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ABSTRACT 

This thesis r.resents a polynomial time algorithm for the basic question of Galois theory, 
checking solvab11ity by radicals of a monic irreducible polynomial over the integers. It also 
presents polynomial time algorithms for factoring polynomials over algebraic number field& 
for computing blocks of imprimitivity of roots of a polynomial under the transitive action ot 
the Galois group on the roots of the polynomial, and for computing intersections of algebraic 
number fields. (In all of these algorithms it is assumed that the algebraic number field is 
given by a primitive element which generates it over the rationals, and that the polynomial 
in question is monic, with coefficients in the integers.) We also show how to express a root 
in radicals in terms of a straightline program in polynomial time. 

The techniques used include methods from computational com~lexity and approaches 
from the theory of finite permutation groups. The results presented here rely on the recent 
work of Lenstra, Lenstra, and Lovasz, in which a polynomial time algorithm for factoring 
polynomials over the integers is presented. 

Many questions remain. Our divide-and-conquer approach answers the question of 
solvability without revealing the nature of the group in question; we do not even learn its 
order. We suggest this as one of the many open problems that remain to be tackled. 
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Introduction 

Every high school student knows how to express the roots of a quadratic equation in 

terms of radicals; what is less well-known is that this solution was found by the Babylonians 

a millenia and a half before Christ (Ne]. Three thousand years elapsed before European 

mathematicians determined how to express the roots of cubic and quartic equations in 

terms of radicals, and there they stopped, for their techniques did not extend. Lagrange. 

published a treatise which discussed why the methods that worked for polynomials of degree 

less than five did not work for quintic polynomials [Lag], hoping to shed some light on 

the problem. Evariste Galois, the young mathematician who died in a duel at the age of 

twenty, solved it. In the notes he revised hastily the night before his death, he gave an 

algorithm which determines when a polynomial has roots expressible in terms of radicals. 

Yet of this algorithm, he wrote, "If now you give me an equation which you have chosen 

at your pleasure, and if you want to know if it is or is not solvable by radicals, I need do 

nothing more than to indicate to myself or anyone else the task of doing it. In a word, the 

calculations are impractical." (Ga]. 

They require double exponential time. Through the years other mathematicians -

Zassenhaus, van der Waerden - developed alternate algorithms all of which, however, 

remained exponential. A major impasse was the problem of factoring polynomials, for until 

the recent breakthrough of Lenstra, Lenstra, and Lovasz [L3), all earlier algorithms had 

exponential running time. Their algorithm, which (actors polynomials over the rationals in 
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polynomial time, gave rise to a hope that some of the classical questions of Galois theory 

might have polynomial time solutions. We answer that the basic question of Galois theory 

-is a given polynomial, f(x), over the rationals solvable by radicals - has a polynomial time 

solution. That is the main result of this thesis. 

Galois transformed the question of sovability by radicals from a problem concerning 

fields to a problem about groups. What we do is to change the inquiry into several problems 

concerning the solvability of certain primitive groups. Palfy has recently shown that the 

order of a primitive solvable group of degree n is bounded by 24-t/3 nc for a constant 

c = 3.24399 ... [Pa.] We attempt to construct the Galois group of specified polynomials in 

polynomial time. Each polynomial is constructed so that its Galois group acts primitively 

on its roots. If we succeed, we use an algorithm of Sims to determine if the groups in 

question are solvable. If any one of them is not, the Galois group of f(x) over Q is not 

solvable, and hence f(x) is not solvable by radicals. It may happen that we are unable to 

compute the groups within the time bound. Then we know that the group in question is not 

solvable, since it is primitive by construction, and primitive solvable groups are polynomially 

bounded in size. 

We first show that there is a polynomial time algorithm for factoring polynomials 

over algebraic number fields. We do this by using norms, a method due to Kronecker. 

We construct a tower of fields between Q and Q[x]/ f(x), by determining elements p,, 
i = O, .•. , r + 1, such that Q = Q(po) k Q(p1) k ... k Q(p,.) C Q(Pr+1) = Q[x]/ f(x). 

The tower of fields we find is rather special. If 91+1(y) is the minimal polynomial for P•+1 

over Q(pi), then the Galois group of 91+ 1(y) over Q(pi) acts primitively on the roots of 

9•+1(y). The Galois group of f(x) over Q is solvable ift' the Galois group of 9&+1(y) over 

Q(p1) is solvable for i = 0, •.. , r. 

Using a simple bootstrapping technique, it is possible to construct the Galois group of 

9i+1(Y) over Q(p,,) in time polynomial in the size of the group and the length of description 

of 91+1(y). Since the Pi are determined so that the Galois group of 91+1(Y) over Q(p,:) acts 

primitively on the roots of 9i+1(y), if the group is solvable, it will be of small order. In that 

case, we can compute a group table and verify solvability in polynomial time. If it is not 

solvable, but it is of small order, we will discover that instead. Otherwise we will learn that 

the Galois group of 9i+t(Y) over Q(p,) is too large to be solvable, and thus that /(x) is not 
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solvable by radicals over Q. 

Our approach combines complexity and classical algebra. We start with a brief intro­

duction to background algebraic number theory in Chapter I. This sets the stage for the 

algorithm for factoring polynomials over algebraic number fields presented in Chapter II. 

Chapter ill begins the discussion on solvability. The algorithmic paradigm of divide­

and-conquer finds a classical analogue in the group theoretic notion of primitivity. Galois 

established the connection between fields and groups; permutation group theory explains 

the connection between groups and blocks. Combining these ideas we present an algorithm 

to compute a polynomial whose roots form a minimal block of imprimitivity containing a 

root of f(x). 

We use this procedure in Chapter IV to succintly describe a tower of fields between Q 

and Q[x]/ f(x). A simple divide-and-conquer observation allows us to convert the question of 

solvability of the Galois group into several questions of solvability of smaller groups. These 

are surprisingly easy to answer, giving us a polynomial time algorithm for the question of 

solvability by radicals. 

We discuss in Chapter V a method for expressing the roots of a solvable polynomial in 

terms of radicals. We present a polynomial time solution to this problem using a suitable 

encoding. The thesis concludes with a disscusion of open questions. 

A note to the reader: This thesis is self contained, but we do assume some knowledge 

of algebra. Background and proofs of classical results may be found in Samuel (SaJ, van 

der Waerden [vdW] or Wielandt (Wie]. In particular the results of Chapter I, §2, Chapter 

II, §4 and Chaper ill §3 are more fully presented in Samuel, Chapter II, van der Waerden , 

Chapter VIII, and Wielandt, Chapter I respectively. 
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Chapter I 

Background 

1. Factoring Polynomials over the Integers 

Mathematicians have long sought efficient algorithms for factoring polynomials over the 

rationals. In 1793 Frederick von Schubert showed that the problem of factoring over the 

integers was decidable [Kn}. If /{x) is the polynomial one desires to factor, Von Schubert's 

idea was to compute /(1), /(2), ... , f(n) where n is the degree of f(x). Consider a possible 

sequence d(l}, .. . ,d(n) where d(i) divides f(i). A sequence defines a potential divisor of f(x), ~" 

which can be found by interpolation. All divisors of f(x) can be found in this way - if one 

has enough time. The algorithm is highly exponential. 

A polynomial is primitive if the greatest common divisor of its coefficients is 1. Gauss 

proved that if a primitive polynomial /(x) E Z(x} can be factored as the product of two 

polynomials having rational coefficients, it can be factored as the product of two polynomials 

having integer coefficients. Thus to decompose a polynomial /(x) E Q[x} into irreducible 

factors is equivalent to factoring a primitive polynomial in Z[x} into irreducible factors in 

Z[x]. For the remainder of this thesis we will concern ourselves with monic polynomials 

with integer coefficients. 

If one raises questions of efficiency, one must begin by asking how much space is required 
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to write down the factors of f(x) = x"+a11 _ 1x11
-

1 ... +a0. The answer is: not very much. 

We present a simple bound here, a tighter result may be found in [Mi.] 

Suppose a of. 0 is a root of f(x). Then lal :::; 1 +max, la1I [Ma]. We let ffaD = max1laoil, 

where the a,'s are the conjugates of a over Q. If g(x) is a divisor of f(x), the roots of g(x) are 

a subset of the roots of f(x), and g(x) = IT (x-a1)· If g(x) = xm+bm-1Xm-1+ ... +bo, 

the bi's are integers, then 

or;, Groot 
of g(:.i:) 

b, = L a11 . . . a,-,._, 
a;k, a root 

of g(:i) 

Thus lb1I < 2"ff aD' < (2ffaD)", which means that each b1 can be expressed in n(log ffaD) 
digits. There are at most n factors of f(x), and each factor has at most n non-zero 

coefficients; consequently the complete factorization of f(x) requires no more than 

n3 log(l + max11a11) space. The factorization of f(x) has polynomial size length. A non­

deterministic machine could guess the factorization and verify it by multiplying the factors 

together to obtain f(x). It is clear that the verification can be done in polynomial time. 

Algorithms which were developed for factoring polynomials over the integers had ex­

ponential running time. An important one which worked well on average was created by 

Zassenhaus in 1969 (Za]. His idea was to factor /(x) mod p, for a carefully chosen prime 

p, and then to lift the factorization to p"' for a large integer k. (In 1969, Berlekamp (Be) 

discovered an algorithm which factored a polynomial of degree n over Z /pZ in O(n3p) 

steps.) The factorization mod p"' is examined to give a factorization over the integers. This 

may be hard as the following example illustrates. 

The polynomial whose roots are ±v'2 ± V3 ±VS± ... ± ..fPn, Pn a prime, factors into 

linear or quadratic factors mod m for every integer m [Be2,p.733.] If we consider a reducible 

polynomial f(x) with roots in the above form, then factoring mod m gives no information 

on how to combine the linear and quadratic terms to yield a factorization of f(x) over the 

integers. 

Zassenbaus's algorithm has the problem that its worst case running time is exponential 

in the degree. For a time, it seemed it might be easier to check polynomial irreducibility 

than to factor. In 1979 Weinberger [Wei) showed that under the Generalized Riemann 

Hypothesis, testing irreducibility of polynomials is in polynomial time. In 1981 Cantor 
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{Can] proved that irreducible polynomials had succinct certificates. 

These improvements had no effect on the worst case exponential running time for 

polynomial factorization. Finally, in 1982, Arjen Lenstra, Hendrik Lenstra and Lazlo 

Lovasz announced a.n algorithm (L3] to factor /(x) = amxm + ... + a0 E Z[x] into 

irreducible factors over Z(x] in time 

for any f > 0. Their algorithm incorporated several new ideas. As in previous 

algorithms, they factored /(x) over Z /pZ for a suitably chosen p, and raised that 

factorization to a factorization over Z /pk Z. They then defined a lattice contained in 

z+zx+zx2 + ... +zxm-1 whosebasisequals{pkxi 10:::; i:::; l}LJ{h(x)xi 10 < i < m-l}, 

where h(x) is an irreducible factor of /(x) in Z/pkz, and deg h(x) = l. By finding a "small" 

element in the lattice - using a basis reduction algorithm - they determine a factor of J(x). 

The L 3 algorithm brings many important algorithms into polynomial time. It is natural 

to ask if their algorithm can be extended to larger domains. Two domains of interest are: 

transcendental extensions and algebraic extensions. In Chapter 2 we show how to factor 

polynomials over algebraic number fields in polynomial time. The remainder of this chapter 

is devoted to filling in the necessary background for that result. 

2. Sizes of Coefficients 

It is a simple matter to show that if g(x) divides /(x) in Z[x], then g(x) is polynomial rt 

size as a function of f(x) to write down. The situation is only slightly more complex in the 

case of algebraic number fields. First we recall some definitions. An element a is algebraic 

over a field K iff a satisfies a polynomial with coefficients in K. An extension field L is 

algebraic over a field K iff every element in L is algebraic over K. It is well known that 

every finite extension of a field is algebraic; the finite extensions of Q are called the algebraic 

number fields. 

Every algebraic number field is expressible as Q(a) for a suitable a. Q(a) is isomorphic 

to Q[t]/g(t), where g(t) is the minimal (irreducible) polynomial for a. In our algorithms 

we will work with the number field in its formulation as Q[t)/g(t), although certain of our 

proofs will be in terms of Q(a). Let the degree of g(t) be m. The conjugates of a are the 
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remaining roots of g(t): 0:2 ... o:m, o: can be thought of as o:1 . By the minimality of g(t), 

these are all distinct. (Note that the fields Q(o:i) are all isomorphic.) Every element {J in 

Q(o:) can be expressed as {J = a0 + a1o: + ... + am_1o:m-1, with the a/s E Q, that is, 

Q(o:) is a vector space of dimension m over Q. This provides a third way to describe an 

algebraic number field. 

Suppose "f =go+ g20: + ... + gm-10:'"'-1 is an element in Q(o:), and 

fJ = bu + b220: + ... + bimetm-l 

{Jo: = b21 + b220: + ... + b2m0m-l 

If we define a map from Q(o:) to Q(o:) by: 

then the map corresponds to multiplication of the vector (g0 , •• • , 9m-1) by the matrix (bi3). 

If the matrices corresponding to {J and "f are B and G, then {J + "( corresponds to B+G, and 

/h corresponds to BG. The set of matrices generated in this way form a ring isomorphic to 

Q(o:). The matrix viewpoint is useful in analyzing certain algorithms. For example, that 

we can quickly test linear independence over Q of a set of elements of a number field is 

easily proved using these notions from linear algebra. Generally however, we will refer to a 

number field as Q( o:) or Q[t]/ g(t). 

It is convenient for us to consider a special class of algebraic numbers, the algebraic in­

tegers. A number o: is an algebraic integer iif it is a root monic polynomial over Z. Of course, 

any polynomial over Q can be multiplied through by its common denominator, yielding a 

(not necessarily monic) polynomial over Z. Suppose /Ji, ... , flm satisfy h(:z:) = hmx"'+ ... +ho, 

where the h;,'s are in Z. Consider the following polynomial time transformation of h(x) into 

a monic polynomial with integer coefficents: 

h:-1h{x) = {hm:z:)m + hm-1(hmx)m-l + ... + h:-1ho 

= t"' + hm-1tm-l + ... + h:-1ho 

= g(t) 

The roots of g(t), hm/Ji. .. . , hmfJm, are all algebraic integers. For the remainder of this 

discussion we assume a = a 1, a 2 , ••• , am are algebraic integers satisfying g(t), a monic 

irreducible polynomial over Z. 
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The set of algebraic integers of K = Q(O!) form a ring, frequently written OK. This 

ring is a natural extension of the integers, and many theorems about the integers can be 

generalized for the number rings. Of significance to us is Gauss' Lemma. It states that if 

f(x) is a polynomial in Z[x], f(x) can be factored as the product of two polynomials with 

rational coefficients iff f(x) can be factored as the product of two polynomials with integer 

coefficients, and can be generalized to: 

Proposition 1.1: Let f(x) E OK[x]. Then f(x) factors as the product of two polynomials 

with coefficients in K ifl' f(x) factors as the product of two polynomials with coefficients in 

OK. 

If we factor f(x), a polynomial in a number ring, the factors of f(x) also lie in the 

number ring. It is somewhat more complicated than it was in the case of the integers to 

show that factors of f(x) over OK will have short descriptions. We do so now. First we 

need to know what the ring of integers of an algebraic number field looks like. In general, 

computing a basis for the ring of integers of an algebraic number field is at least as hard as 

determining the squarefree part of an integer [Marj, and it may be as difficult as factoring. 

Fortunately it is not necessary to do. We observe the following proposition, whose proof 

appears in the appendix. 

Proposition 1.2: Let O! be an algebraic integer satisfying g(t), a monic irreducible 

polynomial over Z. The ring of algebraic integers of Q(a) is contained in (1/d}Z[a], where 

d I disc(g(t)) . II (Cl\ - a,-)~. 
i<i 

If we factor a polynomial over Z[aJlxJ, we are guaranteed that the coefficients of the 

factors lie in (1/d)Z(O!]. In particular, if we show that an integer coefficient of a factor of 

a polynomial in a number field is less than the integer "a" say, then the coefficient can be 

written as b/d, where lbl < lalldl. Thus bounding a coefficient in absolute value bounds it 

in length of description. (That the number of digits needed to write down dis polynomial 

in lg(t)I follows from the fact that disc(g(t)) = (-1) m<3-•>Resultant(g(t), g'(t)) (Be,p.161.) 

(The resultant is defined in Section 3.)) 

