
1 

TRANSLATING UPDATES OF RELATIONAL DATABASE VIEWS 

by 

Stavros Stylianos Cosmadakis 

B.S., Massachusetts Institute of Technology 
(1981) 

B.S., Massachusetts Institute of Technology 
(1981) 

Submitted to the Department of 

Electrical Engineering and Computer Science 

in Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

at the 

MASSACHUSEITS INSTITUTE OF TECHNOLOGY 

February 1983 

© Massachusetts Institute of Technology, 1982 

Signature of Author _______________________ _ 

Department of Electrical Engineering ... and Computer Science 

December 1, 1982 

Certified by 
-------------------------~ 

Christos H. Papadimitriou 

Thesis Supervisor 

Accepted by _________________________ _ 

A.C. Smith 

Chairman. Department Committee 



2 

Acknowledgements 

I wish to thank my supervisor, Professor Christos Papadimitriou, for pointing out the 

problem and suggesting the specific methodology to attack it and also for providing me with 

key insights at various stages of this research. 

I am also grateful to Paris Kanellakis for many helpful discussions and constructive 

criticism. 

This work was supported (in part) by the National Science Foundation under Grant No. 

MCS 81-20181. 



3 

Table of Contents 

Abstract 

1. Introduction 

I. I. The Problem and the Approach 

1.2. The Relational A/ode! - Basic Definitions 

1.3. Outline of the Thesis 

2. Defining a Complement 

3. The Translation of Insertions 

3.1. Testing Tramlatabilty 

3.2. Complexity of Testing Translatability 

3.3. Finding a Complement 

4. The Translation of Deletions and Replacements 

4.1. Deletions 

4.2. Replacements 

5. Explicit Functional Dependencies 

6. Conclusions and Directions for Further Research 

References 

5 

7 

7 

9 

11 

13 

17 

17 

24 

28 

31 

31 

32 

35 

39 

41 



4 



5 

TRANSLATING UPDATFS OF RELATIONAL DATABASE VIEWS 

by 

Stavros Stylianos Cosmadakis 

Submitted to the Department of Electrical Engineering and Computer Science 

on December 1, 1982, in partial fullfilment of the requirements 

for the Degree of Master of Science in 

Computer Science and Engineering 

Abstract 

We study the problem of translating updates of database views. We disambiguate a view 

update by requiring that a specified view complement (i.e; a second view which contains all the 

database information omitted from the given view) remains constant during the translation. We 

study some of the computational problems related to the application of this general methodology 

in the context of relational databases. 

We consider, for the most part, databases consisting of a single relation, with functional 

dependencies as the only integrity constraints; we also restrict our attention to views defined by 

projections. We first give a characterization of complementary views (valid also in the presence 

of join dependencies), which leads to efficient algorithms for checking if two given views are 

complementary and for determining a non-redundant complement of a given view. We also 

show that the problem of finding a minimum comp foment of a given view is NP-complete. 

We then study in detail the problem of translating the insertion of a tuple into a view. We 

show how to do the translation in case the insertion is translatable, and we also develop a 

polynomial time algorithm for testing translatability; we also give two stronger, more efficient 

translatability tests. We show lower bounds for the complexity of the translatability problem, by 

proving that it becomes Il /-hard if the view is given in an exponentially succinct way; an 

----- ·-~ ----~-



6 

analogous result is shown for one of the stronger tests. We also examine the problem of 

determining a complement which renders a given insertion translatable; we find that it can be 

solved in time polynomial in the view, but becomes NP-hard if the view is given in an 

exponentially succinct way; again, analogous results are valid for the stronger tests. 

The above results are extended, in a straightforward way, to the cases of deletion and 

replacement of a tuple. Finally, we define and study a new kind of functional dependencies 

which is important in the context of complements, the explicit functional dependencies (EFD's), 

which intuitively state that some part of the database information can be computed from the 

rest We examine the interaction of EFD's with functional dependencies and join dependencies, 

and we also extend our characterization of complementary views to allow for the presence of 

EFD's. 

Thesis Supervisor: Dr. Christos H. Papadimitriou 

Title: Associate Professor of Computer Science and Engineering. 

Keywords: Relational database, view update, view complement, projective view, functional 

dependency, polynomial-time hierarchy. 



7 

1. Introduction 

I.I. The Problem and the Approach 

In database systems, the amount and structure of the stored data is decided by the database 

administrator. However, individual users often want to deal with only part of the information in 

the database, and moreover they may want to restructure it in a way suitable to their needs. For 

this reason, database systems often provide the view facility. A view is defined by giving a query 

on the whole database. At any point, the contents of the view is just the outcome of this query. 

The user queries and updates the view as though it were a database in itself, with no reference 

to the underlying database. The view idea spares the user from the conceptual complexities of 

the whole database, makes queries easier by "factoring out" a common subexpression, and can 

serve as a protection mechanism by restricting access to only insensitive information. A view 

facility is an important part of many relational database systems, e.g. PRTV [Il, QBE [Zl), 

System R [As] and INGRES [SWKH) (as well as of database systems designed along the lines of 

the network data model, like DBTG [CO], or the hierarchical data model, like IMS [D, I]). 

In relational database systems, a view is in general implemented by naming and storing its 

definition, which is just a query definition in the query language of the system. Queries on the 

view are translated into database queries by composing them with the view definition. Thus, 

querying a view presents no serious conceptual problems. 

What is much more complex is the subject of updating a view. A simple update operation, 

such as inserting a tuple in the view, may create formidable problems. The underlying database 

update may be ambiguous, ill-defined, create inconsistencies in the database, or have side-effects 

on the view. This problem seems to be related to such fundamental issues as null values [Co4, 

Za2] and update anomalies [Col, Co3, BBG] in relational databases. Most existing systems do not 

allow updates of views (e.g. PRTV, QBE), or allow them only in the trivial case in which the 

view consists of one of the database relations. This omission apparently reflects our poor 

understanding of the subject 



8 

In one of the first works dealing with view updates, Dayal and Bernstein [DB] stipulated a 

notion of correct translation of a view update, and gave some straightforward conditions for the 

existence of such translations . From this and subsequent works, e.g. [RS, Ca, FSD], it became 

apparent that we need a method for assigning semantics to view updates. This method should be 

formal (resolving the delicate ambiguities involved) and simple (so the users would define the 

semantics themselves, perhaps with the aid of the query system). 

An excellent solution to this problem was suggested in the work of Bancilhon and Spyratos 

[BS, Sp]. They developed an elegant theory (quite independent of the relational model) of 

database mappings, i.e. functions from database states to database states. A view v is such a 

mapping, and so is an update u on the view. How can we translate u? The translation, Tu, must 

be such that the updated database maps via v into the updated view. As may be suspected, there 

are typically many Tu's, so the problem remains. Bancilhon and Spyratos resolve this ambiguity 

by the notion of the complement of a view. A complement of v is another view v', such 

that the mapping s-(l(s), v'(s)) (where s denotes the database state) is one-to-one. In other 

words, any information lost by v can be recovered by v'. A view has many complements (for 

example, the identity mapping is a complement of all views). Choosing a complement that must 

remain constant assigns unambiguous semantics to a view update. The scenario is the following: A 

user defines a view. Before updating the view, the user must define (probably with the assistance 

of the system) another view (a complement of the first), which must be held constant during 

updating (this corresponds to the "rectangle rule" of [Ch) and the "absence of side-effects" of 

[DB]). Using this information, the system translates (or rejects as untranslatable) the user's 

updates. 

Translating under constant complement amounts to finding a database state s' such that 

l(s')= uv(s) and v'(s')= v(s). By the defmition of a view complement, s' will be unique if it exists 

at all. Thus, if such an s' can be found for any s (in which case we say that u is v' -

translatable), we can translate u as the database update Tu=(vXv)-l(uvXv'). The soundness of 

the overall approach ~ demonstrated by the following facts [BS]: 

i) Tu is consistenl, i.e. the upd(lted database always maps, under the view definition v, on 

---------.....-----~ __ , ___ , ______ _ 



9 

the updated view (fonnally vTu= uv ); also Tu is acceptable, meaning that if u does not change 

the view, no change is made on the database either (i.e. for all s, uv(s)= v(s) implies T ,js)=s). 

ii) Suppose U is a set of view updates which is reasonable in the sense that it satisfies 

minimal user requirements, i.e. it is closed under composition and there is a means to cancel the 

effect of every allowed update on the view (formally, if u, w EU then uw EU, and if s is a 

database state and uE U, there is an update wE U such that wuv(s) = v( s)). If v' is a view 

complement such that any update in U is v' -translatable, then the mapping which associates to 

an update u in U the database update Tu is a morphism, i.e. T uw= T uT w for all u, w € U 

(clearly, any reasonable way to translate a set of updates should have this property, i.e. the result 

of the translation should be the same whether the user applies two updates from the set one 

after the other or their composite update). On the other hand, the converse also holds: if Tis a 

mapping on U such that, for every uE U, T(u) is a consistent and acceptable database update, 

and also T is a morphism (i.e. T is a reasonable way to translate view updates into database 

updates), then there is a view complement v' such that, for every u€ U, u is v' -translatable and 

T(u)=Tu. 

