
Impossibility of Distributed Consensus with One Faulty Process•

Keywords:

Michael J. Fischer
Yale University

New Haven, Connecticut

Nancy A. Lynch
Massachusetts Institute of Technology

Cambridge, Massachusetts ·

and

Michael S. Paterson
University of Warwick

Coventry, England

September 1982

Asynchronous computation, commit, consensus, distributed computing, distributed
database, and fault-tolerance.

©1982 Massachusetts Institute of Technology, Cambridge, MA. 02139

•This work was supported in part by the Office of Naval Research under Contract N00014-82-K-0154, by the Office of Army

Research under Contract DAAG29-79-C-0155, and by the National Science Foundation under Grants MCS-7924370 and MCS-
8116678.

- 1 -

ABSTRACT

The consensus problem involves an asynchronous system or processes, some or which may be
unreliable. The problem is for the reliable processes to agree on a binary value. We show that
every protocol for this problem has the possibility or nontermination, even with only one raulty
process. By way of contrast, solutions are known for the synchronous case, the "Byzantine
Generals" problem.

1. Introduction
The problem of reaching agreement among remote processes is one of the most fundamental

problems in distributed computing. It is at the core of many of algorithms for distributed data

processing, distributed file management, and fa ult-tolerant distributed applications.

A well-known form of the problem is the "transaction commit problem" which anses m

distributed database systems (DSl, G, LS, La, Le, Li, R, RLS, S, SS). The problem is for all the

data manager processes which have participated in the processing of a particular transaction to

agree on whether to install the transaction's results in the database or to discard them. The

latter action might be necessary, for example, if some data managers were for any reason unable

to carry out the required transaction processing. Whatever decision is made, all data managers

must make the same decision in order to preserve the consistency of the database.

Reaching the type of agreement needed for the "commit" problem is straightforward if the

participating processes and the network are completely reliable. However, real systems are

subject to a number of possible faults such as process crashes, network partitioning, and lost,

distorted or duplicated messages. One can even consider more Byzantine types of failure (DS2,

OLM, DFFLS, FL, LFF, LSP, PSL) in which faulty processes might go completely haywire,

perhaps even sending messages according to some malevolent plan. One therefore wants an

agreement protocol which is as reliable as possible in the presence of such faults. Of course, any

protocol can be overwhelmed by faults that are too frequent or too severe, so the best that one

can hope for is a protocol which is tolerant to a prescribed number of "expected" faults.

In this paper, we show the surprising result that no completely asynchronous consensus

protocol can tolerate even a single unannounced process death. We do not consider Byzantine

failures, and we assume that the message system is reliable - it delivers all lnessages correctly

and exactly once. Nevertheless, even with these assumptions, the stopping of a single process at

- 2 -

an inopportune time can cause any distributed commit protocol to fail to reach agreement.

Thus, this important problem has no robust solution without further assumptions about the

computing environment or still greater restrictions on the kind of failures to be tolerated!

Crucial to our proof is that processing is completely asynchronous, that is,. we make no

assumptions about the relative speeds of processes nor about the delay time in delivering a

message. We also assume that processes do not have access to synchronized clocks, so algorithms

based on timeouts, for example, cannot be used. (In particular, the solutions in (DSl) are not

applicable.) Finally, we do not postulate the ability to detect the death of a process, so it is

impossible for one processes to tell whether another has died (stopped entirely) or is just running

very slowly.

Our impossibility result applies to even a very weak form of the consensus problem. Assume

every process starts with an initial value in {O, 1 }. A non.faulty process decides on a value in

{ 0, 1} by entering an appropriate decision state. All nonf aulty processes which decide are

required to choose the same value. For the purpose of the impossibility proof, we require only

that some process eventually make a decision. (Of course, any algorithm of interest would

require that all non.faulty processes make a decision.) The trivial solution in which, say, 0 is

always chosen is ruled out by stipulating that both 0 and 1 are possible decision values, although

perhaps for different initial configurations.

