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Automatic Synthesis of
Implementations for Abstract Data Types
from Algebraic Specifications

Abstract

- Algebraic specifications have been used extensively to prove properties of abstract data types
and to establish the correctness of implementations of data types. This thesis explores an
automatic method of synthesizing’ implementations for data types from their algebralc
specifications. :

The inputs to the synthesis procedure consist of a specification for the implemented type, a
specification for each of the implementing types, and a formal description of the
representation scheme to be used by the implementation. The output of the procedure
consists of an implementation for each of the operations of the implemented type in a simple
applicative language.

The inputs and the output of the synthesis procedure are precisely characterized. A formal
basis for the method employed by the procedure is developed. The method is based on the
principle of reversing the technique of proving the correctness of an implementation of a data
type. The restrictions on the inputs, and the conditions under wliich the procedure
synthesizes an implementation successfully are formally characterized.
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1. Introduction .
N Goals of the Thesis

This thesis is concerned wifh the problém of automatic synthesis of implementations

* for abstract data types from their algebraic specifications. The inputs to the synthesis

~ procedure include (i) a formal Speciﬁcation of the data type to be implemented, (ii) a formal

specification of each of the iﬁlplqmenting tyr.)es, and (iii) a formal description of the

' representation scheme to belused by the desired implementation. The output consists of an

implementation for each of the operations of the implemented type. The inputs are specified
using an algebraic specification technique [14, 18, 25].

The thesis has three main goals:
(1) To precisely characterize both the inputs of the synthgsis procedure, and the output.
(2) To devise an automatic method of deriving the output frpm the inputs.
(3) To provide a formal basis ior the method.

The method of derivation is described in terms of a set of synthesis rules. The
output is derived by invoking the synthes'is rules a finite number of times. The thesis
describes how the synthesis rules are used in deriving a suitable implementation.

The purpose of providing a formal basis for the method is to justify the correctness
of the implementations derived by the synthesis procedure. The formal basis also helps in

characterizing the scope of the synthesis procedure.
1.2 Motivation for The Research

The reliability of computer soﬁware has received a great deal of attention in recent
years. Rapid advances in hardware technology have dramatically decreased the cost of
hardware relative to software. As a result, the cost of producing and maintaining software has
become a major concern. An effective way of improving the reliability and the cost of
software simultaneously is to find methods to decrease the effort required to produce correct

software. At present, active research is underway [43] in exploring this avenue. Several




-approaches have been proposed, each of which can be put under one of the following three
« categories based on the degree of automation it offers: manual approaches, semi-automatic
: approaches, and automatic approaches.

The manual approach advocates discipline in human programming [31, 11, 41}. It

- consists of identifying new mechanisms of abstractions [32] that encourage the advocated

: discipline. The most significant contribution of this approach has been the inducement of a

- change in the attitude of programmers towards the style of programming. Concrete
manifestations of this change include the birth of the concept of abstract data types, and the
development of new languages [34, 29, 52] to support daté types.

The goal of the semi-automatic approach is to seek machine help to establish the
correctness of programs written by the user. Formal methods are developed to specify and
verify prdperties of pieces of software [13, 12, 20]; systems are built to carry out verification

- automatically or semi-automatically [27, 15]. A variant of the verification method is the
programmer’s apprentice method [19]. The programmer’s apprentice provides ‘an interactive
programming environment built uﬁ by a set of tools which helps the programmer in
preparing and checking his work in several ways. The tools range from simple editors to
more sophisticated ones that can analyze and criticize a user’s program during the various
phases of programming. -Yet another way of providing partial machine help is to build
systems [2, 3, 48] that will help apply transformation rules chosen from a catalogue of
equivalence preserving transformations. The programmer can refine or improve the
efficiency of his programs by judiciously choosing the appropriate rules from the catalogue.

The automatic approach, under which our research falls, seeks to automate a part or
all of the programming process itself. Its goal is to generate code for programs from their
high-level declarative descriptions, thereby relieving the programmer of having to worry
about error-prone, low-level details of programming. Though this may one day be feasible,
experience [1, 36] in the last few years shows that not nearly enough is known about the
process to automate it completely. 'i‘wo remedies have been used with some success to break
the stalemate in the situation: The first is to restrict the domain for which programs are being
synthesized [4]; the second is to expect the user to furnish more information about the desired

properties of the program [6] to guide the synthesis procedure.
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A third course of action :that has not so far been employed in earnest is to
-~complement the automatic approach with recent advances in programming methodology.
v (Bauer,v et.al., [3] have employed this idea with the semi-automatic approach.) In particular,
- the idea of designing software as a hierarchy of abstractions can be used tb aid the synthesis
. procedure. Such a hierarchical design for the program reduces the amount of refinement
. required to be performed by the synthesizer at each step.

The thesis takes into consideration all the factors mentioned above. Within the

: general area of programming, “we restri;:t. ourselves to the study of synthesis of
. implementations for abstract data types. We believe that the synthesis of implementations for
abstract data types is amenable to automation because the specification techniques for data
types have been extensively studied, and hence, are better understood. We also expect
additional information about the implementation to be furnished by the user. This
information is provided in the form of a description of the representation scheme to be used

by the implementation.
1.3 Related Work

The works rciated to ours lie partly in the area of general program synthesis and
partly in the area of automatic implementation of data structures.

In the general area of synthesis, the work most ciosely related to ours is that of
Darlington [8, 9. He has developed a system that uses a set of transformation rules to
improve semi-automatically the efficiency of recursive programs and also to construct new
recursive programs. Recently, he has also applied the transformation rules to synthesize
implementations for data types [7]. The synthesis rules developed in the thesis are closely
related to his. The difference lies in the method in which the synthesis rules are used to
synthesize implementations. ‘Our method is based on verification techniques of data types.
Our work has two advantages over his. Firstly, the class of implementations derived by our
method is larger than his. This is because we develop more ways of using the synthesis rules
for deriving implementations. Secondly, we formally characterize the conditions under which

the synthesis rules yield a correct i:nplementation for data types.
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The ZAP system [30] of Feather’s is a program transformation system in which the
basic rules of manipulations are similar to our synthesis rules. His work is different from ours
¢in two ways. Firstly, he is concerned:with developing higher level stretegies to apply the basic
: tranformation rules (in general, any equivalence preserving rules) for the construction of
large-sized programs. Secondly, his:approach is less automatic than ours. The emphasis in
the design of ZAP is to use "metaprograms” to improve communication between the user and
the system. There are two inputs to ZAP: the specification of the program to be constructed
and a metaprogram which consists of a sequence of commands that direct the transformation
process. The metaprogram expresses the higher level strategy to be used in applying the
‘tranformation rules.

Within the area of automatic implementations for data structures, the work of
Okrent [40] has goals closest to ours, Okrent’s method uses only the algebraic specifications
of the data types involved as inputs. Because of the lack of information about the desired
representation scheme, the implementations generated by his synthesis procedure are not as
interesting as the ones generated by ours. He limits severely the range of the data types
acceptable as inputs. He also concentrates on a fixed set of target structures such as
contiguous memory and heap memory for the implementations.

Another work in this area that is related to ours is that of Subrahmanyam’s [50].
Subrahmanyam’s method like' Okrent’s does not use any information about the
repreéentaﬁon scheme. His method has a provision for the user to specify performance
constraints on the desired implementation. The method is based on partitioning the
operation set of the data type into a kernel set and a nonkernel set. Implementations for the
kernel operations are derived by identifying pairs of functions (on the representation type)
called retrievable insertion function pairs. Implementations for the nonkernel operations are
derived in terms of the hnplementaﬁons for the kernel operations so as to. meet the
performance constraints.

Most of the other research in the automatic generation of data structure
implementations has been concerned with the automatic selection of an optimal
representation for data structures. Rowe and Tonge [47], Rovner [46], and Tompa and
Gotlieb [51] have studied optimization problems for a language containing a fixed set of high
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+ level data structures. First they build a library of possible implementations for each fixed
- high level data structure in the language, along with a parameterized description of the
- performance of each library entry. Then they proceed to select the "best" implementation for
' each instance of the data structure, by making a flow analysis of the program that uses the
data structure. The goal of our work is to derive an implementation for a given
representation rather than to select an optimal one among a given set of representations.
Standish, et.al.,, [49], Bauer, et.al,, [3], and Wile, et.al, [2] have developed catalogues
of equivalence preserving transformation rules as a part of program development systems.
The programmer can refine or improve the efficiency of his programs by instructing the
system to apply appropriate transformation rules on the programs. None of these works,
however, deals explicitly with the implementation of data types. It is possible, with some

modifications, to incorporate our synthesis rules as a part of their system.
1.4 Organization of the Thesis

The next chapter gives an overview of the synthesis procedure. The third chapter
describes in detail the inputs of the synthesis procedure, and formalizes the restrictions on the
inputs. The synthesis procedure derives an implementation in two stages: The
implementation is ﬁrsf derived in a preliminary form which is then transformed into a final
form. The first stage of the procedure is the topic of the fourth and the fifth chapters. The
sixth chapter describes the second stage. The last chapter gives the concluding remarks.
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2. An Overview of the Synthesis Procedure

This chapter gives an overview of the synthesis procedure. The first section gives a
scenario of the synthesis procedure from a user’s point of view. It briefly describes the form
of the inputs to the synthesis procedure, and the form of its outputs via an example. The
second section gives a summary of the synthesis procedure. It points out the nontrivial issues
_involved in the method employed by the procedure for deriving an implementation. The last

. section describes the scope of the procedure. ' _
2.1 The User’s View

Consider the following scenario involving a programmer. The programmer has
designed an abstract data type (the implemented type) to be used in solving one of his
programming problems. He is now seeking the help of a system for implementing the type
using another data type, called the representation type; The representation type is chosen by
the user himself, Furthermore, he is willing to furnish information about how he wants the
values of the representation type to be used in representing the values of the implemented
type. The system is expected to generate automatically (or with some help from the user) an
implementation for the imp'leinented type that uses the representation type as the
representation in a manner consistent with that suggested by the user.

Viewed as a black box, the inputs to the procedure are:
(i) A specification of the implemented type,

(ii) a specification of the représentation type, and specifications of all the types used in
the specification of the representatjon type. We refer to the representation type, and
all the types its specification uses as the implementing types.

(iii) an association specification that describes how the values of the representation type
are to be used in representing the values of the implemented type; this corresponds
to the representation (or abstraction) function defined by Hoare in [21}.

The output of the synthesis procedure consists of an implementation for each of the
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- operations of the implemented type in terms of the operations of the implementing types. To
~ get a better idea about the inputs and the output, let us consider an example of deriving an
- implementation for the data type Queue_Int in terms of Circ_List. Queue_Int is a
first-in-first-out queue of integers. Elements are added to a queue at the rear end, and
removed from the front end. Circ_List is a list of integers. Flements are inserted into and
removed from a list at the same end, which is the rear end of the list. The operation that gives
Circ_List a circular character is Rotate. Rotate moves every element in a list by one position
towards the rear end in a cyclic fashion, i.e., the element at the rear end is moved to the front
end. v

In this example, the implemented type is Queue_Int and the representation type is
Ciré_List. Circ_List uses (this notion is defined precisely in the next chapter) the data types
Integer and Bool, so the implementing types include Circ_List, Integer, and Bool. Figures 1,
2, and 3 give the inputs to the synthésis procedure. (The figures also give an informal
description of the operations of the data types.) Specifications of Integer and Bool should
also be given as inputs, although we have not shown them here. The language used to express
the data type specifications is equational, similar to the ones developed in [14, 18, 25]. One of
the crucial differences is the following: We_assume.that the specification of every data type
identifies a basis for the data type. A basis is a minimal set df aperations of the data type that
can be used to generate all the values of the type. The operations in the basis are called the
generators of the type. For example, the operations Create and Insert can be the generators
for Circ_List. The specification language is described in the next chapter.

Fig. 3 gives the association specification for the implementation to be derived. It
characterizes the representétion scheme to be used by the implementation. The association
specification is expressed in two parts. The first part specifies the invariant 3. § is a predicate
that specifies the set of values that may- be used to represent the values of the implemented
type; only those values of the representation type for which 3 is True may be used to
represent the values of the implemented type. In the present example, J is True for all values
of Circ_List. The second part specifies the abstraction function A; A maps a value the
representation type to the value of the implemented type that the former may represent. In

the present example A specifies the following mapping: The empty queue is represented by
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- Fig. 1. Specification of Queue_Int
Queue_Int is Nullq, Enqueue, Front, Dequcue, Append, Size

| Defining Types

-Bool, Int

Operations

. Nullq :=> Queue_Int

Enqueue : Queue_Int X Int -> Queue_Int

Front “ Queue_Int -> Int U { ERROR }
Dequeue : Queue_lnt -> Quene_Int U { ERROR }
Append  : Queue_Int X Queune_Int -> Queune_Int
Size : Quecue_Int -> Int

Comment-
Queue_Int is a FIFO queue of integers. Nullq constructs the empty queue. Enqucue adds an element to

a qucue at the rear end. Dequeue removes the element at the front of a queue. Front returns the
clement at the front of a queue. Append joins two queues adding the elements of the second argument
at the rear of the first argument. Size computes the number of elements in a queue.

Basis

{ Nullq, Enqueue }

Axioms

(1) Front(Nullg) = ERROR
(2) Front(Enqueue{Nullg,e)) = ¢
(3) Front(Enqueue(Enqucue(q, 1), e2)) = Front(Enqueue(q, e1))

(4) Dequeue{Nullg) = ERROR
(5) Dequene(Enqucue(Nullg, ¢)) = Nullq
(6) Dequene(Enqueue(Enqueue(q, el), e2)) = Enquene(Dequeue(Engueue(q, ¢l)), e2)

(10) Append(q, Nullq) = q ]
(11) Append(ql, Enqueuc(q, €2)) = Enqueue(Append(ql, q2), e2)

{12) Size(Nullq) = 0
(13) Size(Enqueue(q, €)) = Size(q) + 1
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: Fig. 2. Specification of Circ_List
" Circ_List is Create, Insert, Value, Remove, Rotate, Empty, Join

Defining Types
Intcger, Boolean

Operations

Create  :-> Circ_List

Insert  : Circ_List X Integer -> Circ_List
Value  :Circ_List -> Integer U { ERROR }
Remove : Circ_List -> Circ_List U { ERROR }
- Rotate : Circ_List -> Circ_List

Empty  :Circ_List -> Boolean

Join : Circ_list X Circ_list -> Circ_list

Comment A
Circ_List is a list of intcgers with a front end and a rear end. Create constructs an empty list; the front

and the rear ends of an empty list are the same. Insert inserts an clement into a list at the rear end.
Value returns the element at the rear end of a list. Remove removes the element at the rear end from a
list. Rotate movces every element in a list by one position towards the rear end in a cyclic fashion, i.e.,
the element at the rear is moved to the front. Empty checks if a list is empty. Join joins two lists by
positioning the first argument in front of the second.

Basis
{Create, Insert}

Axioms

(1) Value(Create) = ERROR
(2) Value(Insert(c, i)) =i

(3) Remove(Create) = ERROR
(4) Remove(Insert(c, i)) = ¢

(5) Rotate(Create) = Create
(6) Rotate(Insert(Create, i)) = Insert(Create, i)
(7) Rotate(Insert(Insert(c, i1), i2))) = Insert(Rotate(Insert(c, i2)), i1)

(8) Empty(Create) = true
(9) Empty(Insert(c, )) = false

{10) Join(c, Create) = ¢
(11) Join(c, Insert(d, i)) = Insert(Join(c, d), i)




-17 ._

Fig. 3. Association Specification
* Invariant

" 3(c) = True

Abstraction Function

A(Create) = Nullq
A(Insert(c, 1)) = add_at_head(A(c),i) °

add_at_head(Nullg, i) = Enqueue(Nullg, i)
add_at_head(Enqueue(gq, i), i1) = Enqueuc(add_at_head(q, il), i)

the empty list. A nonempty queue is represented by a list whose elements are identical to the
ones in the queue, but are arrangg:d in the reverse order. The motivation for this
representation scheme is mat:'médit;é and " deletion of elements from a queue can be
performed efficiently, Note that the specification of A uses an auxiliary function
Add_at_head on Queue_Int; the auxiliary function adds an element at the front end of a
queue. |

Fig. 4 shows the output of the synthesis procedure. The output deﬁngs a set of
functions, called the implementing functions, on Circ_List. Every implementing function
implements an operation of Queue_Int. The implementing function implementing the

operation f is given the name F. For instance, NULLQ implements Nullg. The target

Fig. 4. An Implementation
NULLQ() :: = Createl()

ENQUEUE(c, j) :: = Rotate(lnsert(c, j))
" FRONT(c) :: = Value(c)

DEQUEUE(c) :: = Remove(c)

APPEND(c, d) :: = Join(d, ¢)

SI1ZE(c) :: = if Empty(c) then O :
else SIZE(Remqve(c)) + 1
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+ language used to express the implementations for the operations is a simple applicative
language. The only mechanisms available in the language to build programs are: functional
» composition, conditional expressions, and recursive function definition. The language uses a
* method of defining function that is Eustomaﬁly used in applicative languages like pure LISP
"[37]. A function F is defined using the following schema: F(vj,...,v) i1= e, where
»+++, ¥, are variables, and e is .an expression containing those variables. A function

1
definition may use the operations of the implementing types as base functions,

22 A Summary of the Synthesis Procedure

The synthesis procedure is summarized in an illustrative fashion using the example
already introduced. This is done in the first two subsections. In the example introduced, the
invariant 3 is a trivial one: It is True on all values. IAn the third subsection, we highlight the
issues involved in deriving an implementation in the presence of a nontrivial invariant by
introducing a new example. |

The method used by the procedure to derive an implementation is based on treating
every equation in the specifications as a rewrite rule.? The procedure begins by combining all
the input specifications into a rewriting system called the Initial World (IW). (IW is obtained
by simply replacing the symbol = by — in the input specifications.) The procedure assumes
- that IW satisfies the uniform termination property as well as the unique termination property.
(IW is said to be convergent in such a case. This is similar to the Church-Rosser property.)
The uniform termination property ensures that every chain of reductions starting from an
expression terminates. The unique termination property ensures that all chains of reductions
starting from an expression terminate in the same expression. These two properties ensure
that the equivalence relation characterized by a specification can be computed by using the

rules in IW for reducing expressions. The procedure also assumes that there is a predefined

2. A rewrite rule (written a — B) is an ordered pair- a left hand side and a right hand side - of
expressions. A rewrite rule can be used to reduce any expression that is an instance of the left hand
side into an expression that is an instance of the right hand side. A rewriting system is a set of rewrite
rules. ’ ‘
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temﬁnation ordering (>) on expressions which can be used for showing the uniform
: termination property of rewriting systems. A |

The synthesis procedure derives the implementation in two stagés. In the first stage
- the procedure derives the implementation in an intermediate form. The intermediate form is
called a preliminary implementation. In the second stage the preliminary' implementation is
. transformed into an implementation in the target language (target implementation). Fig.5
. gives a preliminary implementation for Queue_Int that is consistent with the association
specification given in Fig.3. There are two crucial differences between a preliminary
implementation and a target implementation. The first one concerns the methods used for
defining the implementing functions. A preliminary implementation defines a function as a
set of rewrite rules. The rewrite rules defining an implementing function F are the ones that
have F as the outermost symbol on their left hand side. For instance, rules (2) and (3) in
Fig. 5 define ENQUEUE. The second difference is that the only operations of the
representation type that are permitted to appear in a preliminary implementation are its
generators. A target implementation is permitted to use all the operations of the
representation type. In the example under consideration, for instance, a preliminary

_implementation may use all the operations of Integer and Bool, but only the generators

Fig. 5. A Preliminary Implementation

(1) NULLQ{) — Createl)

(2) ENQUEUE(Create, j) — Insert(Create, j)
(3) ENQUEUE(Insert(c, i), j) — Insert{ENQUEUE(c, j), i)

(4) FRONT(Create) — ERROR
-{5) FRONT(Iinsert{c,i)) = |

(6) DEQUEUE(Create) - ERROR
(7) DEQUEUE(Insert{c,i)) — ¢

(8) APPEND(c, Create) — ¢
(9) APPEND(c, Insert(d, )) - APPEND(ENQUEUE(c, i), d)

(10) SIZE(Create) —» O
(11) SIZE(insert(c, i)} — SIZE(c) +1
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s (Create, and Insert) of Circ_List,
There are two reasons for the decomposition. Firstly, it makes the synthesis
: procedure more modular. Target language dependent transformations are separated from the
' language independent transformatiéns The decomposition also lends itself naturally to
deferring efficiency improving transformatxons to the later stage. In the first stage one can
F concentrate on deriving a simple correct implementation. Secondly, the decomposition
reduces the complexity of the structure of synthesis procedure. The first stage deals with the
techniques for deriving an implementation from the specification of the data type. The
second stage deals with the techniques for deriving alternate forms of implementations from
an preliminary implementation. The decomposition provides a better insight into the
synthesis method, and simplifies the description of the synthesis procedure. The next two

Subsectioﬁs give an overview of the two stages of the synthesis procedure.
2.2.1 Stage 1: Preliminary Implementation Derivation

A preliminary implementation of a data type is correct with respect to an abstract
function A if the following condition holds: Every implementing function F (that implements
the operation f) defined by the preliminary implementation is a total function on the
representation values so that the homomorphism property 36(F(x)) = f(36(x)) holds. Here 3
is a function on the values of the implementing types; J6 behaves exactly like the abstraction
function A on the representation values, and like an identity function on all other values. The
synthesis procedure derives a preliminary implementation so that the above criterion of
correctness is satisfied.

The procedure synthesizes the preliminary implementation for one operation at a
time by deriving a separate set 'of rewrite rules for every operation. Since the method used is
the same for every operation, we illustrate the synthesis of only a couple of operations. The
procedure first determines the left hand sides of all the rules of the preliminary

implementation. Then, it determines a suitable right hand side for each of the rules.
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: 2.2.1.1 Determining the Left Hand Side

One of the correctness requirements of a preliminary implementation is that it must

- define a total function on the representation type. This requirement is ensured by deriving

the rules of the preliminary implementation so that (1) they satisfy the uniform termination

~ property, and (2) they are well-spanned. The first property is ensured while deriving the right

. hand side of the rules. The second property is used to determine the left hand sides.

The second property requires the léft hand side expressions of the rules to be of a
particular form. For instance, any pair of rules that have the form given below constitute a
well-spanned set of rules for ENQUEUE. (In the following ?rhs, and ?rhs, are used as place
holders for expressions to be determined later.)

ENQUEUE(Create, j) — ?rhs,

ENQUEUE(Insert(c, i), j) — '?rhs2

Note that the left hand side of each of the above rules consists of ENQUEUE
applied to arguments that are generator expressions.3 The set of arguments, i.e., sequences of
generator expressions, to ENQUEUE on the left hand side of the rules is
ArgsSet = {<Create, j>, <Insert(c, i),j>}. ArgsSet spans the set of all ordered pairs of
generator constants. In other words, every pair of generator constants is an instance of one of
the arguments in ArgsSet. This property ensures that the definition of ENQUEUE accounts

for all the representation values. It is easy to build a procedure that automatically generates a

- well-spanned ArgsSet, once the generators of the representation type are identified. Thus, an

appropriate set of left hand sides for the rewrite rules to be derived can be determined

- automatically.

3. A generator expression is an exnression in which the only function symbols involved are the
generators. A generator constant is a generator expression that does not contain any variables.
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:2.2.1.2 Determining the Right Hand Side

The right hand sides of the rules are determined so that the preliminary
- implementation satisfies the homomorphism property mentioned earlier. For this, the Initial
World, IW, is first supplemented with a set of rules, called the J6-rules. The J6-rules express

the homomorphism property; there is an 36_rule fdr every implementing function. For

instance, the J6-rule corresponding to ENQUEUE is
J36(ENQUEUK(c, j)) — Enqueue(36(c), 36(j)). Let us call the supplemented system the
Perturbed World (PW).4

The Perturbed World (PW) is then used to derive a set of synthesis equations, one
equation for every rule in the preliminary implementation. The right hand side of a rule is
determined from the right hand side of the corresponding synthesis equation. For instance,
the synthesis equation corresponding to the rule ENQUEUKE(Insert(c, i), j) — ?rhs, is an
equation of the form J6(ENQUEUE(Insert(c, i), j)) = %(?rhs? that satisfies the following

conditions:
(1) 36(ENQUEUE(Insert(c, i), j)) = 3(?rhs,) is a theorem of PW
(2) ENQUEUE(Insert(c, i), j) > ?rhs, -

(3) 7rhs, contains only the permitted operations of the implementing types, and the

implementing functions.

The Synthesis Theorem in chaptef4 shows that, when a prelimixiary
implementation is well-spanned, the preliminary implementation satisfies the
homomorphism property if the syrithesis equation corresponding to each of the rules in the
preliminary implementation is a theorem of PW. Note that the second condition above
ensures that the rewrite rules derived sétisfy the uniform termination property. The third

condition ensures the syntactic correctness of the preliminary implementation.

4. Note that since J6 is a function that behaves essentially like A, the rewrite rules specifying it in PW
are obtained by simply replacing A by J6 in the asociation specifcation.
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2.2.1.3 Deriving the Synthesis Equations

Every synthesis equation of the preliminary implementation is derived with the help
of two inference rules called the synthesis rules. The synthesis rules are designed for
generating theorems of PW that have the same left hand sides, but different right hand sides.
For deriving a synthesis equation, thé synthesis rules are invoked repeatedly a finite number
of times to generate a series of theorems until the desired equation is genere_ited. For instance,
the synthesis equation corresponding to the rule ENQUEUE(Insert(c, i), j) — ?rhs, is derived
" by generating a series of theorems that have %(ENQUEUE:(lnsert(c, i), j)) as their left hand
side. The generation continues until a theorem whose right hand side qualifies the theorem
to be a synthesis equation is encountered.

The idea used for generating an equation is to reverse the method of demonstrating
that such an equation is a theorem of PW. The central notion used in the generation is a

5 is the opposite of reduction. It is the act of

mechanism called expansion. Expansion
applying a rewrite rule to an expression from right to left.

For example, consider the rule J6(ENQUEUE(c, j)) — Enqueue(3¢(c), 76(j)), and
the expression Add_at_head(Enqueue(36(Create), 36(i)), k). The subexpression
Enqueue(36(Create), J6(i)) is an instance of the right hand side of the rule for the substitution
~{c—Create,j—i}. The corresponding instance of  the left hand side is
J(ENQUEUE(Create, i)). Therefore, Add_at_head(Enqueue(36(Create), 36(i)), k) expands to
Add_at_head(36(ENQUEUE(Create, 1)), k) by the rule.

The first synthesis rule specifies a way of generating a theorem from an expression
with that expression as the left hand side. In the following e denotes the r;ormal form of e
obtained using pw.5 (The normal form of e is the result of reducing it using the rewrite rules

of PW until it becomes irreducible.) -

5. The definition of expansion will be revised later in chapter 4 to make it more general. According to
the definition given here, expansion is identical to the transformation technique folding used by
Darlington [7] for synthesis of recursive programs. ’

6. PW is a convergent system. Therefore, every expression is guaranteed to have a unique normal
form. :
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e is an expression
e=el

Rule 1;

The second synthesis rule specifies how to generate a theorem from an existing one
so that the new theorem has the same left hand side as the old one. In the following

. expand(e,) denotes any expression that is an expansion of e, using some rewrite rule of PW.

elsez

e = expand(ez)

Rule 2:

We investigate two methods in which the synthesis rules can be used for deriving a
synthesis equation. The first method derives synthesis equations that are in the equational
theory of PW. The second method derives equations that are in the inductive theory. The
second method is more general than the first one. A system that implements the synthesis
procedure would, therefore, use only the second method. We discuss them separately for

pedagogic reasons.
2.2.1.3.1 Derivation in the Equational Theory

As an illustration, let us derive a synthesis equation that is of the form
J(ENQUEUE(Insert(c, i), j)) = %(?rhsz). | The equation is derived by generating a series of
theorems that have S}G(ENQUEUE(Insert(c, i), j)) as their left hand side. The generation is
begun by invoking synthesis rule (1) on the left 'hand side expression. The rest of the
theorems in the series are generated by invoking synthesis rule (2) using the rewrite rules of
PW for expansion. The rewrite rules for expansion are chosen with the following ultimate
goal: Obtain a right hand side that has the form 3(arhs) so that
- J(ENQUEUE(Insert(c, i), j)) > 3(?rhs,), and 7rhs, contains only the implementing
functions and the permitted operations of the implementing types. In the illustration given
below, the generation of every theorem in the series is considered as a step. At each step, the
expression expanded, and the rewrite rule used for expansion are indicated. The relevant
rewrite rules of PW that are going to be used for expansion are listed at the beginning.
Rule (1) is the J6-rule coresponding to Enqueue; rules (2) through (5) are obtained from the

association specification.
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Relevant Rewrite Rules of the Perturbed World
(1) K(ENQUEUF(c, j)) — Enqueue(36(c), J6(j))

" (2) %(Create) — Nullq
© (3) %(Insert(c, i)) — Add_at_head(J5(c), J6(0))

(4) Add_at_head(Nullq, i) — Enqueue(Nullg, 1)
(5) Add_at_head(Enqueuc(q, i), j) — Endueue(Add_at_hcad(q, D

Form of the theorem to be genqrated: Z{G(ENQUEUE(Insert(c, )= 36(?rhs1)
Normal form of J(ENQUEUE(Insert(c, i), j)): Enqueue(Add_at_head(36(c), J6(i)), f)G(j))
Rules used for the normal form: (1), (3) -

Step (1) Invoke Synthesis Rule (1) on J6(ENQUEUE(Insert(c, i), j))
W (ENQUEUE(Insert(c, i), j)) = Enqueue(Add_at_head(36(c), J6(i)), J6())

Step (2) Expand Expression: Enqueuc{Add_at_head(36(c), J6(i)), J6(j))
Using Rule: (5)

Jo(ENQUEUE(Insert(c, i), j)) = Add_at_head(Enqueue(3t(c), J5()), J6(i))

Step (3) Expand Expression; Enqueue(36(c), ilG(j))
Using Rule: (1)

J(ENQUEUE(Insert(c, i), j)) = Add_at_head(J6(ENQUEUE(c, j)), J6(i))

Step (4) Expand Expression: Add_at_head(J6(ENQUEUK/c, j)), J6(i))
Using Rule: (3)

JF(ENQUEUE(Insert(c, i), j)) = J(Insert(ENQUEUK(c, j), i))

The theorem generated in step (4) qualifies to be a synthesis equation. Hence the desired rule of the
. preliminary implementation is:

ENQUEUE(Insert(c, i), j) — Insert{ENQUEUE(c, j), i)

One can similarly generate a theorem of the form J(ENQUEUE(Create, j); = J6(Insert(Create, j)),
which gives rise to the following rewrite rule to complete the preliminary implementation for
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- ENQUEUE:
ENQUEUE(Create, j) — Insert(Create, j)

| 2.2.1.3.2 Derivation in the Inductive Theory

The method used for deriving a synthesis equation in the inductive theory is based
on the following property that every theorem of PW satisfies: If an equation is a theorem of
PW, then every instance of it is in the equational theory of PW. An instance of an equation
e =e, is an equation obtained by replacing every variable in e, and e, by generator
constants.”