However, as was pointed out earlier, this approach is essentially independent of any 

particular data model. In this work we investigate some of the issues and problems which arise 

when one attempts to apply this methodology in the context of the relational model, with a view 

towards rendering it realizable in practice. In the remaining part of the Introduction we review 

briefly some basic concepts and notations of the relational model. and we also give an overview 

of the results obtained. 

1.2. The Relational Model - Basic Definitions 

The relational model [Col] assumes that the data are stored in two-dimensional tables called 

relations. The columns of a table correspond to attributes, and the rows to tuples (records). Each 

attribute A has an associated domain of values DA• and a tuple is viewed as a mapping from the 

attributes to their domains. We use the letters A, B, C, ... to denote attributes and the letters ... , 



10 

X. Y. Z to denote sets of attributes. A relation scheme is a finite set of attributes labeling the 

columns of a table, and is usually written as a string of attributes. If X is a relation scheme 

labeling the columns of a relation R, we say that R is defined over X. A database scheme D is a 

finite set of relation schemes. A database over D is a set of relations containing exactly one 

relation over each relation scheme in D. 

In the context of the relational model, one way of formulating queries (and thus of defining 

views also) is by using a set of operators defined on relations (relational algebra [Col, Co2]). The 

operators that will be of primary interest to us are projection and join. The projection of a tuple 

t to a set of attributes X, written l[X], is simply the restriction of t to X; the projection of a 

relation R to X, written .,, x{R), is the set of projections of the tuples in R to X. If R 1, R 2 are 

relations defined over the relation schemes X1, x2 respectively, the join of R 1 and R 2' written 

RJ*R2' is the relation over x1ux2 consisting of all the tuples p. such that µ[X1JER1, µ[X2]ER2. 

Semantic information is captured by means of integrity constraints (i.e. predicates on 

relations), usually expressed as first-order sentences called dependencies [Col]. Various kinds of 

dependencies have been defined and studied in the literature; we will be primarily concerned 

with functional dependencies and multivalued dependencies (the latter are a special case of join 

dependencies). 

A functional dependency (FD) [Ar, Col] is a statement of the form x- Y, where both X and 

Y are sets of attributes. The FD X-+ Y holds in a relation R if for all tuples p. and " of R, if 

µ[ X] = P[ X], then I'[ Y] = 11( Y]. 

A join dependency (JD) [R2] is a statement of the form *(R 1, ... , RJ. where each R; is a 

relation scheme. The JD •[R 1, ... , RJ holds in a relation R if • v RfRJ= R. A multivalued 

dependency (MVD) [F, Zal] is a JD with at most two relation schemes. An MVD *[R 1, R iJ is 

also written as R1nR2-+-+R1 (or equivalently R1nR2-+-+R2). 

Finite sets of dependencies will be denoted by l:. A database schema S is a pair (D. l:), 

where D is a database scheme. An instance (i.e. a database DB over D) which satisfies the 

dependencies in l: is called legal (notation: DBl==l:). 



11 

For a more detailed exposition of the fundamendal notions and notations of the relational 

model and of the relevant theory, see [Ul]. 

1.3. Outline of the Thesis 

This work is mainly centered around the study of the computational problems arising when 

one attempts to apply the general methodology proposed by Bancilhon and Spyratos in the 

context of the relational model. We discover that very interesting theoretical questions already 

arise at very simple cases of the application. In particular, we concentrate on database schemas 

consisting of a single relation, with integrity constraints which are (for the most part) just 

functional dependencies. The views we consider are simply projections of the relation. Working 

with a single relation corresponds to some unrealistic universal relation assumption [U2], but it 

yields a simplified problem which must be conquered first. Functional dependencies constitute a 

simple and practical class of constraints. Projective views are, again, the simplest imaginable, and 

they are also important from a practical point of view. 

In Section 2 we characterize when two projections are complements of each other. There is 

an interesting parallel between this characterization and the notion of independence of Rissanen 

[Rl]. Our necessary and sufficient condition (which can be generalized to include the presence of 

join dependencies) states that the common part of the projections must be a superkey of one of 

the projections. As a consequence, it is easy to test whether two given projections are 

complementary . in a schema It is also possible to construct a nonredundant (minimal) 

complement of a given projection in polynomial time. Unfortunately, finding a smallest (i.e. with 

fewest attributes) complement of a given projection is shown to be NP-complete. 

In Section 3 we study how to implement the insertion of a tuple into a projection, keeping 

a given complementary projection unchanged We show that this can be done in a unique way, 

and so the problem reduces to testing whether the resulting database is consistent We show that 

this test can be carried out in time cubic in the number of tuples of the view. Since this is likely 

to be impractical, we also develop two alternative stronger tests that can be executed mote 



12 

efficiently. 

Ideally, we would like the time complexity of our update algorithms to depend on the 

number of attributes, functional dependencies, and other parameters of the schema, not of the 

instance. When the time must depend on the number of tuples, we would at least like this 

dependence to be logarithmic, since this number is expected to be very large. However, 

complexities like those described in the previous paragraph resemble, in a practical sense, 

exponential complexities. We show some negative complexity results which suggest that this 

"exponential" behavior is inherent: The translatability problem becomes Il /-hard [St) if the 

view is represented in some exponentially succinct way (e.g., as the union of two Cartesian 

products). Even one of the simpler, stronger tests mentioned above becomes co-NP-hard. 

Finally, we examine the complexity of finding a complement which renders a given 

insertion translatable. We show that this problem is polynomial in the number of tuples of the 

view, but inherently exponential in the size of the schema (and the logarithm of the number of 

tuples of the view). Similar results can be obtained for the two stronger tests. 

In Section 4 we extend these results to the case of deletions and replacements of tuples. We 

find that. for the most part. the extension is rather straightforward. Finally, in Section S we 

define and examine a new kind of functional dependencies which is important in the context of 

complements, the explicit functional dependencies. We extend our characterization of 

complementary projections to also allow for the presence of explicit functional dependencies. 

Section 6 concludes this work by pointing out some directions for further research. 

--~- -- --------------------



13 

2. Defining a Complement 

Let S be a database schema ( U. I), where U is a universal set of attributes and I is a finite 

set of dependencies. A relation R over U (instance pf CJ) is called legal if it satisfies all the 

dependencies in I (notation: RI= I). A view of S is for us a projection defined by a subset X of 

U. For each instance R, the corresponding instance of the view is w xf R). We disambiguate 

updates on a view by defining a second view, Y. the complement of X. Two views X and Y are 

called complementary if w x(R)= "xfR'} and .,, y(R)=.,, y(R') imply R = R', whenever R and R' 

are both legal instances. In other words, the two views together contain enough information to 

reconstruct the whole database. 

When are two views X and Y complementary? Clearly, a sufficient condition is that the 

MVD *[X, 11 holds in every legal instance, i.e. I implies the MVD *[X, J1. If this is the case, 

the database can be reconstructed from its projections on X and Y by join. Recently it has been 

shown {Vl) that the condition is not necessary, i.e. if I consists of general first-order sentences 

then "x and " y can be complementary without the reconstruction operator being the join. 

However, we show that this cannot happen if we impose more restrictions on I: 

Theorem 1: 

Let I consist of functional dependencies and join dependencies. Then X, Y are 

complementary iff II= ix. Y]. 

Proof: The "if' direction is immediate: if I implies the MVD 1X. YJ. then for every legal 

instance R we have "x(R)*w y(R)= R. Consequently, if for two legal instances R, R' we have 

"'x(R)=,, xf R') and tr y(R)=,, y(R'), we get w xf R)*.,, y(R)= w xf R1)*fl y(R') and from this 

R=R', i.e. X, Y are complementary. 

For the "only if' direction, a§ume that l: does not imply the MVD ix. Y); we will show 

that X, Y are not complementary, by exhibiting two distinct legal instances R, R' for which 

"x(R)=.,, xfR') and tr y(R)= tr y(R'). 



14 

Let a be a join dependency *(Ri. ... , RJ; define M(a) to be the set of MVD's 

{ *( U iES 
1 

R i , U iES 
2 

R ;]. SI· S 2 a partition of {l, ... , q} } (see also (MSY]). If I' is the set 

we obtain if we replace each join dependency a in I by the multivalued dependencies in M(a), 

then, since a implies each MVD in M(a), I implies I'; but by our hypothesis I does not imply 

*(X, Y], so I' does not imply *(X. :Y] either. Now since I' consists of FD's and MVD's only, 

there is a two-tuple counterexample to this implication [SDSF), i.e. there is a relation R 

consisting of two tuples µ. and ,, which satisfies all the dependencies in I' but does not satisfy 

*(X, Y]. 

