
ON BISECTING RANDOM GRAPHS

THANG NGUYEN BUI

February 1983

This research was supported in part by the Advanced Hesearch Projects Agency

under Contract N00014-80-C-0622.

Cambridge

© Massachusetts Institute of Technology 1983

Massachusetts Institute of Technology

Laboratory for Computer Science

Massachusetts, 02139

This empty page was substih1ted for a
blank page in the original document.

ON BISECTING RANDOM GRAPHS

by

Thang Nguyen Bui

Submitted to the Department of Electrical Engineering and Computer Science

on January 13, 1983 in partial fulfillment of the

requirements for the Degree of Master of Science in

Electrical Engineering

ABSTRACT

A bisection of a graph with an even number of vertices is a partition of the
vertex set into two disjoint sets of equal size. Given a bisection, the number of edges
having one end in each of the two subsets of the bisection is called the size of the
bisection. The bisection size of a graph is the minimum size of all possible bisections
of the graph. Given a graph with an even number of vertices and a positive integer,
the graph bisection problem is the problem of determining if the bisection size of
the graph is less than the given number. The graph bisection problem is known to
be NP-hard.

In this thesis, we give probabilistic lower bounds and upper bounds for the
bisection size of random graphs, graphs in which an edge appears between any two
vertices with a certain fixed probability, say p, independent of all other edges. In
particular, we show that, with probability 1, the bisection size of random graphs

on 2n vertices is greater than or equal to n2p-o(n312vr'i . ..1- p)) and is less than

n2p- o(nvp(l - p)). Upper bound and lower bound on the bisection size are

given in the case p is a function of n, specifically when p = p(n) = j-. We also
consider some heuristics for solving the graph bisection problem.

Thesis Supervisor : Ronald L. Rivest

.TilJ.e. : Associate Professor of Electrical Engineering and Computer Science

Keywords : Random graphs, bisection size, probabilistic bounds.

-3-

--- ------ ---------

This empty page was substih1ted for a
blank page in the original document.

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Professor Ronald L. Rivest, for his

guidance, helpful suggestions, and constant encouragement throughout the writing

of this thesis. I also would like to thank Sandeep Bhatt, Professors Tom Leighton,

Charles Leiserson, and Mike Sipser for listening to my problem with interest and

offering helpful suggestions. I thank Professor George Lueker for providing me with

a copy of his paper and some useful discussions, and Professor Joel Spencer for

giving me some good insights to the method of second moment.

I am grateful to my parents and my brothers for their love, support, and

encouragement.

-5-

This empty page was substih1ted for a
blank page in the original document.

Abstract

Acknowledgments .

Table of Contents .

Chapter 1. Introduction

TABLE OF CONTENTS

Chapter 2. The Graph Bisection Problem

2.1. Some Graph Theoretic Definitions

2.2. NP-completeness of the Graph Bisection Problem . .

2.3. Known Lower Bounds on the Bisection Size of Graphs

2.4. Known Upper Bounds on the Bisection Size of Graphs

2.5. Bounds for Graphs with Special Structures .

Chapter 3. Bounds for Bisection Size of Graphs in 9(2n, p) .

3.1. Preliminary Results

3.2. Lower Bounds on the Bisection Size

3.3. Upper Bounds on the Bisection Size

Chapter 4. Graph Bisection Heuristics

4.1. Descriptions of Some Heuristics

4.2. Some Empirical Results

Chapter 5. Conclusion

References

-7-

3

5

7

9

13

13

15

17

19

20

23

23

26

28

31

31

37

41

43

This empty page was substih1ted for a
blank page in the original document.

Chapterl

Introduction

In this thesis, we study the graph bisection problem. We shall consider only

undirected, simple graphs having unit cost on all of its edges, and an even number

of vertices. We consider the problem of partitioning the vertex set into two disjoint

sets of equal size which minimize the number of cut edges (edges having one

endpoint in each subset of the partition). This problem is called the graph bisection

problem1.

By relaxing some constraints in the graph bisection problem we obtain the

graph partitioning problem. Specifically, let an undirected, simple graph with costs

on its edges be given. The graph partitioning problem is the problem of partitioning

the set of vertices into disjoint subsets, each having cardinality smaller than a

given fixed number, so as to minimize the total cost of the edges having ends in

different subsets of the partition. Even though the graph bisection problem seems

simpler than the graph partitioning problem, it still retains the important feature

of the latter. Furthermore, an algorithm for solving the graph bisection problem

can be adapted as a heuristic to approximately solve the general graph partitioning

problem [KL70}.

Aside from being of theoretical interest, the graph partitioning problem serves as

an abstraction for various practical problems. An example is the problem of placing

components of a circuit on printed circuit boards. The objective here is to perform

1 For simplicity we use this definition here. The graph bisection problem will be defined more
carefully in the next chapter as a decision problem.

-9-

the placement so as to minimize the number of connections between components

on different boards, for these connections are slower and more expensive than those

connecting components on the same board. This problem can be represented as

a graph whose vertices depicting the components and the edges representing the

connections of the circuit. The maximum cardinality of each subset of the partition

corresponds to the maximum number of components each board can have.

Another example arises in the management of a page or segmentation memory

structure of a computer system. The problem here is to assign components (e.g.

subroutines or procedures) of a large program into different fixed-size pages of the

memory so that the number of references between components on different pages

of the memory is minimized.

In recent years, the graph partitioning problem has been used as a model for

an important problem in the Very Large Scale Integration (VLSI) design process.

This problem arises in the placement phase of the design process, in which tens or

hundreds of thousands of components must be placed on a wafer subject to certain

constraints. With such a large number of components to be arranged, it is desirable

to have this process automated. At the present, most models for the placement

problem are of the form of a graph partitioning problem [Br77).

It is known that the graph partitioning problem (when phrased as a decision

problem) is NP-complete [HR]. That means at the present no algorithm is known

to solve the graph partitioning problem in time polynomial in the length of the

input (assuming a reasonable encoding of the problem). Nonetheless, there are

approximate algorithms, or heuristics to solve this problem. Hence, it is useful to

know how good a solution a given heuristic can provide, without having to use

empirical methods. It should be noted that if we consider the graph partitioning

problem in which each subsets of the partition has size less than or equal to 2 then

this is the problem of finding maximum matching, also if the size of each subset

is restricted to be less than or equal to n - 1 where n is the number of vertices in

t.he graph then this becomes the problem of finding a minimal cut set of the given

graph. There exist polynomial-time algorithms for both of these problems.

It can be easily shown that the graph bi~ection problem (when phrased as a

-10-

decision problem) is also NP-complete. There are several heuristics often used for

this problem, all of which have the form of a hill-climbing search or some variation

of it. The analysis of the performance of a heuristic would be facilitated if we have

some information about the objects the heuristic is applied on. In other words,

we would like the input to the heuristic to be in some structured class of objects.

