gmup-:ramr.?:amrn I

‘I'his creates several files, only one of which you need be concerned with:

sname: proup-namel! FBIN
If given more than onc group-namec, PDUMP will create one FBIN file for cach group, but only a single FIXUP
and a single SAV file containing the fixups and code for all of the groups named. The FIXUP and SAV filcs
arc put on the "MUDTMP™ dircctory and eventually are inserted in the pure code library, as described in

scotion 4.2,

Alternative methods of PDUMPing are to specify that as an option in to the program GLUE (sec section

6.1.2%, or to usc its preloaded PDUMP dircctly after exiting its READER with T 5.

A warning about combining GLUE and PDUMP: if you attempl to POUMP scveral groups that have been
GLUEd together, you will lose. 'This is because the references to the ‘group-RSUBR" will fall on the wrong

OBLISTs.

PDUMP also produces a structure analogous W the GLUE bits (see section 6.2) produced by the compiler,

but containing only information about the RVECTOR of the RSUBR, for the use of PURIFY ({scc section 6.3).

6.4. SUBRFY
SUBRification is a way of getting rid of many of the MCALLs which could not be practically removed using
GLUE. IFa FUNCTION is called by many scparate groups, it is difficult to GLUE it to all the groups or to GLUE

all the groups together.

What is really needed is to be able w allow somcthing to be called with PUSHJ from scparate groups
without forcing it to be part of those groups. This is indeed the case with PUSHY entries to M. SUBRs (in

the interpreter). A user can make his RSUBRs look like SUBRs in this respect.

SUBRFY takes a group, which must be in NBIN formal It purifics the RSUBRs and RSUBR-ENTRYs in the
group and changes them so that they can be called with PUSHJ. [t also producesa file, known as the “preload’

file. which can be used by the compiler to generate PUSHJIs to the functions in the SUB Rificd group.

PDUMP 6.3

I |
|

I.|!|

|
|
L

i B :Il\

I
|
4

J|J|£

l
1

The M. Programming Environment 107

SUBRFY should be lvaded before loading the group to be processed. The reason for this is that it
guarantees that GLUE bits stay around. To lvad SUBRFY
<USE "SUBRFY">
¥ou should then GROUP-LOAD the group. Your group should be GLUEd already, since SUBRFY docs not
GLUE the group together.

SUBRFY can then be called in the following manner:

<SUBRFY group:alom
file-name:string
owfpul:channel>

where
rropg is the name of the group.

Sile-nanne is the name of the file in which SUBRFY should put the infornation for the compiler. This defaults
to the name of the input file with second nome "PRELOD".

et 15 an optional argument which specifics a CHANNEL on which to print information about SUBRFY's
progress. The default is not to print anvthing.
The file produced by SUBRFY should be FLOADed for compilations where functions in the SUBRificd group

arc called. This cau be done by FLOADIng it in the “Ihings to do” part of a cComBAT plan.

like purification, SUBRification changes the MDL. The only way to preserve the SUBRified group is to
SAVE the MDL. Before SAVEiIng the MDL the "SUBRFY " PACKAGE should be removed. 'This can be done
by doing a
CKILL-SUBRFY>
followed by a
<GC O T>,

SUBRFYing a group implics that the group is not going to change at all frequently, if cver. A new
SUBRF Yed SAVE file may be created at any time, and elements of the group may be recompiled. However, if
the calling sequences of any of the functions in that group change, you invalidate any functions compiled

using the “preload’ file for that group. In short, think twice before tying yourself down with SUBRFY.

6.5. Purification
A facility exists to permit the purification of M. objects. Purilicd objects can be shared between MDL
processes and also are not examined by the garbage collector. What follows is a description of how this

facility can be used.

i 6.4 SUBRFY

.
' — '
' S - :
.-__-__
= = = ——
| — :
00 —_____
e e :
. — :

e .
; e . e i
. — ;
é o — - ., ..

108 I'he MU Programming Environment

The purification facility in M. is most useful in the ereation of subsystems. MNon-purified RVECTORs of
RSUBRs and tables used by subsystems are kept in garbage collected space. “This means that these objects,
which will never become garbage, are cxamined at cach garbage collection. slowing down the garbage
collection process. Also. if two people are using the same subsystem, they cannot share the tubles and RSUBRs

kept in garbage collected space. By using purification these two problems can be alleviated,

To purify most objects the user can call the PURIFY SUBR. The ohject will he purified. and all references
t that object in the M. care image will be changed o point to the new pure object. This simple method
cannot be used in the case of RSUBRs, Purification of RSUBRs is a scveral step prucess beginning with

compilation.

6.5.1. Purifying RSUBRs

Onece your FBIN or NBIN is ready vou can actually do purification. ''v do this first
CUSE "PURITY">

This PACKAGE contains the routines needed to purify RSUBRs. Then GROUP-LOAD the files you wish o
have purified. Once this is done type

CGROUP-PURIFY group:alonm outpui-channel>
This will purify and link all RSUBRs and RSUBR-ENTRYS in the group and will also attempt to purify any
RSUBRs or RSUBR-ENTRYs called by the group. Giving the optional ehannel will cause GROUP-PURIEY to

print information concerning the progress of the purification,

GROUP-PURIFY will only purify RSUBRs and RSUBR-ENTRYs. In order to purify tables, ctc. usc the
PURIFY SUBR dircctly. Since purification is an extremcly expensive operation, it is recommended that you

collect together the things you wish 1o purify into a LIST, VECTOR, cte. and purify that structured object.

Once purification has occurred, several things may be done W recover wasted garbage collected space.
The user can get rid of the "PURITY " PACKAGE by doing a
SKILL:PURITY>

The user can alse remove much of the overhcad of keeping a group around by UNASSIGNing the
group-name. Kemuovals of this type should be follwed by an explicit eall w the garbage collector invoking the

*hairy’ GC feature, as much of the storage to be regained is pointed to by associations. ‘This can be done by
<GC 0 7>

In order to save a file with purificd Mi31. objects you must SAVE. Restoring a SAVEd fle with purificd MD1.
objects will cause those objects to share with any other MidL RE STOREd from the same SAVE file.

Purification 6.5

;

; — -
|

: — =
— —

| — — 4
:

: — 4
. — — _J'I
- — :

, —— =-
—-

; — -
e
: .

: .
:
I m— m— — = ;
: — = _‘I

I — — s — i
;

; — =
— -
' — e — I

: - -
. S— —= =
:
: -

: — =
- |

: — —
— _—

, — — -
: — — =
: —_— — :
———

:
;

L

(¥

a0

=

‘The MDL. Programming Environment 109

6.5.2. Purifying an Environment
Many subsystems maintain a list containing pointers to all the static data structures built by that
subsystem: dispatch tables, data bases, and s0 on. The list can be given to PURIFY to move all its components

intoe the pure arca. However, there are other structures in garbage collected space that may be purified; e.g.,
the RVECTORs of RSUBRs, RSUBR DECLs, and so0 on.

The "CLEAN" PACKAGE cxamines these structures. looking for those which may be purified. It may also
be used for informational purposes. To get it
<USE "CLEAN">
"CLEAN" has one |ﬁﬂjnr ENTRY. CLEANUP, which examinecs every ATOM of every OBLIST in the M. It
may perform a variety of functions, but it is most often used to make DECLs share storage and to accumulate a
LIST of purifiable structures. All of its arguments are optional.