We consider the question of length in greater detail. If g(t) = tm+am-it"'-1+ ... +a0 , 

a, in Z, then we define the size of g(t), lg(t)I = 1 +max, ja,j. If /(x) = {J,,,x"" + ... +/Jo, 
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m.-1 

f1i = I: bi3a.1, then the size of f(x), [f(x)J = (1 + maxi,j jbijl)(l +max,; jail)m. Note 
j=D 

that the size of f(x) in Q[x) includes the size of a. as a factor. Following Weinberger 

and Rothschild, we define the size of (1, [f1D, to be the maximum of the absolute values 

of the conjugates of (1. We have defined size of polynomials diffferently from Weinberger 

and Rothschild, but their proof bounding coefficient sizes of factors requires only minor 

modification. 

Theorem 1.3 [Weinberger and Rothschild): Let (1 be a root of f(x) E Z[o:)[x], notation 

as above. Then [PD S [/(x)B- Assume that /(x) is monic, and let 

be a factor of f(x} in {1/d}Z(o:][x) which is primitive. If hi= {l/d)(c.:m-10:""-1 + ... +c,;o), 
n m 3 

then lc.:11 < m!ff/(x)D jg(t)I • 

proof: It is not difficult to see that [a+ PD < [aD + [.BB, and that fta.BD ~ [aD[.BD· 

We have noted previously that [aD S 1 +max,; ja,:j = jg(t)I. A similar argument shows 

that 

S (1 + ~a_x jb,,.1)(1 + m~x la,l)m 
~' ' 

S [/(x)J . 

Suppose h(x) I /(x) in Q(a)[x]. By Proposition 1.1, h(x) E (1/d)Z[a)[x]. Now h(x) = 
IT<x-.fli), for some S ~ {1, ... ,n}. Then [h,;Il S G)[/(x)J'. This in turn is bounded 
iES 

by [f(x)r, since 2 S (/(x)D and i < n. We have bounded H~B in absolute value, now we 

seek to bound the integer coefficients of ~. 
m-1 m.-1 

If"/ E Q(a), "/ = L r,.a.;, ri E Q. Define "Ii = L r;a!·, and define a map L: 
j=O j=O 

C"" 1-+ C"" by L(ro, ... ,rm-d = (711 ••• ,"fm.)· Note that this map is invertible and linear. 

It is invertible because it is a Vandermonde matrix formed from a.1 ••• am. We have det(L) 

= disc(g(t))112 • Let l"/100 = max, l"f,I, and jrj
00 

= max. jr,I. Since all of the r, E Q, 

"/ E Q(o:), and hl00 = hD· The action of L is multiplication by a matrix, which, by 

abuse-of-notation, we also call L, rL = "f· Thus r = 1L-1, and lrl
00 
~ hl00 1L-1100, 
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m 

where IL-1100 = rnax(I: li3). If r3 = c3/d, then lc1l < dRJ(x)rlL- 1100 • 

1 i=1 
Next we bound IL - 11

00
• By expressing L - 1 in terms of cofactors of L, we find that 

each entry of L-1 is bounded by 

m(m-1) 

(m - 1)![o:D 2 

ldet(L)I 

Therefore 
m(2-1) 

1 m![aft 
IL - loo < {disc(g(t)))1/2 

Thus 
m(m-1) 

le ·I < dltf{x)r'm![o:B 
2 = disc(g(t)) 1 ' 2[/(x)rm![aD m(~- 1 > 

1 disc(g( t)) 112 

m(m-1) 

A rough bound will do for us. We note that disc(g(t)) 112 ~ [aD 2 , and that [aft < lu(t)I. 

Thus, 
n ma 

lc1I < m![/(x)D jg(t)I 

I 

3. The Norm 

It is often easier to compute in the rationals than in the algebraic number fields, because 

of the rationals' simpler structure. A useful tool is the norm, which relates elements in the 

number fields to elements in Q. Let Q(a) be an algebraic number field, where a satisfies 

g(t), an irreducible polynomial over Q, and let f3 = a0 + a1a + ... + am_1am-t E Q(a). 

Then 

Norm(,{3) = N({J) = II(ao + aia; + ... + am-1a!"'-1) 
i 

If u is an element of the Galois group of g(t) over Q (see Chapter II, §4)1 then u(a) = a,-, 

where a1 is a conjugate of a over Q. Then 

u,-(N(,8)) = u,-(II(ao + aia; + ... + am-1a!"'-1
)) 

i 

=II u3(ao + aia; + ... + am-ia;'-1) 
i 

= II(ao + aia; + ... + am_1a;'-1
) 

i 
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since a3 just permutes the ai's; thus N(/3) E Q. The norm is multiplicative, i.e. N(1/3) = 
N(1)N(f3). We can think of a polynomial J(x) E Q(a)[x] as a polynomial in two variables 

x and a, and denote it by f 0 (x). It is quite natural to extend the definition of norm to 

polynomials in Q(a)[x] by 

N(f(x)) =IT fa,(x) 
i 

If f(x) E Q(a)[x], N(f(x)) E Q[x]. Under appropriate hypotheses, a polynomial in Q(a)[x] 

can be factored by taking the norm of the polynomial, factoring the norm over the rationals, 

and raising that to a factorization over the number field. This idea is due to Kronecker. 

We examine these . hypotheses in greater detail. 

Theorem 1.4: Let f(x) E Q(a)[x] be irreducible. Then N(f(x)) is a power of an 

irreducible polynomial in Q[x]. 

proof: Suppose not. Then N(f(x}) = C(x)D(x) E Q[x], where C(x) and D(x) are 

relatively prime. N(f(x)) = fl, f a;(x}: therefore f 0 (x) must divide C(x} or D(x) in 

Q(a)[x]. Without loss of generality, f 0 (x) I C(x), which implies that there exists g0 (x) E 

Q(a}[x] such that f 0 (x)g0 (x)=C(x}. Let a: Q(a)[x] 1-+ Q(a1)[x] be an isomorphism. Then 

a(C(x)) = C(x) since C(x) is in Q(x], but u(f a(x)) = fa;(x) and u(g0 (x)) = 9a;(x). Thus 

we have f a;(x) I C(x) for all a, which are conjugates of a. Now C(x) and D(x) are relatively 

prime. Therefore for all a,, fa;(x) Y1J(x), which implies that N(f(x)) =fl, fa,(x) = C(x), 

and consequently N(f(x)) is a power of an irreducible polynomial. I 

Theorem 1.5: Let J(x) E Q(a)[x] be such that N(f(x)) is squarefree. Then if N(f(x)) = ,_ 

fl, G,(x) is a factorization into irreducible polynomials in Q(x), then f(x) = Il, gcd(f(x), G,(x)) 

is a factorization into irreducibles in Q(a)(x). 

proof: Let 9i(x) = gcd(f(x), G1(x)). Then we need to show that each g,(x) is irreducible, 

and that each irreducible factor of /(x) appears in fl, g1(x). Let h(x) be an irreducible factor 

of f(x) in Q(a)(x]. By Theorem 1.4, N(h(x)) is a power of an irreducible polynomial. But 

N(h(x)) IN(f(x)), and N(f(x)) is squarefree; thus N(h(x)) = G1(x) for some i. 

The norm is multiplicative; thus the norm of f(x) equals the products of the norms of 

the irreducible factors of f(x). Each G1(x) is the norm of some irreducible factor of f(x). 

The G,(x)'s are all irreducible and distinct, which implies that the g,(x)'s are all distinct 
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and irreducible. Since all the irreducible factors of f(x) appear as some gcd(f(x), G,(x)) we 

are done. I 

Our algorithm should now be clear. We begin with f(x). So long as N(f(x)) is 

squarefree, we factor it over the rationals, then compute gcd's to obtain a factorization 

over Q(o:)[x]. These steps - computing the norm, factoring over the rationals, and taking 

gcd's - are all in polynomial time. The question of what to do if N(/(x)) is n0t squarefree 

remains. Kronecker [KrJ observed that so long as f(x) has no repeated roots in Q(a)[x), 

f(x) can be "twiddled" so as to make N(f(x)) squarefree. The proof we present is due to 

Trager (Tr.] 

Lemma 1.6: Let /(x) E Q(o:){x} be a squarefree polynomial of degree n, where [Q(a) : 

Q]=m. Then there are at most (m;)
2 

integers s such that N(J(x - so:)) is not squarefree. 

proof: Instead we show that there are at most (n(n-1>3Cm-l)) integers s such that 

N(f(x -so:)) has a repeated root: this will immediately imply the result. Suppose that the 

roots of /(x) are { f3i }, then the roots of N(f(x - so:)) are { f3i + so:3 }, where the a/s are 

conjugates of a. Then N(f(x - so:)) has a repeated root ift' p, + sa3 = fJk +so:,, for some 

i ":I k or j =;i: l. This would mean s = (ai - o:3)/(f3k = /3i)· (We can divide, since f(x) 

squarefree means that fJk =;i: p, for k =;i: i.) Clearly there are at most (n(n-t>3Cm-t)) such 

8. I 

The algorithm we have suggested to factor polynomials requires the computation of 

norms. The coefficients of the norm are all symmetric functions in the o:i, since N(/(x)) = 

II f a,(x). The straightforward way of calculating takes exponential time. Fortunately 
i 

there is a way around this difficulty. (The discussion which follows on resultants is from 

[vdW,§ 5.8}; we include it for the sake of completeness.) 

Let 

for h.;,, k3 EK, a field. 

h(x) = hrXr + hr-tXr-l + ... + ho 
k(x) = k.x• + ka-1x•-l + · · · + ko 

We define the reaultant, 
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... 0 hr 0 0 

ks-1 ks 0 · · · 0 hr-1 hr 0 0 

Res:i:(h(x), k(x)) = ks-2 ks-1 ks ... 0 hr-2 hr-1 h,. ... 0 

0 O O ••• ko O 0 O ... ho 

r 8 

Observe that h(x) and k(x) have common divisor ef>(x) ift' there are polynomials i(x), l(x) 

where 

h(x)j(x) = k(x)l(x) 

and deg(i(x)) < s,deg(l(x)) < r. In this case, Res:i:(h(x), k(x)) = 0, since the r + s rows 

of the resultant are not linearly independent. The resultant also vanishes if ks = h,. = 0. 

These are the only times the resultant vanishes. Let 

h(x) = hr(x - ai) ... (x - a,.) 

k(x) = ks(X - ,81) ... (x - Ps)· 

We view the coefficients of h(x), hµ, as symmetric functions in the variables a's, and 

the coefficients of k(x), k,,., as symmetric functions in the variables ,B's. The resultant is 

homogeneous of degree sin the hµ, and of degree r in the k,,,. Then R(x) =Res:i:(h(x), k(x)) 

is equal to h;k~ times a symmetric function of the a;, p3• If we consider the roots a;, P; as 

indeterminates Xi, y,-, the polynomial k(x) vanishes for Xi = y,-, since in this case h{x) and 

k(x) have a linear factor in common. Because the linear forms x, - Yi are relatively prime 

to one another, R(x) must be divisible by the product 

T = h:k: II II(x; - Y3}, 
i i 

Now k(x) =ks IT<x - y1 ). If we substitute x = x,, we see that: 
i 

IT k(x,) = k: II II(xi - Y;). 
i i i 

Therefore T = k~ II k(x,) = {-l}"sh: II h(y3), and Res:i:(h(x), k(x)) = h; II k(a1), where 
i ; 

the a, are roots of h(x). Then 

N(f(x)) = II fa, (x) = Res,(g(t), J(x, t))/ g~, 
i 
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where f(x, t) is f(x) with t's substituted in for o's. 

We have introduced the resultant because it is a computationally efficient way to 

compute the norm. We now have almost all the tools neccesary to factor polynomials over 

algebraic number fields. In the next section, we examine gcd algorithms; then we will be 

ready to factor polynomials over algebraic number fields. 

4. Computing Greatest Common Divisors 

Algebraic computation has benefitted from the fact that many classical algorithms in 

algebra and number theory are highly efficient. This includes the Euclidean algorithm; 

however, a naive implementation runs the problem of coefficient blowup. Collins, and Brown 

and Traub were able to resolve this difficulty by using the theory of subresultants. In our 

algorithm, we will need to compute gcd's of polynomials over Q and over algebraic number 

fields. 

Theorem 1.7 [Brown): Let f(x) and g(x) be polynomials over Q[xJ, of degree m and n 

respectively. Then gcd(f(x), g(x)) can be computed in O(max(lf(x)j, jg(x)l)2(max(m, n)4)) 

steps. 

Corollary 1.8: Let a satisfy a monic irreducible polynomial 7(t) over Z of degree µ. Let 

d be the discriminant of 7(t). If f(x) is of degree m and g(x) is of degree n are polynomials 

over OK[x], K = Q[t]/g(t), then the gcd(f(x), g(x)) can be computed in 

O(m((m + n)(log ll/(x)D +log llg(x)D) +µlog h(t)l)2((m + n)1 + µ3
)) 

steps. 

proof: We perform Brown's algorithm 1 (Br2) with a minor modification. We assume 

that f(x) and g(x) are polynomials in two variables, x and t, and that we compute the gcd 

first with respect to x. The way we do this is to compute the gcd of the coefficients of /(x) 

and g(x). Suppose c1(t) and d1(t) are the respective gcd's of the coefficients. Then we com­

pute gcdQ(t]/g(t)(f(x)/c1(t), g(x)/d1(t)). If Gi(x) = /(x)/c1(t), G2(x) = g(x)/di(t), then we 

successively compute the subresultants G3, ••• , Gk until the pseudoremainder (Gk-h GA:)= 

0. The coefficients of the pseudoremainders G1(x) are polynomials in t. Each time however, 
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that we compute a pseudoremainder Gi(x) we perform the first step of the gcd algorithm on 

the coefficients of Gi(x) with respect to g(t). This has the effect of reducing the coefficients 

of G;(x) mod g(t), which is precisely what we want. 

Computation of the subresultant requires O((m + n)(log [f(x)D + log [g(x)D)2(m + 

n)7) steps, since the number of variables, v = 1, the length, l = (m + n)(log [f(x)D + 

log [g(x)D), 6 = 1 and adds only a constant factor, and d and d2 are bounded by m + n. 

Similarly, the time for each pseudodivision by ry(t) is O(((m + n)(log [f(x)D +log [g(x)D) + 

µlog hl(t))2 µ 3) steps since the degrees, d2, 6 and d are less than m + n, and v, the number 

of variables, is 1. This process must be done at most min(m, n) times; wlog min(m, n). 

Thus the entire computation requires at most O(m((m + n){log [/(x)D + log [g(x)D) + 

µlogh(t)l) 2((m + n)1 + µ3)) steps. I 
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Chapter Il 

Factoring Polynomials over Algebraic Number Fields 

1. An Algorithm 

We have provided the necessary background for factoring polynomials over algebraic 

number fields. Let a be a root of g(t), a monic irreducible polynomial with coefficients in 

Z, and discriminant d, and suppose /(x) of degree n is a polynomial whose coefficients lie 

in OK, where K = Q(a). We can think of f(x) as a polynomial in two variables, x and a. iii 

(When there is no risk of confusion, we use f(x) and f(x, t) interchangeably.) 