To this end we choose random graphs as input to the heuristics. By a random

graph we mean a graph in which an edge appears between any two vertices with

a certain probability, possibly dependent on the number of vertices of the graph,

but independent of all other edges. The performance of the heuristic on this class

of graphs may give insight to the typical behaviour of the heuristic in practice.

To determine the performance of a heuristic, we must first know what kind

of solution we expect to have, that is we must know the size of the optimal cut

edge set of a random graph. Then by comparing this with the solution given by

the heuristic we can determine how good the heuristic is.

The thesis is divided as follows. In Chapter 2 we review some standard graph

theoretic notions, define the graph bisection problem, introduce models for random

graphs, and present some known results. In Chapter 3 we give probabilistic lower

bound and upper bound for the bisection size of random graphs. We review

some known algorithms for solving the graph bisection problem and present some

empirical data on the performance of some heuristics on random graphs in Chapter

4. Finally, Chapter 5 will provide a summary and some open questions.

-11-

This empty page was substih1ted for a
blank page in the original document.

Chapter2

The Graph Bisection Problem

I

In this chapter we review the known results about the bisection size of graphs.

To facilitate thypurpose and to lay the ground for later work we first present

some stan~raph notions. We also give the definitions for our models of random

graphs. The graph bisection problem is also defined formally.

2.1. Some Graph Theoretic Defin,itions

An (undirected) graph G = (V, E) consists of a set V of vertices and a set E

of unordered pairs of vertices, called edges (we use the notation (a, b) to denote the

unordered pair a and b). We consider only simple graphs, that is graphs satisfying

the condition that, for all v E V, (v, v) (£. E and there is at most one edge between

any two vertices in V. Let IAI denote the cardinality of the set A. Let G = (V, E)

be a graph, for each v E V, the degree of v, denoted by deg(v), is defined as

deg(v) =I{ w EV I (v, w) E E}I. (2-1)

Let AC V, the subgraph of G induced by A is the graph obtained from G

by deleting all vertices in V - A and all edges in E incident to those vertices in

V - A. We call G a complete graph if IEI = (1~1). A sequence of vertices vi, ..• , Vm

is called a path between v1 and Vm in G if for all i E { 1, ... , m -1 }, (vi, Vi+1) EE.

If v1 = Vm then the path is called a cycle. G is said to be connected if there is a

path between any two vertices in V. A tree is a connected graph having no cycle.

If we label the vertices in V with the integers in { 1, 2, ... , IYI} so that each vertex

has a distinct label, then the adjacency matrix A(G) of G, a square matrix of order

-13-

IVI, whose element in the ith row and the jth column is defined as follows.

a .. -{1,
i3 - o,

if (i, j) EE;

if (i,j) ~ E.
(2-2)

Now suppose IVI = 2n and let A,B CV. The pair (A,B) is called a bisection

of G if AnB = 0,A U B = V, and IAI = IBI = n. Let (A,B) be a bisection of G.

For each a E A define

in(A,B)(a) = degree of a in the subgraph of G induced by A. (2-3)

ex(A,B)(a) =degree of a in the subgraph ofG induced by {a} LJ B. (2-4)

Similar definitions apply for each b E B. We shall omit the subscript (A, B) and

just write in(a) and ex(a) when there is no confusion. We now define the size of

(A, B) written l(A, B)I as

l(A,B)I = E ex(a)
aEA

= E ex(b)
bEB

= IEI- !(E in(a) + E in(b)).
2 aEA bEB

The bisection size of G is defined as

(2-5)

(2-6)

(2-7)

C(G) =min{ l(A, B)l I (A, B) is a bisection of G }. (2-8)

The graph bisection problem can now be stated.

Instance : G = (V, E), IVI = 2n, 0 < k < IEI.
Question : Is C(G) < k ?

In this thesis we shall deal mainly with a special kind of graphs, namely the

random graphs. Random graphs were first considered by Erdos [E59), [E61], and

were studied in some details by Erdos and Renyi in [ER59], [ER60]. Random

graphs have been used in nonconstructive proofs of combinatorial theorems, see, for

example, the book by Erdos and Spencer [ES74). Random graphs have also been

studied for their own interest and many results concerning random graphs have

been discovered [BESSO, Bo81a, Bo81b, Bo82, BE76, GM75, Mat76, P76). For an

extensive bibliography on the literature of ran9-om graphs see [Ka82]. The two most

-14-

often used models of random graphs are closely related. We start with a fixed set of

n distinct (labeled) vertices. In the first model, we choose each of the (;) possible

edges with a fixed probability p, 0 < p < 1, independent of the choices of all other

edges. In the second model, we take all graphs on n vertices and m edges, where m

may be dependent on n, and consider them as points of a probability space, having

equal probability. In the first model we write 9(n, p) to denote the probability space

of all graphs with a fixed set of n labeled vertices and the probability of a graph

with m edges is pm q(2)-m, where q = 1 - p. In the second model we use 9(n, m)

to denote the probability space containing all graphs on n vertices with m edges

0 < m < (;),and each graph in 9(n, m) has equal probability. Another commonly

used model of random graphs is the model g(n,p) with p being a function from l'l

to (0, 1). It is useful to define the following concept which will be needed later. Let

Q be a property of graphs in 9(n,p) or 9(n, m). We say almost every (a.e.) graph·

in 9(n,p) has property Q if Pr{ G.,,,,p E 9(n,p) I Gn,p has Q}-+ 1 as n-+oo. Similar

definition applies for graphs in 9(n, m). Unless otherwise indicated, all logarithms

in this thesis are natural logarithms.

2.2. NP-completeness of the Graph Bisection Problem

The NP-complete problems are the hardest problems in a class of problems,

called NP, that can be solved in polynomial time by nondeterministic Turing

machines. The corresponding class of probems which can be solved in polynomial

time by deterministic Turing machines is called P. One of the most important open

questions in theoretical computer science is whether P is equal to NP. This means

that we do not now know any deterministic, polynomial time algorithms for solving

an NP-complete problem. (Note that P C NP and the general consensus is that

P is not equal to NP.) For more precise definition of NP-completeness see [GJ79].

The graph bisection problem can be easily shown to be NP-complete by reducing

it to the simple max cut problem, which is known to be NP-complete (GJS76]. The

simple max cut problem is the following problem.

Instance : Graph G = (V, E), positive integer K.

Question : Is there a partition of V into 2 disjoint sets such that the

number of edges having one end in each of the two sets is at least K?

-15-

The proof of the following proposition is almost identical to the one given in

[GJS76] for proving the NP-completeness of a problem slightly different from the

graph bisection problem.

Proposition 2.1. The graph bisection problem is NP-complete.

Proof : We reduce the simple max cut problem to the graph bisection problem.

Let G = (V, E) and K EN be an instance of the simple max cut problem. Let

IVI = n, and U = { ui, ... , Un} be a set of new vertices. We construct an instance

for the graph bisection problem as follows. Construct G' = (V', E') such that

V'=VU u,
E' = {(u, v) I u, v EV', (u, v) ~ E },

K'=n2 -K.

