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Automatic Synthesis of 
Implementations for Abstract Data Types 

from Algebraic Specifications 

Abstract 

Algebraic specifications have been used extensively to prove properties of abstract data types 
and to establish the correctness of ~mplementations of data types. This thesis explores an 

' automatic method of synthesizing, implementations for data types from their algebraic 
specificat:ons. 

The inputs to the synthesis procedure consist of a specification for the implemented type, a 
specification for each of the implementing types, and a formal description of the 
representation scheme to be used by the implementation. The output of the procedure 
consists of an implementation for each of the operations of the implemented type in a simple 
applicative language. 

The inputs and the output of the synthesis procedure are precisely characterized. A formal 
basis for the method employed by the procedure is developed. The method is based on the 
principle of reversing the technique of proving the correctness of an implementation of a data 
type. The restrictions on the inputs, and the conditions under which the procedure 
synthesizes an implementation successfully are fonnally characterized. 
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i 1. Introduction 

.. 1.1 Goals of the Thesis 

This thesis is concerned with the problem of automatic synthesis of implementations 

for abstract data types from their -algebraic specifications. The inputs to the synthesis 

procedure include (i) a formal specification of the data type to be implemented, (ii) a formal 

specification of each of the implementing types, and (iii) a formal description of the 

· representation scheme to be used by the desired implementation. The output consists of an 

implementation for each of the operations of the implemented type. The inputs are specified 

using an algebraic specification technique [14, 18, 25]. 

The thesis has three main goals: 

(1) To precisely characterize both the inputs of the synthesis procedure, and the output 

(2) To devise an automatic method of deriving the output from the inputs. 

(3) To provide a formal basis for the method. 

The method of derivation is described in terms of a set of synthesis rules. The 

output is derived by invoking the synthesis rules a finite number of times. The thesis 

describes how the synthesis rules are used in deriving a suitable implementation. 

The purpose of providing a formal basis for the method is to justify the correctness 

of the implementations derived by the synthesis procedure. The formal basis also helps in 

characterizing the scope of the synthesis procedure. 

1.2 Motivation for The Research 

The reliability of computer software has received a great deal of attention in recent 

years. Rapid advances in hardware technology have dramatically decreased the cost of 

hardware relative to software. As a result, the cost of producing and maintaining software has 

become a major concern. An effective way of improving the reliability and the cost of 

software simultaneously is to find methods to decrease the effort required to produce correct 

software. At present, active research is underway [43) in exploring this avenue. Several 



-9-

·approaches have been proposed, each of which can be put under one of the following three 

'. categories based on the degree of automation it offers: manual approaches, semi-automatic 

;. approaches, and automatic approaches. 

The manual approach advocates discipline in human programming [31, 11, 41). It 

consists of identifying new mechanisms of abstractions [32) that encourage the advocated 

! discipline. The most significant contribution of this approach has been the inducement of a 

· change in the attitude of programmers towards the style of programming. Concrete 

manifestarions of this change include the birth of the concept of abstract data types, and the 

development of new languages [34, 29~ 52) to support data types. 

The goal of the semi-automatic approach is to seek machine help to establish the 

correctness of programs written by the user. Formal methods are developed to specify and 
. 

verify properties of pieces of software (13, 12, 20); systems are built to carry out verification 

automatically or semi-automatically (27, 15]. A variant of the verification method is the 

programmer's apprentice method (19). The programmer's apprentice provides an interactive 

programming environment built up by a set of tools which helps the programmer in 

preparing and checking his work in several ways. The tools range from simple ed.itors to 

more sophisticated ones that can analyze and criticize a user's program during the various 

phases of programming. · Yet another way of providing partial machine help is to build 

systems (2, 3, 48) that will help apply transformation rules chosen from a catalogue of 

equivalence preserving transformations. The programmer can refine or improve the 

efficiency of his programs by judiciously choosing the appropriate rules from the catalogue. 

The automatic approach, under which our research falls, seeks to automate a part or 

all of the programming process itself. Its goal is to generate code for programs from their 

high-level declarative descriptions, thereby relieving the programmer of having to worry 

about error-prone, low-level details of programming. Though this may one day be feasible, 

experience [1. 36) in the last few years shows that not nearly enough is known about the 

process to automate it completely. Two remedies have been used with some success to break 

the stalemate in the situation: The first is to restrict the domain for which programs are being 

synthesized (41; the second is to expect the user to furnish more information about the desired 

properties of the program (6) to guide the synthesis procedure. 
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~· A third course of action ;that has not so far been employed in earnest is to 

complement the automatic approach with recent advances in programming methodology. 

! (Bauer, etal., [3] have employed this idea with the semi-automatic approaeh.) In particular, 

the idea of designing software as a hierarchy of abstractions can be used tb aid the synthesis 

.. procedure. Such a hierarchical design for the program reduces the amount of refinement 

. required to be performed by the synthesizer at each step. 

The thesis takes into consideration all the factors mentioned above. Within the 

' general area of programming, · we restrict . ourselves to · the study of synthesis of 

. implementations for abstract data types. We believe that the synthesis of implementations for 

abstract data types is amenable to automation because the specification techniques for data 

types have been extensively studied, and hence, are better understood. We also expect 

additional information about the implementation ·to be furnished by the user. This 

information is provided in the form of a description of the representation scheme to be used 

by the implementation. 

1.3 Related Work 

The works n;;ated to ours lie partly in the area of general program synthesis and 

partly in the area of automatic implementation of data structures. 

In the general area of synthesis, the work most closely related to ours is that of 

Darlington [8, 9). He has developed a system that uses a set of transfonnation rules to 

improve semi-automatically the efficiency of recursive programs and also to construct new 

recursive programs. Recently, he has also applied the transformation rules· to synthesize 

implementations for data types [7). The synthesis rules developed in the thesis are closely 

related to his. The difference lies in the method in which the synthesis rules are used to 

synthesize implementations. Our method is based on verification techniques of data types. 

Our work has two advantages over his. Firstly, the class of implementations derived by our 

method is larger than his. This is because we develop more ways of using the synthesis rules 

for deriving implementations. Secondly, we formally characterize the conditions under which 

the synthesis rules yield a correct tnplementation for data types. 

----------~----------------
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The ZAP system [30] of Feather's is a program transformation system in which the 

basic rules of manipulations are similar to our synthesis rules. His work is different from ours 

I in two ways. Firstly, he is concerned 1with developing higher level stretegies to apply the basic 

• tranformation rules (in general, any equivalence preserving rules) for the construction of 

large-sized programs. Secondly, his ;approach is less automatic than ours. The emphasis in 

the design of ZAP is to use "metaprograms" to improve communication between the user and 

the system. There are two inputs to ZAP: the specification of the program to be constructed 

and a metaprogram which consists of a sequence of commands that direct the transformation 

process. The metaprogram expresses the higher level strategy to be used in applying the 

tranformation rules. 

Within the area of automatic implementations for data structures, the work of 

Okrent [40) has goals closest to ours. Okrent's method uses only the algebraic specifications 

of the data types involved as inputs. Because of the lack of information about the desired 

representation scheme, the implementations generated by his synthesis procedure are not as 

interesting as the ones generated by ours. He limits severely the range of the data types 

acceptable as· inputs. He also concentrates on a fixed set of target structures such as 

contiguous memory and heap memory for th~ implementations. 

Another work in· this area that is related to ours is that of Subrahmanyam's [50). 

Subrahmanyam's method like Okrent's does not use any information about the 

representation scheme. His method has a provision for the user to specify performance 

constraints on the desired implementation. The method is based on partitioning the 

operation set of the data type into a kernel set and a nonkemel set Implementations for the 

kernel operations are derived by identifying pairs of functions (on the representation type) 

called retrievable insertion fanction pairs. Implementations for the nonkernel operations are 

derived in terms of the implementations for the kernel operations so as to. meet the 

performance constraints. 

Most of the other research in the automatic generation of data structure 

implementations has been concerned with the automatic selection of an optimal 

representation for data structures. Rowe and Tonge [47), Rovner (46), and Tompa and 

Gotlieb (51) have studied optimization problems for a language containing a fixed set of high 
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'.: level data structures. First they build a library of possible implementations for each fixed 

· high level data structure in the language, along with a parameterized description of the 

· performance of each library entry. Then they proceed to select the "best" implementation for 

' each instance of the data structure, by making a flow analysis of the program that uses the 

data structure. The goal of our work is to derive an implementation for a given 

representation rather than to select an optimal one among a given set of representations. 

Standish, etal., (49), Bauer,;etal., (3), and Wile, etal, [2] have developed catalogues 

of equivaJence preserving transformation rules as a part of program development systems. 

The programmer can refine or improve the efficiency of his programs by instructing the 

system to apply appropriate transformation rules on the programs. None of these works, 

however, deals explicitly with the implementation of data types. It is possible, with some 

modifications, to incorporate our synthesis rules as a part of their system. 

1.4 Organization of the Thesis 

The next chapter gives an overview of the synthesis procedure. The third chapter 

describes in detail the inputs of the synthesis procedure, and formalizes the restrictions on the 

inputs. The synthesis procedure derives an implementation in two stages: The 

implementation is first derived in a preliminary form which is then transformed into a final 

form. The first stage of the procedure is the topic of the fourth and the fifth chapters. The 

sixth chapter describes the second stage. The last chapter gives the concluding remarks. 
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1 2. An Overview of the Synthesis Procedure 

This chapter gives an overview of the synthesis procedure. The first section gives a 

scenario of the synthesis procedure from a user's point of view. It briefly describes the form 

of the inputs to the synthesis procedure, and the form of its outputs via an example. The 

second section gives a summary of the synthesis procedure. It points out the nontrivial issues 

involved in the method employed by the pf9Cedure for deriving an implementation. The last 

. section describes the scope of the procedure. 

2.1 The User's View 

Consider the following scenario involving a programmer. The programmer has 

designed an abstract data type (the implemented type) to be used in solving one of his 

programming problems. He is now seeking the help of a system for implementing the type 

using another data type, called the representation type; The representation type is chosen by 

the user himself. Furthermore, he is willing to furnish information about how he wants the 

values of the representation type to· be used in representing the values of the implemented 

type. The system is expected to generate automatically (or with some help from the user) an 

implementation for the implemented type that uses the representation type as the 

representation in a manner consistent with that suggested by the user. 

Viewed as a black box, the inputs to the procedure are: 

(i) A specification of the implemented type, 

(ii) a specification of the representation type, and specifications of all the types used in 

the specification of the representation type. We refer to the representation type, and 

all the types its specification uses as the implementing types. 

(iii) an association specification that describes how the values of the representation type 

are to be used in representing the values of the implemented type; this corresponds 

to the representation (or abstraction) junction defined by Hoare in (21). 

The output of the synthesis p1-.x:edure consists of an implementation for each of the 
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operations of the implemented type in tenns of the operations of the implementing types. To 

get a better idea about the inputs and the output, let us consider an example of deriving an 

· implementation for the data type Queue_lnt in tenns of Circ_List. Queue_lnt is a 

first-in-first-out queue of integers. Elements are added to a queue at the rear end, and 

removed from the front end. Circ_List is a list of integers. Elements are inserted into and 

removed from a list at the same end, which is the rear end of the list. The operation that gives. 

Circ_List a circular character is Rotate. Rotate moves every element in a list by one position 

towards the rear end in a cyclic fashion, i.e., the element at the rear end is moved to !he front 

end. 

In this example, the implemented type is QueueJnt and the representation type is 

Circ_List. Circ_List uses (this notion is defined precisely in the next chapter) the data types 

Integer and Bool, so the implementing types include Circ_List, Integer, and Dool Figures 1, 

2, and 3 give the inputs to the synthesis procedure. (The .figures also give an infonnal 

description of the operations of the data types.) Specifications of Integer and Dool should 

also be given as inputs, although we have not shown them here. The language used to express 

the data type specifications is equational, similar to the ones developed in (14, 18, 25]. One of 

the crucial differences is the following: We. assume. that the specification of every data type 

identifies a basis for the data type. A basis is a minimal set of operations of the data type that 

can be used to generate all the values of the type. The operations in the basis are called the 

generators of the type. For example, the operations Create and Insert can be the generators 

for Circ_List. The specification language is described in the next chapter. 

Fig. 3 gives the association specification for the implementation to be derived. It 

characterizes the representation scheme to be used by the implementation. The association 

specification is expressed in two parts. The first part specifies the invariant'· 'is a predicate 

that specifies the set of values that may be used to represent the values of the implemented 

type; only those values of the representation type for which 3 is True may be used to 

repre8ent the values of the implemented type. In the present example, 3 is True for all values 

of CircJ,ist. The second part specifies the abstraction fanction .A; .A. maps a value the 

representation type to the value of the implemented type that the former may represent In 

the present example .A specifies the following mapping: The empty queue is represented by 

~· . . . 
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Fig. 1. Specification of Queue_Int 

Queue_lnt is Nullq, Enqueue, Front, Dequeue, Append, Size 

Defining Types 

Bool, Int 

Operations 

. Nullq : -> Queue_lnt 

Enqueue : Queue_lnt X Int-> Qucue_lnt 

Front '. Qucue_lnt ->Int U {ERROR} 

Dequeue : Queue_lnt -> Qucuc_lnt U {ERROR} 

Append : Queue_lnt X QueueJnt ·> Queue_lnt 

Size : QucueJnt -> Int 

Comment· 
Queue_ Int is a FIFO queue of integers. Nullq constructs the empty queue. Enqueue adds an element to 

a queue at the rear end. Dequeue removes the element at the front of a queue. Front returns the 

element at the front of a queue. Append joins two queues adding the elements of the seeond argument 

at the rear of the first argument Si:ze computes the number of elements in a queue. 

Basis 

{ Nullq, Enqueue } 

Axioms 

(1) front(Nullq) = ERROR 

(2) Front(Enqueue(Nullq, e)) = e 

(3) Front(Enqueue(Enqucue(q, el), e2)) = Front(Enqueue(q, el)) 

(4) Dequeue(Nullq) s: ERROR 

(5) Dcqueue(Enqucuc(Nullq, e)) = Nullq 

(6) Dequeuc(Enqueuc(Enqueuc(q, el), e2)) = Enqueuc(Dequeue(Enqueue(q, el)). e2) 

(10) Append(q, Nullq) = q 

(11) Append(ql, Enqueue(q2, e2)) = Enqueuc(Append(ql, q2), e2) 

(12) Size(Nullq) :: 0 

(13) Size(Enqueue(q, e)) = Size(q) + 1 
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·· Fig. 2. Specification of Circ_List 
Circ_List is Create, Insert, Value, Remove, Rotate, Empty, Join 

Defining Types 
Integer, Boolean 

Operations 

Create 

Insert 

Value 

Remove 

Rotate 

Empty 

Join 

: · > Circ_List 

: Circ_List X Integer · > Circ_List 

: Circ_List ·>Integer U {ERROR} 

: Circ_List ·> Circ_List U {ERROR} 

: Circ_List • > Circ_List 

: Circ_List • > Boolean 

: Circ_list X Circ_list ~> Circ_list 

Comment 
Circ_List is a list of integers with a front end and a rear end. Create constructs an empty list; the front 

and the rear ends of an empty list arc the same. Insert inserts an clement into a list at the rear end. 

Value returns the element at the rear end of a list. Remove removes the element at the rear end from a 

list. Rotate moves every element in a list by one position towards the rear end in a cyclic fashion, i.e., 

the element at the rear is moved to the front. Empty checks if a list is empty. Join joins two lists by 

positioning the first argument in front of the second. 

Basis 
{Create, Insert} 

Axioms 

(1) Value(Creatc) =:ERROR 

(2) Value(lnsert(c, i)) = i 

(3) Rcmove(Create) = ERROR 

(4) Remove(lnsert(c, i)) e c 

(5) Rotate(Create) = Create 

(6) Rotate(Insert(Create, i)) = lnsert(Create, i) 

(7) Rotate(lnscrtOnsert(c, il), i2))) = Insert(RotateQnscrt(c, i2)), il) 

(8) Empty(Create) = true 

(9) Empty(lnsert(c, i)) =false 

(10) Join(c, Create) a c 

(11) Join(c, lnsert(d, i)) = Insert(Join(c, d), i) 



Fig. 3. Association Specification 
Invariant 

· j(c) =True 

Ab.straction Function 

.A.(Create) = Nullq 

.A.(lnsert(c, i)) = add_at_hcad(.A.(c), i) ' 
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add_at_hcad(Nullq, i) = Enque~c(Nullq;i) 
add_at_head(Enqueuc(q, i), il) = Enqueuc(add_at_head(q, il), i) 

the empty list A nonempty queue is represented by a list whose elements are identical to the 

ones in the queue, but are arranged in the reverse order. The motivation for this 

representation scheme is that:·reacH~~ and·deietiori of .ele~ents from a queue can .be 

performed efficiently. Note that the specification of .A. uses an auxiliary function 

Add_at_head on QueueJnt; the auxiliary function adds an element at the front end of a 

queue. 

Fig. 4 shows the _output of the synthesis procedure. The output defin~ a set of 

functions, called the implementing functions, on Circ_List Every implementing function 

implements an operation of QueueJnt. The implementing function implementing the 

operation f is given the name F. For instance, NULLQ implements Nullq. The target 

Fig. 4. An Implementation 
NULLQ() :: = Create() 

ENQUEUE(c, j) :: = Rotate(lnsert(c, j})· 

FRONT(c) :: = Value(c) 

DEQUEUE(c) :: = Remove(c) 

APPEND(c, d) :: = Join(d, c) 

SIZE(c) :: = if Empty(c) then 0 
else SIZE(Remove(c)) + 1 
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·: language used to express the implementations for the operations is a simple applicative 

language. The only mechanisms available in the language to build programs are: functional 

~ composition, conditional expressions, and recursive function definition. The language uses a 

· method of defining function that is customarily used in applicative languages like pure LISP 

[37). A function F is defined using the following schema: F(v1, ••• , vJ :: = e, where 

v1, ••• , vk are variables, and e is an expression containing those variables. A function 

• definition may use the operations of the implementing types as base functions. 

2.2 A Summary of the Synthesis Procedure 

The synthesis procedure is summarized in an illustrative fashion using the example 

already introduced. This is done in the first two subsections. In the example introduced. the 

invariant 3 is a trivial one: It is True on all values. In the third subsection, we highlight the 

issues involved in deriving an implementation in the presence of a nontrivial invariant by 

introducing a new example. 

The method used by the procedure to derive an implementation is based on treating 

every equation in the specifications as a rewrite rule. 2 The procedure begins by combining all 

the input specificatior.:; into a rewriting system called the Initial World (IW). (IW is obtained 

by simply replacing the symbol= by-+ in the input specifications.) The procedure assumes 

that IW satisfies the uniform termination property as well as the unique termination property. 

(IW is said to be convergent in such a case. This is similar to the Church-Rosser property.) 

The uniform termination property ensures that every chain of reductions starting from an 

expression terminates. The unique termination property ensures that all chains of reductions 

starting from an expression terminate in the same expression. These two properties ensure 

that the equivalence relation characterized by a specification can be computed by using the 

rules in IW for reducing expressions. The procedure also assumes that there is a predefined 

2. A rewrite rule (written a-+ /J) is an ordered pair- a left hand side and a right hand side - of 
expre~ions. A rewrite rule can be used to reduce any expression that is an instance of the left hand 
side into an expresmon that is an instimce of the right hand side. A rewriting system is a set of rewrite 
rules. 

-------------- --~-
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termination ordering (>-) on expressions which can be used for showing the unifonn 

, tennination property of rewriting systems. 

The synthesis procedure derives the implementation in two stages. In the first stage 

· the procedure derives the implementation in an intennediate form. The intermediate fonn is 

called a preliminary implementation. In the second stage the preliminary implementation is 

, transformed into an implementation in the target language (target implementation). Fig. 5 

. gives a preliminary implementation for QueueJnt that is consistent with the association 

specification given in Fig. 3. There are two crucial differences between a preJiminary 

implementation and a target implementation. The first one concerns the methods used for 

defining the imp1ementing functions. A preliminary implementation defines a function as a 

set of rewrite rules. The rewrite rules defining an implementing function F are the ones that 

have F as the outermost symbol on their left hand side. For instance, rules (2) and (3) in 

Fig. 5 define ENQUEUE. The second difference is that the only operations of the 

representation type that are permitted to appear in a preliminary implementation are its 

generators. A target implementation is permitted to use all the operations of the 

representation type. In the example under consideration. . for instance, a preliminary 

implementation may use all the operation~ of Integer and Hool. but only the generators 

Fig. 5. A Preliminary Implementation 

(1) NULLQ()-+ Create() 

(2) ENQUEUE{Create, j)-+ lnsert{Create, j) 
(3) ENOUEUE{lnsert(c, i), j)-+ lnsert(ENOUEUE(c, j), i) 

(4) FRONT(Create)-+ ERROR 
(5) FRONT(lnsert(c, I)) -+ I 

(6) DEQUEUE(Create}-+ ERROR 
(7) DEQUEUE(lnsert(c,i)) -+ c 

(8) APPEND(c, Create)-+ c 
(9) APPENO(c, lnsert(d, I))-+ APPEND(ENOUEUE(c, I), d) 

( 10) SIZE(Create) -+ 0 
(11) SIZE(lnsert(c, i))-+ SIZE(c) + 1 
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i (Create, and Insert) ofCirc_List. 

There are two reasons for the decomposition. Firstly. it makes the synthesis 

· procedure more modular. Target language dependent transformations are separated from the 

language independent transformations. The decomposition also lends itself naturally to 

deferring efficiency improving transfonnations to the later stage. In the first stage one can 

concentrate on deriving a simple correct implementation. Secondly, the decomposition 

reduces the complexity of the structure of synthesis procedure. The first stage deals with the 

~echniqm~'i for deriving an implementation from the specification of the data type. The 

second stage deals with the techniques for deriving alternate forms of implementations from 

an preliminary implementation. The decomposition provides a better insight into the 

synthesis method, and simplifies the description of the synthesis procedure. The next two 

subsections give an overview of the two stages of the synthesis procedure. 

2.2.1 Stage 1: Preliminary Implementation Derivation 

A preliminary implementation of a data type is correct with re.>pect to an abstract 

function .A. if the following condition holds: Every implementing function F (that implements 

the operation f) defined by the preliminary implementation is a total function on the 

representation values so that the homomorphism property lb(F(x)) = f(%(x)) holds. Here lb 

is a function on the values of the implementing types; lb behaves exactly like the abstraction 

function .A. on the representation values, and like an identity function on all other values. The 

synthesis procedure derives a preliminary implementation so that the above criterion of 

correctness is satisfied. 

The procedure synthesizes the preliminary implementation for one operation at a 

time by deriving a separate set of rewtjte rules for every operation. Since the method used is 

the same for every operation, we illustrate the synthesis of only a couple of operations. The 

procedure first determines the left hand sides of all the rules of the preliminary 

implementation. Then, it determines a suitable right hand side for each of the rules. 
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;' 2.2. 1.1 Determining the Left Hand Side 

One of the correctness requirements of a preliminary implementation is that it must 

define a total function on the repreSentation type. This requirement is ensured by deriving 

i the rules of the preliminary implementation so that (1) they satisfy the uniform termination 

· property, and (2) they are well-spanned. The first property is ensured while deriving the right 

. hand side of the rules. The second property is used to determine the left hand sides. 

The second property requires the left hand side expressions of the rules to be of a 

particular form. For instance, any pair of rules that have the form given below constitute a 

well-spanned set of rules for ENQUEUE. (In the following ?rhs
1 

and ?rhs2 are used as place 

holders for expressions to be determined later.) 

ENQUEUE( Create, j) -+ ?rhs1 

ENQUEUE(lnsert(c, i), j)-+ ?rhs
2 

Note that the left hand side of each of the above rules consists of ENQUEUE 

applied to arguments that are generator expressions. 3 The set of arguments, i.e., sequences of 

generator expressions, to ENQl}EUE on the left hand side of the rules is 

ArgsSet = {<Create,j>, <Insert(c, i),j>}. ArgsSet spans the set of all ordered pairs of 

generator constants. In other words, every pair of generator constants is an instance of one of 

the arguments in ArgsSet. This property ensures that the definition of ENQUEUE accounts 

for all the representation values. It is easy to build a procedure that automatically generates a 

well-spanned ArgsSet, once the generators of the representation type are identified. Thus, an 

appropriate set of left hand sides for the rewrite rules to be derived can be determined 

· automatically. 

3. A generator expression is an ex!)ression in which the only function symbols involved are the 
generators. A generator constant is a generator expression that does not contain any variables. 
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i 2.2.1.2 Determining the Right Hand Side 

The right hand sides of the mies are determined so that the preliminary 

, implementation satisfies the homomorphism property mentioned earlier. For this, the Initial 

World, IW, is first supplemented with a set of rules, called the %-rules. The %-rules express 

the homomorphism property; there is an %_rule for every implementing function. For 

instance, the %-rule corres~nding to ENQUEUE is 

:JG(ENQUEUE(c,j))-+ Enqu.eue('.JG(c), %0)). Let us call the supplemented system the 

Perturbed World(PW).4 

The Pe{turbed World (PW) is then used to derive a set of synthesis equations, one 

equation for every rule in the preliminary implementation. The right hand side of a rule is 

determined from the right hand side of the corresponding synthesis equation. For instance, 

the synthesis equation corresponding to the rule ENQUEUF.(lnsert(c, i), j)-+ ?rhs
2 

is an 

equation of the form '.JG(ENQUEUE(lnsert(c, i), j)) = %{?rhs2) that satisfies the following 

conditions: 

(1) '.JG(ENQUEUE(Insert(c, i), j)) = %{?rhs2) is a theorem of PW 

(2) ENQUEUE(lnsert(c, i), j) >- ?rhs1 · 

(3) ?rhs2 contains only the permitted operations of the implementing types, and the 

implementing functions. 

The Synthesis Theorem in chapter 4 shows that, when a preliminary 

implementation is well-spanned, the preliminary implementation satisfies the 

homomorphism property if the synthesis equation corresponding to each of the rules in the 

preliminary implementation is a theorem of PW. Note that the second condition above 

ensures that the rewrite rules derived satisfy the uniform termination property. The third 

condition ensures the syntactic correctness of the preliminary implementation. 

4. Note that since :JG is a function that behaves essentially like .A., the rewrite mles specifying it in PW 
are obtained by simply replacing .A. by :JG in the asociation specifcation. 

---------------- - ---------------·---- --~ 
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· 2.2.1.3 Deriving the Synthesis Equations 

Every synthesis equation of the preliminary implementation is derived with the help 

of two inference rules caJled the synthesis rules. The synthesis rules are designed for 

generating theorems of PW that have the same left hand sides, but different right hand sides. 

For deriving a synthesis equation, the synthesis rules are invoked repeatedly a finite number 

of times to generate a series of theorems until the desired equation is generated. For instance, 

the synthesis equation corresponding to the rule ENQUEUE(lnsert(c, i), j) - ?rhs2 is derived 
. 

by generating a series of theorems that have %(ENQUEUE(lnsert(c, i), j)) as their left hand 

side. The generation continues until a theorem whose right hand side qualifies the theorem 

to be a synthesis equation is encountered. 

The idea used for generating an equation is to reverse the method of demonstrating 

that such an equation is a theorem of PW. The central notion used in the generation is a 

mechanism called expansion. Expansion5 is the opposite of reduction. It· is the act of 

applying a rewrite rule to an expression from right to left. 

For example, consider the rule X(ENQUEUE(c, j)) - Enqueue(:JG(c), %(j)), and 

the expression Add_at_head(Enqueue(X(Create), %(i)), k). The subexpression 

Enqueue(X(Create), X(i)) is an instance of the right hand side of the rule for the substitution 

{ c 1-+ Create,j 1-+ i }. The corresponding instance of the left hand side is 

:JG(ENQUEUE(Create, i)). Therefore, Add_at_head(Enqueue(X(Create), %{i)), k) expands to 

Add_at_head(X(ENQUEUE(Create, i)), k) by the rule. 

The first synthesis rule specifies a way of generating a theorem from an expression 

with that expression as the left hand side. In the following e.t. denotes the normal form of e 

obtained using PW.6 (The normal form ofe is the result of reducing it using the rewrite rules 

of PW until it becomes irreducible.) · 

5. The definition of expansion will be revised later in chapter 4 to make it more general. According to 
the definition given here, expansion is identical to the transfonnation technique folding used by 
Darlington (7) for synthesis of recursive programs. 
6. PW is a convergent system. Therefore, every expression is guaranteed to have a unique nonnal 
fonn. 



Rule 1: 
e is an expression 

e = e.i. 
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The second synthesis rule specifies how to generate a theorem from an existing one 

so that the new theorem has the same left hand side as the old one. In the following 

, . expand( ez> denotes any expression that is an expansion of e2 using some rewrite rule of PW. 

Rule 2: 

We investigate two methods in which the synthesis rules can be used for deriving a 

synthesis equation. The first method derives synthesis equations that are in the equational 

theory of PW. The second method derives equations that are in the inductive theory. The 

second method is more general than the first one. A system that implements the synthesis 

procedure would, therefore, use only the second method. We discuss them separately for 

pedagogic reasons. 

2.2.1.3.1 Derivation in the Equational Theory 

As an illustration, let us derive a synthesis equation that is of the fonn 

%{ENQUEUE(lnsert(c, i), j)) = %(?rhs
2
). The equation is derived by generating a series of 

theorems that have %(ENQUEUE(Insert(c, i), j)) as their left hand side. The generation is 

begun by invoking synthesis rule (1) on the left 'hand side expression. The rest of the 

theorems in the series are generated by invoking synthesis rule (2) using the rewrite rules of 

PW for expansion. The rewrite rules for expansion are chosen with the following ultimate 

goal: Obtain a right hand side that has the form %(?rhs2) so that 

· X(ENQUEUE(Insert(c, i), j)) >- %{?rhs2), and ?rhs
2 

contains only the implementing 

functions and the permitted operations of the implementing types. In the illustration given 

below, the generation of every theorem in the series is considered as a step. At each step, the 

expression expanded. and the rewrite rule used for expansion are indicated. The relevant 

rewrite rules of PW that are going to be used for expansion are listed at the beginning. 

Rule (1) is the %-rule coresponding to ~queue; rules (2) through (5) are obtained from the 

association specification. 



Relevant Rewrite Rules of the Perturbed World 

(1) JG(ENQUEUE(c, j))-+ Enqueue(%(c), %(j)) 

(2) %(Create)-+ Nullq 

(3) JG(Insert(c, i))-+ Add_at_head(JG(c), %(i)) 

(4) Add_at_head(Nullq, i)-+ Enqueue(Nullq, i) 
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(5) Add_at_head(Enqueuc(q, i), j)-+ Enqueue(Add_at_head(q, j), i) 

Fonn of the theorem to be gen~rated: :J,G(ENQUEUE(lnsert(c, i), j)) = %(?rhs
2
) 

Nonnal form of JG(ENQUEUE(Insert(c, i), j)): Enqueuc(Add_at_head(%(c), %(i)), %(j)) 

Rules used for the normal fonn: (1), (3) 

Step (1) Invoke Synthesis Rule (1) on :JG(ENQUEUE(Insert(c, i), j)) 

JG(ENQUEUE(lnsert(c, i), j)) = Enqueue(Add_at_head(%(c), %(i)), %(j)) 

Step (2) Expand Expression: Enqueuc(Add_at_hcad(JG(c), %(i)), %(j)) 

Using Rule: (5) 

JG(ENQUEVE(Jnsert(c, i), j)) = Add_at_head(Enqueue(%(c), %(j)), %(i)) 

Step (3) Expand Expression: Enqueuc(JG(c), JG(j)) 

Using Rule: (1) 

JG(ENQUEUE(Insert(c, i), j)) := Add_at_head(:JG(ENQUEUE(c, J1), %(i)) 

Step (4) Expand Expression: Add_at_head(:JG(ENQUEUE(c,j)), %(i)) 

Using Rule: (3) 

JG(ENQUEUE(Insert(c, i), j)) :: ~(lnsert(ENQUEUE(c, j), i)) 

The theorem generated in step (4) qualifies to be a synthesis equation. Hence the desired rule of the 

preliminary implementation is: 

ENQUEUE(lnsert(c, i), j) -+ lnsert(ENQUEUE(c, j), i) 

One can similarly generate a theorem of the form JG(ENQUEUE(Create, j)} := :JG(Insert(Create, j)), 

which gives rise to the following rewrite rule to complete the preliminary implementation for 
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-'ENQUEUE: 

ENQUEUE( Create, j) -+ Insert( Create, j) 

2.2.1.3.2 Derivation in the Inductive Theory 

The method used for deriving a synthesis equation in the inductive theory is based 

on the following property that every theorem of PW satisfies: If an equation is a theorem of 

PW, then every instance of it is in the equational theory of.PW. An instance of an equation 

e1 = e2 is an equation obtained by replacing every variable in e1 and e2 by generator 

constants.7 

We, therefore, take the following approach for deriving an equation in the inductive 

theory. First derive an instance of the desired equation; the method of derivation described 

earlier can be used for this purpose. The instance of the equation derived should be such that 

a generalization of it has the form of the desired synthesis equation. and is a theorem of PW. 

