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Abstract 

Existing circuit models for short-channel MOS transistors represent a compromise 
between computation speed and ease of use. Empirical models are very fast to 
evaluate, but their parameters must be fitted from experimental measurements. 
Theoretical models require longer computation time, but they may be used to predict 
the performance of new, unmeasured MOS technologies since their parameters are not 
curve- fitted from experimental data. 

This thesis combines the best features of both types of model, yielding a fast circuit 
simulator whose input parameters need not be extracted from experimental 
measurements. A nonlinear optimization algorithm is used to "compile" the parameters 
of a theoretical model into parameters for an empirical model, providing the superior 
user-interface of theoretical models without sacrificing simulator execution speed. 
Results produced by a prototype model compiler are presented, showing the modeling 
error to be approximately 5 percent. 
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Chapter 1: Introduction 

One of the major challenges in integrated circuit engineering is to minimize the 

number of design iterations required to fully debug a chip. Error tracing is made 

difficult by the small size of the chip, since micro-probes or electron microscopes are 

required to monitor the behavior of internal nodes. When errors are finally located and 

corrections are proposed, they are both expensive and time-consuming to implement: 

the entire chip must be refabricated, even if the modification affects only one 

transistor. This process may cost up to $20,000 and require 6 weeks to complete. 

The best way to avoid design revisions is to debug a chip before it is ever 

fabricated; usually this is dona by computer simulation. Simulation makes circuit 

behavior easy to examine, so malfunctions can be rapidly located and repaired. 

Proposed modifications are then simulated to see if they remove the error. An iterative 

process of redesign and re·simulation is performed until the simulated circuit behavior 

is acceptable. 

This thesis is concerned with the specific task of MOS circuit simulation; that is, 

accurately predicting the analog waveforms produced in a network of MOS transistors 

under specified input excitations. Simulation accuracy is impossible unless the 

nonlinear characteristics of the individual transistors are accurately modeled. Providing 

acceptable modeling accuracy at low (simulation) cost is the goal of this work. 

High performance is obtained in modern MOS technologies by scaling down the 

transistor dimensions (11, 29]. Unfortunately, as they become smaller, transistors 

deviate significantly from the behavior predicted by classical gradual-field theories. 

These "short channel effects" drastically complicate the physical theory of transistor 

behavior, and hence increase the complexity of transistor models. Two distinct 

approaches to short channel transistor modeling have been successfully employed in 

circuit simulators: theoretical models (e.g., (13]) and empirical models (e.g., (19]). The 

terms "theoretical" and "empirical" are new; I use them to call attention to the 
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structural difference between two general classes of MOS models. 

Theoretical models are created by performing a complete solid-state 

electrodynamic analysis of the MOS transistor structure. Each identifiable physical 

effect is explicitly accounted for, in an attempt to eliminate all possible sources of 

error. The resulting equations are then directly used as a model for circuit simulation. 

The parameters of a theoretical model are simply the physical attributes of a 

particular MOS technology (e.g., oxide thickness, substrate doping, junction depth, 

etc.). These constants are carefully measured and closely controlled in the 

semiconductor fabrication process. Because the model parameters are so accurately 

known, theoretical models are extremely easy to use: physical constants of the 

technology are plugged directly into the circuit simulator. 

New MOS processes are also readily simulated with theoretical models, by inserting 

target values of the physical fabrication parameters into the simulator. Circuits can be 

accurately simulated even before the first wafer has been processed, allowing chip 

design and technology . development to proceed in parallel. The price paid for this 

extreme flexibility is slow simulation. Each separate physical effect is modeled 

individually; some effects require transcendental function calculations or nested 

iterations. When all of these calculations are combined, the final modeling routine 

becomes extremely complex, requiring a very large number of computational operations 

to predict transistor behavior. The high cost of theoretical models has led to the 

development of an alternative strategy, which I will refer to as "empirical" modeling. 

Empirical models are not rooted in solid-state physics; rather, they are 

mathematical expressions which provide a good curve-fit to the behavior of MOS 

transistors. Whereas theoretical models strive for accuracy at any cost, empirical 

models strive for acceptable accuracy at very low cost. Since individual transistors on 

the same physical wafer are subject to parameter variations, modeling accuracy beyond 
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a certain level is illusory. 

Instead of separately accounting for each individual physical effect, empirical 

models often lump several effects together, and they occasionally ignore some effects 

entirely. Accuracy is thus traded against model evaluation speed, accepting 

engineering approximations in. return for fast simulation. As R. C. Foss has said [19], 

"A ±30 percent representation of a 1 o percent effect gives 3 percent accuracy." 

Since their equations are not constrained to be physically motivated, empirical 

models can employ any convenient mathematical expressions which give reasonable 

accuracy. Simple polynomials are often used, because they can provide acceptable 

curve-fits while permitting fast evaluation. The coefficients of these polynomials are the 

"fudge factors" which are adjusted to obtain a good fit. Because the "fudge factors" 

are not physical constants of the fabrication process, their values are unpredictable, 

and must be extracted from measurements made on actual transistors. New, as-yet

unfabricated technologies cannot be simulated with empirical models, because no test 

transistors exist for parameter extraction. 

A hybrid modeling scheme which combines the flexibility of theoretical models with 

the fast simulation speed of empirical models is presented in this thesis. Model 

parameters are (easily obtainable) physical fabrication constants, yet high speed 

empirical equations are implemented in the circuit simulator. This is achieved by 

"compiling" the physical constants for a theoretical model into the parameters 

necessary to drive an empirical model which is used by the circuit simulator. 

The model parameter compilation process is analogous to a high-level computer 

language compiler. A slow translation program is invoked once, generating a fast 

object program which is subsequently invoked many times. In the MOS modeling 

domain, the "object program" is a set of parameters which will drive a fast empirical 

model (permitting fast circuit simulation). The "translation program" uses the input 

theoretical model parameters (the "source program") to simulate several test 

transistors, mimicking the measurements one would make to perform a manual 
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parameter extraction. These measurements are fed into a multiple-parameter nonlinear 

curve fitting program, which generates optimal (best-fit) parameters to drive the 

empirical model. 

In some cases, it might be possible to analytically compute the empirical model 

parameters, given the theoretical model parameters (e.g., when the empirical model is a 

subset of the theoretical model). However, a more general solution is desirable, which 

would permit compiling between any two arbitrarily selected models. Parameters could 

then be compiled for several different empirical models, to evaluate which one gives 

the best tradeoff between speed and accuracy. To allow these sorts of experiments, a 

curve-fitting program was constructed. 

Of course, transistor modeling is only one part of the work performed by circuit 

simulators, so it is possible that a drastic speedup in transistor modeling might result in 

only slightly improved total simulation speed. Figure 1.1 shows the total time required 

to simulate the same circuit using two different MOS transistor models. One model 

(Berkeley) is theoretical, and the other model (Mosaid) is empirical. Data for this figure 

is taken from the SPICE 2G.5 simulator, running on the VAX 1 11 /780 computer under 

the V7 UNIX2 operating system. For this particular circuit, simulation time was reduced 

by 35%, simply by switching to an empirical model. 

The present modeling effort is concentrated on the steady-state (DC) current

voltage characteristics of MOS transistors. Although capacitances and their model 

parameters have been omitted for simplicity, there is no fundamental limitation which 

prevents the compilation technique from extracting them. Indeed, since most 

capacitance parameters do not interact with DC parameters, two separate compilations 

could be employed, thus reducing the dimensionality of the parameter-space and 

~VAX is a registered trademark of Digital Equipment Corporation. 
UNIX is a registered trademark of Bell Telephone Laboratories. 
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Figure 1.1 Circuit simulation time for different MOS models 

improving compilation speed. 

The present effort emphasizes the compilation aspects of transistor modeling; old, 

well-known models were used in the compilation experiments, rather than developing 

entirely new models. However, the technique presented here is a general one, allowing 

parameters for virtually any MOS model to be compiled into parameters for virtually any 

other model. (For reasons of time, this work concentrated on the Berkeley and Mosaid 

models). The same method could be applied, for example, to generate table entries for 

a totally table-driven empirical model [41 ], or to compute optimal coefficients for a 

cubic-spline interpolation scheme. 

The use of numerical minimization for parameter extraction has applications 

besides the proposed compilation strategy. If an MOS technology has been in 

existence for some time, actual test transistors are available for measurement, and this 

data can be fed to the minimization routine. Optimal-fit parameters can then be 

extracted directly from the physical data [7, 39]. However, this technique does not 
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permit the designer to easily perturb the simulatio_n (e.g., to see the effects of over

etched polysilicon), because the empirical model parameters are not directly related to 

physical quantities. 

This thesis is divided into five chapters. Chapter 1 discusses the idea of using a 

two-level modeling technique,. and proposes the technique of constructing a parameter 

compiler. MOS models are the topic in chapter 2. The distinctions between theoretical 

and empirical models are discussed, and the two example models used in the 

parameter compilation experiments are described. Chapter 3 presents numerical 

algorithms for nonlinear minimization; they are subsequently used in the parameter 

compilation programs. Chapter 4 discusses the process of model parameter extraction. 

Manual extraction techniques are presented, and then fully automated procedures are 

described. Results obtained from prototype versions of model parameter compilers are 

presented, and the computational benefits of the compilation strategy are outlined. 

Chapter 5 presents some concluding remarks, along with suggestions for extending and 

improving this work. 
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Chapter 2: DC Models for MOS Transistors 

2. 1: Introduction 

This chapter explores the problem of constructing a circuit model of the MOS 

field-effect transistor. The model is nothing more than a set of equations which 

predicts the device's current-voltage behavior. A familiar example of a model is Ohm's 

Law, which states that the current through a resistor is linearly proportional to the 

voltage across its terminals: 

1 = v ( -) 
R 

(2.1.1) 

A simple, intuitive model of an idealized transistor is presented, to show the 

general form of model equations and to exhibit typical 1-V characteristics. Model 

refinements are then introduced, which attempt to account for the non-ideal behavior 

observed in real transistors. As refinements are added, the complexity of model 

equations is increased, and the distinction between theoretical and empirical models 

becomes clearer. The equations for a typical theoretical model and for a typical 

empirical model are presented; they are subsequently used in the parameter 

compilation experiments described in chapter 4. 