From the relation R construct another relation R' as follows: since R does not satisfy 

*(X, Y]. it must be that µ.[XnY]=P[XnY]. and also µ.[f-X):;t:,,[f-X] and µ.[X-Y]:;t:p(X-Y]. Let R' 

consist of a tuple µ.' which agrees with µ. on X and with , on Y-X, and of a tuple ,,' which 

agrees with ,, on X and with µ. on Y-X. Clearly, R:;t: R', R' satisfies all the dependencies in I' (it 

defines the same "special truth assignment' [SDSF] as R), and also v JIR)= fl JIR') and 

w y(R)= fl y(R'). Thus, we only need to show that R and R' are both legal, i.e. they both satisfy 

all the JD's in I (they obviously satisfy the FD's in I, since these are included in I' and R. R' 

satisfy l:'). 

Let *(R 1 • ... , RJ be a JD in I; to show that it holds in R, it suffices to show that, if a 

tuple E is obtained by joining E 1IR 1), ... , EJ..RJ. where ~ J. .•. , Eq are tuples of R, then either 

~=µ.or f =P. This is certainly true if Ei=···=~q=P. or if Ei=···=~q="; else, let 

S1={i: Ei=p.}, S2={i: ~;=,,}.Since the MVD *I Ui€s/ R;, Ui€si RJ is in I', it holds 

in R, and thus either E = p. or E =,,. Thus R satisfies all dependencies in I. and so does R' (by 

the same argument). This completes the proof. I 

Notice that our condition (though not the proot) parallels the result of Rissanen on 

independence [Rl]. Intuitively, independence is stronger than complementarity, and thus our 

Theorem contains only the first condition of [Rl). To see why, consider the classical Employee­

Department-Manager scheme. The decomposition into X=ED, Y=EM is not independent, 

although X and Y are complementary. 



15 

Theorem 1 has some algorithmic consequences: 

Corollary 1: 

Given ( U, I), X. Y~ U, whether X, Y are complementary can be tested in polynomial time. 

Prrof: By Theorem 1, testing for complementarity amounts to inferring an MVD from a set of 

FD's and JD's. The latter can be done in polynomial time [MSY, V2). I 

Corollary 2: 

Given ( U, I) and X~ U, we can find in polynomial time a minimal (nonredundant) 

complement of X. 

Proof: Simply start with the trivial complement U and repeatedly take out any attribute in X 

which can be taken out without affecting complementarity (examine the attributes in some 

arbitrary order). I 

Thus we can program in a database system some guidance to the user towards the 

definition of a complement Unfortunately, as so often happens, finding the minimum is much 

harder. 

Theorem 2: 

Given ( U, l:), X~ U and k>O, detennining whether there is a complement Y of X with 

I YI = k is N P"'C<>lllplete. 

Proof: Membership in NP is obvious: just guess a subset Y of U with I YI= k and verify 

(Corollary 1) that X, Y are complementary. 

To prove the hardness part, we will make a reduction from the 3-satisfiability problem 

(3-SA T), which is known to be NP-complete [Ck, K. GJ]. Let " be a Boolean formula in 3-

conjunctive normal form (3-CNF); let x;. i= l,. . .,n. be the variables occuring in "' and let fj. 

j=l,. . .,m, be the clauses of 'I'· We construct the following schema s,=(U, l:): U is 



16 

F1 ... F~1X' 1 ... X~ nA and I contains the functional dependencies F1 ... F~;-X';. 

F1 ... F~i-xr i=l, ... ,n, and also for each clause fj=~1 +~2+~3• j=I, ... ,m, the functional 

dependencies L·i-F- L.2-F. L.3-F- (if l··=x L··=X · if l··=...,x L··=X'' J J' J J' J J JI r Jl r Jl r JI ,.,. 

Now let X be F1 ... F~1X'1 .. .XnX' n; we claim that X has a complement Y with IYl=l+n 

iff fJJ is satisfiable. To see this, first assume that fl' is satisfiable, and let h be a satisfying 

assignment. Take Y to be L1 ... L,,A. where Li=X; if h(x; is true, Li=X'i if h(xi is false. To 

show that X. Y are complementary, it suffices to show (by Theorem 1) that Il=*(X, YJ; to do 

that, we use the chase method for inferring dependencies [MMS]: if we consider the tableau 

consisting of a row with distinguished variables in the X columns and a row with distinguished 

variables in the Y columns, then we can convert the second row into a row of distinguished 

variables by using the FD-rules corresponding to the FD's in I as follows: first, since h satisfies 

fj at least one of the FD's {Lj1-F; Lj2-Fj Lj3-Fjl can be used to fill in F; and this can 

be done for all j. Then the FD's F1 ... F~i-X';. F1 ... F~1--+X; can be used to fill in the 

remaining X;'s and X' /s. 

For the converse, suppose there is a complement Y of X with 111=1 + n. Clearly Y has to 

contain at least one of {X,; X' ;} (else there is no way to fill in both X; and X' ;). and thus Y 

contains exactly one of {X,; X' ;} for each i (also AE l'). Consider now the assignment h, where 

h(x; is true if X1-EY and false if X'1-EY: since Fj is filled in, at least one of {Ljl, Lj2' Lj3} must 

be contained in Y, and thus h satisfies f; This is true for all j, so h satisfies fl' and the claim is 

established. 

Finally, it is easy to see that SfJJ and X can be constructed in time polynomial in the length 

of 'P· This completes the proof. I 

Observe that in our reduction we only used FD's, so Theorem 2 is true even if I is 

constrained to contain only FD's. Now if l:'={Z--B I z-B is an FD in l:}, then if a is a 

JD l:l=a iff l:'l=a [BV]. Thus, we might as well replace l: by l:' in our proof, which means 

that Theorem 2 is true even if l: is constrained to consist of MVD's only. 



17 

3. The Translation of Insertions 

3.1. Testing Translatability 

l: is now a set of functional dependencies: we furthermore assume that each FD in l: is of 

the form x-A, where A is a single attribute (this is easy to enforce, by replacing each FD 

X-Y in l: by the equivalent set of FD's {X-+ A: AEY}). 

Suppose that the view X and its complement Y are given, and so is the current instance V 

of the view. We wish to translate the update u on the view consisting of the insertion of a tuple 

t, while keeping the complement ,,, y(R) constant How can we design an update on R, T w 

which achieves this? 

The translation Tu should have certain obvious properties: 

A. It should implement the view update, that is "x(T JRl>= JIUt. 

B. It should keep the complement constant, according to the prescribed semantics; that is, 

.,, y(Tu[R})=w y(R). 

C. It should yield a consistent database, that is, if R is a "possible" instance, T JR)t= l:. The 

meaning of "possible" is the subject of property D below. 

D. A more subtle but important assumption is that the user proposes the update based on his 

knowledge of the view and on no other information concerning the database. Thus, the 

translation should produce a legal database for all legal instances of the overall database, given 

the instance of the view. 

It is quite interesting that these properties determine precisely when the insertion of a tuple 

t in an instance V of the view is translatable, and, if it is, the translation Tu is unique. 

First, suppose that tf V (otherwise Tu is the identity). Since fl y(R) must be kept constant 

(Property B) we must assume that l(XnY]E"xnf(R)=•xn}'(V); otherwise, the only way to 

insert t in ,,, x(R) (Property A) would be to insert something in .,, y(RJ. By Theorem 1, xn Y is a 

superkey of either X or Y. If it is a superkey of X, then the update is clearly untranslatable, 

because JIUt is not the projection of a legal instance (Property C). So xn Y-+ Y. It follows that 



18 

the only Tu satisfying A, B and C is the insertion of the tuple t*w y(R) in the database R: 

T JRJ=R U t*wy(R) (* denotes the natural join). 

It remains to determine under which conditions T JRJ is legal (Property C). The insertion of 

t into Vis translatable iff T JR]l=I for all R such that Rl=I, w x(R)= V (Property D was used 

here). 

Suppose that the insertion is not translatable. This means that there is a functional 

dependency, say z-A. which is violated by T JR] for some R for which Rl=I and .,, x(R)= V. 

Since R satisfies z-A. the inserted tuple must be the culprit Thus, there must be a tuple r of 

V which agrees with t on znx and, if AEX, disagrees with t on A. Furthermore, if we fill the 

rows of V with new symbols in the columns of Y· X, only with t{Zn( Y· X)] = p.[Zn( Y· X)] where 

p. is a tuple agreeing with ton Xn Y (call this relation R(V, t, r, z-AJ) and then perform the 

chase [MMS] wrt ~ on this relation, no two distinct elements of V, neither the elements 

corresponding to t{A), p.[A] (if AE Y-X), are ever equated (if they are, we say the chase 

succeeded). It turns out that this is a necessary and sufficient condition for untranslatability: 

Theorem 3: 

The insertion of t into V ( t( JI) is translatable as R ... R U t*rr y(R) if and only if 

(a) l[Xn Y]Err xn y(V). 