A generalization of e1 = e2 is an equation obtained by replacing assorted constants in e1 ~d 

e2 by suitable variables. To check if the generalization is a theorem of PW. we. use an 

automatic procedure called is·an·inductive·theorem·of. The procedure is an extension of the 

method of using the Knuth-Bendix completion algorithm for proving inductive properties of 

convergent rewriting systems (28, 38, 22]. The procedure is described in chapter 4. 

As an illustration let us derive a synthesis equation of the form 

%{APPEND(c, Insert(d,i ))) = %(?rhs
2
) which gives rise to one of rules in the preliminary 

implementation of Append. We begin by deriving an instance determined by the replacement 

of the variable d by the constant Create, and then apply generalization. 

Relevant Rewrite Rules of the Perturbed World 

(10) Append(q, Nullq) -+ q 

(14) %(Create)-+ Nullq 

7. A generator constant is an expression formed out of generators, and does not contain any variables. 
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(20) JG(ENQUEUE(c, i))--+ Enqueuc(JG(c), :Jt(i)) 

(22) JG(APPEND(c, d))-+ Append(%(c), %(d)) 

: Form of the theorem to be generated: JG(APPEND(c, lnsert(Creatc, i))) = JG{?e) 

. Normal form of%(APPEND(c, Insert(Create, i))): Enqucue(%(c), %(i)) 

Rules used for the nonnal form: 

Step (1) Invoke Synthesis Rule (1) on %(APPEND(c, lnscrt(Crcatc, i))) 

%(APPEND(c, Inscrt(Crcate, i))) = ~nqucuc(%(c), %(i)) 

Step (2) Expand Expression: %(APPEND(c, Inscrt(Crcate, i))) 

Using Rule: (10) 

··············-···---+-·····--······---····-·······-················· 
JG(APPEND(c, Insert(Crcate, i))) = Append(Enqucue(:JG(c), %(i)), Nullq) 

Step (3) Expand Expression: Nullq 

Using Rule: (14) 

JG(APPEND(c, Insert(Crcate, i))) = Append(Enqucue(%(c), %(i)), %(Create)) 

Step (4) Expand Expression: Enqueue(%(c), %(1)) 

Using Rule: (20) 

JG(APPEND(c, lnsert(Create, i))) :: Append(%(ENQUEUE(c, i)), %(Create)) 

Step (5) Expand Expression: Append(%(ENQUEUE(c, i)), %(Create)) 

Using Rule: 

%(APPEND(c, Insert(Create, i))):: %(APPEND(ENQUEUE(c, i), Create)) 

Step (6) Generalize the theorem in step (5) by replacing the constant 

Create by the variable d to obtain the following equation: 

%(APPEND(c, lnsert(d,i ))) :: %(APPEND(ENQUEUE(c, i). d)) 

Apply is·an·inductive theorem-of on· the above equation. 

This yields True confirming that the equation is a theorem. 
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Hence the desired rule (obtained by dropping% on both sides) is: 

APPEND(c, Inscrt(d,i)) ___. APPEND(ENQUEUE(c, i), d) 

' One can similarly generate a theorem of the form '.ffi(APPEND(Creatc, d)) = '.ffi(d) which gives rise to 

the following rewrite rule to complete the preliminary implementation of APPEND. 

APPEND(Create, d) -+ d 

2.2.2 Stage2: Derivation of the Target Implementation 

In the second stage of the synthesis procedure, the preliminary implementation is 

transformed into a target implementation. It should be noted that the preliminary 

implementation is itself an executable implementation. It can be executed by an interpreter 

that is capable of simplifying algebraic expressions using the equations in the specifications of 

data types as rewrite rules. The data type verification system AFFIRM [39) provides such an 

interpreter. Given the specifications of all the implementing types, the interpreter can 

execute the preliminary implementation on any given input Our goal is to derive the target 

implementation in a fonn that can be compiled by a compiler for an applicative language. · 

There are two reasons why a target implementation is more efficient than a preliminary 

implementation. The first one arises because of the freedom to use nongenerators of the 

representation type in a target implementation. This makes it possible, in some instances, to 

eliminate recursion from a preliminary implementation of an operation, and to transfonn into 

one which is a composition of the operations of the implementing types. The second reason 

is that an implementation that can be compiled by means of a conventional compiler is in 

general more efficient than interpreting a set of rewrite rules. We investigate two methods of 

transforming a preliminary implementation into a target implementation. We describe each 

of them briefly below. The first method, although less efficient than the second, derives a 

larger set of implementations. 
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· 2.2.2.1 Recursion Eliminating Method 

According to this method the problem of deriving a target implementation is viewed 

• as finding a composition f* of the operations of the implementing types and the 

implementing functions (possibly including the if_then_else function) that has the same 

functional behavior as the implementing function F defined by the preliminary 

implementation. For example, the composition Rotate(Insert(d, k)) has the same behavior as 

the function ENQUEUE defined by the rewrite rules of the following preliminary 

implementation: 

ENQUEUE(Create,j)-. Insert(Create,j) 

ENQUEUE(lnsert(c, i),j)-t Insert(ENQUEUE(c,j), i) 

So, the · following can be a target implementation for it: 

ENQUEUE(d, k) :: = Rotate(Insert(d, k.)). Note that the target implementation does not use 

recursion. 

More formally, the problem can be stated as follows: Find a co:nposition f* so that 

the equations obtained by substituting I* for ENQUEUE in the rewrite rules are theorems of 

the implementing types. The equations for ENQUEUE are given below. Note that, in 

obtaining the following equations, the two sides of the rewrite . rules are interchanged after 

replacing ENQUEUE by f*. The need for the interchange will be explained later. 

(1) Insert( Create, j) = I*( Create, j) 

(2) lnsert(f*( c, j), i) = f*(lnsert(c, i), j) 

We use the following strategy to find a solution for f*. We generate a theorem of 

the implementing types using one of the above equations as a template. For generating such 

a theorem we use the synthesis rul~ mentioned earlier. However this time, since we are 

interested in the theorems of the implementing types, the rewrite rules in the specification of 

the implementing types are used for expansion. The theorem generated determines a 

candidate for f*. The goal is to generate a theorem so that the candidate for I* determined by 

the theorem also satisfies the other equation. · For instance, the sequence of steps given below 

generates a theorem that has the form of equation (1). 
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:; Rewrite Rules of Circ_List 

.. (3) Rotate(Create)--. Create 

(4) Rotate(lnscrt(Crcate, i)) -t lnscrt(Create, i) 

· · (5) Rotate(lnscrt(Inscrt(c, il), i2)) -t lnsert(Rotatc(lnscrt(c, i2)), il) 

Form of the theorem to be generated: Insert(Create, j) = f*(Create, j) 

Normal form oflnscrt(Crcate, j): Inscrt(Create, j) 

Rules used for the normal form: None 

Step (1) Invoke Synthesis Rule (1) on Insert(Crcate, j) 

Insert( Create, j) = lnscrt(Create, j) 

Step (2) Expand Expression: Insert( Create, j) 

Using Rule: (4) 

Insert(Crcate, j) = Rotate(lnsert(Create, j) 

The last theorem generated in the above series suggests that Rotate(lnsert(d, k)) is a 

candidate for f*(d, k). The candidate composition can be determined mechanically by 

comparing the theorem generated with the template equation. The candidate we currently 

have is such that the equation Rotate(lnsert(lnsert(c, i), j)) = lnsert(Rotate(lnsert(c, j)), i), 

which is obtained by replacing f* by Rotate 0 Insert in equation (2), is a theorem of Circ_List. 

Had the candidate obtained in the last step not satisfied equation (2), the theorem generation 

would have continued further to generate another theorem that had the form of equation (1). 

The reason that the first equation, rather than the second, was used as the template 

equation is the following. The synthesis rules are formulated so that the unknown expression 

in the equation to be searched for is on the right hand side. In equation (2) both sides are 

unknown since f* occurs on both the sides. That is not the case with equation (1). This was 

also the reason for interchanging the two sides of the rewrite rules while obtaining the 

template equations. In the example illustrated the theorem desired was in the equational 

theory. In general, we need to use the generalization technique described earlier since the 
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; theorem may be in the inductive theory .. 

, 2.2.2.2 The Recursion Preserving. Method 

In this method the target implementation is derived with the help of a special set of 

fu~ctions, called the inverting junctions,8 on the representation type. To understand what 

.· inverting functions are, and why there are useful, let us consider an example. The 

preliminary implementation of SIZE consists of the following rules: 

SIZE(Create) -+ 0 

SIZE(lusert(c, i)) -. SIZE(c) + 1 

A target implementation for SIZE may take the following form: 

SIZE(d) : : = if Empty(d) then 0 

else SIZE(Remove(d)) + 1 

Note that in the preliminary implementation the argument to SIZE on the left hand 

side of a rule is permitted to be a generator expression. The argument indicates the pattern or 

the structure of the expression that constructs the values for which the rewrite rule is 

applicable.9 This freedom.is used in a preliminary implementation to perform a case analysis 

based on the structure of the argument, and to decompose the argument. 

In a target implementation the argument to SIZE on the left hand side of the 

definition must be a variable. This means that the expression on the right hand side of the 

definition must have explicit subexpressions for determining the structure of the argument. 

and to decompose the argument Inverting functions of a data type can be used to build these 

subexpressions. 

Informally speaking. the inverting functions of a data type are functions that can be 

8. Inverting functions are closely related to distinguished fanctions of a data type defined in [24]. In 
(24} the distinguished functions are used to formalize the expressive power of a data type. 
9. If we are interested in interpreting the preliminary implementation. it is, therefore, necessary for 
the interpreter to have pattern matching capability to invoke the appropriate rewrite rule while 
simplifying an expression. 
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; used to algorithmically invert the ,process of constructing a value of the type from the 

· generators of the type. In other words, by applying one or more of the inverting functions a 

finite number of times on a value one can determine a generator expression that constructs 

· the value. For instance, for CircJ,ist the operations Rotate, Value, and Empty can serve as a 

set of inverting functions. The structure of any circular list value in terms of Create and 

Insert can be determined using these operations. For instance, if v is a variable denoting the 

value constructed by Insert(c,j), then Remove(v) extracts the component c; -Empty(v) checks 

if v is co!lstructed by an expression of the form Insert( c,.j). So, the rewrite rules can be 

merged into the following conditional . expressions: 

ifEmpty(d) then 0 else SIZE(Remove(d))+ 1. 

The target implementation is derived in two steps. The first step identifies a set of 
. 

inverting functions for the representation type. In the second step the rewrite rules 

constituting the preliminary implementation of every operation are transformed into a target 

implementation in terms of the inverting functions. The method is described in detail in 

chapter6. 

2.2.3 Extending the Synthesis Procedure 

Consider the association specification given in Fig. 6. It specifies a representation 

scheme for implementing QueueJnt as a triple Array Jot X Integer X Integer. which can 

informally be described as follows. (ArrayJnt is specified in the next chapter which also 

describes the association specification shown below in more detail) Nullq can be represented 

Fig. 6. Queue_lnt in terms of Triple 

.A(<v. i, i>) = Nullq 

.A(<Assign(v, e,j), i.j+ 1>) =if i = j+ 1 then Nullq 
else Enqueue(.A(< v, i, j> ), e) 

3(<v, i, i>) = True 
3(<Assign(v, e,j), i, j+ 1>)::;: if i = j+ 1 then True 

else if i < j+ 1then3(<v. ~ j)) 
else False 
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by any triple in which the two integer components are equal. A nonentpty queue can be 

represented by a triple <v, i, j>, where vis an array of arbitrary length containing the elements 

, of the queue between the index values i and j-1, in order. In other words, i points to the front 

end of the queue, and j points to the next position available in the queue for adding an 

1 element Note that in this example, unlike the last one, not every value of the representation 

type can legally represent a queue. A triple <v, i, j> is a legal representation value if only if 
I 

i < j, and vis guaranteed to be defined on all index values between i and j·l. The invariant 3 

in Fig. 6 specifies this condition. 

The synthesis the presence of a nontrivial invariant 3 has to be performed differently 

because the implementation must be such that every implementing function F defined 

preserves 3: That is, (V v)(3(v) ~ 3(F(v))]. 

The synthesis procedure for. such a situation is similar to the one described earlier 

except for the method employed in determining the right hand sides of the rules of a 

preliminary implementation. The difference lies in the set of rewrite rules used for expansion 

while generating the theorems. Earlier, the rewrite rules of PW were used, but now it is 

necessary to use an additional set of rewrite rules. The additional rewrite rules describe 

information pertaining. to the invariant 3, and the assumption that the arguments to the 

implementing function satisfy the invariant The information pertaining to 3 is maintained as 

a separate entity called the Temporary. World. Chapter 5 describes how the Temporary World 

is constructed, maintained, and used in the synthesis of an implemenation. 

2.3 The Scope of the Synthesis Procedure 

The scope of the synthesis procedure is limited because of two reasons. Firstly, the 

restrictions imposed on the input specifications limit the range of data type specifications that 

are acceptable as inputs to the procedure. Secondly. the synthesis procedure is capable of 

deriving only a class of implementations that satisfy certain properties. We describe the two 

forms of limitations below. 
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,; 2.3.1 Restrictions on the Inputs 

The input specifications must be such that the Initial World (IW), which is a 

combination of all the specifications, !forms a rewriting system that 

(1) has the uniform termination property, 

(2) has the unique termination property, and 

(3) is well-spanned. 

The second and the third properties are not restrictive because they can be attained 

by adding certairt additional rewrite rules to the system. There are automatic procedures [28. 

38, 22] for determining the rules that need to be added, provided the system satisfies the 

uniform termination property. 

The uniform termination property can be restrictive. Jt is, in general, not possible to 

express all the properties one wishes to specify in a manner that preserves the uniform 

termination property. For example, consider the data type Set_of_Elements that has an 

operation Insert to insert an element into a set To express the property that the order of 

insertion of elements into a set is immaterial, it is necessary to have a rewrite rule of the form 

Jnsert(lnsert(s, i), j) -+ lnsert(lnsert(s, j), i) as a part of IW. A system containing this kind of 

rule need not, in general, terminate because the rule does not strictly reduce an expresmon. 

One way of getting around this problem is to exclude the concerned rule(s) from 

IW. However. there are two reasons why one may not want to do this. Firstly, the rule might 

be needed to attain the second and the third properties mentioned above. In such a situation 

excluding the rule(s) makes the input unacceptable. The second reason is that omitting the 

rule may leave the specification incomplete.16 The method used by the synthesis procedure 

does not require the specifications to be complete, so the input (excluding the concerned rule) 

in this case is acceptable. But the procedure will not be able to derive an implementation that 

is dependent on the property expressed by the rule. 

10. We use the following notion of completeness: A specification is complete if all the properties that 
are valid for the data type are provable from the specification. 
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, 2.3.2 The Class of lmplementatious Derived 

There are three factors that are responsible for limiting the class of implementations 

derived by the procedure. The first is related to the subset of the proof theory of the input . 
specifications in which the synthesis procedure operates. The procedure can only derive 

those implementations whose correctness proof is within the operational part of the theory. 

The operational part of the theory comprises the subset of the inductive theory that is decided 

by the Musser/Knuth-Bendix method [38] of proving inductive properties. 

The second limiting factor is the termination ordering>-. The synthesis procedure 

assumes that an effective ordering is implicitly available to be used in ensuring the 

termination of the implementation. So, the procedure can only derive those implementations 

whose termination can be proved using the ordering>-. The more general11 the ordering>-. 

the larger is the class of implementations that can be derived 

The third reason is that t_he implementations derived may not involve arbitrary 

helping functions. The synthesis procedure is not capable of automatically discovering a 

helping function that might be necessary in an implementation. The user has to furnish a 

specification of the helping function as a part of the Initial World if he wishes an 

implementation in terms of the helping function. 

2.3.3 Effects of Using the Procedure Outside its Scope 

Using the procedure on a specification that does not satisfy the uniform termination 

property may result in infinite looping. This is because, under such a circumstance, there can 

be expressions for which a normal form does not exist The effect of a violation of the unique 

termination property depends on how serious the violation is. If the violation implies that the 

system is inconsistent, then the procedure may derive an incorrect implementation. However, 

if the system is consistent despite the violation, the effect will only be a reduction in the class 

of implementations that the procedure can derive. It should be noted that all three of the 

11. An ordering >-1 is considered to be more general (23) than >-2 if >-1 contains >-2. That is, >-1 
relates a larger set of expres&ons than >-2• 
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properties required or the inputs can be checked automatically (assuming that a termination 

ordering>- is available). 
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· 3. Inputs to the Synthesis Procedure 

This chapter has four sections. The first section defines data types and their 

. specification. The second section describes the association specification. The third section 

characterizes the restrictions on the inputs. The last section describes proving properties of 

data types from the specifications. 

3.1 Data Types and their Specification 

3.1.1 Preliminary Concepts 

A data type consists of a set (perhaps infinite) of values, called the value set, and a 

finite set of operations, called the operation set. The only way in which the values of a data 

type can be constructed, manipulated or observed is through the operations of the data type. 

The behavior of a data type is usually dependent on several other data types. These 

data types appear as a part of the domain or as the range of the operations of the data type 

under consideration. We call these other data types the defining type~ the data type under 

consideration is referred to as the type of interest (l'O I). If the TO I is the one that is being 

implemented, we refer to it as the implemented type. The type that is used to represent the 

implemented type is called the representation type. The defining types of the representation 

type are called the ancillary types. The union of the representation type and the ancillary 

types is called the set of implementing types. For example, the defining types of the data type 

QueueJnt specified in Fig. 7 are Integer and Hool. 

A data type has two kinds of operations. A constructor is an operation that yields a 

value of the TOI, and an observer is an operation that yields a value of a defining type. For 

QueueJnt, the operations Nullq, Enqueue, Dequeue, and Append are all constructors; the rest 

of the operations are observers. 

We treat the exceptional behavior of a data type in a simplified fashion. We asmme 

that every data type has a unique exceptional value that is constructed by the operation Error 

belonging to the type. The value Error( ) is treated like any other value of the type except 

that it has the following unique property. Every operation is assumed to be strict with respect 
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'·' to Error( ): Every operation f is such that when applied to Error( ) from any of its domain 

, types it yields the exceptional value ·of the range type off. We assume that every operation f 

: is a total function: That is, f is defined on every element of its domain yielding either an 

• exceptional value or a normal value from its range type. 

The requirement on a data type that its values be manipulated onJy by its operations 

1 translates to requiring that its values be constructed only by its constructors, possibly using 

1 the values of its defining types. Furthermore, in a computer the values can be constructed 

only by a finite sequence of operations, so the v.alue set of a data type is the smallest set closed 

under finitely many applications of its constructors. This property of a data type is caJled the 

minimality property (25). 

A subset of constructors is said to be complete if every value of the TOI can be 

constructed by some composition of the constructors in the subset (possibly using values of 

the defining types). A basis for a data type is a complete set of constructors that is minimal, 

i.e., no subset of a basis is complete. A data type may have more than one basis. { Nullq, 

Enqueue} is a basis for Queue_lnt since all queues can be generated using Nullq and 

Enqueue, and no subset of it can do so. 

An expression (or a term) is a sequence of operations and variables denoting an 

application of the operations to the variables. The type of an expression is the range type of 

the operation symbol that appears at the outermost level of the expression. A constant is an 

expression that does not contain any variables. For example, Dequeue(Enqueue(q, e)) is an 

expression of type Queue_lnt; it is not a constant since it contains variables. 

Dequeue(Enqueue(Nullq, 0)) is a constant of type QueueJnt. 

3.1.2 Definition of a Data Type 

The only way in which the values of a data type can be manipulated is through the 

operations of the type. We define a data type so as to capture the behavior of the type as 

viewed through the operations of the type. This behavior is called the observable behavior of 

the data type. This method of definition was advocated by Guttag [16), and later developed 

by Kapur (25). According to this view, the values of a data type are distinguishable only by 

----------------------
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: means of the operations of the type. ~ 

Heterogeneous algebras provide a natural means of modeling the behavior of a data 

type. A heterogeneous algebra that can be used to model a data type is defined recursively in 

terms of the algebra that is used t6 model each of its defining types. The basis of this 

recursion is the type Bool which does not have any defining types. 

A heterogeneous algebra for a data type D, consists of (i) a domain corresponding to 

. D, which is called the principal domain, (ii) a domain corresponding to every defining type of 

D, (iii) a function corresponding to every operation of D. The elements of the principal 

domain are used to denote the values of D. The minimality property of a data type requires 

that every element of the domains of the algebra be constructible by a finite number of 

applications of the constructors of the appropriate type. Any heterogeneous algebra that has 

the appropriate signature, and that exhibits the desired observable behavior can be used to 

model the data type. Hence, we define a data type as a set of heterogeneous algebras that 

exhibit the same observable behavior. Every algebra in the set is said to be a model of the 

data type. The elements of the principal domain are called the values (of D) in that model 

Below we formally characterize the observable behavior of a heterogeneous algebra. 

The observable behavior of a model is characterized in terms of the . . 

distinguishability relation ·on the values of the model. The distinguishability relation is 
- , . . - .. 

' defined inductively in terms of the distinguishability of the values of the defining types. That 

is, we as.5ume that the distinguishability relation is already defined the domain corresponding 

to each of the defining types. (The basis of this induction is the data type Boo I that does not 

have any defining types; the only two values, True and False of Bool are assumed to be 

distinguishable.) Two values of a model are distinguishable if and only if there is a sequence 

of operations of D with an observer as the outermost operation, that produces distinguishable 

results when applied separately on the values. If two values are not distinguishable, they are 

observably equivalent .. For instance. the Queue: . ...Int values constructed by· Enqueue(Nullq, 0) 

and Append(Nullq, Enqueue(Nullq, 0)) are observably equivalent; but the ones constructed by 

Enqueue(Nullq, 0) and Dequeue(Enqueue(Nullq, 0)) are distinguishable. Observable 

equivalence is an equivalence relation. 
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Definition Two models are behaviorally equivalent if their quotient models induced by the 

observable equivalence relations are isomorphic to each other. 

·• Definition A data type is a set of behaviorally equivalent heterogeneous algebras. 

3.1.3 Specification of a Data Type 

The specification of a data type is a piece of text in a formal language. It describes a 

set of properties concerning the operations of the data type. The 'aim of writing a 

specification is to characterize through the specification the observable equivalence relation 

that defines the data type. 

It has been observed [17] that the construction of an algebraic specification for a 
. 

data type is rendered easier and more reliable (in the sense that one has increased confidence 

in the consistency and completeness of the specification) by using a basis of the data type as a 

guide for constructing the specification. We assume that all our specifications are constructed 

in this fashion. The operations belonging to the basis of a specification are called the 

generators of the specification. An operation that is not in the basis is called a non·g~erator. 

Note that all generators are constructors; non-generators may be constructors or observers. 

Throughout the development when we refer to the basis or the generators of a data 

type involved in the synthesis, we actually mean the basis or the generators associated with 

the specification of the data type being used as an input to the synthesis procedure. 

Definition of a couple of new terms pertaining to the generators are in order at this point. A 

generator expression (generator constant) of a data type is an expression (constant) that 

consists of only the generators of the type. Taking QueueJnt with the specification given in 

Fig. 7 as an example: Enqueue(Nullq, 0) is a generator constant whereas, 

Dequeue(Enqueue(Nullq, 0)) is not a generator constant, because Dequeue is a non-generator. 
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.1 3.1.3.1 The Specification Language 

The specification language we use is a restricted version of an equational language 

that permits conditionals and auxiliary functions. The language is similar t.o the ones used in 

several other works on data type specification and verification such as [14, 18, 25]. A 

specification has two parts: the Operations part describes the functionality of every operation 

of the TOI; we as.5ume that the Operations part identifies the basis used for the specification. 

, The Axioms part consists of a set of axioms describing the properties of the operations. Every 

axiom has the form of an equation e1 = e1, where e1 and e1 are expressions of the same type. 

The expressions may involve any of the operations of the TOI and the defining types. The 

expressions may contain any of a finite number of auxiliary functions which are also specified 

as part of the specification. The equations may involve conditional expressions on their right 

hand side, i.e., e2 may contain the auxiliary function if_then_else which behaves like a 

conditional expression.12 For the sake of clarity, we use the following more conventional 

syntax for an expression involving if_then_else. The expression if_then_else(b, e11' e22) is 

written as if b then e11 else e22• 

We differ from the works cited above by assuming that every axiom in the 

specification satisfies the following syntactic oonstraints. The constraints are not restrictive. in 

the sense that they do not restrict the class of data types that can be specified. The first 

constraint enables us to automatically partition the axiom set into two disjoint sets: One that 

oontains only the generator symbols; the other whose axioms may involve generators as well 

as nongenerators. The partitioning of the axiom set facilitates the synthesis pr~ by 

reducing the inter-dependence of the synthesis of different operations. The second constraint 

pennits the axioms to be treated as left to right rewrite rules (to be described later) without 

having to interchange the two sides of the axioms. 

12. if__then_else can be specified by the following two equations. 
iLthen_else : Hool X TX T • > T 
iLtben_else(True, e1, e1) = e1 · 

iLthen_else(False, e1, e1) = ~ 

~-~------ -----------------
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, Every axiom e
1 
= e2 of a specification satisfies the following conditions: 

(1) Every data type specification explicitly identifies a basis, i.e., a set of generators. 

(2) The set of variables in e2 is a subset of the set of variables in er 

Figures 7 and 8 show specifications of a (FIFO) queue of integers (QueueJnt) and a circular 

list of integers (Circ_List). The specifications meet the constraints specified above. 

3.1.3.2 Semantics of a Sp~cification 

The specification of a data type characterizes the observable equivalence relation . 
that defines the data type. The semantics of a specification is a set of heterogeneous algebras 

that are behaviorally equivalent based on the observable equivalence relation characterized 

by the specification. 

To determine the observable equivalence relation characterized by a specification. 

the symbol'=' in the axioms of the specification should be read as 'observably equivalent'. 

For instance, the equation Sizc(Enqueue(q, e)) = Size(q) + 1 in the specification of 

Queue_lnt asserts that the two expr~ions yield observably equivalent values for all 

instantiations of the variables in them. The 'Observable equivalence relation characterized by 

the specification is the reflexive, symmetric, transitive closure of =· Every algebra that 

satisfies all the axioms in the specification is a model of the type being specified by 

specification. 

3.2 Association Specification 

In addition to the specifications of the types involved in the synthesis, the synthesis 

procedure expects the user to provide ·information about the representation scheme to be 

used by the implementation that is to be derived. This section explains what exactly that 

information is, and how it can be specified. We call the formal description of the information 

the association specification of an implementation. 
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Fig. 7. Specification of Queue_lnt 

1 
Queue_lnt is Nullq, Enqueue, Front, Dequeue, Append, Size 

Defining Types 

Bool, Int 

Operations 

Nullq : • > Qucue_lnt 
· Enqueue : QueueJnt X Int • > QucueJnt 

Front : QucucJnt ·>Int U {ERROR} 
Dequeue : Qucue_lnt ·> Queuc_lnt U {ERROR} 
Append : Queuc_lnt X QueueJnt ·> QueueJnt 
Sil.e : QucucJnt • > Int 

Basis 

{ Nullq, Enqueue } 

Axioms 

(1) Front(Nullq) = ERROR 
(2) Front(Enqueuc(Nullq, e)) = e 
(3) Front(Enqueuc(Enqueue(q, el), c2)) = Froot(Enqueuc(q, cl)) 

(4) Dcqueuc(Nullq) :: ERROR 
(5) Dcqueuc(Enqucue(Nullq, e)) = Nullq 
(6) Dcqueuc(Enqueuc(Enqueuc(q, el), e2)) = Enqueue(Dequcue(Enqueue(q, el)), e2) 

(10) Append(q, Nullq) = q 
(11) Append(ql, Enqucue(q2, e2)) = Enqueue(Append(ql, q2), e2) 

(12) Size(Nullq) := 0 
(13) Size(Enqueuc(q, e)) = Size(q) + 1 

Fig. 8. Specification of arc_List 
CircJ.,ist is Create, Insert, Value, Remove, Rotate, Empty, Join 

Defining Types 
Integer, Boolean 

Operations 
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: · > Circ_List 
: Circ_List X Integer·> Circ_List 

: Circ_List ·>Integer U {ERROR} 

i Create 
Insert 

Value 
Remove 
Rotate 
Empty 

: Circ_List ·> Circ_List U {ERROR} 
: Circ_List • > Circ_List 

: Circ_List • > Boolean 

' Join : Circ_list X Circ_list • > Circ_list 

Comment 
Circ_List is a list of integers with a front end and a rear end. Create constructs an empty list; the front 

and the rear ends of an empty list are the same. Insert inserts an element into a list at the rear end. 

Value returns the element at the rear end of a list Remove removes the element at the rear end from a 

list Rotate moves every element in a list by one position towards the rear end in a cyclic fashion, i.e., 

the element at the rear is moved to the front. Empty checks if a list is empty. Join joins two lists by 

positioning the first argument in front of the second 

Basis 
{Create, Insert} 

Axioms 

(1) Value(Create) = ERROR 
(2) Value(lnsert(c, i)) = i 

(3) Removc(Create) = l!.itROR 
(4) Removc(lnsert(c, i)) = c 

(5) Rotatc(Create) = Create 
(6) Rotatc(lnsert(Creatc, i)) = Insert(Create, i) 
(7) Rotatc(lnsert(Insert(c, il), i2))) = Insert(Rotatc(Insert(c, i?)), il) 

(8) Empty(Create) = true 
(9) Empty(lnsert(c, i)) =false 

(10) Join(c, Create) = c 
(11) Join(c, Insert(d, i)) E Insert(Join(c, d), i) 
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:3.2.1 What is an Association Specification? 

An association specification characterizes two pieces of information about a 

representation scheme: 

(1) The set of values of the representation type that an implementation may use in 

representing the values of the implemented type. We call this set the representing 

domain(~). ~is characterized by means of a predicate on the representation type 

called the invariant·(.'f): ~is the set of values of the representation type for which .'f 

is True . 

. 
(2) A function, called the abstraction function, from the values of the representation type 

to the values of the implemented type. The function corresponds to the 

representation function of a data type introduced by [21). The abstraction function 

maps a representation value to an abstract value that the former may represent in an 

implementation. An abstraction function may be a many-to-one function. An 

abstraction does not have to be defined on every value of the representation type. 

However, it has to be defined on every value in the representing domain. 

The information . characterized by· the association· specification is often the most 

creative part of an implementation. The proof of correctness of an implementation also, in 

general. needs to use information such as this. If the invariant part of an association 

specification is vacuous, then ·we assume that the invariant is true on all values of the 

representation type. In such a case the representing domain includes all the values of the 

representation type. 

