
Analysis and Specification of Office Procedures

CAMBRIDGE

by

Jay S. Kunin

©Massachusetts Institute of Technology 1982
February 1982

This research was supported in part under
a contract with Exxon Enterprises, Inc.

MASSACHUSEITS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETrs 02139

1

Abstract

Conventional approaches to "office automation" focus on the lowest common denominator of office
work: typing, filing, filling in forms, etc. As a consequence, the process of office systems analysis
lacks tools and techniques that address the office in terms of business functions rather than as
manipulation of paper artifacts. The Office Specification Language (OSL) and its associated analysis
methodology have been developed as a means of implementing a fanctiona/ approach to office
procedure analysis and description.

OSL is based on several premises derived from a study of office work and office systems analysis at a
functional level:

- There exist high-level constructs common to a wide variety of disparate offices. A structured,
formal language built upon such standardized abstractions can be useful in helping an analyst
approach, understand. and describe the operations of many offices.

- Office procedures deal with (abstract) objects, not paper forms. Forms and other documents
arc not basic to office operations; they arc mechanisms for organizing and transmitting
information about some more fundamental object. Therefore office analysis and specification
should focus not on forms, but rather on the underlying business requirements that must
survive any change in system implementation.

I

- Office procedures are fundamentally simple; their apparent complexity is not inherent, but due
to a myriad of special cases, historical accretions, and implementation details. Identification of
a procedure's core requirements is the framework upon which analysis should be based. Such
an understanding is a prerequisite to effective reorganization of and design of support systems
for office functions.

OSL is postulated to be of utility for office analysis and systems design. Field tests of the language
and methodology have shown that our basic approach is effective for analysis purposes, and have
identified directions for further improvements.

Key Words:· Office Automation, Office Analysis, Office Systems, Systems

Analysis, Specification Languages, Integrated Office Systems

This report is a minor revision of a thesis of the same title submitted to
the Department of Electrical Engineering and Computer Science in January
1982 in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

2

----------------- ----- ------ -------

Acknowledgments

A grateful mind
By owing owes not, but still pays, at once
Indebted and discharg'd

. - John Milton

The standard set of acknowledgments begins with the thesis advisor. Mine
shaJl be no different, though Mike Hammer, I believe, is. He has been a teacher, a
colleague, a mentor, a patron, and a wonder to observe. He has taught me a great
deal about the office automation business, among other things. Without his
consistent encouragement I would not have begun, much less completed, a Ph.D. I
hope he's satisfied.

The other members of my committee also contributed to my education in
general and this thesis in particular. Irene Greif did an impressive job of learning
both the concepts and the details of this work in a short time; her comments and
assistance, particularly in teaching the field study courses, were especially helpful.
Marvin Sirbu brought to our group a unique perspective, valuable in its vision and
thoughtfulness. He has been very supportive of me and my aspirations; his
confidence in my abilities occasionally exceeds my own, which has encouraged me
to live up to his expectations.

Two of the giants upon whose shoulders I stand have also been good friends
and role models of sorts. Mike Zisman told me years ago that an office specification
language is a hard problem, and it has taken me too long to prove him correct. He
has long been a source of encouragement, and I'm grateful for his advice and
enthusiasm. Dennis McLeod provided the initial existence proof of the entire
process, and generously contributed portions of his work that mine could proceed
His reputation remains, long after his departure for more appropriate surroundings,
as spiritual guide and encouragement for future generations of graduate students.

Several of my colleagues have been of particular help in the development of
OSL. Craig Zarmer came upon the scene initially as a guinea pig, and in proving his
value and talent as a serious participant in research provided me with both
intelligent commentary and a great many hours of support work. Juliet Sutherland
and Sandor Schoichet have also been active participants in much of this work; each
helped me wrestle with some of the underlying issues, and both have made valuable
contributions of their own. I am also very grateful for the assistance of all those who

3

------------··--------

participated in the OSL field studies. Several of these were of particular help in
providing thoughtful and detailed feedback: Vernon Skipper, Ed Landry, Jim
Murphy, Lars Roesch, Jack Barlow, Elaine.Beckwith, Bill Harris, and several others
who must remain anonymous.

My present and fonner associates in the Office Automation Group (and the
erstwhile Database Systems Group) at LCS, along with the rest of the folks on the
second floor and assorted hangers-on, have helped create an environment that is
always an adventure, and often a joy. Several of them have been particularly
responsible for much of my sanity and insanity over the years. Stan Zdonik is
especially guilty; may he follow me soon. Special technical thanks are also due to
Dave Lebling (Lord of Rmode), Tim Anderson (Utility Guru), Larry Rosenstein
(Scribe Seer), Jan Schoof, and James Hung, for their essential contributions.

My family and friends have provided the base upon which my efforts have
been possible. My parents in particular have consistently made all the opportunities
available, and I can never repay their contribution. Betsy Broucek and Phil
Bernstein have been constant sources of support and encouragement through my
graduate career. Finally. Gabrielle Silber's patience and caring have allowed me to
complete this work with renewed enthusiasm and expectation.

4

Table of Contents

Chapter One: Introduction

1.1 Office Automation
1.2 Outline of the Thesis

Chapter Two: Office Procedure Analysis

2.1 What is Office Automation?
2.2 Understanding Office Work
2.3 Automating Office Procedures
2.4 An Office Specification Language
2.5 Related Work
2.6 Summary and Research Outline

Chapter Three: The Design of OSL

3.1 Premises
3.2 Language Overview
3.3 Procedure Specification
3.4 Functions
3.5 The Office Environment Model
3.6 Environment Structure

Chapter Four: An OSL Procedure Specification

4.1 An Example Procedure
4.2 An Example Function

Chapter Five: Office Procedure Analysis Using ~L

5.1 Context
5.2 OSL Skeletons
5.3 Building the Specification

Chapter Six: Development Methodology and Field Studies

6.1 Case Studies
6.2 Field Studies

5

---------- -··----

7

7
10

12

12
14
19
23
28
33

36

38
40
43
60
63
70

72

73
88

90

91
91
93

100

100
102

6.3 Results
6.4 Evaluation

Chapter Seven: Summary and Directions for Further Research

7.1 Summary
7 .2 Evaluation of OSL
7 .3 Research Directions
7.4 On Research in Office Automation

Appendix A: OSL Reference Manual

A.1 Definitions
A.1.1 Specifications
A.1.2 Environment
A.1.3 Office Operation Specifications
A.1.4 Syntax

A.2 Operational Specifications
A.2.1 Functions
A.2.2 Procedures
A.2.3 Event Specification
A.2.4 Activities

A.3 Environment Specifications
A.3.1 Overall Structure of an Environment Specification
A.3.2 Class Definitions
A.3.3 Attributes
A.3.4 Defining Entity Instances
A.3.5 Built-in Entity Types

Appendix B: Formal Syntax of OSL

Appendix C: Admissions Office Case

References

6

104
108

116

116
119
121
123

127

127
127
128
131
133
134
135
140
152
154
167
168
169
176
187
189

201

213

228

1.1 Office Automation

Chapter One

Introduction

The advent of "office automation" as a label for numerous efforts in product

marketing, business analysis, and research has brought to light a number of

significant barriers to the penetration of the office environment by computer

technology. While "office automation" has no fixed meaning, it does represent the

confluence of computer and communications technology, systems and data

processing practice, organizational development, and business strategy. However, if.

as we assert, the goal of office automation is to improve the realization of office

functions. {16] the reality is that few effective models exist for most parts of the

improvement process.

The labor-intensive nature of office work provides significant motivation for

the application of computer technology to offices. However, there has not as yet

been much progress in the development of office systems, beyond the design of

rather rudimentary computer-based tools and the attempt to adapt conventional

information systems to office needs. There appear to be two major problems

preventing large-scale use of computer systems in improving office functioning.

First, neither computer nor management scientists have yet provided a clear

approach to the architecture of systems for offices, primarily because it is not

sufficiently understood or agreed just what such systems should do. Second. even if

there were such an understanding of the general requirements of an "office

automation" system, it is still the case that individual offices differ significantly in

their purposes, organization and operation. This diversity requires that even

7

systems designed specifically for office needs be tailored for individual applications;

yet contemporary technology for the construction of complex custom software

systems produces results that are expensive, error-prone, and difficult to change.

The research in office automation represented by this thesis has as its goal an

approach to solutions to these two problems: an analysis of the office domain, in

order to provide a framework for understanding the requirements of office

infonnation systems; and, using that framework, the development of new tools for

the analysis and description of such systems.

The successful movement of software technology into new areas depends

critically upon the ability of systems analysts and designers to understand the needs

and structure of the applications. As we see the movement of hardware from the

data processing organization to the end user, in the guise of distributed data

processing, word processing, professional support systems, or other vendor-defined

terms, we witness a parallel growth in the desire and attempts of users to conform

the capabilities of such systems to their particular needs. Some of these efforts have

led to impressive successes (e.g., (26, 33)), and there has arisen a new software

subfield in the programming·ofword processing system macro facilities; yet in many

cases we see the lessons of the past 25 years of DP experience being relearned by

new users, in a painful and costly manner.

This experience with customization of general-purpose hardware (whether

minicomputers, "intelligent" terminals, or word processors) points to perhaps the

most effective means of utilizing such technology in the future. That is the

development of office-specific systems that meet their users' particular needs and

are adaptable to the inevitable changes in those needs. [18] Users' requirements,

however, go beyond the functionality provided by isolated tools, and even beyond

the need for an integrated, easy-to-use interface to those tools. In fact, what we see

in the extensive development of small scale applications is a need for support of

8

office procedures. We believe that office systems, to enhance most effectively the

productivity of the organization, should support rationalized office procedures, as

well as low-level generic office tools.

However. there is a major barrier to the realization of this goal - we do not

sufficiently understand office procedures in the abstract to provide general

methodologies for their analysis. specification, and rationalization. Current practice

is to develop office systems from the bottom up, starting with programming of

repetitive word processing tasks and evolving to "list processing" or "records

management," the use of a word processor to perform small DP applications. The

paradigm of problem analysis followed by system design and then implementation

is not often followed, or indeed perceived as useful.

The lack of systems designed to address office procedures is due, among other

things, to an absence of good models on which to base the analysis, design, and

construction of office systems. While we might look to the data processing

environment for models and techniques, we find that such tools do not easily

address the aspect in which office procedures differ most significantly from dp

processes - their semi-structured nature [57). That is, office procedures consist of a

combination of both structured {algorithmic) and unstructured Oudgmental) kinds

of activities. Without appropriate tools for examining and describing semi­

structured procedures, it is difficult to understand what goes on in an office, to

communicate between analysts and office workers and between analysts and

designers, or to provide a framework in which knowledge can be transferred from

one project to the next

The goal of this thesis is to develop a framework for understanding office

procedures that can be used to analyze, explain, communicate, and optimize the

operations of a variety of office situations. This understanding is incorporated in a

9

model of office procedures and a formal specification language based upon that

model. Ancillary to the language, and based on the same model, is a methodology

for office procedure analysis that incorporates the language constructs as a guide,

and a formal specification as a goal.

In general terms, our work is meant to investigate issues that may lead to a

"theory" of office work. Such a theory would provide a framework for office

analysis, systems design and implementation, product development, education and

future research in the field. We do not imply that all office work can or should be

formally described; we will have more to say about this subject in later sections.

Rather, we believe that there are some commonalities that underlie much of the

domain, and that a conceptualization in terms of some fundamental structures will

serve to enhance the capabilities of those who must deal with it. This thesis

describes an investigation into the nature and utility of some of those structures.

1.2 Outline of the Thesis

The remainder of this document describes a project that addresses some of the

gaps in our understanding of office work and the application of computer-based

technology thereto. In Chapter 2 we examine contemporary practice in office

systems analysis, relevant experience from related fields, and current office

automation research. We describe our functional approach to office automation and

hypothesize that an office specification language, designed to meet a number of

requirements that we develop, can serve a major role in effecting that approach. We

then provide an outline of our research project in the development of a particular

office specification language, called "OSL," as a vehicle for testing that hypothesis.

In Chapter 3 we define the premises, following from our functional approach,

10

------- --- ---

upon which the design of OSL is based. We provide a summary of the language.

and then explain the key concepts of OSL and how its major features are derived

from the overriding premises. Chapter 4 is an annotated example of an OSL office

specification that should serve to illustrate the nature, if not all the details, of the

language; the full language reference is in Appendix A. Chapter 5 describes a

methodology for using OSL in office analysis. This technique embodies the OSL

framework and approach, and is a guide to using OSL to develop an understanding

of an office and produce an English and/or OSL description of it Chapter 6

describes the research methodology that provided infonnation by which OSL has

been developed and tested. The data includes a series of field studies in which

volunteers from the office automation staffs of several cooperating firms were

taught both OSL and OAM, an office analysis methodology (48) that incorporates

the techniques described in Chapter 5. We also discuss the results of the studies and

their implications for guiding the development and use of OSL Chapter 7 is a

summary with suggestions for research directions in office procedure analysis and

specification.

The full, fonnal definition of OSL is provided in the Appendices. Appendix A

is the language reference manual; Appendix B is the formal grammar.

11

Chapter Two

Office Procedure Analysis

In this Chapter we examine the nature of contemporary practice in office

analysis and identify a number of problems that confront the office procedure

analyst. The most critical of these is the lack of an adequate model of office

operations that can be used as a framework for analysis and description of office

procedures. We suggest that such a framework can be defined and used as the basis

of a specification language for office procedures.

2.1 What is Office Automation?

The term "office automation" is perhaps the most visible buzzphrase in the

contemporary computer environment It has been applied to such disparate

products and ideas (ranging, for example, from word processors to PABXs to

decision support systems to personal computers to distributed computing) that it has

been rendered nearly meaningless. We can, however, categorize most commercial

systems available under the rubric of office automation as components of an

"electronic desk" model. That is, vendors of these products take a typical office

environment as the eidos of what office systems should do, and thereby seek to

provide electronic analogs to the tools used to perform common tasks in

"unautomated" offices. In a manner similar to the development of the dictating

machine as a replacement for the secretary taking shorthand, or the office copier

replacing carbon paper and mimeograph, computer technology has produced

electronic calculators to replace mechanical devices, word processing systems that

replace paper drafts with electronic ones, and computer-based message/filing

u

systems that are beginning to take over some functions of the postal and telephone

systems and file cabinet.

Most current research and development in OA tends to continue along the lines

of this electronic desk model. More sophisticated hardware and better human­

engineered text processing software allow for more efficient production of paper

documents [23. 12]. The anticipated large-scale availability of computer networks,

as well as particular corporate needs, has spurred development of message systems

and associated storage and retrieval facilities (7. 37). In the field of information

management. much effort is spent toward providing interfaces that make possible

sophisticated use of a database by computer-naive personnel [35). Other work with

major applications in offices includes the development of scheduling systems and

similar "personal assistant"-type programs [39, ll. 19), decision support systems [25]

and personal computer software.

While these items have a significant place in the spectrum of office automation

work. it is necessary to understand that the electronic desk is only a part of the

automated office. By providing the office worker with electronic tools. we attempt

to make his actions m~re efficient. Yet if we are to bring significant changes to the

office in the form of lower personnel costs and increased effectiveness of office

processes, we should seek not only to mechanize office tools, but also to automate

office functions [58]. That is, it is not really the actions of the office worker that we

wish to address, but the larger issue of the functions that require the existence of the

office. Thus, our conception of office automation in its broadest terms is the use of

computer-based technology to increase the efficiency and effectiveness of office

functions (18]. Note that this definition does not explicitly deal with office workers

themselves; rather we are concerned with the more fundamental question of why

they are in the office at all.

13

2.2 Understanding Office Work

The "office" (in "office automation") is often defined in practice by a group of

people or by physical layout. Organization charts provide an indication of

management responsibility, while floor plans give a different feel for organizational

boundaries; both are often obsolete. Regardless of definition, the notion of "the

office" as the target of office automation efforts is widespread and, we believe,

incorrect Our thesis is that there is no such thing as "the office" and that such a

concept is counterproductive. Rather, there are many different kinds of offices,

each with its own set of characteristics that should indicate the role, if any, that

automated equipment can play therein. Therefore automation methodologies and

tools that address the office as a fixed target are doomed to irrelevance and failure.

The means by which offices can be differentiated and described is an important area

of research that is, in part, addressed by this thesis.

When one watches people working in an office, it is often difficult or

impossible to ascertain the structure, function, or purpose of their actions. One

observer may look at a particular office and see typing, filing, telephoning, and

conversation; a second would look at the same situation and describe the activities

as communications, information management, and decision-making. A third

observer might say that what is happening is the processing of admissions

applications, evaluation of applicants, and the selection of next year's freshman

class. While all these descriptions might be correct, they are clearly of differing

utility to those who would ··automate" that office. This multiple perspective points

out a key issue in office systems analysis: the need to address the appropriate level(s)

of abstraction. Indeed, one writer has suggested that the office itself is "a place for

transacting abstractions." [42)

Historically, and still most commonly, the least common denominator of office

14

activities has served as the basis for the majority of analysis. Whether for time and

motion studies aimed at improving efficiency [14. 2] or productivity analysis aimed

at selling or justifying word processing equipment [38]. office analysis in terms of

time spent typing, filing. thinking. making telephone calls. etc. has formed the basis

of office improvement methodologies. Examined at this level, office work is a

tenuously connected series of locally oriented activities. The difference between the

work of a file clerk and that of a department manager appears to be one of relative

frequency of each activity, rather than inherent structure. The purpose of their work

is not apparent in such a low-level analysis and thus is largely ignored [47).

Similarly, work in various aspects of computer and management research has as

its goal the enhancement of the information-handling operations described above.

In particular. the data processing and communications disciplines have recently

offered simple though higher level taxonomies of office work. Communications.

information management. and decision-making are elements of various

"communications audit" or "information retrieval management" methodologies,

such as [3]. While useful for some purposes. such techniques also assume that office

work is the sum of those particular parts. Again the goal of the activities is not the

point, merely their cataloging and enumeration.

As has been strongly suggested elsewhere [18]. by focusing on these lower levels

of abstraction. an analyst cannot provide for the efficient specification and

implementation of office systems; he is led. rather. to mechanize the existing ways of

doing things. In fact. we believe that office automation must take a more abstract.

functional view of office work [17]; and further. that an adequate understanding of

office work at the function8.I level does not currently exist. Indeed. it is the absence

of a coherent model that provides an overall structure for office work that makes

office systems analysis difficult and often ineffective.

15

How might we describe the actions of office workers in higher-level terms?

One way would be to distinguish among various types of workers. As we have

noted, the "office" in office automation is not a homogeneous idea - there are

many kinds of offices. Similarly, there are many kinds of office work and office

workers. It seems unlikely that a single technique or technology will be appropriate

to all such workers or offices. Some efforts, particularly the low level activity­

oriented approaches, concentrate on clerical and secretarial workers. Contemporary

work in decision support systems, computer-aided design, 3\}d personal computer

software addresses primarily the professional worker: the engineer, financial analyst,

etc. Past efforts in management information systems addressed the middle- or

upper-level managerial worker, even the chief executive officer. However, in spite

of a number of serious efforts in these areas. for example (36, 25, 13), little in the

way of practical tools for office analysis have emerged

Whereas a classification of office activities by job title can be helpful in some

areas, analysis by function may be more so. Rather than looking at clerical,

secretarial, managerial, professional and executive workers, we may choose to

examine administrative, procedural, or principal support functions, which may be

carried out by any of the workers in an office. In fact, as we have argued

elsewhere, (17] it is our thesis that functional analysis is the appropriate way to

address office systems, and that analysis and specification of offices and office

procedures should be directed along functional lines. (16]

Following this functional approach provides a framework for understanding,

and presumably improving upon, the details office activities and how they operate

to effect the office's functions. A crucial dimension in analyzing office activities is

16

task structure, as described by Garry & Scott Morton in the context of management

information systems (13]. A structured task is one that is amenable to algorithmic

specification, as in most accounting activities for example. Unstructured tasks are

those that are not amenable to such description, and that inherently require human

intelligence in their execution; these are judgmental, decision-making tasks. Most

office procedures consist of a combination of both kinds of activities, and may

appropriately be called semi-structured processes. For example, the processing of

an application for admi~ion at the MIT Admissions Office consists of some

structured activities, which ensure that the application is complete and valid,

followed by an unstructured decision process in which the admi~ions director and

his staff apply their experience, knowledge and judgment to the applications in

order to select those to admit This in turn is followed by the structured activities of

sending letters, awaiting replies, distributing various copies of class lists, and

maintaining certain records. (Note that "structured" does not mean "simple":

algorithms for implementing structured tasks may be large and complex.)

An office system should provide facilities for handling both structured and

unstructured activities. Existing structure should be exploited by transferring

control of activities to the system. By this we do not mean just the proper and

timely invocation of structured activities; it is equally important that as much as

possible of the bookkeeping of invocation, tracking and data handling be handled

automatically by the system for all tasks, whether they can be expr~d

algorithmically or not. What activities then remain to be done by office workers are

just those unstructured, judgmental tasks at which humans are good and computers

are not. Jt is the system's control of the overall operation that is the essence of

automation; the system may not always know how to do an activity, but if it

understands when that activity must be done, by whom, and in what context, it can

provide an integrated framework for the support of structured and unstructured

17

---------- ----- ------------

operations. It is by combining the capabilities of supporting both types of tasks in a

single system environment that computer technology can best be used to achieve

gains in office productivity. Consequently, any office analysis and description

methodology should then be able to account for structured and unstructured tasks

in the context of some higher-level structured model.

A perception of the abstract structure of the office domain, such as we are

advocating, can certainly guide the builders of automated office systems. However,

it is also our goal to provide, beyond this conceptual framework, specific tools and

methodologies for the analysis of office systems and the implementation of

appropriate computer-based information systems. The research described in this

thesis is part of an effort to determine whether there is any underlying and

fundamental structure to office work in general, and to office procedures in

particular. By structure we mean a model of office operations that will allow for

elucidation, description, communication, reorganization, and measurement of office

work in a manner that is both usable and useful

An initial part of this research has been an analysis of the types of activities that

are important in offices. There are two major uses for the results of an analysis of

this kind. First, the process of defining a set of constructs widely applicable in the

office domain provides significant insight into the structure of that field. One

immediate use of this information is the identification of the most appropriate

targets for automation. In general. our work provides a framework in which to

approach further research into office systems analysis. The relatively simple model

of office work that we have developed can serve as a working hypothesis to be

elaborated (or discarded) by experiment The second important use for our results

in this area is to form a foundation for the design of a formal higher-level language

for the description of office processes and an analysis methodology that reflects that

foundation. The design and field testing of our language constitute the major part

of this research.
18

2.3 Automating Office Procedures

A key concept in our functional approach to office automation is that of an

office procedure, a high-level construct that organizes and orders the individual

activities of the office. We believe that a great many office functions are realized by

semi-structured procedures. Such_ procedures intersperse structured tasks with

judgmental ones, in the service of some particular function which is necessary to the

organization. As will be discussed later, it is one of our premises that not only do

these procedures exist in many settings, but that they are fundamentally simple in

outline; their apparent complexity (or nonexistence) is due to the difficulty of

recognizing the procedure being performed underneath the implementation details.

Many office procedures as they now exist are so overlain with obsolete and ad

hoc activities that they are nearly indistinguishable from chaos. We believe that any

effective office automation effort must first seek to rationalize the procedures in the

office: to understand them in terms of the overall goals and functions of the office,

and to adapt, reorganize, or eliminate them where appropriate. Our goal is to

enable, through new tools and methodologies, the analysis and description of office

procedures. This should greatly improve our ability to rationalize, and where

feasible automate, office procedures.