(b) "l": implies xn Y-Y. and I does not imply Xn r-x. 
(c) ChaseI[R(V, t, r, .01 succeeds for all functional dependencies ff.I and tuples r of V. 

Proof: By the preceding discussion, all we need to notice is that, if Chasel:[R(V, t, r. .01 does not 

succeed for some FD ff.I and some tuple r of V, then it actually provides us with a 

counterexample, i.e. it constructs a relation R such that Rl=I, .,, x(R)= V, and T JR] violates f. 

In the opposite case, the chase actually provides us with a proof that there can be no relation R 

such that Rl=I, 'II x(RJ= V, and T JR] violates some ff.I, i.e. TJR]t=I for all R such that 

RI= I, ,, x(R)= V. I 



19 

Corollary: 

Whether an insertion is translatable can be tested in time O(J Vl3iogl VI IIl2 I Y-.XV. 

Proof: Clearly, condition (a) can be tested in time O(J J1), and condition (b) can be tested in 

time O(JilJ (using the linear-time algorithm [BB] for inferring an FD from a set of FD's). Since 

condition (c) can be tested by doing O(lII I J1) chases, it suffices to show that the 

chase of R(V, t, r. J) can be computed in time 0(1 Vl2 logl VI I II I Y-.XV. Recall that the chase 

procedure consists in repeatedly locating a pair of tuples p., 11 such that µ[Z] = 11[Z] and 

µ[A]:it:11[A] for some FD z-A in I, and replacing the element p.(A] with 11[A] throughout the A 

column. This can be done by the following straightforward algorithm: 

Initialize R* to be R(V, t, r, J). 

Repeat until no new change is made on R*: 

For each FD z-A in I do: 

* Sort R lexicographically according to the elements of the Z columns. 

Find the first pair of consecutive tuples p., 11 such that p.(ZJ= 11[Z], µ[A)~11[A]. 

Replace p.[A] by 11[A] throughout. the A column. 

It is clear that each execution of the body of the for loop takes time O(J Vllogl J1), so each 

execution of the for loop takes time 0(1 Jlliogl VI j:Il). Since each time the for loop is executed 

the number of distinct symbols in the Y-X columns is reduced by at least one (if the chase ever 

attempts to equate two different elements in one of the X columns we stop immediately), and 

initially we have I f-Xll VI such symbols, the for loop will be executed at most If-XII VI times, and 

so the total time is at most O(JVl2loglVI l:II IY-.XV. I 

The algorithm described above can be speeded up by taking the following straightforward 

shortcut: to construct R(V. t. r. z-A), first fill the rows of V with new symbols in the columns 

of Y-X, then do a chase (and store the resulting relation to be re-used for other members of I), 

and then set t{Zn(Y-X)]=µ[Zn(f-X)), for some p. agreeing with ton xnr. However, since we 

are still unable to provide a better quarantee for its worst-case performance than O() Vl3 logl VI}, 



20 

its applicability in practice is dubious, in view of the fact that I J1 is normally very large. For this 

reason, we will now present two alternative tests for which we can show better upper bounds to 

their worst-case performance. However, our tests will be stronger than necessary, i.e. in addition 

to rejecting all untranslatable insertions, they may also reject some translatable ones. 

Test 1 

Our first alternative test consists in simply avoiding to do a full chase on R(V. t, r, z-A); 

instead. for each tuple I' agreeing with t on xn Y, we do a chase on the two-tuple relation 

consisting of rand I'• and we report success if any of these chases equates t{A], Ji(A] (if AE Y-X; 

notice that in this case µ.{A)= l[A], since Xn Y-Y). or attempts to equate two distinct elements 

of V. Thus, what we are actually doing is imposing the extra requirement that 

ChaseI[R(V, t, r, J)J succeeds fast, if it succeeds at all. Intuitively, this does not seem to be very 

restrictive, and one may hope that Test 1 will actually accept most of the translatable insertions 

that will occur in practice. 

The test can obviously be implemented in time O(J vt2 IIIJ. However, we can do better (in 

tenns of the dependence of the time complexity on I JI!), as follows: 

1. Fill the rows of V with new symbols in the Y-X columns. Then detennine the set of tuples 

T={I': Ji[XnY]=l[xnJ1}. This can be done in time O(IJll). 

2. For each Z~ U, construct a copy of the relation T (call it T z). and sort it according to the 

contents of the Z columns. This can be done in time 0(21 VI I J'l/ogl Jll). 

3. For each Z~ U, compute the closure of Z under I. i.e. the set z+ = {A: II= Z-+ A}. This 

can be done in time 0(21UI IIV (using the algorithm of [BB) for computing closures). 

4. For each Z~ U, go through the table T z from top to bottom and, whenever a tuple agrees 

with the previous one on Z, make it agree on z+ . This has the effect of making all tuples 

which agree on Z to agree on z+ (as they should), and it can be done in time 0(21UI WIJ. 



21 

5. For each FD Z-+ A in I do: 

For each tuple r for which r{Zn.X]= 4zn.X] and 1{A]*4A] (if AEX), do: 

Make r agree with µ. on Zn( Y-X), where µ. is a tuple in T. 

For each Z~U do: 

Insert r in T z. 
If 1{ ZJ = 11( Z]. where " is either the tuple next to r or the tuple before r in T z. 
then make r agree with ., on z+. 

This can be done in time O(III I J1 21 UI logl J1). 

Thus, the overall time expended is O(l J1Jogl J1 2IUI III.). Of course, there are various 

optimizations and shortcuts one may employ in an actual implementation (for example, to 

handle the potential problem of having too many sorted tables - say by actually having for each 

Z a sequence of pointers to the tuples of n. Observe that the running time of this algorithm will 

be better than our worst-case upper bound for the exact translatability test (and also better than 

the obvious O<l J12 IIIJ algorithm) if I J1/ Jogf J1 > 21UI, which is definitely going to be the case in 

practical situations. 

Our second alternative test has a somewhat different flavor: notice that Test 1 saves time by 

doing only part of the computation necessary for each particular chase. Test 2, instead, will only 

do one full chase, if this is possible. 

More specifically, recall that the essential part of the translatability test (in terms of time 

requirements) is checking if for all R such that Rt=I, "x(R)= V, we have T JR]t=I. Suppose 

now that Y actually has the following property: 

For all R 1• R 2 such that R 1t= I, R /==I, "x(R 1)= "x(R :;). 

(Xn Y]E-ir xn y(R 1)= "xn y(R :;). we have that T JR 1Jt= I itT T JR iJI= I. 

We call such a Ya good complement of X. Our interest in good complements lies in the 



22 

fact that, if Y happens to be a good complement of X, then clearly all we need to do to test if 

the insertion u is translatable is consruct some relation Ro such that RcJ=I • .,, x.(R<)= V, and 

test if T JRoJt=I. We can construct such an Ro by filling the rows of V with new symbols in 

the Y-X columns and then doing a chase; this can be done in time 0(1 Vl2 /ogl VI I II I Y-XV. 

Testing if T JRcfl =Ro U , • .,, -y(R<) satisfies I amounts to testing if for each tuple µ. of R°' the 

two-tuple relation consisting of µ. and 1*'11-y(R<) satisfies all the FD's in I; this can be done in 

time 0(1 VI III). 

Thus, all we need to do is show how one can test if a given complement Y of X is actually 

a good complement. Observe that this property is independent of the tuple t to be inserted, i.e. 

it is a property of the schema only (X, Y and I). 

Suppose, then, that Y is not a good complement of X. This means that there are two 

relations R 1' R 2 such that R 1t= I, R 2t= I, .,, x.(R 1J=.,, x.(R i). l[Xn Y]E.,, xn -y(R 1J =.,, xn y('R i), 

TJR2]t=I and TJR1]=R1 U t*.,,y(R1) violates some FD in I, say z-A. Since R1t:=I, 

there must be a tuple p.1 in R 1 such that µ. 1{Z] = w z[t*.,, y(R 1J}. p.1[A];e= w A[t*w y('R 1)). Also 

there must be a tuple J1 1 in R 1 such that J1 1[Xn YJ = l[Xn Y]. 

Since wx.(R1)='1tx.(Rj, we can then find two tuples µ.2, Jl 2 of R2 such that µ.i[X]=p. 1[X]. 

J1i[X]=,, 1[X]. Now consider the relations R'1, R'2, consisting of µ. 1, JI 1 and of 1'2' J12 

respectively. Clearly, R'1t=I:., R'iF=I (since I only con~nd FD's), .,,x(R'1J=wx(R'j, 

(Xn 11E w xn :y(R' 1)=,, xn y(R' _J), T JR' 2Jt= I and T JR' 1] violates z-A. 

Thus, Y is not a good complement of X iff there are two relations R' 1, R' 2 with at most 

two tuples each which witness this fact 

From the above observation, we can easily see that we can test if Y is a good complement 

of X by doing the following for each FD z-A in I: 



23 

Initialize T1 to be a relation with three tuples JL 1' "1• t 1 as follows: 

t 1[ J.V] = a0 for each Win U, 

,, 1[ J.VJ = ao for Win Y, a1 for W in X-Y, 

JL 1l J.VJ = ao for Win Z, a2 for Win u-z. 