3.2.2 How Is It Expressed ? 

We specify .'f and .A. using the same. language that is used to specify the data types 

involved. .'f is specified as a set of equations. like any other predicate on the value set of the 

representation type. .A. is specified as a set of equations relating expressions of the 

representation type to expressions of the implemented type. We require that .A. be specified 

as a well-defined function with a nonempty domain. · 
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Fig. 9. Two Association Specifications for Queue_lnt 

9(a) Queue_lnt in terms o/Circ_List 

.A.(Create) = Nullq 

.A.(lnsert(c, i)) = add_at_head(.A.(c), i) 

add_aLhead(NulJq) = Enqueue(Nullq, i) 
add_aLhead(Enqueue(q, i), it)= Enqueue(add_at_head(q, il), i) 

9(b) Queue_lnt in terms of ArrayJnt X Int X Int 

.A.(< v, i, i>} = Nullq 

.A.(<Assign(v, e, j), i, j+ 1>) = if i = j+ 1 then Nullq 
else Enqueue(.A.(<v, ~ j>), e) 

3(<v, i, i>) = True 

3(<Assign(!, e, j), ~ j + 1>) = if i = j + 1 then True 

else if j + 1 < i then False 
else 3(<v, i, j>) 

Fig. 9 gives a couple of example of an association specification. 9(a) specifies an 

implementation of QueueJnt in terms of Circ_List. The empty queue is represented by the 

empty list; a nonempty queue is represented by a list whose elements are identical to the ones 

in the queue, but are arranged in the reverse order. The motivation for this representation 

scheme is that reading and deletion of elements from a queue can be performed efficiently. 

Consider the association specification given in Fig. 6. It specifies a representation 

scheme for implementing QueueJnt as a triple • which can informally . be described as 

follows. (Array Jnt is specified in the next chapter which also describes the association 

specification shown below in more detail.) 

Fig. 9(b) specifies an implementation in which a queue is implemented as a triple 

ArrayJnt X Integer X Integer. (AmyJnt is specified in Fig. 10.) The representation scheme 

can be informally described as follows. Nullq can be represented by any triple in which the 

two integer components are equal. A nonempty queue can be represented by a triple <v, ~j). 



·~ Fig. 10. Specification of Array_lnt r 

ArrayJnt is Nullarr, Assign, Read, Size, Empty 

Defining Types 
· Integer, Boolean 

, Operations 

: ·> ArrayJnt 
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Nullarr 

Assign 

Read 

Size 

Empty 

: Array_Int X Integer X Integer·> Arr~y_Int 

: Array_Int X Integer·> Integer U {ERROR} 

: Am1y_Int ·>Integer 

: Array_lnt ·>Boolean 

Comment 
Array_lnt is an array of integers. Every element in the array is indexed by an integer; the indices are 

not necessarily contiguous. Nullarr creates an empty array. Assign assigns a given value (the second 

argument) to the element at a given index (the third argument); if the array does not have an element 

with the given index, then the value is added to the array. Read reads the clement at the given index. 

Empty checks if an array is empty. 

Basis 
{Nullarr, Assign} 

Axioms 

(1) Assigo(Assign(v, el, il), e2, i2) =if il = i2 then Assign(v, c2, i2) 

else Assign(Assign(v, e2, i2), el, il) 

(2) Read(Nullarr. i) :: ERROR 

(3) Read(Assign(v, e, j), i) = if i = j then e 

else Read(v, i) 

(4) Empty(Nullarr) = true 

(5) Empty(Assign(v, e, i)) = false 
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· where v is an array of arbitrary length containing the elements of the queue between the 

index values i and j-1, in order. In other words, i points to the front end of the queue, and j 
' 

points to the next position available in the queue for adding an element , r 

Note that in this example, unlike the last one, not every value of the representation 

type can legally represent a queue. A triple <v, i, j> is a legal representation value if only if 

i < j, and v is guaranteed to be defined on all index values between i and j· 1. The invariant J 

in specifies this condition . 

. The abstraction function .A is specified so that it is defined on all values for which J 

is True. The specification uses an auxiliary function AdcLaLbead. Add_aLhead is a function 

on Queue_lnt that adds a given element at the front of a queue. A specificatio~ of 

Add_at_bead is given as a part of the association specification. 

3.2.3 Further Discussion on Association Specification 

It is important to note that every asoociation specification need not have an 

implementation corresponding to it To understand this more clearly, let us look at the 

relationship between an association specification and an iinplementation that uses a 

representation scheme consistent with the one characterized by the association specification. 

An implementation of a data type consists of 

(i) a representation type being used as the representation for the implementation. 

(ii) a program, ie., a segment of code, for every operation of the type in a language; this 

program is called the implementation of the corresponding operation. 

Note that both a preliminary implementation and a target implementation (as introduced in 

the previous chapter) of a data type ar:e implementations of the data type. A preliminary 

implementation uses one language to express the program, while the target implementation 

uses another. 

Formally, an implementation of a data type can be oon$idered to be denoting a 

heterogeneous algebra, called an implementation algebra. with 
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(i) a principal domain that is a subset of the value set of the representation type, 

(ii) a domain corresponding to every defining type of the implemented type - this 

domain is identical to the value set of the corresponding defining type, 

(iii) a function corresponding to the implementation of every operation of the 

implemented type so that the function mimics the behavior of the implementing 

program. 

An implementation of a type is correct if there exists a homomorphism, from the 

implementation algebra to to the implemented type. The association specification should be 

such that there exists an implementation algebra with computable functions that corresponds 

to the representation scheme characterized by the association specification. More specifically, 
. 

the implementation algebra should satisfy the following conditions: 

(i) The principal domain of the algebra is the representing domain characterized by the 

association specification. 

(ii) There is a computable function in the algebra with the appropriate functionality 

corresponding to every operation of the implemented type. 

(iii) The implemented data type is a homomorphic image of the implementation algebra 

with respect to the abstraction function. 

We do not intend to formally characterize the properties that the association specification 

ought to satisfy so that it meets the above requirement Rather, we trust the intuition of the 

user, and assume that there exists an implementation that is consistent with the association 

specification furnished by him. If the association specification provided as an input to the 

synthesis procedure is such that the~e is no implementation corresponding to it, then the 

synthesis procedure will, in general, never terminate. The synthesis method, however, does 

not produce an incorrect implementation in such a case. 
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: 3.3 Restrictions on the Inputs 

The method used by the synthesis procedure to derive an implementation is based 

on treating every equation in the specifications as a rewrite rule. The procedure combines all 

the input specifications, and treats the union as a set of rewrite rules called the Initial World. 
I . 

The restrictions imposed on the inputs are intended to ensure that the Initial World satisfies a 

useful property called the principle of definition. 

The first subsection informally introduces the basic concepts about rewrite rules. 

(See Appendix I for formal definitions.) The second subsection defines principle of 

definition, and develops a sufficient set of conditions for principle of definition (SCPD). The 

input is expected to satisfy SCPD. The third subsection describes how to prove properties 

from a specification that satisfies SCPD. 

3.3.1 Rewrite Rules and Rewriting Systems 

A rewrite rule is an ordered pair (left, right), written left -+ right, where left and 

right are expressions containing variables so that the variables in right are among the 

variables in left. A rule is used to reduce an expression by replacing any subexpression that is 

matched by left with a corresponding version of right, i.e., with the same substitutions for 

variables that were made in matching left. (More precise definitions are given in Appendix I.) 

For example, consider the rule 

Append(q
1
, Enqueue(qv i2))-+ Enqueue(Append(q1, q2), 'z). and the expression 

a = Dequeue(Append(q3, Enqueue(Nullq, 0))). a is reducible using the rule ~use it has a 

subexpression a' = Append(q3, Enqueue(Nullq, 0)) that has the form of the left hand side of 

the rule: That is, Append(q
1
, Enqueue(q

2
, 12)) becomes identical to 

Append(q3, Enqueue(Nullq, O)) when the variables in the former are substituted according to 

the 5Ubstitution u = (q1 1-+ q3, q2 1-+ Nullq, iz H 0). The corresponding instance of the right 

hand side of the rule (obtained by substituting the variables in Enqueue(Append(ql' qz>, '2) 

using the substitution a) is p' = Eaqueue(Append(q3, Nullq), 0). 

p = Dequeue(Enqueue(Append(q'.\, Nullq), 0)) is the expression obtained by replacing a ' by 

p' in a. Then, we say that a reduces to /J. written a - /J. 
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•: A rewriting system is a set of rewrite rules. Let R be a rewriting system. An 

expression a is reducible by R if it is reducible by some rule in R. If a is not reducible by any 

rule in R, then a is irreducible by R. 

If a -+ /1 by a rule in R, then we say that a directly reduces to fJ using R, and once 

again write it as a-+ p (using R). Let -+* be the smallest relation on pairs of expressions 

.. which is the reflexive, transitive cl?sure of -+. Thus, a-+* f1 if and only if there exist 

expressions a0,a1, ••• , a
0

, where n > 0, such that a = a0, ai-+ ai+ 1 for i = 0, ... , n-1 and 

a
8 
= {J. We read a-+* {J as·a reduces to {J. 

Suppose a-+* {J. and f1 is irreducible. Then we say that a simplifies top; /1 is called 

a normal form of'a (in R). 
I 

Rewriting systems are used to simplify expressions into their normal forms. Thus. a 

useful property of a system is uniform termination: R has the uniform termination property if 

no infinite sequence of reductions, a 0 -+ a 1 -+ ... , is possible in R. When R has the uniform 

termination property every expression is guaranteed to have a normal form. Another useful 

property of a rewriting system is unique termination: R has the unique termination property if 

any two terminating sequences of reductions starting from the same expression have identical 

final expressions. When R has the unique ~rmination property the normal form (if it exists) 

of every expression is unique. A rewriting system that has both the uniform termination 

property and the unique termination property is said to be convergent. When R is convergent 

every expression a has exactly one normal form; we denote the unique normal form of a in a 

convergent system by a,,., 
The rewriting systems corresponding to our input specifications are obtained by 

simply replacing the symbol ·=··by the symbol '-+' in each of the equations in the 

specifications. For example, Fig. 11 gives the rewriting system corresponding to the 

specification ofQueueJnt in Fig. 7. Henceforth, we treat the input specifications as rewriting 

systems obtained as explained above. When we refer to a specification, we actually mean the 

rewriting system obtained from the specification. 
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, Fig. 11. The Queue_lnt Rewriting System 

(1) Front(Nullq)-+ ERROR 

. (2) Front(Enqucuc(Nullq, c)) -+ e 

(3) Front(Enqucue(Enqueuc(q, el), e2)) -+ Front(Enqueue(q, el)) 

(4) Dcqueuc(Nullq) -+ ERROR 

(5) Dcqucuc(Enqueue(Nullq, c)) -+ Nullq 

(6) Dcqueuc(Enqueuc(Enqueuc(q, el), ei)) -+ Enqucuc(Dcqucue(Enqueue(q, cl)), e2) 

(10) Appcnd(q, Nullq) -+ q 

(11) Appctid(ql, Enqueuc(q2, e2))-+ Enqucuc(Append(ql, q2), e2) • 

(12) Size(Nullq)-+ 0 

(13) Sizc(Enqucue(q, e)) -+ Sizc(q) + 1 

3.3.2 The Principle of Definition 

The principle of definition is a property of a specification (or a group of 

specifications). The property ensures the consistency of a specification. The property 

reinforces the two-tier characteristic inherent in our specifications: It ensures that the 

generators are specified among themselves, and the nongenerators are specified as total 

functions in tenns of the generators. Finally, the property is useful in mechanically proving 

properties of data types from their specifications. The property is similar to a property with 

the same name defined in [22). Our definition is more general than the one in (22). 

Definition The Principle of Definition 

A specification (or a group of specifications) S has the principle of definition property if every 

constant t has exactly one normal fonn (in S). and the normal form is a generator constant of 

the appropriate type. 

There will be situations in our development when it is neceswy to use a restricted 

version of the principle of definition. The notion is restricted in the sense that the principle 

of definition need hold good only for a subset of terms. The restricted property is useful in 

stating that every nongenerator defined by a system be defined as a total function on a subset 
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t. of the value set of a type. We give a definition the property below . 

. _ Definition Principle of Definition With Respect T 

' Let T be a set of generator constants not necessarily including all posSible constants. A 

. system S satisfies the principle of definition with respect to T if the following condition holds: 

Every constant of the form F(g
1
, ••• , g). where F is a nongenerator function symbol and 

g
1
, ••• , ~ are generator constants in T, has a unique normal form (in S) that is a generator 

· constant in T. 

The principle of definition has two parts to it: It requires every constant to have a 

unique normal fonn in S, and the normal fonn to be a generator constant SCPD has to be 

formulated so as to ensure the two parts. The first part can be ensured by requiring S to be 

convergent (i.e., to satisfy the uniform termination property and the unique termination 

property). The second part is ensured by requiring S to be well-spanned We define what it 

means for S to be well-spanned below, and then show how the two properties ensure the 

principle of definition of s: 
Consider the rewriting system shown in Fig. 11. The system has three rules (1. 2, 

and 3) in which the expression on the left hand side has Front as its outermost symbol. The 

set, {Nullq, Enqueue(Nullq, e), Enqueue(Enqueue(q, el), e2)}, of generator expressions that 

appear as arguments to Front on the left hand side in the rules spans the entire set of 

generator constants of Queue_lnt; in other words, every generator constant of type 

Queue_lnt is an instance of one of the expressions in the above set When a rewriting system 

has enough rules corresponding to a nongenerator function f so that the set of generator 

expressions appearing as arguments to f spans the set of all generator constants, we say that f 

is well-spanned by the rewriting system. We say that a rewriting system is well-spanned if 

every nongenerator function symbol of the system is well-spanned. We formalize this notion 

below. 

In general. since r can be multi-ary, the arguments to fare k-tuples of expressions of 

appropriate types. where k is the arity of r. In the following fonnalization, we first define the 

notion of a set of k-tuple of generator expressions being well-spanned', informally, a set of 
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1- k-tuples of generator expressions is well-spanned if it spans the set of all k-tuples of generator 

constants of appropriate types. The property of a function being well-spanned is defined in 

· terms of the notion of a well-spanned set of k-tuple of generator expressions. In the 
I 

i following, we assume that the k-tuples are homogeneous with regard to the types of their 

components. The extension to the heterogeneous case is simple. 

Definition A set A = {A1, ••• , A } of k-tuples of generator expressions A. = <e.1, ••• , e.L> is 
p ' I I I• 

well-spanned if the following condition holds: For every k-tuple, <t1, ••• , 1t>. of generator 

constants there exist n, 1 ~ n < p, and a substitution a. such that for every j, 1 < j < k, we 

have t. = a( e .) .. J . llj 

Defmition A nongenerator function f is well-spanned by a rewriting system R if there is in Ra 

set of rewrite rules whose left hand sides are of the fonn f(eu, •.• , ei._), 1 < i < p, and the set 

{ <eil' ••• , eil? 11 < i < p } is complete. 

Definition A rewriting system R is well-spanned if every nongenerator function symbol in R is 

well-spanned. 

Definition A specification. S satisfies the sufficient condition for the principle of definition 

(SCPD) ifS satisfies the following oonditions: 

(i) Sis oonvergent 

(ii) Sis well-spanned. 

Lemma If S satisfies SCPD then S satisfies the principle of definition. 

Proof Condition (i) guarantees that every constant has exactly one normal form. Condition 

(ii) implies that every oonstant of the form f(1i_, ••• , a.). where f is a nongenerator and 

g1, ••• , In are generator oonstants is reducible. Since S satisfies uniform termination 

property, this means that no oonstant with a nongenerator can be a normal form. Hence the 

normal form of every constant is a generator oonstant 

Q.E.D 
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, : 3.3.3 Checking the Principle of Definition 

The main reason for formulating SCPD is so that we might b.e able to develop 
- l ' 

effective methods of checking if a wecification satisfies the principle of definition. This 
i 

section sheds some light on this topic. 

To check if a specification is well-spanned, we have to check if the set of expressions 
1 

(or k-tuples of expressions) that appear as arguments to each of the implementing functions is 
' 

complete. Huet in (22] has demonstrated that it is possible to come up with an effective set of 

conditions that is sufficient to check if a set of expressions is complete. 

Checking the convergence of a set of rules, which forms the remaining condition of 

SCPD, has been investigated in (28, 22). The result in the cited works, which is due to Knuth 

and Bendix, provides an algorithm (henceforth referred to as the KB-algorithm) to check the 

convergence of a finite set of rewrite rules that satisfies the uniform termination property. 

Thus, if we can independently ensure the uniform termination property of a· specification, 

then we can use the KB-algorithm to show the unique termination property of the 

specification. 

3.3.3.1 Checking Unique Termination 

Let R be a finite set of rewrite rules that has the uniform termination property. The 

following theorem is the basis for the KB-algorithm for checking the unique termination 

property. The theorem depends upon the concept of unification of expressions. We will first 

define this concept 

Two expressions a and p with disjoint variable sets are said to be unifwb/e if there 

exists a substitution fJ such that fJ{a) = 8(/J).13 The most general unifier of two unifiable 

expressions a and fl is the unifier 8, such that for any unifier a of a and p there exists a 

substitution p such that a is the composition of p and fJ. The unification algorithm of 

Robinson [44] can be used to determine a most general unifier of two given expressions or 

13. The symbol = stands for two expressions being identically equal. 
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l decide that they are not unifiable. In the discussion to follow we assume that the candidates 

~. for unification have variables renamed if necessary to obtain disjoint variable sets. 

Let y1 -+ 81 and y2 -+ 82 be two rules of R so that y 1 is unifiable:with a nonvariable 

. subexpression of y 2' More precisely, there exists an occurrence u in 'Y 2 such that a = y l u is 

.: not a variable, and a is unifiable 'Yith 'Yr· Let 0 be the m0st general unifier of a and Yr 

, Then, we say that 8(y2) is a superposition of y1 on y2• (If fJ is either a superposition of y1 on y2 

or a superposition of y2 on Yr then we say ·~at pis a superposition between y1 and y2.) To 
' . . 

· each superposition there corresponds a critical pair <a1, az> of expressions defined as follows. 

a 1 and a 2 are the expressions obtained by applying to O{y2) the above two rules, respectively. 

More precisely, 

a
1 

= 8(y2)[u +- 0(81)] 

a2 = 8(82) 

For example, consider the following rules 

Append(ql, Enqueue(q2, i2))-+ Enqueue(Append(qt, q2), i2) 

Append(Append(q3, q4), qS)) -+ Append(q3, Append(q4, qS)) 

y1 is unifiable with the entire expression y
2 

by the most general unifier fJ = (Append(q3, q4) 

for ql, Enqueue(q2, i2) for q5}, yielding the superposition a and the critical pair <a1, a2> 
shown below: 

a = Append(Append(q3, q4), Enqueue(q2, i2)) 

a1 = Enqueue(Append(Append(q3, q4), q2), 12) 

a2 = Append(q3, Append(q4, Enqueue(q2, i2))) 

Theorem 1 The KB· Theorem 

If R has the finite termination property, then it has the unique termination property if and 

only if every critical pair <ar a 2> of R has the property that a 1 and a2 have identical normal 

form. 

Proof For a proof see [28, 22]. 

If a finite rewriting system has nc· superpositions, and therefore, no critical pairs, it is said to 
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~ be superposition-free. Thus, we trivially have: 

... Corollary If a finite rewriting sy~tem has the uniform termination . property, and is 

superposition-free, then it has the unique termination property. 
' . 

· F~r example, the rewriting system in Fig. 11 corresponding to Queue_lnt is 

superposition-free. In the next subsection we show that it satisfies the uniform termination 

property. So the rewriting system is convergent 

' 3.3.3.2 Checking Finite Termination 

A general technique for checking termination of a rewriting system R is to 

demonstrate that it is possible to define a well-founded partial ordering >- on the set of all 

constants (that can be constructed using the function symbols in R) so that t1 __. t2 implies 

t1 >- t2• A partial ordering is well-founded if there are no infinite descending sequences such 

as t1 >- t2 >-... for any constants. Hence, there cannot be any infinite sequence of rewrites 

using R also. Appendix II goes into this topic in greater detail. It describes a theorem that 

provides a useful guideline to define a suitable partial ordering to check the uniform 

termination property of a rewriting system. 

We assume that a well-founded partial ordering>- on expressions is available as an 

input to the synthesis procedure. The ordering >- is used by the synthesis procedure not only 

to ensure the uniform termination property of inputs, but also to ensure that the output 

synthesized terminates. The orderings used in our examples belong to a class of orderings. 

called the lexicographic recursive path ordering (26, 10). A formal definition of the ordering is 

. given in Appendix II. 

3.4 Proving Properties of a Data Type 

The properties of a data type we are interested in are always expressed as equations 

of the form e1 = e2, where e1 and e2 are expresmons. and e denotes the observable 

equivalence relation (see sec. 3.1.2). For instance. the property 

Append(Append(q1, q;i), q3) s:.Append(q1, Append(q2, q_J) asserts that for every instantiation of 
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· the variables by values the expressit>ns on the two sides of the equation yield observably 

equivalent values. Our objective is tn prove a property as a theorem from a specification of 

'· the type. This is crucial to our work because synthesis of implementations involves searching 

for appropriate theorems of the input specifications. In the following. we describe how to 

mechanically prove theorems from a specification that satisfies the principle of definition. 

Definition A Theorem of a Specification 

Let S be a specification (or a group of specifications). Let u be a substitution that maps 

variables to generator constants. An equation e1 = e1 is a theorem of S if for every a the 

constants a(e1) and u(e1) have identical nonnal forms. 

Note that. the above definition of a theorem gurantees that if e1 = e1 is a theorem of S thene1 

and e1 always yield observably equivalent values. This is because the principle of definition 

ensures that for every instantiation of the variables (in e1 and e-J by generator. constants the 

two expressions simplify to the same. generator constant This provides a basis for developing 

a method for mechanically proving properties of data types from specifications. 

Note that the reverse of the above implication is not true. This is because we 

require that the input specifications be only consistent (via the principle of definition), but 

not complete (25]. A specification S of a data type D is complete if every equation e1 a e1 

such that e1 and e2 are observably equivalent for D is a theorem of S. The synthesis 

procedure would be more productive if the input specifications are complete. This is because 

it is possible to prove more properties from a complete specification, and hence the synthesis 

procedure might be able to derive a larger class of implementations. 

There are several ways in which the above result can be used to deduce that an 

equation is a theorem of a specificatioµ. The methods differ in the reasoning or logic used for 

the deduction. In our development we deal with two kinds of logic: the equational logic, and 

the inductive logic. 

F.quational Logic 

In the equational logic e1 a e1 is deduced to be a theorem of S by checking if e1 and 
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< e
2 

have the same normal form in S. · Note that if e
1 

.t. = e
2 

.t., then it is ob-.:ious that e
1 

and e2 

have identical normal forms for every substitution of the variables by generator constants. (e+ 

denotes the normal form of e.) An equation deduced to be a theorem ofS in this fashion is 

said to be a theorem in the equational theory of S. When S satisfies the principle of 

definition every expression is guaranteed to have a unique normal form. Therefore, it is 

possible to develop a general procedure to decide the entire equational theory of S. As an 

illustration, we give a proof of 

Append(Append(q
1
, q

2
), Nullq) = Append(q

1
, Append(q

2
, Nullq)) using the specification of 

Queue_lnt shown in Fig. 11. 

Equation to be proved: Appcnd(Appcnd(q1, q2), Nullq) = Append(q1, Appcnd(q2, Nullq)) 

Normal form oftcft hand side: 

Appcnd(Appcnd(ql' q2), Nullq) 

Rule(IO) i 
Append(q1, Qz) 

Inductive Logic 

Nonnal form of right hand side: 

Appcnd(q1, Append(q2, Nullq}) ! Rule(lO) 

Appcnd(q1, Qz) 

A property 4> is deduced to be a theorem in the inductive logic by using, besides the 

reduces relation -•, some form of mathematical induction. A. property that is deduced 

using the inductive logic is called a theorem in the inductive logic. The set of all properties 

that can be deduced from a specification using the inductive logic is called the inductive 

theory of the specification. 

The induction used is carried over the set of all generator constants using one or 

more of the variables in 4> as parameters for the induction. The induction is based on any 

well-founded partial ordering on the set of generator constants. Suppose G is the set of all 

generator constants, and >- is a well-founded partial ordering on G. Suppose we are using 

the variable v of 4>(v) as the parameter of induction. Then the induction rule may be stated as 

follows: 

Induction rule 

---------~------~- ---- --

,· 
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'"If for every t E G we can show that, tor every t' E G such that t >- t', ~[vlt '1 => ~[v/t1. then 

tt>(v) is theorem. 

To apply the induction rul<?, we have to define a partial ordering >- on G. Since G 

can, in general, be infinite the definition of >- is usually recursive. The step of showing 

~[v/t '1 => ~[v/t), for every t >- t', is fragmented into several cases. Each of these cases is 

established using the relation -+ • as was done in the equational logic. Fig. U gives an 

example of an inductive proof. It proves the property 

Append(Append(ql' q
2
), q

3
) = Append(q

1
, Append(q

2
, q_J) from the specification of QueueJnt 

given in Fig.11. The proof uses an ordering generated by the following relation on the 

generator expressions of QueueJnt: Enqueue(q, i)>- Nullq, and Enqueue(q, i) >- q. The 

proof use8 the variable q3 as the parameter of induction. 

It is not possible to develop a general procedure to decide the entire inductive 

Fig. 12. Proof by Inductive Logic 

Theorem to be proved: Append(Append(q
1
, q

1
), ~) = Append(q

1
, Appcnd(q

1
, q)) 

Basis: ~ ...... NuUq 

To prove: Append(Append(q
1
, ~). Nullq) = Append(q

1
, Append(q

2
, Nullq)) 

Proof is demonstrated above. 

Induction: q3 1-+ Enqueue(q, si) 

Hypothesis: Append(Append(q1, «1z), q) -+ Append(q
1
, Append(q

2
, q)) 

To prove: Append(Append(q1, «1i), Enqueue(q. i)) = Append(q1, Append('lz. Enqueue(q, i))) 

Normal form ofleft hand side: 

Append(Append(q1, q2), Enqueue(q, i)) 

Rule(ll) l 
Enqueue(Append(Append(q1, fli), q), i) 

~ l 
Enqueue(Appeod(q1, Append(q

2
, q)), i) 

Normal form of right hand side: 

Append(q1, Append(q2, Enqueue(q, i))) 

l Rule(ll) 

Appencl(q1, Enqueue(Append(Cli, q), i)) 

l Rale(ll) 

Enqueue(Append(q1, Append(q2' q)), i) 
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~ theory of S. This is because the inductive hypotheses necessary for the proof cannot be 

generated automatically in all situations. However, when S satisfies the principle of 

; definition a significant number of interesting properties in the inductive theory can be proved 

automatically. The automatic method, first developed by Musser [38, 22], is based on the 

Knuth-Bendix algorithm (see sec 3.3.3.1) for checking convergence of a rewriting system. We 

use this method for synthesizing implementations whose proofs of correctness need 

induction. We will explain the method .in chapter 4 while describing synthesis in the 

inductive theory. 
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,, 4. Stage 1: The Preliminary Implementation 

This chapter discusses the preliminary implementation of a data type. and develops 

) a method to derive it from the inputs to the synthesis procedure. A distinguishing 

. characteristic of the method outlil}ed is that it is based on a method for proving the 

i correctness of a preliminary implen:1entation. The chapter is organized into the following 

; sections. The first section defines precisely what constitutes a preliminary implementation. 

The second section gives a mathematical formulation of the problem involved in the 

derivation of a preliminary implementation for a data type from the given inputs. For 

convenience, the problem is formulated, and solved here for a situation where the 

representing domain is identical to the representation value set In the next chapter, we 

extend the derivation problem to the more general situation where the representing domain is 

a subset of the representation value set The last section describes a procedure to derive the 

preliminary implementation from the input specifications. 

4.1 A Preliminary Implementation 

A preliminary implementation of a data type is an implementation for the 

implemented type in a rewrite rule language. The preliminary implementation uses a 

representation scheme that is consistent with the one characterized by the association 

specification supplied by the user. It consists of two parts: The Representation part, and the 

Definitions part 

The Representation part gives the representation type used for the implementation 

of the implemented type. We call the values of the representation type the representation 

values, and the set of representation values the representation value set. Only a subset of the 

representation value set need be used to represent the values of the implemented type. This 

subset is called the representing domain. and is characterized by the association specification. 

The Definitions part contains definitions for a set of new functions on the 

representation values. We call the new functions the implementing fanctions. There is an 

implementing function corresponding to every operation of the implemented type; the 

former implements the latter. The definition of an implementing function that implements 
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·~an operation is called the preliminary implementation of that operation. ·.An implementing 

function is not necessarily a total function on the representation value set ·However, it has to 

be defined on every value of the representing domain. We use the following convention 

throughout the development to help associate an implementing function with the operation 

of the implemented type it implements: The identifier that denotes an implementing function 

is the capitalized version of the identifier that denotes the corresponding abstract operation. 

For instance, NULLQ is the implementing function of the operation Nullq . 

. The Definitions part consists of a set of rewrite rules of the fonn e1 -+ e2• The 

rewrite rules in the Definitions part defining an implementing function F are the ones that 

have F as the outermost symbol on their left hand side. e
1 

and e
2 

are expressions that may 

contain the implementing functions. the operations of the implementing types. and 
. 

if_then_else with the following constraints: 

(1) The only operations of the representation type that may appear in e
1 

and e2 are the 

generators of the type. 

(2) e
1 

and e2 may not contain any auxiliary (or helping) functions other than 

if_then_else. 

There are two reasons for constraining the preliminary implementation. Firstly, we 

would like to constrain the structure of the preliminary implementation so that the synthesis 

procedure has to perform less work in searching for the desired solution. Secondly, we want 

to keep the language as simple as possible so that the principle behind the synthesis method is 

brought out more clearly in our description. 

The first constraint is imposed to keep the preliminary implementation derivation 

problem simple. This constraint pennits us to ignore several axioms in the specifications of 

the implementing types during verification as well as synthesis of a preliminary 

implementation. In particular, the only axioms in the specification of the representation type 

that we need to consider are the ones that involve only the generators of the type involved in 

the specification. This is because only the generators of the representation type may appear 

in the preliminary implementation. To this extent this constraint simplifies the synthesis 

method. An implementation that also uses the rest of the operations is derived in the next 

------------~----~----------------
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r stage of the synthesis as a transformation of the preliminary implementation. 

The second constraint, in general, restricts the logical power, i.e., the ability to 

" define any computable function on the representation type, of'. the preliminary 

implementation language because the constraint prohibits the use of any helping (or 

auxiliary) functions (except iLthen_else) in a preliminary implementation. Our synthesis 

method cannot automatically discover the helping functions that might be necessary in the 

preliminary implementation. We use two approaches to get around this problem; both the 
. . 

approaches amount to relaxing the second cor.straint They are explained here briefly, but 

are illustrated more clearly when we later consider examples involving them. 

The first approach consists of seeking help from the user. We require the user to 

furnish a specification of the helping function needed in the preliminary implementation. 

We then relax the second constraint to pennit the use of the helping function in the 

preliminary implementation. 

The second approach consists of introducing a new construct into the preliminary 

implementation language. The construct, which is used primarily in conjunction with a tuple 

type, helps eliminate the need for helping functions while defining several functions on tuple 

types. The motivation for paying special attention to tuple type is because a tuple type is a 

commonly used representation type. The construct provides a way of accessing the 

components of a tuple being returned by an expression of tuple type without explicitly using 

the operations that select the components of a tuple. This construct may be used in 

expressions that appear on the right hand side of an equation of a preliminary 

implementation. The construct is. expressed by means of an expression with. the following 

syntax: 

e2 where <v 1, ••• , v 
0
> is e22 

In the above, v
1
, ••• , V

8 
are variables; e22 is an expression of n-tuple type; e2 is an expression 

that may contain the variables v1, ••• , v
0

• The construct binds, in order, v1, ••• , v
0 

to the 

components returned by e22• The scope of the binding is limited to the expression e2• For 

example, consider the expression 

<Assign( vi, e, jl), il,jl + 1> where <vl, it, jl> is DEQUEUE(<v, i, j)). Assuming 

DEQUEUE is a fu!1ction from Triple to Triple, the variables 'r il' and j1 in the above 

---------~-------~------
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expression are bound to the components of the triple returned by DEQUEUE(<v, i,j>). 