As we noted earlier, and have argued extensively elsewhere (17], an automated

office system is an integrated and interconnected collection of components under

the supervision of an intelligent control program. This intelligence must be specific

to the office in question: systems designers must recognize the fact that no two

offices are exactly alike in their operations, procedures and interactions; and that

generic "office automation systems" that require adherence to some "standard"

modes of performing business functions will not provide for the most efficient

realization of those functions. Thus, the "automation" of an office will require the

19

entire cycle of analysis, specification, design and implementation, in order to

determine the requirements of the office and to embed this "knowledge" of what

the office's procedures are into the system.

How do we provide such knowledge to a system? Even given a framework that

will guide our analysis of the office, how do we make use of that general

understanding in constructing office-specific systems? In practice, how do we best

provide for the expression of the requirements of a particular office: in what form

might a specification be presented so that it provides the requisite communications

among analyst, office worker, and system implementor?

This is the fundamental problem with the functional approach to office

automation: the issue of building office-specific information systems in a cost­

effective fashion. Since each office is unique, installing off-the-shelf generic

products into an office environment is no longer appropriate when attempting to

realize functionally oriented office systems. Instead, a system development effort is

required, in which the operations of the office in question are analyzed, its needs

assessed, and a custom system. designed and implemented for it. The last stage of

this process will entail the construction of software that is specific to the particular

office in question. This software will embody knowledge of the office's operation; it

will automate selected clerical tasks, control the assorted devices employed in the

system, serve as the intelligence that organizes and orders the steps of the office

procedure as a whole, and provide tools that support office workers both in their

specific functional activities and for their personal information managment needs.

This software is clearly specific to the office in question. In other words, custom

software must be produced for each office information system.

Unfortunately, the system development process outlined above requires highly

trained personnel (systems analysts and designers) who must exercise ingenuity in

20

analyzing the operation of the office in question, defining its needs, and designing

and then implementing a system. Moreover, experience has repeatedly shown that

complex software systems produced by conventional means tend to be error-prone,

costly to construct, and difficult to change. (See, for example, [53].) They have

generally been restricted to large DP problems or special-purpose applications,

where the risk and expense is justified by volume or lack of alternatives. lfwe are to

be successful in building and installing custom office systems on a wide scale, we

must seek new means to produce them.

Let us look more closely at the process of office system construction and the

problems inherent in it. In the first stage, the current operations of the office are

studied and their shortcomings identified, and the general capabilities of the

automated system to be built are defined; in the next, specifications of this system

are produced. These are the tasks of the office systems analyst, who then designs the

structure of a system that will meet these specifications. A programmer finally

reduces them to code. The major sources of difficulty in this process lie with the

analyst's activities rather than the programmer's. The programmer need only seek

to implement a system that meets the requirements given him; the analyst has the

responsibility of constructing these specifications. His is a challenging and creative

job; yet the analyst lacks any useful methodologies or tools to employ in analyzing

an office or specifying a system for it His task as a whole lacks structure; there are

few guidelines or principles for him to employ.

One particular problem the analyst faces is that he has no effective notation or

language in which to express himself. Many errors in software systems arise from

the fact that the original specifications for the system are unclear, incorrect. or

incomplete; this derives from the fact that they are poorly expressed in a language

unsuitable for the purpose. Office analysts may use English or "structured English"

to describe the current operation of an office as well as to specify the desired

21

functionality of an automated system that is to be built Alternatively, they may

utilize flow charts, screen definitions, or other DP-derived techniques. Each of

these approaches suffers from its own set of problems.

The requirements of an office might be expressed in a detailed procedural

specification of the activities of the office at the level of common contemporary

general-purpose programming languages, but that approach has several

shortcomings. First, such a detailed level of description would embody and

perpetuate the existing task structure, rather than identify the function that is being

realized; it would subordinate the end to the means. Second, such a description

would be inflexible. Offices (like other complex systems) are dynamic; they are

constantly evolving to match their changing environments and to meet new needs.

Consequently, an office description must be able to evolve as well; one expressed at

a fine level of procedural detail will find it difficult to accommodate change.

Finally, constructing such a procedural description would be a major programming

undertaking, and would suffer from the usual problems of unreliability and high

cost Furthermore, construction of each office system would start from the same

point, with little advantage accruing from one system to the next

Alternatively, the specification of office procedures might be expr~ed in

English. Although rich and expr~ive, English (like all natural languages) is

imprecise and ambiguous, and consequently not effective for the accurate

specification of systems. Many errors in software systems arise from the fact that

English specifications are unclear, incomplete, or incorrect Natural language

specifications do not bridge the gaps between experts in the office domain (workers,

managers, office analysts) and those in the systems domain (vendors, system

designers). The results are familiar: systems that are expensive to build, difficult to

maintain, and impossible to adapt, and which do not solve the users' problems.

22

2.4 An Office Specification Language

We believe that many of the problems discussed above can be significantly

mitigated by providing the analyst with a problem-oriented office specification

language. This is a formal language for describing in high-level and machine­

independent terms the operation of an office system (either manual or automated)~

It may be thought of as a notation in terms of which an office systems analyst can

express himself, both for describing an existing office operation and for specifying

the requirements of an office support system to a system designer. A specification

language is a formal language, with well defined syntax and semantics; thus, any

description expressed in it is unambiguous and open to a single interpretation.

Furthermore, the primitives of a high-level language are based on the natural

structures and vocabulary of office work so that the language user can express

himself in terms natural to the application. Such a language can serve as an effective

means for describing in a precise. natural, and understandable way the operation of

an office's procedures.

There is a variety of potential uses for such a language. The principal one is as

a communications mechanism between office systems analyst and the system

designer. Because of its formality and precision, specifications expressed in the

language can be clearly understood and interpreted by the system architect who uses

them as a basis for his design effort. The use of this language would enable an office

systems analyst to describe more precisely to a designer the system that is to be

developed; this improved communication can have a major and positive impact on

the systems thus produced, improving their quality and lowering their cost The use

of such a language facilitates the jobs of both the analyst and the system designer.

A second major use of the language is in the way it can impose a structure on

the entire process of office analysis and system specification. By providing the

23

analyst with high-level primitives in terms of which he is to express a system, a

specification language effectively gives him a basic set of concepts. in the form of

templates, syntax rules. and semantic definitions. with which he is encouraged to

analyze office operations. Thus. the analyst is presented not just with a set of

disconnected language features but with an approach to their employment. a

perspective on office operation that provides a conceptual framework in terms of

which to analyze and describe office operations. The analyst will be able to readily

express himself in terms familiar to him while suppressing irrelevant detail.

There are several other plausible uses of an office specification language, not

directly related to the process of constructing automated office support systems. A

formal specification language for office procedures could serve as an effective

mechanism for expressing existing manual office operations. In current practice,

English is the language employed in systems and procedures manuals; however, as is

well known. these manuals are usually incomplete. difficult to read, and obsolete.

Well-organized specifications in a high-level language can be used as a reference for

office workers m many office environments; such a language. by enforcing

modularity in its use, can reduce considerably the effort needed to keep

specifications up to date. Related uses might include the training of new employees,

and the recording of organizational history in a way that survives the coming and

going of individual office personnel. The formal specifications of an office

procedure could also be subjected. to various analytic techniques in an effort to

identify bottlenecks and problem area in its operation; this can highlight those areas

of the procedure most in need of rationalization and redesign. Even outside the

context of an automation effort, the use of a specification language could be an

effective tool in understanding and reorganizing an office's operations.

Obviously, the mode in which an office specification language is used depends

in part on the application for which it is being employed However, in general.

24

specifications would be written by a trained office systems analyst who has been

instructed in the use of the language. This person would not necessarily be a

computer expert; he might be a manager, a staff professional, a secretarial or clerical

worker, or a specialist dedicated to this task. The analyst must possess two

important skills: an understanding of office work, and an ability to analyze and

describe office operation in a systematic fashion.

As suggested above, we believe that this language could be used both for

prescriptive and descriptive purposes; that is, to describe an existing office operation

as well as a new and proposed one. In fact, such uses are often demanded in the

context of an evolving office system. An analyst must first construct a description of

the system as it is currently configured and use that as a basis for developing

specifications of a new and improved system. It is rarely feasible to institute a

revolutionary change in the process of an automation effort and to dramatically

restructure an entire office operation; rather, the new office system must evolve

from the old one. Consequently, at some suitable level of abstraction, the

specifications of the new system should be yirtually identical to those of the old one.

It is only at the level of mechanism and implementation that the two become

distinguishable. Thus, it is appropriate that a specification language be multi-tiered,

with the topmost levels expressing the implementation-independent structure of the

office and only the more detailed levels serving to identify the particular way in

which the general structure is being instantiated.

The problems of office systems analysis, specification, and construction

discussed above lead us to four major criteria for an office specification language.

First, the language should be formal, i.e., have well defined syntax and semantics. It

should have a limited vocabulary of constructs that can be combined only in specific

ways. The meaning of a function should be clearly expre~d by the specification

text; a legal specification would have a unique meaning. Thus, the problems of

25

ambiguity and imprecision encountered in using English descriptions are to a large

degree eliminated. Also, the properties of formal languages provide opportunities

for various kinds of completeness and consistency checks of specifications, further

reducing errors.

Second, the language should be natural and problem-oriented. Both the overall

organization of a specification, and the constructs of the language in which it is

expressed, should reflect the semantics of offices and office work. That is, the

language primitives should correspond to office activities and structures, so that the

description of an office procedure will be expressed in terms meaningful to those

familiar with the application domain. In this manner, the communications needs of

all those involved in the design, implementation, and use of office systems can be

met. · By incorporating a standard and natural logicat structure for office

specifications, the language should support the process of performing the analysis

and writing the description. The specification of a procedure should be expressed at

a level of abstraction corresponding to the purpose of the function, rather than in

terms of the low-level task structure used to implement it The focus should be on

what the process does, rather than on the details of how it does it By embedding

this functional orientation in the structure of the language itself, the benefits

provided by the holistic approach to office automation discussed above can be

realized more efficiently.

Third, the language should be modifiable. Both the well-known arguments

about the effects of modularized, modifiable software on the costs of maintenance,

and the dynamic nature of office procedures themselves oblige any office

specification to be easily changeable. As offices evolve in their goals, resources, and

constraints, so too must the procedures evolve to meet unanticipated situations. If

the specifications of an office system cannot easily be modified to deal with new

requirements, they will soon become obsolete and unused

26

Finally, a critical requirement for an office specification language is a

hierarchical strcture. We have noted the variety of uses to which such a language

might be put, and it is likely that the same level of detail will not be appropriate for

different uses. Yet if our approach is correct, the same overall structure, reflecting

the inherent structure of office work, should serve as a unifying framework for all

applications of the language. Thus, a hierarchical design, in which details can be

added in an organized manner to whatever detail is required for the current use of a

specification, will be necessary to the effective use of an office specification

language.

We believe that a language that meets these criteria would not only provide a

meaningful framework with which to approach office automation, but also serve as a

major tool for the production of efficient, effective office information systems. The

development of a set of design principles, the design of a particular language (which

we call the Office Specification Language (OSL)) in conformance to those

principles, and the field testing and evaluation of the language, constitute the major

portion of this thesis.

We note that restricting an analyst's purview through the mechanism of a

formal language and methodology is not without risk. There is an important

tradeoff between generality and specificity in analysis tools and methodologies: the

more a technique is designed to apply to a specific universe of discourse, the more

helpful it is to a user in that field and the more it reduces the demands made upon

him. Conversely, a tool that is usable in a variety of applications cannot be

particularly efficient for any of them. OSL is therefore not expected to be

appropriate for describing all conceivable office procedures. OSL embodies a

particular perspective and approach to office work and its description that, we

believe, matches a large number of office procedures, although certainly not all of

them. A major goal of the field studies described in Chapter 6 was the more precise

27

----·~·--· ---------

determination of the universe of application for which our approach and our

particular language is relevant

We will outline our research effort in more detail shortly; first. however. we

tum to an investigation of related work that has served as the basis for. or otherwise

influenced. our efforts.

2.5 Related Work

Little work in the area of functional office analysis and specification has been

reported. Office analysis techniques in general have two major sources: the

process-based approaches that underlie some industrial engineering practice. and

data processing systems analysis methods. Both disciplines provide useful insights

and techniques. but neither addresses the major needs of office analysis.

There is an extensive literature on "administrative" systems analysis. generally

based upon a variation of time and motion studies. e.g. [14. 2]. These efforts.

however. have generally addressed the lowest level of office tasks: typing, phone­

answering, etc. As we have strongly suggested. however. a focus on these levels of

analysis cannot provide for the efficient specification and implementation of office

systems; it leads, rather, to mechanizing the existing ways of doing things. Similarly,

PERT/CPM techniques are useful in describing scheduling constraints among

various activities, and can be adapted to office procedure descriptions, but must be

significantly augmented to satisfy the goals of an overall structure and well defined

syntax and semantics that we have identified.

The "Playscript" procedure [34] is an interesting effort in office description that

bridges the administrative and computer viewpoints. This approach requires office

procedures to be described. in English, in a highly structured format, including

28

restrictions on sentence style and length, page layout, and general procedure

structure. Without naming them as such. Playscript encourages the use of such

programming concepts as iteration. case statements, and subroutines. This approach

provides a partially structured syntax but lacks the defined semantics necessary to

assist the analyst in his tasks, as we have previously described.

There has also been some research on the informal procedures so necessary to

the social operations of a workplace (see for example, [50, 54)). While this work

points out some significant issues in organizing an office to implement the needed

functions, it again does not recognize or address the nature of those functions. The

framework that we have developed provides an initial organization to the office

application area

The DP/computer science approach to office systems research is characterized

by a search for effective formal models for describing office work. The best

example is Xerox' Information Control Net model [8]. While useful for describing

the information needs and flow of various procedures, the model lacks any

semantics that relate it to office work; it could equally well be used to describe an

auto assembly line. This is not a criticism of the model, which itself is an effective

means of specification; in fact, it could be used as an intermediate ("compiled")

representation of the process-flow component of OSL. Its inadequacies as an office

analysis and description tool stem from its low-level approach.

The Office Form Flow Model [30] and the Automated Workflow Control

model [5] are similar in their major design premise: that offices should be analyzed

in terms of forms or information flowing from one work station to another. Neither

addresses the content or purpose of the information.

The literature on specification languages for office applications might provide

29

some guidance to previous research and development in this area. though we have

found no evidence of such studies per se. We first note that our usage of the concept

of a specification language differs from that typically employed in the computer

science literature [31]. The common usage refers to a general-purpose facility for

describing the behavior of individual modules of a large software system. By

contrast, our perspective is domain-specific and implementation-independent

Some earlier work has been done in areas related to our effort, generally in the

context of specification languages for conventional data processing applications.

For example, the Time Automated Grid [22) and Accurately Defined Systems [32]

languages are designed for describing file processing applications; the latter is

primarily a documentation tool. The Business Definition Language [15] takes a

high-level, nonprocedural approach to the description of highly-structured business

DP tasks. The Problem Specification Language (51] is a more general language for

defining information system requirements. The System Specification Language, a

part of the Protosystem automatic programming project, is designed to handle "a

subset of the class of all batch oriented dps's [data processing systems]." [43]

Although a number of general principles of system specification can be derived

from these languages, their scope is inadequate for the flexible, interactive, and

semi-structured nature of the office functions that we are addressing.

Recently, several attempts have been made to design languages specifically for

the office domain. Barber and Hewitt [4] are using a form of the Actor formalism

[20] to specify the activities of office workers and the communications among them,

primarily in an effort to find means of symbolically proving. simulating and

modifying procedures. IBM's System for Business Automation Programming

Language [60] is based upon the Query-by-example relational database query

language [59]. The user programs in a forms-oriented graphical environment;

primitives in the language include database access, forms editing and control, and

30

similar functions. The Xerox PARC Officetalk system [41, 40] uses a similar forms­

oriented interface and programming-by-example paradigm; although it attempted

to allow the writing of procedural descriptions of forms processing with a small set

of filing, communications, and forms editing primitives, the major thrust of the work

was in the user interface, and the language aspects of the project seem to be

moribund [10].

A major problem with all these languages is that they do not deal directly with

office function. They are oriented toward the tasks of individual office workers; in

an office implemented using one of these systems, a worker merely does

electronically what he currently does on paper. Information flow is described in

terms of forms passing among different persons (although in several languages the

forms may contain some "inte1ligence" as to how they are to be handled). As noted

above, a description at this level embodies the current task structure, rather than the

overall function that those tasks are implementing. As a result, the utility of these

languages for high-level specification is limited, and the cost effectiveness of

replacing manual systems with electronic ones that require people to perform the

same tasks can be difficult to demonstrate.

The Office Procedure Specification Language [57) does deal more directly with

office functions. It primarily allows description of documents and communications

patterns. Primitives are at the level of document definition and movement and

procedure instantiation; more complex processing is expressed by programs written

in a general-purpose programming language (APL). The structure and syntax of the

language reflect the underlying general representation scheme for. asynchronous,

concurrent process. the Augmented Petri Net model. The major shortcoming of this

approach, which it shares with all of the above office description languages, is that it

lacks any constructs at a level higher than "send message0 or "file document" Nor
,

do any of these languages result in highly-structured or readable specifications.

31

The OFFIS "specification language" [6] is an attempt to address the issues of

higher-level objects and relationships in the office. OFFIS attempts to use these

items as the basis for describing the communications needs of the office. However,

the oversimplification of office operations necessary to provide a "compilable"

model frustrates the utility of this approach.

As an example of type of high-level constructs missing from previous work,

consider the activity SELECT that we have defined in OSL. This is an abstraction that

reflects the semantics of a common decision situation in which a specified number

of objects must be chosen from a given set. We could specify a particular selection

processes in terms of the primitives available in any of these languages, but since

selection is an activity common to many offices, it seems reasonable to define a

··selection" as a construct of the specification language. Further, in many cases we

cannot describe algorithmically the manner in which a selection is to be made (e.g.,

select a widget vendor from among the 30 in the catalog); nevertheless, by

describing the activity as a selection with a certain set of parameters, we have

provided, to an analyst, manager, or computer-based system, a great deal of

information about how to support the data management. tracking, and

communications needs of the person(s) charged with the decision. We have

specified, at an appropriate level of abstraction, the function to be performed, and

the context in which it is to be carried out Should an algorithm for making a

selection be developed at some later time, it can be implemented without changing

the context of the overall specification. Thus, whether the specification is

descriptive or prescriptive, the selection decision is a fundamental part of the

procedure's goal; the details are relevant only for specific implementations.

32

2.6 Summary and Research Outline

As we have discussed, our approach to office automation is based upon the

thesis that there is a high degree of commonality of structure among functions

performed by a wide variety of offices. An analysis of these functions can lead to a

better understanding ofthe problem domain in abstract terms, which understanding

can then be exploited in the design of tools and methodologies to assist in the

analysis, specification and automation of office procedures. The examination and

elucidation of the structure of office functions is the primary goal of this research.

It is important to note that office automation, as we perceive it, is not really a

new field in computer science. It is rather an application area that provides a

fruitful setting for new developments in systems design, programming languages,

and other areas of computer systems research. Contrasts are sometimes drawn

between the fields of office automation (particularly in its word processing

incarnation) and data processing, with the idea that they are entirely separate

problems requiring different technologies for their solution. This philosophy holds

that offices are such an unstructured environment that more and better mechanized

electronic tools are all that computer science has to offer it. We believe that this

attitude is incorrect, that there is a strong analogy between the two fields, and that,

in fact, they are really much the same; OA is merely in its first stages of

development. For example, the fundamental structure of accounting processes was

understood well before the invention of the computer. Early in the history of the

development of computer systems, it was recognized that this abstraction of

accounting functions could be exploited in terms of algorithms that could execute

the functions; the major result was the moving of much of the detail work of

accounting (e.g., payroll, accounts receivable), and control of that work, from people

to machines. In other words, the understanding of the common. abstract structures

of the accounting domain led to the cost-effective automation of many accounting

functions. Thus was born data processing.

33

More recently. researchers in management science developed an understanding

of the inventory control function. in terms of a simple. but algorithmic, model (the

Economic Order Quantity formula). The incorporation of this knowledge of

inventory control into computer programs has changed it from a skilled

management function into a structured, and therefore automatable. one - one that

is now considered another DP function. What we are engaged in is a similar

investigation of the office domain, in order to bring.an understanding of its structure

to bear upon the development of tools for building office systems. We expect that

as more of this structure is understood, and as the trend toward the distribution of

DP functions to end users continues, the tools, techniques and technologies of OA

and DP will look more and more alike. (Indeed, in the fifties and sixties, the term

"office automation" was appJied to just those functions that we now consider nonnal

data processing, as the first wave of office clerical tasks was subsumed by computer

applications programs [52, 21, 9, 45).) Consequently, we believe that the application

and extension of several important fields of computer science research, particularly

high-level language design and semantic data modeling, to the problems of

supporting and enhancing the operations of the office, is a natural path in the

continuing development of the uses of computer technology.

Our overall goals are to develop a more fundamental understanding of the

office domain; to design, based on that understanding. tools and techniques for the

analysis, specification and construction of office infonnation systems; and, more

generally, to provide a framework for further research in office automation,

Contemporary techniques in the "office automation" field do not address the

operations of the office at a sufficiently high level of abstraction to achieve

significant gains in operational effectiveness. We believe that the appropriate level

is that of functional office procedures, and that these procedures are currently

insufficiently understood in the abstract to allow for the cost-effective construction

34

of systems to automate or support them. Finally, we have argued for the utility of a

high-level language for the description, specification and documentation of these

procedures, and for an associated methodology to support their analysis.

The research project reported in this thesis consists of several components.

First, we have examined a number of existing office case studies and supplemented

them by conducting a large set of studies of our own. These cases, plus a study of

the related work described in the previous section, led to the formulation of our

functional approach to office automation and to the concept of, and requirements

for, an office specification language, as previously discussed. We have designed OSL

to address these requirements. In so doing, we have developed a concomitant

methodology for using the OSL premises and design principles to assist an analyst in

understanding an office and constructing a specification. (The structure of OSL and

its attendant methodology have also been the genesis of a more extensive research

project in the development of a full-scale office analysis methodology, as described

in [48) and discussed in Chapter 5.)

We have designed OSL as essentially a working hypothesis of its underlying

premises. In order to examine the adequacies of OSL's concepts and of its

particular features, specifically with respect to its learnability, usability, and range of

applicability, we have engaged in a set of field studies with personnel from several

cooperating firms. The results of those studies and the implications for future

research in office automation are the major product of this effort.

