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1. Introduction 
In the past few years, there has been considerable research on concurrency control, including 

both systems design and theoretica1 study. The problem 18 roughly as foltows. Data in a large 

(centralized ordistributed) database is assumed to be accessibfe to users via transactions, each of 

'which is a sequential program which can earry out many steps accessing individual data objects. It is 

important that the transactions appear to execute "atomically", i.e. without intervening steps of other 

transactions. However, it is also desirable to permit as much concurrent operation of different 

transactions as possible, for efficiency. Thus, it is not generaliy feasible to insist that transactions run 

completely serially. A notion of equivalence for executions is defined, where two executions are 

equivalent provided they "look the same" to all transactions and to all data objects. The serjalizable 
'" executions are just those which are equivalent to serial executions. One goal of concurrency control 

design is to insure that all executions of trahsactions be serializable. 

Several characterization theorems have been proved for serializability; generally, they amount to 

the absence of cycles in some relation describing the dependencies among the steps of the 

transactions: A very large number of concurrency control algorithms have been devised. Typical 

algorithms are those based on two-phase Jocking [EGL TJ, and those based on timestamps [La]. 

Although many of these algorithms are very different from each other, they can all be shown to be 

correct concurrency control algorithms. The correctness proofs depend on the absence-of-cycles 

characterizations for serializability. 

More recentty, it has been suggested [Re, M, LIS) that some additional structure on transactions 

might be useful for programming distributed databases, and even for programming more general 

distributed systems. The suggested structure permits transactions to be nested. ThUs, a transaction 

is not necessarily a sequential program, but rather can consist of (sequential or concurrent) sub

transactions. The intention is that the sub-transactions are to be
1 

·serialized with respect to each 

other, but the order of serialization need ·nofbe completely specified by the writer of the transaction. 

This flexibility allows more concurrency in the implementation than would be possible with a single

level transaction structure consisting of sequential transactions. The general structure allows 

• transactions to be nested to any depth, with only the leaves of the nesting tree actuaUy performing 

accesses to data. 

Transactions are often used not only as a unit of concurrency, but also as a unit of recovery. In a 

nested transaction structure, it is natural to try to localize the effects of failures within the closest · 

possible level of nesting in the transaction nesting tree. One Is naturally led to a style of programming 

which permits a transaction to create children, and to tolerate the reported failure of some of its 

---- -----------T 
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children, using the information about the occurrence of the failures to decide Qn its further activity. 

The intention is that failed transactions are to have no effect on the data or on other transactions. 

This style of programming is a generalization of the "recovery block" sMe of [Ra) to the domain of 

concurrent programming. Indeed, this style seems to be especially suit~ for programming 

distributed systems, since many types of failures of pieces of programs are likely to, occur in such 

systems. 

Reed [Re] has designed an algorithm which uses multiple versions of data to implement nested 

transactions. Moss [M] has abstracted away from Reed's specific implementation of nested 

transactions, presenting a general description of the nested transaction model. He has . also . . . . . 

developed an alternative implementation of the nest.~ tran~ction model, based on two-phase 

locking. This modef and implementation are fu~tal to the Argus distributed computing 

language, now under development by Liskov's group at MIT [LIS]. 

The basic correctness criteria for nested transaction~~ to btt clear enough, intuitively,to 

allow implementors a sufficient understanding of the r·~ts for their jmplementation. 

However, some subtle issues of correctness have arisen in COMection with the behavior of failed .. . . . ~: ",• . 

sub-transactions. For example, the Argus group. has.~ that a pleasant prqperty for an 

implementation to have is that all transactions, including. even "orphans" (subtransactions of failed 

transactions), should see "consistent" views of the data (i.e. views that could . occur during an 

execution in which they are not orphans). The implementation goes to considerable lengths to try to 

insure this .property, but it is.difficult for the implementora.1o beaure that they nave succeeded. 

It seems clear that some basic groundwork is needed before such properties can be prov~. 

Namely, the theory already developed for concurrency ,control of single-level transaction systems 

without failures needs to be generalized to incorporat' considerations of nesting 8fld failures. The 
, . , 

modef needs to be formal, in order to allow careful specification of all the correctness requirements -

the simple and intuitive ones, as well as the rather subtle ones. 

This paper begins to develop this groundwork. First, a simple "action tree" structure is defined, 

which describes the ancestor relationships among executing transactions and also describes the 

views which different transactions have of the data. A generalization of serializability to the domain of 

nested transactions with failures, is defined. A charae,1erization is given for tl'Jis. gttnerilfization of 
, . , 

serializability, in terms of absence of cycles in an appropria-~cy relation on transactions. A 

slightly simptifi~ version of Moss' algorithm is pr~ted in d,etail, and a correctneS,S proof is given. 
:-, ' __ , 
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The correctness proof is complete, detailed, and rigorous. Its styie appears to be quite interesting 

in its own right. Producing such a proof was a very difficult task; the main issues that made it so 

· difficult were the nesting of transactions and the possible failures of subtransactlons. The initial 

attempts to develop such a proof led to extremely complicated, non-modular constructions. 

Gradually, after we had tried for many months to organize the proof, the uniform general proof 

structure presented in this paper began to emerge. This structure allows the proof to be decomposed 

in a very natural way. Without this structure, it is doubtful ffiat we would have been able to complete a 

~of at all. N'/e know of few comparably succes$ful complete proofs for difficult distributed 

algorithms.) 

The proof is based on certain atgebras, which we call "event-state" atgebras. An event-state 

algebra is an abstract description of a computing system and the J)fOtocof that governs its behavior. 

The elements of the algebra are states of the computing system. AA cperation of the algebra is an 

"event" of the system, i.e. a computation step; if transforms a·state to another:state. The operations 

are only partially defined; in correspondence with the fact that· a step might not be applicabf9 to all 

states. The rules that specify when an. operation is defined carreapond. to the algorithm or protocol 

that controls the executiof) of the system. 

Another important concept for our proof is the notion of a mapping between algebras. It is useful 

to describe a computing system on several different levels of abstraction, i.e. as several distinct 

algebras. A mapping from an algebra .A to another algebra~ is a "simulation" of~ by .A provided 

that every vatid computation of .A Js mapped to a valid computation cf 9. Thus, .A is, in a sense, an 

"implementation" of i:t. 

The approach taken in this paper to a correctness proof of Moss' algorithm is the following. The 

system governed by the algOrithm Is described by a succession Of algebras, each one describing 

more specific details about the algorithm and its implementation. tn the highest level algebra, the only 

precondition for the applicability of a • (e.n opeAltfen) is that it ptMerve global correctness. This 

algebra is qutte far from the algorithm itself. As a matter,offact, this afOebra represents "what needs 

to be achteved" by the system. Successive algebras get ctoaer to the afgorithm, i.e. to "how It Is 

achieved". Showing the existence of a aimulatiOn mapping between each pair of successive levels, is 

the h~ of the correctness proof. 

One novel aspect of the simulations we use, different from the usual notions of "abstraction" 

mappings, is that our simulations map single lower level states to n of higher level states, rather 

than just single higher level states. (We call them "possibiffties" mappings.) This extra flexibility 
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seems quite convenient for many implementations, allowing the lower level algebra sometimes to 

contain less detail than the higher level algebra. For example, it might be easy to prove correctness 

of an algorithm which maintains lots of auxiliary data. The correctness of an algorithm which 

contains less detail could he proved, in our model, by showing that it simulates the algorithm which 

maintains the auxiliary data 

While possibilities mappings are convenient for proving correctness of ordinary centralized 

algorithms, they produce their greatest payoff for distributed algorithms. Namely, a distributed 

algorithm is described as a special case of an event-state algebra, a "distributed algebra". A 

distributed algebra has a set of "components". The state set for the algebra is just a Cartesian 

product of local states, one for each component. The events are partitioned among the set of 

components, according to which component is assumed to "perform" the event Event domains and 

transitions are defined componentwise. To show that .a distributed algebra simulates some other 

"abstract" algebra, it suffices to define an appropriate possibilities mapping from the global states of 

the distributed algebra, to sets of. states of the abstract algebra. It turns out to be extremely natural to 

describe such a mapping by first describing a possibilities mapping from the local state of each 

component to sets of abstract states. The image· of a local state under ~ mapping just rePf'esents 

the set of possible global states consistent with the knowledge of the particular component. The 

possibilities for the entire distributed algebra are simply obtained by taking the Intersection of the 

possibilities consistent with the knowledge of all the components. 

It appears that this technique extends to give natural proofs of many algorithms, especially 

distributed algorithms, and thus warrants further investigation. Goree [G] presents a slightly more 

general development of the technique than is presented in this paper, but more remains to be done. 

The concurrency control definitions given in this paper 4DGPfllS8 the most fundamental correctness 

requirements. but not subtle conditions such as correotflftS of orphans' views. Issues of fairness and 

eventual progress are not llddressed, but rather only •tety propediea. serializability in. particular. 

Future work involves extending the framework presented here to- &flow expteSaion of these· other 

properties, and to allow correctness proofs for the difficult algorithms which guarantee these 
I ' • 

properties. Some further work in these directions a already been QltTied out: Goree [G) gives a 

definition for correctness of orphans' views, and has given a correctnw proof for a complicated 

algorithm used in the implementation of Argus to maintain correctness of orphans' views in the face 

of transaction aborts. 

A related recent paper [B] also addresses the problem of proving correctness of algorithms 
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implementing nested transactions. However, that paper does not address issues of failure and 

recovery. which are primary considerations of the present paper. Also, the kind of nesting they 

consider appears to be somewhat different from ours: it appears to be designed primarily for 

describing levels of data abstraction. Finally, the proof techniques of (BBGLS] are quite different 

from ours. 

Although our variant of Moss' algorithm is described completely in this paper, we urge the 

interested reader to read Moss' presentation in [M]. His presentation gives useful backgrourid and 

context for·· the algorithm, as well as a much more lntuitiYe description· •of the algorithm than is 

presented here. 

2. Event-State Algebras 
In this section, we describe the event-state algebra framework. This framework is used in the later 

sections to organize the formal correctness proof for Moss' algorithm. The algorithm is described in a 

series of five levels, each of which is described as an event-state algebra. 

