
THE DESIGN OF A MUL Tl PROCESSOR DEVELOPMENT SYSTEM

Thomas Lee Anderson

© Massachusetts Institute of Technology

September 1, 1982

This research was supported by the Advanced Research Projects Agency of the
Department fo Defense and was monitored by the Office of Naval Research under con·
tract number N00014-75·C·0661.

Cambridge ·

Massachusetts Institute of Technology
Laboratory for Computer Science

Massachuetts 02139

·-------···------ --- -----

This page intentionally left blank!!

The Design of a Multiprocessor Development System

by

Thomas Lee Anderson

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 1982 in partial fulfillment of the

requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

Abstract

A multiprocessor development system has been designed and a prototype system
is being constructed. The system, known as Concert, is intended to support multipro·
cessor research efforts at M.l.T. The motivation for Concert and the project history are
summarized briefly. Some intended applications are also identified.

The system incorporates the RingBus architecture, a novel scheme for intercon·
necting processors and memory in a tightly-coupled multiprocessor system. The archi·
tecture is described both in its general form and in the particular implementation used
in the system. The results of some analysis and synthesis of the architecture are sum·
marized.

The design of the Concert multiprocessor development system is described, with
particular emphasis on the tradeoffs considered in the design process. The design of
two particular hardware modules is discussed in considerable detail. Finally, some
suggestions are offered for future use of the system and further investigation into the
RingBus architecture.

Name and Title of Thesis Supervisor:

Robert H. Halstead, Jr.,
Assistant Professor of Computer Science and Engineering

Key Words and Phrases:

3

multiprocessor systems, segmented computer buses, parallel processing,
computer architecture

--------~ ----

Acknowledgements

There are numerous people whose assistance on the Concert project was instru·
mental in the completion of this thesis. The project leaders, Richard Zippel and Robert
Halstead, provided constant guidance throughout all phases of the project. The
software members of the team - Dave Alpern and John Morrison - have contributed
in numerous ways to the project. Tom Sterling, who intends to use the system for his
own thesis work, assisted with suggestions on several aspects of the hardware design,
particularly hardware monitoring. His interest as a potential user has helped to insure
that we stayed on the track of making the system a useful tool for the M.l.T. computing
community.

The Real Time Systems Group, under the leadership of Steve Ward, has provided
both a special place to work and a great deal of assistance. The hardware expertise
of numerous members of the group has undoubtedly helped me to avert some major
problems. The group also provided the computing facilities and text processing capa·
bilities to produce this thesis. The support of Michael Dertouzos, Director of the La·
boratory for Computer Science, has also been crucial. Without his assistance in ob·
taining funds for both students and hardware, it would have been impossible to con·
struct a prototype system.

My officemate Jim Troisi deserves thanks for his assistance in spicing up my ar·
biter simulator and for his interest in the project and willingness to hear my complaints
and problems. Finally, I owe a special debt to my thesis advisor, Bert Halstead. Bert's
RingBus Architecture provided the basis for most of the interesting aspects of the sys­
tem design, and his suggestions on the design itself were frequent and helpful. It is
largely because of his encouragement and drive that I was able to complete this thesis.

Acknowledgements 4

TABLE OF CONTENTS

1: Introduction

2: Background on the Concert Project
2.1: Multiprocessor Research at M.1.T.
2.2: Project History
2.3: Suggested Applications
2.4: Design Goals

3: The RingBus Architecture
3.1: Dimensions of Multiprocessing
3.2: The General RingBus Architecture
3.3: Analysis of the RingBus Architecture

3.3.1: Major Implementation Options
3.3.2: Requesting and Granting
3.3.3: The Role of the Arbiter
3.3.4: Arbiter Priority Schemes
3.3.5: Arbitration Algorithms

3.4: Simulation of the RingBus Architecture

4: The Concert System Architecture
4.1 : The Concert RingBus Implementation

4.1.1: The Node
4.1.2: The Slice
4.1.3: The Ring
4.1.4: Multi-Ring Systems

4.2: Concert Terminology
4.3: The Concert Address Space
4.4: Definition of the RingBus

5: The Design of the RingBus Interface Board
5.1 : Global Registers

5.1.1 : The Slice Reset Register
5.1.2: The Node Interrupt Registers
5.1.3: The Slice Protection Register
5.1 .4: Support for Hardware Monitoring
5.1.5: Global Register Addresses

5.2: Access Control
5.2.1 : Basic Requirements
5.2.2: Access Path Options
5.2.3: The Arbiter Interface

5.3: Access Support
5.3.1 : Bus Interfaces
5.3.2: Support for Atomic Operations
5.3.3: Abort Operations on the RingBus

Contents

Thomas Lee Anderson

7.

9.
9.

11.
12.
14.

16.
16.
20.
22.
23.
24.
27.
30.
35.
43.

49.
49.
50.
52.
55.
56.
56.
58.
63.

68.
68.
69.
70.
71.
72.
76.
n.
78.
79.
85.
86.
87.
89.
90.

5.

The Design of a Multiprocessor Development System

5.4: Multibus Arbitration

6: The Design of the RingBus Arbiter
6.1: Overview of the Arbiter
6.2: Examining the Requests
6.3: Granting the Requests
6.4: Generating the Enable Signals
6.5: The Final Design

6.5.1: The Arbitration Scheme
6.5.2: Flexibility
6.5.3: Practical Issues

7: Conclusions
7.1: Summary
7.2: Suggestions for Future Research

Bibliography

6.

91.

93.
93.
96.
99.

106.
107.
107.
112.
113.

116.
116.
117.

119.

Contents

Thomas Lee Anderson

Chapter 1: Introduction

Several months ago, a research group was formed under the auspices of the Real

Time Systems Group in the Laboratory for Computer Science at M.1.T. to develop a

multiprocessor development system. The system, now known as "Concert," is intended

as a tool to allow researchers at M.l.T. to experiment with multiprocessing ideas and

concepts on a working multiprocessor system. A prototype version of this system has

been designed and is now under construction.

This thesis documents the hardware design of the prototype system. It starts by

providing background on the project and the motivation for Concert in Chapter 2.

There has been considerable interest within the M.l.T. computing community in the use

of the system for a variety of applications. Chapter 2 briefly discusses many of these

applications, some of which will be undertaken within the next few months.

The design of the Concert multiprocessor development system is outlined from two

angles. First, Chapter 3 describes the RingBus architecture, a scheme for intercon­

necting processors and global memory in a tightly-coupled multiprocessor system.

Some effort was spent in analyzing and simulating this architecture, and the results of

this work are summarized.

The remainder of the thesis describes the system that is being constructed. The

system is interesting both in its own right - as a multiprocessing research vehicle for

the M.l.T. computing community - and as the first hardware implementation of the

RingBus architecture. Chapter 4 describes the implementation at the block-diagram

Chapter 1: Introduction 7.

-· -·-- --------

The Design of a Multiprocessor Development System

level and identifies the major components of the design effort.

The thesis project primarily involved the design of two hardware modules, and

these are discussed in considerable detail in Chapters 5 and 6. Particular attention Is

paid to the tradeoffs considered in the design process and the reasons particular im­

plementation decisions were made. The thesis Is intended to document the system as

it currently exists, but also to be an interesting case study in hardware design.

Finally, Chapter 7 concludes the thesis by evaluating the current state of the Con­

cert project and the future usefulness of the system. Some suggestions are offered for

future applications work on the multiprocessor development system as well as for more

investigation into the RingBus architecture.

8. Chapter 1 : Introduction

Thomas Lee Anderson

Chapter 2: Background on the Concert Project

This chapter describes the effort to build a multiprocessor development system at

M.l.T. After establishing the research framework for the use of such a system, lt gives

a brief history of the project and lists some potential applications which guided the sys­

tem specification.

2.1: Multiprocessor Research at M.l.T.

It is a truism of computer science that single processors are reaching the limits of

their performance. Such fundamental physical constants as the speed of light place

hard limits on the speed which a single computer can ever attain, and industry Is fast

approaching these limits on several fronts. Given this, a considerable portion of

current research in computer science and engineering is devoted to the design and

analysis of multiprocessor systems. There are several foci for this research, including

multiprocessor programming models, distributed processing, and multiprocessor archi·

tectures.

Like many other research institutions, M.l.T. is actively engaged in a wide range of

multiprocessing research. Several groups are studying architectures for multiprocessor

systems; others are working on the software aspects of multiprocessing, including

operating systems, parallel algorithms and fault-tolerance. Many more people are doing

research not in multiprocessing per se, but rather in applications which are particularly

Section 2.1: Multiprocessor Research at M.l.T. 9.

The Design of a Multiprocessor Development System

well-suited for implementation in a multiprocessing environment.

At the present time, most research of this nature is carried out by software simula·

tion. The task of simulating parallel execution of multiple processors Is not difficult in

theory, except for a few thorny timing and synchronization issues. The problem is that

software simulation is a painfully slow method for testing parallel programs. Even on

fairly fast machines, the time necessary for simulation of realistic programs is tremen·

do us.

The reason for this is simple. If a single processor computer is used to simulate a

multiprocessor of many nodes, the simulator must sequentially execute tasks intended

to be performed in parallel. The problem is compounded if the computer must be

time-shared with other users, as is generally the case at M.l.T. However, if a working

multiprocessor is available to these researchers, at least some of the parallelism in the

application programs can be exploited in hardware rather than merely simulated. The

multiprocessor development system was conceived to satisfy exactly this need.

The goal of the project has been to provide researchers with a readily-available

multiprocessor system on which to work. The system will be particularly useful for

groups who want to investigate the use of multiprocessors, but don't wish to spend a

large amount of time on the construction of a system. For people investigating parallel

algorithms or distributed software, the system will provide an actual multiprocessor on

which to try out their ideas.

Concert also has some potential uses for research groups interested in multipro·

cessor architectures. They can use software to simulate their architecture or processor

interconnection strategy while still exploiting the inherent parallelism of the multiproces·

10. Chapter 2: Background on the Concert Project

Thomas Lee Anderson

sor. The system can effectively serve as a stepping stone for those groups who are In­

terested in ultimately building their own hardware.

The motivation for the project is the dream of an easily-configured off-the-shelf

multiprocessor system available to the M.l.T. computing community. The ultimate

scenario is fairly simple. A standard processing node will be designed which can be

connected with other nodes of like kind in an arbitrarily large multiprocessor system. A

large supply of these nodes will be available from the supply room, already built, test­

ed, and ready to be plugged together. Although the final design of the system wlll be

reached by compromise among interested parties, it will have enough features to make

it useful for a large number of engineers and computer scientists at M.l.T.

This brief description captures the essence of a multiprocessor development sys­

tem - availability and ease of use. The intent is that people engaged in research in·

volving multiprocessors will not have to spend time building and debugging their own

systems. They can just grab fifty or a hundred processing nodes, connect them to­

gether in a configuration suitable for their particular needs, and begin playing. This

need not be the ultimate system for them, but rather a "quick and dirty" way to check

out theories, run benchmarks and experiment in general.

2.2: Project History

Discussion on the construction of a multiprocessor development system began in

mid· 1981 in the Real Time Systems Group. Rich Zippel organized a group to investi­

gate the project, and by the end of the year the specification of the system was well

under way. The term "multiprocessor development system" was coined as an analog

Section 2.2: Project History 11.

The Design of a Multiprocessor Development System

to so-called microprocessor development systems. After several earlier choices the

name "Concert" was selected. It is intended to invoke an image of multiple processors

performing independent tasks, but with all tasks aimed at solving a common problem.

The original proposal called for a network of independent processing nodes inter·

connected by dedicated serial lines. Two major problems with this approach - limited

interprocessor communication speed and difficulty in down-line loading code - led to

the choice of a shared-memory system instead. The first such system proposed was

based on a hierarchical bus structure. The amount of hardware necessary to support

this scheme was excessive, and the concern was voiced that bus contention would

severely limit performance.

The crucial juncture in the project occurred early in 1982, when Bert Halstead sug·

gested a circular segmented bus as the top-level interconnection scheme for the sys·

tem. His approach was dubbed "the RingBus architecture," and has been incorporat·

eel into the Concert prototype. The next chapter describes the architecture in detail,

but it is worth noting here that its attractiveness lies in its ability to support simultane·

ous accesses to global memory.

2.3: Suggested Appllcatlons

From its inception, Concert was intended to be a computing resource available to

a wide range of people at M.l.T. Throughout the project, the interest and encourage­

ment of researchers within both Real Time Systems and other groups has been a

strong motivation for its completion. These researchers have proposed a wide variety

of applications for Concert, some of which will be started in the near future. The ma·

12. Chapter 2: Background on the Concert Project

Thomas Lee Anderson

jor applications which have been suggested include the following.

1) The MuNet - The MuNet is a proposed "myriaprocessor" system
developed primarily by Bert Halstead [25-28]. He would like to use
Concert as a testbed to try out various ideas about message-passing
and communication among MuNet nodes.

2) Communications - During the early phases of the project, the Labora­
tory for Information and Decision Systems (LIDS) expressed some in·
terest in using Concert. to simulate communications networks. They
would like to test out routing strategies and communications proto­
cols, and to simulate both existing and proposed network
configurations. This would allow them to vary parameters they could
not touch on an actual operating network.

3) VLSI - Current VLSI circuit simulation and layout programs take a
great deal of time even on large computers. A· multiprocessor system
which could take advantage of parallelism could theoretically speed
up such programs by orders of magnitude. Rich Zippel would like to
use Concert to bring up a circuit simulation program, perhaps a
parallel version of SPICE.

4) Data Flow - Although Concert is not a data flow machine, it could
serve as a testbed for programming and architectural concepts during
the design of a true data flow multiprocessor (5-7,16,24]. Arvind be­
lieves that Concert would be useful in this respect, and has indicated
some interest in using the system.

5) Parallel Control Flow - The control flow approach to multiprocessor
programming has some similarities to data flow [19,54). Tom Sterling
is working on the specification of a dispatcher for a parallel control
flow multiprocessor system. He will use his dispatcher to control a
Concert system and operate it as a parallel control flow machine.

6) High-Performance Graphics - Bert Halstead will use Concert to imple­
ment a high-performance graphics system. He envisions a number of
Concert nodes processing graphics commands and filling up a com­
mon bitmap in global memory. A custom graphics processor will be
built to display the contents of the bitmap memory on a high­
resolution monitor.

Section 2.3: Suggested Applications 13.

----------------- ----------------- ---~-----------------------

The Design of a Multiprocessor Development System

7) Music Synthesis . Bert Halstead also has some interest In the use of
Concert for high-performance music synthesis. For example, if each
Concert node is assigned a voice, the resulting music will be much
more complex than a single processor could generate.

8) Multiprocessor LISP . Bert Halstead and Rich Zippe! are planning to
bring up a multiprocessor version of LISP to run on Concert. This
will be a particularly interesting test of the system in a non-traditional
programming environment.

9) Electrical Demand Simulation · Fred Schweppe and Jim Kirtley of the
Electrical Power Systems Engineering Laboratory (EPSEL) are interest­
ed in using Concert to simulate electrical energy demand in transmis­
sion and distribution systems [34,48-49]. This particular application
could prove a best-case test for Concert, since the inherent locality
of the simulation algorithms produces low bus contention.

2.4: Design Goals

If Concert is to be useful for all the applications listed in the previous section, it

must be flexible as well as easy to use. Specifically, it must support most applications

without the need for hardware redesign. Exceptions will be made primarily for reasons

of efficiency. For example, a specialized dispatcher will be designed for the parallel

control flow machine because a standard Concert node would be too stow. Regard-

less, it would be possible for a standard node to simulate the control flow dispatcher in

software if required.

If Concert is to be a useful tool for the M.l.T. computing community, it must be a

reliable, robust system. There are two ways to approach the issue of reliability. The

first is that the hardware be physically reliable. Experience with previous projects in

the Real Time Systems Group has shown that it is difficult to produce reliable hardware

in a university environment. For this reason, the decision was made that Concert

14. Chapter 2: Background on the Concert Project

Thomas Lee Anderson

would use off-the-shelf boards and other technology whenever possible. If it achieves

its goal of providing off-the-shelf multiprocessing, Concert hardware will be used re·

peatedly by different groups. It is important that it be able to survive multiple applica·

tions without becoming unreliable.

The other main aspect of reliability is software reliability. For the most part this

lies outside the scope of this thesis. However, there are some aspects of the design

which have been included to help support software robustness, and these are identified

as they are encountered.

The basic Concert architecture is designed to support several dozen processing

nodes, but the ultimate system will support hundreds. This implies that the hardware

must be relatively inexpensive. For example, using fancy floating-point processors for

each node would certainly produce a very powerful machine. However, it would be im·

practical for the scale of research envisioned for the system.

These considerations led to four major goals for the Concert multiprocessor

development system: low cost, flexibility, reliability, and ease of use .. These goals have

permeated every aspect of the hardware (and software) design. The remainder of this

thesis describes the attempt to meet these goals. It outlines the Concert system archi·

tecture and describes in considerable detail the specific design responsibilities for the

thesis project.

Section 2.4: Design Goals 15.

The Design of a Multiprocessor Development System

Chapter 3: The RingBus Architecture

This chapter outlines the RingBus architecture, a scheme for interconnecting pro·

cessors in a shared-memory multiprocessor system. It presents some background ter­

minology and then describes the .architecture in its general form. The specific imple·

mentation used in Concert is discussed in Chapter 4.

3.1: Dimensions of Multiprocessing

There is a wide variety of ways to look at 0 multiprocessing." In 1966, Flynn pub·

lished a classification of computers [20) which is still In use today. He termed the

common garden-variety computer a Single Instruction stream, Single Data stream (SISD)

machine, because it consists of one control unit whose instructions control a single

data path. The majority of computers today are still essentially SISD machines,

although a slight degree of parallel processing is accomplished by separate 1/0 pro­

cessors and the like.

The only class of computers other than SISD to be implemented widely has been

SIMD (Single Instruction, Multiple Data), often called parallel processors. These

machines contain a single instruction stream and control unit which manipulates multi­

ple data paths. Some computers in this class are called array processors, [8, 11,36,53)

since the elements of an array may be fed in parallel into the data units. Associative

processors [10,22,59) are also generally considered SIMD machines.

Flynn's MISD category, in which multiple control units manipulate a single data

16. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

path, has not turned out to be very useful. Pipelined processors [41,42) are sometimes

considered MISD machines, although this is a controversial categorization. Generally,

neither SIMD nor MISD machines are considered "true" multiprocessors.

The final, and most complex, class of machines is MIMD, in which multiple intelli·

gent control units manipulate multiple data paths. The most common MIMD

configuration is a collection of independent processors, each with its own instruction

and data streams. These processors are interconnected in some fashion, so that they

can cooperate in the solution of a single problem.

There are two primary subdivisions of MIMD machines. The processors in a

loosely-coupled multiprocessor system communicate by sending messages over dedicat·

ed links or via a communications network. Such a configuration encourages a

message-passing style of programming, in which subtasks execute in parallel on

different virtual (and perhaps physical) machines and send commands back and forth.

Loosely·coupled systems are sometimes called "multiple computer systems" rather than

"multiprocessors" (17-18].

Tightly-coupled systems contains processors which communicate via shared

memory, and are generally considered to be "true" multiprocessors. They encourage a

programming style in which shared memory locations, often protected by semaphores,

are used to pass information between processors and to control program flow.

There are a variety of techniques for interconnecting processors and memory in a

tightly-coupled multiprocessor system. The simplest technology is a single shared bus.