In Chapter I, we sketched an algorithm due to Kronecker, for factoring polynomials 

over an algebraic number field. We present it here. We find h(x) = gcd(f(x), f'(x)). Then 

h(x) is squarefree, and all the irreducible factors of f(x) appear as factors of h(x}. We 

compute an integer "c" such that NQ(a)/Q(h(x - ca)) = F(x) is squarefree. Using the L3 

r 

algorithm, we factor F{x) = II Fi(x) over Q. By computing the gcdQ(a)(F,(x), h(x)) for 

i = 1, ... , r, we obtain a factorization of h(x) over Q(a). This allows us to determine a 

factorization of f(x) over Q(a). We now give an algorithm to factor f(x} over OK[x) in 

O((mn)9+t:log2+t:((mn)2 I g(t) I [f(x)D)) steps. 
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Algorithm 2.1 FACTOR 

input: g(t) E Z[t], monic, irreducible 

f(x) E Q[x, t]; f(x) with coefficients in OK, K = Q[t]/(g(t)) 

Step 1: c +- 1 

j+-0 

c(t) +- cont(f(x, t)) 

f(x) +- f(x)/c(t) 

k(x) +- gcdQ[t]/g(t)(f(x), f'(x)) 

h(x) +:- f(x)/k(x) 

Step 2: l(x) +- Rest(g(t), h(x - ct)) 

While (gcd(L(x), L'(x)) =/; 1), do: 

C+-c+l 

l(x) +- Rest(g(t), h(x - ct)) 

,. 
Step 3: Factor l(x) = II Fi(x) 

i=l 

Step 4: For i = 1, ... , r, do: 

fi(x) +- gcdQ[tJ/g(t)(Fi(x +ct), h(x)) 

Step 5: H (k(x) = 1) then return { fi(x) }, c(t) 

Else for i = 1, ... , r, do: 

While gcd{Fi(x +ct), k(x)) =/; 1, do: 

i-i+l 
J,-+,.(x) +- gcd{Fi{x +ct), k(x)) 

k{x) +- k(x)/ f;+,.(x) 

return: { f,(x) }, c(t), where /,(x) is irreducible a.nd primitive over OK(xJ, 
;+r 

where K = Q(t]/g(t), and /(x) = c(t) II /i{x) 
i==l 
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Theorem 2.1: Algorithm 2.1 computes a factorization of f(x), a polynomial of degree n 

over OK[x] into irreducible factors in OK[x]. It does so in O((mn)9+E log2+E(m2n2 lg(t)lfff(x)Il)) 

steps. 

proof: The algorithm has four major steps. Step 1 transforms /(x) into a primitive 

polynomial and computes the squarefree part of f(x), h(x). In order to factor f(x) it suffices 

to factor h(x). Step 2 computes an integer c such that N orm(Q[tJ/g(t))/Q(h(x - ct)) is 

squarefree. Lemma 1.6 guarantees that there is a c less than (degree(g(t))degree(f(x)))2 

which yields h(x - ct) which has squarefree norm. 
r 

In Step 3, we factor l(x) = N(h(x-ct)). Theorem 1.6 assures us that if l(x) = II F,(x) 
i=l 

is a complete factorization of l(x) in Q[xJ, then 

r r 

h(x - ct)= II gcd(F,(x), h(x - ct))= II f;(x - ct) 
i=l i=l 

will be a complete factorization of h(x- ct) in Q(a)[xJ. We are interested in a factorization 

of h(x) however; instead we compute / 1(x) = gcd(F;(x + ct), h(x)). We are nearly done. 

All that remains to be done is the factorization of k(x), but all irreducible factors of k(x) 

appear as factors of h(x). By computing gcd's, Step 5 computes a complete factorization of 

k(x). 

By the work of Collins, Brown and Traub on polynomial gcd's, it is clear that all of the 

above steps can be done in polynomial time. We do a careful analysis to obtain the bounds 

of the theorem. (Note that the work of Weinberger and Rothschild shows that h(x) in Step 

1, and the f;(x) in Steps 4 and 5 are polynomial size in (log RJ(x)D, log lg(t)I, m, n) to write 

down.) 

Step 1 requires n gcd's of polynomials in a single variable to obtain c(t), and one gcd 

over Q[t]/g(t) to obtain k(x) and h(x). The time required for Step 1 is subsumed by the 

time required for Steps 2 and 4. 

In Step 2, we must find a c such that N orm(Q[t]/g(t)}/Q(h(x - ct)) is squarefree. We 

compute the norm by resultants. The resultant is the deteriminant of a 2m X 2m matrix 

whose entires are polynomials in x. The integer coefficients of these polynomials are bounded 
2 

by (mn)m+1m!fff(x)f'lg(t)Jm in absolute value, and therefore the integer coefficients of 
2 

the resulting polynomial, the norm, are bounded by {2m)!((mn)""+1m!ll/(x)rlg(t)lm )2m. 
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We need to determine if N(h(x - ct)) is squarefree; we do this by computing the gcd of 

N(h(x - ct)) and N'(h(x - ct)) over Q[xJ. Now the roots of N(h(x - ct)) are of the form 

f3 + ca , where f3 is a root of f(x), and a is a root of g(t). Thus 

[/3 + caD < c[f3DffaD < (mn)2 [f(x)Dlg(t)I 

It follows that the integer coefficients of N(h(x - ct)) and N'(h(x - ct)) are less than 

((mn)2 [/(x)Dlu(t)l)mn since the polynomials are of degree at most mn. By Brown [Br2) this 

gcd requires at most O((mn(log((mn)2 [f(x)Dlu(t)l))2{mn)4 ) =0{m6n6 [f(x)DIY(t)I) steps. 

Step 3 factors l(x) = N(h(x-ct)) which is squarefree. AB before, the integer coefficients 

of N(h(x - ct)) are less than ((mn)2 ffj(x)Dlu(t)l)mn in absolute value, or require at most 

mn log(m2 n2 llf(x)Dlu(t)I) bits to write down. Thus l(x) can be factored in O{(m7+£n7+E) 

(mn log(m2n2 fff(x)Dlg(t)l)) 2+E))= O(m9+En9+E log2+E(m2n2 Hf(x)DIY(t)I)) steps. 

In Step 4, we compute at most n gcd's of polynomials. The factors determined 

in Step 3 of the Algorithm are of degree at most mn, and have coefficients of length 

at most mn log(m2 n2 llf(x)Dlg(t)I) bits, while h(x) is of degree at most n, with integer 

coefficients requiring at most n log [f{x)D + m 2 log lg(t)I bits. Thus this step can be done in 

O((mn)9 (nKJ(x)B + m 2 [g(t)D)2 )) steps. Finally the running time in Step 5 is dominated by 

that of Step 4. Our total running time is dominated by Step 3 of the algorithm, and the 

theorem is proved. I 

The running time of the algorithm we present to factor polynomials over algebraic 

number fields is dominated by the time required by the L3 algorithm to factor polynomials 

over the integers. We expect that the running time of this algorithm will be improved. To 

simplify what is to follow, we let F{log lu(t)I, m, log lf(x)D, n) be the time required to factor 

f(x) of degree n over Q[tl/ g(t), where g(t) is a monic irreducible polynomial of degree m 

over the integers, and f(x) E OK, where K = Q[t}/g(t). 
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2. Primitive Elements 

We observed earlier that an algebraic number field can be written as Q(a) for an 

appropriate a. In our algorithm, we assumed that the number field over which we are 

factoring was preseneted as Q(a). Suppose we were asked to factor f(x) E Q(a, ,B)[x); 

how would we proceed? We could calculate a primitive element for Q(a, ,8), and apply the 

Algorithm 2.1 directly. Alternatively, we might observe that 

NQ(a,{J)/Q(f(x)) = NQ(a)JQ(NQ(a,{J)/Q(a)(/(x))). 

In order to factor J(x) over Q(a, ,8), we could compute NQ(a,fJ)/Q(a)(f(x)), and then con­

sider the question of factoring that polynomial over Q( a). Such an approach leads to a 

bootstrapping technique for factoring which is, in some cases, faster than the method of 

finding a primitive element. For later applications however, we have found it useful, and 

not more costly to obtain a primitive element. 

If f3 satisfies h(x), an irreducible polynomial over Q(a), then whenever NQ(a)/Q(h(x-ca)) 

is squarefree, Q(f3 +ca) = Q(a, ,8). This is a consequence of Theorem 1.6. We prove this 

result. 

Proposition 2.2: Let a satisfy g(t), a monic irreducible polynomial of degree m over 

Z, and let /3 satisfy h(x), a monic irreducible polynomial of degree n over K = Q(a) with 

coefficients in 0 K. Then there is an integer c less than ( mn )2 such that Q( ca + /3) = 

Q(a, ,8). Furthermore, let f(x) be the minimal polynomial for ca+ ,8 over Q which has 

integer coefficients and is monic. Then IJ(x)B ::=;; (mnlh(x)Dlg(t)l)mn and deg(f(x)) = mn. 

proof: Pick an integer c such that NQ(a)/Q(h(x - ca)) is squarefree and consider 

h(x - ca) = h(x - cy, y) as a polynomial in two variables. Then a is a root of h({J- cy, y). 

Let the roots of g(t) be a1( = a), a2, ... , am. Observe that ai ::/: a is not a root of 

h(f3 - cy, y) since otherwise NQ(a)/Q(h(x - ca)) = Ili h(x - cai) would have a multiple 

root f3 , and would not be squarefree. We see that y - a = gcd(h(f3 - cy, y), g(y)). This 

means a is in Q(,8 +ca), and consequently that Q(ca + ,8) = Q(a, f3). Then f(x) = 

NQ(a)/Q(h(x - ca)) is the minimum polynomial for ca+ f3 over Q. Since the roots of f(x) 
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are { /3; + ca; I 1 S i < n, 1 S j S m }, 

ffj(x)D < {[aDi + cf3;)mn 

S (mnffh(x)Dlg(t)l)m". 

That degree(f(x)) = mn is obvious. I 

3. Corollaries 

The ability to factor allows many other computations. Questions whose solutions were 

infeasible are now in polynomial time. We list several consequences of Algorithm 2.1 before 

we turn to Galois theory. 

Corollary 2.3: Factoring multivariate polynomials over algebraic number fields is poly­

nomial time reducible to factoring multivariates over the rationals. 

proof: The algebraic property necessary for the proofs of Theorems 2 and 3 is that 

Q(a)[x) is a unique factorization domain. Since Q(a)(xi, .. . , Xn] is also, Theorems 2 and 3 

extend to these domains. To prove Lemma 4, we consider f(x 1, .. ., Xn) E Q(a)[x11 ... , Xn] as 

a polynomial in x1 with coefficients in Q(o:)(x2, ... , Xn]· (Note that since we can factor n+ 1 

variable polynomials over Q, we can compute the gcd of n variable polynomials over Q(a).) 

Let deg20 Jf(xi, ... , xn)) = n1 , and [Q{a) : QJ = m: As before, we assume f(x11 .. . , xn) is 

squarefree; otherwise we take the gcd to obtain the square free part of f(x11 .. . , xn)· Then 

N(f(xi, .. . , Xn)) has no repeated roots. Viewing f(x11 .. . , Xn) as a polynomial in x1 with 

coefficients in Q(a){x2 , ••• , xn}, it has n 1 roots. The proof of the lemma goes through as 

before, and we obtain our reduction. I 

Kaltofen [Kal],[Ka2J, and A. Lenstra [Lpc) have independently shown that factoring 

a polynomial with a bounded number of variables over the rationals is polynomial time 

equivalent to factoring a univariate polynomial over the rationals. In light of Corollary 2.3 

and the earlier [L3J result, we conclude that factoring a polynomial with a bounded number 

of variables over an algebraic number field presented as Q(a) can be done in polynomial 

time. 
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Corollary 2.4: Let a satisfy g(t), an irreducible polynomial of degree mover Z, and let /3 

satisfy f(x), an irreducible polynomial of degree n over Z[a]. Then determining if the inter­

section of Q(O!) and Q(/3) is Q can be done in time polynomial in (log lg(t)I, log llf(x)D, m, n). 

proof: Let h(x) be the minimal polynomial of f3 over Q. If Q does not satisfy h(x), (i.e. 

a and f3 are not conjugates over Q), then Q(a) n Q(/3) = Q i:tT h(x) remains irreducible over 

Q(O!). If Q is a root of h(x), then Q(a) n Q(/3) = Q itT h(x)/x - Q is irreducible over Q(O!). 

I 

Those number fields, Q(O!), which are distinguished by the fact that Q may be expressed 

as a combination of several m th roots are called the radical number fields. 

Corollary 2.5: Finding bases for radical number fields can be done in polynomial time. 

Corollary 2.6: Finding bases for algebraic number fields can be done in polynomial time. 

For a long time normal polynomials - polynomials which factor completely upon adjoing 

a single root - were most difficult to factor. In the next section, we will present a brief 

background to Galois theory. However we would like to note the following corollary: 

Corollary 2.7: Let /(x) E Z[x] be of degree n. Then f(x) can be cheeked for normality 

in time polynomial in (log lf(x)j, n). Furthermore, if f(x) is normal, computing its Galois 

group can be done in time polynomial in (log lf(x)I, n). 

4. A Brief Introduction to Galois Theory 

Let K be an algebraic number field, and let f ( x) be a polynomial with coefficients in K, 

with roots Qi, ... O!m· Then K(ai) ~ K[x]/ f(x) ~ K(a,), but in general, K(aa) =I= K(a,) 

for i =/= j. The field K(oi, ... , O!m) is called the splitting field of f(x) over K. We consider 

the. set of automorphisms of K(a1, ... , om) which leave K fixed. These form a group, 

called the Galois group of K(ai, ... ,am) over K. As we can think of these automorphisms as 

permutations on the ai, this group is sometimes referred to as the Galois group of f(x) over 

K. The Galois group is transitive on { ai, ... , am}, that is, for each pair a, and ai there is 

an element u in G, with u(ai) = a,.. Galois' deep insight was to discover the relationship 

between the subgroups of the Galois group G, and the subfields of K(o.1, ... , am)· 

Let H be a subgroup of G. We denote by K(ai, . .. , am)H the set of elements of 
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K(ab ... , am) which are fixed by H. This set forms a field, for if /3 and 1 are fixed by all 

u in H, then so are f3 ± 7, f3 X 7, and (for 1 ':I 0), {3/'y. Furthermore H fixes K so that we 

have 

Conversely suppose that K(1) is a field such that K C K(I) C K(ai, ... , am)· Then 

1 can be written as a polynomial in a 1, ••• , am., and H, the subgroup of G which fixes Kb) 

consists of those elements of G which fix 1· The relationship between the fields and the 

groups can be more formally stated as: 

Fundamental ·Theorem of Galois Theory: Let K be a field, and let f(x) with roots 

ai, ... , am, be irreducible over K[x]. Then: 

(1) Every intermediate field K(/3), K C K(/3) C K(a 1, ... , am) defines a subgroup H 

of the Galois group G, namely the set of automorphisms of K which leave K(f3) fixed. 

(2) K(f3) is uniquely determined by H, for K(f3) is the set of elements of K(a 1, ••• ,am) 

which are invariant under the action of H. 

(3) His normal iff K(ai, ... ,am) over K(f3) is a Galois extension, that is, iff the minimal 

polynomial for f3 over K splits into linear factors over K(ai, ... , am)· In that case, the Galois 

group of K({J) over K is G/H. 

(4) IGI = [K(ai, ... ,am): K), and IHI= [K(ai, ... ,am): K({J)]. 

Once the Galois group is known, the Fundamental Theorem allows us to determine all 

intermediate fields: 

Theorem A: Let the hypothesis be as in the Fundamental Theorem. H 

then the group G2 corresponding to L2 is a subgroup of the group Ci corresponding to Li, 

and vice versa. 

Theorem B: Let the hypothesis be as in the Fundamental Theorem. Then: 

(1) Let Li and L2 be two subfields of K(ai, ... , am) which contain K. Suppose H1 

and H2 are the subgroups of G which correspond to L1 and~ respectively. Then H1 nH2 

is the subgroup of G corresponding to LiL2 • 
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(2) The field corresponding to H1H2 is L1 n L2. 

We want to know the answer to the following question: What irreducible equations have 

the property that their roots can be expressed in terms of the elements of the base field K 

by means of rational operations and taking radicals. Let us be more precise. In general ya 
is a many valued function, as in, for example VT. We will require that all solutions to the 

equation in question be represented by expressions of the form: 

(*) 

(or similar ones), and that these expressions are to represent solutions of the equation for 

any choice of the radicals appearing. (If a radical appears more than once, it is assigned 

the same value each time.) 

Since roots of unity can always be expressed in terms of radicals, let us consider for a 

moment determining expressibility of a root in radicals over Q(~m), where ~m is a primitive 

mth root of unity. This will simplify the situation. (We will discuss the question of 

expressing roots of unity in terms of radicals in Chapter V.) Suppose a root ai is expressible 

in terms of radicals, and the expression is an mth. root. If m is not prime, m = m 1m 2 • 

Then taking an mth. root could be broken into two steps, first taking an m~"' root, then an 

m24 root, By further decomposition, one need only take roots of prime degree. This would 

give rise to a series of field extensions, Q(~m) = F1c C F1c_1 C ... C Fo, where F1-1 is 

an extension of F, which arises by taking a P!"' root of an element in F,_1 . Each F,_1 

is a Galois extension of F,. The accompanying lattice of groups, Go C G1 C ... C G1c = 
G, where G;. is the subgroup of G which fixes F1c-i satisfies the following two important 

conditions: G1-1 is normal in G;., and Gi/G;.-1 is of prime order. A group which satisfies 

these two conditions is called solvable. Galois showed that /(x) is solvable in radicals itf the 

Galois group of f(x) over Q is solvable. 

Fundamental Theorem on Equations Solvable by Radical1: 

(1) If one root of an irreducible equation /(x) over K can be represented by an expression 

of the form (*), then the Galois group of /(x) over K is solvable. 

