
CONCURRENCY CONTROL FOR RESILIENT NESTED TRANSACTIONS

Nancy A. Lynch
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

FEBRUARY, 1983
Revised: MAY, 1985

ABSTRACT

Concurrency control theory is extended to handle nested transactions with failures. The theory is used to

present a rigorous correctness proof of a variant of Moss' locking algorithm for implementing nested

transactions. The proof has an interesting structure using many levels ofabstraction.

Keywords: Action tree, atomicity, concurrency control, recovery, serializability, transaction, two
phase locking.

©1985 Massachusetts Institute of Technology, Cambridge, MA. 02139

This work was supported in part by the Office of Naval Research under Contract N00014·85·
K-0168, by the Office of Army Research under Contracts DAAG-29·79-C-0155 and DAAG29-84·
K-0058, by the National Science Foundation underGrantsMCS-79-24370 and DCA-83-02391, and
by the Defense Advanced Research Projects Agency {DARPA) under Grants N00014·76-C-0944
and N00014-83-K-0125.

This empty page was substih1ted for a
blank page in the original document.

1

1. Introduction
In the past few years, there has been considerable research on concurrency control, including

both systems design and theoretica1 study. The problem 18 roughly as foltows. Data in a large

(centralized ordistributed) database is assumed to be accessibfe to users via transactions, each of

'which is a sequential program which can earry out many steps accessing individual data objects. It is

important that the transactions appear to execute "atomically", i.e. without intervening steps of other

transactions. However, it is also desirable to permit as much concurrent operation of different

transactions as possible, for efficiency. Thus, it is not generaliy feasible to insist that transactions run

completely serially. A notion of equivalence for executions is defined, where two executions are

equivalent provided they "look the same" to all transactions and to all data objects. The serjalizable
'" executions are just those which are equivalent to serial executions. One goal of concurrency control

design is to insure that all executions of trahsactions be serializable.

Several characterization theorems have been proved for serializability; generally, they amount to

the absence of cycles in some relation describing the dependencies among the steps of the

transactions: A very large number of concurrency control algorithms have been devised. Typical

algorithms are those based on two-phase Jocking [EGL TJ, and those based on timestamps [La].

Although many of these algorithms are very different from each other, they can all be shown to be

correct concurrency control algorithms. The correctness proofs depend on the absence-of-cycles

characterizations for serializability.

More recentty, it has been suggested [Re, M, LIS) that some additional structure on transactions

might be useful for programming distributed databases, and even for programming more general

distributed systems. The suggested structure permits transactions to be nested. ThUs, a transaction

is not necessarily a sequential program, but rather can consist of (sequential or concurrent) sub

transactions. The intention is that the sub-transactions are to be
1

·serialized with respect to each

other, but the order of serialization need ·nofbe completely specified by the writer of the transaction.

This flexibility allows more concurrency in the implementation than would be possible with a single

level transaction structure consisting of sequential transactions. The general structure allows

• transactions to be nested to any depth, with only the leaves of the nesting tree actuaUy performing

accesses to data.

Transactions are often used not only as a unit of concurrency, but also as a unit of recovery. In a

nested transaction structure, it is natural to try to localize the effects of failures within the closest ·

possible level of nesting in the transaction nesting tree. One Is naturally led to a style of programming

which permits a transaction to create children, and to tolerate the reported failure of some of its

---- -----------T

2

children, using the information about the occurrence of the failures to decide Qn its further activity.

The intention is that failed transactions are to have no effect on the data or on other transactions.

This style of programming is a generalization of the "recovery block" sMe of [Ra) to the domain of

concurrent programming. Indeed, this style seems to be especially suit~ for programming

distributed systems, since many types of failures of pieces of programs are likely to, occur in such

systems.

Reed [Re] has designed an algorithm which uses multiple versions of data to implement nested

transactions. Moss [M] has abstracted away from Reed's specific implementation of nested

transactions, presenting a general description of the nested transaction model. He has . also

developed an alternative implementation of the nest.~ tran~ction model, based on two-phase

locking. This modef and implementation are fu~tal to the Argus distributed computing

language, now under development by Liskov's group at MIT [LIS].

The basic correctness criteria for nested transaction~~ to btt clear enough, intuitively,to

allow implementors a sufficient understanding of the r·~ts for their jmplementation.

However, some subtle issues of correctness have arisen in COMection with the behavior of failed ~: ",• .

sub-transactions. For example, the Argus group. has.~ that a pleasant prqperty for an

implementation to have is that all transactions, including. even "orphans" (subtransactions of failed

transactions), should see "consistent" views of the data (i.e. views that could . occur during an

execution in which they are not orphans). The implementation goes to considerable lengths to try to

insure this .property, but it is.difficult for the implementora.1o beaure that they nave succeeded.

It seems clear that some basic groundwork is needed before such properties can be prov~.

Namely, the theory already developed for concurrency ,control of single-level transaction systems

without failures needs to be generalized to incorporat' considerations of nesting 8fld failures. The
, . ,

modef needs to be formal, in order to allow careful specification of all the correctness requirements -

the simple and intuitive ones, as well as the rather subtle ones.

This paper begins to develop this groundwork. First, a simple "action tree" structure is defined,

which describes the ancestor relationships among executing transactions and also describes the

views which different transactions have of the data. A generalization of serializability to the domain of

nested transactions with failures, is defined. A charae,1erization is given for tl'Jis. gttnerilfization of
, . ,

serializability, in terms of absence of cycles in an appropria-~cy relation on transactions. A

slightly simptifi~ version of Moss' algorithm is pr~ted in d,etail, and a correctneS,S proof is given.
:-, ' __ ,

(.
\

3

The correctness proof is complete, detailed, and rigorous. Its styie appears to be quite interesting

in its own right. Producing such a proof was a very difficult task; the main issues that made it so

· difficult were the nesting of transactions and the possible failures of subtransactlons. The initial

attempts to develop such a proof led to extremely complicated, non-modular constructions.

Gradually, after we had tried for many months to organize the proof, the uniform general proof

structure presented in this paper began to emerge. This structure allows the proof to be decomposed

in a very natural way. Without this structure, it is doubtful ffiat we would have been able to complete a

~of at all. N'/e know of few comparably succes$ful complete proofs for difficult distributed

algorithms.)

The proof is based on certain atgebras, which we call "event-state" atgebras. An event-state

algebra is an abstract description of a computing system and the J)fOtocof that governs its behavior.

The elements of the algebra are states of the computing system. AA cperation of the algebra is an

"event" of the system, i.e. a computation step; if transforms a·state to another:state. The operations

are only partially defined; in correspondence with the fact that· a step might not be applicabf9 to all

states. The rules that specify when an. operation is defined carreapond. to the algorithm or protocol

that controls the executiof) of the system.

Another important concept for our proof is the notion of a mapping between algebras. It is useful

to describe a computing system on several different levels of abstraction, i.e. as several distinct

algebras. A mapping from an algebra .A to another algebra~ is a "simulation" of~ by .A provided

that every vatid computation of .A Js mapped to a valid computation cf 9. Thus, .A is, in a sense, an

"implementation" of i:t.

The approach taken in this paper to a correctness proof of Moss' algorithm is the following. The

system governed by the algOrithm Is described by a succession Of algebras, each one describing

more specific details about the algorithm and its implementation. tn the highest level algebra, the only

precondition for the applicability of a • (e.n opeAltfen) is that it ptMerve global correctness. This

algebra is qutte far from the algorithm itself. As a matter,offact, this afOebra represents "what needs

to be achteved" by the system. Successive algebras get ctoaer to the afgorithm, i.e. to "how It Is

achieved". Showing the existence of a aimulatiOn mapping between each pair of successive levels, is

the h~ of the correctness proof.

One novel aspect of the simulations we use, different from the usual notions of "abstraction"

mappings, is that our simulations map single lower level states to n of higher level states, rather

than just single higher level states. (We call them "possibiffties" mappings.) This extra flexibility

4

seems quite convenient for many implementations, allowing the lower level algebra sometimes to

contain less detail than the higher level algebra. For example, it might be easy to prove correctness

of an algorithm which maintains lots of auxiliary data. The correctness of an algorithm which

contains less detail could he proved, in our model, by showing that it simulates the algorithm which

maintains the auxiliary data

While possibilities mappings are convenient for proving correctness of ordinary centralized

algorithms, they produce their greatest payoff for distributed algorithms. Namely, a distributed

algorithm is described as a special case of an event-state algebra, a "distributed algebra". A

distributed algebra has a set of "components". The state set for the algebra is just a Cartesian

product of local states, one for each component. The events are partitioned among the set of

components, according to which component is assumed to "perform" the event Event domains and

transitions are defined componentwise. To show that .a distributed algebra simulates some other

"abstract" algebra, it suffices to define an appropriate possibilities mapping from the global states of

the distributed algebra, to sets of. states of the abstract algebra. It turns out to be extremely natural to

describe such a mapping by first describing a possibilities mapping from the local state of each

component to sets of abstract states. The image· of a local state under ~ mapping just rePf'esents

the set of possible global states consistent with the knowledge of the particular component. The

possibilities for the entire distributed algebra are simply obtained by taking the Intersection of the

possibilities consistent with the knowledge of all the components.

It appears that this technique extends to give natural proofs of many algorithms, especially

distributed algorithms, and thus warrants further investigation. Goree [G] presents a slightly more

general development of the technique than is presented in this paper, but more remains to be done.

The concurrency control definitions given in this paper 4DGPfllS8 the most fundamental correctness

requirements. but not subtle conditions such as correotflftS of orphans' views. Issues of fairness and

eventual progress are not llddressed, but rather only •tety propediea. serializability in. particular.

Future work involves extending the framework presented here to- &flow expteSaion of these· other

properties, and to allow correctness proofs for the difficult algorithms which guarantee these
I ' •

properties. Some further work in these directions a already been QltTied out: Goree [G) gives a

definition for correctness of orphans' views, and has given a correctnw proof for a complicated

algorithm used in the implementation of Argus to maintain correctness of orphans' views in the face

of transaction aborts.

A related recent paper [B] also addresses the problem of proving correctness of algorithms

5

implementing nested transactions. However, that paper does not address issues of failure and

recovery. which are primary considerations of the present paper. Also, the kind of nesting they

consider appears to be somewhat different from ours: it appears to be designed primarily for

describing levels of data abstraction. Finally, the proof techniques of (BBGLS] are quite different

from ours.