2.2: The MOS Field-Effect Transistor 

A cutaway view of an n-channel MOS transistor is shown in Figure 2.1. The 

transistor has four terminals, called the Drain, Source, Gate, and Bulk (or substrate). 

The drain and source terminals are n-type diffused regions, while the bulk is p-type 

silicon; these pn junction diodes are reverse biased under normal operating conditions. 
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bulk (p·type Silicon) 

Figure 2.1 MOS Field Effect Transistor 

The gate terminal is typically made of polycrystalline silicon, and is separated from 

the rest of the device structure by a thin insulating layer of silicon dioxide 1. No DC 

current can flow into the gate terminal because of this insulator, so (unlike the bipolar 

junction transistor) the MOS transistor is a voltage-controlled device, as shown in the 

circuit model of Figure 2.2. Although the drain and source terminals are symmetric, a 

labeling convention is adopted such that V DS > O. 

Current-voltage characteristics of MOS transistors can be (roughly) divided into 

three separate regions of operation, labeled in Figure 2.3 as the Triode, Saturation, and 

Cutoff regions. Transistors operating in the cutoff region have zero drain current 105 ; 

current begins to flow only when the gate-to-source voltage exceeds a threshold value 

called VT. N-channel devices with VT > O volts are often called "enhancement" 

transistors, while transistors with thresholds below O volts are called "depletion" 

1 Gate dielectric materials other than silicon dioxide are occasionally used in exotic 
devices. 
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Figure 2.2 Circuit model of MOS transistor 
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Figure 2.3 Typical current - voltage characteristics 

In the triode region, drain current is an increasing function of drain voltage V DS. 

However, as drain voltage is increased, the current eventually levels off ("saturates") 

and the transistor enters the saturation region. The transition from triode to saturation 
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occurs at a value of drain voltage known as v Dsat. Figure 2.3 shows the locus of 

V Dsat values. 

The n-channel transistor depicted in Figure 2.1 is built on a p-type substrate; an 

n-type substrate (with p-type source and drain) can also be used, resulting in a p

channel transistor. P-channel devices operate exactly the same way that n-channel 

transistors do, except that the algebraic signs of all voltages and currents are reversed. 

Thus a p-channel, enhancement transistor has VT ~ O volts, while a p-channel 

depletion device has VT > O. 

2.3: A Simple First-Order Model 

A very simple model of MOS transistor operation is developed in this section. The 

discussion will focus on n-channel devices, although p-channel transistors are readily 

modeled. by a change of algebraic sign. Results arising from solid-state physics will be 

referenced, but used without derivation, in order to treat the transistor as a circuit-level 

lumped element. Many solid-state electrodynamic analyses of the MOS transistor are 

available in the literature [ 13, 21, 32, 47]; the interested reader is referred to them for 

more detail. 

When a positive gate-to-bulk bias V GB is applied to the MOS transistor, the 

induced electric field across the gate oxide attracts negatively-charged carriers 

{electrons) to the silicon dioxide surface, as shown in Figure 2.4. These electrons 

ionize the holes present at the surface, and begin to deplete the p-type bulk of 

majority carriers. If the bias voltage is made sufficiently large, the number of electrons 

at the surface exceeds the number of holes, and the surface is said to be inverted. So 

many electrons are available that the surface is effectively n-type, not p-type. The 

inversion layer at the surface forms an n-type "channel" from the (n-type) drain to the 

(n-type) source, allowing current to flow. 
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Figure 2.4 Field induced channel 

If the source is shorted to the bulk (V GS = V GB), and the drain-to-source voltage 

is kept very small, the total charge QC in the channel region is given b/ 

(2.3.1) 

Channel current is related to channel charge through the transit time r,, 

(2.3.2) 

.· .. 

2This discussion is after Muller and Kamins [33], pp. 350-354. 
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Transit time is simply the channel length divided by. the drift velocity 

= (2.3.3) 

The channel current is therefore 

1os = (2.3.4) 

If the drain-to-source voltage is now increased, the channel potential is not 

constant, but increases from source to drain. This effect can be approximated by 

considering the entire channel to be at its "average" potential (V GS- (VOS /2)). This 

leads to a new channel charge QC 

(2.3.5) 

and a new drain current 

(2.3.6) 

At constant V GS, equation (2.3.6) predicts the drain current to be a parabolic 

function of drain voltage; see Figure 2.5. The maximum of the parabola occurs at 

v0s = (VGS-VT). Beyond this drain voltage, equation (2.3.6) predicts unreasonable 

behavior, since the incremental conductance (slope) is negative. In fact, the drain 

current saturates at this maximum value, becoming independent of V DS due to a 

physical mechanism known as channel pinchoff [33]. 



Ids 

- 17 -

__ Vgs = 3.0 
.... 

.... 2.5 

- - .... , 2.0 

1.5 

' ' 

' 
' 

' ' ' 

\ 

\ 

... 
' 

\ 
\ 

' 

\ 

\ 
\ 

\ 

\ 

\ 
\ 

\ 
\ 

\ 
\ 

Vds 

Figure 2.5 Idealized current - voltage characteristics 

Equation (2.3.6) is valid in the triode region (V DS < V Dsat ); the saturation voltage 

is given· by 

(2.3.7) 

At drain voltages above V Dsat , the transistor enters the saturation region, where the 

drain current is independent of V DS: 

(2.3.8) 

The constants in the preceding equations (e.g., P.n• eox' T 0x) are physical 
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parameters of the fabricated transistors. 

An equivalent formulation would replace the leading term of (2.3.6) with a single 

constant "K", yielding the familiar Shichman-Hodges model [40]: 

0 (a) if Vosat < 0 

1os = (b) if Vos ~ Vosat (2.3.9) 

(c) if Vos> Vosat 

Equation (2.3.9) models all three regions of operation: (a) cutoff, (b) triode, and (c) 

saturation. 

2.4: Sources of Error 

In the first-order model of the preceding section, the source was assumed to be 

shorted to the bulk, and VT was independent of bias voltage. Measurements on actual 

transistors show that VT varies with the source-to-bulk voltage V SB; see Figure 2.6. 

This phenomenon, known as the "body effect", is incorporated into the Shichman

Hodges model by introducing the empirical parameters Vro• q>, and y: 

(2.4.1) 

A more serious source of error in the Shichman-Hodges model arises from the 

assumption that the channel voltage can be approximated by its average value 

(V GS - (VOS /2)). This approximation can be removed by writing an expression for the 

voltage drop across an infinitesimal length dy of the channel, at a distance y from the 
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Vt 

VtO 

Figure 2.6 The body effect 

source terminal. Manipulation yields 

(2.4.2) 

which can be integrated to give the drain current I OS (33]: 

1os = (2.4.3) 

Equation 2.4.3 is valid in the triode region; current is assumed to be constant in 

the saturation region. The transition voltage is given by 
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Notice that equation 2.4.3 explicitly contains terms for the "body effect" mentioned 

above, with coefficients that are physical constants of the fabrication process. It is a 

refinement of the simple theoretical model developed in section 2.3. 

By an appeal to channer pinchoff it was assumed that the incremental output 

conductance (a I OS 1a VOS) in the saturation region is zero. Actual transistors exhibit 

finite output conductance, which increases with increasing gate voltage. This effect, 

often called "channel length modulation", is shown in Figure 2.7. The empirical 

Shichman-Hodges model accounts for channel length modulation by including an 

output conductance parameter VE, similar to the Early voltage of bipolar transistors: 

(2.4.5) 

Theoretical models have also been developed to account for finite output conductance 

[20]; one such model will be shown in section 2.6. 

2.5: Second Order Effects 

As MOS fabrication technology improves, it becomes possible to build smaller 

transistors. When a transistor's dimensions are decreased, assumptions made in the 

derivation of the model equations (e.g., that threshold voltage is independent of device 

size) become less valid. This section discusses several examples of such second-order 

effects. 

Transistors with short channels (L ~ 9µ.m) or narrow channels (W < 9µ.m) have 

different threshold voltages than wide, long devices [1, 2, 8, 10, 48]; see Figure 2.8. 
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Ids 

Figure 2.7 Channel length modulation 

Short-channel thresholds are lower because the depletion regions around the source 

and drain partially ionize the channel. As channel length is decreased, this additional 

ionization becomes an appreciable fraction of the total channel charge. Narrow 

channel transistors, on the other hand, have higher thresholds than wide devices [4]; 

this results from field implants diffusing into the channel region and raising the average 

bulk doping density (45]. 

Another effect that becomes more pronounced in short channel devices is the 

nonlinear velocity-field relationship. For low electric fields, equation {2.3.3) is 

applicable, and carrier velocity is proportional to the transverse electric field 

(E = - V 08 /L). However, at high fields, velocity becomes limited by carrier 

interactions with lattice phonons and eventually reaches a maximum value. This effect 

limits the drain current (and hence the gain) of short channel transistors, as shown in 

Figure 2.9. Two transistors with identical (W /L) ratios are plotted; one has L = 20 
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Figure 2.8 Narrow- and short-channel effects 

microns (solid curves), and the other has L = 5 microns (broken curves). 

In the derivation of equation (2.4.3), it was assumed that surface mobility is 

constant. Experimentally, mobility is found to be a function of the vertical electric field 

across the gate oxide. As gate voltage V GS rises, mobility decreases, so the final 

current of an actual transistor will be less than that predicted by (2.4.3). Two different 

models for this effect will be presented in the following sections. 

2.6: Berkeley Model 

The example theoretical model, used for the parameter compilation experiments in 

chapter 4, is presented in this section. It was developed at the University of California 

at Berkeley, and is installed as the built-in model in the SPICE circuit simulator [44]. 