Tightly-coupled multiprocessors in which accesses to shared memory are made by

means of a central system bus are often called common-bus systems. This term em-

Section 3.1: Dimensions of Multiprocessing 17.

The Design of a Multiprocessor Development System

phaslzes the fact that the processors must contend for the bus if they wish to access

shared memory. This contention places some inherent limitations on performance.

A variety of approaches has been tried to ease the contention problem. One par­

tial solution is to give each processor its own local memory for instructions and private

data. Shared, or global, memory is used only for shared data structures and for pass­

ing information between nodes. If the majority of a processor's accesses are to its

own local memory, and this memory is available without contention, the speedup over a

system with only global memory can be quite dramatic.

Even with generous local memories, the number of processors which may be

placed on a single global bus is small, on the order of a dozen or so. Beyond this

point, adding additional nodes does not increase the performance; bus contention

negates the parallelism gained by the extra nodes. The simple local/global division Is

sometimes extended to a hierarchy of buses to ameliorate this problem. In such a sys­

tem, an attempt is made to place shared data in a location easily accessible to all

nodes which need access to it. If this is done property, the so-called "principle of lo­

cality" tends to keep references to global memory as local as possible.

Figure 1 shows a typical multiprocessor system with a hierarchical bus structure.

A group of processors on a common bus form a cluster. The clusters are themselves

connected through address maps along a common system bus. If two tasks frequently

access a particular piece of data, an intelligent task and memory allocation scheme

might assign the tasks to the nodes labelled B 1 and B 2 and place the data in the

block of global memory labeled B. Since both processors are in the same cluster· as

the data, they can access it without tying up the system bus. However, if the node la·

18. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

belled A 3 wishes to access that same data, it must use the system bus to get from its

cluster to the desired location in the destination cluster.

Ouster A QusterB ClusterC

System Bus

Figure 1 : Hierarchical Bus Architecture

Even in a hierarchical bus system, contention places limits on the performance.

The same constraints that limit the number of processors that may be placed on a sin·

gle bus apply even more severely to the number of clusters on the system bus. Repli·

eating buses, thereby providing multiple paths between processors and memory

modules, is another approach to reducing memory contention (51-52). The extreme -

providing as many paths as processors - is usually implemented by using a crossbar

switch or similar technology [39,57,58). If the switching logic is migrated to the

memory modules, the result is a system of processors and mufti-port memories, each

with as many ports as processors.

The basic Concert system is a tightly-coupled multiprocessor, since it is composed

of independent microprocessor nodes which communicate via shared memory. The ul-

Section 3.1 : Dimensions of Multiprocessing 19.

The Design of a Multiprocessor Development System

timate Concert system will be a loosely-coupled network of tightly-coupled multiproces­

sors. The system architecture for a basic Concert system uses a hierarchy of buses,

but there's an important difference from the organization of Figure 1. The top-level

"system" bus is actually formed from a series of bus segments, which may carry out in·

dependent accesses to blocks of global memory or may be connected to carry out

longer accesses. The remainder of this chapter describes this interconnection archi·

tecture.

3.2: The General RingBus Architecture

As discussed in the previous section, bus contention is the major limiting factor In

the performance of most common-bus multiprocessor systems. Bert Halstead has pro·

posed the RingBus architecture, a processor and memory interconnection scheme

which holds the promise of expanding these limits. More importantly, the hardware re·

quired to support this architecture is less than that required in many previous tightly·

coupled multiprocessor systems. The RingBus architecture was chosen for Concert

precisely because of these characteristics.

Figure 2 shows a simple picture of a RingBus-based multiprocessor system. The

configuration is a ring of processing slices, interconnected by RingBus segments.

Each slice contains a block of global memory and, generally, one or more processing

nodes. A node contains at least a processor, and may also include local memory or

other private resources. The RingBus is a single-transaction (read and write) bus

which is under the control of a central arbiter.

20. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

Slice

Slice Slice

Slice Slice

Slice Slice

Slice

Figure 2: RingBus Multiprocessor System

The key attribute of the RingBus architecture is that different transactions may be

carried out simultaneously on different RingBus segments. Several processors may be

carrying out independent accesses to different blocks of global memory in a single

ring. All accesses to global memory are under the control of the arbiter, which periodi·

cally examines and grants requests from the slices. In general, requests may be grant·

eel (and therefore carried out) simultaneously if they do not require any common seg.

ments on the RingBus. The arbiter can cause multiple segments to be connected to·

gether to perform a single memory access.

The ability to carry out multiple memory accesses simultaneously is what makes

the RingBus architecture promising as a multiprocessor interconnection scheme. Most

Section 3.2: The General RingBus Architecture 21.

---- -------

The Design of a Multiprocessor Development System

methods for allowing parallel access to global memory in tightly-coupled multiproces·

sors require expensive hardware like crossbar switches. The RingBus architecture is a

lower-cost alternative which should still yield performance superior to that of common·

bus multiprocessors. The idea of using a segmented bus is not original, but it has only

rarely been investigated before (4,21].

The next chapter describes the specific implementation of the RingBus architecture

which was used as the top-level interconnection scheme for the Concert multiprocessor

development system. The design of the hardware to support this architecture

comprised the bulk of the thesis project. However, some effort was devoted to investi·

gating the architecture itself, both through analysis and simulation.

3.3: Analysis of the RingBus Architecture

Formal analysis of most aspects of computer architecture is notoriously difficult.

Most believable results require some knowledge of the programs which would be run

on the machine being simulated. For this reason, software simulation is generally con·

sidered more useful than formal models. In the case of the RingBus architecture, both

simulation and the design of a working system have t>een employed. However, some

simple analysis was undertaken to investigate useful properties of the architecture.

This section outlines some of these properties and describes how they influenced the

design.

22. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

3.3.1: Major Implementation Options

There are a number of implementation options which affect how much parallelism

the RingBus architecture can provide. The most fundamental is whether the RingBus

is unidirectional or bidirectional. If it is unidirectional, then address and control lines

need to be propagated in only one direction (clockwise or counterclockwise) around

the ring. A bidirectional bus allows these lines to propagate in either direction. In ei­

ther case, the data lines must be bidirectional to support both reads and writes or two

sets of unidirectional data lines must be provided.

The choice of directionality on the RingBus is not trivial. A unidirectional bus re­

quires a minimum of hardware. but places some inherent limitations on performance.

For example, the worst-case access of a processor to global memory in the slice

"behind" it requires the entire RingBus for completion. The worst-case access on a

bidirectional RingBus takes only about half of the segments, but more hardware Is re·

quired to support the bidirectionality. In addition, the arbiter has to be more clever if it

is to take advantage of the bidirectional capability.

Another factor which affects the performance of the architecture is the degree of

parallelism in each slice. For example, a slice may allow an incoming request on a

RingBus segment to access its global memory at the same time a request from a pro­

cessor within the slice is being propagated out along the other RingBus segment.

Again, the arbiter needs to know if such parallelism exists and how best to exploit it.

The design options for the RingBus directionality and the parallelism in each slice

are discussed in detail in Chapter 5. The two primary issues involved are the amount

of hardware required in the slice and the time required by the arbiter to grant a re-

Section 3.3.1 : Major Implementation Options 23.

The Design of a Multiprocessor Development System

quest. Determining the tradeoffs between these costs and the parallelism on the

Ringbus was a major part of the design effort.

3.3.2: Requesting and Granting

The problem of how to identify simultaneously grantable requests is a fundamental

one in a RingBus-based system. The first part of this task is to determine the

resources required to carry out a particular access. These requirements may be simply

expressed in the Segment Needed List (SNL), which identifies the RingBus segments

needed to complete an access. Consider the eight-slice ring shown in Figure 3, in

which slices and segments are numbered in order starting at an arbitrary point. Sup-

pose that the following requests are made to the arbiter with no accesses in progress

and no requests pending:

1-3; 2-+4; 4-1; s-5; e-4

The format for the requests Is simple; S -o is a request to the arbiter from Slice S

for access to global resources in Slice D. Given this set of requests, the arbiter must

then decide which requests to grant and which to defer. Table 1 expresses the same

set of requests in a slightly different format which anticipates the design of the inter-

face between the arbiter and the slices. The REQ line from a slice is asserted if it is

making a request, and the DST lines identify the destination slice for a request.
1

In general, the segments needed for a request depend upon the direction of the

access on the RingBus. Table 2 shows the SNLs for both clockwise and counterclock·

wise accesses for the requests of Table 1. If the RingBus is unidirectional, then all re-

quests propagate in one direction around the ring. If the RingBus is bidirectional, then

24. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

1

0 2

.----.10

7 ·3
.__ _ __,, 7

6 4

5

Figure 3: Ring with Slice and Segment Numbers

Source REQ DST

0 0 x
1 1 3
2 1 4
3 0 x
4 1 7
5 1 5
6 1 3
7 0 x

Table 1: Sample Round of Requests

a request may propagate in either direction. The directionality of the ring in Figure 3

is intentionally left unspecified.

The SNL may be translated into a binary vector simply by placing a "1" in a bit if

the segment is required, or a "O" if not. For example, the SNL for a clockwise access

Section 3.3.2: Requesting and Granting 25.

~--~~---- -- - ~------

The Design of a Multiprocessor Development System

segment Clockwise Access Counterclockwise Access
request 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7

1-3 x x x x x x x x x x
2-4 x x x x x x x x x x
4-7 x x x x x x x x x x
5-5 x x
6-4 x x x x x x x x x x

Table 2: Segment Needed Lists for Requests of Table 1

for the request 1-3 is "01110000." Given the SNLs for two requests, it is a simple

matter to determine if they are simultaneously grantable. Two global accesses may be

carried out simultaneously if they do not require any common RingBus segments.

Thus, two requests may be granted concurrently if the ANO of their two SNLs has no

bits set.

In general, when the arbiter is deciding whether to grant a request there are some

number of accesses already in progress. Therefore, it is necessary to be able to

efficiently determine if a request conflicts with any of a number of requests already

granted or in progress. This also turns out to be simple. A composite list of segments

in use thus far may be maintained, and the request under consideration is ANOed with

this list. Each time a new request is granted, its SNL is ORed with the list to produce

a new composite list.

26. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

3.3.3: The Role of the Arbiter

The arbiter is responsible for controlling all accesses to global memory on the

RingBus. It takes as input request lines from the slices, and sends back grant signals

which control the flow of information on the AingBus segments. The first cut at the ar-

biter is a block of combinational logic mapping request inputs to grant outputs. The

arbiter's inputs must remain stable long enough for it to make a decision; likewise its

outputs to the slices must remain stable while it is making decisions. Thus, both the

request inputs and grant outputs must be latched. Figure 4 shows a simple model for
'

such an arbiter in ring with n slices.

Request lines

from Slice 0

Request lines

from Slice n-1

Grant lines

to Slice 0

Grant lines

to Slice n-1

Arbitration
Logic

Figure 4: Combinational Model of the Arbiter

Section 3.3.3: The Role of the Arbiter 27.

The Design of a Multiprocessor Development System

The arbiter latches its inputs and outputs on a synchronous clock. The time

between clock pulses is the arbiter cycle, which is determined by the latency of the ar­

bitration logic. Each time a cycle begins, a round of requests from the slices is

latched in. At the end of the cycle, the lines indicating which of the requests have

been granted are latched and sent back to the slices.

Unfortunately, the simple model of Figure 4 is insufficient on two counts. First, the

arbiter must have some sort of state to record which requests are currently in progress.

Since a RingBus access may take an arbitrary number of arbiter cycles to complete,

the arbiter must insure that once a request is granted it remains granted until comple­

tion. Since the grant signals sent to the slices must be latched anyway, the obvious

way to insure this is to feed them back into the arbiter. Figure 5 shows the resulting

finite-state machine implementation of the arbiter.

The arbiter implementation of Figure 5, while more realistic than a totally combina­

tional version, still lacks one important property. For the arbiter to be useful in a real

system, it must eventually grant all requests. Some of the requests in a given round

may require common RingBus segments. Thus, in general, not all requests can be

granted in a single arbiter cycle. Any ungranted requests will still be pending on sub·

sequent arbiter cycles. It is possible that whatever method the arbiter uses to select

among conflicting requests will result in some requests never being granted.

This problem may be rectified by maintaining some state in the arbiter to insure

that pending requests are eventually granted. This is the simplest form of fairness for

an arbitration scheme; a request can never be locked out forever. A more strict

definition of fairness in the RingBus architecture requires that all nodes have an equal

28. Chapter 3: The RingBus Architecture

Request lines

from Slice 0

Request lines

from Slice n-1

Grant lines

to Slice 0

Grant lines

to Slice n-1

Arbitration
Logic

Thomas Lee Anderson

Figure 5: Finite-State Machine Model of the Arbiter

chance for global memory access. If all slices contain an equal number of nodes, this

is equivalent to the requirement that all slices have an equal chance at global

resources.

If the slices have different numbers of nodes, the problem of guaranteeing fairness

becomes more difficult. In this case, the arbiter needs to know the exact configuration

of the system, including the number of nodes in each slice. All arbitration schemes

discussed in this chapter consider all slices equivalent. Thus, they do not guarantee

Section 3.3.3: The Role of the Arbiter 29.

The Design of a Multiprocessor Development System

that all nodes have an equal chance for access to global resources.

The next section discusses some schemes to enforce a priority order on the re·

quests. Such an order may be used to insure that a pending request is eventually

granted by assigning it a higher priority than incoming new requests. The finite-state

machine model of the arbiter is still valid, but it must incorporate some additional state

to insure fairness. Figure 6 shows a modified model which includes some priority state.

3.3.4: Arbiter Priority Schemes

A priority ordering on the requests to the RingBus arbiter is required to insure that

all requests will eventually be granted. For a ring of n slices, no more than n re·

quests may be made to the arbiter at any one time. Thus, only n priority levels are re·

quired. If each priority level can contain only one request, then there are n I possible

priority orderings. If more than one request can have the same priority, there are n n

combinations.

There are two fundamentally different ways for the arbiter to order the requests.

The first approach is a history priority scheme, in which requests are ordered by age.

There are several possible implementations to support such a scheme. For example,

the arbiter might include a "history counter" for each source. The priority ordering

may be determined from the values of these counters by a comparison tree or similar

hardware. A new request starts at the lowest priority, and its priority is increased by

incrementing its counter as long as it is pending. Requests of the same age may have

30. Chapter 3: The RingBus Architecture

,--···----- ----------

Request lines

from Slice 0

Request lines

from Slice n-1

Grant lines

to Slice 0

Grant lines

to Slice n-1

Priority
State

Arbitration
Logic

Figure 6: Model of Arbiter with Priority

Thomas Lee Anderson

the same priority; in such a case, the arbiter must decide among them arbitrarily.

Since the history counters need to hold one of n possible values, the number of

bits required is the logarithm of the number of slices. The issue of when to increment

the counters is not as simple as it might seem. Since each request may take an arbi-

trary number of arbiter cycles to complete, the arbiter may have periods of arbitrarily

Section 3.3.4: Arbiter Priority Schemes 31.

The Design of a Multiprocessor Development System

many cycles in which it can grant no new requests. If the history counters are incre·

mented each arbiter cycle, they can eventually overflow and older requests can end up

with lower priority than newer requests.

A better, but more difficult, approach is to increment the history counters up to the

maximum value to fill in "holes" in the priority ordering. Once a request has reached

the top priority, it remains there until granted. If only one request is desired at each

priority level, then the ordering of requests which arrive in the same cycle may be

chosen arbitrarily. If multiple requests may have the same priority, a curious result en·

sues. As long as two requests from different cycles always have different priorities,

then the numt>er of requests possible at priority level p in a ring of n slices is n -p.

This assumes that the priority p ranges from O to n-1, with n-1 being the top priority.

The "hole-filling" scheme suggests an alternative implementation for history priority

a queue for the requests. The queue needs one stage for each slice in the ring.

Presumably the stages would be completely ordered, so that each stage represents a

fixed priority level and contains at most one request. Each time a new request arrives,

the earlier requests are pushed up and the new request is added to the bottom.

There are several serious problems with this approach. As discussed in the next

section, there are circumstances in which it is valid to grant a request even if requests

of higher priority remain ungranted. Once such requests complete, "holes" are left in

the request queue. If the queue only has as many elements as slices, it is necessary

to fill the holes in order to fit all the requests in. This requires the ability to selectively

shift elements in the queue, which is not provided by many possible implementations.

If the elements of the queue are available in parallel, it is possible to simultaneous·

32. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

ly examine requests of different priority levels. If not, then a shift must be performed to

present each request in turn in priority order. In a ring with n slices, as many as n re·

quests may be granted in a single arbiter cycle. Thus, it may be necessary to shift n

times. Similarly, as many as n new requests may occur in a single cycle. Thus1 it is

necessary either to shift as many as n times each cycle or to have some way of load·

ing the queue in parallel.

The amount of hardware necessary to implement the history counter scheme is far

from trivial, since it involves comparison hardware to determine the priority ordering.

On the other hand, the queue implementation requires some clever hardware and may

exact a time penalty for the shifting around of requests in the queue.

A history priority scheme has the advantage that requests are granted by age, a

reasonable criterion for deciding conflicts. The other major class of methods to order

the requests to the arbiter involves priority schemes which do not rely on the nature of

the requests themselves. A fixed priority ordering is one such method, but it does not

give all slices an equal access to global resources.

One scheme commonly used in bus arbitration is rotating priority. This is basically

a fixed priority ordering which rotates among the slices. Such an approach works with

the RingBus as well. The simplest form just assigns the top priority slot to a different

slice each cycle. For example, consider again an eight-segment RingBus with the

slices numbered from 0 to 7. Table 3 shows the priority orderings for nine consecutive

arbiter cycles. From this representation, it is clear how the term rotating arose. Unlike

some of the history schemes, each priority level has exactly one request at a time.

Section 3.3.4: Arbiter Priority Schemes 33.

------ ------~ -

The Design of a Multiprocessor Development System

Priority Slice Priorities for each Cycle
Level n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8
lf(fow) ~ 4 0 6 7 lr 1 2 -3

1 4 5 6 7 0 1 2 3 4
2 5 6 7 0 1 2 3 4 5
3 6 7 0 1 2 3 4 5 6
4 7 0 1 2 3 4 5 6 7
5 0 1 2 3 4 5 6 7 0
6 1 2 3 4 5 6 7 0 1
7 (high) 2 3 4 5 6 7 0 1 2

Table 3: Nine Consecutive Cycles of Rotating Priority

The implementation for rotating priority is extremely simple - a counter which

identifies the current top priority slice and which is incremented each cycle. In an

n -slice ring there are only n possible priority orderings, so that the number of bits in

-the counter is log2n. Unfortunately, this simple scheme will not work for the RingBus.

Unless a request is held at the top priority until it is granted, it may be superseded by

a new request. It is possible that a request is not granted (because of conflicts with

accesses already in progress) every time it reaches top priority, and is therefore locked

out forever.

A more sophisticated version of rotating priority solves this problem. A request is

held at the top priority until it is granted. Once the request is granted, the priority is

rotated so that the next slice which has a pending ungranted request gets top priority.

The hardware to implement such a scheme is a little more substantial. Instead of a

simple "top priority" counter which gets incremented each cycle, more complicated

logic is needed to determine the next value of the counter based on the its current

value and the current ungranted requests.

34. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

3.3.5: Arbitration Algorithms

Before attempting to design the arbiter, some effort was spent in examining some

possible arbitration algorithms to better understand the function which has to be per-

formed. Assuming some sort of priority ordering on the requests, the basic algorithm is

quite simple - try to grant the requests in priority order. However, there are several

factors to consider.

The first point is that requests may take an arbitrary number of arbiter cycles to

complete. This requires that any request, once granted, must be allowed to complete

without interruption. In terms of the arbiter, this implies that all requests which were

granted on a previous cycle and which are still active must be granted again. Algo-

rithm 1 expresses this procedure in a simple Pascal-like language. All algorithms in

this section use this same language.

procedure UPDATE_GRANT;

integer S;
constant NSL;
boolean array REQ[NSL];
boolean array GRANT[NSL];

{

I update the grant list

! current slice being considered
! number of slices, numbered O ... NSL-1
I true if the slice has a request pending
I true if slice's request has been granted

! update the grant list with those requests granted
! but not yet complete

}

for S : = O to (NSL-1) step 1 do
GRANT[S] = GRANT[S] and REQ(S);

Algorithm 1: Updating the Grant List

Section 3.3.5: Arbitration Algorithms 35.

The Design of a Multiprocessor Development System

The GRANT array is the structure that is modified by the arbitration algorithms. In

hardware terms, the array can be thought of as the GRANT lines which feed into the

output latches. At the end of the arbiter cycle, the GRANT ~alues are latched into the

register and sent to the slices. Likewise the value of the REQ array may be thought of

as the latched values of the request lines from the slices. An access is assumed com­

plete once its request line has dropped. Thus, at the start of an arbiter cycle, a re­

quest is still in progress if its bits in the GRANT and REQ arrays are both set.

Once the GRANT array has been updated, the actual arbitration process can OC·

cur. The core of the decision whether or not to grant a request is the SNL abstraction

discussed earlier in this chapter. Two requests may be granted simultaneously if they

require no common RingBus segments. Algorithm 2 is a simple function for identifying

conflicts among requests. It takes as inputs two slice numbers and returns true if the

two requests may be granted simultaneously and false if they may not. It determines

this by comparing the SNLs of the two requests. It uses an unspecified function SNL

which takes a slice number and a segment number and returns true just in case the

specified request needs the specified segment for completion.

There is one other auxiliary routine which is used by the arbitration algorithms.

This procedure, UPDATE-PR/, updates the priority ordering of the requests at the end

of an arbiter cycle. A detailed priority update algorithm is not given because it is so

hardware-dependent and because there are so many possible schemes. The exact ac­

tion taken by UPDATE_PRI depends upon the particular priority scheme and hardware

implementation selected. For example, the rotating priority update algorithm keeps the

priority order the same if the top priority request is ungranted. If it is granted, then the

36. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

function CONFLICT(S1, 82); I returns true if requests of slices
I 81 and 82 require any common segments

integer
boolean

81, 82;
CONFLICT;

extern function SNL(SL,SG); I returns true if request of slice SL needs
I segment SG, else false

constant
integer
boolean

NSL;
SEG;
CON FL;

! number of slices, numbered O ... NSL-1
! current segment being considered
I set true once. a conflict is found

{

}

CONFL : = false;
for SEG : = o to (NSL-1) step 1 do

CONFL : = CONFL or (SNL(S1 ,SEG) and SNL(S2,SEG));
return (CONFL);

Algorithm 2: Identifying Conflicting Requests

priority is rotated to give the highest-priority ungranted request top priority for the next

arbiter cycle. If no requests remain ungranted, the priority might be rotated by one.

The arbitration algorithms assume only that some sort of priority order has been

established. This order is represented by the array PRI, which holds the priority value

for each of the NSL slices in the ring. Each priority value is between O and NSL-1,

with NSL -1 being the highest priority. The algorithms allow for arbitrary priority order­

ings and permit multiple requests at each priority level. They support any of the priori-

ty schemes discussed in the last section, ranging from rotating priority to history

counters.

There are two fundamental goals for the arbitration algorithm, and for the arbiter

itself. It should be fair, giving all slices an equal shot at the RingBus and the global

resources. Of course, this also means that all requests should be eventually granted.

Section 3.3.5: Arbitration Algorithms 37.

The Design of a Multiprocessor Development System

It should also try to exploit the maximum parallelism on the RingBus by granting as

many requests as possible simultaneously. There are several important variations in the

arbitration algorithm which affects its compliance with these design goals. Algorithm 3

is the most straightforward arbitration scheme. It simply iterates down through the

priority levels, attempting to grant all requests at each level. In this manner, requests

of higher priority get a chance to be granted before requests of lower priority.

There are several important points to note about Algorithm 3. The first is that it is

general enough to work with any of the three priority schemes presented in the last

section. The appropriate version of UPDATE-PR/ is chosen to reflect the priority

scheme. If a rotating priority scheme is used, the algorithm may be optimized to

recognize that there is exactly one request at each priority level. The algorithm also

contains calls to UPDATE-GRANT and CONFLICT, as defined earlier.

Although Algorithm 3 appears to be a perfectly reasonable arb.itration method, it

does not guarantee that all requests are eventually granted. The problem arises when

a high priority request does not get granted because of a conflict with a request al·

ready in progress. If this happens, lower priority requests may be granted in that same

cycle. However, it is possible for the high priority request to get locked out forever if

lower priority requests which conflict with it are continually granted. The obvious solu·

tion to the problem is shown in Algorithm 4, which stops granting requests as soon as

a conflict is found.

Algorithm 4 is termed the limited arbitration scheme because it grants fewer re·

quests than does Algorithm 3. This means that it allows fewer simultaneous accesses

on the RingBus, and some of the advantage of the architecture is lost. Fortunately,

38. Chapter 3: The RingBus Architecture

Thomas Lee Anderson

there is a third choice which exploits more parallelism than Algorithm 4 yet insures that

all requests will be eventually granted. This approach, the full arbitration scheme, is

shown in Algorithm 5.

The key is that the problem with Algorithm 3 arises only when it grants lower prior·

ity requests which conflict with ungranted higher priority requests. Algorithm 5 solves

this problem by granting a request only if it does not conflict with either a request al·

ready granted or an ungranted higher priority request. As usual, it checks. for conflicts

by comparing the SNLs of the requests.

All three arbitration algorithms share a fundamental common trait - they make

only one pass through the requests. It is possible to imagine algorithms which make

multiple passes through the requests, trying to achieve the maximum parallelism on the

RingBus. Such schemes require some sort of figure of merit to compare different sets

of grants for the same round of requests. Among the metrics which might be con·

sidered by a multiple-pass arbiter are:

1) Granting each request in as short a time as passible.

2) Granting as many requests as possible simultaneously.

3) Using as many RingBus segments as possible simultaneously.

4) Giving preference to "short" requests, where the length of a request
is defined as the number of RingBus segments in its SNL.

5) Giving preference to "long" requests.

6) Considering both directions on a bidirectional RingBus for each re­
quest.

Section 3.3.5: Arbitration Algorithms 39.

The Design of a Multiprocessor Development System

40.

procedure ARBITRATE; I perform the arbitration

integer S; I current slice being considered
integer C; I competing slice being considered

I current priority being considered
I true if conflict has been found

integer P;
boolean CONFOUND;
boolean array REQ(NSL);
boolean array GRANT[NSL);
integer array PRl[NSL);

I true if the slice has a request pending
I true if slice's request has been granted
I priority of slice's request (ranges

{

}

I between O and NSL-1)

UPDATE... GRANT;

I work down through priority levels

for P : = (NSL-1) to 0 step -1 do

I iterate over the slices

for S : = Oto (NSL-1) step 1 do
if (PRl[S] = P) and REQ[S] and not(GRANT[S])
{

I if the request is the right priority
I and not yet granted, try to grant it

CONFOUND : = false;
for C : == o to (NSL-1) step 1 do

I check for conflicts with requests
I already in progress

if GRANT[C) then
if CONFLICT[S,C] then
{

}

CONFOUND : = true;
exitloop(C);

I if no conflict was found, grant request

if not(CONFOUND) then GRANT(S] : = true;
}

UPDATE...PRI;

Algorithm 3: Initial Arbitration Scheme

Chapter 3: The RingBus Architecture

------------------------~--~----------------

Thomas Lee Anderson

procedure ARBITRATE; I perform the arbitration

integer S; I current slice being considered
integer C; I competing slice being considered

I current priority being considered integer P;
boolean array REO[NSL];
boolean array GRANT(NSL];
integer array PRl[NSL];

I true if the slice has a request pending
I true if slice's request has been granted
I priority of slice's request (ranges

{

}

I between 0 and NSL-1)

UPDATE.. GRANT;

I work down through priority levels

for P : = (NSL-1) to o step -1 do

I iterate over the slices

for s : = o to (NSL-1) step 1 do
if (PRl(S] = P) and REQ[S] and not(GRANT[S]) then
{

I if the request is the right priority
I not yet granted, try to grant It

for C : = O to (NSL-1) step 1 do

I check for conflicts with requests
I already in progress

if GRANT[C] then
if CONFLICT[S,C] then

exitloop(P);

I if no conflict was found, grant request

GRANT[S] : = true;
}

UPDATE.. PR I;

Algorithm 4: Limited Arbitration Scheme

Section 3.3.5: Arbitration Algorithms 41.

The Design of a Multiprocessor Development System

42.

procedure ARBITRATE; I perform the arbitration

integer S; I current slice being considered
integer C; I competing slice being considered

I current priority being considered integer P;
boolean CONFOUND; ! true if conflict has been found
boolean array REO[NSL];
boolean array GAANT[NSL];
integer array PRl(NSL);

! true if the slice has a request pending
I true if slice's request has been granted
I priority of slice's request (ranges

{

}

I between 0 and NSL-1)

UPDATE.. GRANT;

I work down through priority levels

for P : = (NSL-1) to o step -1 do

I iterate over the slices

for S : = O to (NSL-1) step 1 do
if (PAl[S] = P) and REO[S] and not(GRANT[S]) then
{

I if the request is the right priority
I and not yet granted, try to grant it

CONFOUND : = false;
for C : = o to (NSL-1) step 1 do

I check for conflicts with requests in progress
I or ungranted requests of higher priority

if GRANT[CJ or (REQ[C] and (PRl(C]>PRl[S])) then
if CONFLICT[S,C] then
{

}

CONFOUND : = true;
exitloop(C);

! if no conflict was found, grant request

if not(CONFOUND) then GRANT[S] : = true;
}

UPDATE..PRI;

Algorithm 5: Full Arbitration Scheme

Chapter 3: The RingBus Architecture

Thomas Lee Anderson

Multiple-pass arbitration algorithms are not considered in this thesis. The primary

reason for this is the practical difficulty in implementing such an approach in hardware.

Fundamentally, considering different possibilities for the same round of requests re·

quires either parallel hardware or serial passes with the same hardware. Since the

RingBus was investigated in terms of its usefulness for Concert, both implementations

were judged unacceptably costty.

3.4: Simulation of the RingBus Architecture

Simulation has long been a useful tool in the design of multi-level memory sys­

tems, protocols, and other aspects of computer architecture. Likewise, it can have con­

siderable impact on the detailed definition and implementation of a RingBus-based mul·

tiprocessor system. Simulation can help to choose the arbitration and priority schemes

and to assess the impact on performance of some possible variations in the RingBus

architecture. The thesis project included some simulation to help understand these is­

sues for the Concert RingBus implementation.

An arbiter simulator was written in the language C (35] under the UNIX [55]

operating system to test the effects of some different implementations of the RingBus

architecture. Three main parameters were varied - the directionality of the AingBus,

the scheme used to enforce priority, and the actual arbitration algorithm. The program

was designed in a modular fashion to support these variations.

The simulator supports either a unidirectional or bidirectional RingBus. The uni·

directional case allows some parallelism within the slices; an access to the resources in

a slice can be in progress at the same time that a request from a node within the slice

Section 3.4: Simulation of the RingBus Architecture 43.

The Design of a Multiprocessor Development System

is being sent out to another slice. The bidirectional RingBus supports this same type

of parallelism in one direction, but not in the other. Complete details of the two op­

tions are given in Chapter 5; a model for the unidirectional case is shown in Figure

19b and a model for the bidirectional bus in Figure 19f. From the arbiter standpoint,

the difference between the two is reflected purely in the SNLs generated for the re­

quests.

The simulator supports two priority schemes. The first is a history priority scheme

which allows only one request per priority level and shifts requests to fill up holes.

The other is a rotating priority scheme which makes the highest priority ungranted re­

quest the top priority request for the next cycle. In addition, two different arbitration

algorithms are also allowed. The limited arbitration scheme is modelled after Algorithm

4, since it stops granting requests once it encounters one it can't grant. The full arbi­

tration scheme grants any requests which don't conflict with higher priority requests or

requests already granted, and thus follows Algorithm 5. The simple rotating priority

scheme and the arbitration scheme of Algorithm 3 were not supported because, as ex­

plained earlier, they can result in a request being locked out forever.

A simple random number generator program was used to generate lists of requests

to send to the arbiter. It uses a distribution in which accesses from a given slice to

other slices vary as an inverse exponential based upon the distance between the

slices. This distribution was chosen in an attempt to model the pattern of accesses

which might be found in an actual RingBus system if locality was considered in the al­

location of global data to global memory blocks in the slices. The distribution was also

chosen to reflect the Concert RingBus implementation. The majority of the requests

44. Chapter 3: The AingBus Architecture

Thomas Lee Anderson

are assumed to be to global memory within the same slice; in Concert such an access

does not require a request to the arbiter or the use of any RingBus segments. The

least likely access is thus to the same slice, which happens only on an access to glo·

bal control registers.

The request sequences generated by this method are probably not a realistic

model of the memory accesses in the operating Concert system. Regardless, it is in­

teresting to compare the results of variations in the simulator options for a single se·

quence of requests. Table 4 summarizes two such experiments. The first set of

figures was generated by a sequence of 500 requests from each slice. About half of

these requests are null, corresponding to memory accesses within the slice. The

remainder are requests to another slice. The distribution for the requests favors the bl·

directional RingBus, since it makes accesses to slices at the same distance in either

direction around the bus equally likely. The same sequence was run through the ar­

biter simulator eight times, over au variations in the options.

The second set of figures in Table 4 was generated by a different sequence of

500 requests from each slice. The distribution for this sequence favored the unidirec­

tional RingBus, since it considers only one direction. In other words, an access from a

slice to the one "behind" it on the RingBus is very unlikely. The same eight combina·

tions of options were tried.

Table 4 gives four statistics for each of the simulator runs. t T is the total number

of arbiter cycles required to grant all the requests. The average number of cycles a re­

quest had to wait before being granted is shown as t WM . r M is the average number

of requests made to the arbiter each cycle. The parallelism on the RingBus is

Section 3.4: Simulation of the RingBus Architecture 45.

-- ·--~---------

The Design of a Multiprocessor Development System

RingBus Arbiter
Direct. Scheme

Unidir. Limited
Unidir. Limited
Unidir. Full
Unidir. Full
Bidir. Limited
Bidir. Limited
Bidir. Full
Bidir. Full

Priority Bidirectional Bias Unidirectional Bias
Scheme 'r 'WM 'M aM SM 'r 'wM 'M
History 12568 5.29 6.oo 1.94 4.00 IZd{J;j 4.21 0.81
Rotating 2765 6.11 6.21 1.80 4.18 2584 5.47 6.15
History 2344 4.46 5.92 2.13 4.93 2013 3.16 5.61
Rotating 2415 4.81 6.04 2.07 4.78 2149 3.82 5.86
History 2205 3.86 5.75 2.26 4.10 2265 4.08 5.80
Rotating 2351 4.66 6.07 2.12 3.85 2461 5.08 6.15
History 1874 2.52 5.34 2.66 4.82 1927 2.75 5.44
Rotating 1879 2.72 5.54 2.66 4.81 2020 3.24 5.67

t T = Total cycles to grant all requests

'wM = Average cycles waited between request and grant

'M = Average requests made each cycle

aM = Average accesses in progress each cycle

sM = Average number of segments in use each cycle

Table 4: RingBus Arbiter Simulation Results
for Two Sequences of 500 Requests per Slice

aM
~

1.93
2.48
2.32
2.20
2.03
2.59
2.47

SM
4.25
3.79
4.87
4.56
4.09
3.77
4.81
4.59

represented by a M and s M, which list the average number of accesses taking place

and the average number of segments in use on the RingBus each cycle. aM is

equivalent to the average number of requests granted each cycle.

Each sequence has 1994 active (non-null) requests. Once granted, each request

takes one or two cycles to complete. The simulator inserts a null request between any

two consecutive active requests from a single slice, since reading a null request for a

cycle is the only way the arbiter can tell that the previous request is done.

For comparison purposes, a program was also written to simulate the arbiter for a

multiprocessor system in which all the slices are connected along a single common

bus. An idle cycle is required between any two accesses to signal the end of a re-

46. Chapter 3: The RingBus Architecture

----------- ----

Thomas Lee Anderson

quest and to simulate the bus exchange time. The same two priority schemes were

used to perform the arbitration, and simulation runs were made with both priority

schemes for the same two request sequences which produced Table 4. The result for

the common bus simulator is shown in Table 5.

Priority
Scheme

Bidirectional Bias Unidirectional Bias

tr = Total cycles to grant all requests

twM = Average cycles waited by request before grant

r M = Average requests made each cycle

aM = Average accesses in progress each cycle

sM = Average number of segments in use each cycle

Table 5: Common Bus Arbiter Simulation Results
for Two Sequences of 500 Requests per Slice

In a common-bus system, there is only one bus segment and only one request can

be granted at a time, so aM and sM have a maximum value of one. Idle bus cycles

reduce these numbers, although they remain identical. As it turned out, the request

sequences produced a few idle cycles, and so the values of a M and s M are slightly

less than unity. The statistics for both the unidirectional and bidirectional biased se-

quences are identical; the only difference between them is the destinations, which

don't matter to the arbiter of a common bus.

In addition to computing statistics based on rounds of arbitration, the simulator

also displays a crude representation of the RingBus, showing the accesses currently in

Section 3.4: Simulation of the RingBus Architecture 47.

The Design of a Multiprocessor Development System

progress and the segments currently in use. This display capability is due to the

efforts of Jim Troisi, and provides an easy way to observe the activity in the ring.

It is unwise to draw any quantitative conclusions on the basis of the experiments

with the arbiter simulator. However, the results do give a feel for the advantage gained

by a bidirectional RingBus over a unidirectional one, and the variations caused by the

different arbitration algorithms and priority schemes. More credible results would re­

quire more extensive simulations, preferably based on sequences of memory accesses

culled from programs written for a shared-memory multiprocessor system. Such results

could undoubtedly · be used to help make design decisions for future RingBus imple·

mentations.

48. Chapter 3: The RingBus Architecture

-- ------ ------

Thomas lee Anderson

Chapter 4: The Concert System Architecture

This chapter outlines the implementation of the RingBus architecture which was in­

corporated in the Concert multiprocessor development system. It includes a discussion

of the Concert address space anQ the terminology which. is used in the remainder of

the thesis. The detailed design of two custom hardware modules is discussed in the

following chapters.

4.1: The Concert RingBus Implementation

A complete Concert system consists of some number of RingBus rings, intercon­

nected by dedicated serial or parallel lines, as shown in Figure 7. The result Is a

loosely-coupled network of tightly-coupled multiprocessors. The initial hardware and

software design has concentrated on the construction of a single ring, while providing

the hooks for an eventual multi-ring system. Most of the discussion in the remainder of

the thesis concerns a Concert system of only one ring, although mention is made of

some important points about larger systems.