We, therefore, take the following approach for deriving an equation in the inductive
theory. First derive an instance of the desired equation; the method of derivation described
earlier can be used for this purpose. The instance of the equation derived should be such that
a generalization of it has the form of the desired synthesis equation, and is a théorem of PW.
A generalization of e, = e,
e, by suitable variables. To check if the generalization is a theorem of PW, we use an

is an equation obtained by replacing assorted constants in e, and

automatic procedure called is-an-inductive-theorem-of. The procedure is an extension of the
method of using the Knuth-Bendix completion algorithm for proving inductive properties of
convergent rewriting systems [28, 38, 22]. The procedure is described in chapter 4.

As an illustration let us derive a synthesis equation of the form
J(APPEND(c, Insert(d,i ))) = J6(2rhs,) which gives rise to one of rules in the preliminary
implementation of Append. We begin by deriving an instance determined by the replacement

of the variable d by the constant Create, and then apply generalization.

Relevant Rewrite Rules of the Perturbed World

(10) Append(q, Nullg) — q
(14) 36(Create) — Nullq

7. A generator constant is an expression formed out of generators, and does not contain any variables.
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_ ~ (20) I6(ENQUEUK(c, i)) — Enqueue(36(c), 36(1))
v (22) J6(APPEND(c, d)) — Append(36(c), J6(d))

! Form of the theorem to be generated: J6(APPEND(c, Insert(Create, i))) = J6(?e)

Normal

form of J6(APPEND(c, Insert(Create, i))): Enqueue(36(c), J6(i))

- Rules used for the normal form:

Step (1)

Invoke Synthesis Rule (1) on J6(APPEND{c, Insert(Create, i)))
J(APPENIX(c, Insert(Create, i))) = Enqueue(36(c), J6(i))

Step (2)

Expand Expression: J6(APPEND(c, Insert{Create, i)))
Using Rule: (10)

4

J(APPEND{c, Insert(Create, i))) = Append(Enqucue(J6(c), J6(i)), Nullq)

Step(3)

Expand Expression: Nullg
Using Rule: (14)

J6(APPEND(c, Insert(Create, i))) = Append(Enquecue(36(c), 36(i)), J6(Create))

Stép 4

Expand Expression: Enqueue(36(c), J6(}))
Using Rule: (20)

J(APPEND(c, Insert(Create, i))) = Append(f}(;(ENQUEUE(c, i)), J6(Create))

Step (5)

Expand Expression: Append(J6(ENQUEUE(c, i)), J6(Create))
Using Rule:

J5(APPEND(c, Insert(Create, i))) = J(APPEND(ENQUEUE(c, i), Create))

Step (6)

Generalize the theorem in step (5) by replacing the constant
Create by the variable d to obtain the following equation:
JS(APPENDc, Insert(d,i ))) = J6(APPEND(ENQUEUE(c, i), d))

Apply is-an-inductive theorem-of on the above equation.
This yields True confirming that the equation is a theorem.
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Hence the desired rule (obtained by dropping 36 on both sides) is:
APPEND(c, Insert(d,i )) — APPEND(ENQUEUK(c, i), d)

One can similarly generate a theorem ofl‘ the form J6(APPEND{(Create, d)) = 36(d) which gives rise to
- the following rewrite rule to complete the preliminary implementation’of APPEND,

APPEND(Create, d) — d

2.2.2 Stage2: Derivation of the Target Implementation

In the second stage of the synthesis procedure, the preliminary implementation is
transformed into a target implementation. It should be noted that the preliminary
implementation is itself an executable implementation. It can be executed by an interpreter
that is capable of simplifying algebraic expressions using the equations in the specifications of
data types as rewrite rules. The data type verification system A;FFIRM [39] provides such an
interpreter. Given the specifications of all the implementing types, the interpreter can
execute the preliminary implementation on any given input. Qur goal is to derive the target
implementation in a form that can be compiled by a compiler for an applicative language.
There are two reasons why a target impleinentation is more efficient than a preliminary ‘
implementation. The first one arises because of the freedom to use nongenerators of the
representation type in a target implementation. This makes it possible, in some instances, to
eliminate recursion from a preliminary implementation of an operation, and to transform into
one which is a composition of the operations of the implementing types. The second reason
is that an implementation that can be compiled by means of a conventional compiler is in
general more efficient than interpreting a set of rewrite rules. We investigate two methods of
transforming a preliminary implementation into a target implementation. We describe each
of them briefly below. The first method, although less efficient than the second, derives a

larger set of implementations.
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- 2.2.2.1 Recursion Eliminating Method

According to this method the problem of deriving a target implergentation is viewed
7 as finding a composition f* of .the operations of the implementing types and the
" implementing functions (possibly including the if_then_else function) that has the same
functional behavior as the implementing function F defined by the preliminary
implementation. For example, the composition Rotate(Insert(d, k)) has the same behavior as
the function ENQUEUE defined by the rewrite rules of the following preliminary

implementation:

ENQUEUE(Create, j) — Insert(Create, j)
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(g, j), i)

So, the = following can ~ be a target implementation for it:
ENQUEUE(Y, k) ::= Rotate(Insert(d, k)). Note that the target implementation does not use
recursion.

More formally, the problem can be stated as follows: Find a co:nposition f* so that
the equations obtained by substituting f* for ENQUEUE in the rewrite rules are theorems of
the implementing types. The equations for ENQUEUE are given below. Note that, in
obtaining the followihg equations, the two sides of the rewrite rules are interchanged after
replacing ENQUEUE by f*. The need for the interchange will be explained later.

1) Insert(Create, j) = f*(Create, j)
)] Insert(f*(c, j), i) = P(Insert(c, i), })

We use the following strategy to find a solution for f*. We generate a theorem of
the implementing types using one of the above equations as a template. For generating such
a theorem we use the synthesis rules mentioned earlier. However this time, since we are
interested in the theorems of the implementing types, the rewrite rules in the specification of
the implementing types are used for expansion. The theorem generated determines a
candidate for f*. The goal is to generate a theorem SO that the candidate for f* determined by
the theorem also satisfies the other equatioq. -For instance, the sequence of steps given below

generates a theorem that has the form of equation (1).
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s Rewrite Rules of Circ_List ; )

- (3) Rotate(Create) — Create
(4) Rotate{Insert(Create, i)) — Insert(Create, i)
" (5) Rotate(Insert(Insert(c, i1), i2)) — Insert(Rotate(Insert(c, i2)), il)

~ Form of the theorem to be generated: Insert(Create, j) = f*(Create, J)
- Normal form of Insert(Create, j): Insert{Create, j)
Rules used for the normal form: None

Step (1) Invoke Synthesis Rule (1) on Insert(Create, j)
Insert(Create, j) = Insert(Create, j)

Step (2) Expand Expression: Insert(Create, j)
Using Rule: (4)

Insert(Create, j) = Rotate(Insert{Create, j)

The last theorem generated in th.e above series suggests that Rotate(Insert(d, k)) is a
candidate for f*(d,k). The candidate composition can be determined mechanically by
comparing the theorem generated with the template equation. The candidate we currently
have is such that the equation Rotate(Insert(Insert(c, i), j)) = Insert(Rotate(Insert(c, j)), >i),
which is obtained by replacing f* by Rotate < Insert in equation (2), is a theorem of Circ_List.
Had the candidate obtained in the last step not satisfied equation (2), the theorem generation
would have continued further to generate another theorem that had the form of equation (1).
The reason that the first equation, rather than the second, was used as the template
equation is the following. The synthesis rules are formulated so that the unknown expression
in the equation to be searched for is on the right hand side. In equation (2) both sides are
unknown since f* occurs on both the sides. That is not the case with equation (1). This was
also the reason for interchanging the two sides of the rewrite rules while obtaining the
template equations. In the example illustrated the theorem desired was in the equational

theory. In general, we need to use the generalization technique described earlier since the
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+ theorem may be in the inductive thedry. '
2.2.2.2 The Recursion Preserving. Method

In this method the target implementation is derived with the help of a special set of

8 on the representation type. To understand what

~ functions, called the inverting functions,
" inverting functions are, and why there are useful, let us consider an example. The

| preliminary implementation of SIZE consists of the following rules:

- SIZE(Create) — 0
SIZE(Ipsert(c, i)) — SIZE(c) + 1

A target implementation for SIZE may take the following form:

SIZE(d) :: = if Empty(d) then 0
else SIZE(Remove(d)) + 1

Note that in the preliminary implementation the argument to SIZE on the left hand
side of a rule is permitted to be a generator expression. The argument indicates the pattern or
the structure of the expression that constructs the values fdr which the rewrite rule is
applicable.9 This freedom.is used in a pre]i:hinary implementation to perform a case analysis
based on the structure of the argument, and to decompose the argument,

In a target implementation the argument to SIZE on the left hand sxde of the
definition must be a variable, This means that the expression on the right hand side of the
definition must have explicit subexpressions for determining the structure of the argument,
and to decompose the argument. Inverting functions of a data type can be used to build these
subexpressions.

Informally speaking, the inverting functions of a data type are functions that can be

8. Inverting functions are closely related to distinguished functions of a data type defined in [24]. In
[24] the distinguished functions are used to formalize the expressive power of a data type.

9. If we are interested in interpreting the preliminary implementation, it is, therefore, necessary for
the interpreter to have pattern matching capability to invoke the appropriate rewrite rule while
simplifying an expression.
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; used to algorithmically invert the process of constructing a value of the type from the
- generators of the type. In other words, by applying one or more of the inverting functions a
¢ finite number of times on a value one can determine. a generator expression that constructs
: the value. For instance, for Circ_List the operations Rotate, Value, and Empty can serve as a
set of inverting functions. The structure of any circular list value in terms of Create and
Insert can be determined using these operations. For instance, if v is a variable denoting the
value constructed by Insert(c, j), then Remove(v) extracts the component ¢; ~Empty(v) checks
if v is constructed by an expression of the form Insert(c,j). So, the rewrite rules can be
merged into the following conditional expressions:
if Empty(d) then 0 else SIZE(Remove(d)) + 1.

The target implementation is derived in two steps. The first step identifies a set of
inverting- functions for the representation type. In the second step the rewrite rules
constituting the preliminary implementation of every operation are transformed into a target
implementation in terms of the inverting functions. The method is describéd in detail in

chapter 6.
2.2.3 Extending the Synthesis Procedure

Consider the association specification given in Fig. 6. It specifies a representation
scheme for implementing Queue_Int as a triple Array_Int X Integer X Integer, which can
informally be described as follows. (Array_Int is specified in the next chapter which also

describes the association specification shown below in more detail.) Nullg can be represented

Fig. 6. Queue_Int in terms of Triple

Ay, i, D) = Nullq
A(CAssign(v, e, ), i, j+1>) = if i = j+1 then Nullq
else Enqueue(A(<y, i, ), e)

Iy, i, D) = True
J(KAssign(v, e,j), i, j+1>) = ifi = j+1 then True
else ifi < j+1 then JKv, i, >)
else False
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by any triple in which the two integer components are equal. A nonenipty queue can be
represented by a triple <v, i, j>, where v is an array of arbitrary length containing the elements
" of the queue between the index values i and j-1, in order. In other words, i points to the front
“end of the queue, and j points to the next position available in the queue for adding an
' element. Note that in this example, unlike the last one, not every value of the representation
type can legally represent a queue. A triple <v, i, j> is a legal representation value if only if
| i <}, and v is guaranteed to be defined on all index values between i and j-1. The invariant 3
in Fig. 6 specifies this condition. ' . ‘

The synthesis the presence of a nontrivial invariant J has to be performed differently
because the implementation must be such that every implementing function F defined
preserves 3: That is, (¥ v){3(v) = H(F())].

The synthesis procedure for such a situation is similar to the one described earlier
except for the .method employed in determining the right hand sides of the rules of a
preliminary implementation. The difference lies in the set of rewrite rules used for expansion
while generating the theorems. Earlier, the rewrite rules of PW were used, but now it is
necessary to use an additional set of rewrite rules. The additional rewrite rules describe
- information pertaining to the invariant 3, and the assumption that the arguments to the
\implementing function satisfy the invariant. The information pertaining to J is maintained as

a separate entity called the Temporary World. Chapter S describes how the Temporary World

is constructed, maintained, and used in the synthesis of an implemenation.
2.3 The Scope of the Synthesis Procedure

The scope of the synthesis procedure is limited because of two reasons. Firstly, the
restrictions imposed on the input specifications limit the range of data type specifications that
are acceptable as inputs to the procedure. Secondly, the synthesis procedure is capable of
- deriving only a class of implementations that satisfy certain properties. We describe the two
forms of limitations beldw.
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5 2.3.1 Restrictions on the Inputs

The inputvspeciﬁcations must be such that the Initial World (IW), which is a

combination of all the specifications, forms a rewriting system that
(1) has the uniform termination property,
(2) has the unique termination property, and
(3) is well-spanned. |

The second and the third properties are not restrictive because they can be attained
by adding certairt additional rewrite rules to the system. There are automatic procedures {28,
38, 22] for determining the rules that need to be added, provided the system satisfies the
uniform termination property.

The uniform termination property can be restrictive, It is, in general, not possible to
express all the properties one wishes to specify in a manner that preserves the uniform
termination property. For example, consider the data type Set_of_Elements that has an
operation Insert to insert an element into a set. To express the property that the order of
insertion of elements into a set is immaterial, it is necessary to have a rewrite rule of the form
Insert(lusert(s, i), j) — Insert(Insert(s, j), i) as a part of IW. A system containing this kind of
rule need not, in general, terminate because the rule does not strictly reduce an expression.

One way of getting around this problem is to exclude the concerned rule(s) from
IW. However, there are two reasons why one may not want to do this. Firstly, the rule might
be needed to attain the second and the third properties mentioned above. In such a situation
excluding the rule(s) makes the input unacceptable. The second reason is that omitting the
rule may leave the speciﬁca;ion inoomplete.m The method used by the synthesis procedure
does not require the specifications to be éomplete, so the input (excluding the concerned rule)

| in this case is acceptable. But the procedure will not be able to derive an implementation that
is dependent on the property expressed by the rule.

10. We use the following notion of completeness: A specification is complete if all the properties that
are valid for the data type are provable from the specification.
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:2.3.2 The Class of Implementations Derived

| There are three factors that are responsible for limiting the class of implementations
derived by the procedure. The first is related to t]:l& subset of the proof theory of the input
specifications in' which the synthesis procedure operates. The procedure can only derive
those implementations whose correctness proof is within the operational part of the theory.
The operational part of the theory comprises the subset of the inductive theory that is decided
by the Musser/Knuth-Bendix method [38] of proving inductive properties.

The second limiting factor is the termination orde;'ing . The synthesis procedure
assumes that an effective ordering is implicitly available to be used in ensuring the
termination of the implementation. So, the procedure can only derive those implementations
whose termination can be proved using the ordering >. The more general11 the ordering -
the larger is the class of implemémations that can be derived.

The third reason is that the implementations derived may not involve arbitrary
helping functions. The synthesis procedure is not capable of automatically discoveﬁng a
helping function that might be necessary in an implementation. The user has to furnish a
specification of the helping function as a part of the Initial World if he wishes an

implementation in terms of the helping function.
2.3.3 Effects of Using the Procedure Outside its Scope

Using the procedure on a Speciﬁcation that does not satisfy the uniform termination
property may result in infinite looping. This is because, under such a circumstance, there can
be expressions for which a normal form does not exist. The effect of a violation of the unique
termination property depends on how serious the violation is. If the violation implies that the
system is inconsistent, then the procedure may derive an incorrect implementation. However,
if the system is consistent despite the violation, the effect will only be a reduction in the class
of implementations that the proceduré can derive. It Should be noted that all three of the

11. An ordering >, is considered to be more general [23] than >, if >, contains >,. That is, >-l
relates a larger set of expraslons than >-,.
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propertics required of the inputs can be checked automatically (assuming that a termination

ordering > is available).
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-3, Inputs to the Synthesis Procedure

This chapter has four sections. The first section defines data types and their
- specification. The second section describes the association specification. The third section
characterizes the restrictions on the inputs. The last section describes proving properties of

~ data types from the specifications.
" 3.1 Data Types and their Specification
3.1.1 Preliminary Concepts

A data type consists of a set (perhaps infinite) of values, called the value set, and a
finite set of operations, called the opefdtion set. The only way in which the values of a data
type can be constructed, manipulated or observed is through the operations of the data type.

The behavior of a data type is usually dependent on several other data types. These
data types appear as a part of the domain or as the range of the operations of the data type
under consideration. We call these other data types the defining types; the data type under
consideration is referred to as the type of interest (TOI). If the TOI is the one that is being
implemented, we refer to it as the implemented type. The type that is used to represent the
implemented type is called the representation type. The defining types of the representation
type are called the ancillary types. The union of the representation type and the ancillary
types is called the set of implementing types. For example, the defining types of the data type

‘Queue_lnt specified in Fig. 7 are Integer and Bool. .

A data type has two kinds of operations. A constructor is an operation that yields a
value of the TOI, and an observer is an operation that yields a value of a defining type. For
Queue_lInt, the operations Nullq, Enqueue, Dequeue, and Append are all constructors; the rest
of the operations are observers. ‘ .

We treat the exceptional behavior of a data type in a simplified fashion. We assume
that every data type has a unique exceptional value that is constructed by the operation Error
belonging to the type. The value Error( ) 1s treated like any other value of the type except
that it has the following unique property. Every operation is assumed to be strict with respect
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¢ to Error(): Every operation f is such that when applied to Error() from any of its domain

B

types it yields the exceptional value of the range type of f. We assume that every operation f

* is a total function: That is, f is defined on every element of its domain yielding either an

¢ exceptional value or a normal value from its range type.

The requirement on a data type that its values be manipulated only by its operations

translates to requiring that its values be constructed only by its constructors, possibly using

: the values of its defining types. Furthermore, in a computer the values can be constructed

. only by a finite sequence of operaﬁons, so the value set of a data type is the smallest set closed

- under finitely many applications of its constructors. This property of a data type is called the

minimality property [25]. _

A subset of constructors is said to be complete if every value of the TOI can be
constructed by some composition of the constructors in the subset (possibly using values of
the defining types). A basis for a data type is a complete set of constructors that is minimal,
i.e., no subset of a basis is complete. A data type may have more than one basis. { Nullq,
Enqueue } is a basis for Queue_Int since all queues can be generated using Nullg and
Enqueue, and no subset of it can do so.

An expression (or a term) is a sequence of operations and variables denoting an

_ application of the operations to the variables. The type of an expression is the range type of

the operation symbol that appears at the outermost level of the expression. A constant is an

expression that does not contain any variables. For example, Dequeue{Enqueue(q, €)) is an
expression of type Queue_Int; it is not a constant since it contains variables.

Dequeue(Enqueue(Nullg, 0)) is a constant of type Queue_Int.
3.1.2 Definition of a Data Type

The only way in which the values of a data type can be manipulated is through the
operations of the type. We define a data type so as to capture the behavior of the type as
viewed through the operations of the type. This behavior is called the observable behavior of
the data type. This method of definition was advocated by Guttag [16], and later developed
by Kapur [25]. According to this view, the values of a data type are distinguishable only by
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+ means of the operations of the type. :

: Heterogeneous algebras provide a natural means of modeling the behavior of a data

~ type. A heterogeneous algebra that can be used to model a data type is defined recursively in

~terms of the algebra that is used to mbdel each of its defining types. The basis of this

~ recursion is the type Bool which does not have any deﬁning types.

| A heterogeneous algebra for a data type D, consists of (i) a domain corresponding to

. D, which is called the pn"ncipal domain, (ii) a domain corresponding to every defining type of
D, (iii) a function corresponding to every operation of D, The elements of the principal
domain are used to denote the values of D. The minimality property of a data type requires
that every element of the domains of the algebra be constructible by a finite number of
applications of the constructors of the appropriate type. Any heterogeneous algebra that has
the appropriate signature, and that exhibits the desired observable behavior can be used to
model the data type. Hence, we define a data type as a set of heterogeneous algebras that
exhibit the same observable behavior. Every algebra in the set is said to be a model of the
data type. The elements of the principal domain are called the walues (of D) in that model.
Below we formally characterize the observable behavior of a heterogeneous algebra.

The observable behavior of a model is characterized in terms of the
distinguishability relation on the values of the model. Tihev distinguishability relation is
defined inductively in terms of the distinguishability of the vaiﬁés of thé defining types. That
is, we assume that the distinguishability relation is already defined the domain corresponding
to each of the defining types. (The basis of this induction is the data type Bool that does not
have any defining types; the only two values, True and False of Bool are assumed to be
distinguishable.) Two values of a model are distinguishable if and only if there is a sequence
of operations of D with an observer as the outermost operation, that produces distinguishable
results when applied separately on the values. If two values are not distinguishable, they are
observably equivalent. For instance, the Queue_Int values constructed by Enqueue(Nullg, 0)
and Apﬁend(Nuliq;' Enqueﬁe(N ullg, 0)) are observably equivalent; but the ones constructed by
Enqueue(Nullg, 0) and Dequeue(Enqueue(Nullg, 0)) are distinguishable. Observable

equivalence is an equivalence relation.




" Definition Two models are behaviorally equivalent if their quotient models induced by the

| observable equivalence relations are isomorphic to each other.
. Definition A data type is a set of behaviorally equivalent heterogeneous algebras.
3.1.3 Specification of a Data Type

The specification of a data type is a piece of text in a formal language. It describes a
set of properties concerning the operations of the data type. The aim of writing a
specification is to characterize through the specification the observable equivalence relation
that defines the data type.

It has been observed [17] that the construction of an algebraic specification for a
data type .is rendered easier and more reliable (in the sense that one has increased confidence
in the consistency and completeness of the specification) by using a basis of the data type as a
guide for constructing the specification. We assume that all our specifications afe constructed
in this fashion. The operations bélonging to the basis of a specification are called the
generators of the specification. An operation that is not in the basis is called a non-generator.
Note that all generators are constructors; non-generators may be constructors or observers.

Throughout the development when we refer to the basis or the generators of a data
type involved in the synthesis, we actually mean the basis or the generators associated with
the specification of the data type being used as an input to the synthesis procedure.
Definition of a couple of new terms pertaining to the generators are in order at this point. A
generator expression (generator constant) of a data type is an expression (constant) that
consists of only the generators of the type. Taking Queue_Int with the specification given in
Fig.7 as an example: Enqueue(Nullq,0) is a generator constant whereas,

Dequeue{Enqueue(Nullq, 0)) is not a génerator constant, because Dequeue is a non-generator.
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+ 3.1.3.1 The Specification Language

The specification language we use is a restricted version of an equational language
- that permits conditionals and auxiliary functions. The language is similar to the ones used in
several other works on data type specification and verification such as [14, 18,v 25]. A
specification has two parts: the Operations part describes the functionality of every operation
| of the TOI; we assume that the Opefations part identifies the basis used for the specification.
. The Axioms part consists of a set of axioms déscribing the properties of the operations. Every
axiom has the form of an equation e, = e,, where e, and e, are expressions of the same type.
~ The expressions may involve any of the operations of the TOI and the defining types. _ The
expressions may contain any of a finite number of auxiliary functions which are also specified
as part of the specification. The equations may involve conditional expressions on their right
hand side, ie., e, may contain the auxiliary function if_then_else which behaves like a
conditional expression.12 For the sake of clarity, we use the following more conventional
syntax for an expression involving if_then_else. The expression if_then_else(b, e, , ¢,,) is
written as if b thén e, elsee,,

We differ from the works cited above by assuming that every axiom in the
specification satisfies the following syntactic constraints. The constraints are not restrictive, in
the sense that they do not restrict the class of data types that can be specified. The first
constraint enables us to automatically partition the axiom set into two disjoint sets: One that
contains only the generator symbols; the other whose axioms may involve generators as well
as nongenerators. The partitioning of the axiom set facilitates the synthesis process by
reducing the inter-dependence of the synthesis of different operations. The seobnd constraint
permits the axioms to be treated as left to right rewrite rules (to be described later) without

having to interchange the two sides of the axioms.

12. if_then_else can be specified by the following two equations,
if_then_else : Bool X TXT->T

if_then_else(True, e,8)= e
if_then_else(False, e.e)=e,
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- Every axiom e, = e, of a specification satisfies the following conditions:
(1) Every data type specification explicitly identifies a basis, i.e., a set of generators.

(2) The set of variables in e, is a subset of the set of variables in e,

2

Figures 7 and 8 show specifications of a (FIFO) queue of integers (Queue_Int) and a circular

list of integers (Circ_List). The specifications meet the constraints specified above.
' 3.1.3.2 Semantics of a Specification

The specification of a data type characterizes the observable equivalence relation
that defines the cllata type. The semantics of a specification is a set Qf heterogeneous algebras
that are behaviorally equivalent based on the observable equivalence relation characterized
by the specification.

To determine the observable equivalence relation characterized by a ‘speciﬁcation,
the symbol =’ in the axioms of the specification should be read as "observably equivalent’.
For instance, the equation Sizc(Enqueue(q, ¢)) = Size(q) +1 in the specification of
Queue_Int asserts that the two expressions yield observably equivalent values for all
instantiations of the variables in them. The observable equivalence relation characterized by
the specification is the réﬂexi-ve, symmetric, transitive closure of =. Every algebra that
satisfies all the axioms in the specification is a model of the type being specified by

specification.
3.2 Association Specification

In addition to the specifications of the types involved in the synthesis, the synthesis
procedure expects the user to provide information about the representation scheme to be
used by the implementation that is to be derived. This section explains what exactly that
information is, and how it can be specified. We call the formal description of the information

the association specification of an implementation.
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- Fig. 7. Specification of Queue_Int
Queue_Int is Nullq, Enqueue, Front, Dequeue, Append, Size

Defining Types
Bool, Int

Operations

Nuliq :=> Queue_Int

" Enqueue : Queuc_Int X Int -> Queue_Int

Front  : Qucue_Int-> Int U { ERROR }
Dequeue : Queue_Int -> Queuc_Int U { ERROR }
Append : Queue_Int X Queue_Int -> Quene_Int

Size : Queue_Int -> Int
Basis

{ Nullq, Enqucue }

Axioms

(1) Front(Nullq) = ERROR
(2) Front(Enquecue(Nullg, e)) = e
(3) Front{Enquecuc{Enqueue(q, ¢1), €2)) = Front(Enqueue(q, c1))

(4) Dequeue(Nullq) = ERROR
(5) Dequene(Enqueuc(Nullg, €)) = Nullg
(6) Dequeue(Enqueue(Enqueunc(q, el), e2)) = Enqueuce(Dequeve{Enqueue(q, e1)), e2)

(10) Append(q, Nullg) = q
(11) Append(gl, Enqueue(q2, e2)) = Enqueue{Append(ql, q2), e2)

(12) Size(Nullg) = 0
(13) Size(Enqueuc(q, e)) = Size(q) + 1

Fig. 8. Specification of Circ_List
Circ_List is Create, Insert, Value, Remove, Rotate, Empty, Join

Defining Types
Integer, Boolean

Operations



i Create  :-> Circ_List A

Insert  : Circ_List X Integer ~> Circ_List
~ Value  :Circ_List -> Integer U { ERROR }
~Remove : Circ_List -> Circ_List U { ERROR }
" Rotate : Circ_List -> Circ_List .
Empty  : Circ_List -> Boolean
Join : Circ_list X Circ_list -> Circ_list

- Comment v
* Circ_List is a list of integers with a front end and a rear end. Create constructs an empty list; the front

. and the rear ends of an empty list are the same. Insert inserts an element into a list at the rear end.
Value returns the element at the rear end of a list. Remove removes the element at the rear end from a
list. Rotate moves every elcment in a list by one position towards the rear end in a cyclic fashion, ie.,
the element at the rear is moved to the front. Empty checks if a list is empty. Join joins two lists by
positioning the first argument in front of the second.

Basis
{Create, Insert}

Axioms

(1) Value(Create) = ERROR
(2) Value(Insert(c, i)) = i

{3) Remove(Create) = ERROR
(4) Remove(Insert(c, i)) = ¢

(5) Rotate(Create) = Create
(6) Rotate(Insert(Create, i)) = Insert{Create, i)
(7) Rotate(Insert(Insert(c, i1), i2))) = Insert(Rotate(Insert(c, i2)), i1)

(8) Empty(Create) = true
(9) Empty(Insert(c, i)) = false

(10) Join(c, Create) = ¢
(11) Join(c, Insert(d, i)) = Insert(Join(c, d), i)




-45 -

13.2.1 What is an Association Specification ?

An association specification characterizes two pieces of information about a

‘representation scheme:

" (1) The setAof values of the representation type that an implementation may use in
representing the values of the implemented type. We call this set the representt"ng
domain (%). % is characterized by means of a predicate on the representation type
called the invariant'(3): % is the set of values of the representation type for which 3

is True.

