
I

The
MDL

Programming Language
Primer

Michael Dornbrook
Marc Blank

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

--
ii THE MOL PRIMER

6. Simple Functions 27

6. 1. General 27
6.2. Defining FUNCTIONS 27
6.3. Application of FUNCTIONS: Binding 28
6.4. DEF INEing Some Simple FUNCTIONs 30
6.5. Pretty·Printing 33

6.5.1. Editors and Pretty Printing 34
6.6. Loading a File 34

7. MDL TYPEs 35
7.1. TYPES and PRIMTYPEs 35
7.2. Introduction to MDL Structures 36
7.3. The TYPE? Predicate 36
7.4. Printing of MDL Objects 37
7.5. Significance of PRINTYPEs I CHTYPE 37
7.6. Creating new TYl'Es 38

8. MDL Structures 41
8.1 . Equality 41
8.2. PRIMTYPE UST 41

8.2.1. Creating LISTs 43
8.2.2. EVALing LISTs 45
8.2.3. Manipulating LISTs 45
8.2.4. FIXes First in FORNs 52
8.2.5. FORNs 52
8.2.6. FALSEs 53
8.2.7. SEGMENTS 53

8.3. PRIMTYPE VECTOR 55
8.3.1. Creating VECTORs 55
8.3.2. EVALing VECTORs 56
8.3.3. Manipulating VECTORS 56
8.3.4. UVECTORs 58

8.4. PRIMTYPE STRING 59
8.4.1. ASCII 60
8.4.2. Creating STRINGs 60
8.4.3. EVALing STRINGS 61
8.4.4. Manipulating STRINGs 61

8.5. Building Large Structures 62
8.6. Searching Structures 62
8.7. Garbage: Quoting Structures 63
8.8. Garbage: Building Lists 63
8.9. Structured NEWTYPEs 65
8.10. Summary of MDL Struciures 65
8. 11. Practice Quiz 66

9. Programming Constructs 69
9.1. Boolean Operators 69

Iii

9.1.1. NOT
9.1.2. AND
9.1.3. OR

9.2. COND
9.2.1. Examples

9.3. Shortcuts with Conditionals
9.3.1. Using AND and OR with CON Os
9.3.2. Embedded Unconditionals

9.4. Examples

10. Looping

10.1. PROG
10.2. REPEAT
10.3. Non·locar RETURNS, etc.
10.4. MAPF

10.4.1. Looping Through a Structure
10.4.2. Other Than One Structure
10.4.3. Using Intermediate Results
10.4.4. MAPRET and MAPSTOP
10.4.5. MAPR
10.4.6. MAPF/R Summary

10.5. Looping vs. Recursion

11. Argument Lists in FUNCTIONS

11.1. Arguments Not EVALed
11.2. Optional Arguments
11 .3. Arbitrary Numbers of EVALed Arguments
11.4. Arbitrary Numbers of un-EVALed Arguments
11.5. Temporary Variables
11.6. Order of Evaluation in Argument Lists
11.7. Variable Declarations ·
11 .8. Structures: DECLs and NEWTYPEs

11.8.1. ToNEWTYPEorNotToNEWTYPE
11.9. Good Habits I Bad Habits
11.10. Review of Argument List Syntax

12. Input/Output

12. 1. Basics of 1/0
12.2. Conversion 110 ·Input

12.2.1 . READ
12.2.2. READCHR

12.2.2.1. NEXTCHR
12.3. Conversion 1/0 • Output

12.3.1. PRINT
12.3.2. PRIN1
12.3.3. PRINC
12.3.4. CRLF

THE MDL PRIMER

69
69
70
70
71
72
72
73
74

77

n
78
78
79
79
80
81
81
83
84
85

87

87
88
88
89
90
91
91
93
94
95
95

97

97
98
98
98
98
98
99
99
99
99

iv

12.4. CHANNEL (the TYPE)
12.4.1 . OPEN
12.4.2. FILE-EXISTS?
12.4.3. CLOSE
12.4.4. CHANLIST
12.4.5. INCHAN and OUTCHAN

12.5. End-of-File "Routine"
12.6. Additional 1/0 SUB Rs

i2.6.1. READSTRING
12.6.2. PRINTSTRING

12.7. SAVE Files
12.7.1. SAVE
12.7.2. RESTORE

12.8. PARSE, LPARSE, and UNPARSE
12.9. Other 1/0 Functions

12.9.1. FLDAD '
12.9.2. SHANE
12.9.3. FILE-LENGTH
12.9.4. RESET
12.9.5. RENAME

12.10. Terminal CHANNELS
12.10.1. TYI

13. Making Tables

13.1 . Use a LIST
13.2. Use a VECTOR
13.3. Use an ATON
13.4. Use an Association

13.4. 1. Hashing
13.5. Use an OBL IST
13.6. OBLISTs, READ, and PRINT

14. Debugging MDL Programs· An Introduction

14.1. Method 1: Start Over
14.2. Method 2: Forcing FRAMEs to Return Values
14.3. Method 3: Use EDIT to Repair your FUNCTIONS
14.4. Method 4: Altering FRAMEs I RETRY
14.5. Summary

Index

THE M:JL PRIMER

100
100
101
101
101
101
102
102
103
104
105
105
105
105
106
106
106
107
107
107
108
108

109

109
110
110
111
112
112
114

115

116
117
118
120
120

123

v THE MDL PRIMER

List of Figures

Flgu re 8· 1: The MDL notion of equality Is demonstrated in this figure, which shows the 42
distinction between slngle·eQual • ?and double-equal .. 7,

Flgure8·2: ThelIST (1 lt 3) 43
Figure 8·3: Removing a LIST element by moving only one pointer 43
Figure 8·4: REST of a LIST 48
Figure 8·5: PUTs into LISTS 48
Figure 8·6: Pointers vs. Structures 47
Figure 8· 7: PUTRESl 48
Flgu re 8·8: Removing an element from a LIST using PUTREST 49
Figure 8·9: Splicing LISTstogetherusing PUTREST 50
Flgure8·10: TheVECTOR (1 lt 3 4) 55
Flgu re 8· 11: REST of a VECTOR 57
Figure 8· 1 2: BACK of a VECTOR 58
Flgu re 14·1: Diagram for the example in this chapter 121

THE MOL PRIMER 1

Introduction

Over the years the original MDL (pronounced "Muddle") Primer by Greg Pfister [Pfister 72] became
more and more a reference manual and less a Primer from which a novice could learn the language.
Some of the text of thi:: original has been re·used in this document, but much has been eliminated,
changed, or re·ordered, and a reasonable amount of new material has been added. In particular, a
number of figures and many more examples have been added to make some of the more difficult
concepts easier to understand.

This Primer is intended as an introduction to MDL. After assimilating the information contained
herein, you should be able to write very good programs. However, for any individual topic in the MDL
Primer there is likely to be more information available in The MDL Programming Language [Galley 79]
and The MDL Programming Environment [Lebling 80], and there are many topics in these documents
which are not addressed In the Primer. Anyone who plans to do any serious work with MDL should
read these documents.

One of the difficulties in writing a Primer is to make it useful to those who don't know anything at all
about programming without boring those who know a lot of the basics. Hopefully those at both
extremes will find this to be easy to read. If you are a complete novice, hoy-Jever, there may be some
unfamiliar references and some material which doesn't make sense on your first reading.

Why MDL?

Many people ask this. It is often hard for those 'who use MDL to put Into words their reasons for
liking It. Those of us who use MDL are convinced that II is a better language than any other we've
encountered. Unfortunately, very little has been done to convince others of this and spread the use of
this marvelous tool.

MDL was created in the early 1970's by a group at the Dynamic Modelling/Computer Graphics
division of MIT's Project MAC (later renamed the Laboratory for Computer Science). It is an offshoot
of the original Lisp. There have been quite a few offshoots of Lisp in the past 1 o years . Mac lisp,
Interlisp, Lisp Machine Lisp, Llsp1 .5, UCI Lisp, Franz Lisp, etc., etc. · but none of them are like MDL.

Since MDL Is a distant relative of Lisp and many of those first learning MDL have some familiarity
with Lisp, a short comparison of the two languages follows. II you are not familiar with Lisp (or, better
still, with i!ffi! other languages) count your blessings (you don' t have any bad habits to unlearn) and
skip the following discussion.

MDL's similarities to Lisp: MDL shares the advantages of Lisp over the more popular languages
such as Basic, Fortran, Cobol, Algol, Pascal, etc.

· It has an interpreter which allows real·time interaclion and allows you to define and test
individu;il functions ::c:parately.

110ROOUCTlON

-
2 THE MOL Pf'llMER

• Its syntax Is very simple.

- Any data object or function can be passed as an argument or returned as a value.

· It has list structures equivalent to Li5P'S.

· Recursive functions can be written quite easily.

The similarities between MOL and Lisp are such that in many cases a few minor changes to LiSP
code will convert it into working MOL code. Given the other features of MOL, no MOL programmer
would write the program in the same lisp style.

MOL's dissimilarilles to Lisp: Many objections to Lisp are answered in MOL

· Strongly typed languages provide much better error detection tools than Lisp. MOL
allows declarations of all variable types to whatever level ol complexity Is desired. A
variable can be declared to be one of several types .

. Recursion is a useful tool , but often is not a very efficient way to solve the problem. Lisp's
motto "To iterate is human, to recurse divine," is not one ol MOL's tenets. MOL allows
recursion, but provides excellent facilities for iteration.

· MOL has a very powerful set ol data structures - Lists, Slrings, Vectors, and Uniform
Vectors. Although lists are a very useful and flexible form of structure, they are certainly
not optimal In all cases. MOL's various structures allow the user to save space and
access time. MOL's structures are also "first class," in that the standard functions for
manipulating data structures can be used on all ol them equivalently .

. Probably the biggest complaint against Lisp-like languages is that they are unsuitable for
"production programming" because they are too slow. MDL has an excellent compiler
which as far as we know is the best compiler for a Lisp-like language. It produces
machine code equivalent in efficiency to Fortran and Cobol, which are considered very
efficient.

· MDL has a rich library of useful program aids. The editing and debugging functions are
among the best. The package system allows building ol very large programs from small
sections, usually written by different people, without worrying about variable name
conllicts.

· Probably the most distinctive feature ol MOL is its mechanism for user-defined types,
which is the best of any language with which we are familiar. User-defined types have
been retrofitted on some of the newer versions of Lisp, but In most cases they can be
used only with special functions and cannot be used in the same general way that Lists
can.

Hopefully some of your questions have been answered and you have some ready answers when
you gel flak from your non-MDL programming friends. Learning MDL should be an enjoyable and
worthwhile experience. Your reactions to this Primer and suggestions for changes are afways
welcome Good luckl

IN'rl 1l1Jt:l 1()N

THE l>C>L PRIMER 3

Warning! You are about to embark on an undertaking fraught with peril. MDL programming has
been proven to be habit-forming. Once you begin, you may find the habit hard to kick!

INrHOOUCTION

4
THE MOL PRIMER

ACl'.lil)Wl.l"lll ~lr.IHS

5 THE MOL PRIMER

Acknowledgments

We are deeply indebted to our predecessors for their work on this topic: Greg Pfister, who wrote
the original A Muddle Primer [Pfister 72), and Stuart Galley, who updated that document and added
significantly to it to create The MDL Programming Language [Galley 79) document. Some of the text
and examples of the original documents survive here, and some other material was simply rewritten in
an order and style which we consider more comprehensible.

Special thanks to Chris Reeve, Dave Lebling, Stu Galley, Poh Lim, Thomas Michalek, Dave
Scrimshaw, Tim Anderson; Mark Plotnick, and Prof. J.C.R. Licklider for their many comments and
suggestions.

No document on MDL would be complete without acknowledging the "original implementors." If
not for their inspiring work, this fine language would not exist. We are forever grateful to Gerald
Sussman, Carl Hewitt, Chris Reeve, Dave Cressey, and Bruce Daniels. Thanks are also extended to
the many unnamed hackers who have improved the language and the programming environment over
the years.

This work was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under contract N00014·75·C·0661.

This document was prepared using Scribe and printed on the Xerox Dover printer.

(c) Coriy1igl1t Hl(lt Mas5ac;h11setts Institute
of Technology. /\II rir;llts 1 (·~orvod.

6
THE MOL PRIMER

CJASIC INTERACTION
SECTION 1.0

THE MOL PRIMER 7

1. Basic Interaction

The purpose of this chapter is to provide you with that minimal amount of Information needed to
experiment with MDL (pro11ounced, affectionately, as Muddle) while reading this document. it is
strongly recommended that you do experiment, especially upon reaching chapter 6 (page 27) (Simple
Functions).

1.1. Loading MDL

First, catch your rabbit. Somehow get the Interpreter running •· the program in the file SYS: TS
MDL In the ITS version or SYS: MDL.SAV In the Tenex version or SYS: MDL. EXE In the Tops·20 version.
[Just type :MDL to ITS, MOL or MUDDLE to Tops·20.) The interpreter will then type

MUDDLE nnn IN OPERATION.
LISTENI NG-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running Is an interpreter for the language MDL. All it knows how
to do is interpret MDL expressions. There Is no special "command language"; you communicate with
the program ·· make it do things for you •· by actu.ally typing legal MDL expressions, which it then
Interprets. Evervthing you can do al a terminal can be done in a program, and vice versa, in exacUy
the same way.

The program will be referred to as Just "MDL" (or "the interpreter") from here on.

1.2. Typing

Typing a character at MDL normally Just causes that character to be echoed (printed on your
terminal) and remembered in a buffer. The only characters for which this is normally not true act as
follows:

Typing the "Escape" or "Alt·Mode" k11y. which we will always refer to 11$ $ (dollar·sign), causes

SfCTIOll 1 O OASIC llHf:llll(;l ION

8 THE MDL PRIMER

MDL to echo dollar-sign and causes the contents of the buffer (the characters which you've typed) to
be interpreted as an expression(s) in MDL When this interpretation is done, the result will be printed
and MDL will wait for more typing.

Typing the rubout character (DEL in the ITS and Tops-20 versions, control-A in the Tenex version)
causes the last character in the butler .• the one most recently typed .. to be thrown away (deleted). lf
you now Immediately type another rubout, once again the last character is deleted ·· namely, the
second most recently typed. Etc. The character deleted is echoed, so you can see what you're
doing. On some "display" terminals, rubout will "echo" by causing the deleled character to
disappear. If no characters are in the buffer, rubout echoes as carriage-return line-feed.

Typing tll (control·atsign) deletes everything you have typed since the last$, and prints a carriage·
return line-feed.

Typing tD (control·D) c;:auses the current Input buffer to be typed back out at you. This allows you
to see what you really have, without the confusing re-echoed characters produced by rubout.

Typing tL (control·L} produces the same effect as typing -tD, except that, ii your terminal is a
"display" terminal (for example, VT100, VT52, H19, ...),the screen is cleared before the input buffer Is
retyped.

Typing tG (control·G) causes MDL to stop whatever it Is doing and act as ii an error had occurred
(section 1.3 (page 9)). tG is generally most useful for temporary interruptions to check the progress
of a computation. tG Is "reversible" •• that is, it does not destroy any of the "state" of the
computation it Interrupts. To "undo" a tG, type the characters

<ERRET T>S

(This is discussed more fully far below, In chapter 14, page 115 (Debugging MDL Programs).)

Typing tS (control-$) causes MDL to .lhr2¥i away what It is currently doing and return to a normal
"listening" state. (In the Tenex and Tops-20 versions, tO also should have the same effect.) tS is
generally most uselul for aborting inflnlte loops and similar terrible things. tS destrovs whatever Is
going on, and so it is n.Q! reversible.

Most expressions in MDL include "brackets" (generically meant) that must be correctly paired and
nested. If you end your typing with the pair of characters IS (exclamation-point ESC), all currently
unpaired brackets (but not double-quotes, which bracket strings of characters) will automatically be
paired and interpretation will start. Without the I, MDL will just sit there waiting for you to pair them.
If you have improperly nested parentheses, brackets, etc .. within the expression you typed, an error
will occur, and MDL will tell you what is wrong.

Once the brackets are properly paired and $ (ESC) is typed, MDL will immediately echo carriage·
rel urn and line-feed, and the next thing ii prints will be the result of the evaluntion. Thus. ii a plain S is
not so echou<.I , you have some expression unclosed. tn that case, if you have not typed any

BASIC llll(flACTION Sl!CTION L2

THE MDL PRIMER 9

characters beyond the$, you can usualty rub out the S and other characters back to the beginning of
the unclosed expression. Otherwise, what you have typed is beyond the help of rubout and t-8; ii you
want to abort it, use t-S.

MDL accepts and distinguishes between upper and lower case. All "built-in functions" must be
referenced in upper case.

1.3. Erro rs ·· Simple Considerations

When MDL decides for some reason that something is wrong, the standard sequence of evaluation
is interrupted and an error function Is called. This produces the following terminal output:

• ERROR•
often-hyphenated-reason
function-in-which-error-occurred
LISTENING-AT- LEVEL integer PROCESS integer

You can now interact with MDL as usual, typing expressions and having them evaluated. There
exist facllitles (built-in functions) allowing you to find out what went wrong, restart, or abandon
whatever was going on. In particular, you can recover from an error ·· that is, undo everything but
side effects and return to the initial typing phase .. by typing the following first line, to which MDL will
respond with the second line:

<ERRcT>$
LISTENING-AT-LEVEL 1 PROCESS 1

If you type the following line while still in the error state (before <ERRET>), MDL will print the
FRAMES it went through to evaluate the function:

<FRAMES>$

Typing FR& (pronounced 'frampersand') Instead of FRAMES will cause MDL to print a condensed,
usually more readable output.

This will also be explained in chapter 14.

&CTION 1.2

10 THE MOL PRIMER

MOI HMacs
$ECTION20

THE MDL PRIMER 11

2 . MDL Basics

In a general sense, when you are interacting with MDL, you are dealing with a world inhabited only
by a particular set of things:.MDL objects.

2.1. Introduction to MDL TYPES

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL object depend upon the class of MDL objects to which it belongs. This class is known
as the TYPE of the object, and every MDL object has one. Easily recognized TYPEs include
FIX (integers) and FLOAT (real numbers). Examples of these might be 1 and 2. 67, respectively. An
abbreviation often used is to refer to "a FIX" when relerring to a MDL object whose TYPE is FI X. For
example, 1 is a FIX and 2. 67 is a FLOAT.

MDL TYPEs can be divided into two general classes: those with internal structure and those without
internal structure. The former will be relerred to as being structured. Structured objects are those
which can be thought of as an ordered series of items held together in some way. There are a number
of ways in which these items can be held together, and each of these is represented by a series of
MDL objects between a set of matched brackets (e.g. <>. (}, [], {} ""). As will be seen later, each
bracket type represents a different TYPE of MDL object, and some represent different ways of
Internally storing the series of objects. Depending on the application, one of these may be more
suitable than another. ·

Here are some MDL objects which are not structured:

20
20.0
TWENTY

The first two are examples of TYPEs FIX and FLOAT, as noted above. The last is an ATOM, roughly
speaking an identifier or a variable, and will be discussed in Chapter 3.

Here are some MDL objects which are structured:

SECTIOll 2 0 MDI. BA!>ICS

--
12

<+ 1 2>
(+ 1 2)
(+ 1 2)
tt+ 1 2"

TliE MDL PRIMER

These represent very similar notions: an ordered series of the MDL objects +, 1, and 2, the first of
these being an ATOM and the rest FIXes. These brackets correspond to the TYPEs FORM, LIST, and
VECTOR. The first of these, a FORM, Is central to MDL, as it represents the application of a function to
arguments. The others will be considered later.

2.2. Printing of MDL Objects

We have already seen the printed representation of some MDL objects: FIXes, FLOATs, FORMs,
LISTs and VECTORs. As will be mentioned later, MDL allows an almost unlimited number of data
types. Obviously, there are not enough bracket types to make each data type recognizable.
Therefore, most MDL types have a kind of generalized way of printing. This format is like this:

#type-name value

where type.name is the name of a MDL TYPE and value describes the 'value' of the object. Suffice it
for now to say that an object which prints like:

#FALSE ()

is of TYPE FALSE and an object which prints like

#HUMBLE (1 2 3)

is of TYPE MUMBLE.

2.3. MDL FORMS

A FORM in MDL is printed as: an open angle bracket(<), the name of the function to be applied, the
arguments to which the function is being applied, and finally a closing angle bracket (>). MDL 's angle
brackets are one of its distinguishing features (almost as distinctive as Lisp's parentheses).

MDL has a large number of built.Jn functions. These are usually of TYPE SUBR (short for
subroutine). For example:

MOL Of\SICS SECTK)I~ 2.1

THE MOL PRIMER 13

<+ 1 z 3>

will, when given to the MOL interpreter, return 6. The way in which the name for a function, in thiS
case +, is associated with its functional part (i.e. in this case, the thing which actually performs the
addition) is described later. Sulffce it for now to say that these functions can be referenced by their
name (an ATOM), as was done In the example.

2.4. Prefix Notation

MOL is a distant relative, a much.improved descendant of LISP. The "desirable features" of LISP
were included in MOL. One of those features, prefix notation, you have just seen.

Prefix notation, sometimes referred to as Polish notation, is different from the infix notation of
ordinary arithmetic and reverse·Polish notation of some calculators. Below are some examples of
equivalents in infix and prefix notation:

4 + 7
<+ 4 7>

8 - 6
<- 8 6>

6 - (3 + Z)
<- 6 <+ 3 2>>

9 + (4 • 6 - 6 I 3)
<+ 9 <- <· 4 8> (/ 8 3>>>

7 + 3 + 4 + 8 + 11
(+ 7 3 4 8 11>

It will take you some time to become accustomed to prefix notation. One thing you will have to
keep In mind Is balancing of brackets. Notice that with prefix notation an operator can take an
arbitrary number of arguments and that the nesting is never ambiguous (i.e. the parentheses of infix
notation are not necessary).

2.5. Evaluation of FORMS

Evaluation of a MDL FORM proceeds from left to right. The first item is the name of the function
wliich will be appfic-cl to the nrgumu11ts which follow. The arguments may lhcm~ulves lio FORM::; which

SEC TION2.3 MDL ElAS!CS

14

THE MDL PRIMEFI

will be evaluated in the same way. For example, this FORN:

<+ (+ 1 2) 3)

when evaluated wiff apply the addition function to the evaluation of the first argument (which, since it
is itself a form, wiff be recursively evaluated until it returns a value) and then to the evaluation of the
second argument. The arguments may be much more complex than this and require many levels of
evaluation before a result is returned. It is Important to note that unlike many other languages, every
evaluation has a resulting value. As we will see, even such operations as printing or setting the values
of variables return valoes.

2.6. Introduction to Truth

In MOL, anything which does not evaluate to an object of TYPE FALSE Is considered true. If an
expression relums false, MOL usually prints it as IFALSE ().

MOL FlMiiCS
SECTION2.5

R

t

f
f

THE MDL PRIMER 15

3. Read, Evaluate, and Print

3.1 . General

Once you type$ and all brackets are correctly paired and nested, the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL ("evaluate"), which passes its output to PRI NT, which types its output on the terminal.

Functionally,

READ: printed representations··> MDL objects

EVAL: MDL objects ··> MDL objects

PRI NT: MDL objects··> printed representations

That is, READ takes ASCII text, such as Is typed in at a terminal, and creates the MDL objects
represented by that text. PR I NT takes MDL objects, creates ASCII text representations of them, and
types them out. EVAL, which is the really important one, performs transformations on MDL objects.

3.2. EVAL and TYPES

The laws of the MDL world are defined by EVAL. In a very real sense, EVAL is the only MDL object
which "acts", which "does something". In "acting", EVAL is always "following the directions" of
some MDL object. Every MDL object should be looked upon as supplying a set of directions to EVAL;
what these directions are depends heavily on the TYPE of the MDL object.

Since EVAL is so ever·present, an abbreviation is in order: "evaluates to something " or "EVALs to
something" should be taken as an abbreviation for "when given to EVAL, causes EVAL to return
something" .