The Concert architecture can best be understood in terms of its hierarchical struc­

ture. The computing power of the system lies in processing nodes, each containing a

processor and, possibly, local memory. Several of these nodes, global memory boards,

and a RingBus interface board comprise a RingBus slice, which is physically housed in

a card cage. Multiple cages connected together by RingBus segments and a RingBus

arbiter form a ring. Finally, one or more rings may be interconnected to form a Con-

Section 4.1: The Concert RingBus Implementation 49.

The Design of a Multiprocessor Development System

Figure 7: Concert System

cert system. Each of the levels in this hierarchy is outlined briefly.

4.1.1: The Node

A Concert processing node contains at least a processor, and generally some

memory and 1/0 ports as well. The Concert prototype uses a Microbar DBC68K pro­

cessor board [13] and a Microbar DBR50 memory board [15] for each node. Figure 8

shows the contents of a DBC68K board. It is centered around the Motorola MC68000

[37], a 16-bit microprocessor with a 24-bit address bus. The DBC68K also contains 24

50. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

bits of parallel 110, two RS·232C serial 1/0 ports, two programmable timers, and a pro·

grammable interrupt controller. Sockets are included for an optional Motorola

MMU68451 memory management unit, 4K bytes of RAM, and 32K bytes of ROM. The

DBR50 memory board contains up to 512K bytes of dynamic RAM, organized as 16·bit

words. It includes refresh circuitry and parity generation and check.

68000

~

.L ~ ...

24 Bits Parallel

2 Serial Ports

,- - - -
I 68451 I

t- - - -:::, Memory 1

1Manager 1

- - r-'
I
I

_l
If'

1/0

71'

Interrupt
Controller

2
Event

Timers

"'
~

Multibus
Backplane

If'-

Multibus
Interface

Figure 8: Concert Node - DBC68K Board

32KROM
4KRAM

7f'

~

Local
Bus

If'

HS Bus
Interface

~ ,

Both boards provide two buses, which serve different purposes in the Concert sys-

tern. They both provide a full IEEE 796 bus [40), a standard bus closely related to

Intel's Multibus [9]. The card cage which houses the nodes has a Multibus backplane,

and both the processor and memory boards plug into this cage. Both boards also

have an interface for a Microbar custom High Speed Bus. Each processor board in a

Section 4.1.1 : The Node 51.

The Design of a Multiprocessor Development System

Concert system uses its High Speed Bus exclusively to access its node memory board.

The Multibus backplane allows access to global memory, as described in the next sec­

tion. Both the Multibus and High Speed Bus interfaces on the processor board are

"one-way;" the resources on the DBC68K are not available from off the board.

The basic Concert node consists of one DBC68K board and one DBR50 card, and

the remainder of the thesis assumes this configuration. However, a number of varia­

tions are possible. Multiple memory cards may be connected along the High Speed Bus

of a single processor. Other processor boards, such as the Intel iSBC 86/12A [33],

can be used instead of the Microbar DBC68K. In fact, any processor with a Multibus

interface to plug into the backplane can be used as a Concert node. Some future ap­

plications will use floating-point processors or other special nodes to perform specific

functions.

A Concert node performs all communication with other nodes In the ring by ac·

cessing shared memory. The next section describes in detail how nodes communicate

with each other within a single Multibus card cage. Later sections describe communl·

cation between nodes in different card cages and between nodes in different rings.

4.1.2: The Slice

The basic physical Concert building block is the slice, a Multibus card cage con­

taining one or more nodes, some slice memory, and a RingBus Interface Board (RIB).

Figure 9 shows a slice containing four processing nodes, each composed of a proces­

sor board and a memory board. The number of nodes in a slice is flexible, since card

cages are available with different numbers of slots. The main limitation on the number

52. Chapter 4: The Concert System Architecture

_________________ , ____ _

Thomas Lee Anderson

of nodes in a slice is the contention for the Multibus backplane. Concert allows up to

eight nodes per slice, although contention may set lower practical limits for some appli·

cations.

Ring8us
Segments

Multibus
Card Cage

Figure 9: Concert Slice

Multibus
Backplane

High
s&i~d

Since the memory board of each node is connected to the Multibus backplane as

well as to the processor's High Speed Bus, nodes within a single slice can access

each other's memory directly on the Multibus. However, the node memories are not

accessible from outside the slice. It is possible to plug other cards into the Multibus

backplane, such as network ports, memory boards without High Speed Bus interfaces,

or other special-purpose hardware. These boards would also be accessible via the

Multibus from any node in the slice, but not from outside the slice.

Since node memories are not accessible from outside the r&lice, global memory

must be provided to allow communication between nodes in different slices. Global

Section 4.1.2: The Slice 53.

The Design of a Multiprocessor Development System

memory is supported by the RIB, which plugs into the Multibus backplane along with

the nodes. Figure 10 shows a block diagram of the RIB.

~M-ul_ti_b_us_-31 Multibus i---------------..,. Multibus i------
Intert1 e Arbiter

.-------~---~---_,.. Decode

Grant to
Proc~rs

Request to
RingBus
Arbiter

Grant from
RingBus Arbiter Decode

Decode i-----4 HS Hus-----­
Interface To Global

Memory Board(s)

~-----------31RingBusllE-_____ ~---------------~
RingBus Segment Interface RingHus Segment

Figure 10: RingBus Interface Board

The RIB includes hardware to perform a variety of important functions. It contains

a High Speed Bus interface to allow other slices to access global memory boards

plugged into the backplane. Global memory consists of one or more DBR50 boards,

the same as those used for the node memories. The difference is that global memory

is accessible via the Multibus from nodes within the slice and, via the RingBus, RIB

and High Speed Bus, from nodes in other slices in the ring.

The RIB contains several global registers which are accessible from any node In

54. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

the ring. It plugs into the Multibus backplane to provide an access path from nodes

within the slice to the global registers or to other slices. It provides interfaces to two

RingBus segments. If the RingBus is unidirectional, each segment propagates requests

in only one direction. The interface to the incoming RingBus segment carries requests

for global resources either in the RIB's slice or In another slice farther along the

RingBus. If a request is bound for global resources in another slice, it is propagated

through the outgoing RingBus interface. Such a request can originate either from a

node within the slice or from the incoming RingBus segment. If the RingBus is bidirec­

tional, either segment may propagate requests to or from the slice.

All accesses to global resources which are handled by the RIB are under the con­

trol of a central RingBus arbiter. The RIB is responsible for sending requests to the ar­

biter. The arbiter in turn sends back grant lines which tell the RIB how to connect the

buses to carry out the accesses. Finalty, the RIB also contains the hardware to per­

form the arbitration for the Multibus backplane.

4. 1.3: The Ring

A collection of up to eight slices and an arbiter comprise a Concert ring. The

slices are interconnected by RingBus segments, with the RIBs providing the interface to

the slice Multibus. Request and grant lines run between the arbiter and the slices to

control the operations on the RingBus. A Concert ring forms a complete tightly­

coupled multiprocessor system, since the global memory in each slice is accessible

from any node in the ring. The hardware allows up to eight nodes in each of eight

slices, yielding a maximum ring of sixty-four nodes.

Section 4.1.3: The Ring 55.

The Design of a Multiprocessor Development System

4.1.4: Multi-Ring Systems

If a Concert system of more than sixty.four nodes is desired, multiple rings must

be interconnected. The result is a loosely-coupled system of tightly-coupled rings; a

node in one ring is not able to directly access memory in another ring. Communication

between two rings in a multi-ring system is effected by dedicating a node in each ring

as a server and using one of its 110 ports to provide a link.

Since two rings can communicate only by sending messages, any reference to a

node in another ring is a reasonably complicated process. The source node has to in·

form the node handling the ring interface via shared memory. The interface node must

then send a message over the port to the interface node on the other ring. Finally,

that node must contact the destination node, again by shared memory. Although such

a scheme is somewhat unwieldy, most of the details are hidden from the typical Con·

cert user. The drawback, of course, is that a different mechanism is used to communi·

cate between nodes in different rings and nodes in the same ring.

4.2: Concert Terminology

Before describing the Concert design, it is necessary to define more completely

the hierarchy of resources in the system. In so doing, a terminology is established

which is used in the remainder of this thesis. The terms ring, slice and node are used

in a manner consistent with their earlier definitions. Within a Concert ring, there are

several classes of resources, each available to some subset of the nodes in the ring.

As discussed in the previous section, the DBC68K processor board includes a

56. Chapter 4: The Concert System Architecture

---- ~--~-----------

Thomas Lee Anderson

variety of resources which are not accessible from off the board. These include small

amounts of RAM and ROM, 1/0 ports, and various peripherals. Since the resources on

a processor board are available only within the node, they are referred to as private

resources.

The DBR50 memory board of each processor is not a private resource, since it Is

accessible via the Multibus from any node within the same slice. However, the RIB

does not provide a Multibus master and there is no way for nodes in other slices of the

ring to access this memory. Any other boards plugged into the Multibus backplane ex­

cept the global memory boards are also accessible from any node within the slice but

not to any nodes in other slices. The local memory boards and other resources avail­

able on the Multibus of a slice are called Multibus resources.

Private resources and Multibus resources together comprise local resources, so

termed because they are available only locally to the nodes within a slice. Those

resources which are accessible from any node in a ring are called global resources,

and they fall into two classes.

Each slice contains one or more DBR50 boards of global memory, which are con­

nected to the RIB by a High Speed Bus. The RIB provides an access path from the

RingBus to the High Speed Bus, allowing any node in any slice of the ring to access

global memory. The global memory boards are dual-ported and are also accessible

from the Multibus. They are the only boards plugged into the Multibus, other than the

RIB itself, which are global rather than local. The dual-port feature decreases the

loading on the RingBus, since a node may access global memory within its own slice

Section 4.2: Concert Terminology 57.

The Design of a Multiprocessor Development System

directly on the Multibus.

The global memory comprises the bulk of the global resources, but the RIB also

provides a set of global registers. As the name implies, these registers are accessible

from any node in the ring via the RingBus. The global registers are not dual.ported; all

accesses, even from a node within the same slice, must pass through the RIB. Like all

accesses requiring the RIB and one or more RingBus segments, they occur under the

control of the RingBus arbiter.

The tree of Figure 11 summarizes the classes of resources available in a Concert

ring. All these resources are collectively referred to as ring resources. Since multi-ring

systems are loosely-coupled, resources in other rings are available only indirectly, by

means of message-passing.

4.3: The Concert Address Space

Prior to discussing the individual modules of the Concert design, it is necessary to

define the address space in which they operate. The DBC68K processing node has a

24-bit address space. The address lines from the processor are actually virtual ad·

dresses, and the memory management unit may translate these into physical addresses.

The present discussion refers to the physical address space, i.e. the actual input ad·

dresses which cause resources to respond.

As discussed in the previous section, there are four classes of resources which

must be mapped in the Concert address space - private resources, Multibus

resources, global memory and global registers. Table 6 shows the address space of a

Concert node, and the assignments which accommodate these classes of resources.

58. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

Global Registers

Node Memories Other Boards

Figure 11: Hierarchy of Concert Resources

The 24-bit physical address from the processor board Is the same as that which ap·

pears on the Multibus backplane when the processor is master. This address is called

the Multibus address.

If the top two bits of the Multibus address are "01" or "10," the reference is to

global memory. The first, third and fourth highest-order bits define the slice containing

the global memory, and the remaining twenty bits address the byte within the memory.

This allows eight slices per ring and a maximum of one megabyte (two DBR50 boards)

of global memory per slice, for a total of 8M bytes of global memory in a ring. If a

node is accessing global memory within its own slice, the access is carried out entirely

on the Multibus. Otherwise, the RIB sends a request to the arbiter which must be

Section 4.3: The Concert Address Space 59.

The Design of a Multiprocessor Development System

Locations (Hex) Allocated For

000000 - OOOFFF 4K On-Board RAM
001000 - OOFFFF Available for Multibus Resources
010000 - 01FFFF Reserved for Global Registers
020000 - 3FFFFF Available for Multibus Resources
400000 - 4FFFFF Global Memory for Slice O
500000 - 5FFFFF Global Memory for Slice 1
600000 - 6FFFFF Global Memory for Slice 2
700000 - 7FFFFF Global Memory for Slice 3
800000 - BFFFFF Global Memory for Slice 4
900000 - 9FFFFF Global Memory for Slice 5
AOOOOO - AFFFFF Global Memory for Slice 6
800000 - BFFFFF Global Memory for Slice 7
cooooo - EE7FFF Available for Multibus Resources
EE8000 - EEFFFF 32K On-Board PROM
EFOOOO - EFFEFF Multibus 1/0 Space
EFFFOO - EFFFFF On-Board 1/0 Space
FOOOOO - FF FF FF Available for Multibus Resources

Table 6: Multibus Address Space

granted before the access can proceed.

The remainder of the Multibus address space is divided between global registers

and local resources. The global registers on the RIB are mapped in the 64K block of

addresses from 010000 to 01 FFFF. The exact locations of these registers as well as

details of the registers themselves are given in Chapter 5. The RIB must send a re-

quest to the arbiter for any access to these registers, even if the request is from within

the same slice.

One component of the local resources is the private resources on a processor

board. The DBC68K maps such resources into several different parts of the address

space. The 32K PROM is mapped into low memory (starting at 000000) at startup, and

is then mapped between EE8000 and EEFFFF. The 4K RAM is mapped into low

60. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

memory after startup. Interrupt vectors are located in the range from 000000 to

0003FF, and thus fall in the on-board RAM.

The range from EFOOOO to EFFFFF is designated as 110 space. All on-board con­

trol registers and 1/0 devices fall in the range from EFFFOO to EFFFFF. The addresses

between EFOOOO and EFFEFF are passed out as 1/0 operations on the Multibus. Thus,

any 1/0 boards on the slice Multibus are mapped In this range.

The final resources included in the address space are the Multibus resources.

These include the DBR50 node memory boards and any other boards plugged into the

Multibus card cage which respond to memory reads or writes except the global memory

boards, which are mapped in global address space. The assignment of Multibus

resources is almost totally unrestricted by hardware. Any address with its two highest

bits both "O" or both "1" is allowable, so long as it does not conflict with either the

global registers or the private resources.

Much as the global memory and global registers have the same addresses

throughout the ring, all nodes within a slice access the Multibus resources at the same

addresses. Specifically, this means that a node memory card must have its jumpers for

both the Multibus and High Speed Bus interfaces set to the same address. If not, a

node could access Its own memory at two different addresses, only one of which would

be valid for other nodes in the slice.

It is possible by convention to further restrict the Concert address space. One

scheme which may be used in the future is to re-map the 32K PROM and 1/0 space of

each node somewhere in the range 000000 - 07FFFF. This would leave all global re·

gisters and private resources in the bottom half megabyte of the address space. Since

Section 4.3: The Concert Address Space 61.

The Design of a Multiprocessor Development System

eight megabytes is used by global memory, seven and a half megabytes (fifteen DBR50

boards) worth of node memory could be accommodated. This method requires the re­

placement of the mapping PROMs supplied with the DBC68K boards.

The address space division of the RingBus is shown in Table 7. It differs only

slightly from the Multibus address space. The RingBus has twenty.four address bits,

which address all global resources in the ring. If the high·order bit is "1," the refer·

ence is to global memory. The next three bits identify the destination slice and the

remaining twenty bits address the byte within that slice's global memory. These bits

are supplied by the RIB from the Multibus address. The second most significant bit of

the RingBus address is taken from the highest-order address bit of the Multibus ad­

dress, and the remaining twenty-two low-order bits are copied directly.

Locations Allocated For

000000 - OOFFFF Unallocated
010000 - 010FFF Reserved for Global Registers
011000 - 7FFFFF Unallocated
800000 - 8FFFFF Global Memory for Slice O
900000 - 9FFFFF Global Memory for Slice 1
AOOOOO - AFFFFF Global Memory for Slice 2
800000 - BFFFFF Global Memory for Slice 3
cooooo - CFFFFF Global Memory for Slice 4
000000 - DFFFFF Global Memory for Slice 5
EOOOOO - EFFFFF Global Memory for Slice 6
f 00000 - FFFFFF Global Memory for Slice 7

Table 7: RingBus Address Space

If the high-order RingBus address bit is "O," the reference is to a global register

location. In this case, the RIB supplies the remaining twenty-three bits directly from

the Multibus address. Currently only the 16K block of addresses from 010000 to

62. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

01 FFFF is passed directly from the Multibus to the RingBus. Thus, any other RingBus

address in this range Is illegal and causes an ABORT operation.

4.4: Definition of the RingBus

The RingBus is the sole medium for communication among the slices of a Concert

ring. It is a synchronous single-transaction bus, supporting memory read and write cy­

cles. Each slice in a ring contains a RingBus segment. When all of the slices are

connected together, a complete RingBus is formed. The addition of a central arbiter

produces a Concert ring. Accesses to global resources in the ring occur on the

RingBus, and are controlled by the arbiter. The arbiter orders the segments of the

RingBus to be isolated or connected together to carry out these accesses. Since a

Concert ring may have up to eight slices, it is possible that eight accesses to global

resources may be occurring simultaneously.

Table 8 shows the signals on the Concert RingBus. The address space is 24 bits,

partitioned as described in the previous section. The RlngBus also has sixteen bidlrec·

tional data lines and eleven control lines. Nine of the control lines are driven by the

master, the node which originated the request to the arbiter and which wishes to per­

form the operation. The other two are reply lines from the slave, the global memory or

register upon which the operation is performed.

The control lines asserted by the master identify the nature of the operation. R

and W indicate if a read or write operation is to be performed; only one may be assert·

ed on a segment at one time. The size of the data to be operated upon is identified

Section 4.4: Definition of the RingBus 63.

The Design of a Multiprocessor Development System

Name Description Name Description
-.40- Adaress Cit UlTS6J 1JO Uata l>it O Jl__Sb}_
A1 Address bit 1 01 Data bit 1
A2 Address bit 2 02 Data bit 2
A3 Address bit 3 03 Data bit 3
A4 Address bit 4 04 Data bit 4
AS Address bit 5 05 Data bit 5
A6 Address bit 6 06 Data bit 6
A7 Address bit 7 07 Data bit 7
AB Address bit 8 DB Data bit 8
A9 Address bit 9 09 Data bit 9

A10 Address bit 1 O 010 Data bit 10
A 11 Address bit 11 011 Data bit 11
A12 Address bit 12 012 Data bit 12
A13 Address bit 13 013 Data bit 13
A14 Address bit 14 014 Data bit 14
A15 Address bit 15 015 Data bit 15 (msb)

A16 Address bit 16 R Read operation
A17 Address bit 11. w Write operation

A18 Address bit 18 GO Begin operation
A19 Address bit 19 BYTE/WORD Data type

A20 Address bit 20 RMW Read-Modify-Write
A21 Address bit 21 ACK Acknowledge
A22 Address bit 22 ABORT Abort operation
A23 Address bit 23 (msb) so Source bit O (lsb)

S1 Source bit 1
S2 Source bit 2 (msb)

Table 8: RingBus Signals

by BYTE /WORD. If the signal is not asserted, a byte operation is performed, with the

byte selected by A O. Unlike the Multibus, the RingBus passes the data for an odd byte

operation on the upper data lines. If BYTE /WORD is asserted, and AO is low, a word

operation is performed. BYTE /WORD and AO both asserted is illegal, and causes an

64. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

ABORT operation on the RingBus.