QA ﬁmcti(;n, called the abstraction function, from the values of the representation type
to the values of the implemented type. The function corresponds to the
representation function of a data type introduced by [21]. The abstraction function
maps a representation value to an abstract value that the former may represent in an
implementation. ‘An abstraction function may be a many-to-one function. An
abstraction does not have o0 be defined on every value of the representation type. -

However, it has to be defined on every value in the representing domain.

The information characterized by the association® specification is often the most
creative part of an implementation. The proof of correctness of an implementation also, in
general, needs to use information such as this. If the invariant part of an association
speciﬁcation is vacuous, then we assume that the invariant is true on all values of the
representation type. In such a case the representing domain includes all the values of the

representation type.
3.2.2 How Is It Expressed ?

We specify J and A using the same language that is used to specify the data types
involved. § is specified as a set of equations, like any other predicate on the value set of the
representation type. A is specified as a set of equations relating expressions of the
representation type to expressions of the implemented type. AWe require that A be specified
as a well-defined function with a nonempty domain. -
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, Fig. 9. Two Association Specifications for Queue_Int

9(a) Queue_Int in terms of Circ_List

~ A(Create) = Nullq
A(Insert(c, i)) = add_at_head(A(c), i)

add_at_hcad(Nullg) = Enqueue(Nullg, )
add_at_hcad(Enqueue(q, i), il) = Enqucuc(add_at_head(q, i1), i)

9(b) Queue_Int in terms of Array_Int X Int X Int

ALy, i, D} = Nullq
A Assign(y, e, j), i, j+ 1>) = if i = j+1 then Nullg
else Enquenc(A(<y, i, j>), e)

IKy, i, D) = True

3(<Assign(y, e, j), i, j+1>) = ifi = j+ 1 then True
clse if j4-1 < i then False
else 3Ky, i, D)

Fig. 9 gives a couple of example of an association specification, %(a) specifies an
implementation of Queue_Int in terms-of Circ_List. The empty queue is represented by the
empty list; a nonempty queue is represented by a list whose elements are identical to the ones
in the queue, but are arranged in the reverse order. The motivation for this representation

scheme is that reading and deletion of elements from a queue can be performed efficiently.

Consider the association specification given in Fig. 6. It specifies a representation
scheme for implementing Queue_Int as a triple , which can informally be described as
follows. (Array_Int is specified in the next chapter which also describes the association
specification shown below in more detail.) |

Fig. 9(b) specifies an implementation in which a queue is implemented as a triple
Array_Int X Integer X Integer. (Array_Int is specified in Fig. 10.) The representation scheme
can be informally described as follows. Nullg can be represented by any triple in which the
two integer components are equal. A nonempty queue can be represented by a triple <v, i, >,
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¢ Fig. 10. Specification of Array_Int .
” Array_Int is Nullarr, Assign, Read, Size, Empty

Defining Types
Integer, Boolean

_ Operations

© Nullarr  :-> Arraant
Assign  : Array_Int X Integer X Integer -> Array_Int
Read : Array_Int X Integer -> Integer U { ERROR }
Size . Array_Int -> Integer
- 'Empty  : Array_Int -> Boolean

- Comment
Array_Int is an array of integers. Every element in the array is indexed by an integer; the indices are
not necessarily contiguous. Nullarr creates an empty array. Assign assigns a given value (the second
argument) to the element at a given index (the third argument); if the array does not have an element
with the given index, then the valuc is added to the array. Read reads the clement at the given index.
Empty checks if an array is empty.

Basis
{Nullarr, Assign}

Axioms

(1) Assign(Assign(v, el, i1), €2, i2) = if il = i2 then Assign(y, e, i2)
else Assign(Assign(y, e2, i2), el, i)

(2) Read(Nullarr, i) = ERROR
(3) Read(Assign(v, ¢, j),i) = ifi = jthene
else Read(y, i)

(4) Empty(Nullarr) = true
(5) Empty(Assign(v, ¢, 1)) = false
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-where v is an array of arbitrary length containing the elements of the queue between ihe
index values i and j-1, in order. In qther words, i points to the front end of the queue, and j
~points to the next position available i:ym the queue for adding an element, |

Note that in this example, unlike the last one, not every value of the representation
type can legally represent a queue. A triple <v, i, > is a legal representation value if only if
i< j, and v is guaranteed to be defined on all index values between i and j-1. The invariant
in specifies this condition.

The abstraction furiction A is specified so that it is defined on all values for which 3
is True. The specification uses an auxiliary function Add_at_head. Add_at_head is a function
on Queue_Int that adds a given element at the front of a queue. A specification of

Add_at_head is given as a part of the association specification.
3.2.3 Further Discussion on Association Specification

It is important to note that every association specification need not have an
implementation corresponding to it. To understand this more clearly, let us look at the
relationship between an association specification and an implementation that uses a
representation scheme consistent with the one characterized by the association specification.

An implementation of a data type consists of
(i) a representation type being used as the representation for the implementation.

(ii) aprogram, i.e., a segment of code, for every operation of the type in a language; this

program is called the implementation of the corresponding operation.

Note that both a preliminary implémentation and a target implementation (as introduced in
the previous chapter) of a data type are implementations of the data type. A preliminary
implementation uses one language to express the program, while the target implementation
uses another. |

Formally, an implementation of a data type can be considered to be denoting a
heterogeneous algebra, called an implementation algebra, with
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(i) a principal domain that is a subset of the value set of the representation type,

(ii) a domain corresponding to every defining type of the implemented type - this

domain is identical to the value set of the corresponding defining type,

(iii) a function corresponding to the implementation of every operation of the
implemented type so that the function mimics the behavior of the implementing '

program,

An implementation of a type is correct if there exists a homomorphism, from the
implementation algebra to to the implemented type. The association specification should be
such that there exists an implementation algebra with computable functions that corresponds
to the representation scheme characterized by the association specification. More specifically,

the imple;nentation algebra should satisfy the following conditions:

(i) The principal domain of the algebra is the representing domain characterized by the

association specification.

(ii) There is a computable function in the algebra with the appropriate functionality
corresponding to every operation of the implemented type. .

(iii) The implemented data type is a homomorphic image of the implementation algebra

with respect to the abstraction function.

We do not intend to formally characterize the properties that the association specification
ought to satisfy so that it meets the above requirement. Rather, we trust the intuition of the
user, and assume that there exists an implementation that is consistent with the association
specification furnished by him. If the association specification provided as an input to the
synthesis procedure is such that there is no implementation corresponding to it, then the
synthesis procedure will, in general, never terminate. The synthesis method, however, does

not produce an incorrect implementation in such a case.
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3.3 Restrictions on the Inputs .

The method used by the synmesis procedure to derive an implementation is based

~ on treating every equation in the specifications as a rewrite rule. The procedure combines all

the input specifications, and treats the union as a set of rewrite rules called the Initial World.

The restrictions imposed on the inputs are intended to ensure that the Initial World satisfies a

_ useful property called the principle of definition.

The first subsection informally introduces the basic concepts about rewrite rules.

_ (See Appendix 1 for formal definitions) The second subsection defines principle of

definition, and develops a sufficient set of conditions for principle of definition (SCPD). The
input is expected to satisfy SCPD. The third subsection describes how to prove properties
from a specification that satisfies SCPD.

3.3.1 Rewrite Rules and Rewriting Systems

A rewrite rule is an ordered pair (left, right), written left — right, where left and
right are expressions containing variables so that the variables in right are among the
variables in left. A rule is used to reduce an expression by replacing any subexpression that is
matched by left with a corresponding version of right, i.e., with the same substitutions for
variables that were made in matching left. (More precise definitions are given in Appendix 1)

For example, consider the rule
Append(q,, Enqueue(q,, i,)) — Enqueue(Append(q,, ), i,). and the expression
a = Dequeue(Append(q3, Enqueue(Nullq, 0))). « is reducible using the rule because it has a
subexpression a' = Append(q,, Enqueue(Nullq, 0)) that has the form of the left hand side of
the rule: That is, Append(q, Enqueue(q,, i,))  becomes  identical to
Append(q3, Enqueue(Nullq, 0)) when the variables in the former are substituted according to
the substitution ¢ = [q, = q, q, — Nullg, i, — 0]. The corresponding instance of the right
hand side of the rule (obtained by substituting the variables in Enqueue(Append(ql, qz), iz)
using the subétitutioﬁ o) is B' = Enqueue(Append(q,, Nullg), 0).
B = Dequeue(Enqueue(Append(q,, Nullq), 0)) is the expression obtained by replacing a' by

B! in a. Then, we say that a reduces to B, written a — .
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A rewriting system is a set of rewrite rules. Let R be a rewriting system. An
expression «a is reducible by R if it is reducible by some rule in R. If a is not reducible by any
rule in R, then « is irreducible by R. -

If « — B by arule in R, then we say that « directly reduces to 8 using R, and once
again write it as « — B (using R). Let —* be the smallest relation on pairs of expressions
which is the reflexive, transitive closure of —. Thus, a —* g if and only if there exist
a—a , fori= 0,...‘,n-l and

expressions aga,,...,a , where n > 0, such that a« = a

l, e
a, = B. Weread a —* B as'a reduces to B.

0’

Suppose a —* 8, and B is irreducible. Then we say that a simplifiesto 8; B is called
a normal form of ‘a (in R).

Rewriting systems ar(e used to simplify expressions into their normal forms. Thus, a
useful property of a system is uniform termination: R has the uniform termination property if
no infinite sequence of reductions, a, — @, — ..., is possible in R. When R has the uniform
termination property every expression is guaranteed to have a normal form. Another useful
property of a rewriting system is unique termination: R has the unique termination property if
any two terminating sequences of reductions starting from the same expfession have identical
final expressions. When R has the unique termination property the normal form (if it exists)
of every expression is unique. A rewriting system that hés both the uniform termination
property and the unique termination property is said to be convergent. When R is convergent
every expi'ession a has exactly one normal form; we denote the unique normal form of a in a
convergent system by ad.

The rewriting systems corresponding to our input specifications are obtained by
simply replacing the symbol =’ by the symbol ’—’ in each of the equations in the
specifications. For example, Fig. 11 gives the rewriting system corresponding to the
specification of Queue_Int in Fig. 7. Hehceforth, we treat the input specifications as rewriting
systems obtained as explained above. When we refer to a specification, we actually mean the
rewriting system obtained from the specification.
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« Fig, 11. The Queue_Int Rewriting System

* (1) Front(Nullg) » ERROR
- (2) Front(Enqueue(Nullg, e)) — e
3) Front(Enqueue(Enqueuc(q, el), e2)) — Front(Enqueue(q, el))

{4) Dequeuc(Nullq) — ERROR
(5) Dequeue{Enqueuc(Nullg, ¢)) — Nullq
" (6) Dequene(Enquenc(Enqueuc(q, el), €2)) — Enqueue{Dequeue(Enqueue(q, e1)), ¢2)

(10) Append(q, Nullq) — q
(11) Append(ql, Enqueuc(q2, e2)) — Enqueuc(Append(ql, g2), e2)"

(12) Size(Nullq) — 0
(13) Size(Enqueue(q, €)) — Size(q) + 1

3.3.2 The Principle of Definition

The principle of definition is a property of a specification (or a group of
specifications). The property ensures the consistency of a speciﬁcatioh. The property
reinforces the two-tier characteristic inherent in our speciﬁcatidns: It ensures that the
generators are specified among themselves, and the nongenerators are specified as total
functions in terms of the generators. Finally, the property is useful in mechanically proving
properties of data types from their specifications. The property is similar to a property with

the same name defined in [22]. Our definition is more general than the one in [22].

Definition The Principle of Definition

A specification (or a group of specifications) S has the principle of definition property if every
constant t has exactly one normal form (in S), and the normal form is a generator constant of

the appropriate type.

There will be situations in our development when it is necessary to use a restricted
version of the principle of definition. The notion is restricted in the sense that the principle
of definition need hold good only for a subset of terms. The restricted property is useful in
stating that every nongenerator defined by a system be defined as a total function on a subset
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¢+ of the value set of a type. We give a definition the property below.

. Definition Principle of Definition With Respect T

Let T be a set of generator constants not necessarily including all possible constants. A
. system S satisfies the principle of definition with respect to T if the following condition holds:

Every constant of the form F(g,...,g ), where F is a nongenerator function symbol and .
. 8, - -» 8, are generator constants in T, has a unique normal form (in S) that is a generator

" constantin T.

The principle of definition has two parts to it It requires every constant to have a

unique normal form in S, and the normal form to be a generator constant, SCPD has to be

 formulated so as to ensure the two parts. The first part can be ensured by requiring S to be

convergent (i.e., to satisfy the uniform termination property and the unique termination

property). The second part is ensured by requiring S to be well-spanned. We define what it

means for S to be well-spanned below, and then show how the two properties ensure the
principle of definition of S. _ | '

Consider the rewriting system shown in Fig. 11. The system has three rules (1, 2,
and 3) in which the expression on the left hand side has Front as its outermost symbol. The
set, {Nullq, Enqueue(Nullq, e), Enqueue(Enqueune(q, 1), e2)}, of generator expressions that
appear as arguments to Front Ori the left hand side in the rules spans the entire set of
generator constants of Queue_Int; in other words, every generator constant of type
Queue_Int is an instance of one of the expressions in the above set. When a rewriting system
has enough rules corresponding to a nongenerator function f so that the set of generator
expressions appearing as arguments to f spans the set of all generator constants, we say that f
is well-spanned by the rewriting system. We say that a rewriting system is well-spanned if
every nongenerator function symbol of the system is well-spanned. We formalize this notion
below.

In géneml, since f can be multi-ary, the arguments to f are k-tuples of expressions of
appropriate types, where k is the arity of f. In the following formalization, we first define the

notion of a set of k-tuple of generator expressions being well-spanned. informally, a set of
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¢ k-tuples of generator expressions is well-spanned if it spans the set of all k-tuples of generator
- constants of appropriate types. The property of a function being well-spanned is defined in
: terms of the notion of a well-spaﬁned set of k-tuple of generator expressions. In the
! following, we assume that the k-tuéles are homogeneous with regard to the types of their

. components. The extension to the heterogeneous case is simple.

" Definition A set A = {A,--os Ap} of k-tuples of generator expressions A, = <e,,...,€,> is
well-spanned if the following condition holds: For every k-tuple, (tl, .es ,tk>, of generator
constants there exist n, 1 < n < p, and a substitution o, such that for every j, 1 <j <k, we

have tj = "(eni)' .

Definition A nongenerator function f is well-spanned by a rewriting system R if thereisinR a

set of rewrite rules whose left hand sides are of the form f(e .»€,), 1 <i<p, and the set

i
{<e,s..., 8,21 <i<p}iscomplete. ’

Definition A rewriting system R is well-spanned if every nongenerator function symbol in R is

well-spanned.

Definition A specification. S satisfies the sizﬁicient condition for the princi'ple of deﬁnitioh
(SCPD)if S satisfies the following conditions:

() Sisconvergent

(ii) Sis well-spanned.

Lemma If S satisfies SCPD then S satisfies the principle of definition.

Proof Condition (i) guarantees that evei'y constant has exactly one normal form. Condition
(ii) implies that every constant of the form f(g,,... ,gn), where f is a nongenerator and
g,---»8, are generator constants is reducible. Since S satisfies uniform termination
property, this means that no constant with a nongenerator can be a normal form. Hence the
normal form of every constant is a generator constant.

QED
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i+ 3.3.3 Checking the Principle of Definition

1

‘ The main reason for formulating SCPD is so that we might be able to develop
‘. effective methods of checking if a jspeciﬁcation satisfies the principle of definition. This
 section sheds some light on this topici
To check if a specification is well-spanned, we have to check if thé set of expressions
(or k-tuples of expressions) that appeiar as arguments to each of the implementing functions is
complete. Huet in [22] has demonstrated that it is possible to come up with an effective set of
conditions that is sufficient to check if a set of expressions is ‘oomplete. ’
Checking the convergence of a set of rules, which forms the remaining condition of
SCPD, has been investigated in [28, 22]. The result in the cited works, which is due to Knuth
and Bendix, provides an algorithm (henceforth referred to as the KB-algorithm) to check the
convergence of a finite set of rewrite rules that satisfies the uniform termination property.
Thus, if we can independently ensure the uniform termination property of a specification,
| then we can use the KB-algorithm to show the unique termination property of the

specification.
3.3.3.1 Checking Unique Termination

Let R be a finite set of rewrite rules that has the uniform termination property. The
following theorem is the basis for the KB-algorithm for checking the unique termination
property. The theorem depends upon the concept of unification of expressions. We will first
define this concept.

Two expressions a and g with disjoint variable sets are said to be unifiable if there
exists a substitution @ such that §(a) = 0([3).13 The most general unifier of two unifiable
expressions a and B is the unifier 8, such that for any unifier ¢ of a and B there exists a
substitution p such that o is the composition of p and 8. The wunification algorithm of

Robinson [44] can be used to determine a most general unifier of two given expressions or

13. The symbol = stands for two expressions being identically equal.
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{ decide that they are not unifiable, In the discussion to follow we assume that the candidates
. for unification have variables renamed if necessary to obtain disjoint variable sets.

Let y, — 8, and y, — §, be two rules of R so that v, is unifiable:with a nonvariable

: subexpression of y,. More precisely, there exists an occurrence u in v, such thata = y,/uis

: not a variable, and a is unifiable with v, Let 6 be the most general unifier of « and 7y

; Then, we say that 8(y,) isa superposftion of y, on v,. (If 8 is either a superposition of y, on v,

or a superposition of y, on Ty then we say that g is a superposition between v, and 72.) To

" each superposition there correspohds a critica.l pair<a,, a,> of expressions defined as follows.

- a, and a, are the expressions obtained by applying to 8(y,) the above two rules, respectively.

More precisely,
a, = 0y, )u +— 8(8)]
a, = 0(82)

For example, consider the following rules
Append(gl, Enqueue(q2, i2)) — Enqueue(Append(ql, q2), i2)

Append(Append(q3, q4), 45)) — Append(g3, Append(q4, q5))
Y, is unifiable with the entire expression v, by the most general unifier 8 = [Append(q3, q4)

for g1, Enqueue(q2, i2) for g5}, yielding the superposition « and the critical pair <a,, a,>
shown below: '

a = Append(Append(q3, 44), Enqueue(q2, i2))
“a; = Enqueue(Append(Append(q3, 44), 42), i2)

a, = Append(q3, Append(q4, Enqueue(q2, i2)))

Theorem 1 The KB-Theorem

If R has the finite termination property, then it has the unique termination property if and
only if every critical pair {a,, a,> of R has the property that «, and a, have identical normal

form,
Proof For a proof see [28, 22].

If a finite rewriting system has nc supefpositions, and therefore, no critical pairs, it is said to
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s be superposition-free. Thus, we triviaily have:

 Corollary If a finite rewriting system has the uniform termination property, and is

. superposition-free, then it has the unique termination property.

"For example, the rewriting system -in Fig. 11 corresponding to Queue_Int is
superposition-free. In the next subsection we show that it satisfies the uniform termination

property. So the rewriting system is convergent. '
' 3.3.3.2 Checking Finite Termination

A general technique for checking termination of a rewriting system R is to
demonstrate that it is possible to define a well-founded partial ordering > on the set of all
constants (that can be constructed using the function symbols in R) so that t, — t, implies
t >t A partial ordering is well-founded if there are no inﬁr{ite descending sequences such
as t, > t, ... for any constants. Hence, there cannot be any infinite sequence of rewrites
using R also. Appendix II goes into this topic in greater detail. It describes a theorem that
provides a useful guideline to define a suitable partial ordéring to éheck the uniform
termination property of a reWn'ting system. ' o

We assume that a well-founded partial ordering > on expressions is available as an
input to the synthesis procedure. The ordering > is used by the synthesis procedure not only
to ensure the uniform termination property of inputs, but also to ensure that the output
synthesized terminates. The orderings used in our examples belong to a class of orderings,
called the lexicographic recursive path ordering [26, 10]. A formal definition of the ordering is

given in Appendix II. |

3.4 Proving Properties of a Data Type

The properties of a data type we are interested in are always expressed as equations
of the form e, =e, where e, and e, are expressions, and = denotes the observable

equivalence  relation (see  sec.3.1.2). For instance, the  property
Append(Append(ql, 9,): 4;) = Append(q,, Append(q,, q,)) asserts that for every instantiation of
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-the variables by values the expressions on the two sides of the equation yield observably
- equivalent values. Our objective is to prove a property as a theorem from a specification of
. the type. This is crucial to our work because synthesis of implementations involves searching
- for appropriate theorems of the input specifications. In the following, we describe how to

mechanically prove theorems from a specification that satisfies the principle of definition.

Definition A Theorem of a Specification
4 Let S be a specification (or a group of specifications). Let o be a substitution that maps
variables to generator constants. An equation e, =e, is a theorem of S if for every o the

constants o(e,) and o(e,) have identical normal forms.

Note that the above definition of a theorem gurantees that if e, = e, is a theorem of S thene,
and e, always yield observably equivalent values. This is because the principle of definition
ensures that for every instantiation of the variables (in e, and e,) by generator constants the
two expressions simplify to the samé_ generator constant. This provides a basis for developing
a method for mechanically proving properties of data types from specifications.

Note that the reverse of the above implication is not true. This is because we
require that the input specifications be only consistent (via the principle of definition), but
not complete [25]. A .speciﬁcation S of a data type D is complete if every equation e, = e,
such that e, and e, are observably equivalent for D is a theorem of S. The synthésis
procedure would be more productive if the input specifications are complete. This is because
it is possible to prove more properties from a complete specification, and hence the synthesis
procedure might be able to derive a larger class of implementations.

There are several ways in which the above result can be used to deduce that an
equation is a theorem of a specification. The methods differ in the reasoning or logic used for
the deduction. In our development we deal with two kinds of logic: the equational logic, and

the inductive logic.

Equational Logic

In the equational logic e, = e, is deduced to be a theorem of S by checking if e, and
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+ e, have the same normal form in S.- Note that if e 4 = e,{, then it is obvious that e, and e,
have identical normal forms for every substitution of the variables by generator constants. (e+
denotes the normal form of e.) An equation deduced to be a theorem of S in this fashion is
said to be a theorem in the equational theory of S. When S satisfies the principle of
~ definition every expression is guaranteed to have a unique normal form. Therefore, it is
possible to develop a general procedure to decide the entire equational tileory of S. As an
~ illustration, we give a proof ' of
Append(Append(q,, q,), Nullg) = Append(ql, Append(qz, Nullg)) using the specification of
- Queue_Int shown in Fig. 11. '

Equation to be proved: Append(Append(q,, q,), Nullq) = Append(q,, Append(q,, Nullg))

Normal form of left hand side: ’ Normal form of right hand side:
Append(Append(q,, q,), Nullg) Append(q,, Append(q,, Nullq))
Rule (10) l , l Rule(10)
Append(q,, q,) . Append(q,, q,)
Inductive Logic

A property @ is deduced to be a theorem in the inductive logic by using, besides the
reduces relation —*, some form of mathematical induction. A préperty that is deduced
using the inductive logic is called a theorem in the inductive logic. The set of all properties
that can be deduced from a specification using the inductive logic is called the inductive
theory of the specification. '

The induction used is carried over the set of all generator constants using one or
more of the variables in @ as parameters for the induction. The induction is based on any
well-founded partial ordering on the set of generator constants. Suppose G is the set of all
generator constants, and > is a well-founded partial ordering on G. Suppose we are using
the variable v of ®(v) as the parameter of induction. Then the induction rule may be stated as

follows:

Induction rule
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“ If for every t € G we can show that, for every t' € G such that t >-‘t', <I>[v/’t'] => §[v/t], then

" @(v) is theorem.

To apply the induction rulq_, we have to define a partial ordering > on G. Since G |
~can, in general, be infinite the deﬁgiition of > is usually recursive. The step of showing
<I>[v/t'] = ®[v/t], for every t >~ t', is fragmented into éeveral cases. Each of these cases is
- established using the relation —* as was done in the equational logic. Fig.12 gives an
example of an inductive proof. It  proves the property
Append(Append(q,, qz), q3) = Append(ql, Append(q,, q3)) from the specification of Queue_Int
given in Fig.ll. The proof uses an ordering generated by the following relation on the
generator expressions of Queue_Int: Enqueue(q, i)~ Nullq, and Enqueue(g,i)>> q. The
proof use$ the variable q, asthe paraméter of induction. |

It is not possible to develop a general procedure to decide the entire inductive

Fig. 12. Proof by Inductive Logic

Theorem to be proved: Append(Append(q,, q,), q,) = Append(q,, Appénd(qz, q,))
Basis: ¢, — Nullq

To prove: Append(Append(ql, qz), Nullg) = Append(ql, Appcnd(qz, Nullg))
Proof is demonstrated above.

Induction: g, — Enqueue(q, si)

Hypothesis: Append(Append(q,, 4,), 9) — Append(q,, Append{q,, ¢))
To prove: Append(Append(q,, ,), Enqueue(q, i)) = Append(q,, Append(q,, Enqueue(y, i)))

Normal form of left hand side: Normal form of right hand side:
Append(Append(q,, q,), Enqueve(q, i)) - Append(q,, Append(q,, Enqueue(q, i)))
Rule(11) l \ Rule(11)
Enqueue(Append(Append(q;, 4,), @), i) Append(q,, Enqueue(Append(q,, 9), 1))
Hyp. l : ‘ ' Rule(11)

Enqueue(Append(q,, Append(g,, @), i) ' Enqueue(Append(q,, Append(q,, 9)), i)
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t theory of S. This is because the inductive hypotheses necessary for the proof cannot be

generated automatically in all situations. However, when S satisfies the principle of
i definition a significant number of interesting properties in the inductive theory can be proved

automatically. The automatic method, first developed by Musser [38, 22], is based on the
- Knuth-Bendix algorithm (see sec 3.3.3.1) for checking convergence of a rewriting system. We
* use this method for synthesizing implementations whose proofs of correctness need
- induction. We will explain the method -in chapter4 while describing synthesis in the

- inductive theory.
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4, Stage 1: The Preliminary Implementation

_ This chapter discusses the @reliminary implementation of a data type, and develops
, a method to derive it from the inputs to the synthesis procedure. A distinguishing
 characteristic of the method outlined is that it is based on a method for proving the
. correctness of a preliminary implementation. The chapter is organized into the following
. sections. The first section defines precisely what constitutes a preliminary implementation.
The second section gives a mathematical formulation of the problem involved in the
derivation of a preliminary implementation for a data type from the given inputs. For
convenience, the problem is formulated, and solved here for a situation where the
representing domain is identical to the representation value set. In the next chapter, we
extend the derivation problem to the more general situation where the representing domain is
a subset of the representation value set. The last section descrjbes a procedure to derive the

preliminary implementation from the input specifications.
4.1 A Preliminary Implementation

A preliminary implementation of a data type _is an implementation for the
implemented type in a rewrite rule language. The preliminary implementation uses a
representation scheme that is consistent with the one characterized by the association
specification supplied by the user. It consists of two parts; The Representation part, and the
Definitions part.

The Representation part gives the representation type used for the implementation
of the implemented type. We call the values of the representation type the representation
values, and the set of representation values the representation value set. Only a subset of the
representation value set need be used td represent the values of the implemented type. This
subset is called the representing domain, and is characterized by the association specification.

The Definitions part contains definitions for a set of new functions on the
representation values. We call the new functions the implementing functions. There is an
implementing function corresponding to every operation of the implemented type; the
former implements the latter. The definition of an implementing function that implements
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+ an operation is called the preliminary implementation of that operation. -An implementing
function is not necessarily a total function on the representation value set. However, it has to

- be defined on every value of the representing domain. We use the following convention
throughout the development to help associate an implementing function with the operation
of the implemented type it implements: The identifier that denotes an implementing function

- is the capitalized version of the identifier that denotes the corresponding ‘abstract operation.
For instance, NULLQ is the implementing function of the operation Nullq,

The Definitions part consists of a set of rewrite rules of the form e, —e, The
rewrite rules in the Definitions part defining an implementing function F are the ones that
have F as the outermost symbol on their left hand side. e, and e, are expressions that may
contain the implementing functions, the operations of the implementing types, and

if_thcn_eise with the following constraints:

(1) The vonly operations of the representation type that may appear in e, and e, are the
generators of the type. .‘

2) e, and e, may not contain any auxiliary (or helpihg) functions other than
if_then_else. .

There are two reasons for constraining the preliminary implementation. Firstly, we
would like to constrain the structure of the preliminary implementation so that the synthesis
procedure has to perform less work in searching for the desired solution. Secondly, we want
to keep the language as simple as possible so that the principle behind the synthesis method is
brought out more clearly in our description.

The first constraint is imposed to keep the preliminary implementation derivation
problem simple. This constraint permits us to ignore several axioms in the specifications of
the implementing types during verification as well as synthesis of a preliminary
implementation. In particular, the only axioms in the specification of the representation type
that we need to consider are the ones that involve only the generators of the type involved in
the specification. This is because only the generators of the representation type may appear
in the preliminary implementation. To this extent this constraint simplifies the synthesis
method. An implementation that also uses the rest of the operatiohs is derived in the next




v stage of the synthesis as a transformation of the preliminary implementation.
The second constraint, in general, restricts the logical power, ie., the ability to
"define any computable function on the representation type, of: the preliminary
implementation language because the constraint prohibits the use of any helping (or -
auxiliary) functions (except if_then_else) in a preliminary implementation. Our synthesis
~ method cannot automatically discover the helping functions that might be necessary in the
preliminary implementation. We use two approaches to get around this problem; both the
approaches amount to relaxing the second oé)r:straint They are explained here briefly, but

are illustrated more clearly when we later consider examples involving them.

The first approach consists of seeking help from the user. We require the user to
furnish a specification of the helping function needed in the preliminary implementation.
We then relax the second constraint to permit the use of the helping function in the
preliminary implementation.