The reader who is mainly interested in the formal model for nested tf'ansactions, and in Moss' 

algorithm, rather than in proofs of concurrent algorithms, can safely skim the contents of this section. 

2.1. Algebras and Simulations 

We begin with the basic algebra definitions. An event-state alget>.._ ..A. = <A, .a~ Il>, consists of a 

set A of ~. an element u € A, the iDi&iil §llbl, and a $i)t JI of pam.t unary operations (the events>. 

In this paper, we will usually_ refer to an event-state algebra as simply an,alaebfA. 

Next, we give standard definitions for computability concepts. For any event ", we let domajn<v> 

denote the set of states for which" is defined. Let a be a state, an~ fEtt• = {tr1, ... ,~k).be any finite 

sequence of events chosen from n. Then • is said to be ~ from a provided b = 
''."-

"k("k·1( ... (t11(a)) ... )) is defined. (i.e. provided that ,,.1_1( ... (tr 1(a)) ... ) is In domain(.·1), for for all i, 1 Si S 
. . . 

k). In this case, b is called the ruu.11 of cl» applied to a. An infinite '8QUepce of events is said to be 

~ from a provided all its finite prefixes are valid from a. We say that () is •. p~ovided it i~ valid 

from u, and the r=uJl of • is defined to be the result of • applied to o. We write a t-:- b provided there 
"· ; 

is some finite •. valid from a, for which b is the result of • applied to a. b is cgmoutable provided a t

b. 

In order to decompose our proof into levels of ·abstraction, we require a definition of "simulation" 

of an algebra,,{ = <A, u, Il> by another algebra,,{' = <A', a', Il'>. In this paper, we present a very 
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weak definition. An interpretatjon of .A by .A.' is a mapping h: n· - n U {A}. (Here, A represents a 

null event.) We extend h to a homomorphism mapping.eventsequences of .A.' to event sequences of 

.A in the obvious way (deleting occurrences of A). An interpretation, h. is a simulation of .A.~ .A.' 

provided that h(4>') is a valid event sequence for .A. whenever 4>' is a vatid event sequence for .A.'. 

We note that these definitions do not rule out certain trivial situations. We have not imposed the 

general requirement that .A.' include a represe:ntation of every event in .A.. We have also not imposed 

any requirements that events of .A.' be defined on large dontaiAs. . Thus, our techniques are not 

powerful enough to prove that .A.' does everything which is required to implement .A. correctly; rather, 

we assume that .A.' is given, and we are to prove that everything it does is correct for .A.. We believe 

that the more powerful techniques required to insure the stronger properties require extra machinery, 

and a more sophisticated general theory than we wish to present here. 

The first lemma gives a basic composition result. This lemma justifies our composition of 

simulation results for adjacent_levels, to prove a simulation resu\t for non-ad;.cent levels. 

Lemma 1: Assume that .A., .A.' and .A." are algebras, that h is a simulation of .A. by .A.' 

and h' is a simulation of .A.' by .A.". Then h 0 h' is a simulation of .A. by .A.". 
. ' -. . ' ' 

Proof: Straightforward. 

0 

2.2. Possibilities Mappings 

Our basic method for proving correctness Is showing that simulations exists between adjacent 

members of a sequence of algebras. Therefore, we need a tool that can be used to show that a 

mapping is a simulation. In this subsection, we give a sufficient condition for a mapping h from .A.' to 

.A. to be a simulation. The condition involves defining a correspondence between states of the two 

algebras, in addition to events. It turns out to be most convenient, for the reasons discussed in the 
,. ~ 1 

Introduction, to allow the state mapping to map a single state of .A.' to a set of states of .A. rather than 

just to a single state. The states in such a set are called ·~possibifities" . i.e., the "possible" states 

corresponding to a given State. If we think of .A.' as a "concrete" mgebra, and .A. as a more "abstract" 

algebra, then we aee that a possibilities mapping allows singtft "concrete" states to be mapped to sets 
' •'. 

of "abstract" states rather ttian just single abstraet states. 

Leth: A' Un• - ~A) Un U {A} be such that h(a') E ~A) for all a' EA', and h·restricted ton• is 

an interpretation, i.e. h(,,.') E Il U {A} for all,,.• E n•. (Here, c:Pdenotes the power set.) Then his a 
' 

possibilities maopjng from .A.' to .A. provided the following are true: 
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(a) a E h(a'). 

Assume a and a' are computable in .A and .A.', respectively, and a E h(a'). Assume w' E n•. 
Assume a' E domain(w') and b' = .,,'(a'). 

(b) If h(w') = "E TI, then a€ domain(w). 

(C) If h(•') = .,, € n, then T(a) E h(b'). 

(d) If h(w') = A, then a E h(b'). 

Property (a) says that the initial state of .A is among the possibilities for the initial state of .A.'. 

Property (b) says that an event is only performed in .A.' when 4ts image event can b& performed In .A.. 

Properties (c) and (d) say that events performed in .A.' preserve possibilities. The following diagram 

should be helpful in understanding (b) and (c). A simHar diagram can be drawn to illustrate (d). 

,, 

h h 

a'..--------~b' 

v' 

Figure 1: A Property of Possibilities Maps 

The following lemmas show that any possibilities mapping Is a simulation. 

Lemma .2: Let h be a possibilities mapping from·...(• to ...t. If 4»' is a valid event 

sequence for .A.', and h(4»') • 4», then 4» is a valid event sequence for .A.. In addition, if 4»' is 

finite, a' is the result of•• and a is the result of 4>, then a E h(a'). 

Proof: By induction on the length of••. 

a 
Lemma 3: Any possibilities mapping from .A.' to .A. is a simulation of .A. by .A.'. 
Proof: Immediate by Lemma 2. 

a 
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2.3. Distributed Algebras 

Next, we define a special kind of event-state algebra, called a "distributed algebra". A distributed 

algebra is one which can be decomposed into components in a simple way: the states are Cartesian 

products of states for the components, each event is assumed to be originated by some particular 

component (although it can affect other components), and the definability and effects of events are . . 

locally determined. Such an algebra provides a natural structure for describing distributed 

algorithms. Processors in a network and message systems are typ~ examples of components in 

such a decomposition. 

An algebra, .A. = <A, a, n>. is said to be distributed over a finite index set I using d, provided that A 

is the Cartesian product of sets Ai' i € I, d is a mapping, d: n - I, givtn; the ·"doer" of eac"h event, and 

the following two conditions are satisfied. 

· (Local Domain) Let i = d(w). Jf a. b € A and 8t = bl' then a € domain(w) if and only if b € 

domain(w). 

·(local Changes) If a, b € domain(w), a' = w(a), b' = w(b) and 8t • bi' then a'1 • b'r 

The local domain property says that the state of the doer of an event determines the definability of 

that event. The local change property says that the changes caused by an event are defined 

componentwise. Note that in the local change property, the component i need not necessarily be the 

doer of"; we permit other components to be affected by"· but assume that the effect is uniquely 

determined by 'II and the state of the component. Strictly speaking, we could have omitted mention of 

both of these properties in ·this paper, since they are not needed to prove the one simple result we 

obtain (lemma 4) about distributed algebras. However, the properties seem to describe the locality 

structure of distributed algorithms quite accurately, an~ so we present them in anticipation of further 

study. 

It happens that there is a particularly_ natural way to .define a possibilities mapping from a 

distributed algebra to another algebra. Namely, we define a "locaJ mapping", from the local state of 

each component of the distributed algebra to a set of abstract states. The result of th1S mapping 

should be thought of as the set of possible abstract states, a8 far as a particular component can tell , 
from its local knowledge. The mapping from a global state of the dia'tributed algebra can then be 

defined to yield the intersection of the images of all the component ·states. The conditions we require 

for local mappings are chosen to be sufficient to guarantee that the derived global mapping is a 

possibilities mapping. 
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Let .A.' = <A', a', n·> be an algebra, distributed over I using d. Let .A. = <A, a, n> be any algebra. 

Let h be an interpretation from .A.' to .A.. For each i E I, let h.: A' - ~A) be such that h. depends on A'. 
. I · I I 

only - i.e. if ai = bi then hi(a) = h1(b). Then we say that hand hi' i EI, form a !a'-ill maooing from .A.' to 

.A. provided the following conditions are satisfied. 

(a) For all i E I, a E hi( a'). 

Fix any i E I (for properties (b)·(d)). Assume a ai1d a' are computable in .A. and .A.', respectively, 

and a E hi(a'). Assume.,,. En•, d(w•) • i. Assume a' t-d&nain(.,,~). anti b' = w'(a'). 

(b) tf h(tr') • v E n, ~en a€ domain(v). 

Fix (for properties (c) and (d)) any i € I. (This J can be the same as or different from I.) 

(c) Assume h(tr') II "€ n and a€ hj(a'). Then tr(a) E hj(b'). 

(d) Assume h(w') = A and a€ hi(a'), Then a€ hi(b'). 

That is, (a) says that the initial state of .A. is in the set of possibilities for each component's initial 

state. Property (b>°says that an event is only performect in .A.' wheri ibi doer knows that its image event 
. - ' -

can be performed in .A.. Properties (c) and (d) consider the situation· fl'om the point of view of an 

arbitrary component j. Property (c) say$ that an event with doer i pr~es possibilities at component 

j. Property (d) is analogous to (c), for events whose images are nuU. events. 

The following figure illustrates property (b). 

a' b' 

•' 
Figure 2: A Property of Local. Mill>Pings . . 

--------------- -------------
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The following figure illustrates property (c). 

71 

a' b' ,,.. 
Figure 3: Another P-roperty of Local Mappings 

The following lemma shows that local mappings yield possibilities mappings. 

Lemma 4: Let .A. and .A.' = <A', a', n·> be algebras, where .A.' is distributed over 

I. Assume that hand hi, i EI form a local mapping from .A.' to .A.. Extend h to A' U n• by 

defining h(a') = ni € 1hi(a'). Then h is a possibilities mapping from .A.' to .A. (and therefore 

a simulation of .A. by .A.'). 