. 4.2 The Preliminary Imlementation Derivation Problem 

. l' 

Our intention is to study the problem of synthesis within the data type verification 

fr~ework. So we formulate the problem of deriving a preliminary implementation as 

roughly the inverse of the problem of proving the correctness of the preliminary 

implementation. 

First. we develop the criterion of correctness of a preliminary implementation. 

Then. we formulate the problem of verifying if a preliminary implementation meets the . 
correctness criterion. We define the derivation problem after that For convenience, the 

verification problem and the derivation problem are formulated here for a situation in which 

the representing domain is identical to the representation value set This situation 

corresponds to the case where the abstraction function is total. and the invariant part of the 

association specification is vacuous. We discuss the derivation problem for a situation where 

the representing domain is a subset of the representation value later. It should be noted that 

the formulation of the correctness criterion given below applies to both situations. 

4.2.1 The Criterion of Correctness 

Informally, for a preliminary implementation to be correct, the implementing 

functions it defines should collectively exhibit a behavior that is consistent with the 

observable behavior characterized by the specification of the implemented type. Also, the 

preliminary implementation should use a representation scheme that meets the requirements 

of the association specification given as input Let us formalize this intuitive notion. 

The formal object that a preliminary implementation is denoting can be considered 

to be a heterogeneous algebra, called the implementation algebra. with the following 

components: 

(i) A principal domain that is a subset of the representation value set The principal 

domain is defined as the set of all values of the representation type that are 

"reachable" through the implementing functions corresponding to the constructors 

------ ------------------------
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t· of the implemented type. In other words, the principal domain is the set of 

representation values generated by the closure under functional composition of the 

implementing functions conresponding to the constructors of the implemented type. 

(ii) A domain corresponding to every defining type of the implemented type. We 

assume that this domain is: identical to the value set of the corresponding defining 

type. 

(iii) a function corresponding to every implementing function defined by the preliminary 

implementation. 

A preliminary implementation is correct if the implementation algebra it denotes is 

a model of the implemented data type in a manner constrained by the association 
. 

specification. This means that there exists a homomorphism from the implementation 

algebra to the the implemented type that behaves as an identity function on the values of the 

defining types, and exactly like the abstraction function characterized by the association 

specification on the values of the representation type. 

Let ~ denote the representing domain, and ..t denote the abstraction function 

specified by the association specification. Let% be a function defined as below. 

D: Implemented Type,~: Representing Domain, Dr ... ,DD:The defining types ofD 

%: ~ u DI u ... u DD -> Du Dl u ... u DD 

..t: ~ ->D 

%(r) = ..t(r) 

r 

ifrE~ 

otherwise 

A preliminary implementation of a data type is correct with respect to the association 

specification .A. • if the following two conditions hold. 

(1) Totality Property:Every implementing function is total over 9,, 

(2) Homomorphism Property: The operation f of the implemented type and the 

implementing function F are related by the property: 

(V r E ~)(%(F( •• ., r ,._)) = f( ... , %(r) , ••• )] 
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The correctness criterion formulated above is different from the formulation found 

in the literature on data type verification [25, 14, 18] which is not formulated with respect to a 

'.: given homomorphism %. According to the conventional formulation a preliminary 

implementation is correct if there exists a function :JG from the representation value set to the 

value set of the implemented type so that: For all r E the principal domain, 

%(F( ••. , r , ... )) = f( •.. , %(r) , ... ). Thus, according to this criterion the implementing functions 

are not required to be total with respect to~. Note that the principal domain can be a subset 
. . 

of c:R,, What distinguishes our formulation is the requirement that F be total over <!Ri, and also 

satisfy the homomorphism property over c:Ai. 

Our formulation is more useful in the context of synthesis. It enables us to 

determine a principal domain of the implementation algebra (which, in tum, determines the 

set of representation values on which every implementing function should be defined) 

directly from the association specification. This reduces the interdependence of the synthesis 

of preliminary implementation for the various operations of the type. This is because in other 

formulations the principal domain has to be determined by computing the closure under 

composition of the implementing functions of the constructors. Thus the domain of the 

implementing function of each of the constructors is, in general, dependent on the behavior 

of the implementing function of every other constructor. 

The totality requirement is also more interesting in the context of synthesis. In the 

synthesis process the association specification initiates the derivation of an implementation by 

defining the representation scheme to be used. The association specification is expected to 

express the intention of the user regarding the representation scheme he wants the 

implementation (to be derived) to use. So it is logical to assume that the user wants the entire 

representing domain characterized by the association specification to be used for representing 

the values of the implemented type. 
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': 4.2.2 The Derivation Problem ,i 

The goal of the derivation problem is to derive a preliminary implementation from 
? I 

the given inputs so that the preliminary implementation meets the correctness criterion. The 
~· 

inputs consist of the specification of the implemented type, the specification of the 

implementing types, and the homomorphism specification. The homomorphism specification 
I 

. is a specification of the homomorphism :JG tha~ the preliminary implementation ought to 

obey. This specification is e~ily derived from the specificatio.~. of the abstraction function .A 
.·. -· 

(given as a part of the association specification). The Homomorphism Specification contains 

two kinds of rewrite rules obtained as described below. The first set of rules specifies that :JG 

behaves exactly like the abstraction function on the representation values. The second set of 

rules specifies that :JG behaves as an identity function on the values of all the ancillary types. 

More precisely, 

(1) if .A(e1) = e2 belongs to the abstraction function specification 

then %(e1) = e2 belongs to Homomorphism Specification 

(2) if" is a generator of an ancillary type 

then %{u(v1, ••• , v)) = a(:JG(v1), ••• , :JG(v)) belongs to Homomorphism Specification 

Let us call the combination of all the input specifications the Input World(lW). The 

restrictions on the inputs (see sec 2.3.1 of the previous chapter) ensure that the Input World 

satisfies the principle of definition. The strategy behind the method used in deriving the 

preliminary implementation is based on the principle of definition property. 

Suppose IW is supplemented with a set of rewrite rules, called the :JG-rules, that 

express the homomorphism property a preliminary implementation is expected to satisfy: For 

every pair of an operation f of the implemented type, and its implementing function F there 

exists an %-rule of the fonn :JG(F(vi,, ••• , v.))-+ f(:JG(v1),, ••• , :JG(v.)). Let us call the 

supplemented system the Perturbed World (PW). Let us suppose that the addition of the 

%-rules does not destroy the unifonn tennination property ofIW. The reason we refer to the 

supplemented system as the Perturbed World is because the addition of the :JG-rules destroys 

the principle of definition property. PW does not satisfy the principle of definition because 

the implementing functions that are newly introduced into the system are as yet undefined. 
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!1 A constant involving the implementing function symbols does not simplify to a generator 

,constant 

Recall that the principle of definition is a formal expression of the requirement that 

every nongenerator function in a system be completely defined as a total function. If we can 

generate a set of rewrite rules that can restore the principle of definition property of PW, then 

the new set of rules can be considered as a complete definition for the implementing 

functions. Thus, preliminary implementation derivation is a problem of restoring the 

principle of definition of a system that violates it 

More precisely, the problem involved in synthesizing a preliminary implementation 

consists of deriving from the Perturbed World a set of rewrite rules, Pl (the acronym stands 

for preliminary implementation), so that 

(1) Pl U IW satisfies the principle of definition, as well as 

(2) PI U PW satisfies the principle of definition. 

In the following, we give a formal proof that the above conditions guarantee the correctness 

of the preliminary implementation. 

The Correctness Theo.rem 

Let PI be a set of rewrite rules derived so that the above two conditions hold. Then, Pl 

satisfies the criterion of correctness of a preliminary implementation. 

Proof The first condition asserts that PI U IW satisfies the principle of definition. This 

implies that every nongenerator function in the system. which includes every implementing 

function, is defined as a total function. Hence, PI satisfies the Totality Property. 

To show that PI satisfies the Homomorphism Property, we have to show that every 

equation of the form %(F(v1,, ••• , v)) = f(%(v1),, ••• , %(v)) is a theorem of PI U IW. The 

argument to show that the second condition implies this is based on the following interesting 
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r: result about any system that satisfies Ule principle of definition. The resul~14 which is proved 

"as Theorem 6 in Appendix III, enunciates a sufficient condition for an equation to be a 

theorem of a system that satisfies the principle of definition. Suppose S is a system that 

<satisfies the principle of definition, and e
1 
= e2 is an equation so that e1 and e1 have at least 

one nongenerator function symbol in them. Then, e1 = e1 is a theorem of S if S U { e1 -+ e1} 

satisfies the principle of definition. The result is proved in the Lemma to follow. 

Because of the second condition PI U PW satisfies the principle of definition. Since 

PW is IW U %-rules, this implies that (PI U IW) U %-rules satisfies the principle of 

definition. Now, by the first condition PI U IW satisfies the principle of definition. By 

applying the above result, each of the %-rules (when treated as equations) is a theorem of 

PI U IW. Note that the result can be applied because the :JG-rules have nongenerator 

function symbols in them. 

Q.E.D. 

4.3 Derivation of a Preliminary Implementation 

In the previous section the. problem of deriving a preliminary implementation was 

formulated as deriving a set of rewrite rules, PI, so as to restore the principle of definition 

property to the Perturbed World PW. This section develops a procedure to derive a 

preliminary implementation. The procedure makes- two assumptions about its input: (1) The 

Initial World (IW) satisfies SCPD, a sufficient condition for the principle of definition, and 

(2) a termination ordering >- on expressions is available to the procedure to ensure the 

uniform termination property of rewriting systems. 

The obvious strategy for the procedure is to derive the rules of the preliminary 

implementation so that PI U IW and Pl U PW satisfy SCPD. But this limits the class of 

14. [22, 38) contain results similar to the one proved in this lemma. The result here is different 
because we have a different set of assumptions. The principle of definition property used in (22) is 
more constrained than the one we have. The result in (38] assumes that S satisfies a completeness 
property called fully specifiedness which is. not assumed here. This is the reason for the requirement 
in the lemma that e1 and e1 should have at least one nongenerator function symbol in it. 
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· implementations that can be derived by the procedure. So, we develop another set of 

conditions, called the synthesis conditions, that is weaker than SCPD. PI is generated so that 

it satisfies the synthesis conditions. . It can be shown that when PI satisfies the synthesis 

; conditions, PI U IW and PI U PW $llisfy the principle of definition. We first formulate the 

synthesis conditions, and then develop a procedure to derive a set of rules that satisfies the 

synthesis conditions. 

4.3.1 The Synthesis Condiiions 

The synthesis conditions for a set of rewrite rules PI are the following: . 
(1) Totality Condition: 

(a) Pl is well-spanned (for every implementing function) with every rule in it 

being of the fonn F(g
1
, ••• , g.) -+ t, 15 where F is an implementing 

function symbol. and g1, ••• , g
0 

are generator expressions. 

(b) PI satisfies the uniform termination property. 

(2) Uniqueness Condition: PI has the ~nique termination property. 

(3) Homomorphism Condition: For every rule F(g
1
, ••• , g.) --+ t in PI. 

%(F(g1, ••• , g.)) = %(t) is a theorem of PW. 

The following Synthesis Theorem shows that when PI satisfies the synthesis conditions, 

PI U IW and Pl U PW satisfy the principle of definition, and hence, by the Correctness 

Theorem, PI is correct. An informal motivation for.the conditions can be given as follows. 

The Totality Condition ensures that every implementing function is defined on all the values 

of the representation type, and it tenninates on each of them. The Uniqueness Condition 

ensures that every implementing function is well-defined, in the sense that it yields a unique 

value for every argument value. The Homomorphism Condition ensures that the preliminary 

15. Note that the syntactic constraint on a preliminary implementation requires that t may contain 
neither the function symbol%, nor any of the operations of the implemented type. 
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:: implementation satisfies the Homomorphism Property. '; 

The Synthesis Theorem 

, If PI satisfies the synthesis conditions, then PI U IW and Pl U PW satisfy the principle of 

definition, and hence PI is a correct preliminary implementation. 

Proof It is easy to see that Pl U IW satisfies the principle of definition because the Totality 

·Condition and the Uniqueness Condition imply that preliminary implementation satisfies 

SCPD, and IW satisfies SCPD by our assumption about the inputs. 

Let NW denote PI U PW, for convenience. We apply Theorem 8 (Appendix III) to 

show that NW satisfies the principle of definition. According to that theorem, a rewriting 

system S satisfies the principle of definition if 

(a) Sis well-spanned, 

(b) S has the uniform termination property 

(c) Every critical pair <al' a 2> ofS is such that a 1 = a
2 

is a theorem ofS. 

We show that NW satisfies all three premises of the above theorem. NW is well-spanned. 

This is because IW is well-spanned by our assumption, and Pl is well-spanned by Totality 

Condition (a). The only nongenerator function symbols of NW are the ones in IW and PI. 

By Totality Condition (b) PI has the uniform termination property. so NW has the uniform 

termination property also. The following lemma shows that NW satisfies premise (c). 

Q.E.D. 

Lemma Evety critical pair <er e2> of NW is such that e
1 
= e

2 
is a theorem of NW. 

Proof Note that PW is convergent. This is because IW is convergent by assumption, and the 

%-rules added to IW do not give rise to any new critical pairs. 

NW is constructed from PW by adding PI to the former. Therefore, any new 

critical pairs of NW would be generated as a result of a superposition of the rules of PI on the 

rules of NW. Because of Totality Condition (a) on the form of the rules in PI the only rules 

---------------- -- ---
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~ on which the rules of PI can have a superposition are the following: 

(I)· The rules of PI themselves, or 

(II) the rules of the implementing types, 

(III) the %-rules. 

Every critical pair <er e2> determined by a superposition on the rules in 

category (I), and (II) is such that ~1+ is identical to e2.i.. This is because, by the Uniqueness 

Condition, PI satisfies the unique tennination property. Hence, e1 = e2 is a theorem of NW. 

Every critical pair determined by a superposition of the rules in category (III) is of 

the form <%(F(g
1
, ••• , g.)). %{t)>, where F(g

1
, ••• , g.)- t is a rule in PI. By the 

Homomorphism Condition, %(F(g
1
, ••• , g

8
)) = %(t) is a theorem of PW, and hence a 

theorem of NW. 

Q.E.D. 

4.3.2 Derivation of the Rules of PI 

The rewrite rules of PI are derived from the Perturbed World (PW). So the initial 

task of the derivation procedure is to construct PW. PW is a rewriting system that includes 

the Initial World. (IW) and the %-rules. IW is constructed by combining the specification of 

the implemented type, the specifications of the implementing types, and the Homomorphism 

Specification. Without any loss of generality, we assume that there is no conflict among the 

names of the various function symbols in the specifications. PW is formed by then adding a 

rule of the form %{F(v1,, ••• , v.)) ·- f(%(v1)., ••• , %{v.)) for every implementing function F 

to be defined. We assume that the tennination ordering >- being used by the synthesis 

procedure is such that :JG(F(v1,, ••• , v.)) >- f{%(v
1
),, ••• , %(v

0
)), for every implementing 

function. This ensures that PW retains the uniform termination property as desired by the 

derivation problem. Note that this is not a restriction because the implementing function 

symbols (in the :JG-rules) are fresh symbols being introduced into IW. Hence, an appropriate 

ordering can always be found 

Although PW is defined to include the specification of every implementing type 
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l completely, it is not necessary to d<> so. Since the derivation method d<JeS not require the 

specifications to be complete, one, may include only parts of the specifications of the 

. implementing types. The advantage of doing so is that the fewer rules in PW the more 

efficient it is to derive the preliminary implementation. However, by not including certain 

rewrite rules one might be excluding,certain implementations. 

Let us illustrate the construction of PW on an example. We consider the derivation 

of an implementation for Queue_Jnt with Circ:__List as the representation type using the 

association specification given in Fig. 9 in the previous chapter. Fig. 13 gives the rules of PW 

for the example under consideration: The rules of the types Integer and Hool, which are also 

among the implementing types are omitted from the figure for convenience. The rules of the 

Fig. 13. The Perturbed World 

(1) Front(Nullq) - ERROR 

(2) Front(Enqueuc(Nullq, e)) -+ e 

(3) Front(Enqueuc(Enqucue(q, el), e2)) -+ Front(Enqueuc(q, cl)) 

(4) Dequeuc(Nullq) -+ ERROR 

(5) Dequeuc(Enqueue(Nullq, e)) -+ Nullq 

(6) Dequeuc(Enqucuc(Enque~e(q, el), e2))-+ Enqueuc(Dequeuc(Enqueue(q, el)), e2) 

(10) Appcnd(q, Nullq) - q 
(11) Append(ql, Enqueuc(q2, e2))-+ Enqueue(Append(ql, q2), e2) 

(12) Empty(Nullq)-+ True 

(13) Empty(Enqueuc(q, e))-+ False 

(14) %(Create) -+ Nullq 

(15) :JG(lnsert(c, i)) -+ adcLaLhead(:Jb(c), :JG(i)) 

(16) adcLaLhead(Nullq, i)-+ Enqueuc(Null«i, i) 

(17) add_at_head(Enqueuc(q, i), it)-+ Enqueuc(add_at_head(q, it), i) 

(19) %(NULLQ()) -+ Nullq 

(20) %(ENQUEUE(c. i))-+ Enqueue(:Jb(c). %(i)) 

(21) %(DEQUEUE(c)) - Dequeue(%(c)) 

(22) %(APPEND(cl, c2))-+ Append(%(c1), %(c2)) 

(23) %(EMPTY(c))-+ Empty(:Jb(c)) 
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~ representation type Circ_List are omitted because they are not going to be used in the 

·· derivation of the preliminary implementation. This situation·· arises because a preliminary 

implementation is permitted to use only the generators of the representation type. So, the 

only rules of the representation type needed in verification, and hence also in the derivation 

of a preliminary implementation, are the ones that contain only the generators. Since 

· Circ_List does not have any rules of this kind, Circ_List does not contribute any rules to IW. 

Rules (1) through (13) in the figure are rules of QueueJnt; rules (14) through (17) are the 

rules of Homomorphism Specification. 

The next task is to derive the rewrite rules of PI from PW. Strictly speaking, PI 

should be derived so that all the three synthesis conditions are satisfied. But, it is more 

convenient to develop a procedure that derives the rewrite rules so that only the Totality 
. 

Condition and the Homomorphism Condition are met The effect of ignoring the 

Uniqueness Condition is not harmful in the sense that it can be fixed at a later stage by 

post-processing the preliminary implementation. The Uniqueness Condition ensures that 

every implementing function defined by PI returns a unique value on every representation 

value. When the Uniqueness Condition is not satisfied, an implementing function f being 

defined by PI may be nondeterministic: That is, F can be so that F(v) = vr and F(v) = v2, 

but v1 ':/:: v
2
; however, both the values v

1 
and v

2 
will represent the same value of the 

implemented type. The nondeterministic behavior, if any, in the preliminary implementation 

will be eliminated by our synthesis procedure in the second stage while deriving a target 

implementation. The semantics of the target implementation language is suclt that it is 

impossible to define nondeterministic functions. 

The procedure derives the preliminary implementation for one operation at a time 

by deriving a separate set of rewrite rules for every operation. The method used is the same 

for every operation. The procedure first determines the left hand sides of all the rules of the 

preliminary implementation. Then, it determines a suitable right hand side for each of the 

rules from the already determined left hand side. 
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:, 4.3.2.1 Determining the Left Hand Side 

The Totality Condition is. used to detennine the 1eft hand side of the rules. The 

Totality Condition has two parts: The first part requires PI to be well-spanned, and the 

. second part requires PI to have the uniform termination property. The second part is 

ensured while deriving the right hand side, which will be discussed later. The first part is 

used here. 

The well-spannedness property (described formally in sec 2.3.1 of the previous 

chapter) requires the left hand side expressions of the rules defining an implementing 

function F to satisfy the following property: The set of generator expressions the appear as 

arguments to F on the left hand side should span the set of all generator constants. More 

precisely, suppose the preliminary implementation of F consists of the following set of rules: 

(In the following the question mark identifiers are used as place holders for expressions to be 

determined later.) 

Then, the set {g1, ••• , ~} should be well-spanned (see sec 2.3.1), i.e., span the set of all 

generator constants of the appropriate implementing type. For instance, as a concrete 

example, any pair of rules that have the form given below constitute a well-spanned set of 

rules for ENQUEUE. 

ENQUEUE(Create,j) -t .?rhs
2 

ENQUEUE(Insert(c, i),j)-t ?rbs
3 

Note that the left hand side of each of the above rules consists of ENQUEUE 

applied to arguments that are generator expressions. The set of arguments, i.e .• sequences of 

generator expressions. to ENQUEUE on the left hand side of the rules is 

ArgsSet = {<Create,j>, <Insert(c, i),j>}. ArgsSet spans the set of all ordered pairs of 

generator constants because every pair of generator constants (the first one of type Orc_List, 

and the second of type Integer) is an instance of one of the arguments in ArgsSet. 

It is easy to build a procedure that automatically generates a well-spanned ArgsSet, 
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~· once the generators of the representiltion type are identified. In fact a slight modification to 

the procedure referred in sec 3.3.3 (which checks if an ArgsSet is complete) can be used to 

generate a complete set of argument expressions. Thus, an appropriate set of left hand sides 

for the rewrite rules to be derived can be determined automatically. 

Fig. 14 gives a possible Set of left hand side expressions for a preliminary 

irriplementation for the example under consideration. Note that the right hand side of each 

of the rules in the figure is denoted by a question mark identifier. So Fig. 14 can be 

considered as a partial preliminary iri1plementation ofQueue_lnt. 

4.3.2.2 Determining the Right Hand Side 

The right hand side of each of the rules is determined using the already determined 

·left hand side so that the Homomorphism Condition and· the second part of the Totality 

Condition are met This where the Perturbed World (PW) conies into the picture. 

PW is used to derive a set of equations, called the synthesis equations. one equation 

for every rule in the preliminary implementation. The right hand side of a rule is determined 

from the right hand side of the corresponding synthesis equation. The synthesis equation 

Fig. 14. A Partial Preliminary Implementation 

(1) NULLQ() --+ ?rhs, 

(2) ENQUEUE( Create, j) --+ ?rhs2 

(3) ENQUEUE(losert(c, i), j) --+ ?rh5l 

(4) FRONT(Creatc) --+ ?rhs
4 

(5) FRONl'(lnsert(c, i))--+ ?rhs
5 

(6) DEQUEUE(Create) --+ ?rhs6 

(7) DEQUEUE(losert(c)))-+ ?rhs, 

(8) APPEND(c, Create)--+ ?rhs1 

(9) APPEND(c, losert(d, i)) -+ ?rbs, 

(10) SIZE(Create)--+ ?rhs18 

(11) SIZE(lnsert(c, i))-+ ?rhs11 
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\ corresponding to a rewrite rule F(g
1
)-+ ?t1 is an equation of the form %(F(g1) = %(?t1) that 

satisfies the following conditions: 

(1) %(F(g1) = %{?t1) is a theorem of PW 

(2) %(F(g
1
) >- %{?t

1
), where >-- is the termination ordering on expressions. 

(3) ?t
1 

contains the implementing function symbols and the permitted operations of the 

implementing types. 

it is easy to see the justification for the above ·conditions. The first condition 

contributes towards ensuring the Homomorphism Condition. The second condition ensures 

the uniform termination property. The third condition is just a syntactic constraint that any 

rule in a preliminary implementation ought to satisfy. The next section describes in detail a 

procedure to derive the synthesis equations. 

4.4 Deriving the Synthesis Equations 

Every synthesis equation of the preliminary implementation is derived with the help 

of two inference rules called the synthesis rules. The synthesis rules are designed for 

generating theorems of PW that have the same left hand sides, but different right hand sides. 

For deriving a synthesis equation, the synthesis rules are invoked repeatedly a finite number 

of times to generate a series of theorems until the desired equation is generated. For instance, 

the synthesis equation corresponding to the rule ENQUEUE(lnsert(c, i), j)-+ ?rhs2 (in the 

partially derived preliminary implementation given in Fig.14) is derived by generating a 

series of theorems that have %(ENQUEUF.(lnsert(c, i), j)) as their left hand side. The 

generation continues until a theorem whose right hand side qualifies the theorem to be a 

synthesis equation is encountered. 

We investigate two ways in which the synthesis rules can be used for deriving a 

synthesis equation. The first one derives synthesis equations that are in the equational theory 

of PW. The second one derives equations that are in the inductive theory. The second 

method is more general than the first one. A system that implements the synthesis procedure 

would, therefore, use only the second method. We discuss them separately for pedagogic 
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1 reasons. First, we formulate the synthesis rules. The subsequent subsections describe the use 

. of the synthesis rules in deriving the synthesis equations. 

4.4.1 The Synthesis Rules 

The idea used for generating an equation is to reverse the method of demonstrating 
I 

· that the equation is a theorem of PW. The central notion used in the generation is 

expansion. Expansion is the OPP<?Site of reduction. It is the act of applying a rewrite rule to 

· an expression from right to left. 

· 4.4.1.1 Informal Explanation 

The basis for the synthesis rules is the result given in the KB-Theorem (sec 3.3.3.1). 

The theorem gives rise to the following principle for generating equations that are theorems 

of a convergent system. Suppose e
1 

is an expression that we wish to have as the left hand side 

of the equation. Then, an expression ?e2 that may appear on the right hand side of any 

equation that has e1 as its left han.d side should be such that e1 .f. = ?e1 .f.. One way of 

ensuring that ?e1 simplifies to e1.f. is to obtain ?e1 by applying to e1.f. the rewrite rules of the 

system from Ii.&ht !Q ktl1 a finite number of times. We call the mechanism of applying a rule 

to an expression from right to left expand 

We will give a formal definition of expand; and discuss its properties later. Here, we 

will give an approximate description of what expand does so that we may develop a first 

version of the synthesis rule, and illustrate them on the example.16 Like reduce, performing 

expand consists of several steps. Suppose we wish to expand 

AdcLaLbead(Enqueue(%( c), %(j)), :JG(i)) using the rule 

:JG(ENQUEUE(c, j)) -+ Enqueue(:JG(c), %(j)). One way of doing this is to look for a 

subexpression (inside the expression to be expanded) that has the form of the right hand side 

16. We will generalize the definition of expand later. At that point one of the synthesis rules needs to 
revised slightly as well. Accordin~ to the definition given here,. expansion is identical to the 
transfonnation technique folding used by Darlington [7] for synthesis of recursive programs. 
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'! of the rule. Then replace the subexpression by the corresponding instance of the left hand 

side of the rule. In the present case, the subexpression that appears as the first argument to 

'· Add_at_head in the given expression matches the right hand side of the rule for the identity 

substitution. The result of expanding the expression is then 

Add_at_head(%(ENQUEUE(c, j), %(i)). The result of expanding an expression e in the 

oceurrence u by a rule y-+ 6 is denoted by expand e in u by y-+ 6. We use expand(e) to 

· denote any expression that is obtained by expanding e in some occurrence u by some rule 

y -+ 6 in the rewriting system under eonsideration. 

We are now in a position to give the synthesis rules. The first rule specifies how to 

start the generation of a series of theorems; it generates a theorem from a given expression 

without the need for any existing theorem. 

Rule 1: 
e is an expression 

e::e.J. 

The second rule specifies a way of generating a new theorem from an existing one using 

expand. 

Rule2: 

To familiarize the reader with the synthesis rules let us invoke each of the synthesis rules to 

generate a couple of theorems that have %(ENQUEUE(lnsert(c, i), j)) as their left hand. We 

use the rewrite rules of PW given in Fig.pw 1 for expansion and reduction. The normal form 

of %{ENQUEUE(Insert(c, i),j)) is Enqueue(Add_at_head(:JG(c), :JG(i)), :Jt(j)), which is 

obtained by using the rewrite rule (20) and then (15) for simplification. By invoking synthesis 

rule (1) withe = :JG(ENQUEUE(Insert(c, i),j)), we generate the following theorem of PW: 

:JG(ENQUEUE(Insert(c, i), j) = Enqueue(Add_at_head(%(c), %(i)), :JG(j)) 

. Let us now invoke synthesis rule (2) on the above equation. Using the rewrite rule (17) to 

expand the entire expression on the right hand side of the above theorem, we can generate 

the following theorem of PW: 

%(ENQUEUE(Insert(c, i),j) := Add_at_head(%(ENQUEUE(c,j)), :JG(i)) 
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'4.4.1.2 Formal Definition of Expand 

Expansion is roughly the reverse of the process of reduction. The relation that 

characterizes a single step of expansion is called expand Expanding an expression using a 

rule is close to applying the rule to the expression from right to left 

The motivation for introducing the mechanism of expansion is to solve a common 

problem encountered during synthesis: This is to find an expression (a desired expression) 

that simplifies to given expression (the starting expression). For instance, in the derivation 

shown earlier, the starting expression was Enqueue(Add_at_head(%(c), %(i)), %(j)), and the 

desired expression was %(1nsert(ENQUEUE(c, j), i)). 

The definition of expand uses the concept of unification, and the most general 

unifier (see Appendix I). Lett be an expression, and y --+ 6 be a rule. We assume that t and 

y have disjoint variable sets. If there are common variables then they have to be renamed 

suitably. Let u be an occurrence in t such that tlu is unifiable with 6; let fJ be the most 

general unifier. Lett' be the expression t[u +- O{y)). Then, we say that t expands tot' by 

y --+ 6 in u; we denote this relation by t +- t'. Notice that expanding t by y -+ 6 in u is not 

equivalent to reducing t by 6 --+ y in u. Expand checks if t/u is unifiable with 6, whereas 

reduce checks if tlu has the form of 6. Therefore, there are situations where an expression is 

expandable by y-+ 6, but not reducible by 6--+ y. 

The following question arises immediately: Why was expand not defined exactly as 

applying a rule in the reverse direction ? The reason is that a rule y --+ 8 may be such that 

varset(y) :J varset(6). Applying such a rule from right to left will result in an expression that 

contains "new" variables, i.e., variables that did not exist in the original expression. The use 

of such variable dropping rule during reduction represents a situation where the reduction 

step caused a "loss" of information: A new variable introduced in an expansion step might 

have had in its place an arbitrary expression during the corresponding reduction step. Our 

goal is to reconstruct, if possible, this lost information at a later stage in the expansion process. 

During expansion, therefore, a variable in an expression has to be treated, in general, as 

though an arbitrary expression might be in its place. Using the predicate unifUlble to 

determine if an expression is expandable enables us to do this. 
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1 For instance. consider \the expansion of Append(q, Nullq) by the rule 

Dequcue(Enqueue(Nullq, e))-+ Nullq. The resulting · expression is 

·· Append(q, Dequeue(Enqueue(Nullq, e))). The variable e is a new variable introduced because 

of expansion. Every instance of the latter expression in which e is replaced by any other 

,; expression reduces to the former expression. It might be possible to determine the expression 

· that has to take the place of e in future expansion steps. 

It should be pointed out, however, that not all variables in an expression need be 
. . 

given such a special treatment during expansion. The variables that appear in the starting 

· expression must appear as they are in the desired expression we are shooting for. Therefore, 

while expanding an expression, it is necessary to distinguish between the variables in the 

expression that were introduced by a rule (presumably during earlier steps of expansion) and 

the ones that were transferred to the expression from the starting expression. We classify the 

variables involved in expansion into the following two kinds: 

(1) The variables appearing in the rewrite rules; we continue to call these variables. 

(2) The variables appearing in ple expressions on the left hand sides of the rewrite rules 

in the partially generated preliminary implementation (Fig. 14). We call these 

variables terminals. Henceforth, we denote terminals by identifiers that are in 

italics. 

The definition of an expression remains as before except that it may also contain 

terminals in it The definition of a substitution also remains as before; it is a function from 

variables to expressions. Thus, when a substitution is extended to be applicable on an 

expression, the terminals in the expression are not substituted for, as we desired. 