Our system model is rather strong so as to make our impossibility proof as widely applicable

as possible. Processes are modelled as automata (with possibly infinitely many states) which

communicate by means of messages. In one atomic step, a process can attempt to receive a

message, perform local computation based on whether or not a message was delivered to it and if

so on which one, and send an arbitrary but finite set of mes'sages to other processes. In

particular, an "atomic broadcast" capability is assumed, so a process can send the same message

in one step to all other processes with the knowledge that if any non.faulty process receives the

message, then all the non.faulty processes •ill. Every message is eventually delivered as long as

the destination process makes infinitely many attempts to receive, but messages can be delayed

arbitrarily long and delivered out of order.

The asynchronous commit protocols m current use all seem to have a "window of

vulnerability" - an interval of time during the execution of the algorithm in which the delay or

inaccessibility of a single process can cause the entire algorithm to wait indefinitely. It follows

from our impossibility result that every commit protocol has such a "window", confirming a

widely-believed tenet in the folklore.

- 3 -

2. Consensus Protocols
A conBtmBuB protocol P is an asynchronous system of N processes {N > 2). Each process p

has a one-bit input regiBter xp, an output register Yp with values in {b, 0, 1}, and an unbounded

amount of internal storage. The values in the input and output registers together with the

program counter and internal storage comprise the internal state. Initial states prescribe fixed

starting values for all but the input register; in particular, the output register starts with value b.

The states in which the output register has value 0 or 1 are distinguished as being decision

stateB. p acts deterministically according to a transition function. The transition function

cannot change the value of the output register once the process has reached a decision state; that

is, the output register is "write-once". The entire system P is specified by the transition

functions associated with each of the processes and the initial values of the input registers.

Processes communicate by sending each other messages. A mea8age is a pair {p, m), where p

is the name of the destination process and m is a "message value" from a fixed universe M. The

meBBage BJIBtem maintains a multiset, called the me8sage 6u//er, of messages that have been sent

but not yet delivered . It supports two abstract operations:

send(p, m): places (p, m) in the message buffer;

receive(p): deletes some message (p, m) from the buffer and returns m, in which case we
say (p, m) is delivered, or returns the special null marker ¢> and leaves the
buffer unchanged.

Thus, the message system acts nondeterministically, subject only to the condition that if

receive(p) is performed infinitely many times, then every message (p, m) in the message buffer is

eventually delivered. In particular, the message system is allowed to return¢> a finite number of

times in response to receive(p) even though a message (p, m) is present in the buffer.

A configuration of the system consists of the internal state of each process together with the

contents of the message buffer. An initial configuration is one in which each process starts at

an initial state and the message buffer is empty.

A Btep takes one configuration to another and consists of a primitive step by a single process

p. Let C be a configuration. The step occurs in two phases. First, receive(p) is performed on

the message buff er in C to obtain a value m E M U { t/>}. Then, depending on p's internal state

in C and on m, p enters a new internal state and sends a finite set of messages to other processes.

Since processes are deterministic, the step is completely determined by the pair e = (p, m), which

we call an went. (This "event" should be thought of as the receipt of m by p.) e(C) denotes the

resulting configuration and we say that e can be applied to C. Note that the event (p, t/>) can

always be applied to C, so it is always possible for a process to take another step.

- 4 -

A schedule from C is a finite or infinite sequence tT of events which can be applied, in turn,

starting from C. The associated sequence of steps is called a run. If tT is finite, we let D(C)

denote the resulting configuration, which is said to be reachable from C. A configuration

reachable from some initial configuration is said to be accessible. Hereafter, all configurations

mentioned are assumed to be accessible.

The following lemma expresses a "commutativity" property of schedules.

Lemma 1. Suppose that from some configuration C the schedules tTt' <T2 lead to
configurations CJ, C;! respectively. If the sets of processes taking steps in <T1 and <T2
respectively are isjomt, then <T2 can be applied to C1 and <T1 can be applied to C2, and
both lead to the same configuration C3. (See Figure 1.)

