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ABSTRACT 

The consensus problem involves an asynchronous system or processes, some or which may be 
unreliable. The problem is for the reliable processes to agree on a binary value. We show that 
every protocol for this problem has the possibility or nontermination, even with only one raulty 
process. By way of contrast, solutions are known for the synchronous case, the "Byzantine 
Generals" problem. 

1. Introduction 
The problem of reaching agreement among remote processes is one of the most fundamental 

problems in distributed computing. It is at the core of many of algorithms for distributed data 

processing, distributed file management, and fa ult-tolerant distributed applications. 

A well-known form of the problem is the "transaction commit problem" which anses m 

distributed database systems (DSl, G, LS, La, Le, Li, R, RLS, S, SS). The problem is for all the 

data manager processes which have participated in the processing of a particular transaction to 

agree on whether to install the transaction's results in the database or to discard them. The 

latter action might be necessary, for example, if some data managers were for any reason unable 

to carry out the required transaction processing. Whatever decision is made, all data managers 

must make the same decision in order to preserve the consistency of the database. 

Reaching the type of agreement needed for the "commit" problem is straightforward if the 

participating processes and the network are completely reliable. However, real systems are 

subject to a number of possible faults such as process crashes, network partitioning, and lost, 

distorted or duplicated messages. One can even consider more Byzantine types of failure (DS2, 

OLM, DFFLS, FL, LFF, LSP, PSL) in which faulty processes might go completely haywire, 

perhaps even sending messages according to some malevolent plan. One therefore wants an 

agreement protocol which is as reliable as possible in the presence of such faults. Of course, any 

protocol can be overwhelmed by faults that are too frequent or too severe, so the best that one 

can hope for is a protocol which is tolerant to a prescribed number of "expected" faults. 

In this paper, we show the surprising result that no completely asynchronous consensus 

protocol can tolerate even a single unannounced process death. We do not consider Byzantine 

failures, and we assume that the message system is reliable - it delivers all lnessages correctly 

and exactly once. Nevertheless, even with these assumptions, the stopping of a single process at 
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an inopportune time can cause any distributed commit protocol to fail to reach agreement. 

Thus, this important problem has no robust solution without further assumptions about the 

computing environment or still greater restrictions on the kind of failures to be tolerated! 

Crucial to our proof is that processing is completely asynchronous, that is,. we make no 

assumptions about the relative speeds of processes nor about the delay time in delivering a 

message. We also assume that processes do not have access to synchronized clocks, so algorithms 

based on timeouts, for example, cannot be used. (In particular, the solutions in (DSl) are not 

applicable.) Finally, we do not postulate the ability to detect the death of a process, so it is 

impossible for one processes to tell whether another has died (stopped entirely) or is just running 

very slowly. 

Our impossibility result applies to even a very weak form of the consensus problem. Assume 

every process starts with an initial value in {O, 1 }. A non.faulty process decides on a value in 

{ 0, 1} by entering an appropriate decision state. All nonf aulty processes which decide are 

required to choose the same value. For the purpose of the impossibility proof, we require only 

that some process eventually make a decision. (Of course, any algorithm of interest would 

require that all non.faulty processes make a decision.) The trivial solution in which, say, 0 is 

always chosen is ruled out by stipulating that both 0 and 1 are possible decision values, although 

perhaps for different initial configurations. 

Our system model is rather strong so as to make our impossibility proof as widely applicable 

as possible. Processes are modelled as automata (with possibly infinitely many states) which 

communicate by means of messages. In one atomic step, a process can attempt to receive a 

message, perform local computation based on whether or not a message was delivered to it and if 

so on which one, and send an arbitrary but finite set of mes'sages to other processes. In 

particular, an "atomic broadcast" capability is assumed, so a process can send the same message 

in one step to all other processes with the knowledge that if any non.faulty process receives the 

message, then all the non.faulty processes •ill. Every message is eventually delivered as long as 

the destination process makes infinitely many attempts to receive, but messages can be delayed 

arbitrarily long and delivered out of order. 