(2) Conversely, if the Galois group of f(x) over K is solvable, then all roots can be 

represented by expressions (*) in such a way that the successive extensions F,_1 over F.; 

are extensions of prime degree, with F,_1 = F;.( y'a,), with a.; E F,, and x" - a, irreducible 

30 



The problem of checking solvability by radicals can be converted to a problem of 

determining if a group is solvable. On first glance, it is not obvious that this reduction 

is useful. How does one check solvability of a group? Various algorithms exist [Sims}, [FHL) 

which can do this in polynomial time given generators of the group. Since there is at present 

no polynomial time algorithm for determining the generators of the Galois group, we do not 

use this approach. An obvious approach is to divide-and-conquer, and solvability provides 

a natural way to do this. If H is a normal subgroup of G, then G is solvable ift' H and G / H 

are. Finding the right set of H's is the key to solving this problem, and is the subject of 

the next chapter. 
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Chapter ill 

Finding Blocks of lmprimitivity 

1. Background 

The Galois group, G, is a transitive permutation group on the set of roots, 

{a1, ... ,om} = n 

We define: 

G0t = { u E G I u(a) = a} 

and we call G regular if G is transitive and G0 = l for all a. A fundamental way the action 

of a permutation group on a set breaks up is into blocks: a subset B is a block ift' for every a 

in G, a(B) n B = B or 0. It is not hard to see that if B is a block, aB is also. Every group 

has trivial blocks: {a} or 0. The nontrivial blocks are called blocks of imprimitivity, and 

a group with only trivial blocks is called a primitive group. The set of all blocks conjugate 

to B: B, a2B. .. akB, form a complete block system. H B :/:- n is a maximal block of G we 

can consider an induced action of G on { B, a2B ... tJkB }. Our idea is to construct minimal 

blocks of imprimitivity, and to consider actions on the blocks. In this section we provide 

the background necessary for our algorithm. Our first theorem is the following well known 

characterization of primitive groups. 
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Theorem 3.1: Let a E fl, IOI ":I 1. Then the transitive group G on fl is primitive iff 

Ga is maximal. 

proof: Let A be a nontrivial block containing a, and suppose f3 ":I a E A. Define 

H = {a E G I a(A) = A} . 

Then Ga C H. G is transitive, thus there is a a E G with a(a) = {3. In particular, there 

is a a E H with a( a) = (3. Then Ga ;, H. Furthermore A ":I 0, so H ":I G, and therefore 

Ga is not maximal. 

Next assume there is a subgroup H of G with Ga;, H; G. We let 

A= { a(a) I a EH} , 

and we claim that A is a block. If {3 is in An rA for some r, and element of G, then 

with a11 a2 belonging to H. This means that a11ra2 are elements in Ga. But a1, a2 are in 

H. and thus r is an element of H. But Ga ~ H means that A contains some element other 

than O!. But A= rA only for r in H. We know that H ~G implies that A::/= 0. Therefore 

G is imprimitive. I 

Actually the same proof may be used to show the stronger: 

Proposition 3.2: The lattice of groups between Ga and G is isomorphic to the lattice 

of blocks containing a. 

Let a be a root of f(x). If /(x) is a normal polynomial, i.e. f(x) factors completely in 

Q(a)[x], the Galois group can be computed easily. Suppose f(x) = (x-a)(x-0!2) •• • (x-am) 

in Q(O!)[x], then the Q,;'s will be expressed as polynomials in a, o:; = p;(a). Since the Galois 

group is a permutation group of order n on n elements, for each o:, there is a unique a,; in G 

with a.:(a) = a,; = p(o:). Then a;(a) = p;(a) implies that a;(a3) = a,;(p;(a)) = P;(a;(O!)) 

= p3 (p,(a)), and the action of a; on 0 is easily determined. We can construct a group table 

for G and identify a set of minimal blocks in polynomial time. Of course, the case that 

f(x) is normal happens only rarely. But it is not much more difficult to construct minimal 

blocks in the general case. 
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Theorem 3.3: Let A C 0, and a E 0. Then 

A= n a(A) 
aEu(A) 

is a block of the transitive group G. 

proof: Let u be an element of G, and suppose A n a A =/= 0. Let a be in A, then a an 

element of rA implies a is in arA. Then A S: aA. But we know that ID.I = luAI, which 

means that A = a A. 

Next suppose f3 E Ana A. Since G is a transitive group, there is a r E G with r(a) = {J. 

Then a is an element of r-1 A and r-1aA as well as in A. This means that 

and in particular 1"A =A. Then A is a block of G. I 

Corollary 3.4: Let 

A= { fJ I u(/3) = fJ ('v'a E Ga)} 

Then A is a block of G. 

proof: We let A = A. The corollary follows immediately from Theorem 3.3, since 

a(a) = a for all a in Ga. I 

Theorem 3.1 gives a characterization of primitive groups. We offer as an alternate 

characterization one that will allow us to compute blocks of imprimitivity. 

Theorem 3.5: Let a be an element of 0, IOI =/= 1. Then the transitive group G on 0 is 

primitive iff 'v'a =I= {3, Ga Gp = G, or G is regular of prime degree. 

proof: We suppose G is not regular. 

Let A be a nontrivial block of imprimitivity, with Cl!, {J be elements of A, with a =I= {3. 

Then G0,, Gp C GA implies GaG13 C GA. Since A is a nontrivial block of imprimitivity, 

GA~ G, and we conclude Ga Gp~ G. 

Next we assume GaG fJ =/= G for some fJ =/= a. Let 

A= {a(a) I <J E GaGfJ} 
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We claim A is a block. For suppose 'Y is contained in An rA, r an element of G. Then 'Y = 

u1(a) = ru2(a), for some u1, 0'2 in GaG13. But a = a1 1ra2(a) implies that u11ra2(a) is 

in Ga. Since 0'1, 0'2 are both in GaG13, we haver is an element of GaGp; therefore A= rA, 

and A is a block. If A is nontrivial we are done. 

Suppose A= {a}. Then Ga= G13, and we let 

We know a, {3 are in A, so A is nontrivial. Furthermore G is transitive, so A ~ 0. By 

Corollary 3.4, A is a block. 

Our final case occurs when A= 0. Let r be an element of G, and suppose r(a) = 'Y· 

Then there is a a in GaG13 , with a(a) = 'Y· Thus r-1u(a) = a, and r-1u belongs to Ga. 

But this would mean that r is in GaGp, and that GaG/3 = G, contrary to assumption. We 

are done. I 

Proposition 3.6: Suppose G acts transitively on O, and Ga has no fixed points except 

a. Let A be a minimal nontrivial block containing a. Then for all '1 in A, 'Y -::/:- a, A = 

{ u(a) IO' E GaG1 }. 

proof: Let 'Y be in A, 'Y-::/:- a. Then we let A = { u(a) I u E GaG1 }. Since GaG1 C GA, 

we have AC A. 

Next, suppose {3 is an element in An rA for some r in G. Then {J = u1(a) and 

P = ru2(a), with u11a2 elements in GaGp. But a= u1 1ru2(a) means that u11ru2 is an 

element of G0 • Then r belongs to GaG13, and TA= A. Therefore A is a block. But A is a 

minimal nontrivial block containing a; therefore A.= A. I 

Proposition 3.6 provides the backbone of our algorithm. Since the roots of the ir­

reducible factors of f(x) form the orbits of Ga, the orbit structure of Ga can be determined 

from a factorization of f(x) in Q(a)[x]. Similarly we can deduce the orbit structure of G/J 

from a factorization of /(x) in Q(,8}(x]. By considering a factorization of /(x) in Q{a, ,IJ)(x], 

we can tie together the orbit structures of Ga and Gp in such a way as to determine if 

G0 G/J = G. By transitivity, a can be fixed, and we need loop only over /J. 

Let /(x) be an irreducible polynomial over Q, with roots ai, •. • , lkn· Suppose 

f(x) = (x - a:i)g2(x) .. . gr(x) in Q{o1)(x], and 

f(x) = (x - os)h2(x) .. . hr(x) in Q(a.)[x], 
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with g1(x) = x - a1, and h1(x) = x - a 8 • We consider G, the Galois group of /(x) over 

Q, acting on the roots of f(x). We propose to determine a minimal nontrivial block of 

imprimitivity containing a, if it exists. Observe that the factorization of f(x) over Q(as)[x] 

is the same as the factorization of f(x) over Q(o:i)[x], with a 8 's substituted in for a 1's. 

Suppose (x-pi(ai)) is a linear factor of f(x) in Q(a1){x]; then Pi(x) = (x-ai) is fixed 

by Ga 1 • We know by Corollary 3.4 that the linear factors of J(x) form a block. Suppose 

the block A consists of the roots a 11 ••• , ak. Let us consider the induced action of GA on 

A. Since G is transitive on a1, ... , 0:11 , GA must be transitive on ai, ... , ak. The action 

of GA on A can be determined, since for i = 1, ... , k, ai = Pi(ai). Let <J be in GA and 

let a be the induced action of a on o:i, ... , ak. Then if a(a1) = a1 = P1(ai), we have 

a(ai) = u(pi(a1)) = p3(Pt(a1)). We determine the group table of the induced action of GA 

on A, and find a minimal block r of GA which contains a 1 in polynomial time [At.] 

Finally we observe that r is a block of G. For supposer n rr # <P for some r E G. 

Since A is a block of G, and r C A, it must be the case that rr C A. But r is a block of 

G A1 thus r n rr = r. 
Next suppose /(x) has no linear factors in Q(ai)[x] except (x - at). Let us consider a 

factorization of f(x) over Q(ai, o:8 )(x] for 0:8 :I o:1. This will tie together the factorizations 

of f(x) over Q(o:1)[x] and Q(a.)[xJ. In particular, this will enable us to compute the block 

fixed by Ga 1 Ga •. 

Define a set of graphs r si s = 1, ... , r with vertices V, and edges E by: 

V = { Yi(:z:), i = 1, ... , r} U { ~(x), 1 = 1, ... , r} · 
E = { (gi(:z:), h3(x)) I gcd(gi(x), h1(:z:)) :I 1 over Q(o:1, a.)} 

Then we compute the set of vertices connected to g0(:r:). Let 

g(x) = IT Ui{:z:) , 
111(:1:) is 

connected to !lo(:i:) 

and let As = { ai I ai is a root of g(x) }. We claim A.= { a(a1) I <J E Ga, Ga.}. To prove 

this we observe the following: 

Lemma 3.7: Let O:i be a root of g,;(:z:) in Q(ai)(x]. Then the roots of g,;(:z:) are precisely 

Ga1 (ai)· 
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It follows immediately that gcd(g,(x), h3(x)) -:/:- 1 iff Ga 1 (ai) n Ga.(a3) -:/:- 0, where a, 

is a root of g,(x) and a3 is a root of h3(x). This implies: 

Lemma 3.8: Let a3 be a root of g1(x), a factor of f(x) in Q(a1)lxJ. Then 

iff g3(x) is connected to go(x). 

If we compute rs for s = 1, ... , r, we are cycling over all a, -:/:- a 1 which are roots 

of f(x) and computing Ga1 Ga.· By Lemma 3.6, this will give us a minimal nontrivial 

block containing ai, if one exists. In the next section we present an algorithm to compute 

the minimal blocks of imprimitivity, along with a proof of correctness and an analysis of 

running time. 

2. An Algorithm 

Algorithm 3.1 BLOCKS 

input: f(x) E Z(xJ, f(x) irreducible of degree n over Z 

Step 1: Find c :j; 0 such that Nz(J(x-cz)) is squarefree and factor Nz(f(x-cz)) over 

Q, 

' N 11(J(x - cz)) = II G,(x - cz) 
i=1 

[At most n3 e's in Z do not satisfy this condition.] 

Step 2: For i = 1. . .l do: g:(x) +- gcd(J(x), G1(x)) over Q[zJ/ /(z). 

(Thus /(x) = Il g.:(x) is a complete factorization of J(x) over Q[zJ/ /(z).J 

Step 3: If f(x) has more than one linear factor, compute the induced action of Galois 

group and Cayley table, and find maximal block by inspection. Then 

nz(x) +- Ila,eblock(x - a,), and 

return n•(x) 

[In this case, the fixed points Corm a block, and the induced action of the 

full group on the block can be determined by substitutions.] 
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Step 4: For each G1(x - cz) a factor of N 2 (f(x - cz)) do steps 5-9: 

Step 5: q,-(t) +- constant term of gcd(g,-(x), f(t - ex)) over Q[t, x)/G1(t) 

p,-(t) +- t - cq,-(t) 

[This computes y and z in terms of a primitive element for the field 

Q[y, z]/(g(y)g:(z)) = Q[tJ/G,(t).J 

Step 6: For i = 1. . .l, do: 

gf(x) +- g~;(t)(x) 

gf(x) +- Y!;(t)(x) 

[This rewrites the factorizations of f(x) over Q[z]/ f(x) and Q[y)/ f(y) as 

factorizations over Q[t)/G,-(t).J 

Step 7: Compute the graph r, = (V1 1 Ej), with vertices, Vj·, and edges, E,- given 

by: 

V,· = { g~(x)} U { gZ(x)} 

E1 = { (g~(x), gk(x)) I gcd(g~(x), gk(x)) ~ 1} 

Step 8: Compute Y,- = { i I gf(x) is connected to gi(x) = x - P1(t) in r,} 

Step 9: B,-(x) +- II g:(x) 
iEY 

Step 10: B(x) +- B,(x), of minimal degree 

return B 2 (x) E Q[x, z)/ /(z), a polynomial whose roots form a minimal block of im­

primitivity containing z 

Theorem 3.9: If f(x) E Z[xJ or degree n is irreducible, Algorithm 3.1 computes B(x) a 

polynomial in Z(a)[xJ whose roots a 1 •• • ak, are elements or a minimal block of imprimitivity 

containing a. It does so in the time required to factor /(x) over Q[z]/ f(z) and to calculate 

n3 gcd's of polynomials of degree less than deg(f(x)) and with coefficient size less than 
2 

IJ(x)f' over a field containing two roots of /(z). 

proof: By Proposition 2.2, Step 1 determines a primitive element for Q[y, z]/(f(z), gt(y)). 

By Theorem 2.1, Step 2 factors f(x) = Il g,(x) over Qlz)/ /(z). In Corollary 3.4 we 

demonstrated that the fixed points of Ga (which correspond exactly to the constant terms 

of the linear factors of f(x) over Q[x, z]/ f(z) form a block. The induced action of G11 on the 
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minimal block can be determined from the Cayley table. Step 3 also computes a minimal 

block (which is trivial) for the case when G is a group of order p acting on p elements. Step 

4 merely expresses the roots y and z of f(x) in terms of a primitive element for the field 

Q[t]/G1(t) = Q[y,z]/(f(z), gf(t)); a proof of correctness appears in (van der Waerden, p. 

139.] Step 5 rewrites the factorization of f(x} in Q[z]/ f(z) in terms of Q[t]/(G1(t)), and also 

expresses a factorization of f(x) over Q[y]/ f(y} in terms of Q[t]/G1(t). Step 7 computes 

the graph r 1. By Lemma 3.8, Step 9 yields a polynomial whose roots form the block of 

imprimitivity 

Using Proposition 3.6 we conclude that Step 10 gives a polynomial whose roots form a 

minimal block containing a 1• 

Let us now analyze the running time. Recall F(log jg(t)I, m, log ilf(x)B, n) is the time 

required to factor a polynomial of coefficient size «J(x)B and of degree n over OK[x], where 

K = Q[t]/g(t), and g(t) is a monic irreducible polynomial of degree m over Z. We let 

GCD(log [f(x)B, k, log [g(x)B, l, log lh(t)I, m) be the time required to compute the gcd of two 

polynomials f(:z:) and g(:z:) in OK[x] of coefficent size [f(:z:)D and [g(x)D and of degree k and 

l respectively, where K = Q[t]/h(t), and h(t) is a monic irreducible polynomial over z. 
Let deg(f(x)) = n. Step 1 of the algorithm is a preprocessing step for factoring /(x} 

over Q[zl/ /(z). Step 3 requires at most n substitutions and polynomial divisions in addition 

to the time required to find blocks in a group of order n. This can be done in O(nlogn) 

steps [At]. We cycle through Step 4 at most O(n) times. Computing p3(t} and q,.(t} requires 

one gcd over Q(tl/G,-(t). Step 6 can be done in O(n) steps. Step 7 is again a gcd, done at 

most O(n2) times. Step 8 can be done in O(n2) steps [AIIU). The overall running time is 

bounded by: 

o(F(log lf(x)j, n, log [f(:z:)D, n)+n3GCD(log [(f(x))J"\ n, log ((f(x))r
2

, n, log lf(x)I, n)) 

or, more simply, the time needed to find a minimal block of roots of J(x) is the time needed 

for one factorization of f{x} over Q[z]/ f(x), plus the time needed for n 3 gcd's of factors of 

f(x) over a field containing two roots of f(x). I 
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The Fundamental Theorem established the correspondence between fields and groups, 

and we know now that the lattice of groups between Ga and G is isomorphic to the lattice 

of blocks of G which contain a. In the next chapter we see how to use the minimal blocks 

of imprimitivity to obtain a tower of fields between Q and Q(a). Having this tower of fields 

will enable us to check solvability of the Galois group in polynomial time. We present a 

generalization of Algorithm 3.1 in the next section. 