The second approach consists of introducing a new construct into the preliminary
implementation language. The construct, which is used primarily in conjunction with a tuple
type, helps eliminate the need for helping functions while defining several functions on tuple
types. The motivation for paying special attention to tuple type is because a tuple type is a
commonly used representation type. The construct provides a way of accessing the
components of a tuple being returned by an expression of tuple type without explicitly using
the 6perations that select the components of a ﬁxple. This construct may be used in
expressions that appear on the right hand side of an equation of a preliminary
implementation. The construct is expressed by means of an expression with. the following
syntax:

e, where<v,...,v >ise,
In the above, Viseeeo ¥, aI€ variables; ey
that may contain the variables Vipeoos Voo The construct binds, in order, Vipeoos ¥ 10 the

is an expression of n-tuple type; e, is an expression

components returned by e,,. The scope of the binding is limited to the expression e,. For
example, consider the expression
<Assign(vl, e, j1), i1, j1 + 1> where <v1, il, j1> is DEQUEUE(Y, i, D). Assuming

DEQUEUE is a function from Triple to Triple, the variables T and j, in the above
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expression are bound to the components of the triple returned by DEQUEUE(Ky, i, ).
4.2 The Preliminary Imlementation Derivation Problem

Our intention is to study the problem of synthesis within the data type verification
- framework. So we formulate the problem of deriving a preliminary implementation as
roughly the inverse of the problem of proving the correctness of the preliminary
~ implementation, .

First, we develop 'the criterion of correctness of a preliminary implementation.
Then, we formulate the problem of verifying if a preliminary implementation meets the
* correctness critel"ion. We define the derivation problem after that For convenience, the
verification problem and the derivation problem are formulated here for a situation in which
the representing domain is identical to the representation value set. This situation
corresponds to the case where the abstraction function is total, and the invariant part of the
association specification is vacuous. We discuss the derivation problem for a situation where
the representing domain is a subset of the representation value later, It should be noted that

the formulation of the correctness criterion given below applies to both situations.
4.2.1 The Criterion of Correctness

Informally, for a preliminary implementation to be correct, the implementing
functions it defines should collectively exhibit a behavior that is consistent with the
observable behavior characterized by the specification of the implemented type. Also, the
preliminary implementation should use a representation scheme that meets the requirements
of the association specification given as input. Let us formalize this intuitive notion.

The formal object that a preliminary iinp_lementation is denoting can be considered
to be a heterogeneous algebra, called the implementation algebra, with the following

components:

(i) A principal domain that is a subset of the representation value set. The principal
domain is defined as the set of all values of the representation type that are
"reachable” through the implementing functions corresponding to the constructors
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of the implemented type. In other wordé, the 'principal domain is the set of
representation values generated by the closure under functional composition of the

implementing functions corresponding to the constructors of the implemented type.

(i) A domain corresponding fo every defining type of the implemented type. We

assume that this domain is'identical to the value set of the corresponding defining
type.

(iii) a function corresponding to every implementing function defined by the preliminary

implementation,

A preliminary implementation is correct if the implementation algebra it denotes is
a model of the implemented data type in a manner constrained by the association
speciﬁcation. This meah,s that there exists a homomorphism from the implementation
algebra to the the implemented type that behaves as an identity function on the values of the
defining types, and exactly like the abstraction function characterized by the association
specification on the values of the repfesentation type. _ v

Let % denote the representing domain, and A denote the abstraction function

specified by the association specification. Let 36 be a function defined as below.

D: Implemented Type, %: Representing Domain, D,.... ,Dn:The defining types of D
%:%UD,U...uD >DUDU...UD,

A% >D '

() = A ifrex

r otherwise

A preliminary implementation of a data type is correct with respect to the association

specification A , if the following two conditions hold.
(1) Totality Property:Every implementing function is total over %.

(2) Homomorphism Property. The operation f of the implemented type and the
implementing function F are related by the property:
(V 1 € BYI(ECr T o)) = Feo 26(0) )]
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The correctness criterion formulated above is different from the formulation found
in the literature on data type verification [25, 14, 18] which is not formulated with respect to a
given homomorphism 6. Accoﬁding to the conventional formulation a preliminary
implementation is correct if there exists a function 36 from the representation value set to the
- value set of the implemented type so that: For all r€the principal domain,
¢ J6(Fens 1 400)) = (..., 36(1) ,...). Thus, according to this criterion the implementing functions
| are not required to be total with respect to %. Note that the principal domain can be a subset
" of %. What distinguishes our formulation is -the requirement that F be total over %, and also
- satisfy the homomorphism property over %.

Our formulation is more useful in the context of synthesis. It enables us to
determine a principal domain of the implementation algebra (which, in turn, determines the
set of representation values on which every implementing function should be defined)
directly from the association specification. This reduces the interdependence of the synthesis
of preliminary implementation for the various operations of the type. This is because in other
formulations the principal domain has to be determined by computing the closure under
composition of the implementing functions of the constructors. Thus the domain of the
implementing function of each of the constructors is, in general, dependent on the behavior
of the implementing function of every other constructor.

The tdta]ity requirement is also more interesting in the context of synthesis. In the .
synthesis process the association specification initiatés the derivation of an implementation by
deﬁrﬁng the representation scheme to be used. The association specification is expected to
express the intention of the user regarding the representation scheme he wants the
implementation (to be derived) to use. So it is logical to assume that the user wants the entire
representing domain characterized by the association specification to be used for representing

the values of the implemented type.
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:i4.2.2 The Derivation Problem

, The goal of the derivation Qroblem is to derive a preliminary img)lemcntation from
 the given inputs so that the prelimingry implementation meets the correctness criterion. The
inputs consist of the speciﬁcationﬁ_ of the implemented type, the specification of the
| implementing types, and the homom;orphism specification. The homomorphism specification
: is a specification of the homomorphism J6 that the preliminary implementation ought to
: .4 obey. This specification is easily derived from the specification of me abstraction function A
| (given as a part of the association specification). The Homomofpfﬁsm Specification oontains
two kinds of rewrite rules obtained as described below. The first set of rules specifies that 36
behaves exactly like the abstraction function on the representation values. The second set of
rules specifies that 36 behaves as an identity function on the values of all the ancillary types.
| More precisely,
Q) if A(el) = e, belongs to the abstraction function speciﬁcatioo
then J6(e ) = e, belongs to Homomorphism Specification
(2) if ¢ is a generator of an ancillary type
then Sc(a(vl, e V)= o(:lG(vl), -+, 35(v ) belongs to Homomorphism Specification

Let us call the combination of all the input specifications the Input World (IW). The
restrictions on the inputs (see sec 2.3.1 of the previous chapter) ensure that the Input World
satisfies the principle of definition. The strategy behind the method used in deriving the
preliminary implementation is based on the principle of definition property. -

Suppose IW is supplemented with a set of rewrite rules, called the J6-rules, that
express the homomorphism property a preliminary implementation is expected to satisfy: For |
every pair of an operation f of the implemented type, and its implementing function F there
exists an J6-rule of the form :}B(F(vl;, ceey \in)) — l(:ls(vl),, cess36(v)). Let us call the
supplemented system the Perturbed World (PW). Let us suppose that the addition of the
J6-rules does not destroy the uniform termination property of IW. The reason we refer to the
supplemented system as the Perturbed World is because the addition of the %-rules destroys
the principle of definition property. PW does not satisfy the principle of definition because
the implementing functions that are newly introduced into the system are as yet undefined.
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¥ A constant involving the implementing function symbols does not simplify to a generator
constant. |
i Recall that the principle of definition is a formal expression of the requirement that
every nongenerator function in a system be completely defined as a total function. If we can
generate a set of rewrite rules that can restore the principle of definition property of PW, then
the new set of rules can be considered as a complete definition for the implementing
- functions, Thus, preliminary implementation derivation is a problem of restoring the
principle of definition of a system that violates it. |
. More precisely, the problem involved in synthesizing a preliminary implementation
consists of deriving from the Perturbed World a set of rewrite rules, PI (the acronym stands

for preliminary implementation), so that
(1) PI U IW satisfies the principle of definition, as well as
(2) PI U PW satisfies the principle of definition.

In the following, we give a formal p'roof that the above conditions guarantee the correctness

of the preliminary implementation.

The Correctness Theorem

Let PI be a set of rewrite rules derived so that the above two conditions hold. Then, PI

satisfies the criterion of correctness of a preliminary implementation.

Proof The first condition asserts that PI U IW satisfies the principle of .deﬁnition. This
implies that every nongenerator function in the system, which includes every implementing
function, is defined as a total function. Hence, PI satisfies the Totality Property.

To show that PI satisfies the Homomorphism Property, we have to show that every
eq_uation of the form 36(F(v,., ..., vn)) = i36(v)),, . . ., 36(v ) is a theorem of PI U IW. The
argument to show that the second condition implies this is based on the following interesting
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~ result about any system that satisfies the principle of deﬁnition. The result;! which is proved
“as Theorem 6 in Appendix III, enunciates a sufficient condition for an equation to be a
“ theorem of a system that satisfies the principle of definition. Suppose S is a system that
is an equation so that e, and e, have at least

is a theorem of Sif SU {el — ez}

* satisfies the principle of definition, and e, = e,

one nongenerator function symbol in them. Then, e, =e,
satisfies the principle of definition. The result is proved in the Lemma to follow.

Because of the second condition PI U PW satisfies the principle of definition. Since
PW is IW U J6-rules, this impiies that (PILUIW)U J6-rules satisfies the principle of
definition. Now, by the first condition PI U IW satisfies the principle of definition. By
applying the above result, each of the J6-rules (when treated as equations) is a theorem of
PIUIW. Note that the result can be applied because the 36-rules have nongenerator
function symbols in them, '

QED.
4.3 Derivation of a Preliminary Implementation

In the previous section the-_ problem of deriving a preliminary implementation was
formulated as deriving a set of rewrite rules, PI, so as to réstore the principle of definition
property to the Perturbed World PW. This section develops a procedure to derive a
preliminary implementation. The procedure makes. two assumptions about its input: (1) The
Initial World (IW) satisfies SCPD, a sufficient condition for the principle of definition, and
(2) a termination ordering > on expressions is available to the procedure to ensure the
uniform termination property of rewriting systems. ‘

The obvious strategy for the procedure is to derive the rules of the preliminary
implementation so that PI U IW and PI U PW satisfy SCPD. But this limits the class of

14. [22, 38] contain results similar to the one proved in this lemma. The result here is different
because we have a different set of assumptions. The principle of definition property used in [22] is
more constrained than the one we have. The result in [38] assumes that S satisfies a completeness
property called fully specifiedness which is not assumed here, - This is the reason for the requirement
in the lemma that e, and e, should have at least one nongenerator function symbol in it.
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- implementations that can be derived by the procedure. So, we develop another set of
condiﬁons, called the synthesis conditions, that is weaker than SCPD. PI is generated so that
it satisfies the synthesis conditions.. It can be shown that when PI satisfies the synthesis
; conditions, PI U IW and PI U PW satisfy the principle of definition. We first formulate the
- synthesis conditions, and then develop a procedure to derive a set of rules that satisfies the

synthesis conditions.
- 4.3.1 The Synthesis Conditions

The synthesis conditions for a set of rewrite rules PI are the following:
(1) Totality Condition:

(a) PI is well-spanned (for every implementing function) with every rule in it
being of the form F(gl,...,gn)-» t.15 where F is an implementing

function symbol, and g, . . . , g are generator expressions.

(b) Pl satisfies the uniform termination property.

(2) Uniqueness Condition: PI has the unique termination property.

(3) Homomorphism . Condition: For every mnle F(g,,..., g)—t in PL
%(F(g,...,8)) = %(t) isathcorem of PW.

The following Synthesis Theorem shows that when PI satisfies the synthesis conditions,
PILUIW and Pl U PW satisfy the principle of definition, and hence, by the Correctness
Theorem, PI is correct. An informal motivation for the conditions can be given as follows.
The Totality Condition ensures that every implementing function is defined on all the values
of the representation type, and it terminates on each of them. The Uniqueness Condition
ensures that every implementing function is well-defined, in the sense that it yields a unique

value for every argument value. The Homomorphism Condition ensures that the preliminary

15. Note that the syntactic constraint on a preliminary implementation requires that t may contain
neither the function symbol 36, nor any of the operations of the implemented type.
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: implementation satisfies the Homomorphism Property.

_ The Synthesis Theorem

If PI satisfies the synthesis conditions, then PI U IW and PI U PW satisfy the principle of

definition, and hence Pl is a correct preliminary implementation,

Proof It is easy to see that PI U IW satisfies the principle of definition because the Totality

" Condition and the Uniqueness Condition imply that preliminary implementation satisfies
SCPD, an‘d IW satisfies SCPD by our assumption about the inputs. ‘

Let NW denote P1 U PW, for convenience. We apply Theorem 8 (Appendix III) to

show that NW satisfies the principle of definition. According to that theorem, a rewriting

system S satisfies the principle of definition if
(a) Sis well-spanned,
(b) S has the uniform terminafion property

(c) Every critical pair <a,, a,> of S is such that «, = a, is a theorem of S.

2

We show that NW satisfies all three premises of the above theorem. NW is well-spanned.
This is because TW is well-spanned by our assumption, and PI is well-spanned by Totality
Condition (a). The only nongenerator function symbols of NW are the ones in IW and PL
By Totality Condition (b) PI has the uniform termination property, so NW has the uniform
termination property also. The following lemma shows that NW satisfies premise (c).

Q.E.D.

Lemma Every critical pair <e,, e,> of NW is such that e, = e,isa theorem of NW,

Proof Note that PW is convergent. This is because IW is convergent by assumption, and the
J6-rules added to IW do not give rise to any new critical pairs.

NW is constructed from PW by adding PI to the former. Therefore, any new
critical pairs of NW would be generated as a result of a superposition of the rules of PI on the
rules of NW. Because of Totality Condition (a) on the form of the rules in PI the only rules
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s+ on which the rules of PI can have a superposition are the following:

t (D) The rules of PI themselves, or

Ty
)

(1D the rules of the implementihg types,
(I11) the J6-rules.

Every critical pair <e,, e'2> determined by a superposition on the rules in

| category (1), and (II) is such that el is identical to e,+. This is because, by the Uniqueness

" Condition, PI satisfies the unique termination property. Hence, e, =e

, is atheorem of NW.

Every critical pair determined by a superposition of the rules in category (1II) is of
the form (:}(;(F(gl, ceny gn)), %(t)>, where F(g,...,g)—t is a rule in PI. By the
Homomorphism Condition, 36(F(g;, ...,8,)) = J(t) is a theorem of PW, and hence a
theorem of NW. |

Q.ED.
4.3.2 Derivation of the Rules of PI

The rewrite rules of PI are derived from the Perturbed World (PW). So the initial
task of the derivation procedure is to construct PW. PW is a rewriting system that includes
the Initial World_(IW)' and the J6-rules. TW is constructed by combining the specification of
the implemented type, the specifications of the implementing types, and the Hoinomorphism
Specification. Without any loss of generality, we assume that there is no conflict among the
names of the various function symbols in the specifications. PW is formed by then adding a

rule of the form 36(F(v,,,...,v)) - f(36(v,),, . . . , 36(v ) for every implementing function F

to be defined. We assume that the termination ordering >~ being used by the synthesis

procedure is such that 36(F(v,,,...,v)) >— l(vﬁ(vl),, ceny JB(vn)), for every implementing
function. This ensures that PW retains the uniform termination property as desired by the
derivation problem. Note that this is not a restriction because the implementing function
symbols (in the J6-rules) are fresh symbols being introduced into IW. Hence, an appropriate

- ordering can always be found.

Although PW is defined to include the specification of every implementing type |
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. completely, it is not necessary to d@ so. Since the derivation method does not require the
- specifications to be complete, one: may include only parts of the speciﬁcationé of the
: implementing types. The advantage of doing so is that the fewer rules in PW the more
: efficient it is to derive the preliminary implementation. However, by not including certain
 rewrite rules one might be excluding certain implementations.

' Let us illustrate the construction of PW on an example. We consider the derivation
of an implementation for Queue_Int with Circ_List as the representation type using the
association specification given in Fig. 9 in the previous chapter, Fig. 13 gives the rules of PW
for the example under consideration. The rules of the types Integer and Bool, which are also

among the implementing types are omitted from the figure for convenience. The rules of the

Fig. 13. The Perturbed World

(1) Front(Nullq) - ERROR
_ (2) Front{(Enqueuc(Nullg, ¢)) — e
(3) Front(Enqueuc{Enqueue(q, el), €2)) — Front(Enqueune(q, e1))

(4) Dequeuc(Nullg) -+ ERROR
(5) Dequeue(Enqucue(Nullg, €)) — Nullg
(6) Dequeue(Enqueue(Enquene(q, el), €2)) — Enqueue(Dequeuc(Enqueue(q, e1)), €2)

(10) Append(q, Nullq) — q
(11) Append(ql, Enqueue(q2, e2)) — Enqueue(Append(ql, q2), e2)

(12) Empty(Nullq) — True
(13) Empty(Enqueue(q, ¢)) — False

(14) J6(Create) — Nullq
(15) J6(Insert(c, i)) — add_at_head(J6(c), I6(i))

(16) add_at_head(Nullq, i) — Enqueue(Nullq, i)
(17 add_at_head(Enqueu_e(q, i), il) — Enqueue(add_at_head(q, i1), i)

(19) 36(NULLQY)) — Nullq

(20) J6(ENQUEUE(c, ))) — Enquene(36(c), 76(1)
(21) 3(DEQUEUE(c)) — Dequeue(J6(c))

(22) 36(APPENDAc1, c2)) — Append(J6(cl), 76(c2))
(23) J(EMPTY(c)) — Empty(J6(c))
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« representation type Circ_List are omitted because the_y_ are not going to be used in the
- derivation of the preliminary implementation. Thissituﬁﬁbﬁa' arises because a preliminary
- implementation is permitted to use only the generators of the repreéentation type. So, the
| only rules of the representation type; needed in verification, and hence also in the derivation
| of a preliminary implementation, are the ones that contain only the generators. Since
. Circ_List does not have any rules of ‘this kind, Circ_List does not contribute any rules to IW,
Rules (1) through (13) in the figure are rules of Queue_Int; rules (14) through (17) are the
rules of Homomorphism Specification.

The next task is to derive the rewrite rules of PI from PW. Strictly speaking, PI
should be derived so that all the three synthesis conditions are satisfied. But, it is more
conveniént to develop a procedure that derives the rewrite rules so that only the Totality
Conditioﬁ and - the Homomorphism Condition are met. The effect of ignoring the
Uniqueness Condition is not harmful in the sense that it can be fixed at a later stage by
post-processing the preliminary implementation, The Uniqueness Conditioﬁ ensures that
every implementing function deﬁnéd by PI returns a unique value on every representation
value. When the Uniqueness Condition is not satisfied, an implementing function F being
defined by PI may be nondeterministic; That is, F can be so that F(v) = 8 and F(v) = 8

but v, # v,; however, both the values v, and v, will represent the same value of the

1
implemented type. The nondeterministic behavior, if any, in the preliminary implementation
wjll be eliminated by our synthesis procedure in the second stage while deriving a target
implementation. The semantics of the target implementation language is such that it is
impossible to define nondeterministic functions.

The procedure derives the preliminary implementation for one operation at a time
by deriving a separate set of rewrite rules for every operation. The method used is the same
for every operation. The procedure first determines the left hand sides of all the rules of the
preliminary implementation. Then, it determines a suitable right hand side for each of the

rules from the already determined left hand side.
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« 4.3.2.1 Determining the Left Hand Side

_} The Totality Condition is;used to determine the left hand side of the rules. The
~ Totality Condition has two parts: ﬁe first part requires PI to be well-spanned, and the
~ second part requires PI to have the uniform termination property. The second part is
; ensured while deriving the right hand side, which will be discussed later. The ﬁfst part is
used here, |

The well-spannedness property (.descn'bed formally in sec 2.3.1 of the previous
chapter) fequires the left hand side expressions of the rules defining an implementing
function F to satisfy the following property: The set of generator expressions the appear as
arguments to F on the left hand side should span the set of all generator constants, More
" precisely, suppose the preliminary implementation bf F consists of the following set of rules:
(In the following the question mark identifiers are used as place holders for expressions to be

determined later.)

Then, the set {g,...,g.} should be well-spanned (see sec2.3.1), ie., span the set of all
generator constants of the appropriate implementing type. For instance, as a concrete
example, any pair of rules that have the form given below constitute a well-spanned set of
rules for ENQUEUE.

ENQUEUE(Create, j) — rhs,

ENQUEUE(Insert(c, i), j) — hs, ,

Note that the left hand side of each of the above rules consists of ENQUEUE
applied to arguments that are generator expressions. The set of arguments, i.e., sequences of
generator expressions, to ENQUEUE on the left hand side of the rules is
- ArgsSet = {<Create, j>, <Imsert(c, i), >}. ArgsSet spans the set of all ordered pairs of
generator constants because every pair of generator constants (the first one of type Circ_List,
and the second of type Integer) is an instance of one of the arguments in ArgsSet. |

It is easy to build a procedure that automatically generates a well-spanned ArgsSet,
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¥ once the generators of the representation type are identified. In fact a slight modification to

the procedure referred in sec 3.3.3 (which checks if an ArgsSet is complete) can be used to

_ generate a complete set of argument expressions. Thus, an appropriate set of left hand sides
\ for the rewrite rules to be derived can be determined automatically.

Fig. 14 gives a possible set of left hand side expressions for a preliminary

~ implementation for the example under consideration. Note that the righi hand side of each

of the rules in the figure is denoted by a question mark identifier. So Fig. 14 can be

considered as a partial preliminary implementation of Queue_Int.
4.3.2.2 Determining the Right Hand Side

The nght hand side of each of the rules is determined usmg the already determined
e left hand side so that the Homomorphism Condition and’ the second part of the Totality
Condition are met. This where the Perturbed World (PW) conies into the picture.

PW is used to derive a set of equations, called the synthesis equations, one equation
for every rule in the preliminary implementation, The right hand side of a rule is determined

from the right hand side of the corresponding synthesis equation. The synthesis equation

Fig. 14. A Partial Preliminary Implementation
(1) NULLQQ) — ?rhs,

(2) ENQUEUE(Create, j) — ?rhs,
(3) ENQUEUE(Insert(c, i), j) — ?rhs,

(4) FRONT(Create) — ?rhs,
(5) FRONT(Insert(c, i)) — ?rhs,

(6) DEQUEUE(Create) — 7rhs;
(7) DEQUEUE(Insert(c,i)) — ?rhs,

(8) APPENDAc, Create) — 7rhs,
(9) APPEND(c, Insert(d, i)) — ?rhs,

(10) SIZE(Create) — ?rhs,,
- (11) SIZE(Insert(c, i)) — ?rhs,,




-78 -

. corresponding to a rewrite rule F(gl) ~ 7t, is an equation of the form ¥o(K(g,) = 3{;(?tl) that

- satisfies the following conditions:
(1) 36(F(g,) = J6(2t,) is a theorem of PW
(2) 36(F(g,) > 36(2t,), where > is the termination ordering on expressions.

(3) 7t, contains the implementing function symbols and the permitted operations of the

implementing types.

it is easy to see the justification for the above ‘conditions, The first condition
contributes towards ensuring the Homomorphism Condition. The second condition ensures
the uniform termination property. The third condition is just a syntactic constraint that any
rule in a preliminary implementation ought to satisfy. The next section describes in detail a

procedure to derive the synthesis equations.
4.4 Deriving the Synthesis Equations

Every synthesis equation of the preliminary implementation is derived with the help
of two inference rules called the synthesis rules. The synthesis rules are desighed for
generating theorems of PW that have the same left hand sides, but different right hand sides.
For deriving a synthesis equation, the synthesis rules are invoked repeatedly a finite number
of times to generate a series of theorems until the desired equation is generated. For instance,
the synthesis equation corresponding to the rule ENQUEUE(Insert(c, i), j) — ?rhs, (in the
partially derived preliminary implementation given in Fig. 14) is derived by generating a
series of theorems that have J6(ENQUEUE(Insert(c, i), J)) as their left iland side. The
generation continues until a theorem whose right hand side qualifies the theorem to be a
synthesis equation is encountered.

We investigate two ways in which the synthesis rules can be used for deriving a
synthesis equation. The first one derives synthesis equations that are in the equational theory
of PW. The second one derives equations that are in the inductive theory. The second
method is more general than the first one. A system that implements the synthesis procedure

would, therefore, use only the second method. We discuss them separately for pedagogic
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: reasons. First, we formulate the synthesis rules. The subsequent subsections describe the use
. of the synthesis rules in deriving the synthesis equations.

t

" 4.4.1 The Synthesis Rules

The idea used for generating an equation is to reverse the method of demonstrating
" that the equation is a theorem of PW. The central notion used in the generation is
expansion. Expansion is the opposite of reduction. It is the act of applying a rewrite rule to

- an expression from right to left.
- 4.4.1.1 Informal Explanation

The basis for the synthesis rules is the res»ult given in the KB-Theorem (sec 3.3.3.1).
The theorem gives rise to the following principle for generating equations that are theorems
of a convergent system. Suppose e, is an expression that we wish to have as the left hand side
of the equation. Then, an expression ?e, that may appear on the right hand side of any
eﬁuation that has e, as its left hand side should be such that e} = ?e,i. One way of
ensuring that ?e, simplifies to e,4 is to obtain ?e, by applying to e,¢ the rewrite rules of the
system from right to left a finite number of times. We call the mechanism of applying a rule
to an expression from i‘ight to left expand.

We will give a formal definition of expand, and discuss its properties later. Here, we
will give an approximate description of what expand does so that we may develop a first
version of the synthesis rule, and illustrate them on the example.l,6 Like reduce, performing
expand  consists of several steps.  Suppose we  wish o expand
Add_at_head(Enqueue(36(c), 36(j)), 16(i)) using the rule
%(ENQUEUEKc, J)) - Enqueue(36(c), 3%6()). One way of doing this is to look for a
subexpression (inside the expression to be expanded) that has the form of the right hand side

16. We will generalize the definition of expand later. At that point one of the synthesis rules needs to
revised slightly as well. According to the definition given here, expansion is identical to the
transformation technique folding used by Darlington [7] for synthesis of recursive programs.
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vof the rule. Then replace the subexpression by the corresponding instance of the left hand

side of the rule. In the present case, the subexpression that appears as the first argument to

" Add_at_head in the given expression matches the right hand side of the rule for the identity

T substitution. The result  of expanding the expression is then

! Add_at_head(t}G(ENQUEUE(c, i), J6(i)). The result of expanding an eXpression e in the

occurrence u by a rule y — 8 is denoted by expand e in u by y — 8. We use expand(e) to

~ denote any expression that is obtained by expanding e in some occurrence u by some rule
y — & in the rewriting system under consideration,

We are now in a position to give the synthesis rules. The first rule specifies how to

start the generation of a series of theorems; it generates a theorem from a given expression

without the need for any existing theorem.

e is an expression
e=el

Rule 1:

The second rule specifies a way of generating a new theorem from an existing one using
expand.

elsez

e = expand(ez)

Rule 2:

To familiarize the reader with the synthesis rules let us invoke each of the synthesis rules to
generate a couple of theorems that have J6(ENQUEUE(Insert(c, i), j)) as their left hand. We
use the rewrite rules of PW given in Fig.pw1 for expansion and reduction. The normal form
of J6(ENQUEUE(Insert(c, i),j)) is Enqueue(Add_at_head(36(c), 36(i)), J36(j)), which is
obtained by using the rewrite rule (20) and then (15) for simplification. By invoking synthesis
rule (1) with e = J6(ENQUEUE(Insert(c, i), j)), we generate the following theorem of PW:

%(ENQUEUE(Insert(c, i), j) = Enqueue(Add_at_head(36(c), 76(i)), 76(i))

~ Let us now invoke synthesis rule (2) on the above equation. Using the rewrite rule (17) to
expand the entire expression on the right hand side of the above theorem, we can generate

the following theorem of PW:

J6(ENQUEUE(Insert(c, i), j)'-=- Add_at_head(J6(ENQUEUE(c, j)), 35(1)
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4.4.1.2 Formal Definition of Expand

| Expansion is roughly the reverse of the process of reduction. The relation that
v' characterizes a single step of expansion is called expand. Expanding an expression using a
rule is close to‘applying the rule to the expression from right to left.

‘ The motivation for introduéing the mechanism of expansion is to solve a common
| problem encountered during synthesis: This is to find an expression (a desired expression)
that simplifies to given expression (the starting expression). For instance, in the derivation
shown eaflier, the starting expression was Enqueue(Add_at;lnead(%(c), 36(i)), 36(3)), and the
desired expression was J6(Insert(ENQUEUEC(c, j), i)).

The definition of expand uses the concept of unification, and the most general
unifier (see Appendix I). Let t be an expression, and y — & be a rule. We assume that t and
v have disjoint variable sets. If there are common variables then they have to be renamed
suitably. Let u be an occurrence in t such that t/u is unifiable with §; let 8 be the most
general unifier. Lett' be the expression tfu — 6(y)]. Then, we say that t expands to t' by
vy — 8 in u;, we denote this relation by t «— t'. Notice that expanding t by y — 8 in u is not
equivalent to reducing t by § — y in u. Expand checks if t/u is unifiable with 8§, whereas
reduce checks if t/u has the form of §. Therefore, there are situations where an expression is
expandable by y — &, but not reducible by § — v.

The following question arises immediately: Why was expand not defined exactly as
applying a rule in the reverse direction ? The reason is that a rule y — § may be such that
varset(y) D varset(8). Applying such a rule from right to left will result in an expression that
contains "new" variables, i.e., variables that did not exist in the original expfession. The use
of such variable dropping rule during reduction represents a situation where the reduction
step caused a "loss” of information: A new variable introduced in an expansion step might
have had in its place an arbitrary expression during the corresponding reduction step. Our
goal is to reconstruct, if possible, this lost information at a later stage in the expansion process.
During expansion, therefore, a variable in an expression has to be treated, in general, as
though an arbitrary expression might be in its place. Using the predicate unifiable to

determine if an expression is expandable enables us to do this.




