CONCURRENCY CONTROL FOR RESILIENT NESTED TRANSACTIONS

Nancy A. Lynch
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

FEBRUARY, 1983
Revised: MAY, 1985

A ABSTRACT
Concurrency control theory is extended to handle nested transactions with failures. The theory is used to
present a rigorous correctness proof of a variant of Moss’ locking algorithm for implementing nested

transactions. The proof has an interesting structure using many levels of abstraction.

Keywords: Action tree, atomicity, concurrency control, recovery, serializability, transaction, two-
phase locking.

©1985 Massachusetts Institute of Technology, Cambridge, MA. 02139

This work was supported in part by the Office of Naval Research under Contract NOOO14-85-
K-0168, by the Office of Army Research under Contracts DAAG-29-79-C-0155 and DAAG29-84-
K-0058, by the National Science Foundation under Grants MCS-79-24370 and DCR-83-02391, and
by the Defense Advanced Research Projects Agency (DARPA) under Grants N00014-76-C-0944

and NO00O14-83-K-0125.

This empty page was substituted for a
blank page in the original document.

1. Introduction

In the past few years, there has been considerable research on conctirrency control, including
both systems design and theoretical study. The problem ¥ roughly as follows. Data in a large
(centralized or-distributed) database is assumed to be accessible to users via trangactions, each of

‘which is a sequential program which cancarry out many steps accessing individual data objects. Itis

important that the transactions appear to execute "atomically”, i.e. without intervening steps of other
transactions. However, it is also desirable to permit as much concurrent operation of different
transactions as possible, for efficiency. Thus, it is not generally feasible to insist that transactions run

completely serially. A notion of equivalence for executions is defined, where two executions are

equivalent provided they "look the same" to all transactions and to “al“t data objects The seriglizable
executions are just those which are equwalent to serial executions. One goal of concurrency control
design is to insure that all executions of transactions be serializable.

Several characterization theorems have been proved for serializability; generally, they amount to
the absence of cycles in some relation déscribing the dependencies among the steps of the
transactions. A very large number of concurrency control algorithms have been devised. Typical
algorithms are those based on two-phase locking [EGLT], and those based on timestamps [La].
Although many of these algorithms are very different from each other, they can all be shown to be
correct concurrency control algorithms. The correctness proofs depend on the absence-of-cycles

characterizations for serializability.

More recently, it has been suggested {Re, M, LiS] that some additional structure on transactions
might be useful for programming distributed databases, and even for programming more general
distributed systems. The suggested structure permits transactions to be nested. Thus. a transaction
is not necessanly a sequential program, but rather can consist of (sequential or concurrent) sub-
transactions. The intention is that the sub-transactions are to be serialized with respect to each
other, but the order of serialization need not be completely specified by the writer of the transaction.
This Hexibility allows more concurrency in the implementation than would be possible with a single-
level transaction structure consisting of sequential transactions. The general structure allows
transactions to be nested to any depth, with'on‘ly the leaves of the nesting tree actually performing

accesses to data.

Transactions are often used not only as a unit of concurrency, but also as a unit of recovery. In a
nested transaction structure, it is natural to try to localize the effects of failures within the closest -
possible level of nesting in the transaction nesting tree. One is naturally led to a style of programming
which permits a transaction to create children, and to tolerate the reported failure of some of its

children, using the information about the occurrence of the failures to decide on its further activity.
The intention is that failed transactions are to have no effect on the data or on other transactions.
This style of programming is a generalization of the "recovery block" style of [Ra] to the domain of
concurrent programming. Indeed, this style seems to be especially suitable for programming
distributed systems, since many types of failures of pieces of programs are likely to occur in such
systems.

Reed [Re] has designed an algorithm which uses multiple versions of data to implement nested
transactions. Moss [M] has abstracted away from Reed's specific implementation of nested
transactions, presenting a general description of the nested transactlon model. He has also
developed an aiternative implementation of the nested transactlon model based on two- phase
locking. This model and implementation are fundamental to the Argus drstnbuted computmg
language, now under development by Liskov's group at MIT [LiS].

The basic correctness criteria for nested transactions sgem to be clear enough, intuitively. to
allow rmplementors a sufficient understandrng of the requirements for their Jmplementatron
However, some subtle issues of correctness have arisen in connection with the behavior of failed
sub-transactions. For example, the Argus group has decided that a pleasant property for an
implementation to have is that all transactions, including. even "vorpnans" (subtransactions of failed
transactions), should see "consistent” views of the data (i.e. views that could occur during an
execution in which they are not orphans). The implementation goes to considerable lengths to try to
insure this property, but it is difficult for the implementors to be-sure that they have succeeded.

It seems clear that some basic groundwork is needed before such properties can be proved.
Namely, the theory already develobed for concurrency control of single-leve_! transaction systems
without failures needs to be generalized to incorporate considerations of nesting and failures The
model needs to be formal, in order to allow careful specmcatron of all the correctness requnrements
the simple and intuitive ones, as well as the rather subtie ones.

This paper begins to develop this groundwork First, a simple "action tree" structure rs dehned,
which describes the ancestor relationships among executmg transactions and also descrrbes the
views which different transactions have of the data. A generalization of senalrzabrllty to the domain of
nested transactions with farlures, is defined. A characterization rs gwen for this generglrzatron of
serializability, in terms of absence of cycles in an appropriate dependency relahon on transactions. A
slightly simplitied version of Moss’ algorithm is pregented in detail, and a correctness proofi is given.

The correctness proof is complete, detailed, and rigorous. Its style appears to be quite interesting

‘in its own right. Producing such a proof was a very difficult task; the main issues that made it so
- difficult were the nesting of transactions and the possible failures of subtransactions. The initial

attempts to develop such a proof led to extremely complicated, non-modular constructions.
Gradually, after we had tried for many months to organize the proof, the uniform general proof
structure presented in this paper began to emerge. This structure allows the proof to be decomposed
in a very natural way. Without this structure, it is doubtful that we would have been able to complete a
proof at all. (We know of few comparably successful complete proofs for difficult distributed
algorithms.)

The proof is based on certain algebras, which we call "event-state” aigebras. An event-state
algebra is an abstract description of a computing system and the protocof that governs its behavior.
The elements of the algebra are states of the computing system. An operation of the algebra is an
"event" of the system, i.e. a computation step; it transforms a‘state to another state. The operations
are only partially defined; in correspondence with the fact that a step might not be applicable to all
states. The rules that specify when an operation is defined correspond. to the algorithm or protocol
that controls the execution of the system. '

Ancther imporiant concept for our proof is the nation of a mapping befween algebras. It is useful
to describe a computing system on several different levels of abstraction, i.e. as éeveral distinct
algebras. A mapping from an algebra A to another algebra @ is a "simulation” of % by A provided
that every valid computation of .4 is mapped to a valid computation-of 8. Thus, A is, in a sense, an
"implementation* of B,

The approach taken in this paper to a correctness proof of Moss' algorithm is the following. The
system governed by the algorithm is described by a succession of algebras, each one describing
more specific details about the algorithm and its implementation. In the highest level algebra, the only
precondition for the applicability of a sjep (an operation) is that { preserve global correctness. This
algebra is quite far from the algorithm itself. As a matter of fact, this algebra represents "what needs
to be achieved” by the system. Successive algebras get closer to the algorithm, i.e. to "how it is
achieved”. Showingthe existence of a simulation mapping between each palir of successive levels, is
the heart of the correctness proof. '

One novel aspect of the simulations we use, different from the usual notions of "abstraction"
mappings, is that our simulations map single lower level states to gets of higher level states, rather
than just single higher level states. (We call them "possibilities™ mappings.) This extra flexibility

seems quite convenient for many implementations, allowing the lower level algebra sometimes to
contain less detail than the higher level algebra. For example, it might be easy to prove correctness
of an algorithm which maintains lots of auxiliary data. The correctness of an algorithm which
contains less detail could be proved, in our model, by showing that it simulates the algorithm which
maintains the auxiliary data. '

While possibilities mappings are convenient for proving correctness of ordinary centralized
algorithms, they produce their greatest payoff for distributed algorithms. Namely, a distributed
algorithm is described as a special case of an event-state algebra, a "distributed algebra”. A
distributed algebra has a set of "components”. The state set for the algebra is just a Cartesian
product of local states, one for each component. The events are partitioned among the set of
components, according to which component is assumed to "perform" the event. Event domains and
transitions are defined componentwise. To show that a distributed algebra simulates some other
"abstract" algebra, it suffices to define an appropriate possibilities mapping from the global states of
the distributed algebra, to sets of states of the abstract algebra. It turns out to be extremely natural to
describe such a mapping by first describing a possibilities mapping from the local state of each
component to sets of abstract states. The image-of a local state under this mapping just represents
the set of possible global states consistent with the knowledge of the particular component. The
possibilities for the entire distributed algebra are simply obtained by taking the intersection of the
possibilities consistent with the knowledge of all the components.

it appears that this technique extends to give natural proofs of many algorithms, especially
distributed algorithms, and thus warrants further investigation. Goree [G] presents a slightly more
general development of the technique than is presented in this paper, but more remains to be done.

The concurrency control definitions given in this paper express the most fundamental correctness
requirements, but not subtle conditions such as correctness of orphans’ views. issues of fairness and
eventual progress are not addressed, but rather only safety properties, serializability in. particular.
Future work involves extending the framework presented here to allow expression of these other

, properties, and to allow correctness proofs for the difficult algorithms which guarantee these
properties. Some further work in these difections hesakeady heen carried out: Goree [G] gives a
definition for correctness of orphans"views, and has given a correctness proof for a complicated
algorithm used in the implementation of Argus to maintain correctness of orphans’ views in the face
of transaction aborts.