In a sense G' is the complement of G, with the extra vertices.

Claim : G has a max cut of at least size K if and only if G' has a bisection of size

less than or equal to K'.

Suppose (A, B) is a partition of G such that I{ (u, v) EE I u EA, v EB }I > K.

Since K > 0, IAI, IBI > 0. Let j = n- IAI. Let

A' = A LJ { u11 • •• , u; },

B' = V' -A'.

Then (A', B') is a bisection of G'. Also, it is easily seen that

l(A', B') I = n 2
- I { (u, v) ~ E' I u E A', v E B' } I

= n2
- l{(u,v) EE I u EA,v E B}I

< n2 -K

=K'.

Conversely, if (A', B') is a bisection of G', such that l(A',B'~ < n2 -K = K'. then

let A = A' n V and B = B' n V, clearly (A, B) is a partition of G satisfying

l(A,B)I =I{ (u, v) EE I u E A,v E B}I
= n 2

- I{ (u, v) .i E' I u EA', v EB' }I
> n2 -(n2 -K)
=K.

This proves the claim and the proposition. I

-16-

2.3. Known Lower Bounds on the Bisection Size of Graphs

As indicated in the previous section the graph bisection problem is NP

complete, this means that at the present an algorithm to determine the bisection

size of a graph takes time exponential in the size of the graph (e.g. the number of

the vertices). It is, therefore, useful to know a lower bound of the bisection size of

a given graph so that one can determine how good is an approximate algorithm

for finding the bisection size. The first few results presented below give the lower

bounds for bisection size based on the knowledge of the adjacency matrix of the

graph. Let G = (V,E) be graph with IVI = 2n. Let A(G) be the adjacency matrix

of G and let U be an arbitrary diagonal matrix of order 2n such that

2n

L ti.ii = -2 IEI. (2-9)
i=l

We denote by >.i, A2 the two largest eigenvalues of the real symmetric matrix

(A+U).

Proposition 2.2. [DH73) Let G = (V, E) be a graph with IVI = 2n and let

A, U, >.1 1 >-2 be defined as above, then

(2-10)

If we know the maximum degree of the vertices in G then we have the following

stronger result than Proposition 2.2.

Proposition 2.3. [DH73} Let G = (V, E) be a graph with IVI = 2n and let

A, U, >.i, A2 be defined as above, and for all v E V, deg(v) < d for some

fixed constant d. Let c5i, c52 be in the closed interval (0, 11' /4L and let x be the

simultaneous solution to the following equations.

x sin 261 = (1 - x) sin 2~

_!(01 + c52) = x[l - sin2c51+2(d-1)(1- cos(c51 + ~))] 2 .

then

C(G) > Xf!..

-17-

(2-11)

(2-12)

(2-13)

Given n and m, if we define Cn,m to be the maximal bisection size of all graphs on

n vertices and m edges, then we have the following result given by Goldberg and

Gardner [GG82).

Proposition 2.4.[GG82] Let n and m be given. Lets be the largest integer such

that m > s(2n -1) - ~s(s - 1), and let r = m - 2(2n -1) + !s(s -1).

C2n,m > [~(2n - ~)]+max{ 0, r -rn -~l-1} (2-14)

where [a] denotes the integer nearest to a.

Proof: We shall construct a graph G = (V,E) with IVI = 2n, IEI = m and such

that C(G) equals the right hand side of (2-14). We define Gas follows.

V = {Xi, ... , X2n },

E = { (Xi, x;) I i = 1, ... , s; j = 1, ... , n; i ~ j}
U {(xs+11x3)li=s+2, ... ,s+r+1}.

Thus G has a clique of size s and each vertex of that clique is also connected

to all other vertices in V. There is also one vertex outside of the clique, namely

x8+i, which is connected to r other vertices not inside the clique. Let (A, B) be

an optimal bisection of G. Assume that a is the number of vertices in the clique

that appear in A and hence there are s - a vertices of the clique appearing in B.

Without loss of generality assume that a < ~ then a < s - a. It is clear that

C(G) = l(A,B)I < (s-a)n+a(n-(s-a))+max{O,r-(n-a)-1}

hence for the optimal bisection we must have a = ~. That is

C(G) = [s(n - ~)] +max{ 0, r - r n - ~ 1- 1 }

completing the proof of the proposition. I

For random graphs in 9(2n, m) the following lower bound is given in [Mac78].

Proposition 2.5.[Mac78] Let s > 9 be fixed. Let G2n,m be a random graph in

9(2n,m), with m = 2sn. Then

(2-15)

as n-+oo.

-18-

2.4. Known Upper Bounds on the Bisection Size of' Graphs

By counting argument we can easily get the following upper bound on the

bisection size of graphs in general.

Proposition 2.6.[GG82] Let G = (V, E) be a graph with IVI = 2n, IEI = m.

Then

C(G) < mn .
- 2n-1

Proof: Since the number of different bisections is !(2:), we have

!(2n)c(G) < E l(A, B)I
2 n (A,B)

(2-16)

(2-17)

where the sum is over all possible bisections of G. It is easily shown that each edge

in G appears (2: ..="}) times in the sum on the right hand side of (2-17). Hence

the above inequality becomes

!(2n)c(G) < (2n -2)m.
2 n n-1

Thus
2(2n-2)m

C(G) < n-1 = mn I
- (2:) 2n- l

The above result holds for any graph.

In the case of random graphs in 9(2n, m) we have the following upper bound

given in (Mac78].

Proposition 2.7. Choose s > 0. Let G2n,m be a random graph in 9(2n, m)

where m = 2sn. Then with probability 1, C(G2n,m) is less than or equal to

m(~ -H(s)), as n-+oo, where H(s) ~ 0.238s-1/ 2 as s-+oo. This approximation

is also good for s as small as 1.

This upper bound is established by constructive method. An algorithm is

exhibited and its performance is used to derive the upper bound. In practice, this

algorithm is found to be inferior to most other well known algorithms for finding

bisection size. The problem is that these superior algorithms are too complex to

enable an analytical analysis be made on their performances. Therefore, one would

expect that even if the random variable denoting the bisection size of random

-19-

graphs in 9(2n, m) does not converge, the actual upper bound will be lower than

that given in Proposition 2.7. It should be noted that the upper bound given in

Proposition 2.7 is only for random graphs in 9(2n, m) with a linear number of

edges.

2.5. Bounds for Graphs with Special Structures

In general if the graph possesses some special structure we can produce a

tighter bounds on its bisection size. The following results are given in [Mac78] we

present them here without proof.

Proposition 2.8. Let G = (V,E) be a graph d =max{ deg(v) Iv EV}> 3, with

IEI = m, then

(2-18)

Proposition 2.9. Let G = (V, E) be a graph with IVI = 2n, IEI = m, if m < n

then C(G) = 0.