Initialize T 2 to be a relation with three tuples JL 2, "2' t 2 as follows: 

t2= t1, "2=11 I• JLJJ.VJ=a2 for each W in U. 

Repeat until no new change is made on either T1 or Ti= 

Compute the chase wrt I of JL 1, " 1 (in this and all subsequent chases, to equate 

a; and a; i < j, replace aj by a,}. 

JL JXJ+-J.L 1[XJ, ,, JX]+- 111[X]. 

Compute the chase wrt I of 1'2· "2' of "2' t 2' and of JL 2' t 2' 

JL 1lXJ +-J.L JX]. ,, 1[X]+-11 JX]. 

When the above procedure terminates, we check if ,µ1[A}=t1[A}. If not, then T1, T2 

constitute a counterexample to the goodness of Y; if it turns out that ,µ 1[Al = t 1[A] for each FD 

Z-+ A in I, then we have actually proved that no such counterexample with at most two tuples 

in each relation can exist, and so Y is a gOod complement of X. 

Since each execution of the repeat loop can be done in time O()II), and each time we lose 

at least one out of O<lUV symbols, the running time of the algorithm is 0(1Il2 IW (the 

procedure is repeated at most III times). 

Notice that, if Y happens to be a good complement of X. then actually Test 2 accepts 

precisely the translatable insertions, whereas in the opposite case it rejects all insertions. 

However, testing if Y is a good complement of X can be done once and for all at the time Y is 

declared as the complement to use, and if it is found to fail then the database system can simply 

disregard Test 2. 



24 

3.2. Complexity of Testing Translatability 

So far, we have shown how one can test if a proposed insertion of a tuple into a view is 

translatable, and if so, how to do the translation (Theorem 3). We presented an O(J Vl3 !ogf Y1) 

algorithm for testing translatability. Since this algorithm is likely to be inefficient in practice, we 

also developed two alternative stronger tests, which can be executed faster . . 
In the sequel, we are going to prove a result which has some negative implications 

regarding the extent to which one can hope to improve the running time required to test 

translatability. Specifically, we will show that, if the view is presented in an exponentially 

succinct way (i.e. as a union of Cartesian products) then testing translatability becomes n /·hard 

[St]. This result provides strong evidence against the possibility of having an algorithm that runs 

in time less than 0(1 Yl), i.e. it indicates that the whole view has to be examined in order to test 

translatability. 

Moreover, we believe that this result also casts some doubt on the possibility of 

substantially improving the running time of our algorithm. Loosely speaking, n /·hardness 

seems to indicate that the problem lacks a "nice" combinatorial structure, which could be 

exploited to yield an algorithm considerably more efficient than the one resulting from our 

(more or less) straightforward approach. 

We will now prove the result: 

Theorem 4: 

Determining if an insertion is translatable is n /·hard if the view v is given implicitly as 

the union of two Cartesian products, of total size O(IUI). 

Proof: Let G be a Boolean formula in 3·CNF, containing the variables x;. i= l, ...• n. and 

consisting of clauses fj J=l, ... ,m, and let X={x1, ...• xk}• Y={xk+1' ...• xn} be a given 

partition of the set of variables of G. It is known [St, W] that determining if for all possible 

assignments of truth values to the variables in X G is satisfiable, i.e. if V X3 Y G(X. Y)= 1 (where 

V X means V x 1 ... V x k etc.) is Il /-complete. In what follows we give a polynomial-time 



25 

reduction from this problem to the problem of testing translatability of an insertion to a 

succinctly presented view. 

Let U be BX1X' 1 .. .X ,,X' nAF1 ... FmC. and let I consist of the FD's x 1X' 1 ... X~ k-A. 

F1 ... Fm-c· BA-C, and, for each clausefj=ljl+1J2+1J3 of G, the FD's LJIA-Fi Lj2A-Fj 

Lj3A-Fj (where Lji is x, if 1J; is xr and Lji is X', if 'ii is •x,). Let the view be 

BX1X' 1 .. .X,,X',,. and let the complementary view be x 1X' 1 .. .XnX' nAF1 ... F me. Finally, let the 

instance Vof the view be sBXsx
1
x

1
x ... Xsx,,xn Us, where sx;X'; is a relation over X;X'; 

consisting of two tuples P.r "i with µ.JX;)=O, µ.JX';]=l, 11JX;)=l, ,,JX'1j=0, sB is a single tuple 

over B with sffiB]=b, and s is a single tuple over BX1X' 1 ... X,,X' n with s(B]=a, .s(X1j=l, 

s[X' ;1=1. Observe that V is essentially just a list of all possible truth assignments: each tuple µ. 

of V, with the exception of s, defines an assignment h: {x1, ... , xJ-{O, l} by taking 

h(x;)=µ.[X1~ (J.'[X';J=-iµ.(X;]); also, J.'[Bl=b. 

Suppose now we want to insert in V the tuple t, where l(BJ=b, 

(X1X'1···X,,X',J=lfX1X'1 .. .X,,X'n1· We will show that this insertion is translatable iff 

\I X3 Y G{X, Y)= 1. First, it is obvious that conditions (a) and (b) of Theorem 3 are satisfied. 

Furthermore, observing that the only tuple agreeing with t on X /X' 1 ... X ,,X' n (the common part 

of the view and the complement) is S, it is easy to see that condition (c) is satisfied if the FD fis 

taken to be X1X' 1 ... X ~ k-+ A (because the only tuple agreeing with ton X1X' 1 ... X ~ k is s), or 

if /is F1···Fm-c (since no attribute of /is in the view), or if /is Lj;A-+Fj (since s agrees with t 

on all possible Lj/s). 

Thus, all we have to show is that, for all tuples r with r:l:s (these are the tuples agreeing 

with t on B), ChaseI[R(V. t, r. BA-+C)] succeeds (i.e. starting with 1{A)=.s(A] we eventually 

equate t[C], s[C]) iff there is a satisfying assignment h for G which agrees with the one defined 

by r on {x1, ... , xk}. 

First. suppose there is such an assignment h, and let 'h be the tuple corresponding to il 

Since rJJX1X'1···XtX'k1=1{X1X'1 .. .x~k], r,,IAJ=l[A). so r,,IAJ=J(A]. Since h satisfies fj 

r,,llj11=1 for some ~ so r,,ILjJ=J[Lj~· i.e. rJJLj;A1=3[Lj;A), and so r,JF)=lfF). for j=l, ... ,m. 

Thus, rJJF1···FnJ=.slF1···FmJ, so rJi(CJ=~C]. But since rJi(BA]=l[BA], r,,ICJ=l{C], and thus . 



26 

1{C] = .s{C], i.e. Chase:t[R(Y. t. r, BA-+C)] succeeds. Conversely, it is not difficult to see (by 

essentially tracing the previous argument backwards) that r{Cl • .s{C] can only be equated if there 

is a tuple corresponding to a satisfying assignment and agreeing with r on X 1X' J-··X ~ k 

Thus, we have established that the insertion of t into V is translatable iff 

V X3 Y G(X. Y)= 1. Since U. I, t and the description of Vas a Cartesian product can obviously 

be constructed from G, X. Y in polynomial time, we are done. I 

It certainly is not surprising that using a similar (only simpler) construction we can show an 

analogous result for Test 1: 

Theorem 5: 

Determining if Test 1 accepts an insertion is co-NP-complete if the view V is given 

implicitly as the union of two Cartesian products, of total size O(IVf). 

Proof: We first show membership in co·NP: if X denotes the view and Y the complement, then 

the following is a non-deterministic polynomial time algorithm to determine if Test 1 does not 

accept the insertion of the tuple t into V: guess an FD Z-+ A in :I and two tuples r, p. over X, 

and verify that r€V, p.EV, t[ZnX]=(ZnX] (and t{A);t;(A), if AEX), p.[Xnl1=(Xn1']; 

construct a relation R consisting of two tuples r, p.', with r'{X)=r, p.'[X]=p., and with new 

symbols in the Y-X columns, only with r'[Zn(Y·X)]=p.'[Zn(Y-X)]; compute the chase wrt l: of 

R, and verify that it does not attempt to equate two distinct elements of r, I'· and, if A€ Y·X, it 

does not equat~ t[A], p.[A]. 

To prove the hardness part, we will make a reduction from unsatisfiability of Boolean 

formulas in 3-CNF. Let G be such a formula, with variables x;. i= l, ... ,n, and clauses fj. 

j= l, ... ,m. Let U be BX 1X' 1 .. .X nX' nC, and let :I consist of the FD's B-c. and, for each clause 

fj= 1.i1+ l_j2+ l_j3 of G, the FD Lj/Lj2Lj3-c; let the view be BX 1X' 1 .. .x nX' no the complement 

be X1X'1 ... XnX'nC, and the instance Vofthe view be sBXsx1X'1x ... XsxnX'n us, where SIJo 

sx~; are as in the Proof of Theorem 4, and .s(BJ=a, l{X1~=0, .s[X'~=O. 