Sl.CTION 3 0 nc110 . EVAL UATE. ANO 1'111NT

16

3.3. Example (TYPE FIX)

1$
1

The following has occurred:

THE MOL PRIMER

First, READ recognized the character 1 as the representation for an object of TYPE FIX, in
particular the one which corresponds to the integer one. (FIX means integer, because the decimal
point is understood always to be in a fixed position: at the right·hand end.) READ built the MDL object
corresponding to the decimal representation typed, and returned it.

Then EVAL noted that its Input was of TYPE FIX. An object of TYPE FIX evaluates to itself, so
EVAL returned its Input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal the decimal character
representation of the corresponding Integer.

3.4. Example (TYPE FLOAT)

1.os
1.0

What went on was entirely analogous to the preceding example, except that the MDL object was of
TYPE FLOAT. (FLOAT means a real number (of limited precision), because the decimal point can
float around to any convenient position: an Internal exponent part tells where it "really" belongs.)

3.5. FIXes and FLOATs versus READ: Specifics

3.5.1 . READ and FIXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX. and the radix of the
representation is decimal (1.e. the base is 10) by default. A· (hyphen) immediately preceding such a
grouping represents a negative FIX. The largest FIX representable on the PDP· 10 is two to the 35th
power minus one, or 34,359,738,367 (decimal); the smallest is one less than the negative of that
number. II you attempt lo type in a FIX outside that range, READ converts it to a FLOAT; ii a program
you write allempls lo produce a FIX outside that range, an overflow error will occur (unlew; overflow
errors are disabled).

REl\O. EVALUAIF. ANO f"RINl SECTION33

EA

in
al
ct

f

THE MD~ PRIMER 17

3.5.2. READ and PRINT versus FLOATing-point Numbers

PRINT can produce, and READ can understand, two different formats for object~ of TYPE FLOAT.
The first is "decimal-point" notation, the second is "scientific" notation. Decimal radix is always used
for representations of FLOATs.

"Decimal·point'" notation for a FLOAT consists of an arbitfarily long string of digits containing one •
(period) which is followed by at least one digit. REAO will make a FLOAT out of any such object, with a
limit of precision of one part in 2 to the 27th power. (FIXed and FLOATing·point numbers are stored in
one 36·blt PDP-10 word. FLOATlng.polnt numbers give up precision to gain their greater range.)

"Scientiric" notation consists of:

1. a number, the mantissa

2. Immediately followed by E or e (upper or lower case letter E),

3. immediately followed by an exponent,

where the mantissa is an arbitrarily long string of digits, with or without a decimal point (see following
note); and the "exponent" is up to two digits worth of FIX. This notation represents the "number" to
the "exponent" power of ten. Note: If the mantissa as above would by itsell be a FIX, and ii the
"exponont" is positive, and ii the result is within the allowed range of FIXes, then the result will be a
FIX. For example, READ understands 10E1as100 (a FIX), but tOE-1as1. 0000000 (a FLOAT).

The largest-magnitude FLOAT which can be handled without overflow is 1 . 7014118E+38 (decimal
radix). Thesmallest·magnitude FLOAT which can be handled without underflow is .14693679E-38.

Examples:

1. 001$

1. 001000

.001$
1.0E-3

143E2$
14300

1234567891234$

1.2345878E+12

sc;c nON :i.s Ill 110 t \ M Ul\1 r. Al II) PAINT

18

THE MOL PRIMER

ATOMS AMO THc1n VAUJr.S
SECTION4.0

AER THE MOL PRIMER 19

4. Atoms and Thei r Values

4.1. Example (TYPE ATOM, PNAME)

In the previous chapter. the handling of FIXed and Floating point numbers by READ, EVAL, and
PRINT was discussed. If you type:

GEORGE$
GEORGE

a lot more happens.

READ noted that what was typed had no special meaning, and therefore assumed that it was Iha
representation of an object of TYPE ATOM. ("Atom" means "more or less indivisible.") READ
therefore attempted to look up the representation ln a table ft keeps lor such purposes. II READ finds
an ATOM in its table whose representation matches the representation just received, that ATOM is
returned as READ's value. If the look·UP fails, READ creates a new ATOM, puts it in the table with the
representation read, and returns the new ATOM. Nothing which could in any way be relerenced as a
legal "value" is attached to the new ATOM. The initially-typed representation of an ATOM becomes its
PNAHE. meaning its name for PRINT (fRINT tiAMf). One often abbreviates "object of TYPE ATOM
with PNAME name" by saying "ATOM name". There is a reason for making this careful distinction.
Unlike other languages where atoms are names associated with values. a MDL ATOM is an object
which~ have values (global and/or local) but which is distinct from its value(s) .

EVAL, given an ATOM, returned just that ATOM.

PRI NT, given an ATOM, typed out Its PNAME.

4.2. READ and PNAMEs

The question "what is a legal PNAHE?" is actually not a reasonable one to ask; w non.empty
string of arbitrary characters can be the PNAME of an ATOM. However, some PllAHEs are easier to type
to READ than others. But even the question "what are easily typed PNAMEs?"' is not 100 reasonable,
becau:;c: READ decides that a group of chamclars is a PNAtlE hy !1!l11l.!!l: ii it can't possibly be
nnythl119 else, ll's a PNAME. So, the rules governing the spe::1lic::it1on ol PllAllEs arc mc:;sy, and best

S£CTION4 0 AmM:; mo TllEIR \/Al UES

20
THE MOL PRIMER

expressed in terms of what Is not a PHAME. For simplicity, you can just consider any uninterrupted
group of upper· and lower·case letters and (customarily) hyphens to be a PHAME; that will always
work. If, for some reason, you need to know all the gory details about legal PHAM Es, see Subsection
2.6.3 of The MDL Ptogramming Language (Galley 79].

4 .3. Values of ATOMS

4.3.1. General

Typing GEORGE to the MDL interpreter and causing it to create the ATOM with PHAME GEORGE does
not appear to be very useful. ATOMs in MDL serve as variables and as names for functions and data
structures. They are definitely useful.

The ATOM has ilself as its value. There are two additional kinds of "value" which can be attached to
an ATOM. An ATOM can have either, both, or neither. They interact in no way. These two additional
values are referred to as the WI ~ and the ~ ~ of an ATOM. The functions which
reference the local and global values of an ATOM; and some of the characteristics of local versus global values, follow.

4.3.2. SETG

A global value can be assigned to an ATON by the SUBR SETG ("set global,• pronounced 'set·gee'J, asln

<SETG atom any>

where atom must EVAL to an ATOM, and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of the first argument. The value returned by the SETG is its second
argument, namely the new global value of atom.

Examples:

<SETG FOO <SETG BAR 469>>$
469

The above made the global values of both the ATOM FOO and the ATOM BAR equal to the FIXedpoint number 469.

AlQMt, ANO THEIR VAi UES
SloCTION 4.2

•

IEA

ed
1ys
on

!S

la

0

ll
h
s

THE MOL PRIMER

<SETG BAR FOO>S
FOO .

That made the global value of the ATON BAR equal to the ATON FOO.

4.3.3. GVAL

The SUBR GVAL ("global value") Is used to reference the global value of an ATOM.

<GVAL atom>

21

returns as a value the global value of atom. If atom does not evaluate to an ATOM, or if the ATOM to
which it evaluates has no global value, an error occurs.

GVAL applied to an ATOM anywhere, in any function, will return the same value. Any SETG
anywhere changes the global value for everybody. Global values are context-independent.

READ understands the character , (comma) as an abbreviation for an application of GVAL to
whatever follows it. PRINT always translates an application of GVAL into the comma format. The
following are absolutely equivalent:

,atom <GVAL atom>

Assuming the examples in section 4.3.2 (page 20) were carried out in the order given, the following
will evaluate as indicated:

,FOOS
489
<GVAL FOO>S
489
,BARS
FOO
,.BARS
489

4.3.4. SET

The SUBR SET is used to assign a local value to an ATON. Applications of SET are of the form

<SET atom any>

SECTION4 3 ATOl\:S A'll) THCIR VALUES

22

SET returns EVAL of any just as SETG does.

Examples:

<SET BAR <SET FOO 100>>S
100

THE MDL PRIMER

Both BAR and FOO have been given local values equal to the FIXed·point number 100.

<SET FOO BAR>S
BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any global va!ues FOO and BAR had or might have had.

4.3.5. LVAL

The SUBR LVAL is used to return the local value of an ATON. As with GVAL, READ understands an
abbreviation for an application of LVAL: the character • (period), and PRillT produces it The
following two representations are equivalent, and when EVAL operates on the corresponding MDL
object, it returns the current local value of atom:

<LVAL atom> .atom

(Note: you will generally hear • FOO pronounced as 'dot.foo'). Assume All of the previous examples
in this chapter have been done. Then the following evalu!lte as indicated:

.BARS
100

<LVAL BAR>S
100
.FOOS
BAR
, .FOOS
FOO
, , • FOOS
469

ATOM~ AflO TILCIRVllLUES
SECTION 4.3

ER

1e

n
e
L

s

THE MO~ PRIMER 23

5. Built-in Functions

5 .1. Evaluation of FORMs

EVAL applied to a FORM acts as ii following these directions:

First, examine the tune (first member) of the FORM. II it is an ATOM, look at its GVAL. II it is not an
ATOM, EVAL it and look at the result of the evaluation. II what you are looking at is not something
which can be applied to arguments, complain (via the ERROR function). Otherwise, inspect what you
are looking at and follow its directions in evaluating or not evaluating the arguments and then "apply
the function"·· that is, EVAL the body of the object gotten from tune.

5.2. Built-in Functions (TYPE SUBR, TYPE FSUBR)

The built·in functions of MDL come in two varieties: those which have all their arguments EVALed
before operating on them (TYPE SUBR, for "subroutine", pronounced ·subber') and those which have
none of their arguments EVALed (TYPE FSUBR, historically from lisp (Weinreb 78), pronounced
'effsubber; for ' lunny-SUBR'). Collectively they will be called F / SUB Rs, although that term is not
meaningful to the interpreter. See Appendix 2, Predefined Subroutines. In The MDL Programming
Language [Galley 79] manual for a listing of all F /SUB Rs and sh.ort descriptions. The term
"Subroutine" will be used herein to mean both F /SUB Rs and compiled user functions.

Unless otherwise stated,~ MDL bullt·ln Subroutine mentioned is of TYPE SJJ.Q.8. Also, when it
is stated that an argument of a SUBR must be of a particular TYPE, note that this means that EVAL of
the argument must be of the particular TYPE.

Another convenient abbreviation which will be used is "the SUBR pname" in place of "the SUBR
which is initially the GVAL of the ATOM of PNAME pname". "The FSUBR pname" will be used with a
similar meaning. These distinctions are necessary. The SUBR is actually the global value of the ATON
of PNAME pname. The important point Is that the ATOM effectively points at the "Clll function." For
instance,

<GVAL SET>$
NSUBR 0 000000746616•

SECTION5.0 llUIL T IN FUNCT10 14$

-
24

THE MOL PRIMER

If you were so inclined, you could change the ATON which points to a given FUNCTION or have
many ATOHs point to the same FUNCTION. All built-in SUBRs and FSUBRs shall be referred to in this
book by the ATOM which points to them when MDL starts up. The point is that there is nothing sacred
about these names, but for clarity's sake it is recommended that you not rename them.

5.3. Examples (+ and FIX ; Arithmetic)

<+ z 4 6)$
12

The SUBR +adds numbers. Most of the usual arithmetic functions are MDL SUBRs: +, -, • ,I, MIN,
NAX, HOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See Appendix 2 of The MDL Programming
Language (Galley 79) manual for short descriptions of these.) All except HOD, which wants FIXes, are
indifferent as to whether their arguments are FLOAT or FIX or a mixture. In the last case, they exhibit
"contagious FLOATing": one argument of TYPE FLOAT forces the result to be of TYPE FLOAT.

<FIX 1.0>S 1

The SUBR FIX explicitly returns a FIXed-point number corresponding to a FLOATing.point number
(ii truncates). The SUBR FLOAT returns the FLOATing point number equivalent to its argument.

<+ 6 <• 2 3>>S
11

<SQRT <+ <• 3 3> <• 4 4>>>S
6.0
<- 6 3 2>S
0
<- 6>S
-6
<MIN 1 2.0>S
1.0
<I 11 7 2. O>S
0.6

Note this last result: the division of two FI Xes gives a FIX with truncation, not rounding, of the
remainder; the intermediate result remains a FIX until a FLOAT argument is encountered.

BUil T·Ui FUl<CTIO~IS
SECTIONS.2

'o!ER

ave
this
red

THE MOL PRIMER 25

5.4 . Arithmetic: Details

+, -, • , I, MI N, and MAX all take any .number of arguments, doing the operation with the first
argument and the second, then with that result and the third argument, etc. If called with no
arguments, each returns the identity for its operation (0, 0, 1. 1, the greatest FLOAT, and the least
FLOAT, respectively); if called with one argument, each acts as if the identity and the argument had
been supplied. They all will cause an overflow or underflow error if any result, intermediate or final, is
too large or too small for the machine's capacity. Examples:

<+>S
0

(/)$
1

<I 3.0>S
0.33333333

<- Z>S
-2

One arithmetic function that always requires some discussion is the pseudo·random·number
generator. MDL's is named RANDON, and ii always returns a FIX, uniformly distributed over the whole

I N, range of FIXes. Example ("pick a number from one to ten"):
'ng
ll'e
bit

oer

e

<+ 1 <NOD <RANDON> lO>>S ..

5 .5. Simple Pred icates

The best analogy for a predicate In MDL (or LISP) Is the predicate of an English·language question
such as "Is John taller than Jim?" MDL answers such a question with true or false. If there is no
other useful In formation to return, MDL will return T for true (a la LISP) or #FALSE () for false.

The MDL predicate 07 takes one argument which can be either a FIX or a FLOAT. It evaluates to T
only if its argument is exactly equal to 0 or 0. O.

<O? 1.Z>S
IFALSE ()

The predicate 1? evaluates to T only if its argument is exactly equal to 1 or 1. 0. The predicate G?
takes two arguments. which again can be either FIXes or FLOATs. It evaluates to T only if the first
argument is algebraically greater than the second. L •? is the Boolean complement of G?; that is, it is
T only if the first argument is not algebraically greater than the second.

<L•? 3 4>S
T

Similarly. L? evaluates to T only if its first argument is algebraically less than its second argument.
G• 7 is the Boolean complement of L?.

••?takes two argumc11ls of l!!l.I(TYPE. In the cnse of arguments which me FIXC3 or FLOATs. it

SECTION S.4 UlJll T IN r Ut4CTIOll:l

26
THE MOL PRIMER

returns T for two FIXes of the same value or for two FLOATs of exactly the same value. A FIX can
never be u7 toa FLOAT.

(aa7 17 17)$
T
(as7 1.0 1>$
#FALSE ()

To compare a FIX to an equivalent FLOAT, the SUBRs FIX or FLOAT are used:

<SET A 17>$
17
<SET B 17. O>S
17.0
<••7 .A <FIX .B>>S
T
<••7 <FLOAT .A> .B>S
T

N • • 7 is the Boolean complement of • • 7.

GASSIGNED7 checks whether an ATOM has been assigned a global value.

<GASSIGNED? GAFWEEP>S
#FALSE ()
<SETG GAFWEEP 4023>$
4023

<GASSIGNED? GAFWEEP>S
T

ASSIGNED? is the corresponding predicate which checks whether an ATOM has been assigned a focal
value.

ff you wish to compare the LVALs of two ATOMs, A and 8, where the LVAL of A is known to be a FIX
and the LVAL of Bis known to be a FLOAT, use the SUBRs FIX or FLOAT:

<••? <FLOAT .A> .B>S

or

<••? .A <FIX .8))$

rlUIL T IN fUNCTIONS
SECTIONS.5

ER

an

x

THE MOL PRIMER 27

6. Simple Functions

6.1. General

The MDL equivalent of a "program" (uncompiled) is an object of TYPE FUNCTION. Actually, full
blown "programs" are usually composed ol sets of FUNCTIONs, with most FUNCTIONS in the set
acting as "subprograms".

A FUNCTION may be considered to be a SUBR or FSUBR which you yourself define. It is "run" by
using a FORM to apply it to arguments (for example, <function arg-1 arg-2 . • .)), and it always
··returns" a single object, which becomes the value ol the FORM that applied it. The single object may
be ignored by whatever "ran" the FUNCTION (equivalent to "returning no value"), or it may be a
structured object containing many objects (equivalent to "returning many values") . MDL is an
"applicative" language, in contrast to "imperative" languages such as Fortran. In MDL, it is
Impossible to return values through arguments In the normal case (Le. "call by name"); they are
returned normally as the value of the FORM Itself, or as side effects to structured objects or global
values.

In this chapter a simple subset of the FUNCTIONs you can write is presented, namely FUNCTIONS
which "act like" SUB Rs with a fixed number of arguments. While this class corresponds to about 90%
of the FUNCTIONs ever written, you won't be able to do very much with them until you read further and
learn more about MDL's control and manipulatory machinery. However, all that machinery is just a
bunch of SUB Rs and FSUBRs, and you already know how to "use" them: you just need to be told what
they do. Once you have FUNCTIONS under your belt, you can immediately make use of everything
presented from this point on in this document. In fact, we recommend that you do so.

6.2. Defining FUNCTIONS

<DEFINE SQUARE (X) <• .X .X>>S
SQUARE

DEFINE is a MDL FSUBR (remember that FSUBRs have none of their arguments EVALed) for
defining your own FUtlCTIONs. It takes an ATOM as the "name" for the FUllCTIOtl , a li~t of arguments,
and the FOR Ms which make up the body of the FUUCTION. DEFINE SET Gs EVAL of 1t:1 first argument
(the ATOJ~) to un object ol TYPI: FUUCTIO~ made from the other <:;rgumcnts and returns EVAL of the

SECTION 6.0 SIMl'LE FIJNC rlONS

--
28

THE MDL PRJMER

first argument (the ATON "naming" the FUNCTION).

If EVAL of DE FIN E's first argument already has a GVAL, DEFINE produces an error. This helps to
keep you from accidentally redefining things ·· such as MDL SUBRs and FSUBRs (if you want to be
able to redefine without getting this error, type <SET REDEFINE T>. The ATOM SQUARE has been
SETGed to the FUNCTION which computes the square of a number. To use SQUARE, apply it to an
argument in a FORM:

<SQUARE 6>S
26
<SQUARE 1. 6>S
2.26

Using SQUARE with the wrong type of argument (anything other than a FIX or FLOAT) will produce an
error. Using SQUARE with the wrong number of arguments (anything other than one) will also
produce an error.

Taking the GVAL of SQUARE will show you what a FUNCTION looks like:

,SQUARES

#FUNCTION ((X) <• .X . X>)

What DEFINE did was to SETG SQUARE to #FUNCTION ((X) <• .x .X>). You could define a
FUNCTION the same way, ii you wished, or you could apply the FUNCTION direeUy:

(#FUNCTION ((X) <• .X .X>) 6>$
26
<#FUNCTION ((X) <• .X .X>) 1.6)$
2.26

Obviously, this would become quite tedious.

6.3. Application of FUNCTIONs: Binding

In order to make clear exactly what is happening in each of the examples in this section,
FUNCTIONs will be applied in the tedious, non-standard method just shown.

FUNCTIONs, like SUB Rs and FSUBRs, are applied using FORNs. So,

(#FUNCTION ((X) <• .X . X>) 6)$
26

SIMr LE FUNCTIONS
SECTIONS.2

.!ER

>to
be

*!n

an

an
dso

ea

'"·

THE MOL PRIMER

applied the indicated FUNCTION to 6 and returned 26.

What EVAL does when applying a FUNCTION is the following:

1. Create a
00

world" in which the ATOMs of the argument LIST have been ill to the values
to which the FUNCTION was applied, and all other ATOMs have their original values. This
is called "binding" . (In the above, this is a "world" in which Xis SET to 6.)

2. In that new "world" , evaluate all the objects In the body of the FUNCTIOH, one after the
other, from first to last. (In the above, this means evaluate <• . X • X> In a ··world"
where Xis SET to 6.)

3. Throw away the 00world'0 created, and restore the LVALs of all ATOMS bound in this
application of the FUNCTION to their originals (if any). This is called "unbinding". (In the
above, this simply gives X back the local value, if any, that it had before binding.)

4. Return as a value the ~ l!a!Jle obtained when the FUNCTION's body was evaluated in
step (2). (In the above, this means return 26 as the value.)

29

The fact that such "worlds" are separate from the FUNCTIONs which cause their generation means
that .ru! MDL FUNCTIONs can be used recursively. (For those of you who understand the term, MDL is
"dynamically scoped. 00

)

The only thing that is at all troublesome in this sequence is the effect of creating these new
"worlds", in particular, the fact that the prevjous world is restored. This means that if, inside a
FUllCTION, you SET one of its argument ATOMs to something, Iha! new LVAL will~ be remembered
when EVAL leaves the FUNCTION. However, if you SET an ATOM which is~ in the argument LIST
(or SETG ll!lX ATOM) the new local (or global) value will be remembered. Examples:

<SET X O>S
0

<IFUNCTION ((X) <SET X <• .X .X>>) 6>S
26
.XS
0

On the other hand ,

<SET Z O>S
0
<IFUNCTION ((X) <SET Z <• .X . X>>) 6>S
26
.zs
26

SECTIONS3 SIMl'l E rtlNCl 1011$

30 THE MOL PRIMER

By using PRINT as a SUBR, we can "see" that an argument's LVAL really is changed while
EVALuatlng the body of a FUNCTION:

<SET X 5)$
5
(#FUNCTION ((X) <PRINT .X> <+ .X 10>) 3)$

3 13
.X$
5

The first number after the application FORM was typed out by the PRINT; the second is the value of the
application.

Remembering that LVALs of ATOMs .nQ1 in argument LISTS are not changed, we can reference
them within FUNCTIONS, as In

<SET Z 100)$
100
<IFUNCTION ((Y) (/ .z .Y>) 5)$
20

A TOMs used like Z in the abo·1e examples are referred to as "free variables" . The use of free
variables, while often quite convenient, is rather dangerous unless you know exactly how a FUNCTION
will always be used: ii a FUNCTION containing free variables is used within a FUNCTION within a
FUllCTION within one of those FUNCTIONS might just happen to use your free variable in its
argument LIST, binding it to some unknown value and possibly causing your use of it to be
erroneous. Please note that "dangerous", as used above, really means that it may be effectively
impossible (1) for other people to use your FUNCTIONS, and (2) for™ to use your FUNCTIONS a
month (two weeks?) later.

6.4. DEFINEing Some Simple FUNCTIONS

Using SQUARE as defined above, let's DEFINE a FUNCTION to compute the length of the
hypotenuse of a right triangle given lhe lengths of the two sides:

<DEFINE HYPOT (SIDE·l SIDE-2)
<SQRT (+ <SQUARE .SIDE-1> <SQUARE .SIDE-2>>>>$

HY POT
<HYPOT 3 4)$
5.0

SIMl'l F FUNCTIONS SECTION8.3

IMER

1hile

f the

free
'ION
tin a
n its
) be
ively
Ns a

the

THE MOL PRIMER 31

SQRT is the SUBR which returns the square root of its argument It always returns a FLOAT.

A whimsical FUNCTION:

<DEFINE ONE (THETA)

ONE
<ONE 6>$

<+<SQUARE <SIN .THETA>>
<SQUARE <COS .THETA>>>>S

0. 99999994
<ONE O.Z3>S
0.99999999

ONE always returns (approximately) one, since the sum of the squares of sin(x) and cos(x) is unity for
any x. (SIN and COS always return FLOATs, and each takes its argument in radians. ATAN
(arctangent) returns its value in radians. Any other trigonometric function can be composed from
these three.)

MDL doesn't have a general "to the power" SUBR, so let's define one using LOG and EXP (log base
e, and e to a power, respectively; again, they return FLOATs).