35

Chapter Three

The Design of OSL

The overall goal of our OSL design effort has been to develop a language

whose structure assists an office systems analyst in constructing specifications that

are clear, unambiguous and natural descriptions of office procedures. These

specifications should uncover and highlight the basic structure of the procedure

rather than focus on the details involved in its implementation. As we have stated,

our approach is a functional one. That is. we do not attempt to capture in a

specification all of the mechanisms associated with an office procedure - any such

"complete" specification would be overwhelming in its size and complexity. In

addition, it is unlikely that an office systems analyst (in any finite amount of time)

will be able to uncover all possible variations of the procedure. Most important, the

implementation details of an office procedure continually evolve as office workers

develop new techniques to solve old problems or face previously unencountered

difficulties. Consequently, we have not sought to achieve any elusive

"completeness." Instead, an OSL description focuses on the purpose of the

procedure, rather than on its mechanics. This has been accomplished by including

in the language primitives that expr~ the goals of office activities in application

terms. In order to achieve this goal, .we have sacrificed completeness in another way

as well. OSL is not appropriate for describing all conceivable office procedures; it

embodies a particular perspective and approach to office work and its description

which, we believe, matches a large number of office procedures, although certainly

not all of them. In particular, as should become clear in the discussions to follow,

OSL is designed to be of most utility in a more- rather than less-structured .

environment This is a consequence both of the evolutionary nature of business

36

processing model development described in Chapter 2 and the common-sense

observation that structured tools and techniques are most effective in such an

environment Thus, we expect that OSL and its associated analysis methodology

will be most appropriate for those offices whose missions require extensive

processing and organized recordkeeping, and involve decision-making at the

operational level. The Admissions Office and OSP are examples of such situations;

purchasing, claims processing. letter of credit, and other such regularly structured

operations are also examples of the operational decision support systems that we are

addressing. In contrast, we do not believe that offices with essentially strategic

missions, such as those of CEO's, corporate staff, or research, contain a sufficient

ratio of structured to unstructured operations to be amenable to our approach. The

OSL premises and design choices, discussed in this Chapter, reflect this orientation

toward operational offices.

In this Chapter we describe the nature of OSL and the motivations for its major

concepts. We assume in these discussions a familiarity on the part of the reader with

the basic structure and features of the language. To that end, we begin with a

discussion of the premises upon which OSL is based, and follow that with a

summary of the language. We do not attempt a narrative description of the whole

of OSL; a complete language reference manual, including all definitions and syntax

description, is provided in Appendix A. A formal grammar of the language is

defined in Appendix B.

We illustrate a number of ideas in this Chapter with examples drawn from two

MIT offices: the undergraduate admissions procedure of the Admissions Office [29)

and the research program administration function of the Office of Sponsored

Programs [44]. Annotated examples of OSL specifications from both offices are

presented in the following Chapter.

37

··~

3.1 Premises

OSL can be regarded as an initial experiment in developing a "theory" of office

procedure analysis based upon our functional approach to office automation.

Several premises thus underlie our design effort, and are critical in understanding

OSL

Our first premise is necessarily that there is structure in an office. We look at

an office as a system. The components of this system include space, equipment,

information, and (especially) people. Further, an office as an organizational unit has

a particular mission, a set of goals defined in terms of the business of which it is a

part. (18, 17] The activities of office workers are, or should be, designed to effect that

mission. Indeed, the equipment, infonnation. space, and other system components

incorporated in an office should be there to help people carry out the office's

mission. An office's mission is carried out via one or more functions, each of which

is based on a simple model of resource management, and is implemented by means

of a set of procedures.

Our second premise is that there is a high degree of commonality of structure

and activity among procedures in different offices. In other words, we believe that

there are fundamental semantic structures in the office application domain that

recur in many different contexts. This commonality can be exploited by identifying

the structures that are repeatedly used in natural descriptions of different office

procedures and embedding them in a formal language. The user of the language will

then find that it provides him with just those problem-oriented features that he

wishes to use; he will not have to build up a description of an office procedure from

lower-level and more general constructs. Consequently, the design of OSL is based

on an extensive familiarity with the application environment, both from

examination of related work (described in the previous Chapter) and of office case

studies perfonned as part of this research (described in Chapter 6).

38

Our third premise is that office procedures are basically simple. An important

conclusion of our analysis is that most office procedures are fundamentally simple

processes that are often obscured by implementation details and disorganized

exception handling. However, when it is eventually uncovered, the basic structure

of the office procedure is often relatively easy to comprehend and describe, given

the appropriate set of primitives. The "complexity" of office procedures is often an

artifact; a goal ofOSL and its related methodology is to manage and even avoid this

complexity.

A consequence of the notion of office procedures as essentially simple is that

we should be able to derive a reasonably simple model to describe their basic

structure. OSL incorporates such a model as the basis of analysis and description,

focusing on what we call the "main line" of the procedure. This approach provides

a framework of the underlying fundamental structure of the office's activities. It

makes it easy for a reader of a specification to get an overview of the procedure and

for an analyst to concentrate first on the "big picture." It gives a simple, canonical

structure on which to base the investigation and description of the special cases,

variations and exceptions that make up the apparent observed complexity of the

procedure. Finally, it helps distinguish between the current operation and the

higher-level goals that we are attempting to uncover and that will presumably

survive a change in implementation.

Our final premise is that paper documents are not the fundamental focus of

office procedures. Rather, documents are artifacts of the current implementation of

the procedures. A document is a device for collecting and transmitting information

about a more abstract object that is the true focus of the procedure. For example,

the MIT admissions office's admissions procedure deals with applications. An

application is a complex object that has many attributes, some of which are

represented by documents (e.g.. a high school transcript), others are themselves

more abstract ideas (e.g., a reviewer's evaluation) that are represented on paper.
39

The concept that paper is not basic to office procedures, that indeed an office

procedure is something more abstract that can be implemented in a variety of

different ways, is a primary distinguishing characteristic or our work. This abstract

object orientation has several consequences. First, it forces clarification of business

goals, by the process of deciding which objects are important Taking documents

for granted as the key to office procedures provides no incentive to think this

problem through. Second, objects expose the difference between functions and

procedures: functions manage objects while procedures change the state of objects

until they are no longer of interest to the procedure. Third, object orientation

enables a clear statement of the main line of the procedure as a sequence of desired

object state changes. Finally, it provides a context for understanding the activities in

a procedure.

3.2 Language Overview

The premises discussed above are reflected in OSL's structure, as well as its

specific features. A holistic view of office specification is central to the structure of

the language. OSL provides canonical high-level offtce-oriented constructs for the

specification of both data and control structures. Such constructs provide a

framework for the organization and presentation of a specification and also act as a

guide to the analyst in structuring his task. This framework in tum provides for the

readability and naturalness of expression necessary for using OSL in documentation

and training. Finally, OSL provides a built-in structure for all specifications; the

office description as a whole has a standard format, and each of its components can

be decomposed in a uniform way.

The remainder of this Chapter elucidates the structure and features of OSL,

how they are derived from the fundamental premises of the previous section. and

40

how they satisfy the requirements for an office procedure specification language

described in the previous Chapter. We do not here attempt a narrative description

of the full language. Annotated examples are provided in the following Chapter,

the language reference manual is included as Appendix A, and the formal grammar

is presented in Appendix B. We assume assume a basic familiarity with these

appendices; the balance of this section provides a brief overview of the language.

An OSL specification is a description, in the OSL formal notation, of the

structure and operations of some part of an organization. An office specification in

OSL consists of two major components: a description of the application domain

with which the office is concerned. and specifications of the procedures performed

in the office. The former, called the environment, provides a (static) context for the

description of the procedures. It effectively expreB:S a model of the world of the

office; it describes the objects on which the office is focused, the organizational

context of the office, the documents and forms that the office processes, and the

information that it needs to utilize. It establishes the vocabulary for the description

of the office's operations, identifying key components of the office's context and

their relevant relationships. · In the case of the OSP, this contextual information

describes a world consisting of proposals, contracts, funding agencies, researchers,

laboratory directors, and the like. Tue description is couched in terms of a variant

of the SOM [35], a data modeling mechanism originally developed for describing

the information content of databases. The key feature of the SOM is that it models

an application rather than data; thus the specification includes a direct description

of the office and its environment. This enables the specification to distinguish

substance from artifact; a procedure can access information it requires by directly

referring to the appropriate attribute of an entity, without caring whether that

information is captured on a form, in a database, or elsewhere. This "schema" thus

naturally expresses the static semantics of the office in terms with which a reader is

likely to be familiar.

41

The description of the office environment is expressed in terms of entities and

their attributes, inter-entity relationships, and entity collections. Associated with the

description of an office entity is the definition of those documents related to it {for

example, a proposal document is associated with each proposal entity), as well as

constraints on the attributes of the entity (for example, that the principal

investigator on a contract must be a faculty member). Specialized entity and

relationship types (such as people, agreements, schedules, logs, supervision, and the

like) are built into the language, since they recur frequently and they possess special

semantics. Included in this environmental specification is a description of the offices

in the organization and the lines of communication and authority that connect them.

Such an organizational description is particularly valuable when a function is

realized by means of related procedures executed in different offices. The local

office context describes the people in the office, their roles, responsibi1ities and

authority, as well as the files maintained in the office. The environmental

description also identifies the primary objects of the office. These are the entities

that are the major focus of the office activities and around which the descriptions of

the procedures are organized. In the OSP, the primary objects are proposals and

contracts; in the admissions procedure, applications.

The dynamics of the office are captured in the operations part of the

specification. This part describes the procedures - the activities performed in the

context, and with the vocabulary, provided by the environment part. Just as an

appropriately-designed data model can serve as the basis for natural descriptions of

the environment, so too a simple but powerful model of office activities can be

applied to procedural specification. As mentioned, OSL incorporates a canonical set

of structures for process description that are based on three concepts: an orientation

around objects; hierarchically structured and modular descriptions; and an

emphasis on the identification of exceptions and other special cases.

42

In many cases. a set of office procedures fits into the framework of a function.

A function concerns the management of a resource (some class of entities) over time,

and is also described using a simple canonical model. This functional overview may

incorporate procedures from a number of different physical offices.

3.3 Procedure Specification

The key to the design and use of OSL is its model for and presentation of office

procedure specifications; OSL describes office operations in terms of procedures,

the organizing structure of office work. A procedure description in OSL indicates

what is to done and when it is to be done, within a standard structure and in terms of

a restricted set of activities and events. As we have noted, our assumptions are that

most office procedures are fundamentally simple processes, obscured by

implementation details, and that many office procedures have a similar underlying

structure. The OSL procedure description is structured so as to highlight these basic

operations and separate them from the special cases.

The premise, and subsequent observation. that there is some commonality of

structure among procedures operating in divers offices leads to the use of a standard

template for the organization and presentation of all OSL procedure specifications.

This template, shown in Figure 3-1, applies to every OSL procedure and is meant to

provide both a common presentation structure and a framework for the analyst in

pursuing the information required for his description. Beyond the framework for

analysis, such a canonical organization serves a research purpose: by encouraging a

uniform method of discovery and presentation of a wide range of office procedures,

we provide a means of gathering a collection of procedure case studies in a format

suitable for further analysis. The availability of such a database is critical to the

development of more comprehensive and higher-level models of office operations.

43'

For example, it is necessary to provide a wide range of examples at the procedure

level if we are to develop a taxonomy of procedure types; we shall return to this

issue in the discussion in Chapter 6 of results obtained in field studies of OSL.

Procedure nam1

Focal object

Responsible

Main line

Timing constraints

Quantitative information

Variat1ou

Exceptions

Details

Figure 3-1: Procedure Structure Template

Every procedure in OSL is concerned with a focal object, an entity that is the

focus of office activities; the procedure as a whole is described in terms of the

evolving history of its object and the goals of the various steps in processing it. An

OSL procedure is not meant to specify an exact prescription that must be followed,

but rather an idealized goal. That is, a procedure represents the history of

processing of an object in the case where everything "works correctly." This history

is called the main line of the procedure. In "executing" an office procedure, a

worker's goal is in a significant sense to make the object end up in a final state as if it
had followed the main line. (This conceptualization of office procedures, as a set of

normative rules whose result is what office workers seek to achieve, has also been

proposed independently by Suchman in a similar context [49)) It is the handling of

all the special cases and problems that cause the procedure to deviate from the ideal

that is the essence of the semi-structured nature of office procedures. The OSL

procedure specification mechanism provides a structure in which to represent

various levels of deviations and details, all based upon the specified main line.

44

F.ach of the entries in the procedure template is derived from the need to

express a particular kind of information about the procedure; each of our key

premises is reflected in one or more sections of the procedure structure. The "focal

object" section identifies the object around which the procedure is oriented. The

main line of the procedure is described in its own section. The principles of

hierarchical decomposition and separation of special cases from "normal"

processing result in individual sections for describing processing variations,

exception handling, and lower-level details of processing steps. Finally, sections

titled "Procedure name," "Responsible," "Timing constraints," and "Quantitative

information" reflect a need to provide information about the procedure as well as a

specification of its processing requirements. Each of these sections is described in

further detail in the following.

3.3.J Focal Object

The focal object of the procedure, as we have noted, is some entity that may or

may not have a tangible embodiment. One of our fundamental premises is that

forms, or more generally, documents, are not in and of themselves the foci of office

procedures and that therefore office procedure analysis should not focus on forms

management or on counting, cataloging, and following paper around the office.

OSL enforces this rule in two important ways by requiring that the focal object of a

procedure not be a document It may, and in general will, have one or more

documents associated with it; but those documents per se are not the critical factors

in analysis or specification. (As described later in this Chapter, the syntax of

document definition in OSL enforces the notion of documents as artifacts by

requiring the identification of the abstract object to which the document refers.)

Examples of focal objects include the application object in the admissions office and

the contract in the OSP. The former is a record, an abstraction that represents a

45

. -- . --- ------------

certain set of infonnation about the applicant, provided by the applicant, his high

school, his references, the College Board, the admissions interviewer, and the

reviewers. The OSP contract is an agreement, an entity most often represented by

the document that defines it Each object. like all other entities referenced in the

operational part of a specification, is described and characterized in the environment

part of the specification.

33.2 Responsible

An important consequence of the semi-structured nature of office procedures

(as opposed, for example, to rather structured accounting and other DP procedures)

is the requirement of frequent human intervention for decisions. Our functional

approach to office systems analysis emphasizes the examination of a procedure as

fulfilling some business goal, and which therefore should be under the purview of

some individual. While others may carry out the procedure, the "responsible" party

is both in charge of the overall operation, and the reference point for handling any

exceptions beyond _the competence of the staff. The "responsible" entry in the

procedure template is used to name the role that is responsible for the procedure's

operation, and to which any otherwise-specified exceptions will be referred. (lb.is

entry is by definition an OSL role rather than a person; see the Section on the

environment part of an OSL specification for a discussion of this distinction.) For

example, the Director of Admissions is responsible for the admissions procedure,

though he is not directly involved in most of the day~to-day operations and

decisions involved in the admissions procedure; rather, he designs and oversees it.

3.3.3 The main line procedure model

The main line of the procedure, separate from any special cases and

implementation details, is a key construct in our approach to office analysis and

46

--- - -----~ --- ----------

specification. Therefore the facilities in OSL for expressing the requirements of the

main line of office procedures are critical to its utility. The nature of these facilities

is derived from the perspective of our (previously described) object orientation,

whereby a procedure's processing specification is expressed as a series of desired

changes in the state of its focal object from an initial to a final, desired state. We

define the necessary processing to transform the object from one state to the next as

a step.

The paradigm of office activities from which the OSL procedure model is

derived is therefore as follows. An object is initially in a quiescent state. Some

event then requires the office's personnel to transform the state of the object to

some other, desired state. If this desired final state cannot be achieved through

immediate processing, the object is transformed to an intermediate state until

further processing can be accomplished. The procedure terminates upon the

object's reaching a final state, at which point in time the response to the initial,

invoking, event has been completed.

An OSL procedure thus expr~s the progress of its focal object through a

succession of states. States are stages in the execution of the procedure at which no

further processing can be done until the occurrence of some event, an autonomous

occurrence that is beyond the control of the office. That is, the object "waits" in a

state until some specified event requires or allows some processing to be

accomplished. Example states in the admissions office include complete, reviewed,

admitted, and accepted. All procedures start in (the quiescent) state null and end in

(the quiescent) state done. In order that an object reach a state (recall that the goal

of a procedure is to move its object to the final (done) state), it must have suffered

the processing specified in the steps preceding that state.

When the procedure is in a given state, it is waiting for the occurrence of one of

47

a set of expected events; when of these events occurs. a corresponding step is

executed, at the conclusion of which the procedure is left in some other state.

During the execution of a step, the object is considered to be between states.

A state machine-like formalism is appropriate for expre~ing these

state/event/step relationships and determining the overall control structure of the

procedure. The OSL model, following our office procedure paradigm, is as follows.

The object is in some (initially null) state; some expected event occurs, causing an

associated step to be executed; completion of the execution of the step causes the

object to enter another state; if this new state is done the procedure is complete.

otherwise the object "waits" in the new state for some designated event For

example. the following is an informal representation of part of the admi~ions

procedure's main line, illustrating states. events, and consequent steps:

State: complete
Event: January
Step: Review applications; end in state reviewed

State: reviewed
Event: February
Step: Choose freshman class: end in state admitted

State: admitted
Event: Receive acceptance
Step: Update files: end in state accepted

The model illustrated by this example provides a basic framework for

procedure descriptions, and is fundamental to OSL's structure and analysis

methodology. However, the descriptions are in English; they lack the precision that

we require. We therefore need to address in more detail the specification of both

events and the processing of objects represented by steps, in order to extend the

model to include formal representations of both types of information.

48

3.3.4 Events

As we have seen. office procedures depend critically upon events. occurrences

over which the office responsible for a procedure has no direct control. We can

categorize relevant office events. and thereby identify the important aspects of an

event model. by examining the ways in which they are uncontrollable. We find

three major categories of such uncontrollability of events: those dependent upon

real time; those dependent upon a specific change in the office·s environment; and

those dependent upon a specific action (or inaction) of some party external to the

office. These categories give rise to the following types of events. each of which is

defined as an OSL construct with syntax as in the examples.

3.3.4.1 Events based on real time

A basic time event is a specific date and/or time. It may be explicit. for

example,

January 1

or relative to some other event:

Event 2 + 1 week

33.4.2 Events based on environment changes

An environment event is the raising of a particular condition in the office's

environment due to the change in status of some entity. Such a change may be

specific to one attribute or merely reflect any change in state. For example,

When APPLICATION is updated

Some environment-related events are concerned with the state of processing of

a procedure. rather than the state of some entity. An activity event reflects such

changes caused by the initiation or completion of a specified activity in some step of

the procedure. For example,

49

·'

Complete 2.3

In some cases the environment state that triggers a procedure or a step may not

be definable a priori; that is, the determination of the appropriate conditions is left

to the judgment of some decision-maker. A trigger event is defined in OSL as an

explicit command of a designated person or role. It indicates that the next

processing step is to occur only when detennined by the designate, independent of

any other occurrence. For example,

By Director

3.3.4.3 E-vents based on external parties

Often processing of an object must be suspended pending the arrival of

information from an outside party. Because the relevant events are in fact the arrival

at the office of such information, these occurrences may be characterized as

communication events. A communication event may be further categorized as

representing one of three types of conditions:

- It may be the receipt of a specified communications entity (often a
document). The specification may be absolute (in tenns of the
document identification or other parameters), or relative (related to
some local information, e.g., matching a local entity in two or more
attributes). For example,

Receive Pre11m1nary

- It may be the receipt of a response to a specified message. For example,

Receive response to SSGR

- It may be the non-receipt, after a specified time interval, of a specified
communication or response. For example,

Not receive response to SSGR after 2 months

50

3.3.5 Step Specifications

Steps represent the actual processing required to move the object to its next

state. The nature of the specification of this processing is another important aspect

of the design and utility of OSL. The design of the OSL step specification semantics

and syntax is an attempt to answer two fundamental questions about the nature of

office systems analysis and specification: What are the basic operations of office

work, and how can these operations be usefully described?

Our answers to both questions are derived from our functional approach to

office automation and our object-oriented procedure model. From this perspective,

we find that there are three categories of actions that must be expr~ed:

1. routine manipulations of objects. These are primarily actions concerned
with the existence and properties of objects, and incJude the following
operations:

- creation of a new object

- removal of an object from the environment

- changing of some characteristic of an object

- transmitting an object to another site

- placing a record of an object in a long-term archive

- adding an object to a set

- removing an object from a set

2. actions that require some decision. These, primarily judgment-based,
actions can be further subdivided into

a. basic decisions, concerned with whether a single object satisfies
certain conditions, including:

51

- verifying the correctness of an object

- approving the creation/issuance of an object (by a person
with authority to do so)

- evaluating an object and recording a judgment

- negotiating the characteristics of an object among several
parties

b. aggregate decisions, those made simultaneously about several
objects of the same type, due to the interdependence of the
decisions about the individual objects: selecting a subset of a set
of objects

allocating objects among several consumers

partitioning a set of objects into several groups]

3. actions that concern the control of procedures and the handling of
exception conditions:

- initiating a procedure

- terminating a procedure

- calling a (subroutine) procedure

- restarting an action that caused an exception

- notifying a party responsible for handling an exception

It is our thesis that these actions form a complete set of operations for

manipulating office objects. Each of these operations therefore serves as the basis of

one or more OSL activities. Activities are the fundamental units of office work and

are the basic active constructs of OSL; a step consists of a structured set of activities

that specify the required processing. The OSL activity set is designed to be precise

52

and limited. It is based upon the types of actions described above and the

class/ entity model of objects used in the environment description (see the section

below and Appendix A); it thus includes the following types of activities:

Basic concerned with the existence and state of entities and classes of
entities; several activities (SEf, CALCULATE, REVISE) are defined
to deal with different reasons for and semantics of changing
entity states

Decision concerned with decisions about entity instances; the effect of
such an activity is to set the value of a specially designated
attribute of the entity to which it is applied

Aggregate concerned with decisions about the manipulation of subsets of
entity instances

Control concerned with control of the procedure

The OSL activity set is meant to provide a complete vocabulary for describing

office processing. Each activity has a well-defined meaning (see Appendix A for

definitions) and no other terminology is used in the main line to describe the

processing operations of a step. Note that while an activity is a semantically­

meaningful process; it may or may not be a structured one. For example, the

activity GROUP indicates a subsetting decision. There are cases in which an

algorithm is applicable (e.g., group applicants according to age) while others may be

inherently a judgmental process (e.g., group applicants into accepted, rejected,

waitlisted). We characterize both operations as grouping, and leave the details of

particular implementations to lower levels of description (see the section on Details).

Activities define particular types of manipulations of entities or sets of entity

instances. The full syntax and semantics of activity specification follow from the

requirement that the language have a natural, and therefore easy to use,

construction. Therefore OSL activity specification is modeled on a sentence

53

----------·-·---

structure, in which the activity itself is the "verb." The sentence is completed by

specifying the "subject," the actor responsible for performing the activity; and the

"object," the entity (or entities) upon which the action is performed.

The subject is, by default, the role designated as responsible for the procedure,

but any party defined in the environment may be specified as the subject of a

particular activity. The object is, by default, the focal object (or the set of objects

represented by the class designated as the focal object) of the procedure. However,

since any entity may be the object of a particular activity, several "modifiers" are

necessary to permit the identification of a particular instance or set of instances of

the object class. OSL therefore includes syntax for specifying "any," "all," "first."

and "last" instance of a given class, as well as facilities for defining an instance in

terms of attributes matching those of the focal object

As we have noted, the main line of the procedure represents the "normal"

course of events, the (possibly rare) case in which everything works correctly.

Activities then correspond to milestones in performing a step; specified activities

must have been performed before the step is considered complete. Within the step,

the various activities are organized with a control structure that allows both serial

and parallel execution, as well as branching. The ordering of activities is again

meant to indicate suggestions or goals; the specified processing path is the normal

one, not the required one. The branching constructs also allow for alternative

processing depending upon the result of a decision activity.

3.3.6 Timing Constraints

A timing constraint is a temporal relationship between two events in a

procedure. For example, it may be necessary that some activity be completed by the

end of a quarter, or that an event occur within one week of another event. A timing

54

constraint therefore expresses an important piece of information about the

operation of the procedure, and a violation of such a constraint is an important form

of exception (see below).