The symbol Cox is used to represent the gate oxide capacitance per unit area 
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Figure 2.9 Velocity saturation 

q Nss 
= cpMS- -c-- +2cpF +(11- 1H2cpF +Vsa> 

ox 

(Body effect coefficient): 

rs =cf- (2qe
5

NSUB)112 (1-a5-a0 ) 
ox 

XJ Ws 
aS = -2L ( (1 +2-)112 - 1] 

p XJ 

w 
a

0 
= XJ [ (1 +2_Q_)1/2 - 1] 

2Lp XJ 

(2.6.1) 

(2.6.2) 

(2.6.3) 

(2.6.4) 

(2.6.5) 
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(Depletion region width): 

(2.6.6) 

(2.6.7) 

2es 1/2 
Xo = ( q NSUB NEFF ) (2.6.8) 

(2.6.9) 

Narrow channel effects are accounted for by equation (2.6.9), in which 11 increases 

as channel widths decrease. This serves to raise the built-in voltage (equation 2.6.2), 

increasing the threshold. 

The input parameter XJ controls the modeling of short channel effects. Depletion 

regions around the source and drain serve to ionize carriers in the bulk and lower the 

threshold of short channel transistors. This is modeled using Dang's trapezoidal 

approach [10], where the width of the depletion regions at the source and drain are 

given by equations (2.6.6) and (2.6.7) respectively. 

Surface Mobility: 

(2.6.10) 

( UCRIT )UEXP 
ILo E 

x (a) if Ex > UCRIT 

l"ef f = (2.6.11) 
(b) if Ex ~ UCRIT 
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Mobility remains constant, at its low· field value_ of µ.0, until the vertical electric field 

Ex exceeds UCRIT. Above UCRIT, mobility decreases exponentially according to 

equation (2.6.11 a). 

Drain Current: 

(2.6.12) 

1os = (2.6.13) 

This formula is essentially identical to the theoretical prediction given in equation 

(2.4.3), except for the inclusion of short channel effects (via y S) and narrow channel 

effects (via ri ). When VOS exceeds V Dsat, V x becomes constant and the drain current 

saturates. 

Saturation Voltage: 

1osat 
VMAX = ---------------------

31
-
2
-(2.6.14) 

w cox Leff ( VGS - VBIN - riVosat-'Ys [ Vosat +2cpF +Vsa1 ) 

(2.6.15) 
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(2.6.16) 

Expressions (2.6.14) and (2.6.15) are nonlinear equations in the two unknowns Le ff 

and V Dsat [44]. Velocity saturation (Figure 2.9) is accounted for by the parameter 

VMAX. Finite output conductance in the saturation region is introduced through the 

channel length modulation term Le ff. 

The input parameters, most of which are physical constants of the fabrication 

process, are summarized in Table 2.10. (Only "NEFF" is an empirical adjustment). The 

actual Berkeley model implemented in SPICE is slightly more complicated, since it 

includes prethreshold conduction. However, this feature was not used in the 

compilation experiments, so the modeling equations are omitted here. 

The model program is relatively expensive to evaluate; including the calculations of 

the small-signal conductances, it requires 257 double-precision floating multiply 

operations, 125 divisions, 20 square roots, 6 exponentiation operations, and 4 logarithm 

evaluations. 

2. 7: Mosaid Model 

The Mosaid model was developed to provide reasonable modeling accuracy while 

permitting high speed simulation. It is based primarily on the Shichman-Hodges 

equations (2.3.9), which are very fast to evaluate. Empirical parameters are introduced 

to account for short channel effects, while avoiding nested iterations (such as 

equations 2.6.14 and 2.6.19). 

Effective Gate Length: (2.7.1) 
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Parameter Units Description 

Nss Meters-2 Density of surface states 

2cpF Volts Surface potential 

Tox Meters Gate oxide thickness 

NSUB Meters-3 Substrate doping density 

XJ Meters Junction depth 

Lo Meters Lateral diffusion & poly over-etch 

NEFF - Total channel charge coefficient 

µo Meters2 /Volt-Second Low-field surface mobility 

UCR/T Volts/Meter Critical field for mobility degradation 

UEXP - Exponent of mobility reduction 

VMAX Meters/Second Scattering-limited carrier velocity 

Table 2.1 O Berkeley model parameters 

Threshold Voltage: 

(2.7.2) 

The Shichman-Hodges model (Equation 2.4.1) is used to account for the body 

effect, with the addition of short channel threshold reduction through the parameter 
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K0 . Narrow channel threshold effects (Figure 2.8) ~re not modeled. 

Effective Gate Drive: 

Effective Gain Factor: K _ KP 
eff - 1 + (JV 

e 

(2.7.3) 

(2.7.4) 

In this formulation, effective mobility is decreased even at low vertical electric 

fields, unlike the two-region model implemented in the Berkeley model (equation 

2.6.11 ). This equation has been found to yield acceptable accuracy while permitting 

fast evaluation [9, 10, 47]. 

Drain Current: 

0 
(a) ifVe <o 

Keffw 
I - (2V - V ) V 
OS - Leff +2KeffRS Vos e OS OS 

(b) ifV OS < V Osat (2.7.5) 

Keff W 2 

Leff - CM(Vos - Vosat> Vosat 

(c) ifV OS > V Dsat 

Saturation Voltage: 
2Ve 

v - ------------
Dsat - 1 +[1 +(4KeftRs Ve/Leff)]1/2 

(2.7.6) 

Velocity saturation effects (Figure 2.9) are modeled by postulating a feedback term 

R with the dimensions of resistance, such that the gate drive Vee is reduced as drain 

current increases: 
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To make the R term geometry-independent, it is replaced by R5 1w in the Mosaid 

model. The reduced gate drive is substituted into the Shichman-Hodges model 

(equation 2.3.9b), giving the drain current (equation 2.7.5b). [KP in the Mosaid model 

is equal to K 12 in the Shichman-Hodges model]. 

The saturation voltage v D~at is found by setting ol 0510 v DS equal to zero, which 

gives equation (2. 7 .6) 

Channel Length Modulation: a= (2.7.8) 

(2.7.9) 

The ori~inal Mosaid model used a constant value of CMO in 2.7.S(c); this gives rise to 

a slope-discontinuity at V Dsat. In the linear region the slope (o/ 0510 V DS) tends 

toward zero at V Dsat , .while in the saturation region the slope remains finite at V Dsat. 

Since the SPICE circuit simulator uses first derivatives in its Newton-Rhapson 

computations, a discontinuous slope can cause simulation nonconvergence, so the fix 

described by equations (2.7.8) and (2.7.9) was inserted. Parameters for the Mosaid 

model are summarized in Table 2.11. 

The Mosaid model is comparatively inexpensive to evaluate; it requires only 36 

double-precision floating multiply operations, 12 divisions, 6 square roots, and 2 

exponentiation calculations. 
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Parameter Units Description 

Lo Meters Lateral diffusion & poly over-etch 

VTO Volts Zero-bias threshold 

y Volts112 Body effect coefficient 

cp Volts Surface potential 

Ko Meters Short channel threshold coefficient 

KP Amps/Volts2 Gain constant 

(J 1 /Volts Mobility degradation coefficient 

Rs Ohm - Meters Velocity saturation feedback constant 

GMO Meters I Volt Channel length modulation constant 

Table 2.11 Mosaid model parameters 
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Chapter 3: Minimizatiof! Algorithms 

After a mathematical model of transistor behavior is selected, parameter values 

must be determined which give the best fit to a particular set of measurements. 

Serious modeling errors can . occur if the parameter values are poorly chosen. To 

insure that the best possible modeling accuracy is maintained across the entire range 

of transistor operation, it is desirable to create a set of "optimally good" parameter 

values. 

Let P be an n-vector such that Pk is the value of the k-th model parameter. 

Suppose there exists a function f: Rn ~ R 1 such that f (P) is a measure of the 

modeling error incurred when the parameters P are used. Then the optimum parameter 

values exist at the point P where f (P) is smallest. 

The problem of finding the minimum value of a function has been extensively 

studied [12, 16, 18, 30). This chapter presents five of the better-known minimization 

algorithms. Together with a suitable function f (P), they can be used to construct 

programs for compiling optimal sets of model parameters. Detailed derivations of the 

individual algorithms are not given, nor are convergence properties proven, since the 

emphasis is on their application and not their design. In each case, the original 

papers are referenced for the reader who wishes to study the algorithms in greater 

detail. 

It should be noted that these algorithms are designed to find local minima; no 

computationally tractable algorithm is known for finding the global minimum of an 

arbitrary function. 
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3. 1: Notation 

To simplify the discussion of the algorithms, a common notation has been used 

throughout the chapter. The function f (x ): Rn -+ R 1 is to be minimized, and the 

n-vector xi is the starting point for the jth iteration. A displacement !:..xi is made from 

the present point xi to the ne~t point x j + 1: 

x. 1 =x.+!:..x. 
J + J J 

(3.1.1) 

The displacement can be written in the form 

(3.1.2) 

where pi, an n -vector, denotes the search direction and ai, a scalar, is the stepsize. 

In general, the symbol 

g = Vf (x) (3.1.3) 

will be used for the gradient of f, where g is an n -vector. Also, 

G = v2 t (x) (3.1.4) 

is the n X n matrix of second partial derivatives. For scalar functions, the symbol 

f (k )(x) will be used to indicate the k-th derivative of f, evaluated at x. 

3.2: Hooke and Jeeves Algorithm 

This algorithm is based on the extremely simple idea of varying one coordinate at 

a time. From an initial point x 00, a step of length 5 is taken along coordinate 1. f is 

evaluated at (x 00}, (x 00 + 5 e 1}, and (x 00 - 5 e 1}, where e 1 is a unit vector along 
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coordinate 1. Whichever of these three points gives the lowest value of f is then 

named x 01 , and the process is repeated for all n unit vectors, finally producing x On 

which completes iteration 0. 