In the wake of the formal definition of expand, and the preceding discussion about 

the introduction of variables into expressions due to expansion, we should reconsider the 

formulation of the synthesis rules. The first synthesis rule remains unchanged because it does 

not use the relation expand. The second synthesis rule was formulated as below: 

Rule 2: 
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: This formulation is not general enough because it does not account for all the theorems that 

can be derived from e
1 
= e

2 
in one expansion step. If expand(e2) has variables in it. then 

every instance of it can potentially be the right hand side of a th®rem. Hence, we 

re-formulate the rule as follows: 

Rule 2: 
e1 = e2, u is a substitution 

e1 = u(expand(ez)) 

4.4.2 Derivation in the F.quational Theory 

As an illustration, let us derive a synthesis equation that is of the form 

%(ENQUEUE(lilsert(c, i), j)) = :ffi(?rhs:J in the partial preliminary implementation shown in 

Fig. 14. The equation is derived by generating a series of theorems that have 

:JG(ENQUEUE(Jnsert(c, i), j)) as their left hand side. The generation is begun by invoking 

synthesis rule (1) on the left hand side expression. The rest of the theorems in the series are 

generated by invoking synthesis rule (2) using the rewrite rules of PW for expansion. The 

rewrite rules for expansion are chosen with the following ultimate.~.;. O~tain a.right hand 

side that has the form :ffi(?rhs:J so that :Hi(ENQUEUE(Insert(c, ii j)) >- %(?rbs:J. and ?rhs3 

contains only the permitted operations of ~e implementing types. In the illustration given 

below, the generation of every theorem in the series is considered as a step. At each step, the 

expression expanded, and the rewrite rule used for expansion are indicated. 

Relevant Rewrite Rules of the Perturbed World 

(1) %(ENQUEUE(c, j))-+ Enqucuc(:JG(c), %(j)) 

(2) %(Create)-+ Nullq 

(3) :JG(losert(c, i))--+ Add_aLhcad('.JG(c), i) 

(4) Add_at_head(Nullq, i)-+ Enqueue(Nullq, i) 

(5) Add_at_head(Enqueue(q, i), j)-+ Enqueue(Add_at_head(q, j), i) 

Fonn of the theorem to be generated: '.JG(ENQUEUE(lnsert(c, i), j)) s :JG(?rhsJ 
Nonna! form of :ffi(ENQUEUE(lnsert(c, i), D): Enqueue(AdcLaLheacl(:JG(c), i), :JG(j)) 

Rules used for the nonnal fonn: (1), (3) 

Step (1) Invoke Synthesis Rule (1) on %(ENQUEUE(lnsert(c, i), j)) 

'.JG(ENQUEUE(lnsert(c, i), j)) = Enqueue(AdcLaLhead(:JG(c), i), :JG(j)) 
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Step (2) Expand Expression: Enqueue(Add_at_head(%(c), i), %(j)) 

Using Rule: (5) 

%(ENQUEUE(Insert(c, i), j)) = Add_at_head(Enqueuc('.JG(c), %(j)), i) 

' Step (3) Expand Expression: Enqueuc('.ffi(c), %(j)) 

Using Rule: (1) 

%(ENQUEUE(Insert(c, i), j)) =: Add_at_head(%(ENQUEUE(c, j)), i) 

Step (4) Expand Expression: Add_at_hcad('.JG(ENQUEUE(c,j)), i) 

Using Rule: (3) 

%(ENQUEUE(lnsert(c, i), j)) =: '.JG(Inscrt(ENQUEUE(c, j), i)) 

The theorem generated in step (4) qualifies to be a synthesis equation. 

Hence the desired rule of the preJiminary implementation is: 

ENQUEUE(lnsert(c, i), j)-+ lnsert(ENQUEUE(c,j), i) 

4.4.3 Derivation in the Inductive Theory 

4.4.3.1 The General Strategy 

The method used for deriving a synthesis equation in the inductive theory is based 

on the following property that every theorem of PW satisfies: If an equation is a theorem of 

PW, then every instance of it is in the equational theory of PW. An instance of an equation 

e1 = e2 is an equation obtained by replacing every variable in e1 and e2 by generator 

constants. · 

We, therefore, take the following approach. Suppose the synthesis equation we 

-~------------------
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wish to derive is of the fonn '.1G(F(e
11

)) = '.1G(?e
12

).
17 We first derive an instance of the desired 

equation: This is done by selecting an instance of the left hand side, say a('.1G(F(e11))), for 

some substitution a of the tenninals in e
11 

to generator constants. Then. an instance of the 

equation o{'.1G(F(e
11

))) = a('.1G(e
12

)) is derived; the method of derivation for the equational 

theory described earlier can be used for this purpose. The instance of the equation derived 

should be such that a generalization of it %{F(e11)) = :J&(e12), which is obtained by replacing 

assorted constants by suitable tenninals in the instance, is a theorem of PW. 

To check if the generalization is a theorem of PW, we use an automatic procedure 

called Is·an·inductive·theorem·of. This procedure is capable of deciding a significant number 

of theorems in the inductive theory of a system. The procedure will be described in a 

subsequent subsection. Another topic that will be deferred until later is detennining a 

suitable a. Any substitution that maps all the terminals in the left hand side of the synthesis 

equation to arbitrary generator constants will serve our purpose. However, the derivation 

would be more efficient if we instantiated as few tenninals as possible. A later subsection will 

discuss a method of detennining a more judicious way of choosing a. 

In the rest of this subsection, we formalize the notion of the generalization of an 

equation, and then illustrate the general strategy by deriving a synthesis equation 

corresponding to the rewrite rule APPEND(c, lnsert(d,i)) --+ ?rbs
9 

in the partial preliminary 

implementation of APPEND given in Fig.14. 

The Generalization of an Equation 

The generalization of an equation e1 = e2 with respect to a substitution a. is the set of 

equations such that e1 = e2 is an instance of using a. When the substitution with respect to 

which the equation is being generalized is obvious from the context. we denote the 

generalization by Gen(e1 = e2]. Formally, every equation e} = ei € Gen[e1 = e2] is such that 

a(ep = er and a(ep = e2• Note that if e1 = e2 has a finite number of function symbols 

Gen[e1 = e2] is always finite. For instance, suppose a is {dH Create}. 

17. Recall that the left hand side of the synthesis equation is already known. 
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' Then, Gen[%(Append(c, Insert(Create, i))) = %({APPEND(ENQUEUE(c, 1), Create))})]) 

contains the following equations: 

%(Append(c, Insert(Create, i))) = %({APPEND(ENQUEUE(c, 1), Create))})) 

%(Append(c, Insert(d, i))) =: %(APPEND(ENQUEUE(c, 1), d))) 

As an illustration let us derive an equation of the fonn 

%(APPEND(c, Insert(~i ))) = %(?rlas~ which gjves rise to one of rules .in the preliminary 

implementation of Append. '.fhe derivation begins with the choice of the left hand side of the 

instance of the equation to be derived: This has to be an instance of 

%(APPEND(c, Insert(~i))). Let us suppose a is {di-+ Create}. 

Relevant Rewrite Rules of the Perturbed World 

(10) Appcnd(q, Nullq) --+ q 

(14) %(Create)--+ Nullq 

(20) %(ENQUEUE(c, i))-+ Enqueuc(%(c), %(i))}) 

(22) %(APPEND(c, d))-+ Appcnd(:JG(c), %(d)) 

Form of the theorem to be generated: %(APPEND(c, lnscrt(Create, 1))) = %(?e) 
Normal form of %(APPEND(c, lnsert(Create, l))): Enqueue(:JG(c), %(r)) 

Rules used for the normal form: 

Step (1) Invoke Synthesis Rule (1) on %(APPEND(c, Inscrt(Create, l))) 

%(APPEND(c, lnsert(Crcate, z))) = Enqucue(%(c), :JG(r)) 

Step (2) Expand Expression: Enqueue(%(c), %(z)) 

Using Rule: (10) 

%(APPEND(c, lnsert(Create, z))) = Append(Enqueue(%(c), %(r)), Nullq) 

Step (3) Expand Expression: Nullq 

Using Rule: (14) 

%(APPEND(c, lnsert(Create, z))) = Append(Enqueue(:JG(c), %(1)), %(Create)) 
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1 Step (4) Expand Expression: Enqueue(Dt;(c), '.lb(z)) 

Using Rule: (20) 

:JG(APPEND(c, lnscrt(Crcate, z))) = Appcnd(:Jb(ENQUEUE(c, 1)), %(Create)) 

Step (5) Expand Expression: Append('.:JG(ENQUEUE(c, 1)), %(Create)) 

Using Rule: (22) 

:Jb(APPEND(c, lnsert(Create. z))) = :Jb(APPEND(ENQUEUE(c, z), Create)) 

Step (6) Generalize the theorem in step (5) by replacing the constant 

Create by the variable d to obtain the following equation: 

'.:Jb(APPEND(c. Insert(d.i ))) =: %(APPEND(ENQUEUE(c, z). d)) 

Apply Is-an-inductive theorem-of on the above equation. 

This yields True con.finning that the equation is a theorem. 

Hence the desired rule (obtained by dropping% on both sides) is: 

APPEND(c, lnsert(d,i)) -+ APPEND(ENQUEUE(c. 1). d) 

4.4.3.2 The Predicate Is·an·inductive·theorem·of 

ls·an·inductive·theorem·of is a procedure ·that is used for checking if an equation 

e1 = e1 is a theorem of a convergent rewriting system S. The procedure is designed so that if 

it yields true on e1 = e2, then e1 = e1 _is a theorem ofS; if it yields false, then nothing can be 

said about e1 = e1. While deriving a synthesis equation in the inductive theory. the 

procedure is used to check if a generalization of an equation is a theorem of PW. The 

procedure is described here. 

The procedure is based on a method of using the KB-algorithm (see sec.3.3.~.l) for 

checking the convergence for proving inductive properties of a rewriting system. Suppose S 

is a convergent rewriting system. To check if e1 = e2 is a theorem of S. perform the following 

steps: 
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(2) Check if 8
1 

is convergent. The KB-algorithm of checking convergence (which 

consists of checking if every critical pair <a1, a1> of 81 is such that a 1-l- = a 1-l-) is 

used for this. 

If the result of step (2) is affirmative, d1en e1 = e1 is a theorem; otherwise nothing can be said 

about it, in general. Let us assume .that there exists a procedure, called 

Can-be-made-convergent, thcit implements this method. 

We will first briefly summarize the method, and then describe how 

Is·an·inductive·theorem·of is built on top of it 

The result that provides a basis for the above method is proved in Theorem 7 in 

Appendix III which gives a few useful results about convergent systems. The result is similar 

to the one that was first developed by Musser [38]. and that ha5 also been investigated in (22]. 

Our result is different because the cited works assume that S satisfies a notion of 

completeness (similar to the principle of definition) besides convergence. 

In the present situation PW, whose theorems we are interested in, is convergent but 

does not satisfy the principle of definition. · Because of this. the above method is applicable 

only when e1 (or e1) is such that for every instantiation of the variables by generator constants, 

e1 simplifies to a generator constant. The left hand side of every equation we wish to check is 

of the form %(F(g1, ••• , g)). where F is an implementing function symbol, and g1, ••• , ~ 

are generator expressions. Note that JG(F(gl' .•• , 1.t)) reduces to f(%(g1, ••• , ~) by the 

%-rule corresponding to F. The latter expression satisfies the desired condition since f and % 

are well-spanned18 by PW. 

There are several situations wQ.en the method described above is not applicable for 

proving an equation e1 = e1. But there exists another equation e1 = e~ such that 

18. Note that if a function f is well-spanned by PW, then every term of the form f(tp ••• , ~). where 
t1, ••• , t\ are generator terms. ~ be simplified to a generator term using PW. 



- 89-

(1) e i = e i can be proved using the above method, 

(2) e1 = e2 is a theorem if e i =. e i is a theorem, and 

(3) ei = ei can be derived autqmatically from e1 = e2• 

In other words, e i = e i is serving as a lemma for the theorem e1 = e2• The 

; procedure Is-an-inductive-theorem-of consists of transfonning e1 = e2 to ei = e2. and then 

applying Can·be·made·convergent on ei;::: e2. The transfonnation of e1 = e2 to ei = e~ is 

performed by a function L. called the lemma deriving function. The lemma deriving function 

used by Is·an_inductive·theorem-of is defined below: 

The Lemma Deriving Function (l) 

L is a function on expressions. L can be used to derive for a given equation e1 = e2 a lemma 

that the proof of the former is dependent on. The two sides of the lemma are obtained by 

applying l to el and e2. 

l: expression -> expression 

Usage: L(a
1
) 

Pre: a 1 is of the form %{ a 2), where a 2 does not contain the gymbol :JG. 

Returns: An expression p that is obtained by replacing in a 1.&. every subexp~ion of 

the form :JG(d), where dis any terminal, by a new terminal "1· 

We will now illustrate the procedure ls·an·inductive·theorem·of to check if the 

equation %(APPEND(c, lnsert(d,i))) = %{APPEND(ENQUEUE(c1t 1), d)) is a theorem of 

PW being used in our example. TJ:te equation was obtained in step (6) while deriving a 

synthesis equation in the previous section. 

Equation to be checked: %(APPEND( c, lnsert(d,i ))) ::: %(APPEND(ENQUEUF,(c, 1), a)). 

Step (1) Derive Lemma by applying t: 
(a) Simplify both sides, 

(b) Replace :JG(c) by q, %(d) by R, '.ffi(z) by i 
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r %(APPEND(c, Inscrt(d, z))) %(APPEND(ENQUEUE(c, z), d)) 

i i 
Appcnd(%(c), Add_at_head(%(d), %(1)),) Appcnd(Enqueue(%(c), %(1)), %(d)) 

Lemma to be checked: Append(q, Add_at_head(R, i)) = Appcnd(Enqueue(q, i), R) 

Stcp(2) Check if critical pairs are convergent: 

, (a) Critical pair determined by Rule (16): 

A~pcnd(q, adcLaLhead(Nullq, j)) . 

~ 
Appcnd(Enqueue(q, j), Nullq) Append(q, Enqucue(Nullq, j)) 

t + 
Enqueue(q, j) Enqucue(q, j) 

(b) Critical pair determined by Rule (17): 

Append(q, add_at_hcad(Enqucue(r
1
, j1), j)) 

~ 
Append(q, Enquem.<add_at_hcad(r

1
, j), j

1
)) Append(Enqueue(q, j), Enqueuc(r

1
, ii)) 

+ . {; 
Enqucuc(A~·pend(Enqueuc(q, j), r

1
), j

1
) Enqucuc(Appcnd(Enqueuc(q, j), r

1
), j

1
) 

4.4.3.3 An Instantiation for the Synthesis Equation 

Here, we describe a method of finding a substitution a that determines the left hand 

side of the instance of the theorem we wish to generate. Note that the left hand side of the 

theorem is already known to us which in the current example is %(APPEND(c, Insert(d, 1))). 

a maps the terminals in the left hand side expression to suitable expressions. a should be 

chosen ro that the equation a(%(APPEND(c, Insert(d, z)))) = a(:JG(?e
2
)) is in the equational 

theory of PW. This implies that 11 should be such that a(%(APPEND(c, Insert(d, 1)))) and 

a(%(?e2)) have the same nonnal form. Note that %(?ei) is unavailable to us at the moment 

So, a has to be determined from the left hand side expression alone. Since the theorem 

%(APPEND(c, lnsert(d, 1))) = %(?e2) is not necessarily in the equational theory of PW, an 

arbitrary substitution that maps tc.nninals to generator terms cannot be used. 

The following fact about our proof method (for inductive properties) serves as the 

---------
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: basis for the method of finding u. The basis step of the inductive proof can always be carried 

out using the equational logic. So, we choose the u that corresponds to a basis step of the 

' proof of the lemma The instantiation corresponding to the basis step can be determined 

automatically starting from the left hand side of the theorem alone. 

Finding such a u involves two stages because the proof of the theorem, as you may 

. recall, involves two stages: Converting the theorem to the lemma, and then proving the 

lemma itself. We first determine a substitution w· that corresponds to a basis step of the proof 

of the lemma u is detem'lined from w using the method used by the lemma defining 

function L to convert the theorem to the lemma We describe the two steps below. 

Step (1) Determination of w 

(a) Find the left hand side of the lemma. 

This is obtained by applying t, the lemma defining function, to the left hand side of 

the theorem. For our example: Left hand side of the theorem is 

JG(APPEND(c, Insert(d, 1))). To obtain the left hand side of the lemma, we simplify 

the expression, and replace every subexpression that has JG at the root by a new 

terminal: JG(APPEND(c, Insert(d,, 1))) -· Append(JG(c), Add_at_head(:JG(d), %{1))). 

So the left hand side of the lemma is Append(q, Add_at_head(R, i)). 

(b) Find a basis step in the proof of the lemma 

For this, compute all the superpositions between the left hand sides of the rules of 

PW and the left hand side of the lemma Simplify the superpositions. A sufficient 

condition for a superposition to correspond to a basis step is that its normal form is a 

generator expression. The most general unifier that determines such a superposition 

is a candidate u. The following table gives the result of performing the above steps 

on the current example. The columns, in order, give the rewrite rule in PW 

responsible for the superposition, the superposition, and the normal form of the 

superposition. The first superposition in the list simplifies to a generator exp~ion. 

Therefore, w is the most general unifier corresponding to the first superposition, 

which is {R 1-+ Nullq}. 
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' Rule Superposition (Superposition)~ . ~ . 

(16) Append(q. Add_at_hcad(Nullq, 1)) Enqueue(q, 1) 

(17) Append(q, Add_at_head( Enqueuc(Appcnd(q. 

Enqueuc(r~. j1), 1)) Add_at_head(r 1, 1)). j1) 

Step (2) Determine a from "' 

"' provides instantiations for the terminals in the left hand side of the lemma. a instantiates 

the tenninals in the left hand side of the theorem. Our objective is to find a a so that when 

the left h:md sides (of the lemma and the theorem) are instantiated by a and"'· respectively, 

they simplify to the same expression. 

For instance, in the current example, the left hand side of the theorem is 

e1 = '.ffi(APPEND(c, lnsert(d, 1))), whose normal form is 

e2 = Appcnd(:JG(c), Add_at_head('.ffi(d), %(1))). The left hand side of the lemma is 

e3 = Append(q, Add_at_head(R, i)). which was obtained by replacing %(d) by r, and %(c) by 

q. w maps r to Nullq, and leaves the rest of the terminals unchanged. Therefore, u should 

map d to an expression such that Nullq = %(d) is a theorem in the equational theory of PW. 

Therefore, the instantiation for d can be determined using the first two synthesis i:ules by 

generating a theorem that has Nullq on the left hand side, and an expression of the form 

'.ffi(?e) on the right hand side. The generation sequence is shown below. The first theorem is 

obtained by invoking Synthesis Rule (1) for the expr~ion Nullq. The second theorem is 

obtained by using Synthesis Rule (2); rewrite rule (14) of PW is used for expand. The right 

hand side, %(Create), of the theorem generated determines u as {d1-+ Create}. 

Nullq = Nullq 

= %(Create) 

4.5 An Abstract Implementation of the Derivation Procedure 

Below, we give an implementation for a procedure Generate·a·nale. The procedure 

determines a suitable right hand side expression for a rewrite rule in a partial preliminary 

implementation given the left hand side expr~ion. The procedure also expects a Perturbed 

World and a termination ordering as inputs. The procedure is implemented in a high level 
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;1 algorithmic language whose semantics is self-explanatory. 

The implementation assumes that there exist two procedures 

; Is-an-inductive-theorem-of and A·suitable·instantiation·for·lhs. The latter finds a suitable 

substitution that determines the instance of synthesis equation to be generated. 

The procedure performs essentially the theorem generation illustrated before in a 

.. systematic fashion. Roughly. it operates as follows. It finds the instance of the left hand side 

. of the synthesis equation by applying A•suitable·instantiation·for·lhs to %(lbs). It simplifies 
. . 

this expression to its normal form. The normal form is then expanded repeatedly using 

appropriate rewrite rules of PW until a suitable right hand side is encountered. 

The nontrivial aspect of the procedure concerns performing expansion in an 

effective fashion. There are two problem areas. Firstly. expansion is not uniformly 

terminating. That is, expansion is a potentially nonterminating activity. The procedure uses 

the termination ordering >- to circumvent this problem. The right . hand side has to be an 

expression that is less than the given left hand side. But. expanding an expression always 

gives rise to a bigger expression in the ordering>-. Thus, the procedure can be terminated 

the moment we encounter an expression that is not less than the left hand side. (Note that the 

>- is such that there can only be a finite number of expressions less than any given 

expression.) 

Secondly, expansion is not uniquely terminating. That is, an expression can be 

expanded in several different (but finitely many, because there are only finite number of rules 

in PW) ways using the rules in PW. All of them do not necessarily lead to the same final 

expression. Some of them may not even lead to a suitable right hand side expression. In the 

examples illustrated earlier, the rules of PW were carefully chosen so that they resulted in the 

desired right hand side. A working implementation. however, is forced to keep track of all 

possible expansions since any one of them can result in the desired right hand side. In the 

implementation given below the variable S is used for this purpose. 

This chore, in fact, happens to be the main source of inefficiency in the synthesis 

procedure. We use the following obvious ways of getting rid of unproductive expansion 

paths. Firstly. type information is used· to eliminate some of the candidate rewrite rules for 

expansion. Secondl~. expansions that result in an expresmn that is not less than the left hand 
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-side are not going to be fruitful. Finally, we make a distinction between the variables that 

appear in the rewrite rules of PW, and the ones in the given left hand side. The latter, which 

1 are terminals, are treated as constant.S. This eliminates several rewrite rules for expansion that 

, are candidates otherwise. 

It should be noted that the procedure given below is only a part of a complete 

unplementation of the synthesis procedure. The other part is expected to detennine the left 

: hand side of the rules. We have assumed that there exists a procedure to detennine the left 

hand sides. If the following procedure does not succeed in finding a suitable right bond side 

for a given left hand side, then another set of left hand sides have to be generated, and the 

following procedure reexecuted. 

Generate-a-rule = proc (PW: Perturbed World, lbs: F(g
1
, ••• , &.>· 

>-: ordering) returns (Rewrite Rule) 

%Initialization 

u: Substitution+- A·suitable·instantiation·for-lhs 

ilhs +- u(lhs) 

S +- {:Jb(ilhs).a.} 

repeat 

%Test if expansion can be stopped 

if There-exists·a·suita ble-candidate-in(S) 

then rhs +- Fetch·a-suitable-candidate-from(S) 

return(lhs-+ rhs) 

end if 

%/fa candidate has not been generated yet. expand by one more step 

Sl+-• 
for every t E S do 

S +-Sl 

Sl +- Sl U set-of-all-expansions-oft by PW 

endf or 

%Drop from SJ unproductive expressions 

for every t € sl do 

if -(lbs>- t) then Sl +- Sl - {t} 

forever 
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···························-·······················---,-············ 
%Subprocedure description · 

· There·exists·a·suitablc·candidate·in: subproc (S: Set(Exprcssion)) returns (Boolean) 

· if 3 t E S such that 

3 '.Jb(F(~, ... , ~) = '.Jb(?rhs) € Gen[ilhs = t] such that 

(1) ?rhs does not contain % or operatiqns of the implemented type, 

(2) F(g
1
, ••• , ~) >- ?rhs, and 

(3) ls·an·inductivc·thcorcm·of·PW(:JG(F(~, ••. , g.) = %(?rhs}} 

then rcturn(frue) else retum(False) 

endsubproc 

%Subprocedure description 

Fetch·a·suitable·candidatc·from: subproc.(S: Sct[Expression)) returns (Expression) 

if 3 t E S such that 

3 %(F(g
1
, •••• ~) = %(?rhs) € Gen[Hhs at] such that 

(1) ?rhs does not contain% or operations of the implemented type, 

(2) F(g
1
, ••• , ~) >- ?rhs, and 

(3) Is·an·inductive·theorem·of·PW(:JG(F(~ •.•. , g_) = %(?rhs)) 

then retum(t) 

endsubproc 

end Generate-a·rule 

sct·of·all·expansions·oLby: Expression X Rule • > Set(Expression) 

Usage: sct·of·all-expansions·of t by y-+ 6 

Returns: Returns the set of all possible expansions of a given tenn via a given rule. 

set·of·all·expansions·oLby: Expression X Set[Rule) ·> Set{Expression) 

Usage: set-of·all·expansions-of t by~ 

Returns: The set of all tenns s such that 

s = U sct·of·all·expansions-oft by R, for all RE «!J, 

expand_in_by: Expression X Occurrence X Rule • > Expression 

Usage: expand t
1 

in u by y --. 8 
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Pre: Varset( t
1
) n Varset( y) = 4t , %For convenience 

t/U is-unifiable-with 8 

Returns: expand t
1 

in u by y -+ 8 yields a tenn t
2 

such that every term that reduces (in u by y -+ 8) 
to an instance oft

1 
will be an instance oft

2
• In other words t

2 
is the most general instance of 

all the terms that reduce (in u by y -+ 8) to an instance of tr Note that the result the 
function returns is unique upto permutations of the variables. This is because a, which is 
the most general unifier of two tenns, is always unique when restricted to the variables in 
the two terms t

1 
and 8. 

expands·to_in_by: Expression X Expression X Occurrence X Rule -> Bool 

Usage: t
1 
expands-to t

2 
in u by y -+ 8 

Pre: Varsct(y) n Varsct(t
1
) = 4t 

Returns: A predicate that tests if a term expands to another given term. 

(t/u) is-unifiable-with 8 A t
2 

=expand t
1 

in u.by y-+ 8 



~.. .. .· 

-97 -

5. Extending the Derivation Problem 

The derivation problem and the derivation procedure described in the last chapter 

apply to a situation in which the representing domain ('!Ri) for the desired preliminary 

implementation is unrestricted. That is, '!Ri includes all the values of the representation type. 

This section extends the problem to the more general situation where '!Ri is a subset of the 

value set of the representation type. 

'!Ri contains the set of values that are permitte~ to be used by a preliminary 

implementation for representing the values of the implemented type. It is characterized by 

the association specification supplied by the user. Suppose .A and 3 are the abstraction 

function and the invariant specified by the association specification respectively. Then '!Ai is 

the set ofall values for which 3 is true. The present situation is one in which 3 is true on only 

a subset of the representation value set 

For instance, consider the association specification given in Fig. 15. This example 

will be used to illustrate the procedure described in the chapter. It specifies an 

implementation of Queue_lnt interms of Array Jot X Integer X Integer. The abstraction 

function .A can be described informally as follows. Nullq can be represented by any triple in 

which both the integer components are equal. A nonempty queue can be represented by a 

triple <v, i, j>. vis an array of arbitrary length containing the elements of the queue, in order, 

between the index values i and j-1. In other words, i points to the front end of the queue, and 

j points to the next availabe position in v for adding a new element into the queue. The 

invariant 3 is true on all triples such that i < j and the array is guaranteed to .be defined on all 

Fig. 15. QueueJnt in terms of Triple 

.A(<v, i, i>) = Nullq 

.A(<Assign(v, e,j), i,j+1>) = ifi = j+1 then Nullq 

else Enqueue(.A(<v, i, j>), e) 

:J(<v, i, i>) = True 

3(<Assign(v, e, j), i, j+ 1>) = if i = j + 1 then True 

else if i < j + 1 then 3(<v, i, j>) 

else False 
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_, index values between i and j. 

5.1 Characterization of the Problem 

The criterion of correctness (stated in the previous chapter in Sec 4.2.1) that was 

used to characterize the problem earlier is applicable in the current situation as well. For 

convenience. we repeat the criterion below: A preliminary implementation of a data type is 

· correct with respect to an associatjon specification (that characterizes an abstraction function 

.A. and a representing domain c:R,) if the following properties hold. 

(1) Totality Property: Every implementing function is total over~. 

(2) Homomorphism Property: The implementing function F and the operation f of the 

implemented type are related by the following homomorphism property: 

(V r E ~)[%(F( ••• , r , ... )) = f( •. ., %(r) , .•• )].where% is a function defined as: 

%(r) = .A(r) if r E ~ 

rotherwise 

Based on the above criterion. the derivation of a preliminary implementation was 

viewed earlier as a prcblem of finding a set of rewrite rules PI so that PI U IW and PI U PW 

satisfy the principle of definition. We still view the problem the same way. But, now the 

implementing functions need be defined only on the values in ~. and the homomorphism 

property need only be verified on the values in ~. This means that PI U IW and PI U PW 

need satisfy the principle of definition only with respect to a subset19 of the set of all 

generator constants of the representation type. This subset is the representing domain of 

constants T characterized by the association specification as follows: T == { t I -'(t) =True}. A 

proof of the claim that if PI U IW and PI U PW satisfy the principle of definition with 

respect to T. then PI is correct can be carried out along the same lines as the proof of the 

Correctness Theorem (Sec. 4.2.2). The proof for the present case can be obtained by 

19. A system S satisfies the principle of definition with respect to T if the every constant of the fonn 
F(g1, ••• , g..). where F is a nongenerator function symbol and gl' ••• 9 g. are generatore constants in 
T, has a unique normal (in S) that is a generator constant in T. 
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systematically replacing in the earlier proof the phrase "the principle of definition" by the 

phrase "the principle of definition with respect to T" . 

. 5.2 Derivation of a Preliminary Implementation 

First we formulate the synthesis conditions that are used as a guide in the derivation 

of a preliminary implementation, and then describe a procedure to derive a set of rewrite 

rules PI that satisfies the synthesis conditions. The synthesis conditions are sufficient to 

ensure that PI U IW and Pl U PW satisfy the principle of definition with respect to T. 

5.2.1 The Syntliesis Conditions 

The synthesis conditions for a preliminary implementation PI are the following: 

(1) Totality Condition: 

(a) Pl is well-spanned with respect to T (for every implementing function) 

with every rule in it being of the form F(gl' ••• , g.) -+ t, where F is an 

implementing function symbol, and gl' .•• , lo are generator expressions. 

(b) PI has the uniform termination property. -

(2) Uniqueness Condition: PI has the unique termination property. 

(3) Homomorphism Condition: For every rule F(g1, ••• , I.)-+ tin PI. 

!J(g1) A ... A !J(~)26 => :JG(F(g1, ••• , g.)) = %{t) is a theorem of PW. 

(4) Invariance Condition: For every rule F(g1, ••• , la)-+ tin PI, where the range of F 

is the representation type, J(g
1
) A ... A. J(I.) ~ J(t) a True is a theorem. 

It is interesting to note the effect of the presence of the invariant 3 on the synthesis 

20. Here, we assume that each of the expressions &p ••• , g. is of the representation type. If not, the 
antecedent would consist of a conjunction of 3 applied to only those expressions among gl' ••• , g. 
that are of the representation type. The same qualification applies to condition (4), as well. 
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conditions. The Totality Condition and the Uniqueness Condition remain as before. and 

serve the same purpose: The Totality Condition ensures that an implementing function is 

defined and terminates on every value in the representing domain. The Uniqueness 

Condition ensures that an implementing function yields a unique value on every argument 

The Homomorphism Condition, which ensures that every implementing function satisfies the 

. homomorphism property. now requires that %{F(g1, ••• , ~)) = %{t) be a theorem only 

under the assumption that the arguments to F satisfy :J. The Invariance Condition imposes an 

additional constraint on the expression that may appear on the right hand side of a rule: It 

ensures that every implementing function preserves '- The Synthesis Theorem to follow 

shows that when PI satisfies all the synthesis conditions PI U IW and Pl U PW satisfy the 

principle of definition with respect to T. 

The Synthesis Theorem 

Theorem 2 Let Pl be a set of rewrite rules that satisfies all the synthesis conditions. Then. 

PI U IW and Pl U PW satisfy the principle of definition with respect to T, where T is the 

representing domain of constants characterized by the invariant :J. 

Proof Appendix III 

5.2.2 Deriving the rules of PI 

The derivation PI follows the same general pattern as before. The first task is to 

construct the PW which is done as before by combining the specification of the implemented 

type. the homomorphism specification, and any desired parts of the specifications of the 

implementing types. The homomorphism specification is derived from the abstraction 

function specification as before (sec. 4.2.2). For instance, PW for tlie example under 

consideration is given in Fig. 16. Note that PW does not contain the invariant specification. 