OSL provides both a separate section in the procedure structure and a syntax

for expressing timing constraints. Using events defined in the main line, a timing

constraint may be absolute or relative; that is, it may state that an event must occur

before, at, or after a specific date/time or one defined relative to another event

3.3. 7 Quantitative Information

Procedure statistics provide a set of figures for various timings and counts in the

current implementation of the procedure. While the need for and the specifics of the

numbers required depends heavily upon the use of the specification, the OSL

standard structure provides a section for such data as is commonly gathered in

existing case studies. This information includes: average total time an object spends

in the procedure, the number of objects active at any time, the frequencies of

various exceptions, and the probabilities at various branch points.

3.3.8 Beyond the Main Line

A major aspect of our approach is the focus on the main line of the procedure

as the basis for analysis and description. That is, we believe that an understanding

and elucidation of the main line is a prerequisite to effective office procedure

analysis. The OSL structure and analysis methodology have been designed to

support that view. However, once having developed a model for analyzing, and a

syntax for describing, the main line, we are then faced with the question of how to

deal with the myriad "non-main-line" details that represent the complexity of real

office procedures. In order to do this, we need to look again at just what the main

55

------- - --------

line model is meant to represent, and how it (deliberately) fails to capture the

totality of the procedure.

We first recall that the main line is defined as the history of the focal object in

the "normal0 case, and in which no problems arise. Therefore, we need to provide

not only for "unusual" object histories but also for problem situations; the former

are called variations in OSL, the latter exceptions. Further. we have stated that the

purpose of an OSL-based office analysis and description effort is not a detailed

account of the current implementation of the office, nor a complete specification

suitable for defining to a programmer a system design. Nevertheless, for either of

these purposes, or for others for which an OSL specification may be used, there will

be a need for some additional level of relevant explication of the procedure. OSL

provides a section in the procedure template for this next lower level in the

specification hierarchy (after functions, procedures, steps. and activities).

The main line describes the normal history of processing for focal objects of the

class defined in the procedure specification. In reality, however, not all instances of

the focal object's class are identical, and often different instances cannot be treated

exactly alike. There are several reasons for which processing of individual instances

of the focal object class may differ; we have identified three key types of processing

variability:

1. decision-based

2. event-based

3. object-based

The first represents some decision about the object made in the course of the

(main line) procedure. For example, in the admi~ions office procedure some

applications (focal objects) are accepted and some are rejected; clearly the actions

56

required after that decision vary with the decision. Such processing requirements,

which are dependent upon the result of a decision made in the main line, are

properly alternative histories of the focal object in the main line. These decision­

based alternatives are provided for in the OSL formalism by branching constructs in

the main line state diagram.

The second kind of process variability is based upon the occurence of events,

which are by definition outside the office's control. In cases where multiple events

may lead to transitions from a given state, consequently triggering different steps,

the variability is inherent in the procedure specification, and is therefore

represented in the main line using the normal state/event/step mechanism.

3.3.8.1 Variations

The third reason for differences in histories of object instances is the existence

of some inherent characteristic of the instances that require alternative processing.

OSL variations are such anticipated deviations from the main line state/event/step

sequence that are based upon an a priori attribute of the focal object For example,

the Admissions Office handles both foreign applications and those from students

requesting "early action" somewhat differently from each other and from the

normal, main line, processing. The former are routed through the Foreign Students'

Office before being reviewed and are grouped into admitted/rejected subsets a week

after the main line; the latter are reviewed and grouped early. In both cases, the

required processing for each application is evident upon its receipt; the main line for

that particular instance is different from the norm, but equally well defined.

In keeping with OSL's goals of modularity, control of complexity, and focus on

the main line, variations are described as modifications to the main line, and are

placed in a separate section of the specification. The specification of a variation uses

57

the same syntax as the main line, and in addition includes the attribute values that

define when the variation is to be used. The variation itself is defined as a set of

states, events, and steps that are to be added to the main line, and/or events and

steps that are to replace existing ones. The semantics of a variation specification

indicate that the result of applying these amendments is a new state diagram

describing the main line processing requirements for the specified subset of focal

objects.

3.3.8.2 Exceptions

Branches in the main line and variations are types of normally anticipated

procedure requirements. An Exception is an abnonnal condition that prevents some

part of the procedure from being accomplished. A key aspect of OSL is its approach

to exceptions. which has three major facets: the separation of exception

specifications from the main line; the exception specification schema that associates

exceptions with specific activities and events as well as with particular aspects of the

procedure as a whole; and the predefined set of exception conditions.

As we have noted, special cases and exceptions are often the source of the

perceived complexity of office procedures; by organizing the description of

exceptions, we provide a means of malting the overall specification more organized

and readable. OSL takes a hierarchical approach to the specification of exceptions.

Each level of procedure and activity description has an associated list of exceptions.

These are classified in terms of the nature of the event that gives rise to them;

instances include violation of timing constraints, waiting for an event that doesn't

happen, invalid data values, unavailable personnel, and activity-specific errors (e.g.,

an inadequate set of resources from which to make a stipulated selection). OSL

provides a vocabulary of standardized exceptions both for analytic and descriptive

purposes, and, as discussed earlier, also provides several activities (e.g., NOTIFY,

58

-------- ---- ------------- -----

RETRIGGER, REPEAT) for use in describing responses to exceptions. The

descriptions of the exceptional situations and the responses to them are separate

from ·the main line to maintain modularity and manage the complexity of the

specification.

There are three types of predefined exceptions in OSL: timing constraint

violations (discussed earlier), activity-specific, and general. Each OSL activity has

associated with it a set of exceptions. each of which identifies a potential problem

specific to it. For example, the SELECT activity, which indicates that a subset is to be

created from a set of entities. has associated with it an exception, called

"insufficient," which occurs when not enough entities are available to form the

needed subset Thus exceptions that might reasonably be expected to occur

occasionally can be anticipated by the analyst and, if special processing is necessary,

described in an appropriate place in the OSL specification.

General exceptions apply to the procedure as a whole, rather than particular

activities or events. These exceptions include "missing personnel," "lost document,"

"backout," and .. cancellation." Again, these are anticipatible occurrences that would

require specific attention by those responsible for the procedure.

All predefined exceptions have associated with them a default response, "notify

the responsible person and wait." In an OSL specification, it is necessary to describe

exception handling only when a non-default action is necessary. In such cases, the

syntax and vocabulary for describing the response is identical to that used for

describing the main line procedure.

Of course, the nature of exceptions renders it impossible to anticipate all

possible problems with any procedure. Therefore, the Exception section of the OSL

procedure template is used for the specification of ad hoc exceptions, those that are

59

identified by office workers or anticipated by an analysis. Again, the standard

vocabulary and state/evenVstep paradigm are used to defined the exception and the

required response to it, if other than DEFAULT.

3.3.8.3 Details

As we have discussed, an OSL specification per se is not meant to be a complete

description for all purposes. Rather, it is meant to describe what is to be done, in

terms of the "lowest level" activity constructs; the control structure itself represents

goals rather than firm requirements.

Not everything about a procedure can (or should) be expressed in the OSL

formalism. In most cases, however, additional information relevant to the intended

use of the specification must be provided to the user. Rather than allow arbitrary

annotation of a specification, the design of OSL allows such annotation consistent

with its hierarchical approach to procedure description. The Detail section of the

procedure template is used for more explicit comments about the activities, and

eaeh comment is keyed to a specific activity. Examples of information that might be

provided concerning activities include algorithms for implementing them, policies

used in carrying them out, names of people with particularly useful talents. That is.

Details include anything interesting the analyst has to say about how an activity is

performed in a specific implementation.

3.4 Functions

OSL is primarily a language for describing office procedures. However, we

might also ask how procedures, which deal with the transformation of entities from

one state to another, fit into a higher-level context Our functional approach to

office automation, as described in Chapter 2, is the overall framework in which we

60

wish to approach procedure analysis and specification. Therefore, the concept of an

office function is realized in our formalism as the top-level dynamic structure in

OSL.

Recall that when a procedure is invoked, its focal object is in a "quiescent"

state. By gathering all the procedures that deal with a particular class of entities as

their focal objects into one overall construct, we can define a context in which, in

general, the objects exist in a quiescent state until acted upon by one of the

procedures. So long as a procedure merely transforms the state of the object. the

object returns to a quiescent state upon termination of the procedure. Only when a

procedure calls for the permanent disposal of its object is an object removed from

the system. A set of procedures concerned with the management of a particular

class of entities over time is thus defined as an OSL function. The purpose of such a

function is the management of all instances of that class and information about

them. The entity instances are called resources in this context. The actions involved

in this management task include monitoring anticipated events and responding to

unanticipated ones. The major function of the OSP, for example, is the

management of sponsored · research; the resources in this case are sponsored

research programs.

Following this definition, OSL incorporates a simple model for functions that

divides the life cycle of a resource into three phases. First is an initiation phase, in

which the resource is created or is initially brought under the purview of the

function. The major, or management, phase of the function involves controlling the

resource, principally by reacting to external events and satisfying certain predefined

requirements. Such requirements include information about the status of the

resource that may need to be provided in the form of regularly scheduled reports;

regular reports required or expected from others; and other non-regular but

expected events. Finally. the terminating phase disposes of an instance of the

61

resource that is of no further interest. In general, a function deals with multiple

individual instances, each of which is in some state of a procedure, or in a

"quiescent" state in which nothing need occur.

All activity involved in a function is described by procedures; the function

provides the framework that indicates when the procedures are invoked. Typically,

several procedures are associated with a single function; at the same time, a

procedure may be associated with several functions. In fact. a single office may be

responsible for an entire function, for several functions, or for parts of one or more

functions. For example, the undergraduate admissions procedure represents merely

the initiating procedure of a function that can be described as "manage students";

the admissions office executes this procedure, but the Registrar's Office is

responsible for most of the function, terminating when a student graduates or

otherwise leaves the university.

This functional approach to office systems analysis provides a unifying

framework for, and a mechanism for transcending the sometimes artificial barriers

between. the related activities of multiple offices. By addressing office functions

rather than offices per se, the analyst is led to a more complete picture of the overall

goals of various procedures and the reasons behind their current implementation.

This approach is useful not only in forming an understanding of an organization's

operations, but also in addressing the rationalization of procedures and the redesign

of work in order to achieve more effectively the organization's mission (17).

OSL uses a template form for organizing a function specification. Each of the

entries in the template is used to define, with a standard syntax (see Appendix A), a

particular information component of the OSL function model:

62

-------- ----------- ----------

FUNCTION <name>

Resource: name of class (defined in environment description)

Responsible: name of role

Initialization: the event that initiates action for an object. and the name of the
procedure that is thereby invoked

Required reports received:
a list of entries, each of which indicates how often the report is
expected, the name of the procedure invoked when received, and
the name of the procedure invoked when not received on time

Required reports generated:
a list of entries, each of which includes the report name (as
defined in the environment section) and the required interval. as
well as the name of the procedure invoked to generate the report

Other events: list of anticipated-evenUinvoked-procedure entries. each
indicating an event requiring some processing relevant to the
resource, but for which no particular scheduling is known

Termination: the event causing termination of the resource, and the name of
the procedure thereby invoked

Quantitative information:
a section used to describe relevant quantitative information:
numbers of resource instances, frequency of events, time extent
of procedures, etc.

3.5 The Office Environment Model

As we have noted, the operational part of an OSL specification describes the

dynamics of the office's activities. As we have seen, the procedure and function

specifications make extensive reference to entities and classes in the environment

We therefore need to be concerned with the development of effective means of

63

describing those items in the environment part of the specification. An OSL

environment is a description of the static structure of the office. It describes the

things the office deals with, both within and outside of its control. It is the

environment description that provides the vocabulary for the objects of the

operational part of the specification. In essence, the environment is a "model" of

the office, or the relevant entities therein and the relationships among them.

Techniques for application modeling of information environments have been

the subject of research and development for at least two decades in the fields of

database management (data models) and artificial intelligence (semantic

representation). We therefore tum to these areas for the development of the OSL

environment model; we are looking for a modeling mechanism that satisfies the

following requirements, derived in Chapter 2:

- It should be application-oriented; the model should be based upon
office constructs rather than computer or other formal language
concepts.

- It should be well defined. The syntax and semantics should be clear and
unambiguous, and a given model should have a unique interpretation.

- It should be sufficiently rich to expre~ effectively a wide variety of
office environments, but sufficiently limited that its structure and
constructs provide some inherent guidance to the analyst in its use.

We have drawn the ideas and structure of the OSL environment modeling

facility from the SDM, a high-level semantic data modeling technique developed for

database systems (35). It was designed as a general application modeling mechanism

that answers most of the needs that we have defined. We have therefore adopted its

important features and made several changes to adapt it to the office applications

with which we are concerned. (Specifically, we have modified the SDM by adding

the notion of built-in entity types and associated classes; we have also eliminated the

64

concept of events as separate semantic objects and have streamlined the model in

other minor ways. Descriptions and syntax rules of the model are found in full in

the Appendices.) The remainder of this Chapter discusses the derivations of the

major features of the OSL environment model (henceforth "OEM").

3.5.1 Entities

Inasmuch as our approach is heavily object-oriented, the description of objects

is a key aspect of the modeling facilities. To avoid confusion with the "focal

objects" of procedures, and following SOM terminology. objects are called entities

in this context An OSL environment is a collection of entities, the physical or

intangible things ("nouns") in the office's world. An entity is anything, whether

concrete (e.g., an employee, a document, a widget, an order of Peking ravioli) or

abstract (e.g., a program, an account, a job) that is used, manipulated, referred to, or

otherwise relevant to, the area, its people, or its operations. An entity is some real

thing; it need not correspond directly to a document or an entry in a file.

3.5.2 Classes

Entities are organized into collections called classes. A class is a named,

homogeneous collection of entities of a single entity type, (e.g., a class of documents,

a class of grade reports, a class of high schools, a class of applications, a class of

applications from foreign students). The entities that make up a class are its

members. Any particular entity is an instance of its type.

The OEM formalism is designed both with two related goals in mind. As we

have discussed, the OSL structure and vocabulary constitutes a basic, generic model

of office environments and operations. It is this model that provides the framework

for analysis and specification that is one of the major purposes of this work. Within

65

these guidelines, the model must also provide facilities for the analyst to construct a

model of his specific office from the "raw materials0 of the language. These two

requirements result in two kinds of classes: those that are built in to OSL, and those

that are defined by the user of OSL to describe his particular environment

A built-in class is an implicit class defined by, and consisting of all entities of, a

built-in entity type. As the name implies, each of these classes is part of the

definition of OSL, and they are not declared as part of any specification. A built-in

class name may be used, however, in any place in an environment specification in

which a class name is called for; in particular, they serve as the parent classes for the

definition of many derived classes. (For example, the built-in entity type

EMPLOYEE defines the built-in class EMPLOYEES.)

The classes built in to OSL encompass a range of very generic office entities:

employees, organizational units, documents, roles, etc. They were chosen so as to

include a broad base of commonplace items that provide a starting point for

analysis, consistent with OSL's overall approach, without being overly restrictive.

The analyst uses the built-in classes as the base for constructing classes specific to his

application. Such a derived class is defined in terms of some other class(es) in the

environment Thus a member of a derived class is also a member of one or more

other classes, including one built-in class; this built-in class defines the type of the

member. For example, the class ADMISSIONS-STAFF describes a set of entities

that is a restriction (see below) of the class MIT-EMPLOYEES. Each member of

ADMISSIONS-STAFF is a an entity of type EMPLOYEE, and a member of class

MIT-EMPLOYEES. The class MIT-EMPLOYEES is also a derived class, defined

in terms of the built-in class INTERNAL-EMPLOYEES.

66

3.5.3 Attributes

A key aspect of the SOM formulation, which we have adapted for use in the

OEM, is that every entity has a set of attributes that describe its characteristics and

relate it to other entities in the environment An attribute is some characteristic of

an entity; for each entity, there is some specific value for each of its attributes. The

value of an attribute is either some entity in the environment, or some set of such

entities. (For example, consider a particular member of class MIT-EMPLOYEES;

each attribute will have a particular value, such as Name = "Paul Gray" (a member

of the class NAMES), Rank = "President" (a member of the class RANKS). Office

= "3-208" (a member of the cl.ass MIT-OFFICES).

Classes may also have attributes, describing characteristics of the class as a

whole, rather· than those of individual . members. For example, the number of

members currently in a class is an attribute of the class itself. not of any of its

members.

The possible values of an attribute may be described simply by specifying the

class from which its value is to be drawn; this is a primitive attribute. Alternatively,

an attribute's set of possible values may depend directly, and by a specified rule,

upon its relationship to something else in the environment; such a rule defines a

derived attribute.

A built-in entity type includes in its definition a set of attributes (including, of

course, their value classes) that provide a means for characterizing particular entities

of that type. As described above, the type defines a built-in class whose members

consist of all entities of that type. For example, the built-in entity type EMPLOYEE

defines the built-in class EMPLOYEES. Each EMPLOYEE entity includes such

attributes as "Name," which is an entity of type NAME describing the name of the

employee; and "Supervisor," an entity of type EMPLOYEE that describes the

67

employee's supervisor. Each entity of a given type has at least those attributes;

when used in defining a built-in class, any additional attributes specific to, and

characteristic of, the members of the built-in class are added.

One of OSL's primary premises - that documents are artifacts and not the

fundamental objects of office work, and that therefore they should not be the focus

of office analysis and description - is enforced through the mechanism of built-in

entity attributes. For example, DOCUMENTS is a built-in class, one of whose

(required) attributes is "Refers"; the analyst, in defining a document, must identify

the abstract object about which it is carrying information. He is thus forced to

confront the document's nature as artifact and to delve into the office's operations in

with a more abstract, functional, view.

In the definition of a class, each attribute of the members is described in terms

of its value class, that is, the class from which its values can be drawn. (For example,

the attribute "Supervisor" of the class MIT-EMPLOYEES has the value class MIT­

EMPLOYEES; thus the value of the "Supervisor" attribute of an MIT­

EMPLOYEE must be a member of the class MIT-EMPLOYEES.)

Again, the attributes of the built-in classes provide a base set of structures from

which the analyst builds his application model. The mechanisms for expressing the

characteristics of a particular office environment include the definition of new

attributes to further characterize derived classes, and the definition of relationships

among classes explicit in the attribute's value clas&.

3.5.4 Entity instances

It is sometimes the case that we wish to define as part of the environment not a

class of entities but an instance of a given entity type. While most entity instances

68

are created dynamically (as part of a procedure, described in the operational part of

a specification), in some cases an instance is in fact a part of the static environment

A common example is the definition of the office of interest, which is generally a

mem her of a class of offices or organizational units belonging to that organization.

OSL provides several methods of defining instances. The most important is

that of hierarchies. There exist in organizations several formal hierarchies, as well as

numerous informal ones; the two major formal hierarchies are built in to OSL. The

organiza,tional hierarchy indicates how the reporting relationships of the various

organizational units are structured. The hierarchy is described as a table of instances

of internal organizational units, giving values for the attributes NAME, PARENT and

SUPERVISOR of each. In this manner, a linear representation of an organizational

chart can be built The personnel hierarchy indicates the supervisory relationships

among people in the organization. This hierarchy is described as a table of instances

of "roles" (a built-in entity type describing a set of job responsibilities; see

Appendix A), giving values for the attributes NAME. OFFICE. REPORTS-TO and

CURRENT-HOLDER of each. Such a hierarchy provides information that might be

useful for tracing responsibilities or locating substitutes for absent workers. Note

that these two built-in hierarchies are related to each other through the

ORGANIZATIONAL-UNIT attribute of the personnel hierarchy and the SUPER VISOR

attribute of the structural hierarchy.

3.5.5 Using the modeling facilities

The mechanisms of OSL environment specification provide for the definition

of relationships among entities. Built-in classes indicate how entities may be

members of several related classes. Attributes directly relate entities to each other;

since the value of an attribute is an entity (or class of entities), an explicit

relationship is indicated. In particular, the several mechanisms available for

69

expressing the derivation of (derived) attribute values provide a rich set of models

for inter-entity relationships.

The OSL environment modeling facility allows for the description of a wide

variety of office situations. It provides the mechanism for specifying sufficient

detail about the application to build a usable context in which the operational

specifications can be interpreted. The detailed rules for defining classes and their

relationships are found in the reference manual, Appendix A. Chapter 5 includes

some guidelines for use of the facilities in constructing environment descriptions.

3.6 Environment Structure

For purposes of clarity and reference, there is a standard structure to an OSL

environment specification, encompassing an .. identifications" part and a

"definitions" part The identifications part is a summary of the environment; an

entry in this section (except for special cases such as in the organizational context

and the second and third subsections of the internal context) is simply the name of

the entity class and the built-in class of which it is a restriction, e.g.,
MIT-EMPLOYEE is INTERNAL-EMPLOYEE

The identifications section is divided into three subparts, each of which has a

different role in the environment definition. The first, called the "organizational

context," identifies the relevant aspects of the organization of which the office is a

part The definition of the organization itself (an instance of type

"ORGANIZATION") and the organization and personnel hierarchies (or

equivalent organization charts) are included here. This section, if complete, would

be identical for each office in the organization; thus it might be shared with other

office specifications and ultimately located elsewhere rather than replicated for each

office. Thus this information is placed in its own section to enhance sharing and

severability.

70

The other two sections of the identification part serve to distinguish between

that part of the world over which the office has some control (the "internal context ..)

and that with which it must interact but over which it has no control (the "external

context ..). This distinction is critical in the definition of steps and events (cf.) in the

procedure specifications. Thus the external context section identifies the entities

external to the organization that are relevant to the office being described. The

internal context identifies all entities of consequence within the office. The internal

context is further divided into subsections dealing with people and roles; documents

and other communications; and names. The entries in each section or subsection

are listed alphabetically.

The definitions part of the environment provides the full OSL definition of the

attributes of each class identified in the Identification section. Definitions of all

classes, regardless the section with which they are identified, are listed

alphabetically.

71

Chapter Four

An OSL Procedure Specification

In this Chapter we present an annotated example of a description of an office

procedure using OSL. The example chosen is the undergraduate admi~ions

procedure of the MIT Admissions Office, an English writeup of which is found in

Appendix C. We also provide an example of an OSL function specification. using

the sponsored research function from MIT's Office of Sponsored Programs (44).

Our purpose is not to detail every feature of OSL (which can be found in the OSL

reference manual in Appendix A) or to provide a line-by-line narrative of the

example, but rather to i11ustrate the nature and use of the language by examining an

OSL representation of a real office procedure.

An OSL specification includes operations and environment parts. In general.

to understand a specification one reads the operations part, referring to the

environment for descriptions of entities as needed. The environment thus serves as

a "dictionary," defining the nouns used in the operational description in terms of

the OSL built-in entities and application building facilities (which are assumed to be

understood by the reader). The design of the environment description, as discussed

in Chapter 3, facilitates this usage by placing all definitions in a separate part of the

environment, listed alphabetically. We will not, therefore, point out each class

definition in the environment as it is encountered in the operational part of the

specification.

[A note on syntax: Following the convention defined in the language reference

manual (Appendix A), class names in the examples are in all upper case. attribute

names are in lower case with initial capitals.]

72

4.1 An Example Procedure

We begin the examination of the admi~ions procedure in Figure 4-1 by noting

that its name is "Admit-Freshman-Class" and its focal object is an

"APPLICATION." Examining the entry for APPLICATION in the environment,

we find that it is a class of type RECORD (that is, an abstraction representing an

organized set of information about some object, in this case an APPLICANT) with a

long list of attributes. Some of these attributes are documents that form part of the

visible "application," while others are information added by various admi~ions

personnel in their evaluation, review, and decision process.