Proof: We check the four properties of the possibilities mapping definition. 

(a) To see that a E h(a'), it suffices to show that a€ hi(a') for all i EI. But this is exactly 

the statement of property (a) of the local mapping definition. 

Now we assume the hypotheses supplied for parts (b)-(d) of the passibilities mapping 

definition. Assume also that d( 71') = i. 

(b) Since a € h(a'), it Is obvious that a € hi(a'). Property (b) of the local mapping 

definition implies thatll € domaln(T). 

(c) In order to show that 71(a) € h(b'), it suffices to fix an arbitrary j € I and show that 

w(a) E hi(b'). Since a € h
1
(a'), the needed property follows from (c) of the local mapping 

definition. 

(d) It suffices to show that a E hi(b') for any j E I. This foHows as in the preceding 

argument from (d) of the local mapping definition. 

0 

If the definitions in this section are to be used in correctness proofs for the widest passible class 

of algorithms, they will probably need to be generalized. In particular, it seems appropriate to permit 

single events of a more concrete algebra to interpret sequences of events of a more abstract algebra. 

(See Goree (G) for definitions and uses for this generalization.) Also, allowing each algebra to have a 
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set of initial states rather than just a single initial state would probably be useful. Since we do not 

need these generalizations here, we do not make these extensions. 

3. Action Trees 
In this section, we provide the basic definitions needed to describe properties of nested 

transactions. The definitions in this section describe a particular data structure, called an "action 

tree", which provides a natural representation of nested transactions, the relationships between 

them, and their views of data. We define "serfatizability" in terms of action trees. We also prove 

several very basic lemmas about the definitions. 

We caution the reader that there are many definitions in this section, and he should not try to 

remember them all. Rather, we suggest that he raid the definitions Once for famHiarity, and then use 

the section for later reference; 

In the rest of the paper, we often refer to transactions as just "actions", for brevity. This departure 

from the usual conventions of database theory has baln made for coftlistency with the Argus work. 

3.1. Objects and Actions 

The system is assumed to contain a set of data objects, upon-which the nested actions operate. 

We begin with some definitions for objects. Let mu be a universal set of data objects. For each x E 

obj, let values<x) denote the set of values x can ~me, Including a dlStlnguished initial value ia.ilW. 
A ~ assignment is a total mapping, f, from obi to values(obJ),. 'having the property that f(x) E 

values(x) for all x E obj. 

Next, we give basic definitions for actions. In this paper, we have chosen to avoid modeUing 

transactions explicitly, with a partlcutar programming model. Rattler, we have attempted to extract 

from such a model, just that information which is needed for concurrency control'theory. 

Let lkt be a universal set of action~ Let .U. be a diatinguiahed.·aQion. We as&Ume that the actions 

are configured a priori into a tree, representing· their nesting, ~p. with U a& the root. For 

every A E act - {U}, let parentCA) denote a unique parent action for A. Let siblings denote {(A,8) € 

act2: parent(A) • parent(B)}. If A E act. let cbikken<M denote {8 E act: parent(B) • A}. If A, B E 

act, let lca<A.B) denote the least common ancestor of A and B. If A E act, let de3cCA) (resp. ~) be 

the set of descendants (resp. ancestors) of A. Let orooer-dnCCAl (resp; oroper-aoc<A)) be the set of 

proper deScendantS (resp. ancestors) of A. 



12 

It might be convenient for the reader to think of this a priori configuration of all possible actions 

into a tree as a preassigned "naming scheme" for actions. That is, the "name" of any action is 

assumed to carry within it information which locates that action in this universal tree of actions. In 

any particular execution, only some of these possible actions will be "activated". The (virtual) action 

U, the parent of all top·leveJ actions, has been added for the sake of uniformity. Its presence provides 

a simplification in many arguments. 

We assume a priori determination of which actions actually access data, which objects they 

access and the functions they perform on those objects. Namely, ~t accesses denote the leaves of 

the tree described above. It is exactly these actions which access data. (We assume that U ( 

accesses. so that the entire set of actions is nQntrivial.) Let ~: accassea -+ obj be a fixed 

function. If object(A) = x, we say that A ii 111 eoow SQ x. For A € accesses, let uodate(Al: 

values(object(A)) -+ values(object(A)) be a fixed function, describint the change made by A to Its 

object. Let sameobieet denote {(A,B) E accesses 2: obiect(A) = object(B)}. 

It might at first appear that our model does not permit updates to depend on previous steps 

executed by a transaction. This is not our intention. Dependence on previous steps is modelled by 

our choice of a particular access: the "name" of the access is assumed to carry information about 

previous steps executed by a transaction. 

Note that the usual read and write operations of serializabtlity theory can t;ie regarded as ·special 

cases of accesses. Namel.Y, "read accesses:· have the identity funcU.on as their associated update 

function, w.hile "write accesses" have an associated update function which is a constant function. 

3.2. Action Trees 

Next, we give a way of describing a "snapshot" of a pat'tic:War .execution, using a structure called 

an "action tree". An action tree can be regarded as .the generafiZation · of. the log from ordinary 

serializability theory. The information _captured in an action tree includes which actions have been 

"activated", what the status of each such action is (i~e. actiVe,, comfriitted or aborted), and what value 

of its data object was seen by each access. 

An ~DI T has components yertices,.. amimr• commjttedr, abgrtedT and llbilr• where 

· verticeSr is a finite subset of act, closed under the parent operation: if A E vertices,.· {U}, then 

parent(A) E vertices,.. (These represent the actions which have ever been created during the current 

execution.) 
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· activeT' committedT and abortedT comprise a partition of vertice5.r, (These classifications 

indicate the current status of each action that has ever been created. When a non-access action is 

first created, it is classified as active. At some later time, its classification can be changed to either 

committed or aborted. By "committed", we mean that the action is committed relative to its parent, 

but not necessarily committed permanently. Permanent commit of an action would be represented by 

classification of all ancestors of the action, except for U, as committed. Section 3.4 contains 

definitions and a lemma about permanent commit of actions.) 

· labelT: datasteP8r --+ values(obj), (where djJpstePl:p • committed1 n accesses), with label1 (A) 

E values (obiect(A)). (The label of an access to an object lsjntended to represent the value read by 

that access. Since the access has an asspciated function. the. varue which the a~cess writes into the 

obiect is deducible from the value read, and therefore need not ble explicitly represented. As a 

technical convenience, we do not assign a label to accesses until they become committed.) 

The following definitions are just convenient shorthand for ooncepts already defined. Let wmt1 

denote committed 1 U abortedr Let ~ be defined tJY ~LA> • 'active' (resp. 'committed', 

'aborted') provided A E active1 (resp. committed1 ,.aborted1). Let acc0sses,. = vertices,. n accesses, 

access=rW = {BE accesseSy: object(B) = x}, and datutePSyOO • {BE datasteP8r: object(B) = 

x}. 

3.3. Visibility 

Next, we give a very important definition which helps to describe the "views" which actions have, 

of each other and of the data. In particular, this definttion allows us to describe actions whose 

existence is Intended to be ltnown to other actions (I.e. not masked from those other actions by 

intervening failures or ac:tiYe actions). For A E vertices,.. let ml.bmrt& denote {B E vertices,. : anc(B) 

n proper-desc(lca(A,B)) ~ committed1}. That is, visible1(A) is just the set of actions whose existence 

is potentially known to action A, because they and all their ancestors, up to and not including some 

ancestor of A, have committed (to their parents). Action A will be permitted to see the results of 

updates made by the transactions in visible,.A). and no others. For A E vertice&r, x E obj, let 

, ~~ denote visiblay(A) n d~t8S~Pf5.r(X). The following lemma describes elementary 

properties of "visibility". 

Lemma 5: Let T be an action tree, A, B, C E vertlcear 

a. If B E desc(A), thEtll A E visible.,(B). 

b. A E visibte1(B) If and only If A € vislble1(1ca(A,B)); 

c. If A E visible1(B) and B E visible1 (C), then A E visibtey(C). 
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d. If A E desc(B) and C E visibleT(B), then C E visibleT(A). 

e. If A E desc(B) and A E visibleT(C), then BE visibleT(C). 

Proof: 

D 

a. Immediate. 

b. Immediate from the fact that lca(A,B) • lca(A,lca(A,B)). 

c. Let DE anc(A) n proper-desc(lca(A,C)). 
We must show that D E committedT' 
If D € proper-desc(tca(A,B)), then the fact that 
A E visibte,-(8) lmplies1he result. 
So assume that D ( proper-desc{lca{A,B)). 
It must be the case that 0 E anc(lca(A,B}), 
and that tca{B,C) = tca(A,C). 
Thus, O E anc(B) n proper-desc(~B.C». so 
the fact that B E visibleT(C) implies the result. 

d. Immediate from parts a and c. 

e. Immediate from parts a and c. 

A related definition allows us to describe actions which are capable of "committing up to the top 

level". If A € verticesT' then we say Ai§ lli£i in T provided anc(A) n abortedr = 0, arid we say A ii 
~in T otherwise. 

Lemma 6: If A, B _E vertic8Sr, A is live in T, and B € visibler(A), then Bis live in T. 

Proof: If Bis dead in T, then there exists C €,ane(B} O~abortedr We know C ( 

proper-desc(lca(A,B)), since B E visibler(A). Thus. C E anc(k:a(A,.B)). {;; anc(A), so A is 

dead in T, a contradiction. 

D 

3.4. Serializabllity 

In this subsection, we develop the basic correctness condition for action trees: seriallzabillty. 

First, we define the result of applying a sequence of steps to a data object. If x E obj and s is a 

finite sequence of datasteps, then we define resu!Ux.sl a fo11o\W:· If s is the empty sequence, then 

result(x,s) = init(x). qtherwise, lets = s'A. Then.result(x,s) = Uf)date{A)(result(x,s')) if A involves x, 

= result(x,s') otherwise. 
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If S is a set, and < is a total order on the elements of S, then we let «S; <» denote the sequence - . . .... . 

consisting of the elements of S, in the order given by <. 