IC\
c1 ,c2

' , ' ,
' I ' ,

172 \ I 171

'.J v!
Ca

Figure 1.

Proof. The result follows at once from the system definition since 17
1

and 172 do not interact.

0

A configuration C has decision value v if some process p is in a decision state with y = v.
p

A consensus protocol is partiall11 correct if it satisfies two conditions:

1. No accessible configuration has more than one decision value.

2. For each v E {O, I}, some accessible configuration has decision value v.

A process p is nonfault11 in a run provided it takes infinitely many steps, and is faultu

otherwise. A run is admissible provided at most one process is faulty, and provided all messages

sent to nonfaulty processes are eventually received.

A run is a deciding run provided some process reaches a decision state in that run. A

consensus protocol P is totall11 correct in spite of one fault if it is partially correct, and every

admissible run is a deciding run. Our main theorem shows that every partially correct protocol

- 5 -

for the consensus problem has some admissible run which is not a deciding run.

3. Main Result

Theorem I. No consensus protocol is totally co~t in spite of one fault.

Proof. Assume to the contrary that P is a consensus protocol which is totally correct in spite

of one fault. We prove a sequence of lemmas which eventually lead to a contradiction.

The basic idea is to show circumstances under which the protocol remains forever indecisive.

This involves two steps. First, we argue that there is some initial configuration in which the

decision is not already predetermined. Secondly, we construct an admissible run which avoids

ever taking a step that would commit the system to a particular decision.

Let C be a configuration and let V be the set of decision values of configurations reachable

from C. C is bivalent if IVI = 2. C is univalent if IVI = 1, let us say 0-valent or 1-valent

according to the corresponding decision value. By the total correctness of P, and the fact that

these are always admissible runs, v r 4'.

Lemma 2. P has a bivalent initial configuration.

Proof. Assume not. Then P must have both O:.valent and 1-valent initial configurations by

the assumed partial correctness. Let us call two initial configurations adjacent if they differ only

in the initial value xp of a single process p. Any two initial configurations are joined by a chain

of initial configurations, each adjacent to the next. Hence, there must exist a 0-valent initial

configuration C0 adjacent to a 1-valent initial configuration Cl" Let p be the process in whose

initial value they differ.

Now consider some admissible deciding run from C0 in which process p takes no steps, and let

u be the associated schedule. Then u can be applied to C1 also, and corresponding configurations

in the two runs are identical except for the internal state of process p. It is easily shown that

both runs eventually reach the same decision value. If the value is 1, then C0 is bivalent;

otherwise, C1 is bivalent. Either case contradicts the assumed nonexistence of a bivalent initial

configuration.

Lemma 3. Let C be a bivalent configuration of P, and let e = (p, m) be an event
which is applicable to C. Let C be the set of configurations reachable from C without
applying e, and let D = e(C) = {e(E)I E E C and e is applicable to E}. Then D
contains a bivalent configuration.

0

Proof. Since e is applicable to C, then by definition of C and the fact that messages can be

-6-

delayed arbitrarily, e is applicable to every EE C.

Now assume that D contains no bivalent configurations, so every configuration D E D is

univalent. We proceed to derive a contradiction.

Let E. be an i-valent configuration reachable from C, i = O, 1. (E. exists since C is bivalent.)
I 1

If Ei E C, let Fi = e(Ei) E D. Otherwise, e was applied in reaching Ei, and so there exists Fi E D
from which Ei is reachable. In either case, Fi is i-valent since Fi is not bivalent (by assumption)

and one of Ei and Fi is reachable from the other. Since Fi E D, i = 0, 1, D contains both 0-

valent and 1-valent configurations.

Call two configurations neighbors if one results from the other in a single step. By an easy

induction, there exist neighbors C0, C1 E C such that Di = e(Ci) is i-valent, i = 0, 1. Without

loss of generality, C1 = e~C0) where e' = (p', m').