A related recent paper [B] also addresses the problem of proving correctness of algorithms

implementing nested transactions. However, that paper does not address issues of failure and
recovery, which are primary considerations of the present paper. Also, the kind of nesting they
consider appears to be somewhat different from ours: it appears to be designed primarily for
describing levels of data abstraction. Finally, the proof techniques of [BBGLS] are quite different

from ours.

Although our variant of Moss' algorithm is described completely in this paper, we urge the
interested reader to read Moss' presentation in [M]. His presentation gives useful background and
context for the algorithm, as well as a much more intuitive descriptionof the algorithm than is
presented here. '

2. Event-State Algebras

In this section, we describe the event-state algebra framework. This framework is used in the later
sections to organize the formal correctness proof for Moss’ algorithm. The algonthm isdescribed in a
series of five levels, each of which is described as an event-state algebra. '

"~ The reader who is mainly interested in the formal model for ﬁest‘ed‘transactions, and in Moss'
algorithm, rather than in proots of concurrent algorithms, can safely skim the contents of this section.

2.1. Algebras and Simulations

We begin with the basic algebra definitions. An event-state algebrg A = <A, o, ID, consists of a
set A of states, an element o € A, the jnitial stale, and a set I1 of pactial unary operations (the gvents).
In this paper, we will usually refer to an event-state algebra as simply an algeb(a.

Next, we give standard definitions for computability concepts. For any event n, we let domain(z)
denote the set of states for which w |s defined. Let a be a state, and let ® = (w,.. "7). be any finite
sequence of events chosen from Il. Then ® is said to be _/gm from a prowded b =
w (7, (. (11(a))) is defined (i.e. provided that " o ('1(3)) Jisin domaln(ri), for for all W1<i<
k). in this case, b is called the Legun of ® applled toa. An mﬁmte sequence of events is said to be
valid from a provided all its finite pref:xes are valld from a. We say that @ is yalid provided it :s valid
from o, and the result of @ is defined to be the result of ¢ apphed to g. We wnte ak b provided there
is some finite ®, valid from a, for which b is the result of ¢ applied to a b is mmmm provided o
b.

In order to decompose our proof into levels of abstraction, we require a definition of "simulation"
of an algebra A = <A, o, [ID by another algebra L' = <A’, ¢', I1"). In this paper, we present a very

weak definition. An interpretation of A by A’ is a mapping h: IT' — I1 U {A}. (Here, A represents a
null event.) We extend h to a homomorphism mapping event.sequences of A’ to event sequences of
A in the obvious wéy (deleting occurrences of A). An interpretation, h, is a gimulation of A by A’
provided that h(®') is a valid event sequence for A whenever @' is a valid event sequence for A'.

We note that these definitions do not rule out certain trivial situations. We have not imposed the
general requirement that A’ include a representation of every event in .{. We have also not imposed
any requirements that events of ' be defined on large domains. Thus, our techniques are not
powerful enough to prove that A’ does everything which is required to implement . correctly; rather,
we assume that L’ is given, and we are to prove that everything it does is correct for A. We believe
that the more powerful techniques required to insure the stronger properties require extra machinery,
and a more sophisticated general theory than we wish to present here.

The first lemma gives a basic composition result. This lemma justifies our composition of

simulation results for adjacent levels, to prove a simulation result for non-adjacent levels.
Lemma 1: Assume that A, A’ and A" are algebras, that h is a simulation of A by A’
and h' is a simulation of A’ by A”. Then h ° i’ is a simulation of A by A", (
Proof: Straightforward. | ‘ '

O

2.2. Possibilities Mappings

Our basic method for proving correctness is showing that simulations exists between adjacent
members of a sequence of algebras. Therefore, we need a tool that can be used to show that a
mapping is a simulation. In this subsection, we give a sufﬂcnent condmon for a mappmg h from A’ to
A to be a simulation. The condmon involves defmmg a correspondence between states of the two
algebras, in addition to events. It turns out to be most convement for the reasons dnscussed in the
Introduction, to allow the state mapping to map a smgle state of A to a set of states of A rather than
just to a single state. The states in such a set are called pOSSIbIIitIGs - i.e,, the possnble" states
corresponding to a given state. If we think of ALasa concrete” a’igebra, and A as amore ”abstract"
algebra, then we see that a possibilities mapping ailows smgle concrete statee to be mapped to sets
of "abstract” states rather than just single abstract stahes ‘

Let h: A" U IT' — HA) U [T U {A} be such that h(a‘) € HA) for all &' € A’, and h restricted to IT’ is
an interpretation, i.e. h(s") € 1 U {A} for all #’ € IT". (Here, P denotes the power set) Then his a
possibilities mapping from A' to A provided the foiloWinQ are true:

(a) o € h(e").

Assume a and a' are computable in A and A’, respectively, and a € h(a'). Assume «’ € IT".
Assume a' € domain(w')and b’ = #'(a’).

(b) If h(n’) = = € T, then a € domain().
(c) i h(x’) = = € [, then =(a) € h(b").
(d) Ifh(x') = A, then a € h(b').

Property (a) says that the initial state of A is among the possibilities for the initial state of A’.
Property (b) says that an event is only performed in .4’ when its image event can be performed in A.
Properties (c) and (d) say that events performed in .4’ preserve possibilities. The following diagram
should be helpful in understanding (b) and (c). A simitar diagram can be drawn to illustrate (d).

Figure 1: A Property of Possibilities Maps

The following lemmas show that any possibilities ﬁxapping Is a simulation.

Lemma .2: Let h be a possibilities mapping from A' to 4. If @' is a valid event
sequénce for L', and h(®') = @, then ® is a valid event sequence for .A. In addition, if ¢’ is
finite, &’ is the result of &' and a is the result of ¢, then a € h(a’).

Proot: By induction on the length of ¢'. :

a

Lemma 3: Any possibilities mapping from A’ to A is a simulation of A by A'.
Proof: Immediate by Lemma 2.

0

2.3. Distributed Algebras

Next, we define a special kind of event-state algebra, called a "distributed algebra”. A distributed
algebra is oné which can be decomposed into components in a simple way: the states are Cartesian
products of states for the components, each event is assumed vto be originat’ed by some particular
component (although it can affect other components), and the definability and effects ‘of events are
locally determined. Such an algebra provides a nétural structure for describing distributed
algorithms. Processors in a network and message systems are typical exampies of components in

such a decomposition.

An algebra, A= <A, g, D), is said to be distributed over a finite index set | using d, provided that A
is the Cartesian product of sets A, i € |, d is amapping, d: Fl — |, giving the “doer" of each event, and
the following two conditions are satisfied.

- (Local Domain) Let i = d(n). Ifa,b € Aand a = b, then a € domain(w) if and only it b €

domain(w).
-{Local Changes) if a, b € domain(w), a’ = w(a),b’ = #(b) and a = b, then a'i = b'.

The local domain property says that the state of the doér of an event determines the definability of
that event. The local change property says that the changes caused by an event are defined
componentwise. Note that in the local change property, the component i need not necessarily be the
doer of w; we permit other comporients to be affected by #. but assume that the effect is uniquely
determined by # and the state of the component. Strictly speaking, we could have omitted mention of
both of these properties in this paper, since they are not needed to prove the one simple result we
obtain (Lemma 4) about distributed algebras. However, the properties seem to describe the locality
structure of distributed algorithms qﬁite:accurately, and so we present them in anticipation of further
study.

It happens that there is a particularly natural way to define a possibilities mapping from a
distributed algebra to another algebra.' Namely, we define a "local mapping"”, from the local state of
each component of the distributed algebra to a set of abstract states. The result of this mapping
should be thought of as the set of possible abstract states, asfarasa pﬁrﬁcular component can tell
from its local knowledge. The mapping from a global state‘of the :iidﬁbuted algebra can then be
defined to yield the intersection of the images of all the component states. The conditions we require
for local mappings are chosen to be sufficient to guarantee that the derived global mapping is a
possibilities mapping.

Let A' = <A’, o', [1"> be an algebra, distributed over | using d. Let A = <A, o, I1> be any algebra.
Let h be an interpretation from A’ to A. Foreachi €|, let hi: A’ — HA) be such that hi depends on A‘i
only-ie.ifa = b, thén h.(a) = h,(b). Then we say thathand h,, i € |, form a local mapping from A’ to
A provided the following conditions are satisfied. -

(@) Foralli€l, 0 € h(a").

Fix any i € | (for properties (b)-(d)). Assume a and a’ are computable in A and A’, respectively,
and a € h(a'). Assume #’ € IT', d(#') = i. Assume @' € domain{e’), and b’ = #'(a"). '

(b) tth(x") = w € 1, then a € domain(w).

Fix (for properties (c) and {d)) any j € I. (This j can be the same as or different from.)
(c) Assumeh(n') s w€Manda € hi(a'). Then »(a) € hl(b’).

(d) Assume hi#’) = A and ; € hj(a'). Thena€ hi(b').

That is, (a) says that tﬁe initial state of A is in the set of passibilities for each component's initial
state. Property (b).says that an event is only performed in ' whemis doer knows ghét its image event
can be performed in A. Properties (c) and (d) consider the situation from theﬂpbint df view of an
arbitrary component j. Property (c) says that an event with doer i preserves possibilities at component
j. Property (d) is analogous to (c), for events whose images are null evenis.

The following figure illustrates property (b).

v
o >
h
- Do
a! bi
' ?

Figure 2: A Property of Local Mappings

10

The following figure iliustrates property (c).

Figure 3: Another Property of Local Mappings

The following lemma shows that local mappings yield possibilities mappings.
Lemma 4: Let L and A’ = <A, o', [1") be algebras, where A’ is distributed over
. Assume that h and h,, i € | form a local mapping from A’ to A. Extend hto A’ U [T’ by
defining h(a’) = N, ¢ 1(@). Then h is a possibilities mapping from A’ to A (and therefore
a simulation of A by A’). :
Proof: We check the four properties of the possibilities mapping definition.