3. A Corollary 

Another way to think about Algorithm 3.1 is that it computes the intersection of Q(ai) 

and Q(a5 ). Observe that Ga 1 is the subgroup of G belonging to the subfield Q(ai), and 

that Ga. is the subgroup of G belonging to Q(a5 ). Then Ga, G0 , is the subgroup of G 

belonging to Q(a1) n Q(as) (Theorem B, Chapter 2.] In a similar way we can compute 

Q(a) n Q(/3) even when a and f3 are not conjugate c:iver Q. 

There is a difficulty if we view the intersection in terms of the minimal polynomials for 

a and f3 over Q, since the minimal polynomial for f3 over Q may factor over Q(a), in which 

case the intersection is ambiguous. In order for the problem to be well-defined, we must 

have a description of a field containing a and (3. The description Q(:z:, y)/(f(x), h(y)), where 

a satisfies the irreducible polynomial f(x) over Q, and f3 satisfies the irreducible polynomial 

h(y) over Q(x]/ J(x) is well-defined. We present an algorithm which, given the polynomials 

f(x) and h(x), computes the intersection of Q(a) and Q(f3). 

Suppose (Q(a) : Q] = m, and let a2, ... , am be the conjugates of a = a1 over Q. 

Suppose also that f3 satisfies h(x), an irreducible polynomial over Q(o), and assume that 

the conjugates of f3 over Q(o) are {311 •• • , (3.,., with f3 = {31 • By Proposition 2.2, we know 

there exists a c less than (mn)2 such that whenever H(x) = Na(h(x - ca)) is squarefree, 

then H(x) is irreducible. If 'Y = f3 +co, then Q{"Y) = Q(a,{3). Furthermore, since the 

degree of H(x) is mn, and 

H(x) =II IT(x - ({33 +ca,)), 
' 3 

the roots of H(x) are precisely { {33 +ca, I j = 1, ... , n; i = 1, ... , m }. 

Let Q(p) be the splitting field of H(x) over Q, and let G be its Galois group. Then 

Q(p) = Q( a11 ... , am, /31, ... , (3.,.), and G0 and Gp are subgroups of G. They are the 
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subgroups belonging to Q(a) and Q(/J) respectively. Consider 

H(x) = ii(x) ... jk(x) in Q(a)[x], and 

= ki(x) ... k,(x) in Q(,B)[x], 

where the j,(x) and ki(x) are irreducible factors of H(x) over Q(a) and Q(,8) respectively, 

and i1(x) = h(x - ca). 

Let us define a graph r with Vertices, V, and Edges, E by: 

V = {J~(x)} U { k,.(x)} 
E = { (J~(x), k3(x)) I gcd(j,;(x), k3(x)) =/= 1} 

Again we compute the set of vertices ji(x) connected to j 1(x), and we let 

I(x) = II 
i• (:r:) is connected toi1 (:r:) 

and let A= {"Ii I 11 is a root of I(x) }. We claim A= { u('yt) I u E GaG/J }. We observe: 

Lemma 3.10: Let "ti be a root of j,(x) in Q(a)[x]. Then the roots of j1(x) are precisely 

Gab,:). 

It follows immediately that gcd(j,(x), k3(x)) =/= 1 ift' Gan G/J =/= 0, where 11 is a root of 

j,(x) and "ti is a root of k3(x). This implies: 

Lemma 3.11: Let a, be a root of j,(x) in Q(a)[z]. Then ai EA= { u(ai) I u E GaGfJ} 

iff g1(x) is connected to ii(x). 

To compute the intersection of Q(a) with Q(,8), we factor H(x} over Q(a) and Q([j), 

and compute a connected component in the same way as we did in Algorithm 3.1. This 

gives us the algorithm INTERSECTION, which runs in polynomial time. 

Algorithm 3.2 INTERSECTION 

input: f(x) E Z(x) and h(x) E Q[z]/ /(z), where f(x) is monic and irreducible over 

Q, and h(x) E Q[z)/ /(z} is an irreducible factor of g(x), which is a monic 

irreducible polynomial over Z 

Step 1: Find c =/= 0 such that N 11(h(x - cz)) is squarefree and factor: 

" H(x) = Na(h(x - cz)) = IT Jt(x) over Q(z]/ /(z}, 
i=l 

[At most (mn):2 e's in Z do not satisfy this condition, where m=degree(/(x}) 

and n=degree(h(x)).] 
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Step 2: Factor H(x) = II k:1(x) over Q[w]/g(w) 
i=l 

Step 3: q(t) +- constant term of gcd(f(x), g(t - ex)) over Q[t, x]/ H(t) 

p(t) +- (t - cq(t)) 

[This computes z and w in terms of a primitive element for the field 

Q[z, w]/(f(z), h(w)) which is isomorphic to Q(tJ/H(t).] 

Step 4: For i = 1, ... , l, do: 

i:(x) +- i!(t)(x) 

Step 5: For j .= 1, ... , l, do: 

kj(x) +- k~(t)(x) 

[This rewrites the factorizations of H(x) over Q[z]/ f(z) and Q[w]/g(w) as 

factorizations over Q(t]/ H{t).] 

Step 6: Compute r = (V,, E3 ), a graph with vertices, V3, and edges, E3 given by: 

V = {jf(x)} U { kj(x)} 

E = { U:(x), kf'(x)) I gcd(j:(x), h:V(x)) f:. 1} 

Step 7: Compute Y = { i I ;:(x) is connected to j~(x) = h(x) in r} 

Step 8: B(x) +- II ;:(x) 
iEY 

return: B(x) E Q(x, z]/(f(z)), a polynomial whose coefficients determine the field 

Q[x]/ J(x) n Q[x]/g(x) 

It follows from Lemmas 3.10 and 3.11 that Algorithm 3.2 correctly computes a polyno­

mial whose coefficients determine the intersection of Q[x)/ f(x) with Q(x]/ g(x). The running 

time of Algorithm 3.2 is dominated by the time required by the factorisation required in 

Step 2. The proof is quite similar to that of Theorem 3.9, and we do not repeat it here. 

Theorem 3.12: If f(x) in Z[x] is monic and irreducible of degree n, and h{x) E 

Q(z, x]/ f(z) is an irreducible factor of g(x), a monic irreducible polynomial over Z, then 

Algorithm 3.2 determines the intersection of Q(x]/ f(x) and Q(:r:]/g(x), where Q(x]/ f(x) and 

Q[x)/g(x) are contained in Q(x, y]/(f(x), h(y)). Suppose the degree of h(:r:) is m. Then 

Algorithm 3.2 works in O(F(log (/(z)B, n, log l(N(Q(•)//{•))/Qh(:r: - cz))I, (nm)2)) steps, where 

c is an integer less than ( mn )2 • 
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Chapter IV 

Determining Solvability 

1. The Fields Between Q and Q(a) 

Let f(x) be a monic irreducible polynomial over Z with roots ai, ... , am, and Galois 

group G. Suppose B1 = { O!i, ••• , O!k
1 

} is a minimal block of imprimitivity containing a 11 

and let 
k1 

hi(x) = II (x - a;)= x"1 + fJ1c 1 -1x"1
-

1 + ... + {J0 
i=1 

We define Fi= Q(fJo,f3i 1 ... ,f3k1 -i). In Lemma 4.1 we show that F 1 is the fixed field of 

GB1 • Then the minimum polynomial for a= a 1 over F 1 is h1(:z:). This is easy to see, for 

and 

(2): a1 satisfies hi(x), a polynomial over Fi. 

We first observe that since B1 was chosen as a minimal block containing ai, the Galois 

group of Q(O!i) over Q((elementary) symmetric functions in { ai, ... , a1c
1 

}) acts primitively 

on the roots of h1(x). This is shown in Lemma 4.1. Next we consider a tower of fields, 

F,, between Q and Q(a), where a is a root of f(x) and has conjugates a2, ... , am, with 
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a= 01. The subgroup of G determined by Q(o:) is Ga. Each subfield between Q and Q(o:) 

corresponds to a subgroup of G which contains Ga. Finally, each subgroup corresponds to 

a block of irnprimitivity containing o:. This statement can be made more precise. 

Lemma 4.1: Let K be a field, and let f(x) with roots ai, ... , Om be an irreducible poly-

nomial over K[x]. Let B = { ai, ... , ak} be a block of the roots. Then K(ai, .. . , am)Gs = 
K(symmetric functions in { a 1 , ... , ak} ). 

proof: We proceed by induction. Assume that B is a maximal block of roots con­

taining ai, and let F denote K(ai, .. . , o:m)· First we note that [F : K] = [G/GB] = 
IOl/JBI = m/k. The first equality follows from part (4) of the Fundamental Theorem 

of Galois Theory. The second is a consequence of the First Isomorphism Theorem ap­

plied to a mapping from G onto an induced action on B, a2B, .. . , u,B, a complete block 

system. It is clear that K(symmetric functions of { o:1, ... , o:k}) C F. We show that 

[K(symmetric functions of { 0:1, ... , ak }) : K] =m/k to complete the proof. 

n 
Gs 

n 

n 
G 

K(a) 

I 
K(symmetric functions in { o:1,, .. , 0:1c }) = K(pi) 

K(symmetric functions in { 0:1J ... , o:31c }) 

K 

Figure 4.1: The Fields Between Kand K(a) and Corresponding Groups 

Let a 0, all ... , ak be the symmetric functions evaluated at { o:i, ... , 0:1c }. Let p1 = a0 + 
c1a1 + ... + c1cak be a primitive element for K(symmetric functions in { o:i, ... , 0:1c }) over 

K, where the Ci's are in Z. (Note that the e's can be chosen less than m3.) H we let Pi= 
m/k 

ui(P1}, then p(x) = II (x-pi) has coefficients over K. H q(x) is a factor of p(x) over K, then 
i=l 
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q(x) = IT(x-p,-). In this case, a,-
1
Bu ... ua,-,B form a block, contradicting the maximality 

,-
of the block B. We conclude that p(x) is irreducible. Thus Pt satisfies an irreducible 

polynomial of degree m/k over K, and [K(symmetric functions in { a1 .. . a1c }) : K] = m/k. 

Now any block will be maximal over an appropriate subfield; assume inductively that 

B is a maximal block over L = K(symmetric functions in { a 1 •. • ajk }). Let H be the 

induced action of G on { a 1 .. . a,-1c }, B = { a 11 ••• , a;} be the maximal block, and F = 
L(a1, ... , a31c)HB. As before, [F : L] = IHl/IHal = I{ a1, ... , a;k }I/I{ a1 .. . a1c }I = j. If 

we define p1 as a primitive element for F, it will satisfy an irreducible polynomial of degree 

j over L, by the same arguments as before. Thus 

F = L(symmetric functions in { a 1 •• • a1c }) 

= K(symmetric functions in { a 1 •• • a 31c }, symmetric functions in { a1 .. . a1c }) 

= K(symmetric functions in { a1 .. . a1c }) 

since { a 1, ... , a1c} is a subblock of { a 11 ••• , a31c }. I 

This means that all the fields Fi, Q = F1c ~ F1c-t k ... k F 1 ~ Fo = Q(a) 

can be described as Q(symmetric functions in elements of B), where B is a block of roots 

containing a. We have already observed that if Bis a minimal block, and if G1 is the Galois 

group for f(x) over Q(symmetric functions in elements of B), then G1 acts primitively on 

the roots of f(x). We would like to find a set of elements p1, i = 1, ... , k, such that if 

9i(Y) is the minimal polynomial for p; over Q(Pi+1), then the Galois group Gi of g.;(y) over 

Q(Pi+i) acts primitively on the roots of gi(y). These elements Pi will be primitive elements 

for Fi over Q, i.e. F, = Q(Pi)· We already have a description of the F1 from Lemma 

4.1; what we seek is a succinct description. We would like a set of p1's whose minimal 

polynomials over Q have polynomial length coefficients. (Since Q(p1) C Q(a) for each i, 

we know that the degree of g;(y) is less than n.) We will describe the p./s in terms of their 

minimal polynomials, hi(x), over Q. There is an inherent ambiguity as to which root of 

~(x) we are referring, but this difficulty is resolved by linking the fields Q(pi) and Q(Pi+1) 

through the polynomial g1(y). 

Of course we could determine F1 by calling BLOCKS on f(x). Then if 

hi(x) = x"1 + /31c 1 -1x"1
-

1 + ... +/Jo 
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is the polynomial described earlier, F1 = Q(/30, .. . , /3k-i}, and P1 = /30 + c1/31 + ... + 
ck-1/3k-li each Ci E Z, can be quickly found by Proposition 2.2. 

Let CJ 1, ••. , CJj E G be such that CJ1Bli ... , CJ3B11 where CJ1 is the identity, form a 

complete block system for G acting on { 0!1, ... , O!m }, and suppose that g1(x) is the minimal 

polynomial for p1 over Q. Then g1(x) is of degree m/k1 = j. We know that a(h1(x)) = 

hi(x) for CJ in G1. If Oi = ai(P1), i = 1. . . j, then CJ1(h1(pt)) = O, implies that CJ1(pi) = O, 

is a root of h1(x). Applying BLOCKS to g1(x), returns a polynomial: 

whose roots {Pt, ... , a k2 pi} form a minimal block containing Pt. Then 

F2 = Q(f3k2-11 · · ., /30) 
= Q( symmetric functions in { el 1 ••• , e j } ) 

= Q(symmetric functions in {symmetric functions in { ai, ... , ak1 }, ••• 

. . . , symmetric functions in CJ3{ all ... , ll!k1 } }). 

But Q(/3k2-i, ... , /30) is a cumbersome way to name F2; we would like to name F2 in terms 

of the original roots of f(x), ai, ... , am. Fortunately, there is a simple way to do this. 

Lemma 4.2: Let f(x) E Q[x] be irredueible with roots Q = ai, ... , am, and Galois group 

G. Let Q(p), Q(r) be subfields of Q(O!), with Q(r) C Q(p), and let h1(x) be an irreducible 

factor of f(x) in Q(p)lx]. Then the roots of h1(x), a 1, ... , 0!1;
1

, form a block Bi. The set of 

roots of Nq(p)/Q(.,.)(h1(x)) form a block of O!lJ ... , am which contains B1. Let g(x) be the 

minimal polynomial for p over Q(r). If the Galois group of g(x) over Q(r} acts primitively 

on the roots of g(x), the roots of NQ(p)/Q(.,.)(h1(x)) form a minimal block containing B1. 

proof: Because the fields Q(r),Q(p) are subfields of Q(a), we know that Q(p) = 

Q(symmetnc functions in elements of B), Q(r) = Q(symmetric functions in elements of B2), 

and where B,B2 are blocks of { ai, ... , am}. However h1{x) is irreducible over Q(p)(x) with 

roots ah ... , a1i; 1 , so it must be the case that B = B1. Furthermore, Q(r) C Q(p) implies 

Bi C B2• We consider the induced action of G on B2, and let CT1Bi, •• • , <1k 2 B1 be a complete 

block system for B1 in B2 , with a 1 equal to the identity, and the o/s in G. 

Then if g(x) is the minimal polynomial for p over Q(r), 

k3 

g(x) = II ai(x - p). 
i=l 
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In particular, 
k2 

NQ(p)/Q(.,.)(h1(x)) = II ui(h1(x)) 
i=l 

=II u,.( II (x - ai)) 
j o;E m1n1m1M 

block ctg 0=01 

=II II u1(x - ai) 
j o;E minim4l 

block ctg a=o1 

k1k2 

=II X-Qi 

i=l 

will give a polynomial whose roots a 1, ••• , a11; 1 k 2 are a block of a 1, ••• , ctm which contains 

a 11 ••. , ctA;
1

• If the Galois group of g(x) over Q(r) acts primitively on the roots ofg(x), then 

Bi is a minimal block of B2. I 

This lemma allows us to compute the blocks of a 11 ••• , am directly. Recall that the 

coefficients of B(x), /3k2 -11 ••• , /30 are elements of Q(yl/ hi(y) = Q(p), and that Q(,8k2-1, ••• , Po) 

= Q(r) is a subfield of Q(p). If 'Yo, ... , 'Yik-t are the symmetric functions in ai, ... , ctk1 A: 2 , 

again we can determine 

where Q(p2) = Q('Yo, ... , 'YA:1 1i; 2 ), and the c/s are integers less than n4. We let h2(x) be the 

minimal polynomial for p2 over Q. 