Although our variant of Moss' algorithm is described completely in this paper, we urge the

interested reader to read Moss' presentation in [M]. His presentation gives useful backgrourid and

context for·· the algorithm, as well as a much more lntuitiYe description· •of the algorithm than is

presented here.

2. Event-State Algebras
In this section, we describe the event-state algebra framework. This framework is used in the later

sections to organize the formal correctness proof for Moss' algorithm. The algorithm is described in a

series of five levels, each of which is described as an event-state algebra.

The reader who is mainly interested in the formal model for nested tf'ansactions, and in Moss'

algorithm, rather than in proofs of concurrent algorithms, can safely skim the contents of this section.

2.1. Algebras and Simulations

We begin with the basic algebra definitions. An event-state alget>.._ ..A. = <A, .a~ Il>, consists of a

set A of ~. an element u € A, the iDi&iil §llbl, and a $i)t JI of pam.t unary operations (the events>.

In this paper, we will usually_ refer to an event-state algebra as simply an,alaebfA.

Next, we give standard definitions for computability concepts. For any event ", we let domajn<v>

denote the set of states for which" is defined. Let a be a state, an~ fEtt• = {tr1, ... ,~k).be any finite

sequence of events chosen from n. Then • is said to be ~ from a provided b =
''."-

"k("k·1(... (t11(a)) ...)) is defined. (i.e. provided that ,,.1_1(... (tr 1(a)) ...) is In domain(.·1), for for all i, 1 Si S
. . .

k). In this case, b is called the ruu.11 of cl» applied to a. An infinite '8QUepce of events is said to be

~ from a provided all its finite prefixes are valid from a. We say that () is •. p~ovided it i~ valid

from u, and the r=uJl of • is defined to be the result of • applied to o. We write a t-:- b provided there
"· ;

is some finite •. valid from a, for which b is the result of • applied to a. b is cgmoutable provided a t

b.

In order to decompose our proof into levels of ·abstraction, we require a definition of "simulation"

of an algebra,,{ = <A, u, Il> by another algebra,,{' = <A', a', Il'>. In this paper, we present a very

6

weak definition. An interpretatjon of .A by .A.' is a mapping h: n· - n U {A}. (Here, A represents a

null event.) We extend h to a homomorphism mapping.eventsequences of .A.' to event sequences of

.A in the obvious way (deleting occurrences of A). An interpretation, h. is a simulation of .A.~ .A.'

provided that h(4>') is a valid event sequence for .A. whenever 4>' is a vatid event sequence for .A.'.

We note that these definitions do not rule out certain trivial situations. We have not imposed the

general requirement that .A.' include a represe:ntation of every event in .A.. We have also not imposed

any requirements that events of .A.' be defined on large dontaiAs. . Thus, our techniques are not

powerful enough to prove that .A.' does everything which is required to implement .A. correctly; rather,

we assume that .A.' is given, and we are to prove that everything it does is correct for .A.. We believe

that the more powerful techniques required to insure the stronger properties require extra machinery,

and a more sophisticated general theory than we wish to present here.

The first lemma gives a basic composition result. This lemma justifies our composition of

simulation results for adjacent_levels, to prove a simulation resu\t for non-ad;.cent levels.

Lemma 1: Assume that .A., .A.' and .A." are algebras, that h is a simulation of .A. by .A.'

and h' is a simulation of .A.' by .A.". Then h 0 h' is a simulation of .A. by .A.".
. ' -. . ' '

Proof: Straightforward.

0

2.2. Possibilities Mappings

Our basic method for proving correctness Is showing that simulations exists between adjacent

members of a sequence of algebras. Therefore, we need a tool that can be used to show that a

mapping is a simulation. In this subsection, we give a sufficient condition for a mapping h from .A.' to

.A. to be a simulation. The condition involves defining a correspondence between states of the two

algebras, in addition to events. It turns out to be most convenient, for the reasons discussed in the
,. ~ 1

Introduction, to allow the state mapping to map a single state of .A.' to a set of states of .A. rather than

just to a single state. The states in such a set are called ·~possibifities" . i.e., the "possible" states

corresponding to a given State. If we think of .A.' as a "concrete" mgebra, and .A. as a more "abstract"

algebra, then we aee that a possibilities mapping allows singtft "concrete" states to be mapped to sets
' •'.

of "abstract" states rather ttian just single abstraet states.

Leth: A' Un• - ~A) Un U {A} be such that h(a') E ~A) for all a' EA', and h·restricted ton• is

an interpretation, i.e. h(,,.') E Il U {A} for all,,.• E n•. (Here, c:Pdenotes the power set.) Then his a
'

possibilities maopjng from .A.' to .A. provided the following are true:

7

(a) a E h(a').

Assume a and a' are computable in .A and .A.', respectively, and a E h(a'). Assume w' E n•.
Assume a' E domain(w') and b' = .,,'(a').

(b) If h(w') = "E TI, then a€ domain(w).

(C) If h(•') = .,, € n, then T(a) E h(b').

(d) If h(w') = A, then a E h(b').

Property (a) says that the initial state of .A is among the possibilities for the initial state of .A.'.

Property (b) says that an event is only performed in .A.' when 4ts image event can b& performed In .A..

Properties (c) and (d) say that events performed in .A.' preserve possibilities. The following diagram

should be helpful in understanding (b) and (c). A simHar diagram can be drawn to illustrate (d).

,,

h h

a'..--------~b'

v'

Figure 1: A Property of Possibilities Maps

The following lemmas show that any possibilities mapping Is a simulation.

Lemma .2: Let h be a possibilities mapping from·...(• to ...t. If 4»' is a valid event

sequence for .A.', and h(4»') • 4», then 4» is a valid event sequence for .A.. In addition, if 4»' is

finite, a' is the result of•• and a is the result of 4>, then a E h(a').

Proof: By induction on the length of••.

a
Lemma 3: Any possibilities mapping from .A.' to .A. is a simulation of .A. by .A.'.
Proof: Immediate by Lemma 2.

a

8

2.3. Distributed Algebras

Next, we define a special kind of event-state algebra, called a "distributed algebra". A distributed

algebra is one which can be decomposed into components in a simple way: the states are Cartesian

products of states for the components, each event is assumed to be originated by some particular

component (although it can affect other components), and the definability and effects of events are . .

locally determined. Such an algebra provides a natural structure for describing distributed

algorithms. Processors in a network and message systems are typ~ examples of components in

such a decomposition.

An algebra, .A. = <A, a, n>. is said to be distributed over a finite index set I using d, provided that A

is the Cartesian product of sets Ai' i € I, d is a mapping, d: n - I, givtn; the ·"doer" of eac"h event, and

the following two conditions are satisfied.

· (Local Domain) Let i = d(w). Jf a. b € A and 8t = bl' then a € domain(w) if and only if b €

domain(w).

·(local Changes) If a, b € domain(w), a' = w(a), b' = w(b) and 8t • bi' then a'1 • b'r

The local domain property says that the state of the doer of an event determines the definability of

that event. The local change property says that the changes caused by an event are defined

componentwise. Note that in the local change property, the component i need not necessarily be the

doer of"; we permit other components to be affected by"· but assume that the effect is uniquely

determined by 'II and the state of the component. Strictly speaking, we could have omitted mention of

both of these properties in ·this paper, since they are not needed to prove the one simple result we

obtain (lemma 4) about distributed algebras. However, the properties seem to describe the locality

structure of distributed algorithms quite accurately, an~ so we present them in anticipation of further

study.

It happens that there is a particularly_ natural way to .define a possibilities mapping from a

distributed algebra to another algebra. Namely, we define a "locaJ mapping", from the local state of

each component of the distributed algebra to a set of abstract states. The result of th1S mapping

should be thought of as the set of possible abstract states, a8 far as a particular component can tell ,
from its local knowledge. The mapping from a global state of the dia'tributed algebra can then be

defined to yield the intersection of the images of all the component ·states. The conditions we require

for local mappings are chosen to be sufficient to guarantee that the derived global mapping is a

possibilities mapping.

9

Let .A.' = <A', a', n·> be an algebra, distributed over I using d. Let .A. = <A, a, n> be any algebra.

Let h be an interpretation from .A.' to .A.. For each i E I, let h.: A' - ~A) be such that h. depends on A'.
. I · I I

only - i.e. if ai = bi then hi(a) = h1(b). Then we say that hand hi' i EI, form a !a'-ill maooing from .A.' to

.A. provided the following conditions are satisfied.

(a) For all i E I, a E hi(a').

Fix any i E I (for properties (b)·(d)). Assume a ai1d a' are computable in .A. and .A.', respectively,

and a E hi(a'). Assume.,,. En•, d(w•) • i. Assume a' t-d&nain(.,,~). anti b' = w'(a').

(b) tf h(tr') • v E n, ~en a€ domain(v).

Fix (for properties (c) and (d)) any i € I. (This J can be the same as or different from I.)

(c) Assume h(tr') II "€ n and a€ hj(a'). Then tr(a) E hj(b').

(d) Assume h(w') = A and a€ hi(a'), Then a€ hi(b').

That is, (a) says that the initial state of .A. is in the set of possibilities for each component's initial

state. Property (b>°says that an event is only performect in .A.' wheri ibi doer knows that its image event
. - ' -

can be performed in .A.. Properties (c) and (d) consider the situation· fl'om the point of view of an

arbitrary component j. Property (c) say$ that an event with doer i pr~es possibilities at component

j. Property (d) is analogous to (c), for events whose images are nuU. events.

The following figure illustrates property (b).

a' b'

•'
Figure 2: A Property of Local. Mill>Pings . .

--------------- -------------

10

The following figure illustrates property (c).

71

a' b' ,,..
Figure 3: Another P-roperty of Local Mappings

The following lemma shows that local mappings yield possibilities mappings.

Lemma 4: Let .A. and .A.' = <A', a', n·> be algebras, where .A.' is distributed over

I. Assume that hand hi, i EI form a local mapping from .A.' to .A.. Extend h to A' U n• by

defining h(a') = ni € 1hi(a'). Then h is a possibilities mapping from .A.' to .A. (and therefore

a simulation of .A. by .A.').

Proof: We check the four properties of the possibilities mapping definition.