Suppose now we want to insert in V the tuple t. where (BJ= b, 

-----·~-~-- -c----------------



27 

lf:XrX'1···X~n1=slX1X'1 .. .X~n]; we claim that this insertion is accepted by Test 1 iff G is 

unsatisfiable. To see this, observe that the only tuple of V agreeing with t on X 1X' 1 .. .X ~ n (the 

common part of the view and the complement) is s; by a reasoning similar to that in the Proof 

of Theorem 4, we see that the only FD which needs to be checked is B-c. Now if r*s. the 

chase on r, swill equate r{CJ, s{Cj iff for some j, 1{LjlLjlLj3]=s{LjJLj2Lj3], i.e. r{Lji]=O, which 

means that the assignment corresponding to r does not satisfy fj Since this should happen for all 

tuples r, the claim is established. 

Since U, l:, t and the description of V as a Cartesian product can be constructed from G in 

polynomial time, the proof is complete. I 



28 

3.3. Finding a Complement 

So far, we have assumed the following scenario for translating view updates: when the user 

updates a view, he also specifies unambiguously the semantics of the update by defining a 

complement which should be kept constant during the translation. We studied in detail the 

problem of checking if a proposed insertion of a tuple into a projective view is translatable, 

when the complement is another projection and the database consists of a single relation 

satisfying a given set of functional dependencies. 

However, a real database system should also be able to provide the user with some 

assistance concerning the task of defining a complement We already gave a glimpse at this 

problem in Section 2, where, after we characterized complementary views, we examined the 

problems of finding a nonredundant complement and a minimum complement. Now that we 

have also gained some understanding of testing translatability, we can pose the following 

question: Suppose the user wishes to have the update translatable, imposing only partial (or 

none at all) restriction on the complement to be used. How can one determine a complement 

which will render the update translatable? 

Let the view be X, and suppose Y is a complement of X such that the insertion of the tuple 

t into the instance V of the view is translatable under constant Y. Oearly, Y= Jfl\J(U-X), where 

~X. Since l(J.t]Ev Jt('V) (condition (a) of Theorem 3), there is a tuple r of V such that 

t{Jt]=l(J.t]. Consider now the set of attributes Wr={A: AEX, 1{.A]=l(A]}. It is immediate that 

l(WJEww(V), It=Wr-Y(since It=W-Yby condition (b) of Theorem 3, and WP-Jf). and 
r -

I does not imply Wr- X (if It= Wr- X, then the insertion of t into V is not translatable since 

l( W J = t{ W J, t~ r); moreover, if R is a database such that Rt= I, w ~R)= V, then 

t*"'w(R)=t*wufRJ, and thus since RU t*TufR)t=I, it follows that also RU t*.,,w(R)t=l:., 
. r r 
for all such R. Therefore, the insertion of t into V is also translatable under constant 

. Yr= W ,.U(U-X). 

From the above .discussion, it is easy to see the following: 



29 

Theorem 6: 

Given I, X, V and t, we can find a complement Y of X such that the insertion of t into V 

is translatable under constant Y within min(J VI. 2IXIJ tests of translatability. 

Proof: One can compute, for each tuple r of V, the set W,={A: AEX, 1{A]= 4A]}, and, after 

eliminating duplications, test, for each such W r if the insertion of t into V is translatable under 

constant Y,= W,U(U-X). If no such w, is found, then, by the preceding discussion, there is no 

complement Y of X such that the insertion of t into V is translatable under constant Y. I 

Thus, we can determine if there is a complement which renders a given insertion 

translatable in polynomial time (see the Corollary to Theorem 3). Observe, however, that the 

polynomial complexity depends strongly on the fact that we are allowing the whole view V as 

part of the problem instance. The following result indicates that there is an inherent exponential 

dependence on IUJ+loglVJ; in other words, we may nevertheless have to check all possible 

subsets of X in order to find a complement. 

Theorem 7: 

Determining if there is a complement Y of X such that the insertion of t into V is 

translatable under constant Y is NP-hard if the view Vis presented succinctly (as in Theorem 4). 

Proof: Let G be a Boolean formula in 3-CNF, containing the variables xr i= 1, ... ,n. and 

consisting of clauses f; j= 1, ... ,m; assume furthermore with no loss of generality that the 

variables appearlng in each clause are distinct. Let Ube x1X'1 ... X,,x' nF1 .•. Fm, and, for each 

clause fj='ii+'i2+~3 of G, let I contain the FD's Lj1-F; Lj2-Fj Lj3-Fj Let the view X 

be X1X' J···X,?( ll' and the instance Vof the view be sx
1
X' 

1
x ... Xsx,?( n' where sX;X'; is as in 

the Proof of Theorem 4. 

Suppose now we want to insert in V the tuple t, where 1(X J = i(X' J = 1. We will show that 

there is a complement Y= WUF1 ... Fm (~X) such that the insertion oft into JI is translatable 

under constant Y, itT G is satisfiable. First, it is easy to see that, since 1( H1 should be in " wfVJ. 
W should contain at most one of the attributes X r X' r for_ each i; furthermore, since we should 



30 

have that 'ZI= W-+ F1 ... F m (clearly I does not imply W-+ X), it is not difficult to see that W 

should define a satisfying assignment for G. 

To complete the proof, observe that, if R is a database such that RI= I, w x(R)= V, then for 

any two tuples µ, 11 of R, µ[F)=P[F)- This happens because, if µ[Lji]*P[Ljl] and 

µ[Ljil*P(Lj21 (in the opposite case obviously 1-'lF)=P[F)). then there is a tuple E in R such 

that ((Lj/]=µ(Lj/], ElLj2]=P[Lj2] (because the variables in fj are distinct); thus, ElF)=p.[F). 

~[F) = P(F). and therefore µ[F) = v[F)- It follows that, for the insertion of t into V to be 

translatable under constant Y, it suffices to have l[W')Ewu(VJ and Il=W-F1···Fm. 

Finally, U, I, X. t and the description of V as a Cartesian product can be constructed from 

G in polynomial time, and we are done. I 

We remark that, by following a similar line of reasoning, one can see that Theorem 6 

remains true if we interpret "translatable" as "accepted by Test 1 (Test 2)", and "test of 

translatability" as "Test 1 (Test 2)". The same holds for Theorem 7 (the reductions, although 

somewhat subtler, are based on the same idea as the reduction given in the Proof of Theorem 7, 

and are therefore omitted). 



31 

4. The Translation of Deletions and Replacements 

In this Section we briefly show how the ideas developed previously for the case of 

translating the insertion of a tuple to a view can be adapted in a straightforward manner to 

handle the case of deleting a tuple and of replacing a tuple with another. We continue to assume 

that l: is a set of FD's satisfied by the database R, and that we are given the view X, the 

complement Y and the current instance V of the view. 

4. I. Deletions 

Suppose we wish to translate the update u on the view consisting of the deletion of a tuple 

l, tE V, while keeping the complement w y(R) constant. The update Tu on R which achieves this 

should satisfy w x(T JRV= V-t, "y(T JR])=w y(R), and also T JR]l=I for all R such that 

Rl=:I, .,, x(R)= V (compare with Properties A through D given for the case of an insertion). 

Now since w y(R) must be kept constant, we must have that l[Xn Y]E.,, xn y(V-t); in other 

words, there is a tuple rE V such that r:t t, 1{Xn 11 = l[Xn Y]. From this we now see that xn Y 

cannot be a superkey of X (since V is a projection of a legal instance), so by Theorem 1, 

xn Y- Y. It follows that the only possible candidate for Tu is the deletion of the tuple t*'tr y(R) 

from the database R: T JRJ=R·t*'• y(R). 

But now observe that, since T JRK;;;R and I only containds FD's. T JR]l=I if Rl=l:. Thus, 

our last requirement that T JRJl=:I for all R such that Rl=I, "~R)= V, is satisfied trivially. 

We have thus shown the following: 



32 

Theorem 8: 

The deletion of t from V is translatable as R~ R-t*.,, y(R) if and only if 

(a) (Xn Y]Ew xn y(V-t). 

(b) I implies Xn Y-Y. and I does not imply xn Y-X. I 

Hence, detcnnining if a deletion is translatable can be done in time O(J VI+ IIlJ. 

4.2. Replacements 

Suppose now the update we wish to translate under constant complement Y is the 

replacement of a tuple 'I· t 1E V, by a tuple l 2' t 2( V. The update Tu on R should satisfy 

wx(TJRV=V-11 U ti- and again wy(TJRV=.,,y(R), and TJR]t=I for all R such that Rt=l:, 

.,, x.(R)= V. We distinguish two cases: 

Case 1 11[XnY]*tJXnl']. 