<CLEANUP primt?:boolean
resel?:boolean
decl?:boalean
edect?:boolean
pure?:boolean
check?:boolean
avoid:lisr-of oblisis>

prine? is by default FALSE. If non-FALSE, information about cach ATOM examincd will be printed as
CLEANUP runs. This is a for of information.

resei? 1s by default T. IFnon-FALSE, the LISTs of objects previously collected will be resct before CLEANUP
rins.

decl? is by default T, Ifnon-FALSE, cach DECL clement will be made to exist exactly once in the entire core
image. E g., there will be only one copy of the DECL <LIST [REST FIX]> inthe~ corc image.

gdec!? is by default T. It is similar to decl?, but refers to GDECLs.
pure? tells whether to make a LIST of all the purifiable objects in the core image. It is by defaule T.

eheck? tells whether to make LISTs of all the TYPEs, RSUBRs, RSUBR-ENTRYS, clc. in the core image. Itis
by default T.

avold is a LIST of OBLISTs not o look in: it is by default the OBLISTs associated with "CLEAN™ and
"PURITY"™.

CLEANUP returns (if pure? is non-FALSE) a structure (also stored as the GVAL of PURELST) which may be
given to PURIFY.

The results of running CLEANUP may be examined by

6.5 Purification

ﬂl»_w

F

|'|
|

|

I

|

|
(

N

m

|
|

il

110 The M. Programiming Environment

CPRINT-CLEANUP>
As the object in running CLEANUP is to shrink the size of one’s MpL and its garbage-collecied space, it is
uscful to be able to remove CLEAN after .I[has done its work.

CFLUSH-CLEANUP>
removes cverything associated with the PACKAGE from the MDL.

6.5.3. Purification Summary
In a simple case, one can purify a ‘subsystemn” of one group maximally by

<USE "PURITY" "CLEAN">
<GROUP-LOAD "foo">
<CLEANUP>
<GROUP-PURLFY foo>
<KILL:PURITY>
<FLUSH-CLEANUP>

<GC 0O T>

<SAVE "jfoo">

6.6. TEMPLATEs
IMec PRIMTYPE TEMPLATE cuts down on the need for storage by allowing the user to specify exactly what

he wanis a structured object o contain, similar to “structures’ in P1./1 or C.

To use this feature one must create a new TYPE of PRIMTYPE TEMPLATE. This can be accomplished by

using the RSUBR TEMPLATE. The procedure for doing so is:
<USE "TEMPLATE">

STEMPLATE pame:qion ... JDECS ... »
where name is the name of the new TYPE and specs arc specifications for each clement of the TEMPLATE.

This returns the TYPE name of the TEMPLATE and creates a creator of TEMPLATEs of TYPE name, called

name itsell, which can be applied to arguments to create objects of that TYPE of TEMPLATE.
The specification for the elements can be of several forms. [t can be onc of
a TYPE: typeratom
a2-clement LIST: (rypesarenn lengrh:fix)
a 3-clement LIST: (fyperatom lengthzfix count:fix)

Below are sume examples along with caxplanations:

Purification 6.5

T

TR RRARRRENR ‘A
ARl RRERRRRRRRY

Ihe MIXM. Programming Environment 111

LIST
isan 18 bit LIST pointer.
(FIX 18)
is @ halfword FIX (can be both positive and negative and is checked for overflow).
(FLOAT 18)
is an 18 bit FLOAT (which is the left halfword of a *normal’ FLOAT and therefore somewhat restricts the
precision).
(FIX n)

(where n is less than 18) js a positive F LX of length # bits (is not checked for overflow),
BOOLEAN

is not a My, TYPE, but a one bit FALSE or non-FALSE depending on whether the hit is 0 or 1.
(UVECTOR 18 n)
is an 18 bit UWECTOR pointer. 1Tic UVECTOR is of length #. The same can be done for VECTORs.
(STRING 36 n)
is a 36 bit string byte pointer. The STRING is of length
ANY
is not o MDI. TYPE, rather anything can go here. This is relatively inefTicient to use in TEMPLATES as it takes

up 2 words.

In order to provide more flexibility in using TEMPLATEs, two other fields are allowed, an eptional field
and a rest ficld. "The oprional field allows the user 1o create TEMPLATE TYPEs which will have the same basic
structure but which can have vptional clements determined when the actual TEMPLATE is created. The rest
ficld, like the oprivnal field, allows clements to be optional but specifics a pattern for any clements that are
added on. It is analogous to REST in DECLs. Scparation of ficlds is accomplished by the use of the strings
"REST" and "OPTIONAL", For cxample:

<TEMPLATE FOO FIX "OPTIONAL"™ LIST BOOLEAN "REST"™ FLOAT>
This creates a TYPE FOO of PRIMTYPE TEMPLATE which always has a FIX as the first clement, can have a
LIST as a sccond clement, can have a one bit T or #FALSE () as the third element and can have any number

of FLOATS from the fourth element on.

6.6.1. Use of TEMPLATEs

TEMPLATE TYPES may be thought of as primitive I‘r:FEs. in that they ecach have a unigue storage
representation. On the other hand, the TYPEPRIM of any TEMPLATE TYPE is TEMPLATE. A primitive
TEMPLATE (which cannot truly cxist in the language) would look like

6.6 TEMPLATEs

|

| "

(If

Ml

(111

112

{ element-1 element-2 ... elemeni-n }

The M121. Programming Environment

l2cal TEMPLATE TYPEs are represented as NEWTYPEs of this primitive TEMPLATE TYPE.

#oype-name { ...elemenis... }

‘I'his method is similar to the usual method in MDL for representing any new TYPE,

TEMPLATE will be printed *CHTYPEd to its PRIMTYPE. Note th

at a TEMPLATE so printed cannot be read

READ: a‘primitive TEMPLATE' cannot exist. Itisbestto avuid printing RESTed TEMPLATES.

Bolow arc some cxamples of the use of TEMPLATES.

<TEMPLATE BAR
FIX
"OPTIONAL"™ BOOLEAN

“REST" (FIX 18) (FLOAT 18)>3

BAR

<BAR 1>3%
#BAR {1}

<BAR 1 T>%
#BAR {1 T)

<BAR 1 <> 1 1.0>%
#BAR {1 MFALSE () 1 1.0}

<SET A <BAR 1 <> 1 1.9 2>>§
#BAR {1 #FALSE () 1 1.8984376 2}

<PUT .A 1 B>%
#BAR {8 ¥FALSE () 1 1.8984376 2}

<PUT .A 4 1.999>S
#BAR (6 #FALSE () 1 1.9960937 2}

{TEMPLATE BAR (STRING 36 4) "REST"

#FALSE ("ALREADY A TEMPLATE")

¢TEMPLATE BAR1 (STRING 36 4) "REST™ ANY>S

BARL

TEMPLATEs

6.6

in that 2 RESTed

by

M.H

I

|

Il

\

1 1

|

|

—

|

il

|

J

The M. Programming Environment 113

<SET A <BAR1 "HELP" 2 () <>>>%
#BAR1 {"HELP" 2 () #FALSE ()}

<PUT .A 1 "GOOD">$
#BAR1 {"GOOD" 2 () #FALSE ()}

<PUT .A 1 "GOOD-BYE">S

*"ERROR"
TEMPLATE-TYPE-VIOLATION

PUT

LISTENING-AT-LEVEL 2 PROCESS 1

6.6.2. Assembly of TEMPLATEs
Once u sel of TEMPLATE TYPEs is created, a8 for the TYPE definitions of a subsystem, it saves time o
store away the ‘compiled” TEMPLATE generatwrs and nol recreate them each time the definitions are to be

used.