For instance, consider ithe expansion of Append(q, Nullq) by the rule
Dequeue(Enqueue(Nullg, €)) — Nullg. The resulting -expression is
- Append(q, Dequeue(Enqueue(Nullg, €))). The variable e is a new variable introduced because
of expansion. Every instance of the latter expression in which e is replaced by any ott_ler
. expression reduces to the former expression. It might be possible to determine the expression
- that has to take the place of e in future expansion steps.

It should be pointed out, however, that not all variables in an expression need be
given such a special treatment ddring expan-sinn. The variables that appear in the starting
- expression must appear as they are in the desired expression we are shooting for. Therefore,
while expanding an expression, it is necessary to distinguish between the variables in the
expression that were introduced by a rule (presumably during earlier steps of expansion) and
the ones that were transferred to the expression from the starting expression. We classify the

variables involved in expansion into the following two kinds:
(1) The variables appearing in the rewrite rules; we continue to call these variables.

(2) The variables appearing in the expressions on the left hand sides of the rewrite rules
in the partially generated preliminary implementation (Fig. 14). We call these
variables terminals. Henceforth, we denote terminals by identifiers that are in
italics. |
The definition of an expression remains as before except that it may also contain

terminals in it. The definition of a substitution also remains as before; it is a function from
variablgs to expressions. Thus, when a substitution is extended to be applicable on an
expression, the terminals in the expression are not substituted for, as we desired.

In the wake of the formal definition of expand, and the preceding giiscussion about
the introduction of variables into expressions due to expansion, weAshould reconsider the
formulation of the synthesis rules. The first synthesis rule remains unchanged because it does
not use the relation expand. The second synthesis rule was formulated as below:

e =e

e, = expand(e,)

Rule 2:
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- This formulation is not general enough because it does not account for al} the theorems that
can be derived from e, = e, in one expansion step. If expand(e,) has variables in it, then
every instance of it can potentially be the right hand side of a theorem. Hence, we
re-formulate the rule as follows:

e =e,0 isa substitution
e = a(expand(ez))

Rule 2:
4.4.2 Derivation in the Equational Theory

As an illustration, let us derive a synthesis equation that is of the form
J6(ENQUEUE(Insert(c, i), §)) = 36(?rhs3) in the partial preliminary implementation shown in
Fig. 14, The equation is derived by generating a series of theorems that have
HB(ENQUEUE(Insert(c, i), j)) as their left hand side. The generation is begun by invoking
synthesis rule (1) on the left hand side expression. The rest of the theorems in the series are
generated by invoking synthesis rule (2) using the rewrite rules of PW for expansion. The
rewrite rules for expansion are chosen with the following ultimate. geal: Obtain a right hand
side that has the form 36(?rhs,) so that 3%(ENQUEUE(Insert(c, ), j)) >- ZJG(?rhss) and ?rhs,
contains only the permitted operations of the implementing types. In the illustration given
below, the generation of every theorem in the series is oonsidered as a step. At each step, the

expression expanded, and the rewrite rule used for expansion are indicated.

Relevant Rewrite Rules of the Perturbed World
(1) 3(ENQUEUE(c, j)) — Enqueue(36(c), 76()

(2) J6(Create) — Nullg )
(3) J6(Insert(c, i)) — Add_at_head(J6(c), i)

(4) Add_at_head(Nullq, i) — Enqueue(Nullq, i)
(5) Add_at_head(Enqueue(q, i), j) — Enqueue(Add_at_head(g, j), i)

Form of the theorem to be generated: JS(ENQUEUE(Insert(c, i), j)) = 36(?rhsj)
Normal form of JI.(ENQUEUE(Insert(c, i), j)): Enqueue(Add_at_head(36(c), i), 36(j))
Rules used for the normal form: (1), (3)

Step (1) Invoke Synthesis Rule (1) on J(ENQUEUE(Insert(c, i), j))
J(ENQUEUE(Insert(c, i), j)) = Enqueue(Add_at_head(36(c), i), 35(}))
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i Step (2) Expand Expression: Enqueuc(Add_at_head(J6(c), i), J6(j))
Using Rule: (5)

J6(ENQUEUE(Insert(c, i), j)) = Add_at_head(Enqueunc(36(c), 36()), i)

" Step (3) Expand Expression: Enqueuc(J6(c), 76())
Using Rule: (1)

J6(ENQUEUE(Insert(c, i), )) = Add_at_head(J6(ENQUEUE(, i), )

Step (4) Expand Expression: Add_at_head(J6(ENQUEUE(c, j)), i)
Using Rule: (3) ‘

J6(ENQUEUE(Insert(c, i), j)) = ¥(Insert(ENQUEUE(c, j), 1))

The theorem generated in step (4) qualifies to be a synthesis equation.
Hence the desired rule of the preliminary implementation is:
"ENQUEU¥(Insert(c, i), j) — Insert(ENQUEUE(c, j), i)

4.4.3 Derivation in the Inductive Theory
4.4.3.1 The General Strategy

The method used for deriving a synthesis equation in the inductive theory is based
on the following property that every theorem of PW satisfies: If an equation is a theorem of
PW, then every instance of it is in the equational theory of PW. An instance of an equation
e, =e, is an equation obtained by. replacing every variable in e, and e, by generator
constants, '

We, therefore, take the following approach. Suppose the synthesis equation we
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* wish to derive is of the form J5(F(e, ) = :}B(?em).17 We first derive an insiance of the desired
equation; This is done by selecting an instance of the left hand side, say a(:lG(F(eu))), for
. some substitution ¢ of the terminals in e, to generator constants. Then, an instance of the
equation o(t}(;(F(eu))) = a(ﬂ{;(eu)) is derived; the method of derivation for the equational
~ theory described earlier can be used for this purpose. The instance of the equation derived
| should be such that a generalization of it 36(F(e,,)) = :JG(en), which is obtained by replacing
assorted constants by suitable terminals in the instance, is a theorem of PW,

To check if the generaliiation is a theorem of PW, We use an automatic procedure
called Is-an-inductive-theorem-of. This procedure is capable of deciding a significant number
of theorems in the inductive theory of a system. The procedure will be described in a
subsequent subsection. Another topic that will be deferred until later is determining a
suitable o. Any substitution that maps all the terminals in the left hand side of the synthesis
equation to arbitrary generator constants will serve our purpose. However, the derivation
would be more efficient if we instantiated as few terminals as possible. A later subsection will
discuss a method of determining a more judicious way of choosing o.

In the rest of this subsection, we formalize the notion of the generalization of an
equation, and then illustrate the general strategy by deriving a synthesis equation
corresponding to the rewrite rule APPEND(c, Insert(d,i)) — ?rhs, in the partial preliminary
implementation of APPEND given in Fig. 14.

The Generalization of an Equation

The generalization of an equation e, = e, with respect to a substitution o is the set of

1

equations such that e, = e, is an instance of using o. When the substitution with respect to

2
which the equation is being generalized_ is obvious from the context, we denote the
generalization by Genle, = e,]. Formally, every equation e} = e} € Gene, = e,] is such that
c(ei) = e,, and o(ei) = e, Note that if e =e, has a finite number of function symbols

Gen[el = e2] is always finite. For instance, suppose o is {d — Create}.

17. Recall that the left hand side of the synthesis equation is already known.
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+ Then,  Gen[J6(Append(c, Insert(Create, i))) = H({APPEND(ENQUEUE(c, i), Create))})])
contains the following equations:
J6(Append(c, Insert(Create, i))) = J({APPEND(ENQUEUE(c, t), Create))}))
J6(Append(c, Insert(d, i))) = 3H(APPEND(ENQUEUKE(c, i), 4)))

As an illustration let wus derive an equation of the form
J(APPEND(c, Insert(d,i))) = %(?rhs,) which gives rise to one of rules in the preliminary
implementation of Append. The derivation begins with the choice of the left hand side of the
instance of the equation to be derived: This has to be an instance of

J(APPEND(c, Insert(d,i ))). Let us suppose o is {d— Create}.

Relevant Rewrite Rules of the Perturbed World

(10) Append(q, Nullg) — q

(14) 36(Create) — Nullg

(20) I6(ENQUEUE(c, i)) — Enqueuc(36(c), J6(1))})
(22) J(APPENIXc, d)) — Append(36(c), J6(d))

Form of the theorem to be generated: JG(APPENIXc, Insert(Create, ))) = J6(?e)
Normal form of J6(APPEND(c, Insert(Create, i))) E nqueue(ﬂﬁ(c) 36(3)
Rules used for the normal form:

Step (1) Invoke Synthesis Rule (1) on J6(APPEND{c, Insert(Create, 1))
J6(APPEND(c, Insert(Create, 1))) = Enqueue(36(c), J6(i)

Step (2) Expand Expression: Enqueue(J36(c), 36(:))
Using Rule: (10)

Jo(APPEND(c, Insert{Create, ))) = Append(Enqueue(36(c), 36(1)), Nullg)

Step (3) Expand Expression: Nullq
Using Rule: (14)

J6(APPEND(c, Insert(Create, /))) = Append(Enqueue(36(c), J6(?)), J6(Create))
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1 Step (4) Expand Expression: Enqueue(36(c), 36(?))
Using Rule: (20)

J6(APPEND(c, Insert(Create, ))) = Append(JI6(ENQUEUE(c, ), J36(Create))

" Step (5) Expand Expression: Append(J6(ENQUEUE(c, ), J6(Create))
Using Rule: (22)

J6(APPEND(c, Insert{Create, 1)) = J6(APPEND(ENQUEUE(c, ), Create))

Step (6) Generalize the theorem in step (5) by replacing the constant
Create by the variable d to obtain the following equation:
J(APPEND(c, Insert(d,i ))) = J6(APPEND(ENQUEUEK(c, ), d))

Apply Is-an-inductive theorem-of on the above equation.
This yields True confirming that the equation is a theorem.

Hence the desired rule (obtained by dropping 36 on both sides) is:
APPENIX(c, Insert(d,i )) = APPEND(ENQUEUE(c, i), d)

4.4.3.2 The Predicate Is-an-inductive-theorem-of

Is-an-inductive-theorem-of is a procedure that is used for checking if an equation

e, = e, is a theorem of a convergent fewriting system S. The procedure is designed so that if

it yields trueon e, = e, then e, =e,isa theorem of S; if it yields false, then nothing can be

1
said about e =e

2
,  While deriving a synthesis equation in the inductive theory, the
procedure is used to check if a generalization of an equation is a theorem of PW. The
procedure is described here. ‘

The procedure is based on a method of using the KB-algorithm (see sec3.3.3.1) for
checking the convergence for proving inductive properties of a rewriting system. Suppose S
is a convergent rewriting system. To check if e, =e, is a theorem of S, perform the following

steps:




{

If the result of step (2) is affirmative, thene, = e
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(1) FormS, =SU{e —e,(ore, —e)}.
(2) Check if S, is convergent. The KB-algorithm of checking convergence (which
consists of checking if every critical pair <a,, a,> of S, is such that ab = a2¢) is

used for this,

, is a theorem; otherwise nothing can be said

~about it, in general, Let us assume that there exists a procedure, called

Can-be-made-convergent, that implements this method.

We will first ©briefly summarize the method, and then describe how
ls-an-inductive-tl;eorem-of is built on top ofit.

The result that provides a basis for the above method is proved in Theorem 7 in
Appendix H1 which gives a few useful results about convergent systems. The result is similar
to the one that was first developed by Musser [38], and that has also been investigated in [22].
Our result is different because the cited works assume that S satisfies a notion of
completeness (similar to the principle of definition) besides convergence.

In the present situation PW, whose theorems we are interested in, is convergent but

- does not satisfy the principle of definition. - Because of this the above method is applicable

only when e (or ez) is such that for every instantiation of the variables by generator constants,
e, simplifies to a generator constant. The left hand side of every equation we wish to check is
of the form J6(F(g,,... ,gn)), where F is an implementing function symbol, and g,,..., 8
are generator expressions. Note that J6(F(g,, ..., 8 )) reduces to f{(J6(g,,...,8)) by the
J6-rule corresponding to F. The latter expression satisfies the desired condition since f and 36
are well-spanned18 by PW. |

There are several situations when the method described above is not applicable for

* proving an equation e, = e,. But there exists another equation €] = e} such that

18. Note that if a function f is well-spanned by PW, then every term of the form f(tl, coes tk) where
ts.. - » 4, are generator terms, can be simplified to a generator term using PW.
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(1) e! =e! can be proved using the above method,
2

(2) e, =e,isatheoremif e} = e} is a theorem, and

(3) e!'= e} can be derived automatically from e =e,

In other words, e1=ej is serving as a lemma for the theorem e, = e, The

+ procedure Is-an-inductive-theorem-of consists of transforming e, = e, to e} = eJ, and then

applying Can-be-made-convergent on e} = e}. The transformation of e, =e, toe] =e} is
performed by a function L, called the lemma deriving function. The lemma deriving function

used by Is-an_inductive-theorem-of is defined below:

The Lemma Deriving Function (L)
L is a funrction on expressions. L can be used to derive for a given equatione, =e, a lemma

that the proof of the former is depehdent on. The two sides of the lemma are obtained by

applying £ toe, and e,
L: expression -> expression
Usage: L(a))

Pre: ais of the form SG(az), where «, does not contain the symbol J6.

Returns: An expression g that is obtained by replacing in a4 every subexpression of

the form 36(d), where dis any terminal, by a new terminal d1

We will now illustrate the procedure Is-an-inductive-theorem-of to check if the
equation J6(APPEND(c, Insert(d,i))) = J6(APPEND{ENQUEUE(c, i), d)) is a theorem of
PW being used in our example. The equation was obtained in step (6) while deriving a

synthesis equation in the previous section.
Equation to be checked: J6(APPEND(c, Insert(d,i))) = J6(APPEND(ENQUEUE(, ), 9).

Step (1) Derive Lemma by applying L:
(a) Simplify both sides,
(b) Replace J&(c) by q, 36(d) by R, J6()) by i




¢ J6(APPEND(c, Insert(d, 1)) : J6(APPEND(ENQUEUE(c, ), 8)

Append(36(c), Add_at_head(36(d), 3{5(1))) Append(Enqueqe(ﬂG(c), 36(1), I6(a))
" Lemma to be checked: Append(q, Add_at_head(R, i)) = Append(Enqueue(q, i), R)

" Step(2) Check if critical pairs are convergent:
. (a) Critical pair determined by Rule (16):

Appcnd(q, add_at_head(Nullg, j)) .

Append(Enqueue(q, j), Nullg)  Append(q, Enquenc{Nullg, j))

! '

Enqueue(q, j) Enqueue(q, j)
(b) Critical pair determined by Rule (17):

Append(q, add_at_head(Enqucue(r,, j)), j))
Append(q, Enqueuc(add_at_hcad(r,, j), j))) Append(Enqucuc(q, j), Enqueuc(r,, j))

Enqueuc(Append(Enqueue(q, j), r,), j;) Enqueue(Append(Enquenc(q, j), 1,), )

4.4.3.3 An Instantiation for the Synthesis Equation

Here, we describe a method of finding a substitution o that determines the left hand
side of the instance of the theorem we wish to generate. Note that the left hand side of the
theorem is already known to us which in the current example is J6(APPEND(¢, Insert(d, i))).
¢ maps the terminals in the left hand side expression to suitable expressions. o should be
chosen so that the equation o(J6(APPEND({c, Insert(d, })))) = a(t)B(?ez)) is in the equational
theory of PW. This implies that o should be such that o(J5(APPEND{c, Insert(d, }))) and
o(th(?ez)) have the same normal form. Note that 216(?e2) is unavailable to us at the moment.
So, ¢ has to be determined from the left hand side expression alone. Since the theorem
J(APPEND(c, Insert{d, z)))é %(?ez) is not necessarily in the equational theory of PW, an
arbitrary substitution that maps terminals to generator terms cannot be used.

- The followdng fact about our proof method (for inductive properties) serves as the
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: basis for the method of finding 0. The basis step of the inductive proof can always be carried |
out using the equational logic. So, we choose the o that corresponds to a basis step of the
: proof of the lemma. The instantiation corresponding to the basis step can be determined
- automatically starting from the left hand side of the theorem alone.

Finding sﬁch a ¢ involves two stages because the proof of the theorem, as you may
- recall, involves two stages: Converting the theorem to the lemma, and then proving the
- lemma itself. We first determine a substitution « that corresponds to a basis step of the proof
of the lemma. o is determined from  using the method used by the lemma defining

function L to convert the theorem to the lemma. We describe the two steps below.

Step (1) Determination of w

(a) Find the left hand side of the lemma.
This is obtained by applying £, the lemma defining function, to the left hand side of
the theorem. For our example: Left hand side of the theorem is
J(APPEND(c, Insert(d, 1))). To obtain the left hand side of the lemma, we simplify
the expression, and replace every subexpression that has 36 at the root by a new
terminal: J6(APPENIY{(c, Insert(d, /))) —* Append(36(c), Add_at_head(36(d), 36(1)).
So the left hand side of the lemma is Append(q, Add;at_head(R, i)).

(b) Find a basis step in the proof of the lemma

For this, compute all the superpositions between the left hand sides of the rules of
PW and the left hand side of the lemma. Simplify the superpositions. A sufficient
condition for a superposition to correspond to a basis step is that its normal form is a
generator expression. Thé most general unifier that determines such a superposition
is a candidate . The following table gives the result of performing the above steps
on the current example. The columns, in order, give the rewrite rule in PW
responsible for the superposition, the superposition, and the normal form of the
superposition. The first superposition in the list simplifies to a generator expression.
Therefore, w is the most general unifier corresponding to the first superposition,
which is {R — Nullq}.
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+ Rule Superposition (Superposition)¥

’ (16)  Append(g, Add_at_head(Nullq, J)) Enqueue{g, i)

(17)  Append(g, Add_at_head( Enqueuc{Append(g,

| Enqueue(r), J,), ) Add_at_head(ry, D), jp)

Step (2) Determine o from w |
- w provides instantiations for the terminals in the left hand side of the lemma. ¢ instantiates
- the terminals in the left hand side of the theorem. Our objective is to find a o so that when
the left hand sides (of the lemma and the theorem) are instantiated by ¢ and w, respectively,
they simplify to the same expression.

For instance, in the current example, the left hand side of the theorem is
e, = J(APPEND(c, Insert(d, )))), whose normal form is
‘e, = Append(J6(c), Add_at_head(56(d), 36(D)). The left hand side of the lemma is
e, = Append(q, Add_at_head(R, i)), which was obtained by replacing ¥6(d) by r, and 36(c) by
g. » maps r to Nullg, and leaves the rest of the terminals unchanged. Therefore, ¢ should
map d to an expression such that Nuﬁq = J6(d) is a theorem in the equational theory of PW.
Therefore, the instantiation for d can be determined using the first two synthesis rules by
generating a theorem that has Nullg on the left hand side, and an expression of the form
J6(?e) on the right hand side. The genei‘ation sequence is shown below. The first theorem is
obtained by invoking Synthesis Rule (1) for the expression Nullg. The second theorem is
obtained by using Synthesis Rule (2); rewrite rule (14) of PW is used for expand. The right

hand side, J6(Create), of the theorem generated determines o as {d — Create}.

Nullq = Nuliq

= J(Create)

4.5 An Abstract Implementation of the Derivation Procedure

Below, we give an implementation for a procedure Generate-a-rule. The procedure
determines a suitable right hand side expression for a rewrite rule in a partial preliminary
implementation given the left hand side expression. The procedure also expects a Perturbed

World and a termination ordering as inputs. The procedure is implemented in a high level



-93-

i algorithmic language whose semantics is self-explanatory.
The implementation assumes that there exist two  procedures
! Is-an-inductive-theorem-of and A-suitable-instantiation-for-lhs. The lattér finds a suitable
substitution that determines the instance of synthesis equation to be generated.

The proceduré performs essentially the theorem generation illustrated before in a

. systematic fashion. Roughly, it operates as follows. It finds the instance of the left hand side
. of the synthesis equation by applying A-suitable-instantiation-for-ths to J6(lhs), It simpliﬁes

this expression' to its normal form. The nc;rmal form is then expanded repeatedly using
- appropriate rewrite rules of PW until a suitable right hand side is encountered.

The nontrivial aspect of the procedure concems performing expansion in an
effective fashion. There are two problem areas. Firstly, expansion is not uniformly
terminating. That is, expansion is a potentially nonterminating activity. The procedure uses
the termination ordering > to circumvent this problem. The right hand side has to be an
expression that is less than the given left hand side. But, expanding an expression always
gives rise to a bigger expression in the ordering >-. Thus, the procedure can be terminated
the moment we encounter an expression that is not less than the left hand side. (Note that the
> is such that there can only be a finite number of expressions less than any given
expression.)

Secondly, expansion is not uniquely terminating. That is, an expression can be
expanded in several different (but finitely many, because there are only finite number of rules
in PW) ways using the rules in PW. All of them do not necessarily lead to the same final
expression, Some of them may not even lead to a suitable right hand side expression. In the
examples illustrated earlier, the rules of PW were carefully chosen so that they resulted in the
desired right hand side. A working implementation, however, is forced to keep track of all
possible expansions since any one of them can result in the desired right hand side. In the
implementation given below the variable S is used for this pul;pose. '

This chore, in fact, happens to be the main source of inefficiency in the synthesis
procedure. We use the following obvious ways of getting rid of unproducti#e expansion
paths. Firstly, type information is used to eliminate some of the candidate rewrite rules for

expansion. Secondly, expansions that result in an expression that is not less than the left hand
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- side are not going to be fruitful. Finally, we make a distinction between the variables that
appear in the rewrite rules of PW, and the ones in the given left hand side. The latter, which
“ are terminals, are treated as constants. This eliminates several rewrite mle§ for expansion that
- are candidates otherwise.

It should be noted that the procedure given below is only a part of a complete
_ implementation of the synthesis procedure. The other part is expected to determine the left
- hand side of the rules. We have assumed that there exists a procedure to determine the left
hand sides. If the following procedure does not succeed in finding a suitable right hend side
for a given left hand side, then another set of left hand sides have to be generated, and the

following procedure reexecuted.

Generate-a-rule = proc (PW: Perturbed World, lhs: F(g,...,8)
> ordering) returns (Rewrite Rule)

%Initialization

o Substitution « A-suitable-instantiation-for-lhs
ilhs + o{lhs)

S — {J6(ilhs)$ }

repeat

%Test if expansion can be stopped

if There-exists-a-suitable-candidate-in(S)

then rhs + Fetch-a-suitable-candidate-from(S)
return(lhs — rhs)
endif

%If a candidate has not been generated yet, expand by one more step
Sl—@
forevery t € S do .
S1 ¢ S1U set-of-all-expansions-of t by PW
" endfor
S~S1

%Drop from S1 unproductive expressions
foreveryt€ S, do
if ~(ths > t) then S1 ~ S1 - {t}

forever
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%Subprocedure description

. There-exists-a-suitable-candidate-in: subproc (S: Sct[Expression]) returns (Boolean)

~if 3t € S such that
3I6(F(g,, . .., g) = J6(?rhs) € Genlilhs = ¢] such that
(1) ?rhs does not contain 36 or operations of the implemented type,
) F(gl, ceey gn) > ?rhs, and
3) Is-an-inductivc-theorcm-of-PW(Z}G(F(gl, ceny gn) = J6(?rhs))
then return(True) else retum(False)

end subproc

%Subprocedure description

Fetch-a-suitable-candidate-from: subproc.(S: Set{Expression]) returns (Expression)

if 3¢ € Ssuchthat
336(F(g,, ..., 8) = J6(?rhs) € Gen[ii_hs = t] such that
(1) ?rhs does not contain J6 or operations of the inplemented type,
) F@g,..., g ) > ?rhs, and
(3) Is-an-inductive-theorem-of-PW(3(F(g,, . ..,8) = J6(?rhs))
then return(t)
end subproc

end Generate-a-rule

set-of-all-expansions-of_by: Expression X Rule -> Set[Expression]
Usage:  set-of-all-expansions-of t by y — §
Returns:  Returns the set of all possible expansions of a given term via a given rule.

set-of-all-expansions-of_by: Expression X SetfRule] -> Set[Expression]
Usage:  set-of-all-expansions-of t by B
Returns: The set of all terms s such that

s = U set-of-all-expansions-of t by R, forall R€ R

expand_in_by: Expression X Occurrence X Rule -> Expression
Usage: expand t in ubyy — &
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Pre: Varset(tl) M Varset(y) = ¢ +  %For convenience
t /u is-unifiable-with §

Returns:  expand ¢, in uby y — § yields a term t, such that every term that reduces (in u by y — 8)
to an instance of t, will be an instance of t,. In other words t, is the most general instance of
all the terms that reduce (in u by y — 6) to an instance of t. Note that the result the
function returns is unique upto permutations of the variables. This is because o, which is

the most general unifier of two terms, is always unique when restricted to the variables in
the two terms t and 3. ' '

expands-to_in_by: Expression X Expression X Occurrence X Rule -> Bool
. Usage: t expands-tot inubyy— &

"~ Pre: Varset(y) N Varset(t) = ®

" Returns: A predicate that tests if a term expands to another given term.
(t,/u) is-unifiable-with § A t, = expand t in ubyy—$




-97-

5. Extending the Derivation Problem

The derivation problem and the derivation procedure described in the last chapter
apply to a situation in which the representing domain (%) for the desired preliminary
implementation is unrestricted. That is, % includes all the values of the representation type.

This section extends the problem to the more general situation where % is a subset of the

 value set of the representation type.

% contains the set of values that are permittegi to be used by a preliminary
implementation for representing the values of the implemented type. It is characterized by
the association specification supplied by the user. Suppose A and J are the abstraction
function and the invariant specified by the association specification respectively. Then % is
the set of all values for which J is true. The present situation is one in which 3 is true oh only
a subset of the representation value set.

For instance, consider the association specification given in Fig. 15. This example
will be used to illustrate the procedure described in the chapter. It specifies an
implementatioh of Queue_Int interms of Array_Int X Integer X Integer. The abstraction
function A can be described informally as follows. Nullq can be represented by any iriple in
which both the integer components are equal. A nonempty queue can be represented by a
triple <v, i, j>. v is an array of arbitrary length containing the elements of the queue, in order,
between the index values i and j-1. In other words, i points to the front end of the queue, and
j points to the next availabe position in v for adding a new element into the queue. The

invariant J is true on all triples such that i < j and the array is guaranteed to be defined on all

Fig. 15. Queue_Int in terms of Triple

Ay, i, D) = Nullg
A(CAssign(v, e, §), i, j+1>) = if i = j+1 then Nullq
else Enqueue(A(<yv, i, j>), ¢)

IKv, i, D) = True

I(KAssign(y, ¢,j), i, j+ D) = if i = j+1 then True
else if i <j+1then IKv, i D)
else False
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+ index values between iand j.
- 5.1 Characterization of the Problem

The criterion of correctness (stated in the previous chapter in Sec 4.2.1) that was
- used to characterize the problem earlier is applicable in the current situation as well. For
© convenience, we repeat the criterion below: A preliminary implementation of a data type is
- correct with respect to an aSsociat;on specification (that characterizes an abstraction function

A, and a representing domain %) if the following properties hold.
(1) Totality Property: Every implementing function is total over .

(2) Homomorphism Property: The implementing function F and the operation f of the
implemented type are related by the following homomorphism property:
(V 1 € R)[I6(F(..., T,...)) = K..., 36(r),...)], where J6 is a function defined as:
#(r) = Ar)fr€ER

r otherwise

Based on the above criterion, the derivation of a preliminary implementation was
viewed earlier as a prcolem of finding a set of rewrite rules PI so that PI U IW and PI1 U PW
satisfy the principle of definition. We still view the problem the same way. But, now the
implementing functions need be defined only on the values in %, and the homomorphism
property need only be verified on the values in % This means that PI U IW and PI U PW
need satisfy the principle of definition only with respect to a subset!? of the set of all
generator constants of the representation type. This subset is the representing domain of
constants T characterized by the association specification as follows: T = { t] 3(t) = True}. A
proof of the claim that if PI UIW and PI U PW satisfy the principle of definition with
respect to T, then PI is correct can be carried out along the same lines as the proof of the
Correctness Theorem (Sec.4.2.2). The proof for the present case can be obtained by

19. A system S satisfies the principle of definition with respect to T if the every constant of the form
F(gl, veey gn), where F is a nongenerator fiinction symbol and 8)s - - - » 8, are generatore constants in

T, has a unique normal (in S) that is a generator constant in T.
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- systematically replacing in the earlier proof the phrase "the principle of definition" by the

phrase "the principle of definition with respect to T".
5.2 Derivation of a Preliminary Implementation

' First we formulate the synthesis conditions that are used as a guide in the derivation
" of a preliminary implementation, and then describe a procedure to derive a set of rewrite
" rules PI that satisfies the synthesis conditions. The synthesis conditions are sufficient to

ensure that PI U IW and PI U PW satisfy the principle of definition with respect to_'l'.
5.2.1 The Synthesis Conditions

The synthesis conditions for a preliminary implementation PI are the following:
(1) Totality Condition:

(a) Pl is well-spanned with respect to T (for every implem_enting function)
with every rule in it being of the form F(g,...,g) — t, where F is an

implementing function symbol, and g, ..., g_are generator expressions.

(b) PI has the uniform termination property.

(2) Uniqueness Condition: PI has the unique termination property.

(3) Homomorphism Condition: For every rule F(g,...,g) — tinPl,
) A .. A3g)™ = %(F(g,,..., g,)) = %(t) is a theorem of PW.

(4) Invariance Condition: For every rule F(g,,..., g) — tin P, where the range of F
is the representation type, J(gl) A ... A3(g) = (V) = True is a theorem.

It is interesting to note the effect of the presence of the invariant  on the synthesis

20. Here, we assume that each of the expressions 8- o+s By isof the representation type. If not, the
antecedent would consist of a conjunction of J applied to only those expressions among 8,...,8,
that are of the representation type. The same qualification applies to condition (4), as well.