Proposition 2.10. Let s E (1/2, 3/2) be given. Then there exists an f > 0 such

that for any no there is n > no and a graph G = (V, E) with IVI = n, IEI < sn

such that max{ deg(v) I v EV} < 3 and C(G) > En.

Proposition 2.11. Given a tree G with n vertices and let d be the maximum

degree of all the vertices. Then

if d = 3 or4;

if d > 5.
(2-19)

Proposition 2.12. Let G be a complete ternary tree having n vertices with

n = !(3l - 1), for some l even. Then

C(G) > flog3 n l - r1og3 log3 n l · (2-20)

The above proposition also holds for odd l, but then the number of vertices in

the tree is odd and it does not have a bisection as defined in the first section of this

chapter.

-20-

In this chapter we have reviewed the known results concerning the bisection

size of graphs. Except for the results given by MacGregor [Mac78] for random

graphs in 9(2n, m) all the other results are given only to first order term. In the

next chapter we shall give bounds for random graphs to second order term. We

also expand our model of random graphs to deal with random graphs having a

nonlinear number of edges, in contrast to MacGregor's results.

-21-

This empty page was substih1ted for a
blank page in the original document.

Chapter3

Bounds for Bisection Size of Graphs in g (2n,p).

In this chapter we consider random graphs in 9(2n,p). We defined 9(2n,p)

in Chapter 2 as a probability space consists of all graphs on 2n vertices, and the

probability of a graph on 2n vertices and m edges is pmq(22)-m, where q = 1- p.

We show in this chapter that with probability 1 the bisection size of G2n,p E 9(2n, p)

is less than n2p-O(n) and is greater than n2p-O(n312). We then extend our model

so that p can be a function of n (from N to (0, 1)). In particular we consider the

function p = p(n) = ~· Under this model, we show that a.e. graph in 9(2n,p(n))

has bisection size greater than en - n../2e log 2 and less than en - 0.476c112n.

3.1. Preliminary Results

In this section we first present without proofs some elementary results in

probability theory which will be needed later in the chapter. Proofs of these results

can be found in most books on probability theory, e.g. [F74). We next present some

fundamental results about random graphs.

Chebyshev's Inequality Let X be a random variable, for any t > 0, we have

(3-1)

In particular, if E(X) = µ then

Pr{ IX - I> t} < Var(X)
µ - - t2 (3-2)

where E(X) and Var(X) are the expectation and variance of X, respectively.

-23-

In our proofs we need to approximate expressions which contain the binomial

random variable. For this purpose we use the following approximation given in

(JK69] to approximate the binomial random variable by the normal random variable.

where

and

(
k+ !-np)

Pr{ Sn < k } ~ JI .jnpq ,

Pr{ Sn < k } = t (~)piqn-i
i=O i

Jl(x) = _1_ lz e-b2 dy
~ -oo

(3-3)

(3-4)

(3-5)

is the normal distribution function. The following approximation of the normal

random variable given in (F7 4] will also be needed later.

Jl(-x) ~ 1 - Jl(x) R:: x-117(x) (3~)

as x-+oo, where
1 l. 2 TJ(x) = -e-zz
~

(3-7)

is the normal density function. In our computation we also use the following form

of Stirling's formula for factorial

(3-8)

from which we can easily show that

(
2n) ~ 2

2
" •

n ..fin
(3-9)

By a simple application of the Chebyshev's inequality we get the first part of

the following result.

Proposition 3.1. Given f > 0 and p E (0, 1) fixed. A.e. graph in 9(n,p) has at

least ~(p - f}n2 edges and at most !(P + f)n2 edges. If p is a function from N

to (0, 1) such that n2p(n)-+oo and (1 - p(n))n2-+oo then we again have : a.e.

graph in g(n,p(n)) has at least !(p(n)- f)n2 edges and at most !(p(n) + e)n2

edges, for any f > 0.

-24-

The proof of the second part of the above proposition is given in the proof of

Proposition 3.2.

As mentioned in the previous chapter, the models g (n, p) and g (n, m) are

closely related. We show now under what conditions, properties of graphs in one

model can be translated to properties of graphs in the other model. We first

introduce the concept of convex property. Let r* be a collection of sets, r* is

convex if Ai C A C A2 for some Ai, A2 E r* implies A E r*. We can then define

a convex property of graph similarly.

Proposition 3.2.[Bo79] Let p = p(n) be a function from N to (0, 1) such that

n2p(n)-+oo and (1 - p(n))n2-+oo as n-+oo, let Q be a graph property, and let

N= (;).

(i) Letf. > 0 be fixed, and suppose that if(l-f.)Np(n) < m < (l+f.)Np(n)
then a.e. graph in 9(n,m) has Q. Then a.e. graph in 9(n,p(n)) has Q.

(ii) If Q is a convex property and a.e. graph in 9(n,p(n)) has Q, then a.e.

graph in g(n, lNp(n)J) has Q.

Proof : Let r denote the set of graphs in 9(n, p) and let rm denote the set of

graphs in 9(n, m). Then r = U~=o rm, and

(3-10)

therefore,
Pr(rm) m+ 1 q

Pr{rm+1) = N-mp (3-11)

and Pr{f m) is maximal for some m E [Np - 1, Np+ 1]. Let f. E (0, 1) be given,

since n2p-+oo as n-+oo, for sufficiently large n we have

Hence

Pr{f m) {1 - f.
Pr(r m+1) < (1 + f}-1

if m < (1 - t:)Np;

if m > (1 + e}Np.

Pr((l-UNp rm) -+ 1
m=(l+f)Np

as n-+oo.

{3-12}

{3-13}

This proves (i) and also the second part of Proposition 3.1. To prove {ii) we note

that from (3-11) we get

(3-14}

-25-

for any 'T/ E (0, 1/2) and for sufficiently large n. From (3-13) and (3-14) we have :

if r* C r is such that Pr(r*)---+ 1 as n-+oo then for any f > O, there exist m1 and

m2 such that (1- f)Np < m1 < Np < m2 < (1 + f)Np and

1r m, nr*I -+ 1
1rm,I

as n-+oo, i = 1,2.

In particular if f * is a convex set then we have

as n-+oo,

(3-15)

(3-16)

if m1 < m < m2 , say m = l Np J. This proves (ii) and completes the proof of the

proposition. I

3.2. Lower Bounds on the Bisection Size

We first consider model 9(2n, p) with p being a fixed constant in the interval

(0, 1), independent of n. For each G2n,p E 9(2n,p) there are !(2:) distinct bisections.

We label the bisections 1, ... , 1(2:). Let k be an integer in [O, n 2
]. For each i E

{ 1, ... , 1(2:)} define the following random variable on 9(2n,p)

(k) {1,
Ai (G2n,p) = O,

if the ith bisection has size < k;

otherwise.
(3-17)

We next define Bk(G2n,p) as a random variable on 9(2n,p) denoting the number

of bisections of G2n,p having size less than or equal to k. That is

(3-18)

It is clear that

E(A~k)) = E (n~)p1·qn2-j.
j=O J

(3-19)

Now we are ready to give the lower bound for bisection size of graphs in

9(2n,p).