The infomation pertaining to the invariant will be maintained as a different entity. This will 

be explained shortly. 

The rules of PI are derived so that every synthesis condition except the Uniqueness 
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• Fig. 16. The Perturbed World. 

(1) Front(Nullq)-+ ERROR 

i (2) Front(Enqucue(Nullq, c))-+ e 

: (3) Front(Enqucue(Enqucuc(q, el), e2))-+ Front(Enqueue(q, cl)) 

(4) Dequcuc(Nullq) -+ ERROR 

(5) Dequeue(Enqucue(Nullq, e)) -+ Nullq 

(6) Dequeue(Enqucue(Enqueuc(q, el), c2))-+ Enqueue(Dcqueue(Enqueue(q, el)), e2) 

, (10) Append(q, Nollq)-+ q 

(11) Append(ql, F,nqucue(q2, e2))-+ Enqucuc(Appc11d(qJ, q2), e2) 

(12) Empty(Nullq) -+ Troe 

(13) Empty(Enqucue(q, c)) -+ False 

(14) %(<v, i, i>)-+ Nullq 

(15) %(<Assign(v, e, j), ~ j + 1>) -+ if i = j + 1 then Nullq 

else Enqucue(::JG(<v, i, j>), ::JG(e)) 

(16) %(NULLQ())-+ Nullq 

(17) %(ENQUEUE(c, i))-+ Enqucue(%(c), %(i)) 

(18) %(DEQUEUE(c)) -+ Dequeue(%(~)) 

(19) %(APPEND(cl, c2))-+ Append(:JG(cl), %(c2)) 

(20) %(EMPTY(c)) -+ F.mpty(::JG(c)) 

(21) %(if_then_else(b, v1, vJ)-+ if_then_else(b, %(v
1
), %(v

1
)) 

Condition is met. The procedure derives the preliminary implementation for one operation 

at a time by deriving a separate set of rewrite rules for every operation. The method used is 

the same for every operation. The procedure first detennines the left hand sides of all the 

rules to derive a partial preliminary implementation. Then, it determines a suitable right 

hand side for each of the rules in the partial preliminary implementation. 
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, ; 5.2.2.1 Determining the Left Hand Side 

The technique used for detennining the left hand sides is the same as before 

because the Totality Condition, which is used for the purpose, is the same as before. The left 

' hand sides are derived so that the set of expressions appearing as arguments to every 

· implementing function is well-spanned. 21 Fig. 17 gives a possible set of left hand sides for a 

preliminary implementation for the example u~der consideration. As before, we use the . 

question mark identifiers as place holders for expressions to be detennined yet 

Fig. 17. A Partial Preliminary Implementation 

Representation 

Array Jot X Integer X Integer 

Definitions 

NULLQO -+ ?rhs1 

ENQUEUE(<v, i,j), e)-+ ?rhs2 

FRONT(<v, i, i>)-+ ?rhs3 

FRONT(<Assign(v, e. j), i, j+ 1>)-+ ?rhs
4 

DEQUEUE(<v, ~ i>) -+ ?rhs
4 

DEQUEUE(<Assign(v, e, j), ~ j + 1>) -+ ?rhs5 

APPEND(<v1, it, j1>, <v2, i2, i2>)-+ ?rhs
6 

. 

APPEND(< vi, it, j1>, <Assign(v2, e, j2), i2, j2 + 1>)-+ ?rhs, 

EMPTY(v, ~ j>) -+ ?rhs1 

21. Note that if a set is well-spanned. then it is well-spanned with respect to any set of generator 
constants. 

- --------- -----



-103 -

. 5.2.2.2 Determining the Right Hand Side 

The general strategy used to derive the right hand sides is the same as before. They 

are derived so that the Homomorphism Condition, the Invariance Condition, and the second 

part of the Totality Condition (which is left unensured while determining the left hand side) 

are ensured. The right hand side of a rule is determined by deriving a synthesis equation 

corresponding to the rule. A synthes,is equation corresponding to a rule F(g1, ••• , g) --. ?t is 

an equation of the form %(F(g1, ••• , g
0
)) =%(qt) that satisfies the following conditions: 

(1) 3(g1) A ... A 3(g
0

) => %{F(g
1
, ••• , g

0
)) = %(?t) is a theorem of PW. 

(2) If the range type of F is the representation type, then 

~(g1) A ... A 3(g) => 3(t) =True is a theorem of PW. 

(3) F(g1, ••• , g) >- ?t, >- is the termination ordering on expressions. 

(4) ?t may only contain only· the permitted operation symbols of the implementing 

types, and the implementing function symbols. 

Note that the synthesis equations have additional constraints here because of J. So, 

the derivation of the synthesis equations is going is going to have to be performed slightly 

differently. This is the topic of the next section. 

5.3 Deriving the Synthesis Equations 

The general strategy used for deriving a synthesis equation is the same as before. 

That is, we generate a series of theorems of PW until we encounter one that qualifies to be a 

synthesis equation. We use the same pair of synthesis rules for generating the theorems of 

PW. The only difference lies in the set of rewrite rules used for expansion while generating 

the theorems. Earlier, the rewrite rules in PW were used But now, it is n~ to use an 

additionalset of rewrite rules. 

There are two reasons for this. Firstly. a synthesis equation 

%{F(g1, ••• , g)) = %(?t) to be derived is a theorem of PW in a special context: A context· 

determined by the fact that gl' ••• , lo satisfy the invariant J. In deriving the synthesis 
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equations, one has to use rewrite rules describing this context besides the rewrite rules in PW. 

· Secondly, ?t has to be determined so that :J(?t) = True is a theorem. For this, it is necessary 

to use the rewrite rules in the specification of :J. These additional rewrite rules, which 

describe information pertaining to the invariant, are maintained as a separate entity called the 

Temporary World (TW). We will discuss more about TW-its composition, and its 

construction - later. It is sufficient to say the following at this point: TW consists of rules that 

specify :J, and rules that assert that g
1
, ••• , ~ satisfy the invariant The rules in TW are used 

for expansion as well as to ensure that ?t satisfies l 

It should be noted that part of the Temporary World used in the derivation of a 

preliminary implementation could be different for different rules in the preliminary 

implementation. This is because the argument expresmons appearing on the left hand side 

(g1, ••• , g.) are usually different for different rules. Consequently, the part of TW that 

changes has to be constructed afresh at the beginning of the derivation of every rule. (The 

temporary life time of a part of TW is what prompted us to name TW a Temporary World.) 

5.3.1 A Simple Illustration 

In the follow:ng, we show the derivation of a synthesis equation corresponding to 

the rewrite rule ENQUEUE(<v, i,J>, e)--+ ?rhs2 in the partial preliminary implementation 

shown in Fig.17; The derivation provides an illustration of how the generation of theorems 

is influenced by TW. It also illustrates for the first time performing expansion using rewrite 

rules that have conditional expressions in them. 

The TW used for the derivation is shown below. For ease of reference. also given 

below are rules excerpted from PW (Fig. 16) that are relevant in the present derivation. 

Rules numbered (9) and (IO) in TW are the specification of 3. The rule numbered (11) asserts 

that the argument < v, i, 1> to ENQUEUE satisfies :J. The fourth rule is a property of the 

invariant: Aily triple < v, i, j> that satisfies 3 is such that i :::; j. This can be proved as a theorem 

from the specification of l. We will see how this is obtained in a subsequent section where we 

discuss more about the Temporary World 

The Relevant Rules of PW 
. ;.· 



-105 -

, (1) %(<v, i, i>)-+ Nullq 

(2) %(<Assign(v, e,j), i.j+l>)-+ ifi = j+l then Nullq 

else Enqucuc(%(<v, i. j>), %(c)) 

' ' (3) %(ENQUEUE(x, e)) -+ Enqueue(%(x), %(e)) 

(4) iLthcn_elsc(False, vl, v2) -+ v2 

(5) iLthen_else(Truc, vl, v2) -+ Y1 

(6) %(if_thcn_else(b, vl, v2))-+ if_thcn_elsc(b, %(vl), %(v2)) 

(7) x = y+l-+ not(x ~ y) 

(8) not(True) -+ False 

The Temporary World 

(9) 3(<v, i, i>)-+ True 

(10)3(<Assign(v, e,j), i,j+ 1>)-+ i < j+ 1 A [i = j+ 1 V j(<v, i,j>)) 

(11) 3(<v, i,1>)-+ True 

(12) i < j -t True 

Shown below is a generation of a series of .the~rems by invoking the synthesis rules 

using the rewrite rules shown above for expansion. The generation results in the derivation 

of a synthesis equation of the form we desire. The first theorem in the series is obtained by 

invoking Synthesis Rule(~) for the expressfon %{ENQUE1.JE(<v, i,J>, e)); the normal form 

of this expression is Enqueue(%(< v, i, 1>), %( e)). The rest of the theorems in the series are 

obtained by invoking Synthesis Rule (2) using different rules in PW and TW for expansion. 

An explanation about our choiee of the rewrite rules for expansion in the following 

derivation is in order. Recall that the ultimate objective of expansion is to drive the symbol 

% in the right hand side of the equation in Step (1) to the outermost level of the expression. 

Inspection of the rules of PW reveals two possible sets of rules which could be used for this 

purpose. The first one is the :JG-rules, in particular, Rule (3) of PW; however, applying this 

rule in Step (1) will yield an expression identical to the one on the left hand side which is not 

acceptable. The other possibility is applying the rules of the homomorphism specification, 

i.e., either Rule (1) or (2) of PW. Rule (1) is clearly not applicable. Rule (2) is also not 

applicable. A closer look, however, reveals that Enqueue('.JG(<v, i,J>), :JG(e)) has the form of 

the expression in the else-arm of the conditional expression on th~ right hand side of 
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. Rule (2). Hence, we make an attempt to expand Enqueue(%(<v, i,J>), %{e.)) to an expression 

of the form if_then_else( •.• , ... , Enqueue(%(<v, i,J>), %(e))). The manipulations performed in 

, Steps (2) through (4) are precisely aimed at this. 

Form of synthesis equation to be derived: %(ENQUEUE(<v, i.1>, e)) 

Normal form of%(ENQUEUE(<v, i.1>, e)): Enqueue(%(<v, i,1>), %(e)) 

Rules used for simplification: 

Step (1) Invoke Synthesis Rule (1) on %(ENQUEUE(< v, i, 1>, e)) 

JG(ENQUI•:U:E(<v, i,1>. e)) = Enqueue(%(<v, i,1>), %(e)) 

Step (2) Expand Expression: Enqueue(%(< v, i, 1>), %(e)) 

Using Rule: ( 4) 

%(ENQUEUE(< v, i, 1>, e)) = if False then vl else Enqueue(%(< v, i, 1> ), %(e)) 

Step (3) Expand Expression: False 

Using Rule: (8) 

%(ENQUEUE(<v, i,1>, e)) =if -(True) then v1 else Enqueue(%(<v, i,1>), %(e)) 

Step (4) Expand Expression: True 

Using Rule: (12) 

%(ENQUEUE(<v, i.1>. e)) = ifnot(i <1) then v1 else Enqueue(%(<v, i.1>), %(e)) 

Step (5) Expand Expression: -(i < 1) 

Using Rule: (7) 

........ ·-··-···----·-··--·····-··-··············------········ 
%(ENQUEUE(<v, i,1>, e)) =if i = j+l then v1 else Enqueue(:Jt(<v, i.1>), %(e)) 

Step (6) Expand Expression: if i = j+ 1 then vl else Enqueue(%(<v, i.1>), %(e)) 

Using Rule: (2) 

:Jb(ENQUEUE(<v, i.1>, e)):: :JG(<Assign(v, e,1), i,j+ l>) 
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·· Note that the right hand side of the last theorem in the above series is 

such that 

t ENQUEUE(<v, i.1>, e) >- <Assign(v, e,;), i,j+ 1> 

.1(< Assign( v, e, J), i, j+ 1>) --+ * True 

· Hence, we have the following preliminary implementation for ENQUEUE: 

ENQUEUE(<v, i,;>, e)--+ <Assign(v, e,;), i,j+ 1> 

Let us, for a moment, draw the atteption of the reader back to steps (2) through (4) 

in the above derivation. Their aim was merely to expand Enqueue(:JG(<v, i,J)), :JG(e)) to a 

conditional expression that had the former expression as its else-arm. The purpose of such a 

transformation was to make it possible to apply (for expanding) a rewrite rule that had a 

conditional expression on the right hand side. A situation such as this is encountered 

commonly during the generation of theorems. This is especially so when the rules of the 

input specifications have conditional expressions in them. Hence it is useful to extend the 

definition of the mechanism expand so that rewrite rules with conditional expressions on their 

right hand side can be applied directly to an expression that is not a conditional expression. 

We describe the extension below.· In future illustrations of the derivation of synthesis 

equations, we will be ti sing the extended version of expand. 

Suppose e1 -+ if_then_else(b, e2r e22) is a rewrite rule, and a is an expression that is 

being expanded by using the former rule. According to the existing definition of expand,· the 

following protocol is used for expanding a: 

Protocol I: 

(1) Check if a (or a subexpression in it) is unifiable with if_then_else(b, e2r e22); if so, 

let fJ be the most general unifier. 

(2) Replace O(a) (or the subexpression in it) by 8(e
1
) 

Note that according to the above protocol a is expandible only if a (or a subexpression in it) 

is of the form iLthen_else( ... ). Now, we introduce two additional ways in which the rule can 

be used for expansion. 

Protocol?: 
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(1) Check if a (or a subexpression in it) is unifiable with e
21

; if so; let fJ be the most 

general unifier. 

' (2) Check if fJ(b) --+*True, or ~(fJ(b)) --+*False. 

(3) If so, replace fJ(a) (or a subexpression in it) by fJ(e1). 

Protocol 3: 

(1) Check if a (or a subexpression in it) is unifiable with e22; if so, let fJ be tlte most 

general unifier. 

(2) Check if fJ(b) --+*False, or -(fJ(b)) --+*True. 

(3) If so, replace O(a) (or a subexpression in it) by O(e1). 

Using Protocol 3. the preliminary implementation of Enqueue derived earlier can be 

obtained in just two steps as shown below. The theorem in step (1) is obtained as before. The 

theorem in the second step is obtained by using Rule (2) of PW for expansion under 

protocol (3). Note that the boolean expression under . consideration is i = j+ 1; 

i = j+ 1 - * False by Rules (7). (12) and (8) .. 

Form of synthesis equation to be derived: :Jt(ENQUEUE(<v, i.J>, e)) 

Normal form of:JG(ENQUEUE(<v, i.J>, e)): Enqueue(:Jt(<v, i,J>), %(e)) 

Rules used for simplification: 

Step (1) Invoke Synthesis Rule (1) on :Jt(ENQUEUE(<v, i.J>. e)) 

%(ENQUEUE(<v, i.J>, e)) s Enqueue(%(<v, i,J>}, %(e)) 

Step (2) Expand: Occurrence: A 
Expression: Enqueue(:Jt(<v, i.J>), %(e)) 

Using Rule: (2), Protocol 3 

········-······-·······-·-····-·-·-·····-····--····--· 
:Jt(ENQUEUE(<v, i.J>, e)) = :JG(<Assign(v, e,J), i,j+l>) 

It should be pointed that the addition of protocols (2) and (3) does not enhance the 

generality of the original definition of expand In other words, we can show the following: 
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·· Suppose f1 can be obtained from a·fa a finite number of expansion steps using a rewriting 

i system R under protocols (1), (2) and (3). Then, p can also be obtained from a in a finite 

1 number of expansion steps using only protocol (1), provided R contains the following rules 

that specify if_then_else: 

if_then_else(True, 'r v2)-t v1 

if_then_else(False, vr v2)-+ v2 

The reason for introducing protocols (2) and (3) is to reduce the number of 

expansion steps needed in the generation of theorems. The two rules of if_then_else given 

above make expansion uneconomical because the right hand side of each of them is a 

variable. This makes each of them a candidate for being used for expansion at every step of 

the theorem generation process. Use. of protocols (2) and (3) in effect limits the use. of the 

above two rules to cases where there is a rewrite rule with an if_then_else in its right hand 

side, and which could be used for further expansion. 

5.3.2 More on the Temporary World 

5.3.2.1 The Purpose of 1W 

The Temporary World (TW) serves two purposes: Firstly, it holds information 

about the invariant 3. Secondly, it provides a means of keeping a log of certain assertions that 

are needed for temporary stretches during the course of the derivation of an preliminary 

implementation. Some of these assertions are generated automatically by the procedure; 

others are supplied by the user. 

The information about 3 and the assertions are entered into TW as rewrite rules. 

(The derivation procedure may use the rules in TW for expansion like the rules of PW, the 

Perturbed World.) The assertions needed may change during the course of the derivation of a 

preliminary implementation. Some of the assertions needed can only be determined during 

the course of the derivation. Because of these reasons. 1W is treated as a dynamic world, i.e., 

a world that changes during the course of the derivation ofa preliminary implementation. In 

contrast. PW keeps a log of the facts needed through the derivation of the entire preliminary 

implementation. 
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<; There are three reasons why temporary assertions might be needed during the 

derivation. Firstly, the equation %(F(g
1
, ••• , g

0
)) = %(?t) being searched for is a theorem of 

PW only under the hypothesis that the arguments to F satisfy 3. The second reason arises in 

checking if ?rhs satisfies 3, i.e., if :J(?rhs) = True is a theorem. This check ·has to be 

performed under the hypothesis that the arguments to F satisfy l Also, performing this 

. check may need the use of the inductive logic. In such a case, it is necessary to set up 

appropriate hypotheses for the induction. . 
. . 

The third reason for the need for assertions arises while one is attempting to expand 

a subexpression of a conditional expression if_then_else(b, er e2). Under such a situation, we 

may assume that b is False while expanding a subexpression in the else-arm, or that b is True 

while expanding a subexpression in the then-arm. For instance, consider the expression 

if_then_else(i= j+ 1. er Enqueue{%(<v, i,J)), %(e
1
))). In this case, the subexpression 

Enqueue(:Jt(<v, i,J>}, %(e1)) is expandible by the rewrite rule 

:Jt(<Assign(v, e, j), i, j+ l>)-+ if i = j+ 1 then Nullq else Enqueue(:Jt(<v, i, j>), %(e)) 

only if we make the hypothesis that i = J+ 1-+* False. 

5.3.2.2 Construction of TW 

TW consists of two parts: A static pa.rt, and a dynamic part. The static part remains 

unchanged for the entire duration of the derivation .of the preliminary implementation. The 

dynamic part may change during the derivation. 

5.3.2.2.1 The Static Part 

The static part consists of information about the invariant l It consists of 

(1) A set of rewrite rules that constitute the specification of :J. The specification of J 

involves other data types which are among the implementing types. We assume that 

the static part contains their specifications also. In the examples we discuss, only the 

relevant rules from these specifications are displayed. 
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(2) A set of rewrite rules that express additional properties about 3. , 

The rewrite rules mentioned in (1), above, can be constructed automatically from 

the association specification. The i11formation in (2) is something the user has the option of 

supplying additionally for deriving a preliminary implementation in the presence of a 

n~ntrivial invariant This information is needed for the following reason: There are several 

preliminary implementations whose derivation is dependent on lemmas that express 

interesting properties about the invariant Although it might be possible to prove these 

lemmas from the ~'Pecification of j, the derivation procedure cannot automatically discover 

the desired lemma The rewrite rules in (2) specify these lemmas . . 
The static part ofTW used for the current example is given below. Rules (1) and (2) 

are constructed from the specification of 3 given as part of the association specification in 

Fig. 15. Notice that the right hand side of rule (2) is a simplified version of the right hand 

side of the corresponding equation of the specification of j. The rules used in the 

simplification are (10), (11), (8), and (4). Rule (3) specifies a property of 3. It asserts that if a 

triple <v, i, j) satisfies 3, then i ~ j. The property can be proved from the specification of 3 

using the KB-method. Rules (4) through (11) belong to the specification Integer and Dool. 

These rules will be used in the examples that·follow. 

(1) 3(<v, i, i>)-+ True 

(2) 3(<Assign(v, e, j), i, j+ l>)-+ i ~ j + 1 A (i = j + 1 V 3(<v, i, j))) 

(3) 3(<v, i, j>) => i < j-+ True 

(4) x = y v x < y-+ x < y 

(5) True V x -+ True 

(6) -x V x-+ True 

(7) -(x A y) -+ -x V -y 

(8) x V (y /\ z) -+ (x V y) A (x V z) 

(9) (x A y) => y -+ True 

(10) if_then_else(h, True, e
1
) -+ b V e

1 

(11) if_then_else(h, e
1
, False)-+ b A e

1 
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! 5.3.2.2.2 The Dynamic part 

This is the part that may change during the course of the derivation of a preliminary 
!' 

implementation. It may vary from the derivation of one rule of the preliminary 

implementation to another; within the derivation of a single rule. it may vary from one 

theorem generation step to the next By a theorem generation step. we mean the following: 

Recall that the derivation of a rule involves generating a series of theorems. The generation 

of every theorem in the series is considered as a theorem generation step in the derivation of 

the rule. 

The dynamic part is empty at the beginning of the derivation of every rule of the 

implementation derfinition. Assertions (in the form of rewrite rules) are added to and 

removed from the dynamic part at specific instants during the derivation of a rule. Every 

assertion that is added during the derivation of a rule is removed by the end of the derivation. 

Every time an assertion is added to 1W, it is important to ascertain that the addition does not 

render 1W inconsistent To ensure consistency, we run the predicate 

Is·an·inductive·theorem·of22 (see sec.4.4.3.2) on TW every time an assertion is added to 1W. 

(Note that TW is convergent to begin with. This is because the static part, which consists of 

the specification of J, is guaranteed to be convergent) The assertion is added only if the 

Is·an·inductive·theorem·of succeeds. In some cases the is·an·inductive·theorem·of may 

succeed by generating a finite number of new assertions. In several situations it is useful to 

add these new assertions also to TW. If these assertions are, indeed, added to 1W, then they 

should also be removed along with the original assertion. 

The assertions in the dynamic part can be classified into two categories based on the 

life time of their existence. We describe the construction of the two categories below. 

Arguments-Assertions 

These assertions are added at the beginning of the derivation of a rule. They remain 

22. We assume that the predicate Is·an·inductive·theorem·of is run iteratively a fixed number of 
times that is finite. 
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~ in TW until the end of the rlerivation of the rule. We call these assertions 

· Arguments-Assertions because they are dependent on the expressions supplied as arguments 

' to the implementing function for which the rule is being derived. For instance, if the rule 

. being derived is of the form F(g
1
, ••• , ~) -+ ?t, then the assertions are dependent on 

. gl' • · • 'gn. 

Arguments-Assertions can be of two kinds: The first kind assert that g1, ••• , ~ 

; satisfy -'· These are entered in TW as the re':rite rules -'(g1)-+ True, ••. , -'(g)-+ True. It is 

easy to see that these assertions can be constructed automatically. 

Tue second kind consist of assertions that are supplied by the user. These are used 

for ensuring that every rule of the preliminary implementation preserves the invariant '· i.e .• 

-'(g1)A ... A-'(g) => -'(F(g1, ••• , g)). The assertions express the induction hypotheses that 

might be needed for checking the above property. The reason that the user might have to 

supply these assertion is the following. Recall that our method ensures the invariance 

property by deriving every rule F(g
1
, ••• , ~) -+ ?t so that -'(?rhs) = True is a theorem ofTW. 

(Note that TW already includes rewrite rules asserting that g
1
, ••• , g

8 
satisfy -'.) If the 

preliminary implementation desired is such that -'(?t) =True can be proved automatically 

from TW using the eq_uational logic or the KB-method for proving inductive properties, then 

no additional assertions are needed. However, if the preliminary implementation desired is 

such that the proof of -'(?rhs) =True needs induction hypotheses that cannot be generated 

automatically by the KB-method, then assertions expressing the induction hypotheses have to 

be added to TW. 

Tue assertions used as induction hypotheses in all our examples are constructed by 

invoking the inference rule given below. The inference rule expresses a general induction 

principle that uses the tennination orderin_g >- as the well-founded partial ordering for the 

induction. Infonnally. the inference rule can be stated as follows. Suppose F(g1, ••• , &.) -+ 

?t is the rule being derived. Then, in trying to ensure '(F(g1, ••• , &..)). we may assume 

-'(F(v1, ••• , vk)) for any argument <v1, ••• , vk> that satisfies 3, and that is "less than" 

<gl' ••• , ~> in the ordering >-. 

<g1, ... '~> >- <v1, •.• , vk) 
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As an illustration, let us construct a ~t of Arguments-Assertions for the derivation of a rule 

for APPEND. We will be using these assertions later when we illustrate the derivation of the 

i• preliminary implementation for APREND. Suppose we are attempting to derive a rule of the 

following fonn: 

APPEND(<v
1
, il'j

1
>, <Assign(v2, e,jJ, i

2
,j2 + l>)-+ ?rhs 

Then, the Arguments-Assertions may include the following rewrite rules. The first two 

assertions state that the arguments supplied to APPEND satisfy 3. The third assertion is used 

as an induction hypothesis. · 

3(<vl' iri?)-+ True 

3( <Assign( v2, e, j 2), i2, j 2+1>) -+ True 

Conditional-Expressions-Assertions 

The second category of assertions in the dynamic part is the 

Conditional-Expressions-Assertions. A need for these assertions arises while expanding a 

subexpression of a conditional expression in the generation of theorems. These assertions are 

added to TW at the beginning of a theorem generation step, and removed at the end of the 

step. The Conditional-Expressions-Assertions needed in a step are determined by the 

occurrence of the subexpression that is chosen to be expanded for generating the theorem in 

that step. For instance, suppose the following is the theorem generated in the first step 

during the derivation of a rule for APPEND. 

%(APPEND(<v1, i1,j1>,<Assign(v2~ e.j2), i2,j2+1>)) 

= iLthen_else(i2 =j2+1, Eoqueue(%(APPEND(<v
1
, i

1
,j1>, <v

2
, i2,j2>)), e)) 

Suppose we decide to generate the ~eorem in step (2) by expanding the subexpression 

%(APPEND(< vl' il'j1>, < v2, i2, J2>)) on the right hand side of the theorem in step (1). Then, 

we may add to TW the assertion ~ = j 2 + 1 -+ False. The reasoning behind the addition of 

this assertion should be apparent by now. The subexpression chosen for expansion appears 

in the else-arm of a conditional expression. Hence, while expanding the subexpression we 

may (if we wish) assume that the corresponding boolean expression is False. In general, we 
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'may have to add more than one such assertion in a step because the subexpression could be 

embedded within more than one conditional expression. Suppose a is the subexpression 

; chosen to be expanded. Then, the Conditional-Expressions-Assertions for the step are 

· determined as follows: 

(i) For every conditional expression iLthen_else(bl' ... a ... , ... ), of whose then-arm a is a 

part, add b1 -+ True. 

(ii) For every conditional expression if_then_else(b2, ... , ... a ... ), of whose else-arm a is a 

part, add b2 -+ False. 

5.3.3 Preliminary Implementation of Append 

This section derives a pair of synthesis equations corresponding to the two rewrite 

rules in the partial preliminary implementation that define APPEND. It illustrates a more 

interesting utilization of the invariant 3 than was seen in the derivation of the rule for 

ENQUEUE. The derivation also demonstrates how a where construct can be introduced into 

a preliminary implementation, and why it is useful to do so. 

Recall the reason for introducing the where construct into the preliminary 

implementation language: To alleviate the limitation of the constraint that a preliminary 

implementation may not contain any helping functions or observers of the representation 

type. The constraint, in particular, makes it impossible to select the components of a tuple 

returned by an expression that appears on the right hand side of a rule. 

For instance, suppose we wish to construct a triple using the components of the 

triple returned by APPEND(<v1, i
1
,j1>, <v2, 12,j,;>). A where construct permits us to do this 

by rewriting the above expression in ~e following fashion. 

<v, i,1> where <v, i,1> is APPEND(<vl' i1,j1>, <vr i2,j2>) 

Then, the first argument can be further transformed to construct the desired triple. For 

instance, 

<Assign(v, e2,1), i,j+ D where <v, i,1> is APPEND(<v1, ipJ1>, <v2, i2,J,;>) 

The new terminals v, i, j introduced should be distinct from the terminals that 
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~ already exist in the expression that !is being transformed. It should be noted that a where 

construct can always be eliminated from an expression provided we are permitted to use the . 

. selector operations of the tuple type: This elimination can also be performed automatically. 

J For instance. the where construct in the above expressions can be eliminated by systematically 

. replacing every occurrence of v, i, and j in the first argument to the where construct by the 

. following expressions: First(APPEND(<v
1
, i

1
, j

1
>, <v2, i2, j 2>)), Second(APPEND(<v1, i1, J1>, 

, <v2, il' j 2>)), Third(APPEND(<v1, · i1, j
1
>t _<v2, i2, j 2>)). (First, Second, and Third are 

. . 

operations that select the first. second, and third components of a triple.) 

Below. we give two rules concerning a where construct The rules can be used at any 

step during the generation of theorems to transform the expression on the right hand side of a 

theorem. The first rule specifies how a where construct can be introduced into an expression. 

The second rule specifies how the position of where can be moved within an expression 

without altering its semantics. Suppose 

(1) Fis an implementing function whose range is a triple type, 

(2) g is an arbitrary function, . 

(3) e, e1, ••• , ek are arbitrary expressions. 

( 4) v, i, j are terminals that do not appear in the equation e e g( •• ., F( e1, ••• , ek) ,_). 

Where-Rule (1) 

Where-Rule (2) 

e = g( ... , <v, i,J> where <v, i,1> is F(e1, ••• , '\) ,. .. ) 

e = g(_, <v, i,J> where <v, i,1> is F(e1, ••• , '\) ,...) 

e = g( • .., <v, i,1> , ... )where <v, i,1> is F(el' ••• , '\) 

A few remarks are in order at this point regarding expanding an exp~ion that 

appears as a su bexpres&on of a where construct Firstly, an instance of a where ronstruct is 

treated,·for syntactic purposes, as an application ofa function Where_is with three arguments. 

For instance, <Assign(v, ;,1), i,j+ 1> where <v, i, 1> is APPEND(<v1, it' J1>, <vl' i2, J;>) is 
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treated as the expres.5ion Where_is(<Assign(v, e2,1), i,J+ l>, <v, i, 1>. APPEND(<v1, i1, }1>, 
<v2, i2' 12>)). Secondly, the second argument to Where_is may not be expanded; only, the 

. first and the third may be expanded. In the above example, for instance, < v, i, 1> may not be 
' 

expanded. This is because the second argument to Wherejs has to be a tuple of terminals (or 

variables). It does not make sense to have a nonterminal expression as a part of the second 

argument; expansion will introduce a nonterminal expression. 

The third remark concerns the possibility of making temporary assertions while 

expanding subexpressions of a where expression. Consider the example given above. 

Suppose we decide on expanding the expression <Assign(v, e
2
,1), i,j+ l>. The terminals v, i, 

and j in this expression are such that < v, i, 1> is acting as a place holder for APPEND(< v 1, i1, 

1?, <v2, i2,j2>). If APPEND(<v1, il'11>, <v2, i2,j2>) happens to be such that l(APPEND(<v1, 

i1, 11>, <v2, i2, 1?)) is True, then we may assume that j(<v, i., 1>) is also True as long we are 

expanding the first argument to the where expression. This assumption may, in general, 

enhance the possibility for expansion. Thus, expansion of a subexpression of a where 

expression may result in an update of the Temporary World(TW). For instance, in the above 

example, if we j(APPEND(<v1, i1,j1
>, <v

2
, i

2
,j

2
>)) =:True is a theorem ofTW. then we may 

update TW with the assertion j(<v, i,1>) - rrue. This is used in the derivation to follow. 