(a) To see that ¢ € h{¢"), it suffices to show that o € h(c’) for all i € 1. But this is exactly
the statement of property (a) of the local mapping definition.

Now we assume the hypotheses supplied for parts (b)-(d) of the possibilities mapping
definition. Assume also thatd(z’) = i.

(b) Since a € h(a'"), it is obvious that a € h,(a). Property (b) of the local mapping
definition implies thata € domain(#).

{c) In order to show that #(a) € h(b’), it suffices to fix an arbitrary j € | and show that
m(a) € hi(b'). Since a € hj(a’), the needed property foliows from (c) of the local mapping
definition.

(d) It suffices to show that a € h(b’) for any j € 1. This follows as in the preceding
argument from (d) of the local mapping definition.

O

If the definitions in this section are to be used in correctness proofs for the widest possible class
of algorithms, they will probably need to be generalized. In particular, it seems appropriate to permit
single events of a more concrete algebra to interpret sequences of events of a more abstract algebra. '
(See Goree [G] for definitions and uses for this generalization.) Also, allowing each algebra to have a

1

set of initial states rather than just a single initial state would probably be useful. Since we do not
need these generalizations here, we do not make these extensions.

3. Action Trees

in this section, we provide the basic definitions needed to describe properties of nested
transactions. The definitions in this section describe a particular data structure, called an "action
tree”, which provides a natural representation of nested transactions, the relationships between
them, and their views of data. We define “serializability" in terms of action trees. We also prove

several very basic lemmas about the definitions.

We caution the reader that there are many definitions in this section, and he should not try to
remember-them all. Rather, we suggest that he read the definitions once for familiarity, and then use
the section for later reference. ' : ‘

In the rest of the paper, we often refer to transactions as just "actions", for brevity. This departure
from the usual conventions of database theory has been made for consistency with the Argus work.

3.1, Objects and Actions

The system is assumed to contain a set of data objects, upon which the nested actions operate.
We begin with some definitions for objects. Let gbj be a universal set of data objects. For each x €
~ obj, let values(x) denote the set of values x can assume, including a &éﬂhgmshed initial value init(x).
A value assignment is a total mapping, f, from obj to values(ob]), havmg the property that f(x) €
values(x) for alt x € obj.

Next, we give basic definitions for actions. In this paper, we have chosen to avoid modelling
transactions explicitly, with a particular programming model. Rather, we have attempted to extract
from such a model, just that information which is needed for concurrency control-theory.

Let act be a universal set of actions. Let U be a distinguished-action. We assume that the actions
are configured a priori into a tree, representing’ their nesting relationship, with U as the root. For
every A € act - {U}, let parent(A) denote a unique parent action for A. Let sbungg denote {(A,B) €
act®. parent(A) = parent(B)}. If A € act, let children(A} denote {B € act: parent(B) = A}. If A, B €
act, let jca(A,B) denote the least common ancestor of Aand B. If A € act, let desc(A) (resp. anc{A)) be
the set of descendants (resp. ancestors) of A. Let mng_[_ggsgm) (resp m_qng;;_amm)) be the set of
proper descendants (resp. ancestors) of A.

12

It might be convenient for the reader to think of this a priori configuration of all possible actions
into a tree as a preassigned "naming scheme" for actions. That is, the "name" of any action is
assumed to carry within it information which locates that action in this universal tree of actions. In
any particular execution, only some of these possible actions will be "activated”. The (virtual) action
U, the parent of all top-level actions, has been added for the sake of uniformity. its presence provides
a simpilification in many arguments. '

We assume a priori determination of which actions actually access data, which objects thgy
access and the functions they perform on those objects. Namely, let accesses denote the leaves of
the tree described above. It is exactly these actions which access data. (We assume that u¢
accesses, so that the entire set of actions is nontrivial.) Let gbigct: accesses — obj be a fixed
functioh. If object(A) = x, we say that A i3 an agcess {0 x. For A € accesses, let update(A):
values(object(A)) — values(object(A)) be a fixed function, describing the change made by A to its
object. Let sameobiect denote {(A,B) € accesses % object(A) = object(B)}.

it might at first appear that our model does not permit updates to depend on previous. steps
executed by a transaction. This is not our intention. Dependence on previous steps is modelled by
our choice of a particulaf access: the "name" of the access is assumed to carry information about
previous steps exécuted by a transaction.

Note that the usual read and write operations of serializability theory can be regarded as special
cases of accesses. Namely, "read accesses” have the identity function as their associated update
function, while "write accesses" have an associated update function which is-a constant function.

3.2. Action Trees

Next, we give a way of describing a "snapshot” of a particular execution, using a structure called
an "action tree". An action tree can be regarded as the generalization of the log from ordinary
serializability theory. The information captured in an action tree includes which actions have been
"activated”, what the status of éach such action is (i.e. active, committed or aborted), and what value
of its data object was seen by each access.

An getion tree T has components yertices,, active,, committed,, aborted, and label,, where

- vertices. is a finite subset of act, closed under the parent operation: if A € vérticesT - {U}, then
parent(A) € vertices,, (These represent the actions which have ever been created during the current

execution.)

13

- activeT, committedT and aburtedT comprise a partition of verticesT. {These classifications
indicate the current status of each action that has ever been created. When a non-access action is
first created, it is classified as active. At some later time, its classification can be changed to either
committed or aborted. By "committed”, we mean that the action is committed relative to its parent,
but not necessarily committed permanently. Permanent commit of an action would be represented by
classification of all ancestors of the action, except for U, as committed. Section 3.4 contains
definitions and a lemma about permanent commit of actions.)

- label,: datasteps, — values(obp, (where datasteng, = committed, N accesses), with label (A)
€ values (object(A)). (The label of an access to an object is-intended to represent the value read by
that access. Since the access has an associated functlon the value whach the access writes into the
object is deducible from the value read, and therefore need not tva exphcmy represented. As a
technical convenience, we do not asslgn a label to accesses uqtll they become committed.)

The following definitions are just convenient shorthand for concepts already defined. Let done,
denote committed U aborted Let gtatug, be defined by MysT(A) = 'active’ (resp. 'committed’,
'aborted’) prowded A€ active, (resp. commmedr, abortedT) Let mr = vertices, M accesses,
accesses (x) = {B € accesses: object(B) = x}, and datasteps.(x) = {B € datasteps,: object(B) =
x}.

3.3. Visibility
Next, we give a very irhportant definition which helps to describe the "views" which actions have,
of each other and of the data. In particular, this definition aliows us to describe actions whose
existence is intended to be kKnown to other actions (i.e. not masked from those other actions by
intervening failures or active actions). For A € vertices., let visible (A) denote {B € vertices,. : anc(B)
M proper-desc(ica(A,B)) C committedT}. That is, visibIeT(A) is just the set of actions whose existence
is potentially known to action A, because they and all their ancestors, up to and not including some
ancestor of A, have committed (to their parents). Action A will be permitted to see the results of
updates made by the transactions in visibleTA). and no others. For A € vertices,, x € obj, let
. visible (A.x) denote visible,(A) n datasteps.(x). The following lemma describes elementary
properties of "visibility".
Lemma 5: Let T be an action tree, A, B, C € vertices,.
a. |t B € desc(A), then A € visible,(B).

b. A € visible(B) if and only if A € visible.(Ica(A,B)):

c. If A € visible,(B) and B € visible,(C), then A € visible,(C).

14

d. IfA € desc(B) and C € visible,(B), then C € visible (A).

e. IfA € desc(B)and A € visible,(C), then B € visible,(C).

Proof:
a. Immediate.
b. Immediate from the fact that Ica(A,B) = Ica(A,lca(A,B)).

c. LetD € anc(A) N proper-desc(lca(A,C)).
We must show that D € committed,.
If D € proper-desc(ica(A,B)), then the fact that
A€ visibleT(B) implies the result.
So assume that D ¢ proper-desc(ica(A,B)).
It must be the case that D € anc(ica(A,B)),
and that ica(B,C) = lca(A,C).’ :
Thus, D € anc(B) N proper-desc(ica(B,C)), so
the fact thatB € visible(C) implies the result.

d. Immediate from parts a and c.

e. Immediate from parts a and c.
O

A related definition allows us to describe actions which are capable of "committing up to the top
level". If A € vertices,, then we say A js live in T provided anc(A) N aborted, = &, and we say A is
dead in T otherwise. :

Lemma6:1tA B .E verticesT. AisliveinT,and B€ visib!eT(A)&y thenBislivein T.

Proof: If B is dead in T, then there exists G € anc(B) N-aborted.. We know C ¢
proper-desc(ica(A,B)), since B € visible (A). Thus, C € anc{ica(A,B)) C anc(A), so A is
dead in T, a contradiction.

Q

3.4, Serializability .
In this subsecﬁon. we develop the basic correctness condition for action trees: serializability.

First, we define the result of applying a sequence of steps to a data object. If x € objand sis a
finite sequence of datasteps, then we define result{x.s} as follows. If s is the empty sequence, then
result(x,s) = init(x). Otherwise, lets = s'A. Then resuit(x,s) = update{A)(result(x.s')) if A involves x,
= result(x,s’) otherwise.

15

If Sis a set, and < is a total order on the elements of S, then we let <8§; £>> denote the sequence
consisting of the elements of S, in the order given by <.