The "TEMHAK® PACKAGE madifics files which define TEMPLATE TYPEs to contain the TEMPLATE
descriptions and RSUBRs rather than the calls to TEMPLATE. It is only uscful, of course, when the
TEMPLATEs are dofined in a file which will not normally be edited, since the new files are in "NBIN® format.
T load this PACKAGE,

<USE "TEMHAK">

‘The PACKAGE has two cntries.
CTEMPLATE-DUMP group-antealomn®

takes the group and modifics it such that <USE "TEMPLATE"™> bccomes <USE “TEMHLP">, and all

tep-level invocations of TEMPLATE are replaced by calls to BUILD-TEMPLATE (for the TEMPLATE

descriptions), SETGs of the TEMPLAT E-generating RSUBRsS, and the GLUE bits for the RSUBRs.
SFILE-TEMPLATE [npui:Siring ouipul siring?

takes an fuput file and performs the same service, GROUP-DUMPing the result to the optional eutput file (by

default the same file with second name "NBIN"). This is useful for files which contain nothing but TYPE

definitions, a commeon practice in large subsystems.

ifthe TEMPLATE TYPEs arc defined in a file which will be edited lrequently, a different set of routines is
uscd alter creating the TEMPLATE TYPEs:

6.6 TEMPLATESs

| R—

rl‘

|

|

M

m

114 I'he M. Programming Environment

{DUMP-TEMPLATES drscriptions:siringy

places the TEMPLATE descriptions {nes the RSUBRs) in the specified descripiions file. It does so fur all
TEMPLATE TYPEscurrently defined.

<DUMP-RSUBRS rsubrs siring remiplate-fypexafom .. . »

will perform the sume service for the TEMPLATE-gencrating RSUBRs of the TYPEs given as the sccond and

later arguments to DUMP-RSUBRS.

There will now be twao files, one containing the TEMPLATE descriptions and the other the RSUBRs. These

may now he used o create the TEMPLATE TYPEs without USEing "TEMPLATE". To do so:

<{USE "TEMHLP"Z
'his defines the RSUBRs needed 1 ke the TEMPLATE descriptions and make them uscelul to MDLL

<FLOAD dlescoripiions:string>
the file of descriptions (the file created with DUMP-TEMPLATES): this must be lvaded before the RSUBRs
file. Then load the RSUBRs file (the file created by DUMP-RSUBRS):

<FLOAD rsubrs:string>
For muximum convenience, it may be nccessary to pul a FORM in files that crecate TEMPLATEs: if the
TEMPLATE files described here exist, FLOAD them: otherwise. <USE "TEMPLATE"> and creaic the
TEMPLATEs from scratch. It is of course possible to manually merge the two TEMPLATE definition fles
(preferably by using GROUP-LOAD and GROUP-DUMP), so long as the TEMPLATE descriptions precede the
TEMPLATE RSUBRs.

TEMPLATE RSUBRs arc created with GLUE bits, so it is possible to glue them into groups and to purify

them.
TEMPILATEs 6.6
: i |
—
— —

| |IP

iy

i

il
i_n!l

n

i |||

il

The M. Programming Environment 115

7. The Assembler

It is occasionally necessary to write MDL routines in assembly language. usually to interface with a feature
uf the operating system not available in the interpreter. The ML assembler (which is also used by the ML

compiler) provides this ability.

7.1. The Assembler
The M. assembler provides the M1 user with a means of wriling RSUBRs dircctly in machine language.
The assembler is also used as the object language of the compiler. This section is a description of the

asscmbdler, its use, and some of its pseudo-operations.

7.1.1. General Organization
The Mot assembler is written in MDI. to produce code that runs in the M. cnvironment. [t takes
arguments in the following form

<FILE-ASSEMBLE juypui-file:string
enifpef-file:siring
gquick:boolean>

The arguments arc an fnpier-ffle containing M1, assembly code (possibly for several RSUBRs), an optional
auipul-file in which o put the binary output (by default the same file as input but with second file name
"NEBIN"). and an optional third argument which tells whether o use NBIN format output, and which under
normal circumstances should always be T. There are four other optional arguments which are the same as the
sccond through fifth arguments of ASSEMBLE.

<ASSEMBLE pody
locals
TMESFORES
list
spmbols>

(All the arguments arc optional with the exception of bod).)

body may be a CHANNEL, in which case all instructions in the file associated with the CHANNEL arc assembled,
or it may be a structured object. in which case all instructions in the object are assembled.

locals specifies the OBLIST 1o wse for local symbol lookup when the body is a CHANNEL. ‘The default is
€1 .0BLIST> when the assembler is ealled.

messages is 4 CHANNEL to receive error messages, cte. It defaults to . MESSAGE -CHANNEL.

list is a CHANNEL to reccive an assembly listing. IF [fis is not supplied, no listing is generated. IF fistr is a
non-FALSE non-CHANNEL, and miessages is a CHANNEL, then the messapes CHANNEL will receive the
address of each label. If fiss is a FALSE, then no listing is produced. “The default is . LINE-CHANNEL

7.0

Il

I

|

|

|

|

|

|

|

116 The ML, Programming Environment

(Initially LINE-CHANNEL is FALSE.)

synrbols indicates if true thal a DDT symbol table of all the labels for use with "RDB ™ (sce section 7.2) will be
generated. The default is .MAKE-SYM-TABLE (Initially MAKE-SYM-TABLE is FALSE.)

7.1.2. The Assembler as a Program
The assembler also exists as program called ASSEM, which encapsulates FILE-ASSEMBLE.

7.1.3. Format of Assembler’s Source

I'he Mbi. assembler’s equivalent of a line oF code is a4 FORM. [t assembles FORMs into instructions in much
the same way that a typical assembler treats lines of source code. ATOMs ot the tp level (i.c. not in FORMs) are
treated as labels. “The FORMs are assembled bascd on the TYPE of the GVAL of the first ATOM in the FORM,
The GVALS of ATOMs whose PHNAMES are the PIXP-10 instructions are of TYPE OPCODE (PRIMTYPE WORD:

the *value word” has the 36 bit value of the instruction. For example, in
<MOVE A* 1 (B)>
the value of MOVE (in the OP OBLIST) is #OPCODE =200000000000=. ‘This FORM is assecmbled dircctly

inty an instruction.

If the GVAL of the lirst ATOM in a FORM is something applicible (SUBR. FUNCTION, RSUBR cic.) the
FORM is EVALcd and the resulting SPLICE of FORMs is assembled. This is how macros and pscudo-ops are

implemented. MNotice that a pscudo-op or macro may produce no code by returning an cmpty SPLICE.

7.1.4. Instruction Assembly

Having determined that a FORM is going to asscmble into an instruction, the assenbler basically adds up
the values of all the items in the FORM. In the case of items of TYPE OPCODE. a full 36 bit add is performed.
Items of TYPE ADDRESS refer to labels in the program. Since the code is all location inscnsitive and will
move around during garbage collection, references to labels must be indexed by accumulator M, the base
register, Thercfore, label symbaols include an M in the lefl half and must also be added in with a full-word add.
ltems of PRIMTYPE WORD other than OPCODEs and ADDRE SScs arc ANDBed with =777777™ before being
added, and the carry from right halfl to left half is suppressed. When ATOMs arc found in FORMs that are being
assembled inw instructions, special lookup rules are in effec. If the ATOM has a global value, that value is
used. IMthe ATOM docs not have a global value but has a local value, it is used. IMthe ATOM has neither a local
or global value, it is assumed to be a local symbaol for this asscmbly. In this case the symbol value is used if it

has already been defined, otherwise it is added to a list ol as yet undefined symbaols.

The Assembler 7.1

—
|

Il

|
|

|

|
!

II

|

|
i 11

|

|
f

il

|
J_

|

|
:

I'he MDL. Programming Environment

Objects other than ATOMs or PRIMTYPE WORDs cause the assembler to take special action.

— LISTsarc used to indicate swapping left and right halves. For cxample
<MOVE (1)>

would put the 1 in the index ficld of the MOVE instruction (similar 1o MIDAS).