<DEFINE •• (NUM PWR)
<EXP <• .PWR <LOG .NUM>>>>S

••
< .. Z Z>S
4.0000001
< .. 6 J>S
126 .00000
< .. 26 O.o>S
6.0000001

Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):

Sl:CTIOt~ 6.4 $1\IPLE Flll4C':fl0NS

32

<DEFINE START ()
<SETG GV O»S

START
<DEFINE STEP ()

STEP
<START>$
0
<STEP>$
1
<STEP>S
2
<STEP>S
3

<SETG GV (+ ,GV l>>>S

START and STEP take no arguments, so their argument LISTs are empty.

An interesting, but pathologlcal, FUNCTION:

<DEFINE INC (ATM)
<SET .ATM(+ •• ATM t>>>S

INC
<SET A O>S
0
<INC A>S
1
<INC A>S
2
.AS
2

THE MDI. PRIMER

INC takes an AIQM as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
INC, the ATOM ATM Is SET to the ATOM which is its argument; thus .• ATM returns the LVAL of the
argument. However, there Is a problem:

<SET ATM O>S
0
<INC ATN>S

•ERROR•
ARG-WRONG-TYPE
+
LISTENING-AT-LEVEL 2 PROCESS 1

The error occurred because • ATM wns ATM, the argument to INC, and thus •. ATM was ATM also. We

SIMJ'l. E FUNCTIONS Sl:CTION 6.4

PRIMER

nside

TllE MDL PRIMER 33

really want the outermost . in .• ATM to be done in the "world" (ENVIRmlMENT) which existed ~
~ INC was entered ·· and this definition of INC does both applications ol LVAL in its own

"world".

6.5. Pretty-Printing

In MDL, carriage·returns, linefeeds, tabs, etc., are Just separators, like spaces. At least one space
is needed between MDL objects, but there is no maximum number.

<.. 3
4)$

81

Using only one space at all times results in code which is effectively unreadable. This is even
demonstrable with tiny FUNCTIONs similar to the ones created in this chapter. For example:

<DEFINE ZERO (THETA)

ZERO

<- <+ <SQUARE <SIN .THETA>>
<SQUARE <COS .THETA>>>

<+ <SQUARE <SIN .THETA>>
<SQUARE <COS .THETA>>>>>S

Typing , ZEROS to MDL will cause it to return:

#FUNCTION ((THETA) <- <+ <SQUARE <SIN .THETA>> <SQUARE <COS
.THETA>>> <+<SQUARE <SIN .THETA>> <SQUARE <COS .THETA>>>>)

)f the Long FUNCTIONs printed like this would be~ difficult to read. MDL has a "pretty· printer" (for full
details see The MDL Programming Environment [Lebling 80]), called PPRINT which prints functions
with spacing similar to the examples in this chapter.

. We

<PPRIHT ZERO>S

<DEFINE ZERO (THETA)
<·<+<SQUARE <SIN .THETA>> <SQUARE <COS .THETA>>>

<+ <SQUARE <SIN . THETA» <SQUARE <COS . THETA»>>

The general idea behind MDL pretty printing is: if all the arguments to a function lit on one line they
are printed on one line, if not, arguments are printed on successive lines indented by the same
amount. This allows you to' see the level of "nesting" at a glance, and makes it easier to see what is
happening.

SECTIONS.4 St'Al'l E FUNG 1 tONS

34 THE MOL PRIMER

6.5.1. Editors and Pretty Printing

A good display editor (such as RMODE [Lebling n) or EMACS [Stallman 79)) will have built-in
commands which assist you in formatting your programs in pretty-print style. II is strongly
recommended that you get in the habit of using these tools from the beginning. Your code will be
more easily understood by others and, more importantly, by YQY several monlhs after you write it.
Bracket balancing also becomes much easier and errors with brackets become quite rare.

6.6. Loading a File

If you have a MDL program in a file, you can "load" it by typing

<FLOAD lile>S

where file is the name of the file, in standard operating-system syntax, enclosed in "s (double
quotes). In the Tenex and Tops-20 versions, if the file name extension is . MUD, the extension can be
omitted. For instance. to load the file ZERO. MUD you could type one of the following:

<FLOAD "ZERO">S <FLOAD "ZERO.MUD">S

Once you type$, MDL will process the text in the file (Including FLOADs of yet other files) exactly as
If you had typed it on a terminal and _followed it with $. except that "values" produced by the
computations are not printed. When MDL Is finished proce~ing the file, it will print "DONE•.

11 there Is more than one generation of the file ZERO.MUD, MDL will load the highest one unless a
generation number is specifically Included in the argument to FLOAD (e.g. <FLOAD
"ZERO .MUD. 69106">).

When MDL starts running, it will FLOAD the file "MUDDLE. INIT" (Tenex and Tops-20 versions), if it
exists. This allows you to have your working file or any other files you wish loaded into your MDL
when you begin a session. It also allows you to "customize" your MDL by setting certain flags,
redefining FUNCTIONs, etc.

SIMrl C 111 ICTIOllS SECTION6.5

THE MOL PRIMER
35

. .

7. MDL TYPEs

In Chapter 2, we provided an introduction to the MDL TYPE system. This chapter will expand on
that Introduction and explain the creation of user-definable MDL TYPEs.

7 .1. TYPES and PRIMTYPEs

In Chapter 2 it was stated that every MDL object has a TYPE. The SUBR TYPE, given a MDL object,
returns an ATOM which is the name of the object's TYPE.

<TYPE 12>$
FIX

<TYPE (1 2 3)>$
LIST

In MDL, each TYPE can be thought of as a member of a smaller number of more 'primitive' TYPEs. In
MDL, these 'primitive" TYPEs are known as PRIMTYPEs. Just as every MDL object has a TYPE, so
every MDL object has a PRIMTYPE. A SUBR called PRIMTYPE, given a MDL object, returns an ATOM
which is the name of the object's PRIMTYPE.

We have already seen examples of a number of MDL PRIMTYPEs without ever mentioning the
notion of PRIMTYPE. Here are the most important PRIMTYPEs in MDL.

. WORD . the PRIMTYPE of all FIXes, FLOATS, and CHARACTERS. Any MDL object which
can be thought of as a number will be of PRIMTYPE WORD (CHARACTERS are internally
stored as their ASCII val ues).

·ATOM· the PRIMTYPE of ATOMs .

• LIST . the PRIMTYPE of LISTS, FORMS, and FALSEs.

·VECTOR · the PRIMTYPE of VECTORs.

·STRING· the PRIMTYPE of STRINGs.

SECTION 7.0 ~lnL lYPES

36 THE MDL PRIMER

7.2. Introduction to MDL Structures

As we saw in Chapter 2, MDL objects may be either structured or not. A Structure can be thought
of as an ordered series of MDL objects. MDL has a number of different 'classes' of structures, each
with different properties. These 'classes' are the structured PRIMTYPEs: LIST, VECTOR, and STRING.
In Chapter 2, it was also noted that matching brackets are used to represent these structured objects.
Each of the structured PRIMTYPEs has Its own unique bracket type by which it can be identified. The
brackets used for the structured PRIMTYPEs are as follows:

· LIST · matching parentheses

· VECTOR -matching square brackets

- STRING - paired double quotes

<SET A (1 Z 3)>S
(1 z 3)
<TYPE .A>S
LIST
<TYPE <TYPE .A>>S
ATOM
<PRIMTYPE .A>S
LIST
<SET B <+ 1 Z»S
3
<SET B ' <+ 1 Z>>S
<+ 1 Z>
<TYPE .B>S
FORM
<PRINTYPE .B>S
LIST

:"Oopat•

:"That's bettert•

In the example, notice that the FORM <+ 1 Z> will get evaluated in the call to SET. In order to SET B
to the FORM instead of the result of its evaluation, a single-quote is placed before the FORM. The
single-quote tells MDL not to evaluate the following object.

7 .3. The TYPE? Predicate

The SUBR TYPE? can be used to check the TYPE of a given object against a particular set of TYPE
names. TYPE? takes a MDL object and any number of ATOMs, which must each be the name of a MDL
TYPE. If the object is not one of those TYPE names given, TYPE? relurns IFALSE (). Otherwise, it
returns the TYPE of the object.

MOL TYr>ES SECTION7.2

THE MDL PRIMER 37

<TYPE? 10 ATON VECTOR>$
#FALSE ()
<TYPE? 10 FIX FLOAT ATON>$
FIX

7 .4. Printing of MDL Objects

In general, the printing of a MDL object Is dependent on the PRINTYPE of thal object. MDL objects
will usually be printed as follows:

ltype-name object-as-il·PRINTYPE

Usually, if the TYPE of the object and the PRINTYPE of the object are not the same, the number-sign
and type-name are printed. There are a few exceptions to this: the TYPEs FIX, FLOAT, CHARACTER,
and FORM all print in a more simplified manner because of their common use.

We have already seen an example of this 'number-sign notation' with the TYPE FALSE. You may
have noticed that it prints as a number-sign, the ATOM FALSE, and an 'empty' LIST. The meaning of
this is that FALSEs are of PRIMTYPE LIST: the #FALSE must ba used in both input and output to
distinguish the object from objects ol TYPE LIST. In general, you can tell the PRIMTYPE of an
unknown type in 'number-sign notation' by looking at the part alter tf-ie rype-name. If It has square·
brackets, it's a PRINTYPE VECTOR. Parentheses, it's a PRIMTYPE LIST. Etc.

<PRINTYPE ITABLE (1 l 3)>$
VECTOR
<PRIMTYPE #TEXT "ABCDE">$
STRING
<PRIMTYPE INUMBER 10>
WORD

Note that the TYPEs TABLE, TEXT. and NUMBER are not defined In MDL; a user might have created
them, however (see later), and their PRIMTYPEs are obvious from the part airer the rype-name.

7 .5. Significance of PRIMTYPEs I CHTYPE

The notion of PRIMTYPE 1s very important. The PRIMTYPE of an object tells MDL what the object
looks like lnrernally 10 MDL. As far as MDL is concerned, any two objects of the same PRIMTYPE are
more or less interchangeable (e.g . most SUD Rs which can be used on LIS Ts can a so be used on
FALSEs.)

SECTl0tl7 3 MDI. TYPLS

38 THE MDL PRIMER

This notion of interchangeability Is a very powerful one. In fact, MDL allows you to arbitrarily
change the TYPE of virtually any MDL object to another TYPE, as long as objects of that other TYPE
have the same PRIMTYPE as the original . The SUBR which 'changes' TYPEs is called
CHTYPE (pronounced 'chitype'). It takes a MDL object and the name of a TYPE (ATOM), and returns
the MDL object 'changed' to that TYPE.

<CHTYPE (+ 1 2) FORM>S
<+ 1 2>
<CHTYPE (A B C) FALSE>S
#FALSE (A B C)
<CHTYPE 2.6 LIST>S

"ERROR•
STORAGE-TYPES-DIFFER
CHTYPE

LISTENING-AT-LEVEL 2 PROCESS 1

Olten one would like to know what the PRIMTYPE of an object of a certain TYPE would be. This can
be found out by using the SUBR TYPEPRIM: given a name of a TYPE, it returns the name of the
PRIMTYPE of objects of that TYPE.

<TYPEPRIM FALSE>$
LIST
<TYPEPRIM FLOAT>$
WORD

To restate the conditions for a successful CHTYPE in terms of TYPEPRIM: the PRIMTYPE of the first
argument must be the same as the TYPEPRIM of the second. Isn' t that much clearer?

7 .6. Creating new TYPEs

Given the interchangeability among objects with the same PRIMTYPE, it should not be surprising
that MDL will allow you to create any arbitrary new TYPE, so long as you define it to have a known
MDL PRIMTYPE. The SUBR which creates new TYPEs is, not surprisingly, NEWTYPE. NEWTYPE takes
an ATOM (the name for your new TYPE) and the name of the TYPEPRIM for that new TYPE (also an
ATOM). It returns its first argument. NEWTYPEs will defaulUy print out (and can be read back) in
'number·sign notation'.

MOL TYl'CS SECTION 7.5

-

-

THE MOL PRIMER

<NEWTYPE TABLE VECTOR>$
TABLE
<SET X #TABLE (JOE 1 JOHN 2)>$
#TABLE [JOE 1 JOHN 2)
<CHTYPE .X VECTOR>$
[JOE 1 JOHN 2)

39

There are only two ways to create an object of a user·defined TYPE: type the object in directly (as
was done In the previous example) or to use the SUBR CH TYPE explicitly.

<CHTYPE (JIM 2 JANE 4) TABLE>$
fTABLE [JIN 2 JANE 4)

Sf,CTION 7 6 MDL TYPES

--
40

THE MOL PRIMER

MOL STRUCTURES
SECTIONa.o

THE MOL PRIMER 41

8. MDL Structures

As we saw in Chapter 2, MDL objects may be either structured or not. It was stated that structures
can be thought of as ordered series of MDL objects and that different classes of structures existed. In
this chapter we will describe the common structures used in MDL.

8.1. Equality

It is necessary here to mention the notion of equality. In MDL, there are two types of equal: double·
equal and single-equal. The SUB Rs which represent these concepts are n7 and •7, respectively.
Simply stated, two MDL objects which are the same thing are double-equal. Two objects which look
the same, i.e. are printed the same way, are single·equal. This confusing distinction is unimportant
for objects which aren't structured. Two non-structured objects which print the same are the same.
For example, there is one and only one MDL object representing the FIX 19. However, one can
easily build two structures at two different times which look the same, but which are not the same.
This will be explained below in the discussion about LISTs. As an example of the use of =7, assume
that you have written a program which takes some input from the user and wants to see if he typed the
word FOO. Let's assume an input routine called INPUT which returns a STRING.

<SET STR <INPUT>>S
"FOO"
<••1 .STR "FOO">S
#FALSE ()
<•? .STR "FOO">$
T

This is because the two STRINGS were not identical; they look the same, however, and therefore are
=?. Figure 8-1 purports to demonstrate the distinction between types of equality.

8.2. PRIMTYPE LIST

MDL objects of PRIMTYPE LIST may be thought of as an ordered series of MDL objects, whose
connective link is n 'pointer'. This rneans that in order to find lhe Nth element of a LI ST one must
look at each of the previous N· 1 etcmtmls. This is shown in Fiuure 8-2. Thi$ becomes rallwr lcdious

SECTION6.0 MDL smucrunes

42
THE MOL PRIMER

The representation of a MOL object is:

<IJP•> l
c •olue>

where <type> is the TYPE of the object and <value> _is a pointer for structured
types, or a number.

A

BE3 0

8

l LIST I
c

l LIST I
D

l LI ST I

Definition:

Question:

Answer:

Question:

Answer:

i A 10 E
8 (IOI •Efj c (IOI

10 D 1101

l
E 10

" IO

(EE3
1

Two MDL objects are ••? if and only if the <type> and
<value> parts are the same. They are •? ii they ~ the
same.

Are any of B, C, or D .. 7 to each other?

C and D. They have the same TYPE and point to the lWJrul
structure. B and C are •?, as are 8 and D · they~ lllllul,
but are not identical.

Are any of A, E, or F ••?to each other?

They are all • •? to each other.

Figure 8· 1: The MDL notion of equality is demonstrated in this figure,
which shows the distinction between single-equal•? and double·equal

••?.

MOI $TnUCTURES
SECTION8.2

THE MDL PRIMER 43

when one is interested in finding the 245th element of a LIST. You can see that large LISTs have the
property of being rather inefficient to 'random·access'. On the other hand, LISTs can easily be
modified (adding elements, removing elements, etc) simply by changing the linking 'pointers'. In
Figure S.3 you can see pictorially how an element of a LIST might be removed. Notice that the
removed element still 'exists', but that the LIST is no longer 'pointing' at it.

Two SUBRs which should be mentioned here are LENGTH and EMPTY?: the first, given a LIST,
returns the number of elements in that LIST (as a FIX), and the second, given a LIST, returns the
ATOM Tor #FALSE (),i.e. whether the LIST had no elements.

F I X • 1-l-F_;,,1 _X_,_
2
__ ___. .. 1-l-F_I x _ _.

3
__ •_-1

Figure 8-2: The LIST (1 <t 3)

I ~-F~l_X'--'L-~~---1 -~1 ~~F~l~X.:....J2L.-~'--11"-: ~1-F_l _X_.3~-·---1

This LIST is now (1 3) .

Figure 8-3: Removing a LIST element by moving only one pointer

8.2.1. Creating LISTs

Creating a LIST is very simple. Simply type in the printed representation of it, which (as described
before) is a series of MDL ob1ects surrounded by parentheses.

SECTION8.2 ~IDL $TnlJC1Ul1ES

44

<SET A (1 TVO 3.0)>S
(1 TWO 3.0)
<SET 8 (A .A C)>S
(A (1 TWO 3.0) C) ·

THE MOL PRIMER

Using this method, every MDL object placed between the matching parentheses is EVA Led. Thus, the
LVAL of A was placed in the LIST.

<SET B (X Y Z)>S
(X Y Z)
<LENGTH .B>S
3
<EMPTY? .B>S
#FALSE ()

<DEFINE EMPTY? (LIST) <••7 <LENGTH .LIST> O>>S
EMPTY?

The end of the previous example gives a definition of EMPTY? in MDL, given only the SUBRs LENGTH and .. 7.

A second way to create a LIST is with the SUBR LIST. This SUBR lakes any number of arguments,
which are EVA Led, and makes a list with the evaluated arguments as elemenls. The effect Is the same as In the first method.

<SET A <LIST 1 TVO 3.0>>S
(1 TWO 3.0)

In both methods, a new LIST is created.

<SET A (1 2 3)>S
(1 2 3)
<SET B (1 2 3)>S
(1 2 3)
(.. 7 .A .B>S
#FALSE ()
<•? .A .B>S
T

The two lists A and B are not double-equal because the construction of LISTs is guaranteed to
generate a new LIST. They are single-equal by the definition of single-equal.

MOL STRUCTURES
SECTIONS 2

I

THE MOL PRIMER 45

8.2.2. EVALing LISTs

LISTs, when EVA Led, ma~e a new copy of the LIST with all of the elements re· EVA Led.

<SET A (1 2 3)>$
(1 2 3)
<••? <EVAL .A> .A>S
#FALSE ()

8.2.3. Manipulating LISTs

In order to discuss LISTs more fully, we need to know a few ways to manipulate them. We will
introduce two SUBRs here, NTH (pronounced 'enth') and REST. The SUBR NTH, given a LIST and a
FIX, will return the FIXth element of the LIST. REST, given a LIST and a FIX, will return the LIST,
with the first FIX elements at the beginning removed. The second argument to both NTH and REST
has a default value of 1. Some examples:

<SET L (A B C 0)>$
(A B C 0)
<NTH .L .3>$
c
<NTH .L 2>$
B
<SET LL <REST .L Z>>S
(C 0)
<REST .L 4)$
()
.LS
(A B c· 0)

Notice that REST has no side·effects. In other words, it simply returns a pointer farther down the
'chain' of elements in the LIST without changing anything. This is illustrated in Figure 8·4. Another
important operation on LISTS is called PUT. As its name suggests, PUT puts an element into a LIST.
Given a LIST, an element number (FIX, as in NTH), and an arbitrary object, PUT makes the FIXth
element of LIST become that object, and returns the LIST. Let's continue from the example given in
Figure 8·4 with Land LL already defined.

<PUT .LL 1 HAHA>S
(HAHA 0)
• LS
(A 8 HAHA 0)

What happened here is shown In Figure 8·5. Since LL was a 'sllbset' ol L. any ch11nge in LL was
reflected in L (the opposilc would also be tiue, I.e. a PUT info the third or fourth 11lc111 .. 11ls of L would

SCCTION8.2 MOL STRUCTUl1CS

<SET L (A B C D)>S
(A B C 0)

THE MOL PRIMER

0---------~·~rl(M~.Cl~••flt*lj;f~ j+l•ro•·t·!

<SET LL <REST .L 2>>S
(C D)

Notice that the LIST (C 0) is a subset of the LIST (A B C D) because of
the way REST works.

Flgu re 8·4: REST of a LIST

be reflected in LL.)

The only effect is that the contents of the third element was changed,

moved.
from~ 10 ~ . No pointers have

~

Figure 8·5: PUTs into LISTs

Let's continue:

MDL S rflllCTURES SECTIOU82

THE MDL PRIMER

<SET N .L>S
(A 8 HAHA D)
<SET L (1 2 3)>$
(1 2 3)
.NS
(A 8 HAHA D)
.LLS
(HAHA D)

. .

<••? <REST .N 2> .LL>S
T

47

If you understand this, good. Otherwise, pay close attention to Figure 8·6, in which this example is
diagrammed. It is of crucial importance that the distinction be learned between a structure and a
pointer to a structure . Changing a structure (e.g. with PUT) will be reflected in any object which
paints to it Changing the pointer to a structure doesn't affect any other pointers. II you don't
understand this distinction, you will probably become more and more lost. Ask someone for help.

<SET N • L> made N point to where L pointed !ll that time.
<SET L (1 2 3)> merely pointed L somewhere else.
The values of Mand LL are !!Q1 alfected, then, by reSETting L.

Flgu re 8·6: Pointers vs. Structures

Now things get a little more complex. However, if you understood the previous examples. this should
be no d1lfe1ent. Earlier, we tnlketf nbout 'moving' pointers to elfecl rwnovnl of olll•!Ctt. from a LIST.

Sr:CTION 8 2 1m1 ~inuc1unEs

48 THE MDL PRIM~

This movement can be accomplished in MDL using the SUBR PUTREST. PUTREST (equivalent to
Lisp's replacd) is probably the most confusing SUBR to beginners, and even to accomplished MDLers.
Its effect is very simple: given two LISTs, say A and B, it causes the REST of A to become B, and then
returns A. This probably sounds very obscure. Before total confusion sets in, take a look at the
example and then at Figure 8·7.

<SET A (1 2 3)>S
(1 2 3)
<SET 8 (4 6 8)>S
<PUTREST .A .B>S
(1 4 6 8)
.es
(4 6 8)

All that has happened Is that one pointer has been moved: the one connecting the first element of A to
its succeeding element has been changed to a pointer to B. That's all. Notice that any object which
points to the same place that A points has been changed. However, also notice that any object which
points lo the REST of A has not been changed.

<PUTREST .A .B>

0--1-'F_l;_;X..:.....JL----.;i"""' FIX •

3

.. FIX .. FIX •
4 6

Only one pointer has been moved. A Is changed, but 8 is not. Notice that a
hypothetical C, previously SET to REST of A, is also not changed.

Flgu re 8· 7: PUT REST

Using PUTREST, ii is easy to remove elements from a LIST.

MOL STRUCTURES SECTION8.2

THE MOL PRIMER 49

<SET A (1 2 3 4)>$
(1 2 3 4)
<PUTREST .A <REST .A 2>>S
(1 3 4)

What we have done is to make the first element of A (1 in the example) point to the value of A RESTed
twice. This is demonstrated in Figure 8·8.

altT.&I>

<PUTREST .A <REST .A 2>>

(.___- FIX \.J t-------'-----1

The REST of A has become A RESTed twice. The effect is to remove the FIX
2 from the LIST.

Figure 8·8: Removing an element from a LIST using P~TREST

•

Notice that you can not use this method to remove the first element of a LIST, since PUTREST only
changes the pointer which connects the first element to the second element. However, one can
always use REST for this purpose, but be careful:

<SET A (1 2 3 4)S
(1 2 3 4)
<REST .A>S
(2 3 4)
.AS
(1 2 3 4)

As we noted earlier, REST has no side·effects, unlike PUTREST, which does. The right thing to do is

<SET A <REST .A>>S
(2 3 4)
.AS
(2 3 4)

One can couse a LIST lo terminate at any point by giving PUTREST a second nrgument of nn empty

SECTION8.2 ~1DL crnuCTURf:S

50

LIST.

<SET A (1 Z 3 4)>$
(1 z 3 4)
<PUTREST .A ()>$
(1)

THE MDL PRIMER

As advertised, the REST of A has been made the second argument to PUTREST, I.e. the empty LIST.

To combine LISTs, one can use PUTREST also. Try to think of how you would combine the LISTs
in the following example. Think pointers.