We have found fields Fi = Q(p1) - Q[xJ/h1(x) - Q{x, y)/h2(x)g1(Y) and F2 -

Q(p2) = Q!xl/ h2(x) such that 

1) the Galois group of f(x) over Q(p1) acts primitively on the roots of f(x), 

2) the Galois group of hi(x) over Q(p2) acts primitively on the roots of hi(x). 

We may now repeat this process with h2(x) playing the same role as h1(x) did, and 

determine a minimal block of roots of h2(x). Iterating this process until BLOCKS (~(x)) 

returns a polynomial in Q(x], determines a set of fields Fi= Q(pi), i = 1, ... , k, such that 

if gi(Y) is the minimal polynomial for Pi over Q(Pi+i), and Gi is the Galois group of 9i(Y) 

over Q(Pi+i), then Gi acts primitively on the roots of g,(y). Furthermore Fo = Q(a), and 

F"= Q. 
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We give a simple argument to show that the hi(x) have succinct descriptions. Although 

the bound we give is not best possible, it is an easy argument which demonstrates that 

the polynomials have polynomial si~e descriptions. The polynomial f(x) is monic with 

coefficients in Z, which means that ai, .. • ,am are algebraic integers. Since any sum or 

product of algebraic integers is also an algebraic integer, we know that the roots of h1(x) 

and h2(x) are algebraic integers. Therefore it suffices to show that ff hi(x)B is polynomially 

bounded in order to know that hi(x) is polynomially bounded in length of description. Now 

hi(x) is the minimal polynomial for Pi = f3o + c1(31 + ... + ckf3k over Z, where the (3; are 

symmetric functions of the a 1 , ••• , a"', and k < m. Then 

I.: II a· ···a· D 
'1 '"" 

all subsets of °'';E 
k distinct roots { ai, ... ,am} 

II a· ···a· D '1 l.t 

°''i E{ Oli, .. .,am} 

< 2"'ffaB"'· 

This yields the following bound on the Pi 's: 

If 

ffPi:D ~ m ·max lci:I max fff31B ~ m · m4 
• 2"'ffaD"' = M. 

' ' 

~(x) = II 
p; a con:;vgatc 
of Pi ovcrQ 

(x- P;), 

we conclude that ffhi(x)D ~ (2M)"'. Using Weinberger and Rothschild [Theorem 1.3), we 

can also obtain a bound on the coefficients of g1(y). Recall that 

g,(y) = II (11- a,) 
a, a conjvgah 

of a1 011cr Q(p,) 

Thus if g;{y) = yk + "/k-lYk-t + ... +'Yo, the 'Yi's are algebraic integers, and are elements 

of Q(p,). With 

( )

1-1 

'Yi= ! L 9i;P; 
d . 0 

1= 

and d = disc(h,(x)), by Theorem 1.3 we have 

IY1;I < m!fff(x)D"'lh(x)j"'
3 

< m!(f(x)J
3
"'

3

, 
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a rough bound which is sufficient for our purposes. Since llPi:D < M, 

2 m.3 
disc(hi:(x)) ~ (2M)'"' ~ llf(x)B , 

and consequently, 
m" 

llui:(x)B < m!llf(x)B · 

We have shown: 
2m2 

3)lhi:(x)I < IJ(x)I for i = 1, 2, and 
4 

4)llu1(x)D < m![f(x)D'"' . 

In the next section we present an algorithm for determining the hi:(x) and gr:(y), along 

with a proof of correctness and an analysis of running time. 

2. An A Igo rithm 

Algorithm 4.1 FIELDS 

input: f(x) E Z[x], a monic, irreducible polynomial 

Step 1: i +- 1 

ho(x) +- f(x) 

c.s(t) +- BLOCKS(/(z)) 

Uo(t) +- tl + Ct-1(z)tl-l + ... + Co(z) +- C.s(t) 

[C .. (t) will be the polynomial whose norm we compute in order to determine 

the chain of fields.] 

Step 2: While c.s(t) i, Q[t), do steps 3-17 

Else go to return 

Step S: tk + ak-1(z)tk-l + ... + ao(z) +- C .. (t) 

Step 4: ,B(z) +- ao(z) 

Step S: For j = 1, ... ,k-1, do: 

While a3(z) ~ { 1, ,8(z), ... , ,8'"'-1(z) }, do: 

,B(z) +- ,B(z) + a3(z) 

(This computes an element ,8(z) such that Q[ak-i(z), ... , ao(z)J/ /(z) ~ Q[P(z))/ /(z).] 
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Step 6: l-+-- 1 

Step 7: While { 1, /J(z), ... , 13L(z)} is a linearly independent set over Q, do: 

l-+-- l + 1 

Step 8: Else if pl(z) + di_1pi-1(z) + ... +do = 0, 

h,;(x) -+-- xi+ di-1xL- 1 + ... +do 

(This determines the minimal polynomial for P(z) over Q; we have Q[P(z)]/ f(z) = 
Q[xj/h,;(x).] 

Step 9: For j = O, ... ,l-1, do: 

Find p1(x) such that p3 (/J(z)) = c3(z) 

Step 10: g,;-1(Y)-+-- yl + PL-1(x)yl-l + ... + Po(x) 

[Then Q[tl/hi_i(t) ~ Q(x, y]/h,;(x)gi-1(11).J 

Step 11: For j = O, ... , k-1, do: 

Find q3(x) such that q3(,B(z)) = a;(z). 

Step 12: c:i:(t) - tk + qk-i(x)tk-t + ... + q0(x) 

(This expresses c•(t), a polynomial in Q[P(z)l/ J(z) ~ Q[xj/hi(x) in terms of 

the element :z:.] 

Step 13: B:z:(t) - BLOCKS(h,;(x)); 

tl + bi-1(x)t'-1 + ... + bo(x) - B:i:(t) 

Step U: For j = 0, ... , l - 1, do: 

c;(z) - b;{,B(z)) 

(This will allow us to express B:z:(t) as a polynomial with coefficients which are 

polynomials in z and which has root x.] 

Step 15: B•(x) +- xL + ci-1(z)zt-1 + ... + co(z) 

Step 17: i -+-- i + 1 
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return: { hi(x), Yi-1(Y) I i = 1, ... , r }, where 

1) Q[x, y]/ hi(x)go(Y) ~ Q[z]/ f(z) 

2) hi(x) E Q[x], and 

Yi-t(Y) E Q[x, y]/hi(x), for i = 1, ... , r 

3) The Galois group of g1_ 1(y) over Q[x, y]/h1(x) acts primitively on the roots 

of g;-1(Y) 

4) The Galois group of hr(x) over Q acts primitively on the roots of hr(x). 

Theorem 4.3: Let /(z) E Z(z) of degree m be irreducible. Algorithm 4.1 computes 

{ h;, g,_1 I i = 1, ... , r} which satisfy conditions 1,2,3 and 4 above. Let BLOCKS (g(x)) 

be the running time for BLOCKS on input g(x). Then the running time for FIELDS is 

O(logmBLOCKS(g(x))), where degree(g(x)) ~ m, and llg(x)D ~ m!IJ(x)D"'
3

• 

proof: We consider the first iteration of Algorithm 4.1. Step 1 computes c•(t) = 

t1 + c1-1t1- 1 + ... + co(z), whose roots z1, ... , z1c form a minimal block of imprimitivity 

containing z = z1. If cz(t) E Q[t], then the Galois group of /(z) over Q acts imprimitively 

on the roots of f(z), and we are done. Otherwise we compute a primitive element for P(z) 

for the field Q(a1r:-1(z), ... , ao(z)]/ f(z) in Steps 4 and 5. That Steps 4 and 5 do so correctly 

is immediate from van der Waerden (vdW,p.139.] In Steps 6-8, we compute the minimal 

polynomial h1{x) for ,B(z) over Q. 

Now that we have a primitive element, x, for Q(a1r;_1(z), ... , ci.0 (z)]/ /(z), we can rewrite 

cz(t) as cs(t), a polynomial over Q(x)/h1(x). This is done in Steps 9 and 10. Note that 

this means Q(t]/ h0(t) ~ Q(x, y]/(h1(x), go(y)). Steps 11 and 12, in the case of i = 1, are 

redundant. Observe that cs(t) has the same value before and after these two steps. 

Next we call BLOCKS on h1(x). Let BLOCKs(h1(x)) = t"+b1c-i(x)tk-t+ ... +bo(x) = 
Bs(t). By the minimality of the block, the Galois group of h1(x} over Q(b1c-i(x), ... , b0(:z:)]/h1(x) 

acts primitively on the roots of h1(x). We know that Q[b1c-i(x), .. . ,b0 (x)]/h1(x) -

Q(symmetric functions in zi, .. . , z1) for some block zi, ... , zi. We find this block. 

Let x be a root of hi(t). Then xis a root of B:i:(t). If we rewrite B:i:(t) as B•(t), a 

polynomial with coefficients in Q[z]/ f(z), x remains a root. Recall Lemma 4.2, and the 

discussion which followed it. Since x is a root of B:r:(t), the roots of 

51 



N( Q[:i:J/ h1(:i:) )!( Q(bk-1 (:i:), ... ,bu(:i:)J/ h1(:i:)){B:i:{t)) = NQ(p1)/Q(p2)BP
1 
(t) 

= c•(t) 

are a block containing B1. Because the Galois group of hi(x) over Q[bk-i(x), .. . , bo{x)]/h1{x) 

acts primitively on the roots of h 1(x), the roots of ca(t) are a minimal block containing 

B 1 . We can calculate this norm by a resultant. In order to do so, we express B:i;(t) as a 

polynomial with coefficients in Q[z, t]/ f(z), B 21(t). This is done in Steps 14 and 15. Since x 

is a root of B 21(t), Step 16 computes C 21(t) correctly. 

Inductively suppose Algorithm 4.1 has computed { hi(x), 91-i(Y) I i = 1, ... , k} which 

satisfy: 

1) Q[x, y)/h1(x)go(Y) ~ Q[z]/ f(z) 

2) hi(x) E Q[x] and 9i:-1(Y) E Q[x, y)/hi(x), for i = 1, ... , k, and 

3) The Galois group of gi-i(Y) over Q[x)/h,(x) acts primitively on the roots of g1-1(y), 

and that c•(t) is a polynomial whose roots are the elements of the block Bk+i· We 

will show that a single iteration of Algorithm 4.1 will produce hk+ 1 ( x ), Uk(Y ), and a new 

C21(t) which satisfy the above conditions. 

If c•(t) E Q[t], we are done, since then the roots of ca(t) are zi, .. . , Zm, and we have 

satisfied conditions 1,2,3, and 4. Suppose c•(t) i Q[t]. Then in Steps 3-5 we compute 

a primitive element, ,8(z), for Q(symmetric functions in the elements of Bk+il· In Steps 6 

and 7 we determine hk+i(x), the minimal polynomial for ,8(z) over Q. 

Next we calculate Uk(y). Since the Galois group of n•(x) over Q[,8(z)]/ f(z) acts 

primitively on the roots of B•(x), n•(t) is - almost - the gk(t) we want. The only difficulty 

is that B•(t) is written as a polynomial with coefficients in Q{z)/ J(z). This is however, easily 

circumvented, since B21(t) has coefficients which are in Q{x)/hk+i(x). We express them in 

terms of x in Step 9, and 9k(Y) in Step 10. 

Now we are ready to find the next block. We seek to express C 21(t) as a polynomial 

over Q[x)/hk+i(x); we pro'ceed in the same manner as we did for gk(y). We do so in 

Steps 11-12. Then Bk+i will consist of the roots of the norm of c•(t) over a subfield of 

Q[x]/hk+i(x), namely a minimal subfield. We compute this subfield by calling BLOCKS 

on hk+i(x); the subfield is determined by the symmetric functions of the elements of a 

minimal block of roots of hk+i(x), or more simply, by the coefficients of the polynomial 

returned by BLOCKS(hk+i(x)) in Step 13. In Steps 14 and 15 we rewrite the polynomial, 
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Bx(t) as a polynomial in the variable t with coefficients in Q[z]/ f(z). Then by Lemma 4.2 

the polynomial we are seeking is: 

N cx(t) 
( Q[:r;J/ hk+1 (x) )!( Q[h+1 (x), ... ,bo(x)J/ hk+1 (x)) 

-N ~W - ( Q[,B(z)]/ f(z))!( Q(bk+1 (x), ... ,bo(:r;)]/ h1c+1 (:r;)) 

= Res:r;(B•(x), C:r;(t)) 

= c•(t). 

We are done. Let us now examine the running time. 

Observe that Algorithm 4.1 is looped through at most log m times, since each iteration 

produces a subfield between Q and Q(a). Let us consider the running time necessary for 

the first iteration. 

The time needed for Step 1 is dominated by the call of BLOCKS on /(z). Steps 2-4 take 

constant time. The loop of Step 5 is passed through a maximum of m times, with no more 

than log m nontrivial executions. The computation a,-(z) E ?{ 1, P(z}, .. . , pm.-1(z}} is done 

at most m3 times for each a,-(z), with each test requiring no more than O(m5 ) steps. (This 

is simply a linear algebra problem to test independence; the bound is due to [Edm.]) Step 

5 requires much less time than BLOCKS of Step 1. 

The running time for Steps 6-12 is less than the time required for Step 5, and is therefore 

dominated by Step 1. In Step 13, we call BLOCKS on h1(x), a factor of /(x). The time 

required for Steps 1-16 is dominated by the time required for Step 5. Thus the time required 

for the first iteration is dominated by BLOCKS(h(x)), where h(x) is a factor of f(x). 

Subsequent iterations are dominated by this same factor, and there are at most log m of 

them. Hence we conclude that the running time for FIELDS is less than O(log mBLOCKs(g(x))), 

where degree(g(x)) $; m, and ffg(x)D $; ilf(x)Bm.
2

• I 

3. The Fields Between Q and Q(a) and Solvability 

We can now determine all the fields between Q and Q(a). This enables us to check 

solvability by a simple divide-and-conquer observation. Let Q(P) be a field such that 

Q ~ Q(,8) ~ Q(a). Every element in Q(a) can be written in radicals ift' every element 

of Q(P) can be written in radicals over Q, and every element of Q(a) can be written in 

radicals over Q(p). The divide-and-conquer terminates when no more fields can be included 
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in the chain between Q and Q(a), that is, when the Galois group of the normal closure of 

Q(.Bi-d over Q(.Bi) acts primitively on the roots of the minimal polynomial of .Bs-1 over 

Figure 4.%: The Primitive Extensions Between Q and Q(a) 

We consider what this means group-theoretically. Suppose { p, I i = 1, ... , r + 1} are 

such that if 9i(Y) is the minimal polynomial for /3;. over Q(/3;.- 1}, then the Galois group of 

9i(Y) over Q(p,_t) acts primitively on the roots of g;,(y). If the set {"Ii I i = 1, ... , r + 1} 

is chosen so that Q('y;.) is the splitting field for Q(,8;.) over Q(/3;.- 1), let { a 11 ••• , ak} be the 

block of imprimitivity associated with Q(,Bi), and let { ak+1 1 ••• ,a:u: }, ... , { act-l)k+h ... , am}, 

be the conjugate blocks. Then, if Q(82), ••• , Q(Ot) are the fields associated with the con-

jugate blocks, we know that Q(O;.} h Q("l1}, for i = 1, .. . ,·t. This means that the lit-

Galois group H 1 of Q(a11 • .. , am) over Q('y1 ) fixes each of the Q{O;.). Assume Li is the 

subgroup of the Galois group which fixes Q(,Oi). Clearly H 1 ~ L1; furthermore, Hi 

~ (induced action of Li on a 1, ... , ak)t. If K 1 is the Galois group of Q( ai, ... , ak) over 

Q(,8i), then H1 ~ KL and H 1 is solvable if K 1 is. The question of whether a particular 

polynomial is solvable by radicals can be transformed into log m questions of solvability of 

particular primitive groups: if G, is the Galois group of Q(Pi+d over Q(,8;.}, then f(x) is 

solvable by radicals iff G;. is solvable for i = 1, ... , r. 
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Figure -4.3: H1 ~ Ki 

This is suprisingly easy to answer, for primitive solvable groups are highly structured, 

which greatly limits their size. 

Theorem 4.4 [Palty): If G is a primitive solvable group which acts transitively on n 

elements, then !GI < 24-l/Snc, for a constant c = 3.24399 .... 

This result is sufficient for us to obtain a polynomial time algorithm for cheeking 

solvability by radicals. Although no algorithms which compute the Galois group in time 

polynomial in the size of the input are known, a straightforward bootstrapping method 

yields an algorithm whose running time is polynomial in the size of the group. 