— A VECTOR indicates a constant. The VECTOR ma
at the end of the program. For example:

<PUSH TP* [<1 (1)>7]>

¥ contain any number of FORMs to be assembled

pushes a constant contiaining 1 in the right and left halves,

= A FORM is simply EVALed and the valuc returned is used.,

7.1.5. Initial Symbols

The OBLIST structure in effect du ring asscmbly is
(op mdl DEFAULT focal root)

I'he OBLIST op is nuned OP and contains the PDP-10 opcodes, the M1y, accumulator definitions {in both

accumulator and address ficlds), and the pecudo-ops. The OBLIST mdl is named MUDDLE and contains values

of many labels in the interpreter. This cnables progroms tw do things like <JRST F INIS>, the standard way

to exit from an RSUBR. When an instruction is assembled using a symbol from the MUDDLE OBLIST, a fixup

is also gencrated so thaw if the symhol gets a different value in a new M - the code can be fixed up when it is

loaded. Local is the user's local symbol 0BLIST and roolis the ROOT OBLIST.

As stated earlier, every asccumulator has two symbols associated with it, one for the address ficld and one

for the accumulator ficld. This is because there is no syntx to specify which field is intended. The address

symbol is simply the accumulator's name, and the accumulator symbol is
appended o it e.g., A versus A®,

the name with an asterisk (*)

7.1.6. Macro Writing

Whenever an element or subelement of an instruction is a FORM
APPLICABLE GVAL, the FORM is evaluated

and the first element of the FORM has an
and the result (unless itis u SPLICE) is re-cvaluated as if it were
In place of the FORM, This feature constitutes the assembler's macro facility.

For compatibility between top-level’ macros, which genecrate whole instructions, and macros which

Eenerate parts of an instruction. top-level macros may wish to return several instructions. ‘I'o indicate that

what is returned is several instructions, it is necessary o return an object of type SPLICE (PRIMTYPE LIST).

I'he clements of the SPLICE are treated as individual instructions. An emply SPLICE may be returned from

7.1 The Assembler

117

|

118 g ‘I'he ML, Programming Environment

a macro which is part of an instruction, and the effect is as if a D were returned. "This is the only SPLICE

which may be returned from a macro which is a part of an instruction.

7.1.7. Pseudo Operations

The next part of this document will deseribe pscudo-ops available in the MpD1L assembler. There is no
difference between a pscudo-op and macro in the assembler except that the pseudo-operations are supplied
by the system.

STITLE pgmersiring?
Ihis is about the only required pscudo-op. It must be the first instruction to be assembled. It takes one

argument, the name of the RSUBR being assembled. I additional TITLEs are found in a filec being
assembled, they are assumed e both end the previous RSUBR and begin the nexl “The asscmbler prints cach
TITLE un the messuges CHANNEL as it is encountered.

C{SUB-ENTRY guincarom decl>
‘I'his pscudo-op is used o define additional RSUBR-ENTRYs for the RSUBR heing assembled. The enrry
argument is the name of the RSUBR-ENTRY and the optional decf argument is a DECL for the entry.

CINTERNAL-ENTRY enincatom gresfix>
is used w croate an INTERNAL-ENTRY for a GLUEable RSUBR. Its arguments are the name of the
INTERNAL-ENTRY and the number of arguments that will have been pushed on the stack for it when it is
called. See also scection 7.1.9 for details on writing GLUEable RSUBRs.

<¢DECLARE ("VALUE"™ decl decl decl)>
is used w supply declarntions for the RSUBR named in the TITLE. It must occur before any code-gencrating
instructions. DECLARE takes a LIST as its one argument. ‘The format of the LIST is as described in [3). The
siring "VALUE " is optional; if supplicd it causes the first deef to declare the TYPE of the valuc of the RSUBR.
Euch additional decl is associated with one argument. Special STRINGS may also appear in the LIST with the

following meanings:
"QUOTE" The next argument is QUOTEd (not EVALcd).
*“OPTIONAL™ 'The rest of the arguments are optional (the RSUBR must supply any defaults for thesc).

*"CALL"™ If this appears, it must be directly after the "WALUE " decl. It says there is onc argument and it is the
FORM generating the eall (see "CALL ™ for FUNCT IONs in [3]).

"ARGS" ‘I'his must be the last STRING. i says treat the rest of the arguments in the FORM as a LIST and
pass it as the argument (see "ARGS™ for FUNCT IONs in [3]).

"TUPLE" EVAL the rest of the arguments and pass them.

The Assembler 7.1

WU

The MIM. Programming Environment 119

<END>
indicates the end of an RSUBR or group of RSUBRs. Only the text between TITLE and END pseudo-ops will
be processed by the assembler. This makes it possible to intermix assembler source code and normal MpDL
source code in the same file (although assembly must be done before compilation in such cases).

<TYPE-CODE jfyvperatom>
allows references to the internal TYPE codes for both system and user defined TYPEs. It takes one argument,
the M1 TYPE name. For example:

<MOVSI A* <TYPE-CODE FIX>>
puts the TYPE code for FIX into the left half of accumulator A.

<TYPE-WORD fypeafmn any ... >
generates a reference o a word containing the TYPE code for fpe in the lefl half and possibly other junk in
the right half. “Ihe first argument is the TYPE name and the rest of the arguments are optional but if supplicd
are added intao the right half, IF the TYPE is an initial TYPE and no right half is generated, a reference to the

"$Type location in the interpreter is generated. For example,

<PUSH TP* <TYPE-WORD FIX>>
<PUSH TP=* [0]>

would push o FIX D on the stack,
CGETYP @ fvpeatom
has the same form as a PIDP-10 instruction. [t gets the TYPE code for fype into the right half of its
accumulator from its address. This is done by generating an approprinte LDB (load byte) instruction.
<MQUOTE pbiecizany>
allows the RSUBR to reference garbage collected space. It adds its argument to the RVECTOR (if it isn'C
already there) and evaluates to an address of the form u_,f_f_'ir'.f{ R). pointing to the value word for object.
<PQUOTE phject:anyd
is identical to <{MQUOTE objecirany> =12 Le. it points to the type-word, not the value-word. ‘[his is a more
consistent way to look at things.
CIQUOTE pblecizany label:atom®
is like PQUOTE except that this will add a new element o the reference VECTOR cach time called. The
optional label if given defines the ATOM to be a label referring to that clement. This is the only way to refer to
that element again.
<PSEUDO agrp-any>

evilluates its argument for its side effects and assembles no code.

7.1 The Assembler

lfh"HfFil‘h‘Iirll}H'r]pﬁh+r*ﬁ_.___... e b——————

120 ‘I'he ML Programming Environment

<SIXBIT siring>
mukes SIXBIT of the lcgal characters of string.
CSQUOZE ziring sgbits:word>

makes SQUOZE of the legal characters of string and sticks the lo
al [4] for an explanation of the SQUOZE code.

w-urder four bits of the optional sgbits in the

high-order four bits of the value. See the MIDAS Manu
<BYTE poundan:fix byre-size:fix location>
Example: <BYTE 1 35 (C) 1> islike ¢(=014300*) (C) 1>

<ARG grguuwm:fix>
islike <(AB) <* 2 <= .arghum 1333, ARG should not be used in GLUE able code.

¢STACK svmliafopr sym2iatom symi:atom ... 2
makes siwnd a symbol for <{TB) 0>, sym2 a symbol for <(TB) 2>, symd a symbol for <(TB) 423, cic.
STACK should not be used in GLUEable code.