-100 -

conditions. The Totality Condition: and the Uniqueness Condition remain as before, and
serve the same purpose: The Totality Condiﬁon ensures that an implementing function is
defined and terminates on every value in the representing domain. | The Uniqueness
Condition ensures that an implementing function yields a unique value oh every argument.
. The Homomorphism Condition, which ensures that every implementing function satisfies the
homomorphism propefty, now requires that %(F(gl, veey g“)) = J6(t) Be a theorem only
under the assumption that the arguments to F satisfy 3. The Invariance Condition imposes an
additiona! ‘constraint on the expression that may appear on the right hand side of a rule: It
ensures that every implementing function preserves 5. The Synthesis Theorem to follow
shows that when PI satisfies all the synthesis conditions PI U IW and PI U PW satisfy the
principle of definition with respect to T.

The Synthesis Theorem

Theorem 2 Let PI be a set of rewrite rules that satisfies all the synthesis oonditions. Then,
Pl U IW and PI U PW satisfy the principle of definition with respect to T, where T is the

representing domain of constants characterized by the invariant J.

Proof Appendix I1I

5.2.2 Deriving the rules of PI

The derivation PI follows the same general pattern as before. The first task is to
construct the PW which is done as before by combining the specification of ﬂ1e implemented
type, the homomorphism specification, and any desired parts of the specifications of the
implementing types. The homomorphism specification is derived from the abstraction
function specification as before (sec.4.2.2). For instance, PW for the example under
_consideration is given in Fig. 16. Note that PW does not contain the invariant specification.
The infomation pertaining to the invariant will be maintained as a different entity. This will
be explained shortly.

The rules of PI are derived so that every synthesis condition except the Uniqueness



- 101 -

+ Fig. 16. The Perturbed Worlg,

~ (1) Front(Nullg) = ERROR
' (2) Front(Enquecuce(Nullg, ¢)) — e
- (3) Front(Enqucuc(Enqueue(q, e1), €2)) — Front(Enqueue(q, c1))

(4) Dequcue(Nullg) — ERROR
. (5) Dequenc(Enqucue(Nullg, e)) — Nullq
(6) Dequeue(Enqueue(Enqueuc(q, el), €2)) — Enqueue(Dequeue(Fnqueue(q, e1)), e2)

. (10) Append(q, Nullq) — q
(11) Append(q1, Enqueue(q2, ¢2)) — Enqueue(Append(ql, q2), €2)

(12) Empty(Nullg) — True
{13) Empty(Enqueue(q, ¢)) — False

(14) 36(<v, i, i>) — Nullq _
(15) J6(< Assign(v, &, j), i, j+ 1) — if i = j+ 1 then Nullq
else Enqueue(J6(<v, i, j>), J6(e))

(16) 1(NULLQ(Q) — Nullq

(17) %(ENQUEUE(e, 1)) — Enquene(36(c), 36())
(18) J6(DEQUEUE(c)) — Dequeue(36(c))

(19) J(APPENIXc1, c2)) — Append(J6(cl), J6(c2))
(20) J(EMPTY(c)) — Fmpty(36(c))

(94 }) %(if_then_else(b, v, V,)) — if_then_else(b, 36(v,), J6(v,))

Condition is met. The procedure derives the preliminary implementation for one operation
at a time by deriving a separate set of rewrite rules for every operation. The method used is
the same for every operation. The procedure first determines the left hand sides of all the
rules to derive a partial preliminary implementation. Then, it determines a suitable right

hand side for each of the rules in the partial preliminary implementation.
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:+ 5.2.2.1 Determining the Left Hand Side

The technique used for determining the left hand sides is the same as before
because the Totality Condition, which is used for the purpose, is the same ’as before. The left
+ hand sides are derived so that the set of expressions appearing as arguments to every
- implementing function is well-spanned.21 Fig. 17 gives a possible set of left hand sides for a
preliminary implementation for thé example under consideration. As before, we use the .

question mark identifiers as place holders for expressions to be determined yet.

Fig. 17. A Partial Preliminary Implementation

Representation

Array_Int X Integer X Integer

Definitions
NULLQ() — ?rhs,

ENQUEUE(<Yy, i, >, €) — ?rhs,

FRONT(v, i, i>) — ?rhs,
FRONT(< Assign(v, ¢, j), i, j+1>) — ?rhs,

DEQUEUE(Yy, i, i>) — ?rhs, '
DEQUEUE( Assign(v, ¢, j), i, j+ 1) — ?rhs,

APPEND(YL, il, j1>, <¥2, i2, i2>) — ?rhs, .
APPEND(V1, i, j1>, <Assign(v2, e, j2), i2, j2 + 15) — 7rhs,

EMPTY(y, i, >) — ?rhs,

21. Note that if a set is well-spanned, then it is well-spanned with respect to any set of generator
constants, ’
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- 5,2.2.2 Determining the Right Hand Side

The general strategy used to derive the right hand sides is the same as before. They
 are derived so that the Homomprphiém Condition, the Invariance Condition, and the second
part of the Totality Condition (which is left unensured while determining the left hand side)

are ensured. The right hand side on a rule is determined by deriving a synthesis equation
| corresponding to the rule. A synthesis equation corresponding to a rule F(gl, ceey gn) — 2t is
" an equation of the form J6(F(g,, . .., g,)) = J6(qt) that satisfies the following conditions:

1) )N .. A3@E)= :}G(F(gl, cees gn)) = J6(?t) is a theorem of PW.

(2) If the range type of F is the representation type, then
IgI)N .. A= 3(t) = True is a theorem of PW,

3) F(g,--., gn) >, > is the termination ordering on expressions,

(4) 7t may only contain only the permitted operation symbols of the implementing

types, and the implementing function symbols.

Note that the synthesis equations have additional constraints here because of 3. So,
the derivation of the synthesis equations is going is going to have to be performed slightly
differently. This is the topic of the next section.

5.3 Deriving the Synthesis Equations

The general strategy used for deriving a synthesis equation is the same as before.
That is, we generate a series of theorems of PW until we encounter one mai qualifiestobe a
synthesis equation. We use the same pair of synthesis rules for generating the theorems of
PW. The only difference lies in the set of rewrite rules used for expansion while generating
the theorems. Earlier, the rewrite rules in PW were used. But now, it is necessary to use an
additionalset of rewrite rules.

There are two reasons for this. Firstly, a synthesis equation
_%(F(gl, cees gn)) = J6(?t) to be derived is a theorem of PW in a special context: A context’
determined by the fact that gp - .-» 8, satisfy the invariant 3. In deriving the synthesis
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¢ equations, one has to use rewrite rules describing this context besides the rewrite rules in PW.
- Secondly, 2t has to be determined so that 3(?t) = True is a theorem. For this, it is necessary
; to use the rewrite rules in the specification of 3. These additional rewrite rules, which
describe information pertaining to the invariant, are maintained as a separate entity called the
Temporary World (TW). We will discuss more about TW -its composition, and its
construction - later. It is sufficient to say the following at this point: TW consists of rules that
specify 3, and rules that assert that - - satisfy the invariant. The rules in TW are used
for expansion as well as to ensure that 2t satisﬁes 3. A
It should be noted that part of the Temporary World used in the derivation of a
preliminary implementation could be different for different rules in the preliminary
implementation. This is because the argument expressions appearing on the left hand side
(8- - .,gn) are usually different for different rules. Consequently, the part of TW that
changes has to be constructed afresh at the beginning of the derivation of every rule. (The

temporary life time of a part of TW is what prompted us to name TW a Temporary World.)
5.3.1 A Simple Illustration

In the following, we show the derivation of a synthesis equation corresponding to
the rewrite rule ENQUEUE(v, i, D, €) — ?ths, in the partial preliminary implerhentation
shown in Fig. 17; The derivation provides a‘nv illustration of how the generation of theorems
is influenced by TW. It also illustrates for the first time performing expansion using rewrite
rules that have conditional expressions in them. |

The TW used for the derivation is shown below. For easé of reference, also given
below are rules excerpted from PW (Fig. 16) that are relevant in the present derivation.
Rules numbered (9) and (10) in TW are the specification of 3. The rule numbered (11) asserts
that the argument <v, i, > to ENQUEUE satisfies 3. The fourth rule is a property of the
invariant: Any triple <v, i, > that satisfies J is such that i < j. This can be proved as a theorem
from the specification of 3. We will see how this is obtained in a subsequent section where we

discuss more about the Temporary World.

The Relevant Rules of PW
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(1) 36(<y, i, D) — Nullq
(2) Wo(<Assign(v, ¢, j), i, j+1>) — ifi = ]+ 1 then Nullq
else Enqueuc(fﬂ':((v i, ), 36(e))

" (3) J(ENQUEUEx, ¢)) — Enqueue(6(x), J6(e))

~ (4) if_then_elsc(False, v1, v2) — v2
(5) if_then_else(True, v1, v2) — vl
(6) J6(if_then_elsc(b, v1, v2)) — if_then_else(b, J6(v1), J6(v2))

(MNx=y+1 - not(x <y)
(8) not(Truc) — False

The Temporary World

(9) Iy, i, D) — True
(10) I(< Assign(v, ¢, j), i, j+ 1D) — i < j+1 A i = j+1 V IKv, i, P)]

(11) 3Ky, i, ) — True
(12) i< j— True

Shown below is a generation of a series of theorems by invoking the synthesis rules
using the rewrite rules shown above for expansion. The generation results in the derivation
of a synthesis equation of the form we desire. The first theorem in the series is obtained by

-invoking Synthesis Rule (1) for the expression J6(ENQUEUE(Ly, i, 2, €)); the normal form
of this expression is Enqueue(36(<v, i, ), 36(e)). The rest of the theorems in the series are
obtained by invoking Synthesis Rule (2) using different ruies in PW and TW for expansion.

An explanation about our choice of the rewrite rules for expansion in the following
derivation is in order. Recall that the ultimate objective of expansion is to drive the symbol
J in the right hand side of the equation in Step (1) to the outermost level of the expression.
Inspection of the rules of PW reveals two possible sets of rules which could be used for this
purpose. The first one is the ¥-rules, in particular, Rule (3) of PW; however, applying this
rule in Step (1) will yield an expression identical to the one on the left hand side which is not
acceptable. The other possibility is applying the rules of the homomorphism specification,
i.e., either Rule (1) or (2) of PW. Rule (1) is clearly not applicable. Rule (2) is also not
applicable. A closer look, however, reveals that Enqueue(36(<v, i, ), 36(e)) has the form of

the expression in the else-arm of the conditional expression on the right hand side of
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. Rule (2). Hence, we make an attempt to expand Enqueue(36(<v, i, ), %(€)) to an expression
of the form if_then_else(..., ..., Enqueue(36(<v, i, ), 36(e))). The manipulations performed in
. Steps (2) through (4) are precisely aimed at this.

Form of synthesis equation to be derived: J(ENQUEUEKY, i, D, ¢))
Normal form of J6(ENQUEUEKy, i, D, €)): Enqueue(36(<v, i, D), 36(e))
Rules used for simplification:

| Step (1) Invoke Synthesis Rule (1) on J6(ENQUEUE(y, i, >, €))
: J(ENQUEUEKY, 4, 2, €)) = Enqueue(J6(<v, i ), 36(¢))

Step (2) Expand Expression: Enqueue(J36(<v, i, ), 36(¢))
Using Rule: (4)

J(ENQUEUEKY, i, >, €)) = if False then v1 else Enquene(36(Kv, i, ), J6(e))

Step (3) Expand Expression: False
Using Rule: (8)

J(ENQUEUEKY, i, 2, €)) = if ~(True) then v1 clse Enqueue(36(<v, i, 2), 16(e))

Step (4) Expand Expression: True
Using Rule: (12)

J(ENQUEUEKY, §, D, €)) = if not(i < j) then v1 ¢lse Enqueue(Z}G(( v, §, ), 36(e))

Step (5) Expand Expression: ~(i < j)
~ Using Rule: (7)

J(ENQUEUEKY, i, 2, €)) = if i = j+1 then v1 else Enqueue(36(<v, i, D), J6(e))

Step (6) Expand Expression: if i = j+ 1 then v1 else Enqueue(36(<v, i, D), J6(e))
Using Rule: (2)

J(ENQUEUEKYy, i, D, €)) = Jo(<Assign(y, ¢, )), i, j+ 1))
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* Note that the right hand side of the last theorem in the above series is

such that

ENQUEUEKY, i, P, €) > <Assign(v, e, )), i, j+1>
I Assign(v, ¢, ), i, j4+1>) —* True

" Hence, we have the following preliminary implecmentation for ENQUEUE:

ENQUEUE(Ky, i, >, ) — <Assign(y, ¢, )), i, j+ 1>

Let us, for a moment, draw the attention of the reader back to steps (2) through (4)
in the above derivation. Their aim was merely to expand Enqueue(36(<v, i, ), 36(e)) to a

conditional expression that had the former expression as its else-arm. The purpose of such a

'transformation was to make it possible to apply (for expanding) a rewrite rule that had a

conditional expression on the right hand side. A situation such as this is encountered
commonly during the generation of theorems. This is especially so when the rules of the
input specifications have conditional expressions in them. Hence it is useful to extend the
definition of the mechanism expand so that rewrite rules with conditional expressions on their
right hand side can be applied directly to an expression that is not a conditional expression.
We describe the extension below. In future illustrations of the derivation of synthesis
equations, we will be vsing the extended version of expand.

Suppose e, — if_then_else(b, e, , ,,) is a rewrite rule, and a is an expression that is

w
being expanded by using the former rule. According to the existing definition of expand, the
following protocol is used for expanding a:

Protocol 1:

(1) Check if a (or a subexpression in it) is unifiable with if_then_elseﬂ),'en, ezz); if so,
let @ be the most general unifier.

(2) Replace 6(a) (or the subexpression in it) by o(e,)

Note that according to the above protocol a is expandible only if « (or a subexpression in it)
is of the form if_then_else(...). Now, we introduce two additional ways in which the rule can
be used for expansion. |

Protocol 2:
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(1) Check if a (or a subexpression in it) is unifiable with e,,; if so; let 8 be the most

2w
general unifier.

(2) Check if 8(h) —* True, or ~(4(b)) —* False.

(3) Ifso, replace 8(a) (or a subexpression in it) by 8(e,).

Protocol 3:

(1) Check if « (or a subexpression in it) is unifiable with e,,; if so, let § be the most

pr8
general unifier.

(2) Check if 8(b) —* False, or ~(8(b)) —* True.
(3) If so, replace 8(a) (or a subexpression in it) by 6(e,).

Using Protocol 3, the preliminary implementation of Enqueue derivéd earlier can be
obtained in just two steps as shown below. The theorem in step (1) is obtained as before. The
theorem in the second step is obtained by using Rule(2) of PW for expansion under
protocol (3).  Note that the boolean expression under .consideration is 7= j+1;
i = j+1—* False by Rules (7), (12) and (8).

Form of synthesis equation to be derived: J6(ENQUEUE(KY, i, >, €))
Normal form of I(ENQUEUEKY, i, >, ¢)): Enqueue(36(<v, i, D), 36(e))
Rules used for simplification:

Step (1) Invoke Synthesis Rule (1) on J(ENQUEUEKY, i, >, €))
J(ENQUEUEKY, i, 2, €)) = Enqueue(36(<v, i, ), 36(e))

Step (2) Expand: Occurrence: A )
Expression: Enqueue(36(<v, i, ), J6(e))
Using Rule: (2), Protocol 3

J(ENQUEUEKYY, i, >, ) = (K Assign(v, ¢, ), i, j+1D)

It should be pointed that the addition of protocols (2) and (3) does not enhance the
generality of the oﬁginal definition of expand. In other words, we can show the following:
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- Suppose # can be obtained from a:in a finite number of expansion steps using a rewriting
+ system R under protocols (1), (2) and (3). Then, 8 can also be obtained from « in a finite
+ number of expansion steps using only protocol (1), provided R contains the following rules
that specify if_then_else:

if_then_else(True, v,,v,) — v,

if_then_else(False, v, v,) = v,

The reason for introducing protocols (2) and (3) is to reduce the number of
expansion steps needed in the generation of theorems. The two rules of if_then_else given
above make expansioh uneconomical because the right hand side of each of them is a
variable. This makes each of them a candidate for being used for expansion at every step of
. the theorem generation process. Use of protocols (2) and (3) in effect limits the use of the
above tw6 rules to cases where there is a rewrite rule with an if_then_else in its right hand

side, and which could be used for further expansion.
5.3.2 More on the Temporary World
5.3.2.1 The Purpose of TW

The Temporary World (TW) serves two purposes: Firstly, it holds information
about the invariant 3. Secondly, it provides a means of keeping a log of certain assertions that
-are needed for temporary stretches during the course of the derivation of an preliminary
implementation. Some of these assertions are generated automatically by the procedure;
others are supplied by the user. |

The information about J and the assertions are entered into TW as rewrite rules.
(The derivation procédure may use the rules in TW for expansion like the rules of PW, the
Perturbed World.) The assertions needed may change during the course of the derivation of a
preliminary implementation. Some of the assertions needed can only be determined during
the course of the derivation. Because of these reasons, TW is treated as a dynamic world, i.e.,
~aworld that changes during the course of the derivation of a preliminary implementation. In
contrast, PW keeps a log of the facts needed through the dérivatio’n of the entire preliminary

implementation.
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There are three reasons why temporary assertions might be needed during the
_ derivation. Firstly, the equation J6(F(g,, . . . , g )) = 36(?t) being searched for is a theorem of |
PW only under the hypothesis that the arguments to F satisfy 3. The second reason arises in
checking if ?rhs satisfies 9, i.e., if‘ 3(?rhs) = True is a theorem. This check has to be
_ performed under the hypothesis that the arguments to F satisfy 3. Also, performing this
: check may need the use of the inductive logic. In such a case, it is necessary to set up
appropriate hypotheses for the induction.,

The third reason for the need for aséertions arises while one is attempting to expand
a subexpression of a conditional expression if_then_else(b, e, e,). Under such a situation, we
may assume that b is False while expanding a subexpression in the else-arm, or that b is True
while expanding a subexpression in the then-arm. ~For instance, consider the expression
if_then_else(i=j+1, e,, Enqueue(36(<v, i, ), 3(e))). In this case, the subexpression
Enqueue(36(<v, i, D), :H;(el)) is expandible by the rewrite rule
J6(<Assign(v, e, j), 1, j+ 1) — if i = j+ 1 then Nullg else Enqueue(36(<v, i, j>), J6(e))
only if we make the hypothesis that i = j+ 1 —* False.

5.3.2.2 Construction of TW

TW consists of two parts: A static part, and a dynamic part. The static part remains
unchanged for the entire duration of the derivation .of the preliminary implementation. The

dynamic part may change during the derivation.
5.3.2.2.1 The Static Part

The static part consists of information about the invariant 3. It consists of

(1) A set of rewrite rules that constitute the specification of 3. The specification of 3
involves other data types which are among the implementing types. We assume that
the static part contains their specifications also. In the examples we discuss, only the

relevant rules from these specifications are displayed.
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(2) A setof rewrite rules that express additional properties about 3.

The rewrite rules mentioned in (1), above, can be constructed automatically from
j' the association specification. The iq’formation in (2) is something the user has the option of
sﬁpplying additionally for deriving a preliminary implementation in the presence of a
nontrivial invariant. This information is needed for the following reason: There are several
preliminary implementations whose derivation is dependent on lemmas that express
_interesting properties about the inQariant. Altflough it might be possible to prove these
lemmas from the speciﬁcati(')n of 4, the derivation procedure cannot automatically discover
~ the desired lemma. The rewrite rules in (2) specify these lemmas.

The stat'ic part of TW used for the current example is given below. Rules (1) and (2)
are constructed from the specification of § given as part of the association specification in
Fig. 15. Notice that the right hand side of rule (2) is a simplified version of the right hand
side of the corresponding equation of the specification of 3. The rules used in the
simplification are (10), (11), (8), and (4). Rule (3) speciﬂés a property of 3. It asserts that if a

- triple <v, i, j> satisfies 3, then i < j. The property can be proved from the specification of 3
using the KB-method. Rules (4) through (11) belong to the specification Integer and Bool.
These rules will be used in the examples that-follow. |

- (1) 3Ky, i, D) — True _
(2) IKAssign(v,e,)). L, j+ D)= i <j+1Afi = j+1V IKv, i, P)]

3) IV, i, P) =i <j— True
@Dx=yVx<Ly—+xLy

(5) True V x — True

6) ~x V x — True

M ~xAy)— ~x V ~y
B®xVFFAZD—- VYAV
9 (xAy)=>y— True

(10) if_then_else(b, True,e)) =+ b V e,
(11) if_then_else(b, e, False) = b A e,
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1 5.3.2.2.2 The Dynamic part : ‘

' This is the part that may chémge during the course of the derivation of a preliminary

| implementation. It may vary frbm the derivation of one rule of the preliminary
implementation to another; within the derivation of a single rule, it may vary from one
theorem generation step to the next. By a theorem generation step, we mean the following:
Recall that the derivation of a rule involves generating a series of theorems. The generation
of every theorem in the series is considered as a theorem generation step in the derivation of
the rule, .

The dynamic part is empty at the beginning of the derivation of every rule of the
implementation derfinition. Assertions (in the form of rewrite rules) are added to and
removed from the dynamic part at specific instants during the derivation of a rule. Every
assertion that is added during the derivation of a rule is removed by the end of the derivation.
Every time an assertion is added to TW, it is important to ascertain that the addition does not
render TW inconsistent. To ensure consistency, we run the predicate
Is-an-inductive-theorem-of22 (see sec.4.4.3.2) on TW every time an assertion is added to TW.,
(Note that TW is convergent to begin with. This is because the static part, which consists of
the specification of 3, is guaranteed to be convergent.) The assertion is added only if the
Is-an-inductive-theorem-of succeeds. In some cases the is-hn-inductive-theorem-of may
succeed by generating a finite number of new assertions. In several situations it is useful to
add these new assertions also to TW. If these assertions are, indeed, added to TW, then they
should also be removed along with the original assertion.

The assertions in the dynamic part can be classified into two mtegdries based on the

life time of their existence. We describe the construction of the two categories below.

Arguments-Assertions

These assertions are added at the beginning of the derivation of a rule. They remain

22. We assume that the predicate Is-an-inductive-theorem-of is run iteratively a fixed number of
times that is finite. '
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+in TW until the end of the derivation of the rule. We call these assertions
- Arguments-Assertions because they are dependent on the expressions supplied as arguments
¢ to the implementing function for which the rule is being derived. For instance, if the rule
. being derived is of the form F(gl,. vis gn) — 7t, then the assertions are dependent on
Bpperes By

Arguments-Assertions can be of two kinds: The first kind assert that g,...,8,
: satisfy 3. These are entered in TW as the rewrite rules 3(g,) — True,..., i(g ) — True. It is
" easy to see that these assertions can be constrl;cted automatically.

The second kind consist of assertions that are supplied by the user. These are used
for ensuring that every rule of the preliminary implementation preserves the invariant 9, ie.,
(g IA..AXg) = I(F(g,,...,8)). The assertions express the induction hypotheses that
might be needed for checking the above property. The reason that the user might have to
supply these assertion is the following. Recall that our method ensures the invariance
property by deriving evefy rule Fg,..., gn) — 2t so that 3(?rhs) = True is a theorem of TW.
(Note that TW already includes rewrite rules asserting that Bperos B, satisfy 3.) If the
preliminary implementation desired is such that 3(?t) = True can be proved automatically
from TW using the equational logic or the KB-method for proving inductive properties, then
no additional assertions are needed. However, if the preliminary implementation desired is
such that the proof of 3(?rhs) = True rieeds induction hypotheses that cannot be generated
) aixtomatically by the KB-method, then assertions exi)ressing the induction hypotheses have to
be added to TW. |

_ The assertions used as induction hypotheses in all our examples are constructed by
invoking the inference rule given below. The inference rule expresses a general induction
principle that uses the termination ordering > as the well-founded partial ordering for the
induction. Informally, the inference rule can be stated as follows.. Suppose F(gl, cees g.) —
7t is the rule being derived. Then, in trying to ensure J(F(gl, ees ,gn)), we may assume
I(F(v)5...,v) for any argument <v,...,v,> that satisfies J, and that is "less than”
<g;...,8,> in the ordering >-.

b<gl,. B > Ve oy WD>
VPALAI(v) = I(F(V,, ..., V)
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= As an illustration, let us construct aset of Arguments-Assertions for the derivation of a rule
- for APPEND. We will be using these assertions later when we illustrate the derivation of the
» preliminary implementation for APPEND. Suppose we are attempting to derive a rule of the
- following form:
APPEND(Kv,, i, j>, <Assign(v,, ¢, j,), ip, j,+1>) — rhs

| Then, the Arguments-Assertions may include the following rewrite rulés. The first two
assertions state that the arguments supplied to APPEND satisfy 3. The third assertion is used
as an induction hypothesis. ° '

(v, iy, ) — True

I(<Assign(v,, e, ), iy, Jj,+1>) — True

I(<v,, iy, ;) = SAPPEND(Ly,, iy, j}>, <y, iy, jp?)) — True

Conditional-Expressions-Assertions
The second category of assertions in the dynamic part is the
‘Conditional-Expressions-Assertions. A need for these assertions arises while expanding a
subexpression of a conditional expression in the generation of theorems, These assertions are
added to TW at the beginning of a theorem generation stej, and removed at the end of the
step. The Condiﬁonal-Expressions-Assertions needed in a step are determined by the
occurrence of the subexpression that is chosen to be expa'nded for generating the theorem in
that step. For instance, suppose the following is the theorem generated in the first step
‘during the derivation of a rule for APPEND.
J(APPEND(K Vps i s {Assign(v,, ¢, jz), iy Jy+ D))

= if_then_else(i, = j,+1, Enqueue(S(APPEND(S, i, /3, ¥y, 1 j>))s ©)
Suppose we decide to generate the theorem ‘in step (2) by expanding the subexpression
W(APPEND(Kv,, i}, /2, <v,, i J,>)) on the right hand side of the theorem in step (1). Then,
we may add to TW the assertion i, = j,+1 — False. The reasoning behind the addition of
this assertion should be apparent by now. The subexpression chosen for expansion appears
in the else-arm of a conditional expression. Hence, while expanding the subexpression we

may (if we wish) assume that the corresponding boolean expression is False. In general, we
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: may have to add more than one such assertion in a step because the subexpression could be
- embedded within more than one conditional expression. Suppose a is the subexpression
. chosen to be expanded. Then, the Conditional-Expressions-AssertionS for the step are

- determined as follows:

() For every conditional expression if_then_else(b,, ...a..., ...), of whose then-arm « isa

part,add b, — True.

(ii)) For every conditional expression if__then_else(bz, vy we@ta.), Of whose else-arm a is a

part, add b, — False.

5.3.3 Preliminary Implementation of Append

This section derives a pair of synthesis equations corresponding to the two rewrite
rules in the partial preliminary implementation that define APPEND. It illustrates a more
interesting utilization of the invaﬁant 3 than was seen in the derivation of the rule for
ENQUEUE. The derivation also demonstrates how a where construct can be introduced into
a preliminary implementation, and why it is useful to do so.

Recall the reason for introducing the where construct into the preliminary
implementation langﬁage: To alleviate the limitation of the constraint that a preliminary
implementation may not contain any helping functions or observers of the representation
type. The constraint, in particular, makes it impossible to select the components of a tuple
returned by an expression that appears on the right hand side of a rule.

For instance, suppose we wish to construct a triple using the components of the
triple returned by APPEND(<v,, is s (vz,‘ lyy jz))- A where construct permits us to do this
by rewriting the above expression in the following fashion.

<v, iy > where <y, i, > is APPEND(Cv,, iy, ji 2, <vp i jp?)

Then, the first argument can be further transformed to construct the desired triple. For
instance, -

<Assign(v, € Db j+ 1> where<y, i, D is APPEND((vl, by g2y KV by jz»

The new terminals v, i, j introduced should be distinct from the terminals that
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«already exist in the expression that fis being transformed. It should be noted that a where
- construct can always be eliminated from an expression provided we are permitted to use the
- selector operations of the tuple type: This elimination can also be performed automatically.
{ For instance, the where construct in the above expressions can be eliminated by systematically
. replacing every occurrence of v, i, and j in the first argument to the where construct by the
- following expressions: First(APPEND(Cv,, i, j;3, <v,, i}, j,;>)), Second(APPEND(<v,, i, j,>,
vy by ) Third(APPEND((vl, iy J4 <vy iy j¥)). (First, Second, and Third are
operations that select the first, second, and thi.rd components of a triple.)
Below, we give two rules concerning a where construct. The rules can be used at any
step during the generation of theorems to transform the expression on the right hand side of a
theorem. The first rule specifies how a where construct can be introduced into an expression.
The second rule specifies how the position of where can be moved within an expression

without .altering its semantics. Suppose

(1) Fisan implementing function whose range is a triple type,

_(2) g is an arbitrary function,

Q) e e,...,e, are arbitrary expressions,

(4) v, i, jare terminals that do not appear in the equation e = g(..., F(e,.. ., ek) yors)r
Where-Rule (1)

e = g(.. Fle,..., ) )
e = 8w, <V, i, > where <v, i, D is F(el, cees @) sooe)

Where-Rule (2)
e = (..., <v, i, > where <v, j, P isF(el,...,el),...)

e = g(, <V, i, 2 ,...) Where <y, [, D is F(el, ceny ek)

A few remarks are in order at this point regarding expanding an expression that
appears as a subexpression of a where éonstruct.' Firstly, an instance of a where construct is
treated, for syntactic purposes, as an application of a function Where_is with three arguments.