ArgsSct = { Argl: «v1, i1,j1), <v1, ~· i?> 
Arg2: «v

1
, i

1
,j?, <Assign(v

1
, e

1
,j

1
), i

2
,j

2
+1»} 

Relevant Excerpts of the Perturbed World 

(1) %(<v, ~ i>)-+ Nullq 

(2) %(<Assign(v, e, j), i, j+ l>)-+ if_then_else(i = j+ 1, Nullq, Enqueuc(%(<v, i, j>), :JG(e))) 

(3) lb(APPEND(x, y))-+ Append(:JG(x), :JG(y)) 

(4) lG(iLthen_elsc(b, v
1
, v

2
))-+ if_theL.elsc(b, %(v

1
), %(v

2
)) 

Derivation of the rule corresponding to Arit 

Fonn of the theorem to be generated: :JG(APPEND(<v
1
, i

1
,j

1
>. <v

2
, i

2
• iz>)) E :JG(?rhs1) 

:JG(APPEND(<v
1
, i

1
,j

1
>,<v

2
, i

2
, i

2
>)).i.: :JG(<v

1
, i

1
,j?) 

Rules used for simplification: 
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Initial State of the Temporary World 

j(<v, i, i>)-+ True 

-'(<Assign(v, e, j), i, j+ 1>)-+ i ~ j + 1 /\ [i = j + 1 V j(<v, i, j>)] 

j(<v, i, j>) => i < j -+ True 

Step (1) Invoke Synthesis Rule (1) on %(APPEND(< v
1
, i

1
, j

1
>, < v

1
, i

2
, iz>)) 

:JG(APPEND(<v
1
, i

1
,j?, <v

2
, i

2
, iz>)) = %(<v

1
, i

1
,J

1
>) 

Derivation of the rule corresponding to Arg2 

Form of the theorem to be generated: %(APPEND(< v
1
, i

1
, J?, <A~ign( v

1
, e

1
, j

2
), i

1
, j

2
+1>)) = %(?rhSi) 

%(APPEND(<v
1
, i

1
,j?, <Assign(v

2
, e

2
,j

2
), i

2
,1

2 
+1>)),j,: 

if_then_else(i
2 

= j
2
+1, JG(< v

1
, i

1
, 1

1
>), 

Enqueuc(Append(%(<v
1
, i

1
,j

1
>), %(<v

2
, i

2
,j

2
>)), %(e

2
))) 

Rules used for simplification: 

Initial State of the Temporary World 

Static Part 

(5) j(<v, i, i>)-+ True 

(6) j(<Assign(v, e, j), i, j + 1>) -+ i < j + 1 /\ [i = j + 1 V 3(<v, i, j>)] 

(7) [j(<v, ~ j>) => i < j] -+ True 

Arguments-Assertions 

(8) j(<v
1
, i

1
,j?)-+ True 

(9) -'(<Assign(v
2
, e

2
,j

2
), i

2
,1

1
+1>)-+ True 

("The following is as a consequence of Rule (9)") 

(9a) i
2 
< 1

2 
+ 1 A (i

2 
= j

2
+1 V j(< v

2
, i

2
, 1

2
>)] -+ True 

(10) j(<v
2
, i

2
,Jl) => 3(APPEND(<v

1
, i

1
,j

1
>, <v

2
, i

2
,j

2
>))-+ True 

----------------------- -----
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Step (1) Invoke Synthesis Rule (1) on tlic expression %(APPEND(<v
1
, i

1
,J

1
>. <v

2
,'i

2
, i

2
>)) 

%(APPEND(<v
1
, i

1
,j

1
), <v

2
, i~ i

2
>))::: 

if_then_elsc(i
2 

= j
2
+1, %(<v

1
, i

1
,j

1
>), 

.. · .. ' .• 

Enqucuc(Appcnd(%(<v
1
, i

1
,j

1
>), %(< v

2
, i

2
,j

2
>)), %(e

2
))) 

St~p (2) Expand: Occurrence: 3.1 

Expression: Appcnd(%(<v
1
, i

1
,J?), %(<v

1
, i

1
,Jz>)) 

Using Rule: (3) 

%(APPEND(<v1, i
1
,l?· <Assign(v2, e

2
,l1). i

1
,j

1 
+ l>)) = 

if_thcn_elsc(i
1 

= 1
2
+1, %(<11

1
, i

1
,j

1
>). 

Enqueuc(%(APPEND(<v
1
, i

1
,J?, <v

2
, i

2
,lz>)), %(e

1
))) 

Step (3) Transform: Occurrence: 3.1.1 

Expression: APPEND(<v
1
, i

1
,l?· <v

1
, i

1
,l

1
>) 

Using Rule: where-rule (1) 

%(APPEND(<v
1
, i

1
,J?, <Assign(v

2
, e

2
,j

2
), i

1
,j

2
+1>))::: 

iLthcn_clsc(i
1
=j

1
+1, %(<v1, i

1
,J?). Enqueuc(%(<v, i,J>), %(e

1
)) 

where <v, i.1> is APPEND(<v
1
, i

1
,l

1
>. <v

1
, i

1
,jz>)) 

Step (4) Expand: Occurrence: 3 

Expression: Enqueue(%(<v, i,J>), %(e
1
)) 

Using Rule: 

1W Update: 

Added because expression is in scope of else-ann 

i1 = j 1 +1 False 

i1 <J1+l A j(<v1, ~.Jz>)-+ True 
3(<v1, i1,Jl)-+ True 

j(APPEND(< v1, ~· J?, < v1, ~.Ji>))-+ True 
Added because expression is in scope of where 

j(< v, i, p) -+ True 

i <}True 

---····-··--------··-···-·····-··-··········-··-
%(APPEND(< v

1
, i

1
, 1

1
>, <Assign( v

1
, e

1
, i,_), i

2
, j

1 
+ l>)) :: 

if_then_else(i
2 
= j

1
+1, :JG(<v

1
, i

1
,j

1
>), :JG(<Assign(v, e

2
,,h, i,j+ l>) 

-------------- ----~----
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'. Step (5) Transform: Occurrence: 

Using Rule: where-rule (2) 

'.JG(APPEND(<v
1
, i

1
,j?, <Assign(v

1
, e

1
,j

1
), i

1
,j

1
+1>)) = 

iLthen__clse(i
2 

= 1
2
+1, '.JG(< v

1
, i

1
,j?), :Jb(<Assign(v, e

1
, J), i, j+ 1>)) 

where <v, i,J> is APPEND(<v
1
, i

1
,j

1
>, <v

1
, i
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1 6. Stage 2: The Target Implementation 

The second stage of tpe synthesis procedure transfonns the preliminary 

. implementation of the implemented type into a target implementation. For instance, in the 

. example implementing QueueJnt in terms of Circ_List, the preliminary implementation 

derived in the last chapter (shown Fig. 5 of chapter 2) is transformed into a target 

implementation such as the one shown in Fig. 0. 

There are two differentes between a preliminary implementation and a target 

implementation. The first one is that in a preliminary implementation the only operations of 

the representation type allowed to appear are the generators of the type. The target 

implementation may also contain nongenerators of the type. The second difference is in the 

function definition methods used by the two forms of implementation. In a preliminary 

implementation a function is defined by means of a set of rewrite rules. For example the 

preliminary implementation of ENQUEUE (Fig. 5) is: 

ENQUEUE( Create, j) -+ lnsert(Create, j) 

ENQUEUE(lnsert(c, i), j)-:..+ lnsert(ENQUEUE(c, j), I) 

In a target implementation a function is defined by means of a single expression. For 

example, ENQUEUE is defined as: ENQUEUE(d, k) :: = Rotate(lnsert(d, k)). The 

transfonnation perfonned takes into consideration both of these differences. 

It should be noted that a preliminary implementation is an executable 

Fig. 18. An Implementation 
NULLQ() :: = Create() 

ENQUEUE{c, j) :: = Rotate(lnsert(c, j)) 

FRONT(c) :: = Value(c) 

DEQUEUE(c) :: = Remove{c) 

APPEND(c, d) :: = Join(d, c) 

SIZE{c) :: = if Ernpty(c) then O 
else SIZE(Remove(c)) + 1 
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. 1 implementation. It can be executed by an interpreter that simplifies algebraic expressions 

· .. using the rewrite rules in the preliminary implementation and the specifications of the 

.. implementing types. The interpreter must have a pattern matching capability to invoke the 

: appropriate rewrite rule while simplifying an expression. The program verification system 

AFFIRM (39], and the programming system PROLOG [??] provide such an interpreter. 

Given the specifications of all the implementing types, the interpreter can execute the· 

preliminary implementation on any given input. For example, the value returned by the 

operation (of Queue_Jnt) Front on the queue constructed by Enqueue(Nullq, 1) is obtained 

by finding the normal form of FRONT(ENQUEUE(NULLQ( ), 1)) using the preliminary 

implementation: 'The normal form is 1. Depending on the range type of the operation, the 

normal form can, in general, be a generator constant of any of the implementing types. The 

normal form can then be evaluated assuming there exist implementations for the 

implementing types. 

Our goal is to derive the target implementation in a form that can be compiled by a 

compiler for an applicative language. The motivation for this is primarily one of efficiency. 

There are two reasons why a target implementation is more .efficient than a preliminary 

implementation. The first one arises beca~se of the freedom to use nongenerators of the 

representation type in a target implementation. This enables one, in some instances, to 

eliminate recursion from the preliminary implementation of an operation, and to transform it 

into a target implementation which is merely a composition of the operations of the 

implementing types. The implementation of ENQUEUE shown above is an instance of such 

a situation. The use of the operation Rotate in the target implementation eliminates the 

recursion which was essential in the preliminary implementation. The second reason is that 

an implementation that can be compiled by m~ans of a conventional compiler is in general 

more efficient than interpreting a set of rewrite rules. 

We develop two methods of deriving a target implementation from a preliminary 

implementation: The Recursion Preserving Method, and the Recursion Eliminating Method. 

Both the methods are based upon expansion using rewrite rules. The target implementations 

derived by the first method preserve any recursion that may exist in the corresponding 

preliminary implementations. The second method can eliminate recursion from a 

•. 
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· preliminary implementation of an operation if there exists a nonrecursive implementation for 

the operation. The second method is more general because it can also derive the 

implementations derived by the first method. The advantage of the first method is that it is, 

. in general, faster than the second in situations where the two methods derive the same target 

implementation. 

6.1. The Recursion Preserving Method 

This method uses a special set of functions, calle'd the inverting functions, on the 

implementing types for transforming a preliminary implementation into a target 

implementation. To understand what inverting functions are and how they are useful in 

deriving ~ target implementation, let us take a closer look at the difference in the function 

definition methods used by the· two forms of implementation. The preliminary 

implementation for SIZE is 

SIZE(Create)-+ 0 

SIZE(Insert(c, i)) -+ SIZE(c) + 1. 

and a possible target implementation for it is 

SIZE(d) :: = if Empty(d) then 0 

else SIZE(Remove(d)) + 1. 

In the preliminary implementation, the argument to SIZE on the left hand side of a 

rule may be a generator expression. The argument indicates the structure of the expression 

that constructs the values for which the rewrite rule is applicable. This freedom serves two 

purposes in a preliminary implementation. Firstly, it is used for performing a case analysis 

based on the structure of the argument. Secondly, the explicit indication of the structure of 

the arguments on the left hand side makes the decomposition of the arguments trivial. For 

instance, in the second rewrite rule for SIZE the variable c used on the right hand side is 

actually a component of the argument to SIZE. We were able to access this component 

without actually having to generate rode to decompose the argument 

In a target implementation, the argument to SIZE on the left hand side of the 

·-------
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definition is a variable. This means that the expression on the right hand side of the 

definition must have explicit pieces of "code" to perform the case analysis based on the 

structure of the argument, and to decompose the argument For instance, in the target 

implementation of SIZE given above, the subexpression Remove(d) extracts the component 

of the argument d that is denoted by the variable c in the preliminary implementation. The 

subexpression Empty(d) checks if d is a value constructed by Create; the if_then_else 

expression performs the desired case analysis. Let us call the subexpressions that perform 

these functions mentioned above inverting expressions. 

A preliminary implementation can be systematically transformed into a target 

implementation if the inverting expressions can be generated automatically. The inverting 

functions of the implementing t)'pes serve precisely this purpose. For instance, in the above 

example Remove and Empty are two of the inverting functions for Circ_List. The inverting 

expressions can be automatically derived in terms of the inverting functions. Thus, the 

transformation of a preliminary implementation into a target implementation according to 

. this method consists of two steps: First, determine the inverting expressions in terms of the 

inverting functions;. second, derive implementations for the inverting functions in terms of 

the operations of the implementing types. The two subsections to follow describe the two 

steps. 

6.1.1 Inverting Functions and Inverting Expressions 

Inverting functions23 of a data type are a family of functions on the type that are 

inter-related in a special way. Inverting functions are defined with respect to a basis of the 

type. The relationship among the inverting functions of a family is such that the functions 

can be used to algorithmically invert the process of constructing a value from the generators 

of the type. In other words, it is possible to construct algorithmically the inverting 

23. Inverting functions are related to distinguished functions defined in [24]. A family of inverting 
functions for a data type can also serve as a family of distinguished functions. The reverse implication 
is not true in general. In (24) distinp;uished· functions are used to fonnalize the expressive power of a 
data type. 

• 
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· expressions as a composition of appropriate inverting functions. The interting expressions 

perform the following functions: 

(1) Given a variable v and a generator expression t, check if the value denoted by v can 

be constructed by a generator expression that has the form oft. Since an inverting 

expression that performs this function is normally a boolean expression, we call it a 

boolean inverting expression. 

(2) Assuming that a gh:en variable v denotes a value that is constructed by an expres.5ion 

that has the form of a given generator expression t, determine the various 

components oft from v. We call an inverting expression that performs this function 

a component inverting expression since it extracts a component of a generator 

expression. 

For example, the operations Remove, Value, and -(Empty) can serve as a family of 

inverting functions for Circ_List. This is because the inverting expressions for any generator 

expression of Circ_List can be automatically constructed from these operations. For instance, 

suppose v is a variable of type Circ_List, and t = lnsert(lnsert( c, i), j) is the generator 

expression under consideration. The followipg are some of the inverting expressions fort: 

(1) Not(Empty(Remove(v))) is a boolean inverting expression for t. It checks if v 

denotes a value constructed by a generator expreSsion that has the form oft. 

(2) Some of the component inverting expressions oft are Value(v) which extracts j, 

Remove(Remove(v)) which extracts c, and Value(Remove(v)) which extracts i. 

Let us now fonnalize the properties that characterize a family of inverting functions 

for an arbitrary data type. We express the properties in the form of rewrite rules. The 

properties are such that they do not necessarily characterize a unique set of functions. This is 

done deliberately to offer flexibility in choosing an implementation for the inverting 

functions. Inverting functions are always defined with respect to a basis for the data type. 

Let the basis for the data type be~ = {u. f 00}. Inverting functions can be classified into 
I 

two categories: the component inverting functions and the boolean inverting functions. 

--------------- --------------------------------
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:1 (1) There is a set of n component inverting functions (d
1
, ••• , d

0
) associated with every 

generator a. in the basis whose arity is n. They are characterized by the following 
I 

property: 

ai(d1(ai(v1, ••• , v
0
)), ••• , d

0
(ai(vl' ••• , v)))-t ai(v1, ••• , v) 

A generator whose arity is zero does not have any associated component inverting 

functions. The component inverting functions associated with ai factor a value 

constructed by a .. They return the arguments used by a. in constructing the value. 
I I 

At the outset it may appear more natural to characterize the component inverting 

The problem with such a 

characterization is that it may result in ill-defined component inverting functions in 

situations where the generators can be used in more than one way to construct the 

same value. For instance. consider the basis '!A = {O, 1, +} for NaturaLNumbers. 

If d1 associated with + is defined as d1(x + y) -t x. then we have a situation where 

d1(6+1) = 0 and d1(1 + O)" = 1. This will conflict with the rest of the specification 

of type NaturaLNumbers which should allow us to prove that (O+ 1) = (1 +O). 

(2) There is a boolean inverting function associated with every generator in the basis. 

The boolean inverting function. pi. associated with a generator ai returns True on 

values that can be constructed by a generator expression that has the form 

ai(v1, ••• , vk). So. pi is characterized by pi(v)--+ a1(d1(v), ••• , d
0
(v)) = v, where = 

is the equality operation on the type. Thus, the recursion preserving method in 

general applies only when each of the implementing types has the equal operation 

defined on it A simpler characterization, which applies only wheri the basis is such 

that every value of the type can be constructed uniquely using the generators is as 

follows: 

p
1
( a 1(v1, ••• , v n))--+ True. 

pi(aj(v1, ••• , v.))--+ False (I rl: j) 

The basis for Circ_List is~ = {Create, Insert}. It has two component inverting 

functions (d
1 

and d2) both of which are associated with Insert. and characterized by 

· lnsert(d1(insert(v, i)), d
2
(Insert(v, i)))--+ Insert(v, i). It has two boolean inverting functions, p1 
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and p
2
, one associated with Create and the other associated with : Insert. They are 

characterized as follows. (Note that the generators ofCirc_List are such that every circular list 

can be constructed uniquely in terms of the generators.) 

p
1
(Create)-+ True 

p
1
(Insert(c, i))-+ False 

p
2
(Insert(c, i))-+ True 

p
2
(Create) -+ False 

Notice that p
1 

and p2' in this case, are complement of each other. So, while deriving 

implementations for the inverting functions, we implement only p1; p2 is obtained as a 

negation ofpr 

It is not hard to see how a preliminary implementation can be transfonned into a 

target implementation in terms of the inverting functions. Fig. 19 gives a general procedure 

that does it for an arbitrary preliminary implementation. In the following, we illustrate the 

procedure on the preliminary implementation of SIZE. The preliminary implementation 

SIZE consists of the following rewrite rules. 

SIZE(Creatc}-+ 0 

SIZE(lnsert(c, i))-+ SIZE(c) + 1 

Suppose the left hand side of the target implementation is SIZE(v). The expression on the 

right hand side is a nested iLtben_else expression that performs a case analysis. There is a 

case corresponding to every rewrite rule in the preliminary implementation. In the present 

case the right hand side would have the following form: 

if b1 then e1 

else if b2 then ; 

The expressions b1 and e1 are determined from the first rewrite rule using the inverting 

expressions associated with the generator expression that appears as the argument to SIZE on 

the left hand side of the rewrite rule. The expressions b2 and e2 are determined similarly from 

the second rewrite rule. We will .jescribe how b2 and e2 are determined since they are more 

- -~·-- -- -------
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1Fig. 19. The Procedure RPM 

Suppose the preliminary implementation of F consists of the following rules: 

• 
• 
• 

F(gn)--+ tn 

Then, the target implementation for F is 

F(v) ::= ifb
1 

thcns
1

' 

else if b
2 

then s
2 

• • 
else if b then s 

n n 

where 

(1) b
1 
is the boolean inverting expression of~ which is obtaineQ. by the procedure BIE described 

below. 

(2) s
1 

is the expression obtained by replacing every tenninal in ~ by the component inverting 

expression of ~ that extracts te tenninal. This is obtained by the procedure CIE described 

below. 

For convenience, we assume that the generators have an arity that is at 

most one. 

OE = proc (a: generator expression, u: Occurrence) 
returns (component inverting expression) 

Suppose a is a( a 1) 

d is the d·function associated with a 

if u = }I. then retum(}I.) 

else if u = 1.v then retum(d 0 CIE(a1, v) 

end OE 

BIE = proc (a: generator expression) returns (boolean inverting expression) 

if a is a variable then retum(A) 
else if« = a(a1) 

then return(p 0 · /\ 0 BIE1(a
1
, d)) 

where p is the boolean inverting function associated with a 
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d is the rnmjHlnent imertin1~ fundion associated with a 

BIFI = proc (a: gtnarator expression, ti: imerting fundion S)mhol) 

if a is a lariahk then rl'lurn(;\.) 

else if u = a(n 1) 

then rl'lurn (p 0 d 0 BIF(o)) 

returns ( boole:111 imcrting c.xprt·ssion) 

\\here pis the boolean inverting function associated "ith a 
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interesting than the detennination of b
1 

and er b2 is the expression that determines if v 

denotes a value constructed from an expression that has the fonn of Insert(c, i), so b2 is p2(v). 

e2 is identical to SIZE(c) + 1 except for the following modification: Th~ variables c and i, 

which denote the components of the expression appearing as argument to SIZE on the left 

hand side of the rule, are replaced by the corresponding inverting expressions that extract 

: those components from v. That is, c is replaced by d
1
(v) and i is replaced by d2(v). So, e2 is 

SIZE(d
1
(v)) + 1. b

1 
and e1 can be determi~ed similarly. So the target implementation for 

SIZE in terms of the inverting functions is below: 

SIZE(v) : : = if p
1
(v) then 0 

else if p
2
(v) then SIZE(d

1
(v)) + 1 

6.1.2 Implementations for the Inverting Functions 

Implementations for the inverting functions are derived using the recursion 

eliminating method described in the next section. Note that the properties characterizing the 

inverting functions are expressed by .means of a set of rewrite rules. Implementations for the 

inverting functions are determined by searching for appropriate compositions of the 

operations of the implementing types that satisfy the rewrite rules characterizing the inverting 

functions. In the following we show the theorem generation sequences that derive 

implementations for each of the inverting functions used above. 

Derivation for d
1 
and d

2 

Relevant Rewrite Rules used for Expansion 

(1) Value(Create) -t ERROR 

(2) Value(lnsert(c, i)) ..... i 

(3) Remove(Create) ..... ERROR 

(4) Remove(lnsert(c, i))-t c 

Fonn of the theorem to be generated: Insert(v, i) = Insert(f*
1
(1nsert(v, i)), f*

2
(1nsert(v, i))) 

Normal fonn of lnsert(v, i): lnsert(v, i) 

Rules used for the nonnal form: None 



· Step (1) Invoke Synthesis Rule (1) on 0 

Insert(v, i) = Insert(v, i) 

Step (2) Expand Expression: v 

Using Rule: (4) 
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Insert(v, i) = Insert(Removc(lnsert(v, i)), i) 

Step (3) Expand Expression: i 

Using Rule: (2) 

··-----------------------·-·---------------------------------·-··-· 
Insert(v, i) = lnsert(Removc(Inscrt(v, i)), Value(lnsert(v, i))) 

The above theorem dctcnnines the following solutions for f*
1 

and f*
2

: Remove and Value. 1berefore, 

we have the following implementations for d
1 

and d
2
• 

d
1
(v) :: = Rcmove(v) 

d (v) ::= Value(v) 
2 

Derivation for p
1 

Relevant Rewrite Rules used for Expansion 

(8) Empty(Create)-+ true 

(9) Empty( Insert( e, i)) -+ false 

Form of the theorem to be generated: . True= f*(Create)) 

Normal form of True: True 

Rules used for the normal form: None 

Step (1) Invoke Synthesis Rule (1) on True 

True:: True 

Step (2) Expand Expression: True 

Using Rule: (8) 

-----~-----------------
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11;. ·--·-------·····------·····························-·7··----------
True = Empty(Create) 

• The last theorem determines the following solution for f*: Empty. Note that this function also satisfies 

. the other rewrite rule characterizing pl' namely pt<Jnsert( c,i)} -+ False. Therefore, p
1 

can be 

implemented as follows: 

p
1
(v) :: = Empty(v) 

6.2 The Recursion Eliminating Method 

Let us suppose we are deriving a target implementation for an implementing 

function F whose preliminary implementation consists of the set of rewrite rules given below . 

• 
• 

We assume that Fis a single variable function for convenience. The general description of 

the method given below can be extended easily to a multivariable function. In a target 

implementation, the function F is defined as F(v) :: = e, where v is a variable, and e is an 

expression containing v and any of the following function symbols: 

(1) Operations of the implementing types 

(2) The implementing functions 

(3) The function iLthen_else 

Let us denote e as l*(v), where f* is some composition of the function symbols listed 

above. The derivation of a target· implementation consists of finding a suitable f*. The 

composition f* should be such .that the function defined by F(v) :: = f*(v) has the same 
.~, ·~·~·.· .. ~.~-.:". '!'··. 

behavior as the one defined by the set of rewrite rules given above. 

To characterize the problem formally, we define the following concept A 

composition f* satisfies a rewrite rule of F if the equation obtained by mJbstituting f* for F on 

both the sides of the rewrite rule is a theorem of the rewriting system ronsisting of the 
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preliminary implementation and the specifications of the· implementing types. For example, 

the composition Rotate(lnsert(d, k)) satisfies the rule 

; ENQUEUE(lnsert(c, i),j)-+ lnscrt(ENQUEUE(c,j), i) if the equation 

Rotate(Insert(lnsert(c, i), j)) = Insert(Rotate(lnsert(c, j)), i) is a theorem. 

The composition f* to be derived should be such that f* satisfies each of the rewrite 

rules in the preliminary implementation of F. That is, the following equations should be 

theorems. (The notation t
1
[F +- f*] denotes. the expression obtained by replacing F by f* in 

tr) 

• 

The purpose of the above formulation (of the condition that a solution for f* is 

supposed to satisfy) is to allow us to use a theorem generation strategy similar to the one used 

in deriving a preliminary implementation. We generate a theorem using one of the above 

equations as a template by treating· f* as a place holder in the equation. Let us call this 

equation the template equation. A theorem that has the form of the template equation 

determines a candidate for f*. A single theorem may determine more than one candidate for 

f*, but only finitely many, because the expressions we are dealing with have finite size. The 

candidate(s) can be determined automatically by comparing the theorem with the template 

equation. The goal is to generate a theorem that not only has the form of the template 

equation but is also such that the candidate for f* satisfies the rest of the equations in the 

preliminary implementation of F. 

The generation of theorems is carried out in the same fashion as in deriving the 

preliminary implementation. We use the same set of synthesis rules developed earlier. The 

theorems that are of interest to us in the present situation involve only the operations of the 

implementing types and the implementing functions. Therefore, the rewriting system that is 

used for performing expansion (while generating the theorems) consists of the preliminary 

implementation and the specifications of the implementing types. In contrast, the rewriting 

system used in the derivation of the preliminary implementation consisted of the 
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specifications of the implemented type and the association specification. Note that the 

preliminary implementation did notexist at that time. Checking if a candidate for f* satisfies 

the rewrite rules essentially involves checking if an equation is a theorem. 

Let us illustrate the method on the derivation of the target implementation for 

ENQUEUE shown earlier. . The preliminary implementation of ENQUEUE is repeated 

below for ease of reference. 

ENQUEUE( Create, j) ---+ lnsert(Create, j) 
' 

ENQUEUE(lnsert(c, i), j) ---+ lnsert(ENQUEUF.(c, j), i) 

The f* to be derilr'ed should be such that the following equations are theorems. (Note that the 

equations are obtained by replacing ENQUEUE by f* in the rewrite rules, and then 

interchanging the two sides. The reason for interchanging the sides will be explained shortly.) 

(1) Insert( Create, j) = f*(Create, j) 

(2) Insert(f*(c, j), i) = f*(Insert(c, i), j) 

We use equation (1) as the templ<lte equation. The nature of our synthesis rules imposes· 

certain restrictions on the equations that can be used as template. The synthesis rules are 

fonnulated to generate theorems with a known left hand ~'ide, but an unknown right hand 

side. So, the template equation should be such that the unknown entity f* appears only on 

the right hand side. In equation (2) both sides are unknown since f* occurs on both the sides. 

This was also the reason behind interchanging the two sides of the rewrite rules while 

obtaining the above equations. Note that there always exists at least one equation with a 

known right hand side. This corresponds to the rewrite rule in the preliminary 

implementation of F that represents the basis case. 

Shown below is a sequence of steps that generates a theorem that gives rise to a 

target implementation. 

Relevant Rewrite Rules used for Expansion 

(3) Rotate(Create) - Create 
(4) Rotate(lnsert(Create, i))- Insert(Create, i) 

(5) Rotate(lnsert(lnsert(c, il), i2)) -t Insert(Rotate(lnsert(c, i2)). il) 
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Fonn of the theorem to be generated: lnsert(Create, j) = f*(Create, j) 

Normal form oflnscrt(Create, j): Insert(Create, j) 

Rules used for the normal form: None 

Step (1) Invoke Synthesis Rule (1) on Insert(Create, j) 

Insert(Crcatc, j) = Insert(Create, j) 

Step (2) fapand Expression: Inscrt(Create, j) 

Using Rule: (4) 

Insert( Create, j) = Rotatc(Insert(Create, j) 

The right hand side of the last theorem generated in the above series has the form of 

f*(Create, j), and hence can be used to generate a set of candidate compositions. A candidate 

composition is determined from three expressions: 

(1} the left hand side of the target implementation, say F(v1, ••• , v) 

(2) the right hand side of the theorem generated, say a, and 

(3) the right hand side of the template equation, say f*(g
1
, ••• , gJ. 

It is obtained by replacing zero or more occurrences of ~· for every 1 < i < n, in a by a 

variable vJ' 1 < j ~ n. The replacement of ~ by vJ is made ~ that type consistency is 

preserved. 

For the current example, the left hand side of the target implementation is 

ENQUEUE(d, k) :: = ?; the right hand side of the theorem generated is Rotate(Insert(Create, 

j); the right hand side of the template equation is f*(Create, j). So, there are two candidates 

for f*(d, k): (1) Rotate(Insert(d, k)) and (2) Rotate(lnsert(Create, k). 

The second candidate does not satisfy equation (2). The equation obtained by 

replacing f* in the equation by the candidate is 

Insert(Rotate(Insert(Create, j)), i) = Rotate(lnsert(Create, J)). This is not a theorem of 

Circ_List because (for every i and j) both the sides of the equation remain simplified, but will 

not be identiCal. (This can be checked by Is-an·inductbe-theorem-of.) 
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Let us consider the first candidate. The equation obtained by substituting it for f* in 

· equation (2) is Rotate(Insert(Insert(c, i), j)) = lnsert(Rotate(lnsert(c, j)), i), and this is a 

theorem of Circ_List. (The left hand side of the equation reduces to the right hand side by 

the rewrite rule (5).) Hence Rotate(lnsert(d, k)) satisfies equation (2). The second candidate 

does not satisfy equation (2). Hence the target implementation is: 

ENQUEUE(d, k) ::= Rotate(lnsert(d, k)) 

6.3 An Illustration of a Camplete Synthesis 

In the following. we illustrate the complete synthesis, i.e., an illustration of both the 

stages, of two examples. The first one derives a target implementation for the operation 

Append of Queue_lnt using the association specification that specifies the Circ_List 

representation. The second example derives a target implementation for the Front using the 

association specification that specifies the <Array Jot X Integer X Integer> representation 

(see chapter 5). 

Illustration 1 
Stage 1: 

Partial Preliminary Implementation of Append at Hand 

APPEND(c. Create) _. ?rhs
1 

APPEND(c, Insert(d,i)) _. ?rbs, 

Relevant Rewrite Rules of the Perturbed World 

(10) Appcnd(q, Nullq) -t q 

(14) %(Create)_. Nullq 

(20) %(ENQUEUE(c, i))-t Enqueue(%(c), %(i))}) 

(22) %(APPEND(c, d))--+ Appendf.JG(c), '.JG(d)) 

Derivation of the first rewrite rule 

Form of the theorem to be generated: :JG(APPEND(c, Create)) a :JG(?rhsJ 

Normal form of%(APPEND(c, Create)): :JG(c) 

· Rules used for the nonnal form: (22), (14), (10) 

Step (1) Invoke Synthesis Rule·(l) on %(APPEND(c, Create)) 
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%(APPEND(c, Create)) :: %(c) 

The above theorem is such that APPEND(c, Create) >- c. Therefore the desired rewrite rule is: 

APPEND(c, Create) ~ c 

Derivation of the second rewrite rule 

Form of the theorem to be generated: %(APPEND(c, Insert(Create, z))) = %(?rhs,) 

Normal form of%(APPEND(c, lnsert(Create. 1))): Enqueue(%(c), %(1)) 

Rules used for the normal form: 

Step (1) Invoke Synthesis Rule (1) on %(APPEND(c, Insert(Create, z))) 

%(APPEND(c, Insert(Create, z))) = Enqueue(%(c), %(z)) 

Step (2) Expand Expression: Enqueue(%(c), %(1)) 

Using Rule: (10) 

%(APPEND(c, Inscrt(Create, r))) = Append(Enqueue(%(c), %(1)), Nullq) 

Step (3) Expand Expression: Nullq 

Using Rule: (14) 

'.Jb(APPEND(c, Insert(Creatc, r))) = Append(Enqueue('.Jb(c), %(1)), %(Create)) 

Step (4) Expand Expression: Enqueue('.Jb(c), %(1)) 

Using Rule: (20) 

····-····--·--···-·········----···-··--··-······-······-· 
'.Jb(APPEND(c, Insert(Creatc, z))) s Append('.Jb(ENQUEUE(c, 1)), %(Create)) 

Step (5) Expand Expression: Append('.Jb(ENQUEUE(c, l)), %(Create)) 

Using Rule: (22) 

'.Jb(APPEND(c, lnsert(Create, 1))) ::: '.Jb(APPEND(ENQUEUE(c, 1), Create)) 
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Step (6) Generalize the theorem in step (5) by replacing the constant 

Create by the variable d to obtain the following equation: 

%(APPEND(c, Insert(d,i ))) ::: %(APPEND(ENQUEUE(c, r), d)) 

Apply Is·an·inductivc theorem-of on the above equation. 