In order to define serializability, we need to consider linear orderings of all sets of siblings in the 

action tree. Thus, let T be an action tree. A partial order p ~siblings is lineari~inq for T provided p 

totally orders all sets of siblings in T. A linearizing partial order p induces a total order, jnducedT,p' on 

datasteps,.. in the obvious way: if A and B are datasteps, with respective ancestors A'. and B', where 

A' and B' are siblings, then (A,B) E inducedT.p if and only if (A' ,B') E P; If _A E datastepsT(x) and p is a 

linearizing partial order for T, let ~JlJ denote <<{BE visiblEtr(A,x): (B,A) E inducedr.p and 8 ;t 

A}; inducedT,p». Thus, ~.JA.l denotes the sequence of datastep~ whose effects on A's object 

are supposed to be visible to A. 

A linearizing partial order p for T is said to be a serializing partial order for T provided that 

labelT(A) = resuft(x,IJredS-r (A)), for all A€ dl!tastePs,.(x). That Is, the varue actually seen by A for its . ,p 

data object is exactly the. r~lt of the datasteps wliose effects. are $upposed to be visible to A. T is 

said to be setializabfe provided there exists some serialtiing partial Order for'T. · 

In this paper, we con8ider serializabitty of portions of an action tree rather than an entire action 

tree. In particular,· it might sometimes be usefUI to reqUfre serfafizability onty for those actions whose 

effects become "permanent", and not worry about those whith get aborted. 

Thus, given an action tree, T, a new action tree, oermCTl, is defined as follows. 

· verticesperm(T) = visibleT(U). (lemma 5e shows that perm(T) iaa treei) 

· If A E verticesperm(T) , then s~tuspemi(T)(A) • statuSr{A). (This status is always "committed", 

except for U.) 

• If A E datastepsperm(T) , then labelPerm(T)(A) = labelT(A). 

The foHowing lemma shows the useful property that· an the vertices in a permanent subtree are 

visible to each other. 

Lemma 7: ff Tis an action &tee and A, B € vertlcespenn(T), then BE visibleperm(T)(A). 

Proof: Since B E vertioeSperm{T) • Visibt81(Ut. Lemma &t·imptiea that 8 ~ vtsibfe,.<A). 
Then B E visibleperm(T)(A), since the status of each vertex is the same in T and .perm{T). 

0 
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In this paper, we win use the correctness condition that any tree T created by our algorithm should 

have perm(T) serializable. (It is worth noting that one of the reasons that actions might be aborted is 

that a concurrency controller has discovered that allowing an action to proceed or commit will 

corrupt serializability. Thus, there is not reason to expect complete action trees to be serializable, 

and we focus on the permanent part of the trees only.) 

3.5. Discussion 

Note that the style in which serializability is defined here constrains the implementation less than 

the type of definition used in "tniditional" concurrency control theory. The earlier definitions regard 

the data as external to the concurrency control algorithm; the algorithm is to take requests for data 

accesses and translate them into actual accesses, observing appropriate rules. Generally, the 

accesses performed by the concurrency control algorithm simply obtain the latest version of the data 

object. A clue that the earlier definitions are too con~training is that they d,o not apply unchanged to 
,';; ' ' 

algorithms such as Reed's, .which use sophisticated ~agement of versions of the data. The earlier 

definitions require extensions (KP, BG] to handle alg!)rithms such as Reed's. These extensions still 

regard the data as external to the concurrency control algorithm, and so the modified correctness 

conditions contain explicit information about particui. "~~ of.U.qata obfeeta, It seems. 

however, that the apoearanqt of seriatizability, in terms of the .iuecuMten by the accesses, is really 

all that matters · it is possible that this appearance (;Quid be preserved by some algorithm which does 

not operate in terms of versions at all. 

The less constraining approach which is taken here is to regard the data as internal to the 

concurrency control algorithm, at least for the purpose of stating the basic correctness conditions. 

Thus, the definitions introduced in this paper are intended to be applicable to algorithms which use 

single versions <>f data objects, algorithms that use multiple versions· of data objects, as well as to 

other implementations as yet unforeseen. 

4. An Algebra Based on Action Trees 
In this section, we begin to use the event.state algebra framework. . We use .the set of action trees 

' as the state set for an algebra, and define a set of standard events which we would like to allow to be 

performed on action trees. We describe each event by ., ... ,u. oircurnstances under which the 

event is to be allowed to be performed (the "precondition") •. .anc:J the-resulting changes to be made in 

the action tree (the "effect"). 

We will use this algebra as a specification of correct abstract system behavior, the first level in our 
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correctness proof. Thus, we must ensure that the definition of this algebra includes the property that 

all action trees it generates have their permanent subtrees serializable. One way of doing this would 

be to include preservation of serializability explicitly in all the PreC,Onditions. It is a little simpler 

notationally just to state the serializability condition as a global invariant, to be maintained by all 

events; thus, we follow this latter option. In terms of the algebraic model, there is an implicit 

precondition on each event stating that the result of the event Sitisfies the global invariant. 

We now define a set of events on action trees. That is, we define an algebra .A. = <A. u, n>, where 

A is the set of action trees, a is the trivial action tr8' with the sioglf vertex U, with status 'active', and 

n contains the four kinds of events described in .<aH(j) below. We c:tefine the events as follows. First, 

we let C denote the set of all action trees, T, for .which perm(T) is serializable. (In particular, u E 

C.) We place an implicit precondition on each ev•n~ $tilting that the result of the event is in C. Within 

this constraint, we define the domain by giving a precondition on action trees T, and use assignment 

notation to describe the effect of the event on T. 

In all events, we assume that A E act· {U}. 

(a) create A 

(a1) Precondition 
(a 11) A E vertic98r· 
{a12) parent(A) €vertices,.· committedr· 

(a2) Effect 
(a21) vertic98r +-vertices,. U {A}. 
{a2~) statu8f(A) - 'active'. 

(b) commit A' A E accesses 

(b 1) Precondition 
(b11) AE active . 
<b12> chlklren<AI n vertice8r ~ don&r. 

{b2) Effect 
(b21) statuSr{A) - 'committed'. 

{c) abort A 

(c1) Precondition 
(c11) A E activeT. 

(c2) Effect 
(c21) statuSr(A) +-'aborted'. 
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(d) performA , A E accesses, x = object(A), u E values(x) ,u 

(dl) Precondition 
(dl 1) A E activer 

(d2) Effect 
(d21) statuSr(A) - 'committed'. 
(d22) labe'-r(A) - u. 

The meaning of the four events is as follows. The create A event creates (or "activates") a new 

action. It is required, of course, that A not be already In the tree. Its parent must be there, however, 

and must not already be committed (since a committed parenf IS assumed to have all of its children 

completed, and to depend on the completion of the particular set of children it had at the time of 

commit). Note that we allow A to be created after Its parent has aborted. This might be reasonable in 

an implementation in which the two events occur at different nodes of a distributed system, for 

example. The effect of creating A is to add A to the tree, with status 'active'. 

The commit A event commits an active non-access action. It requires that A be active, and all its 

children be completed. The effect is to change the status to 'commited'. The abort A event is similar, 

but there is no requirement on the children - an active action can abort at any time. 

Finally, the perform A,u event actually performs a step on a data-object. It requires that access A 

be active, and changes its status to 'committed'. It also records (in our action tree analog· to the 

"log") the value u seen by the access. (It is unneces$8ry to record the value written, since that could 

be inferred from the value seen.) Note that we do not specify how the value u is supposed to be 

obtained by the perform event; it is permissible to record any value, as long as the serializability 

condition is preserved. 

We note that the only events which could cause the seriallzability constraint to be violated are 

commit and perfonn events. Thus, these are the only events for which the implicit precondition C is 

actually necessary. 

We also note that this algebra provides considerable flexibility in allowable sequences of events. 

5. Augmented Action Trees 
Now, we proceed to the second level of our proof. As before, it will be useful to define a data 

structure first, and then develop an algebra based on that d~a structure. The data structure to be 

used in the second level is called an "augmented action tree". It is very similar to an action tree, but 
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includes some extra information describing a sequence of versions for each da'8 object. An 

augmented action tree is similar to a transaction conflict graph with resolution of conflict~. We stated 

earlier that we did not want to rely on definitions that depend on data versions, for our basic 

correctness conditions. However, the definitions whiQh Alct~ ~ referen~ to versions are still 

useful in conjunction with the approach of this paper. Their role is in supplying sufficient conditions 

for serializability, and thereby helping to organize correctness proofs. 

Serializability is defined for augmented action trees. It is seen thataerializability for augmented 

action trees implies serializability for corresPQSlding action tr.en. .· *'eover, ser~alizability for 

augmented action trees ~ a cycle-free characterization similar to those in usuaJ concurrency 

control theory. Therefore, this structure can be useful in pcOQfs of aerialilabiNty for action trees. 

Thus. it is at our second level that the interesting conc:urrency control,es:g..,ments occur. 

5.1. Augmented Action Tree Definitions 

An aygmented action tree (AAT), T, is a pair (S,datar>• where Sis an action tree and dat8r ~ 

sameobjecfs is a partial order on datasteps8 whi~h tot81fy orders the d8tasteps for each object. We 

extend action tree notation to T; tor •xample, we Write daJUtlDS.r to denOte datasteps8. We also 
. . "! . . . : 

extend the definitions of mbfl, l!m, s;tug, lineadzjng; Induced, ~ and serializab!e. to T, by 

applying them to S. 

The assumed ordering on accesses to each data object imposes an ordering on siblings higher up 

in the tree. If T is an AAT, then tet s!bfjno-daf8r denote {(A,B) E siblings: (C,0) E: dat8r for some C E 

desc(A), D E desc(B)}. 

'; , 
We require notation for an access' visible predecessors in the versio_n ()rdt!r. If A E datastepsT(x), 

then let ~(A). denote {B E visibler(A,x): (B,A) E dat&r .~ B ~ A} ... c ThctfoUQWing is a technical 

lemma. 

Lemma 8: Let T be an AAT. Let p be a linearizing partial order for T, x E obj, and A€ 

datasteJ>Sr(X). Assume that lnducedT,p is consistent with ..,_. Th,m pred8r,p(A) • 

«v-dat8r(A); datar>>. 