(a) To see that a E h(a'), it suffices to show that a€ hi(a') for all i EI. But this is exactly

the statement of property (a) of the local mapping definition.

Now we assume the hypotheses supplied for parts (b)-(d) of the passibilities mapping

definition. Assume also that d(71') = i.

(b) Since a € h(a'), it Is obvious that a € hi(a'). Property (b) of the local mapping

definition implies thatll € domaln(T).

(c) In order to show that 71(a) € h(b'), it suffices to fix an arbitrary j € I and show that

w(a) E hi(b'). Since a € h
1
(a'), the needed property follows from (c) of the local mapping

definition.

(d) It suffices to show that a E hi(b') for any j E I. This foHows as in the preceding

argument from (d) of the local mapping definition.

0

If the definitions in this section are to be used in correctness proofs for the widest passible class

of algorithms, they will probably need to be generalized. In particular, it seems appropriate to permit

single events of a more concrete algebra to interpret sequences of events of a more abstract algebra.

(See Goree (G) for definitions and uses for this generalization.) Also, allowing each algebra to have a

11

set of initial states rather than just a single initial state would probably be useful. Since we do not

need these generalizations here, we do not make these extensions.

3. Action Trees
In this section, we provide the basic definitions needed to describe properties of nested

transactions. The definitions in this section describe a particular data structure, called an "action

tree", which provides a natural representation of nested transactions, the relationships between

them, and their views of data. We define "serfatizability" in terms of action trees. We also prove

several very basic lemmas about the definitions.

We caution the reader that there are many definitions in this section, and he should not try to

remember them all. Rather, we suggest that he raid the definitions Once for famHiarity, and then use

the section for later reference;

In the rest of the paper, we often refer to transactions as just "actions", for brevity. This departure

from the usual conventions of database theory has baln made for coftlistency with the Argus work.

3.1. Objects and Actions

The system is assumed to contain a set of data objects, upon-which the nested actions operate.

We begin with some definitions for objects. Let mu be a universal set of data objects. For each x E

obj, let values<x) denote the set of values x can ~me, Including a dlStlnguished initial value ia.ilW.
A ~ assignment is a total mapping, f, from obi to values(obJ),. 'having the property that f(x) E

values(x) for all x E obj.

Next, we give basic definitions for actions. In this paper, we have chosen to avoid modeUing

transactions explicitly, with a partlcutar programming model. Rattler, we have attempted to extract

from such a model, just that information which is needed for concurrency control'theory.

Let lkt be a universal set of action~ Let .U. be a diatinguiahed.·aQion. We as&Ume that the actions

are configured a priori into a tree, representing· their nesting, ~p. with U a& the root. For

every A E act - {U}, let parentCA) denote a unique parent action for A. Let siblings denote {(A,8) €

act2: parent(A) • parent(B)}. If A E act. let cbikken<M denote {8 E act: parent(B) • A}. If A, B E

act, let lca<A.B) denote the least common ancestor of A and B. If A E act, let de3cCA) (resp. ~) be

the set of descendants (resp. ancestors) of A. Let orooer-dnCCAl (resp; oroper-aoc<A)) be the set of

proper deScendantS (resp. ancestors) of A.

12

It might be convenient for the reader to think of this a priori configuration of all possible actions

into a tree as a preassigned "naming scheme" for actions. That is, the "name" of any action is

assumed to carry within it information which locates that action in this universal tree of actions. In

any particular execution, only some of these possible actions will be "activated". The (virtual) action

U, the parent of all top·leveJ actions, has been added for the sake of uniformity. Its presence provides

a simplification in many arguments.

We assume a priori determination of which actions actually access data, which objects they

access and the functions they perform on those objects. Namely, ~t accesses denote the leaves of

the tree described above. It is exactly these actions which access data. (We assume that U (

accesses. so that the entire set of actions is nQntrivial.) Let ~: accassea -+ obj be a fixed

function. If object(A) = x, we say that A ii 111 eoow SQ x. For A € accesses, let uodate(Al:

values(object(A)) -+ values(object(A)) be a fixed function, describint the change made by A to Its

object. Let sameobieet denote {(A,B) E accesses 2: obiect(A) = object(B)}.

It might at first appear that our model does not permit updates to depend on previous steps

executed by a transaction. This is not our intention. Dependence on previous steps is modelled by

our choice of a particular access: the "name" of the access is assumed to carry information about

previous steps executed by a transaction.

Note that the usual read and write operations of serializabtlity theory can t;ie regarded as ·special

cases of accesses. Namel.Y, "read accesses:· have the identity funcU.on as their associated update

function, w.hile "write accesses" have an associated update function which is a constant function.

3.2. Action Trees

Next, we give a way of describing a "snapshot" of a pat'tic:War .execution, using a structure called

an "action tree". An action tree can be regarded as .the generafiZation · of. the log from ordinary

serializability theory. The information _captured in an action tree includes which actions have been

"activated", what the status of each such action is (i~e. actiVe,, comfriitted or aborted), and what value

of its data object was seen by each access.

An ~DI T has components yertices,.. amimr• commjttedr, abgrtedT and llbilr• where

· verticeSr is a finite subset of act, closed under the parent operation: if A E vertices,.· {U}, then

parent(A) E vertices,.. (These represent the actions which have ever been created during the current

execution.)

13

· activeT' committedT and abortedT comprise a partition of vertice5.r, (These classifications

indicate the current status of each action that has ever been created. When a non-access action is

first created, it is classified as active. At some later time, its classification can be changed to either

committed or aborted. By "committed", we mean that the action is committed relative to its parent,

but not necessarily committed permanently. Permanent commit of an action would be represented by

classification of all ancestors of the action, except for U, as committed. Section 3.4 contains

definitions and a lemma about permanent commit of actions.)

· labelT: datasteP8r --+ values(obj), (where djJpstePl:p • committed1 n accesses), with label1 (A)

E values (obiect(A)). (The label of an access to an object lsjntended to represent the value read by

that access. Since the access has an asspciated function. the. varue which the a~cess writes into the

obiect is deducible from the value read, and therefore need not ble explicitly represented. As a

technical convenience, we do not assign a label to accesses until they become committed.)

The following definitions are just convenient shorthand for ooncepts already defined. Let wmt1

denote committed 1 U abortedr Let ~ be defined tJY ~LA> • 'active' (resp. 'committed',

'aborted') provided A E active1 (resp. committed1 ,.aborted1). Let acc0sses,. = vertices,. n accesses,

access=rW = {BE accesseSy: object(B) = x}, and datutePSyOO • {BE datasteP8r: object(B) =

x}.

3.3. Visibility

Next, we give a very important definition which helps to describe the "views" which actions have,

of each other and of the data. In particular, this definttion allows us to describe actions whose

existence is Intended to be ltnown to other actions (I.e. not masked from those other actions by

intervening failures or ac:tiYe actions). For A E vertices,.. let ml.bmrt& denote {B E vertices,. : anc(B)

n proper-desc(lca(A,B)) ~ committed1}. That is, visible1(A) is just the set of actions whose existence

is potentially known to action A, because they and all their ancestors, up to and not including some

ancestor of A, have committed (to their parents). Action A will be permitted to see the results of

updates made by the transactions in visible,.A). and no others. For A E vertice&r, x E obj, let

, ~~ denote visiblay(A) n d~t8S~Pf5.r(X). The following lemma describes elementary

properties of "visibility".

Lemma 5: Let T be an action tree, A, B, C E vertlcear

a. If B E desc(A), thEtll A E visible.,(B).

b. A E visibte1(B) If and only If A € vislble1(1ca(A,B));

c. If A E visible1(B) and B E visible1 (C), then A E visibtey(C).

14

d. If A E desc(B) and C E visibleT(B), then C E visibleT(A).

e. If A E desc(B) and A E visibleT(C), then BE visibleT(C).

Proof:

D

a. Immediate.

b. Immediate from the fact that lca(A,B) • lca(A,lca(A,B)).

c. Let DE anc(A) n proper-desc(lca(A,C)).
We must show that D E committedT'
If D € proper-desc(tca(A,B)), then the fact that
A E visibte,-(8) lmplies1he result.
So assume that D (proper-desc{lca{A,B)).
It must be the case that 0 E anc(lca(A,B}),
and that tca{B,C) = tca(A,C).
Thus, O E anc(B) n proper-desc(~B.C». so
the fact that B E visibleT(C) implies the result.

d. Immediate from parts a and c.

e. Immediate from parts a and c.

A related definition allows us to describe actions which are capable of "committing up to the top

level". If A € verticesT' then we say Ai§ lli£i in T provided anc(A) n abortedr = 0, arid we say A ii
~in T otherwise.

Lemma 6: If A, B _E vertic8Sr, A is live in T, and B € visibler(A), then Bis live in T.

Proof: If Bis dead in T, then there exists C €,ane(B} O~abortedr We know C (

proper-desc(lca(A,B)), since B E visibler(A). Thus. C E anc(k:a(A,.B)). {;; anc(A), so A is

dead in T, a contradiction.

D

3.4. Serializabllity

In this subsection, we develop the basic correctness condition for action trees: seriallzabillty.

First, we define the result of applying a sequence of steps to a data object. If x E obj and s is a

finite sequence of datasteps, then we define resu!Ux.sl a fo11o\W:· If s is the empty sequence, then

result(x,s) = init(x). qtherwise, lets = s'A. Then.result(x,s) = Uf)date{A)(result(x,s')) if A involves x,

= result(x,s') otherwise.

15

If S is a set, and < is a total order on the elements of S, then we let «S; <» denote the sequence -

consisting of the elements of S, in the order given by <.

In order to define serializability, we need to consider linear orderings of all sets of siblings in the

action tree. Thus, let T be an action tree. A partial order p ~siblings is lineari~inq for T provided p

totally orders all sets of siblings in T. A linearizing partial order p induces a total order, jnducedT,p' on

datasteps,.. in the obvious way: if A and B are datasteps, with respective ancestors A'. and B', where

A' and B' are siblings, then (A,B) E inducedT.p if and only if (A' ,B') E P; If _A E datastepsT(x) and p is a

linearizing partial order for T, let ~JlJ denote <<{BE visiblEtr(A,x): (B,A) E inducedr.p and 8 ;t

A}; inducedT,p». Thus, ~.JA.l denotes the sequence of datastep~ whose effects on A's object

are supposed to be visible to A.