In order to define serializability, we need to consider Imear orderings of all sets of siblings in the
action tree. Thus, let T be an action tree. A partial order p g srblmgs is ; ggn;rng for T provided p
totally orders all sets of siblings in T. A linearizing partial order p mduces a total order mmtp' on
datasteps;, in the obvious way: if A and B are datasteps, with respective ancestors A’ and B', where
A’ and B’ are siblings, then (A,B) € induced If and only if (A",B’) € p If A € datastepsT(x) and p rs a
linearizing partial order for T, let preds. J,(__) denote <<{B € vrsibteT(A x): (B A) € mducedT andB #
A}; mducedT. n»' Thus, p_r_giswm denotes the sequence of datasteps whose effects‘ on A’s object
are supposed to be visible to A.

A linearizing partial order p for T is said to be a ggg_au_zmg partiai order for T provided that
label (A) = re:~;utt(x,predsT (A)), forall A€ datasteps,(x) That is, the value actualty seen by A for its
data object is exactly the. resutt of the datasteps whose eftects are supposed to be visible to A. T is
said to be s_e_rj_ahzab_ig provided there exists some seria!izing partial order for T

In this paper, we consider serializabiity of portions of an action tree rather than an entire action
tree. In particular, it might sometimes be useful to require serializability only for those actions whose
effects become "permanent”, and not worry about those which get aborted.

Thus, given an action tree, T, a new action tree, perm(T), is defined as follows.
- verticesmn = visible (U). (Lemma Se shows that perm(T) is a tree:)

- If A € vertices
except for U.)

perm(T) * then statusw)(A) = statusT(A). (This status is always "committed”,

-IfA€ datastepsmm then label permm(A) = label (A).

The following lemma shows the useful property that all the vertioes in a permanent subtree are

visible to each other.
Lemma 7: # T is an action tree and A, B € vertices .. then B € visible__ —.(A).
Proof: Since B € vertimsm = visible (L), Lemma-ﬁdsimptiesthat B € visible (A).
ThenB € visiblepemm(A), since the status of each vertex is the same in T and perm(T).

a

16

In this paper, we will use the correctness condition that any tree T created by our algorithm shouid
have perm(T) serializable. (it is worth noting that one of the reasons that actions might be aborted is
that a concurrency controller has discovered that allowing an action to prqceed or commit will
corrupt serializability. Thds, there is not reason to expect compléte action t(éés_to be serializable,

and we focus on the permanent part of the trees only.)

3.5. Discussion

Note that the style in which serializability is defined here cdnstrains the implementation less than
the type of definition used in “traditional" concurrency control theory. The earlier definitions regard
the data as external to the concurrency control algorithm; the algorithm is to take requests for data
accesses and translate them into actual accesses, observing appropnate rules. Generally, the
accesses performed by the concurrency control algorithm simply obtain the latest version of the data
object. A clue that the earlier definitions are too cdnstltaining is that they do not apply unchanged to
algorithms such as Reed's, which use sophnstlcated managemem of versmns of the data. The earlier
definitions require extensions [KP, BG] to handle algorithms such as Reed’s. These extensions still
regard the data as external to the concurrency control algorithm, and so the modmed correctness
cconditions contain explicit information about particular "versions” -of the data objects, It seems,
however, that the gppaarance of serializability, in terms of the values.seen by the accesses, is really
all that matters - it is possible that this appearance could be preserved by some algorithm which does
not operate in terms of versions at all.

The less constraining approach which is taken here is to regard the data as internal to the
concurrency control algorithm, at least for the purpose of stating the basic correctness conditions.
Thus, the definitions introduced in this paper are intended to be applicable to algorithms which use
single versions ‘of data objects, algorithms that use multiple versions of data objects, as well as to
other implementations as yet unforeseen.

4. An Algebra Based on Action Trees

In this section, we begin to use the event-state algebra framework. We use the set of action trees
* as the state set for an algebra, and define a set of standard events which we would like to allow to be
performed on action trees. We describe each event by defining the circumstances uader which the
event is to be allowed to be. performed (the "pracom:ﬁtion“), -and mmsulﬁng changes to be made in
the action tree (the “effect").

We will use this algebra as a specification of correct abstract system behavior, the first level in our

17

correctness proof. Thus, we must ensure that the definition of this algebra includes the property that
all action trees it generates have their permanent subtrees serializable. One way of doing this wouid
be to include preservation of serializability explicitly in all the preconditions. It is a little simpler
notationally just to state the serializability condition as a globél invariant, to be maintained by all
events; thus, we follow this latter option. In terms of the algebraic model, there is an implicit
precondition on each event stating that the result of the evéht satlsﬁesthe global invariant.

We now define a set of events on action trees. That is, we define an algebra A = <A, g, [1>, where
A is the set of action trees, o is the trivial action treg with the single vertex U, with status 'active’, and
I1 contains the four kinds of events described in (a)-(d) below. We define the events as follows. First,
we let C denote the set of all action trees, T, for which perm(T) is serializable. (In particular, o €
C.) We place an implicit precondition on each evanggtating that the result of the event is in C. Within
this constraint, we define the domain by giving a precondition on action trees T, and use assignment
notation to describe the effect of the eventon T.
In all events, we assume that A € act - {U}.
(a) create,
(a1) Precondition
(@11)A ¢ vertices,.
(at2) parent(A) € vertices, - committed,.
(a2) Effect
(a21) vertices. — vertices.l. U {A}.
(a22) status,(A) « 'active’. :
(b) commit ,, A € accesses:
(b1) Precondition
(b11) A € active,.
(b12) children(Ag N vertices, C done;.

(b2) Effect . :
(b21) statusT(A) + 'committed’.

{c) abort A

{ct1) Precondition
(ci11)A€ active..

(c2) Effect ;
(c21) statusT(A) + 'aborted’.

18

(d) perform, . A € accesses, x = object(A), u € values(x)

A,

{(d1) Precondition
(d11) A € active,.

(d2) Effect ,
(d21) status(A) — ‘committed’.
(d22) label (A) « .

The meaning of the four events is as follows. The create 5 event creates (or "activates") a new
action. 1t is required, of course, that A not be already in the tree. Its parent must be there, howevér,
and must not already be committed (since a committed parent is assumed to have all of its children
completed, and to depend on the corhpletion of the particular set of children it had at the time of
commit). Note that we aliow A to be created after its parent has aborted. This might be reasonable in
an implementation in which the two events occur at diffe‘fént nodes of a distributed system, for
example. The effect of creating A is to add A to the tree, with status "active’.

The commit, event commits an active non-access action. It requires that A be active, and all its
children be completed. The effect is to change the status to 'commited’. The abort, event is similar,
but there is no requiremer{t on the children - an active action can abort at any time.

Finally, the perform Au event actually performs a step on a data ebject. It requires that access A
be active, and changes its status to 'committed’. It also records (in our action tree analog to the
"log") the value u seen by the access. (It is unnecessary to record the value Written, since that could
be inferred from the value seen.) Note that we do not specify how the value u is supposed to be
obtained by the perform event; it is permissible to record any value, as long as the serializability

condition is preserved.

We note that the only events which could cause the serializability constraint to be violated are
commit and perform events. Thus, these are the only events for which the implicit precondition C is

actually necessary.

We also note that this algebra provides considerable flexibility in allowable sequences of events.

5. Augmented Action Trees

Now, we proceed to the second level of our proof. As before, it will be usefui to define a data
structure first, and then develop an algebra based on that data structure. The data structure to be
used in the second level is called an "augmented action tree". It is very similar to an action tree, but

19

includes some extra information describing a sequence of versions for each data cobject. An
augmented action tree is similar to a transaction conflict graph with resolution of conflicts. We stated
earlier that we did not want to rely on definitions that depend on data versions, for our basic
correctness conditions. However, the definitions which make specific reference to- versions are still
useful in conjunction with the approach of this paper. Their role is in supplying sufficient conditions
for serializability, and thereby helping to organize correctness proois.

Serializability is defined for augmented action trees. It is seen that serializability for augmented
action trees implies serializability for corresponding action trees. .Moreaver, serializability for
augmented action trees has a cycle-free characterization similar to those in usual concurrency
control theory. Therefore, this structure can be useful in p[onfs of serializability far action trees.

Thus, it is at our second level that the interesting concurrency contral arguments occur.

5.1. Augmented Action Tree Definitions

An augmented action tree (AAT), T, is a pair (Sdata;), where S is an action tree and data; C
sameobjecty is a partial order on datastepsg which totally orders the datasteps for each object. We
extend action tree notation to T; for example, we write dgm, to denote datasteps We also
extend the definitions of vigible, live, dead, linearizing, induced, m and m@;_l_z_@je to T, by
applying themto S.

The assumed ordering on accesses to each data object imposes an ordering on siblings higher up
in the tree. If T is an AAT, then let sibling-data.. denote {(A,B) € sibhngs €n) € dataT for some C €
desc(A), D € desc(B)}.

We require notation for an access’ visible predecessors in the versuon order IfA€ datastepsT(x),
then Iet _gag_aT(A) denote {B € visible (A,x): (B,A) € dam,. and B # A).. Tha following is a technical

lemma. N : ,
Lemma 8: Let T be an AAT. Let p be a linearizing partial order for T, x € obj, and A €
datasteps (x). Assume that inducedT is consistent wsm data,. Then preds, p(A) -
Kv- dataT(A), dataT»

Proof: Straightforward.

a

An AAT, T, is data-serializable provided there exists p, a serializing partial order for T, with the
additional property that inducedT- 2 is consistent with dataT. Thus, T is data-serializable provided that

20

it is serializable in a way that respects the conflict resolution partial ordering. Of course, data-

serializability for AAT’s provides a sufficient condition for serializability.

5.2. Characterization of Data-Serializability
The analog of the usual characterization in concurrency control theory is proved in this
subsection. Namely, we give a characterization of data-serializability in térms of absence of cycles.