Proof: Straightforward. 

D 

An AAT, T, is data·seria!izable provided there exists p, a serializing partial order for T, with the 

additional property that induced1 .P is consistent with dat&.r· Thus, T is data-serializable provided that 
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it is serializable in a way that respects the conflict resolution partial ordering. Of course, data· 

serializability for AA rs· provides a sufficient condition for serializability. 

5.2. Characterization of Data·Seriatfzabillty 

The analog ·of the usual characterization in concurrency control theory is proved in this 

subsection. Namely, we give a characterization of data~urializability In terms of absence of cycles. 

First, we give a definition which says that the label of each access describes the correct object 

value which the access should see, if the versions of objects ar~ ordered according to the data,. 

order. Formally, an AAT is version-comoatible provided for every x € obj, and every A € 

datasteps,.(x), it is the caaethat labet1(A) = resutt(>c,s), wheres = «v-da~(A); dat&r»· 

The next theorem contains the characterization result. 

Theorem 9: An AA T, T, is data-serializabfe if and only if both of the foUowing are true: 

a. T is version-compatible. 

b. There are no cycles of length greater th&11 one in sibllng·d,ta,.. 

Proof: Assume Tis data-serialiuble, and obtain p, a serializing partial order for T for 

which inducedT,p is consistent with data,.. 

a. Let A E datasteps,.(x), s = «v-dat&r(A); dat&r»· Then label1(A) • 
result(x,precfs_ (A)), by the definition of serializ.ability, = result(x,s), by l,p 
Lemma a. . 

b sibling-dat8r ~ p, Thus, there are no cycJes of length greater than one in 
sibling·da~&r· 

Now assume a. and b. Let p be any partial order which totally orders all siblings and is 

consistent with sibfing-dat&r. Then pis linearizing for_T, and iriduc8d
1

,p is consistent with 

data,.. We Wl"ff show that p is a serializing partiaJ order for T. Let x € obJ, A € datastepa,.(x). 

We must show that label1(A) = result(x,pred51,p(A)). Since Tis version-compatible, we_ 
know that labelt<AJ • resutt(x,s), ~ s • «v-data,.; ctata,.». Then Lemma 8 implies 

thats • P'edsy,p(A), as Meded; . 

0 
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6. An Algebra Based on Augmented Action Trees 
·' 

In this section, we define the algebra for our second level. This algebra will be based on the set of 

AA T's. We define events on AA T's, analogously to the definitions for action trees. Once again, we 

carry out the definitions within the event-state algebra framework: We then prove several basic 
.. 

properties of this algebra. Finally, we show that this algebra sim1Jlates the level 1 algebra. 

The second-level algebra can be understood as describing the "abstract effect" achieved by 

locking algorithms. rile do not actually describe a locking mechanism until later levels.) The major 

accomplishment of this section Involves showing that 1hf9 lllbatiact' effect in fact guarantees the 

required serializability condition. The argument is relatively nontrivial, and is analogous to the usual 

correctness proofs for strict. two-phase locking. Arguments 'for later levels will show that locking 

protocols actually achieve the required abstract effect. Thus, we have factored the correctness proof 

for a locking algorithm into two natural parts. 

6. 1 • Definitions 

We define a new algebra .A' = <A', a', Il'>, where A' is the set of AAT's, a' is the trivial AAT which 

has a single vertex U with .status 'active', and the evema In n~ correapond closely to the events of .A, 
. . 

and are deaignate<,t by the same names. (We wilt rely on context to distinguish the two cases.) The 
" : . . 

only differences are that there is no global constraint corresponding t6 C, and performA introduces ,u 
two additional preconditions and an additional change. These new conditions can be thought of as 

capturing the abstract effect of a variant of Moss' locking algorithm. 

(d1) Precondition 
(d12) Let BE da&asteps,.(x), BHve in T. Then B € visibfe,.(A,x). 
_(d13) If A is live in T, then u • result(x,s), wheres = «visible1(A,x); data,.>>. 

(d2) Effect 
(d23) data,. +-data,. U {(8,A); 8 € datas~(x)} U {(A,A)}. 

The new preconditions say that a data access A must wait long enough so that all live accesses to 

the object have been committed, up to the level which matters to A. Also, the value used in the access 

is just the one resulting from tbe sequence-of :previoul acceaea, lft thegMtl1 ·data ordering. The new 

effect just involves adding appropriate new pairs to the end of the data ordering. 
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6.2. Preliminary Results 

This section contains two straightforward lemmas. The first describes some invariants preserved 

by the events. 

Lemma 10: If Tis computable in A', then the following are true. 

a. If A E verticesr and parent(A) E committed1 , then A E doner 

b .U E active,.. 

c. If (B,A) E datBr, then either Bis dead in T, or else BE visible,.(A). 

d. If A E comm&tted.r and B € del$C(A) n vertK:es,- then either B is dead in T 
else B € visibte,.(A). 

Proof: Most of the arguments are straightforward. We argue cases c. and d. 

c. If B = A, the result is immediate. If B :I: A, then the only way we get (B,A) E dat&.r is 

by virtue of some performA event. That is, there exists T' such that rt- T, such that the ,u 
precondition for some step performA,u is satisfied in T'. Thus, Bis dead In T' or 8 € 
visibler(A). Therefore, B is dead in T or B € visibler(A). 

d. If a = A, the result is immediate. So assume A -1: a. Let A € committe<ty, e E 

desc(A) n vertiC9Sr, B live in T, and 8 ( visibJerCA). Then ·theft exist C, 0 E deso(A) n 
anc(B), for which C = parent(D), C E committed1 and p E active1. But this contradicts 

part a. 

D 

The second lemma of this subsection describes properties that hold of a pair of AAT's, one of 

which is derivable from the other. 

Lemma 11 : Let T and T' be computable in A', and assume that T t- T'. 

a. vertic8Sr g vertic8Sr· committed1 g committedr• abortedr g abortoo,,, and 
dat&r g dat&r· 

b. If A E dataster>sy then labelr(A) = labelr<A). 

c. If A Eda~ and lB,A) € dat&r i then·fB,A) E datar· 

d. If A E vertic&sr, then ~sible,.(A) t; visibl&r(A) •. · 

e. If A E vertic&sr and A is live in T', then A is live in T. 

f. If A = parent(B) and A E committed1 and BE verticSSr, then BE doner 

Proof: The only case that takes some arguing is f. Let A = parent(B), A E committedr 
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and B E vertice5r . Let T' be the result of ct> applied to T, and let T be the result of 'I'. Then 

'I' contains a step" of the form commit A' and '1'9 contains a step p of the form create8. 

" cannot precede p, sjnce the precondition for p would be violated. So p precedes ". 

Then the precondition for " implies that B E done1. 

0 

6.3. Computability Guarantees Data-SerlaUzablHty 

Note that there Is no correctness conmtfon for AA T's explicitly mentioning serializabitity. This is 

because for AAT's, computability alone is sufficient to guarantee serializability of perm(T), as we 

show in the next theorem. It is convenient to prove the two required properties separately, in two 

lemmas. The second of these two lemmas is the hardest result in the paper. 
; " 

Lemma 1 2: If T is computable in .A.', then perm(T) is version·compatible. 

Proof: Let A € datastepsperm(:r)(x). ·We. must show that u ( = label.,...,,m(A)) = 
result(x,s), where s "' «v-data~(B); dataperm{T)».. A is inserted into the tree by a 

performA u step"· so let the event sequtnce producing T be written as cl>Ti'. Lat T' 
' . ' 

denote the result of ct>, and T" the result of ••. The preconditions for " show that 

labelr,(A) = result(x,s'), where s' = «visibler(A,x); dat8r»· By Lemma 11b and the 

definition of perm(T), it follows that labetperm(T)(A) • result(x,s'). Thus, it suffices to show 

that s = s'. Since both dat8r and data1*ftl(T} are consistent with dalar it suffices to show 

that s and s' contain the same elements. 

First, let B € s. Then (B,A) E dat~ and so by Lemma 11c, BE datastep5r,(x). Since A 

is the only element in T" which is not in T', B E datastep8r(x). Since A E verticespenn(T) = 

visibl8r(U), and U f.aborted1 (by Lemma 10), it follows that A is live in T. Since B E 
visibl8r(A), Lemma 6 shows that B is live in T. Thus, 8 is live in T', by Lemma · 11 e. The 

precondition for 11 implies that B € visibter(A,x), s0 B € s'. 

Conversely, suppose 8 € s'. Then B ':/:A since AC verticesr· Then (B,A) €data,.. •• so 
by Lemma 11a, (8,A) E ctata,.. By lemma 11d, B € vlallJlef(A,x). By Lemma 7, it sufflces to. 

show that B E verticesperm(T) =-. viaible,-(U). But B E vtsibf*r(A) and A E vlsible1(U), so 
Lemma 5c suffices. 

0 

Lemma 13: If T is computable in .A.', then there are no nontrivial cycles In 

sibling-dataperm(T)' 

Proof: Assume the contrary: let (a= A0,A1, ... ,Ak = a), k > 2, be a minimum length 

cycle such that '(Ai,A1+ 1) € sibling-datapermCT) for all i, O S i S k· 1. Let a sequence 4t of 

events be defined so that T is the result of ct>. We will show that for each i, O S i S k· 1, 
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there exists a prefix +i of cl> such that if T' is the resuft of 'fti' then Ai € doner , and Ai+ 1 ( 

doner . If we fix i for which vi is of maximum length, and let T'be the result of this +1, then 

we see that A. · 1 ( doner . But 'ft. 1 is no tonger than '11., so Lemma n a implies that A. 1 . I+ I+ I I+ 
€ doner , which is a contradiction. 