When a displacement is made that reduces the function value, further steps along 

the same direction will probably continue to decrease f. The Hooke and Jeeves 

algorithm [26) attempts to exploit this property, using a successful direction of descent 

as a first try for further exploration. For this reason, the algorithm is also called 

"pattern search" in the literature. Instead of starting iteration 1 at the endpoint of 

iteration 0, the displacement vector is doubled in length: 

(3.2.1) 

The algorithm's progress on minimizing a function of two variables is shown in Figure 

3.1. 

As the algorithm proceeds toward a minimum, the stepsize 8 eventually becomes 

too large and must be reduced. It is replaced when an iteration fails to reduce the 

function value: f (xjn) ~ f (xj 0). A simple geometric formula is used: 

r• ~ 
u = pu (p ( 1) (3.2.2) 

The algorithm terminates when the value of 8 is reduced below some minimum stepsize 

eHJ" The implementation of this algorithm described in chapter 4 uses 

EHJ = 10-4 

Bo = 0.1 (3.2.3) 

p = 0.4 
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Figure 3.1 Hooke and Jeeves algorithm 

3.3: Simplex Algorithm 

This algorithm is based on topological generalization of a triangle 1 . Just as a 

triangle is a two-<iimensional object having three vertices, a simplex is an 

n -dimensional object having n + 1 vertices. A tetrahedron, for example, is a simplex in 

3-dimensional space. 

From a starting simplex of n + 1 points, the point at which f is highest is reflected 

through the hyperplane formed by the other n points. If the function value at the new 

point is lower, the simplex has been improved and the procedure can be repeated. 

During the minimization procedure the simplex changes in size and shape, adapting to 

1This algorithm for function minimization should not be confused with Dantzig's "sim
plex algorithm" for linear programming. 
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the local contour of f. The algorithm is given below using the notation of Fidler and 

Nightingale [14]: 

x H is the vertex which gives the highest value of f (x) 

x S is the vertex which gives the second highest value of f (x) 

x L is the vertex which gives the lowest value of f (x) 

x 0 is the centroid of all vertices x k other than x H : 

(I< *- H) 

Three different operations may be performed on the simplex. 

(1) The vertex xH may be reflected through the centroid to give xR: 

xR = (1 + a)x 0 - a xH 

(2) The simplex may be expanded along a favorable direction: 

xE = yxR + (1-y)x0 

(3) The simplex may be contracted: 

xc = pxR + (1-{l)x0 

(3.3.1) 

(3.3.2) 

(3.3.3) 

(3.3.4) 

These operations are used to find the minimum value of f in Algorithm 3.2 [14, 

35]. 

The algorithm is terminated when the standard error falls below a given threshold e5 : 

n 
e 2 s (3.3.5) 

Since the vertices of the initial simplex may be widely separated, the algorithm 

essentially has n + 1 independent starting points. The impact of an especially poor 

starting point is therefore reduced. 
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[1] The distinguished vertices x H, x S, x L, and x 0 are computed. 

[2] xR is computed according to (3.3.2). 

[3] If f(xR)~f(xH), but f(xR)~f(xL)' an improvement has 

been made, so x H is replaced by x R , and another iteration can 

begin at step (1 ]. 

[4] If f (x R) < f (x L ), the reflected point has a lower function 

value than all other vertices. This direction appears to be favor
able, so the expansion (3.3.3) is attempted. x H is replaced by 

whichever of x R or x E gives the lower function value, followed 

by a return to step (1 ]. 

[5] If f (x R) < f (x H ), but f (x R )> f (x S ), only a minor improvement 

has been made, and a contraction is performed using equation 
(3.3.4) in case the reflection has overshot a better point. x H is 

replaced by whichever of xR or xc gives the lower function 

value, and the algorithm returns to step [1]. 

[6] If f (x R) > f (x H ), no improvement has been made by reflec

tion. The implication is that the minimum probably lies within the 
simplex, so the simplex is shrunk about the lowest point x L : 

x k = (x k + x L ) /2 

Algorithm 3.2 The simplex method 

Chapter 4 describes an implementation of the simplex algorithm which uses 

es = 10-11 

a = 1.0 

/3 = 0.5 

'Y = 2.0 

(3.3.6) 
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3.4: Newton's Iteration 

The Hooke and Jeeves and simplex algorithms operate on function values only; no 

derivative information is required. If the first and second derivatives of f are available, 

more powerful algorithms may be applied, giving faster and more reliable convergence. 

These algorithms use a first-order Taylor series expansion of f about x 1. In the one-

variable case, 

(3.4.1) 

A point x 2. is not a minimum unless 

df 
dx (x 2> = 0 (3.4.2) 

Maximum points and inflection points also satisfy (3.4.2); local explorations about x 2 

are usually performed to verify that it is indeed a minimum. 

An approximate solution to (3.4.2) can be found by differentiating (3.4.1) and 

setting the result equal to zero. 

df 2 d2 t 
0 = -(x ) + [x 2 - x 1] -(x1) 

dx 1 dx2 

Equation (3.4.3) has the solution 

,c1> (x1> 

f (2) (x 1> 

(3.4.3) 

(3.4.4) 
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which is known as Newton's iteration. 

In the multivariable case f: Rn ~R 1, the first-order Taylor approximation is 

(3.4.5) 

where g is the gradient of f at x 1. The derivative of equation (3.4.5) is set equal to 

zero, giving a minimum at 

(3.4.6) 

where G is the matrix of second partial derivatives at x 1. In the terminology of (3.1.2), 

the search direction p 1 is given by (G-1 g ), and the stepsize a1 is equal to one. 

Equation (3.4.6) is used to calculate the displacement llxi = - G i -1 g i, which 

provides the starting point for iteration (j + 1 ). Iterations are performed in this fashion 

until convergence is achieved. The algorithm is considered to have converged when 

the gradient is approximately zero (see equation 3.4.2): 

(3.4.7) 

Newton's iteration has the desirable property of quadratic convergence: if f is a 

quadratic function, the minimum point is achieved in a number of iterations at most 

equal to the number of variables [27]. Since an arbitrary function can be closely 

approximated by a quadratic over a small interval, the algorithm will converge equally 

rapidly on arbitrary functions, providing the starting point is close to the minimum. This 

property assures rapid convergence in the final stage of computation. 

Newton's iteration (3.4.6) has limited usefulness as a practical minimization 

algorithm, because it requires the user to supply formulae for calculating the n first 

derivatives in the vector g, and the (n 2) second derivatives in the matrix G. Frequently 
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this is inconvenient (or impossible), as for example when the number of coordinates n 

is large. Variations of the basic Newton iteration have been developed which do not 

require second derivatives; they are much more useful than the original formula (3.4.6). 

These quasi-Newton algorithms use approximations of G or a-1 to eliminate the need 

for second derivatives. 

3.5: Quasi-Newton Algorithms 

Huang [27) has presented a class of quadratically convergent algorithms which 

replace Newton's iteration (3.4.6) by the approximation 

p. = H. g.' 
J J J 

/lx. =-a. p. 
J J J 

(3.5.1) 

where the n X n matrix H characterizes a particular algorithm. (In all cases, H is 

computed without using second derivatives). The initial matrix H 0 is taken to be the 

identity matrix. Several well-known and highly successful minimization algorithms are 

members of Huang's class, including the conjugate-gradient algorithms and the variable 

metric algorithms. 

Once the search direction pj is known, the stepsize aj must be chosen. For good 

progress toward the minimum of f, the value of ai should be selected which minimizes 

the scalar function u (a): 

u (a ) = f (x . - a p . ) 
J J 

(3.5.2) 

Very efficient algorithms are known for univariate minimization, so the optimum a can 

quickly be found. This determines the displacement ll.xj and hence the new point 

xj +1' and another iteration can begin. The algorithm terminates when the gradient is 

sufficiently small, similar to the Newton termination criterion (3.4.7). 
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3.6: Conjugate-Gradient Algorithm 

A particularly appealing member of Huang's class is the conjugate-gradient 

algorithm, studied by Polak and Ribiere (37]. It uses the approximation 

p j- 1 (g j - 1 ..; g j l 
T 

gj-1 gj-1 

where I is the identity matrix. Substitution into (3.5.1) yields 

p . = g . + 'VP . 1 
j j I J-

where the scalar y is given by 

y = 
(g. 1 - g.)Tg. 

J- I I 
T 

gj-1 gj-1 

(3.6.1) 

(3.6.2) 

(3.6.3) 

This substitution shows that the matrix Hi need not be stored directly; only the vectors 

Pi- 1, Pj' gj_ 1, and gi are required. The Polak-Ribiere approach is therefore 

attractive for very large problems, where the storage cost of an n X n H -matrix would 

be prohibitive. 

Equation (3.6.2) gives the search direction pi, and the steplength ai is computed 

by univariate minimization. Iterations proceed in this fashion until the gradient vector 

approaches zero: 

(3.6.4) 
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3. 7: Fletcher's Switching-Policy Algorithm 

This algorithm combines the well known Davidon-Fletcher-Powell [17) and 

Broyden-Fletcher-Goldfarb-Shanno (23) variable metric procedures, giving a hybrid 

algorithm which is superior to each (15). 

The DFP algorithm is a member of Huang's class, characterized by 

where 

8 = xj - xj- 1 

'Y = gj- gj-1 

The BFGS algorithm is also a member of Huang's class: 

(3.7.1) 

(3.7.2) 

(3.7.3) 

Fletcher's switching-policy algorithm uses either (3.7.1) or (3.7.3), depending on the 

outcome of a test: if 

(3.7.4) 

then the BFGS update formula (3.7.3) is used for iteration j. Otherwise, the DFP 

update (3. 7 .1) is used. Fletcher has presented performance data indicating that this 

hybrid algorithm is faster than either of its component parts. The hybrid approach, he 
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claims, avoids near-singularity in the H matrix, making the algorithm more stable [15). 

If the H matrix is not positive definite, then stability and convergence to a minimum 

are much less likely. Fletcher's algorithm contains a safety test which prevents H from 

becoming nonpositive definite. Whenever 

(3.7.5) 

the algorithm is "restarted" by setting Hi to the identity matrix. The algorithm is 

terminated when the gradient becomes sufficiently small: 

(3.6.4) 

3.8: Line Searches 

After the search direction p is determined, the line (x - a p) is searched to find 

the optimum value of a. In this section, two methods are discussed for performing a 

univariate search. Both algorithms proceed by finding an interval (a, b) which is 

known to contain the minimum point x. The size lb - a I of this "bracket" is then 

decreased repeatedly until a minimum is found. 