If the memory operation is to be a read-modify write cycle, the RMW line is assert·

ed by the master. This insures that no access occurs on the Multibus side of a global

memory card while the RingBus is performing an atomic operation via the High Speed

Bus. Three bits - S 2, S 1, and SO - carry the number of the slice from which the re·

quest originated. These bits are used in conjunction with a protection register on the

RIB to prevent unauthorized accesses to global resources.

A high-to-low transition on GO actually begins the operation. Thus, all address,

data and control lines from the master must be stable before GO is asserted. The

slave signals completion of the indicated operation by asserting ACK. The result is the

standard handshaking protocol used by countless asynchronous buses. Figure 12

summarizes this simple protocol.

In the event of a read-modify-write signal, the master asserts the RMW line in the

read cycle before asserting GO, and drops it at an appropriate point In the write cycle.

The timing of all signals is intentionally left unspecified. The RingBus is primarily just a

set of wires linking a master and slave; its characteristics depend upon the characteris­

tics of the buses or modules to which it is attached.

If an attempt is made to address a "hole" in the global address space, the RIB In

the destination slice asserts the ABORT line to force termination of the operation.

When the source RIB sees this line asserted, It drops its request to the arbiter so that

the RingBus segments are freed for use by other slices. A number of other memory er·

rors also cause an ABORT cycle; Chapter 5 describes the ABORT function in more de·

Section 4.4: Definition of the RingBus 65.

The Design of a Multiprocessor Development System

tail.

Read Operation

Master drives address lines
Master drives source lines
Master drives WORD
Master asserts R
Master asserts GO

Slave performs read
Slave drives data lines
Slave asserts ACK

Master gets data_
Master releases GO

Slave releases data lines
Slave releases ACK

Master releases address lines
Master releases source lines
Master release WORD
Master releases R

Write Operation

Master drives address lines
Master drives sources lines -Master drives WORD
Master drives data line
Master asserts W
Master asserts GO

Slave performs write
Slave asserts ACK

Master releases GO

Slave releases ACK

Master releases address lines
Master releases source lines
Master releases data lines --Master release WORD
Master releases W

Figure 12: RingBus Operation Protocol

Although most lines on the RingBus change asynchronously, there are two impor-

tant exceptions. Since RingBus signals propagate through buffers in each slice, It is

difficult to ascertain the delays incurred. In particular, if the bus were purely asynchro-

nous it would be difficult to insure that the GO and ACK signals arrive after the lines

whose stability they are supposed to affirm. The solution cho$en for Concert is to

make GO and ACK synchronous. At the end of an arbiter cycle, data, address and

control lines start propagating for a new request. After a sufficient period to account

for any delays in these lines, the arbiter sends out a signal which latches GO. This

66. Chapter 4: The Concert System Architecture

Thomas Lee Anderson

same signal is used to synchronize ACK to signify the completion of a bus operation.

There are many features of standard buses which the RingBus does not provide.

Since all arbitration is handled by a central arbiter, no arbitration lines are required.

The RingBus does not support separate memory and 1/0 operations. It also does not

directly support interrupts; these are generated by writing to memory-mapped interrupt

registers.

Chapter 5 discusses the Ringbus interfaces provided on the RIB in considerable

detail. However, several important features are essential. When a slice tries to access

global resources, the RIB decodes the Multibus address, recognizes it as global, and

sends a request to the arbiter. When the arbiter grants the request, it sends back sig­

nals which connect the slice Multibus to the RingBus segment. This allows the read or

write transaction to complete. Once the Multibus lines drop, this in tum drops the re­

quest line to the arbiter. The next arbiter cycle lowers the grant lines, thus separating

the RingBus from the Multibus and allowing the RingBus segment to be used by other

slices.

Section 4.4: Definition of the RingBus 67.

The Design of a Multiprocessor Development System

Chapter 5: The Design of the RingBus Interface Board

The RIB was the most difficult piece of the Concert design, due to the number of

functions it must perform. It provides global protection, monitor, and control registers

and controls access to both these registers and to global memory In the slice. It also

performs the arbitration on the slice Multibus and generates interrupts and resets. Fig·

ure 13 shows a fairly detailed block diagram of the RIB.

This chapter discusses each of the major blocks of the RIB in detail. No attempt

is made to discuss the design at the gate level. Instead, the basic concepts behind

the different function are discussed, along with rough sketches of the hardware used.

An attempt is also made to point out any particularly difficult or novel aspects of the

design.

5. 1: Global Registers

The global memory boards account for the bulk of the global resources available

in a slice. However, the RIB provides twelve control registers which are also globally

accessible. All accesses to the global registers from any node must pass through the

RIB and be cleared by the arbiter. The reason is simple; unlike the global memory, the

global registers are not dual-ported and cannot be accessed directly on the Multibus

by nodes within the same slice. This section describes the function and implementa­

tion of each of the global registers.

68. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

.----1 Decode --------------- Multibus i-----...,.
Arbiter

Reset and
Interrupts

Grant from
RingBus Arbiter

RingBus Segment

Grant to
Processors

t------------:i11 Decode ____ .,,

---~Decode ---~
Monitor

Hardware

Request to
RingBus
Arbiter

---~ Decode ---~Protection
Hardware

---~ Decode ---.,. H S Bus .,..__ __ _
lnterfa e To Global

Memory Board

RingBus Segment

Figure 13: RingBus Interface Board Block Diagram

5.1. 1: The Slice Reset Register

The Slice Reset Register (SRA) provides a means to reset all the nodes in the

slice. The SRA resets the nodes by strobing the /NIT- line on the slice Multibus. The

definition of the bus makes it impossible to individually reset nodes. The main purpose

of the reset capability is to put all nodes in a slice in a known state at system initializa·

Section 5.1 .1 : The Slice Reset Register 69.

The Design of a Multiprocessor Development System

tion time.

Writing any value to the SRR causes the reset function to occur. Thus, it does

not have to be implemented as a true register. Instead, it is a simple flip-flop which

gets set by a write to the appropriate location. The SRA is automatically cleared at the

end of its reset cycle. The SPA is not protected by the Slice Protection Register, so

that a reset may be performed regardless of the state of the slice.

5.1.2: The Node Interrupt Registers

The RIB contains a Node Interrupt Register (NIR) for each of the eight nodes pos·

sible in the slice. Although the DBC68K processor board contains internal interrupts

for the serial port, timers, and other peripherals, the NIR provides the only way to inter·

rupt a processor from outside the node. Each interrupt level on a slice Multibus is as·

sociated directly with one of the nodes in the slice, and writing any value to the ap·

propriate NIR generates an interrupt by asserting the Multibus interrupt line. Each NIA,

like the SRR, is implemented as a single flip-flop rather than as a true register.

The Multibus interrupts are vectored, so the RIB must place an interrupt vector on

the bus in response to the proper interrupt acknowledge. This vector is the same for

all NIRs except for the lowest three bits, which identify the node for which the interrupt

is destined. All information needed by the interrupt handler, such as interrupt type and

interrupt source, is passed in a control block located in global memory. An NIR is

reset when the proper interrupt acknowledge is sent on the Multibus. All NIRs are also

cleared when a slice is initialized by writing to the SRA.

There are only eight interrupt lines on the Multibus, and Concert allows as many

70. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

as eight nodes in a slice. If a Multibus board which generates interrupts is included in

a slice, it is probably desirable to disable the NIR which drives the interrupt request

line it uses. A set of switches is provided on the RIB to allow selective enabling or di·

sabling of the eight NIRs.

5.1.3: The Slice Protection Register

The Slice Protection Register (SPR) protects the global resources in the slice from

unauthorized access. Its format is shown in Figure 14. Setting the appropriate bit dis·

ables read or write access by a particular slice to the global registers and the global

memory of the RIB's slice. The SPR may also be read, which allows selective setting

of its bits by ORing with the current value. However, the SPA is generally set at sys-

tern initialization and not altered during the normal course of operation.

15 0

1111111111111111r1

T Write T T Read
Protection Bits Protection Bits

Slice 7 • • ·Slice 0 Slice 7 • • • Slice 0

Figure 14: Slice Protection Register

The SPR is provided for two main reasons. Like any protection scheme, it sup-

ports a measure of software robustness by not allowing erroneous programs to access

areas of memory they shouldn't. It also allows the the global memory space to be par-

titioned into separate spaces for multiple processes running in a single ring. In fact, it

Section 5.1.3: The Slice Protection Register 71.

The Design of a Multiprocessor Development System

is possible to have two independent applications running on the same ring, each hav­

ing its own dedicated set of processors and blocks of global memory.

The only global resource not protected by the SPR is the Slice Reset Register.

Although this leaves a hole in the protection scheme, it is necessary to insure that a

reset operation may be performed regardless of the state of the slice. The SPA is

designed to protect against faulty programs more than maliciousness, and the chance

of an accidental access to the SRR is probably quite slim.

The protection specified by the contents of the SPR is enforced rather easily.

When the RIB receives a read or write request over the RingBus, the signals S 2, S 1

and SO contain the source of the request. It examines the read or write protection bit

for this source. If that bit is clear, the access proceeds normally. If that bit is set, It

refuses to continue the access and causes an ABORT cycle on the RingBus. Figure

15 gives an overview of the implementation of the protection function. The SPA is

reset by the slice reset function, thereby enabling access from all slices.

5.1.4: Support for Hardware Monitoring

Early in the design of Concert Tom Sterling suggested that the system include

hardware to monitor and gather statistics about Its operation. This allows real-time

measurements, a feature rarely found in computer systems of any kind. Two ap­

proaches were taken to facilitate this function. The RIB includes two global registers

to support monitoring - the Slice Monitor Register (SMR) and the Slice Monitor

Counter (SMC). In addition, interesting control signals on both the RIB and the arbiter

72. Chapter 5: The Design of the RingBus Interface Board

RingBus
Source Lines

SPR

Read
Bits

Write
Bits

Ring Bus
Read
Write

3

Figure 15: Hardware Protection Support

Thomas Lee Anderson

Access Prohibited

(To Global Registers
and High Speed
Hus Interface)

are brought out to edge connectors for external monitoring and logging.

The SMC is a 16-bit counter which logs events on the slice Multibus. It does so

under the control of the SMR, a 16-bit register whose format is shown in in Figure 16.

The SMR can monitor the slice operation by controlling the SMC. Both the SMC and

the SMR may be read or written from the RingBus. Since these registers are global, it

is possible for a single node to monitor and gather statistics for all slices in the system.

The primary function of the SMR is to select one of eight functions of various con·

trol lines, as shown in Figure 17. The functions available are determined by an

EPROM, which allows the user to monitor the combinations of signals most interesting

Section 5.1.4: Support for Hardware Monitoring 73.

The Design of a Multiprocessor Development System

15

0 - Disable Reserved
1- Enable

0-Number
1- Duration

0-
1 +

0-0ne
l ·All

Function

Figure 16: Monitor Control Register Format

0

for the particular application. The signals which are fed into the EPROM include the

Multibus request, read, write and lock lines. By using appropriate functions of these

lines, it is possible to determine the state of the Multibus. The remaining inputs to the

EPROM are the request line from the slice to the arbiter, designated REQ, and the

grant line from the arbiter back to the slice, designated GRT. These may be used to

differentiate global from local accesses.

The SMR causes the SMC to operate in one of two modes, as determined by the

Number /Duration bit. The SMC may be incremented whenever the selected function

makes a particular transition, as selected by the +/-bit. The SMC may also be incre-

mented on BCLK•, the Multibus arbitration clock, whenever the function value is high

or low. The +/-bit selects between the high and low values. Thus, the SMC can ei-

ther count the number of transitions a function value makes or the duration of a partic-

ular value.

The SMR includes a bit which specifies whether the SMC is incremented when the

selected function is encountered while any node is the Multibus master, or only when a

74. Chapter 5: The Design of the RingBus Interface Board

------------ ----- - ------------

Current
Multibus
Master

MWTC*
MRI:>C*
LOCK*
REQ
ORT

BCLK*

SK x 8
EPROM

Figure 17: !"fardware Monitor Support

Thomas Lee Anderson

Node SMR

SMC

specific node is master. In the latter case, a three-bit field identifies the node. This

allows the monitoring of the activity of a specific node only. The SMR field is com-

pared against the current Multibus master, which is supplied by the Multibus arbitration

logic on the RIB. Finally, the SMR contains a bit to enable or disable the monitor

function; this is used to stop and start counting.

In addition to the hardware on the RIB board, a variety of signals is brought out to

edge connectors on both the RIB and the arbiter. The purpose of these signals is

twofold. First, it is possible to dedicate a node to the task of gathering statistics for a

RingBus or for a slice Multibus, simply by feeding these signals into the parallel ports

Section 5.1.4: Support for Hardware Monitoring 75.

The Design of a Multiprocessor Development System

on the processor board. If the processor makes all its references to a local memory

board, and no other nodes in the slice use that memory, then it can monitor the sys­

tem without perturbing it in any way. The edge connector signals are also useful for

debugging boards; they provide handy places to tap key signals.

5.1.5: Global Register Addresses

The decoding of global register RingBus addresses is a bit more complicated than

for global memory. In the case of the memory, address bits 23, 21 and 20 of the Mui·

tibus address are mapped into bits 22, 21 and 20 of the RingBus address. These bits

specify the destination slice, and the remaining twenty bits address the global memory

within the slice. The RingBus global register addresses are taken directly from the Mui·

tibus addresses, but they comprise a much smaller block of space - only 64K. Of

this, only a very small amount is presently used.

From the address space viewpoint, the global registers are divided into two

classes, differentiated by address bit 15. If this bit is low, the register is a per slioe

global register, meaning that there is one such register for each slice. The next three

address bits identify the slice, and the remaining 12 address the register. If address bit

15 is high, the register is per node. The same three bits identify the slice, but the next

three bits after that identify the node within the slice.

Table 9 shows the locations of the global registers, with all addresses given in

binary. The letter s is used to signify the three-bit field identifying the slice. Likewise,

n is used to identify the node field. Word (two-byte) registers may be addressed as

words or as bytes, depending upon the values of AO and WORD. Byte registers are

76. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

addressed only if WORD is high and AO is low. All "holes" in the address space are

illegal and attempts to address them generate ABORT cycles on the RingBus.

Locations (Binary) Allocated For
0000 0001 Osss 0000 0000 0000 Slice Reset Register (byte)
0000 0001 Osss 0001 0000 0000 Slice Protection Register (word)
0000 0001 Osss 0010 0000 0000 Slice Monitor Register (word)
()()()() 0001 Osss 0011 0000 0000 Slice Monitor Counter (word)
0000 0001 1sss nnnO 0000 0000 Node Interrupt Register (byte)

Table 9: Global Register Address Space

It may seem unusual to use high address bits to differentiate between the regis-

ters, but there is a good reason for this decision. The 68451 memory management unit

has a 256-byte protection granularity. Since all global registers currently implemented

can be differentiated by address bits outside this range, it is possible to protect them

separately if desired. In particular, it may be desirable to allow anyone access to the

monitor registers but to guard the interrupt and protection registers more closely.

5.2: Access Control

The primary function of the RIB is to provide access to global memory and regis-

ters under control of the RingBus arbiter. This involves, among other things, interfac-

ing with the Multibus, the RingBus and the High Speed Bus. These interfaces allow

the RIB to handle three distinct kinds of accesses. It must allow a node within its slice

to make a global access. Such an access may be either to global registers within the

slice or to global resources in another slice. It must also handle requests for global

resources within the slice which originated in other slices in the ring. Any of these

Section 5.2: Access Control n.

The Design of a Multiprocessor Development System

three situations entails interaction with the RingBus arbiter.

5.2.1: Basic Requirements

If the Multibus is asserting an address which corresponds to the global registers

within the same slice, or to global registers or memory in another slice, a request must

be sent to the arbiter. Four lines are required to do this. REQ informs the arbiter that

the slice wishes to access global resources. Three additional bits, DST2, DST1 and

DSTO, are passed to the arbiter to indicate the destination slice for the request. If the

request is for global memory, address bits 23, 21, and 20 identify the slice. If the

reference is to global registers, bits 14, 13, and 12 are sent to indicate the destination.

Note that the source slice is a valid destination if the request is for a global register.

The arbiter eventually grants the request by sending back lines to control the flow

of information on the RingBus segments. Although these lines represent the requests

which have been granted, the term "grant" is actually somewhat of a misnomer. The

lines are actually enable signals which tell the RIB how to connect the resource access

paths. Some combinations of signals connect the Multibus to the RingBus and allow

an access to occur. Other combinations simply cause the RIB to propagate requests

from other slices in the ring. For this reason, the control lines from the arbiter to the

RIB are termed enable lines.

When the arbiter grants the slice's request, it sends back enable signals to con·

nect the Multibus to the RingBus. It must also send out the appropriate enable signals

to connect together the RingBus segments needed to complete the access. It must

78. Chapter 5: The Design of the RingBus Interface Board

------------~-·--

Thomas Lee Anderson

also send enable signals to the destination slice to allow the request to reach the glo·

bal memory or register for which it is intended.

5.2.2: Access Path Options

The most interesting aspect 9f the RIB design was determining the access paths

to provide. Figure 18 shows a simple model of the input and outputs of the RIB with

all access paths which might be reasonable to include. The paths are drawn with ar·

rows pointing from the source of the access request (master) to the destination

resource (slave). Since the local resources on the Multibus are not accessible from

outside the slice, the paths from the RingBus segments to the Multibus are not re·

quired. Another way of phrasing this is that the RIB is never a Multibus master.

Global Global
Memory Registers

Figure 18: Possible Access Paths in the RIB

The remaining paths all support various kinds of legal accesses under the Concert

RingBus architecture. Depending upon the degree of flexibility desired, many of these

Section 5.2.2: Access Path Options 79.

The Design of a Multiprocessor Development System

paths may not be provided. Flexibility is traded off against the extra hardware required

on the RIB to support the paths and the extra logic required in the arbiter to take ad·

vantage of the flexibility. One path is eliminated by the use of DBR50 boards for glo·

bal memory. Since the Multibus can access the global memory within the slice directly,

the path from the Multibus to the global memory is not required. In fact, this path can­

not be provided or both the High Speed Bus and Multibus would try to make accesses

to global memory for a single request.

The crucial issue for deciding which of the remaining paths to support is the

directionality of the RingBus. If the RingBus is unidirectional, then one· RingBus seg.

ment is used only for incoming requests and the other only for those outgoing. Thus,

the Multibus has a path to only one RingBus segment, and only one RingBus segment

has access to the global memory and registers. Likewise, the path connecting the two

segments is unidirectional. Although a unidirectional RingBus requires fewer access

paths than a bidirectional one, there is less parallelism to be exploited.

A wide variety of options for the resource access paths were considered during

the design of the RIB. Figure 19 shows eight of the most reasonable in schematic

form. The "diode" symbols represent tri-state drivers, with the arrows indicating the

direction of address and control flow. "MB" Indicates the slice Multibus, "GM'' the

global memory within the slice and "GR" the global registers on the RIB. For a uni­

directional RingBus, "RBI" means the "RingBus In" segment and "ABO" the "RingBus

Out" segment. If the RingBus Is bidirectional, both segments can carry either inbound

or outbound requests, and "RBL" for "RingBus Left" and "RBR" for ''RingBus Right"

are used to differentiate them.