This case exhibits a behavior similar to the one we are already familiar with: specifically, 

since wy(R) must be kept constant, we must have t1[XnY]E.,,xny{V-t1), tJXnY)Ewxny(V). 

From this it follows that xn Y cannot be a superkey of X, and thus it is a superkey of Y by 

Theorem 1. Hence, the only possible candidate for Tu is the replacement of the tuple 11•,, y(R) 

by the tuple t J*tt y(R). 

To check now if the last condition is satisfied, i.e. if T JR]t=I for all R such that Rt=l:, 

.,, x.(R)= V, it is not difficult to see (by a reasoning exactly analogous to the one given for 

insertion) that all we have to do is check if Chase:tl R(V. t 2' r, .DJ succeeds for all FD's fin I 

and for all tuples r in V which are different from t 1. 

Case 2 I 1[Xn Y] = I JXn Y). 

In this case we see that the first two conditions can be satisfied with no further restrictions 

on V. t. X, or Y, and moreover the only possible candidate for Tu is replacing the set of tuples 

tJ*wy(R) by the set oltuples t]*try(R) (we can no longer assert as before that either set will 

0 



33 

consist of a single tuple, since this depended on xn Y being a superkey of Y, which is no longer 

necessary). 

Checking whether the last condition is satisfied, i.e. whether T JR]l=I for all R such that 

Rl=I, w x(R)= V, can still be done by checking if ChaseI(R(V, t1 r, j)] succeeds for a11 fin l: 

and for all r in V, ff: t 1 (one can see that the fact that t J*w y(R) and t /w y(R) may consist of 

more than one tuple does not affect anything). 

Thus, we have the following: 

Theorem 9: 

The replacement of t 1 by t 2 in V ( t 1E V, 12( V) is translatable 

as Rt-R-tJ*wy(R) U t/'lly(R) if and only if 

(a) tj(Xn.J1Ewxny{V-11) and tJXn.l1Ewxny(Vi), or 11[Xn.J1=ti[Xnn 

(b) I implies Xn Y-+ Y and I does not imply Xn Y-+ X, or t 1(Xn J1 = t i(Xn .J1. 

(c) Chasel:[R(V, 12' r, j)) succeeds for all fin I and for all r in V, ff:t1. I 

From Theorem 9 it should be clear that one can develop results analogous to the ones 

given for the case of insertion in a straightforward way. Thus, we will not pursue this direction 

any further. 

---~----



34 



35 

5. Explicit Functional Dependencies 

Functional dependencies assert that a certain mapping is one-to-one -for example, a 

mapping from employee-project pairs to managers, or from cost-price pairs to rates of profit 

However, there is a difference; certain such mappings are essential information stored by the 

database (as in the first example above), whereas others are redundant information, mappings 

that could be computed explicitly (as in the second example). We call the latter case of FD's 

explicit FD's (EFD's). 

EFD's are important in the context of views and view complements, because they can 

seriously affect the information content of database mappings. We thus felt that we should study 

their behavior vis-a-vis the other known classes of dependencies. We first define formally what 

an EFD is: 

Definition: 

A set of attributes X explicitly determines a set of attributes Y (notation: x-e Y) if there is 

an instance-independent function /(called a witness of x-e Y) such that w xy(R)= J(w x(R)), for 

any legal instance R of the database. 

Examples. Cost·Profitrate-e Price, Course-Student-Grade-e Average-Grade. 

We remark that, in our definition of an EFD, no special property of the witness function f 

is assumed. This leads naturally to the following extension of the meaning of implication of an 

EFD " from a set of dependencies I, where a;. i= l, ... ,k, are the EFD's in l:: for all functions 

fr i= l, ... ,k, there is a function f such that, if a database R satisfies alt dependencies in I (where 

f; is taken as the witness of ";). then it also satisfies a (where f is taken as the witness of a). 

In case a is not an EFD, then one just omits the requirement of the existence of f. 

As we are going to see shortly, with this approach EFD's behave very much like FD's (in 

the sense of Propositions 1 and 2). It would be interesting to see what happens if one imposes 

natural restrictions on the witness function f, such as invertibility, 0· 1-valuedness, etc. 



36 

In the following, if I is a set of dependencies, we denote by IF the set of 

FD's {X-+ Y: X-+ e Y is in I}. 

Proposition 1: 

Let I be a set of EFD's; then Il=X-+ e Y iff I[FX-+ Y. 

Proof: Consider the following chase procedure for computing x+ : initialize x+ to X; 

repeatedly locate a member Z-+ B of IF such that z~x+ and B is not contained in x+, and 

set x+ to x+ U B. As is well known [MMS], this procedure terminates with a unique x+, and 

furthennore Ipl=X-+ Y iff Y~x+. 

We will now argue that also Il=X-+ e Y iff Y~x+. First, if Y~x+, then it is clear that 

l:l=X-e Y by the construction of x+ (observe that, if x-e Y and Y-+ e Z, then X-+ e Z). 

Conversely, if Y is not contained in x+, we will show that I does not imply X-+ e Y. For each 

EFD z-e Bin I, pick as its witness a function Jz-+B such thatfz-Jlt:z)=tz/P where tz is 

a tuple over Z with tz[U1=a for all W, and tzB is a tuple over ZB with tz,B(U1=a for all W. 

Now if g is a purported witness of x-e Y, then consider the database R consisting of a single 

tuple t with l[U1=a for WEX+, and l[Jf1=y otherwise, where y¢fl A(g(l[X})), for some A in 

Y-X. It is clear that R satisfies each EFD z-e B in I (with witness fz-B}, but R does not 

satisfy X-+ e Y with witness g. I 

Proposition 2: 

Let I be a set of EFD's, and let I' be a set of FD's and JD's. Suppose that l:Ul:'l=a: 

(a) If a is an FD or JD or embedded JD, then l:~I'P=a. 

(b) If a is an EFD, then l:l=a. 

Proof: 

(a) If I~l:' does not imply a, then there is a relation R which satisfies IjLJI' but violates 

a. Now since Rl=l:p clearly we can pick a function f; for each EFD o i in I such that R also 

satisfies o; with witness ft Thus, R satisfies l:Ul:', and therefore l:UI' does not imply a. 

(b) Assume that I does not imply a, and observe that the one-tuple relation R constructed in 



37 

the Proof of Proposition 1 also satisfies I' (since it satisfies any FD, JD or embedded JD. Thus, 

R satisfies IUI' and violates a, and so IUI' does not imply a. I 

Thus, we can easily augment any of the known axiom systems for FD's, FD's and MVD's 

etc. to include EFD's. Moreover, our characterization of complementary views (Theorem 1) can 

be extended to include EFD's as follows: 

Theorem 10: 

Let I be a set of FD's, JD's and EFD's. Then X, Y are complementary iff: 

(a) They are complementary when considered as views of "XU y(R) (i.e., I implies the 

embedded MVD xnr--X·YJY-X); and 

(b) Il=XU Y- e U. 

Proof: The "if' direction is immediate: from (a) fl )Lf Rrw y(R)= "XU y(R) for every legal 

database R, and then from (b) R = J(.,, XU y(R))= J(fl JIR)*w y(R)), where f is an instance· 

independent function. Thus, if for two legal instances R, R' we have "JIR)=.,, JIR') and 

wy(R)=wy(R1
), we get R=J(.,,JIR)*.,,y(R)=J(vj(R'r.,,y(R')=R', i.e. X, Y are 

complementary. 

For the "only if' direction, assume first that (a) is false, i.e. I does not imply the 

embedded MVD xnr--X-YIY·X. We first remark that the Equivalence Theorem of [SDSF) 

is also true if a is an embedded MVD (using the partial extension of the equivalence between 

dependencies and formulas to include embedded MVD's described in Section 7; the 2-tuple 

Subrelation Lemma can be extended to the case in which a is an embedded M VD, by an 

argument analogous to the one given for the case in which a is an MVD). Using the same 

construction as in the Proof of Theorem 1 (combined with Proposition 2 (a) and the above 

observation), we obtain two distinct two-tuple relations R, R' such that 'It JIR)= "JIR 1
}, 

"y(R)== fl y(R1
}, and R, R' satisfy all the FD's and JD's in I and all the FD's in Ip Then it is 

easy to see that we can pick, for each EFD a in I, a function f such that both R and R' satisfy 

a with witness f. This shows that X, Y are not complementary. 



38 

If (b) is false, then (XU Y) + * U, where (XU Y) + is the closure of XU Y wrt Ip Let R, R' 

be two one-tuple relations such that R[W]=R'[W]=a for Win (XU Y)+, and R[W]:;t:R'(W) 

otherwise. Clearly, R:;t: R', .,, x(R)= '11 x(R'), .,, y(R)= '11 y(R'), R, R' satisfy all FD's and JD's in I, 

and moreover by picking as the witness of an EFD z-B in I a function fz- B as in the Proof 

of Proposition 1, we see that R, R' also satisfy the EFD's in ~- This shows that X, Y are not 

complementary, and the proof is complete. I 

Intuitively, Theorem 1 stated that, if the only dependencies present arc FD's and JD's, then 

the only way to reconstruct a database from two projections is by join. Theorem 6 states that, if 

EFD's are also present, then the only way is to join the two projections and then explicitly 

compute the information which is still missing. 