A simple criterion may be applied to find an initial bracket: at least one local 

minimum exists in the interval (a, b) if there is a point c within the interval, such that 

( a ::; c ::; b ) and [ f (c) < f (a) ] and [ f (c ) ::; f (b) ] (3.8.1) 

A bracket satisfying (3.8.1) may be easily found using the algorithm of Davies, Swann, 

and Campey [6]; the procedure is illustrated in Figure 3.3. From the initial point a = 0, 

a step of size 8 is taken in the + a direction. Stepsizes are repeatedly doubled until 
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f(alpha) 

alpha 
1 2 4 (8 •delta) 

Figure 3.3 Establishing an initial bracket 

the minimum is overshot and condition (3.8. 1) is met, establishing the first bracket. 

Once the initial bracket is found, a simple algorithm for converging to a minimum 

is the Golden Section search, illustrated in Figure 3.4. New points c and d are 

selected, which divide the original interval into three pieces: (a, c ), (c, d ), and (d, b ). 

The function f is evaluated at c and d, and the reduced interval is given by 

,,, ,,, 
(a , b ) = (a, d) . ,,, 
(a , b ) = (c, b) 

if f (c) < f (d) 

if f (c) > f (d) 
(3.8.2) 

The size of the bracket has been reduced by the fraction ad /ab (or cb /ab). To keep 

the algorithm unbiased, these fractions should be identical. Choosing c and d such 

that cb = ad insures that the bracket will shrink by the same amount on either side. 

Two function evaluations were used in the simplified iteration described above (at 

c and d). The Golden Section algorithm actually uses only one evaluation per 
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f(alpha) 

old bracket 

f--· •cw braokd 

a c d b 
alpha 

a• c• d* b* 

Figure 3.4 Golden Section search 

iteration, through careful selection of the points c and d. If the new bracket is, for 

example, (a, d ), then the old point c lies within the bracket, and f (c ) has already been 

evaluated. The point c should therefore be reused, so that only one new point needs 

to be evaluated in the next iteration. 

If the ratio ad /ab is equal to the ratio ac lad, then the point c can be reused and 

the resulting partition of the bracket will be unbiased, as shown in Figure 3.4. 

Normalizing to ab = 1, let y = ad so that (1 - y) = ac. Then 

(3.8.3) 

This equation produces the Golden Section ratio used in Greek architecture (hence the 

algorithm's name). The solution is 
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(5) 112 - 1 
y = = 0.61803 

2 
(3.8.4) 

Two function evaluations are performed for the first bracket. Each subsequent bracket 

uses equation (3.8.4) to compute one new point, so only one function evaluation is 

required per iteration. After n iterations, the bracket has shrunk to (0.61803)n of its 

original size. The search is completed when the bracket has been reduced to a 

sufficiently small size 

(3.8.5) 

Table 3.5 compares the Golden Section algorithm to a simple binary search. On 

each iteration, binary search halves the bracket, but two function evaluations are used. 

The table shows the number of function evaluations required to shrink an initial bracket 

of size I b - ·a I = 1 down to various final sizes; binary search takes approximately 1.4 

times as many iterations as the Golden Section search. 

Line Search Final bracket size 

Algorithm 1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 

Binary search 8 14 20 28 34 40 

Golden Section 5 10 15 20 24 29 

Table 3.5 Function evaluations required for bracket reduction 
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Another popular line search algorithm uses a. quadratic interpolation scheme for 

finding the minimum [22]. Given an initial bracket (a, b) and a point c within the 

bracket, a quadratic is fitted to these three points. The minimum of the quadratic is 

given by [38): 

d = 
2 
1 [b 2 - c 2]f(a) + [c 2 - a 2]t(b) + [a 2 - b 2]f(c) 

[b - c ]f (a) + [c - a ]f (b) + [a - b ]f (c) 
(3.8.6) 

A new bracket is then formed, taking the three lowest points found so far (which still 

maintain a bracket). Another interpolation is computed, and the process is repeated. 

Near the minimum, a quadratic interpolation will be very close to any arbitrary function, 

and the final stages of convergence will be very fast. 

After evaluating both line search algorithms, the Golden Section method was 

selected for use in the minimization implementations described in chapter 4. When an 

initial bracket contained several minima (a common occurrence), Golden Section 

appeared to converge more rapidly than quadratic fitting; presumably this is because a 

quadratic is a poor approximation to a function with more than one minimum. 

3.9: Numerical Differentiation 

In many cases, analytic derivatives of f (x) are not available, so they must be 

computed numerically. For example, the derivative 0105 / a VMAX for the Berkeley 

model does not exist in closed form (see equation 2.6.14). A finite difference formula 

can be used to estimate the derivatives: 

at (3.9.1) = ax. 
J 

If f (x) is known, this forward-difference formula requires only one additional function 

evaluation to compute the derivative. A central-difference approach would need to 
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evaluate f at both (x + 8ej) and (x - 8ej); this is too expensive for use in a 

minimization algorithm. The size 8 of the finite interval is chosen to reflect the scale 

of the component X( 

• 8 = max (h x j , 8 ) (3.9.2) 

where 

(3.9.3) 

3. 10: Marquardt's Algorithm 

Suppose a physical process is modeled by the equation 

y = M(V,x) (3.10.1) 

where y is the dependent variable, V = (V 1, V 2' ... , Vk) are the independent variables, 

and x = (x 1, x 2' ... , x n ) are adjustable parameters of the mathematical model M. A set 

of m experiments is made, obtaining values of y for different values of V. The problem 

is to find those values of x which give the experimental data the best fit to (3.10.1). 

The best fit in the least-squares sense is obtained by defining the m residuals: 

(3.10.2) 

and minimizing f, the sum of squares of these residuals (28]: 

(3.10.3) 
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Special purpose algorithms for minimizing sum-of ·squares functions such as (3.10.3) 

have been developed; the most popular of these methods is due to Marquardt [31 ]. 

Newton's iteration can be applied directly to (3.10.3), giving 

G (x ) !::..x = - g (x ) (3.10.4) 

The gradient g (x) can be expressed in terms of the vector R of residuals: 

g (x) = 2J (x) TR (x ) (3.10.5) 

where J (x ) is the m X n Jacobian matrix with 

(3.10.6) 

The matrix G of second derivatives is given by 

(3.10.7) 

where V2R1~x) is the second derivative matrix of Ri(x) [28]. 

Equation (3.10.7) shows that a substantial part of the matrix G is obtained by 

using only first derivatives. Near the solution, if the residuals are small or almost linear, 

then the second term of (3.10.7) is negligible. This leads to the approximation 

(3.10.8) 

which can be substituted into Newton's iteration (3.10.4), giving 

(3.10.9) 
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Equation (3.10.9) is known as the Gauss-Newton algorithm. 

In practice it has been found that (3.10.8) is sometimes a poor approximation, 

leading to divergence of the iterates. Marquardt suggests that a "damping term" (i\/) 

should be added to the Gauss-Newton algorithm [31]: 

(3.10.10) 

where I is the identity matrix and A.> O is a variable parameter of the algorithm. 

On any particular iteration, J and R are fixed, so that Ax can be considered a 

function of i\. When A. = 0, Marquardt's algorithm reverts to the Gauss-Newton formula 

(3.10.9). As x- oo, then Ax - - J TR /A., which is an incremental step along the 

direction of steepest descent of f. Note that divergence is impossible with suitably 

large values of i\. 

At iteration j, Marquardt's algorithm solves (3.10.10) for Ax, using increasingly 

larger values of A. until a displacement Ax is obtained for which f (x j + Ax) < f (x j ). 

Typically i\ is increased in powers of ten until a function decrease is obtained: 

(3.10.11) 

The algorithm is halted when the displacement Ax is negligibly small 

Ax (3.10.12) 

or when the value of i\ exceeds a preset threshold 

(3.10.13) 
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The implementation of this algorithm described in chapter 4 uses 

(3.10.14) 

A 1011 
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Chapter 4: Automatic Parameter Extraction 

Parameters for empirical MOS models are usually generated by a tedious set of 

hand calculations, followed by an iterative procedure of "tweaking" the numbers until 

an acceptable curve fit is obtained. Although it has been used successfully for many 

years, this method suffers from at least three major drawbacks: (1) it is time consuming, 

(2) it is prone to errors of omission or oversight, and (3) its termination criterion is 

qualitative rather than quantitative. This chapter discusses the computer 

implementation of numerical algorithms for parameter extraction, designed to eliminate 

these drawbacks. Prototype versions of parameter compilers (using these numerical 

algorithms) are presented. The performance of these compilers, measured in terms of 

modeling accuracy and compilation speed, is detailed. 

Since transistors have several different regions of operation (Cutoff, Triode, 

Saturation) and geometry-dependent behavior (short and narrow channel effects), many 

measurements are needed to adequately characterize device operation in all regimes. 

These regions are arbitrarily constructed for ease of explanation and understanding; 

transistor behavior is actually a continuum, with certain effects more pronounced in 

some areas than in others. This leads to difficulties in parameter extraction, because 

(erroneous) assumptions are often made that device behavior is localized within these 

regions. For maximum accuracy, the entire operating range must be considered when 

extracting parameters, because they interact in the final model. Unfortunately, manual 

parameter extraction methods assume that (some) parameters are independent, and 

that their effects are localized; this necessitates "tweaking" the final numbers to 

obtain acceptable accuracy. 
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4.1: Manual Methods 

To illustrate the methods used in manual parameter extraction, a manual extraction 

will be performed for the Mosaid model of section 2.7. The parameters of long, wide 

channel transistors will be extracted first [44]; the model fit for these large devices 

should be very good, because they will be closely approximated by the first-order 

theory. Then small-geometry effects will be accounted for, taking care to isolate the 

effect of each parameter, so its value can be calculated independently from the others. 