So fix i, O S i S k-1. Then (A1,Ai + 1) € sibling-dataparm{T)' Then there exist B € 
desc(Ai)' C € desc(Ai + 1) with (B,C) € dataperm(T)' Since 8, C € verticesparm(T)' it follows 

that (anc(B) U anc(C)) n proper-desc(U) ~ committed,_. Now, •has a prefix~vw, where " 

is a performc,u step. Let T' be.the result·of v, and T" the result of 'i'tr. lemma 11c 

implies that (8,C) € dat8r .. , so that B E datasteJ>Sr . Since B is .Jive. in T (wsing Lemma 

10b), Lemma 11e implies that Bis live in T' . Then the precondition for.,, implies that B € 
visibler(C), which. means that Ai € anc(B) n proper-desc(lca(B,C)) ~ committedr ~ 

doner. We must show that A1 + 1 ( doner. ; if we can do this, then taking +1 = i' yields the 

result. Assume Ai+ 1 € doner·· Then let D be the fowest ancestor of C for which D € 
don9r; it must be the case that D € anc(C) n proper-dese(tca$,c)) ~ committedr so D € 
committedr . Since C € activer , we know that D _. · C. 'Let E be the single element of 

children(D) n anc(C). Then E ( doner . Then E ( vertic"r by Lemma 11 f. This means C 
( vertices,.. This is a contradiction. · 

0 
Theorem 14: If T is computable in .A.', then perm(T) is data-serializable. 

Proof: Immediate from Lemma 12, Lemma 13 and Theorem 9. 

0 

6.4. Simulation 

Next, we show that .A.' simulates J.. We define a mapping h from .A.' to .A. as follows. If T = 
(S,datB.r) is an AAT, then h(T) = {S}. If" is in Il', then h(tr) is just the event inn with the same name. 

Lemma 15: his a simulation of .:A.by .A.'. 

Proof: fa) and (dl of the dotiAition of a possibilities mapping are immediate. Property 

(b) follows immediately from the fact 1hat a' € do~tr') (since onlyadditioAaf constraints 

are added for .A.'); note that Theorem 14 implies that the C-constraint is always satfafied, 

Property (c) is then straightforward. Thus, h is a possibilities mapping. Lemma 3 shows 

that h is a simulation. 

0 
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7. An Algebra Based on Version Maps 
In order to complete the proof of Moss' algorithm, it remains to prove that it achieves the abstract 

effect of locking described by .A.'. It seems simplest to decompose thi$task further, first showing that 

a centralized locking algorithm simulates .A.', and then showing that a distributed version of the 

algorithm simulates the centralized version. It turns out to be feasibte to decompose the proof of the 

centralized locking algorithm still further. Namely, we first describe a locking-style algorithm which 

retains a large amount of useful information. Then we show that a more optimized locking algorithm 

simulates the algorithm which retains information. 

In this section, we develop the third level of the algorithm: the locking-style algorithm which 

retains information. 

7 .1. Version Maps 

As before, we begin by introducing another data structure, called a "version map". This one 

records some locking information for each object. As in Moss' algo~m, each object has a stack of 

locks, held at any time by a sequence of actions which are iSUccessivfl deecendants. The version map 

records, for each object, and each action in ·some sequence of· successive descendants, the 

sequence of accesses to the object who5e re9ult is available to the action. 

Thus, a version ™ is a partial mapping V from obj x act to sequences of accesses, such that the 

following properties are satisfied: 

· V(x,U) is defined for all x, 

· each V(x,A) consists of accesses to x, 

· for each x, if V(x,A) and V(x,B) are both defined, then either A E desc(B) or B E desc(A), 

·if V(x,A) and V(x,B) are both defined and B € desc(A), then V(x,S) i$an extension of V(x,A). 

Thus, for each x, V is defined only for transactions which lie on some chain of ancestors; V is not 

necessarily defined for all transaction$ on the chain, but only for ~,,ubeet of the transactions on 

the chain. 

If A is the least action for which V(x,A) is defined, then we. caU A the Q{incjoa! tmlim for x in V; in · 

this case, if result(x,V(x,A)) • u, we say that u is-theQCiorJQll .XU of x in V. 
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7.2. Definition of the Algebra 

We define another algebra, .A." = <A", a", n''>, as follows. A" is the set of pairs (T,V}, where Tis 

an AAT and V is a version map. a" consists of the trivial AAT consisting of a single node U with status 

'active', and the version map which has V(x,U) equal to the empty sequen~e. for all x, and is otherwise 

undefined. n" consists of the six events defined below in (a)-(f). 

In all the events to fpllow, we assume that A E act - {U}. Events (a)·(C) ~e identical to (a)·(c) of 

.A.'. Some changes are needed in the perform event, and there are two new events which manipulate 

locks. 

(d) performA,u' A E accesses, x = object(A), u € values(x) 

(d1} Precondition 
(d11) A€ activ&.r. 
(d12) {B: V(x,B) is defined}~ proper-anc(A). 
(d13) u is the principal value of x in V. 

(d2) Effect 
{d21) statu8t(A) - 'committed'. 
{d22) labelr(A) +- u. 
(d23) ctata,.-datar u {(S,A): B € acceaaea,.(x)} u {<-A,A)}. 
(d24) V(x,A) +- V(x,B) 0 (A), wh~ 8 i!. thepi~pipal action .in V. 

(e) release-lock Ax' x E obj 
' 

(e1) Precondition 
(e11) V(x,A) is defined. 
(e12) A € committed1. 

(e2) Effect · 
(e21) V(x,parent{A)) +- V(x,A). 
(e22) V(x,A) +- undefined. 

(f) lOS8• lOck A x' X € obj 
• 

(f 1) Precondition 
(f11) V(x,A) Is d~ned. 
(f12) A is dead in T. 

(f2) Effect 
(f21) V(x,A) - undefined. 

Thus, (d) says that a performA,u event can only be carried out·when the current lock-holders are 

all proper ancestors ~f A, and. when u is the pro"" value wNch Shoutd be provided to A. This event 

has the new effect of augmenting the version map ;by giVing a· 1tlock11 to A: A gets a sequence of 
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versions which is exactty that held by the previous principal action, concatenated with a new version 

for A. Event (e) allows a lock to be released by a committed action: its effect is to pass the lock up to 

its parent, so that its parent now obtains the sequence of versions previously held by the child. Event 

(f) allows a lock to be released by a dead action. 

7 .3. Basic Properties 

In this suDsection, we present a simple lemma stating soroe important Jnvariants preserved in .A.". 

Lemma 16: If (T,V) is computable in .A.':, then the following are true. 

a. If V(x,A) is defmed, then A € vertices,-. 

b. If B E datastepSr(x) and Bis live in T, then there exists A E anc(B) with V(x,A) 
defined and B an element of V(x,A). 

c. If V(x,A) is defined, then each element of V(>t,A) is in vlaibler(A). 

d. If V(x,A) is defined! then the elements of V(x,A) are in datar order. 

Proof: Straightforward. We argue b., for exampte. tmmediablly after an event 

perform8 ,u occurs, we see that V(x,B) is defined, and B € V(x,B). Assume inductively that 

there is some anc~tor, C, of B with V(x,C) defined and B € V(x,C). Since B remains live, 

there are no steps of the form loae-tockc,x· Thus, if V{x,O) 18 ever dlanged, it must be 

because of a ratease-tock step. Ther&are two pesaibllities. fif'ilt the'Change could occur 

because of a release-lockc,x step. But such a step causes V(x,parent(C)) to take on the 

old value of V(x,C), thereby preaerving the needed'property. S8cond1 the change could 

occur because V(x,C) gets redefined to be the previous vatue 'Of V{x,D), where, D E 

children(C). But because the successive sequences are extensions of each other, Bis an 

element of V(x,0) as well. Thus, the needed property is preserved In this case also. 

D 

7 .4. Simulation 

Define a mapping h' from .A." to .A.' as follows. h' maps (T,V) to {T}, and maps events (a)·(d) to 

events of the same name, and events (e) and (f) to A. 
Lemma 17: h' is a simulation of .A.' by .A.". 
Proof: It suffices to show that h' is a posaibilitiea mapping. Properties (a)~ (<.I) are 

easy to check. We consider praperty (b). Let•'€ Il", where h'(•,') ,,. "€fl'. Then w' is 

either of the form create A' com~it4, abortA or perfo,rmA,u' In the first th~ ~s, the 

property (b) is easy to check. So assume that•' is of the form perform A,u' Assume (T,V) 

is computable in .A." and •' is defined on (T,V), yielding (T\V')~ We must show that 

perform A,u (i.e. the event of .A.') is defined on T. Let x = object(A). 
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Condition (d11) for .A' follow immediately from the corresponding condition for .A.". 

We consider (d12). Let BE datastep51(x), and ~me that Bis live in T. Since (T,V) is 

computable in .A", Lemma 16 implies that there is some C E anc(B) for which V(x,C) is 

defined and for which B is an element of V(x,C). Then Lemma 16 implies that B E 

visibler(C). Since w' is defined on .(T,V), (d12) for .A." implies that CE anc(A). Since A E 

vertice51, Lemma 5 implies that B E visibler(A), as needed. 

Next, we consider (d13). Assume A is live in T, and lets a «vlsibteT(A,x); dat&r»· We 

must show that u = result(x,s). Let B be the principat action for x in V. Condition (d13) for 

.A." implies that u = result(x,V(x,B)). It suffices to show thats aod V(x,B) are identical. .. . 

Since the elements of V(x,B) are in dat8r order (by Lemma 16), it suffices to show thats 

and V(x,B) contain the same set of elements. 

First assume C is ins, i.e. CE visi~A,x}. Since A is five in T, Lemma 6 implies that C 

is live in T. Then Lemma 16 implies that there exists D E anc(C) for which V(x,D) is defined 

and C is an element of V(x,D). Since B is the principal etement fOt x In V, the sequence 

extension property of the definition of version maps implies that C is atso an element of 

V(x,B). 

Conversely, assume that C is an element of V(x,8). Lemma 16 implies that C E 

visible,.(B). Condition (d12) for .A." implies that B € $1C(A). Thus, C € .visible,.(A). 

It is easy to check that property (c) holds, once we know that the definabitity conditions 

correspond. Therefore, h' is a possibilities mapping. 

D 

Theorem 18: h 0 h' is a simulation of .A. by .A.". 

Proof: Immediate from Lemmas 15, 17and1. 