<DPUSH gc ares®

{OPOP ga¢ gres>

<DMOVE ac gres®

¢DMOVEM gc args®

are the double-word PDP-10 instructions. For example,
<DPUSH ac args>

expands into
#SPLICE (<PUSH ac args> <PUSH ac args 1>}
CUNDEFT? sumbol:alom>

true only if the symbol has previously in the code been used as a symbol, but has not been

evaluates o

defined.
£IF-MEEDED suwbol:afom [nstruclions - .. >

If <UNDEF? symbol> evaluates to truc, then all the instructions are inserted at the current location, otherwise
5)

they are not.
<*INSERT file-specisiring?

takes a file and reads instructions from it and inseris the instructions read at the current place.

7.1.8. The Type RSUBR
An RSUBR is a M. object of PRIMTYPE VECTOR. ‘The first clement of an RSUBR is always of TYPE

CODE (ur PCODE). CODE is of PRIMTYPE UVECTOR, consisting of words or instructions. The sccond clement

of an RSUBR is an ATOM which is the RSUBR's name. If the RSUBR has declarations they arc the third

element ‘The rest of the RSUBR contains MDL ohjects which must be referenced by the code

The Assembler 71

|

h

L

: _m
. —— ———— N
: —
' —_—
= =

— = N

—

— B

— — —
- —— g
—— o

——————

-

——

= -

——

— ——— =

———

|

{

L

The MDI. Programming Environment - 121

An RSUBR-ENTRY is a VECTOR of two or three items. 'The first item is cither an RSUBR or an ATOM
whose GVAL is an RSUBR, the second is an ATOM which is the entry’s name and the third is a DECL for the
entry. ‘Ile difference between an RSUBR and an RSUBR-ENTRY is that an RSUBR always starts running at

the beginning of the code when it is called while an RSUBR-ENTRY usually starts running somewhere in the
middle of the code.

7.1.9. Writing Gluable RSUBRs

Certain conventions must be followed when writing hand coded RSUBRs in order to get the most benefit
from GLUEing. IT the RSUBR (or RSUBR-ENTRY) has "TUPLE" in its DECL. it is already in the best shape
passible. In all uther cases, the code after the TITLE or SUB-ENTRY pscudo-operation should simply push
the arguments onto the TP stack and PUSHJ P* v one of the internal entries based on the number of items
on the stack. Afier the PUSHI it should do a <JRST FINIS>. An intcrnal entry Is sct up by using the
INTERNAL-ENTRY pscudo-op which takes two arguments: an afenr and a fix, The arom acts as if it were a
label on the next instruction and may be used as a label. The fix speeifics how many items (type-value pairs)
arc on the stack at this internal catry. In the simple ease where there are no optional arguments, only one
internal entry exists and its number argument is exactly the required number of arguments. [f aptional

arguments exist, sume kind of dispatch will have to be done.

In the rest of the body of the RSUBR, no references to AB or TB (through the ARG or STACK pscudo-ops or
dircctly) can be made, because after GLUEing their contents may be meaningless. All references to the TP
stack must be indexed by TP, The usuul precautions concerning the possible movement of code ifan INTGO
or MCALL is done also apply (i.c. the use of <SUBM M= {P)> at the beginning and <JRST MPOPJ> at the

end of the code are essentially mandatory).

7.2. Debugging Binary Code
Binary code produced by the M3l assembler or the Mni. compiler may be dchugged with DDT, like any
other binary code. However, an interfuce between that code and the DDT environment must exist, That

interface is the "RDB™ PACKAGE. It is obtained by
<USE "RDB">»

The symbol table uptionally produced by the assembler can be passed o DOT and at the same time the

RSUBR frozen (moved out of normal garbage-collected space) by:

7.1 The Assembler

122 ‘I'e M1J1. Programming Environment

¢RFREEZE nameof rsubraton>

Nate that name-of-rsubr may also refer to an RSUBR-ENTRY.

¢{RBREAK nome-of rsubrratom

i similar. but in addition causcs DDT to put a breakpuoint at the first instruction of the RSUBR.

IFf there is no symbol table, RFREEZE and REBREAK merely frecse the RSUBR and pass up symbuls for the

RSUBR namc and any sub-cntries.

In all cases the symbols passed up are made up of the legal SQUOZE characiers (letters, digits, 1\5, VK,
1% .y of the name. up to six characters. For cxample the ATOM FOO-*BLECH becomes the symbol FOOBLE.

<ADR obfeci:gny?
returns the address of object as a F1X, For example, <ADR rsubry would return the location of the rsubrin

core.
CRUNBREAK nomneof rsubriglom?
clears the breakpoint(s) at the beginning of the RSUBR and of any of its sub-enitries.

7.3. Unassembling Binary Code
Converting compile | or assembled hinary code back into something resembling the original assembler
source code is an uperation that is performed primarily in one situation: tracking down a M, compiler bug.
It is. however, almost invatuable in that situation. "The PACKAGE cuntining the unassembler is "UNASSM™.
‘I'he main cntry is
CUNASSEMBLE codesrsubrorgroup

autpui:channel-or-string
glue?:boolean>

cude is the object being unassembled. Tt is cither an RSUBR (not an RSUBR-EMNTRY, note), or an ATOM whose
LVAL is a group (as created by GROUP- LOAD).

oufput is where w put the outpuls ifitis a STRING. then the output is put in a file with that name. If ouiput is
a CHANNEL. then output is done on that CHANNEL. ‘Ihe file is "code UNASSM™ by default.

glue? (by default T) wells whether there are glue bits for the code lnaded. If there are none, this argument
should be given as a FALSE.

The output produced by UNASSEMBLE is like the Ml compiler’s assembler input, with the addition of
comments which give code and stack offsets for stack slots referenced. “This information is useful in tracing
exactly whal is going on in the code, but it is not always accurate, since the compiler’s stack model is

sometimes wo complex for the unassembler to understand.

Debugging Binary Code 72

e

I'he MDI. Programming Environment 123

ML compiler bug reports are expeeted to contain MDL source and UNASSEMBLEd
possible.

compiled code if

7.3 Unassembling Binary Code

I

Ihe M2, Programming Environment

124

8.0

I'he MIDL. Programming Environment 123

. 8. Informational Aids
‘This chapter discusses a few programs, most written in assembly language rather than MpDL, which are
nonetheless of use o MDL programmers. Most arce informational aids of one sort or another. They include:

MupDCoM, a program for comparing versions of a Mni. program. It is used by COMBAT (scc scction 5.2) to aid
in the prepuration of compiler plan files. 1t has several useful aliascs.

MaT, the MDL *atsign” program, produces listings, indexes and cross-reference files for M1 programs. 8, a
similar program which is not MD-specific, will perform approximately the same tasks.

MUDING is an interface to the I'TS IPC device and is thercfore a means of interncting with any M. that has
the 1PC device enabled. It has an alias, STATUS, which s particularly useful for determining the Progress
uf compilations.

8.1. File Comparison and Checking with MUDCOM

MuUICOM is an assembly language program (not written in MDL), which nonetheless understands the
syniax of ML programs. It is used for comparing two versions of the same program, and also {under the
name Mupcig) for checking the syntax of MM, source files more rapidly than they can be loaded into a

MpL. MuDCcoM is not interactive; all instructions must be passed on the jof line.

Mupcom understands the following MDL structures at top level:

FUNCT IONs <DEFINE FOO >
' MACROs <DEFMAC BAR 5
GVALS ¢SETG MUMBLE>»
LVALS <SET MUMBLE»
MANIFEST
. PACKAGE
i ENTRY
[ENDPACKAGE
MSETG <MSETG FOO 1> is<SETG FOO 1> <MANIFEST FOO>»

The jef for MUDCOM in the simplest case is filenamel |, filename2. MubcoM will compare the two files and
print out information conceming those structures it understands which have been removed. changed, or

inserted.