The first parameter to be measured will be the threshold voltage VT of a long, 

wide channel device. Equation (2.7.5b) shows that if VOS is very small, drain current 

is proportional to V GS - VT - VOS /2. Measurements of drain current are taken at 

various values of gate voltage V GS; current begins to flow at V GS :::: VT + VOS /2. 

This is shown in Figure 4.1 . Drain current is not precisely linear with gate voltage, 

because the surface mobility (µeff) begins to fall as V GS rises. VT is found by 

extrapolating to I OS = O from the maximum-slope portion of the curve, to insure that 

degraded mobility is not inadvertently included in the threshold voltage. 

Figure 2.6 shows that threshold voltage is a function of source-to-bulk voltage 

V SB; by repeating the measurement of Figure 4.1 at several values of V SB, the body-

effect parameters qi and y can be computed. The parameter VTO is simply the 

measured value of VT taken at V SB = 0. Rearranging equation 2.4.1, 

(4.1.1) 
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Ids 

(Vds = 50mV) 

Vgs 

Vt+ Vds/2 

Figure 4.1 Measurement of VT 

Initially taking q> = 0.6 (a good approximation for silicon devices) 1, a change of 

variablei? can be made: 

y = VT -VTO 

x = (w +vsa>112 
m = "Y 

(4.1.2) 

b = -y (cp) 1/2 

Equation (4.1.1) is transformed into the familiar linear equation 

y = mx + b (4.1.3) 

1 'P represents the Fermi potential of the silicon surface, 2q> F' It is proportional to the 

logarithm of the bulk doping density, and its value is usually close to 0.6 in typical 
silicon MOS transistors. 
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Using the trial value of fl', the measured data can be plugged into equations 

(4.1.2) and (4.1.3), extracting values for m and b with a simple linear regression. This 

computation is easy to perform, and is implemented on several hand-heJd scientific 

calculators [24]. 

The new value of fl' is inserted into equation (4.1.2) in place of the initial guess, 

and another linear regression is performed. Regressions are iterated in this fashion 

until the values of fl' and y stabilize (say, to within 0.1 %). 

After extracting the model parameters for threshold, the gain parameters KP and fJ 

are computed. Drain current measurements are taken on long, wide devices in the 

saturation region (where equation (2.7.5c) applies). Solving for KP, 

(4.1.4) 

which suggests the substitution 

L 1os y = w 2 
(VGS - VT) 

L - (VGS - Vr> 1os 
x = w 2 

(VGS - VT) 
(4.1.5) 

m = (J 

b = KP 

The measurements are plugged into (4.1.5), and a linear regression is performed, 

giving fJ and KP. 

The channel-shortening parameter L0 can be found by measuring 

transconductance (0105/oV Gs> as a function of mask channel length L. Two 

transistors with identical channel widths and different channel lengths are operated at 
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low drain voltage, and measurement of I OS are. taken at several values of V GS. 

Transconductance is the maximum value of the slope of this curve; see Figure 4.1. 

Under these conditions, 

Slope = 

where ll.L = (-2L0 ). 

Const 
L + ll.L 

(4.1.6) 

Measured values Slope1 and Slope2 are taken on devices with mask channel 

lengths L 1 and L 2. The two resulting equations (4.1.6) are divided, giving the ratio 

Solving for ll.L, 

!J.L = 

Slope1 L 2 + ll.L 
= Slope2 L 1 + ll.L 

L 2 Slope2 - L 1 Slope1 
Slope1 - Slope2 

(4.1.7) 

(4.1.8) 

At this point, model parameters VTO' y, cp, KP, fJ, and L0 are known for long, wide 

transistors. The small-size parameters are extracted next, beginning with K0 . 

Rewriting equation (2.7.2), 

Leff 1/2 1/2 Ko = -v- f Vro- Vr +r [(cp +Vsa> - (cp) 1 J 
OS 

(4.1.9) 

At a constant v OS, threshold measurements are made for several values of 

channel length Leff. Each data point is plugged into equation (4.1.9), giving a value 
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of K 0 . These are averaged to produce the final K 0 . 

To extract a value of RS, drain current measurements are taken in the triode 

region. The current equation (2.7.5c) is solved for Rs, giving 

(4.1.10) 

Several I OS measurements are taken on short channel transistors in the triode 

region, and values of Rs are then computed from (4.1.10). The final value of Rs is 

taken as the average of the results from (4.1.10). Leff, Kett, and Ve values used in 

these calculations should be computed from equations (2.7.1 ), (2.7.4), and (2.7.2) 

respectively. 

GMO can similarly be e~tracted from 'os measurements made on short-channel 

devices in the saturation region. Equation (2.7.5c) is manipulated to yield 

(4.1.11) 

V Dsat is computed from equation 2.7.6 and known values of the other parameters. 

The final value of GMO is taken to be the average of the individual values computed by 

equation (4.1.11 ). 

Several simplifying assumptions were made in the parameter extraction recipe 

given above, resulting in increased modeling errors. For example, equation (4.1.6) 

ignores the Rs term in the denominator of equation (2.7.5b) by assuming that drain 

current is inversely proportional to (L +AL). More significantly, the values of Vro• y, 

cp, and K0 are derived from indirect measurements: first a quantity called "Vr" is 
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computed, and then parameter values are fitted from threshold data. 

Actual MOS transistors do not abruptly turn off at V GS = VT, as shown in Figure 

4.2. Below threshold, drain current is an exponential function of gate voltage (42, 43). 

The Berkeley model includes an optional term to account for this "prethreshold 

conduction"; it was omitted from the discussion in chapter 2 because the option was 

turned off in the compilation experiments. (The Mosaid model does not account for 

this current). The gradual transition from "off" to "on" makes the task of selecting a 

unique VT difficult, so parameter values extracted from such measurements will have 

large uncertainties. 

log( Ids) 

Vgs 

Vt 

Figure 4.2 Prethreshold conduction 

4.2: Numerical Techniques 

The manual parameter extraction technique presented in the last section can be 

thought of as a sequence of minimizations: in each case, values for parameters are 

chosen so as to minimize modeling error. This is accomplished by using linear 
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regressions or by simple averaging. Unfortunately, .the errors introduced in each of the 

individual extractions can accumulate, leading to a higher total modeling error (over the 

entire range of device operation). 

The single-pass nature of the manual extraction technique does not permit residual 

model errors to be spread among several parameters, which could lead to an overall 

error reduction. Since each parameter is extracted in a small region of the total device 

operating range, with this scheme it is impossible to distribute errors over many such 

regions. In this section, numerical minimization algorithms (presented in chapter 3) will 

be used to extract all parameters simultaneously. 

The objective function to be minimized will be a measure of the modeling error, for 

example the normalized error at each data point 

1osm (i) - 1osp (P)(j) 

ej = 1osm (j) 
(4.2.1) 

At the jth data point, the modeling error e j is the normalized difference between the 

measured current 'osm<n and the model's predicted current 'osp(P)(j). (The notation 

I DSp (P )(j) stands for the predicted value of IDS at the jth data point, using the vector 

P of model parameters). Measurement j is taken on a transistor of size (W/L j ), at 

If the model current is a continuous, differentiable function of the parameters, then 

so is the modeling error e j at each point. Quasi-Newton minimization algorithms, 

which require require the objective function to be differentiable, may therefore be used 

with equation (4.2.1). 

A simple measure of the total modeling error with parameter-vector P is the sum of 

the squares of the n individual errors 
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which is a differentiable function of P. 

+ e 2 n (4.2.2) 

The distribution of measurements about the total operating range of the transistor 

will affect the accuracy of the final model. For example, if the vast majority of 

measurements are made in the linear region, model accuracy in the saturation region 

will be impaired. Regions of ·operation are, therefore, implicitly weighted in the error 

formulation, according to their frequency of appearance in the measurement data. If 

the measurements are clustered in a small region, the error will be lowest in that 

vicinity. Large errors at a few outlying points will be tolerated, because their 

contribution to the final total is small. 

Explicit weighting is also possible [46], giving a total error function 

(4.2.3) 

Weights might be explicitly applied if it is desired to emphasize modeling accuracy 

in certain crucial regions of operation. Although implicit weighting could be used 

(simply by including many data points in those regions), explicit weights are more 

suitable, because they require fewer total data points (and fewer evaluations of f). 

If the measurements are made on physical instruments, some accuracy will be lost 

at very low currents. It is desirable to prevent the extraction algorithm from generating 

faulty parameter values due to noise in these measurements. A modified error function 

can be used to set a "current floor"; below this floor value I min' measurements are 

given le~ weight in the overall error function [46). 

_ 1osm (j) - 1osp (P)(i) 

ej - max [ 1osm<n' 1min l 
(4.2.4) 

A floor value is also useful if the model to be extracted does not account for 
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prethreshold conduction. 

Several of the algorithms presented in chapter 3 are sensitive to the scale of the 

variables; if the elements of the parameter-vector differ by orders of magnitude, severe 

loss of accuracy will occur (31]. For this reason the parameter vector is approximately 

normalized; its elements are divided by typical values, insuring that all parameters are 

near unity. The parameters are of course de-normalized for the evaluation of the 

actual modeling routine. 

The organization of a model parameter extraction program is diagrammed in Figure 

4.3. First, n transistor measurements are input; they include the measurement 

conditions (W, L, V GS, VOS, V SB) and the resulting drain current IDS. A numerical 

minimization algorithm is then used to perturb the parameter vector P until the error 

function f (P) of equation (4.2.2) is minimized. For each measurement, the parameters 

P and the measurement conditions are input to the empirical MOS modeling routine, 

giving a predicted drain current I DSp. Equation (4.2.4) is used to find the error for 

that measurement, which is summed with the others to form f (P). 

This program organization is rather independent of the specific model equations; 

new models may be extracted merely by substituting a new empirical modeling routine. 