D 

8. An Algebra Based on Value Maps 
The previous section described a version of a locking algor.ithm in which considerable information 

(the sequences .of versions) were retained. In this section, we describe the fourth level of our 

algorithm. tn this level, we optimize the locking algorithm of the previous tevel by condensing some of 

the information retained. Namely, it turns out not to be necessary to retain the complete sequences of 

versions; rather, we can manage by retaining only the latest value o_f the object for each action. 

Note that we can prove a simulation result after eliminating information precisely because 
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possibilities maps are able to yield sets of states rather'than single states. The sets of states serve to 

replace the eliminated information. 

8.1. Value Maps 

As before, we introduce another data structure. This one records, for each object and action, the 

latest value of the object which is available to the actiOn. 

A~ mag is a partial mapping V from obi x act to values( obj), such that the foHowing properties 

are satisfied: 

· V(x,U) is defined for all x, 

· each V(x,A) € values(x), and 

· for each x, if V(x,A) and V(x,B) are both defined, then either A € desc(B) or B € desc(A). 

If A is the least action for which V(x,A) is defined, then we call A the Pri!Jcioal ~ for x in V; in 

this case, if V(x,A) = u, we call u the pdn,s;!Qil ~ Qf x in V. . 

If V is a version map, then let eval(V) be the value map defined on e~tly the same domain, so 

that eval(V)(x,A) = result(x, V(x,A)). 

Lemma 19: Let V be a version map, x € obj. Then the principal action for x in Vis the 

same as the principal action for x in eval(V), and the principal value of x in V is "1e same as 

the principal value of x in eval(V). 

Proof: Straightforward. 

0 

8.2. Definition of the Algebra 

We define another algebra, .A."' = <A'", .a"', Il"'), as follows. A"' is the set of pairs (T,V). where T 

is an AAT and Vis a value map. a"' consists of the trivial AAT consisting of a single node U with 

status 'active', and the value map which has V(x,U) equal to init(x), for all x, and is otherwise 

undefined. Il'" consists of six events (a)-(f). 

In all the events, we assume that A € act · {U}. Events (a)-(c), (e) and (f) are identical to the 

corresponding events .of ..A.". Event (d) is also iden~ical, except for the change indicated below. 

(d2) Effect 
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(d24) V(x,A) +- update(A)(u). 

8.3. Simulation 

Define a mapping h" from .A."' to .A." as follows. Let h"(T,V) = {(T,W): eval(W) • V}. h" maps all 

events to events of the same name. 
Lemma 20: h" is a simulation of .A." by ..C."'. 

Proof: It suffices to show that h" is a possibilities mapping. Properties (a) and (d) are 

easy to check. Let •' E n"'. If "' is any event e>ccept for a perform event, then properties 

(b) and (c) are immediate. 

Assume 71' is p.erformA,u' Assume (T,V) is computable in .A.'", .{T,W) € h"'(T,V), (T,W) 

is computable in .A.", 71' is defined for {T,V) and (T',V') = w'(T,V). Lemma 19 implies that 

property (b) holds, i.e. that" = performA.u is defined on (T,W). It follows from the effects 

of the two events that v(T,W) = (T',W') for some version map W. In order to show. 

property (c), it suffices to show that eval(W') • V'. Since eyal(W) = V, we only need to . ,,·,, ,' . . 

consider the values whi~h change because of the present event, i.e. we need to show that 

result(x,W{x,A)) "' V'(x,A). But result(x,W{x,A)) .. result(x,W(x,B) 0 (A)), w~ Bis the 

principal action for x in W, = update(A)(result(x,W(x,B))), • update{A)(V(x,8)) since 

eval(W) = V. But 8 is the principal action for x in V, by Lemma 19, so u = V(x,B). 

Therefore, the latest term in the extended equality Is equal to update(A)(u), which is equal 

to V'(x,A) by definition. 

0 
Theorem 21: h 0 h' 0 h" is a simulation of,,( by .A."'. 

Proof: Immediate from Lemmas 18, 20 and 1. 

0 

9. The Algorithm 
The only remaining task is to describe a distributed locking algorithm, and show that it simulates 

the previous algorithm. In this section, a slightly simplified version (which doesn't distinguish read 

and write steps) of Moss' algorithm is described usi~g ~distributed algebra. 

9. 1. Notation and Definitions 

Let [k] denote {1, ... ,k}. 

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by 

identifiers in [k]. 
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Let~: (act · {U}) U obj - [k], with home{A) = home(object(A}) for all A € accesses. Thus, 

home partitions the adions and objects among the nodes. Wtt ua: {act • {U}) - [k) be defined so 

that origin(A) = home(A) if parent(A) = U, and = home(parent(A)) otherwise. 

In order to describe the local state af each node, it is convenient to define a generalization of 

action trees. Thus, we define an 4'fum summary T to consist of compqnents yerti'Gr· ~T' 

committedT' and ibortedT' where verticesr is any finite subset of act (not necessarily closed under 

the parent operation), and the remaining three components form a Partition of vertice&r. The notation 

s:kmlr and ~ is also extended in the obvieus way. If T and T' are action summaries or action 

trees, w e say that T S T' provided that vertice8.r ~ vertices,.. , and corr~~dingly for committedr 

and abortedr We also define T" • T U T' so that vertices,... :ia ~ U verticesr , and similarly 

for committedT .. and aborted1... An action summary wilt be ulW 1&dit8Cribe partial knowledge of the 

latest status of the transactions. 

9.2. Definition of the Algebra 

We describe the algorithm as the algebra, ~ • <B, .,, P>, whioll is distributed over 1 • [k) U 

{'buffer'}. The elements of [k] correspond to -k nodes of a dist~ system, and the buffer . . 

corresponds to the entire message system. The components are defined as follows. Let B be the 

C8rtesian product of state sets 8., where I € I. 
. I 

If i E [k) (that is, if i corresponds to a node), then 8. consists of the values of two variables, i.T 
. I . 

which contains an action summary, and i.V, which contains a value map. The action summary 

recorded in i.T represents node l's knowledge of the lateSt statl.ls Of various transactions. The value 

map in i. V contains the latest value map information for all objects whOlllJ home is I. 

If i = 'buffer', _then B1 consists of the values of variables M
1
, j E (k], ~~ of which contains an 

action summary. The action summary in M
1 

repraaems all the ~ which has been sent to 

node j during the entire computation. 

The initial state ., is a vector of initial states for aH the- oompoaenta. If i E [k), then "'• has i. T . 
initialized as the trivial action summary, haVlng no vertices, and i.V inltiafized·so that i.V(x,U) • init(x) 

for all x with home(x) • i, and otherwiSe undefined. If i = 'buffer', then T1 has. each Mi equal to the 

trivial action summary. 

The algorithm has eight kinds of events. Six correspond closely to the six events of .A.'" • four 

record the creation, commit and abort of actions and the performance "''data accesses and two 
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manipulate locks. The other two correspond to the sending and receiving of messages. The events 

are nsted below. As usual, we present them by listing a precondition and the effect on the state. In 

addition, we defined(.,,), the doer of each step. 

In all cases, we assume that A € act - {U}; 

(a) create1 A' origin(A) = I 
I 

(a1) Precondition 

(a11) A ( i.vertic8Sr· 
(a12) ff parent(A) ':!: U; then parenftA} € i.verticEtar - tcommittedT' 

(a2) Effect 

(a21) l.vertic8Sr +- i.vertiC8Sr U {A}. 
(a22) tatatua,.(A) +- 'active'. 

(a3) Doer: i 

(b) commlti,A' A ( accesses, home(A) = i 

(b1) Preconditfon 

(b 11) A € i.active,.. 
(b12) chlldren(A) n i.vertic8Sr ~ i.~oneT' 

(b2) Effect 

(b21) i.statu&r(A) +-'committed'. 

(b3) Doer: i 

(c) abort1,A' A (accesses, home(A) • i 

(c1) Precondition 
(c11) A€ i.activeT. 

(c2) Effect 
(C21) l.statu8y(A) +-'aborted', 

(c3) Doer: i 

(d) perform1A u' A E accesses, x • objeet(A), u € valuea(x), 
home(A) • i,'hOme(x) • I 

(d1) Precondition 

(d11) A € i.activey· 
(d12) {B: i.V(x,B)} is defined}~ proper-anc,A). 
(d13) u is the principal value of x in i.V. 

(d2) Effea 
(d21) i.statuSr(A) +- 'committed'. 
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(d22) i.V(x,A) - update(A)(u). 

(d3) Doer: i 

(e) release-locki A x' home(x) = i 
•• 

(e1) Precondition 
(e11) i. V(x,A) is defined. 
(e12) A E i.committedr. 

(e2) Effect 
(e21) i.V(x,parent(A)) +- i.V(x,A). 
(e22) i.V(x,A) - undefined. 

(e3) Doer: i 

(f) lose-lock1,A,x' home(x) ,. i 

(f 1 ) Precondition 
(f11) i.V(x,A) is defined. 
(f12) anc(A) n l.abortedr ;1 fJ. 

(f2) Effect 
(f21) i.V{x,A) +-undefined. 

(f3) Doer: i 

(g) sendi,j,T', T' an action summary 

(g 1) Precondition 
(g11) T' < i.T. 

(g2) Effect · 
·(g21) Mi- M1 UT'. 

(g3) Doer; i 

(h) receive1,T, , T' an action su~mary 

(h1) PrecondWon 
(h11)T' ~Mr 

(h2) Effect 
(h21) i.T +- i.T UT' .. 

(h3) Doer: buffer 

Thus, (a) · (f) correspond closely to (a) • (f) of .A."'. Events (g) and (h) are the new communication 

events. These conditions say that any communication is allowed at any time, which sends any of i's 
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action summary information from i to j. 

Lemma 22: ~is an algebra, which.is distributed over I using d. 

Proof: Straightforward. 

D 

9.3. Simulation 

Now define an interpretation h'" from~ to .A"' by mapping the first six types of events to the 

events of the same name, suppressing the index in [k], and mapping the Qther two types of events to 

A. 