39 

6. Conclusions and Directions for Further Research 

In this work, we have studied some of the computational problems arising when one 

considers applying, in the context of the relational model, the methodology suggested by 

Bancilhon and Spyratos for translating view updates. We discovered that certain important 

problems such as testing translatability and determining a complement which renders an update 

translatable, although solvable in polynomial time (Theorems 3, 6, 8, 9), exhibit an interesting 

kind of inherent complexity (Theorems 4, 5, 7), which indicates the existence of limitations on 

how efficiently they can be solved. However, we have only concentrated on a very simple case of 

the application; we feel that much remains to be done before a reasonable account of the 

applicability of the methodology can be attempted. In particular, the following possibilities seem 

to us to be worthy of further investigation: 

(1) Allowing more general dependencies: In particular, it would be interesting to see to what 

extent can Theorem 1 be generalized, especially in view of the negative result of [Vl). More 

importantly, though. one should study the problem of testing translatability and designing a 

translation (recall that we found the translation of deletions to be trivial just because we only 

considered functional dependencies). It is conceivable that our basic idea of a chase-type 

algorithm will be useful, although we cannot see to what extent 

(2) Considering views that are a restriction of a projection (i.e. of the form a P" X• where P is a 

predicate on tuples): It should be noted that most of the views cx:curing in practice are actually 

of the above form. The complement here can be a pair of views, e.g. ('1-,p. a P" y) or 

(a.., P" X• 71 y). where " y is a complement of 71 X· We believe that, in the case of only 

functional dependencies (which is still very important from a practical viewpoint), our basic 

approach can be used with only simple modifications (at least for certain Ps). 

(3) Considering multi-relation databases with views that are projections of joins of relations: 

this is most important, given that the universal relation assumption is being criticized as 



40 

unrealistic. W c also believe that this is likely to be the theoretically most interesting direction. 

(4) Studying the explicit functional dependencies: It seems to us that FF/J's arc a step in the 

right direction, if one wants a model capable of capturing the information content of database 

mappings. We have already examined their influence on complementarity of views (Theorem 

10). Their effect on issues like testing translatability or designing a translation {perhaps in 

conjunction with refining our definition to capture more semantics) is a question which we feel 

deserves further research. 



41 

References 

[Ar] Armstrong, W.W. Dependency structures of database relationships. Proc. IFIP 74, North 

Holland, Amsterdam, 1974, pp. 580-583. 

[As) Astrahan, M.M., et al. System R: Relational approach to database management. ACM 

Transactions on Database Systems 1, 2 (June 1976), 97-137. 

[BB) Beeri, C., and Bernstein, P.A. Computational problems related to the design of normal 

form relational schemas. ACM Transactions on Database Systems 4, 1 (March 1979), 30-59. 

[BBG] Beeri, C., Bernstein, P.A., and Goodman, N. A sophisticate's introduction to database 

normalization theory. In Proc. 4th VLDB Conference, West Berlin, September 1978. 

[BS) Bancilhon, F., and Spyratos, N. Update semantics of relational views. ACM Transactions on 

Database Systems 6, 4 (December 1981), 557-575. 

(BV) Beeri, C., and Vardi, M.Y. On the complexity of testing implications of data dependencies. 

Research Report, Department of Computer Science, The Hebrew University of Jerusalem, 

Jerusalem, Israel, December 1980. 

[Ca) Carlson, C.R., and Arora, A.K. The updatability of relational views based on functional 

dependencies. Third International Computer Software and Applications Conference, IEEE 

Computer Society, Chicago, IL, November 1979. 

[Ch) Chamberlin, D.D., et al. Views, authorization and locking in a relational data base system. 

In Proc. 1975 Nat. Computer Conf., AFIPS Press, Arlington, Va. 

(Col] Codd, E.F. A relational model for large shared data banks. Communications of the ACM 

13, 6 (June 1970) 377-387. 

[Co2) Codd, E.F. Relational completeness of database sublanguages. In Data Base Systems, 



42 

R.Rustin, Ed., Prentice Hall, Englewood Cliffs, NJ., 1972, pp. 65-98. 

[Co3] Codd, E.F. Further nonnalization of the database relational model. In Database Systems, 

R.Rustin, Ed., Prentice Hall, Englewood Cliffs, NJ., 1972, pp. 33-64. 

[Co4] Codd, E.F. Extending the database relational model to capture more meaning. ACM 

Transactions on Database Systems 4, 4 (December 1979), 397-434. 

[Ck] Cook, S.A. The complexity of theorem proving procedures. Proceedings of the 3rd Annual 

ACM Symposium on the Theory of Computing. Shaker Heights, Ohio, May 1971, pp. 151-158. 

(CO] CODASYL Data Base Task Group April 71 Report, ACM, New York. 

[D] Date, CJ. An Introduction to Database Systems. Addison Wesley, Reading, Mass., 1977. 

(DB] Dayal, U., and Bernstein, P.A. On the updatability of relational views. In Proc. 4th VLDB 

Conference, West Berlin, September 1978. 

[F] Fagin, R. Multivalued dependencies and a new normal fonn for relational databases. ACM 

Transactions on Database Systems 2, 3 (September 1977), 262-278. 

[FSD] Furtado, A.L., Sevcik, K.C., and Dos Santos, C.S. Permitting Updates through views of 

data bases. Infonnation Systems 4, 4 (1979), 269-283. 

[GJ] Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the Theory of 

NP-completeness (Freeman, San Francisco, CA, 1979). 

Pl IMS/VS publications. IBM, White Plains, New York. 

(K] Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer 

Computations. R.E. Miller and J.W. Thatcher, Eds., Plenum Press. New York, 1972, pp. 85-104. 

(MMS) Maier. D., Mendelzon, A.O., and Sagiv, Y. Testing implications of data dependencies. 



43 

ACM Transactions on Database Systems 4, 4 (December 1979), 455-469. 

[MSY} Maier, D., Sagiv, Y., and Yannakak.is, M. On the complexity of testing implications of 

functional and join dependencies. JACM 28, 4 (October 1981), 680-695. 

(Rl) Rissanen, J. Independent components of relations. ACM Transactions on Database Systems 

2, 4 (December 1977), 317-325. 

(R2] Rissanen, J. Theory of relations for databases - a tutorial survey. Proc. 7th Symp. on 

Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 64, 

Springer-Verlag, Berlin, Heidelberg, 1978, pp. 536-551. 

(RS] Rowe, L., Stonebraker, M. Manuscript, U.C. Berkeley, 1979. 

(Sp] Spyratos, N. Translation structures of relational views. In Proc. 6th VLDB Conference, 

Montreal, 1980. 

(St} Stockmeyer, L.J. The polynomial time hierarchy. Theoretical Computer Science 3, 1 

(1976), 1-22. 

(SDSF) Sagiv, Y., Delobel, C., Stott Parker Jr., D., and Fagin, R. An equivalence between 

relational database dependencies and a fragment of propositional logic. Journal of the ACM 28, 

3 (July 1981), 435-453. 

(SWKH) Stonebraker. M., Wong, E., Kreps, P., and Held, G. The design and implementation of 

INGRES. ACM Transactions on Database Systems 1, 3 (September 1976), 189-222. 

rI1 Todd, S.J.P. The Peterlee relational test vehicle - a system overview. IBM Systems Journal 

15, 4, 285-308. 

(Ul] Ullman, J.D. Principles of Database Systems. Computer Science Press, Rockville, Maryland, 

1980. 



44 

[U2] Ullman, J.D. The U.R. strikes back. Proc. of the ACM Symp. on Principles of Database 

Systems, Los Angeles, California, 1982. 

[Vl] Vardi, M.Y. On decomposition of relational databases. Proceedings of the 23rd Symposium 

on Foundations of Computer Science, Chicago, 11linois, 1982. 

[V2] Vardi, M.Y. Inferring multivalued dependencies from functional and join dependencies. 

Research Report, Dep. of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 

March 1980. 

[W] Wrathall. C. Complete sets and the polynomial-time hierarchy. Theoretical Computer 

Science 3, 1, (1976), 23-33. 

[Zal) Zaniolo, C. Analysis and design of relational schemata for database systems. Tech. Rep. 

UCLA-ENG-7669, Dep. of Computer Science, University of California, Los Angeles, California, 

July 1976. 

[7.a2) Zaniolo, C. Database relations with null values. Proc. of the ACM Symp. on Principles of 

Database Systems, Los Angeles, California, 1982. 

(Zl) Zloof, M.M. Query-by-Example: a data base language. IBM Systems Journal 16, 4, 324-343. 