<SET A (1 Z 3)>$
(1 z 3)
<SET 8 (4 6 6)>$
(4 11 6)

The idea Is to make the third element of A (the FIX 3) to point to the LIST B. In terms of PUTREST,
we want B to become the REST of which LIST? The answer is

<PUTREST <REST .A Z> .B>S
(3 4 5 8)
.AS
(1 Z 3 4 11 8)

PUT REST returned its first argument, which was A RESTed twice. A, however, was changed. Reier to
figure S.9 ii confused.

P:IX
4

<PUTREST <REST .A Z> .B>

Figure 8·9: Splicing LISTs together using PUTREST

Ml)L srnuclUnes SCCTION82

THE MDL PRIMER 51

With your new-found expertise in PUTRESTing, you should take a moment and think about how you
would build a LISJ backwards. For example, you wish to append the FIX 7 to the LIST from the last
example. What is the correct MDL expression? Hint: You have to create a LIST with the FIX 7 in it

<PUTREST <REST . A 6> (7)>$
(8 7)
. A$
(1 2 3 4 6 8 7)

Here are some problems to think about:

<SET L (1 2 3 4)>$
(1 2 3 4)
<SET LL <REST . L 1))$
(2 3 4)
<SET LLL <REST . L 2)) $
{3 4)
<PUTREST <REST . L> <REST .L 3>>$
(2 4)

What are the LVALs of L, LL, and LLL now?

<SET WALTZ (2 3 l)>S
(2 3 1)
<PUTREST <REST .WALTZ 2> . WALTZ>$

II you try this, be ready to type ts: What has happened? What is the LENGTH of L noW? Why
shouldn't you try to find out? Why is this a waltz?

<SET ONES (1 2 3))$
(1 2 3)
<PUTREST .ONES .ONES>$

What about this?

The last two examples demonstrate an important notion, that of circularity. There is absolutely no
restriction on the creation of circular and self-referencing structures. However, you should be sure
you know what you're doing. For example, finding the LENGTH of ONES or of WALTZ in the previous
examples Is quite time-consuming. The SUBR called LENGTH? can be of use here Given a LIST and
a FIX, LENGTH? wifl return the LENGTH of the LIST ii it is less than or equal to FIX. Otherwise, it will
return #FALSE (). This is useful ii you suspect a LIST is sell-referencing or to check on whether a
LIST ls at least a certain length. For example, prior to trying to get the 12th element of a LIST of
uncertain size, one migh1 check that

<LENGTH? .LI ST 11>

Sl:CllON 8 2 '~Ol s rnucTURES

52
THE MOL PRIMER

returned #FALSE (),i.e. there are at least 12 elements in the LIST.

8.2.4. FIXes First in FORMs

If the first element of a FORM is a FIX or an ATOM whose GVAL is a FIX, this is considered to be a
shorthand call to NTH or PUT, depending on whether it is given one or two arguments, respectively.
Thus, the following two are EVALuated identically.

(11 • FOO>
<NTH • FOO 11>

So are these:

<11 .FOO .BAR>
<PUT .FOO 11 .BAR>

Here is an example of an ATOM being used first In a FORM with the same effect:

<SET L (FOO BAR BLETCH)>S
(FOO BAR BLETCH)
<SETG FIRST 1>$
1
<SETG SECOND 2>$
2
<FIRST .L>S
FOO
<SECOND .L>S
BAR

<FIRST .L FROB>S
(FROB BAR BLETCH)

8.2.5. FORMs

As described earlier, FORMs are used to apply functions to arguments, and are printed with angle
brackets. However, FORMs are simplf another variety of PRINTYPE LIST and all of the operations
which can be done on LISTs can be done on them. Since they are evaluated in a special way,
creating a FORM by inputting elements between angle brackets will require a single-quote. This is not
true ii you are using the SUBR FORM.

MOL srnucrunes
SF.CTION 8.2

THE MDL PRIMER

<SET A <+ 1 2 3))$
6
<SET A '<+ 1 2 3))$
(+ 1 2 3) . .
<SET A <FORM + 1 2 3))$
<+ 1 2 3)

53

•

A special note should be made of the empty FORM: it evaluates to an empty FALSE. This is simply a
shorthand notation.

<>S
IFALSE ()

8.2.6. FALSEs

Previously, you have seen examples of MDL objects of TYPE FALSE. All of them thus far have
been EMPTY?, although this is not always the case. MDL objects of TYPE FALSE are PRIMTYPE
LIS Ts and, as has been stated before, can be used in the same ways as any other PRIMTYPE LIST.
In particular, one can create FALSEs with any number of arbitrary elements. One use of this might be
to distinguish between two types of failures in a function. Thus, the FALSE can have two types of
meaning: its TYPE (which is FALSE) and its contents. One might simply want to detect failure by
checking the TYPE, but one might additionally want to detect failure and also have other information
about the failure available.

<SET VAL <OPEN "READ" "FOO.BAR">>S
#FALSE ("File not found" "FOO.BAR" 69106)
<1 .VAL>S
"F1le not found"

In this example, the SUBR OPEN was called in an attempt to open a file called FOO. BAR. The OPEN
failed, and returned a FALSE which contained three pieces of information: the reason (a STRING), the
file name (a STRING), and an internal error code (a FIX). One might have written a FUNCTION using
OPEN which only cares if OPEN rnturns a FALSE or not. On the other hand, one might want to print out
the reason for the failure to the FUNCTION's user. This would have been imp.ossible had FALSEs not
been able to carry additional information. As you will find when doing your own programming, this is
a significant feature of MDL.

8 .2. 7. SEGMENTS

A SEGMENT is a PRIMTYPE LIST, which is handled very specially by MDL. SEGMENTS print as an
exclamation point followed by a FORM. When EVALed inside an expression, its meaning is as follows:
pretend that inslead of using this SEGl-IENT, use Instead all of the elements you get from EVALing the
FORM. There is an important Implication here: l11at the FORM, when EVALed, returns a s1r11crure. An

SECTIOM8.2 MDL SlRUCTUol'S

54

error will occur ii this is not the case. Here are some examples:

<SET A (1 Z. 3)>$
(1 2 3)
<SET B (I .A 4 6 6)>$

(1 2 3 4 6 6) ;"This is a new list, not shared with A"
<SET C (I.A 1.B 7)>$

(1 2 3 1 2 3 4 6 6 7) ;"No sharing here, either•

<+1.A>S
6

<SET L (BAR 10)>$
(BAR 10)

<SET I. L>S
10
.BAR$

10

THE MOL PRIMER

Th is last example is quite pathological: note, however, that It is perfectly legitimate. The FORM was
read by MDL as having two elements. the ATOM SET and a SEGMENT. When the FORM was EVALed,
the SEGMENT acted as If it was really all of the elements of . L, i.e. the ATOM BAR and the FIX 10.
This is simply the case of SETting BAR to 10.

One last very important note: There is one way to add elements to the beginning of a LIST without
copying. This is the case in which a SEGMENT is the last element of a LIST and the SEGMENT'S FORM
EVA Ls to a LIST. ln this case only, there is no copying and the structures will share. Th is is similar to
CONS in LISP.

<SET L (FOO BAR BLETCH)>S
(FOO BAR BLETCH)

<SET LL (1 2 3 l.L)>$;"The last element is a SEGMENT which

(1 2 3 FOO BAR BLETCH)
<PUT .LL 4 SHARED>$
(1 2 3 SHARED BAR BLETCH)
.LS

(SHARED BAR BLETCH)

evaluates to a LIST"

LISTs are t11e most appropriate srrucrure to use when elements are going to be added or removed.
The special use of SEGMENTs shown in the last example is the best way of adding elements to the
front of a LIST. However, the resulting LIST will be 'backward', in that the most recently added
element will be al the 'front' rather than at the 'back' of the LIST. Later on, we will demonstrate the
correct way to add elements to the end of a LIST. As an exercise, see ii you can figure out a method
for doing so using PUT REST.

Mnl $tnUCTUnes SECTION6.2

-

THE MOL PRIMER 55

Remember that the previous use of SEGMENTS is an exception: in the case of objects of PRIMTYPE
VECTOR and STRING (next sections) the use of a SEGMENT will cause copying of the elements from
the structure which is the EVALuation of the FORM.

8 .3. PRIMTYPE VECTOR

A MDL object of PRIMTYPE VECTOR can be thought of as a linear array of MOL objects. In a
VECTOR. it is trivial lo access the Nth element, as this simply requires finding the correct offset into the
structure (see Figure 8· 10). Similarly, it is trivial to replace the Nth element with something else. On
the other hand, there is no way to add elements to a VECTOR without creating a new one, and
removing elements can be simulated, although ii is rather difficult. If your eyes skipped back lo the
section on PRIMTYPE LIST, you might notice that these properties ol the two PRIMTYPEs are
reversed. This, then, is the rationale for having different structure 'classes'. The programmer is free
lo choose the structure 'c lass' (i.e. PRIMTYPE) he wants, based on the way in which it is to be used in
a program. For example, a structure which is always of known length should probably be a VECTOR,
while one which must undergo changes in size should probably be a LIST.

Schematic representation of a VECTOR

[1 2 3 4) FIX I
I

FIX l
2

FIX l
3

FIX I
4

Figure 8· 10: The VECTOR [1 2 3 4 J

8.3 .1. Creating VECTORS

Creating a VECTOR is completely analogous to creating a LIST. There are two options: you can
type in the printed representation or a VECTOR, or you can use the SUBR VECTOR.

SCC1'10118 2 ~11)1. s rnuc1 unr:s

56

<SET A (1 2 3))$
(1 2 3]

<SET B <VECTOR 1 2 3>>S
[1 2 3]
< .. ? . A .B>S
#FALSE ()
<•? .A .B>S
T

<SET C [.A l .BJ>S
[[1 2 3] 1 2 3]

THE MOL PRIMER

:"C does .QQ1 share with 81"

Both of these methods always create a new VECTOR. Therefore, two objects created in separate calls
to VECTOR will never be .. ?.

8.3.2. EVALing VECTORs

As with LISTs, EVAL of a VECTOR makes a new copy of the VECTOR, with all of the elements EVA Led.

<SET A(<+ 1 2> '<+ 1 2> ''<+ 1 2>]>S
(3 <+ 1 2) '<+ 1 2>]
<SET A <EVAL .A>>S
(3 3 (+ 1 2>]
<EVAL .A>S
(3 3 3]

8.3.3. Manipulating VECTORs

The SUB Rs NTH, REST, PUT, LENGTH, EMPTY?, and LENGTH? all work on VECTORs Just as they do on LISTs.

<SET A [ONE TWO 3J>S
(ONE TWO 3)
<NTH .A 2>S
TWO

<PUT .A 3 THREE>S
[ONE TllO THREE]
.AS
(ONE TWO THREE]

MOL ~ 11111CTlJnES
SECTION8.3

THE MOL PRIMER

<LENGTH .A>S
3
<REST .A 2>S
[THREE]
.AS

(ONE TWO THREE]

RESTing VECTORS is shown in Figure 8-11.

<SET A (1 2 ~1-F-IX-----l
~ FIX

2
<SET B <REST .A 2>> FIX

3

FIX

Figure B· 11: REST of a VECTOR

57

Since VECTORS are not pointer structures, the PUTREST operation will not work on them. However,
there are a few operations which are possible with VECTORs which are not possible with LISTs due to
their structure. The first of these is the inverse of REST: it is called BACK. Given a VECTOR and a FIX,
it tries to replace elements to the front of the VECTOR which were previously RESTed off. Like REST,
BACK has no side-effects. It simply returns a pointer to a different location in the VECTOR. An error
will occur II you attempt to BACK more elements than have been RESTed. The SUBR TOP, however,
given a VECTOR, will BACK as far as is legally possible.

<SET A (1 2 3 4]>S
(1 2 3 4)
<SET B <REST .A 2>>S
(3 4]
<PUT .B 1 HAHA>S
[HAHA 4)
.AS

[1 2 HAHA 4] ;"B 1s a subset of A"

SECTION8.3 ~IOL S1 RUCfUllES

58

<BACK .B>S
(2 HAHA 4J
.BS
[HAHA 4J
<TOP .B>S
(1 2 HAHA 4J
<••? <TOP .B> .A>S
T

;"BACK has no side-effects•

BACKing of VECTORs is diagrammed In Figure a.12.

SET B <BACK .8 2))

FIX

FIX

2

FIX

3

FIX

4

Figure 8·12: BACK of a VECTOR

8.3.4. UVECTORs

THE MDL PRIMER

Although Infrequently used, MDL has a PRIMTYPE called UVECTOR, for Uniform VECTOR.
UVECTORs are identical to VECTORs in mosl ways except that~ element of a UVECTOR must have
the ~ TYPE. UVECTORs have a special input and output form: an exclamation point followed by
paired square brackets. Here are some UVECTORs:

Ml)I :)I RIJC:TURES
S£CTION8.3

THE MOL PRIMER

<SET A l [A 8 CJ>S

l(A B Cl) ;"Don ' t worry about the other I before the)"
<1 .A>S
A
<REST .A 2)$
I [Cl)

..

59

Analogously to a VECTOR, ' there are two ways to create a UVECTOR: type It in, or use the SUBR
UVECTOR. When typing in a UVECTOR be careful that everything you type in Is of the same TYPE,
~ EVALuation, as well as afterl

<SET X lO>S
10
<SET A 1(20 . X]>S

•ERROR•
TYPES-DIFFER-IN-UNIFORM-VECTOR
READ
LISTENING-AT-LEVEL 2 PROCESS 1

This error occurred because • Xis a FORM, even though it EVA Ls to a FIX. To do this properly,

<SET A (UVECTOR 20 .X>>S
1(20 10)

A SUBR called UTYPE returns the name of the TYPE of the elements of a given UVECTOR. There are a
few TYPEs which are illegal elements of UVECTORs: the only one you are likely to come across is
STRING.

UVECTORs are useful only for efficiency. They take up roughly half !he storage of VECTORS. All
other considerations are the same as for VECTORs.

8.4. PRIMTYPE STRING

A MDL STRING is a sequence of MDL objects of TYPE CHARACTER. Objects of TYPE CHARACTER
are represented by the sequence of characters: exclamation-point, backslash, and the character
itself.

SECTION83 I 'I II STnUC:TIJIU S

60

!\AS
l\A
<TYPE l\A>S
CHARACTER
<ASCII I U>S
66

<ASCII 66>S
l\A

THE M>L PRIMER

This example has also demonstrated the use of the SUBR ASCII, which given a CHARACTER returns
its ASCII value, or given a FIX gives the CHARACTER with that ASCII value. A STRING is represented
as a sequence of characters surrounded by double·quotes.

8.4. 1. ASCII

ASCII, 11S used in MDL, is the name of a 7·bit code (i.e. OOOOooo · 1111111 base two, corresponding
to 0 • 127 in base ten) used to represent keyboard characters (upper and rower case, control characters, punctuation, etc.) as small Integers.

8.4.2. Creating STRINGs

STR IN Gs are created in exactly the same ways as the other structures.

<SET A "THIS IS A STRING">S
"THIS IS A STRING• .

<SET A <STRING l\T 1\H l\I f\S>>S
"THI S•

However, STRING is more powerful than this, as its arguments can be either CHARACTERs or other STRINGs.

<SET A "THIS IS A">S
"THIS IS A"

<STRING .A " STRING">S
"THIS IS A STRING•
.AS

"THIS IS A•

As with VECTORs. all STRillGs created this way are new, i.e. not shared. To put a double·quote inside
a string, you must place a backslash before the double.quote. This can be confusing.

MOU, I ru JC I 11111 s
SECTIOI~ 84

I
I

THE MDL PRIMER

<SET A "\"\"">$.,., ..
<LENGTH .A>$

2

61

This STRI NG has two elements, each a double·quote. To put a backslash into a STRI NG, the
backslash must be preceded by another backslash. This is even more confusing.

<SET A "\\\"">S ., \ \".
<LENGTH .A>S
2

This is another STRING of two elements: a backslash and a double.quote.

8.4.3 . EVALing STRINGs

STR INGs are unlike LIS Ts and VECTORS In that they evaluate to themselves, rather than to copies
of themselves.

8.4.4 . Manipulat ing STRINGS

STRINGs are manipulated exactly as are VECTORs. The CHARACTERs are stored sequentially; thus
PUTREST will not work, but BACK and TOP will . The only difference is that the only legal third
argument to PUT of a STRING is a CHARACTER. Anything else will cause an error.

It is important to note that STR INGs contain 2!lb'. CHARACTERS. CHARACTERS with special meanings
elsewhwere in MDL are simply CHARACTERS In STRINGs.

<SET A " 1 2 3 <+ 2 2>">S
"1 2 3 (+ 2 2>"
<3 .A>S
2

The above example shows that the 'FORM' in the STRING is not EVALed, it is merely 7 CHARACTERs in
a STRING. Spaces are CHARACTERS.

There is a major difference between the following two structures:

f.C:CTIONS4 1, IPL SH1UCTURES

<SET L ("1 2 3" "4 6 6" "7 8 9")>S
("1 2 3" "4 6 6" •7 8 9")
<SET S "(1 2 3) (4 6 6) (7 8 9)">$
"(1 2 3) (4 6 6) (7"8 9)"
<LENGTH .L>S
3
<LENGTH . S>S
23

8.5. Building Large Structures

THE MOL PRIMER

It is occasionally useful to create a large structure. It would be very painful to create, say, a VECTOR
of 100 elements by calling the SUBR VECTOR with 100 arguments. MDL provides a way to create
structures of a specific size, namely the SUBRs I LIST, IVECTOR, and ISTRING. These take two
arguments, a FIX (the number of elements) and a MDL object. MDL will build a structure (LIST,
VECTOR, or STRING, respectively) with FIX elements, each of which is the result of evaluating the
second argument to the SUBR. Some examples:

<ILIST 10 O>S
(0 0 0 0 0 0 0 0 0 0)
<IVECTOR 6 <»$
(#FALSE () #FALSE () #FALSE () #FALSE () #FALSE ()]
<!STRING 30 l\W)S
·wwwwwwwwwwwwwwwwwwwwwwwwwww·

The second argument to ILIST and IVECTOR can be any MDL object. The second argument to
I STRING must be a CHARACTER.

8.6. Searching Structures

There are two SUBRs which, given an arbilary MDL object and an arbitrary structure, will look
through the structure for that object. They are called MEMQ and MEMBER. What they do is this: starting
with the srructure, they look at the first element and see if it Is equal to the object in question. If so,
they return the structure. Otherwise, they REST the structure by 1, and repeat the procedure. When
the structure becomes EMPTY? (i.e. the object wasn' t in the original structure). these SUBRs return
#FALSE () . This means that a successful MEMQ or MEMBER will return lhe original structure RESTed
down such that its first element is the object searched for.

You may have noticed a rather ambiguous 'equal' in the last paragraph, and this is the distinction
between MEMQ and MEMDER. In MHIQ, the test is double-equal {••?), while in MEMDER the test is
single-equal (a?).

MO\. Sl P.l IC TURES SECTION84

t
THE MDL PRIMER

<SET L (ONE 2 3.0 "FOUR")>$
(ONE .2 3.0 "FOUR")
<MEMQ 2 • L>S.
(2 3.0 "FOUR")
<MEMQ "FOUR" .L>S
#FALSE ()
<MEMBER "FOUR" .L>S
("FOUR")

8.7. Garbage: Quoting Structures

63

Often in writing programs, one includes a structure in a FORM. For example, one might have a FORM
that looks like this:

<NTH [ADD SUB MUL DIV] .OPCODE>

This is very inefficient because the VECTOR in the FORM is EVALed every time the FORM is EVALed with
the result that a new VECTOR is created. This creates a lot of 'garbage' , where 'garbage' is defined as
some piece of structure which is no longer used (i.e. there are no pointers to it). Since your MDL
resides in a machine with finite memory, it pays to think about ways of making programs relatively
storage-efficient. The proper way of writing the FORM in the previous example is

<NTH '[ADD SUB MUL DIV] .OPCODE>

As mentioned earlier, the quofe will ensure that the VECTOR will not be EVALed when the FORM Is
EVALed. Thus, only one copy of the VECTOR will exist. Note that 'quoting' structures in this way
should be used for yECTORs and LISTs. STRINGs EVAL to themselves! You are warned: NEVER do a
PUT into a quoted structure!

8.8. Garbage: Building Lists

It is often necessary in a program to build up a LIST of elements. Assume that you have a
FUN CT ION which gets elements one at a time and wants to build a list in the order in which they were
received. Assume a LIST L and an element to be added, say . OBJ. One way of doing this is as
follows:

<SET L {I .L .OBJ)>

This is not good prac tice, as tlie LIST cre~ted is a copy of the old one with an element added at the

SECTION8 6 Ml>L smuc1 URES

64
THE MOL PRIMER

end. Assuming that nothing else but the value of l points to the LIST • L, the old LIST • L Will
become garbage. If you assume adding 100 elements using this method, it becomes clear that
thousands of LIST elements are needlessly becoming garbage. Equally as bad would be to use a
VECTOR. The best way of doing this is using PUTREST. Follow this example:

<SET L (1 2 3)>S
(1 2 3)

<PUTREST <REST .L 2> (4)>S
(3 4)
.LS
(1 2 3 4)

Notice that in the general case, one can add an element to the end of a LIST by saying:

<PUTREST <REST .LIST<- <LENGTH .LIST> 1>> (.ELEMENT)>

This is good programming except that LENGTH and REST get called, both of which are quite slow for
long LISTs. Remember that LENGTH must follow all of the pointers to the end to count up the
elements. Here's another way of doing this:

<SETG L (T)>S
(T)
<SETG LL ,L>S
(T)

<DEFINE ADD-TO-ENO (ELEMENT)

<SETG LL <REST <PUTREST .LL (.ELEMENT)> 1>>>S
ADD-TO-ENO
<ADO-TO-ENO 100>S
(100)

<ADD-TO-ENO 200>S
(200)
.LS
(T 100 200)

Notice that both L and LL needed to have at least one element at the beginning so that PUTREST
would work. Remember that the first argument to PUT REST cannot be EMPTY?, by definition. The
effect of the program ADD-TO-ENO is to append the element to a LIST (LL) which is RESTed each
lime. This saves having to perform long LENGTH and REST operations. Since LL is a sub-list of L, L is
being changed with every PUTREST. Thus, Lis the complete LIST, and LL is always L RESTed down
to its last element. You should remember, or course, that the initial Tin the LIST should be removed at a later time

MOL SlRUCTUR~S
SECriON8.8

THE MDL PRIMER 65

8.9. Structured NEWTYPEs

In the previous chapter, we saw that MDL is a type-extensible language in that the programmer can
create his own TYPEs. Typically, an Object of a NEWTYPE will be a structure that is a model of some
real world entity with the elements of the structure models of parts or aspects of that entity. The
creator of the NEWTYPE will usually provide functions for manipulating the NEWTYPE objects in all of
the ways which are considered meaningful for the intended uses of that NEWTYPE. This means that
other users of the NEWTYPE can use lhese creator·defined manipulation routines and never need to
*now the Internal structure of the NEWTYPE. This provides both modularity ol programming and data
abstraction.

For example, suppose you wanted lo deal with airline schedules. If you were to construct a set of
programs that define and manipulate a NEWTYPE called FLIGHT, then you could make that set into a
standard package of programs and call on it to handle all information pertaining to scheduled airline
flights. Since all FLIGHTS would have the same quantity of information (more or less) and you would
want quick access to individual elements, you would not want the TYPEPRIM lo be LIST. Since the
elemenls would be of various TYPEs, you would not want the TYPEPRIM to be UVECTOR. The natural
choice would be a TYPE PR IN of VECTOR.

Now, the individual elements of a FLIGHT would, no doubt, have TYPEs and meanings that don't
change. The elements of a FLIGHT might be airline code, flight number, originating.airport code, list
of Intermediate stops, deslinatlon·alrport code, type of aircraft, days of operation, etc. Each and
every FLIGHT would have the airline code for ils lirst element (say), the flight number for Its second,
and so on. It is natural to invent names (ATOMs) for these elements and always refer to the elements by
name. For examplt!, you could <SETG AIRLINE 1>. Then, ii the local value or F were a FLIGHT,
<AIRLINE .F> would return the airline code, and <AIRLINE .F AA> would set the airline code to
AA. Once that is done, you can forget about which element comes first; all you need to know are the
names of the offsets.