80. Chapter 5: The Design of the RingBus Interface Board

a)

RBI

c)

RBI

e)

RBL~

g)

RBL~

Thomas Lee Anderson

b)

MB GR.GM GR.GM MB

~*-- L) RBO RBI _/~ *--) RBO

d) MB
GMMB GR

2M~ 2~~ .L)RBO
RBI ~ RBO

t)
MB GR.GM GR,GMMB

**--/) RBR RBL(/* *--) RBR

h) MB GR.GM MB

~ _/~) RBR) RBR RBL(

MB = Multibus; GM = Global Memory; GR = Gtobal Register

RBI = RingBus In; RBO = RingBus Out

RBL = RingBus Left; RBR = RingBus Right

Figure 19: Possible RIB Access Path Designs

Figure 19a is the simplest case to consider. It uses a unidirectional RingBus, and

essentially functions as a multiplexor. At any point in time, either the RingBus In or

the Multibus -may be connected to the resource access paths. These paths provide

Section 5.2.2: Access Path Options 81.

The Design of a Multiprocessor Development System

connections to the global registers on the RIB and, via the High Speed Bus, to the glo·

bal memory in the slice. A request from either the RingBus In or the Multibus may be

connected to the RingBus Out and thus propagated to another slice further along the

ring.

A single enable line from the arbiter is required to select which of the two sources

is connected to the access paths. It is not necessary to provide for the case when

both sets of drivers are off. No harm results if a request from either the RingBus In or

the Multibus reaches a resource for which it is not destined. A single global address

space means that only one resource ever responds to a given RingBus address.

The scheme shown in Figure 19b adds a level of parallelism while requiring no ad·

ditionat hardware. It is possible for the RingBus In to be accessing global resources in

the slice at the same time that ·a request from the Multibus is being sent along the

RingBus Out. This requires a slightly different arbiter design than the method of Figure

19a, but a single enable line still suffices.

The inherent parallelism of this scheme gives it some advantage over the first

design. However, there is one drawback which offsets some of this gain. The Multibus

can only access the global registers through the RIB; the cost of dual-porting the re­

gisters is too great to justify. However, in the scheme of Figure 19b, a node requires

the entire RingBus to access the global registers in its own slice. Presumably such

accesses are very infrequent compared to global memory accesses, but the cost of ty­

ing up all the RingBus segments is considerable and should be avoided if possible.

Figure 19c shows one possible way to remedy this situation. The global registers

and global memory are separated, so that the Multibus can access the global registers

82. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

In its slice with a single RingBus segment. It is necessary to differentiate between re­

quests for global memory and requests for global registers, although this may be han­

dled easily. The RIB can simply increment the destination value it sends to the arbiter

If the request is for global registers to reflect the fact that the registers are located one

segment beyond the memory in each slice.

The method of Figure 19d exploits the maximum parallelism for a unidirectional

bus. As with the the second scheme, the RingBus In may be accessing global

resources at the same time that the Multibus is connected to the RingBus Out. In ad·

dition, the Multibus can access global registers while the two RingBus segments are

connected. Unfortunately, it takes double the amount of drivers to provide this extra

parallelism. With the assumption that accesses to global registers are infrequent, it

doesn't seem worth the extra hardware.

The simplest access path design which supports a bidirectional RingBus is shown

In Figure 19e. It is very similar to the first scheme, except that the drivers linking the

two RingBus segments are bidirectional. Thus, requests from the Multibus can pro­

pagate in either direction, and requests can arrive from either direction. As long as the

arbiter is clever enough to take advantage of this feature, the throughput on the

RingBus will be increased considerably. However, no parallelism within the RIB is sup­

ported.

The same transformation that produced the second scheme from the first is used

to turn the design of Figure 19e into Figure 19f. In terms of hardware, it is only a

minor variation on the second proposal, with the drivers between the RingBus seg­

ments made bidirectional. This solves the problem of global register access fairly well;

Section 5.2.2: Access Path Options 83.

The Design of a Multiprocessor Development System

a Multibus access to the registers in the same slice requires only two RingBus seg­

ments.

Figure 19g shows a minor variation on this design, in which the Multibus can

directly access the RingBus Left without tying up the RlngBus Right. This has the

effect of reducing by one the number of segments needed for many accesses. The

cost is an additional set of drivers to connect the Multibus to the RingBus Left.

Both of these two schemes fully support a bidirectional RingBus. They also allow

some parallel accesses, although they are asymmetric. The RingBus Left can access

the global resources at the same time that the Multibus accesses the RingBus Right, as

was the case in the second scheme. However, Multibus access to the RingBus Left

and RingBus Right access to the global resources are mutually exclusive. Because of

this asymmetry, there is a "preferred direction" (clockwise or counterclockwise) for ac­

cess on the RingBus. If desired, the arbiter may take this into account when granting

requests.

Figure 19h shows a way to rectify this asymmetry and gain more parallelism on the

RingBus. Unfortunately, it requires still more drivers and thus greater. hardware cost.

More importantly, it also requires a more complicated arbiter design. It is no longer

sufficient for the arbiter to keep track only of the RingBus segments needed for an ac·

cess; it must also worry about the access path to the global resources between the

segments as well.

After considering all these options, the access path design of Figure 19f was

chosen for the Concert RIB. It supports a bidirectional RingBus and some parallelism

in the RIB with a minimum of hardware. It also does not require the arbiter or the RIB

84. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

to differentiate between accesses to global memory and accesses to global registers, or

to keep track of more than the RingBus segments in use.

5.2.3: The Arbiter Interface

Given the access paths as stiown in Figure 19f, it is relatively easy to define the

exact interface between the arbiter and the RIB. A single request line and the three

bits indicating the destination slice are sufficient information for the arbiter to make its

decision. It sends back three lines to the RIB to enable the drivers. The request and

enable lines are all active-low and pulled up, so that unconnected lines do not cause

spurious bus cycles.

--- - -The three lines from the arbiter to the RIB are ENM, ENL, and ENR. ENM indicates

if an access on the Multibus is allowed to propagate, and is used to enable the drivers

which connect the Multibus to the RingBus Right. ENL, when asserted, enables the

drivers which connect the RingBus Left segment to the RingBus Right segment. This

allows accesses to propagate from left to right. Likewise, ENR enables the drivers in

the opposite direction to permit right-to-left accesses. Table 10 summarizes the in-

terpretation of these lines, showing their active-high values for clarity.

Different Interpretations of the enable lines are possible. However, as seen in

Table 10, there are five different states which must be encoded and therefore any

scheme would require three lines. The interpretation chosen is straightforward and re-

quires a minimum of logic in the RIB. None of the enable lines tells the RIB for certain

if the global resources in its slice are being accessed. In fact, such access can occur

Section 5.2.3: The Arbiter Interface 85.

--------~ ----~-

The Design of a Multiprocessor Development System

ENM ENL ENR Meaning

0 0 0 No global access in this slice.
0 0 1 Right-to-left access on RingBus; no access from Multibus.
0 1 0 Left-to-right access on RingBus; no access from Multibus.
0 1 1 ILLEGAL · Arbiter will never output. ·
1 0 0 Multibus access to RingBus Right.
1 0 1 Multibus access to RingBus Left.
1 1 0 ILLEGAL · Arbiter will never output.
1 1 1 ILLEGAL · Arbiter will never output.

Table 10: Enable Signals from the Arbiter to the RIB

in any but the "illegal" states. This is consistent with any standard bus, since it is the

bus address which tells a resource when it is being accessed.

5.3: Access Support

The access path model presented in the previous section glosses over the imple-

mentation details of the drivers which link together different buses. There are four

such interfaces which are provided. The two RingBus segments are connected togeth·

er, and Multibus cycles are mapped into RingBus Right cycles. In turn, interfaces are

provided from the RingBus Left to the High Speed Bus for global memory access and

to the RIB registers for global register access. In addition, support is provided for

atomic and ABORT operations on the RingBus.

86. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

5.3.1: Bus Interfaces

The simplest interface to design is that connecting the left and right segments of

the RingBus. The address and control lines are simply propagated in the proper direc·

- -tion from segment to segment, as determined by ENR and ENL. The data buffers are

only slightly more complicated. Data is sent from the right RlngBus segment to the left

segment in the event of a right-to-left write or a left-to-right read. Similarly, data flows

from left to right on a left write or a right read.

The Multibus-to-RingBus interface is a bit more complicated. All buffers are en·

abled by the ENM signal from the arbiter, as described in the previous section. Since

the address lines on the Multibus are active-low, they must be inverted to produce the

active-high RingBus address lines. The 22 low-order address bits are taken directly

from the inverted Multibus lines. As described in Chapter 4, the mapping from the Mui·

tibus to the RingBus address space requires that the second-highest-order RingBus ad·

dress bit be generated from the inverse of the highest-order Multibus address bit. Fi·

nally, the two highest-order Multibus address bits are XORect to produce the highest

RingBus address bit.

The data lines must also be inverted, and the direction of the buffers is determined

by whether the Multibus is requesting a memory read or write operation. The "byte·

swapping" function on the Multibus mandates that odd byte transfers use the lower

eight data lines, and so an extra set of drivers is required to accommodate this tune·

tion. The RingBus GO signal is asserted when either the read or write command is as·

serted on the Multibus. The RingBus source bits are generated from the appropriate

Section 5.3.1 : Bus Interfaces 87.

The Design of a Multiprocessor Development System

Multibus address lines as described in Chapter 4. The remaining RingBus control lines

- R, w, WORD, RMW, and ACK - are all generated directly from the corresponding

Multibus signals. The ABORT line is discussed in a later section.

The Microbar High Speed Bus is a fast bus designed primarily for use with their

DBC68K [13] and DBCOO (14) processor boards. However, the RIB accesses global

memory boards by means of this bus, and thus contains a RingBus-to-Hlgh Speed Bus

interface. The High Speed Bus uses multiplexed address and data lines, and most of

the hardware in the interface is used to perform the multiplexing and demultiplexing

functions. The High Speed Bus address and data lines are all active-low, so the

RingBus lines are inverted during the multiplexing process. The RingBus control sig­

nals are mapped into read/write, lock, byte enable and strobe lines to produce the

proper results.

The most unusual aspect of the High Speed Bus is that within a fixed period after

a memory access it sends back a signal indicating if the address was found on the

memory board or not. If this line, -MYOK, is asserted, the operation completes and the

acknowledge is sent back along the RingBus to the master. If this line is not asserted

within the specified time, an ABORT operation is begun on the RingBus.

Support for the global registers is not much more complicated, although the ad·

dress decoding requires more hardware. In the event of a read operation, the RingBus

data is latched into the addressed register. On a read, the register contents are driven

onto the RingBus. The acknowledge signal is generated by the RIB after a sufficient

delay to allow the operation to complete. Operations to the global registers happen

synchronously with respect to LCLK, the signal which the arbiter sends to all RIBs to

88. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

- -latch GO and ACK.

5.3.2: Support for Atomic Operations

Since semaphores are used extensively to control access to data structures in glo·

bal memory, all buses in Concert must support an atomic test-and-set (or read-modify-

write) operation. The 68000 has a special TAS instruction which asserts a particular

combination of output pins to indicate that an atomic read and write is needed. The

DBC68K board decodes these lines to identify this state, and then asserts the LOCK•

signal on the slice Multibus. By monitoring this line, the RIB can determine when an

atomic operation is being requested.

The RIB insures an atomic access by not lowering its request line to the arbiter as

long as the LOCK• line on the Multibus remains asserted. The arbiter does not know

that an access has been completed until REQ is released, so it sees the test and set

as a long single memory operation. This trick allows read-modify-write cycles without

passing extra lines to the arbiter. However, since the arbiter sees the atomic operation

as a single cycle, it cannot allocate any new RingBus segments in the middle. A node

can only access locations within the same slice for the duration of the atomic opera-

tion; a generalized lock function such as that allowed on the Multibus is not supported.

Fortunately, the DBC68K board asserts the LOCK line only during the TAS instruction,

which operates on a single memory location.

The Multibus LOCK• line is propagated along the RingBus as RMW to the RIB in

the destination slice. The RIB passes RMW to the global memory as the High Speed

Section 5.3.2: Support for Atomic Operations 89.

The Design of a Multiprocessor Development System

Bus signal -HSLOCK. This signal remains asserted for the duration of the atomic

operation, insuring that no access occurs from the Multibus interface. Likewise, a

read-modify-write access to global memory from within the same slice asserts the Mui·

tibus LOCK• line, which forestalls High Speed Bus accesses until the cycle is com·

plete.

5.3.3: Abort Operations on the RingBus

Unlike most buses, the RingBus provides a means to abort cycles in the event of

memory errors. The ABORT signal is driven by the RIB in the slave's slice and sent

back to the RIB in the slice of the master. When ABORT is asserted, the master RIB

stops driving the request line to the arbiter. Thus, the RingBus segments are freed for

use by other slices. There is no way to abort cycles on the Multibus, and so the

source node must detect a Multibus timeout before it knows that an error has oc·

curred. However, the timeout is restricted to one slice, and the rest of the ring is

unaffected.

There are a number of events which cause an RIB to abort the RingBus cycle.

Any reference to an unallocated portion of global register space, an illegal word ad·

--dress (WORD asserted and AO high) or a protection violation (as signalled by the SPA)

cause an ABORT operation. An abort is also sent if the global memory in the destina·

tion slice signals a parity error by asserting -HSBERR on the High Speed Bus or does

not respond within the specified time by asserting -MYOK.

90. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

5.4: Multibus Arbitration

The final function performed by the RIB is the arbitration of the Multibus back-

plane. There are two different ways to provide Multibus arbitration (9]. Serial arbitra-

tion is the simplest, but it is limited to a three-master bus. Since a Concert slice may

have up to eight nodes, the RIB uses the other scheme, parallel arbitration.

The discussion in Chapter 3 on RingBus arbitration schemes also has considerable

relevance for the Multibus. The two most common schemes for Multibus arbitration are

fixed priority and some sort of rotating priority. The RIB uses a variation of the rotat-

ing priority scheme discussed in Chapter 3. As shown in Figure 20, the only hardware

necessary to perform this arbitration is a ROM, a decoder, and a three-bit register.

NodeO
BREQ*

Node7
BREQ*

Current
Priority

BCLK

2Kx6
ROM

Current

Master

Next
Priority

3 to 8
Decoder

Figure 20: Multibus Parallel Arbitration Scheme

NodeO
BPRN*

Node7
BPRN*

The register holds the number of the current node having top priority. The ROM

takes as inputs the value of the counter and the nodes currently requesting the Mui-

Section 5.4: Multibus Arbitration 91.

The Design of a Multiprocessor Development System

tibus. It outputs two three-bit values - the current master and the next top priority

value. The three bits identifying the current bus master are decoded and sent to the

processor boards as bus grant signals. Only one of these is asserted at a time.

The ROM determines the current bus master and the next priority value by count­

ing down (modulo eight) from the top priority node. It grants the Multibus to the first

node it finds which is making a request, if any, and sets the next top priority to be the

number of the second such node it finds. If no nodes are requesting the Multibus, the

current master retains the bus and the priority is incremented by one modulo eight.

92. Chapter 5: The Design of the RingBus Interface Board

Thomas Lee Anderson

Chapter 6: The Design of the RingBus Arbiter

The RIB was the most difficult portion of the Concert design, because of the

number of different functions it has to serve. The other major portion of the design

was the RingBus arbiter. Although its complexity does not approach that of the RIB,

the range of arbitration schemes possible made its design an interesting task. This

chapter outlines the design and indicates some options which were investigated during

the design process.

6.1: Overview of the Arbiter

The arbiter is responsible for controlling all transactions on the RingBus and for

explicitly granting all accesses to global resources except accesses to global memory

within a slice. The arbiter accomplishes this task by interacting with the RIB of each

slice in the ring. When the RIB identifies a request for global resources by decoding

the address lines on the Multibus, it must pass this request to the arbiter. The arbiter

synchronously samples the requests from au the slices and, at the end of its cycle,

sends back enable lines to the RIBs.

As described in Chapter 4, Concert allows up to eight slices per ring, and eight

nodes per slice. The number of nodes in a slice has no effect on the arbiter, since it

only "sees" one request per slice at a time. Each slice RIB provides local Multibus ar·

bitration to determine which node is master, and thus which node's request for global

Section 6.1 : Overview of the Arbiter 93.

The Design of a Multiprocessor Development System

resources is passed to the arbiter.

The number of slices in a ring does have considerable impact upon the arbiter

design. At a minimum, it defines the number of arbiter inputs and outputs. In fact, the

number of slices whose requests must be examined and granted also affects the inter·

nal arbiter logic as well. This chapter discusses the design of an arbiter to handle up

to eight slices. However, all the ideas discussed can be conceptually (if not always

practically) extended for a ring with an arbitrary number of slices.

The RIB design chosen, as described in the last chapter, requires seven lines

between each RIB and the arbiter. Each RIB sends a request line and three destina­

tion bits to the arbiter, and the arbiter in turn sends back three enable lines to each

RIB. In fact, the arbiter also sends the LCLK signal to each RIB to latch the AingBus

GO and ACK lines. However, this signal is simply derived from the arbiter clock and

has no relation to the rest of the arbiter.

The analysis of the AingBus architecture in Chapter 3 showed that a combinational

arbiter which maps the request lines to the enable lines is not sufficient. The arbiter is

better modeled as a finite-state machine, with state representing both requests in pro·

gress and the priority of pending requests. Figure 21 shows a top-level view of the

Concert arbiter, incorporating both kinds of state information. The request and enable

lines are shown as active-high, although they are actually inverted between the RIB

and the arbiter.

94. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

.--------i PRJ--------.

Lines from
p

RIB of

Slice 0 3 4

Lines from Arbitration 3

Logic
RIB of

Slice 7 3 4 3

Lines to RIB

of Slice 0

Lines to RIB

of Slice 7

Figure 21: Top-Level View of the Concert Arbiter

Section 6.1: Overview of the Arbiter 95.

The Design of a Multiprocessor Development System

Only one of the three enable lines - ENM - needs to be fed back into the ar·

biter. Since ENM is asserted for a slice only if its request is granted, the values of

ENM are all the arbiter needs to determine which requests have been granted in a pre·

vious cycle. The number of lines necessary to encode the priority has been designat·

ed p to encompass a variety of possible schemes. The remainder of this chapter

describes the decisions made on the priority scheme and other aspects of the arbiter.

and the design process which led to these decisions.

Three major goals guided the arbiter design. The arbiter must grant all requests

and allow accesses to complete without interruption. It should be fair, giving all slices

an equal shot at the global resources. Finally, the arbiter should allow as many paral·

lel operations on the RingBus as possible. After all, the whole purpose of using the

RingBus architecture instead of a more traditional shared-bus scheme is to allow simul·

taneous accesses to different pieces of global memory.

6.2: Examining the Requests

Before deciding which requests to grant, there are several functions the arbiter

must perform. The first is to determine whether two requests can be simultaneously

granted. Unless it is possible to economically determine simultaneously grantable re·

quests, then only one request at a time can be granted and the advantage of the

RingBus structure is lost.

Chapter 3 described the "Segment Needed List" (SNL), which identifies the

RingBus segments needed to grant a particular request. Since requests may be simul·

taneously granted if and only if they require no common RingBus segments, these lists

96. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

are all that the arbiter requires to determine simultaneously grantable requests. Table

11 shows the round of requests used in the example of Chapter 3. The RIB design

chosen differs significantly from the simple model presented then. Thus, the SNLs for

the round of requests differs as well.