For instance, <Assign(y, e, ) i, j+ 1> where <, i, > is APPENDCy,, iy, ) <Vp iy Jp) i
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treated as the expression Where_is(<Assign(v, €y Dbj+D, <y, i, P, APPEND((VI, ip Js

<y iy, j?))- Secondly, the second argument to Where_is may not be expanded; only, the

. first and the third may be expanded. In the above example, for instance, <v, i, /> may not be
expanded. This is because the second argument to Where_is has to be a tup]e of terminals (o_r
variables). It does not make sense to have a nonterminal cxpression as a part of the second
argument; expansion will introduce a nonterminal expression,

The third remark concerns the possibility of making temporary assertions while
expanding subexpressions of a where expression. Consider the example given above.
Suppose we decide on expanding the expression <Assign(v, € N, i, j+1>. The terminals v, i,
and j in this expression are such that <v, j, /> is acting as a place holder for APPEND(Kv,, i,
Jps vy iy jp2). 1f APPEND(Kv,, i Ji2s vy iy J,>) happens to be such that J(APPEND(Kv,,
I 125 <y by j2>)) is Tfué, then we may assume that 3(<v, i, D) is also True as long we are
expanding the first argument to the where expression. This assumption may, in general,

. enhance the possibility for expansion. Thus, expansion of a subexpression of a where
expression may result in an update of the Temporary World (TW). For instance, in the above
example, if we J(APPEND((VI, I Jy2s <vy Iy

update TW with the assertion (<, i, ) — True. This is used in the derivation to follow.

, j2>)) =True is a theorem of TW, then we may

ArgsSet = { Argl: <<v,, i, j>, <V, i, ;3>
Arg2: v, i, j>, (Assign(vz, e, jz), L+ 1D}

Relevant Excerpts of the Perturbed World

(1) I6(<v, i, i>) — Nullq
(2) 36(<Assign(y, e, j), i, j+ 1>} — if_then_else(i = j+ 1, Nullg, Enqueue(36(<v, i, p>), Jo(e)))

(3) J6(APPEND(x, y)) — Append(¥6(x), J6(y))
(4) J6(if_then_else(b, v vz)) —+ if_then_else(b, 3G(v1), 3G(vz))

1

Derivation of the rule corresponding to Argl

Form of the theorem to be generated: J6(APPEND(v,, i, 7,2, <v,, i, i>)) = 36(?rhs,)
JAPPENDMC Y, i, 1., <v,, iy iDD: B6(Cv,, i, )
Rules used for simplification:
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Initial State of the Temporary World

J(Kv, i, D) — True
“IKAssign(v, e, ), Lit D)= i<J+1IAfi=j+1V IKy, i, P)]

9Ky, i, P)=> i < j— True

3Ky, i, j>) — True

1’ 'l

Step (1) Invoke Synthesis Rule (1) on J6(APPEND(Kv,, i, 3, <v,, i,, ;7))
IAPPEND(C, i), >, <v, iy, D)) = J6(<,, i, i)

APPEND(Cv;, 1, /i, <V 1, 1) = <o, i, J>

Derivation of the rule corresponding to Arg2
Form of the theorem to be generated: J6(APPEND(K Vo bys s (Assign(vz, € J,)s b j2+1>)) = %(?rhsz)
%(APPEND((vl, iy, J,>, <Assign(v,, e, jz), i j2+1)))¢:
if_then_else(i, = j, +1, 36(<v,, i, j>),
- Engueuc(Append(36(<v,, i, j>), J6(<v,, iy, i), J6(e))))

Rules used for simplification:

Initial State of the Temporary World

Static Part

(5) 3(Kv, i, i>) — True _
(6) 3(<Assign(v, e, j), i, j+ D) =i <j+1 Afi =j+1 V IKy, i, D))
MKy, i, >) =i < j] — True

Arguments- Assertions
(8) 3(<v,, i, j,2) — True
9) 3((Assign(vz, e, j;), 0y, + 1>) — True
("The following is as a consequence of Rule (9)")
Oa) i, <j,+1 A, = j,+1V I, i, j>)] — True
5 JyY) => (APPENDK v, i, j,3, <v,, i, j,2)) — True

2’ 7

(10) 3Kv,,

» i
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- Step (1) Invoke Synthesis Rule (1) on thic expression J6(APPEND(< Vps bo i K, iz)))
J(APPEND(Cy, i, j, <v, i,y iD)) =
if_then_else(i, = B+, ¥6(<v, i J2)
" Enqueue(Append(36(<v,, i, 7)), 36K v, iy 1,2)), 36(e)))

- Step (2) Expand: Occurrence: 3.1
Expression: Append(36(< Vs £ J2)s (K Vy s J;2))
Using Rule: (3) .

JS(APPENDAC,, i, j,>, <Assign(v, ey} by H 1)) =
if_then_else(i, = j,+1, 36(<v,, £, j2)
' Enqueuc(J6(APPEND(K Vs by 725 <,y I, jz))), f}G(ez)))

2?2

Step (3) Transform: Occurrence: 3.1.1 :
Expression: APPEND(Cv,, i, j,>, <v,y i, j,>)

2* 2
Using Rulc: where-rule (1)

J(APPENDALy,, i, j >, (Assign(vz, €, jz), i ytD) =
if_then_clse(i, = j,+1, J6(<v,, i, j,>), Enqueue(J6(<v, i, ), J5(e,))

where <v, i, > is APPEND(v,, i, j,>, <v, i,, j,?))

22

Step (4) Expand: Occurrence: 3
Expression: Enqueue(36(<v, i, D), 35(9;»
Using Rule:

TW Update:
Added because expression is in scope of else-arm
i, = j,+1False
i SL+1AIKy, i j>) — True
3(<v,, iy jp?) — True '
J(APPEND{K Vo s 2 €V i, ;) — True
Added because expression is in scope of where
IKv, i, p) — True
i<jTrue

J6(APPENIXCY,, iy, J,2, CAssign( Vp & i+ D) =
if_then_else(/, = j,+1, J6(<v,, i, D), Jo(<Assign(y, e, ), i, j+1>)
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where <y, i, P is APPEND((vl, iy Ji2s <y iy jl)))

Step (5) Transform: Occurrence:
‘ Using Rule; where-rule (2)

J(APPEND(K Ve s 32 <Assign( Vys €y jz), iy, + D)=
if_then_else(i2 = j+ 1, 36K Vps b jl)), J6(<Assign(v, € M i j+1d))

where <v, j, /> is APPENID(K Vs e Ji 25 <V 1 j2>)

22

- Step(6) Expand: Occurrence: A
Using Rule: (4)

J(APPEND(K v, i, j,>, <Assign(v,, e,, },); i,, j, +13)) =
Z]G(if_thcn_elsc(i2 =j+1,<v, 0,5, <Assign(v, e D, i j+1>))

where <y, i, > is APPEND{ Vps bis i3 KV iy jz>)

APPEND(v, i, j,>, <Assign(v,, e, ), i, j,+1>) —
ifi = j+1then<v, i, j>
else <Assign(v, €, D, i, j+1> where <y, i, 2 is APPEND(K Vps B 1y 2 ¥y by jz))
Definition of APPEND
APPEND(v,, i, j>, <v, i, i) — <v,, i, >

APPEND( v, by Js <Assign(v, e, ), i, Jj;+1>) —

if p=j+ 1 then <y 05 42

else <Assign(v, &, N, i, j+1> where <y, i, » is APPEND(K Vps o ;24 Vs by jz>)

2* 2
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1 6. Stage 2: The Target iniﬁiéniéﬂtatidn

The second stage of the synthesis procedure transforms the preliminary
, implementation of the implemented type into a target implementation. For instance, in the
~ example implementing Queue_Int in terms of Circ_List, the preliminary implementation
derived in the last chapter (shown Fig.5 of chapter 2) is transformed into a target
implementation such as the one shown in Fig. 0.
There are two differences between a preliminary implementation and a target
- implementation. The first one is that in a preliminary implementation the only operations of
the representation type allowed to appear are the generators of the type. The target
implementation may also contain nongenerators of the type. The second difference is in the
function definition methods used by the two forms of implementation. In a preliminary
implementation a function is defined by means of a set of rewrite rules. For example the

preliminary implementation of ENQUEUE (Fig. 5) is:

ENQUEUE(Create, j) — Insert(Create, j)
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(c, j), i)

In a target implementation a function is defined by means of a single expression. For
example, ENQUEUE is defined as: ENQUEUE(d, k) :: = Rotate(Insert(d,k)). The
transformation performed takes into consideration both of these differences.

It should be noted that a preliminary implementation is an executable

Fig. 18. An Implementation
NULLQ() :: = Create()

ENQUEUE(c, j) :: = Rotate(insert(c, j))
FRONT(c) :: = Value(c)

DEQUEUE(c) :: = Remove(c)
APPEND(c, d) :: = Join(d, c)

SIZE(c) :: = if Empty(c) then O
else SIZE(Removel(c)) + 1
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.1 implementation. It can be executed by an interpreter that simplifies algebraic expressions

. using the rewrite rules in the preliminary implementation and the specifications of the

- implementing types. The interpreter must have a pattern matching capability to invoke the

: appropriate rewrite rule while simplifying an expression. The program verification system
AFFIRM [39], and the programming system PROLOG [?7] provide such an interpreter.
Given the specifications of all the implementing types, the interpreter can execute the
preliminary implementation on any given input. For example, the value returned by the
operation (of Queue_Int) Front on the queue constructed by Enqueue(Nullq, 1) is obtained
by finding the normal form of FRONT(ENQUEUE(NULLQ( ), 1)) using the preliminary

- implementation: The nonhal form is 1. Depending on the range type of the operation, the
normal form can, in general, be a generator constant of any of the implementing types. The
normal form can then be evaluated assuming there exist implementations for the
implementing types. |

Our goal is to derive the target implementation in a form that can be compiled by a
compiler for an applicative language. The motivation for this is primarily one of efficiency.
There are two reasons why a target implementation is more efficient than a preliminary
implementation. The first one arises because of the freedom to use nongenerators of the
representation type in a farget implementation. This ena{bles one, in some instances, to
eliminate recursion from the preliminary implementation of an operation, and to transform it
into a target implementation which is merely a composition of the operations of the
implementing types. The impleméntation of ENQUEUE shown above is an instance of such
a situation. The use of the operation Rotate in the target implementation eliminates the
recursion which was essential in the preliminary implementation. The second reason is that
an implementation that can be compiled by means of a conventional compiler is in general
more efficient than interpreting a set of rewrite rules.

We develop two methods of deriving a target implementation from a preliminary
implementation: The Recursion Preserving Method, and the Recursion Eliminating Method.
Both the methods are based upon expansion using rewrite rules. The target implementations
derived by the first method preserve any recursion that may exist in the corresponding

preliminary implementations. The second method can eliminate recursion from a
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- preliminary implementation of an operation if there exists a nonrecursive implementation for
- the operation. The second method is more general because it can also derive the

implementations derived by the first. method. The advantage of the first method is that it is,
. in general, faster than the second in situations where the two methods derive the same target

implementatjon.
6.1 The Recursion Preserving Méthod

This method uses a special set of functions, called the inverting functions, on the
implementing types for transforming a preliminary implementation into a target
implementation. To understand what inverting functions are and how they are useful in
deriving a target implementation, let us take a closer look at the difference in the function
definition methods used by the two forms of implementation. The preliminary

implementation for SIZE is

SIZE(Create) — 0
SIZE(Insert(c, i)) — SIZE(c) + 1,

and a possible target implementation for it is

SIZE(d) :: = if Empty(d) then 0
else SIZE(Remove(d)) + 1.

In the preliminary implementation, the argument to SIZE on the left hand side of a
rule may be a generator expression. The argument indicates the structure of the expression
that constructs the values for which the rewrite rule is applicable. This fréedom serves two
purposes in a preliminary implementation. Firstly, it is used for performing a case analysis
based on the structure of the argument. Secondly, the explicit in_dication of the structure of
the arguments on the left hand side makes the decomposition of the arguments trivial. For
instance, in the second rewrite rule for SIZE the variable ¢ used on the right hand side is
actually a component of the argument to SIZE. We were abie to access this coniponent
without actually having to generate code to decompose the argument.

In a target implementation, the argument to SIZE on the left hand side of the
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. definition is a variable. This means that the expression on the right hand side of the
definition must have explicit pieces of "code" to perform the case analysis based on the
 structure of the argument, and to decompose the argument. For instance, in the target
~ implementation of SIZE given above, the subexpression Remove(d) extracts the component
of the argument d that is denoted by the vai'iable ¢ in the preliminary implementation. The
_ subexpression Empty(d) checks if d is a value constructed by Create; the if_then_else
expression performs the desired case analysis. Let us call the subexpr&ssibns that perform
. these functions mentioned above in verting ex;ur.essions. '

A preliminary implementation can be systematically transformed into a target
implementation if the inverting expressions can be generated automatically. The inverting
functions of the i‘rhplementing types serve precisely this purpose. For instance, in the above
example Remove and Empty are two of the inverting functions for Circ_List. The inverting
expressions can be automatically derived in terms of the inverting functions. Thus, the
transformation of a preliminary implementation into a target implementation according to

“this method consists of two steps: First, determine the inverting expressions in terms of the
inverting functions; second, derive implementations for the inverting functions in terms of
the operations of the implementing types. The two subsections to follow describe the two

steps.
6.1.1 Inverting Functions and Inverting Expressions

Inverting functions?> of a data type are a family of functions on the type that are
inter-related in a special way. Inverting functions are defined with respect to a basis of the
type. The relationship among the inverting functions of a family is such that the functions
can be used to algorithmically invert the process of constructing a value from the generators
of the type. In other words, it is possible to construct algorithmically the inverting

23. Inverting functions are related to distinguished functions defined in [24]. A family of inverting
functions for a data type can also serve as a family of distinguished functions. The reverse implication
is not true in general. In [24] distinguished functions are used to formalize the expressive power of a
data type.
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» expressions as a composition of appropriate inverting functions. The inverting expressions

* perform the following functions:

(1) Given a variable v and a generator expression t, check if the value denoted by v can
be constructed by a generator expression that has the form of t. Since an inverting
expression that performs this function is normally a boolean expression, we call it a

boolean inverting expression.

(2) Assuming that a given variable v denotes a value that is constructed by an expression
that has the form of a given generator expression t, determine the various
components of t from v. We call an inverting expression that performs this function
a component inverting expression since it extracts a component of a generator

expression.

For example, the operations Remove, Value, and ~(Empty) can servé as a family of
inverting functions for Circ_List. This is because the inverting expressions for any generator
expression of Circ_List can be automatically constructed from these operations. For instance,

" suppose v is a variable of type Circ_List, and t = Insert(Insert(c, i), j) is the generator

expression under consideration. The following are some of the inverting expressions for t:

¢)) Not(Empty(Reméve(v))) is a boolean inverting expression for t. It checks if v

denotes a value constructed by a generator expression that has the form of t.

(2) Some of the component inverting expressions of t are Value(v) which extracts j,
Remove{Remove(v)) which extracts ¢, and Value(Reinove(v)) which extracts i.

Let us now formalize the properties that characterize a family of inverting functions

for an arbitrary dat_a type. We express the properties in the form of rewrite rules. The

| properties are such that they do not necéssarily characterize a unique set of functions. This is
done deliberately to offer flexibility in choosing an implementation for the inverting
functions. Inverting functions are always defined with respect to a basis for the data type.
Let the basis for the data type be ® = {o, | D0}. Inverting functions can be classified into

- two categories: the component inverting functions and the boolean inverting functions.
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(1) There is a set of n component inverting functions (dl, eeeyd n) associated with every
generator o, in the basis whose arity is n. They are characterized by the following
property: ,

o(d (o (V... Vn)), O KCZCHPPR ) B -1 \ RN v)

A generator whose arity is zero does not have any associated component inverting
functions. The component inverting functions associated with o, factor a value
constructed by o, They return the arguments used by o, in constructing the value.
At the outset it may appear more natural to characterize the component inverting
functions as follows: dj("j("p cony vn)) -V, The problem with such a
characterization is that it may result in ill-defined component inverting functions in
situations where the generators can be used in more than one way to construct the
.same value. For instance, consider the basis 8 = {0, 1, +} for Natural_Numbers.
If d, associated with + is defined as d,(x+y) — X, then we have a situation where
dl(0+ 1) = 0 and dl(l +0) = 1. This will conflict with the rest of thé specification
of type Natural_Numbers which should allow us to prove that (0+1) = (1+0).

(2) There is a boolean inverting function associated with every generator in the basis.
The boolean inverting function, p,, associated with a generator o, returns True on
values that vcan be constructed by a generator expression that has the form
o (Ve ++s V). So, p, is characterized by p(v) — o,(d,(¥), ..., d (V)) = v, where =
is the equality operation on the type. Thus, the recursion preserving method in '
general applies only when each of the implementing types has the equal operation
defined on it. A simpler characterization, which applies only when the basis is such
that every value of the type can be constructed uniquely using the generators is as

follows:
pi(oi(vl, can, vn)) — True.
pi(oj(vl, cans Vn)) — False (i # j)

The basis for Circ_List is B = {Create, Insert}. It has two component inverting
functions (d, and d,) both of which are associated with Insert, and characterized by
‘ Insert(dl(insert(v,‘ i)), d (Insert(y, i))) — Insert(v, i). It has two boolean inverting functions, p,
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and p, one associated with Create and the other associated with : Insert. They are
~ characterized as follows. (Note that the generators of Circ_List are such that every circular list

can be constructed uniquely in terms of the generators.)

p,(Create) — True
p,(Insert(c, i)) — False

pz(lnsert(c, i)) — True
p,(Create) — False

Notice that p, and P, in this case, are complement of each other. So, while deriving
implementations for the inverting functions, we implement only p,; p, is obtained as a
negation of

It is not hard to see how a preliminary implementation can be transformed into a
target implementation in terms of the inverting functions. Fig. 19 gives a general procedure
that does it for an arbitrary preliminary implementation. In the following, we illustrate the
procedure on the preliminary implementation of SIZE. The preliminary implementation

SIZE consists of the following rewrite rules.

SIZE(Creatc; — 0
SIZE(Insert(c, i)) — SIZE(c) + 1

Suppose the left hand side of the target implementation is SIZE(v). The expression on the
right hand side is a nested if_then_else expression that performs a case analysis. There is a
case corresponding to every rewrite rule in the preliminary implementation; In the present

case the right hand side would have the following form:

if bl then e
else if bz then e,

The expressions b, and e, are determined from the first rewrite rule using the inverting
expressions associated with the generator expression that appears as the argument to SIZE on
the left hand side of the rewrite rule. The expressions b, and e, are determined similarly from

the second rewrite rule. We will describe how b, and e, are determined since they are more
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Fig. 19. The Procedure RPM | :

Suppose the prcliminary implementation of F consists of the following rules:

Fg)—t
F(gz) —t,

&
Fg)—t
Then, the target implementation for F is

F(v) ::= if b thens '
else if b2 then 5,
'

L]
’

else if bn then s,

where
M b, is the boolean inverting expression of g which is obtained by the procedure BIE described

below.

) s, is the expression obtained by replacing every terminal in t by the component inverting
expression of g that extracts te terminal. This is obtained by the procedure CIE described

below.

For convenience, we assume that the generators have an arity that is at
most one.

CIE = proc (a: generator expression, 4. Occurrence)
returns (component inverting expression)

Suppose a is o(a,)
d is the d-function associated with o

if u = A then retum(A)
else if ¥ = 1.v then return(d ° CIE(a,, v)

end CIE

BIE = proc (a: generator expression) returns (boolean inverting expression)

if a is a variable then return(})
elseif @ = o(a,)
then return(p ° A ° BIEl(a,, 4))
where p is the boolean inverting function associated with o
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d is the component inverting function associated with o

BIK1 = proc (a: genarator expression, d: inverting function symbol)

returns ( beolean inverting expression)

if o is a variable then return{A)
clseif a = o(a))
then return (p © d © Bik{a,))

where p is the boolcan inverting function associated with o
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interesting than the determination of b, and e,. b, is the expression that determines ifv
denotes a value constructed from an expression that has the form of Insert(c, i), so b, is p,(v).
; e, is identical to SIZE(c) + 1 except for the following modification: The variables ¢ and i,
which denote the components of the expression appearing as argument to SIZE on the left
hand side of the rule, are replaced by the corresponding inverting expressions that extract
. those components from v. That is, ¢ is replaced by d (v) and i is replaced by d,(¥). So, e, is
SIZE(d (v)) + 1. b, and e can be determmed similarly. So the target implementation for

SIZE in terms of the inverting functions is below

SIZE(v) ::= if pl(v) then 0
else if pz(v) then SlZE(dl(v)) +1

6.1.2 Implementations for the Inverting Functions

Implementations for the inverting functions are derived using the recursion
eliminating method described in the next section. Note that the properties characterizing the
inverting functions are expressed by means of a set of rewrite rules. Implementations for the
inverting functions are determined by searching for appropriate compositions of the
operations of the implementing types that satisfy the rewrite rules characterizing the inverting
functions. In the fbllowing we show the theorem generation sequences that derive

implementations for each of the inverting functions uised above.
Derivation for d and d,

Relevant Rewrite Rules used for Expansion

-------

(1) Value(Create) - ERROR
(2) Value(Insert(c,i)) — i

(3) Remove(Create) - ERROR
(4) Remove(Insert(c,1)) — ¢

........

Form of the theorem to be generated: Insert(y, i) = Insert(f* (Insert(v, 1)), f* (Insert(v, )))
Normal form of Insert(v, i): Insert(v, i)
Rules used for the normal form: None
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*Step (1) Invoke Synthesis Rule (1) on 0
Insert(v, i)} = Insert(y, i)

Step (2) Expand Expression: v
Using Rule: (4)

Insert(y, i) = Insert(Remove(Insert(v, i), i)

Step (3) Expand Expression: i'
Using Rule: (2)

Insert(v, i) = Insert(Remove(Insert(v, i)), Value(Insert(y, i)))

The above theorem determines the following solutions for f'l and l"'zz Remove and Value. Therefore,
we have the following implementations for d, and d,.

d(v) = Remove(y)
d,(v) ::= Value(v)

Derivation for p,

Relevant Rewrite Rules used for Expansion

(8) Empty(Create) — true
(9) Empty(Insert(c, i)) — false

--------

Form of the theorem to be generated: . True = f*(Create))
Normal form of True: True
Rules used for the normal form: None

Step (1) Invoke Synthesis Rule (1) on True
True = True

Step (2) Expand Expression: True
Using Rule: (8)
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True = Empty(Create)

" The last theorem determines the following solution for f*: Empty. Note that this function also satisfies
. the other rewrite rule characterizing p,, namely pl(Insert( ¢,i)) — False.  Therefore, p, can be
implemented as follows:

p,(v) ::= Empty(v)
6.2 The Recursion Eliminating Method

Let us suppose we are deriving a target implementation for an implementing
function F whose preliminary implementation consists of the set of rewrite rules given below,

Fg)—t

F(gn) -t
We assume that F is a single variable function for convenience. The general description of
the method given below can be extended easily to a multivariable function. In a target

implementation, the function F is defined as F(v) ::= e, where v is a variable, and e is an

expression containing v and any of the following function symbols:
(1) Operations of the implementing types
(2) The implementing functions
(3) The function if_then_else

Let us denote e as f*(v), where f* is some composition of the function symbols listed
above. The derivation vof a target implementation consists of finding a suitable f*. The
composition f* should be such that the functmn defined by F(v) = f*(v) has the same
behavior as the one deﬁned by the set of rewrlte rules given above. "

To characterize the problem formally, we define the following concept. A
- composition f* satisfies a rewrite rule of F if the equation obtained by substituting f* for F on
both the sides of the rewrite rule is a theorem of the rewriting system consisting of the
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- preliminary implementation and the specifications of the implementing types. For example,
the composition Rotate(Insert(d, k)) satisfies the rule
: ENQUEUK(Insert(c, i), j) — Insert{ENQUEUE(c, ), i) if the equation
. Rotate(Insert(Insert(c, i), j)) = Insert(Rotate(Insert(c, j)), i) is a theorem.

The composition f* to be derived should be such that f* satisfies each of the rewrite
rules in the preliminary implementation of F. That is, the following equations should be

theorems, (The notation tl[F «— f*] denotes the expression obtained by replacing F by f* in
t.)
- Mg) =t[F ]
(g, = t,[F — ]

The purpose of the above formulation (of the condition that a solution for f* is
supposed to satisfy) is to allow us to use a theorem generation strategy similar to the one used
in deriving a preliminary implementation. We generate a theorem using one of the above
equations as a template by treating f* as a place holder in the equation. Let us call this
equation the remplate equation. A theorem that has the form of the template equation
determines a candidate for f*. A single theorem may determine more than one candidate for
. f*, but only finitely many, because the expressions we are dealing with have finite size. The
candidate(s) can be determined automatically by oémparing the theorem with the template
equation, The goal is to generate a theorem that not only has the form of the template
equation but is also such that the candidate for f* satisfies the rest of the equations in the
preliminary implementation of F.

The generation of theorems is carried out in the same fashion as in den'ving the
preliminary implementation. We use the same set of synthesis rules developed earlier. The
theorems that are of interest to us in the present situation involve only the operations of the
implementing types and the implementing functions. Therefore, the rewriting system that is
used for performing expansion (while generating the theorems) consists of the preliminary
implementation and the specifications of the implementing types. In contrast, the rewriting
system used in the derivation of the preliminary implementation consisted of the
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- specifications of the impleniented type and the association specification. Note that the
preliminary implementation did not exist at that time. Checking if a candidate for f* satisfies
. the rewrite rules essentially involves checking if an equation is a theorem,

Let us illustrate the method on the derivation of the target implementation for
ENQUEUE shown earlier. 'The preliminary implementation of ENQUEUE is repeated

below for ease of reference.

ENQUEUE(Create, j) — lnsert(Create,'j)
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(c, j), i)

The * to be derived should be such that the following equations are theorems. (Note that the
equations are obtained by replacing ENQUEUE by f* in the rewrite rules, and then

interchanging the two sides. The reason for interchanging the sides will be explained shortly.)

M) Insert(Create, j) = f*(Create, j)
2 Insert(f*(c, j), i) = M(Insert(c, i), )

We use equation (1) as the template equation. The nature of our synthesis rules imposes -
certain restrictions on the equations that can be used as template. The synthesis rules are
formulated to generate theorems with a known left hand side, but an unknown right hand
side. So, the template eqﬁation should be such that the unknown entity f* appears only on
the right hand side. In equation (2) both sides are unknown since f* occurs on both the sides.
This was also the reason behind interchanging the two sides of the rewrite rules while
obtaining the above equations. Note that there always exists at least one equation with a
known right hand side. This corresponds to the rewrite rule in the preliminary
implementation of F that repr&senté the basis case.

Showri below is a sequencé of steps that generates a theorem that gives rise to a
target implementation.

Relevant Rewrite Rules used for Expansion

(3) Rotate(Create) — Create
(4) Rotate(Insert(Create, i)) — Insert(Create, i)
(5) Rotate{Insert(Insert(c, i1), i2)) — Insert(Rotate(Insert(c, i2)), il)
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--------

Form of the theorem to be generated: Insert(Create, j) = f*(Create, j)
Normal form of Insert{Create, j): Insert{Create, j)
Rules used for the normal form: None

Step (1) - Invoke Synthesis Rule (1) on Insert(Create, j)
Insert(Create, j) = Insert(Create, j)

Step (2) Fxpand Expression: Insert{Create, j)
Using Rule: (4)

InSert(Create, i) = Rotate(Insert(Create, j)

The right hand side of the last theorem generated in the above series has the form of
f*(Create, j), and hence can be used to generate a set of candidate compositions. A candidate

composition is determined from three expressions:
(1) the left hand side of the taréet implementation, say F(v,, ..., v)
(2) the right hand side of the theorem generated, say a, and
(3) the right hand side of the template equation, say fg,, ..., ).

It is obtained by réplacing zero or more occurrences of g, forevery 1 <i<n, in a by a
variable % 1<j<n The replacement of g by Y is made so that type consistency is
preserved.

For the current example, the left hand side of the target implementation is
ENQUEUE(4, k) :: = 7; the right hand side of the theorem generated is Rotate(Insert(Create,
j); the right hand side of the template equation is f*(Create, j). So, there are two candidates
for f*(d, k): (1) Rotate(Insert(d, k)) and (2) Rotate(Insert(Create, k).

The second candidate does not satisfy equation (2). The equation obtained by
replacing | od in the equation by the candidate is
Insert(Rotate(Insert(Create, j)), i) = Rotate(Insert(Create, j)). This is not a theorem of
Circ_List because (for every i and j) both the sides of the equation remain simplified, but will
not be identical. (This can be checked by Is-an-inductive-theorem-of.)
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Let us consider the first candidate. The equation obtained by substituting it for f* in
- equation (2) is Rotate(Insert(Insert(c, i), j)) = Insert(Rotate(Insert(c, j)), i), and this is a
. theorem of Circ_List. (The left hand side of the equation reduces to the right hand side by
the rewrite rule (5).) Hence Rotate(Insert(d, k)) satisfies equation (2). The second candidate

does not satisfy equation (2). Hence the target implementation is:

ENQUEUE(d, k) :: = Rotate(Insert(d, k))
6.3 An Illustration of a Complete Synthesis

In the following, we illustrate the complete synthesis, i.e., an illustration of both the
stages, of two examples. The first one derives a target implementation for the operation
Append of Queue_Int using the association specification that specifies the Circ_List
representation. The second example derives a target implementation for the Front using the
association specification that specifies the (Array_]ntXlntégeernteger) representation
(see chapter 5).