The main line of the procedure (Figures 4-1 and 4-2) consists of states null,

waiting, complete, reviewed, admitted, accepted, coming, and done. The procedure is

invoked (Step 1 entered from state null) when Event 1 occurs: a Preliminary

application card is received. ("Preliminary" is the name of an attribute (of the focal

object APPLICATION, by default) whose value is defined as a DOCUMENT of the

class PRELIMINARY-APPLICATION-CARD (defined in Figure 4-8).) Step 1

specifies that initial processing includes verification of the preliminary application.

creation of an APPLICATION object, selection of an interviewer, and transmission

of several documents. Note that whereas the interview report form is sent explicitly

to the interviewer ("Interviewer" is an attribute of APPLICATION that has as its

value a member of the class EDUCATIONAL-COUNCIL, a person with a name

and address), the Final application forms are sent, by default, to the Addre~ of the

APPLICATION focal object, which in this case is the address of the APPLICANT

to which the APPLICATION refers. The control structure in step 1 indicates that

there is no serial requirement concerning the two activities numbered "l.4a" and

"l.4b." The step terminates, as do all steps, when there is nothing more that the

office can do but await some external event, in this case the receipt from the

applicant of all the final application forms. This event initiates Step 2. in which little

73

MIT Admissions Office

Procedure: Admit-Freshman-Class
Object: APPLICATION
Responsible: Director
Main-line:

State nul 1
Event 1: Receive Preliminary

1.1 Verify Preliminary
1.2 Create APPLICATION

Operations

1.3 Select Interviewer from INTERVIEWERS
1.4a Send Final-application-forms
1.4b Send Interview-report to Interviewer
End in waiting

State waiting
Event 2: Receive Final-application-forms

2.1 Verify Forms.Final-Application.Check
2.2 Send Check to MIT-OFFICES(Namea"Cashier")
End in complete

State comp 1 eta
Event 3: January 20, Year-applying-for

3.la Send S-S-G-R,L-list
where CB-scores = "unknown" add

3.lb Send CB-letter
3.2a AA Select Faculty-review.Reviewer from FACULTY
3.2b AA Select Staff-reviewl.Reviewer from ADMISSIONS-STAFF
3.3a Faculty-review.Reviewer create Faculty-review using Application
3.3b Staff-reviewl.Reviewer create Staff-rev1ew1 using Application
where abs(Faculty-review.Rating - Staff-reviewt.Rating) > 1 add

3.4 AA Select Staff-review2.Reviewer from ADMISSIONS-STAFF
3.5 Staff-review2.Reviewer create Staff-rev1ew2 using Application
end in reviewed

Figure4·1: Admissions Office Main Line

activity is required; this step terminates in state complete, awaiting the January

"round-up" actions.

Step 3 is initiated by the time event "January 20, Year-applying-for"; the last

part of the date specifies that the value is to be found for any APPLICATION by

looking at the value of its "Year-applying-for" attribute. This step primarily

involves the selection of one reviewer from each of two classes (FACULTY and

74

ADMISSIONS-STAFF) and their creation of REVIEW entities related to the

APPLICATION. If the values of the "Rating" attributes of these two REVIEWS

differs by more than one, the procedure (based upon office policy) requires a third

review. The object is then in the reviewed state, awaiting a decision.

The admissions decision process, beginning in February, is specified in Step 4

(Figure 4-2). Activity 4.2 represents the decision as a GROUP activity whereby all

members of the APPLICATION class are placed into one of three subclasses. Each

of these classes is defined as a subset of APPLICATION, and each subset definition

refines the value classes of several attributes of APPLICATION. For example, the

class ADMITTED (Figure 4-7) refines the APPLICATION attribute "Letter,"

which is a member of class LETTER, to "ACCEPTANCE-LEITER," which is a

(member ofa) restriction of class LEITER. Similarly, the APPLICATION attribute

"Decision" is defined as a member of the (NAME) class DECISION; the definition

of the ADMITTED class refines the value of the "Decision" attribute to the specific

value "admitted."

The GROUP decision creates three possible processing paths, all of which

happen to diverge at the termination of Step 4. Those applications that have been

rejected end this step in state done; no further processing is required. No further

processing is possible on waitlisted applications until April 15 (Event 8); they end

Step 4 back in state reviewed. No further processing is possible on admitted

applications until the applicant returns an acknowledgment; until then, the

application is in state admitted.

The remainder of the main line is straightforward, specifying the limited

processing involved with applicants acceptance or rejection of the admissions offer

and subsequent archiving of the records after the new freshman class matriculates in

September.

75

State reviewed
Event 4: February 20, Year-applying-for

4.1 Calculate Scholastic-Index
4.2 Group APPLICATIONS into {ADMITTED, REJECTED, WAIT-LISTED}
4.3 Create Letter
4.4 Send Letter
where Decision = "admit" end in admitted
where Decision = "reject" end in dona
where Decision = "waitlist" end in reviewed

State admitted
Event 5: Receive Reply

5.1 Create ADMITTED.Acknowledgment
5.2 Send ADMITTED.Acknowledgment
5.3 where Acceptance • "refuse" add

5.4 Send E3 to Financial-Aid
end in dona

5.5 Send AAC to Financial-Aid
end in accepted

State accepted
Event 6: July 15, Year-applying-for

6.1 Send ADMITTED to MIT-OFFICES(Name="Freshman-Advisory")
end in coming

State coming
Event 7: September 30, Year-applying-for

7.1 Send ADMITTED.E3 to MIT-OFFICES(Name•"Freshman-Advisory")
7.2 Archive each APPLICATION
end in done

State reviewed
Event 8: April 15, Year-applying-for

8.1 Group WAIT-LISTED into {ACCEPTED, REJECTED}
8. 2 Create Letter ·
8.3 Send Latter
where Decision • "reject" end in done
where Decision • "admit" end in admitted

Timing constraints:
1. Evant 2 < Event 4

Quantitative Information:
Procedure statistics:

Objects: 4500
Variations:

1. 71
2. 15X

Branching:
Step 4 -+ admitted: 44X
Step 5 --+ accepted: 50X

Fiaure 4-2: Main Lina, cont.

The only timing constraint specified represents the fact that all final application

76

materials must be in (Event 2) before the time for the admissions decision (Event 4).

Violation of this constraint constitutes an exception, whose handling (if not the

default action) is specified in the Exceptions section later in the specification

template. The quantitative information presented in this includes several basic

statistics: the total (average) number of objects in the procedure at any time; the

percentage of objects to which each variation applies; and the average probability of

important branch points in the main line.

The admissions procedure has several exceptions and two variations defined

(Figure 4-3). The one timing constraint defined earlier gives rise to an exception

when violated; the only action required in this case is the sending of a letter to the

applicant, indicating that he is late in getting in some materials. Two application­

specific exceptions are specified. (All other application-specific exceptions are

therefore handled via the default mechanism.) The "unable to verify" exception to

Activity 1.1 (a VERIFY) is handled by sending a letter and terminating the procedure

for that application; receipt of a new preliminary application with all the needed

information will initiate .the procedure de novo. The second exception specified

involves the lack of a check for the application fee with the application, which gives

rise to another "unable to verify"; this results in a letter to the applicant but

otherwise does not affect processing.

One general procedure exception is specified, in particular a cancellation where

Event 4 (the date for decision) has occurred. (Again, cancellation before that time,

since it is not specified, results in the default action for cancellation, namely

termination of the procedure for that object) The processing specified is simply the

sending of a letter and subsequent termination.

Two variations are specified in the admissions example: "early decision" and

"foreign." The former involves those applicants who ask on their applications for

77

Except ions:
Timing constraint:

1. Send LATE-LETTER
Activity-specific:

1.1 Unable to verify:
1.1 Send Preliminary.Problem-letter to Student
1. 2 Terminate

2.1 Unable to verify:
1.1 Send Check-latter

General:
Cancellation:

Variations:

where > Event 4
1.1 Send CANCEL-ACKNOWLEDGMENT
1.2 Terminate

1. where Early-decision • "T":
add:

State reviewed
Event 9: November 30, Year-applying-for - 1

9.1 Calculate Scholastic-Index
9.2 Group APPLICATIONS into ADMITTED, DISCOURAGE
9.3 Create Letter
9.4 Send Letter
where Decision = "admit" end in admitted
end in reviewed.

replace:
Event 3: November 20, Year-applying-for - 1

2. where Foreign • "T":
delete:

add:

Event 1
Step 1

State null
Event 10: Receive Preliminary

10.1 Send Preliminary to MIT-OFFICES(Name•"FSO")
end in wait-FSO-ok

State wait-FSO-ok
Event 11: Receive Preliminary.FSO-reply

11.1 Verify Preliminary
11.2 Create APPLICATION
11.3 Select Interviewer from INTERVIEWERS
11.4a Send Final-application-forms
11.4b Send Interview-report to Interviewer
End in waiting

replace:
Event 3. January 31, Year-applying-for

Figure4·3: Admissions Procedure, cont.

this treatment; the latter is required for those applications received from outside

78

North America. Since both of these conditions are a priori attributes of the focal

objects, they are treated as variations.

The early decision variation adds one event/step unit and replaces one event

Event 3 is the date upon which the application review process is begun (Step 3); in

this variation that event specification is changed from January to November. The

addition of Event 9 and its associated Step provides the mechanism for specifying

the early decision process, which begins at the end of November (vs. February for

the normal decision process). Note that the event is a transition from state reviewed,

so that the variation provides two possible exits from that state: the normal, main

line one and the new one. The decision process in Step 9 leads to either state

admitted or reviewed in both cases the application rejoins the main line for further

processing.

The foreign variation involves the deletion of the initial event/step unit and its

replacement (by addition) by two units: the first in which the preliminary

application (in this case a FOREIGN-PRELIM, a restriction of PRELIMINARY­

APPLICA TI ON-CARD) is sent to the Foreign Student Office for approval, and the

second triggered by receipt of that approval and rejoining the main line. The only

other change required by this variation is in the date of the review process, which is

started later than would be the case for non-foreign, main line applications.

79

Environment

Organizational Context

Define Instance of ORGANIZATION
Address = "77 Massachusetts Avenue

Cambridge, MA 02139"
CEO • "President"
Name • "MIT"

Organization Hierarchy
Name
MIT-Corporation
Office-President
Office-Chancellor
Office-VP-Admin
Office-DSA
Financial-Aid
Career-Planning
Registrar
Freshman-Advisory
Foreign-Student
Cashier
Admissions

Parent
None
MIT-Corporation
Office-President
Office-President
Office-Chancellor
Office-VP-Admin
Office-VP-Admin
Office-Chancellor
Office-DSA
Office-DSA
Office-VP-Admin
Office-VP-Admin

Suoeryisor
Chairman
President
Chancellor
VP-Admin
Dean-Student-Affairs
Director-Finaid
Director-CPP
Registrar
Chairman-FAC
Director-FSA
Comptroller
Director

Name
Personnel Hierarchy

·Organizational-Unit Reoorts-to Current-holder
President
Chancellor
VP-Admin
Director

Office-President Chairman
Office-Chancellor President
Office-VP-Admin President
Office-Admissions VP-Admin

MIT-EMPLOYEE is INTERNAL-EMPLOYEE

MIT-JOB is ROLE

MIT-OFFICE is INTERNAL-ORGANIZATIONAL-UNIT

External Context

APPLICANT is PERSON

EDUCATIONAL-COUNCIL is PERSON

REGISTRANT is APPLICANT

SCHOOL is ORGANIZATION

P. Gray
W. Rosenb11th
J. Wynne
P. Richardson

Figure4·4: Admissions Office Environment

80

Internal Context

AA = ADMINISTRATIVE-ASSISTANT

ADMINISTRATIVE-ASSISTANT is ADMISSIONS-STAFF

ADMISSIONS-STAFF is MIT-EMPLOYEE

ADMITTED is APPLICATION

APPLICATION is RECORD

DISCOURAGE is APPLICATION

EVALUATOR is MIT-JOB

REJECTED is APPLICATION

REVIEWER is MIT-ROLE

WAIT-LISTED is APPLICATION

AAC

ACCEPTANCE-LETTER

ACKNOWLEDGMENT

CB-LETTER

CB-SCORE

CHECK

CH-LETTER

E3

FINAL-APPLICATION-FORM

Documents & Communications

FOREIGN-PRELIM is PRELIMINARY-APPLICATION-CARD

INTERVIEW-REPORT

LATE-LETTER

LETTER

LETTER-REPLY

Figure4-5: Internal Context

81

PRELIMINARY-APPLICATION-CARD

PROBLEM-LETTER

RECOMMENDATION-FORM

REVIEW

SCHOOL-REPORT

SEVENTH-SEMESTER-GRADE-REPORT

S-S-G-R = SEVENTH-SEMESTER-GRADE-REPORT

ACCEPTANCE

DECISION

GRADE

RATING

Names

Figure 4·6: Internal Context, cont.

82

Definitions

AAC is DOCUMENT
Refers: APPLICATION

ACCEPTANCE is NAME
{accept, refuse}

ACCEPTANCE-LETTER is LETTER
where Result • "admit"
Reply: LETTER-REPLY

ACKNOWLEDGMENT is DOCUMENT
Refers: APPLICATION
Text: TEXT (common}
To: Refers.Student

ADMINISTRATIVE-ASSISTANT is ADMISSIONS-STAFF
where Title • "AA"

ADMISSIONS-STAFF is INTERNAL-EMPLOYEE
Name: NAME
Job: ROLE (multiple)

ADMITTED is subset of APPLICATION
Acceptance: Letter.Reply.Answer
Acknowledgment: ACKNOWLEDGMENT
Decision: "admit"
Letter: ACCEPTANCE-LETTER

APPLICANT is PERSON
Address: ADDRESS
Application: APPLICATION
Birthdate: DATE
High-school: SCHOOL
Id#: SOC-SEC-NO (unique)
Name: TEXT

Figure 4·7: Definitions

83

APPLICATION is RECORD
Address: Refers.Address
CB-letter: CB-LETTER (optional)
Check: CHECK
Check-letter: CH-LETTER (optional)
Chem/physics: BOOLEAN
Constituents:

Answer: Letter.Reply.Decision
Boards: CB-SCORE (multiple)
Forms:

Evaluation-forms: RECOMMENDATIONS (multiple)
Final-application: FINAL-APPLICATION-FORM
Secondary-school-report: SCHOOL-REPORT

Interview-report: INTERVIEW-REPORT
Preliminary: PRELIMINARY-APPLICATION-CARD
S-S-G-R: SECONDARY-SCHOOL-GRADE-REPORT
Transcript: TRANSCRIPT

Decision: DECISION
Early-decision: BOOLEAN
Faculty-review: REVIEW
Foreign: BOOLEAN
Interviewer: Interview-report.Interviewer
Letter: LETTER
L-list: LAUNDRY-LIST
Minority: BOOLEAN
MITID: Student.Id#
Name: Refers.Name
Refers: APPLICANT
Scholastic-Index:

S-11: NUMBER
S-IZ: NUMBER

School: Student.High-school
Staff-reviewt: REVIEW
Staff-review2: REVIEW (optional)
Student: Refers
Year-applying-for: YEAR

CANCEL-ACKNOWLEDGMENT is DOCUMENT
Refers: APPLICATION
Text: TEXT
To: Refers.Student

CB-LETTER is DOCUMENT
Refers: APPLICATION
Text: TEXT
To: Refers.Student

Figure4-8: Definitions, cont.

84

CB-SCORE is DOCUMENT
From: College-Board
Id#: TEXT (unique}
Refers: APPLICATION
Score: (multiple)

Score: NUMBER
Test: TEXT

CHECK is DOCUMENT
Refers: APPLICATION

CH-LETTER is DOCUMENT
Refers: APPLICATION
Text: TEXT (common}
To: Refers.Student

DEC IS ION is NAME
{admit, reject, wa1tl1st}

DISCOURAGE is subset of APPLICATION
Decision: "Discourage"

EDUCATIONAL-COUNCIL of PERSON
Name: TEXT
Address: ADDRESS

E3 is DOCUMENT
Refers: APPLICATION
Same: Address,Faculty-review,lnterviewer.Name,Name,School,

- Staff-review1,Staff-rev1ew2

FINAL-APPLICATION-FORM 1s DOCUMENT
From: Student
Payment: CHECK
Refers: APPLICATION

FOREIGN-PRELIM is PRELIMINARY-APPLICATION-CARD
where Foreign • "T"

FSO-Reply: FSO-REPLY

FSO-REPLY is COMMUNICATION
OK: BOOLEAN
Refers: FOREIGN-PRELIM

INTERVIEW-REPORT is DOCUMENT
Evaluation: EVALUATION
Interviewer: EDUCATIONAL-COUNCIL
Rating: EVAL-SCORE
Refers: APPLICATION

Fi1ure4·9: Definitions, cont.

85

LATE-LETTER is DOCUMENT
Refers: APPLICATION
Text: TEXT
To: Refers.Student

LAUNDRY-LIST is DOCUMENT
Refers: APPLICATION
Text: TEXT
To: Refers.Student

LETTER is DOCUMENT
Body: TEXT
Provisional: not(Refers.Chem/phys1cs)
Refers: APPLICATION
Result: Refers.Decision
To: Refers.Student,Refers.School,Refers.Interv1ewer

LETTER-REPLY of DOCUMENT
Answer: REPLY
From: Refers.Student
Refers: ACCEPTANCE-LETTER

MIT-EMPLOYEE is INTERNAL-EMPLOYEE
Id#: TEXT (unique)
Name: TEXT
Office: MIT-OFFICE
Role: ROLE
Supervisor: MIT-EMPLOYEE
Title: TEXT

MIT-OFFICE is INTERNAL-ORGANIZATIONAL-UNIT
Name: TEXT (unique)
Parent: MIT-OFFICE
Supervisor: MIT-EMPLOYEE

PRELIMINARY-APPLICATION-CARD is DOCUMENT
From: Student
Refers: APPLICATION
Same: Address,Age,Foreign,High-school,Name,Year-apply1ng-for

PROBLEM-LETTER is DOCUMENT
Refers: PRELIMINARY-APPLICATION-CARD
Text: TEXT
To: Refers.Student

RATING is NAME
NUMBER where > 4 and < 11

Figure4·10: Def1n1t1ons, cont.

86

RECOMMENDATION-FORM is DOCUMENT
Evaluating: Refers
Evaluator: EVALUATOR
From: Evaluator
Recommendation: TEXT
Refers: APPLICATION

REGISTRANT is ADMITTED
where Acceptance = "accept"

REJECTED is subset of APPLICATION
Decision: "reject"

REPLY is NAME
{accept, refuse, defer}

REVIEW is COMMUNICATION
Comments: TEXT
Rating: NUMBER
Refers: APPLICATION
Reviewer: REVIEWER

REVIEWER
merge members of FACULTY, ADMISSIONS-STAFF

SCHOOL-REPORT is DOCUMENT
From: Student.High-school
Eval-score: NUMBER
Evaluation: EVALUATION
Refers: APPLICATION
Student: Refers

SCHOOL is ORGANIZATION
Address: ADDRESS
Applicants: Invert APPLICANTS on High-school
Guidance-counselor: EMPLOYEE
Name: NAME

SEVENTH-SEMESTER-GRADE-REPORT is DOCUMENT
Copy: Name
Refers: APPLICATION
Report: TEXT
To: Refers.School

WAIT-LISTED
Subset of APPLICATIONS
Decision: "waitlist" {common)

Figure 4· 11: Definitions, cont.

87

4.2 An Example Function

Figure 4-12 is a simple example of the kind of structuring mechanism provided

by the function template. It represents the sponsored research administration

function of the MIT Office of Sponsored Programs. The function's resource is the

class of sponsored research programs, and a particular assistant director is

responsible for each program. The resource is initialized by receipt of a

PROPOSAL object, which invokes the procedure named "Proposal-negotiation."

(The procedures, as well as the environment, are not shown here.) Once a program

is initiated (the initiating procedure is terminated), there is one report that is

required to be received during the management phase of the function: a monthly

financial report (from the accounting office). The procedure "Financial-reporting"

is invoked upon receipt of the report and the procedure "No-financial-report" is

invoked if the report is not received on schedule.

Three "other events" are defined for this function, each of which (by

definition) is a normal, expected event but without any regular scheduling. F.ach

event (receipt of purchase or travel requests for expending the funds available in the

account, and receipt of a notice changing some attribute of the program) invokes the

named procedure. Finally, termination is invoked when the AUDIT entity (a final

report from the accounting office) is received, and the named procedure is invoked

The OSP function description also includes quantitative information concerning the

numbers of programs and people involved, as well as average frequencies of the

"other events" for the class of resource being managed

88

- ------- --------

Office of Sponsored Programs

Function Sponsored-Research-Administration

Resource: SPONSORED-RESEARCH-PROGRAMS

Responsible: AD-Resp

Initialization: Receive PROPOSAL: Proposal-negotiation

Required reports received:
1. Monthly: FINANCIAL-REPORT: Financial-reporting: No-financial-report

Required reports generated:
none

Other events:
1. Receive PURCHASE-REQUISITION: Process-PR
2. Receive TRAVEL-REQUEST: Process-TR
3. Receive CHANGE-REQUEST: Change

Termination: Receive AUDIT: OSP-Terminating

Quantitative Information:
Number of resources: 800
Number responsible: 11
Number of personnel: 20
Frequencies:

1. 200/mo
2. 30/mo
3. 10/mo

Figure4·12: OSP Function Specification

89

Chapter Five

Office Procedure Analysis Using OSL

We hypothesized and have found that one of the primary uses for OSL is as a

tool for assisting in the process of office procedure analysis. Perhaps the most

important criteria for any analysis methodology are that it be both leamable and

usable. The purpose of developing such techniques is to short-circuit to some extent

the process by which an analyst develops his intuition and skills. An analysis

methodology. by providing a number of guiding principles and rules of thumb

based upon them, incorporates much of the knowledge about the office

environment that would otherwise need to be acquired through extensive

experience in office systems analysis. These guidelines can also streamline the

analysis process by focusing the analyst's efforts in a manner that has proven to be

most effective; it thereby reduces his confusion about the most efficient way to

proceed. Further, adherence to a common approach provides longer-term

advantages to an analyst as well as his organization. Repeated use of a methodology

allows it to be tuned to the specific needs and idiosyncrasies of an organization. It

also can provide for consistency among analysis staff members, reducing training

and allowing for more effective integration of systems designed for different parts of

the organization.

We have elucidated in previous Chapters the framework and premises that

underlie OSL. This Chapter describes an analysis methodology that we have

developed, based upon those premises, concepts. and structures, to provide

guidance for the analyst in developing his understanding of an office and

constructing an OSL description of it

90

5.1 Context

As discussed previously. OSL is built upon a particular model of offices and

their operations. While it cannot be expected to fit all offices well (or even any

offices exactly), that model serves as an overall framework for thinking about and

describing the office. The major concepts of this model - functions managing

resources, procedures processing objects, classes as collections of entities, object

orientation rather than artifact counting, abstractions of implementations - provide

the starting point for approaching the office and beginning to write the specification.

Indeed, our approach forms a major underpinning of, and therefore shares many

principles with, OAM, an Office Analysis Methodology developed in parallel with

this work [48]. When constructed in conjunction with OAM. an OSL description of

an office can help the analyst understand the structure of the office he is studying

and assist him in organizing both his interviews and his writeup. (OAM

incorporates guidelines for addressing the overall organizational analysis. As well as

the technical issues of office procedure analysis with which we are concerned here,

OAM pays special attention to a number of related areas of concern, including

project planning, behavioral and organizational issues, interview techniques, and

documentation standards. The OAM writeup format. the outline of which is shown

in Figure 5-1. illustrates its common structure with OSL and its reliance on most of

the OSL design premises. In practice (as described in Chapter 6), users have found

it relatively easy to derive an English (OAM) writeup from their OSL descriptions of

the office.)