MupcomM has a number of switches which can be set. ‘They are given as /swirch, where swirch is the name

of the switch. Currently the following switches are uschful:

T prints totals at the end of the comparison.

L prints all FUNCT I0Ns and GVALS in the file.
\ 80

126 The M. Programming Environment

C checks the file given for syntax (only onc file name at a ime).

M checks the files for changed MACROs and MANIFESTs In this mode, Muncosm will make a sccond pass
through the first file given in the jel looking for all occurrences of calls to changed MACROs and
MANIFESTs Mupcom will consider FUNCT 10Ns making such calls as having been “changed” and will tell
which MACRO or MANIFEST caused the “‘change’.

The fullowing other jel is understood by MUDCOM:

(afom ...)appcaring before the file names in the jef will cause MUDCOM (o think that those FUNCT IONs
have been changed and will print them as such.

* filename™ appearing anywhere in the jof causcs commands to be read from that file until the end-of-file is

reached.
{filename ... } isused tospecify files to search in calls to MUREND (Scc below).
Aliascs of MUDCOM:

1. MULICII K. MUDCHK fHlename checks a file for MDI syntax crrors, This is the same as

MUDCOM /C filename

2. MU ST, MUDLST filename lists all FUNCT 10Ns and GVALSs found in the file. This is the same as
MUDCOM SL filename
3. MUDIND. :MUDFND aiom ... {file file} scarches files for FUNCT IONs/GVALs called atonss. 1t
can be used for Minding a FUNCTION in a haystack. 'This is the same as

MUDCOM (arom atom) {file file}

Since typing this can be tedious, it is casier to use the "filename” convention and have a disk
file containing the files to be searched (surrounded by [}s). Thuos,

MUDFND FOO BAR BLETCH "MARC;ZORK FILES"
will look for the typical FUNCT ION namcs in the files specified in MARC ; ZORK FILES.

8.2. The MDL Listing Program MAT
MaT is a program for producing listings of ML programs on the Xerox Graphics Printer (XGP) or a

lineprinter. {MAT is short for *MDI. Atsign’, after the gencral listing program namoed &).

Bicsides a listing of the program itself, MAT includes a symbol table -- a list of defined vbjects (arguments to
DE F1ME, SETG, ctc.) and optionally a cross-reference listing - a list of every place in the program cach ATOM
is used. MAT can also a produce a record fic, so that the next time MAT is run on the same program, only pages

that have changed will be printed.

File Comparison and Checking with MUDCOM 8.1

&_‘P‘

u
I

Il

|

|
N

|

11

i

!

({1

lI.

|
|

|

|

|

|

‘11

|
1

|
|

The ML Programming Environment 127

MAT is invoked with a jcf line in the following format:
MAT lrec=oulputinput-files . . ., fswitches . ..
Mure specifically. it takes any number of inpur files (separated on the jef line by commas) and produces a
listing of them in the ouiput file, with options specified by the swirches (cach preceded by a /., and optionally a

| record file lree (sce section 8.2.4).

The auiput file name defaults on ITS o xuname; inpur @ or 8XGP depending on whether the X switch is

| used. and on Tenex/ TOPS-20 to input. MAT or input. XGP in the connected directory,

8.2.1. MAT Switches
I'he specific sorts of aptions available in MAT are controlled by a varicty of switches which determine such
things as whether to produce a cross-reference listing, whether w use the XGP as the output device, and so

on. 'The following switches are implemented:
fC

causcs a cross-reference listing w be produced. ‘This is a wble showing each reference 1o cach ATOM (other
than SUBRs, FSUBRs, and locals) in the inpur files.
/D[file-name]
specifies file-name as the file containing the user's definitions. Definitions are discussed in detail below.
AF[rext-font, header-font , comment-font]
specifies the XGP fonts 1o use in the surpur file. They are respectively the font to use for the program itself,
the font for subtitles and other headers, and the font for M. COMMENTs and wp-level STRINGs. ‘The
default directory is FONTS and the default second file name is KST. The default font is 20FG. /F also causes
a /X to be performed.
/I Lfile-name]
specifies a file which contains the names of input files, This is in licu of typing them all in each time MAT is
run. uscful for large subsystems incorporating many files. The input files listed should be separated by

COmmas or carriage-refurms.
N

causes output of only the symbol tables and cross-reference listing (if specified). No heading or title pages are

produced.
/P

On ITS, VALRETs a : PROCED to DDT and continucs. Uscful for long MAT runs.

8.2 The ML Listing Program MAT

-

([
|I.~

1l

(|
|J||f I

I
i

|
J

(|
|

11

E
|
f

|

128 I'he MIM. Programming Environment

fQ[message]

prints message at the botom of cach page. The default is a copyright message.
/R

creates a record file (this is automatic if "Jrec=" is used). Sce below for details about record files.
IS

outputs cach file in a multiple Nle listing scparately.
/T namel namne]

specifics names to use on the title page (in licu of the file names of first inpur file).
/U

prints a separate symbaol 1able for each type of defined item in the fepus file(s) (c.g. FUNCT ION, GVAL, cic.).
F X

declares that output is to be for the XGP. This changes the default pwrput file sccond name o @XGP. If /F s

uscd, /X is done automatically.

8.2.2. Subtitles
Subtitles can be used by including STRINGs in an input file which begin with the word SUBTITLE, The
remainder of the STRING will be used as part of the header of each output page until another subtitle is

found. The STRING necd not be a COMMENT. Subtitles may have a maximum of 79 characters.

Any file containing subtitles will hive a table of contents at the beginning of the listing.

B.2.3. MAT Definition
The facility exists in MAT to cnuse user specificd actions to occur at the time a specilic ATOM is aboul to be
cross-referenced, The most important use of this is for functions which define things which the user would

like MAT to recognize, for example, a function one of whose side-cffects is to SETG one of its arguments.

When MAT encounters an invocation of the function FOO, where FOO has been defined to MAT, it runs

code gencrated by the user's MaT definition for FOO, which causes various actions to be performed.

Mar definitions are always located in o disk file which is specified by the 7D switch. Each definition must
be of the form:
[name argi argd arg? ...]
where name is the name of the item which is being deflined and the args are action specifications as described
below.

The MDL. Listing Program MAT 82

Ihe MDL. Programming Environment "

The syntax of a MaT definition is somewhat complex. RBasically, there are two types of actions which can

take place: ‘sctting’ an ATOM to be equivalent ' a specified type (i.c.. FUNCTION, MACRO, ctc.) or

‘cross-referencing’ the ATOM (i.c., making it appear in the cruss-reference listing).

The actual definition for an ATOM is a string of MAT action specifications, one for cach argument in a call

w that ATOM, For example, defining FOO to be
[FDO SETG SKIP SETG]

implics at least three arguments to FOO, the first and third of which should be treated as if they were SE TGed.
Thus, if

<FO0 FROB 1 MUMBLE>

were encountered in an input file, it would be treated as though

<S5ETG FROB any>
<S5ETG MUMBLE any>

had been encountered. The symbol table would then puint w the line on which the application of FOD
appeared as the location of the definitions of FROB and MUMBLE.
The following tokens are meaningful action specifications:

CREF mcans to cross-reference this ATOM,
SKIP means to do nothing with this argument (a place holder).

REST means that the rest of the action specifications may be repeated for the rest of the arguments.

name (where name is the name of a M. SUBR which causes some action to be routinely performed) means to
act as though the ATOM had had that SUBR applied w it. For example, SETG will cause MAT Lo treat the

item as if a SETG had been performed on it Similarly, MANIFEST will cause MAT to believe it
MANIFESTed.

ALS0 means to do another thing to this ATOM. Thus, [SETG ALSO MANIFES T] specifics that the argument
should be treated as though it were both SETGed and MANIFESTed.