A linearizing partial order p for T is said to be a serializing partial order for T provided that

labelT(A) = resuft(x,IJredS-r (A)), for all A€ dl!tastePs,.(x). That Is, the varue actually seen by A for its . ,p

data object is exactly the. r~lt of the datasteps wliose effects. are $upposed to be visible to A. T is

said to be setializabfe provided there exists some serialtiing partial Order for'T. ·

In this paper, we con8ider serializabitty of portions of an action tree rather than an entire action

tree. In particular,· it might sometimes be usefUI to reqUfre serfafizability onty for those actions whose

effects become "permanent", and not worry about those whith get aborted.

Thus, given an action tree, T, a new action tree, oermCTl, is defined as follows.

· verticesperm(T) = visibleT(U). (lemma 5e shows that perm(T) iaa treei)

· If A E verticesperm(T) , then s~tuspemi(T)(A) • statuSr{A). (This status is always "committed",

except for U.)

• If A E datastepsperm(T) , then labelPerm(T)(A) = labelT(A).

The foHowing lemma shows the useful property that· an the vertices in a permanent subtree are

visible to each other.

Lemma 7: ff Tis an action &tee and A, B € vertlcespenn(T), then BE visibleperm(T)(A).

Proof: Since B E vertioeSperm{T) • Visibt81(Ut. Lemma &t·imptiea that 8 ~ vtsibfe,.<A).
Then B E visibleperm(T)(A), since the status of each vertex is the same in T and .perm{T).

0

16

In this paper, we win use the correctness condition that any tree T created by our algorithm should

have perm(T) serializable. (It is worth noting that one of the reasons that actions might be aborted is

that a concurrency controller has discovered that allowing an action to proceed or commit will

corrupt serializability. Thus, there is not reason to expect complete action trees to be serializable,

and we focus on the permanent part of the trees only.)

3.5. Discussion

Note that the style in which serializability is defined here constrains the implementation less than

the type of definition used in "tniditional" concurrency control theory. The earlier definitions regard

the data as external to the concurrency control algorithm; the algorithm is to take requests for data

accesses and translate them into actual accesses, observing appropriate rules. Generally, the

accesses performed by the concurrency control algorithm simply obtain the latest version of the data

object. A clue that the earlier definitions are too con~training is that they d,o not apply unchanged to
,';; ' '

algorithms such as Reed's, .which use sophisticated ~agement of versions of the data. The earlier

definitions require extensions (KP, BG] to handle alg!)rithms such as Reed's. These extensions still

regard the data as external to the concurrency control algorithm, and so the modified correctness

conditions contain explicit information about particui. "~~ of.U.qata obfeeta, It seems.

however, that the apoearanqt of seriatizability, in terms of the .iuecuMten by the accesses, is really

all that matters · it is possible that this appearance (;Quid be preserved by some algorithm which does

not operate in terms of versions at all.

The less constraining approach which is taken here is to regard the data as internal to the

concurrency control algorithm, at least for the purpose of stating the basic correctness conditions.

Thus, the definitions introduced in this paper are intended to be applicable to algorithms which use

single versions <>f data objects, algorithms that use multiple versions· of data objects, as well as to

other implementations as yet unforeseen.

4. An Algebra Based on Action Trees
In this section, we begin to use the event.state algebra framework. . We use .the set of action trees

' as the state set for an algebra, and define a set of standard events which we would like to allow to be

performed on action trees. We describe each event by ., ... ,u. oircurnstances under which the

event is to be allowed to be performed (the "precondition") •. .anc:J the-resulting changes to be made in

the action tree (the "effect").

We will use this algebra as a specification of correct abstract system behavior, the first level in our

17

correctness proof. Thus, we must ensure that the definition of this algebra includes the property that

all action trees it generates have their permanent subtrees serializable. One way of doing this would

be to include preservation of serializability explicitly in all the PreC,Onditions. It is a little simpler

notationally just to state the serializability condition as a global invariant, to be maintained by all

events; thus, we follow this latter option. In terms of the algebraic model, there is an implicit

precondition on each event stating that the result of the event Sitisfies the global invariant.

We now define a set of events on action trees. That is, we define an algebra .A. = <A. u, n>, where

A is the set of action trees, a is the trivial action tr8' with the sioglf vertex U, with status 'active', and

n contains the four kinds of events described in .<aH(j) below. We c:tefine the events as follows. First,

we let C denote the set of all action trees, T, for .which perm(T) is serializable. (In particular, u E

C.) We place an implicit precondition on each ev•n~ $tilting that the result of the event is in C. Within

this constraint, we define the domain by giving a precondition on action trees T, and use assignment

notation to describe the effect of the event on T.

In all events, we assume that A E act· {U}.

(a) create A

(a1) Precondition
(a 11) A E vertic98r·
{a12) parent(A) €vertices,.· committedr·

(a2) Effect
(a21) vertic98r +-vertices,. U {A}.
{a2~) statu8f(A) - 'active'.

(b) commit A' A E accesses

(b 1) Precondition
(b11) AE active .
<b12> chlklren<AI n vertice8r ~ don&r.

{b2) Effect
(b21) statuSr{A) - 'committed'.

{c) abort A

(c1) Precondition
(c11) A E activeT.

(c2) Effect
(c21) statuSr(A) +-'aborted'.

18

(d) performA , A E accesses, x = object(A), u E values(x) ,u

(dl) Precondition
(dl 1) A E activer

(d2) Effect
(d21) statuSr(A) - 'committed'.
(d22) labe'-r(A) - u.

The meaning of the four events is as follows. The create A event creates (or "activates") a new

action. It is required, of course, that A not be already In the tree. Its parent must be there, however,

and must not already be committed (since a committed parenf IS assumed to have all of its children

completed, and to depend on the completion of the particular set of children it had at the time of

commit). Note that we allow A to be created after Its parent has aborted. This might be reasonable in

an implementation in which the two events occur at different nodes of a distributed system, for

example. The effect of creating A is to add A to the tree, with status 'active'.

The commit A event commits an active non-access action. It requires that A be active, and all its

children be completed. The effect is to change the status to 'commited'. The abort A event is similar,

but there is no requirement on the children - an active action can abort at any time.

Finally, the perform A,u event actually performs a step on a data-object. It requires that access A

be active, and changes its status to 'committed'. It also records (in our action tree analog· to the

"log") the value u seen by the access. (It is unneces$8ry to record the value written, since that could

be inferred from the value seen.) Note that we do not specify how the value u is supposed to be

obtained by the perform event; it is permissible to record any value, as long as the serializability

condition is preserved.

We note that the only events which could cause the seriallzability constraint to be violated are

commit and perfonn events. Thus, these are the only events for which the implicit precondition C is

actually necessary.

We also note that this algebra provides considerable flexibility in allowable sequences of events.

5. Augmented Action Trees
Now, we proceed to the second level of our proof. As before, it will be useful to define a data

structure first, and then develop an algebra based on that d~a structure. The data structure to be

used in the second level is called an "augmented action tree". It is very similar to an action tree, but

19

includes some extra information describing a sequence of versions for each da'8 object. An

augmented action tree is similar to a transaction conflict graph with resolution of conflict~. We stated

earlier that we did not want to rely on definitions that depend on data versions, for our basic

correctness conditions. However, the definitions whiQh Alct~ ~ referen~ to versions are still

useful in conjunction with the approach of this paper. Their role is in supplying sufficient conditions

for serializability, and thereby helping to organize correctness proofs.

Serializability is defined for augmented action trees. It is seen thataerializability for augmented

action trees implies serializability for corresPQSlding action tr.en. .· *'eover, ser~alizability for

augmented action trees ~ a cycle-free characterization similar to those in usuaJ concurrency

control theory. Therefore, this structure can be useful in pcOQfs of aerialilabiNty for action trees.

Thus. it is at our second level that the interesting conc:urrency control,es:g..,ments occur.

5.1. Augmented Action Tree Definitions

An aygmented action tree (AAT), T, is a pair (S,datar>• where Sis an action tree and dat8r ~

sameobjecfs is a partial order on datasteps8 whi~h tot81fy orders the d8tasteps for each object. We

extend action tree notation to T; tor •xample, we Write daJUtlDS.r to denOte datasteps8. We also
. . "! . . . :

extend the definitions of mbfl, l!m, s;tug, lineadzjng; Induced, ~ and serializab!e. to T, by

applying them to S.

The assumed ordering on accesses to each data object imposes an ordering on siblings higher up

in the tree. If T is an AAT, then tet s!bfjno-daf8r denote {(A,B) E siblings: (C,0) E: dat8r for some C E

desc(A), D E desc(B)}.

'; ,
We require notation for an access' visible predecessors in the versio_n ()rdt!r. If A E datastepsT(x),

then let ~(A). denote {B E visibler(A,x): (B,A) E dat&r .~ B ~ A} ... c ThctfoUQWing is a technical

lemma.

Lemma 8: Let T be an AAT. Let p be a linearizing partial order for T, x E obj, and A€

datasteJ>Sr(X). Assume that lnducedT,p is consistent with ..,_. Th,m pred8r,p(A) •

«v-dat8r(A); datar>>.

Proof: Straightforward.

D

An AAT, T, is data·seria!izable provided there exists p, a serializing partial order for T, with the

additional property that induced1 .P is consistent with dat&.r· Thus, T is data-serializable provided that

20

it is serializable in a way that respects the conflict resolution partial ordering. Of course, data·

serializability for AA rs· provides a sufficient condition for serializability.

5.2. Characterization of Data·Seriatfzabillty

The analog ·of the usual characterization in concurrency control theory is proved in this

subsection. Namely, we give a characterization of data~urializability In terms of absence of cycles.

First, we give a definition which says that the label of each access describes the correct object

value which the access should see, if the versions of objects ar~ ordered according to the data,.

order. Formally, an AAT is version-comoatible provided for every x € obj, and every A €

datasteps,.(x), it is the caaethat labet1(A) = resutt(>c,s), wheres = «v-da~(A); dat&r»·

The next theorem contains the characterization result.

Theorem 9: An AA T, T, is data-serializabfe if and only if both of the foUowing are true:

a. T is version-compatible.

b. There are no cycles of length greater th&11 one in sibllng·d,ta,..