5.2 OSL Skeletons

The use of OSL as a tool in the analysis process is based upon the concept of an

OSL skeleton. A skeleton is a description of an office using the OSL structure but a

91

I. Introduction

A. Mission

B. Organization

C. Overview of functions, resources, procedures, and objects

II. Procedure descriptions

A. For each procedure:

1. Environment

2. Inputs and outputs

3. Core procedure steps

4. Major alternate procedure paths

5. Databases

6. Local exception handling

7. Quantification

III. General exception handling

IV. Collected database descriptions and document samples

FigureS-1: OAM Writeup Outline (from [48
)]

combination of abbreviated OSL and concise English for describing the content of

the specification. The key notion here is to provide only as much information as is

necessary at any stage of analysis, but in such a format that the need for and

organization of the next level of data can be incorporated in an obvious and

compatible manner. With this increasing complexity of information content comes

the need for increasing formality. Therefore an initial skeleton would include

describe events with phrases and steps with sentences; these descriptions would be

expanded at later stages in the analysis process into the formal syntax of OSL event

and activity specification.

A skeleton therefore forms an important bridge toward the ultimate OSL

92

description. By requiring the analyst to describe the broad outlines of the procedure

in the OSL structure as soon as he begins organizing his interview notes, the

skeleton serves as both an enforcing mechanism for the OSL approach and a tool for

eliciting further detail for expansion into the final formal description.

Figures 5-3 and 5-2 present an example of an OSL skeleton used in deriving the

Admissions Office example in Chapter 4. In the environment skeleton (Figure 5-3),

only the important classes are named, each with an identification of its entity type.

A few attributes are included, but only the class APPLICATION, which is the focal

object of the procedure, is characterized by several attributes. In general, the

environment part of an OSL skeleton (as with that of a full specification) includes

only enough information to explain the operational part. The latter, in this example

(Figure 5-2), consists of only the procedure name, the focal object, the responsible

role, and an outline of the main line. Events are described as phrases, either already

in OSL syntax (if convenient for the analyst) or readily translatable to it. Each step is

identified as a short sentence that describes the general nature of the required

processing.

5.3 Building the Specification

The starting point of the office specification is the set of functions that the

office is (completely or partially) responsible for implementing, and the resources

that those functions manage. The analyst's initial interview with the office manager

provides sufficient information to start the construction of the organizational

context section of the environment part of the initial skeleton, and to sketch out the

major entities and classes of the internal context. It will sometimes be the case that

there already exists some organizational description that can be used in part or in

whole; such a description would come from a previous OSL description of one or

93

MIT Admissions Office

Procedure Process-applications

Object: APPLICATION

Responsible: Director

Main-1 ine:

State null
Event 1: receive preliminary application

1. Send out application material
end in waiting

State waiting
Event 2: Receive final application

2. Maintain records about application
end in complete

State waiting
Event 3: January review

3. Get the applications reviewed
end in reviewed

State reviewed
Event 4: February roundup

4. Decide whether to admit applicant and let him know
end in admitted

State admitted
Event 5: Receive acceptance of admission offer

5. Process an addition to freshman class 11st
end in coming

State coming
Event 6: September registration

6. Clean out the files
end in done

FigureS-2: Admissions Office Operations Skeleton

more parts of the organization. Otherwise, the analyst should sketch out a sufficient

subset of the organization to ensure a useful context for the office description. The

organization and personnel hierarchies can be placed in the skeleton, starting with

the office being described and its director and proceeding upward Any other

offices in the organization that are known to be referenced can be added, as well as

their branches on the hierarchy.

94

APPLICANT is PERSON
High-school: SCHOOL

APPLICATION is RECORD
Refers: Student: APPLICANT
Year-applying-for: YEAR
Constituents:

Final-application: FINAL-APPLICATION-FORM
Secondary-school-report: SCHOOL-REPORT
Evaluation-forms: RECOMMENDATIONS (multiple)
Transcript: TRANSCRIPT
Interview-report: INTERVIEW-REPORT
Boards: CB-SCORE (multiple)

Preliminary: PRELIMINARY-APPLICATION-CARD
Reviews: REVIEW

REVIEWER
merge members of FACULTY, ADMISSIONS-STAFF

SCHOOL is ORGANIZATION
Applicants: APPLICANT

ADMISSIONS-STAFF of INTERNAL-EMPLOYEE

PRELIMINARY-APPLICATION-CARO of DOCUMENT

FINAL-APPLICATION-FORM is DOCUMENT

CB-SCORE is DOCUMENT

INTERVIEW-REPORT of DOCUMENT

SCHOOL-REPORT is DOCUMENT

LETTER is DOCUMENT

CHECK is DOCUMENT

FigureS-3: Admissions Office Environment Skeleton

In understanding the mission of the office, the analyst also attempts to identify

the major functions and resources. as well as the important procedures of each

function. For the operational part of the specification, the result of the initial

interview should be a reasonably complete template for each function, with the

procedures and events identified and described in skeleton form. E.ach set of

resources is represented as a chm in the environment, and each function constitutes

a major portion of the operational specification. The function template serves as a

95

guide, indicating what kinds of procedures might be used to carry out the

management of the resource. The initiating procedure, for example, is identified as

the one that causes the resource to be created, or is the response to the resource first

being "noticed" by the office; if the latter, it is probably the case that some other

office or an outside party actually creates it. The terminating procedure is the one

followed when the resource is no longer of interest (destroyed, sent elsewhere

permanently, etc.) As the names of the procedures are placed in the skeleton, their

focal objects are identified and noted in the environment; the objects, if they are not

the same as the resource of the overriding function, are related to that resource in

some way, and this relationship is also defined in the skeleton.

During the first round of staff interviews, the analyst identifies all the entities of

significance to the office. their important attributes, and the ways in which they are

related to each other (as expressed in class and attribute derivations). It will usually

be up to the analyst to bring his perspective and expertise to bear upon the situation

in order to define the more abstract entities; most interviewees will tend to describe

their work in terms of the forms and other documents with which they work, rather

than the objects to which those documents refer. The feature of OSL that requires

that all documents be defined as referring to some other, more abstract, object

forces the analyst to confront this issue early in his study. As we have explained in

earlier chapters, an OSL specification deals primarily with abstractions rather than

implementations. For example, most forms are artifacts; their real purpose is to

communicate information about some other entity. Thus, the way to think about

documents is to ask what the information contained in it is about; the answer to the

question should be some abstract entity that is the object of some procedure or the

resource managed by a function.

Temporary files are almost always artifacts also; usually they are physical

implementations of procedure states. Recall that a state represents the situation in

96

which processing of the object cannot continue until some event beyond the office's

control occurs. A temporary file is often used to store documents while waiting for

the event Such information is best represented as procedure states. Permanent files

should remain explicitly described as entities of type FILE or ARCHIVE. as

appropriate.

The goal of the staff interviews is to develop an understanding of the main line

of each procedure, as well as the important variations. Constructing the skeleton

descriptions of these pieces serves as means of organizing the analyst's impressions

and allowing him to develop a coherent picture of the office and its operations. It

also serves as a starting point for resolving inconsistencies, filling in incomplete

information, and investigating exceptions.

A rough guideline for defining the main line of a procedure is to determine the

history of the most common case in which everything goes right If a somewhat

different path is taken by a well-defined subset of objects, then that path is either a

variation on the main line, or a separate procedure entirely; the distinction is based

upon the amount of overlap, and is a matter of judgment The events that separate

steps in the procedure are, as described in Chapter 3, ones over which the office has

no control. The focal object "rests" in some state until the event triggers further

processing. Thus, waiting for a communication from outside, or waiting for a

particular day, are examples of situations that would be reflected as procedure

states.

It is important that the analyst not become overwhelmed with details and lose

sight of the essential structures. By allowing the development of a skeleton to guide

his information gathering, the analyst is encouraged to write down initially only

what is necessary to describe the important ideas; the details are added later in the

predefined structure. In general, development of the environment and operations

97

parts proceed in parallel, with the need to refer to entities (and their relationships) in

the operational specification driving the construction of the appropriate classes and

attributes in the environment specification. Once the main-line and variation steps

are defined, the procedure description is completed in as much detail as is desired.

Steps are broken down into activities, and the partial ordering of those activities

defined. The list of exceptions for each activity should be examined to detennine

whether a non-default handler needs to be described for any, and any other

exceptions that are identified should be described. As activities are described, any

references to entities and attributes are again checked against the environment, and

any needed additions are made. When the operational part is complete, the

environment should contain descriptions of everything that is referenced. The

environment is then be checked for consistency, and any needed name classes

defined.

When describing the environment, the analyst should rely on the buiJt-in entity

types. By defining base classes with a suitable set of attributes, it should be possible

to model most of the entities of interest in the office environment It may, however,

be necessary to invent other types (i.e., use the entity type ENTITY); such

inventions, though, should only be used as a last resort.

Entity definitions should be nonoverlapping; that is, only one class

specification should define an entity. It can often be difficult, particularly in the

case of an abstract entity for which no obvious concrete analog exists, to decide what

is part of the entity and what is a related, but independent, entity. Consider, for

mstance, the entity GRANT /CONTRACT (of type AGREEMENT) in the OSP.

This is an abstract entity (which has aB>ciated with it several documents, including

one usually called the "grant" or "contract"). It is neither a proposal (which leads to

it) nor a sponsored research program (which it defines), though it is obviously

related to both. GRANT /CONTRACTS is therefore specified as a separate base

98

----- ---~--------------~

class, and is related to both proposals and research programs through several

attributes of each.

By the time the second round of interviews is finished, it a virtually complete

OSL description of the office is developed. This is then examined for any fu1ther

missing information, which is obtained in further staff interviews or in the final

interview with the office manager.

99

Chapter Six

Development Methodology and Field Studies

The development of OSL has been an iterative process, involving studies of

office procedures and refinement of the language concepts and features. In this

Chapter we describe the design methodology and the development of the key

concepts underlying OSL. We also describe several field studies conducted by

industry personnel using OSL, discuss their results and evaluate OSL in light of

their experiences.

6.1 Case Studies

The initial data used to develop the OSL structure and vocabulary was obtained

from a number of external sources, primarily those noted in the "Related Work"

section of Chapter 2. In particular, a number of researchers trying to understand

office applications made available case studies particularly those from Xerox

PARC [41] and Wharton [57]. However, rather than rely upon published reports, we

derived the bulk of the data used in developing the first version of OSL from an

ongoing series of formal office case studies, which are an important component of

this and related research. We initially conducted a series of about fifteen studies at

MIT, ranging from purchasing, admissions, travel, student accounts, and payroll to

academic department headquarters, a graduate administrative office, and a co­

operative program administrative office [29]. Later studies, performed with the

benefit of early versions of OSL and its underlying approach, included offices

concerned with sponsored research administration [44), a physical plant dispatching

operation [56], and the MIT Industrial Liaison Office (55]. In addition, our case
""

100

study senes has included examinations of the administrative operation of a

commercial television station [24) and the regional sales office of a manufacturing

firm [46]. Less formal studies include the international division of a major Boston

bank [26) and a large British insurance broker [27]. Finally, we have had access to

about 30 case studies provided by a half-dozen cooperating firms [47).

Although our data describes a number of different office situations, we have

concentrated on the semi-structured kinds of procedures that provide the basis for

the OSL constructs. It is clear that functions accounting for the highest volume of

work in typical office situations would benefit most from the development of

automation tools. (Note that those business functions that occur in the greatest

volume (accounting, inventory, etc.) were the first to be analyzed and automated.)

As we noted in Chapter 3, it is the operational and, to a lesser extent, the managerial

control functions (as categorized by Anthony [l]) rather than the strategic planning

functions, which are of the greatest immediate interest.

Analysis of the case study data resulted in the development of the outlines of

the procedure and function models underlying OSL The basic premises of our

approach were also determined by these studies: that most office procedures are

fundamentally simple processes, obscured by implementation detail and

disorganized exception-handling; that office specifications should be couched in

terms of natural primitives of office work, and should suppress irrelevant detail; and

that specifications should be written in a well-defined language, in which a given

description has a single, unambiguous meaning.

The key to the OSL development process has been the identification of

common and recurring structures in the case studies, and the embodiment of those

structures in various features of the language. Clearly, such analytic data is most

conducive to the development of lower-level models; the number of (lower-level)

101

activities that can be identified in any set of examples is much greater than the

number of (higher-level) functions. This inherent problem - abstracting effective

models from limited examples - is reflected in OSL's detailed activity taxonomy,

its less complex procedure model, and its very simple function model.

Concomitant with the development of the language has been the development

of the methodology, described in Chapter 5, for analyzing offices and constructing

specifications in OSL. As noted, this has been an iterative approach; the analysis of

case studies, parallel evolution of language and analysis methodology, and

application to new case studies forms the design loop.

6.2 Field Studies

OSL is a tool that incorporates our particular perspective on office automation.

In order to evaluate its utility, its ease of learning, and the validity of our overall

approach. we conducted a set of field studies with a number of cooperating firms.

The participating organizations evinced a willingness to participate in a research

project, with the risks that such an effort entails. The individuals involved agreed to

try our approach and techniques, both to experiment with new tools that may assist

them in doing their jobs better, and to explore the benefits that may accrue from

presenting their specific problems to us as case studies upon which further research

will be based They also agreed to provide us with evaluations of how effective our

materials are and how they might be changed. In these studies we presented two

21h-day training seminars covering an earlier version of OSL as well as OAM (the

office analysis methodology, described in Chapter 5, whose development was an

outgrowth of the OSL research effort) to personnel from the participating

companies. They then returned to their organizations to apply our techniques to

operational offices there, and to provide us with feedback on their experiences. The

102

current version of OSL, as presented in Appendix A, resulted directly from the

feedback received during the courses, as well as analysis of the field test results.

Suggestions for additional research directions that were elicited from these

experiences are discussed in Chapter 7.

Approximately 40 people representing seven firms attended courses designed

to present both an appreciation of our approach to office automation, and OSL (and

OAM) as means of implementing that approach. The firms include three insurance

companies (called below "A," "B," and "C"), a research laboratory ("D"), a

chemical company ("E"), a consumer products company ("F"), and an industrial

products manufacturer ("G"). The attending personnel had a wide variety of

training and backgrounds, including data processing systems analysis, industrial

engineering, line management, secretarial, and shop foreman experience.

Seven OSL studies were conducted and submitted to us for evaluation; the sites

of these studies include:

- a marketing support office in company "E" (7 procedures)

- a manufacturing production co.ntrol office in company "E" (2
procedures)

- an engineering support office in company "E" (1 procedure)

- a large industrial engineering organization in company "F" (-20
procedures)

- a graduate school admissions office (performed independently by a
participant from company "D") (3 procedures)

- a volunteer organization's membership management function (also
performed by a company "D" employee) (3 procedures)

- a documentation library in company "A" (5 procedures)

103

In addition, groups from companies "A," "D," "E," and "F" sent written

evaluations of their experience using OSL. Personnel from companies "B" and "C,"

who were unable to conduct studies in-house at the time the courses were

concluded, also provided valuable verbal reports of their impressions of OSL and its

potential utility to them. Company "G" decided after attending the training course

not to proceed with the field trials. Company "B" is currently conducting a study

usingOSL

6.3 Results

Overall, the courses and studies have been quite fruitful in helping us

understand and enhance our material. While some inadequacies (not unexpectedly)

have appeared, we have been gratified by the response of those undertaking studies.

Most participants found our approach sensible and easy to understand. OAM was

received well, particularly by those with little or no experience in office or systems

analysis. OSL is more difficult to teach and learn; as with any formal language, use

is the best teacher. The reaction of those who have used it, however, has been

positive, particularly in the way that it structures the analysis process and organizes

the documentation at various stages of a project In fact, several users have used

several levels of OSL skeletons as replacements for, rather than in addition to, the

draft English writeups recommended by OAM.

The major value of OSL to its users has been in its approach to office analysis,

which also underlies OAM. The control of complexity provided by initial

concentration on the main line, and subsequent relation of variations and exceptions

to it, has been a useful revelation for many users. Similarly, the concept that

documents are artifacts, and not the key to understanding offices, has been very well

received. Other positive aspects of OSL include its functional approach and its

104

uniform notation. Following are several positive comments from users about OSL

and its approach:

Using OSL is definitely a forcing mechanism keeping descriptions implemcntation­

free. We found, as you have suggested, that basic procedures at OSL level/in OSL tenns

are straight forward - it's the uneven, historically developed implementation that makes

them appear complex. ["A"]

Although the edges are still rough, doing the English description after the OSL was

fairly straight forward. ["A")

'Ibe process of producing the OSL description results in a depth of understanding of

office procedures that goes beyond the final product ["D"]

It is much easier to locate information in an OSL description than in an English one.

r·o")

OAM/OSL is a very thorough methodology, which if faithfully followed should yield

an abundant and detaiJed understanding of"what's supposed to happen." ["F')

Application of the analysis methodology is quite useful in building credibility for the

analyst ["F')

Resulting documents from OAM/OSL (particularly OAM) are useful as training

material. ["F']

Company "E," which made extensive use of the techniques, provided the

following list of advantages to the OSL approach:

- emphasis on "mainline" functions

- function input/output analysis

- interviewing of study office population

- "micro-analysis" level [referring to activities and steps)

- use of a uniform language [by a corporate office automation group)

- addresses interface of functions and [organizational] groups

- transferable skill [from trained analysts to novices]

- good for structured office environments

105

- concept of "artifacts" [documents as not being the focus of office procedure
analysis]

A number of specific shortcomings of OSL and its application methodology

were also pointed out by the field test community. The same firm that provided the

list of advantages above also identified a number of disadvantages to the approach: ·

- time consuming (cost/benefit)

- high level of detail

- unique language (must be learned)

- poor in the unstructured office environment

- does not address people related issues

- "macro-analysis" level

The following comments also illustrate these and similar problems:

The process is too tedious to use broadly. . . . While we recognize that analyst

efficiencies would improve in subsequent studies, we still do not think that we can get the

study period down to an acceptable duration. ["F']

The study results are quickly outdated. ("F1

Resulting documents are too voluminous. ("F']

OSL good for documenting process requirements, but very general. f'F1

We shared OSL descriptions with interviewees because they expressed an interest, but

this confused them. ("A"]

We have some concerns about OAM/OSL limitations because of the functional,

vertical-slice approach as opposed to a process-oriented, through/across functional units
approach. ("A ..]

The description represents the framework. within which decisions are made - the

decision processes themselves are only crudely represented. ["'D'1

Specific problems focused on the use of the language which was quite detailed and

cumbersome. ("E"]

106

An analysis of the approximately 35 procedures submitted by the participants

produced some interesting data about the use of specific OSL features. First, most

procedures included at least two steps; few degenerate procedures were used. A

total of 121 steps/events was defined. Of these events, 74% were specified as

communications events, and all of these were simple "receive" specifications; none

was a non-receipt event or a receipt of a response to a specific request "Time"

events constituted 17% of the event specifications, primarily periodic (monthly,

annualJy, etc.) and a very few relative to some other event Nine percent of the

event specifications were "trigger" events, thatis, based upon explicit command of

someone in the office.

A total of about 450 activity specifications was used. After adjusting for misuse

of activities due to misunderstanding by users, the distribution shown in Figure 6-1.

was obtained

25% CREATE

25 SEND

10 EVALUATE

8 NEOOTIATB

6 VERIFY
4 llEVISI!

3 SEU!CT

3 AllCHJVI!
3 Pl'.R.POKM

3 APPROVE
2 SET

2 INJTIATB

2 Dl!LEJ1!

2 LOO

1 CALCULATE

(1 RFPEAT, GROUP, FILE, IU!TURN

0 ADD, REMOVE, AUOCAlll. N01lFY, ltEI1llGGl!ll, TfllMJNATB

Figure6-1: Distribution of activities used in field stud1ts

Figure 6-2 restates the activity distribution in the four categories of office

operations defined in Chapter 3.

Branching constructions in the main line were never used; in a few cases

107

641
27
4
5

Basic
Dec1s1on
Aggregate
Control

Figure6-2: Distribution of activities by category

alternatives showed up as variations. In general, exceptions were specified where

and as appropriate, while variations were only occasionally noted and not specified

according to OSL syntax. Details were specified only rarely.

One study, the engineering support office, was written only in skeleton format,

without using formal OSL syntax.

The use of built-in entity types in the environment descriptions was fairly

straightforward. Most entities were documents and communications, and often

"referred" to other documents and communications. Heavy use was also made of

persons, roles, organizational units, and employees. More abstract types also

appeared, particularly agreements and records. There was little attempt to define

new types; virtually all entities were defined in tenns of the existing, very general,

built-in entities.

6.4 Evaluation

Ideally. we would like to be able to evaluate separately at least the following

aspects of the field studies:

- the overall effectiveness of our approach to office analysis and
specification

- the applications for which OSL is most and least appropriate

- the utility of the OSL analysis process

108

------~ --------

- the utility of the OSL specification product

- the specific features (especially the activity "verbs" and built-in entity
"nouns") of the language

- the learnability of the language

- the effectiveness of the teaching in the field study courses

- the effects of user background on the utility of the approach and tools

In conducting field tests, rather than controlled experiments, however, it is

generally difficult or impossible to determine the cause of any particular effect

Nevertheless, we have been able to draw a number of significant conclusions from a

combination of debriefings, evaluation by the user community, observation, and

examination of the results of users' efforts.

As we stated in Chapter 2, we expect that OSL should have a variety of uses.

The major ones, of course. are as a tool for an analyst in developing his

understanding and presentation of the office he is studying, and as a means of

communicating requirements to a system architect The field tests have shown quite

clearly that the former goal has been addressed well by the OSL approach. Virtually

all participants noted explicitly that exposure to the functional approach to office

automation was to them the primary value of the exercise. The premises derived

from that philosophy, upon which OSL is based- isolation of the main line, object

orientation, structured analysis and presentation - have generally taken hold in the

participating firms. For example:

We will likely use a composite of methods previously used within our Company with
learnings from [OAM/OSL) plowed in I feel that we have not rejected application of

OAM/OSL but have merely picked off the nuggets from the process which are truly
applicable to our situation. [.. F']

The concept of "mainline" functional analysis vs. traditional job analysis as the

109

important dimension to productivity improvement studies was found to be extremely

useful and has been incorporated into the Office Applications Development Group

(OAD) study approach. Not dealing directly with "artifacts" of the study office, but

focusing on the intent of the documents for identifying alternate ways to enhance

information and/or communication transfer has also been internalized. The concept of a
uniform language to define office activities has become part of analysis techniques and

jargon used by [OAD] to standardize communication between analysts and client groups.
["E"]

We therefore believe that our approach is fundamentally sound and that

further development of the ideas derived from our first principles should be fruitful.

The major problem with the use of OSL as an analysis tool is its extensive detail;

this has proven to be a mixed blessing. While detail is helpful in enforcing rigor

upon the process, in the absence of a clear need for a system design as a follow-on to

the analysis the value of such detail is limited. Several directions for further

research suggest themselves in this context; they and others are discussed in Chapter

7.