Source REQ DST

0 0 x
1 1 3
2 1 4
3 0 x
4 1 7
5 1 5
6 1 3
7 0 x

Table 11: Round of Requests from Chapter 3

Figure 22 shows a Concert ring with RingBus segments numbered. Since the

Concert RingBus is bidirectional, any request may be granted either clockwise or coun·

terclockwise. Table 12 shows the SNLs for each direction for the round of requests of

Table 11. Because of the RIB access path design chosen, there are some curious

anomalies. The segment associated with a slice is .the segment on which the global

resources reside. Since Multibus requests connect directly to the next segment, the

source segment is not needed to carry out a clockwise access.

If the source and the destination are different, the SNL for a clockwise access Is

nothing more than the set of integers from the source slice plus one to the destination

slice, counting up modulo eight. A counterclockwise access requires the segments

from the source plus one to the destination, counting down modulo eight. If the

source and the destination slice are identical, the request is for access to global regis·

Section 6.2: Examining the Requests 97.

The Design of a Multiprocessor Development System

Figure 22: Concert Ring with Slice and Segment Numbers

segment Clockwise Access Counterclockwise Access
request 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1-+3 x x x x x x x x x x
2-+4 x x x x x x x x x x
4-+7 x x x x x x x x x x
5-+5 x x x x x x x x x x
6-+4 x x x x x x x x x x

Table 12: Segment Needed lists for Requests of Table 11

ters in the source slice. This requires the destination slice and its successor (modulo

eight) for a counterclockwise access. A clockwise access to the same slice requires

all the RingBus segments, and is never used.

It is clear that short accesses in one direction are long accesses in the other

direction. All arbiter designs considered in this chapter always grant the shorter of the

two paths. In general, such schemes do not perform optimally, since there are some

98. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

cases (e.g. 2-5 and 3-4) when choosing the longer path for an access would actual·

ly result in more parallelism on the RingBus. As mentioned in Chapter 3, the investiga·

tion of the RingBus for Concert has concentrated exclusively on arbitration schemes

which make only one pass through the requests. Specifically, this means that the ar·

biter considers only one path for each request.

As described in Chapter 3, two requests can be granted in parallel if they do not

require any common RingBus segments. This may be determined by ANDing the SNLs

for the two requests. It is easy to see how to do this in hardware, or how to lncor·

po rate it as part of ·a larger function in a ROM.

6.3: Granting the Requests

Given the SNLs for a round of requests, the requests currently in progress, and

some priority ordering, the arbiter must determine which (if any) new requests to grant

in a given cycle. The basic approach is to try to grant requests in priority order, where

the order is established by one of the priority schemes outlined in Chapter 3.

There are many possible implementations of the arbiter function, some of which

are rather impractical. Since the arbitration algorithms discussed in Chapter 3 all

iterate over the slices in priority order, the most obvious hardware implementation of

these algorithms is to somehow perform just such an iteration. The solution which im·

mediately springs to mind is a microprocessor; it would easily handle the task of exa·

mining requests, executing some decision algorithm, and sending out grants. However,

the speed would be orders of magnitude slower than what is needed. Since the arbiter

is controlling single memory cycles of the nodes, its total time to make a decision must

Section 6.3: Granting the Requests 99.

The Design of a Multiprocessor Development System

be of the same order - a few hundred nanoseconds.

Since the arbiter may be modelled as a finite-state machine, another obvious Im·

plementation is a large ROM to replace the block labelled "Arbitration Logic" in Figure

21. Unfortunately, such a ROM is far beyond the capabilities of current technology. It

would have to map 40 + p inputs (4 request lines and one feedback line for each of

eight sources, plus p priority bits) to 24 + p outputs (3 enable lines for each of eight

sources plus p priority bits). Clearly, a more clever approach is required.

Two fundamentally different classes of feasible arbiter implementations were exam­

ined in the course of the design. The first implementation is shown in Figure 23. The

requests are sorted based upon whatever priority scheme is being used. The sorted

requests are then sent to a chain of ROMs (or other logic) which decide whether or

not to grant the requests. They 'do this by examining a "Segments in Use" (SIU) list,

which is nothing more than the accumulated SNLs for all requests granted thus far.

Each ROM compares its input SIU with the SNL for its request, and grants the request

if there are no conflicting segments. Since the ROMs are connected in priority order, a

higher priority request always gets a chance to be granted before a lower priority re­

quest.

The chain method may be used to implement any of the three arbitration algo­

rithms discussed in Chapter 3. The difference lies in how each ROM updates the SIU.

If it ORs in the SNL only when it grants its request, the net result is the arbitration

scheme given as Algorithm 3. If it is unable to grant the request, it could set all the

SIU bits and effectively prevent any more requests from being granted that cycle. This

corresponds with the limited arbitration algorithm of Algorithm 4. Finally, it may OR in

100. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

SIU

8
Slice 0

REQ Priority 7 PRI
Grant ROM DST p

3 3
8 New

GRT

Sorting
Network

Slice 7 8

REQ Priority 0 PRI
DST Grant ROM p

3

8
New

p GRT

PRI New SIU

Figure 23: Chain Arbiter Implementation

the SNL for its request regardless of whether or not it grants the request, which imple-

ments full arbitration as shown in Algorithm 5.

Despite its flexibility, there are a number of problems with the chain arbitration

method. The SIU must be initialized at the beginning of each cycle with the segments

used by the requests in progress. Another problem arises in trying to define the

arbiter's interface to the RIBs. Requests are actually carried out by sending appropri-

ate enable signals. The implementation of Figure 23 yields only grant lines based on

Section 6.3: Granting the Requests 101.

The Design of a Multiprocessor Development System

priority; these must be "unsorted" to derive the enable lines for the slices.

In addition to these shortcomings, the chain arbiter scheme is both slow and cost·

ly in hardware. Eight ROM delays plus random logic Is a rather heavy penalty in terms

of latency. Although the actual decision hardware is not very extensive, the priority

sorter and the logic necessary to generate the enable signals is quite considerable.

Several variations on the chain arbitration method were also investigated. A good

deal of hardware is saved by replacing the sorting network with a queue of requests

which can be read in parallel. Once the queue is set up, its elements are simply fed

to the appropriate HOMs in the chain. Chapter 3 discussed at some length the prob·

lems associated with such a queue, and the concerns still apply.

It is also possible to reduce the hardware cost considerably by folding the chain

arbiter into an iterative implementation. Only one grant ROM is required, and an arbiter

cycle requires eight passes with the SIU being saved as state each time. The priority

sorter can also be eliminated; a queue which presents the next highest priority request

on each pass suffices. Unfortunately, the time to perform an arbitration cycle depends

on not only the logic delays but also on the settling time of the latches ..

One possibility for increasing speed is to reduce the number of levels or iterations,

and only grant the requests at high priority levels each cycle. However, the loss of

parallelism on the RingBus is quite substantial. At a minimum, new requests should

not have to climb several priority levels before even being considered for granting.

There are also several compromises between the chain and iterative implementa·

tions. For example, the arbiter might make four iterations through a chain of only two

ROMs. Unfortunately, the dependencies enforced by the priority order make it lmpossi·

102. Chapter 6: The Design of the RingBus Arbiter

--- -~--- ---------------

Thomas Lee Anderson

ble to perform the arbitration of the requests in parallel. This makes the speed essen·

tially constant, and unacceptable, for any of the variations of the chain method.

A considerably different approach to the problem yields a scheme which is much

faster than any of the chain implementations. This implementation, termed criss-cross,

is shown in Figure 24. It adopts an approach orthogonal to that of the chain imple·

mentation. Instead of arbitrating all the segments for each slice in parallel, it arbitrates

all the slices for each segment In parallel. In other words, each segment of the

RingBus is provisionally granted to a single slice. This decision is made on the basis

of the priority ordering. A request is granted if and only if it has been granted all of

the segments it needs.

Slice 0
RBQ
DST

"O"

Slice 7
REQ
DST

"7"

T p

8

SG
Logic

SG
Logic

I

p S~ents
ranted

REQ

Figure 24: Criss-Cross Arbiter Implementation

Section 6.3: Granting the Requests

Slice 0
NcwGRT

Slice 7
NewGRT

103.

The Design of a Multiprocessor Development System

The criss-cross arbiter implementation works in a reasonably straightforward

manner. A SN ROM is used to generate the SNL for each of the slices, with no sorting

by priority order. The values coming out of the ROMs are the segments needed by

each slice. These are crossed and collected to form the slices needing each segment.

The segment grant logic takes these lines as inputs, and outputs a line for each slice

indicating if the slice's request has been granted for the segment.

In order to make this decision, the SG logic needs to know two additional pieces

of information. It needs to know which requests have previously been granted, so that

the accesses may continue without interruption. This information is represented by the

values of the grant signals generated in the previous arbiter cycle. If a request which

uses the segment in question is in progress, the SG logic simply continues to grant the

segment to that slice. Since only one slice can be using a segment at a time, there Is

at most one such slice.

If the segment is not currently tied up by an ongoing access, then the logic grants

it to the highest priority slice which requires it by asserting the appropriate output line.

The priority order is encoded by lines which feed into the SG logic. If a general priori·

ty scheme is used, in which each of the eight slices may have any of eight priority lev·

els, there are a8 possible combinations. Twenty-four lines are required to encode

these priorities.

Even if only one slice is allowed at each priority level, there are stiU 81 orderings.

In this case, sixteen lines are required. However, if rotating priority is used, then there

are only eight possible priority orderings and these may be encoded in three lines.

If a request does not need a particular segment, the SG logic asserts the output

104. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

line to signify that the request is grantable in terms of that segment. The outputs of

the blocks of SG logic are the slices granted for each segment. These lines are

"crossed" and collected to form the segments granted for each slice, known as the

Segments Granted List (SGL). If all the segment grant lines for a particular slice are

asserted, i.e. the AND is true, then that slice's request may be granted.

There is one minor complication with this scheme. A slice that is not making a re·

quest outputs all Os from its SN ROM, since it requires no segments. Since the SG

logic grants segments that are not needed, the request is granted all slices, and its

ENM would be erroneously asserted. To avoid this, the grant line is ANDed with the

slice request line to insure that a request is really active.

The attractions of this scheme are obvious; the basic hardware is purely combina·

tional with fewer ROM delays than the chain scheme. Depending upon how many bits

are used, it can handle any of the priority schemes discussed in Chapter 3. It does

not handle as wide a range of arbitration algorithms as the first two implementations.

Since the SG logic locally grants any requests which do not need the segment or the

highest priority request which does need the segment, only the full arbitration algorithm

from Chapter 3 may be implemented. Fortunately, this is the preferred algorithm since

it tries for maximum parallelism without sacrificing fairness.

The criss-cross method uses a fair amount of hardware, but some steps can be

taken to reduce it. The bulk of the hardware lies in the SG logic, and the amount re·

quired is largely dependent upon the number of priority and grant lines. Section 6.5

outlines some ways to reduce the number of these lines.

Section 6.3: Granting the Requests 105.

The Design of a Multiprocessor Development System

6.4: Generating the Enable Signals

All arbitration schemes discussed in the previous section generate grant signals

which must be translated into enable signals for the RIBs. One advantage of the

criss-cross arbiter implementation is that it makes it easy to generate the enable sig·

nals. Since the grant lines are ordered by slice number rather than by priority it is

easy to recombine them with the destination bits to calculate the proper values of the

enable lines. As described in the previous chapter, there are three such signals for

each RIB in the ring. The ENM signal connects the slice Multibus to the RingBus seg·

ment of the next slice. The ENR signal allows an access to flow from the slice's

RingBus segment to the next segment. The ENL allows an access to propagate in the

opposite direction.

The process of generating the enable signals is actually rather simple. The arbiter

asserts the ENM signal for each RIB whose request has been granted. This connects

the slice Multibus to the RingBus segment. It then asserts the ENL and ENR signals

necessary to connect together the segments needed for that request. If two adjacent

segments are needed, then the buffers connecting them are enabled with the direction

determined by the direction of the access. The arbiter asserts the ENR signal for a

slice to propagate a request from its left RingBus segment to its right RingBus seg­

ment. The ENL signal allows a request to propagate from either the Multibus or the

right RingBus segment to the left RingBus segment.

As shown in Figure 25, the enable signals may be generated in a manner similar

to the SNLs .. Two more sets of ROMs take as inputs the DST lines for each slice, plus

106. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

the signal indicating if the request has been granted. The ENM signal is just the nega.

tion of the grant signal; the ROMs output the ENR and £NL settings required for each

slice in the ring. Since only one access can take place on a RingBus segment at a

time, at most one granted request causes a particular enable signal to be asserted.

Thus, it is safe to OR together the ROM outputs for each request to produce the final

ENR and ENL values to send to RIBs.

The Concert arbiter follows the convention that the RingBus Left is connected to

the next lowest numbered slice and the RingBus Right to the next highest (both modu·

lo eight). Assuming this convention, Table 13 shows the SNLs and the enable signals

which are generated for the request s-4. To make the relationship clearer, the

positive-true enable signals are listed.

6.5: The Fi.nal Design

This section outlines the final arbiter design chosen for the Concert system. It

gives an overview of the implementation as well as some particularly crucial practical

details.

6.5.1: The Arbitration Scheme

Figure 26 summarizes the Concert arbiter implementation. It is a variation of the

criss-cross technique. After being latched, the REQ and DST lines from each RIB are

sent through ROMS to generate the Segment Needed Lists. The segments required by

each slice are crossed and collected to form the slices requiring each segment. These

Section 6.5. 1 : The Arbitration Scheme 107.

The Design of a Multiprocessor Development System

Slice 0 Slice 0
New ENM ORT

DST ENR
3

"O"
3

ENL

ENL

"7"
3

DST ENR 3

New ENM ORT
Slice 7 Slice 7

Figure 25: Arbiter Enable Signal Generation

signals are fed into another set of ROMS, which generate the list of slices whose re-

quests may be granted locally, i.e. in terms of that particular segment.

As discussed earlier, the ROMS which generate the Segment Grant Lists also need

inputs identifying the current priority order and the requests previously granted. Two

tricks are used to reduce the number of lines necessary to carry this information, and

108. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

segment Clockwise Access Counterclockwise Access
request 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

SNL x x x x x x x x x x

Table 13a: Segment Needed Lists for Request 6-+4

slice Clockwise Access Counterclockwise Access
request 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ENM 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
ENL 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0
ENR 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Table 13b: Enable Signals for Request 6-+4

hence the size of the SG ROMs. The arbiter incorporates a simple rotating priority

scheme, which requires a minimum of hardware. A three-bit register identifies the

current top priority slice, and its output bits are fed into each SG ROM. From these,

the ROM determines the top priority request and orders the other requests by counting

down modulo eight.

Each arbiter cycle, the priority is rotated to the next slice which has a pending

ungranted request. The scheme is very similar to that used on the RIB to perform the

Multibus arbitration. As shown in Figure 27, the only difference is that the SG ROMs

automatically determine the top priority active request, and thus the priority update

ROM does not have to output this information. As on the RIB, the ROM does output

the number of the top priority slice for the next cycle, which is loaded into the register.

The decision to use rotating priority instead of more complicated history schemes

reduces the· number of lines required to identify the priority ordering from a possible

twenty-four down to three.

Section 6.5.1 : The Arbitration Scheme 109.

The Design of a Multiprocessor Development System

Slice 0
REQ-~~-~1---i~~~~:ir-~1---..---l~,

ORT
Reg

Slice 0
REQ

DST t--"""'-.,.

GRT-~~~..__,~-r-....
Reg ~-

REQ
DST--~

Slice 7

PRIReg

Figure 26: Concert Arbiter Design Scheme

REQ
Slice 7

New.
ORT

New
ORT

The most obvious way to tell the SG ROMs what requests are currently in progress

is to input the current grant lines. Unfortunately, this requires eight lines, and thus In-

creases the ROM size by a factor of 256. Instead, a single line indicating if the seg-

ment is currently in use is sent to each SG ROM. If the in-use line is not asserted, the

ROM uses the normal criss-cross scheme of locally granting all requests which do not

need the segment plus the highest priority request which does require it. If the in-use

line is asserted, the ROM outputs are disabled and instead separate tri-state drivers

110. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

Slice 0
R
ORT

Slice 7
RE
ORT

to SO
OMs

Current
Priority

2Kx3
ROM

ArbiterCLK

Figure 27: Concert Arbiter Priority Implementation

Next
Priority

output the negated segments needed. This results in the local grant of only those re-

quests which don't require the segment.

The in-use line for each segment is generated by an AND-OR tree. A segment is

currently in use if any request that is currently granted has the bit for that segment bit

asserted in its SNL.

The slices granted each segment are criss-crossed and collected to yield the seg.

ments granted for each slice. A new request is globally granted if it has been locally

granted for each segment. Since null requests require no segments, they also show up

as granted. For this reason, the request line for a slice is ANDed with the Segments

Granted List to determine if a new request may be granted. If the request has been

previously granted and is currently in progress, the "segment in use" line to the ROMs

insures that the request is not granted through the normal path. Instead, all previously

Section 6.5.1 : The Arbitration Scheme 111.

-------------- -----

The Design of a Multiprocessor Development System

granted requests that are still active are automatically granted on subsequent arbiter

cycles.

The generation of the enable signals for the RIBs is done in the exact manner

described in the previous section and shown in Figure 25. The ENM signal is driven

directly from the inverted grant line, and the ENR and ENL signals are generated by

ROMs.

6.5.2: Flexibility

All the arbiter schemes discussed, including the final design, have made extensive

use of ROMs both to reduce package count and to provide a measure of flexibility. In

fact, the different ROM technologies available allow a wide variety of options. For ex­

ample, using EPROMs allows the arbitration scheme to be modified easily for experi­

mentation. The Concert prototype uses PROMs for the generation of the Segment

Needed Lists, Segment Grant Lists and enable signals. Although they do not provide

the same degree of flexibility as EPROMs, they are much faster and therefore allow a

much shorter arbiter cycle.

Although the PROMs themselves cannot be altered, different PROMs may still be

inserted if desired. Thus, it is possible to make slight modifications in the arbitration

scheme by programming new PROMs. More importantly, the PROMs allow the same ar­

biter board to work equally well over a wide variety of variations in the RIB access

paths. The SN PROMs can be altered to reflect different segment requirements for the

requests, and the ER and EL PROMs can be changed to reflect a different interpreta·

112. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

tion of the lines to the RIBs.

Such changes might be desired even if the RIBs themselves are not altered. For

example, it would be interesting to run the same application on both a unidirectional

and bidirectional RingBus and compare the performance differences. All that is re·

quired for such an experiment is to replace the SN and enable PROMs for each slice.

If the SNLs accurately reflect the segments required for unidirectional accesses and the

enable lines are only asserted in one direction, the result is a undirectional RingBus

produced by underutilizing the RIB access paths.

Some aspects of the arbiter cannot be easily changed. Only three lines of priority

information run to the SG PROMs, which means that only eight different orderings are

possible. Although the SG PROMs can interpret these lines differently, it's hard to ima·

gine any useful orderings other tlian rotating priority. Since a PROM Is used to update

the priority ·register, some flexibility is available in terms of the rotation scheme used.

Any other priority schemes, including history methods, would require extensive redesign

of the arbiter board. Redesign would also be required to extend the number of slices

in a ring or the number of control lines running from the arbiter to the RIBs.