CASE 1: If p' ::/: p, then D1 = e~D0) by Lemma 1. This is impossible since any successor of

a 0-valent configuration is 0-valent. (See Figure 2.)

/Co\
D

0>', /c1

'M
01

Figure 2.

CASE 2: If p' = p, then consider any finite deciding p-free run from C0 with corresponding

schedule u, and let A = u(C0). By Lemma 1, u is applicable to Di' and it leads to an i-valent

configuration Ei = u(D), i = 0, 1. Also by Lemma 1, e(A) = E0 and e(e~A)) = E1. (See

Figure 3.) Hence, A is bivalent, which is impossible since A is univalent.

In each case, we reached a contradiction, so [)contains a bivalent configuration. 0

Any deciding run from a bivalent initial configuration goes to a univalent configuration, so

there must be some single step which goes from a bivalent to a univalent configuration. Such a

step determines the eventual decision value. We now show that it is always possible to run the

system in a way that avoids such steps, leading to an admissible non-deciding run.

--------- -~---

- 7 -

The run is constructed in stages, starting from an initial configuration. We ensure that the

run is admissible in the following way. A queue of proce~ is maintained, initially in an

arbitrary order, and the message buffer in a configuration is ordered according to the time the

messages were sent, earliest first. Each stage consists of one or more process steps. The stage

ends with the first process in the process queue taking a step in which, if its message queue was

not empty at the start of the stage, its earliest message is received. This process is then moved

to the back of the process queue. In any infinite sequence of such stages every process takes

infinitely many steps and receives every message sent to it. The run is therefore admissible. Our

problem of course is to do this in such a way as to avoid a decision ever being reached.

Let C0 be a bivalent initial configuration whose existence is assured by Lemma 2. Execution

begins in C0, and we ensure that every stage begins from a bivalent configuration. Suppose then

that configuration C is bivalent and that process p heads the priority queue. Let m be the

earliest message top in C's message buffer, if any, and¢> otherwise. Let e = (p, m). By Lemma

3, there is a bivalent configuration C' reachable from C by a schedule in which e is the last event

applied. The corresponding sequence of steps defines the stage.

Since each stage ends in a bivalent configuration, every stage m the construction of the

infinite schedule succeeds. The resulting run is admissible, and no decision is ever reached. It

follows that P is not totally correct. D

1-~ -

- 8 -

4. Initially Dead Processes
In this section, we exhibit a protocol which solves the consensus problem for N processes as

long as a majority of the processes are non-faulty and no process dies during the execution of the

protocol. No process knows in advance, however, which of the processes are initially dead and

which are not.

The protocol works in two stages. During the first stage, the processes construct a directed

graph G with a node corresponding to each process. Every process broadcasts a message

containing its process number and initial value and then listens for messages from L-1 other

processes, where L = f(N + 1)/21- G has an edge from i to j iff j receives a message from i.

Thus, G has indegree L-1.

In the second stage, the processes construct G +, the transitive closure of G, in the sense that

upon completion of this stage, each process k knows about all of the edges (j, k) incident on kin

a+. Each k also knows the initial values of all such j. After k discovers such an edge in a+, we

say that k knows about that edge and about the node j.

The computation of a+ is carried out in the following way. First, each process broadcasts to

all other processes its process number and initial value together with the names of the L-1

processes it heard from during the first stage. It then waits until it has received both the stage 1

and stage 2 messages from all its ancestors in G which it knows a.bout. It initially knows only

about the L-1 processes from which it heard directly during the fmt stage, but as it receives

stage 2 messages, it may discover additional ancestors. Waiting continues until such time as all

currently known about processes have been heard from.