First, we give a definition which says that the label of each access describes the correct object
value which the access should see, if the versions of objects are ordered according to the dataT
order. Formally, an AAT is version-compatible provided for every x € obj, and every A €
datasteps (x), it is the case that labet_(A) = result(x,s), where s = ((v-data.(A); data,>>.

The next theorem contains the characterization result.
Theorem 9: An AAT, T, is data-serializable if and only if both of the following are true:

a. Tis version-compatible.

b. There are no cycles of length greater than one in sibling-data,.

Proof: Assume T is data-serializable, and obtain p, a serializing partial order for T for
which vinduced.r'p is consistent with dat_;r
a. LetA€ datastepsT(x) 8§ = Kv- dataT(A), dataT» Then label (A) =

result(x,;:wedsr (A)), by the definition of serializability, = result(x,s), by
Lemma 8.

b sibling-data, C p. Thus, there are no cycles of length greater than one in
sibling-da;ar.

Now assume a. and b. Let p be any partial order which totally orders all siblings and is
consistent with sibling- dataT Then p is linearizing for T, and mduced ok is consistent with
data,. We will show that p is a serializing partial order for T. Letx € obj, A € datasteps. (x).
We must show that label (A) = result(x,predsT (A)). Since T is version-compatible, we
know that labelT(A) = result(x, s), where s = «v»data.r data.r» Then Lemma 8 implies
thats = pi'eeiaT {A), as néeded.

O

21

6. An Algebra Based on Augmented Actlon Trees

In this section, we define the algebra for our second level. This aigebra will be based on the set of
AAT's. We define events on AAT's, analogousiy to the definitions for action trees. Once again, we
carry out the definitions within the event-state algebra framework We then prove several basic
properties of this algebra. Finally, we show that this algebra srmulates the level 1 algebra.

The second-level algebra can be understood as describing the "abstract effect” achieved by
locking algorithms. (We do not actually describe a locking mechaniem: until later levels.) The major
accomplishment of this section involves showing that this- aburact effect in fact guarantees the
required serializability condition. The argument is relatively nontrlvral and is analogous to the usual
correctness proofs for strict two-phase Iocklng Argumenits Yor later levels will show that locking
protocols actually achieve the required abstract effect. Thus, we have factored the correctness proof
fora Iockmg algorithm into two natural parts.

6.1. Definitions : v

We define a new algebra A’ = <A', ¢’, [1", where A’ is the set of AAT's, ¢’ is the trivial AAT which
has a single vertex U with status 'active’, and the events.in IT* eorreepond closely to the events of A,
and are designated by the same names. (We will rely on context to distinguish the two cases.) The
only differences are that there is no grobal constraint corresponding tC, an'd::be rform Ag introduces
two additional preconditions and an additional change. These new conditions can be thought of as
capturing the abstract effect of a variant of Mass' locking algorithm.

(d1) Precondition

(d12) Let B € datasteps,(x), Blive in T. Then B € visible,(Ax).
(d13) If Aislive in T, then u = resuit(x,s), wheres = <<visibleT(A,x); data.r».

(d2) Effect
(d23) data — data.r U {(8.A): B € datastepar (4} U (A)

The new preconditions say that a data access A must wait long enough so that all live accesses to
the object have been committed, up to the level which matters to A. Also, the value used in the access
is just the one resulting from the sequence of previous accesses, in the given data ordering. The new
effect just involves adding appropriate new pairs to the end of the data ordering.

22

6.2. Preliminary Results 4
This section contains two straightforward lemmas. The first describes some invariants preserved

by the events.
Lemma 10: If Tis computable in A, then the following are true.

a IfAE€ vertices, and parént(A) € committedT, then A € done,.

b .U € active,.
c. If(B,A) € data, then either Bisdead in T, or else B € visible (A).

d HAE committed,:and B € desc(A) N \«ertic.esT then either Bisdead in T
else B € visible (A).

Proof: Most of the arguments are straightforward. We argue cases c. and d.

c. [fB = A, the result is immediate. if B # A, then the only way we get (B,A) € dataT is
by virtue of some performA. , event. Thatis, there exists T" such that T' I~ T, such that the
precondition for some step perform Au is satisfied in T". Thus, Bisdead in T' or B €
visible.(A). Therefore, Bis dead in T or B € visible,(A).

d. If B = A, the result is immediate. So assume A # B. Let A € committed., B €
desc(A) N vertices,, B live in T, and B ¢ visible (A). Then there exist C, D € desc(A) N
anc(B), for which C = parent(D), C € committed, and D € active,. But this contradicts

parta.
O

The second lemma of this subsection describes properties that hold of a pair of AAT’s, one of

which is derivable from the other.
Lemma 11:Let T and T' be computable in .A', and assume that T T'.

a. vertices, C vertices,, committed, C committed,., aborted, C aborted.., and
data, C data...

b. I A€ datasteps, then label (A) = label..(A). |

' c. If A€ datasteps; and (B,A) € data,. , then (B,A) € data..
d. It A€ vertices,, then visible,(A) C visible_.(A).
e. If A€ vertices and Aislivein T", then Aislivein T.

f. A = parent(B)and A € c:ommittadT andB € vertices,. , then BE doneT.

Proof: The only case that takes some arguing isf. Let A = parent(B), A € committedT

23

and B € vertices,, . Let T' be the result of ¢ applied to T, and let T be the resuit of ¥. Then
¥ contains a step « of the form commit,, and V¢ contains a step p of the form create,.
cannot precede p, since the precondition for p would. be violated. So p precedes 7.
Then the precondition for » implies that B € done...

O

6.3. Computability Guarantees Data-Serializability

Note that there is no correctness condition for AAT's explicitly mentioning serializability. This is
because for AAT’s, computability alone is sufﬂcient to guarantee serializability of perm(T), as we
show in the next theorem. It is convenient to prove the two required properties separatély, in two
lemmas. The second of these two lemmas i l3 the hardeet result in the paper.

Lemma 12:1f Tis computable in A’ then perm(T) is version-compatible.

Proof: Let A € datastepsm)(X). We must show that u (= label m(A)) =
result(x,s), where s = <{{v- datam(B), datamm» A is inserted into the tree by a
perform. Au step #, so let the event sequence producmg T be written as dx'¥. Let T
denote the result of &, and T" the result of ®x. The pfecondltions for # show that
label...(A) = result(x,s’), where 8’ = Kvisible.(A,x); data,,)). By Lemma 11b and the
definition of perm(T), it follows that label mm(A) = result(x,s'). Thus, it suffices to show
thats = s'. Since both data,. and datawmm are consistent wnh data, it suffices to show
that s and s’ contain the same elements.

First, let B € s. Then (B,A) € data, and so by Lemma 11c, B € datasteps,..(x). Since A
is the only element in T"" whichisnotin T, B € datasteps..(x). Since A € verticespemm =
visibIeT(U), and U ¢ aborted, (by Lemma 10), it follows that A is live in T. Since B €
vnsnbleT(A). Lemma 6 shows that B is live in T. Thus, B is live in T', by Lemma 1le. The
preconditton for w implies that B € visible_.(A,x), s0B€g

Conversely, suppose B € s'. Then B # A since A € vertioesr.. Then (B,A) € data,.,, s0
by Lemma 11a, (B,A) € data,. By Lemma 11d,B € visible (A.x). By Lemma 7, it suffices to.
show that B € vertices

erm() = visible_(U). ButB € visible (A) and A € visible,(U), so
Lemma 5c suffices. . ' ‘
0
Lemma 13: If T is computable in A, then there are no nontrivial cycles in
sibling- datawmm

Proof: Assume the contrary: let (a= 1, ,A = ¢g), k > 2, be a minimum length
cycle such that ‘(Ai,Ai +1) € sibling-data m(T) for alli, 0 <i < k-1. Let a sequence ¢ of
events be defined so that T is the result of ®. We will show that for each i, 0 < i < k-1,

24

there exists a prefix ¥, of & such that if T" is the resuit of ¥, then A, € done,.,and A, , ¢
done,. . If we fix i for whlch ¥, is of maximum length, and let T'be the result of this ¥, then
wesee that A, | ¢ done.. . But ¥, s nolongerthan ¥, soLemma f1aimplies that A, ,

€ done,. , which is a contradiction.

T

So fix i, 0 £ i < k-1. Then (A,A,) € sibling-data cerm(T)’ Then there exist B €
desc(A), C € desc(A,, ,) with (B,C) € data . Since B, C € vertices oerm(T)’ it follows
that (anc(B) U anc(C)) N proper-desc(U) C commedr Now, ®:has a prefix:-¥w, where »
isa performc'u step. Let T' be.the resuit-of ¥, and T'' the result of ¥o. Lemma 11c
implies that (B,C) € data,., , so that B € datasteps,, . Since B is live.in T (using Lemma
10b), Lemma 11e implies that B is live in T' . Then the precondition for = implies that B €
visibIeT,(C), which means that A € anc(B) N proper- -desc(ica(B,C)) C committed Cc
done,.. We must show that A, G doneT ; if we can do this, then takmg 'l' ¥ ynelds the
result. Assume A, . € domaT Then et D be the fowest ancestor of C for which D €
done,.; it must be the case thatD € anc(C) N proper- desc(lca(é C)) C commmed soD€
committed,, . Since C € active,, , we know that D # [Let E be the smgle element of
children(D) n anc(C). ThenE ¢ done., Then E ¢ vert«:ezt.r by Lemma 11f. This means C
¢ vertices. Thisis a contradiction.

O
Theorem 14: If T is computable in A’ then perm(T) is data-serializable.
Proof: Immediate from Lemma 12, Lemma 13 and Theorem 9.