The next step is to notice that, outside the package of FLIGHT functions, no one needs to know
whether AIRLHIE is just an offset or in fact a function of some kind. For example, the scheduled
duration or a flight might not be exp!lcltly stored in a FLIGHT, just the scheduled times of departure
and arrival. But, ii the package had the proper DURATION function for calculating the duration, then
the call <DURATION • F> could return the duration, no matter how it is found. In this way the internal
details of the package are conveniently hidden from view and abstracted away.

8.10. Summary of MDL Structures

A few points should be obvious from the previous discussions of the various structured
PRIMTYPEs:

1. All structures can be created in the same two ways: Either type in the printed
representation, or use the SUBR whose name is the name or the PRIMTYPE.

2. When LISTS and VECTORS nre EVALed, a new copy of the strt1cture is mane, whose

SECTION69 MDL $1RUCTURCS

66

THE MOL PRIMER

elements are EVAL of the elements of the original. STRINGs EVALuate to themselves.

3. SEGNENTs are a very important and powerful feature of MDL. If you don't undersand their uses, re-read the appropriate section.

4. The SUBRs NTH, REST, PUT, LENGTH, LENGTH?, EMPTY?, MEMBER, and HEMQ work on all structures.

5. The SUBRs BACK and TOP work on all consecutively stored structures (I.e. VECTORs, UVECTORs, and STRI NGS).

6. The SUBR PUTREST works on LISTs only, and should be used to append elements to the
end of lISTs. To add elements to the 'front' of LISTs, use the construct (.ELEMENT
I. LIST). other ways or adding elements to LISTs create unnecessary garbage.

7. The SUBRs MEMQ and NENBER can be used to find a MOL object in an arbitrary structure.
MEHQ uses =-? as a test; MENBER uses •?. Both return the original structure RESTec!
down to the MOL object which was found, or #FALSE ().

8.11. Practice Quiz

A large amount of important material has been covered in this chapter. Test your understanding by
trying the following quiz, then check your answers by typing them to the MOL Interpreter.

Please Write below each line the result of typing that line into a MOL.

MUL SIRUCTURES

SECrJONS.10

f
THE MOL PRIMER

69

9. Programming Constructs

In order to write any interesting programs, an ability is required to test for various conditions and
take action only if those conditions are met. This chapter Introduces the MDL SUBRs and FSUBRs
needed to do this.

9.1. Boolean Operators

9.1.1.NOT

The MDL predicate NOT takes one argument of any TYPE. It evaluates to T only if its argument
evaluates to a FALSE. and to •FALSE () otherwise.

<NOT <L•? 4 3>>S
T

9.1.2. AND

ANO ls an FSUBR. and It takes any number of arguments. It evaluates its arguments from fi rst
toward la.st as they appear In the FORM. As soon as one of them evaluates to a FALSE. it returns that
FALSE, ignoring any remaining arguments. If none of 1hem evaluate to FALSE, it returns EVAL of its
last argument. <ANO> returns T .

(AND <G? 4 3> <SET A 6> <L? 4 3> <SET 8 7>>S
#FALSE ()
.AS
6

SECTIQNO.O PRO\.R~,._,1r 1111G CONS TRUCT:l

70

.es

•ERROR•
UNBOUND VARIABLE
B
LVAL

LISTENING KT LEVEL n PROCESS 1

<ANO <G? 4 3> <L? 3 4) <SET C 10>>S
10
.cs
10

THE t"10L PRIMER

ANO? is the SUBR eQuivafent to ANO (all its arguments are evaluated before any of !hem is tested).

9.1.3.0R

OR is also an FSUBR and also takes any number of arguments. It evaluates its arguments from first
to last as they appear in the FORM. As soon as one of them evaluates to a non· FALSE. OR returns that
non· FALSE vaJve. ignoring any remaining arguments. It this never occurs, Jt returns the last FALSE ;t saw. <OR> returns #FALSE ().

<OR <L? 4 3> <SET D 8) <SET E 13>>S
8

Setting D to 6 returned 8, which is not a FALSE, so ii was returned by OR and E was ne.verset to 13.

OR? ls the SUBR eQuivalent to OR.

When you understand the foflowing example, you should have no tt'ouble with MOL 's boolean
operators. What is interesting about these two expressions?

<NOT <OR .FOO .BAR .BLETCH>>

<ANO <NOT .FOO> <NOT .BAR) <NOT .BLETCH>>

9.2. CONO

The MDL subroutine which ls most used for varying ev'1luation depending on a truth V31ue Is the
FSUOll CONO c··conclilion:if ..). The arguments to Cotio. called COllD clauses. must be LISTs. ond

PnOGn/\f\1,\41NO CONSTRUCTS
SC.CTtON 9. 1

-

IHE MOL. PAIMER 71

there must be al least one. COND always returns the result of the lilll.l evaluation ii performs. The
following rules determine the order of evaluations performed.

1 . Evaluate the first element of each clause (from first toward last) until either a. non· FALSE
object results or the clauses are exhausted.

2 . 11 a non-FALSE object is found in (1). immediately evaluate the remaining etements (ii any)
of that clause and igl"Jore any remaining clauses.

In other words, COND goes walking down Its clauses, EVALing the first elen1ent of each clause, looking
for a non-FALSE result. As soon as it finds a non-FALSE. it forgelS about all the other clauses and
evaluates. Jn order. the other elements (if any) of the current clause and returns the fast thing it
evaluates. If it can't flnd a non·FAL.SE first element, it returns the last FALSE it saw.

9.2.1. Examples

<SET F '(l)>S
(1)
<COND (<EMPTY? .F>

EMP)

ONE

(<1? <LENGTH .F>>
ONE)>$

<SET F ()>S
()
<COND (<EMPTY? .F>

EMP)

EMP

(<17 (LENGTH .F>>
ONE)>S

<SET F '(1 2 3))$
(1 2 3)
<COND (<EMPTY? .f>

EMP}
(<1? <LENGTH .f>>
ONE)>$

•FALSE ()
<COND (<LENGTH? .F 2>

SMALL)
(BIG)>S

BIG

SECTION9 2 PROORf+.f\tlv11r fC'\ CON5TRUC.:'f$

72 THE MDL PRIMER

<DEFINE FACT (N)
<COND (<07 . N>

(ELSE <•

;"the standard recursive factorial"
1)

FACT
<FACT 6)$
1ZO

.N <FACT <- .N 1>>>)>>$

In the last e xample. the use of ELSE was not necessary. but it makes it a bit easier to read the
program. The atom T is often used for the same purpose.

9.3. Shortcuts with Conditionals

9.3.1. Using AND and OR with CONDs

Since ANO and OR are FSUBRs, they can be used as miniature CONOs, but this is usually bad
programming sty·1e. A construct of the form

<AND pre-conditions action(s)>

or

<OR pre-exc7vsions action(s)>

will allow sctlon(.a) to be evaluated only if all the pre-conditions are true or onty if all the pre·
eJtclusions are false. respectivaly. By nesting and using both ANO and OR, fairly powerful constructs
can be made. However, using ANO and OR In this way can lead to some major problems. If any of your
ac tions re turns false or trua unexpectedly, the roflowlng ones will never be evaluated. Even worse.
programmers who get in the habit of doing this tend to write progranls which are very difficult for
anyone else to follow.

AND and OR are intended to be used in COND clauses. If you wanted to make sure that an argument
called ARG passed to a function was a FIX betv1een 6 and 10 inclusively:

PnOGRArvUJtll JG CON $TnUCT$ SECTION9.2

~!

I:

'I

1

~
~
II

'

I

...

I ~

THE MOL PRIMER

<COND (<AND <••7 <TYPE .ARG> FIX>
<G 0 7 .ARG 6>
<L•7 .ARG 10»

<what yov want to do>)
(ELSE <what you want to do otherwise>)>

73

If. instead. you wanted to "'~e sure the argument was a FIX outside that range:

<COND (<AND (••7 <TYPE .ARG> FIX>
<OR <G7 .ARG 10>

<L7 .ARG 6>>>
<what yov want to do>)

(ELSE <what you want to do otherwise>)>

9.3.2 . Embedded Unconditionals

One of the disadvantages of COND is that there is no straightforward way to do things
unconditionally in between tests. One way around this problem Is to insert a dummy clause that never
succeeds. because its only element is an AND that returns a FALSE for the test (this method is strongly

discouraged). Example:

<COND (<07 .N) (FO .N>)
(<17 .N> <Fl .N>)
(<AND <SET N <• Z <FIX <I .H 2>>>>

:"Round .N down to evan number."
<»)

(<LENGTH? .VEC .N> '[])
(T <REST .VEC (+ 1 .N>>)>

The preferred method Is to increase the nesting with a new CONO after the unconditional part. This
method does not make the code appear to a human reader as though it do.gs something other than
what it really does. The above example should be done this way:

<COND (<07 .N> <FO .N>)
(<17 .N> <Fl .N>)
(T
<SET N <• 2 <FIX (/ .N 2))))
<COND (<LENGTH? .VEC .N> '(])

(T <REST .VEC (+ 1 .N>>)>)>

S£CTl0f' 9 .3 FnOOnl\.Mt-.tlNG C::>NS rRt ICTS

74

9.4. Examples

The following program will print aH !he prime factors of a given number:

<DEFINE FACTOR (N)
<FACTOR- FROM .N a>>

<DEFINE FACTOR - FROM (N TEST-DIVISOR)

<COND (<G? <• .TEST-DIVISOR .TEST-DIVISOR> .N>
<CRLF>
.N)

THE MOL. PRIME.A

(<O? <MOO .N .TEST- DIVISOR>>
<PRINT .TEST-DI VISOR>
<FACTOR- FROM <I .N .TEST-DIVISOR>

.TEST-DIVISOR>)
(ELSE <FACTOR-FROM .N <+ .TEST-DIVISOR 1>>)>>

If you are not familiar with recursion you shouJd trace this by hand for a simple case lfke <FACTOR
12.>. The first CONO clause t·ests to see if the test divisor is greater than the square root of N. If it is, H
must be prime so a carriage-return/Hne-feed is printed (see chapter 12) and the value of N is re·turned.
The second clause checks whether N is divisible by TEST-DIVISOR and, ii it is, prints that TEST
DIVISOR and then recursively calls FACTOR - FROM with the quotient of N and TEST-DIVISOR and
with TEST-DIVISOR again. The third clause is executed if both the first :ind second return a FALSE.
In that case, FACTOR-FROM is called recursively with N and TEST-DIVISOR incremented by one.

tr you are confused about how this works, try typing it to a Muddle and experiment with tt. You
should be able to improve It (for Instance there is no reason to test even numbers after 2 has been
tested). Why does the program return only prime factors? Can you Improve the ptogram so that it
tests only with prime numbers?

One way to write a test for prime numbers would be:

<DEFINE PRIME? (X)

<••? . X <FACTOR .X>>>S

This would work, however you would probably want to write a new version of FACTOR for this which
didn't print anything. Would this test for prime numbers improve FACTOR-FROM? Why not?

It is hard to irnagine a program of any complexity without COND clauses. The following example is a
very small part or a fairly famous program called Zerk. (One of the Implementors of Zork has been
heard to say th'1t Zerk is a huge condition'11).

pr fOC:r ll\,..llv11Nti (;()f JSTRUCTS
!;PCTION 9A

l.

d
.,

'
"
I

11
I: ,,,

I

f
n-tE MOL. PRIMER

<DEFINE RUSTY-KNIFE-FUNCTION ()
(COND (<••? ,VERB TAKE>

<COND (<IN7 ,SWORD ,PLAYER)
· <PRINC

"As you pick up the rusty knife, your sword gives a single
pulse of blinding blue light.">

<CRLF>)>
<>)

(<OR <AND <•=? ,INDIRECT-OBJECT ,RUSTY-KNIFE>
<MEMO ,VERB '[ATTACK KILL]>>

<AND <MEMO ,VERB '[SWING THROW] >
<••? ,DIRECT-OBJECT ,RUSTY- KNIFE>
.INDIRECT- OBJECT>>

<REMOVE ,RUSTY-KNIFE>
(JIGS-UP

"As the knife approaches 1ts victim, your m1nd 1s submerged by
an overmastering will. Slowly, your hand turns, unt11 the
rusty blade 1s an inch from your neck. The kn1fe seems to sing
as it. savagely sl 1t.s your throat . ">)>>

75

This function Is called whenever "the rusty knife" Is referred to in any way. This function che-cks
whether the verb is "take" and the player has the "sword." If so the first message is printed and
#FALSE () Is returned. If the verb was not "take", it checks whether s:ll!lfil the lndirecl object Is
"rusty knife .. Sl!lQ. the verb is "attack" or "kill'' . 2! the verb 1s ''swing" or "throw" S!ld. the direct object
is "rusty knife" il!'..1Q_ there is an indirect object. If so, tho "rusty knife" is removed from the game. an

interesting message is printed, and the player dies.

!>EC T l ON 9 .4 PROC.:.1..\AMl.411 H~ CC)N~Tn\J(;TS

76
TkE MOL PRIMER

LOOPING
SIZCTION 10.0

THE MOL PRIMEA 77

10. Looping

One of MDL •s strongest points is its variety of powerful looping constructs. These will be covered
in this chapter.

10.1. PROG

PROG makes it possible to encapsulate sections of MDL code. A PROG is very much like a
FUNCTION in syntax. It takes a LIST which is similar in some respects to an argument list, and an
arbitrary number of MDL objects which are EVALuated in turn. It returns the result of the EVALuation
of the last object in its body. Here is a prosaic PROG:

<PROG () <SETG A <>> <SETG B <>> <INITIALIZE>>

Notice that each of the three FOR Ms in the PROG could have been done without using a PROG. PROGs,
however. are a bit more useful than this would indicate.

First, the LIST can contain any number of

• ATOMs

• LIS Ts containing an ATOM and an arbitrary Initial value for that ATOM.

All of these ATOMs will be re-bound inside the PROG (i.e. as ii a new FUNCTION were entered.) When
the PROG returns, the ATOMs will be unbound (i.e. re·bound to their old values, II any.) Thus, a PROG
can be thought of as a min•· FUNCTION ot no arguments.

<PROG (AB (C 10) (D .FOO)) •••• >

In this example, four new bindings are made. The ATOMs A and Bare bound, but not assigned a value.
The ATOM c is bound to 10 and the ATOM D is bound 10 the current LVAL of the ATOM FOO. ATOMs
should be placed in this 'argument' LIST when they are used as temporary variables Inside Iha PROG.
A full explanation of the use of temporary variables is in section 11 .5.

More lniportan tly. a PROG can be restarted or caused to return fron1 the middle any tln1c usiog the
SUORs /\GAIN and RETURN. At this point , It is sulliclcnt to say lhnt l\GAIH with no argumen t!; starts

SECTION 10 0 LOOPINO

78
THE MOL PRIMER

executing the bOdy of the PROG from the beginning (but bindings are not redone). RETURN of one
argument forces the PROG to return that argument. Notice that AGAIN and RETURN as described will
always refer to the nearesrsurrounding PROG In the current FUNCTION.

PROG turns out to be fairly useless in MDL, but the FSUBR REPEAT. which ls very similar, Is
enormously useful.

10.2. REPEAT

REPEAT has lhe same syntax as PROG and may be thought of as a PROG in which the last item in the
body is <AGAIN>. In other words, the body of the REPEAT will be repeatedly executed until a RETURN
is done. There is no other way to leave a REPEAT e~cept with a RETURN.

<REPEAT ((CNT 5))
#DECL ((CNT) FIX)

<COND (<L? <SET CNT < - .CNT 1>> O> <RETURN T>)
(T <PRINT .CNT>)>>S

4
3
2
1
0 T

10.3. Non-local.RETURNs, etc.

There are cases in which one might like to RETURN or AGAIN to someplace other than the nearest
PROG or REPEAT, or for that matter someplace in a different FUNCTION. MDL allows you to 'name' any
PROG, REPEAT, or FUNCTION by placing the STRING "NAME" followed by an ATOM at the and of an
arg ument list or PROG/REPEAT list. This has the effect of binding that ATOM to an object of TYPE
ACTIVATION which becomes a legal additional argument to both AGAIN and RETURN. Thus. AGAIN
ca n take an optional ACTIVATION, and RETURN fakes a return value and an optional ACTIVATION.

Tha most common use of RETURN/AGAINs to 'named activations• ls in error handling. Assume that
you have a FUtlCTION FOO which calls a FUNCTION BAR which calls a FUNCTION BLETCH which
notices something wrong. BLETCH might want to cause fUflCTION FOO lo return a FALSE, for
ex:.mple, or print an error message. This is only possible if the FUNCTION FOO is defined to have a
'named activation', whose 'name' is known lo FUllCTION BLETCH.

LOOl>ING
stCTJON 10.1

-

THE MOL PRIMER 79

<DEFINE FOO (A)
<COND (<PROG (" NAME" ACT) <BAR .A>>

<PRINT .A> T)
(T <PRINT " ERROR IN YOUR PROGRAM"> T) >>S

FOO
<DEFINE BAR (X)

<BLETCH <• .X .X>>>S
BAR
<DEFINE BLETCH (Z)

<COND (<G7 .Z 10> <RETURN
(T <SQRT • Z>)>>S

BL ETCH
< FOO 2>S
2 T
< FOO 4>S
" ERROR IN YOUR PROGRAM" T

10.4. MAPF

#FALSE () .ACT>)

1 0 .4.1. L ooping Through a Structure

MAPF (pronounc ed 'map·etf' for 'map-first') Is mainly used to apply a funcfiort to each element o f a
structure, i n turn. In t h is m ost simple f o rm. its first argu1nent is a FALSE. its second argument a loop ·
function, and its third argument a structure. Here ls-a simple MAPF:

<MAPF <>

1
z
3
4 4

<FUNCTION (X)
<PRINT . X>>

(1 2 3 4)>S

The lasl 4 is the resu lt of the MAP F (the result of the last applicat ion of the loop-luncUon to an elemen t
of the structure.

An FSUOR called FUNCTION is used in many p laces in this chapter. FUNCTION Is very much like
DEFINE. except that no name is specified. FUtlCTIONs created with FUNCT ION are said to be
·anonymous' . T hey cannot be used outside the FORM in which they nrc imbeddi'!!'d, slnc:e they have no
name by which the y can be rotert.tncccl. Of c o ur-se. If tho loop tu11ction you \vich to use had already
beo 11 DEF It< Ed. you would relcr to 11 rn u MAPF as the ulobal value of Its name.

SECTION 10,3 L0c:)l •ING

80

<DEFINE FOO (A B) <+ .A . B>>S
FOO
,FOO$
II' FUNCTION ((A B) <+· .A • B>)
<FUNCTION (A B) <+ .A .B>>S
#FUNCTION ((A B) <+ .A .B>)

THE MDL PRIM ER

A MAPF can be prematurely stopped at any time ii the loop·functlon calls the SUBR MAPLEAVE.
MAPLE AVE takes one argument: it stops the MAPF and causes the MAPF to return its argument.

<DEFINE BAR (L)
<MAPF <>

<FUNCTION (X)

<COND (<G7 .X 10> <MAPLEAVE FOO>)
(T <PRINT .X>)>>

.L>>S
BAR

<BAR (1 Z 3 4)>$
1
z
3
4 4

<BAR (1 Z 16 7 6 Z)>S
1
2 FOO

10.4.2. Other Than One Structure

One can simultaneously loop through any number of structvres using MAPF. MAPF wlll apply the
loop~tunction to the first elements of each of the sttucturtJs. The MAPF will stop when any of the
structures becomes EMPTY?.

LOOPING

<NAPF <>

6
12
18
24 24

<FUNCTION (A B C)
(PRINT <+ .A .B .C>>>

(1 3 6 7)
(2 4 6 8)
(3 6 7 9)>$

SC:.CT ION f0.4

,...

•

I
~

J

THE MOL. PRIMER

<NAPF. <>

8 8

(FUNCT-ION (A B C)
(PRINT (+ .A .B .C>>>

(1 3 6)
(2 4 8)
(3)>$

81

'Other Than One• also include,s zero. but this is a special case. A MAPF wlth only two arguments is
something like a REPEAT loop. It can only be terminated by an explicit call to MAPLEAVE. See section
10.5. If any of the slructures is empty to begin with, MAPF returns #FALSE () .

10.4.3. Usi ng Intermediate Results

By now you must bo wondering why there is a FALSE as the first argument to MAPF. In ract, a
FALSE t e lls MDL not to do anylhing with the results of applying the toop·funcrion to the elements of
the structure. However, if the first argument to MAPF ls something which can be applied to arguments
(I.e. a FUNCTION or SUBR), then MDL will 'save' the results of applying the loop·functlon and. when
the looping Is finished, apply the first argument (called the flna/.func tion) to all of the 'saved' results.

An example:

<MAPF ,LIST
<FUNCTION (X Y)

<+ .x <SORT .Y»>
(1 z 3)
(1 4 11)>$

(Z 4 8)

<MAPF ,+
<FUNCTION (X Y)

<+ .x <SQRT .Y»>
(1 z 3)
(1 4 11)>$

12

In the first case. we built a LIST out of the results of the loop-function. In the second, we simply

added up all of the results.

10.4.4. MAPRET and MAPSTOP

There are cases In which· you might want to have an arbitrary number' of re~ults 'saved' . This can
be done with th e SUCR MAPHET whic:h takes ""Y numb'lr o f ary11rne111s 1i11clud1nu zero), causns the

SEC TION IOA LOOr'UIO

82
THE 1"401.. P~IMER

function to terminate. and •saves' all of its arguments.

<DEFINE PRIME-LIST (L)
<MAPF ,LIST

<FUNCTION (NUN)
<COHO (<PRINE? .NUN> .NUN)

(T <MAPRET>)>>
.L>>S

PRIME-LIST
<PRIME-LIST (2 4 11 66 73))$
(2 11 73)

What happened here was that only prime numbers were allowed to be 'saved'. Whenever PRIME?
returned FALSE, a MAPRET of no arguments was done; thus, no vaJues were 'saved' for this calf to the
loop.function. MAPRET, of course, will not work if there Is no lina/.function to return results to.

Assuming the function PRIME? described in chapter 9 has been written:

<DEFINE PRIME- ANO- SQUARES-LIST (L)
<MAPF ,LIST

<FUNCTION (NUN)
<COND (<PRIME? .NUM> <MAPRET .NUM <• .NUN .NUN>>)

(T <NAPRET>)>>
.L>>S

PRIME-AND-SQUARES-LIST
<PRIME-AND- SQUARES- LIST (2 4 11 66)>$
(2 4 11 121)

A more useful function:

l.O<)P'ING

<DEFINE UPPERCASIFY-1 (STR)
<MAPF ,STRING

<FUNCTIOPI (CHAR)
<SET ASC <ASCII .CHAR>>
<COHO (<AND <G•7 .ASC <ASCII 1\a>>

<L•7 .ASC <ASCII 1\z>>>
<MAPRET <ASCII <- .ASC 32>>>)

(ELSE <NAPRET .CHAR>)>>

UPPERCASIFY
.STR»S

<SET Z-STR "Now 1s the t1me tor all good men to <FOO .BAR>"> (UPPERCASIFY .Z-STR>S
"NOW IS THE TINE FOR ALL
.Z-STR$

GOOD MEN TO <FOO .BAR>"
"Now 1s the t1me for ell good n1en to <FOO .BAR>"

SECTION 10,4

THE MOL PAIME:A 83

The SUBR NAPSTOP Is the same as MAPRET. except that, after ·saving• Its arguments. it linishes the
MAPF. allowing the final -funct ion to be applied to all of the ·saved' results. Like MAPRET. MAPS TOP can
only be used if thete is a linaf.funcrion.

10.4.5. MAPA

The SUBR MAPR (for 'map-rest,' pronounced 'map ·ar ') is exactly 1ike MAPF in every respect exc,ept
that the arguments passed to the toop-fvnclion, rather than being successive e lements of the
structures, are the structvres themselves RESTed down successively. The names for the tv10 map
SUBRs are mnemonic: MAP First and MAPRest.