If b E B, then we add "[b]" to the end of a variable name to denote the value of that variable in 

stateb. 

For each i E I, we define a mapping hi from B to ~A"') as follows. If I E [k], then (T,V) E h1(b) 

exactly if (T,V) is computable in .A"' and the following are true: 

·vertices,. n {A: origin(A) = i} ~ i.vertices,.(b}' vertlcesr· 

· committedr n {A: home(A) = i} ~ i.committedr(b] ~ committed1. 

· abortedT n {A: home(A) = i} ~ i.aborted1(b) ~ aborted1. 

· i.V[b] is the restriction of V to {(x,A): home(x) = i}. 

If i = 'buffer', then (T,V) E hi(b) exactly if (T,V) is computable in .A"' and ~(b] < T for each j E (k). 

If (T,V) E hi(b), then we also say that (T,V) is i-consjstent with b. 

We now proceed to prove lemmas corresponding to the properties required In the definition of a 

local m~pping. The proofs are long, but are very straightforward case analyses. 

Lemma 23: For all i EI, a"'€ h1(~). 
Proof: Immediate from the definitions. 

D 

Lemma 24: Assume i E I. Assume.,,• E P, d(tr) = i,,, = h'"(tr') E Il"', a and a' are 

computable in .A"' and ~. respectively, a E h
1
(a') and a' E domain(.,.'). Then a E 

domain(w). 
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Proof: Let a be (T,V). 

First, assume that w' is c reatei,A, so that ., is create A. Then origin( A) = i. Since a' € 
domain(.,'), A ( i.vertic85r(a']. Since (T,V) is i·consistent with a', A ( vertic85r, thus 

showing (a11 ). If parent(A) = U, then the. fact that (T,V) is computable and Lemma 16 

imply that parent(A) € activeT' thus showing (a12). fQr this casa. On the other hand, if 

parent(A) ;t U, then the precQNfition for tr' shows. _that parent(A) € i.vertiC88.r(a'] • 

i.committed1[a']. The fact that (T,V) is i-consistent with~ a' implies that parent(A) € 
vertic85r · committed1. Thus, (a12) holds. 

Second, consider,,. = commiti,A' so that,.. is. commit A. The precondition for,,. 

shows that A € i.activ&r[a']. The fact that (T,V) Is i-consistent.wjth a' implies that A € 
active1, thus showing (b11). The precondition for· w' shows that children(A) n 
i.vertic85r(a'] ~ i.done.Ja'J. The fact that (T,V) is i-c~nt with a' implies that 

children(A) n vertic85r ~ don&r• thus showing (b12). 

Third, assume,,.. = aborti,A' so that w is abortA. Thia case is similar to the first half 
of the previous cue. 

Fourth, assume w' • performl,A,u' so that ... ls,JMtrformA·,u· Then home(A) = i. 
Assume object(A) = x, so that home(x) • i. (d11) ls.argued aa in tM preceding two cases. 
We show (d12). Choo$8 B so that V(x,B) is defined. Since (T,V) isj·consistent with a' and 

home(x) = i, i. V(x,B)[a'] is also defined. Ttle precQlldition for tf' ,iQlPties that B € proper· 

anc(A), as needed. Next, we show (d13}. The precondition for w' .implies that u is the 

principal value for x in i.V{~]. Since (T,V) is l·con~t with a·~ u is also the principal 

value for x in V, as needed. 

If .,,. Is one of (e) or (f), then w' involves some x with home(x) • I. Assume that w' 

involves A. The precondition for ,,. implies that i.V(x,A)[a'] is defined. Since (T,V) Is I· 

consistent with a', it follc>WS that V{l<,A~ iadeffnEld. thus showing both (e11) .and (fU ). 

If w' is a release-lock1 A step, then the precondition for w' ilnplie$ that A € 
' ,Jl 

i.committed,.(a']}. Since (T,V) Is I-consistent with a', A E committedT' thus showing (e12}. 

Finally, if w' is a tose·lockt,A.,x step, the prec~ for w' implies that anc(A) n 
i.abortedy(a'] ;t ta. Since (T,V) is l~t with«• It ton~ that A is dead in T, thus 

showing (f12). 

D 
Lemma 25: Assume I, j €I. Assume w' € P, d(,,.') • i, w ... h"'(v') €OP"', a and a' are 
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computable in .A."' and ~. respectively, a E hi(a') n h;(a'), and a' E domain(w'). If b' = 

tr'(a'), then w(a) E hi(b'). 

Proof: Let'a = (T,V) and w(a) = (T',V'). Lemma 24 implies that a E domain(w). 

If j *- i, then it is easy to see that all the containments are preserved, since the sets of 

actions on the right sides are only increased, wnile the sets on the left sides are 

unchanged. The property involving V is also easHy seen to bEf iifeserved. So assume j = i. 
We consider the six kinds Of events in tum. 

First, assume '11
1 is of the form createi,A' commiti,~ or abort1,A. Then V' = V, and T' 

is exactfy like T except that A is added to vertieasrj committedT or abortedT as appropriate. 

Also, b' is just like a' except that A is added to i.vertfeEtsr, i.tommittedT' or i.abortedT, as 

appropriate. Since (T,V) is I-consistent With a•, it is easy to see that all the containments 

change in such a way as to insure that (T', V') is I-consistent With b'. 

If,,. is of the form perform1 Au• then home(A) = I. Let x = object(A). Then home(x) 

= i. T' is just Hke T excttpt that A is added to committedy ·and fS given fabel u, and dat&r is 

augmented with all pairs in {(B,A): B € datasteP8l(x)} U (A,A). V' is Just like V except that 

V'(x,A) is defined _to be Update(A)(u). b' is Just Hke ~· except that A is added to 
i.commftted1 , and i.V(x,A) is defined to be updatefAJ(u). ;Sirlbe (T,V) is i-consistent with a', 

it is easy to see that (T',V'} Is I-consistent wtthb': most of the properties are immediate. 

We just check the fast property; the only change invofves A. We have already noted that 

i.V(x,A)[b'] = update(A)(u) • V'(x,A). Thl'S Is as needed. 

If,,. is of one of the forms (e) or (f), then T' = T and i.T[b'] = i.T[a']. Thus, it is clear 

that the containments are all preserved. It is also easy to check that the final property is 

preserved. 

. CJ 

Lemma 26: Assume l, J € I. Assume •• € P, d(•1 = I, hC•') = A, a and a' are 

computable In ..t"' and 9, respectively, a € h1(a') n h
1
(a'), and a' € domain(tr'). If b' • · 

"'(a'), lterra € h1(b'). 

Proof: Let a • (T,V). 

., 

First, assume that.,,. is sendJ,t',T'' If i ~ 'buffer'• then b'1 • a'r and the conclusion is 

·immediate. So assume that J =· 'bUffer'. stnect' (T,V)-fs'J·con$1stent with a', ·each action 

summary M1[a'] S T. The precondition for tr' implies that T' S l.T[a']. Since (T,V) is 

i.consistent with a', it foHows that i.T[a'] S T, and hence T' S T. Now, each M1(b'] S M1[a'] 

UT'. Therefore, each M1[b'] ST, as needed. 
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Next, assume that "' is of the form receive!' ,T" so that i • 'buffer'. The only nontrivial 

case is j = i'. We must show that j.T[b'] < T. But j.Tfb') ""j.T(a') UT'. The j-consistency 

of (T,V) with a' shows that j.T[a'} < T. The precondition for tr' shows that T' :S M1[a']. 

Since (T,V) is i-consistent with a', Mi[a'] < T. Thus, T' :ST. Therefore, j.T[b'] < T, as. 

needed. 

0 
Lemma 27: h"' and h1, i E I, form a local mapping from '!A to .A."'. 

Proof: Immediate from Lemmas 23, 24, 25, and 26. 

0 

Now extend h"' to 8 U P, by defining h"'(b) • n1E 1h1(b). 

Lemma 28: h"' is a simulation of .A."' by 9. 

Proof: Immediate by Lemmas 27 and 4. 

0 

The main correctness theorem now follows. 

Theorem 29: The mapping h • h' • h" • h"' Is a slmufatlon of .A. by 9. 

Proof: Immediate from lemma 28, Lemma 1andTheorem21. 

0 

10. Conclusions 
In this paper, we have presented a detailed proof of a variant of MO&S' concurrency control 

algorithm for nested transactions. Along the way, .we f'¥lve developed a substantial amount of basic 

theory for nested vansactions. The basic frame~rkt~ die definitions and results involving 

visibility, should be of. further use. 

There is much more to be done, however. The framework presented in this paper is not powerful 

enough to describe all the correctness conditions one might want for nested transactions. In 
I • • 

particular, we do not model the correspondence between what the system does and what it Is 

requested to do by the transactions. This deficiency Is at least partly due to the fact that we have 

chosen not to model the transactions explicitly. In order to describe everything we might want, we will 

probably have to incorporate some type of model for the transactions into the framework. 

We have only proved correctness of one variant of Moss' algorithm. There are many other related 
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algorithms for which similar proofs ought to be developed. Certainty, Moss' complete algorithm (with 

a distinction between read and write operations) should be proved correct; we do not expect this 

extension to be very difficult. The orphan algorithm mentioned in the introduction should be verified; 

obtaining an understandable proof for this algorithm seems like a much harder task. Also, other 

implementations for nested transactions, such as Reed's, should be proved correct. In would be 

interesting to see to what extent the theory developed for one of these algorithms is usable for the 

others. 

The proof presented here has a very interesting structure. It describes algorithms as algebras, 

and uses a series of five levels of abstraction. Correctness is shown using four simulation mappings. 

The interesting and nontrivial concurrency control arguments are made in proving the correctness of 

the first two simulations. The correctness of the flr8t simulation expresses the fact that certain 

conditions imply serializability. The correctness of the second simulation expresses the fact that a 

form of locking satisfies these conditions. Successive levels refine the algorithm, providing more 

implementation detail, condensing the information that is kept, and distributing the processing. 

Proofs at these lower levels are stralghtf orward checks of the local mapping properties. 

There is more to be done in exploring the usefulness ·of this proof structure for other distributed 

algorithms. 
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