=xy where xy arc two characters, causes a user defined symbol type o be created. In the cross-reference, this
will appear as xy in front of the name of the ATOM.

Any of the preceding tokens may have | -oblisr added. This means that instead of the ATOM being sct to
the specified type, arom ! = oblist will be seL Thus, for example,
REST SETG!-FLAGS

might specify a function which takesa LIST of ATOMs and performs

32 The MDL Listing Program MAT

130 The ML, Programming Environment I

CSETG <INSERT arom <GET FLAGS OBLIST>> am>
on cach of them.

[SPEC xy mame] specifies name to be the expansion of xy for purposes of the symbol table. Name cannot
have spaces in iL

Since not all items to be recognized within a function call are at top level, there is a facility for telling MAT

i recognize structures. This is done by inserting the correct bracket {(which Ma'l will cncounter) around the

part of the action specification referring to a structure. For cxample, a definition for GDECL (which i
handled internally, however) might be
REST (REST GDECL) SKIP

which specifies that the arguments are alternately a LIST of things to GDECL and an argumcnt which is

unimporant

A special case of bracketing is when the location of the structure is not known. In this case, bracker!

means ‘find the next object that starts with this bracket”. An cxample later demonstrates this.

What follows are some examples from a real definition file.
[NEWSTRUC NEWTYPE SKIP REST SETG SKIP]
NEWSTRUC takes an ATOM which becomes the name of a NEWTYPE, the DECL for that TYPE (which is not
interesting to Ma7) and an arbitrary number of pairs of ATOMs (names of offsets in the structure) and their
DECLs (again, not intcresting).
[FLAGWORD REST SETG]
FLAGWORD takes an arbitrary number of ATOMs and SETGs them something.

[SPEC PG Pure-Gwval]
[SPEC 0B Object]

[SPEC AC Action]

[SPEC VB Verb]

[SPEC 0OS Object-Synonym]
[SPEC AD Adjective]

These define the long descriptions for the newly defined symbol types created in the examples.
[PSETG =PG]

PSETG takes an ATOM and a value and SETGs the ATOM (also putting it in a LIST of ATOMs (o purify).
[GET-0B8J "“CREF™]

GET-0B8J takes a STRING PNAME of an ubject and returns the object. This definition allows "objeci™ to be
cross-referenced here. Mote that CREF is in quotes because the clement being dealt with is a STRING.

The MDI. Listing Program MAT 32

|

i

L

il

i

The M. Programming Environment 131

[OBJECT ["=0B" REST "=05"] [REST "=AD" 1]
OBJECT creates objects which are referenced by GET-0BJ. OBJECT first takes a VECTOR of STRINGs, the
first of which is the true object specifier (OB) and the rost of which are synonyms (05). The second argument
isa VECTOR of STRINGs, which arc PNAMEs of adjectives referring to the object (AD).

[ADD-ACTION "=AC!-ACTIOMNS" SKIP REST [[!"=VB!-WORDS" SKIP]]]
ADD-ACT ION creates “verbs'. The name of the verb is the first argument, which isa STRING. ADD-ACTION
SETGs sfring! ~ACTIONS to an item of type ACTION (AC). The sccond argument is not interesting. The rest
uf the arguments are VECTORs, somewhere in which is a VECTOR of & STRING and an uninteresting object.
ADD-ACTION SETGs this latter STRING (the PNAME of an ATOM in the WORDS OBLIST) to something of
type verb (VB). ‘This is aboul as complicated as a MA'T Lype specification is likely to geL

[1ADD-ACTION "=AC!-ACTIONS ALSO =VB! -WORDS"]
1ADD-ACT ION takes as its first argument a STRING which is SETGed buth in the ACTIONS OBLIST and in
the WORDS OBLIST, toan ACTION (AC) and a verb (VB), respectively,

8.2.4. MAT Record Files
Listing Record (or LREC) files, akin to @ LREC files, ean be produced in MAT by including file= in the jcl

line. Usc of an LREC file has the advantage that future invocations of MAT using it necd only output the
changed pages of the listing. ‘The LREC file produced will be placed in file and contains all relevant jel
information, so that future calls o MAT for comparison listings need only have fife= in the jof line. Additional
Jel may then be appended. There is, however, no way o turn off flags once set up. ‘Therefore, if a
cross-reference file is o be used only occasionally, leaving the cross-reference (/C) flag off for the initial

listing and appending it at other times is preferable.

An alternate way of creating a Listing Record file is to use /R which is equivalent to
inpui-file-first-fife-name LREC=

in the jel. Obviously, /R is not sufficient for future comparisons.

8.3. The MDL-IPC Device Interface MUDINQ

MUIING is a small program that formulates, sends, and receives messages W and from Mi3ls over the ITS
IPC (*Inter-process Communication®) device, “I'he user specifics a target M DI process by its wname and jname,
cither on the jef line or o Muing directly. He then inputs the messuge o be sent to that M. The message
seot is enclosed in an invisible protective shield (an ERROR handler and so forth) to prevent it from
interfering in the operation of the target. The message is PARSEd and EVALed by the target, and the result
put in a file which is printed by MUDING when it appears.

8.2 The MIDIL. Listing Program MAT

[

it

|
|

|

|
|

|

|

Il

|

132 I'he MIM. Programming Environment

lhe most common use of this program is to answer the question *What could my compilation (or

whatever) be duing after all this time? "The answer may be obtained by MUDINQIng a <FR&> or <F RAMES>»
atit

Inquiring after the state of a compilation is such a commuon use af Mum~Ng that there is an alias of it,

SraTUS. which MUmNGs a <STATUS?> (sece section 5.1.1) at a compiler process and waits for a response.
Finally, an alias of MuDING called WitoM lists those MDL jobs listening on the IPC device.

For more details on the operation of the M. 1PC interface, scc [3].

The MDL-1PC Device Interface MUDING 8.3

HEEREREEL

1

!
|

|

|

e

5.

133 The M. Programming Environment

References

(1]

Edward H. Black.

Using M DI s Calico User Interface.

Technical Report SYS.11.21, MIT LCS Programming 1'cchnology Division, 1976,
2]

Richard M. Stallman.

EMACS.

Technical Report 519, MIT Al Laboratory, August, 1979,
3]

5. W, Galley and Greg Pfister.

Phe MBI Programming Fanguage.

M.L'T. Laboratory for Computer Science, 1979,
[4]

Peter Samson.

AMIDAS.

l'echnical Report 90, MIT Al Laboratory, October, 1965,
[5]

P. David Lebling, R, V. Baron and lruce K. Daniels,
RAIQODE: A Real-time Edir Facility.
Technical Report S§YS.04.07-1, MIT 1.CS Programming “I'echnology Division, October, 1977,

Table of Contents
.
T e e —————
e — — — e, = — — — e ===

“nvironment

I'me MU, Programming |

134

Table of Contents

{ ﬁ_,_: o O 1

-

il

135

Index

“XCOMBT TAILOR® 91
TCMDL.SV3™ T4
“<MDL>FIXUP.FILE™ 73
"CMDL3>SAV . FILE" 73
“<MOLLIB>" 73
“ADDED FILES" 74

“CLEAN® 109
“CRITIC® 355
“DEBUGR™ 41

“DELETE FIXUPS™ 73
“DELETE SAvVS™ 73
"EDIT"® 19)
SFINDATOM™ 50
"FRMS5P" 19
*GLUE® 103
"GRLOAD® 39

L= &9

"LuUPr® 71
“MONITOR™ 30,46
THUDMAN® 3
“HUDRST= T4
"HMUDSAV; FIXUP FILE™ 73
“"HUDSAV;SAV FILE® 73
“MUDTMP= 73,106
“POUMP= 106
“PEG"= 10