Proof: Assume Tis data-serialiuble, and obtain p, a serializing partial order for T for

which inducedT,p is consistent with data,..

a. Let A E datasteps,.(x), s = «v-dat&r(A); dat&r»· Then label1(A) •
result(x,precfs_ (A)), by the definition of serializ.ability, = result(x,s), by l,p
Lemma a. .

b sibling-dat8r ~ p, Thus, there are no cycJes of length greater than one in
sibling·da~&r·

Now assume a. and b. Let p be any partial order which totally orders all siblings and is

consistent with sibfing-dat&r. Then pis linearizing for_T, and iriduc8d
1

,p is consistent with

data,.. We Wl"ff show that p is a serializing partiaJ order for T. Let x € obJ, A € datastepa,.(x).

We must show that label1(A) = result(x,pred51,p(A)). Since Tis version-compatible, we_
know that labelt<AJ • resutt(x,s), ~ s • «v-data,.; ctata,.». Then Lemma 8 implies

thats • P'edsy,p(A), as Meded; .

0

21

6. An Algebra Based on Augmented Action Trees
·'

In this section, we define the algebra for our second level. This algebra will be based on the set of

AA T's. We define events on AA T's, analogously to the definitions for action trees. Once again, we

carry out the definitions within the event-state algebra framework: We then prove several basic
..

properties of this algebra. Finally, we show that this algebra sim1Jlates the level 1 algebra.

The second-level algebra can be understood as describing the "abstract effect" achieved by

locking algorithms. rile do not actually describe a locking mechanism until later levels.) The major

accomplishment of this section Involves showing that 1hf9 lllbatiact' effect in fact guarantees the

required serializability condition. The argument is relatively nontrivial, and is analogous to the usual

correctness proofs for strict. two-phase locking. Arguments 'for later levels will show that locking

protocols actually achieve the required abstract effect. Thus, we have factored the correctness proof

for a locking algorithm into two natural parts.

6. 1 • Definitions

We define a new algebra .A' = <A', a', Il'>, where A' is the set of AAT's, a' is the trivial AAT which

has a single vertex U with .status 'active', and the evema In n~ correapond closely to the events of .A,
. .

and are deaignate<,t by the same names. (We wilt rely on context to distinguish the two cases.) The
" : . .

only differences are that there is no global constraint corresponding t6 C, and performA introduces ,u
two additional preconditions and an additional change. These new conditions can be thought of as

capturing the abstract effect of a variant of Moss' locking algorithm.

(d1) Precondition
(d12) Let BE da&asteps,.(x), BHve in T. Then B € visibfe,.(A,x).
_(d13) If A is live in T, then u • result(x,s), wheres = «visible1(A,x); data,.>>.

(d2) Effect
(d23) data,. +-data,. U {(8,A); 8 € datas~(x)} U {(A,A)}.

The new preconditions say that a data access A must wait long enough so that all live accesses to

the object have been committed, up to the level which matters to A. Also, the value used in the access

is just the one resulting from tbe sequence-of :previoul acceaea, lft thegMtl1 ·data ordering. The new

effect just involves adding appropriate new pairs to the end of the data ordering.

22

6.2. Preliminary Results

This section contains two straightforward lemmas. The first describes some invariants preserved

by the events.

Lemma 10: If Tis computable in A', then the following are true.

a. If A E verticesr and parent(A) E committed1 , then A E doner

b .U E active,..

c. If (B,A) E datBr, then either Bis dead in T, or else BE visible,.(A).

d. If A E comm&tted.r and B € del$C(A) n vertK:es,- then either B is dead in T
else B € visibte,.(A).

Proof: Most of the arguments are straightforward. We argue cases c. and d.

c. If B = A, the result is immediate. If B :I: A, then the only way we get (B,A) E dat&.r is

by virtue of some performA event. That is, there exists T' such that rt- T, such that the ,u
precondition for some step performA,u is satisfied in T'. Thus, Bis dead In T' or 8 €
visibler(A). Therefore, B is dead in T or B € visibler(A).

d. If a = A, the result is immediate. So assume A -1: a. Let A € committe<ty, e E

desc(A) n vertiC9Sr, B live in T, and 8 (visibJerCA). Then ·theft exist C, 0 E deso(A) n
anc(B), for which C = parent(D), C E committed1 and p E active1. But this contradicts

part a.

D

The second lemma of this subsection describes properties that hold of a pair of AAT's, one of

which is derivable from the other.

Lemma 11 : Let T and T' be computable in A', and assume that T t- T'.

a. vertic8Sr g vertic8Sr· committed1 g committedr• abortedr g abortoo,,, and
dat&r g dat&r·

b. If A E dataster>sy then labelr(A) = labelr<A).

c. If A Eda~ and lB,A) € dat&r i then·fB,A) E datar·

d. If A E vertic&sr, then ~sible,.(A) t; visibl&r(A) •. ·

e. If A E vertic&sr and A is live in T', then A is live in T.

f. If A = parent(B) and A E committed1 and BE verticSSr, then BE doner

Proof: The only case that takes some arguing is f. Let A = parent(B), A E committedr

23

and B E vertice5r . Let T' be the result of ct> applied to T, and let T be the result of 'I'. Then

'I' contains a step" of the form commit A' and '1'9 contains a step p of the form create8.

" cannot precede p, sjnce the precondition for p would be violated. So p precedes ".

Then the precondition for " implies that B E done1.

0

6.3. Computability Guarantees Data-SerlaUzablHty

Note that there Is no correctness conmtfon for AA T's explicitly mentioning serializabitity. This is

because for AAT's, computability alone is sufficient to guarantee serializability of perm(T), as we

show in the next theorem. It is convenient to prove the two required properties separately, in two

lemmas. The second of these two lemmas is the hardest result in the paper.
; "

Lemma 1 2: If T is computable in .A.', then perm(T) is version·compatible.

Proof: Let A € datastepsperm(:r)(x). ·We. must show that u (= label.,...,,m(A)) =
result(x,s), where s "' «v-data~(B); dataperm{T)».. A is inserted into the tree by a

performA u step"· so let the event sequtnce producing T be written as cl>Ti'. Lat T'
' . '

denote the result of ct>, and T" the result of ••. The preconditions for " show that

labelr,(A) = result(x,s'), where s' = «visibler(A,x); dat8r»· By Lemma 11b and the

definition of perm(T), it follows that labetperm(T)(A) • result(x,s'). Thus, it suffices to show

that s = s'. Since both dat8r and data1*ftl(T} are consistent with dalar it suffices to show

that s and s' contain the same elements.

First, let B € s. Then (B,A) E dat~ and so by Lemma 11c, BE datastep5r,(x). Since A

is the only element in T" which is not in T', B E datastep8r(x). Since A E verticespenn(T) =

visibl8r(U), and U f.aborted1 (by Lemma 10), it follows that A is live in T. Since B E
visibl8r(A), Lemma 6 shows that B is live in T. Thus, 8 is live in T', by Lemma · 11 e. The

precondition for 11 implies that B € visibter(A,x), s0 B € s'.

Conversely, suppose 8 € s'. Then B ':/:A since AC verticesr· Then (B,A) €data,.. •• so
by Lemma 11a, (8,A) E ctata,.. By lemma 11d, B € vlallJlef(A,x). By Lemma 7, it sufflces to.

show that B E verticesperm(T) =-. viaible,-(U). But B E vtsibf*r(A) and A E vlsible1(U), so
Lemma 5c suffices.

0

Lemma 13: If T is computable in .A.', then there are no nontrivial cycles In

sibling-dataperm(T)'

Proof: Assume the contrary: let (a= A0,A1, ... ,Ak = a), k > 2, be a minimum length

cycle such that '(Ai,A1+ 1) € sibling-datapermCT) for all i, O S i S k· 1. Let a sequence 4t of

events be defined so that T is the result of ct>. We will show that for each i, O S i S k· 1,

24

there exists a prefix +i of cl> such that if T' is the resuft of 'fti' then Ai € doner , and Ai+ 1 (

doner . If we fix i for which vi is of maximum length, and let T'be the result of this +1, then

we see that A. · 1 (doner . But 'ft. 1 is no tonger than '11., so Lemma n a implies that A. 1 . I+ I+ I I+
€ doner , which is a contradiction.

So fix i, O S i S k-1. Then (A1,Ai + 1) € sibling-dataparm{T)' Then there exist B €
desc(Ai)' C € desc(Ai + 1) with (B,C) € dataperm(T)' Since 8, C € verticesparm(T)' it follows

that (anc(B) U anc(C)) n proper-desc(U) ~ committed,_. Now, •has a prefix~vw, where "

is a performc,u step. Let T' be.the result·of v, and T" the result of 'i'tr. lemma 11c

implies that (8,C) € dat8r .. , so that B E datasteJ>Sr . Since B is .Jive. in T (wsing Lemma

10b), Lemma 11e implies that Bis live in T' . Then the precondition for.,, implies that B €
visibler(C), which. means that Ai € anc(B) n proper-desc(lca(B,C)) ~ committedr ~

doner. We must show that A1 + 1 (doner. ; if we can do this, then taking +1 = i' yields the

result. Assume Ai+ 1 € doner·· Then let D be the fowest ancestor of C for which D €
don9r; it must be the case that D € anc(C) n proper-dese(tca$,c)) ~ committedr so D €
committedr . Since C € activer , we know that D _. · C. 'Let E be the single element of

children(D) n anc(C). Then E (doner . Then E (vertic"r by Lemma 11 f. This means C
(vertices,.. This is a contradiction. ·

0
Theorem 14: If T is computable in .A.', then perm(T) is data-serializable.

Proof: Immediate from Lemma 12, Lemma 13 and Theorem 9.

0

6.4. Simulation

Next, we show that .A.' simulates J.. We define a mapping h from .A.' to .A. as follows. If T =
(S,datB.r) is an AAT, then h(T) = {S}. If" is in Il', then h(tr) is just the event inn with the same name.

Lemma 15: his a simulation of .:A.by .A.'.

Proof: fa) and (dl of the dotiAition of a possibilities mapping are immediate. Property

(b) follows immediately from the fact 1hat a' € do~tr') (since onlyadditioAaf constraints

are added for .A.'); note that Theorem 14 implies that the C-constraint is always satfafied,

Property (c) is then straightforward. Thus, h is a possibilities mapping. Lemma 3 shows

that h is a simulation.