O

6.4. Simulation ‘
Next, we show that A’ simulates A. We define a mapping h from A’ to A as follows. f T =
(S.data,;) is an AAT, then h(T) = {S}. lf wisin IT’, then h(w) is just the event in I1 with the same name.
Lemma 15: his a simulation of A by A'.
Proof: (a) and (d) of the definition of a possibilities mapping are imnmediate. Property
(b) follows immediately from the fact that a’ € domain(«') (since only additional constraints
are added for ."); note that Theorem 14 implies that the C-constraint is always satisfied.
Property (c) is then straightforward. Thus, h is a possibilities mapping. Lemma 3 shows
that h is a simulation.

0

25

7. An Algebra Based on Version Maps
in order to complete the prool of Moss’ algorithm, it remains to prove that it achieves the abstract
effect of locking described by L. It seems simplest to decompose this task further, first showing that
a centralized locking algorithm simulates ', and then showing that a distributed version of the
algorithm simulates the centralized version. It turns out to be feasible to decompose the proof of the
centralized locking algorithm stilt further. Namely, we first descnbe a Iockmg style algorithm which
retains a large amount of useful information. Then we show that a more optlmlzed locking algorithm

simulates the algorithm which retains information.

In this section, we develop the third level of the algorithm, the locking-style algorithm which

retains information.

7.1. Version Maps _

As before, we begin by introducing another data structure, called a "version map". This one
records some locking information for each object. As in Moss' algoripm. eaé:h object has a stack of
locks, held at any time by a sequence of actions which are sucéossivqfdeecendants. The version map
records, for each object, and each action in -some sequence of successive descendants, the
sequence of accesses to the object whase result is available to the action.

Thus, a version map is a partial mapping V from obj x act to sequences of accesses, such that the
following properties are satisfied: ‘

- V(x,U) is defined for all x,

- each V(x,A) consists of accesses to x,

- for each x, if V(x,A) and V(x,B) are both defined, then either A € desc(B) or B € desc(A),

- if V(x,A) and V(x,B) are both defined and B € desc(A), then V(x,B) isén axtension of V(x,A).

Thus, for each x, V is defined only for transactions which lie on some chain of ancestors; V is not
necessarily defined for all transactions on the chain, but only for soma:subset of the transactions on
the chain.

It A is the least action for which V(x,A) is defined, then Wthall._A the pringipal action for x in V; in -

this case, if result(x,V(x,A)) = u, we say that u is the pripgipal value of xin V.

7.2. Definition of the Algebra

We define another algebra, A" = <A, a”, TI">, as follows. A" is the set of pairs (T,V), where T is
an AAT and V is a version map. o” consists of the trivial AAT consisting of a single node U with status
‘active’, and the version map which has V(x,U) equal to the empty sequence, for all x, and is otherwise
undefined. 1" consists of the six events defined below in (a)-(f).

In all the events to follow, we assume that A € act - {U}. Events (a)-(c) are identical to (a)-(c) of
A’'. Some changes are needed in the pérlorm event, and there are two new events which manipulate
locks. | | | |
(d) perform A’ A € accesses, x = object{A), u € values(x)

(d1) Precondition
(d11)AE active,.
(d12) {B: V(x,B) is defined} C proper-anc(A).
(d13) u is the principal value of xin V.

(d2) Effect o
(d21) status (A} — ‘committed’.
(d22) label.(A) « u.
(d23) data. ~— data, U {(BA): B € accesses (x)} U {(A,A)}.
(d24) V(x,A) — V(x,B) ° (A), where B ig the principal action in V.

(e) release-lock, , x € obj

(e1) Precondition
(e11) V(x,A) is defined.
(e12) A€ committed,..

(e2) Effect -
(e21) V(x,parent(A)) — V(x,A).
(e22) V(x,A) — undefined.

(f) lose-lock Ax X € obj

(f1) Precondition
(F11) V(x,A) is defined.
(f12) Aisdeadin T.

(f2) Effect
(f21) V(x,A) « undefined.

Thus, (d) says that a perform Ay Sventcan only be carried out-when the current lock-holders are
all proper ancestors of A, and when u is the proper value which should be provided to A. This event
has the new effect of augmenting the version map by giving a "lock™ to A: A gets a sequence of

27

versions which is exactly that held by the previous principal action, concatenated with a new version
for A. Event (e) allows a lock to be released by a committed action; its effect is to pass the lock up to
its parent, so that its parent now obtains the sequence of versions prevaously held by the child. Event
(f) aliows a Iock to be released by a dead action.

7.3. Basic Properties
In this subsection, we present a simple lemma stating some important invariants preserved in A".
Lemma 16: If (T,V) is computable in A", then the following are true.

a. It V(x,A)is defined, then A € vertices...

b. IfB € datasteps. (x) and Bis live in T, then there exists A € anc(B) with V(x,A)
defined and B an element of V(x,A).

c. If V(x,A) is defined, then each element of V(x,A) i8 in visible(A).

d. 1fV(x,A)is defined, then the elements of V(x,A) are.in data. order.

Proof: Straightforward. We argue b., for exampie. immediately after an event
performs,u occurs, we see that V(x,B) is defined, and B € V(x,B). Assume inductively that
there is some ancestor, C, of B with V(x,C) defined and B € V(x,C). Since B remains live,
there are no steps of the form lose-lock. .. Thus, if V(x,C) is ever changed, it must be
because of a release-lock step. There are two possiblilities. First; the ¢hange could occur
because of a release- '°°kc,x step. But such a step causes V(x,parent(C)) to take on the
old value of V(x,C), thereby preserving the needed property. Sécond; the change could
occur because V(x,C) gets redefined to: be the previous value ©f V(x,D), where D €
children(C). But because the successive sequences are extensions of each other, B is an
element of V(x,D) as well. Thus, the needed property is preserved in this case also.

a

7.4. Simulation
Define a mapping h’ from A" to A* as follows. h' maps (T,V) to {T}, and maps events (a)-(d) to
events of the same name, and events (e) and (f) to A. SR

Lemma 17: h' is asimulation of A’ by A". ‘

Proof: it suffices to show that b’ is a possibilities mapping. Propemes (a) and (d) are
easy to check. We consider praperty (b). Let #’ € I1", where hi(x’) = = €IT'. Then#'is
either of the form create A commit,, abort, or perform, . Inthe first three cases, the
property (b) is easy to check. So assume that ' is of the form perform Assume Tmv)
is computable in A" and #' is defined on (T,V), yielding (T‘ V). We must show that
perform Ay (i.e. the event of ') is defined on T. Let x = object(A).

28

Condition (d11) for A' follow immediately from the corresponding condition for A
We consider (d12). Let B € datasteps.(x), and assume that B ig live in T. Since (T,V) is
computable in A", Lemma 16 implies that there is some C € anc(B) for which V(x,C) is
defined and for which B is an element of V(x,C). Then Lemma 16 implies that B €
visible,(C). Since #' is defined on (T,V), (d12) for A" implies that C € anc(A). Since A €
vertices,, Lemma 5 implies that B € visible_(A), as needed.

Next, we consider (d13). Assume Aislivein T, and lets = <<vi3ib!eT(A,x); data>. We
must show that u = result(x,s). Let B be the principal action for x in V. Condition {d13) for
A" implies that u = result(x,V(x,B)). It suffices to show that s and V(x,B) are identical.
Since the elements of V(x,B) are in data, order (by Lemma 18), it sufﬁces to show that s
and V(x,B) contain the same set of elements.

FirstassumeCisins,i.e.C€ visible (A,x). Since Ais livein T, Lemma 6 implies that C
is live in T. Then Lemma 16 implies that there exists D € anc(C) for which V(x,D) is defined
and C is an element of V(x,D). Since B is the principal element for x in V, the sequence
extension property of the definition of version maps implies that C is aiso an element of
V(x,B).

Conversely, assume that C is an element of V(x,B). Lemma. 16 implies that C €
visible,(B). Condition (d12) for A" implies that B € anc(A). Thus, C € visible(A).

It is easy to check that property (c) holds, once we know that the definability conditions
correspond. Therefore, h' is a possibilities mapping.

O
Theorem 18: h o h' is a simulation of A by A",
Proof: Inmediate from Lemmas 15, 17 and 1.

a

8. An Algebra Based on Value Maps

The previous section described a versian of a locking-algorithm in which considerable information
(the sequences of versions) were retained. In this section, we describe the fourth level of our
algorithm. In this level, we optimize the locking algorithm of the pfevkms fevel by condensing some of
the information retamed Namely, it turns out not to be necessary to retam the complete sequences of
versions; rather, we can manage by retaining only thg latest value o_t the object for each action.

Note that we can prove a simulation result after eliminating information precisely because

29

possibilities maps are able to yield sets of states rather-than single states. The sets of states serve to

replace the eliminated information.

8.1. Value Maps
As before, we introduce another data structure. This one records, for each object and action, the
latest value of the object which is available to the action.

A value map is a partial mapping V from obj x act to values(obj), such that the foﬂowing propertles

are satisfied:
- V(x,U) is defined for all x,
- each V(x,A) € values(x), and
- for each x, if V(x,A) and V(x,B) are both defined.’»then either A € desc(B) or B € desc(A).

If A is the least action for which V(x,A) is defmed then we call A the w agtion for xinV;in
this case, if V(x,A) = u, we call u thenumjna{ﬂugofx inV.

If V is a version map, then let eval(V) be the value map defined on exactly the same domain, so

that eval(V)(x,A) = result(x,V(x,A)).

Lemma 19: Let V be a version map, x € obj. Then the principal action for x in V is the
same as the principal action for x in eval(V), and the principal value of x in V is the same as
the principal value of x in eval(V).