(MAPR <>
<FUNCTION (X)

<PRINT .X>>
(1 2 3 4)>$

(1 2 3 4)
(2 3 4)
(3 4)
(4) (4)

MAPR Is useful if it is necessary to change elements of the structvre($) that you are nlapping down.
Here Is a FUNCTION which takes a structure full of numbers and changes It to contain double the old
values:

<DEFINE DOUBLE (STR)
<MAPR <>

<FUNCTION (S)
<PUT .S 1 {* <1 .S> 2>>>

.STR»S
DOUBLE
<SET L (1 2 3)>$
(1 2 3)
<DOUBLE . l.>S
(B)
• I.$
(2 4 8)

In UPPERCASIFY-1 a MAPF was used which generated a new structure. Using MAPR. a new
function can be written which modifies the origlnal string:

SECTION 10 .1 LOOl>tNG

84

<DEFINE UPPERCASIFY-2 (STR)
<MAPR 0

<FUNCTION (STR1)
°<SET ASC <ASCII <1 .STR1»>
<COND (<AND <G•? .ASC <ASCII l\a>>

<L•? .ASC <ASCII l\z>>>

THE MOL PRIME.A

.STR>
<PUT .STRl 1 <ASCII <- .ASC 32>>>)>>

.STR>S
UPPERCASIFY-2
<UPPERCASIFY-2 <SET STR "Now 1s the t1me for <BAR .BLETCH>">>S
"NOW IS THE TIME FOR <BAR .BLETCH>"
.STRS
"NOW IS THE TIME FOR <BAR .BLETCH>"

MAPR is not always used to change an e.xlsting structure. The following example shows another
use. This function marches down a structure and builds a new structure of the same type in which
the elements of the first structure appear only once.

<DEFINE UNIQUIFY (STRUC)

UNIQUIFY

<COND (<NOT <STRUCTURED? .STRUC>>
#FALSE ("WRONG TYPE OF ARGUMENT"))

(ELSE
<CHTYPE

<NAPR ,(PRINTYPE .STRUC>
<FUNCTION (S)

<COND (<MEMQ <1 .S> <REST .S>>
<MAPRET>)

.STRUC>
<TYPE .STRUC>>)>>S

(ELSE <MAPRET <1 .S>>)>>

<UNIQUIFY #FROB (1 2 33 2 1 6)>S
ll'FROB (33 2 1 6)

ff you wished to be able to remove elements which "look the same,•• such as structures which are •?
(like (l 2 3) and (l 2 3), or "FROTZ • and • FROTZ "). you would have to replace the MEMQ wilh
MEMBER, which Is slower.

10.4.6. MAPF/R Summary

The syntax for MAPF/R Is as follows:

LOOPING S<!CTION 10.•

ntE MOL PRlMER

(MAPF /R llnsl·function
loop-function
structure-1

structure·rr>

with only the first two arguments required.

10.5. Looping vs. Recurs ion

85

In the previous cha.pter. the .. standard recursive factorial" v1as shown. It can now be rewritten
using the looping constructs introduced Jn this chapter.

<DEFINE FACT (N)
<REPEAT ((ANS 1))

<COND (<07 .N> <RETURN .ANS>)
(ELSE <SET ANS <• .ANS .N>>

<SET N <- .N 1>>)>>>

Some might argue that this is a larger and more complicated program to write than the recursive form,
and therefore inferior. The iterative form just shown, however, Is faster and more efficienL

The same program can also be written using MAP F.

<DEFINE FACT (N)
<SET ANS 1>
<MAPF <>

<FUNCTION ()

Or. more elegantly:

<DEFINE FACT (N)
<MAPF •

<COND (<O? .N> <MAPLEAVE .ANS>)
(ELSE <SET ANS <• .ANS . N>>

<SET N <- .N 1>>)>>>>

<FUNCTION ()
<COND (<O? .N> <MAPSTOP>)

(ELSE <+ 1 <SET N <- .N 1>>>)>>>>
:"<FACTO> w111 return 1 since •of no arguments

returns 1."

SE.l!TION 10.•

86

THE MOL PRIMER

As pointed out earlier, a MAPF does not have to take any structures as arguments as long as the
second argument. the looping function. does not take any arguments.

Although recursion can be a very s1mple and elegant way to solve a problem, i teration is often more
efficient. Take, tor example, the factorial example of chapter 9. II you only intend to us<> the function
with very sm all numbers the recursive form will not cost much to use and does have the advantage of
being s llghUy easier to write. However, since every recursive call of a function requires the creation
of a new 'environment.' calculating factorial of a large number will take a lot of lime and computer
memory. The iterative forms of factorial shown above woukf be much more efficient.

In summary, the advantage of the looping techniques described in this chapter over recursion is
that the overhead of calls is eliminated. However, a long program (say, bigger than half a printed
page) may be more difficult to write iteratively than recursively and hence more difficult to malntnln. A
program whose repetition is controlled by a structured object (for example, "walking a tree" to visit
each monad In the object) often should use looping for covering one "level" of the structure and recursion to change ''levels''.

lOOPINO
SE'CTJON 10,5

I
l

1'H:E MOL PAlME.R 87

11. A.rgument Lists in FUNCTIONs

In Chapter 6, the creation of a slmple type of FUNCTION was explained: a FUNCTION taklng a fixed
number ol arguments all of which get EVALed. While this may be sufficient for writing most of your
fUNCTIONs, there are other ways in which you might like arguments to be handled. So1ne of these
might Include:

- FUNCTIONS which can take an arbitrary number of arguments (like the SUBRs + , - , LIST,
VECTOR, etc.)

- FUNCTIONS which act more like FSUBRs (I.e. they don't have their arguments EVALed.)

- FUNCTIONS which can take optional arguments, which can be defaulted.

In fact, all of these things (and a few more) can be done easily by specifying them In the argument list
of the FUNCTION. The remainder of this chapter w ill describe the complete syntax for MDL argument
lists.

11.1. Arguments Not EVA Led

Placing a single-quote before an ATOM in the argument list will cause that ATOM to be given the
value of Its l'espective argument without EVALuation.

<DEFINE FOO ('ITEM) .ITEM>$
FOO
<FOO <+ 1 Z>>S
(+ 1 2>

Were the ATOM ITEM not quoted In the argument list, the FUNCTION would have returned the FIX 3.
Quoting arguments. as it turns out, is not used often In MDL.

$C:.CTION 11 .0 Anl.t.lfl.ICNT L I~ I $ IN FUNCTIONS

88 THE MOL PAIMER

11 .2. Optional Arguments

MDL. can be told to expect opt\onal arguments by placing the STRUlG "OPTIONAL." in the
argument list after all of the required arguments. Following the STRING can be any number of ATOMs,
which will be bound to the values of the optional arguments, if given. To specify that an optional
argument is to have a default value (Le. if not passed as an argument), place a LIST cont.ainfng the
ATOM and the default value In place of just the ATOM. Here's an example:

<DEFINE ADD-ONE (NUM "OPTIONAL." (HOW-MANY 1))
<+ .NUM .HOW-MANY>>$

ADD-ONE
<ADD-ONE 10>$
11
<ADD- ONE 10 Z>$
1Z

This rather useless FUNCTION adds the LVAL of HOW-MANY to its first argument. HOW-MANY is an
optional argument, whose default value is the FIX 1. Therefore, with one argument, ADD-ONE adds
one to Its argument. With two arguments. it adds them.

As was mentioned earlier. it isn't necessary to supply a default value for an optional argument. If
there is no default value, and the optional argument is not supplied , the ATOM gets bound, but is not
assigned a value. LVAL of that ATOM will generate an errot, because en ATOM must be both bound
and assigned to have a local value. One can tell whether an ATOM has been a.:5slgned a value by using
the SUBR ASSIGNED?, which returns T if its argument (an ATOM) is assigned; otherwise #FALSE ().
The following definition of ADD-ONE acts. Identically to the previous one:

<DEFINE ADD-ONE (NUN "OPTIONAL" HOW-MANY)
<COND (<NOT <ASSIGNED? HOW-MANY>>

<SET HOW-MANY t>)>
<+ .NUM .HOW-MANY>>S

ADD-ONE

The use of single-quoted ATOMs is allowed with optional arguments as well as reQuired ones. You
may supply your own example, if you can think of one. We can't.

11.3. Arbitrary Numbers of EVALed Arguments

At any place in the argument list, after any required and optional (if any) argument:;, you can
specify that all of lhe remaining arguments (supplied at tne time of call) be EVALed and grouped
toge ther in a special structure called a TUPLE (for all prncticat purposes. TUPLES n1a y be thought of
as VECTORs. and can be mnnipulated in the same ways). To do lhis, place the STRING
"TUPLE" follow' '(! by an ATOM in tne argument !Isl. Tl1e ATOI~ will be bounl.l to the TUPLE. Mere are

A l (GUf, ff NT lltiTS IN FUNC rtO NS 5EC::TION 11 .2

THE MDI... PRIMER

some examples:

<DEFINE MY+ ("TUPLE" NUMBERS)<+ I.NUMBERS>>$
MY+
<MY+ 1 2 3 4 6 6>$
21
<MY+>S
0

<DEFINE MY-STRING ("TUPLE" STRINGS) <STRING I.STRINGS>>$
MY-STRING
<MY-STRING "THIS" "IS" "A" "6IG" "STRING" 1\1>$
"THISISABIGSTRINGI"

<DEFINE TIMES-PLUS (NUM "TUPLE" NUMBERS)
<• .NUM <+ I.NUMBERS>>>$

TIMES-PLUS
<TIMES-PLUS 4 1 2 3>$
24

11.4. Arbitrary Numbers of un-EVALed Arguments

89

Instead ol using "TUPLE", one could have used the STRING "ARGS". This has the effect or
binding the following ATOM to a LIST of all of the remain ing arguments. un EVALuared . In fa<:I. the
ATOM is bound to the LIST which is the FORM used to c all the FUNCTION RESTed down to the
remaining arguments. The use of "ARGS" allows one to write FSUBRs ln MDL.

<DEFINE FOO ("ARGS" L) .L>S
FOO
<SET F '<FOO 1 2 3>>S
<FOO 1 2 3>
<SET LL <EVAL . F>>S
(1 2 3)
<••? .LL <REST .F 1>>$
T

In the previous example, we explicitly called the SUBR EVAL. which caused EVALuation of the FORM
<FOO 1 2 3). This returned the LIST (1 2 3) , which is • •? to <REST • F 1>.

Now we will write n FUNCTION to sirnuln te the FSUBR DEFINE in MDL: this Is jusl what MDL does
internally when the FSIJBR DEFINE is called.

SLCT!t.)N 11 3 /\RGUMl:.NT l lSl S lf l FUtJC!l IONS

90

<DEFINE MY-DEFINE (NAM "ARGS" L)
~SETG .NAM <CHTYPE .L FUNCTION>>
.NAM>$

MY-DEFINE
<NY-OEFINE FOO (A B C) (+ .A .B .C>>S
FOO
,FOOS
#FUNCTION ((A B C) <+ .A .B .C>)
<FOO 1 2 3>$
6

Now that we have simulated DEFINE, let's try our hand at AND.

<DEFINE MY-ANO {"ARGS" L)
<REPEAT ((LAST T))

MY-AND

{CONO (<EMPTY? .L> <RETURN .LAST>)
(<NOT <SET LAST <EVAL <1 .L>>>>

<RETURN • LAST>)
(T <SET L <REST .L>>)>>>$

THE MDI,. PRIMER

This will exactly simulate the behavior or ANO. The REPEAT loop initializes the ATOM LAST to T,
because ANO of no arguments is defined to return T. The loop itsetr first checks on whether the LIST
L has become EMPTY?. II so. the ANO was successlul, and LAST is returned. Otherwise, LAST Is SET
to EVAL of <1 • L>. II that is a FALSE, it Is returned. Otherwise.Lis RESTed once and the loop is
repeated.

As an exercise, write OR and COND. It ls legitimate to use CONO in your CONO simulator, but if you
call your simulator CONO, watch out.

11.5. Temporary Variables

You may recall that chapter 6 referred to '"free variables .. as those variables (ATOMs) whose local
values are SET or accessed inside a FUNCTION. but v1hich are not bound inside that function. One
should alwayS avoid using "free varlab1es" In MDL programs, but there is often a need for variables
whose values wifl contain tetnporary results. You can specify such vadables to be bound Inside a
FUNCTION by including the "AUX" (for auxilinry) followed by any number ol ATOMs or LISTs of ATOMs
and values (like "OPTIONAL• arguments) at the end or the argument list.

AnGUMF..NT l1$'TS .,, r t JNCTfONS
SF.:CtlON 11.4

I·

THE MOL PRtMER 91

<DEFINE SUM ("TUPLE" NUMS "AUX" (SUM 0))
<REPEAT ()

CCOND (<EMPTY? .NUMS> <RETURN .SUM>)
(T .

<SET SUM C+ .SUM <1 .NUMS>>>
<SET NUMS CREST .NUMS>>)>>>S

SUM
CSUM 1 2 3 4)$
10

The FUNCTION SUM, In this e><ample. simulates the SUBR +. The ATOM SUM is initialized 10 zero in
the argument list. The following is identical In effect, although poor in style:

<DEFINE SUM ("TUPLE" NUMS "AUX" SUM)
<SET SUM O>
<REPEAT ••• »

It should be noted that the part of the argument list which follows "EXTRA" or "AUX" is identicaJ in
syntax and meaning to the 'argument list' which is the first argument to PROG and REPEAT.

11.6. Order of Evaluation in Argument Lists

Unlike many other languages, including LISP. ATOMic bindings alter the required arguments are
done from feft to right, rather than simultaneously. This means that, for exarnple, the default values
for optional arguments and extra variables can refer to the values of other ATOMs to their 1ef1 In the
argument list.

<DEFINE FOO (A "OPTIONAL" (8 C+ .A 10>) "AUX" (C CFOOBAR .B>))
••.. >

The previous example shows an example of what is possible in argument lists due to MDL ·s order of
evaluation.

11. 7. Variable Deel a rations

MDL has a built-in facilily for checking lhe TYPEs of argurnenls to FUNCTIONs a• well as olher
t&mporary variable:;. This is analogous to the chccl<ing which ls don e when F /SUBHs are cnlled; if
you caft the SUDR +with an ATOM. for ex.ample, MOL v1ill genera.to an erro r. In tv1DL, v3.riablcs can be
declnred to be of a certahl TYPE or group of TYPEc. This i:; done by pl:tcing an "b)Gf~t o f TYPE
DECL (Pllil!TYPE LIST) immedla1ely a lter the FUHCTIOll's nr9umen1 l:s t. It mny Jlso follow lhe

$1:CTION 11 }5 Anour..ttJJT Ll!TS IN ruNCTIONS

92 THE MOL PRIMER

argument list of a PROG or REPEAT and declare the variables bound within. The DECL (for
"declaration," pronounced 'deckle') has the form of repeating pairs of LISTs of ATOMS (the ATOMs to
be declared) and the declaration proper. The simplest TYPE declaration Is the name of a TYPE or the
ATOM ANY.

#DECL ((FOO BAR) FIX (BLETCH) ATOM (MUMBLE) ANY)

This declares the ATOMS FOO and BAR to be FIXes, the ATOM BLETCH to be an ATOM, and the ATOM
MUMBLE to be anything.

Another declaration form is the union of different TYPEs, which is specified by a FORM whose nrst
element is the ATOM OR and the remainder legal TYPE names.

#DECL ((NUM) <OR FIX FLOAT> (STRUC) <OR LIST VECTOR>)

Also useful is the form <PRIMTYPE namo-of.a-fRIMTYPE>, which specifies anything of that
PRIMTYPE. For example:

lfDECL ((PL) <PRIMTYPE LIST>)

will allow PL to be a LIST, a FORM, a SEGMENT, or any other PRIMTYPE LIST.

In fact. the full-blown MDL declaration syntax Is far moro baroque than has been described, but
these simple forms will suffice Jn almost all cases. For more information on DECL, consult The MDL.
Programming Langvage [Galley 79). Here are some examples of old friends, now including DEC Ls.

<DEFINE MY-AND ("ARGS" l)
#OECL ((L) LIST)
<REPEAT ((LAST T))

#DECL ((LAST) ANY)

MY-AND

AAGur.IENT LISTS IN FUNCTIONS

<COND (<EMPTY? .L> <RETURN .LAST>)
(<NOT <SET LAST <EVAL <1 .L>>>>

<RETURN .LAST>)
(T <SET L <REST .L>>)>>>S

SECTION 11 ,7

THE MOL PRIMEFt

<DEFINE ADD- ONE (NUM "OPTIONAL" (HOW-MANY 1))

ADD-ONE

#DECL ((NUM) <OR FIX FLOAT> (HOW-MANY) FIX)
<+ .NUM .HOW-MANY>>$

<ADD-ONE Z.3 1.Z>$

•ERROR•
TYPE-MISMATCH
HOW-MANY ;"The ATOM of incorrect TYPE"
FIX ;"The DECL for that ATOM"
1.Z :"What the ATOM was about to be SET to"
EVAL ;"EVAL1ng the FORM <ADD-ONE Z.3 1.Z> caused it"
LISTENING-AT- LEVEL Z PROCESS 1

93

Declarations have a number of purposes. First. they m~ke your code easier for someone else to
understand, as the sorts of arguments your FUNCTIONs take can be deduced from them. It will also
help you read your own code at a later time when you may have forgotten how it all works. Second, It
helps in debu991ng your programs, since an error will be caused if the declaration is violated. Finally,
when your FUNCTIONS eventually get compiled, much better code can be produced with the
information given by your declarations. Always DECL your FUNCTIONs!

11.8. Structures: DECLs and NEWTYPEs

Before closing our discussion of DEC Ls, one special type of declaration should be considered: that
of structvres. The syntax for this declatalion is:

<type-name <PAIMTYPE lypeprlm>
dectar.::ttlon-lor-lirst·elemerit
dectara1/on.for-second~e1eme11t

declaratlon 4 1or4 /ast 4 element>

For example, we could DECL a VECTOR of three elements as follows:

(VECTOR FIX LIST <VECTOR ATOM ATOM>>

This declares the VECTOR to have a FIX, a LIST. and a VECTOR which mvst cont.1in two ATOMS.
There may bo more elements in a strvctute than those OECLec:L Any additional elemen ts will be
considered to have lhe DECL ANY.

<<PRIMTYPE LIST> ATOM <OR FIX FLOAT>>

SECTION 11 .7 Anau r.11:NT LI~ TS IN r.'UNCno11s

94 THE MOL PAIMER

This declares a structure of PRIMTYPE LIST containing an ATOM and either a FIX or a FLOAT.

We originally described the SUBR NEWTYPE as taking two arguments: the new TYPE name and its
TYPEPRIM. Structured NEWTYPEs can take a third argument as well: a declaration, as described
above. Let's use the airline problem from our earHerdiscussion. We will define a FLIGHT as follows:

<NEWTYPE FUGHT

FLIGHT
<SETG AIRLINE 1)$
1

VECTOR
'<<PRIMTYPE VECTOR> ATOM FIX FIX>>$

<SETG FLIGHT-NUMBER Z>$
z
<SETG DURATION 3>$
3

Notice that the declaration of FLIGHT is quoted: this Is because it Is a FORM and NEWTYPE is a SUBR.

Now that FLIGHT is a legal TYPE, it can be used in declarations. ln fact, it is a lot easier to say

#OECL ((FL) FLIGHT)

than to say

#OECL ((FL) (VECTOR ATOM FIX FIX>)

especially when you add another ten elements to the definition of FL IGHTs. It is also a lot clearer for
both yourself and others to read.

11.8.1. To NEWTYPE or Not To NEWTYPE

That Is the question most frequently asked. Should I make my table of house members a NEWTYPE?
Should it just be a VECTOR? Sad to tell, there is no cut and dried answer. In general, whenever a
structure has a 'significant" amount of internal structure, or some readily understood 'outside world
meaning', it Is a good idea to make It a NEWTYPE. Most people would deem a structure to have
'significant' internal structure al the poinl when they type out the whole darn DECL fot the ninety·
fourth lime". Others think ahead.

Annt1;.ie.t:NT Ll$7S IN fUNCTIONS SE:CrtON 11.s -

THE MOL PAIMER 95

11 .9. Good Habits I Bad Habits

This chapter has some suggestions to.r good programming practice. You may ignore them at your
risk, but we have found that people learning MOL are always more successful If they develop good
habits ear~y on in their MDLing. Here are the good habits:

. Always use "AUX" to bind temporary variables ln your functions. Don't use "free
variables·• 1

. Always DECL your FUNCTIONS, PROGs, and REPEATs. Even if a variable can have any
value, It Is good practice to DECL It as such. so that it is clear that you haven't simply
forgotten.

11.10. Review of Argument List Syntax

Here is a full·blown, ultra-hairy. and incredibly strange argument Ii.st:

<DEFINE HAIR {A 'B "OPTIONAL" (C 10) D
"TUPLE" NUMS

HAIR

"AUX" (E <+ .A .B>)
(F <SQRT <I .E .C>>)

"NAME" FOO)
NDECL ((8 C E) FIX

(A E) <OR FIX FLOAT>
(F D) FLOAT
(NUMS) TUPLE
(FOO) ACTIVATION)

<COND (<NOT <ASSIGNED? D>>
<SET D <ATAN .B>>)>

<+ .A .B .C .D .E .F l.NUMS>>S

This poor excuse for a FUNCTION takes two required argurnents, the second of which Is
unEVALuated, two optional arguments, one of which defaults to 10, and any number of other
arguments, bunched together in a TUPLE called NUMS. Two temporary variables E and F afe also
used. both of which refer to the LVALs of other ATOMS to thei r left In the argumcmt list.

SECTIO N 11 9 ArtCilff\lLNT LIS:.lS IN ru1.ic tlONS

96 THE MDL PRIMER

tNPU T / OUTPUT SECTION 12.0

98 THE MOL PRIMER

12.2. Conversion 1/0 - Input

All of the following input Subroutine,.. when directed at a terminal, hang until S (ESC) is typed and
arrow normal use of rubout, f'O, 1'L and •I.

12.2.1. READ

<READ>

This returns the entire MOL object whose character representaUon is next in the input stream.
Succ&SSive <READ>s return successive objects. This is precisely the SUBR READ mentioned in
chapter 3 (page 1S).

12.2.2. READCHR

<READCHR>

("read character") returns the next CHARACTER in the Input stream. Successive <READCHR>s
return successive CHARACTERS.

12.2.2.1. NEXTCHR

<NEXTCHR>

("next character") returns the CHARACTER which REAOCHR will return the next time REAOCHR is
called (if REAOCHR is the ne><t input SUBR called. Multiple <NEXTCHR>s. with no input operations
between them, aJI return the same thing.

12.3. Conversion 1/0 ·Output

If an object to be output requires (or can tolerate) separators within it (for example, between the
elements in a structured object or after the TYPE name in "f!I notation ..). lhese conversion·output
SUBRs \viii use a carriage.return/line.feed separator to prevent overfJowing a line. Overflow is
detected In advance from elements of lhe CHANNEL in use.

INPUT/ OUTPUT SECTION 12.2

TI-IE MOL PRIMER 99

12.3.1. PRINT

<PRINT any>

This outputs, in order,

1. a carriage-return line· feed,

2. the character representation of EVAL of its argument (PRINT is a SUBR), and

3. a space

and then returns EVAL of Its argument. This is precisely the SUBR PRINT mentioned In chapter 3
(page 15).

12.3.2. PRIN1

<PRIN1 any>

outputs Just the character representation of, and returns, EVAL of any.

12.3.3. PRINC

<PRINC any>

("print characters") acts exactly like PRIN1, except that

1. if its argument is a STRING or a CHARACTER. it suppresses the surrounding "s or lnitlaJ I\
respectively; or,

2. if its argument is an ATOM, it suppresses any \s or OBL IST trailers which would otherwise
be necessary.

If PRINC's argument is a structure containing STRINGS, CHARACTERs, or ATOMs, the services
mentioned will be done for all of them. Ditto for the ATOM used to name the TYPE In " #notation" .