0

25

7. An Algebra Based on Version Maps
In order to complete the proof of Moss' algorithm, it remains to prove that it achieves the abstract

effect of locking described by .A.'. It seems simplest to decompose thi$task further, first showing that

a centralized locking algorithm simulates .A.', and then showing that a distributed version of the

algorithm simulates the centralized version. It turns out to be feasibte to decompose the proof of the

centralized locking algorithm still further. Namely, we first describe a locking-style algorithm which

retains a large amount of useful information. Then we show that a more optimized locking algorithm

simulates the algorithm which retains information.

In this section, we develop the third level of the algorithm: the locking-style algorithm which

retains information.

7 .1. Version Maps

As before, we begin by introducing another data structure, called a "version map". This one

records some locking information for each object. As in Moss' algo~m, each object has a stack of

locks, held at any time by a sequence of actions which are iSUccessivfl deecendants. The version map

records, for each object, and each action in ·some sequence of· successive descendants, the

sequence of accesses to the object who5e re9ult is available to the action.

Thus, a version ™ is a partial mapping V from obj x act to sequences of accesses, such that the

following properties are satisfied:

· V(x,U) is defined for all x,

· each V(x,A) consists of accesses to x,

· for each x, if V(x,A) and V(x,B) are both defined, then either A E desc(B) or B E desc(A),

·if V(x,A) and V(x,B) are both defined and B € desc(A), then V(x,S) i$an extension of V(x,A).

Thus, for each x, V is defined only for transactions which lie on some chain of ancestors; V is not

necessarily defined for all transaction$ on the chain, but only for ~,,ubeet of the transactions on

the chain.

If A is the least action for which V(x,A) is defined, then we. caU A the Q{incjoa! tmlim for x in V; in ·

this case, if result(x,V(x,A)) • u, we say that u is-theQCiorJQll .XU of x in V.

26

7.2. Definition of the Algebra

We define another algebra, .A." = <A", a", n''>, as follows. A" is the set of pairs (T,V}, where Tis

an AAT and V is a version map. a" consists of the trivial AAT consisting of a single node U with status

'active', and the version map which has V(x,U) equal to the empty sequen~e. for all x, and is otherwise

undefined. n" consists of the six events defined below in (a)-(f).

In all the events to fpllow, we assume that A E act - {U}. Events (a)·(C) ~e identical to (a)·(c) of

.A.'. Some changes are needed in the perform event, and there are two new events which manipulate

locks.

(d) performA,u' A E accesses, x = object(A), u € values(x)

(d1} Precondition
(d11) A€ activ&.r.
(d12) {B: V(x,B) is defined}~ proper-anc(A).
(d13) u is the principal value of x in V.

(d2) Effect
{d21) statu8t(A) - 'committed'.
{d22) labelr(A) +- u.
(d23) ctata,.-datar u {(S,A): B € acceaaea,.(x)} u {<-A,A)}.
(d24) V(x,A) +- V(x,B) 0 (A), wh~ 8 i!. thepi~pipal action .in V.

(e) release-lock Ax' x E obj
'

(e1) Precondition
(e11) V(x,A) is defined.
(e12) A € committed1.

(e2) Effect ·
(e21) V(x,parent{A)) +- V(x,A).
(e22) V(x,A) +- undefined.

(f) lOS8• lOck A x' X € obj
•

(f 1) Precondition
(f11) V(x,A) Is d~ned.
(f12) A is dead in T.

(f2) Effect
(f21) V(x,A) - undefined.

Thus, (d) says that a performA,u event can only be carried out·when the current lock-holders are

all proper ancestors ~f A, and. when u is the pro"" value wNch Shoutd be provided to A. This event

has the new effect of augmenting the version map ;by giVing a· 1tlock11 to A: A gets a sequence of

27

versions which is exactty that held by the previous principal action, concatenated with a new version

for A. Event (e) allows a lock to be released by a committed action: its effect is to pass the lock up to

its parent, so that its parent now obtains the sequence of versions previously held by the child. Event

(f) allows a lock to be released by a dead action.

7 .3. Basic Properties

In this suDsection, we present a simple lemma stating soroe important Jnvariants preserved in .A.".

Lemma 16: If (T,V) is computable in .A.':, then the following are true.

a. If V(x,A) is defmed, then A € vertices,-.

b. If B E datastepSr(x) and Bis live in T, then there exists A E anc(B) with V(x,A)
defined and B an element of V(x,A).

c. If V(x,A) is defined, then each element of V(>t,A) is in vlaibler(A).

d. If V(x,A) is defined! then the elements of V(x,A) are in datar order.

Proof: Straightforward. We argue b., for exampte. tmmediablly after an event

perform8 ,u occurs, we see that V(x,B) is defined, and B € V(x,B). Assume inductively that

there is some anc~tor, C, of B with V(x,C) defined and B € V(x,C). Since B remains live,

there are no steps of the form loae-tockc,x· Thus, if V{x,O) 18 ever dlanged, it must be

because of a ratease-tock step. Ther&are two pesaibllities. fif'ilt the'Change could occur

because of a release-lockc,x step. But such a step causes V(x,parent(C)) to take on the

old value of V(x,C), thereby preaerving the needed'property. S8cond1 the change could

occur because V(x,C) gets redefined to be the previous vatue 'Of V{x,D), where, D E

children(C). But because the successive sequences are extensions of each other, Bis an

element of V(x,0) as well. Thus, the needed property is preserved In this case also.

D

7 .4. Simulation

Define a mapping h' from .A." to .A.' as follows. h' maps (T,V) to {T}, and maps events (a)·(d) to

events of the same name, and events (e) and (f) to A.
Lemma 17: h' is a simulation of .A.' by .A.".
Proof: It suffices to show that h' is a posaibilitiea mapping. Properties (a)~ (<.I) are

easy to check. We consider praperty (b). Let•'€ Il", where h'(•,') ,,. "€fl'. Then w' is

either of the form create A' com~it4, abortA or perfo,rmA,u' In the first th~ ~s, the

property (b) is easy to check. So assume that•' is of the form perform A,u' Assume (T,V)

is computable in .A." and •' is defined on (T,V), yielding (T\V')~ We must show that

perform A,u (i.e. the event of .A.') is defined on T. Let x = object(A).

28

Condition (d11) for .A' follow immediately from the corresponding condition for .A.".

We consider (d12). Let BE datastep51(x), and ~me that Bis live in T. Since (T,V) is

computable in .A", Lemma 16 implies that there is some C E anc(B) for which V(x,C) is

defined and for which B is an element of V(x,C). Then Lemma 16 implies that B E

visibler(C). Since w' is defined on .(T,V), (d12) for .A." implies that CE anc(A). Since A E

vertice51, Lemma 5 implies that B E visibler(A), as needed.

Next, we consider (d13). Assume A is live in T, and lets a «vlsibteT(A,x); dat&r»· We

must show that u = result(x,s). Let B be the principat action for x in V. Condition (d13) for

.A." implies that u = result(x,V(x,B)). It suffices to show thats aod V(x,B) are identical. .. .

Since the elements of V(x,B) are in dat8r order (by Lemma 16), it suffices to show thats

and V(x,B) contain the same set of elements.

First assume C is ins, i.e. CE visi~A,x}. Since A is five in T, Lemma 6 implies that C

is live in T. Then Lemma 16 implies that there exists D E anc(C) for which V(x,D) is defined

and C is an element of V(x,D). Since B is the principal etement fOt x In V, the sequence

extension property of the definition of version maps implies that C is atso an element of

V(x,B).

Conversely, assume that C is an element of V(x,8). Lemma 16 implies that C E

visible,.(B). Condition (d12) for .A." implies that B € $1C(A). Thus, C € .visible,.(A).

It is easy to check that property (c) holds, once we know that the definabitity conditions

correspond. Therefore, h' is a possibilities mapping.

D

Theorem 18: h 0 h' is a simulation of .A. by .A.".

Proof: Immediate from Lemmas 15, 17and1.

D

8. An Algebra Based on Value Maps
The previous section described a version of a locking algor.ithm in which considerable information

(the sequences .of versions) were retained. In this section, we describe the fourth level of our

algorithm. tn this level, we optimize the locking algorithm of the previous tevel by condensing some of

the information retained. Namely, it turns out not to be necessary to retain the complete sequences of

versions; rather, we can manage by retaining only the latest value o_f the object for each action.

Note that we can prove a simulation result after eliminating information precisely because

29

possibilities maps are able to yield sets of states rather'than single states. The sets of states serve to

replace the eliminated information.

8.1. Value Maps

As before, we introduce another data structure. This one records, for each object and action, the

latest value of the object which is available to the actiOn.

A~ mag is a partial mapping V from obi x act to values(obj), such that the foHowing properties

are satisfied:

· V(x,U) is defined for all x,

· each V(x,A) € values(x), and

· for each x, if V(x,A) and V(x,B) are both defined, then either A € desc(B) or B € desc(A).

If A is the least action for which V(x,A) is defined, then we call A the Pri!Jcioal ~ for x in V; in

this case, if V(x,A) = u, we call u the pdn,s;!Qil ~ Qf x in V. .

If V is a version map, then let eval(V) be the value map defined on e~tly the same domain, so

that eval(V)(x,A) = result(x, V(x,A)).

Lemma 19: Let V be a version map, x € obj. Then the principal action for x in Vis the

same as the principal action for x in eval(V), and the principal value of x in V is "1e same as

the principal value of x in eval(V).

Proof: Straightforward.

0

8.2. Definition of the Algebra

We define another algebra, .A."' = <A'", .a"', Il"'), as follows. A"' is the set of pairs (T,V). where T

is an AAT and Vis a value map. a"' consists of the trivial AAT consisting of a single node U with

status 'active', and the value map which has V(x,U) equal to init(x), for all x, and is otherwise

undefined. Il'" consists of six events (a)-(f).

In all the events, we assume that A € act · {U}. Events (a)-(c), (e) and (f) are identical to the

corresponding events .of ..A.". Event (d) is also iden~ical, except for the change indicated below.

(d2) Effect

30

(d24) V(x,A) +- update(A)(u).

8.3. Simulation

Define a mapping h" from .A."' to .A." as follows. Let h"(T,V) = {(T,W): eval(W) • V}. h" maps all

events to events of the same name.
Lemma 20: h" is a simulation of .A." by ..C."'.