"PP" 15

*PRELOD® 107
"PURITY" 108
“RDB*= 116,111
“"RECORD" BD
"SUBRFY= 107
*TEMHAK™ 113
*TEMHLP" 113
*TEMPLATE™ 110
“TRACE" 44
“UNASSM® 122
“UMLINK™ 54

& 18,21

&1 18

&LIS 1B

il -

=INSERT 120
LMNULL 15
LOUTCHAN 15

T 22

T 22

ADDRESS 116

ADR 122
ALREADY-USED-ELSEWHERE 12
ARG 120

ASSEM 116
ASSEMBLE 115
ASSIGNEDT? 49

B 23

BA 29

Table of Contents

Ihe MIDL. Programming Environment

BX 29

BLOCK 9 40
BOOLEAN 111
DOUNDT 49

BREAKR 29
BUILD-TEMPLATE 113
BYTE 120

c 26

C: M5

CAN-NOT-BE-DUMPED 15
CAREFUL 82 87
CHANMEL 40
CLEAN-MONITORS 49
CLEANUP 109
CLISTF M4

COMBAT 79, 83, 85. 90
COMMENT 15, 16
COMPILE 79, 92,93
COMPILE-FUNCTION 93
CRITIC 355
CRITIC-NOTES 35
Ccu 28

D 24

DBMATN 74,76
DEBUG 41
DEBUG=-COMPILE EL BS
DEBUGR 15

DECLARE 118
DEFER-FIND 70
DEFINE 41

DELETE 75

DL 23

DMOVE 120

DMOVEM 120

Do 27

DPOP 120

DPUSH 120

DR 23

DROP 10,13
DUMP-RSUBRS 114
DUMP-TEMPLATES 114
E-PEG 20
E-VERBOSE 25

EDIT 15,19, 41
EDIT-TABLE 31
END 118

ENDELOCE 9
ENDPACKAGE 10,13
ENTRY 10,12, 63
ENTRY-FIND TO

ENYV 61

EFPRIN1 17

EPRINT 17

ERRET 38
EVAL-WHEN &1
EXPERIMENTAL B85
EXPFLOAD 41,82 87

i

|

il

il

i

Il

|

137 The ML Programming Fnvironment

OQUT-FAST 44 5uU X7
OUT-PRINT 45 SUB-ENTRY 118
DUT-UNIQUE 44 SUBRFY 106, 107
OUTCHAN 59 SURY 104

P 25 sw 27

PA 29 TEMPLATE 110
PACKAGE 10, 11,12, 14,63 TEMPLATE-DUMP 113
PACKAGE-F IND 70 TEMPMAME 81, B&
PACKAGE-MODE El, B& TITLE 118

PC 29 TRACE 15 44, 45
PCODE 76 TRAMNSLATE &7
PCOMP 79, 90 TRANSLATIONS &7
POUMP 104, 106 TYPE-CODE 119
PNAME 14 TYPE-WORD 119
PPRINF 16 u 24

PPRINT 15 uc 28

POQUODTE 119 uL 24
PRECOMPILED 81, 88 UM 10

PRINL 17 UNASSEMBLE 122
PRINT-CLEANUP 110 UNDEFT 120
PSEUDOD 119 UNLTNE 54

PT 25 UNPURIFY 54

PO 25 UNPURIFY-PAGEL | - IUNLINK 54
PURET 54 UNTRACE 45
PURELST 109 UNTRANSLATE &7
PURIFY 107 UR 24

Q 2 USE 10, 12,13, 14,63
QR 22 USE-DATLM 10,13, 14
QUICKPRINT 156 USE-DEFER 66

R 23 USE-TOTAL 66
ROREAE 122 ur 23
READI-INTERRUPTS 45 v 11,15
REASONABLE 82 87 VALUE 40
RCDEFINE 16 VERBOSE 45
REDO 21,86 VERTICAL 16
RENTRY 12 WM 31

RCPAIR 42 WRITE!-IHNTERRUPTS 46
RETRY 39 X 27

RFREEZE 121 TA 42

RM 31 tE 42

ROOT 12 tF 22

RPACKAGE 12 tN 42

RUNBREAK 122 0 42

RVECTOR 107) 42

RW _30 TR 42

5 M4 5 23

SAV T2 106

SAVE 108 Matr 126
SELF-FAST 44 Muncnk 126
SHONT-PRINT 29 Munoom B6, 125
SIXBIT 119 Muimray 126

SL 24 Mumvrg 131
SOURCE 81, 87 MunsT 126

SPEC-FIND 75
SPECIAL B1, 87
SQUOZE 120,122
Sn 24

STACK 1M)
STATUS 75, B0

Table of Contents

136

EXPSPLICE 41,82 B7
EXTERMNAL 13

F 23

FBIN 72 105

FCOMP BD, 85
FEATURE? 61
FEATURES 61
FILE-ASSEMBLE 115
FILE-COMPILE 79
FILE-TEMPLATE 113
FIND-FILE 75
FINDATOM 50

FIXUPr 15 72, 106
FLIST 75

FLOAD 14, 107
FLUSH-CLLANUP 110
FORM-FAST 44

FR& 18, 37

FREP 19

FRAVAL 19

FRAMES 18,37

FRATM 19

FRLVAL 19,37

FRM 18, 20

FRTYPE 19

G 25

GET-FILE 75

GETYP 119

GLUE B2 87, 103, 104, 107, 121
GO 28

GROUP-DUMP 3%, 104, 113
GROUP-GLUE 104
GROUP-LOAD 26, 39, 82, 106, 107, 108
GROUP-PURIFY 108
HAIRY-ANALYSIS B3
HELP 43

1 25

I* 26

I: 5

1F-NEEDED 120

16 26

IN-BREAK 44
IN-PRINT 45

INCHAN 59
INDENT-DIF 43
INDENT-INC 43
INDENT -ROD 43
INITIAL 14, 65
INTERNAL-EMTRY 118,121
IQUOTE 119

IT I7

K 25

K: X7

K8 30

KC 28

KEEP-FIXUPS 15 16,41
EILL-ALL-MOMITORS 49
KILL-MONITOR 49
EILL-SUBRFY 107

Table of Contents

The MID. Programming Environment

KILL:PURITY 108
KT 3

L 23
L=ALWAYS-INQUIRE &3
L-COUNTE &9
L=-COUNTP 69
L-FILE &%

L-FIND &9
L-LISTE &9
L-LISTP &9
L-LISTPE 70
L-LOAD &9
L-NO-DEFER &5, 68
L-NO-MAGIC &8
L-NOISY &8

L-0BL TD

L-PATH 70
L-SEARCH-PATH 64, 68, 69
L-SECOND-NAMES &4, 65 68
L-TRANSLATIOMS &7
L-UNUSE 10,13
L-WHERE &%
LAST-0UT 42
LIB-GC T2

LIBMUD &4
LIME-CHANMEL 115
LISTF 74

LOAD 14
LOOKAHEAD 16
LUP-AET T1
LUP-ADD-DATUM T2
LUP-DCT 71
LUP-DEL 72
LUP-MOVE T2

M 27

MACRO B&
MACRO-COMPILE 82, B7
MACRO-FLUSH B2 &7
MAGIC-RSUBR 40
MAKE-SYM-TABLE 116
MANIFEST B6
MAX-SPACE 82 B7
MCALL 103
MONITOR 47
MOMITORS 49
MONOBJ 48, 49
MONSPEC 49
MQUOTE 119
MUDDLE 117
NEWVAL 43

HODE 54

NPCOMP T9

0B

OBLIST 9. 59
OLDVAL 43

oFr 117

OPCODE 116

oT 3

OUT-BREAK 45

LR EE R E LR