The asynchronous commit protocols m current use all seem to have a "window of 

vulnerability" - an interval of time during the execution of the algorithm in which the delay or 

inaccessibility of a single process can cause the entire algorithm to wait indefinitely. It follows 

from our impossibility result that every commit protocol has such a "window", confirming a 

widely-believed tenet in the folklore. 
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2. Consensus Protocols 
A conBtmBuB protocol P is an asynchronous system of N processes {N > 2). Each process p 

has a one-bit input regiBter xp, an output register Yp with values in {b, 0, 1}, and an unbounded 

amount of internal storage. The values in the input and output registers together with the 

program counter and internal storage comprise the internal state. Initial states prescribe fixed 

starting values for all but the input register; in particular, the output register starts with value b. 

The states in which the output register has value 0 or 1 are distinguished as being decision 

stateB. p acts deterministically according to a transition function. The transition function 

cannot change the value of the output register once the process has reached a decision state; that 

is, the output register is "write-once". The entire system P is specified by the transition 

functions associated with each of the processes and the initial values of the input registers. 

Processes communicate by sending each other messages. A mea8age is a pair {p, m), where p 

is the name of the destination process and m is a "message value" from a fixed universe M. The 

meBBage BJIBtem maintains a multiset, called the me8sage 6u//er, of messages that have been sent 

but not yet delivered . It supports two abstract operations: 

send(p, m): places (p, m) in the message buffer; 

receive(p): deletes some message (p, m) from the buffer and returns m, in which case we 
say (p, m) is delivered, or returns the special null marker ¢> and leaves the 
buffer unchanged. 

Thus, the message system acts nondeterministically, subject only to the condition that if 

receive(p) is performed infinitely many times, then every message (p, m) in the message buffer is 

eventually delivered. In particular, the message system is allowed to return¢> a finite number of 

times in response to receive(p) even though a message (p, m) is present in the buffer. 

A configuration of the system consists of the internal state of each process together with the 

contents of the message buffer. An initial configuration is one in which each process starts at 

an initial state and the message buffer is empty. 

A Btep takes one configuration to another and consists of a primitive step by a single process 

p. Let C be a configuration. The step occurs in two phases. First, receive(p) is performed on 

the message buff er in C to obtain a value m E M U { t/>}. Then, depending on p's internal state 

in C and on m, p enters a new internal state and sends a finite set of messages to other processes. 

Since processes are deterministic, the step is completely determined by the pair e = (p, m), which 

we call an went. (This "event" should be thought of as the receipt of m by p.) e(C) denotes the 

resulting configuration and we say that e can be applied to C. Note that the event (p, t/>) can 

always be applied to C, so it is always possible for a process to take another step. 
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A schedule from C is a finite or infinite sequence tT of events which can be applied, in turn, 

starting from C. The associated sequence of steps is called a run. If tT is finite, we let D(C) 

denote the resulting configuration, which is said to be reachable from C. A configuration 

reachable from some initial configuration is said to be accessible. Hereafter, all configurations 

mentioned are assumed to be accessible. 

The following lemma expresses a "commutativity" property of schedules. 

Lemma 1. Suppose that from some configuration C the schedules tTt' <T2 lead to 
configurations CJ, C;! respectively. If the sets of processes taking steps in <T1 and <T2 
respectively are isjomt, then <T2 can be applied to C1 and <T1 can be applied to C2, and 
both lead to the same configuration C3. (See Figure 1.) 
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Figure 1. 

Proof. The result follows at once from the system definition since 17
1 

and 172 do not interact. 

0 

A configuration C has decision value v if some process p is in a decision state with y = v. 
p 

A consensus protocol is partiall11 correct if it satisfies two conditions: 

1. No accessible configuration has more than one decision value. 

2. For each v E {O, I}, some accessible configuration has decision value v. 

A process p is nonfault11 in a run provided it takes infinitely many steps, and is faultu 

otherwise. A run is admissible provided at most one process is faulty, and provided all messages 

sent to nonfaulty processes are eventually received. 