Proof: It suffices to show that h" is a possibilities mapping. Properties (a) and (d) are

easy to check. Let •' E n"'. If "' is any event e>ccept for a perform event, then properties

(b) and (c) are immediate.

Assume 71' is p.erformA,u' Assume (T,V) is computable in .A.'", .{T,W) € h"'(T,V), (T,W)

is computable in .A.", 71' is defined for {T,V) and (T',V') = w'(T,V). Lemma 19 implies that

property (b) holds, i.e. that" = performA.u is defined on (T,W). It follows from the effects

of the two events that v(T,W) = (T',W') for some version map W. In order to show.

property (c), it suffices to show that eval(W') • V'. Since eyal(W) = V, we only need to . ,,·,, ,' . .

consider the values whi~h change because of the present event, i.e. we need to show that

result(x,W{x,A)) "' V'(x,A). But result(x,W{x,A)) .. result(x,W(x,B) 0 (A)), w~ Bis the

principal action for x in W, = update(A)(result(x,W(x,B))), • update{A)(V(x,8)) since

eval(W) = V. But 8 is the principal action for x in V, by Lemma 19, so u = V(x,B).

Therefore, the latest term in the extended equality Is equal to update(A)(u), which is equal

to V'(x,A) by definition.

0
Theorem 21: h 0 h' 0 h" is a simulation of,,(by .A."'.

Proof: Immediate from Lemmas 18, 20 and 1.

0

9. The Algorithm
The only remaining task is to describe a distributed locking algorithm, and show that it simulates

the previous algorithm. In this section, a slightly simplified version (which doesn't distinguish read

and write steps) of Moss' algorithm is described usi~g ~distributed algebra.

9. 1. Notation and Definitions

Let [k] denote {1, ... ,k}.

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by

identifiers in [k].

31

Let~: (act · {U}) U obj - [k], with home{A) = home(object(A}) for all A € accesses. Thus,

home partitions the adions and objects among the nodes. Wtt ua: {act • {U}) - [k) be defined so

that origin(A) = home(A) if parent(A) = U, and = home(parent(A)) otherwise.

In order to describe the local state af each node, it is convenient to define a generalization of

action trees. Thus, we define an 4'fum summary T to consist of compqnents yerti'Gr· ~T'

committedT' and ibortedT' where verticesr is any finite subset of act (not necessarily closed under

the parent operation), and the remaining three components form a Partition of vertice&r. The notation

s:kmlr and ~ is also extended in the obvieus way. If T and T' are action summaries or action

trees, w e say that T S T' provided that vertice8.r ~ vertices,.. , and corr~~dingly for committedr

and abortedr We also define T" • T U T' so that vertices,... :ia ~ U verticesr , and similarly

for committedT .. and aborted1... An action summary wilt be ulW 1&dit8Cribe partial knowledge of the

latest status of the transactions.

9.2. Definition of the Algebra

We describe the algorithm as the algebra, ~ • <B, .,, P>, whioll is distributed over 1 • [k) U

{'buffer'}. The elements of [k] correspond to -k nodes of a dist~ system, and the buffer . .

corresponds to the entire message system. The components are defined as follows. Let B be the

C8rtesian product of state sets 8., where I € I.
. I

If i E [k) (that is, if i corresponds to a node), then 8. consists of the values of two variables, i.T
. I .

which contains an action summary, and i.V, which contains a value map. The action summary

recorded in i.T represents node l's knowledge of the lateSt statl.ls Of various transactions. The value

map in i. V contains the latest value map information for all objects whOlllJ home is I.

If i = 'buffer', _then B1 consists of the values of variables M
1
, j E (k], ~~ of which contains an

action summary. The action summary in M
1

repraaems all the ~ which has been sent to

node j during the entire computation.

The initial state ., is a vector of initial states for aH the- oompoaenta. If i E [k), then "'• has i. T .
initialized as the trivial action summary, haVlng no vertices, and i.V inltiafized·so that i.V(x,U) • init(x)

for all x with home(x) • i, and otherwiSe undefined. If i = 'buffer', then T1 has. each Mi equal to the

trivial action summary.

The algorithm has eight kinds of events. Six correspond closely to the six events of .A.'" • four

record the creation, commit and abort of actions and the performance "''data accesses and two

32

manipulate locks. The other two correspond to the sending and receiving of messages. The events

are nsted below. As usual, we present them by listing a precondition and the effect on the state. In

addition, we defined(.,,), the doer of each step.

In all cases, we assume that A € act - {U};

(a) create1 A' origin(A) = I
I

(a1) Precondition

(a11) A (i.vertic8Sr·
(a12) ff parent(A) ':!: U; then parenftA} € i.verticEtar - tcommittedT'

(a2) Effect

(a21) l.vertic8Sr +- i.vertiC8Sr U {A}.
(a22) tatatua,.(A) +- 'active'.

(a3) Doer: i

(b) commlti,A' A (accesses, home(A) = i

(b1) Preconditfon

(b 11) A € i.active,..
(b12) chlldren(A) n i.vertic8Sr ~ i.~oneT'

(b2) Effect

(b21) i.statu&r(A) +-'committed'.

(b3) Doer: i

(c) abort1,A' A (accesses, home(A) • i

(c1) Precondition
(c11) A€ i.activeT.

(c2) Effect
(C21) l.statu8y(A) +-'aborted',

(c3) Doer: i

(d) perform1A u' A E accesses, x • objeet(A), u € valuea(x),
home(A) • i,'hOme(x) • I

(d1) Precondition

(d11) A € i.activey·
(d12) {B: i.V(x,B)} is defined}~ proper-anc,A).
(d13) u is the principal value of x in i.V.

(d2) Effea
(d21) i.statuSr(A) +- 'committed'.

33

(d22) i.V(x,A) - update(A)(u).

(d3) Doer: i

(e) release-locki A x' home(x) = i
••

(e1) Precondition
(e11) i. V(x,A) is defined.
(e12) A E i.committedr.

(e2) Effect
(e21) i.V(x,parent(A)) +- i.V(x,A).
(e22) i.V(x,A) - undefined.

(e3) Doer: i

(f) lose-lock1,A,x' home(x) ,. i

(f 1) Precondition
(f11) i.V(x,A) is defined.
(f12) anc(A) n l.abortedr ;1 fJ.

(f2) Effect
(f21) i.V{x,A) +-undefined.

(f3) Doer: i

(g) sendi,j,T', T' an action summary

(g 1) Precondition
(g11) T' < i.T.

(g2) Effect ·
·(g21) Mi- M1 UT'.

(g3) Doer; i

(h) receive1,T, , T' an action su~mary

(h1) PrecondWon
(h11)T' ~Mr

(h2) Effect
(h21) i.T +- i.T UT' ..

(h3) Doer: buffer

Thus, (a) · (f) correspond closely to (a) • (f) of .A."'. Events (g) and (h) are the new communication

events. These conditions say that any communication is allowed at any time, which sends any of i's

34

action summary information from i to j.

Lemma 22: ~is an algebra, which.is distributed over I using d.

Proof: Straightforward.

D

9.3. Simulation

Now define an interpretation h'" from~ to .A"' by mapping the first six types of events to the

events of the same name, suppressing the index in [k], and mapping the Qther two types of events to

A.

If b E B, then we add "[b]" to the end of a variable name to denote the value of that variable in

stateb.

For each i E I, we define a mapping hi from B to ~A"') as follows. If I E [k], then (T,V) E h1(b)

exactly if (T,V) is computable in .A"' and the following are true:

·vertices,. n {A: origin(A) = i} ~ i.vertices,.(b}' vertlcesr·

· committedr n {A: home(A) = i} ~ i.committedr(b] ~ committed1.

· abortedT n {A: home(A) = i} ~ i.aborted1(b) ~ aborted1.

· i.V[b] is the restriction of V to {(x,A): home(x) = i}.

If i = 'buffer', then (T,V) E hi(b) exactly if (T,V) is computable in .A"' and ~(b] < T for each j E (k).

If (T,V) E hi(b), then we also say that (T,V) is i-consjstent with b.

We now proceed to prove lemmas corresponding to the properties required In the definition of a

local m~pping. The proofs are long, but are very straightforward case analyses.

Lemma 23: For all i EI, a"'€ h1(~).
Proof: Immediate from the definitions.

D

Lemma 24: Assume i E I. Assume.,,• E P, d(tr) = i,,, = h'"(tr') E Il"', a and a' are

computable in .A"' and ~. respectively, a E h
1
(a') and a' E domain(.,.'). Then a E

domain(w).

35

Proof: Let a be (T,V).

First, assume that w' is c reatei,A, so that ., is create A. Then origin(A) = i. Since a' €
domain(.,'), A (i.vertic85r(a']. Since (T,V) is i·consistent with a', A (vertic85r, thus

showing (a11). If parent(A) = U, then the. fact that (T,V) is computable and Lemma 16

imply that parent(A) € activeT' thus showing (a12). fQr this casa. On the other hand, if

parent(A) ;t U, then the precQNfition for tr' shows. _that parent(A) € i.vertiC88.r(a'] •

i.committed1[a']. The fact that (T,V) is i-consistent with~ a' implies that parent(A) €
vertic85r · committed1. Thus, (a12) holds.

Second, consider,,. = commiti,A' so that,.. is. commit A. The precondition for,,.

shows that A € i.activ&r[a']. The fact that (T,V) Is i-consistent.wjth a' implies that A €
active1, thus showing (b11). The precondition for· w' shows that children(A) n
i.vertic85r(a'] ~ i.done.Ja'J. The fact that (T,V) is i-c~nt with a' implies that

children(A) n vertic85r ~ don&r• thus showing (b12).

Third, assume,,.. = aborti,A' so that w is abortA. Thia case is similar to the first half
of the previous cue.

Fourth, assume w' • performl,A,u' so that ... ls,JMtrformA·,u· Then home(A) = i.
Assume object(A) = x, so that home(x) • i. (d11) ls.argued aa in tM preceding two cases.
We show (d12). Choo$8 B so that V(x,B) is defined. Since (T,V) isj·consistent with a' and

home(x) = i, i. V(x,B)[a'] is also defined. Ttle precQlldition for tf' ,iQlPties that B € proper·

anc(A), as needed. Next, we show (d13}. The precondition for w' .implies that u is the

principal value for x in i.V{~]. Since (T,V) is l·con~t with a·~ u is also the principal

value for x in V, as needed.