Proposition 3.3. Let f(n) be a function such that f(n) = o(l) and f(n) = O(k).

Then a. e. graph in 9(2n, p), where p is a fixed constant, has bisection size

greater than or equal to

k(n) = n2p- ny'4npqlog 2- 2pqlogn - 2pqlog/(n) + 0(1). (3-20)

-26-

--------- ------ --------------

Proof : Fix n, let k = k(n) be given as in the statement of the proposition. Let

G2n,p E 9(2n, p) be given. We have

Pr(C(G2n,p) < k) = Pr(some bisections of G2n,p has size < k)
= Pr(Bk =/; 0)

< E(Bk)·

Now let M = !(2:), then

M

E(Bk) = E E(~k))
i=l

=LL n_ piqn2-i M k (2)
i=l i=O J

k (n2) . 2 . = M?: . p1qn -1

J=O }

~ !~(-1 ~ exp(--1 (np - !:)2))
2 vrn ..,fi;i n2p - k 2pq n

~ f(n) + o(l)

= o(l)

by a straightforward application of (3-3) and Stirling's formula, and by our choice

of k. Thus

lim Pr(C(G2np) > k) = 1
n-+oo '

this completes the proof of the proposition. I

In Proposition 3.3 p is a constant, and hence by Proposition 3.1 the number

of edges of random graphs in 9(2n, p), with probability 1, lies in the interval

[(p- E}2n2, (p + E)2n2] for any f > 0. If we now instead consider pas a function of

n, in particular p = ~ then again by Proposition 3.1 the number of edges of a.e.

graph in 9(2n,p(n) =~)lies in the interval [(2c- E)n, (2c + E)n] for any€ > 0. In

other words, graphs in 9(2n,p(n) = ~),with probability 1, have a linear number

of edges. By using Propositions 3.1, 3.2, and 2.5 we get the following.

Proposition 3.4. A.e. graph in 9(2n,p), where p = p(n) =~for some constant

c > 9, has bisection size greater than o.r equal to

k(n) = en - nv'2clo~ 2 (1 + o(1)) (3-21)

-27-

For the general case of p a function of n we conjecture that the following holds.

Conjecture. Let p(n) be a function from N to (0, 1) such that n2p(n)-+oo as

n-+oo. A.e. graph in 9(2n,p(n)) has bisection size greater than or equal to

k(n) = n2p(n) - 2n312Jp(n)q(n) log 2 (1 + o(l)) (3-22)

3.3. Upper Bounds on the Bisection Size

As in the previous section, we first consider the model 9(2n,p) with p being

a fixed constant in (0, 1). Define the random variables A!k) and Bk as in equations

(3-18) and (3-19). We first need the following lemma which was given by Matula

(Mat76} as a stronger version of the so called second moment method used frequently

in [ES74).

Lemma 3.5. Let X be a nonnegative, integer valued random variable with

mean E(X), standard deviation u < oo, then

E2(X)
Pr{X ~ O} > E(X2)

Proof : As 2ij < i2 + J°2, we have

E2(X) = (~ tPr(X = i))'

00 00

=LL ijPr(X = i)Pr(X = j)
i=li=l

< ! f f (i2 + j 2)Pr(X = i)Pr(X = j)
2 i=l i=l

= (,~ j 2
Pr(X = j)) '~ Pr(X = i)

= E(X2)Pr(X ::/:- 0)

Thus the lemma is proved. I

(3-23)

Proposition 3.6. Let p E (0, 1) be a fixed constant. A.e. graph 9(2n, p) has

bisection size less than

k(n) = n2p- an (3-24)

-28-

for some a < l1f VM·

Proof : Fix n, let k = k(n) be given as above. It is clear from the definition of Bk

that

(3-25}

where M = ! (2:). The second moment of Bk is

E(B~) = E[(.~ Ajkl)']

= E[,~ (Aj•l)' l + {~ ;~ Ajkl A~•l l
i:Fi

< E(Bk) + ! E[f f (~k))2(A~k))2]
2 •=l 3=1

i:Fi
< E(Bk) + (M - l}E(Bk)

= ME(Bk) (3-26)

for our choice of k, the right hand side of the above expression goes to 1 as n-+oo.

This proves the proposition. I

Consider next random graphs in 9(2n,p(n) = *)for some c > 1. We can use

Proposition 3.2 to translate the upper bound given by Proposition 2.7 for graphs

in .9{2n, m = 2cn), to an upper bound for graphs in .9{2n, p(n) = *)·

-29-

Proposition 3.7. Letp(n) = fi for some constantc > 1. A.e. graph in 9(2n,p(n))

has bisection size less than

k(n) =en - 2H(c)cn. (3-27)

where H(c) ~ 0.238c-1/ 2 .

We conjecture that the following holds for a.e.graph in 9(n,p(n))

Conjecture. Let p(n) be a function from N to (0, 1) such that n2p(n)-+oo as

n-+oo. A.e. graph in 9(2n,p(n)) has bisection size less than

k(n) = n2p(n}- anJp(n)q(n) (3-28)

for a< fi.
From Proposition 3.1 we see that, with probability 1, graphs in 9(2n,p} have

2n2p(l + o(l)} edges. Our results in this chapter show that about half of these

edges will appear as cut edges in the optimal bisections. This conclusion can be

drawn from Chapter 2, what is new here is the presence of the second order terms

in the bounds. In fact we need these second order terms if we wish to use these

bounds to judge the performance of a heuristic on random graphs. This is the case

as, given a random graph, we can easily show that with high probability, a random

bisection will have size equal to about half of the number of edges in the random

graph. Thus any improvement by a heuristic over a random bisection will reflect

only in the terms of order o(n2).

In the next chapter we shall present some known approximate algorithms for

solving the graph bisection problem, and some empirical data of their performances

on random graphs.

-30-

Chapter4

Graph Bisection Heuristics

In this chapter we describe various heuristics that are used for solving the

graph bisection problem. All of these heuristics have one basic working principle.

They all start with a randomly chosen bisection, and improve upon that bisection.

The differences among these heuristics are in how the improvement is done. The

simplest of these is an algorithm which chooses the vertices to be exchanged by

ordering the vertices in each part of the bisection based on the property of the

initial bisection, and then choosing the best initial segments from each part of the

bisection to be exchanged. The next approximation algorithm that we describe

is given by Kernighan and Lin in [KL 70), this algorithm also orders the vertices

in each part of the original bisection and chooses the best initial segments to be

exchanged. However, the ordering is done dynamically. That is, the order of one

vertex depends both on the original bisection and the vertices appearing before it

in the ordering, whereas the order of one vertex in the previous alogrithm depends

only on the original bisection. An interesting algorithm proposed by Kirkpatrick,

Gelatt, and Vecchi [KGV82) uses ideas in statistical mechanics to help solve the

graph bisection problem. In the last section of this chapter we shall present some

empirical results.