The second principal use hypothesized for OSL remains untested We have as

yet had no experience with system design based upon an OSL specification; none of

the participating companies has gone beyond the analysis stage. The synthetic use

of OSL in system design is at heart even more of a creative process than the analytic

use tested in the field studies. It is therefore necessary to examine a significant

number of examples of that synthesis process in order to elicit basic principles of

design upon which a methodology can be based

We do have one relevant design case, however; one of our internal case

studies [55] done with an early version of OAM was used as the basis of a request for

quotations and subsequent vendor selection and system design. While that office is

currently the subject of a post-implementation study, several conclusions are clear.

First. the writeup, based upon the OSL approach. including function and procedure

110

models, was considered by both users and vendors as an excellent description of the

office and its information system support context Second, the system finally

developed was based heavily around a database system, whose data definition

schema had to be developed with a knowledge of the office's functions and

procedures. Had an OSL description been available, it would have served as an

effective base for design of the database (from the OSL environment) and its

transactions (from the OSL operations specification).

While we continue to believe that an OSL-type specification can be of

significant utility as a design tool, full validation of that belief will await further

studies. In particular, we feel that OSL as currently defined does not yet allow for

the expression of sufficient detail to lead directly to a design effort. However, the

structure of an OSL specification does appear to be an effective way of approaching

the problem, and therefore an extended OSL, encompassing lower levels of detail

within the same hierarchical framework, is a plausible approach to a system design

tool. This issue is also discussed in more detail in Chapter 7.

Other uses originally posited for OSL included aid in training new employees

and service as a procedure reference manual. These are examples of the generic use

of OSL as a communications device, through which understanding of office

procedures can be transmitted from those who write descriptions to those who read

them. Results on this score have been limited and mixed One analyst, quoted

above, found that sharing OSL with office personnel caused confusion; another

found OSL very helpful in explaining his understanding of the office to several of

his interviewees. In general, the detailed, formal nature of OSL precludes its ready

understanding by laymen. This conclusion argues for a simpler language, though

such a result would undoubtedly involve serious cost to OSL's utility for its major

purposes. As an intermediate step, the concept of the OSL skeleton, as described in

Chapter 5, was developed from the results of the initial field study. This mechanism

111

----- -- - ---~--- ---

retains the structure of the OSL approach without requiring the formal syntax.

While it was designed as a tool for the analyst to use in building his final OSL

description, the skeleton was found to be very useful in communicating with

interviewees and in substituting, in a number of cases, for the English writeup that is

the product of the OAM process.

The complexity of the language was in fact a recurring theme in the

evaluations. While some of these criticisms are valid, we believe that they overstate

the case. OSL is indeed a formal notation, requiring the precision of usage and

understanding that such a language entails. Though many had some analytical

training, particularly in industrial engineering and DP systems, most of the users in

the field studies had had little or no experience in formal language usage. Thus

some of their troubles stem from being forced to work in an unusually demanding

context after only a three-day training period. As with any complex skill, use of a

formal language is the best teacher. For example, the following comment was

received from a user in the process of the case study:

Just a comment on writing OSL. .. I'm having much less trouble than I expected. In
fact. I'm even enjoying it a little. It's a lot less painful than the English language
description! ["F']

Internal users have found that their second study using OSL is significantly

easier than the first, indicating that learning to use the language well is both possible

and helpful. The only field test user to perform two studies remarked that the

familiarity with the language gained in his first study made a significant difference

in the time spent and the difficulty encountered in his second. Several of the written

reports also indicated the participants' belief that the learning curve had a significant

effect

We might attempt to distinguish problems with usability from those of

lU

------------------- ------ -

leamability; the two concepts are often (and perhaps must be) antithetical. Part of

the users' problems can be ascribed to less than ideal teaching materials. The

development of the course materials and presentations was another iterative proce~.

While we believe that the most recent version of the course is reasonably effective,

we are not yet satisfied that it is the best approach to the subject. More and better

written materials provided before the course, effective problem assignments, and a

more interactive style would undoubtedly serve the users better.

All the complaints about complexity should not be taken at face value,

however. We feel that some of the users' difficulty was due to OSL's in fact

achieving one of its design goals: its use forced analysts to be clear and explicit in

representing their understanding of the office in OSL terms, which required them to

deal with both an approach and a level of precision that was unusual for them. All

users admitted the validity and utility of the approach, if not the precision.

We now tum to the question of OSL's specifics. The OSL specifications

returned to us for evaluation indicated that many of the features were not used,

particularly branching structures and non-main-line specifications (variations.

exceptions, details). Most of the built-in entity types were used and attributes more

or less correctly defined, but features allowing descriptions of complex relationships

in the environment were not in evidence. In general, the environment modeling

examples were typical of unsophisticated, new users. The major failing in the

environment descriptions was the excessive concentration on documents and other

artifacts; the inability to identify more abstract objects is partly a problem in users'

perceptions and partly due to an insufficient quantity of cases to allow us to identify

a larger number of generic office objects and embed them in the language.

The activity set has undergone several changes as a result of the field tests. As

noted in Figure 6-1, by far the most ·common activities used were SEND and

113

CREATE; these were almost always used with reference to some document It is

clear that the language does not go far enough in enforcing our object orientation -

it is too easy for a user to deal primarily with documents and other artifacts. Some

document-based activities in earlier versions were removed from the language to

help prevent this "easy way out," but more work needs to be done to mold the

language to the underlying principles. Further, the large usage of two activities

suggests that further investigation into the nature of those actions would provide

useful insight into their intentions and allow several more precise activities to be

defined. Similarly, the overwhelming use of communications events as step triggers

is certainly a reflection of office realities, but also suggests that further

differentiation by means of intended use or source of the information would lead to

a more useful language.

OSL, as expected, has been found to be of most value in more process-oriented

offices. Since OSL's primary focus has been on office procedures, those offices are

most appropriate for the detailed OSL descriptions. For example:

Also the level of detail precluded the ability to effectively use OSL for the analysis of
an office with many unique functions and procedures; e.g., a staff/decision office

environment with poorly defined procedures and many exceptions and variations. A
more structured office with limited functions and well defined procedure is best suited
for the OSL analysis approach. ("E")

In less structured offices, the skeleton description form has been found to be

quite useful, while a full OSL specification is inappropriate.

A number of features of the current version of OSL and its use, as presented in

this thesis~ were derived directly from results of the field studies. The most

important of these is the notion of the skeleton itself, and its use as an ongoing tool

in the analysis process and the development of the fmal OSL specification. Other

important effects on OSL as a result of the studies included: the elimination of

114

some of the environment modeling mechanisms that were unused due to their

complexity; changes in the activity portfolio; variations in the syntax of the

procedure description; and reorganization of the presentation format of the

environment description to make it more useful as a reference. In general, the

language has been somewhat streamlined to make it more useful for analysis, but it

retains the hierarchical organization so as to provide structure for more detailed

descriptions necessary for system requirements specifications. Finally, the field

studies brought to light a number of important areas for further research, which are

discussed in Chapter 7.

115

Chapter Seven

Summary and Directions for Further Research

OSL has been designed to embody our approach to office automation in the

form of an analysis and description tool for the office analyst It provides both a

framework for the analyst's approach to understanding an office's operations and a

communications mechanism for expressing that understanding. Our work has

focused on the problems of increasing our knowledge of office operations and

embedding that knowledge in OSL; our goal is to make that knowledge more

accessible to analysts who have not had the training or experience to develop an

intuition for their task.

7.1 Summary

In this document, we have described our approach to office systems analysis,

detailed the design of OSL, presented an outline of a methodology for analysis and

specification of office procedures, and reported on field studies of OSL and its use.

At base, we have two fundamental theses. The first is that our functional approach

to office automation, which focuses upon the business goals of an office rather than

its information artifacts and current implementations, is an effective means of

understanding and supporting the "automation" needs of an organization. The

second is that, within this context, an office specification language can be a useful

tool for office analysis, for the design of office support systems, and for

communications among various people interested in the functioning of an office. A

corollary of this thesis is that such a language can be designed and used effectively.

Our efforts have been directed toward the development of an office specification

116

language, along with an associated methodology for its use in office analysis, that

embodies our approach.

Our study of the office domain and the nature of office systems analysis has

elicited a number of principles upon which the design of OSL is based. The

framework provided by these premises, through the OSL structure. vocabulary. and

usage guidelines. is unique in its approach. We have found both in our own

development work and in field tests of OSL that tools based upon this approach can

be and are of significant utility to office analysts in a variety of business situations.

The key distinguishing aspects of our formulation include:

- the functional approach to office analysis, which views procedures as
implementing pieces of functions that may span several parts of an
organization in furtherance of a business-oriented mission, rather than
as inherently necessary or fundamental operations;

- the use of a formal specification language not only as a descriptive tool
but as an analytic one, providing continuing guidance to the analyst
throughout the process of analysis and description of an office;

- the development at sev_eral levels of detail of models of office operations
and the office environment;

- the notion that office procedures are . fundamentally simple, but are
obscured from easy analysis and understanding by special cases,
historical accretions, and exception handling;

- the object-oriented approach to procedure analysis, looking at a
procedure as dealing fundamentally with changing the state of an
(abstract) focal object;

- the concept of an office procedure as the idealized history of an object,
as a set of processing goals rather than strict requirements;

- the belief that forms are not critical to understanding office operations,
that they are merely collections of information about other, more
important and fundamental objects, that in fact they are artifacts that
should be dealt with as implementation details;

117

-------- --- ------

Several major design premises, developed from these principles, have been

implemented directly as specific language features:

1. There exists structure in offices, and there are structures common to
disparate offices that can be used to develop models that are helpful in
the analysis and specification of office operations. This idea has been
implemented in OSL through the use of templates for structuring
functions and procedures, and by the development of models of
functions, procedures, and environments, and taxonomies of activities,
events, and exceptions, that are embedded in the OSL syntax and
semantics.

2. Office procedures are basically simple; apparent complexity can be
explained as special cases historically grafted onto the underlying
procedure. OSL's procedure model implements this notion: the "main
line" identifies the core of the processing requirements and serves as the
point of reference for describing the special cases. Those cases
themselves are further structured into variations, exceptions, and timing
constraints, each of which are described in separate sections of the
procedure template and keyed to specific parts of the main line
specification.

3. Office procedures are not algorithms, nor are they strict rules that must
be followed An OSL procedure represents the normal history of
processing some entity; equivalently, the goal of those executing an
office procedure is to make the result appear as if the nominal procedure
had been followed. The implementation of this idea is embodied in
OSL's notion of a focal object for each procedure, and the procedure
specification as the idealized history of processing the object

4. Documents are not the appropriate focus of office analysis; they are
merely artifacts of the current implementation. OSL and its attendant
methodology enforce this principle by requiring that the analyst identify
and specify the entity to which each document defined in the
environment refers.

118

---------~--- -

7.2 Evaluation ofOSL

Field tests of OSL and its methodology have basically confirmed the utility and

value of our overall approach, while identifying several problems in its current

implementation. We postulated three kinds of uses for OSL: analysis, system

design, and communications among people (analysts, workers, managers, designers,

etc.) concerned with the office's operations. In general, all of our premises have

been of demonstrated utility in office analysis, and most in communication; for the

latter, more development needs to be done on the specific OSL structures. Data on

design utility is extremely limited, though the overall structures and the treatment of

documents as artifacts appear to be helpful.

The major question about the use ofOSL in office analysis appears to be that of

too much detail. Many users found that the level of analysis and specification detail

required for an OSL study was excessive compared to the value of the results. We

believe that some of these criticisms stem from inadequacies in the field tests,

specifically a lack of explicit goals of the participants beyond self-education and

assisting in a research project. Yet there are some possible solutions to whatever real

problems lie beneath the question. The OSL skeleton seemed to satisfy a number of

needs, and further development of that notion would be fruitful. OS L's activity set

needs to be refined, based upon the results of the studies and further research

efforts. The environment modeling facilities could be further streamlined to

eliminate those mechanisms that are confusing and/ or unused Finally. a higher­

level taxonomy of procedure types, functions, and offices could be identified,

replacing some of the modeling effort currently needed with less-costly

classification.

In contrast to its use for analysis, OSL appears to be inadequately detailed for ,

system design. Since we have little hard data on design use it is difficult to

119

determine specific design needs. Our experience does indicate. however. that the

major problem stems from an inability to capture sufficient detail in the

environment and the activity specifications; a system design effort requires. among

other items. that a database be defined and specific information support

requirements for decision activities be described. Several approaches to a more

usefully detailed OSL are possible. The first is to use a full database data definition

language modeling facility for the environment. whether a semantic data model or a

more familiar one, in order to encourage gathering sufficient data to design the

database. However. this approach raises the dangerous possibility that the model

will be driven by artifacts rather than fundamental abstractions. and should

probably only be used by experienced analysts; the value of any semantic data

model, and OSL's in particular, is its elimination of implementation dependencies

from the modeling mechanism.

Design could also be assisted by extending OSL's semantics and formal syntax

to a level of detail below that of activities. This would require further understanding

of the information requirements of each of the OSL activities, once an optimal set

has been determined. We have provided an initial hypothesis as to the requirements

for and nature of this activity set. Further work would be useful both in refining the

membership of that set and in exploring activity semantics to the point at which

defining system support requirements for each is posgble.

Another way in which the design detail problem could be approached is by

embedding some of the existing models into a system. By assuming that all systems

designed with this methodology will share certain underlying similarities. such as

the OSL procedure model. part of the analysis and design problem can be turned

into a customization problem. Such constraints upon the system's functionality

could significantly reduce the level of detail needed in the analysis and specification

phase. at the obvious cost of being totally inapplicable for some types of offices.

120

The final use posited for OSL, which encompasses what we have generally

called communications, appears to suffer from excessive overhead. By this we mean

that the mechanism associated with an OSL description of an office is rather

forbidding to the casual reader of specifications. The skeleton idea is an appropriate

means of addressing this problem. However, we believe that there is a limit to the

gain achievable from such an approach. We feel that the problem of overhead in an

office specification is to a large extent inherent: offices are complex places, and

there is much that must be described to present an adequate understanding of its

operations. The value of a formal language is in fact due to its detailed structure

and vocabulary, which once learned allow a reader to shortcut the need to explain

each office from basic principles.

7 .3 Research Directions

The problems with OSL and the possible solutions discussed above point out

several directions for further research in this area. We have, of course, only begun

the process of understanding how offices work and developing a theory of office

work that can guide the development of office systems. In fact, the issue of

transition from understanding of an office's current operations and desired

functioning, to the design of a system to support that functioning, is clearly the next

step in any research effort.

In the previous section we identified several areas that are ripe for extending

the work begun in this thesis. We have several specific suggestions for plausible

follow-ons. The first is the development of more case studies, which are needed in

order to provide a larger database for analysis. It is necessary to have a reasonable

number of examples of any construct before general models can be abstracted.

While a single office study may provide dozens or hundreds of examples of activity-

lll

level constructs, it will only elicit one or a few function examples. Since the current

function model is quite simple, it is not sufficiently helpful in the analysis process.

In fact. taxonomies at all levels, particularly abstractions such as functions.

procedures, activities. and entities, would be of extreme value in analysis and

specification.

Second, the gap between analysis and design needs to be bridged. It is very

difficult. in a research setting. to experiment with realistic systems designed for

specific office situations. A long-term cooperative program is needed to establish a

database of analysis/ design efforts in real settings. From such a database, attempts

can be made to develop models and methodologies that feed back critical system

design parameters to the analysis and specification techniques. This research should

involve two types of studies. The first, an empirical approach, would follow systems

from the analysis effort (using OSL or a derivative) through system design and

implementation, to post-implementation studies; the goal would be to examine the

ways in which the specification influenced (or didn't influence) the design, and how

the ultimate use of the system reflects both the design and the specification. The

second type of study is more analytical, and would involve examination of existing

successful systems that provide effective functional support. Working backward to

see how they were in fact built. would permit abstracting constructs, within the

context of the (possibly modified) OSL structure, that would lead to the definition

of activities, entities, events. etc. that are more effective in guiding an analysis

toward a real system design.

Finally. the interaction between structured and unstructured parts of office

procedures needs to be explored. Even at the OSL activity level, many tasks are

judgmental in nature and system support for them can and must be in the form of

(operations-level) decision support systems. We need to develop an understanding

of how information and support needs and capabilities differ based on the type of

U2

decision to be made (Le., due to the particular activity process required), and to

design analysis tools that provide guidance for the gathering of the appropriate

infonnation.

In all cases, the need for field studies is crucial. In developing tools for office

analysts and designers there appears to be no substitute for the feedback gathered

from actual use by actual analysts on actual projects. The latter is especially

important, as an effort made simply for educational or cooperative purposes fails to

meet the real needs of any of the parties.

7.4 On Research in Office Automation

A common thread runs through our comments in the previous sections: an

approach to office automation from the design, or "back" end, rather than from the

"front," or analysis, end. While we. would argue that either approach is inadequate

in itself, our experience with OSL has led us to believe that the next steps in office

automation research should begin at the design end. The paradigm of office

analysis and specification as leading to a system design, whether completely manual

or including computer-based system support, is no doubt an effective one, but it

requires that ·some further thought be given to the nature of such systems. In

particular, if we are going to address the system support of semi-structured office

procedures, as we discussed in Chapter 2. we ~eed to pay more attention to the

premises upon which those support systems are to be designed. By understanding

the design process. we can work backwards to detennine analysis needs, for

example, the level of detail needed to specify adequately support for various

activities.

We feel, based upon extensive experience in designing and observing office

U3

systems, that the database is the key facility in any automated office support system.

Therefore the OSL model of procedures as key and the environment description

being a reference may be skewed. An alternative design (and therefore analysis)

approach that is based upon the same basic premises would have an OSL

environment specification drive the development of the database schema,

expressing the relationships, operations, and information used in the office in an

object-oriented manner. The procedures and functions would then provide the

infonnation for developing transactions definitions.

An alternative approach is to rely less on complete customization via

specification and design, and, as mentioned in the previous section, embed a certain

amount of basic functionality in a system which is then customized by the analyst.

The usual tradeoffs apply here: the more generic the system functionality, the more

work for the analyst and designer, but the more requirements it can ultimately

satisfy. This approach would argue for a more experimental, rather than analytic,

approach to basic office automation research. (Though it must be pointed,out that

true experimental research in office automation is not merely the usual constructing

of a system and seeing what happens; as in any field, hypothesis formation and

testing is a prerequisite to the utility of observations.)

Much of our discussion revolves implicitly or explicitly around the question of

the appropriate level of abstraction for office analysis and specification tools. Our

fundamental approach is based upon office functions, which are the purpose of the

office's existence. Yet contemporary system design still deals primarily with low­

level, high-volume, computer-oriented applications such as word processing,

electronic mail, and database management. Few users have been successful in

achieving an effective integration of these generic tools to support the needs of their

specific office functions. The best support for such operations is still based upon

some form of custom software development; witness the lengths to which vendors of

U4

word proceswrs will go to be able to claim any kind of "programmability" for their

systems. The crucial questions are then: what is the appropriate paradigm for

designing effective functional office support systems, and, what kinds of analysis and

design tools are most appropriate in that context? The OSL model provides

multiple levels of abstraction, each of which could be expanded, given further

investigation, into a usable approach to customization:

- At its lowest level, we have begun to identify a number of distinct types
of decision activities; this categorization could serve as the basis for
more detailed "operational decision support" system analysis and
design.

- At the procedure level, the OSL model allows for expression of the key
requirements for and external effects upon the processing of abstract
objects. Expanding upon this approach might lead to the
implementation of the kind of general system substrate mentioned
earlier; the goal would then be to find the appropriate abstractions
needed to describe ways of defining implementations of specific
procedures.

-The top level of the OSL model is the function. A more extensive study
of the structure of office functions may lead to the definition of a set of
"generic applications"; such a taxonomy would permit easier initial
categorization of office functions and allow for specialized analysis and
design techniques keyed to the unique requirements of each application.

Each of these levels of abstraction leads points to a distinct form of analysis and

design tools. We believe that each is valuable in itself, and that all of them, suitably

integrated, are necessary to provide for the effective development of office support

systems.

As a final point, we would observe that the separation of the analysis function

from system design is an attractive idea, but one in which we no longer have much

confidence. It is just not clear, in an effort whose overall goal is the development of

us

a system, that an analysis done by someone without the background to appreciate

the issues of system design will be of much use, at least with today's tools. Whether

or not we can develop better analysis tools, based upon the design of effective office

supp011 systems, will determine whether "the office of the future" is to be anything

more than a more expensive version of the office of today.

126

Appendix A

OSL Reference Manual

Note: This manual makes use of examples drawn from the OSL descriptions of the MIT
Admissions Office undergraduate admissions procedure and the MIT Office of Sponsored
Research sponsored research management function {28} (Chapter 4).'

A.I Definitions

A.1.1 Specifications

An OSL specification is a description, in the OSL formal notation, of some part

of an organization. Organizations are normally divided physically into offices, and

the unit of study in many analysis projects is the office. OSL takes the view that the

fundamental unit of analysis is the function (which will be defined shortly); an office

may implement part or all of one or more functions. Thus, an OSL specification

may be a description of an office, consisting of various parts of functions, or of a

function, encompassing one or more offices. In this document, we use the term

"area" to refer to the the parts of the organization that are of interest in any

particular specification.

A specification describes both the (static) context and the (dynamic) operations

of the area, and the structure of a specification reflects this dichotomy. This

structure has two pieces: the environment or static part, and the operational or

dynamic part.

U1

A.1.2 Environment

The environment part of an OSL specification describes all the "things" that

are in or of concern to the area; these are termed entities. Most entities are organized

into collections called classes; entities have attributes that describe their

characteristics and relate them to other entities in the environment In essence, the

environment is a "model" of the area, of the relevant entities and the relationships

among them. The environment part of the specification defines the vocabulary used

in the operational part of the specification: anything named in the operations

specification is either built into the language or defined in the environment part

using the OSL environment modeling facilities.

A.1.2.1 Entities

An entity is anything, whether concrete (e.g., an employee, a document, a

widget) or abstract (e.g., a program, an account, a job) that is used, manipulated,

referred to, or otherwise relevant to, the area, its people, or its operations. Any

particular entity is an instance of its type; for example, the manual that you are

reading is a specific instance of all the entities of type MANUAL (and also of type

DOCUMENI).

A.1.2.2C~

A class is a named, homogeneous collection of entities of a single type, (e.g., a

class of manuals, a class of purchase requisition forms, a class of corporations, a cl8

of corporate employees, a class of corporate officers who hold more than 1000

shares of stock). The entities that make up a class are its members. In the following.

we shall use "a FOO" to mean "a member of the class FOO."

There are two kinds of classes: those that are built-in to OSL. and those that are

defined by the user of OSL to describe particular aspects of an environment.

U8

A built-in class is an implicit class defined by. and consisting of all entities of, a

built-in entity type. As the name implies. each of these classes is part of the

definition of OSL. and they are not declared as part of any specification. A built-in

class name may be used, however, in any place in an environment specification in

which a class name is called for: in particular, they serve as the parent classes for the

definition of many derived classes. (For example, the built-in entity type

EMPLOYEE defines the built-in class EMPLOYEFS.)

A derived class is defined in terms of some other (parent) class(es) in the

environment Thus a member of a derived class is also a member of one or more

other classes. including one built-in class; this built-in class defines the type of the

member. For example, the class MIT-EMPLOYEES is a derived class, defined in

terms of the built-in class INTERNAL-EMPLOYEES (which is therefore the parent

class of MIT-EMPLOYEES). Thus each member of MIT-EMPLOYEES is an entity

of type INTERNAL-EMPLOYEE, and is aJso a member of the (built-in) class

INTERNAL-EMPLOYEES. The class ADMISSIONS-STAFF in tum describes a

set of entities that is a restriction (q. v.) of the class MIT-EMPLOYEES. Each

member of ADMISSIONS .. STAFF is therefore an entity of type INTERNAL­

EMPLOYEE, and also a member of the classes INTERNAL-EMPLOYEES and

MIT-EMPLOYEES.