If .,,. Is one of (e) or (f), then w' involves some x with home(x) • I. Assume that w'

involves A. The precondition for ,,. implies that i.V(x,A)[a'] is defined. Since (T,V) Is I·

consistent with a', it follc>WS that V{l<,A~ iadeffnEld. thus showing both (e11) .and (fU).

If w' is a release-lock1 A step, then the precondition for w' ilnplie$ that A €
' ,Jl

i.committed,.(a']}. Since (T,V) Is I-consistent with a', A E committedT' thus showing (e12}.

Finally, if w' is a tose·lockt,A.,x step, the prec~ for w' implies that anc(A) n
i.abortedy(a'] ;t ta. Since (T,V) is l~t with«• It ton~ that A is dead in T, thus

showing (f12).

D
Lemma 25: Assume I, j €I. Assume w' € P, d(,,.') • i, w ... h"'(v') €OP"', a and a' are

36

computable in .A."' and ~. respectively, a E hi(a') n h;(a'), and a' E domain(w'). If b' =

tr'(a'), then w(a) E hi(b').

Proof: Let'a = (T,V) and w(a) = (T',V'). Lemma 24 implies that a E domain(w).

If j *- i, then it is easy to see that all the containments are preserved, since the sets of

actions on the right sides are only increased, wnile the sets on the left sides are

unchanged. The property involving V is also easHy seen to bEf iifeserved. So assume j = i.
We consider the six kinds Of events in tum.

First, assume '11
1 is of the form createi,A' commiti,~ or abort1,A. Then V' = V, and T'

is exactfy like T except that A is added to vertieasrj committedT or abortedT as appropriate.

Also, b' is just like a' except that A is added to i.vertfeEtsr, i.tommittedT' or i.abortedT, as

appropriate. Since (T,V) is I-consistent With a•, it is easy to see that all the containments

change in such a way as to insure that (T', V') is I-consistent With b'.

If,,. is of the form perform1 Au• then home(A) = I. Let x = object(A). Then home(x)

= i. T' is just Hke T excttpt that A is added to committedy ·and fS given fabel u, and dat&r is

augmented with all pairs in {(B,A): B € datasteP8l(x)} U (A,A). V' is Just like V except that

V'(x,A) is defined _to be Update(A)(u). b' is Just Hke ~· except that A is added to
i.commftted1 , and i.V(x,A) is defined to be updatefAJ(u). ;Sirlbe (T,V) is i-consistent with a',

it is easy to see that (T',V'} Is I-consistent wtthb': most of the properties are immediate.

We just check the fast property; the only change invofves A. We have already noted that

i.V(x,A)[b'] = update(A)(u) • V'(x,A). Thl'S Is as needed.

If,,. is of one of the forms (e) or (f), then T' = T and i.T[b'] = i.T[a']. Thus, it is clear

that the containments are all preserved. It is also easy to check that the final property is

preserved.

. CJ

Lemma 26: Assume l, J € I. Assume •• € P, d(•1 = I, hC•') = A, a and a' are

computable In ..t"' and 9, respectively, a € h1(a') n h
1
(a'), and a' € domain(tr'). If b' • ·

"'(a'), lterra € h1(b').

Proof: Let a • (T,V).

.,

First, assume that.,,. is sendJ,t',T'' If i ~ 'buffer'• then b'1 • a'r and the conclusion is

·immediate. So assume that J =· 'bUffer'. stnect' (T,V)-fs'J·con$1stent with a', ·each action

summary M1[a'] S T. The precondition for tr' implies that T' S l.T[a']. Since (T,V) is

i.consistent with a', it foHows that i.T[a'] S T, and hence T' S T. Now, each M1(b'] S M1[a']

UT'. Therefore, each M1[b'] ST, as needed.

37

Next, assume that "' is of the form receive!' ,T" so that i • 'buffer'. The only nontrivial

case is j = i'. We must show that j.T[b'] < T. But j.Tfb') ""j.T(a') UT'. The j-consistency

of (T,V) with a' shows that j.T[a'} < T. The precondition for tr' shows that T' :S M1[a'].

Since (T,V) is i-consistent with a', Mi[a'] < T. Thus, T' :ST. Therefore, j.T[b'] < T, as.

needed.

0
Lemma 27: h"' and h1, i E I, form a local mapping from '!A to .A."'.

Proof: Immediate from Lemmas 23, 24, 25, and 26.

0

Now extend h"' to 8 U P, by defining h"'(b) • n1E 1h1(b).

Lemma 28: h"' is a simulation of .A."' by 9.

Proof: Immediate by Lemmas 27 and 4.

0

The main correctness theorem now follows.

Theorem 29: The mapping h • h' • h" • h"' Is a slmufatlon of .A. by 9.

Proof: Immediate from lemma 28, Lemma 1andTheorem21.

0

10. Conclusions
In this paper, we have presented a detailed proof of a variant of MO&S' concurrency control

algorithm for nested transactions. Along the way, .we f'¥lve developed a substantial amount of basic

theory for nested vansactions. The basic frame~rkt~ die definitions and results involving

visibility, should be of. further use.

There is much more to be done, however. The framework presented in this paper is not powerful

enough to describe all the correctness conditions one might want for nested transactions. In
I • •

particular, we do not model the correspondence between what the system does and what it Is

requested to do by the transactions. This deficiency Is at least partly due to the fact that we have

chosen not to model the transactions explicitly. In order to describe everything we might want, we will

probably have to incorporate some type of model for the transactions into the framework.

We have only proved correctness of one variant of Moss' algorithm. There are many other related

38

algorithms for which similar proofs ought to be developed. Certainty, Moss' complete algorithm (with

a distinction between read and write operations) should be proved correct; we do not expect this

extension to be very difficult. The orphan algorithm mentioned in the introduction should be verified;

obtaining an understandable proof for this algorithm seems like a much harder task. Also, other

implementations for nested transactions, such as Reed's, should be proved correct. In would be

interesting to see to what extent the theory developed for one of these algorithms is usable for the

others.

The proof presented here has a very interesting structure. It describes algorithms as algebras,

and uses a series of five levels of abstraction. Correctness is shown using four simulation mappings.

The interesting and nontrivial concurrency control arguments are made in proving the correctness of

the first two simulations. The correctness of the flr8t simulation expresses the fact that certain

conditions imply serializability. The correctness of the second simulation expresses the fact that a

form of locking satisfies these conditions. Successive levels refine the algorithm, providing more

implementation detail, condensing the information that is kept, and distributing the processing.

Proofs at these lower levels are stralghtf orward checks of the local mapping properties.

There is more to be done in exploring the usefulness ·of this proof structure for other distributed

algorithms.

11. Acknowledgements
Many other people have contributed their ideas and efforts to this work. Barbara Liskov

suggested formal treatmen~ of this area, and monitored proposed formalizations for their faithfulness

in representing the behavior of the Argus system. John Goree used a much ftrfier draft of the current

paper as a starting point for the work in· his Master's thesis; in the process of writing his thesis, he

discovered several major ways of clarifying the ideas of this paper. Some of the ideas Gene Stark

developed for his thesis have found their way into the present paper. Bill Weihl and Gene Stark

contributed helpful criticisms of early drafts. Paris Kanellakis and two anonymous reterees

contributed many very helpful suggestions for the presentation.

References;

(BJ

(BG)

[EGLT)

[G]

[KP]

[La]

[LIS]

39

Beeri, C., Bernstein, P.A., G_oodman, N. Lai, M. Y and Shasha, D. E.
A Concurrency Control Theory for Nested Transactions
1983 Second Annual ACM Symoosium on Princioles of Distributed Computina
Montreal. Oueblc. Caag ·
August 17-19. 1983
DD. 45-62

Bernstein, P. and Goodman, N.
Concurrency Control Algorithms for
Multiversion Database Systems
1982 ACM SIQAOJoUOR$ Svmm.tJum on
Pt:iJ1QiMlgl{lt1tr;Wt1d ColDIJtdllHL
Ottawa. Canaaa. Auaust 18-20. 1982.
DD. 2Q9-215,

Eswaren, K. P., Gray, J. N .• Lorie, RA.
and Traiger, I. L.
The Notions of Consistency and Predlcall
Locks in a Database System,
CACM, vol. 19, No. 11, November. 1911.

Goree, John
ln~nal Consistency of A Distributed
Transaction System with Orphan Detection
Technical Beooct MITILCS/TR-286
MIT Laboratory for Computer Sci.,
Cambridge, MA. January, 1983.

Kaneltakis, P. and Papadimitriou, C.
On Concurrency Control by Multiple Versions
Proceectinas qt the ACM Symoo§/um QD
Princioles of ottaba§8 SV§llQ!f
March 29=31. 1982, DR. lf-82.

Lamport,L
Time, Clocks and the Ordering of Events
in a Distributed System;
CACM. yo1. 2Z. Nq. 7. July. 1978.

Liskov, B. and Scheifler, A.
Guardians and Actions: linguistic Support for
Robust, Distributed Programs,
1982 Ninth AMual ACM S/GACT-SIGPYN
Svqzoosium qo PRINCIPLES OF
PROGRAMMING LANGUAGES. Albuquerqut, NM.

Januarv 25-27. 1982, DD. 7-19.

40

[M] Moss, J.E.B.
An Approach to Reliable Distributed Computing,
MIT Press, March, 1985

[Ra] Randell, B.
System Structures for Soijware Fault Tolerance.
Proc. Int. Cont.on Reliable Softw. (Aorll 1975J.
SIGPLAN Notices Vol. 10 Nr. 6. DD. 437-451.
Also in IEEE Trans. SqUw.

Eng. Vol. 1 Nr· 2 (Juae 1975J. oo. 220-232.

[Re] Reed, D. P.
Implementing Atomic Actions on O.Centralized Data
ACM Transactions on Coroouter Sr«tms, ·Vol J. No. z. fltbcuacv. 1983
po. 3-23.

[SJ Stark, E.
Foundations of a Theory of Specification for
Distributed Systems, Ph.D Thesis, MIT
Laboratory for Computer Science,
Cambridge, MA. August, 1984.