We factor /(x) in Q[y)/ f(y). If f(x) does not factor completely we adjoin a root of 

f(x), different from y, to Q[y]/ /(y), compute a primitive element, and factor f(x) over the 

new field. We continue this process until a splitting field for f(x) is reached. In Section 4 

we present this algorithm with a proof of correctness and an analysis of running time. 

4. Another Algorithm 

Algorithm 4.2 GALOIS 

input: f(x) E OK[xJ, monic, irreducible of degree m over K = Q(8}, where (J is an 

algebraic integer of degree l over Q, and OK is the ring of integers of K 

Step 1: g(y) +- /(y) 
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Step 2: Find c =I= 0 such that N(K[y]/g(y))/K(f(x - cy}) is squarefree 

(Then N(K!yJ/g(y))/K(f(x - cy)) generates K(a, (3) where a and (3 are roots of 

g(y) and /(x) respectively.) 

k 

Step 3: Factor N(K(y]/g(y))/K(f(x - cy)) = II G3 (x) over K 
1=1 

Step 4: If there is a GJ(x) such that degree(G,-(x))>degree(g(x)), 

g(y) +- G3(y) and go to 2 

Else n +-degree(g(y)) 

Step 5: For i = 1, ... , m, do: 

fi(x) +- gcdK[yJ/g(y)(Gi(x + cy), f(x)) 

qi(Y) +-constant term of fi(x) 

n 

Step 6: Factor g(x) = II x - Pi(Y) 
i=l 

Step 7: For i = 1, ... , n, do: 

Step 8: For j = 1, ... , m, do: 

If Pi(q3(y)) = q,(y) in Q(y]/g(y), Ti(j) +- l 

(This just means that ai(a3) =a,, for a3, a, roots of /(x)] 

return: {Ti I i = 1, ... , n }, and g(y), where 

1) K(y]/g(y) is the splitting field for f(x) over K, and 

2) The 1/s acting on a 11 ••• , am, the roots of f(x), form the Galois group of 

f(x) over K 

Theorem 4.5: Let f(x), a polynomial in OK(x], be monic and irreducible of degree m, 

where K = Q( 0), 9 is an algebraic integer of degree l over Q, and 0 K is the ring of integers 

of K. Algorithm 4.2 returns g(y) and {Ti}, where K(y)/g{y) is the splitting field for /(x) 

over K, and the {Ti I i = 1, ... , n }, form the Galois group of f(x) over K. It does so in 

0((1Gll) 9+E(IGI log IG!Kf(x)D + l3 log IDD) 2+e) steps. 

proof: The proof will be by induction. As before, we show correctness, and then analyze 

running time. Without loss of generality, let us assume the roots of f(x), ai, ... , am, 

are ordered so that there is a t ~ m, with ai+l fl K(ai, .. . , ai) for i<t, and ai+1 E 
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K(o:1, ... , 0:1) for i ~ t. Each time we adjoin a root 0:1+1 of /{x) to K(o:1, ... , 0:1), we will 

compute a primitive element for K(a1 , .•• , o:1+1 ) over K, and a minimal polynomial for that 

element. In the algorithm we call these "y" and "g(y)" respectively; in the proof we call 

the ith. primitive element /3;,, and its minimal polynomial over K, g1(y). Recall Proposition 

2.2 which says that if G,-(x) is an irreducible factor of N(K(y)/g(y))/K(f(x - cy)), then 

K[z]/G,-(z) ~ K[x, y}/(g(y), fj(x)). We observe that it is not really necessary to factor f(x) 

over K({J) in order to determine if /(x) splits into linear factors in that field. For, if g(y) 

of degree l is the minimal polynomial for {Jover K, and h(x) E K[x,y]/g(y) is of degree k, 

then N{K[y)/g(y))/K(h(x)) is a polynomial of degree lk over K. In particular, if G,-(x) is an 

irreducible factor of N(K!y)/g(y))/K(f(x- cy)) in K(x] which is of degree m> degree(g(y)), 

then gcdK[yJ/g(y)(G,-(x + cy), /(x)} is nonlinear. This observation will save us the work of lfi. 

factoring f(x) until we reach a splitting field for /(x) over K. We are now ready to proceed 

with the proof. 

We claim that each iteration of Steps 2-4 adjoins a root a 1 of f(x) to K and computes 

a primitive element, {J1, for K(a1 , ••• , o:,) over K. Suppose first that /(x) is normal, that is, 

f(x) factors completely in K[y]/ f(y). In that case each of the G,(x)'s will be of the same 

degree as /(y) = g(y), and we will fall through to the second part of the algorithm. 

Next suppose that /(x) is not normal, and adjoin a single root of /{x) to K. Then at 

least one of the irreducible factors of f(x) in K(x, y)/ /(y) is not linear. If /j(x) is such a 

factor, then G,-(x) = N(K!v)/g(y))/K(!,.(x - cy)) is a factor or N(K[y)/g(y))/K(!(x - cy)) 

whose degree is greater than the degree of g(y). On the first itera;tion of Steps 2-4 let {J be a 

root of G,-(x), where {J = a 1 + cCt2, where c is an integer less than (m2l)2 • By Proposition 

2.2, K(/3) = K(a1, a2). On subsequent iterations P1+1 will be a root of (the new) G,-(x), 

an irreducible factor of N(K(yJ/g(v))/K(f(x - cy)). Then 

by induction. We fall through to Step 5 only when /(x) factors into linear factors in 

K(yJ/g(y); equivalently, when we have adjoined {a11 ••• ,at} to K, and have computed a 

primitive element y for K(a1, ••• , at} over K. Then K(yJ/ g(y) is the splitting field of f(x} 

over K. 

In Step s: we factor 
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m m 

f(x) = II fi(x) = II (x - qi(Y)) 
i=l i=l 

over K[y}/g(y). In Step 6 we factor 

n 

g(x) = II (x - Pi(Y)). 
i=l 

(By the construction of g(y), we know that g(x) splits completely in K[yJ/g(y).) 

The Galois group of g(x) over K, G, is a group of order n acting on n elements; thus for 

each i = 1, ... , n there is a unique a3 E G with a3(1) = i. The Galois group of f(x) over K is 

the induced action of G on the roots of f(x), a 1, ••• , am, which we write as qi(Y}, .. . , qm(Y)· 

Without loss of generality we assume that a,(1) = i. An alternative way to say this is that 

a,(y) = p,(y). Then qi(Y) is the constant term of the h(x), u,(a,) = ai(q3(y)) = Pi(q,(y)). 

Let {Ti I i = 1, ... , n} be the induced action of G on ai, ... , am, so that ri:(j) = l itl' 

p(q3(y)) = q,(y). Thus Algorithm 4.2 returns the set { r,} which form the Galois group of 

f(x) over K. 

The running time analysis breaks up into two parts, just as the proof of correctness 

did. First we consider the time needed fot Steps 1-4, which calculates f3i: and g,(y). Let 

n, = [K(a, ... , a1) : K), and d1 = [K(a1, ... , ai:) : K(ai, . .. , a,_i)J. We first bound the 

size of g,(y). The roots of g,(y) are conjugates over K of a 1 + c2a 2 + ... + c,a,, where 

c, E Z. By Lemma 1.6 lc1I ~ (d,n1-1)2 = n~. Then 

[a1 + c2a2 + ... + c,a,J < (a)(1 + c2 + ... + c;) 
~ laDilc1I, since c; < c1 for j < i 
~ (aJn:. 

If k(x) is the minimal polynomial for 8 over Q, lk{x)I < (2(8J)m. Then 

by Weinberger and Rothschild [Theorem 1.3.) We further conclude that 

Let D, be the time needed by Algorithm 4.2 on the ith. iteration. Then T, = D, + 
Di:-1 + ... +Di. We claim D1 < 3(ni+1l)9+e(n1+1 log n;lf{x)J + 13 log (8B)2+e . This is 
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because Steps 2-4 are dominated by the time it takes to factor N(KlyJ/g(y))/K(f(x - cy)) 

over K. By Propositon 2.1, the claim follows. Then 

T,; ~ 3{ni+1l)9+E(n,;+1 log n,;[f(x)D + l3 log [9D)2+" 

+ 3(n,;l)9+E(n,; logn,;-1[/(x)Il + l3 log [0Il)2+E + ... 

. . . + 3(n1l)9+E(n1logm[f(x)Il+13 log [9D)2+E. 

The time required by Algorithm 4.2 in Steps 2-4 is bounded by 0({1Gll)9+E(IGI log IGlfff(x)D+ 

z3 log llOD)2+E). 

Since [f(x)D and [g(y)D are both smaller than [N(Kly]/g(y))/K(f(x - cy))D, Steps 5 and 

6 do not add to the time bound established for Steps 1-4. Similarly the computations 

of Steps 7 and 8, being straightforward divisions of polynomials (nlGI of them), do not 

increase the running time of Algorithm 4.2. Consequently Algorithm 4.2 computes g(y) and 

{ r,; I i = 1, ... , n} in 0((1Gll)9+E(IGI log IGl[f(x)D + l3 log [OD)2+E) steps. I 

5. How it Fits Together 

Let f(x) E Z[x) be monic and irreducible, with roots a 11 ••• , am. We have shown how 

to compute field extensions Q(,8,), i = 1, ... , r + 1, such that Q(,8,.+1) = Q, and Q(P1) = 
Q(a), and for;'= 1, ... ,r, the Galois group of Q(/33) over Q(/3;+1) acts primitively on the 

conjugates of (31 over Q(/33+i) [Algorithm 4.1.J We have shown that if f(x) is a monic, 

irreducible polynomial in OK[x), where K = Q(O) is an algebraic number field, then we can 

compute the Galois group of f(x) over K[x) in time polynomial in the size of the Galois 

group, [f(x)D and [OD. We know that primitive solvable groups are small. How does it all 

fit together? 

Quite simply. We call FIELDS on f(x) to determine a tower of fields each one of which 

has the Galois group acting primitively on the roots of the polynomial which generates it 

from the field below. We call GALOIS for each one of these extensions. We call GALOIS with 

a clock. Let g1(y) be the polynomial described in FIELDS, and suppose the degree of g,(y) 

is n,;. By construction the extension Q(x]/h,_1(x) over Q[x]/h,(x) has Galois group which 

acts primitively on the roots of g,_ 1(y). By Theorem 4.4, if this group is solvable, then 

its order must be less than 24-l/3n:~~. For each i, i = 1, ... , r, we call GALOIS on input 

91-1(y), Q[x]/~(x). We allow this procedure to run for 

(a constant)n:~ 1 degree(h,;(y))9+e(n:·25 log n.;(g1_ 1(y)B + (degree(h,;(x))3 log [~(x)B)2+e 
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= k;. steps, the time needed by GALOIS to determine a Galois group of order less than 

24-t/3 n~~i. If the procedure fails to return a Galois group in that amount of time, we 

know that the Galois group of g,_ 1(y) over Q[x]/h,;{x) is not solvable, and hence neither 

is f(x) solvable over Q. If a group is returned, we call any of the standard algorithms 

for testing solvability of a group [Sims],(FHLJ. Since the order of the group is polynomial 

size in n1-1, these algorithms can check solvability of the group in polynomial time. Let 

SOLVABLEGP be the reader's favorite algorithm for testing if a given group is solvable. We 

assume that the input to SOLVABLEGP is a set { T-i I i = 1, ... , n} which forms the Galois 

group for 9i-l (y) over Q[x]/ h;.(x). Then SOLVABLEGP returns "yes" if the group is solvable, 

and "no" otherwi8e. 

Algotj.thm 4.3 SOLVABILITY 

input: f(x) E Z[x], monic irreducible of degree m 

Step 1: Call BLOCKS(/(x)) 

Step 2: For i = 1, ... , r, do: 

For ( degree(g-i-l (y )))le; steps, do: 

Step 3: If no return, return /(x) "IS NOT SOLVABLE BY RADICALS" 

Else call SOLVABLEGP{ 1"-i} 

If SOLVABLEGP{ T-i} ="no", return f(x) "IS NOT SOLVABLE BY RADICALS" 

Step 4: return f(x) "IS SOLVABLE BY RADICALS" 

return: f(x) IS SOLVABLE BY RADICALS if /(x) is solvable by radicals, 

f(x) IS NOT SOLVABLE BY RADICALS otherwise 

We conclude with the main result of this thesis: 

Theorem 4.6: Let f(:z:) E Z(x] be monic and irreducible of degree m over Q. Then 

Algorithm 4.2 determines whether the roots of f(x) are expressible in radicals in time 

polynomial in m and log l/(x)j. 
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Chapter V 

Expressibility 

1. Background 

We recall: 

The Fundamental Theorem on Equations Solvable by Radicals: 

(1) If one root of an irreducible equation f(x) over a field K can be represented in the 

form: 

(*) 

then the Galois group of f(x) over K is solvable. 

(2) Conversely, if the Galois group of f(x) over K is solvable, then all roots can be 

represented by expressions of the form (*) in such a way that in the successive adjunctions 

of VO., the exponents are prime numbers, and the equations z" - a are irreducible each 

time. 

For the first four chapters of this thesis, we were concerned with the problem of deter· 

mining solvability of an irreducible polynomial over the rationals. If /(z) is an irreducible 

solvable polynomial over the rationals, it would be most pleasing to find an expression in 

radicals for the roots of f(x). In this chapter we exhibit a straight line program which does 
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so in polynomial time. Classical results are presented in §1, and a discussion on bounds 

appears in §2. The straight line program is presented in the final section of this chapter. 

Let K be an algebraic number field which contains the nth roots of unity. Then K(Va) 

is a Galois extension of K, and the map Va 1-+ ~n yra, where ~n is a primitive nth root of 

unity generates the Galois group of K(Va) over K, which is cyclic of order n. If K(a} is 

a Galois extension of K with cyclic Galois group, we say K(a) is a cyclic extension of K. 

If K(a) is cyclic of order n, we claim that K(a) = K(Va) for some a in K. Let u be a 

generator of the Galois group of K(a) over K, and let f be a primitive nth root of unity; 

For each element "/ in K(a) we can form the Lagrange resolvent: 

The Lagrange resolvent is a K-linear map from K(a) onto itself, and can be thought of as 

a matrix. Then (~, "!) = 0 iff "/ is in the null space of this matrix. The following theorem 

shows that the Lagrange resolvent does not act trivially on K(a). 

Theorem 5.1 [E.Artin): The elements of the Galois group of K(a) over K are linearly 

independent over K. 

proof: It is clear that if au(x) = 0 for x 'I:- O, then a = _O. Suppose there is a relation 

(1) 

with none of the ai = 0. Let m be chosen as small as possible. Then we know m ~ 2. 
' 

Since u1 and u2 are distinct, there is a b in K such that u1(b) 'I:- u2(b). (Note that this 

means u1(b} 'I:- 0.) We have 

(2) 

which implies 

(3) 

We divide equation (3) by u1(b), and subtract it from equation {1). The first term cancels, 

and we obtain: 

(4) 
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Because the first term in equation (4) is not zero, this is a relation of shorter length than 

equation (1), which was chosen to be minimal. Thus it must be the case that u11 •• • , "" are 

linearly independent over K. 

Now let "f E K(a) be such that ((,''Y) rf O, and consider 

u((, I) = q("t) + (C12{"t) + ... + (n-1un-1(1) 

= (-1((u('Y) + (2u2b) + ... + "Y) 
= (-1((, 1). 

I 

(**) 

This means that ((, 1)" is fixed by u, and thus that ((, 1)" is in K. But we also know 

from(**) that ak((, "t) = (-k(~, 1), which means that the only element of the Galois group 

which fixes (~,"Y) is the identity. If we let a= fr,1)", we conclude that K(a) = K(Va). 

We have shown: 

Theorem 5.2: Every cyclic field of nth degree over an algebraic number field can be 

generated by an adjunction of an nth root provided that the nth roots of unity lie in the 

base field. 

The method we use to express a as radicals over Q relies on the effective proof of 

Theorem 5.2. Clearly roots of unity play a special role in the question of expressibility, and 

we show: 

Lemma 5.3: The pth roots of unity, pa prime, are expressible as "irreducible radicals" 

over K. 

proof: We do this by induction on p. If p = 2, the roots of unity are ±1, and there 

is nothing to show. Suppose we have shown the lemma to be true for all primes less than 

p. Now the field with the pth. roots of unity is cyclic of order p - 1 = p~ 1 
••• p:"' over K. 