12.3.4. CRLF

<CRLF>

SECTION 12.3 INF'UT /OUTf'U'T

100 THE MOL PRIMER

(.. carriage-return line-feed·') outputs a carriage-teturn line-feed and then returns T.

12.4. CHANNEL (the TYPE)

MDL 1/0 'channels' are represented by an object of TYPE CHANNEL, which is of PRIMTYPE
VECTOR . The internal structure of a CHANNELS Is not frequently examined or manipulated. Those
interested can consult the MDL manual for details.

12.4.1. OPEN

The SUBR OPEN is used to create and retu rn a CHANNEL. II lakes two arguments, a mode and a
file -name, both of which must be STRINGs. If successful, OPEN returns a CHANNEL: otherwise, it
returns a FALSE containing the reason for the failure and tha Ille-name (both STRINGS.)

There are two commonly used modes: "READ" and "PRINT". These are used, reasonably enough,
for input and output. respectively. These modes Input and output ASCII characters (i.e. conversion
1/0).

File names are dependent on the host operating system. The following applies only to TOPS-20
systems. File names are composed of four parts: the device. the directory, a rirst file name, and a
second file name. A typical file name might be:

"OSK:<MARC>CALCULATOR.MUO•

MDL will use certain defaults for these lour parts, ii !hey are not SPecifled explicitly. These are OSK,
your working directory. INPUT. and MUD, respectively. These defaults can be overridden by SETGing
Iha ATOMS DEV. SNM. NM1, and NM2 IO the defaults you desire. These defaults must be STRINGS. For
some devices. som~ of the four parts of the file name are ignored, for example the line printer and the
terminal (called TPL and TTY).

Hera are some examples of the uses of OP EN:

<OPEN "PRINT" "TPL: ">opens an output channello the llne printer.

<OPEN "PRINT" "<MARC>FOO"> opens an output channel to a disl< file called FOO.MUD.
Remember that the default device is OSK (I.e. the disk) and the default second file name is MUD.

<OPEN "READ" "FOO. TEST"> opens an Input channel to a disk file called FOO. TEST in !he
default file directory (i.e . MARC).

It is good practice to give all of your MOL files a second name of MUD. This allows you to make use
o f the MOL defaul t second file nam.., and also makes i i easier for both you and nlllers to lind files of

INl"tUT / OUTPUT SECTION 12.3

THE MDL PRIMER 101

MDL code. In general, files containing only text should be given the second file name TXT.

12.4.2. FILE-EXISTS?

FILE-EXISTS? tests for. the existence of a file without creating a CHANNEL, which occupies about
a hundred machine words of storage. It takes a file· name argument (like OPEN) and returns either T or
a FALSE containing the reason (a STRING).

12.4.3. CLOSE

CLOSE, given a CHANNEL, closes that CHANNEL. An error will occur If any Input or output Is directed
to a CLOS Ed CHANNEL.

It is possible to tell whether a CHANNEL Is currently 'open' or has been Cl.OSEd by looking at the
first element of the CHANNEL itself. This will always be a FIX, and ls the 'channel number' assigned by
the operating system. A 'channel number' of zero indicates a CLOS Ed CHANNEL.

12.4.4. CHANLIST

<CHAN LIST>

returns a LIST whose elements are all the currently open CHANNELs.

12.4.5. INCHAN and OUTCHAN

The channel used by default for input SUBRs is the local value of the ATOM INCHAN. The channel
used by default for output SUB Rs Is the local value of the ATOM OUT CHAN.

You can direct 1/0 to a CHANNEL by SETting INCHAN or OUTCHAN (remembering their old values
somewhere), or by giving the SUBR you wish to use an argument of TYPE CHANNEL. (These actually
have the same effect, because READ binds INCHAN to an explicit argument, and PRINT binds
OUTCHAN similarly.

By the way. a good trick for playing with INCHAN and OUTCHAN within a function is to use the ATOMs
INCHAN and OUTCHAN as "AUX" variables. re·binding their local values to the CHANNEL you want.
When you leave. of course. the old LVALs are restored (which is the whole point).

INCHAtl and OUTCHAN also have global values. initially the CHANNELS directed at the terminal
running MDL. Initially. ttlCflAN's and OUTCHAN's local ond global valuon are the san1e. Whenever an
error occ urs in MOL, the local values of l IJCllAN anct Olll CllMl are rebound lo the global values of lhe

SECTION 12 4 INPUT IOUT~UT

102 THE hl\OL PRIMER

same ATOMs. Unless you live dangerously and change the global values of these ATOMS, this will have
the effect of redirecting input and output to your terminal, where you are free to go about debugging.

12.5. End-of-File "Routine "

As mentioned above. an explicit CHANNEL is the first optional argument of all SUBRs used for
conversion 1/0. The second optional arg,1ment for conversion ·l.l:u2u.l SUB Rs is an "end-of-file routine"
-- that Is. something for the Input SUBR to EVAL and return, if it reaches the end of the file It Is reacHng.
A typical end·of.flle argument is a QUOTEd FORM which applies a function of yours. The value of this
argument used by default is a call to ERROR. Note: the CHANNEL has been CLOSEd by the lime this
argument is evaluated.

End·Of-file routines are not used with terminal Input!

The following FUNCTION counts the occurrences of a character in a file, according to its
arguments.

<OEFINE CHAR-COUNT (CHAR FILE "EXTRA" CHN)
#OECL ((CHAR) CHARACTER (FILE) STRING

(CHN) <OR FALSE CHANNEL>)
<COND (<SET CHN <OPEN "READ" • FILE>>

<REPEAT ((CNT 0))
#DECL ((CNT) FIX)
<COND (<••? <READCHR .CHN '<RETURN .CNT>>

.CHAR>
<SET CNT <+ .CNT t>>)>>)>>

Ttie idea here Is that the FORM <RETURN . CNT> will be EVALuated when the end-of-file is reached.
Had READCHR been given only one argument, ERROR. would have been called when end-of-Ille
occurred. Also notice that the only way for this REPEAT to terminate is from within the call to
READCHR.

12.6. Additional 1/0 SUBRs

There are a few other extremely useful 1/0 routines which should be mentioned here.

lNPU r / OUTPUT SCCTtOI" 12.<4

THE MOL PRIMER 103

12.6.1. READSTRING

READSTRING provides a me<:hanism of reading characters into a STRING unlll a specified condition
is met. This condition may be one of two types! ·

1. A specified number of characters has been read.

2. One of a specified set' of characters has been read.

READSTRING takes a STRING which will be filled with CHARACTERS read from Its second argument. a
CHANNEL. An optional third argument specifies the condition on which the REl\DSTRING will
terminate. If the argument is a FIX. FIX CHARACTERS will be read from CHAtJNEL. If Lhe argument is a
STRING, CHAAACTERs will be read until one is a MEMBER of the that STRING (MEMO really). In ei ther
case READSTRING will terminate when the STRING (i.e. the first argument) Is filled , should this occur
prior to the meeting of the 'stop condition', or if the end·of·file Is reached. If there is no third
argument, these latter two conditions are the only ways Jn \Vhich REAOSTRING will terminate.

READSTRING returns the number of CHARACTERs read at the time of its termination. Here's how to
interpret the return from READSTRING (it really Isn't all that complicated. but it's hard lo explain):

• Jf there was no third argument, the return will either be the length of the STRING or a
smaller number. It a smaller number. the end·of.file was reached and that smaller
number is the number of CHARACTERS read before end· of.file was reached .

• If lhe third argument was a FIX and the return was less than that FIX, then end-of-file
was reached.

• If the third argument was a STRING. the return was the number of CHARACTERS read
before the termination CHARACTER was seen. It is very important to realize that the
rermination CHARACTER is not read. In other words, it will not be in the STRt~JG, and the
next time you try to input from CHANNEL, that termination CHARACTER will be lying in wait.
Not taking this into account is the cause of many an error for novice MDLers ..

If the terminating event was end·of·file and another READSTRING is performed, the end·of.file routine
will be EVALed. As with the other non·terminal-directed 1/0 Input routines, the default end·Of·lile
roullne Is a call to ERROR.

This must seem very confusing , but many of your programs will reQuire reading from the torminal
and READSTRING is by far the best way to do this in MDL. One of the reasons for this Is thal
READSTRING will allow the person inpulling to your program to edit his input by m eans of the rubout
key and the like. This facility Is very hard to simulate if you are reading one CHARACTER at a lime (e.g .
with READCHR).

A very important warning regarding READSTRING: MDL. you will recall, only starts processing
terminal input aftet an escape is typed. This is true also ror calls to READSTRING. This means that
you cannot expect to gel a line of input lrom a user by doing a REAOSTRING v.tlth a 'stop condition' of
a carriage·re turn or a line·leed unless this is followed by an escape. There are '"';::iys around this
'feature' , but they are beyoncJ the scope ol this pdmer. Please consult the manual or a seasoned
MDI.er for help.

SECl ION 12 .6 INPU T I OUTJ-'Ul

104 THE MOl.. PRIMER

Here's a skeleton of a caJculator program:

<DEFINE CALC (•. "AUX" .• CNT (BUFFER <ISTRING 100 I' >) ••)
#DECL (.•• (CNT) FIX (BUFFER) STRING .••)

>">

<REPEAT ()
<PRINC •

<SET CNT <READSTRING .BUFFER
,INCHAN

<READCHR ,INCHAN>
<COND (<O? .CNT>

<STRING <ASCII 27>>>>

<PRINC •Thanks for us1ng the ca1cu1atorl">
<RETURN>)

(<••? .CNT 100>
<PRINC "

Sorry. that one's too b1g for me. Please try
someth1ng a b1t eas1er, 11ke 2 + 2.">)

(T <CALCULATE .BUFFER . CNT>)>>>

This calculator program is essentially a large REPEAT loop, as you might expect. Each time
through , It starts by printing a prompt (a carriage-return followed by a closing angle·bracket). It then
reads some input from the terminal Into a STRING which i.s lnltiali~ed at the start of the FUNCTION as
having a LENGTH of 100. The stop·condition is the presence of an escape (27 decimal in ASCII).
Since REAOSTR ING wlll not read the terminating escape. a REAOCHR is performed. If one were to
check on whal the REAOCHR was returning, one would find it to aJways be an escape. If the value of
the call to REAOSiRING is zero, no input was typed before the escape. In this example, the program
terminates. If the return from READSTRING were 100, then the person typing to the program has
given an excessively long input (this is only ttue in this example; the FUNCTION courd have been
written to accept much longer inputs) and he is told this. Otherwise, the function CALCULATE ~
called with the user's input (.BUFFER) and lhe number of CHARACTERs that the user typed (. CNT, I.e.
the number of 'valid ' CHARACTERs in .BUFFER). With any luck, CALCULATE will do something useful
with Its arguments, like performing the requested calculation and printing the result(s).

Could you write this skeleton without using a REPEAT? There are at least two other reasonable
ways. If you cannot, try rereading Chapter 10.

12.6.2. PRINTSTRING

The SUOR PRINTSTRING is analogous to the SUBR READSTRING. It takes three arguments. a
STRING (the STRING to print). a CHANNEL (on which to print it), and a FIX (the number of characters
from the STRING to print). If the LENGTH of the STRING Is less than the third argument,
PRINTSTRING just prints the STRING. In any event. PRINTSTRING returns the number of characters
actually printed.

SECTION 12.G

--

THE MOL PRlMER 105

12.7. SAVE Files

The entire :>tate of MDL can be saved .away in a fi le for later restoration: this Is done with the SUB Rs
SAVE and RESTORE. This is a very different form of 1/0 from any mentioned up to now; the me used
contains an ac1ual image of your· MDL address space and is not, in general, "legible" to other MDL
routines. RESTOREing a SAVE file is~ faster than re·READlng the objects it contains.

12.7.1.SAVE

Calling the SUBR SAVE with a lile·name will save away the entire state al your MDL in a file with that
name. It then returns "SAVED". When a RESTORE is done tater (to return to the 'saved' state), the call
to SAVE returns "RESTORED".

<DEFINE SAVE-IT ("OPTIONAL"

<SETUP>

(FILE "<GUEST>PUBLIC.SAVE")
"AUX" (SNM ""))

<COND (<•? "SAVED" <SAVE .FILE>>
<CLEANUP>
•saved.")

(T
<PRINC •

Amazing program at your service.">
<START-RUNNING>)>>

12.7.2. RESTORE

RESTORE, given a fi1e·name. completety replaces·the contents of the MOL from tha t file, including
the state ol execution existing when the SAVE was done and the state of all open 1/0 CHANNELs. If a
file which was open when the SAVE v1as done does not exist when the RESTORE is don•! , a message to
that effect will appear on the terminal.

A RESTORE neve:.r returns (unless it gets an etror): it causes a SAVE done some time ago to return
i\9J!i.n. (this time w ith the value "RESTORED") , even if the SAVE was dono in the midst of running a
program. In the latter case, !he program will continue its execution upon RESTOREation .

12.8. PARSE, LPARSE, and UNPARSE

These SUORs are boroerlin e 1/0 roulines. PARSE, g i ven a STRING, uses READ> atg orilhm for
converting texl into MDL obie>cl s and re turns th e lirst one found

SGC l'ION 12.7 INV UT /OUTPUT

100

<SET STR "(FOO 1 2.3)
"(FOO 1 2 . 3) HO-HUM"
<PARSE .STR>S
(FOO 1 2 .3)

111E MDL PRIMER

HO-HUM"> $

LPARSE, given a STRING, returns a LIST containing all of the items which READ would have found
in the STRING. Using the same example:

<LPARSE .STR>S
((FOO 1 2.3) HO-HUM)

UNPARSE is the inverse of PARSE. Given a MDL Object, UNPARSE returns a STRING, suitable for
MDL PRINTing.

<UNPARSE {A B C)>S
"(AB C)"
<UNPARSE 3 . 4>
"3.40000000"

All of these SUB Rs are very expensive CPU.wise. They should be avoided if at all possible.

12.9. Other 1/0 F u nctions

12.9.1. F LOAD

FLOAD, given a file·name, REAOs and EVALuates every1hing in the me. in order, and returns 0

00NE "'. If the file specified does not exist, FLOAD returns a FALSE containing the reason why.

12.9.2. SNAME

<SNAME string> is identical In effect wi1h <SETG SNJ.I string>. that is, it causes string to become
the dlr argument used by delault by all SUB Rs which want file specifications (in the absence of a local
value for SNJ.1). SNAME returns its argument.

<SNAME> Is identical in effect with <GVAL SNM>, that ts, it returns the current dir used by default.

INPUT / OUTPUT SECTION 12.8

THE MOL PRIMER 107

12.9.3. FILE-LENGTH

FILE-LENGTH. given a CHANNEL open for input, returns the length In characters of the file
associated with that CHANNEL. Doing a FILE-LENGTH on an terminal CHANNEL is silly.

12.9.4. RESET

<RESET channel>

returns channel, after "resetUng" ii. Resetting a CHANNEL Is like OPENing it afresh, with only the
file·name slots preserved. For an input CHANNEL, this means emptying all input buffers and. if it is a
CHANNEL to a Ille. doing an ACCESS to 0 on ii. For an output CHANNEL. thi s means returning to the
beginning of the file .• which implies, if the mode Is not "PRINTO", destroying any output done to it so
far. If the opening falls (for example, if the mode slot of channel says input, and if the file specified in
its real-name slots does not exist), RESET (like OPEN) returns #FALSE (reason:string 11/e .spec:string
status:fh<).

12.9.5. RENAME

RENAME is for renaming and deleting files. It takes two kinds of arguments:

. (a) two file names. separated by the ATOM TO

· (b) one Ille name

Omitted file-name parts use the same values by default as does OPEN. If the operation is successful,
RENAME returns T , otherwise #FALSE (ntason:string statusdlx).

In case (a) the file specified by the fltst argument is renamed to the second argument. For example:

<RENAME "FOO" TO "BAR"> :"Rename FOO.MUD to BAR.MUD."

In case (b) the single fife name specifies a file to be deleted. For example:

<RENAME "<MARC>FOO.MUO"> :"Delete file FOO.MUD
from MARC's directory.•

Sf!CTION 12.9 1Nr1U r /OUTPUT

108 THE MOL PRIMER

12.1 o. Terminal CHANNELS

MDL automatically adds a fine-feed, whenever a carriage-return is input from a terminal CHANNEL.
In order to type in a lone carriage:return. a carriage-return followed by a rubout must be Input.
PRINT. PRIN1 and PR INC do !lQ1 automatically add a fine-feed when a carriage-return is output. This
enables overstriking on a 'ermlnal that lacks backspacing capabflity. It also means that what goes on
a terminal and what goes in a nre are more likely to look the same.

12.10.1. TYi

TYI. given a terminal input channel, returns one CHARACTER from It when it i s typed, rather than
after S (ESC) is typed, as is the case with READCHR. Novice MOLers tend to use TYI to read input
from the terminal. This is not recommended as a rule. Use READSTRING inste-ad.

INr l Jr/OUTPUT SECTION 12. 10

THE MOL PRIMER 109

13. Making Tables

It seems that t\'1DL programmers are always making tables of one thing or another. Someone's
Whois program may want a table relating a person's login name to his full name. Someone's
Calculator program may want a table to associate arbitrary variable names with values.

There are any number of ways to implement tables for these types of purposes; some of these rnay
aJready have c.ome to mind. For our discussion, let's use the example of a calculator program which
accepts inputs of the form:

A • 4 + 3
B • (A • A) + 7

Without considering the actual details of how the calculator might be written, something must be
done to keep track of the fact that the variable A has a value of 7 . and that B has a value of 56. What
follows are a number of different approache-s to solving thls sort of problem. Each should be
examined carefully and the advantages and disadvantages noted.

13.1.UseaLIST

This is the most common and possibly the most useful approach. Fo·r the given example, we can
create a LIST, which. for example. is the GVAL of the ATOM VARIABLES .

• VARIABLES$
(A 7 B 66)

If one wants to add a new variable. say c , with a value, say 100, one can do the follov,,ing:

<SETG VARIABLES (C 100 I.VARIABLES)>

To check if a variable. say D, has a value, one can do this:

<MEMQ D ,VARIABLES>

SECTION 130 Ml\l(ING TABlE$

110

To actually get D's most recent vaJue,

<COND (<SET M (MEMQ D ,VARIABLES>>
<2 .M>)>

THE MOL PRIMER

This COND clause returns!' FALSE II D doesn' t have a value; otherwise, It returns the value.

Removing variables from the LIST can be done with PUTREST. As an exercise. write a FUNCTION
which, given a variable name and a LIST (like the one we used above), removes the variable and its
value from the L.IST. Be sure you handle the case in which the variable isn 't in the LIST. One
solution to this is given at the end of the chapter. Don't peek, and don't be too frustrated. The
FUNCTION isn't that easy to write.

LISTs are very space-efficient. However, while LISTS are practical for smallish tables, larger ones
will tend to become very slow to access, since LISTS are not random·access structures (see Chapter
7). II your table needs to be more than a hundred elements long, you should probably try something
else.

13.2. Use a VECTOR

Think twice before you do. As we saw in Chapter 7, VECTORs have the property that they cannot be
added to and cannot have elements removed without creating an entjrely new structure (which is very
gerbage-creating). Therefore, using VECTORs is not a good idea unless the table is 'pre· formed' and
elements need never be removed or added. If you have a table ot ordered e lements of relatively fixed
size. use of VECTORS with some sort of bi.nary-searching algorithm is appropriate. For the calculator
example, don't use a VECTOR.

13.3. Use an ATOM

Another simple approach would be to SETG !he variable name (which is an ATON) to its value.
Then, ~ou can use GASSIGNED? to check II it has a value, GVAL to get it, and GUNASSIGN to remove It.
lookup using GVALs is moderately fast, but there Is a problem. Imagine the result of your poor
calculator user setting a variable whose name is the name of your program. The use of SET and LVAL
is also perilous.

~1Al~IN(j: TABLES &!CTION 13.1

THE MOL PRIMER 111

13.4. Use an Association

MDL allows you to assign a value tq a pair of MDL objects. This can be done using the SUBR
PUT PROP. The value of such an 'association' can be retrieved with the SUBR GET PROP.

(PUTPROP MICHAEL AGE 28>$
MICHAEL
<GETPROP MICHAEL AGE>$
28

One can associate any three MDL objects using PUT PROP. A useless, but legal, use might be:

<PUTPROP [1 2 3] (4 6 6) "FOOBAR">$
[1 2 3]
<GETPROP [1 2 3] (4 6 6)>$
#FALSE ()

Why did the fast GETPROP return #FALSE ()? Hint; Are either of the arguments to GET PROP ~•? to
the arguments to PUTPROP?

By giving PUTPROP only two arguments, it returns what GETPROP would have returned, and then
removes the association.

<PUTPROP MICHAEL AGE>$
2B
<GETPROP MICHAEL AGE>$
#FALSE ()

In the calculator example, one could do something like this:

<PUTPROP A VARIABLE 7>$
A
<PUTPROP B VARIABLE 66)$
B

to set the variables• value. One would retrieve the values like this;

<GETPROP A VARIABLE)$
7
<GETPROP B VARIABLE>$
66

Associotions are fnst (they us.e a ho::t!'.lhing scheme with a fixcc1 nt1mbef or bt.1c k 11ts). but f Othef

SECTION 13.4 ,._1Al- IN<1 T AOI C:S

112
THE MOL PAIMER

space.jnefficient. Large numbers of them will tend to crowd your core-image.

13.4. 1 . Hashing

Hashing, for those unf&miliar with the notion. is an algor'ithm for table lookup which is based on a
'directed search '. A hash table can be thought of as a VECTOR of LISTs. These LISTs are commonly
called 'buckets'. Each actual itern in the hash table is found in one of these 'buckets'. What makes
hash lookup fast is that there is a simple algorittim for determining which 'bucket• an item is in . Once
that determination is made, the 'bucket' is searched Ii neatly for the item. Thus, a hash table of length
100. which contains 1000 items. would have an average of- 10 items per 'bucket'. Thus, the access
time for looking up an item would be the same as that for MEMQ'ing a LIST of 10 elements plus the
smaH overhead of determining which 'bucket' the item is in. Thts is obviously much faster than
linoarly searching a LIST of 1000 elements, by a factor approaching 100.

13.5. Use an OBLIST

OBLISTs are tables of ATOMS which are ha.shed in such a way that finding an ATOM in one is very
fast. SimilarJy, inserting and removing ATOMs ls simple.

To create an OBLIST of your own, use the SUBR MOBLIST (Make OBLIST), which takes a name
(ATOM) and lhe number of hash buckets for the OB LIST (defaultly 17). For best results. the number of
buckets Should be prime.

<SETG FOOBAR <MOBLIST FOOBAR 7))$
#OBLIST f[() () () () () () ())

Note that there are seven empty LISTs in the OBLIST ··you guessed it ... each LIST is a bucket!

T o insert an ATOM into an OBLIST, use the SUBR INSERT. To remove an ATOM from an OBLIST,
use tl>e SUBR REMOVE. To look up an ATOM in an OBLIST , use the SUBR LOOKUP. Each of these
three SUB Rs takes a STRING, the PNAME of the ATOM. and an OB L I ST.

< I NSERT " MIKE" , FOOBAR>$
MIKEl - FOOBAR
,FOOBAR$

•OBLIST f[() () () () (MIKEl - FOOBAR) () ())
<LOOKUP "MIKE" , FOOBAR>S
NIKE! - FOOBAR
<LOOKUP "BLETCH" ,FOOBAR>S
*FALSE ()

MAl<ING TABlES
SECTION 13.41

Ii

..

THE MOL PRIMER 113

There's something new here. nan'lely the suffix to the name of the ATOt-4: an exclamation point. a
hyphen, and an ATOM. This suffix is called an 'oblist·trailer' or sin'lply a 'trailer', It is there so that
READ and PRINT can distinguish this new ATOM whose PNAME is FOOBAR from an ATOM on another
OBL IST whose PNAME is FOOBAR. Therefore, to directly reference the ATOM of PNAME BLETCH In the
FOOBAR OB LIST. one must type in the following:

BLETCHl-FOOBAR

In fact. typing BL ETCH 1-FOOBAR cat1ses READ to create an ATOM w ith PNAME BL ETCH In the FOOBAR
OB LIST ii none already existed. Not c.nly that. but typing FROB I-MUMBLE causes READ to create an
ATOM ol PNAME FROS in the MUMBLE OBLIST (creating a MUMBLE OBLIST If necessary) ii none
already existed.