4.3: Compilation 

The program of Figure 4.3 can be fed input measurements which are in fact the 

results of a simulation; a model compilation is performed exactly this way. Parameters 

for an empirical model are then generated automatically, using input parameters for a 

theoretical model to drive the simulation. 

To examine the model accuracy obtainable with this approach, five parameter 

extraction programs were constructed and tested. The only differences among the 

programs were the numerical minimization algorithms used. Extractions were performed 
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physical 
measurements 
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I 

model l'<"----:11 simulator I 
I 

theoretical 
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parameters 

I 
____ . ___ _J 

Ids 
measured 

sum-of-squares empirical 
minimization voltages 

algorithm model 

optimaIP 

Figure 4.3 Program organization 

with Hooke & Jeeves, Simplex, Conjugate Gradient, Fletcher, and Marquardt 

procedures. 

Parameter "compilations", as described in chapter 1, were performed: a set of 

parameters for the Berkeley model was supplied, and the extraction programs 

computed a corresponding set of Mosaid model parameters. The SPICE 2G.5 program 

was used to simulate measurements of test transistors (using the Berkeley model and 

the given parameters), and these measurements were fed to the extraction programs. 

Extraction algorithms minimized the error function (4.2.3), attempting to generate 

Mosaid model parameters which would predict exactly the same current-voltage 

behavior as the Berkeley parameters did. 

The simulated "measurements" must be carefully chosen to represent the whole 

range of anticipated device operation. If no data is supplied for a particular region of 

operation, the resulting empirical model is forced to extrapolate to predict behavior in 

that region, resulting in higher modeling error. Short, long, wide, and narrow channel 
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devices should be included in the measurements, operating in cutoff, triode, and 

saturation. Both low and high-current measurements should be taken, and back-bias 

effects (V SB > 0) should be included. Table 4.4 shows the simulated measurements 

used in the compilation experiments. Six values of VOS, five values of V GS, four 

values of W IL, and two values of V SB were simulated, for a total of 240 data points. 

Variable Values 

(W/L) (100/100) (100/4) (4/100) (4/4) 

Vsa 0 -3 

VGS 0.5 1 1.5 3 5 

Vos 0.05 1 2 3 5 6 

Table 4.4 Data points for parameter compilation 

The parameters used for the Berkeley theoretical model are shown in Table 4.5. 

They represent a typical contemporary n-channel MOS process, approximately of the 

same dimensions as "HMOS-1" [36). 

A set of normalization constants were used to keep the elements of the Mosaid 

parameter vector approximately at the same order of magnitude (near unity); these are 

shown in Table 4.6. The starting values of the normalized parameters were all set to 

1.0. 

Explicit weighting was used to emphasize measurements at small currents; this 

boosts model accuracy near "Vr ", and improves circuit simulations of inverter trip-
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Parameter Value Units 

2cpF 0.633 Volts 

Tox 7E-8 Meters 

NSUB 3E21 Meters-3 

Nss 1E14 Meters-2 

XJ 5E-7 Meters 

Lo 5E-7 Meters 

P.o 6E-2 Meters2 /Volt-Second 

UCRIT 4E6 Volts/Meter 

UEXP 0.37 -- -
VMAX 6E4 Meters/Second 

NEFF 6.0 ---

Table 4.5 Berkeley parameter values 

points. The weighting constants are 

< (10-6> wi 
if 1meas (j) -

Lj 
wj = 4.0 

wj = 1.0 otherwise (4.3.1) 

The choice of a "current floor" I min for equation (4.2.4) represents a tradeoff; low 

values of I min give high accuracy at low currents with diminished accuracy at high 

currents. Large values of I min have the opposite effect. Experiments were performed 
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Parameter Multiplier 

VTO 1.0 

KP 1E-5 

y 0.1 

'P 0.1 

0 0.1 

Lo 1E-6 

CMO 1E-7 

Ko 1E-7 

Rs 1E-3 

Table 4.6 Mosaid parameter normalization coefficients 

to find a value of I min that gives a reasonable balance between errors at low and high 

currents. 

Table 4.7 shows the total modeling error f(P) and RMS percentage error 

[100 ( f(P)/240 )112] at four different values of 'min· The error values cited in this 

table are the errors produced by Fletcher's minimization algorithm. As I min increases, 

total error decreases, since the error contributions of low-current measurements are 

diminished. 

Figures 4.8 · 4.11 show the model fit, from parameters extracted by Fletcher's 

algorithm, as a function of I min" The l·V curves of a (100/4) transistor are plotted, 

simulated with the input theoretical model (solid curve) and with the resulting empirical 
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1 min (µA) total error RMS error 

2 4.3383 13.44% 

20 0.7712 5.67% 

60 0.4095 4.13% 

200 0.1280 2.31% 

Table 4.7 Effect of I min on modeling error 

model (dotted curve). One set of curves is given for low currents (V GS = 0, 0.5, 1.0, 

... , 2.5) and one set is plotted for high currents (VGS = 0, 1, 2, ... , 5). In both cases 

V DS ranges from O to 6 volts .. 

Comparing Figures 4.8 and 4.9, it appears that the fit is not dramatically altered by 

raising I min from 2 to 20 microamps. However, as I min is increased to 60 and 200 

microamps (Figures 4.1 O and 4.11 ), the curves begin to move and accuracy is improved 

at high currents. Eventually low-current accuracy is sacrificed, and increasing I min 

worsens the problem. Based on these observations, a value of I min = 60 µA was 

selected to be incorporated into the final parameter compilation procedure. 
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Figure 4.9a Model Fit at Low Current, I min = 20 microamps. 
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Figure 4.10a Model Fit at Low Current, I min 60 microamps. 
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Figure 4.10b Model Fit at High Current, I min 60 microamps. 
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Figure 4. 11 a Model Fit at Low Current, I min 200 microamps. 
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These parameter extractions were performed using a sum-of -squares measure of 

modeling error. Sum-of -squares tends to optimize the average case, because the error 

of each data point is summed into the final measurement. A different style of error 

measure can be defined which optimizes the worst case; it is called "minimax": 

(4.3.2) 

Note that the function g (P) in the minimax formulation is not differentiable; quasi

Newton algorithms therefore cannot minimize it directly. Although techniques exist for 

transforming a minimax problem into a sequence of differentiable functions (5], it is 

simpler to exploit a minimization algorithm which does not require differentiability. 

Far away from the minimax solution, it is likely that g (P) = 1, because some data 

point will give 'meas > 0 while the model predicts lpred = 0 (see equation 4.2.4). 

Small perturbations of the parameter vector P will not change g (P), and the 

minimization algorithm will terminate because the local gradient is zero. The minimax 

formulation therefore requires a starting point which is close to the final solution; in 

particular g (P) must be less than 1. A useful heuristic which often satisfies this 

requirement is to start the minimax algorithm with the final parameter vector produced 

by a sum-of-squares procedure; this effectively adds the execution times of the two 

programs. 

A version of the Hooke & Jeeves algorithm was coded which used (4.3.2) as the 

error function. The value of p was increased to 0.8, so the steplength did not shrink 

so quickly between iterations. This prevents the algorithm from overlooking a 

promising search direction. Modeling results using this minimax technique are shown 

in Figure 4.12. Comparing these with Figure 4.10, the overall curve-fits obtained by 

minimax optimization appear to be inferior to sum-of-squares results. Since there is no 

penalty (in terms of g) for increasing the error at a point which is not the worst-case, 

the minimax algorithm tolerates rather large errors at all points. 
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Figure 4.12b Model Fit at High Current, I min 60 microamps. 

(Minimax error function) 
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4.4: Algorithm Performance 

Five extraction programs using sum-of -squares minimization, and one program 

using minimax, were monitored for three values of floor current: I min = 20, 60, and 200 

µ.A. Table 4.13 shows the performance of each algorithm when compiling the example 

model from the previous section. All experiments were performed on a VAX2 111780 

computer running release 4.1 of the V7 UNIX3 operating system. Programs were coded 

in the C language. 

The third column of Table 4.13 indicates how many times the error function f (P) 

(equation 4.2.3) was evaluated during the minimization, while the fourth column gives 

the total run time in user CPU-seconds. The last column shows the value of f (P) 

returned when the algorithm terminated. Function evaluations and CPU times given for 

the Hooke & Jeeves minimax algorithm include the first sum-of-squares phase. Note 

also that g (P) values from the minimax algorithm are not directly comparable to f (P) 

values produced by the other algorithms. 

Parameter extraction time is related to the complexity of the model; the longer it 

takes to evaluate f (P), the longer it will take to extract the model parameters. If f (P) 

is sufficiently expensive to compute, the computational overhead of the minimization 

algorithm becomes negligible, and execution speed is determined solely by the 

evaluations of f (P). Therefore the number of computations of f (P) should be 

considered along with the CPU time when deciding the relative merits of extraction 

algorithms. 

The Marquardt algorithm is designed to handle only sum-of-squares problems, yet 

~VAX is a registered trademark of Digital Equipment Corporation. 
UNIX is a registered trademark of Bell Telephone Laboratories. 
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Algorithm 1 min' µA f (P) evals CPU time final f (P) 

Fletcher 20 3230 913.0 0.7713 

Marquardt 20 3801 1549.3 0.7733 

Hooke&Jeeves 20 2080 632.8 1.3864 

Simplex 20 3230 2638.0 0.7713 

Conj. Grad. 20 12289 3459.7 0.9567 

Minimax 20 3455 1018.9 0.15986 

Fletcher 60 3288 907.1 0.4095 

Marquardt 60 2528 1044.8 0.4095 

Hooke&Jeeves 60 1754 499.1 0.5439 

Simplex 60 5774 1710.2 0.4095 

Conj. Grad. 60 12205 3571.1 0.4256 

Minimax 60 2976 800.6 0.13944 

Fletcher 200 2880 813.3 0.1280 

Marquardt 200 856 370.0 0.1280 

Hooke&Jeeves 200 1455 436.3 0.1614 

Simplex 200 5774 3304.6 0.1282 

Conj. Grad. 200 12205 3505.6 0.1294 

Minimax 200 2624 760.0 0.06888 

Table 4.13 Parameter compilation speed of minimization algorithms 

it is not superior to Fletcher's method except in the case I min = 200 µ.A. Recent data 

indicates that if the objective function is highly nonlinear, and the final error is 

nonzero, then special sum-of-squares algorithms are no better than general minimizers 
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(34). 