4.1. Descriptions of Some Heuristics

There is one obvious way to solve the graph bisection problem, namely,

enumerating all the possible bisections and choose one that has a minimum size.

-31-

However, to enumerate all the bisections of a graph on 2n vertices, it takes time

proportional to (2:) which is exponential in n, hence this method is very inefficient

for large n.

Another method is to generate the bisections randomly, and keep the one that

has the smallest size among the ones that have been produced so far. This is faster

than the exhaustive procedure described above, nonetheless, by experience [KL]

reported that the number of optimal bisections or near optimal bisection is very

small, hence the probability of getting an optimal solution by this method is quite

small. In fact, [KL] has experimented with a class of 0-1 matrices of size 32 X 32

(these can be considered as the adjacency matrices) and found that the number of

optimal bisections are typically 3 or 5 out of a total of n~) bisections, which means

that the probability of success on any trial is less than 10-1 .

By considering the given graph as a network and the cost of the edges in the

given graph as the maximum flow capacity of the edges, then it seems that the

graph bisection problem can be solved by using the well known Ford-Fulkerson

max-flow, min-cut algorithm. This algorithm will give not only the maximum flow

between any two points but also the minimum cut that separates those two points.

Unfortunately, the algorithm does not have control over the size of the subsets

of the partition, that is it will give the min-cut but the resulting two subsets of

the partition need not have equal size as required by the graph bisection problem.

Furthermore, there is no obvious way to modify the algorithm so that we have

control over the size of the subsets of the bisection.

We now describe a simple heuristic called the block heuristic. A similar heuristic

is used in the proof of Proposition 2. 7 in [Mac78}. Let G = (V, E) be a graph

with IVI = 2n, the algorithm starts with a random bisection, say (A, B) of G. We

define the gain of each vertex in the graph with respect to that bisection as follows.

Let a EA, the gain of A, denoted by ga, is the difference in the number of edges

connecting a to vertices in B, and the number of edges connecting a to vertices

in A. We extend this definition to pair of vertices one in A and one in B. More

formally, define •

9a,b = l(A, B)I - J(A', B')I (4-1)

-32--

-------- - -- ---

where

A'= (A-{a}) LJ{b} and B' = (B-{b}) LJ{a}. (4-2)

In other words, ga,b is the reduction in the size of the bisection when a and b are

interchanged. Clearly,

where

ga,b = ga + gb - 26(a, b)

o(a,b)= {
1,

o,
if (a,b) EE;

if (a,b) ~ E.

(4-3)

{4-4)

This algorithm first calculates gv for all v EV. It then chooses ai EA, b1 EB, such

that gai.bi is maximum. It then computes the size of the new bisection resulted

when ai and bi are interchanged, and sets ai, b1 aside. Next it chooses the best pair

aa, b2 in A- { ai} and B- {bi} such that 9a2 ,b2 is maximum, then sets a2, b2 aside.

The process is repeated until there is only one pair of vertices left. The algorithm

then returns the bisection with the smallest size found. Note that when choosing

a2 and b2 the gains of a2 and ba have not been updated to account for the fact that

ai and b1 have been interchanged. That is, at all stages we use the gains computed

at the beginning of the algorithm. The algorithm can be described more formally

as follows.

begin

1. Compute 9a 1 gb for each a EA, b EB.

2. Let QA= 0,QB = 0.

3. for i = 2 to n do

begin

4. Choose ai EA- QA and bi E B - QB such that g0 ,,b,

is maximum over all choices of a and b.

5. Set QA= QA U {ai}, QB= QB U {bs}

end

6. Choose k E { 1, ... , n} to maximize Ef 1 9a. ,b,.
7. Interchange the subsets {ali ... , ak} and {b1, ... , bk} to get the new bisection.

end
Figure 4.1. The Block Algorithm

-33-

Kernighan and Lin in [KL 70) give a heuristic for solving the graph bisection

problem which seems to work well in practice. Let a graph G = (V, E), V = 2n be

given. The main idea here is the same as before, that is to start with an arbitrary

bisection, say (A, B), and improve upon it. The improvement is accomplished by

interchanging subsets X C A, Y C B, and IXI = IYI < n so that the size of the

bisection is decreased. If we consider all possible subsets of A and B, we shall be

able to pick out the subsets, whose interchange will give us the optimal bisection.

However, this will be an exponentially long procedure, which is undesirable. The

Kernighan-Lin heuristic finds these subsets approximately by choosing elements of

X and Y sequentially. This choosing process is done as follows. For each element

a EA, b EB, let 9a,b be defined as before. The algorithm first computes 9a,b for all

a EA, b EB. It then chooses ai EA, bi EB such that

9ai,b1 =max{9a,b I a EA, b EB}

The algorithm now updates the gains of all vertices in V, except ai and

bi, with respect to the new bisection ((A-{ai}) U{bi}, (B-{bi}) U{a1}). The

algorithm next repeats the process for this new bisection and chooses a new pair

of vertices to be exchanged, except that ai and bi will not be considered anymore

in choosing the next pair that will give the maximum reduction. That is, once a

vertex is chosen to be exchanged it will no longer be considered in later stages.

The process is repeated untill all vertices have been considered. We now have a

list of pairs (ai, bi), ... , (an, bn}· Clearly if all these pairs are interchanged the total

reduction is zero. The algorithm now chooses a k < n such that the interchange

of the subsets {ai, ... , ak} and {bi, ... , bk} will give a maximum reduction over

all choices of k < n. This whole process is called a pass of the algorithm. The

algorithm can have several passes. Each pass, except the first one, starts with the

bisection given as the result of the previous pass. The algorithm can have a fixed

number of passes or it can run until no more improvement is possible. Another

alternative is to have an entire new arbitrary bisection as the input to each pass,

and keep the smallest bisection produced so far.

We now describe the algorithm formally. Let G _ (V, E) be a graph with

V = 2n. Let (A, B) be a bisection of G. F~r each a E A b E B define 9a.,b as

-34-

before. The heuristic is shown in Figure 4.2. Steps 7 and 9 of the algorithm can be

easily checked that the values of the 9a and 9b are correctly updated with respect

to the new bisection, that is after the sets { ai, . .. , ai} and {b1, ... , bi} have been

interchanged. It is also easily shown that the running time of the algorithm is

O(n2logn).

begin

1. Compute 9a 1 9b for each a E A, b E B.

2. QA = 0, QB = 0.
3. for i = 2 to n do

begin

4. Choose a, EA - QA and bi E B - QB such that 9a.;,b,

is maximum over all choices of a and b.