If you are lnte,.ested in a more complete description of OBL tSTs. refer to the next section. To
continue with the calculator example, we might start by creating an OB LIST for variables.

<SETG VARIABLES <MOBLIST VARIABLES>>S
#OBLIST .•..

Then, we assign values to A and Bas follows:

<DEFINE SET-VARIABLE (NAM VAL "AUX" (PNM <PNAME .NAM>))
#OECL ((NAM) ATOM (VAL) ANY (PNM) STRI NG)
<SEIG <COND (<LOOKUP .PNM ,VARIABLES>)

(T <INSERT .PNM ,VARIABLES>)>
.VAL»$

SET-VARIABLE
<SET-VARIABLE A 7)$
7
<SET-VARIABLE B 68>$
58

To retrieve values, we might do this:

<DEFINE GET-VARIABLE (NAM "AUX" ATM)
#DECL ((NAM) ATOM (ATM) <OR FALSE ATOM>)
<COND (<SET ATM <LOOKUP <PNAME .NAM> , VARIABLES>>

, .ATM)»S
GET-VARIABLE
<GET - VARIABLE B>S
68
<GET-VARIABLE 0)$
#FALSE ()

Using OOLISTs in this way solve~ the problem mc,,lioncd earlier rconrdlng U1e LOSe of ATOMs: Iha! Of

SECTION 13.5 1\,1.fl,K INO T A DI.ES


~~~~---------------------------... 
114 

THE VIO L PRIME.A 

variable conflicts. By using ATOMs In your own private OBLIST. there is no danger of mistakenly 
changing rhe value of someone eJse's (or your own ... ) ATOM. Novi. your calculator us1?r can use 
variable names \vhich are the sa.me as those of your calculator FUl~CTIONs without fear of disaster. 

To summarize. using OBLISTs ls f·a.St. ATOMs are rather large; about the same size as an 
association. Whereas the hashing table for associations is a fixed size. the hashing table for an 
OB LIST can be derermined when the OB LIST Is created. ATOMs are more versatile than associations, 
and can be used in more wayS. Good MOL programmer"s, given the choice, will use OBLISTs over 
associations. 

13.6. OBLISTs, READ, and PRINT 

It was stated in section 4.1 that typing GEORGE to MDL caused READ to "look up the representation 
[ol GEORGE]" in a "'table it keeps for such purposes .... " It Should now be clear thal the "table it 
keeps" is, in lact, an OBLIST, and that it "looks up the representation" by using the SUBR LOOKUP. 
You are no\v ready to understand what, in fact. READ does. 

When READ encounters something that It determines must be an ATOM (i.e. it can't be anything 
else), i t does LOOKUPS of the PNAME seQuentially in all of the OBLISTs in . OB LIST (i.e. the LVAL of the 
ATOM OBLIST). [MDL sets up .OBLIST to be a LIST of OBLISTs. Initially, .OBLIST has two 
OBLISTs in it: the INITIAL OBLIST (user ATOMs) and the ROOT OB LIST (MDL's ATOMs) . The ATOMs 
whic h point to the F/SUBRs all live in ROOT.] The value of the first LOOKUP to succeed becomes the 
value of the call to READ. If the PNAME isn't found, an ATOM with that PNAME is INSERTed into <1 
• OB LIST>. 

If REAO (of ATOMs) were written in MDL, it might look like this: 

<DEFINE READ- ATOM (STR) 
#DECL ((STR) STRING) 
<COND (<MAPF <> 

<FUNCTION (OBL "AUX" ATM) 
#DECL ((OBL) OBLIST (ATM) <OR FALSE ATOM>) 
<COND (<SET ATM <LOOKUP .STR .OBL>> 

.OBLIST>) 
(MAPLEAVE .ATM>)>> 

(T <INSERT .STR <1 .OBLIST>>)>> 

However, if an explicit trailer is given, the ATOM is placed in the OBLIST named in the trailer. 
Trailers may be 'recursive•. For example, Al-BI - C 1-D 1-E is an ATOM with PNAME A which is in an 
OB LIST whose name ls an ATOM wilh PNAME B which Is on an OB LIST whose name .... The ATOM with 
PNAME E will reside in one of the OBLISTs in .ODLIST. When PRINT '1tlempts to print an ATOM of 
this k ind. it prints trailers until one of the OB LIST names can be found on an OBLIST in . OB LIST. 

MAKltJO TABl.ES SECTION 13.5 



THE MOL PRIMER 115 

14. Debugging MDL Programs - An Introduction 

lf you have ever written a program v1hich works completely correctly on the first attempt. you most 
likely have benefited from divine intervention. In the more likely event that one of your MOL programs 
is "buggy", you will see messages which look Hke this: 

•ERROR• 
reason 
information-about~error 

func/ion-which..generated-lt 
LISTENING-AT- LEVEL n PROCESS m 

The information-about·error may be one or more than one object. Then Is an indication of how many 
levels of errors have occurred, and m should be completely ignored. If you ever see a number other 
than 1 in that position, you probably don't need to be reading this. 

The meaning of this gobbledygook Is that the MDL SUBR ERROR was Invoked. This may have 
happened from an explicit call to ERROR, as Jn the following: 

<ERROR YOU - LOSE BECAUSE ~Y-FUNCTION> 

More likely, however, the MOL Interpreter discovered an error in your program, such as a variable 
without a value. or a bad argument to a lunc1Jon. and called ERROR internally. The effect is the same: 
•ERROR• ls printed, followed by all of the arguments to ERROR. and MDL starts LISTENing at the next 
higher levei. In other words. LISTEN has been called recursively. 

In the remainder of this chnpter, we will be d1scussing the debugging of a particularly trivial error in 
a sample FUNCTION. P lease refer frequently to the figure at the end of the chapter in which parts of 
the example ar'e diagrammed and commented. ' 

In order to correct an error, it is necessary to have some information about the hi.story of MOL's 
execution at the time of the error. To do this. the rvnction FR& is called. usually without arguments. 
Let us assume that the following FUNCTION Is being called as follows: 

SECTION 14.0 DEBUGGING f".'!f)I. PnOGnAMS AN ltlTROOUCTION I 



1 16 TME MOl.. PRIMER 

<DEFINE GTlO (ARG) <G? .AGR lO>>S 
GT10 
<GTlO 11>$ 
•ERROR• 
UNBOUND- VARIABLE 
AGR 
LVAL 
LISTENING-AT-LEVEL Z PROCESS 1 

<FR&>S 

0 ERROR [UNBOUND-VAR IABLE I-ERRORS 
1 LVAL (AGR] 
z EVAL [.AGR] 
3 EVAL [<G? .AGR 10>] 
4 EVAL [<GT10 11>] 
6 LISTEN [] 
TOPLEVEL 

AGR LVAL] 

What Is shown here, one to a line, are the FRAMEs which have been generated by MDL, starting rrom 
the one called LISTEN, which is where MDL was waiting when the FORM <GT 10 11> was input. The 
lines above this one are the steps which MOL took until the error occurred. namely in the code for 
LVAL. Each line has a number. by which the FRAME can be Identified. the FUNCT of the FRAME 
(always an ATOM) , and the ARGS ol the FRAME (always a TUPLE). For these purposes, a TUPLE can be 
considered to be a VECTOR. Given a FRAME number, the FRAME can be referenced by invoking the 
function FRM, as follows: 

<SET F <FRM 3))$ 
#FRAME EVAL 
<FUNCT .F>S 
EVAL 
<ARGS .F>S 
[<G? .AGR 10>) 

Having gotten this far, it has become obvious that the problem is that the function GT10 is Incorrect, 
in that the relerence to AGR was Intended to be a reference to ARG. What follows are some ways of 
fixing the problem, all of which will work. Although this is a trivial example of an eiror. as the problem 
itself was easy to spot. the methods of error recovery are always the samet 

14.1 . Method 1: Start Over 

Edit the FUNCTION with you( lavorite text editor and reload it, retype ii in to MDL directly, or 
whatever. Then invoke the SUDR ERR ET wilh n9 arguments. This will cause MDL to return to its ••top 

DEBUOGINO M DL PnOGAAl'AS • AN INTROOUC.. TK>N SC:CTION 14.0 



THE MOl.. PAlP..iEA 117 

level", I.e. LISTENING-AT-LEVEL 1. All parts of the execullon In progress including all ATOMIC 
bindings (e><cept those made at "lop level") will be lost. 

<ERRET>S 

LISTENING-AT- LEVEL 1 PROCESS 1 

14.2. Method 2: Forcing FRAMES to Return Values 

It is possible to cause MDL to force an arbittary FRAME to return an arbitrary value and to continue 
execution from that point. This is done by calling ERR ET with either on., or two argun'lents. The first 
argument is the value for the FRAME to return, and the second, if given, is the FRAME which is to return 
that value. II no second argument is given, the FRAME immediately previous to the ERROR FRAME will 
be used as a default. 

<ERRET 9>$ 
#FALSE () 

What happened was that the LVAL FRAME (I.e. <FRM 1> was caused to return 9 . E.,~ecution 
continued, such that the EVAL FRAME above (i.e. <FRM 3>) also re turned 9 . and the next frame 
evaluated <G? 9 10>. which returned an empty FALSE, which became tho value of the call to GT10. 
Notice that in this case. Lhe fact that 11 was originally passed to GT10 has become unimportant. 
Another way of doing the same thing would have been to say 

<ERRET 9 <FRM 1>>$ 
#FALSE () or 
<ERRET 9 <FRM Z>>$ 
#FALSE () 

However, saying 

<ERRET 9 <FRM 3>>$ 
9 

has a different result. What happened was that the FORM <G? . AGR 10> was forced to return 9. 
Since th3t FORM was the last in the bo<ly of the FUNCTION, the result of Its evaluatian became lhe 
result of the evaluation of the FUNCTION. Therefore, GT10 returned 9. 

SECTION f4 1 nrOUCiGING l\.tOL rnOCRAMS . ~N INTRO DUCTION 



118 THE MOL PRIMER 

14.3 . Method 3 : Use E D IT t o Repa ir y ou r FUNCTIONs 

tn the last method. nothing has been done to corfe<:t the real problem, i.e. that the program has a 
bug In It. One way to solve this is to' use the MDL editor, a lvncrion called EDIT to alter the program 
itself. ED IT is usually invoked with the name of a FUNCTION to be edi ted as the only argument. You 
will now be ··1alkin9" to the MDL editor. Commands to the editor should be terminated with an 
escape, and are one or two characters followed by some arguments. v1hich are usually optional. 
EDIT will display after each com mand your current " location" in the FUNCTION you are editing. To 
move around, the commands L (left), Fl (right), U (up). and D (down) are used. These may be followed 
by a numerical argument, the number of time-s to perform the command. The arguments must be 
preceded by a space. A vertical bar is used here to indicate your "position" In the edited FUNCTION. 
In the real MDL editor, the "position .. may be indicated by some other characters. 

<EDIT GT10)$ 
#FUNCTI ON (I ( ARG) <G7 .AGR 1 0> ) 
R 2$ 
#FUNCTI ON ((ARG) <G7 .AGR 1 0) I ) 
LS 
#FUNCTION ((ARG) I <G7 .AGR 10> ) 

D$ 
<t G7 .AGR 1 0 > 
D$ 
ERROR. YOU CAN ' T GO DOWN 
<f G7 . AGR 10> 
R$ 
<G? I . AGR 10>) 

To alter the FUNCTION the following commands may be used: I (insert), K (kill), and C (change). Insert 
takes any number of obfects as atguments and .inserts them all to the r'ight of your " location·· . Kill 
takes an optional number (default 1) and removes that many objects from the.right of your ··rocatlon". 
Change takes one argument and changes the object to the right of your "location" to it. 

<G? I . AGR 10> 
C .ARG$ 
(G7 I .ARG 1 0) 

This has had the effect of fixing the error in the program. T o exit the editor, use the Q comma nd. 

<G7 I . A RG 10) 
QST 

The Twas the returned value of the call to EDI T. Now, a look at the F RAMES using FR& shows the 
following: 

OE.OUGOING f\10L PROGnAf\in J\N INTRODUCTION SECTION 14.3 

l 

I .........._ 



THE MOL PRIMER 119 

<FR&>S 

0 ERROR 
1 LVAL 
2 EVAL 
3 EVAL 
4 EVAL 
6 LIST EN 
TOP LEVEL 

[UNBOUND - VARI ABLEl - ERRORS AGR LVAL) 
(AGRJ ' 
[ . AGR J 
( <G7 .ARG 10>) 
[<GTlO 11>] 
[] 

Make sure you understand what has happened. The way the editor works for the case of the C 
command is to PUT the argument to C into the structvre. The FORMs contained in the ARGSs of 
FRAMES are simply pointers directly into the FUNCTION being executed. Thu~. the PUT into the FORM 
will change the argument to the FRAME which points to itt This ls extremety in1portant, and is 
illustrated In the diagram at the end of the chapter. Think abou t this very carefully if you don't 
understand this, and then be sure you convince yourself of why the argument to <FRM 2> has rtot 
changed. 

Now that you have done this, it would be useful If you could tell MDL to go back and retry < FRM 3> . 
In fact you can, using the SUBR RETRY which takes a FRAME as an argument, and simply pretends 
that nothing past that point In e><ecution has ever happened. This works con'\pfetely as tong as the 
execution below that point hasn 't had any side-effects. A MOL function is said to have sjde·efrects If It 
does anything other than manipulate its local variab1es and return a value. Stated another way, a 
function with no side·effects is a black·box with Dn input (arguments) and an output (value), but no 
effect on the ·outside world1

• The most blatant side·effecting SUORs are PUT, PUTREST, SETG, and 
PRINT. SETting ATOMs which are not bound In a currently executing FUNCTION also has side·effects. 
In a puris't structured· programmlng sense. no function should have side-effects (with the obvious 
exception of printing output). However, there are certainly cases in which PUT, PUTREST, and SETG 
are tremendously useful, It not vitai. Care should be taken, however, since many bugs can be traced 
to one ft.Jncuon's causing a side-effect which causes another function to fail. 

<RETRY <FRM 3))$ 
T 

Question: Would 

<RETRY <FRM 4))$ 

have the same effect? The ansi.ver i,s yes, because you are restarting from an earlier level of 
execution. What would be the effect of RETRYing <FRM 6>? Hint: !t isn' t a return of T. What would 
be the effect of RETRYing <FRM 2>? Hint: It isn't good. If you aren't conipletely sure or the answer to 
these, try it in MDL. 



120 

14.4. Method 4: Altering FRAMEs /RETRY 

Let's try the following, starting from the point of the error: 

<SET X <t <ARGS <FRM 3>>>>$ 
<G? .AGR 10> 
<PIJT .X 2 '.ARG>S ;"Why the quote?" 
<G? .ARG 10) 
<RETRY <FRM 3»S 
T 

THE MOL PRLME.R 

We have done the same thing as we did using method 3, but from a different angle. Question: What 
does the FUNCTION GT10 look like now? Hint: Not the same. II you don•t see this, you didn't 
understand why editing the FUNCTION worked either. 

14.5. Summary 

We have presented four different ways of handling errors In MOL. This list is not exhaustive, but it 
should provide enough background to enable you to handle most situations. If th ls chapter has been 
totally conrusing. ask someone for help and use method 1 in the meanHn1e . . Notice thal method 2 
does not prevent the same error from recurring: it merely corrects the current instance of that error. 
Methods 3 and 4 correct the general problem and the cur-rent instance or the error generated by the 
problem. However, even though the FUNCTION is changed in your MDL, you still must alter it using 
your favorite editor at a later time (or write out an updated copy of the file directly fron1 MDL). The 
changes made while in MDL are nor reflected in your files! They will, however, allow you to proceed 
without moving back and forth constantly between MDL and your editor. 

MDL has many other debugging aids Including breakpoints (in EDIT), tracing, monitoring the 
values of local and g lobal variables, and more. For a d0tailed description of these facilities, consult 
The MDL Programming Environment (Lebling 80]. 

orouOGING MOL PROCRA.M,$ . AN INTftOOUC TION SECTION 14.<4 



THE MOL PRIMER 

Selected FRAM Es during execution of GT10 as described in the text. Note that 
the FRAMES Q.Q!a1 directly at the structure of GT10 (e.g . the FORM in FRM3 fs 
••?to the second element of the FUNCTION). 

, , #LF_:U--N..:.C.::...:T..:.1..:0..:.N.:.(:.:!:A:RzG:::.)_:<:G=?=·~A~G=R=l=O=>=l::..J 
/ 

•" 
FUN:TION 

/ 
/ ,,,, 

I( 

1~1.._•_s_T ____ _.I • 

c,l-_A_T_M__.._o_-1 
. ARG 

/ 

/ 
/ 

/ 

/ 
/ 

FORM 

/ 
/ 

/ 

0 

,," 
/ 

o---------1FR M 

l._A_T_o_M_G;.....;.? __ _.I • FORM 3 FORM 

121 

FIX 0 
10 

§ § 
r'---~----""., FRM 

, '· L-.. fTOMl Tl#MI 0 
_ ~'VAL._ . ARG 

'/ 

FORM 

ATOM 1 
AGR 

"ERROR" 
FRAME 

2 

~ , FRM 
I 

FRM 
0 

0 ~A~T~O~M~'~-=::::Jt-••1ATOM I 
. LVAL '-· ---'A~G~R~ __ , 

The dotted arro\v and cross Indicate the state of pointers ~ 
the FUNCTION has been edited. Notice that <FRM Z> still 
points to ~. even though <FRM 3> pointt; to <G? ....A8Ji 
3). 

Flgu re 14 · 1: Diagram for the example in this chapter 

$ECTl(JN 14 $ oc-nuno1NO t..101.. Pn()C,r-tAf..1S AN INTnOOUCTION 



122 
THE MOL PRIMER 

References 
(Galley 79] • 

$, W, Galley and Greg Pfister. 
The MDL Programming Language. 
MJ.T, Laboratory for Computer Science, 197g. 

fl.ebling 77] 

P, David l.ebling, R. V. Baron and Bruce K Daniels. 
RMOOE: A Real·time Edit Facility. 

Technical Report SYS,04.07·1, MIT LCS Programming Technology Division, October, 1977. 

[Lebling 80] 
P. David l.ebling. 
The MDL Programming Environment. 
M.l.T, Laboratory for Computer Science, 1980. 

[Pfister 72] 
Greg Pfister, 
A Mudd/& Primer. 

Technical Report SYS.11.01, MIT Project Mac DM/CGS, May, 1972. 

[Stallman 79] 
Richard M. Stallman. 
EMACS. 
MIT Al Laboratory, 1979. 

[Weinreb 78] 
Daniel Weinreb and David Moon. 
lisp Machine Manual. 
MIT Al Laboratory, 1978. 



123 

I 54 
1$ 8 
I- 113 
I( 58 
I\ 59,99 

I] 58 

. 11, 99 

• 12,37.99 

$ 7. 98. 108 

36. 83. 87 

( 11 

) 11 

• 24 

+ 24 

21 

- 24 

22 

I 24 

Of 25 

u 25 

< 11 

.. 7 25,41 
•f 41 

> 11 

ABS 24 
ACTIVATION 78 
AGAIN 77 
ANO 69, 72.90 
AND? 70 

Index 

•ARGS• 89 
ASCII 60 
ASSIGNED? 28. 88 
ATAN 24, 31 
ATOM 19, 35. 99 
·Aux· oo. 101 

BACK 57, 68 
Binding 29. T1 

CHANLJST 101 
CHANNEL 100, 101 
CHARACTER 35, 59, 61, 99 
CHTYPE 38 
CLOS£ 101 
• 21 
COND 70 
cos 24, 31 
CRLf 99 

0£CL 91, 93 
OEftNE 89 
• 22 

EDIT 118 
EMPTY? "'3, 66 
•? 41 
••? 25, 41 
Equallty 41 
EARET 9. 116. 117 
ERROR 9, 115 
EVAL 15, 23. 45, 65, 87, 89 
I 54 
I\ S9 
1- 113 
1$ 8 
I( 58 
I] 58 
EXP 24, 31 

F a1$0 14, 2S 
FALSE 35,37, $3 
FILE ... EXJSTS? 101 
FILE-LENGTH 10 7 
FIX 11, 16, 17, 24, 26. 35 
FLOAO :34. 106 

THE MOL PRIMER 

FLOA'( 11 , 16. 17, 24, ~. ~S 

fORM 12, 35 



124 

FR& 9, 115 
FRAME 116 
FRAMES 9 
Free variables 30, 90 
FSU8R 23. 69. 70. 89 
FUNCTION 27. 79 

G• ? 2S 
Gf :25 
Ga.tb3.00 63 
GASSIGNEO? 26. 110 
GETPROP 111 
GUNASSIGN: 110 
GVAL 21. 31 

Hashing 112 

ILIST 62 
JNCHAN tO·t 
I NIT 34-
JNSERT 112 
ISTRIMG 82 
lle<aUoo 88 
ITS 8 
?VECTOR 62 

L•t 2S 
L1 :25 
LENGTH 43, 66 
LENGTH? 51. 66 
Li:sp t 
LIST 12, 35, 41, 44, &e 
LISTEN 115 
LOG 24, 31 
LOOKUP 112 
LPARSE. 106 
LVAt. 22. 29 

MAPF 7$. 84 
MAPLEAVE 00 
MP1' 83,&4 
MAPRET 81 
MA.PSfOP S2 

""" 24 
MOL 1 
MEMBER 62. 116 
MENO 62.116 
MI• 24 
MOBLIST 112 
MOO 24 
MUOOLE 34 
"'NUOOLE. I•tr• 34 

N••? 26 
•MAME• 78 
NEWTYPE 38, 65, 93 
NEXTCHA 98 
NOT 69 
NTH 4S. 52, 66 

OB LIST 99, 112. 114 
OPEN 100. 107 
OPTtONAL 88 
OR 70. 72 
OR? 70 
OUTCHAN 101 

PARSE 10S 
. 22 
PltAME 19. 114 
PPRlllT 33 
Predfcates 25 
Prtrfbc Notation 13 
Pfelty PfinHno 33 
PRIMTYPE 35. 41, 65 
PRIN1 99, 108 
PRINC 99, 108 
PRINT 15, 17, 99, 108 
PRINTSTRJNG 104 
PROG n 
PUT '5, 52, 66 
PUTPROP 111 
PUTREST 47, 66 

• 38,63.87 

RANDOM 25 
READ 15, 16, 98. 114 
READCHR 96, 108 
REAOSTRlNG 103 
Rocurslon 74, 86 
REMOVE 112 
R.£11AME 107 
REPEAT 78 
RESET 107 
REST 45. 68 
RESTORE 105 
RETAY 119 
RETURW n, 78 
Rubovt 8,98 

SAVE 105 
SE611ENf 53, 66 
SET 21,29 
SUG ro.ae 
SIJI 24. 31 
SllAME 108 
SDI 108 
S()Rf 24.30 
STRIM& 35, S9,86, a9 
SU8R 23 
Subroutine 23 

r 25 
T&nex 8. 34 
TO 107 
TOP S7.66 
Tops-20 8 .. 34 
Trallor 113 
Ttue 25 

THE MOL ?AIMER 



125 THE M DL PRIMEl=I 

Truth 14 
"'TUPLE'" 88 
TYl 108 
TYPE 11, 15, 3S 
TYPE? 3B 
TYPEPRIM 38 

UNPARSE 106 
UTYPE 59 
UVECTOR 58, 6113 

VECTOR 12, 35, 54, 66 

WORD 35 

ZOttc 74 

[ 11 

\ 99 

] 11 

't@ 8,98 
'tD 8. 98 
+<l 8 
't'L 8 . 98 

'° 8 •$ 8,51 

( 11 

} 11 