Proof: Straightforward.

a

8 2. Definition of the Algebra _

We define another aigebra, A" = <A"’, o', ", as follows. A is the set of pairs TV, where T
is an AAT and V is a value map. ¢ consnsts of the trivial AAT consisting of a smgle node U with
status 'active’, and the value map which has V(x,U) equal to init(x), for all x, and is otherwise
undefined. IT'” consists of six events (a)-(f).

In all the events, we assume that A € act - {U}. Events (a)-(c), (e) and (f) are identical to the
corresponding events of A”'. Event (d) is also identical, except for the change indicated below.

(d2) Effect

30
(d24) V(x,A) ~— update(A)(u).

8.3. Simulation
Define a mapping h'"’ from A" to A" as follows. Let h”(T,V) = {(T,W): eval(W) = V}. h" mapsall
events to events of the same name.
Lemma 20: h" is a simulation of A” by A", .
Proof: it suffices to show that h” is a possibilities mapping. Properties (a) and (d) are
easy to check. Let #' € I1"". If ' is any event except for & perform event, then properties
(b) and (c) are immediate.

Assume 7’ is pe rform, . Assume (T,V) is computable in A" (TW) € R(TV), (TW)
is computable in A", o' is defmed for (T,V) and (T",V') = «#'(T,V). Lemma 19 implies that
property (b) holds, i.e. that w = perform IS defined on (T,W). It follows from the effects
of the two events that »(T,W) = (T, W') for some version map W'. In order to show
property (c), it suffices to show that eval(W') = V', Since eval(W) = V, we only need to
consider the values which change because of the present event, i.e. we need to show that
result(x, W'(x,A)} = V'(x,A). But result(x,W'(x,A)) = resuit(x W(x B) ° (A)), where B ig the
principal action for x in W, = update(A)(resu!t(x W(x B))), = update(A)(V(x,B)) since
eval(W) = V. But B is the principal action for x in V, by Lemma 19, so u = V(x,B).
Therefore, the latest term in the extended equality is equal to update(A)(u), which is equal
to V'(x,A) by definition.

a
Theorem 21: h e h’ ° h" i a simulation of A by A™.
Proof: Immediate from Lemmas 18, 20 and 1.

9]

9. The Algorithm

The only remaining task is to describe a distributed Iocking algorithm, and show that it simulates
the prévious algorithm. In this section, a slightly samplifled versnon (whlch doesn't distinguish read
and write steps) of Moss’ algorithm is dascnbed using a dastnbuted algebra.

9.1. Notation and Definitions
Let [k] denote {1,....k}.

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by
identifiers in [k].

31

Let home: (act - {U}) U obj — [k], with home{A) = home(pbject(A)) for all A € accesses. Thus,
home partitions the actions and objects among the nodes. Let grigin: (act - {U}) — [k] be defined so
that origin(A) = home(A) if parent(A) = U, and = home(parent(A)) otherwise.

in order to describe the local state of each node, it is convenient to define a generalization of
action trees. Thus, we define an gction summary T to consist of components !ﬁﬂlﬁﬁﬁp aﬂilep
committed., and aborted,, where vertices, is any finite subset of act (not neééssarily closed under
the parent operation), and the remaining three components form a bahition of verticesT. The notation
done. and gtalus, is also extended in the obvious way. If T and T' m action summaries or action
trees, w e say that T < T' provided that vertices, C - vertlcesr and correspondmgly for commmed
and aborted,. We also define 7" = T U T’ so that vertices,.. = vertices, U vcamcesT , and similarly
for committed,., and aborted,... An action summary will be usad 16 describe partial knowledge of the
latest status of the transactions.

9.2. Definition of the Algebra

We describe the algorithm as the algebra, ® = <B, 7, P>, which is distributed over | = [k] U
{’buffer’}. The elements of [k] correspond to k nodes of a distributed system, and the buffer
corresponds to the entire message system. The componenu are dehned as foliows. Let B be the
Cartesian product of state sets B, where i € I.

If i € [k] (that is, if i corresponds to a node), then B, consists of the values of two variables, i.T
which contains an actioh summary, and i.V, which contains a value map. The action summary
recorded in i.T represents node i's knowledge of the latest status of various transactions. The value
map in i.V contains the latest value map information for all objects whoas home is ..

Ifi = 'buffer’, then B, consists of the values of variables M i € [k]. each of which contains an
action summary. The action summary in Ml repraegents all the iﬂmaﬂon which has been sent to
node j during the entire computation.

The initial state 7 is a vector of initial states for all the components. If i € [k}, then 7, has iL.T
initialized as the trivial action summary, having no vertices, and i.V initialized so that i.V(x,U) = init(x)
for all x with home(x) = i, and otherwise undefined. If i = 'buffer’, then 7, has each Mi equal to the

trivial action summary.

The algorithm has eight kinds of events. Six correspond closely to the six events of A"’ - four
record the creation, commit and abort of actions and the performance of ‘data accesses and two

32

manipulate locks. The other two correspond to the sending and receiving of messages. The events
are listed below. As usual, we present them by listing a precondition and the effect on the state. In
addition, we define d(7), the doer of each step.

In all cases, we assume that A € act - {U};

(a) create, ,, origin(A) = i

(a1) Precondition
(a11) A € i.vertices,
(a12) If parent(A) = U, then parent{A) € i.vertices, - i.committed..

(a2) Effect
(a21) i.vertices +— i.vertices. U {A}.
(a22)i.atatus,(A) ~ 'active’.

(a3) Doer: i

(b) commit; ,, A € accesses, home(A) = i

(b1} Precondition
(b11)A € .active...
(b12) children(A) N i. verttcesT Cci. done

(b2) Effect
{b21) i.statusT(A) + ‘committed’.

(b3) Doer:i
(c) abort, ,, A ¢ accesses, home(A) = i

{ct) Precendmon
(c11)A € i.a’ctiveT.

(c2) Effect
(c21) Lstatus(A) ~ "aborted".

(c3) Doer: i

(@ performi A , A €-accesses, x = object(A), u € va!ues(x),
home(A) = i, home(x) =i

(d1) Precondition
(d11) A € i.active,.
(d12) {B: i.V(x,B)} is defined} C proper-anc(A).
(d1 3) uis the principal value of xini.V.

(d2) Effecz
(d21)i status(A) — commmed’

33

(d22) i.V(x,A) — update(A)(u).
(d3) Doer: i
(e) release-locki’A'x, home(x) = i
(e1) Precondition
(e11)i.V(x,A) is defined.
(et2) A€ i.committedT.
(e2) Effect
(e21) i.V(x,parent(A)) — i.V(x,A).
(€22) i.V(x,A) — undefined.
(e3) Doer: i |
1] lose-locki' Ax’ home(x) = i
(f1) Precondition
(F11)i.V(x,A) is defined.
(Fi2) anc(A) N i.aborted . # @.

(f2) Effect
(f21) i.V(x,A) -~ undefined.

(f3$ Doer: i
(g) send, . 1, , T" an action summary

(g1) Precondition
g1 T <LiT.

(g2) Effect -
(g21) Mi - Mi urT.

(g3) Doer: i
th) rec:eivei 1+ T an action summary

(h1) Precondition
1) T <M,

(h2) Effect
(h2)iT~iTUT.

(h3) Doer: buffer

Thus, (a) - (f) correspond closely to (a) - (f) of A''. Events (g) and (h) are the new communication
events. These conditions say that any communication is allowed at any time, which sends any of i's

action summary information fromitoj.
Lemma 22: 9B is an algebra, which.is distributed over | using d.

Proof: Straightforward.

O

9.3. Simulation

Now define an interpretation h’" from B to A"’ by mapping the first six types of events to the
events of the same name, suppressing the index in [k], and mapping the ather two types of events to
A. |

If b € B, then we add "[b]" to the end of a variable name to denote the value of that variable in

state b.

For each i € |, we define a mapping h, from B to HA’") as foliows. Ifi € {k], then (T,V) € h‘(b)
exactly if (T,V) is computable in A"’ and the following are true;

- vertices, N {A: origin(A) = i} C i.vertices [b} C vertices..

- committed, N {A: home(A) = i} C i.committed [b] C 'commltte_dr.

- aborted N {A: homg(A) =i} C i..abortedT[b] C aborted...

- i.V[b] is the restriction of V to {(x,A): home(x) = i}.

Ifi = 'buffer’, then (T,V) € h(b) exactly if (T,V) is computable m A" and Ml[b] < Tforeachj € [k].
KT V)€ h.(b), then we also say that (T,V) is i-consigtent with b.

We now proceed to prove lemmas corresponding to the properties required in the definition of a
local mapping. The proofs are long, but are very straightforward case analyses.
. Lemma 23:Foralli€1,¢" €h (1)
Proof: Immediate from the definitions.

0

Lemma 24: Assume i € |, Assume #' € P,d(w) = i, # = h'’(%’) € [I"", aand a' are
computable in A" and B, respectwely, a € h(@)and a € domam(w’) Then ac€
domain().

Proof: Let a be (T,V).

First, assume that 7' is createi’k.sothat 7 is create,. Then origin(A) = i. Sincea’ €
domain(x’), A ¢ ivertices [a’]. Since (T.V) is i-consistent with a', A ¢ vertices,, thus
showing (a11). If parent(A) = U, then the fact that (T,V) is computable and Lemma 16
imply that parent(A) € active,, thus showing (a12).for this case. On the other hand, if
parent(A) # U, then the precondition for #’ shows that parent(A) € i.vertices [a’] -
i.committedT[a’]. The fact that (T,V) is i-consistent with.a' implies that parent(A) €
verticesT - committedT. Thus, (a12) holds.

Second, consider 7' = commit, A So that = is commit,. The precondition for o’
shows that A € i.active;[a’]. The fact that (T,V) is i-consistent.with a' implies that A €
active,, thus showing (b11). The precondition for ' shows that chikiren(A) N
iverticear[a'] - idoner[a'] The fact that (T,V) is i-consigtent with a’ implies that
children{A) N vertncesT - done, thus showmg {b12).