IMustration 1
Stage 1:

Partial Preliminary Implementation of Append at Hand
APPEND{(¢, Create) — rhs,
APPEND(c, Insert(d,i )) — ?rhs,

Relevant Rewrite Rules of the Perturbed World

(10) Append(g, Nullg) — q

(14) J6(Create) — Nullg

(20) J(ENQUEUEKAc, i)) — Enqueue(36(c), 36()})
(22) 36(APPENIDX(c, d)) — Append(J&(c), J6(d))

Derivation of the first rewrite nile

Form of the theorem to be generated: J6(APPEND(c, Create)) = DG(?rhs')
Normal form of J6(APPEND{c, Create)): 36(c)
" Rules used for the normal form: (22), (14), (10)

~ Step (1) Invoke Synthesis Rule'(1) on J6(APPENIXc, Create))
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JG(APPEND(c, Create)) = ¥6(c)

The above theorem is such that APPEND{c, Create) > ¢. Therefore the desired rewrite rule is:
APPEND{c, Create) — ¢

Derivation of the second rewrite rule

Form of the theorem to be generated: J6(APPEND(c, Insert(Create, 1)) = J6(?rhs)
Normal form of 36(APPEND(c, Insert(Create, ))): Enqueue(36(c), 36(1))
Rules used for the normal form:

Step (1) Invoke Synthesis Rule (1) on J6(APPEND{c, Insert(Create, 1)))
JG(APPEND(c, Insert(Create, ))) = Enqueue(36(c), 36(1))

Step (2) Expand Expression: Enqueue(36(c), 36(/)
Using Rule: (10)

J(APPEND{c, Inscrt(Create,. 7)) = Append(Enqueue(36(c), J6(:)), Nullg)

Step (3) Expand Expression: Nullq
Using Rule: (14)

J5(APPEND(c, Insert(Create, ))) = Append(Enquéue(f)G(c), J36(1), J6(Create))

‘Step (4) Expand Expression: Enqueue(16(c), 76()
Using Rule: (20)

Je(APPEND(c, Insert(Create, 1)) = Append(J6(ENQUEUE(c, ), 36(Create))

Step (5) Expand Expression: Append(J6(ENQUEUE(c, ), J6(Create))
Using Rule: (22)

J6(APPEND(c, Insert(Create, 1))) = I(APPEND(ENQUEUE(c, i), Create))
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v Step (6) Generalize the theorem in step (5) by replacing the constant
Create by the variable d to obtain the following cquation:

16(APPEND(c, Insert(d,i ))) = J6(APPEND(ENQUEUE(c, ), d))

Apply Is-an-inductive theorem-of on the above equation,
This yields True confirming that the equation is a theorem.

~ Hence the desired rule (obtained by dropping 36 on both sides) is:
APPEND(c, Insert(d,i)) = APPEND(ENQUEUE(c, 3, d)

Stage 2:

Preliminary Implementation at Hand

APPEND(c, Create) — ¢

APPENIX(c, Insert(d,i )) - APPEND{(ENQUEUE(c, ), d)'
Desired Form of Target Implementation

APPEND(y,,v) = 7?

Relevant Rules of Circ_list

(10) Join(c, Create) — ¢
(11) Join(c, Insert(d, i)) — Insert(Join(c, d), i)

Template Equation Chosen: ¢ = APPEND(c, Create)
Form of the theorem to be generated: ¢ = f*(c, Create)
Normal form of ¢: ¢

Rules used for the normal form: None

Step (1) Invoke Synthesis Rule (1) on ¢
c=c

Step (2) Expand Expression: ¢
Using Rule: (10)

¢ = Join{c, Create)

Step (3) Find a suitable candidate composition.




The right hand side of the above theorcin has the form of F*(¢, Create). So, find a suitable candidate
composition. ‘There are two possibilities: (l)Join(vl. vz). and (2) .l<)in(v2, vl)}. The sccond candidate
satisfies the sccond rule of the preliminay implementation. but the first does not. So, a possible target
implementation is:

APPEND(, V)= .loin(vz, v)
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‘ INustration 2
Stage 1:

Partial Preliminary Implementation of Append

FRONT(KYy, i D) — ?rhs,
FRONT( Assign(v, ¢, ), i, i+ 1>) — ?rhs,
FRONT(K Assign{Assign(v.e,, /), &, j+1), i, j+2>) — ?rhsg

Relevant Rewrite Rules of the Perturbed World
(1) 36(<y, i, i>) — Nullg
(2) J6(<Assign(y, e, j), i, j+1>) — if_then_else(i = j+ 1, Nullg, Enqueue(36(<yv, i, >), 36(e)))

(3) J(FRONT(x)) — Front(J6(x))
(4) JI6(ERROR) — Error
%) C}G(if_th_en__else(b, v vz)) — if_then_else(b, ﬂﬁ(v‘), 3G(vz))

Derivation of the first rewrite rule

Form of the theorem to be generated: JG(FRONT(Ky, i, D)) = %(?rhsl)
J(FRONT(Ky, i, D))¢: Error
Rules used for simplification:

Step (1) Invoke Synthesis Rule (1) on J6(FRONT(Kv, i, D))
J(FRONT(Kv, i, 2)) = Error

Step (2) Expand Expression: Error
Using Rule: (4)

J(FRONT(y, i, D)) = J(ERROR)

FRONT(v, i, ) — ERROR

Derivation of the second rewrite rule

Form of the theorem to be generated: J6(FRONT(CAssign(y, ¢, ), i, i+1>)) = :}B(?rhsz)
t}G(FRONT((Assign(v', e ), i i+1)): (e
Rules used for simplification:
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- Step (1) Invoke Synthesis Rule (1) on (FRONT(<Assign(v, ¢, ), §, i+13))
J(FRONT(<Assign(v, ¢, 1), i, i+ 1>)) = Jo(e)

FRONT(K Assign(v, ¢, ), i, i+1>) — e

Derivation of the third rewrite rule

Form of the theorem to be generated: J6(FRONT (<Assign(Assign(v,e, M e, j+1), 4 j+ D)= %(?rhss)
J6(FRONT(<Assign(Assign(v,e , ), e; j+1), L j+2))4:
if_then_else(i = j+2, Error, if_then_clse(i = j+1, 36(e),
Front(Enquene(36(<v, i, D), el))))
Rules used for simplification:

Stcp (1) Invoke Synthesis Rule (1)
JH(FRONT(KAssign(Assign(v.e, ), e, j+1), 4 j+ D)=
if_then_else(i = j+2, Error, if_then_else(/ = j+1, 36(e,),
Front(Enqueue(J6(<v, i, D), €)))

Step (2) Expand Expression: Front(Enqueuc(36(<v, i, 2), ¢,))
Using Rule: (2), Protocol 3

TW Update: _
i = j+2 — False
i = j+1 — False

J(FRONT(<Assign(Assign(v,e,, ), e, j+1), i, j+2>)) =
if_then_else(i = j+2, Error, if_then_else(i = j+1, J6(e),
‘ Front(J6(<Assign(v, e, ), i j+1>))))

" Step(3) Expand Expression: J6(<Assign(v, e, ), i j+15)
Using Rule: (3) '

J(FRONT(<Assign(Assign(v,e, ), e, j+1), 4 j+ D) =
if_then_else(i = j+2, Error, if_then_else(i = j+1, UG(ez),
J(FRONT(KAssign(v, e, ), &, j+1>))))
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Step (4) Expand Expression: Error
Using Rule: (4)

J6(FRONT(< Assign(Assign(v,e,, ), e, j+1), i, j+ D)) =
if_then_else(i = j+2, J6(ERROR), if_then_else(i = j+1, Jo(e,),
J6(FRONT(<Assign(v, e,, )), i, j+1>))))

Step (5) Expand Expression: if_then_else(i = j+2, J6(ERROR), if_then_else(i = j+1, J6(e),
Jo(FRONT(< Assign(v, €, D L j+ 1))
~ Using Rule: (5)

J6(FRONT(<Assign(Assign(v.e,, ), e, j+1), i, j+2)) =
J6(if_then_else(i = j+2, ERROR, if_then_else(i = j+1, e
FRONT(< Assign(v, e N i j+ D))

FRONT(< Assign{Assign(v,e e, ) e j+ 1), j+2>)—
if_then_else(i = _1+2, ERROR, if_then_else(i = j+1, e,
FRONT(<Assign(v, e, ), i, j+13)))

Stage 2:
Preliminary Implementation at Hand

FRONT(y, i, ) —+ ERROR
FRONT(KAssign(v, ¢, ), i, i+1>) — e
FRONT(KAssign(Assign(v.e, ), e, j+1), j j+2>) — if i = j+2 then ERROR
elseif i = j+1thene,
else FRONT((Assngn(v, e, s b j+ l))

Let FRONT(<arr, pntl, pnt2>) be the left hand side of the target implementation. We use a slightly
different method than the one normally used for deriving the target implementation for Front. We use
combination of the recursion preserving method and the recursion eiimjnating method. First, a
composition that satisfies the first rewrite rule is determined separately; it is easy to see that this can be
ERROR. Then a composmon that satisfies the second and the third rewrite rules is determined. The
two composmons are then combined with the help of a boolean inverting expression to arrive at the
target implementation. Note that the boolean inverting expression that characterizes the argument
structure corresponding to the first rewrite rule is pntl = pat2. Therefore, th.e desired form of the
target implementation is as below. The expression that takes the place of the else clause is to be
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+ determined so that the second and the third rewrite rules are satisfied.

Desired Form of the Target Implementation

FRONT(<arr, pntl, pnt2>) :: = if pntl = pnt2 then ERROR
else 7?

Relevant Rewrite Rules of Array_Int and Array_Int X Integer XInteger

The first two rules specify the Read operation of Array_Int that reads an element of an array. The third
rewrite rule specifies the operation of a triple that selects the first component.

(1) Read(lNullarray, i) - ERROR
(2) Read(Assign(v, e, j), i) — ifi = jthene
else Read(y, i)

(3) First(<v, k, D) — v

Template equation chosen: e = FRONT(<Assign(v, ¢, 1), i, i+ 1))
Form of the theorem to be generated: e = f*(<Assign(v, ¢, ), i, i+13)
Normal form of e; e

Rules used for simplification: None

Step (1) Invoke Synthesis Rule (1) on e

exe

Step (2) Expand Expression: e
Using Rule: (2), Protocol 2

¢ = Read(Assign(y, ¢, i), i)

Step (3) Expand Expression: Assign(y, ¢, i)
Using Rule: (3)

e = Read(First(<Assign(y, ¢, i), k, D), i)

Step (4) Replace variables in the theorem by appropriate terminals:

vy ir k= il— i+l
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e = Read(First(<Assign(y, e,.i), i, i+1>), )

The right hand side of the last thcorem generated has the form of f¥(CAssign(v, e, 1), i, i+ D). It
" determines the candidate composition Read(First(Carr, pntl, pnt2>), pntl), whichf can be simplified to
Read(arr, pnt1). This composition is such that when it is takes the place of 7? in the partial target
implementation shown above, the whole expression satisfics the third rewrite rule in the preliminary
. implementation. Hence, the a possible target implementation for FRONT is:

FRONT(<arr, pnt1, pnt2>) :: = if patl = pnt2 then ERROR
else Read(arr, pntl)
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7. Conclusions and Future Research

Algebraic specifications for data types have been extensively used to prove
properties of data types and to establish the correctness of implementations of data types. In
_ this thesis we have investigated the task of automatically synthesizing implementations for
abstract data types starting from their algebraic specifications. In this chapter we summarize
the major contributions of the thesis, describe the important conclusions the research has lead
us to, and provide directions for further research.

One of the main decisions that we were confronted with at the start of the research
was choosing and characterizing the inputs to the synthesis procedure. It is not surprising to
expect as inputs the specification of the implemented type, and the specifications of all the
implementing types. The novelty of our method lies in the use of two other inputs: the
homomorphism information and the termination ordering. T1_1e advantages of having them
as inputs became more evident as the research progressed.

The homomorphism information makes the problem more tractable by restricting
the space to be searched in finding an implementation because it imposes additional
constraints on the synthesis equations (see chapter4). It is informative in this respect to
compare our method with-that of Okrent’s i40]. The method developed in [40] can also be
reformulated as a theorem generation aéﬁvity'Wi'thin dur ﬁamework. His method, however,
is less general and less efficient than ours because he does not use the homomorphism
information. In order to compensate for the lack of this information he is forced to severely
restrict the form of the specifications.

The termination ordering is not essential but is useful for automating the synthesis
_ﬁméedure. The basic method of manipulation used by the synthesis procedure is expansion
(s_ee section 4.4.1 and 4.5). Expansion, unlike réduction, .is not uniformly terminating -- even
when the speciﬁcétions are convergent (see section 3.3). This makes the synthesis procedure
potentially nonterminating. The termination ordering circumvents this problem. It also
ensures the termination of the implementation derived. The synthesis method used by
Darlington [7] does not explicitly indicate the use of any termination ordering. This is one of

the reasons that the issue of termination (that of the synthesis procedure, or that of




- 146 -

a implementation derived) is not addressed in [7].
An important contribution of the thesis is the development of a formal basis for the
+ method used by the synthesis procedure. The development is influenced significantly by the
techniques used for verifying the correctness of implementations of algebraically specified
_ data types. The synthesis method has two distinguishing features. The first is that it is based
on the general principle of reversing the techniques of program verification. The second is
the decomposition of the procedure into two stages.

The reverse program verification principle lead us to view the synthesis problem
(see chapter 4) as one of generating a set of theorems that satisfy the synthesis conditions.
The synthesis conditions characterize the situations in which a set of theorems of the input
specifications is guaranteed to yield a correct implementation. The synthesis rules provide a
means of generating theorems from a specification. This approach to synthesis has two
advantages. Firstly, it makes the formal justiﬁcaﬁon of the correctness of the synthesis
method simple because the synthesis conditions are based on a criterion of obrrectness for
data types. Secondly, it allows us to Build on the research in the area of program verification -
past as well as future. This naturally suggests an area in which to pursue future research. It
concerns extending the theory in which the synthesis procedure operates. Currently it
operates in the part of inductive theory of the specification that is decided by the Mussér/ KB
method (see chapter 4) of proving equational and inductive properties of rewriting systems.
This extension would involve developing new synthesis rules, and new ways of using the
synthesis rules for generating theorems. One might, for example, look into ways of
assimilating the proof techniques used by various verifiers [5, 27] into our framework.

Another advantage of decomposing the procedure into two stages is that it makes
the procedure more mo_dular. It isolates the part that is dependent on the target language. So
modiﬁcations"to the target language can be made without drastically affecting ﬂ1e synthesis
procedure. A possible extension to the thesis that could be considered is to incorporate more
equivalence preserving transformations into the second stage. The transformations can be

either of an efficiency improving nature, or language developing nature such as applicative to

| imperative transformations.

In addition to characterizing the inputs, an important contribution of the thesis is




-147-

t the characterization of the generality of the synthesis method. The thesis formally
: characterizes (see chapter 2 and section 3.3) the restrictions on the inputs, and the conditions
. under which it succeeds in finding an implementation. This was possible primarily as a result
- of the development of the formal basis for the synthesis method.

Finally, but most importantly, let us address the question that any work on program

synthesis has to confront: How far does the work go towards making the programmers task
~superfluous ? The practical utility of a work in program synthesis can be determined by
~evaluating the following aspects'of the-syn.thesis procedure: Efficiency of the synthesis

method, efficiency of the implementations derived, and the ease of writing specifications.

The main source of inefficiency in the synthesis procedure stems from the
non-uniquely terminating nature of expansion, This forces (as shown in section 4.5) the
procedure to keep track of all possible expansion paths. The implementation of the
procedure given in section 4.5 uses only the most obvious ways in which unproductive paths
can be pruned. There are several avenues for further research in this area. . One can
investigate the use of various heuristic approaches for cutting down unproductive paths.
Another possibility is to make better use of the invariant information available in the
association specification. The procedure (see chapter 5) currently uses it just as one of the
conditions to terminate the theorem generation activity. A better utilization of it would be to
guide the theorem generation activity. For instance, it would be more useful if it were
possible to deduce from the invariant specification &min structural properties of expressions
that prevented them from satisfying the invariant. This could then be used to discontinue
unproductive expansion paths during theorem generation. It is hard to extract this kind of
information from an algebraic specification of 3. It would be interesting to consider other
means of specifying 3 which can help this cause,

The synthesis procedure currently does not take into consideration the efficiency of
its output in synthesizing an implementation. It derives the implementations that it is capable
of deriving in increasing order of complexity (in terms of the number of reduction steps
needed) of the proof of the implementations. The are two reasons for this. Firstly, we know
of no good ways of specifying performance constraints for operations of data types within an
algebraic framew’orlg. Secondly, it was beyond the scope of the current work to incorporate
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: éutomatic performance analysis of the implementations. There is some recent work being
done in this area in [50] that is compatible with algebraic theory of data types. It would be
interesting to investigate the interaction between our work and that of [50].:

The main reason for choosing an equational language to express the inputs was
beéause of the benefits it offers ‘\from a proof theoretical point of view. Equational
specifications have generally been fqund hard to write. This is one of the factors that reduces
the practical value of the procedure.v It would be useful to extend the synthesis procedure to
- accept specifications in a language that is easier to write.

We believe that the goal of the research in program synthesis (and program
verification) shouild not and cannot be to relieve the programiner completely of the burden of
programming. Rather, it should be to help us gain a better insight into the science of
programming. The insight gained can be utilized in several ways that are practically relevant,
such as in the design of new programming languages, and in the developrrient of program
maintaining and program development [19, 49, 2, 3] systems. We believe that our work can

be particularly useful in the latter area.
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Appendix I - Equations as Rewrite Rules

“Automatic verification of data types that are specified equationally is often based on treating the
equations in the specifications as rules for rewriting expressions that have certain patterns, The
automation of our synthesis method also relies on such a treatment of the specifications. This appendix
describes the basic concepts about rewrite rules, and some useful properties of sets of rewrite rules.

We assume a denumerable set (¥) of elements called variables, and a finite set 2 of function symbols.
We define expressions and constants over Z as follows. (The formal definition is similar to the
informal one given back in sec.3.3.1.)

Expressions

An expression is either (1) a variable, or (2) a function symbol f followed by a sequence of n > 0
expressions €h..es€ f is called the (main) function of this expression, and €,..., € arc called the

arguments. . Such an expression is written f(el, .-+, €)). An expression with no arguments is written
as f(). We denote the set of expressions defined over X as E(Z).

We assume it is possible to test variables and function symbols for equality. Two expressions « and 8
are regarded as identically equal (written @« = B) if and only if they are both the same variable or they
have the same main function symbol and the same number of identically equal arguments, in the same
order.

The variable set of an expression a is {a} if « is a variable, otherwise is the union of the variable sets
of the arguments of a.

The subexpressions of an expression are (1) the entire expression, and (2) the subexpressions of the
arguments (if any) of the expression. Expressions which are variables have no expressions other than
themselves.

Constants

-A constant is an expression that does not contain any variables. We denote the set of constants over Z
as T(Z). The subconstants of a constant are (1) the entire constant, and (2) the subconstants of the
arguments (if any) of the constant.

Occurrences

An expression can be represented naturally as a tree structure; The main function symbol of the
expression is the root of the tree; the arguments of the expression are the branches of the tree. This
analogy can be used to devise a notation to identify unambiguously the subexpressions of an
expression. ‘ :

An occurrence in an expression is a sequence (possibly empty) of positive integers that denotes the
path inside the tree corresponding to the expression that runs from the root of the tree to the root of
the tree corresponding to one of the subexpressions. We denote the set of all occurrences in an
expression e by O(e). We use the following notation for denoting an occurrence: A is the empty
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* occurrence, and if u is an occurrence and i is an integer, then i.u is the occurrence that has i at its head
and u as its tail.

~ The subexpression of an expression e at the occurrence &, denoted by e/, is defined as follows:
Ifu= A thene/A =e
Ifu =iw(l<i<n)ande = f(el, +ees€) thene/u = e,/w
For example, suppose € = Enqueue(Dequeue(Nullg()),i). Then e/1 = Dequeue(Nullq ()),
e/2 = i,e/1.1 = Nullg().

Suppose u is an occurrence of e. Then, we use the notation efu — e'] to denote the expression
obtained by replacing in e the subexpression e/ by e'. For instance, suppose € is the same expression
as in the example given above, and " = Nullq(), then e[l + e ']is Enqueue(Nullg( ), i).

Substitutions

Let o be a mapping from variables to expressions, such that o(v) = v for all but a finite number of
variables v. Extend the domain of o to the set of all expressions by defining a(f(el, ..-5€)) to be

f(a(el), .+»0(e ). Such a mapping o is called a substitution (of expressions for variables). The
notation g = [v1 nd STRRRIS en] will be used to denote the substitution o such that a(vi) = e,
forl1 < i< nando(v)=v.

We say that an expression 8 has the form of an expression a if there exists a substitution o such that
o(a) =8. For example, Append(Nullg(), Enqueue(q,i)) has the form of
Append(ql, Enqueue(q2, i2)) by the substitution o = [q1 — Nullg(), g2  q, i2 — i]. Notice that
has the form of is not a symmetric relation.

Rewrite Rules

A rewrite rule is an ordered pair of expressions (L, R), such that the variable set of R is contained in
the variable set of L. Usually (L, R) will be written L — R. A finite set of rewrite rules over a set of
function symbols X is called a rewriting system over Z. Let R be such a rewriting system.

An expression a is reducible with respect to R if there is a rule L — R in R, and an occurrence u of a
such that a/u has the form of L. Let o be a substitution such that o(L) = a/u, and
B = a[u+~ o(R)]. Then we say that a directly reduces to B (using R), and write it as a — B8 (using
R).- Where the particular R in use is clear from the context, this will be written simply asa — 8. If a
is not reducible with respect to R, then we say a is irreducible with respect to R.

Let —* be the smallest relation on pairs of expressions which is the reflexive, transitive closure of —.
Thus, a —* B if and only if there exist expressions aga, ..., a, where n 2> 0, such that a = a,,

a,—a,  fori=0,...,n-landa, = B. Wereada —+*fasa reduces to B.

i+l

Suppose @ —* B, and B is irreducible. Then we say that a simplifies to B8; B is called a normal form
of a. We denote the normal form of e as ed. A rewriting system R has the unique termination
property (UTP) if the simplifies relation defined by R is a function; that is, every expression has at
most one normal form in R.

A rewriting system R has the finite termination property (FTP) if there is no infinite sequence
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@y = ap = ..using R.

A rewriting system R is convergent if it has FIP as well as UTP. 1n such a casc, every expression in
the system has exactly onc normal form.
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Appendix II - Checking Finite Termination

A general technique for proving termination of a rewriting system R with an alphabet 2 is to
demonstrate that it is possible to define a well-founded partial ordering > on T(Z) so that t,—t,

implies tl >g b A partial ordering is well-founded if there are no infinite descending sequences such
as tl >R t2 g for any constants. Hence, there cannot be any infinite sequence of rewrites using R

also. The following theorem [Manna&Ness] provides a useful guideline to define a suitable partial
ordering to prove FTP,

Theorem 3 A rewriting system R with an alphabet X satisfies FTP if there exists a well-founded partial
ordering ;- on T(Z) with the properties given below. We call a well-founded partial ordering that

satisfics the following properties a termination ordering for the system R since the ordering can be
uscd to show the termination of R.

(1) Reduction: For every rule L - R in R, and for every substitution ¢ of variables to
constants, o(L) > o(R).

() Substitution: t = t' imptics f(..t..) > f(..t" ... for any constants ¢, t', f(..£..). f(.t'..)
in T(Z).

The reduction condition asserts that applying any rule reduces the subterm to which the rule is applied
in the well-founded ordering. The substitution condition gl'narantees that by reducing subterms the
top-level constant is also reduced. Hence it follows thatt — t impliest >t .

Fig. 20 gives a definition of a class of orderings called the lexicographic recursive path orderings (>-).
> is parameterized with respect to an ordering (>) on the alphabet of a rewriting system. In addition
to the substitution property mentioned in the above theorem, > also contains the subterm relation: t;

is a subterm of t, implies that t, >~ t,. Such an ordering is usually referred to as a simplification

Fig. 20. The Lexicographic Recursive Path Ordering

Let > be an ordering on an alphabet 2. Then > on
T(Z) is defined as follows:

s > t iff one of the following conditions i$ true

(1)f)gAs>t 1<i<n

Qf = gA(sl,.‘.,s)>->-|ex<tl,...,t)/\s>-t 1<i<n
3 3s)s -tVs > 1]

2> 1ex I8 2 Tight to left lexicographic ordering based on >-. It is defined as follows.

Sy aees 8O >3 Stiyunn, t I
A1l >EAViI<i<n)ls =]
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i ordering [Dershowitz]. (A proof that' > is a simplification ordering can bé found in [Kamin].)
Dershowitz in {Dershowitz] has shown the following theorem:

~ Theorem 4 A lexicographic recursive path ordering (>) is well-founded if and on]y if the underlying
* alphabet ordering (O) is well-founded. :

One can, in general, use any suitable well-founded alphabet ordering in conjunction with a
lexicographic recursive path ordering to use it as a termination ordering for a rewriting system.

* Figures 21, and 22 give two alphabet orderings: The first can be used for an arbitrary data type
specification, and the second for an arbitrary homomorphism specification. We refer to these
orderings as the standard alphabet orderings for a data type specification, or a homomorphism
specification, respectively. The orderings are bascd on a gencral method of structuring of the alphabets
of a data type specification and a homomorphism specification. Assuming that there is no circularity in
the defining_types relation on data types, it can be easily shown that the standard alphabet orderings
are well-founded orderings.

A lexicographic recursive path ordering based on an ‘alphabet ordering of Fig. 21 can serve as a
termination ordering for the rewriting systems corresponding to Queue_Int and Circ_List. We lcave
it to the reader to convince for himself that > satisfies the reduction property in each of the two cases;

Fig. 21. The Standard Alphabet Ordering for a Data Type Rewriting System

Notations

S is the rewriting system corresponding to TOI
2 is the alphabet of S

{2 is the operation set of TOI

Qy, is the set of generators of S

QNB is the set of nongenerators of S
- Zp),¢is the union of the alphabets of the rewriting systems of the defining types
(We assume that the alphabets are mutually exclusive.)

Y is a partial ordering on the symbols in =

Deﬁnitions
= SZB U QNB U EM
Q= QB U QNB

D is defined as follows. It is assumed that a similarly defined ordering exists for each of the alphabets
in 2, 0 > is assumed to contain each of these orderings.

> g iff one of the following conditions is true
DL geQ; Aarityofg =0, amyoff)O
Qfeq Agen,

G feQAgex,,
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: Fig. 22. The Standard Alphabet Ordering for Homomorphism Specification

Notations

) is the alphabet of the homomorphism specification
24 is the standard alphabet ordering on 2

Definition

f )H g if and only if one of the following conditions holds:

(1) f is the symbol J6, and g is any other function syml.)ol in 2y
(2) fis an auxiliary function symbol, and g is a generator function symbol

one nceds to use the fact that > contains the subterm relation in doing so. The ordering cannot,
however, be used for Array_Int specification. The ordering can be used for a subset of the
specification that is used in examples to illustrate the synthesis procedure. A lexicographic recursive
path ordering based on the standard alphabet ordering of Fig. 22 can be used all of the sample
homomorphism specifications given in the last chapter.

Lexicographic recursive path orderings are useful in defining termination ordering for a rewriting
system that is built from two or more rewriting systems that have recursive path orderings already
defined on them. Suppose >, and >, are two recursive path orderings defined with respect to the

well-founded alphabet orderings >, and »,, respectively. Suppose R,, and R, are two systems for
which >, and >, can serve as termination orderings. Then the recursive path ordering that is based
on > UD, can be used as a termination ordering for the system R, UR, provided >, U>, is

well-founded. The standard alphabet ordering is such that the union of any two of them (defined on
mutually exclusive alphabets) preserves the well-foundedness property. Hence it is useful in the
context of combining systems of rewriting systems.
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Appendix III - Proofs of Theorems

Theorem 6 .
Let S be a system that satisfies the principle of definition. Let e =e, be an equation so that e; ande,

have at least one nongenerator function symbol in them. Then, e, =¢e, is a theorem of S if
S U {e, — e,} also satisfies the principle of definition.

Proof The proof is by contradiction. Let us assume that S U {e, — e,} satisfies the principie of
definition, but €, = e, is not a theorem of S.

If e, = e, is not a theorem of S, then there exists a substitution ¢ that maps variables to
generator constants so that ¢(e,) and o(e,) have distinct normal forms in S. Since S satisfies the
principle of definition, o(e,) and ofe,) have unique normal forms that are generator constants; let the
normal forms be t; and t,, respectively (t, # t,). Note that o{e,) and sie2 are distinct from t, and t,,

respectively because the latter two are generator constants while the former two are not. Therefore, in
the system S U {e; — ez} we have the following situation: :

o(el) — a(ez) —++t2, a(el) — +tl‘ and t; #t,

Thus, S U {e, — e,} violates the principle of definition. Contradiction.
Q.E.D.

Theorem 7
PW is a Perturbed World. Suppose

(1) e, is an expression so that for every substitution ¢ of variables to generator constants o (e)

is reducible using PW, and
(2) PW U {e; — e,} isconvergent.
Then, e, = e, isa theorm of PW.

Proof PW is convergent. Therefore, to show that e, = e, is a theorem of PW, we have to show that
for every substitution o of the variables in e, and e, by generator terms of the appropriate type, o (el)
and "(ez) have the same normal forms.

The proof is by contradiction. Let us suppose that PW U {e, — e,} is convergent, but

Vel = e, is not a theorem of PW. This means, there exists a o such that t, = o(e))¥ and ¢, = o(e,)d

are distinct. By the second premise of the theorem, therefore, we have the following situation in PW U
{e,— e} : :

o (e) — o(e) —='t,

c(el)—v"'tlandtl # t, v

Therefore, PW U {e, — e,} is not convergent. Notice the need for the second premise. If
we did not have this premise o(e,) could be identical to t,, in which case PW U {e, — e,} is still
convergent.
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Q.E.D.

Theorem 8 :
A rewriting system R satisfies the principle of definition if it satisfies the following conditions:

1) Ris well-spanned.
(2) RhasFTP.

(3) Every critical pair <a,, a,> of R is such that &, =a, is a theorem of R.

Proof The first two conditions ensure that every constant in R has at least one normal form, and that
every normal form is a generator constant. The following argument shows that every constant has a
unique normal form.

The proof is by contradiction. Suppose there exists a. constant that has two distinct normal form.
Then, according to the KB-theorem there exists a noncnvergent critical pair. This contradicts the third

condition in the statement of the thcorem. Contradiction.
- Q.E.D.
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