This yields True confirming that the equation is a theorem. 

Hence the desired rule (obtained by dropping% on both sides) is: 

APPEND(c, Jnsert(d,i)) -+ APPEND(l<~NQUEUE(c, r), d) 

Stage 2: 

Preliminary Implementation at Hand 

APPEND(c, Create)--+ c 
APPEND(c, Inscrt(d,i )) -+ APPEND(ENQUEUE(c, 1), d) 

Desired Fonn of Target Implementation 

APPEND(v
1
, v

2
) :: =?? 

Relevant Rules ofCirc_list 

(10) Join(c, Create) -+ c 

(11) Join(c, loscrt(d, i)) -+ Insert(Join(c, d), i) 

Template Equation Chosen: c = APPEND(c, Create) 

Fonn of the theorem to be generated: c = f*(c, Create) 

Normal form of c: c 
Rules used for the normal form: None 

Step (1) Invoke Synthesis Rule (1) on c 
c::c 

Step (2) Expand Expression: c 
Using Rule: (10) 

c = Join(c. Create) 

Step (3) Find a suitable candidate composition. 

·-----------------------
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The right hand side of the above thcorc1n h;is the form of r~(c, Create). So. find a suitable candidate 

composition. There ;ire two possibilities: (l).Join(v
1
• v). and (2).Join(v

2
• \)}. Tlie second candidate 

s;1tisfies the second rule of the prclimin<t;y implementation. but the first docs not. So. a pussiblc target 

implementation is: 

.\PPEN D(' 
1
, '} :: ~ .loin(v 

2
• v

1
) 
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1: Illustration 2 
Stage 1: 

Partial Preliminary Implementation of Append 

FRONT(< v, i, l>) -+ ?rhs3 

FRONT(< Assign( v, e, l), i, i+ l>) -+ ?rhs4 
FRONT(<Assign(Assign( v,el' ;), i;. j+ 1), i, j+ 2>) -+ ?rhs5 

Relevant Rewrite Rules of the Perturbed World 

(1) %(<v, i, i>) -+ Nullq 

(2) %(<Assign(v; c, j), i, j+ l>)-+ iLthcn_clsc(i = j+ 1, Nullq, Enqucuc(:JG(<v, i, j>), :JG(e))) 

(3) %(FRONT(x)) -+ Front(%(x)) 

(4) %(ERROR)-+ Error 

(5) %(iLt~en_elsc(b, v
1
, v

2
))-+ if_thcn_clse(b, %(v

1
), %(v

2
)) 

Derivation of the first rewrite rule 

Fonn of the theorem to be generated: %(FRONT(<v, i, i>)) = %(?rhs1) 

%(FRONT(< v, i, i>))+: Error 

Rules used for simplification: 

Step (1) Invoke Synthesis Rule (1) on %(FRONT(<v, i, 1>)) 

%(FRONT(< v, i, i>)) := Error 

Step (2) Expand Expression: Error 

Using Rule: (4) 

%(FRONT(<v, i, l>)):: %(ERROR) 

FRONT(<v, i, i>)-+ ERROR · 

Derivation of the second rewrite rule 

Fonn of the theorem to be generated: %(FRONT(<Assign(v, e. z), i, i+ 1>)) = %(?rh52) 

%(FRONT(<Assign(v, ti. l), i., i+l>))+: %(e) 

Rules used for simplification: 

. -- - -------
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Step (1) Invoke Synthesis Rule (1) on :Jt(FRONT(<Assign( v, e, z), i, i+ 1>)) 

'.lt(FRONT(<Assign(v, e, z), i, i+ 1>)) = :JG(e) 

J<'RONT(<Assign(v, e, z), i, i+ 1>)-+ e 

Derivation of the third rewrite rule 

Form of the theorem to be generated: '.Jt(FRONT(<Assign(Assign( v,e
1
, J), e

1
, j+ 1), i, j+ 2>)) = :JG(?rhs3) 

'.Jt(FRONT(<Assign(Assign( v,e
1
, J), e

2
; j+ 1), i, j+ 2>)).J.: 

if_then_elsc(i = j+ 2, Error, if_then_elsc(i = j+ 1, :JG(e
1
). 

Front(Enqueue(:JG(<v, i.1>), e
1
)))) 

Rules used for simplification: 

Step (1) Invoke Synthesis Rule (1) 

%(FRONT(<Assign(Assign(v.e
1
,J), e

2
,j+l), i,j+2>)) = 

iLthen_elsc(i = j+ 2, Error, if_then_else(i = j+ 1, '.JG(eJ. 

Step (2) Expand Expression: Front(Enqueue('.lt(< v, i, ]>}, e
1
)) 

Using Rule: (2), Protocol 3 

lWUpdate: 

i = j+2 _.False 

i = j+l -t False 

Front(Enqueue('.JG(< v. i. l>). e
1
)))) 

%(FRONT(<Assign(Assign(v,e
1
,J), e

1
,j+l), i,j+2>)) =: 

if_then_else(i = J+ 2, Error, if_then_else(i = i+ 1, '.JG(e
2
), . 

Step (3) Expand Expression: '.JG(<Assign(v, e
1
,,h, i,j+ 1>) 

Using Rule: (3) 

Front(:JG(<Assign(v, e
1
,j), i,j+ 1>)))) 

%(FRONT(<Assign(Assign(v,e
1
,J), e

1
,j+ 1), i,j+ 2>)):: 

if_then_else(i = J+ 2, Error, if_then_else(i = j+ 1, :JG(e
2
), 

:JG(FRONT(<Assign(v, e
1
,,h, i,j+ 1>)))) 

• 
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Step (4) Expand Expression: Error 

Using Rule: (4) 

%(FRONT(<Assign(Assign(v,e1,J), t;.j+ 1), i,j+2>)) = 
if_thcn_clsc(i = j+ 2, %(ERROR), if_then_elsc(i = j+ 1, %(e1), 

%(FRONT(<Assign(v, e1,J), i,j+l>)))) 

Step (5) Expand Expression: if_thcn_elsc(i = j+ 2, %(ERROR), if_then_elsc(i = j+ 1, %(ej, 

%(FRONT(<Assign(v, e
1
,J), i,j+ 1>)))) 

Using Rule: (5) 

%(FRONT(<Assign(Assign(v,e
1
,J), e

1
,j+ 1), i,j+2>)) = 

%(if_thcn_clsc(i = j+ 2, ERROR, iLthcn_clsc(i = j+ 1, e
1
, 

Stage 2: 

FRONT(<Assign(v, e
1
,J), i,j+ l>)))) 

FRONT(<Assign(Assign( v,e
1
, J), e

2
, j+ 1), i,j+ 2>) -+ 

if_thcn_clsc(i = j+ 2, ERROR, if_thcn_elsc(i = i+ 1, e
1
, 

FRONT(< Assign( v, e
1
, ;), i, j+ 1>))) 

Preliminary lmplementatio~ at Hand 

FRONT(< v, i, 1>) -+ ERROR 

FRONT(<Assign('v, e, i), i, i+ l>) -+ e 
FRONT(<Assign(Assign( v,e

1
, j), e

2
, j+ 1), i, j+ 2>) -+ if i = j+ 2 then ERROR 

else if i = j+ 1 then e
2 

else FRONT(<Assign(v, e
1
,J), i,j+ l>) 

Let FRONT(<arr, pntl, pnt2>) be the left hand side of the target iinplementation. We use a slightly 

different method than the one normally used for deriving the target implementation for Front. We use 

combination of the recursion preserving method and the recursion eliminating method. First, a 

composition that satisfies the first rewrite rule is detennined separately; it is easy to see that this can be 

ERROR. Then, a composition that satisfies the second and the third rewrite rules is detennined. The 

two compositions are then combined with the he]p of a boolean inverting expression to arrive at the 

target implementation. Note that the boolean invening expression that characterizes the argmnent 

structure corresponding to the first rewrite rule is pntl = pot2. Therefore, tl!e desired form of the 

target implementation is as below. The expression that takes the place of the else clause is to be 

-------"------~-------~--- --------------
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,; detcnnined so that the second and the third rewrite rules are satisfied. 

Desired Form of the Target Implementation 

FRONT(<arr, pntl, pnt2>) :: == if pntl = pnt2 then ERROR 

else?? 

Relevant Rewrite Rules of Array_lnt and Array_lnt X Integer Xlnteger 

The first two rules specify the Read operation of Array Jot that reads an element ofan array. The third 

rewrite rule specifics the operation of a triple that selects the first component. 

(1) Rcad(Nullarray, i) ......... ERROR 

(2) Read(Assign(v, e, j), i) ......... if i = j then e 

else Rcad(v, i) 

(3) First(<v, k, I>)-+ v 

Template equation chosen: e = FRONT(<Assign( v, e, 1), i., i+ l>) 

Fonn of the theorem to be generated: e = f*(<Assign(v, e, 1), i., i+ l>) 

Normal form of e: e 

Rules used for simplification: None 

Step (1) Invoke Synthesis Rule (1) one 

Step (2) Expand Expression: e 

Using Rule: (2), Protocol 2 

e = Read(Assign(v, e, i), i) 

Step (3) Expand Expression: Assign(v, ~ i) 

Using Rule: (3) 

e = Read(First(<Assign(v, e, i), ~ I>), i) 

Step (4) Replace variables in the theorem by appropriate tenninals: 

V t-+ V, i I-+ i, k I-+ i., ( 1-+ i+ 1 
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e = Rcad(First(<Assign( v, e, 1), i, i+ l>), 1) 

The right hand side of the last theorem generated has the form of f*(<Assign(v, e, 1), i, i+ 1>). It 

determines the candidate composition Read(First(<arr, pntl, pnt2>), pntl), which'. can be simplified to 

- Read(arr, pntl). This composition is such that when it is takes the place of?? in the partial target 

implementation shown above, the whole expression satisfies the third rewrite rule in the preliminary 

implementation. Hence, the a possible target implementation for FRONT is: 

FRONT(<arr, pntl, pnt2>) :: = if pntl = pnt2 then ERROR 

else Re~d(arr, pntl) 

-----· ·~---------~-
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· 7. Conclusions and Future Research 

Algebraic specifications fpr data types have been extensively used to prove 

properties of data types and to establish the correctness of implementations of data types. In 

. this thesis we have investigated the: task of automatically synthesizing implementations for 

abstract data types starting from their algebraic specifications. In this chapter we summarize 

the major contributions of the thesis, describe the important conclusions the research has lead 

us to, and provide directions .for further research. 

One of the main decisions that we were confronted with at the start of the research 

was choosing and characterizing the inputs to the synthesis procedure. It is not surprising to 

expect as inputs the specification of the implemented type, and the specifications of all the 

implementing types. The novelty of our method lies in the use of two other inputs: the 

homomorphism information and the termination ordering. The advantages of having them 

as inputs became more evident as the research progressed. 

The homomorphism information makes the problem more tractable by restricting 

the space to be searched in finding an implementation because it imposes additional 

constraints on the synthesis equations (see chapter 4). It is informative in this respect to 

compare our method with- that of Okrent's [40). The methOd developed in [40) can also be 

reformulated as a theorem generation aetivity within our framework. His method, however, 

is less general and less efficient than ours because he does not use the homomorphism 

information. In order to compensate for the lack of this information he is forced to severely 

restrict the form of the specifications. 

The termination ordering· is not essential but is useful for automating the synthesis 

procedure. The basic method of manipulation used by the synthesis procedure is expansion 

(see section 4.4.1and4.5). Expansion, tinlike reduction. is not uniformly terminating -- even 

when the specifications are convergent (see section 3.3). This makes the synthesis procedure 

potentially nonterminating. The termination ordering circumvents this problem. It also 

ensures the termination of the implementation derived. The synthesis method used by 

Darlington [7) does not explicitly indicate the use of any termination ordering. This is one of 

the reasons that the i$ue of termination (that of the synthesis procedure. · or that of 
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: implementation derived) is not addressed in [7]. 

An important contribution of the thesis is the development of a (ormal basis for the 

· method used by the synthesis procedure. The development is influenced significantly by the 

techniques used for verifying the correctness of implementations of algebraically specified 

data types. The synthesis method has two distinguishing features. The first is that it is based 

on the general principle of reversing the techniques of program verification. The second is 

the decomposition of the procedure into two stages. 

The reverse program verification principle lead us to view the synthesis problem 

(see chapter 4) as one of generating a set of theorems that satisfy the synthesis conditions. 

The synthesis conditions characterize the situations in which a set of theorems of the input 

specifications is guaranteed to yield a correct implementation. The synthesis rules provide a 
. 

means of generating theorems from a specification. This approach to synthesis has two 

advantages. Firstly, it makes the formal justification of the correctness of the synthesis 

method simple because the synthesis conditions are based on a criterion of correctness for 

data types. Secondly, it allows us to build on the research in the area of program verification -

past as well as future. This naturally suggests an area in which to pursue future rese!1fch. It 

concerns extending the theory in which the synthesis procedure operates. Currently it 

operates in the part of inductiye theory of the specification that is decided by the Musser/KB 

method (see chapter 4) of proving equational and inductive properties of rewriting systems. 

This extension would involve developing new synthesis rules, and new ways of using the 

synthesis rules for generating theorems. One might, for example, look into ways of 

assimilating the proof techniques used by various verifiers [5, 27) into our framework. 

Another advantage of decomposing the procedure into two stages is that it makes 

the procedure more modular. It isolates the part that is dependent on the target language. So 
.. . 

modifications to the target language can be made without drastically affecting the synthesis 

procedure. A possible extension to the thesis that could be considered is to incorporate more 

equivalence preserving transfonnations into the second stage. The transformations can be 

either of an efficiency improving nature, or language developing nature such as applicative to 

imperative transformations. 

In addition to characterizing the inputs, an important oontribution. of the thesis is 
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~ the characterization of the generality of the synthesis method. The thesis fonnally 

: characterizes (see chapter 2 and section 3.3) the restrictions on the inputs, and the conditions 

. under which it succeeds in finding an implementation. This was possible primarily as a result 

· of the development of the formal basis for the synthesis method. 

Finally, but most importantly, let us address the question that any work on program 

synthesis has to confront: How far does the work go towards making the programmers task 

superfluous ? The practical utility of a work in program synthesis can be detennined by 

. evaluating the. following aspects ·of the synthesis procedure: Efficiency of the synthesis 

method, efficiency of the implementations derived, and the ease of writing specifications. 

The main source of inefficiency in the synthesis procedure stems from the 

non-uniquely terminating nature of expansion. This forces (as shown in section 4.5) the 

procedure to keep track of all possible expansion paths. The implementation of the 

procedure given in section 4.5 uses only the most obvious ways in which unproductive paths 

can be pruned. There are several avenues for further research in this area. One can 

investigate the use of various heuristic approaches for cutting down unproductive paths. 

Another possibility is to make better use of the invariant information available in the 

association specification. The procedure (see chapter 5) currently uses it just as one of the 

conditions to terminate the theorem generation activity. A better utilization of it would be to 

guide the theorem generation activity. For instance, it would be more useful if it were 

possible to deduce from the invariant specification certain structural properties of expressions 

that prevented them from satisfying the invariant This could then be used to discontinue 

unproductive expansion paths during theorem generation. It is hard to extract this kind of 

information from an algebraic specification of J. It would be interesting to consider other 

means of specifying J which can help this cause. 

The synthesis procedure currently does not take into consideration the efficiency of 

its output in synthesizing an implementation. It derives the implementations that it is capable 

of deriving in increasing order of oomplexity (in terms of the number of reduction steps 

needed) of the proof of the implementations. The are two reasons for this. Firstly, we know 

of no good ways of specifying performance constraints for operations of data types within an 

algebraic framework. Secondly. it was beyond the scope of the current work to incorporate 
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automatic performance analysis of the implementations. There is some recent work being 

done in this area in (50] that is compatible with algebraic theory of data types. It would be 

interesting to investigate the interaction between our work and that of (50]. 

The main reason for choosing an equational language to express the inputs was 

because of the benefits it offers from a proof theoretical point of view. Equational 

specifications have generally been found hard to write. This is one of the factors that reduces 
' 

the practical value of the procedure. It would be useful to extend the synthesis procedure to 

accept specifications in a language that is easier to write. 

We believe that the goal of the research in program synthesis (and program 

verification) should not and cannot be to relieve the programmer completely of the burden of 

programming. Rather, it should be to help us gain a better insight into the science of 

programming. The insight gained can be utilized in several ways that are practically relevant, 

such as in the design of new programming languages, and in the development of program 

maintaining and program development (19, 49, 2, 3] systems. We believe that our work can 

be particularly useful in the latter area 
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Appendix I • Equations as Rewrite Rules 
·.· .. : '.~ .. 

Automatic verification of data types that are specified equationally is often based on treating the 
equations in the specifications as rules for rewriting expressions that have certain patterns. The 
automation of our synthesis method also relics on such a treatment of the specifications. This appendix 
describes the basic concepts about rewrite rules, and some useful properties of sets of rewrite rules. 

We assume a denumerable set ('1') of elements called variables, and a finite set l: of function symbols. 
We define expressions and constants over l: as follows. (The fonnal definition is similar to the 
infonnal one given back in scc.3.3.1.) 

Expressions 

An expression is either (1) a variable, or (2) a function symbol f followed by a sequence of n ~ 0 
expressions e1, ••• , e

0
• f is called the (main) function of this expression, and e1, ••• , e

8 
arc called the 

arguments. Such an expression is written f(e1, ••• , e
8

). An expression with no arguments is written 

as f( ). we· denote the set of expressions ~efined over l: as E(l:). 

We assume it is possible to test variables and function symbols for equality. Two expressions a and fJ 
are regarded as identically equal (written a =fl) if and only if they are both the same variable or they 
have the same main function symbol an~ the same number of identically equal arguments, in the same 
order. 

The variable set of an expression a is {a} if a is a variable, otherwise is the union of the variable sets 
of the arguments of a. 

The subexpressions of an expression are (1) the entire expression, and (2) the subexpressions of the 
arguments (if any) of the expression. Expressions which are variables have no expressions other than 
themselves. 

Constants 

A constant is an expression that does not contain any variables. We denote the set of constants over l: 
as T(l:). The subconstants of a constant are (1} the entire constant, and (2) the subconstants of the 
arguments (if any) of the constant 

Occurrences 

An expression can be represented naturally as a tree structure: The main function symbol of the 
expression is the root of the tree; the arguments of the expression are the branches of the tree. This 
analogy can be used to devise a notation to identify unambiguously the subexpressions of an 
expression. 

An occu"ence in an expression is a sequence (possibly empty) of positive integers that denotes the 
path inside the tree corresponding to the expression that runs from the root of the tree to the root of 
the tree corresponding to one of the subexpressions. We denote the set of all occurrences in an 
expression e by O(e). We use the following notation for denoting an occurrence: >. is the empty 
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~ occurrence, and if u is an occurrence and i is an integer, then i.u is the occurrence· that has i at its head 
and u as its tail. 

The subexpression of an expression eat the occurrence u, denoted by elu, is defined as follows: 
If u = A, then e/A = e 
lfu = i.w (1 < i < n). and e = f(el' ••• , en). then elu = e/w 

For example, suppose e = Enqueue(Dequeue(Nullq( )), i). Then ell = Dequeue(Nullq 0). 
e/2 = i, e/l.l = Nullq( ). 

Suppose u is an occurrence of e. Then, we use the notation e[u +- e'] to denote the expression 
obtained by replacing in e the subexpression e/u bye'. For instance, suppose e is the same expression 
as in the example given above, and e'" = Nullq( ): then e(l +- e '] is Enqueue(Nullq( ),}). 

Substitutions 

Let u be a mapping from variables to expressions, such that u(v) = v for all but a finite number of 
variables v. Extend the domain of a to the set of all e~pressions by defining a(f(e1, ••• , e

0
)) to be 

f(a(e1), ••• , a(e
0
)). Such a mapping u is called a substitution (of expressions for variables). The 

notation a = [v1 1--t e1, ••• , v
0 

1-+ eJ will be used to denote the substitution a such that a{v1) = e1, 

for 1 < i < n, and a{v) = v. 

We say that an expression fJ has the form of an expression a if there exists a substitution a such that 
a(a) = p. For example, Append(Nullq(), Eoqueue(q, i)) has the form of 
Append(ql, Enqueue(q2, i2)) by the substitution u =(qi 1-+ Nullq(), q2 t--t q, i2 1--t i]. Notice that 
has the form of is not a symmetric relation. 

Rewrite Rules 

A rewrite rule is an ordered pair of expressions (L, R), such that the variable set of R is contained in 
the variable set of L Usually (L, R) will be written L-+ R. A finite set of rewrite rules over a set of 
function symbols l: is called a rewriting system over l:. Let R be such a rewriting system. 

An expression a is reducible with respect to R if there is a rule L -+ R in R, and an occurrence u of a 
such that alu has the form of L. Let a be a substitution such that a(L) = a/u, and 
fJ = a[u +- a(R)]. Then we say that .a directly reduces top (using R), and write it as a-+ fl (using 
R). ·Where the particular R in use is clear from the context, this will be written simply as a -+ /J. If a 
is not reducible with respect to R, then we say a is irreducible with respect to R. 

Let -+ • be the smallest relation on pairs of expressions which is the reflexive, transitive closure of -+. 

Thus, a-· fl if and only if there exist expressions a0.al' ••• , a
8

, where n > 0, such that a = a 0, 

ai-+ ai+lfor i = 0, ••• , n-1 and a
8 

= /J. We read a-+* fl as a reduces to /J. 

Suppose a -t* /J, and fl is irreducible. Then we say that a simplifies to fJ; fJ is called a normal form 
of a. We denote the normal form of ease+. A rewriting system R has the unique termination 
property (UTP) if the simplifies relation defined by R is a function; that is, every expression has at 
most one normal form in R. 

A rewriting system ~ has the finite termination property (Fl'P) if there is no infinite sequence 

• 



- 156 -

;\ rewriting system n is convergent if it has FTP as well as UTP. In such a case, every expression in 
the system has exactly one normal form. 
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Appendix II • Checking Finite Termination 

A general technique for proving tcnnination of a rewriting system R with an alphabet :l: is to 
demonstrate that it is possible to define a well-founded partial ordering >-R on T(l:) so that t1 -+ t2 
implies t1 >-R t2• A partial ordering is well-founded if there are no infinite descending sequences such 

as t1 >-R t2 >-r· for any constants. Hence, there cannot be any infinite sequence of rewrites using R 

also. The following theorem [Manna&Ness] provides a useful guideline to define a suitable partial 
ordering to prove FfP. 

Theorem 3 A rewriting system R with an alphabet l: satisfies FTP if there exists a well-founded partial 
ordering ~·-R on T(l:) with the properties given below. We call-a well-founded partial ordering that 

satisfies the following properties a termination ordering for the system R since the ordering can be 
used to show the termination ofR. 

(1) Reduction: For every rule L-+ R in R, and for every substitution a of variables to 

c~nstants, a(L) >-R a(R). 

(2) Substitution: t >-Rt' implie~ f( ... t...) >-R f( ... t' ... ) for any constants t, t'. f( ... t...), f( ... t' ... ) 

in T(l:). 

The reduction condition asserts that applying any rule reduces the subterm to which the rule is applied 
in the well-founded ordering. The substitution condition ~arantees that br reducing subterms the 
top-level constant is also reduced. Hence it follows that t-+ t' implies t >-Rt . · 

Fig. 20 gives a definition of a class of orderings called the lexicographic recursive path orderings(>-). 
>- is parameterized with respect to an ordering (>) on the alphabet of a rewriting system. In addition 
to the substitution property mentioned in the above theorem, >- also contains the subterm relation: fi 
is a subterm of tz implies that t2 >-tr Such an ordering is usually referred to as a simplification 

Fig. 20. The Lexicographic Recursive Path Ordering 

Let> be an ordering on an alphabet I. Then >- on 
T(l:) is defined as follows: 

s >-tiff one of the following conditions iS true 
(1) f> g /\ s >-ti, l < i Sn 
(2) f = g /\ <sl' ••• , s

0
> >->-1ex <t1, ••• , t

8
> As>- tr 1 < i < n 

(3) (3 s~ [si = t Vsi >- t) 

>->-1ex is a right to left lexicographic ordering based on>-. It is defined as follows. 

<s1, ••• , s
8
> >->-1ex <t1, ••• , t

8
> iff 

(3 1 < i ~ n) [si >- ti A (V i ( j < n) (SJ = t~ 
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1 ordering [Dcrshowitz]. (A proof that'>- is a simplification ordering can be found in [Kamin].) 
Dershowitz in [Dershowitz] has shown the following theorem: 

Theorem 4 A lexicographic recursive path ordering (>-) is well-founded if and only if the underlying 
alphabet ordering ()) is well-founded. 

One can, in general, use any suitable well-founded alphabet ordering in conjunction with a 
lexicographic recursive path ordering to use it as a termination ordering for a rewriting system. 
Figures 21, and 22 give two alphabet orderings: The first can be used for an arbitrary data type 
specification, and the second for an arbitrary homomorphism specification. We refer to these 
orderings as the standard alphabet· orderings for a data type specification, or a homomorphism 
specification, respectively. The orderings are based on a general method of structuring of the alphabets 
of a data type specification and a homomorphism specification. Assuming that there is no circularity in 
the dcfining_types relation on data types, it can be easily shown that the standard alphabet orderings 
are well-founded orderings. 

A lexicographic recursive path ordering based on an ·alphabet ordering of Fig. 21 can serve as a 
termination ordering for the rewriting systems corresponding to Queue_lnt and Circ_List. We leave 
it to the reader to convince for himself that>- satisfies the reduction property in each of the two cases; 

Fig. 21. The Standard Alphabet Ordering for a Data Type Rewriting System 

Notations 

S is the rewriting system corresponding to TOI 
~ is the alphabet of S 
0 is the operation set of TOI 
08 is the set of generators of S 

ONB is the set ofnongenerators ofS 

l:ner is the union of the alphabets of the rewriting systems of the defining typeS 

(We assume that the alphabets are mutually exclusive.) 

) is a partial ordering on the symbols in l: 

Definitions 

> is defined as fol1ows. It is assumed that a similarly defined ordering exists for each of the alphabets 
in l:ner > is assumed to contain each of these orderings. 

f > g iff one of the following conditions is true 
(1) f, g E '2g /\ arity ofg = 0, arity off> 0 

(2) f € ONB /\ g E 08 
(3) f € 0 A g € Iner 

• 
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Fig. 22. The Standard Alphabet Ordering for Homomorphism Specification 

Notations 

IH is the alphabet of the homomorphism specification 

>H is the standard alphabet ordering on IH 

Definition 

f > H g if and only if one of the following conditions holds: 

(1) f is the symbol%, and g is any other function symbol in IH 
(2) f is an auxiliary function symbol, and g is a generator function symbol 

one needs to use the fact that >- contains the subterm relation in doing so. The ordering cannot, 
however, be used for ArrayJnt specification. The ordering can be used for a subset of the 
specification that is used in examples to illustrate the synthesis procedure. A lexicographic recursive 
path ordering based on the standard alphabet ordering of Fig. 22 can be used all of the sample 
homomorphism specifications given in the last chapter. 

Lexicographic recursive path orderings are useful in defining termination ordering for a rewriting 
system that is built from two or more rewriting systems that have recursive path orderings already 
defined on them. Suppose >-1 and >-2 are two recursive path orderings defined with respect to the 

well-founded alphabet orderings >1 and >2• respectively. Suppose R 1, and R2 are two systems for 

which >-1 and >-2 can serve as termination orderings. Then the recursive path ordering that is based 

on ) 1 U >2 can be used as. a termination ordering for the system R1 U R2 provided >1 U >2 is 

well-founded. The standard alphabet ordering is such that the union of any two of them (defined on 
mutually exclusive alphabets) preserves the well-foundedness property. Hence it is useful in the 
context of combining systems of rewriting systems. 
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Appendix III • Proofs of Theorems 

Theorem6 
Let S be a system that satisfies the principle of definition. Let e1 = e1 be an equation so that e1 and e1 
have at least one nongenerator function symbol in them. Then, e1 = e1 is a theorem of S if 

S U { e1 -+ e1} also satisfies the principle of definition. 

Proof The proof is by contradiction. Let us assume that SU {e1 -+ e1} satisfies the principle of 

definition, but e1 = e1 is not a theorem ofS. 
If e1 = e1 is not a theorem of S, then there exists a substitution u that maps variables to 

generator constants so that a(e1) and a(e1) have distinct normal forms in S. Since S satisfies the 
principle of definition, a(e1) and u(e1) have unique normal fonns that are generator constants; let the 
nmmal forms be t1 and t1, respectively (t1 -:/:. t1). Note that a(e2) and sie2 are distinct from t1 and tz, 
resi>cctively because the latter two are generator constants while the former two are not. Therefore, in 
the system .s U { e1 -+ e1} we have the following situation: 

a(e1)-+ a(e2)-+ +t2, a(e1)-+ +t1, and t1 -:/:. tr 

Thus, S U { e1 -+ e2} violates the principle of definition. Contradiction. 
Q.E.D. 

Theorem7 
PW is a Perturbed World. Suppose 

(1) e1 is an expression so that for every substitution a of variables to generator constants a (e1) 

is reducible using PW, and 

(2) PW U {e1 -+ e1} is convergent. 

Then, e1 = e2 is a theonn of PW. 

Proof PW is convergent. Therefore, to show that e1 = e2 is a theorem of PW, we have to show that 
for every substitution a of the variables in e1 and e1 by generator terms of the appropriate type, a (e1) 

and a( e2) have the same normal forms. 
The proof is by contradiction. Let us suppose that PW U {e1 -+ e2} is convergent, but 

e1 = e1 is not a theorem of PW. This means, there exists a a such that t1 = a(e1).a. and t1 = a(e2).a. 

are distinct By the second premise of the theorem, therefore, we have the following situation in PW U 
{e1 -ez} 

a (e1)-+ a(e2) - +tz 
a(el)-+ +ti and ti -:I: tz. 
Therefore, PW U { e1 -+ e2} is not convergent Notice the need for the second premise. If 

we did not have this premise a(e1) could be identical to '1· in which case PW U {e1 - e2} is still 
convergent 
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Q.E.D. 

Theorems 
A rewriting system R satisfies the principle of definition if it satisfies the following conditions: 

(1) R is well-spanned .. 

(2) R has FfP. 

(3) Every critical pair <a1, a 2> of R is sue~ that a 1 =a2 is a theorem of R. 

Proof The first two conditions ensure that every constant in R has at least one normal fonn, and that 
every normal form is a generator constant. The following argument shows that every constant has a 
unique normal form. 

The proof is by contradiction. Suppose there exists a. constant that has two distinct normal form. 
Then, according to the KB-theorem there exists a noncnve.rgcnt critical pair. This contradicts the third 
condition in the statement of the theorem. Contradiction. 

Q.E.D. 

-----------------~-------~-~-------------
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