A run is a deciding run provided some process reaches a decision state in that run. A 

consensus protocol P is totall11 correct in spite of one fault if it is partially correct, and every 

admissible run is a deciding run. Our main theorem shows that every partially correct protocol 

------
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for the consensus problem has some admissible run which is not a deciding run. 

3. Main Result 

Theorem I. No consensus protocol is totally co~t in spite of one fault. 

Proof. Assume to the contrary that P is a consensus protocol which is totally correct in spite 

of one fault. We prove a sequence of lemmas which eventually lead to a contradiction. 

The basic idea is to show circumstances under which the protocol remains forever indecisive. 

This involves two steps. First, we argue that there is some initial configuration in which the 

decision is not already predetermined. Secondly, we construct an admissible run which avoids 

ever taking a step that would commit the system to a particular decision. 

Let C be a configuration and let V be the set of decision values of configurations reachable 

from C. C is bivalent if IVI = 2. C is univalent if IVI = 1, let us say 0-valent or 1-valent 

according to the corresponding decision value. By the total correctness of P, and the fact that 

these are always admissible runs, v r 4'. 

Lemma 2. P has a bivalent initial configuration. 

Proof. Assume not. Then P must have both O:.valent and 1-valent initial configurations by 

the assumed partial correctness. Let us call two initial configurations adjacent if they differ only 

in the initial value xp of a single process p. Any two initial configurations are joined by a chain 

of initial configurations, each adjacent to the next. Hence, there must exist a 0-valent initial 

configuration C0 adjacent to a 1-valent initial configuration Cl" Let p be the process in whose 

initial value they differ. 

Now consider some admissible deciding run from C0 in which process p takes no steps, and let 

u be the associated schedule. Then u can be applied to C1 also, and corresponding configurations 

in the two runs are identical except for the internal state of process p. It is easily shown that 

both runs eventually reach the same decision value. If the value is 1, then C0 is bivalent; 

otherwise, C1 is bivalent. Either case contradicts the assumed nonexistence of a bivalent initial 

configuration. 

Lemma 3. Let C be a bivalent configuration of P, and let e = (p, m) be an event 
which is applicable to C. Let C be the set of configurations reachable from C without 
applying e, and let D = e(C) = {e(E)I E E C and e is applicable to E}. Then D 
contains a bivalent configuration. 

0 

Proof. Since e is applicable to C, then by definition of C and the fact that messages can be 
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delayed arbitrarily, e is applicable to every EE C. 

Now assume that D contains no bivalent configurations, so every configuration D E D is 

univalent. We proceed to derive a contradiction. 

Let E. be an i-valent configuration reachable from C, i = O, 1. (E. exists since C is bivalent.) 
I 1 

If Ei E C, let Fi = e(Ei) E D. Otherwise, e was applied in reaching Ei, and so there exists Fi E D 
from which Ei is reachable. In either case, Fi is i-valent since Fi is not bivalent (by assumption) 

and one of Ei and Fi is reachable from the other. Since Fi E D, i = 0, 1, D contains both 0-

valent and 1-valent configurations. 

Call two configurations neighbors if one results from the other in a single step. By an easy 

induction, there exist neighbors C0, C1 E C such that Di = e(Ci) is i-valent, i = 0, 1. Without 

loss of generality, C1 = e~C0) where e' = (p', m'). 

CASE 1: If p' ::/: p, then D1 = e~D0) by Lemma 1. This is impossible since any successor of 

a 0-valent configuration is 0-valent. (See Figure 2.) 
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Figure 2. 

CASE 2: If p' = p, then consider any finite deciding p-free run from C0 with corresponding 

schedule u, and let A = u( C0). By Lemma 1, u is applicable to Di' and it leads to an i-valent 

configuration Ei = u(D), i = 0, 1. Also by Lemma 1, e(A) = E0 and e(e~A)) = E1. (See 

Figure 3.) Hence, A is bivalent, which is impossible since A is univalent. 