We adjoin to K the P1", .. ., Pt" roots of unity which by induction we have assummed to be 

expressible as radicals over K. Then Theorem 5.2 applies. I 

2. Bounds 

We assume f(x) is an irreducible solvable polynomial of degree m over the rationals, 

and we let a be a root of /(x). In Chapter IV we presented an algorithm which found a 

63 



tower of fields Q(f3i), i = 1, ... , r, where Q ~ Q(f3,.) ~ ... ~ Q(/3i} ~ Q(a), and the Galois 

group of Q(/3.;.) over Q(/3i+d acts primitively on the roots of the minimal polynomial of /3i 

over Q(/3.:+d· We also described a polynomial time algorithm to find the fields Q('Y,), i = 

1, ... , r, where Q('y,) is the splitting field for Q(/Ji) over Q(/J1+d· (See Figure 4.2.) In light 

of Theorem 5.2, we find it necessary to first adjoin. to Q the zth. roots of unity, where l = 

[Q('Y,.) : Q]. We claim that there is a straight line program which expresses ~l, a primitive 

zth root of unity, in radicals in polynomial time. The proof is similar to that for expressing 

/31. as radicals in polynomial time, and we begin by proving the bound for the /31 's. We 

find elements p, such that Q(P,) = Q(~t, /31.). In order to prove that we can express Pi by 

a straight line program in polynomial time, we must first obtain bounds on H91(x)D and 

Hki(Y)D, the minimal polynomials for p, over Q(P1+il and for ; 1 over Q(p,) respectively. 

The bounds we present are not best possible; they are simplified for the sake of readability. 

- - - me 
Lemma 5.•: If h,(x) is the minimal polynomial for Pi over Q, then lh1.(x)I ~ l/(x)I . 

- - 12 
If gi(x) is the minimal polynomial for {J1 over Q(P,+d, then (gi(x)B ~ l/(x)lm . 

proor: Because the Galois group of /(x) is solvable, each extension [Q('Yi:) : Q(/3.:+1)] ~ 

m:·25 , where [Q(/3.:): Q(P.:+i)] = m,. Since [Q(a): Q] =TI m,; = m, we have l = (Q("Y,.): 

Q] < m3·25 . Now Q(/31+i) = Q[x]/ h1+1(x) implies that Q(Pi+d = Q[x, y)/(h1.+1(x), z(y)) 

where z(y) is an irreducible factor of the cyclotomie polynomial xl-l + x'-1 + ... + 1 over 
2 

Q(x]/hi+i(x). By Weinberger and Rothschild [Theorem 1.3], llz(y)D ::; mi!lhi+1(x)I"''. 

The roots of hi+i(x) are symmetric functions in a block of roots of f(x), which means 
a 

that lh1+1(x)I ::; l/(x)lm· Thus l[z(y)D ~ m1.!l/(x)I"'"';. We can now use Proposition 2.2 to 

determine a primitive element P1+ 1 over Q; if h.+1(x) is the minimal polynomial for Pi+t 

over Q, then 

Now g1(y) will be a factor of g,(y), the polynomial described in Algorithm 4.3. Since 9i(Y) 

is an irreducible factor of hi(Y), we have 

- m - m 2 

H9i(Y)D ::; m!Hh,:(y)D lhi+1(x}I 
::; m!l/(x)lmT (l/(x)j"'

0
)'"

2 

< l/(x)l"'
11

• 
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This implies that 

(We remind the reader that the bounds obtained are not best possible.) I 

Lemma 5.5: If k,(x) is the minimal polynomial for ;, over Q(Pi+d, then ff k,(x)D ::;; 
II 

lf(x)lm • 

proof: If k1(x) is the minimal polynomial for "fi over Q(,B,+i), then the roots of k,(x) 

are the conjugates or 

over Q(P1+i), where 02, ... , Ot are the conjugates of p, over Q(P•+1), and the c,'s are integers 

less than m3 • Then by Weinberger and Rothschild [Theorem 1.3], 

Since k,(x) is an irreducible factor of k,(x) over Q(P,+iJ, we obtain 

In order to write straight line code to express a as radicals over Q, it suffices to present 

straight line code for expressing p, as radicals over Q(P,+1). If we can solve the latter 

problem in time polynomial in m and log l/(x}j, then the former can also be solved in 

polynomial time, since there are at most log m fields between Q and Q( a). 

Suppose that H is the Galois group for Q("f1) over Q(P1+i), and that H is solvable. 

In polynomial time we can find a set of subgroups of H which satisfy { e} =Ho ~ H1 ~ 

... C Hr = H, where Hk is normal in Hk+h and Hk+i/Hk is of prime order [SimsJ,[FHL]. 

We let 

ir(x) = II u.(x - "fi}; 
u.EHi. 

65 



then Q(Pi+i)[x]/ jk(x) is the subfield of Q('Yi) corresponding to H1r.. Since we can compute 

the H1r.'s in polynomial time, we can also compute polynomials i1r.(x) in polynomial time. 

We can find a primitive element Ok for the field Q(P,+i)[xj/ jk(x) in polynomial time. We 

do this using Proposition 2.2. If ik(x) = x' + b,_1x'-1 + ... + b0 , the bi's are symmetric 
m3 m7 3 m10 

functions in conjugates of .:Yi, and ffb1D S lt71D < (IJ(x)I )"' = lf(x)I . We let 

(h_ = bo + c1b1 + ... + ci-1bt-b Ci E Z, be a primitive element by using Proposition 2.2 
10 -

in the usual way. Then ffOkD < (m71f(x)I"' ), and if i1i:(x) is the minimal polynomial for 

81r. over Q, 

If we let i1r.(x) be the minimal polynomial for 81r. over Q(Ok_t), then since ik(x) is a factor 

of i1r.(x), we have: 

We conclude: 

Lemma 5.6: Let Jic(x) be the minimal polynomial for 01r. over Q. Then IJ'k(x)I S 

l/(x)l"'
14 

.H i1r.(x) is the minimal polynomial for 81t; over Q(,8"_1 }, then Hi1t;(x)B < l/(:z:)l"'
21

• 

3. A Straight Line Program 

We have determined primitive elements Oi such that Q(71) is a cyclic extension of Q(O,.), 

Q(0,+ 1) is a cyclic extension of Q(O,}, and Q(01) is a cyclic extension of Q(Pi+1). (For the 

sake of simplicity, let Bo = P1+1.) Denote (Q(Oi) : Q(O,_i)J by di. 
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Q(8i) 

I 
Q(P,+1) 

Figure 5.1: The Cyclic Extensions Between Q{P.:+i) and Q{i.:} 

We inductively express T/ti ... , T/r+t such that Q(8,-, 11,-) = Q{0,-+ 1), and 'Ii = ct{/p,-(8,-), 

where Pi(x) E Q[x]. To do this it is necessary to also construct q,.(x, y) E Q[x, y], j = 
O, ... , s, where Oi+t = q,({lp3(8,-), O,-). Once we have shown how to construct p,-(x) and 

q3(x, y) in size polynomial in m and log lf(x)I, we will be done showing that how to express 

a over Q(~i) in a straight line program in polynomial time. Finally ~l will be expressed in a 

similar way. 

We proceed by induction, beginning with 'It· Consider the Lagrange resolvent of Q(81) 

over Q(P,+1), and let 1<:1 be in Q(8i) - the null space of Q(P1+d· (Observe that 1<:1 can be 

found in polynomial time.) If 1<:1 = r 1(0t), then 

ftr1(x)D < ((d1ft81D)"1 )"~ = (d1(81))'1' 

[Edm.] Let T/t = (~, 1<:i)"1
• By the proof of Theorem 5.2, 'Ii E Q(,8,+1 ) = Q(80 ), and 

Q(01) = Q(P-0,ct.Jr;l). Let P1(x) E Q[x] be such that p1(80) = 'It· We want to show that 

P1(x) has polynomial size coefficients. 

Since T/l is small in absolute value, its minimal polynomial over Q has polynomial size 

coefficients. This polynomial factors over Q(80). Since x - 111 = x - p1(80 ) is a factor, and 

we conclude by Weinberger and Rothschild [Theorem 1.3J that p1(x) has polynomial size 

coefficients. We repeat this with actual, though not best possible bounds. 
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We chose 111 = (~, Ki}d1
• This means that 

ll111D = ff(~, K1)Dd1 

< (d1(K1D}d1 

< (d~ff81Dd~)d1 
< ff81Dd~. 

_ ,,.u mu 
By Lemma 5.6, lj0 (x)I < l/(x)I , and ff81D < l/(x)I . By a rough approximation using 

Weinberger and Rothschild, we find 

Next we determine and bound q1(x, y). Our argument is that the minimal polynomial 

for 8t over Q is of bounded size (Lemma 5.6), and thus its factors over Q(8o) are also 

bounded. We find an integer Ct such that lit = 80 + ct![rh is a primitive element for Q(81) 

over Q. Then lit has a minimal polynomial over Q which is of bounded size. This means 

that the polynomial tt(x) E Q[x] such that 81 = t1(llt) has polynomial size coefficients. 

Furthermore the polynomial q1(x, y) E Q[x, y) such that 81 = qi('!frjt, Bt) = ti(y + c1x) 

also has polynomial size coefficients. 

For the inductive step it suffices to replace 0 by i, and 1 by i + 1, because all of our 

bounds are a priori established by Lemmas 5.4-5.6. The crucial fact to observe is that each 

of the polynomials Pi(x) and qi(x, y) are determined in sequence from the 8i's, whose length 

of description is polynomially bounded. 

One step remains. We must show that if {J, - li(i;.), with l;.(x) E Q[x], then the 

coefficients of l1(x) are polynomial in size. This follows immediately since the minimal 

polynomials for p, and;, over Q(P;.+i) are polynomial in size. We have shown: 

Theorem 5.7: There exists a polynomial time straight line program to express a, a root 

of a solvable irreducible polynomial over Q, in terms of radicals. 

We have not yet shown how to express the 1t1t. roots of unity as radicals over Q, but 

Lemma 5.3 is effective. We observe that in order to express the zth. roots of unity as radicals 

over Q, we need to have the P!" roots of unity expressed as radicals, where p1 is a prime 

divisor of cp( l). Of course, this requires that q~.h roots of unity are expressed as radicals, 

where q1 is a prime divisor of p1 _,_ 1. This inductive construction requires no more that 
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log l steps. Therefore we conclude that (l can be ex.pressed as radicals over Q in a field of 

degree no greater than l10'' over Q. 

It would be much more pleasing to express a in polynomial time in the form: 

1 
T 

1 + ..;s + 17V65537 
2 

rather than what we have proposed here. However, the following theorem suggests that this 

may not possible, at least for roots of unity. 

Theorem 5.8 (Shapiro): Let c(x) be such that <pc:(:i:)(x) = 2 for x > 2. Then 2c:(:i:) < 
x ~ 2. 3c:(:i:). 

Shapiro's function C(x) is the number of field ex.tensions we need to write <p(x) as 

radicals over Q. Then C(x) = O(log x). The field which contains (i expressed in radicals 

will be of degree l10'' over Q, so there is little hope that the actual radical expression for (l 

will be polynomial in size. This indicates that Theorem 5.7 may be the best we can do. 
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Questions, Conclusions, and More Questions 

If now you give us a polynomial which you have chosen at your pleasure, and if you 

want to know if it is or is not solvable by radicals, we have the techniques to answer that 

question in polynomial time. We have transformed Galois' exponential time methods into 

a polynomial time algorithm. Furthermore, if the polyn9mial is solvable by radicals, we 

can express the roots in radicals using a suitable encoding. We have provided a polynomial 

time algorithm for the motivating problem of Galois Theory; we leave unresolved many 

interesting questions. 

In light of the running times presented in Chapter IV, we hesitate to claim practicality 

for our polynomial time algorithm. This suggests the following set of questions: 

1) All of our running times are based on the time needed by the L3 algorithm for 

factoring polynomials over the integers. Can the present time bound be improved! 

2) Can the running time for factoring polynomials over algebraic number fields (Algorithm 

2.1) be improved? 

3) In Chapter ID we presented an algorithm which determines a minimal block of 

imprimitivity of the Galois group of the irreducible polynomial /(x) over the field K. Is there 

a faster algorithm than Algorithm 3.1 for determining the minimal blocks of imprimitivity? 

We conjecture that any algorithm that determines minimal blocks of imprimitivity must 

factor f(x) over K[x}/ f(x); we would like to see a proof of this. 

The divide-and-conquer technique we used to determine solvability has the surprising 
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characteristic that it answers that question without even determining the order of the group. 

We ask: 

4) Is there a polynomial time algorithm to determine 

a) the order of the Galois group 

b) a set of generators for the Galois group, 

in the case of a solvable Galois group? 

The real buried treasure would be a polynomial time algorithm for determining the 

Galois group, regardless of solvability. A polynomial of degree n may have a Galois group 

as large as S.," but a set of generators will be polynomial in size. We see no immediate 

way that a divide-and-conquer approach might solve this problem, but we do observe that 

some characteristics of the Galois group may be inferred without actually determining the 

group. For example, the Galois group of an irreducible polynomial /(x) of degree n over 

the rationals is contained in An, the alternating group of order n, iff disc(f(x)) is a square 

in Q (Lang, pp.199-200.] This means that the Galois group of an irreducible polynomial of 

degree 3 over Q may be found by simply calculating the discriminant. Various tricks and 

methods have been used to determine the Galois group of polynomials over Q of degree leBB 

than 10 [Mc],(St], [Za2}, but until the recent results concerning polynomial factorization 

there was no feasible way to compute the Galois group of a general polynomial of large 

degree. It would be most exciting if a polynomial time algorithm were found for computing 

the Galois group. We ofl'er no insights on this problem short of the results presented in this 

thesis, but we hope for, and would be delighted by, its aolution. 
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Appendix 

Suppose a satisfies an irreducible polynomial g(t) of degree mover Q; then 1, a:, ... , o:m-t 

form a basis for Q(a) over Q. Recall the matrix (bii) defined by: 

/3 = au + a12a + ... + a1m0'.m-l 

f3a = a21 + a22a + ... + a2mam-l 

m 

for /3 E Q(a). We define the trace of /3, Tr(/3), to be L bi-&· Note that this definition is 
i=l 

independent of the choice of basis for Q(o:) over Q. Observe also that TrQ(a)/Q(/3 + 7) = 
TrQ(a)/Q(/3) + TrQ(a)/Q('Y). We are now ready to prove: 

Proposition 1.2: Let a be an algebraic integer satisfying g(t), a monic irreducible 

polynomial over Z. Then the ring of algebraic integers of Q(a) is contained in (1/d}Z[o:], 

where 

d I disc(g(t)) = II (o:1 - o:,)2 

i<j 

proof: Let deg(g(t)) = m; then 1, a, ... , o:m-l are a basis for Q(a) over Q. Furthermore 

1, a, ... , o:m-l are all algebraic integers. Assume /(x) = (x - a)(xm-t + f3m-2xm-2 + 
... + /30) in Q(a)[x], and let W-& = /~~) for i = O, ••• , m - 1, with /Jm-1 = 1. We claim 

Tr(a'w;) = 61;· 

Let 

hi(x) = (~ f(x) a{ )- xi 
L,,, x - a· /'(a ·) 
1=1 ' ' 

j= o, ... ,m-1. 

We claim ai, ... , am, are the roots of hi(x). Observe that 

m 

f'(x) = L II (x - a,). 
l=l l~k 
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Then 

!'(ai) = IT (ai - a,). 
l#i 

Since c/~:i:l;) f'("l~h.";) = 1, we are done. But this means that hj(a1) = 0, for i = 1, ... , m. 

Because hi(x) is a polynomial of degree less than m, it must be the case that hj(x) is 

- identically zero. That is to say, 

L
m f(x) a~ · 

' - x' 
i=l X - Oi /'(a.) -

for j = O, ... , m - 1. 

That Tr( f(x) a~· ) = xi follows immediately, since the polynomials 
x - a1 /'(a1} 

f(x) a{_ • 
x- a 1 /'(a~ 

are all conjugate, and the trace is additive. Then Tr(p,x' !'~i)) = xi if i = j', and 0 

otherwise. Thus Tr(!'~~,:) a')= 6sj· 

Let d =;': 0 be such that d !'~~,) is an algebraic integer. Let "'( = ao + aia + ... + 
am-iam-l E Q(a) be integral over Q (i.e. satsify an integer monic polynomial over Q.) 

Then d 1,q~) "'( is integral over Q, as is Tr( d 1~~) "'I) = da1• But da1 E Q implies da. E Z. 

Therefore "'( E (1/d)Z(a). 

Since p, is an algebraic integer, dis a divisor of /'(a). Then 

/'(a)= L II (a, - a,} 
i i#i 

= IT (ai - a,) since II (a, - a,-)= 0 for 1=;':1 
i7"; ,. ""'' 

m(m-1) II 2 = (-1} ' (a, - a,.) 
i<j 

m(m-1) 
::::: (-1) :a dise(g(t)). 

This completes the proof. 
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