5. Set QA= QA U{ai},QB =QB U{bi}

6. for each a EA-QA do

7. 9a. = 9a. + 26(a, ai) - 26(a, bi)

8. for each b E B - QB do

9. 9b = 9b + 26(b, bi) - 26(b, a,)

end

10. · Choose k E {1, ... , n} to maximize Ef 1 9a..,b•·

11. Interchange the subsets { ai, .. . , ak} and {b1, ... , bk} to get the new bisection.

end

Figure 4.2. One pass of the Kernighan-Lin bisection heuristic

Other graph bisection heuristics which are variations of the Kernighan-Lin's

heuristic have been considered by Macgregor [Mac78], he also considered hybrid of

these heuristics. It should be noted that a slight variation of the Kernighan-Lin

heuristic has been implemented by Fiduccia and Mattheyses [FM82} to run in linear

time by using some clever data structures.

Finally, we present an algorithm proposed by Kirkpatrick, et al., [KGV82},

which makes an interesting connection between the annealing process and the

-35-

iterative improvement process of the graph bisection heuristics. Consider a system

consisting of a large number of atoms, such as a sample of liquid or solid

matter. The aggregate behaviour of the system can be observed by considering

the average behaviour taken over an ensemble of identical systems. We associate

with each configuration of the system in the ensemble a Boltzmann's probability,

exp(-E({ri})/kBT), where E({ri}) is the energy of the configuration defined by

the atomic positions {ri}, kB is the Boltzman's constant, and Tis the temperature.

One wishes to know what happens to the system in the limit of low temperature,

for instance, whether atoms remain fluid or solidify. It is known that ground states

and configurations having energy close to them are very rare, nonetheless, they

dominate the behaviour of the system at low temperature because as T is lowered

the Boltzmann distribution collapsed into the lowest energy state or states. To find

the low temperature states of a system it is necessary to use an annealing process.

That is to first melt the substance, then lower the temperature slowly, and spend

a long time at the temperatures near the freezing point. Otherwise, the resulting

configuration will be metastable.

There is a simple algorithm given by Metropolis, et al. [M53] which simulates

a collection of atoms in equilibrium at a given temperature. In each step of the

algorithm, an atom is given a small random displacement, and the corresponding

change in energy, 6.E, of the system is computed. If 6.E < O, then the displacment

is accepted, and the configuration with the just displaced atom is used as the starting

configuration for the next step. When 6.E > 0, the configuration is accepted with

probability Pr(6.E) = exp(-6.E/kBT). A random number is chosen uniformly in

the interval (0, 1), and compared with Pr(6.E). If it is less than Pr(6.E) then the

new configuration is accepted, if not, the original configuration is retained and we

repeat the process.

It is observed m [KGV82} that the iterative improvement process in a

combinatorial optimization problem such as the graph bisection problem is similar

to the microscopic rearrangement processes modelled by statistical mechanics, where

an appropriate cost function for the graph bisection problem will play the role of

energy. Using this analogy we note that in the process of finding the solution if we

only accept rearrangements that reduce the cost function, then this is like rapid

-36-

quenching from high temperature to T = 0, thus the resulting solutions will often

be local optima and metastable. By utilizing the Metropolis' algorithm described

above, in which rearrangements that increase the cost function are sometimes

accepted, we can expect to get better solutions as indicated by the observation

made in actual physical processes. This algorithm has not been extensively tested

but the results found so far seem very favourable.

4.2. Some Empirical Results

In this section we give the results produced by the block and Kernighan-Lin

algorithms when random graphs in 9(n, p = 1/2) are used as inputs. We ran both

algorithms on graphs in 9(n, p = 1/2) as n varies from 20 to 800 in increments of

20 and from 800 to 1000 in increments of 50. For each value of n 10 random graphs

are generated, the results produced by each algorithm on these random graphs are

averaged and used as the result of that algorithm for that value of n.

To speed up the running time some modifications are made in both algorithms

in implementing them. In both algorithms the most time consuming step is in

choosing the best pair to be interchanged. Assume that the current bisection is

(A, B), instead of considering each pair (a, b), a E A, b E B to find one with the

largest 9a,b (defined in the previous section), we simply find the pair (a,b) such

that 9a + 9b is largest, i.e., we can choose a and b independent of each other. In

the block algorithm we further reduced the running time by considering blocks to

be exchanged only of length less than n/2 for graphs with 2n vertices. That is,

in step 3 of the block algorithm, the for loop runs from 2 to r n/21 instead of n.

This is due to the observation in some experimentation that the length of the block

to be exchanged in the block algorithm is almost always less than one fourth the

number of vertices in the graph. The change in the performance as a result of these

modifications is not significant, as observed and also reported in [Mac78].

For large value of n the Kernighan-Lin algorithm seems to perform quite better

than the block algorithm but the running time is also longer. The bisection sizes

produced by the Kernighan-Lin algorithm apparently lie well in halfway between

the upper bounds and the lower bounds. The programs are written in MACLISP,

and run on a DEC20. On an input of 1000 vertices the Kernighan-Lin algorithm

-37-

takes approximately 283 seconds and the block algorithm takes approximately 240

seconds.

N
u
M
B
E
R

0
F

c
u
T

E
D
G
E
s

130000

Figure 4.3. Graph oY Vertex Size vs. Bisection Sizes

-38-

In Figure 4.3 the top curve is the upper bound given in Chapter 3, the curve

second from the top is the bisection size produced by the block algorithm, the next

curve represents the bisection sizes returned by the Kernighan-Lin algorithm, and

the bottom curve is the lower bound given in Chapter 3. The graph was prepared

using the MACSYMA program developed by the Mathlab group at MIT2 [MAC77].

2Work of the Mathlab group is currently supported in part, by the United States Energy
Research and Development Administration under Contract Number E(ll-1)-3070 and by the
National Aeronautics and Space Administration under Grant NSG 1323.

-39-

This empty page was substih1ted for a
blank page in the original document.

Chapters

Conclusion

In this thesis we have shown that almost every graph in 9(2n, p) has bisection

size greater than n2p - o(n312 ...;pq) and less than n2p- o(n.;pq,). We also show

that a.e. graph in 9(2n,p(n) = ~) with e > 9 has bisection size greater than

en - nv'2e log 2 and less than en - 0.476e112n. These, together with other known

results on bisection size, seem to indicate that, except for specially structured

graphs, we always have to remove about half the number of edges of a graph

to bisect it. Empirical results also give evidence that there is no heuristic that

performs well on all kind of graphs (Mac78). This suggests that if one wishes to

obtain optimal or near optimal bisection of a graph, one needs to know more than

just the number of vertices and edges. Knowing about the structure of the graph

alone is not sufficient, however, one also needs special algorithms to exploit that

structure.