In each case, we reached a contradiction, so [)contains a bivalent configuration. 0 

Any deciding run from a bivalent initial configuration goes to a univalent configuration, so 

there must be some single step which goes from a bivalent to a univalent configuration. Such a 

step determines the eventual decision value. We now show that it is always possible to run the 

system in a way that avoids such steps, leading to an admissible non-deciding run. 

--------- -~---
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The run is constructed in stages, starting from an initial configuration. We ensure that the 

run is admissible in the following way. A queue of proce~ is maintained, initially in an 

arbitrary order, and the message buffer in a configuration is ordered according to the time the 

messages were sent, earliest first. Each stage consists of one or more process steps. The stage 

ends with the first process in the process queue taking a step in which, if its message queue was 

not empty at the start of the stage, its earliest message is received. This process is then moved 

to the back of the process queue. In any infinite sequence of such stages every process takes 

infinitely many steps and receives every message sent to it. The run is therefore admissible. Our 

problem of course is to do this in such a way as to avoid a decision ever being reached. 

Let C0 be a bivalent initial configuration whose existence is assured by Lemma 2. Execution 

begins in C0, and we ensure that every stage begins from a bivalent configuration. Suppose then 

that configuration C is bivalent and that process p heads the priority queue. Let m be the 

earliest message top in C's message buffer, if any, and¢> otherwise. Let e = (p, m). By Lemma 

3, there is a bivalent configuration C' reachable from C by a schedule in which e is the last event 

applied. The corresponding sequence of steps defines the stage. 

Since each stage ends in a bivalent configuration, every stage m the construction of the 

infinite schedule succeeds. The resulting run is admissible, and no decision is ever reached. It 

follows that P is not totally correct. D 

-------------
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4. Initially Dead Processes 
In this section, we exhibit a protocol which solves the consensus problem for N processes as 

long as a majority of the processes are non-faulty and no process dies during the execution of the 

protocol. No process knows in advance, however, which of the processes are initially dead and 

which are not. 

The protocol works in two stages. During the first stage, the processes construct a directed 

graph G with a node corresponding to each process. Every process broadcasts a message 

containing its process number and initial value and then listens for messages from L-1 other 

processes, where L = f(N + 1)/21- G has an edge from i to j iff j receives a message from i. 

Thus, G has indegree L-1. 

In the second stage, the processes construct G +, the transitive closure of G, in the sense that 

upon completion of this stage, each process k knows about all of the edges (j, k) incident on kin 

a+. Each k also knows the initial values of all such j. After k discovers such an edge in a+, we 

say that k knows about that edge and about the node j. 

The computation of a+ is carried out in the following way. First, each process broadcasts to 

all other processes its process number and initial value together with the names of the L-1 

processes it heard from during the first stage. It then waits until it has received both the stage 1 

and stage 2 messages from all its ancestors in G which it knows a.bout. It initially knows only 

about the L-1 processes from which it heard directly during the fmt stage, but as it receives 

stage 2 messages, it may discover additional ancestors. Waiting continues until such time as all 

currently known about processes have been heard from. 

At this point, each process knows all of its own ancestors and the edges of G incident on 

them, so it can compute all of the edges of a+ incident on each of its ancestors. This enables it 

to determine which of its ancestors belong to an initial clique of a+, that is, a clique with no 

incoming edges, for node k is in an initial clique iff k is itself an ancestor of every one of its 

ancestors. Since every node in G + has at least L-1 predecessors, there can be only one initial 

clique, it has cardinality at least L, and every process which completes the second stage knows 

exactly the set of processes comprising it. 

Finally, each process makes a decision based on the initial values of the processes in the initial 

clique using any agreed-upon rule. Since all processes know the initial values of all members of 

the initial clique, they all reach the same decision. 

The correctness of this protocol proves the following theorem. 

Theorem II. There is a partially correct consensus protocol in which all nonfaulty 
processes always reach a decision, provided no processes die during its execution and a 
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strict majority of the processes are alive initially. 
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