Third, assume n' = abort; ,, so that w is abort,. This case is similar to the first half
of the previous case,

Fourth, assume %' = performl,h’“, so that » isﬁ,mttormk'u. Then home(A) = i.
Assume object(A) = x, so that home(x) = i. (d11) is argued as in the preceding two cases.
We show (d12). Choose B 5o that V(x,B) is defined. Since (T,V) s -consistent with a' and
home(x) = i, .V(x,B)[a'] is also defined. The precandition for #' implies that B € proper-
anc(A), as needed. Next, we show (d13). The precondition for #' implies that u is the
principal value for x in i.V[a']. Since (T,V) is i-consistent with a', u is also the principal
value for x in V, as needed. 7

if »' is one of (e) or (f), then #' involves some x with home{x) = i. Assume that w
- involves A. The precondition for «' implies that i.V(x,A)[’] is defined. Since (T,V) is i-
consistent with &', it foliows that V(x,A) is defined, thus shawing bath (e11) and (f11).

HFeisa rolease-lock‘.A’x step, then the precondition for o' impliesmai A €
i.committedT[a']}. Since (T,V) is i-consistent with @', A € committed., thus showing (e12).

Finally, if ' is a lose- Iock x Step, the precondition for #' implies that anc(A) N
i.aborted.[a’] # 2. Smce (tv) usimnsmentwim:a. itfoﬂowsthatA is dead in T, thus
showing (f12). . -

a :
Lemma 25: Assume i, j € |. Assume »' € P, d(%") - i,w = h"'(%’) €OP'",aand &’ are

36

computable in A™ and B, respectively, a € h(a’) N hi(a’), and a' € domain(#’). fb' =
w'(2'), then w(a) € h(b’). '
Proof: Leta = (T,V) and #(a) = (T",V'). Lemma 24 implies that a € domain(=).

If j # i, then it is easy to see that all the containments are preserved, since the sets of
actions on the right sides are only increased, while the sets on the left sides are
unchanged. The property involving V is also easily seen to be pfeserved So assume j=i
We consider the six kinds of events in turn.

First, assume =’ is of the form create. A’ commnt' A or abort; , . ThenV' = V,and T’

is exactly like T except that A is added to vertices., commntted or aborted as appropriate.

"Also, b’ is just like &' except that A is added to iverﬂcesT néommitted or i.aborted., as

appropriate. Since (T,V) is i-consisterit with a', it is easy to see that all the containments
change in such a way as to insure that (T",V") is i-consistent with b'.

If %’ is of the form perform‘ A’ then home(A) = i. Let x = object(A). Then home(x)
= i. T"isjust like T except that A is added to commltted,. and i§ gnven fabel u, and data, is
augmented with all pairsin {(B,A): B € datasteps,(x)} U (A.A). V' i just like V except that
V'(x,A) is defined to be update(A)(u). b’ is just like a' except that A is added to
i.committed,, and i.V(x,A) is defined to be update{A)(u). ‘Siribe (T.V) is i-consistent with &',
it is easy to see that (T',V’) is i-consistent withb' ‘most of the propemes are immediate.
We just check the last property; the only chanqe involves A. We have aheady noted that
L.V(x,A)[b] = update(A)(u) = V'(x,A). Thisis as needed

If #' is of one of the forms (e) or (f), then T' = T and i.T[b’] = i.T[a’]. Thus, itis clear .
that the containments are all preserved. It is also easy to check that the final property is
preserved.

a
Lemma 26: Assume |,] € I. Assume »' € P, d(x") = i, I{#') = A, a and a’ are
computable in A"™ and %, respecuvely, a€ h‘(a) n h(a'), and a' € domain(x’). If b’ =
n'(a’),thena€h (b’) ' _ '
Proof: Leta = (TV).

First, assume that =’ is send] oo Itj# 'bt:ﬂer &en b’ = ai and the conclusion is
immediate. So assume that | = 'buﬁer' Sirice' (T,V) Is j- conslstent with &', each action
summary M|[a’] < T. The precondition for #' implies that T' < i.T[a']. Since (T,V) is
i-consistent with ', it follows that i.T[a') < T, and hence T' < T. Now, each M|[b’] < M/[a’]
~ UT'. Therefore, each M[b’] < T, as needed.

37

Next, assume that ' is of the form recaivei.'.r,, so thati = 'buffer’. The only nontrivial
caseisj = i'. We must show that |.T[b'] < T. Butj.T[b’] = j.T[a'] U T'. Thej-consistency
of (T,V) with a' shows that j.T[a’} < T. The precondition for #' shows that T' < Ml[a’].
Since (T,V) is i-consistent with a’, Mj[a’] < T. Thus, T' < T. Therefore, jT[b'] < T, as
needed.

O
Lemma 27:h™" and h,, i € |, form a local mapping from B to A""'.
Proof: immediate from Lemmas 23, 24, 25, and 26.

O

Now extend h"' to B U P, by defining h'"'(b) = ﬂ, € jhy(b).
Lemma 28: h'" is a simulation of A"’ by B.
Proof: Imnmediate by Lemmas 27 and 4.

a

The main correctness theorem now follows.)
Theorem 29: The mapping h ° h' e h* ¢ '’ i a simulation of .4 by 9.
Proof: Immediate from Lemma 28, Lemma 1 and Theorem 21.

O

10. Conclusions

In this paper, we have presented a detailed proof of a variant of Moss' concurrency control
algorithm for nested transactions. Along the way, we have develaped a substantial amount of basic
theory for nested transactions. The basic framework, gspecially the definitions and results involving
visibility, should be of further use.

There is much more to be done, however. The framework presented in this paper is not powerful

, enough to describe all the correctne.ss' conditions one might want for nested transactions. In

particular, we do not model the correspbndence between what the system does and what it is

requested to do by the transactions. 'This deficiency is at least partly due to the fact that we have

chosen not to model the transactions explicitly. In order to describe everything we might want, we will
probably have to incorporate some type of model for the transactions into the framework.

We have only proved correctness of one variant of Moss’ algorithm. There are many other related

38

algorithms for which similar proofs ought to be developed. Certainly, Moss' complete algorithm (with
a distinction between read and write operations) should be proved correct; we do not expect this
extension to be very difficult. The orphan algorithm mentioned in the introduction should be verified;
obtaining an understandable proof for this algorithm seems like a much harder task. Also, other
implementations for nested transactions, such as Reed’s, should be proved correct. In would be
interesting to see to what extent the theory developed for one of these algorithms is usable for the

others.

The proof presented here has a very interesting structure. It describes algorithms as algebras,
and uses a series of five levels of abstraction. Correctness is shown using four simulation mappings.
The interesting and nontrivial concurrency control arguments are made in proving the correctness of
the first two simulations. The correctness of the first simulation expresses the fact that certain
conditions imply serializability. The correctness of the second simulation expressés the fact that a
form of locking satisfies these conditions. Successive levels refine the algorithm, providing more
implementation detail, condensing the information that is kept, and distributing the processing.
Proofs at these lower levels are straightforward checks of the local mapping properties.

There is more to be done in exploring the usefulness of this praof structure for other distributed
algorithms.

11. Acknowledgeinents

Many other people have contributed their ideas and efforts to this work. Barbara Liskov
suggested formal treatment of this area, and monitored proposed formalizations for their faithfulness
in representing the behavior of the Argus system. John Goree used a much earlier draft of the current
paper as a starting point for the work in his Master's thesis; in the process of writing his thesis, he
discovered several major ways of clarifying the ideas of this paper. Some of the ideas Gene Stark
developed for his thesis have found their way into the present paper. Bill Weihl and Gene Stark
contributed helpful criticisms of early drafts. Paris Kaneilakis and two anonymous referees
contributed many very helpful suggestions for the presentahon

B]

(BG]

[EGLT]

(Gl

(KP]

[La]

[LiS]

Beeri, C., Bernstein, P. A., Goodman, N. Lai, M. Y and Shasha, D. E.

A Concurrency Control Theory for Nested Transactions
1 nd Annual A mposium on Pringipl

Bernstein, P. and Goodman, N.
Concurrency Control Algorithms for
Multwerston Database Sysﬁems

Eswaren, K. P., Gray, J. N., Lorie, R. A.

and Traiger, I. L.

The Notions of Consistency and Pmd!cm
Locks in a Database System, :
CACM, Yol. 19, No. 11, November, 1976,
Goree, John

Internal Consistency of A Distributed
Transaction System with Orphan Detection
Technical Report MIT/LCS/TR-288

MIT Laboratory for Computer Sci.,
Cambridge, MA. January, 1883.

Kaneliakis, P. and Papadimitriou, C.

On Concurrency Control by Multiple Versions
Proceedings of the ACM Symposium on
Principles of Database Systems

March 29-31, 1982, pp, 76-82,

Lamport, L.

Time, Clocks and the Ordering of Events
in a Distributed System;

CACM. Vol. 21, No, 7, July, 1978,

Liskov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for
Robust, Distributed Programs,

i

2l

M]

[Ra]

[Re]

[s]

S g AR Dy s e

Moss, J.E.B.
An Approach to Reliable Distributed Computing,
MIT Press, March, 1985

Randell, B.
System Structures for Software Fault Tolerance.
Proc. Int. f liabl]

IGP i r -

Isgin |

n 1 1 -

Reed, D. P.
Implementmg Atomuc Actlons on Decentralizad Dum

Stark, E.

Foundations of a Theory of Specification for
Distributed Systems, Ph.D Thesis, MIT
Laboratory for Computer Science,
Cambridge, MA. August, 1984,