Efforts in proving how good is the performance of a graph bisection heuristic

on random graphs have been in general unsuccessful. Even though most graph

bisection heuristics are deterministic, except that choosing the starting bisection is

done randomly, they are still very difficult to analyze. The difficulty lies in the fact

that the updating process and the interchanging of vertices change the distribution

of the edges in a random graph. It is useful to have provably good graph bisection

heuristics, for besides from being of interest in itself, it also has been shown by

Leighton (L82) that by using a provably good graph bisection heuristic, we can

get provably good algorithm for the crossing number problem, and from which we

-41-

can get provably good -algorithm for the graph layout problem. Given a graph, the

assingment of the nodes and edges of the graph to the points and tracks (vertical

and horizontal) of a rectangular grid is called an embedding of the graph. The

graph layout problem is the problem of finding an embedding of the graph such that

the following quantities of the grid are minimum : area, number of edge crossings,

number of total edge length, and the maximum edge length. The crossing number

of the graph is the minimum number of edge crossings over all possible embeddings

of the graph. The crossing number problem is then, of course, the problem of

determining the crossing number of a given graph. Both the layout problem and

the crossing number problem are known to be NP-complete. The layout problem is

one of the vital parts in the VLSI design process, especially of chips which can do

a large amount of computation reliably and efficiently.

Besides from the conjectures in Chapter 3, our main open question is to

determine analytically how well a certain graph bisection heuristic does. In

Proposition 3.4 we show the lower bound on the bisection size for random graphs

having a linear number of edges, in particular this result only holds for the number

of edges being greater than nine times the number of vertices. Recent experimental

results by Goldberg and Gardner [GG82a] indicate that random graphs with the

number of edges equal the number of vertices have bisection size between 25% and

30% of the number of edges. Thus it is of interest to know what is the lower bound

for the bisection size of random graphs when the number of edges is less than nine

times the number of vertices.

To more closely model the graph partitioning problem arising in actual

application a more complicated model is needed. One possible model is the set of

random hypergraphs. It would then be useful to have results for random hypergraphs

similar to the known results for the random graphs._ Also in actual application we

usually need to partition the graph into more than two parts, and at the moment

there is no good uniform method for extending the known graph bisection heuristics

to solve the general graph partitioning problem. These are a few possible directions

for further study concerning this subject.

-42-

References

[BESSO] Babai, L., P. Erdos, and S. M. Selkow, "Random Graph. Isomorphism,"

SIAM J. Comput., Vol. 9, No. 3, Aug. 1980, pp. 628-635.

[Bo79] Bollobas, B., Graph Theory : An Introductory Course, Springer Verlag,

New York, (1979).

[Bo81a] Bollobas, B., "Degree Sequences of Random Graphs," Discrete Mathematics,

33(1981), pp. 1-19.

[Bo81b) Bollobas, B., "Random Graphs," Proceedings of the 8th British

Combinatorial Conference, Lecture Notes Series, No.52, Cambridge

University Press, 1981.

[Bo82] Bollobas, B., ''Vertices of Given Degree in a Random Graph," J. of Graph

Theory, Vol. 6, 1982, pp. 147-155.

[BE76] Bollobas, B., and P. Erdos, "Cliques in Random Graphs," Math. Proc.

Camb. Phil. Soc., 80(1976), pp. 419-427.

[Br77] Breuer, M. A., ''Min-cut Placement," J. Design Aut. and Fault Tol.

Comp., Vol. 1, No. 4, Oct. 1977, pp. 343-362.

[DH73) Donath, W. E., and A. J. Hoffman, "Lower Bounds for the Partitioning

of Graphs," IBM J. Res. Develop., Sept. 1973, pp. 420-425.

[E59] Erdos, P., "Graph Theory and Probability," Canadian J. Math., 11(1959),

pp.34-38.

[E61) Erdos, P., "Graph Theory and Probability," Canadian J. Math., 13(1961),

pp.346-352.

[ER59] Erdos, P., and A. Renyi, "On Random Graphs, I," Puhl. Math. Debrecen,

6(1959), pp. 290-291.

[ER60] Erdos, P., and A. Renyi, "On the Evolution of Random Graphs,"

Publications of the Mathematical Institute of the Hungarian Academy of

Sciences, 5(1960), pp. 17-60.

[ES74) Erdos, P., and J. Spencer, Probabilistic Methods in Combinatorics,

Academic Press, New York and London, 1974.

-43-

[F74) Feller, W., An Introduction to Probability Theory and its Applications,

Vol. 1, 3rd Ed., Wiley, New York, 1974.

[FM82) Fiduccia, C. M., and R. M. Mattheyses, "A Linear-Time Heuristic for

Improving Network Partitions," submitted to the Design Automation

Confereence, (January 1982).

[GJ79] Garey, M. R., and D.S. Johnson, Computers and Intractibility: A Guide

to the Theory of NP-Completeness, Freeman, San Francisco, 1979.

[GJS76) Garey, M. R., D. S. Johnson, and L. Stockmeyer, "Some Simplified

NP-complete Graph Problems," Theoretical Computer Science, 1(1976),

pp.237-267.

(GG82] Goldberg, M. K. and R. Gardner, "On the Minimal Cut Problem,"

Proceeding of the Silver Jubilee Conference on Combinatorics, Waterloo,

1982.

(GG82a) Goldberg, M. K. and R. Gardner, Oral Communication.

[GM75] Grimmett, G. R., and C. J. McDiarmid, "On Colouring Random Graphs,"

Math. Proc. Camb. Phil. Soc., 77 (1975), pp. 313-324.

[HR] Hyafil, L., and R. L. Rivest, "Graph Partitioning and Constructing

Optimal Decision Trees are Polynomial Complete Problems," Report No.

33, IRIA-Laboria, Rocquencourt, France.

[JK69) Johson, N. L. and S. Kotz, Discrete Distributions, John Wiley & Sons,

1969.

[Ka82] Karo:6.ski, M., "A Review of Random Graphs," J. of Graph Theory, Vol.

6, 1982, pp. 349-389.

[KL70} Kernighan, B. W., and S. Lin, "An Efficient Heuristic Procedure for

Partitioning Graphs," The Bell System Tech. J., Feb. 1970, pp. 291-307.

[KGV82] Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization

by Simulated Annealing," IBM Research Report RC 9355, April 1982,

Yorktown Heights, New York.

-----------------~

[L82] Leighton, F. 'J.' ., "A Layout Strategy for VLSI Which Is Provably Good,"

Proceedings of the 14th Anual ACM Symposium on Theory of Computing,

May 1982, pp. 85-98.

[Mac78] Macgregor, R. M., "On Partitioning a Graph : A Theoretical and

Empirical Study," Ph.D. Thesis, Stanford University, 1978, also appeared

as Technical Report UCB/ERL M78/14.

[MAC77] MACSYMA Reference Manual; The Mathlab Group, Laboratory for

Computer Science, MIT, 1977.

[Mat76] Matula, D. W., "The Largest Clique in a Random Graph," Technical

Report CS 7608, Dept. of Computer Science, Southern Methodist

University, Dallas, Texas.

(M53] Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,

"Equation of State Calculations by Fast Computing Machines," J.

Chemical Physics, Vol. 21, No. 6, June 1953, pp. 1087-1092.

[P76] P6sa, L., "Hamiltonian Circuits in Random Graphs," Discrete Mathematics,

14(1976), pp. 359-364.