6.5.3: Practical Issues

There are a number of practical timing issues which had to be faced in the course

of the arbiter design. Both the input and output lines of the arbiter are latched to in­

sure glitch:free operation. A round of requests begins when the current values of REQ

and DST from the slices are latched in. At the end of the cycle, the values of ENM,

Section 6.5.3: Practical Issues 113.

The Design of a Multiprocessor Development System

ENR, and ENL determined by the arbitration are latched and sent back to the slices.

This scheme, by itself, is not quite sufficient for reliable performance. Since the re­

quests from the RIBs happen asynchronously with respect to the arbiter cycles, it is

possible for the input registers to experience metastable states. The standard solution

- two levels of registers - was employed to solve this problem. Shortly before the

beginning of an arbitration cycle, a sample clock pulse latches the input lines. These

values are then latched into the second set of registers by the arbiter clock. The time

between these two pulses is sufficient to allow any metastable states in the first set of

latches to settle. Using a second set of registers was judged preferable to the alterna­

tive of extending the arbiter cycle to allow for the settling.

The lack of coordination between the slices and the arbiter caused another sticky

problem. The arbiter samples the request lines from the slices at the beginning of

each cycle. In order to know that a request is complete, it must read an unasserted

request line for at least one cycle. However, the length of the arbiter cycle when com­

pared with the memory access time of the 68000 makes it conceivable that a node

might finish one memory access and begin another within a single arbiter cycle. The

consequences of the arbiter missing a dropped request are considerable - timeout on

the RingBus with no way to detect the problem and abort the cycle. The solution

chosen was to put a latch on each request line which insures that a deasserted re­

quest line is held for at least one arbiter cycle.

Another practical issue was mentioned in Chapter 4 during the definition of the

RingBus. All RingBus transactions begin on the leading edge of GO, which signifies

that all address, data and control lines are stable and ready for the operation. Since

114. Chapter 6: The Design of the RingBus Arbiter

Thomas Lee Anderson

RingBus lines may propagate through several sets of buffers between the source and

destination slice, care must be taken to insure that the GO pulse doesn't begin a tran·

saction before the other signals are stable. Likewise, the leading edge of ACK lndi·

cates that the transaction is complete and, in the event of a read, that data is avail·

able. This line also must not arrive before the data lines are stable.

The solution chosen, as described in Chapter 4, is to make the RingBus a "semi·

synchronous" bus. All address, data and most control lines propagate freely along

RingBus segments from the source to the destination. However, both GO and ACK do

not pass to their intended destination until a pulse from the arbiter latches them. This

pulse, LCLK, is sent out by the arbiter and passed to all the slices as a signal on the

RingBus. LCLK is generated after the end of an arbiter cycle, once sufficient time has

elapsed for all RingBus signals to propagate and settle at their respective destinations.

Section 6.5.3: Practical Issues 115.

The Design of a Multiprocessor Development System

Chapter 7: Conclusions

This final chapter summarizes the results of the thesis project. It attempts to

evaluate the current state of the Concert project, and makes some suggestions for con·

tinuing research. It also discusses the possibilities for future research into the RingBus

architecture.

7 .1: Summary

It is difficult to evaluate the usefulness of Concert since, at the time of this writing,

the prototype system is still being constructed and debugged. However, the hardware

design effort has revealed a number of encouraging facts. The basic architecture has

turned out ·to be fairly easy to implement, except for the all-too-common problems of

poor documentation and unexpected delays in various places.

The initial estimates for the amount of hardware necessary to implement the Con·

cert system turned out to be a little low. Both the arbiter and the RIB use more chips

than originally envisioned, but they each still fit on a single Multibus card. The in·

crease in hardware was due to part to an underestimation of the difficulty of certain

parts of the design, and in part to the scourge of "creeping featurism." Regardless,

most of the design goals have been met thus far.

The promise of Concert as a research vehicle in M.l.T. is also difficult to ascertain.

Several people, notably Bert Halstead and Tom Sterling, are committed to the project

and are actively planning applications work on the system. At a minimum, it would be

116. Chapter 7: Conclusions

Thomas Lee Anderson

interesting to get a system of a a dozen or two dozen nodes running and measure the

performance.

7 .2: Suggestions for Future Research

There are a number of possibilities for future research into the RingBus architec·

ture in general and the Concert implementation in particular. Future redesign of the

hardware is probably inevitable. ·Some aspects of the design may be suitable for imple·

mentation in VLSI; this would be an interesting route to pursue. The large number of

input and output lines to the RIB make it an unlikely candidate. However, a VLSI Im·

plementation of the arbiter is feasible. If a modular arbiter design can be identified, it

would be possible to integrate the arbitration logic for a fixed number of slices on a

chip, and then use multiple chips for larger rings.

There are numerous opportunities for comparing the RingBus architecture to previ­

ous tightly-coupled multiprocessor projects. The real-time measurement capabilities of

Concert provide one such means. Further simulation, possibly with new arbitration or

priority schemes, is also feasible. The arbiter simulator described in Chapter 3 is fairly

simple. The use of data from actual multiprocessor programs and a more sophisticated

simulator would provide more believable results.

Very little formal analysis of the architecture has been attempted. A model which

would allow analytic comparisons of segmented and non-segmented bus architectures

would aid greatly in the understanding of the RingBus architecture. It would also help

to assess the value of segmented buses in general; very little previous work has been

Section 7.2: Suggestions for Future Research 117.

The Design of a Multiprocessor Development System

done in this area.

Finally, of course, there is a wide range of applications which could be run on

Concert. Those listed in Chapter 2 would literally take years to complete, and it is like·

ly there are plenty of others which have not yet been identified. The process of writing

applications programs will help to understand more about programming Concert, and

multiprocessors in general. For example, some applications will use functional

languages like LISP and others will use more traditional approaches like communicating

sequential processes [32]. Comparison of performance data from programs using

different multiprocessor programming schemes could produce some interesting results.

Whatever the future usefulness of the RingBus architecture or of Concert-like sys·

terns, it is clear that there are many avenues to explore in the immediate future. The

applications listed in Chapter 2 and the suggestions for future work made in this sec·

tion provide a number of topics suitable for research and student projects in the next

few years.

118. Chapter 7: Conclusions

Thomas Lee Anderson

Bibliography

[1] Alpern, D., "Some Notes on Concert Environment and Communication," Concert
working paper, June 1982.

[2] Anderson, G.A. and E.D. Jensen, "Computer Interconnection Structures: Taxono­
my, Characteristics and Examples," Computing Surveys 7:4, December 1975, pp.
197-213.

[3] Anderson, T.L., "Design Specification for a Multiprocessor Development System,"
Concert working paper, June 1982.

[4] Arden, B.W. and R. Ginosar, "MP/C: A Multiprocessor I Multicomputer Architec­
ture," Proc. Compean Spring 81, February 1981, pp. 290-293.

[5] Arvind, K.P. Gostelow, and W.E. Plouffe, "An Asynchronous Programming
Language and Computing Machine," TR114A, Dept. of Information and Computer
Science, University of California at Irvine, December 1978.

[6] Arvind, V. Kathail and K. Pingali, "A Dataflow Architecture with Tagged Tokens,"
MIT /LCS/TM-174, Laboratory for Computer Science, M.l.T., September 1980.

(7] Arvind, V. Kathail, and K. Pingall, "A Processing Element for a Large Multiple Pro­
cessor Dataflow Machine," VLSI Memo No. 80-26, M.l.T., August 1980.

[8] Barnes, G.H., et al., "The llliac IV Computer," IEEE Transactions on Computers
C-77:8, August 1968, pp. 748-757.

[9] Barthmaier, J., "Intel Multibus Interfacing," in "iAPX 86, 88 User's Manual," Intel
Corporation, August 1981, pp. A175-A208.

[10] Batcher, K.B., "STARAN/RADCAP Hardware Architecture," Proc. 1973 Sagamore
Conference on Parallel Processing, August 1973, pp. 147-152.

[11] Bouknight, W.J., et al., "The !Iliac IV System," Proc. IEEE 60:4, April 1972, pp.
369-388.

[12] Bowen, B.A. and R.J.A. Buhn, The Logical Design of Multiple-Microprocessor Sys­
tems, Prentice-Hall, Inc., 1980.

[13] "DBC68K Hardware Reference Manual," Microbar Systems, Inc., May 1982.

[14] "DBC86 Hardware Reference Manual," Microbar Systems, Inc., January 1982.

Bibliography 119.

--~- -------------

The Design of a Multiprocessor Development System

[15] "DBR50 Hardware Reference Manual," Microbar Systems, Inc., December 1981.

[16] Dennis, Jack, "Data Flow Supercomputers," Computer 13:11, November 1980, pp.
48-56.

[17] Enslow, P.H., Jr., "Multiprocessor Organization - A Survey," Computing Surveys
9:1 , March 1977, pp. 103-129.

[18] Enslow, P.H., Jr., ed., Multiprocessors and Parallel Processing, John Wiley and
Sons, 1014.

[19) Farrell, E.P., N. Ghani and P.C. Treleaven, "A Concurrent Computer Architecture
and a Ring Based Implementation," Proc. Sixth Annual Symposium on Computer
Architecture, April 1979, pp: 1-7.

[20) Flynn, M. J., "Very High Speed Computing Systems," Proc. IEEE 54:12, December
1966, pp. 1901-1909.

[21) Fong, J. and C. Pottle, "Parallel Processing of Power System Analysis Problems
via Simple Parallel Microcomputer Structures," IEEE Transactions on Power Ap­
paratus and Systems PAS-97:5, September/October 1978, pp. 1834-1841.

[22) Foster, C.C., Content Addressable Parallel Processors, Van Nostrand Reinhold,
1976.

[23) Fuller, et al., "Multi-Microprocessors: An Overview and Working Example," Proc.
IEEE 66:2, February 1978, pp.216-228.

[24] Gostelow, K.P. and R.E. Thomas, "Performance of a Simulated Data Flow Com­
puter," IEEE Transactions on Computers C-29:10, October 1980, pp. 905-919.

[25) Halstead, R., "Architecture of a Myriaprocessor," Proc. COMPCON Spring 81,
February 1981, pp. 299-302.

[26) Halstead, R., "Architecture of a Myriaprocessor," in Advanced Computer Con­
cepts, J. Solinsky, ed., La Jolla Institute, 1981.

[27] Halstead, R., "Reference Tree Networks: Virtual Machine and Implementation,"
MIT /LCS/TR-222, Laboratory for Computer Science, M.l.T., July 1979.

[28) Halstead, R.H. and S.A. Ward, "The MuNet: A Scalable Decentralized Architecture
for Parallel Computation," Proc. Seventh Annual Symposium on Computer Archi­
tecture, May 1980, pp. 139-145.

[29) Hansen, P.B., "Multiprocessor Architectures for Concurrent Programs," Proc.
ACM '78 Vol. 1, December 1978, pp. 317·323.

120. Bibliography

Thomas Lee Anderson

[30] Harris, J.A. and D.R. Smith, "Hierarchical Multiprocessor Organizations," Proc.
Fourth Annual Symposium on Computer Architecture, March 1977, pp. 41-48.

[31] Haynes, LS., et al., "A Survey of Highly Parallel Computing," Computer 15:1,
January 1982, pp. 9-24.

[32] Hoare, C.A.R., "Communicating Sequential Processes," CACM 21:8, August 1978,
pp. 666-677.

(33] "iSBC 86/12A Single Board Computer Hardware Reference Manual," Intel Cor­
poration, 1979.

(34] Kassakian, J.G., "Simulating Power Electronic Systems - A New Approach,"
Proc. IEEE 67:10, October 1979, pp. 1428-1439.

(35] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Prentice-Hall,
Inc., 1978.

[36] Kuck, D.J., "A Survey of Parallel Machine Organization and Programming," Com­
puting Surveys 9: 1, March 1977, pp. 29·59.

[37] "MC68000 16-Bit Microprocessor User's Manual," Second Ed., Motorola, Inc.,
January 1980.

(38] Multiprocessor Systems, lnfotech, 1976.

(39] Patel, J.H., "Processor-Memory Interconnections for Multiprocessors," Proc. Sixth
Annual Symposium on Computer Architecture, April 1979, 168-177.

(40] "Proposed Microcomputer System 796 Bus Standard," Computer 13: 10, October
1980, pp. 89-105.

(41} Ramamoorthy, C.V. and H.F. Li, "Pipeline Architecture," Computing Surveys 9:1,
March 1977, pp. 61-102.

(42] Russell, R.M., "The Cray-1 Computer System," CACM 21:1, Jan. 1978, pp. 63·72.

(43] Satyanarayanan, M., "Multiprocessing: An Annotated Bibliography," Computer
13:5, May 1980, pp. 101·116.

(44] Satyanarayanan, M., Multiprocessors: A Comparative Study, Prentice-Hall, Inc.,
1980.

[45] Siegel, H.J., "A Model of SIMD Machines and a Comparison of Various Intercon­
nection Networks," IEEE Transactions on Computers C-28:12, December 1979, pp.
907-917.

Bibliography 121.

The Design of a Multiprocessor Development System

(46] Siewiorek, D.P., "Modularity and Multi-Microprocessor Structures," Proc. Seventh
Annual Workshop on Microprogramming, October 1974, pp. 186-193.

(47] Smith, A.J., "Multiprocessor Memory Organization and Memory Interference.,"
CACM 20:10, October 1977, pp. 754-761.

(48] Sterling, T.L., J.G. Kassakian and E.Y. Chan, "A Multiprocessor for Power Elec·
tronic Circuit Simulation," 1981 IEEE Power Electronics Specialists Conference,
1981.

(49] Sterling, T.L., "Parallel Computer Processing for Power Electronic Network Simula­
tion," M.S. Thesis, Electrical Eng. and Computer Sci. Dept., M.l.T., May 1981.

(50] Stone, H.S., "Parallel Computers," in Introduction to Computer Architecture, H. S.
Stone, ed., Science Research Associates, 1975, pp. 318-374.

[51] Swan, fi.J., A. Bechtolsheim, K. Lai, and J.K. Ousterhout, "The Implementation of
the Cm Multi-Microprocessor," Proc. AF/PS 1977 National Computer Conference
Volume 46, 1977, pp. 645-655.

• (52] Swan, R.J., S.H. Fuller and D.P. Siewiorek, "Cm : A Modular Multi·
Microprocessor," Proc. AF/PS 1977 National Computer Conference Volume 46,
1977, pp. 637-644.

[53) Thurber, K.J. and L.D. Wald, "Associative and Parallel Processors," Computing
Surveys 7:4, December 1975, pp. 215-255.

(54) Treleaven, P.C. and R.P. Hopkins, "Decentralized Computation," Proc. Eighth
Symposium on Computer Architecture, May 1981, pp. 279-290.

[55) "Unix Programmer's Manual: Virtual VAX·11 Version," Seventh Ed., University of
California at Berkeley, November 1980.

[56) Weitzman, C., Distributed Micro/Minicomputer Systems, Prentice-Hall, Inc., 1980.

(57] Widdoes, LC., "The S-1 Project: Developing High-Performance Digital Comput­
ers," Proc. Spring COMPCON 1980, February 1980, pp. 282-291.

(58] Wulf, W. and C.G. Bell, "C.mmp · A Multi-mini-processor," Proc. AF/PS 1972 Fall
Joint Computer Conference, Volume 41, December 1972, pp. 765· 777.

[59] Yau, S.S. and H.S. Fung, "Associative Processor Architecture - A Survey," Com­
puting Surveys 9:1, March 1977, pp. 3-27.

122. Bibliography

lllCUIUTY CLAlll,.ICATION O' THll ~AGIE ,...... Dete Snle'"1

REPORT DOCUMENTATION PAGE&·-· . .·~· ~ • ,. '"11.''
READ~~~~S
. l'Olfll,

fl". ~ T ;4l1'ilia ,_,.,. '~~,...,..·~·~':~·=-- ... ,..,_,~,,..-- .. ~
~·_,... -· .•. ra ~""l'll\.'Olr NUll•IUl

MIT/LCS/TR-279
•· TITL.IE (•d,,,le) I. TYPIE OF ltlE~OltT a ~UHOD COYIEltED

The Design of a Multiprocessor Development System Technical lleport Sep. '82

•• ~IEltFOMllNG OltG. ltlE~OltT NUM81Elt

MIT/LCS/TR-279
7. AUTHOlt(e) T. C:ONTltA«;T Olt G"AN"f NUMaElt(e)

Thomas Lee Anderson DARPA N00014-75-C-0661

t. Pl!:ltf'ORMING ORGANIZATION MAMIE ANO ADOltllll ··t0;·=~1tAM IELIEllllENT. PltOJIEC.T. TAllC

MIT Laboratory for Computer Science
Alt A A WOltK UNIT NUMalEltl

•
545 Technology Square
Cambridge, Ma. 02139

II. CONTROi.LiN• OP'l"ICIE NAME AND ADDltlEll
.. ,.

ti. AIE~ltT DATIE

DARPA September 1982
1400 Wilson Blvd.

l
l). 1'U ... IR 0, ~AGIEI

Arlington, Va. 22217 '. 122
W. llONiTOKtMG AGt'NC:Y MAMIE• ADDltUl(ll .,.,..1 ,,_ • 1 omoef ••• llECUltlTY Cl.All. (•I 1111• NfJOtf)

Office of Naval Research
Unclassified Department of the Navy .

Information Systems Program tie. =iA$1i,!ICATION7DOWNGltADING

Arlington, Virginia 22217
. llU\.IE

Jfl. Dll'tA18UTION ITATIDlllENT....,_..., ..
This document is approyed f Qr public ..U..e ACid~eleaae. disbribution unlimited.

""" _L

17. DllTlttaUTION STATIEMIENT (el, ,..,,..,..._,._._.,.,

Unlimited

II. SUPPLIEMIENTAltY NOTIES

''· KEV WORDS (C•I,,._ •,._ el• If nec•H_,, -" l .. llly .,. ... cA- -6er)

see back
\

10. •••TRACT (C•• ,. ... _ ... 11 nece••.,, end ,..,,1y.,. Med:_._,

see back

OD 1 ~=~• 103 llDIT10ll OP ' •ov 11 11 oa101.n1:

A•'"SlfWd9lillDPIW11~'- lflda~­
ll bling Cllllllln.ICl9d. The _..,.., m- a ODlan. II ~ 911 lllflPOrt
~ 1WWct1 .._ ••l.T. Tiie no1t•11\·· c:fllila;f ilif'ille, ...
8UlllllllriMd lrillly. lon'9 IMlrldld SS 7 Ill a .. mo_

n. ...- lllcelpalll• lie ·•of? P ·.., ·•, IDr_..
wting pnxwrn Ind __, Ill a,.. = •s I II' Tlw ~
llClur9 II dlecrllld balh In I •• 1111111
lft TM ol _.......,.,. _, d lie •DI I Clln
..tm.

The cllllign d ... Conc:er1 ·•- WWW fl I.. • --- • •111 llllt ~ ,,
llllO ~ lllOdulel II ...__. Ill Clll&ldlillllll -..., fllclr, w
•llllHllllO• - al9i9d for ..,..,,. - ol lie - _, WI 'Q,l'Nn - ..
Aingllill~

..... Ind Tille ol T'-11 8upeMIDr;

Aabeft H, HllllMd, Jr,,
Allilllnl Proflmar ol c....., 8cilla Ind fl9

Ker Wurm Ind ""'-=
MUIUpocww .,._., ..,....._. ~ .._,......, pra , ..
CCllllPIMr •chillcllulw

tseu•1Ty CL••••c•nn- ... TM ,.. .,.. •• « d'