At this point, each process knows all of its own ancestors and the edges of G incident on

them, so it can compute all of the edges of a+ incident on each of its ancestors. This enables it

to determine which of its ancestors belong to an initial clique of a+, that is, a clique with no

incoming edges, for node k is in an initial clique iff k is itself an ancestor of every one of its

ancestors. Since every node in G + has at least L-1 predecessors, there can be only one initial

clique, it has cardinality at least L, and every process which completes the second stage knows

exactly the set of processes comprising it.

Finally, each process makes a decision based on the initial values of the processes in the initial

clique using any agreed-upon rule. Since all processes know the initial values of all members of

the initial clique, they all reach the same decision.

The correctness of this protocol proves the following theorem.

Theorem II. There is a partially correct consensus protocol in which all nonfaulty
processes always reach a decision, provided no processes die during its execution and a

- 9 -

strict majority of the processes are alive initially.

Acknowledgement
The authors would like to thank John Guttag for helpful discussions during the initial phase

of this work, and Gene Stark for discussion of the results and a careful reading of the text.

References

[DFFLS) Dolev, D., Fischer, M., Fowler, R., Lynch, N. and Strong, R. Efficient Byzantine
Agreement Without Authentication. In preparation.

[DLM) DeMillo, R., Lynch, N. and Merritt, M. Cryptographic Protocols. Proc. 1-lth ACM
Sump. on Theoru of Computing (1982), 383-400.

[DSl] Dolev, D. and Strong, R. Distributed Commit With Bounded Waiting. Proc. 2nd
Annual IEEE Sumposium on Reliabilitu in Distributed Software and Database
Sustems (1982).

[DS2] Dolev, D. and Strong, R. Polynomial Algorithms for Byzantine Agreement.
Proc. 1-lth ACM Sump. on Theor11 of Computing (1982), 401-407.

[FL] Fischer, M. and Lynch, N. A Lower Bound for the Time to Assure Interactive
Consistency. Information Processing Lettera 1-I, 4 (1082), 183-186.

[G] Garcia-Molina, H. Elections in a Distributed Computing System. IEEE
Transactions on Computers Vol. C-91, No. 1 (1982).

[LFF) Lynch, N., Fischer, M. and Fowler, R. A Simple and Efficient Byzantine Generals
Algorithm. Proc. 2nd Annual IEEE Sumposium on Reliabilit11 in Distributed
Software and Database Sustems (1982).

[La] Lampson, B. Replicated Commit. CSL Notebook Entry, Xerox Palo Alto Research
Center (1981).

[Le] LeLann, G. Private communication, quoted in [La).

[Li] Lindsay, B. et al. Notes on Distributed Databases. IBM Research Report RJ2571
(1979).

[LS] Lampson, B. and Sturgis, H. Crash Recovery in a Distributed Data Storage System.
Xerox Palo Alto Research Center Manuscript (1979).

[LSP] Lamport, L., Shostak, R. and Pease, M. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Sustems .j,, 3 (1982), 382-401.

[PSL] Pease, M., Shostak, R. and Lamport, L. Reaching Agreement in the Presence of
Faults. J. ACM 27, 2 (1980), 228-234.

[R] Reed, D. Naming and Synchronization 111 a Decentralized Conputer System.
Ph.D. Thesis, Massachusetts Institute of Technology. Technical Report
MIT'/LCS/I'R-205 (1978).

f I

1-··

- 10 -

[RSL] Rosenkrantz, D., Stearns, R. and Lewis, P. System Level Concurrency Control for
Distributed Database Systems. ACM Tranaactiona on Data6aae St1Btema 9, 2
(1978), 178-198.

[SJ Skeen, D. A Decentralized Termination Protocol. {Proc. ~d Annual IEEE
S11mp0Bium on Relia6ilit11 in Diatri6uted Software and Data6aae S11Btema (1982)
27-32.

[SS] Skeen, D. and Stonebraker, M. A Formal Model of Crash Recovery in a Distributed
Database Systems. Proc. 5th Berkele11 Workahop on Diatri6uted Data Management
and Computer Networka (1981), 129-142.