Hooke & Jeeves is the generally the fastest algorithm, but it yields function values 

which are not minimal. If, however, the model is extremely expensive to evaluate, 

Hooke & Jeeves can be used to quickly locate a parameter-vector near the minimum. 

Then a slower, more accurate procedure (such as Marquardt's) could seek out the final 

optimum. 

Fletcher's variable-metric algorithm consistently produces the lowest value of f (P ), 

while maintaining a relatively small number of function evaluations and a rapid 

execution speed. It is therefore chosen as the single minimization procedure to be 

incorporated into the final parameter compiler. 

Table 4.14 gives the (unnormalized) values of the Mosaid parameters produced by 

Fletcher's algorithm for each value of I min· 

4.5: Simulation Speed 

To asses the benefits derived from using an empirical model, simulations were 

performed on two identical circuits. One was simulated using the Berkeley model, and 

the other was simulated using the compiled Mosaid model of the previous section. The 

simulations were identical in every other respect, so the difference in measured 

execution speed was caused by the difference in the models. 

This measurement was repeated for fourteen circuits, each having a different 

number of MOS transistors, to monitor the effect of circuit size on relative simulation 

speed. The circuits used are shown in Figure 4.15; they consist of an iterated parallel 

connection of 5-transistor modules. A parallel topology was chosen to guarantee that 

the simulator would evaluate every transistor at every timestep. Other topologies (such 

as a series connection) might contain nodes which stay at a constant value for many 

timesteps, allowing a simulator to bypass the evaluation of transistors connected to 

those nodes [3]. This would tend to invalidate size-versus-speed measurements, since 
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Parameter 1 min = 200 1min = 60 1 min = 60 1min = 20 

(SSQ) (SSQ) (Minimax) (SSQ) 

vro 2.065E-1 1.956E-1 1.834E-1 1.838E-1 

KP 1.249E·5 1.148E-5 1.205E-5 1.059E-5 

y 3.717E·1 3.900E-1 4.043E-1 4.045E-1 

q> 5.485E-1 5.511E-1 7.318E-1 5.734E-1 

(} 2.082E-1 1.769E-1 1.856E-1 1.516E-1 

Lo 8.196E-7 8.539E-7 6.823E-7 9.076E-7 

CMO 8.602E-8 9.247E-8 6.654E-8 9.040E-8 

Ko 3.487E-8 3.073E-8 4.386E-8 2.740E-8 

Rs 1.053E-2 1.265E-2 6.734E-3 1.473E-2 

Table 4.14 Compiled values of Mosaid model parameters 

the number of simulator evaluations is no longer proportional to circuit size. 

If all of the iterated modules in the parallel topology were identical, the waveforms 

at the internal nodes would be identical. A (very sophisticated) static pre-analysis 

could notice this fact, and bypass the majority of the computation by simulating only 

one module. The circuit of Figure 4.15 avoids this problem by making transistor M1 a 

different size in each module. Channel length was selected by generating a random 

number in the range (81-1 < L < 12µ.), and channel width was chosen from 

(20µ < w ~ 301-1). 

The results of these experiments are shown in Tables 4.16 and 4.17; they are also 
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Figure 4. 15 Variable-size circuit for speed experiments 

plotted (in normalized form) as Figure 1.1. Measured SPICE execution time for a circuit 

of n transistors was fitted to the equation 

Time = C + K nE 

Sum-of -squares fitting was used to find optimum values of C, K, and E; the worst-case 

error at any single point was 6%. The computed optimum values are 

Model c K E 

Mosaid 2.141 3.298 1.036 

Berkeley 2.455 5. 125 1.042 

The "average speedup" achieved by using the Mosaid model instead of the Berkeley 

model is K Mosaid / K Berkeley = 0.6435. That is, SPICE simulations using the Mosaid 

model will take 65% as long as the same simulations using the Berkeley model. 
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average SPICE Number of O' 

n time (seconds) trials (seconds) 

2 8.873 100 0.13 

5 20.06 100 0.35 

10 . 37.26 20 0.76 

20 76.48 10 0.82 

25 92.50 5 1.19 

50 186.58 5 2.00 

75 294.54 10 1.63 

100 418.00 2 1.41 

150 594.14 5 1.32 

200 827.60 1 ... 

300 1200.1 1 ... 

450 1833.2 1 ... 

725 2943.4 1 ... 

1000 4341.5 1 ... 

Table 4.16 Simulation speed using Mosai<J model 
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average SPICE Number of a 

n time (seconds) trials (seconds) 

2 12.77 100 0.26 

5 31.55 100 0.68 

10 59.16 20 1.06 

20 115.51 10 1.19 

25 152.02 5 0.88 

50 287.70 5 2.59 

75 472.55 10 4.67 

100 635.65 2 1.06 

150 955.86 5 5.20 

200 1307.4 1 ---
300 1910.5 1 -·· 

450 2929.2 1 --· 
725 4932.2 1 ---

1000 7063.6 1 -·-

Table 4.17 Simulation speed using Berkeley model 
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Chapter 5: Conclusions and DirectiQns for Further Research 

The principal goal of this effort has been to demonstrate the practicality of a two

level modeling scheme. An automatic parameter extraction program was exhibited in 

chapter 4, proving the feasibility of the proposed translation mechanism. Parameters 

for the Berkeley theoretical model were successfully compiled into parameters for the 

Mosaid empirical model. Errors introduced by the second level of modeling were small 

(:s;5%), which suggests that simulation accuracy will not be appreciably degraded. 

Several numerical minimization algorithms were tested, and Fletcher's switching

policy variable metric algorithm was found best for extracting Mosaid model parameters. 

The Marquardt algorithm did not offer substantial improvements in speed or accuracy, 

even though it is specifically designed to operate on parameter-extraction problems. A 

"current floor" of 60 microamperes was found to provide a good tradeoff between 

accuracy at low currents and accuracy at high currents. 

The effect of model complexity on total simulation time was measured, and it was 

found that simple empirical models provide substantial improvements over theoretical 

models. Speedups approaching 35 percent were observed, indicating that the two-level 

modeling technique will allow significant increases in simulation productivity. Much 

additional investigation remains to be done; this chapter outlines several areas in which 

the two-level modeling idea can be extended and improved. 

5. 1: Highly Nonlinear Models 

The Mosaid model used in the compilation experiments is characterized • by a small 

set of equations, in which each model parameter is a coefficient for a simple 

polynomial. Predicted currents are gently varying functions of parameter values, so 

minimization procedures which operate on first derivatives will give fast convergence. 

If, however, a model with a strong nonlinear relationship between parameter values and 
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predicted currents is chosen, these algorithms will converge much more slowly [25]. 

This suggests a combined approach, using a function-comparison method to quickly 

find a point near the optimum (where the error in the Newton approximation is small). 

Then a quasi-Newton procedure could be used for the final convergence stage. 

5.2: Nearly Redundant Parameters 

Model equations may be defined such that some parameters are redundant or 

nearly redundant. For example, the equation I = K 1 K 2 V is a poor model of a resistor 

because K 2 is redundant: there are an infinite number of (K 1, K 2) pairs which predict 

the same current-voltage behavior. 

The Berkeley model suffers from this problem, because device gain is set by the 

ratio of two input parameters: 

1os a 

This apparent redundancy can send some minimization algorithms into slightly-damped 

oscillation, repeatedly varying µ.0 and T ox until a stable solution is stumbled upon. The 

two parameters are not completely redundant, but the differences between them are 

only manifested in second order effects (such as the body-effect coefficient y5 ). 

Parameter extraction is therefore extremely slow, because the distinction between p.0 

and T ox is only apparent near the optimum point. 

Preliminary extraction experiments with the Berkeley model tend to indicate that 

simple function-comparison procedures (such as the Simplex algorithm) converge 

sooner than quasi-Newton routines, particularly if the starting point is far away from the 

optimum. Other extraction efforts on the Berkeley model [46] have ignored the 
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redundant-parameter problem, preferring to fix one of the two parameters as a 

constant, and using a quasi-Newton algorithm to extract the other. 

5.3: Incremental Extraction 

To adequately represent device behavior in all important regions of operation, the 

parameter extraction algorithm requires many input measurements. For each 

measurement, a model prediction must be calculated, so the time required to perform 

an extraction is proportional to the number of measurements supplied. Unfortunately, 

there seems to be a tradeoff between extraction time and goodness of fit. 

This difficulty may lend itself to a divide-and-conquer approach: an extraction is 

performed on a small subset of the data, producing an optimal point in the parameter 

space for that subset. Then a full extraction is run on the entire set of measurements, 

using this solution as a starting point. The improved starting point will allow the full 

extraction to use fewer iterations to compute the optimum parameter values. If several 

iterations of the full extraction can be eliminated, the net savings in extraction time will 

be substantial. 

5.4: Multiple Models 

Circuit simulators have traditionally implemented a single model, with a single set 

of parameters, to represent all transistors that could possibly be built with a given 

fabrication technology. This restriction could be relaxed, allowing model parameters to 

be optimized for a particular subset of all possible transistors. An obvious example 

would be to extract four sets of parameters, separately modeling the four different 

size-classes of transistors: 
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Width Length Class 

> 9µ. ;;::::; 9µ. Wide, Long 

> 9µ. ~ 9µ. Wide, Short 

< 9µ. ;;::::; 9µ. Narrow, Long 

< 9µ. ~ 9µ. Narrow, Short 

Model parameters could be separately optimized within each class, which permits 

better curve-fits and lower total model error. This approach would especially improve 

modeling of narrow, short devices, because interactions between narrow and short 

channel effects would be explicitly accounted for. A simple preprocessing stage in the 

circuit simulator would assign each transistor in the simulated circuit to one of these 

classes, so the proper set of parameters is always used. 
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