A.1.2.3 Attributes

An attribute is some characteristic of an entity; for each entity, there is some

specific value for each of its attributes, and these values serve to define the

individual entity and to distinguish it from other entities in its class. The value of an

attribute is either some entity in the environment, or some set of such entities. For

example, consider a particular member of class MIT-EMPLOYEES: each attribute

will have a particular value, such as Name = "Paul Gray" (a member of the class

U9

TEXT). Rank = "President" (a member of the class RANKS). Office = "3-208" (a

member of the class MIT-OFFICES).

Classes may also have attributes, describing characteristics of the class as a

whole, rather than those of individual members. For example, the number of

members currently in a class (e.g., the number of MIT-EMPLOYEES) is an

attribute of the class itself, not of any of its members.

The possible values of an attribute may be described simply by specifying the

class from which its value is to be drawn; this is a primitive attribute. Alternatively,

an attribute's set of possible values may depend directly, by a specified rule, upon its

relationship to something else in the environment; such a rule defines a derived

attribute.

A.1.2.4 Value Classes

In the definition of a class, each attribute of the members is described in terms

of its value class, that is, the class from which its values can be drawn. For example.

the (primitive) attribute "Telephone-number" of class MIT-EMPLOYEES is

specified as having as its value class MIT-PHONES, indicating that for a particular

MIT-EMPLOYEE the value of his telephone number may be any member of the

class MIT-PHONES.

A.1.2.5 Attribute Semantics and Built-in Entity Types

A built-in entity type includes in its definition a set of attributes (including. of

course, their value classes) that provide a means for characterizing particular entities

of that type. As described above, the type defines a built-in class whose members

consist of all entities of that type. For example, the built-in entity type EMPLOYEE

130

defines the built-in class EMPLOYEES. Each EMPLOYEE entity includes such

attributes as "Name," which is an entity of type NAME describing the name of the

employee; and "Supervisor," an entity of type EMPLOYEE that describes the

employee's supervisor. Each entity of a given type has at least those attributes;

when used in defining a built-in class, any additional attributes specific to, and

characteristic of, the members of the built-in class are added

A.1.2.6 Modeling of Relationships

The mechanisms of OSL environment specification provide for the definition

of relationships among entities. Built-in classes indicate how entities may be

members of several related classes. Attributes directly relate entities to each other;

since the value of an attribute is an entity (or class of entities), an explicit

relationship is indicated. In particular, the several mechanisms available for

expressing the derivation of (derived) attribute values provides a rich set of models

for inter-entity relationships.

A.1.3 Office Operation Specifications

As we have noted, the operational part of an OSL specification describes the

functions of the office in terms of actions that are performed upon entities in the

environment In this section, we define the important concepts needed to read and

write OSL operation specifications.

A.1.3.1 Functions

A function is the set of all actions and information concerned with the

management and maintenance of some class of entities. These entities are called the

function's resources. A function and its resources are defined not specifically as

131

information processing or document handling, but in terms of some business goal of

the organization. Typical resources might include people, accounts, time slots, etc.;

in the OSP. the resources are "sponsored research programs."

A function is always "operating," since the need to manage resources exists

independent of the existence of any particular object This management is effected

through a set of procedures; each procedure is invoked upon the occurrence of a

particular event of importance to the resource. When no procedure is being

executed, an extant resource is said to be in its quiescent state. When any procedure

is invoked due to an event concerning a resource, the resource is said to be in an

active state; it returns to the quiescent state upon termination of the procedure (and

any other procedures that may have been invoked by the original procedure).

A.1.3.2 Procedures

A procedure is a structure that specifies how some entity (or set of entities) is to

be processed from an initial state to a final state. A procedure's basic components

are a set of activities and events. The entity processed by a procedure is called the

procedure's object; the object is related in some way to the resource being managed

by the function(s) of which the procedure is a part (For example, in the OSP, there

is a procedure that processes the object "Proposal," a member of the value c11&

(PROPOSALS) of the "Proposal" attribute of the SPONSORED-RESEARCH­

PROGRAM resource.) In contrast to a function, a procedure has a specific

invocation and a definite termination.

An OSL procedure is not meant to specify an exact prescription that must be

followed, but rather an idealized goal. The procedure represents the history of

processing of an object in the case where everything "works correctly." This history

is called the Main line of the procedure. In "executing" an office procedure, a

132

worker's goal is in a significant sense to make the object end up in a final state as if it
had followed the main line. It is the handling of all the special cases and problems

that cause the procedure to deviate from the ideal that is the essence of the semi­

structured nature of office procedures. The OSL procedure specification

mechanism provides a structure in which to represent various levels of deviations

and details, all based upon the specified main line.

A.1.3.3 Activities

Activities are the lowest-level operations defined in OSL. The set of activities

defined by OSL represents all the possible actions that can be taken with regard to

entities or classes of entities. An activity defines a particular type of manipulation of

one or more entities; it may be thought of as a "verb" of the language, by which the

"subject" (the person responsible for the procedure, or someone designated by him)

operates on the object An activity describes a semantically-meaningful process; it

may or may not be a structured one. For example. the activity GROUP indicates a

subsetting decision. There are cases of grouping in which an algorithm is applicable

(e.g., group applicants according to age) while others may be inherently a

judgmental process (e.g., group applicants into accepted, rejected, waitlisted). At

the activity level, we characterize both operations as GROUP operations, and leave

the details of particular implementations to lower or later levels of description.

A.1.4 Syntax

Unless otherwise specified, the following conventions hold for all descriptions

in this manual:

- All names must begin with a letter and consist of letters, numbers, and
hyphens.

133

- Class names are written in all capitals; example: MIT-EMPLOYEES

- Attribute names are written in small letters with initial capitals;
example: Supervisor

- Language literals are written in lowercase: receive

- Metasyntactic words that represent a set of possible values are in italics;
example: attributes

- Angle brackets surrounding an item indicate that zero, one, or many of
the items may be used, separated by commas or carriage returns;
example: <attributes> means that any number of attributes may be
specified

- Curly brackets surround optional items (separated by semicolons). They
may be specified or not, as required; example: {option}

- Square brackets surround a set of items of which exactly one must be
chosen; example: [option!, option2, opt1on3]

- Descriptive instructions that are not actuaJly a part of a syntax definition
are in a special bold italic typeface; example: explalllltioll

- Specific values of text classes are enclosed in quotation marks; example:
CEO = "Paul Gray ..

A.2 Operational Specifications

Operational specifications in OSL include several levels of abstraction. At the

highest level a function represents the management of a set of entities, the resources

of the function, over time. (The OSP function ,"Sponsored Research

Administration" represents the management of sponsored research programs.) The

format of an OSL function description provides an overview and summary of the

procedures and events relevant to the management of its resources. Each major

134

event invokes a procedure, which describes the needed processing. A procedure is

constructed of steps, states, and events. A step consists of a group of activities that

should be completed before further processing is done. Activities can be further

explicated in a "Details" section, which is the lowest level of operational

specification defined in OSL

In an operational specification, references to classes and entities in the

environment use the same forms as those in the environment specification itself.

(See "References" in the Environment section for details.) In addition to those

rules, there is a "local context" established for each function and procedure; this

context is determined by the specified class of resources being managed, or the

specified focal object being processed, respectively. Within this context attribute

names can be used unambiguously to refer to attributes of the resource or focal

object

A.2.1 Functions

A function is the set of ~perations necessary to manage a set of resources. The

operations are specified in terms of procedures, each of which performs the

processing necessary at some point in the "life" of the resource. That life begins

with initialization, which may take one of two forms: either the resource is

"created" by a procedure that is invoked upon the occurrence of some event, or the

resource exists external to the purview of the function and through some event is

first brought under its control (In the OSP function "Sponsored-Research­

Administration," the resource, a sponsored research program, is created at the end

of an initiating procedure that is invoked by the receipt of a proposal.) In either

case, an initiating event invokes the initiating procedure, at the end of which the

resource is in the quiescent state the first time. The resource's life ends with

termination; a terminating event invokes the terminating procedure, which performs

135

the processing necessary when a resource is destroyed or is otherwise of no further

interest.

The form of an OSL function description is a template that provides "slots .. for

the listing of major events in the life of the resource: those that cause the resource

to be created and terminated. and various events that remove it from its quiescent

state (Le •• that require some processing to be performed). Along with each event is

specified the name of the procedure that describes the required processing.

The following is the function template; each entry is explained in detail below:

FUNCTION name
Resource:
{Structure:}
Responsible:

A.2.1.1 Resource

Initialization:
{Structure-initialization:}
Required reports received:
Required reports generated:
Other events:
Termination:
{Structure-Termination:}
Quantitative information:

The resource managed by the function is some class of entities. Note that while

an entity may be a resource of several functions, in practice a function and its

associated procedures represent all operations of importance to a single entity class.

The resource is specified simply as the name of some class in the environment:

Resource: Class name

136

A.2.1.2 Structure

A structure is a framework for organizing resources in some manner. (Several

kinds of structures are built-in entity types, such as SCHEDULES (structures of

APPOINTMENTS) or PROJECTS (structures of TASKS).) Some functions are

concerned both with individual resource instances and a particular structure of those

resources. In this case, the structure is defined as the name of a class or an entity in

the environment:

Structure: class name

A.2.1.3 Responsible

"Responsible" is the name of some role defined in the environment This is the

person responsible for the supervision of the function. and, unless otherwise

specified, the one to whom all questions are directed and all exceptions are reported.

It may be described as a specific instance of some role or as a class of type ROLE.

Respons 1b1 e: [role; instance of some role)

A.2.1.4 Initialization

The initiating procedure for a resource is the one that causes it to be "created"

or otherwise brought for the first time into the purview of the function. This

procedure results in the resource being in the quiescent state for the first time. The

initialization specification includes a description of the event that invokes the

initiating procedure, and the name of that procedure.

In 1t i a 11 zat ion : event: procedure name

137

A.2.1.5 Structure initialization

Where the function includes a structure, the event and procedure that create

the structure are also specified:

Structure-initialization: event: procedure name

A.2.1.6 Required reports received

In this section are listed all regularly-scheduled inputs relevant to the resource.

These generally take the form of reports, but may in fact be any kind of

communication expected on a regular basis. The specification includes the report

period; the name of the document or message expected; and the names of two

procedures, the first to handle processing when the report is received, and the

second (optional) procedure that is followed ifthe report is not received on time. If

the "late report" procedure is omitted, then the default action is to report the

problem to the responsible party.

Required-reports-received:

[<period: communication name: procedure name: procedure name>: None]

A.2.1. 7 Required reports generated

The function may require that periodic reports concermng the resources

managed be produced. In this section the period, name of report, and procedure to

produce the report, are named for each such required output

Required-reports-generated:
[<period: communicationname: procedurename>: None]

138

A.2.1.8 Other events

In this section are listed all events that are anticipated but not on any regular

schedule. The specification includes the event and the name of the procedure

invoked to perform the required processing and return the resource to its quiescent

state.

Other-events: enume1r1tio•of
<event: procedure name>

or
Other-events: Nona

A.2.1.9 Termination

Upon the occurrence of some event, a resource is no longer of interest within

the context of a function. At that point, the terminating procedure is invoked to

handle any required processing.

Termination: event: procedure name

A.2.1.10 Structure termination

A structure, if it exists, may have a different terminating condition from any of

its constituents. (Consider, for example, the processing required at the end of an

appointment, as contrasted with the processing required at the end of a day's

schedule of appointments.) The structure termination is specified in the same

manner as the resource termination.

{Structure-termination: event: procedure name}

A.2.1.11 Quantitative information

Quantitative information at the functional level includes: typical number of

resources managed; number of personnel responsible for the function (in cases

139

where volume or other considerations require various people to fill the

"responsible" slot at different times or with different resource instances); number of

personnel needed to implement the function; frequency of initiation and

termination of resources; and expected frequencies of events listed in the "Other

Events" subsection.

Number of resources: number
Number responsible: number
Number of personnel: number
Initiation: frequency
Termination: frequency
{Other Events:

<event number. frequency>}

A.2.2 Procedures

A procedure is a formal expression of the processing required as the result of

some event pertinent to a resource. The purpose of a procedure is to move some

entity (its object) from an initial to a final state. A procedure normally exists as part

of one or more functions; its object is either a resource that a function is managing.

some constituent of a resource. or an entity otherwise related to a resource.

A procedure specification consists of several building blocks: identification of

the object and the role responsible for overseeing operation of the procedure; a

"main line" process describing the normal actions and their ordering; quantitative

information about the operation of the procedure; and subordinate pr~

describing expected variations from the main line, handling of exception conditions,

and some details about individual activities.

Two basic principles of office procedures are reflected in OSL procedures.

First, they are relatively loosely structured; the ordering information, particularly of

the activities within a step, but also of the steps themselves, should indicate the

processing steps in the "ideal" case. when nothing goes wrong. A procedure can be

140

thought of as representing the history of processing of the object in that ideal case.

A procedure is thus an indication more of goals than of strict requirements. It is the

job of the responsible party to assure that the goals are met; whether the actions in

any particular case are, or can be, taken in the specified order is not particularly

pertinent The second principle follows from the first: the main line description,

stripped of special cases and exceptions, is basically simple. A typical such process

may have only a few steps and states. The complexity of real procedures is

expressed in OSL in the structure of variations, details and exceptions.

The "meaning" of a procedure specification is derived from the following

model of office procedures, which in tum is derived from the preceding two

principles: The procedure provides instructions about which activities should be

performed in order to move the object to a final state. Most objects would follow

the main line. There are variations to the main line processing that take effect only

for objects with particular attribute values. There are exceptional conditions that

may occur, making it impossible to follow the normal processing requirements.

Upon the occurrence of such an exception, if there are processing instructions

associated with that exception, then they are followed until normal processing can

be resumed. If no processing is specified for the exception, then the default action is

to notify the responsible agent of the problem; after he has dealt with the problem,

normal processing is continued.

The following is the structure of a procedure specification. Each entry is

described in detail below.

141

Procedure name
Object:
Responsible:
Main line:
Timing Constraints:
Quantitative Information:
Variations:
Exceptions:
Detail:

A.2.2.1 Focal Object

The focal object (or just "object") of a procedure is some entity in the

environment It is either the same as the resource managed by a function of which

the procedure is a part, some constituent of that resource, or an entity somehow

related to it

Object: class name

A.2.2.2 Responsible

This entry of the procedure template specifies the name of a role that is

responsible for the operation of the procedure, and to which all otherwise­

unspecified exception conditions be reported This may be the same role as that

responsible for a function of which the procedure is a part, but alternatively may be

any role defined in the environment

Responsible: classname [of some role or party]

A.2.2.3 Main line

The main line describes the normal course of processing, or the history of the

object in the ideal case. It consists of a set of events, states and actions that make up

a description of the way in which the object is acted upon by the office in order to

achieve some goal. The actions are represented by steps, which consist of individual

142

activities that apply to the object Ordering ordering information is provided by a

formalism (related both to state machines and Petri nets) in which state transitions

are related to specific events that give rise to associated states. A state represents the

situation in which further processing cannot be done by the office until the

occurrence of an event beyond its control; the "wait" may be due to an outside

agent (e.g., proceed upon the receipt of some document), or to the date or time (e.g.,

proceed on Thursday).

A procedure specification is a description of a goal and a set of requirements for

achieving that goal. It is not a description of any particular implementation of those

requirements. It is to be interpreted as a set of instructions indicating what should

be done and, ideally, in what order; it does not specify exactly how those

instructions should be carried out The goal of a procedure is essentially to move

the object to ajinal state, after which no further actions are required.

The main line description has three components: a set of events, a set of steps,

and a set of states. These are specified in a set of state/evenUstep triplets, indicating

the transitions from one stat~ to another, the event that causes the transition, and the

processing required for the transition:

state state name
Event. event number event specification
Step. step number

<activity specification>

Each event and step have a unique number within a procedure. Event

specifications are discussed in section A.2.3; step specifications are discussed in

section A.2.2.3.1. There may be any number of transitions out of a state, each

defined by a different event and invoking a different step. A step may terminate in

one of several states, depending upon the processing defined within the step; the

step specification includes the state in which each branch (if more than one) of the

143

step terminates. All procedures start in the step named null that is exited upon the

invoking event. All procedures terminate in the step named done.

A.2.2.3.1 Steps

A step is a partially-ordered set of activity specifications. (Activity

specifications are described in section A.2.4.) Each step in a process has a unique

step number. Within a step, each activity has a prefix number that defines its

ordering relative to the other activities within the step. This ordering again

represents the sequence in which activities are carried in the "ideal" or normal case.

"Partial ordering" means that some activities may be carried out in any order

relative to each other, while some must follow others. Those activities that may, be

carried out at the same time or in any relative order have the same prefix number

with a unique small letter appended to each. The following illustrates the structure

of a step:

2. 1 . Activity/ specification
2. 2 . Activity2 specification
2. 3a. Activity3 specification
2. 3b. Activity4 specification
2 . 3 c . Activity5 specification
2 • 4 a . Activity6 specification
2 . 4b . Activity? specification
2 . 5 . Activity8 specification

In this step (#2). ACTIVITY2 follows ACTIVITY!. ACTIVITY3, ACTIVITY4, and

ACTIVITY5 all follow ACTIVITY2, but since they have the same prefix number (2.3)

they can occur in any order. (The small letters serve only to identify each activity

uniquely.) The activities with prefix number 2.4 (ACTIVITY6 and ACTIVITY?) must

follow all the activities with prefix number 2.3, but again. there is no ordering

specified among them. ACTIVITY8 (prefix 2.5) follows both ACTIVITY6 and

ACTIVrIY7.

144

A.2.2.3.2 Branching Within Steps

The step syntax also provides for the specification of alternate paths within the

step. Such alternates occur when the processing requirements depend upon the

value of some attribute that is either not part of the object or is not known a priori.

(See section A.2.2.6 for a discussion of such a priori object variations.) The form for

such specifications is:

where attribute expression add
<activity specification>
{end 1 n state name}

or
where attribute expression end 1 n state name

where attribute expression has the form

attribute • value
or

attribute expression or attribute expression
or

(attribute expression) and (attribute expression)
or

arithmetic fanction expression

and each activity specified has a unique prefix number within the process.

The meaning of the first form of this specification is as follows. For any object,

if the attribute expression is true when that object is being processed. then the step

for that object includes all the activities specified (and indented) after the add. If

there is no end the step continues with the activity immediately after indentation. If

there is an end statement. the step does not include any activities after the end, and

the named state is reached when all the added activities have been performed. If the

attribute expression is false, then the step does not include the added activities.

The second form of alternate path syntax simply specifies that if the attribute

expression is true then the step is terminated and the named state reached.

As an example of this syntax, consider the following fragment of an

undergraduate admissions procedure:

145

5.2 Send ADMITTED.Acknowledgment
5.3 where Acceptance = "refuse" add

5.4 Send E3 to Financial-Aid
end 1n done

5.5 Send AAC to Financial-Aid
end in accepted

For refused admissions, the step includes activities 5.2, 5.3, and 5.4 and

terminates after activity 5.4 in state done. For accepted (not refused) admissions, the

step includes activities 5.2, 5.3, and 5.4 and terminates in state accepted.

A.2.2.4 Timing constraints

A timing constraint is an expressmn that defines a temporal relationship

between two events. Its purpose is to state that some event must occur before, at, or

after either an absolute date/time or one defined relative to another event. For

example, it might be desired to specify the fact that one event is to occur within six

months of another event Violation of a timing constraint is an exception condition

(q. v.).

The Timing constraints· entry in a procedure template is used to define any

constraints upon the events specified in the main line entry. Each timing constraint

in a procedure has a unique number. The form for describing timing constraints is:

constraint#. event# relation event expression

where relation is:

[<: >: •]

event expression is

event# arith time

arith is

[+: -]

and time is

146

[a specific date/time: an intemd]

The following is an example of a timing constraint section:

1. Event 2 < Event 3 + 6 months
2. Event 4 = October 31

In this example, timing constraint 1 specifies that Event 2 is supposed to occur

within (less than) three months after Event 3 occurs. If this does not happen. then

timing constraint 1 is violated, raising an exception condition. Similarly. Event 4 is

supposed to occur on October 31; should it occur earlier, later, or not at all. the

constraint is violated.

A.2.2.5 Quantitative information

This section provides a set of figures for various timings and counts in the

current implementation of the procedure. While OSL provides suggestions for what

kind information might be expressed in this subsection, any quantitative

information that is of use in describing the procedure can be described. The

numbers listed include the nominal total elapsed time for one complete execution of

the procedure; the number of responsible people and the number of people working

on the procedure, as in the functional specification; the number of objects in some

stage of the procedure at any time; frequency of exceptions; and p~obabilities of

transitions emanating from branch points (either multiple events leading from

states, or steps terminating in multiple states).

Total time: time
Number responsible: number
Number of personnel: number
Objects: number
Exceptions:

<exception#: frequency>
Variations:

emunemtio• of
<variation#: probability>

Branching:
<step# -+ state name: probability>
<state name (event#} : probability>

147

A.2.2.6 Variations

As noted, the main line expresses the goal structure for processing normal

objects. In some cases, there are differences among individual objects that require

somewhat different processing; these different processing requirements are called

variations. Variations apply only to objects that are known to be variants a priori;

that is, a variation is characterized by some attribute of the object whose value is

known at the time the procedure is initiated. A variation then specifies the

processing required for that object For example. in a university admissions office

procedure, there might be variations in the normal procedure for those applications

(objects) that are from minority, female, or foreign students. and for those

applications that request an early decision. (In contrast, event-based and decision­

based variability, which stem respectively from multiple possible events invoking

different steps in transition from· the same state, and from different processing paths

determined by a decision made as part of the procedure, are handled in OSL as part

of the main line specification.)

The "Variation" entry of the procedure template identifies the object attributes

that determine when the variation is to be used, as well as the alternate processing

requirements. Since the differences from the main line are generally minor, the

variation is expressed as one or more processes that are superimposed upon the

main line. Each variation is given a unique number, and both the characteristic

attribute value for the variation, and steps, states, and events necessary to handle it

are specified The format is:

variation number. where attribute expression:
{delete:

{add:

{<Event event number>}
{<Step step number>} }

{<event/step specification>} }
{replace:

{<event specification>}
{<step specification>} }

148

The meaning of the variation specification is that for each object whose

attributes satisfy the attribute expression, the steps and events in the "delete"

specification are removed from the main line; the states, events and steps in the

"add" specification, if any, are added to the main line; and the events and steps in

the "replace" specification replace identically-numbered events and steps in the

main line. The result of these operations is then treated as if it were the originally

specified main line for each affected object

When there are several variations in one procedure that are not mutually

exclusive (that is, that are not defined by different values of the same attribute), they

must not replace any of the same steps or events. For example, suppose that there is

one variation in the admissions procedure for applications from foreigners, which

replaces steps 2 and 4 of the main line. Then a variation for applications from

American citizens who are children of alumni could also replace steps 2 and 4.

However, consider another variation for applications from females, which replaces

steps 3 and 4. Clearly, for female foreigners, the specification of step 4 would be

ambiguous; it is therefore not allowed. The appropriate structure for such a

situation is to define each variation specifically enough that the ambiguity does not

occur. Thus, in our example we would define the "female" variation just for step 3,

the "foreign" variation just for step 2, and a "foreign female" variation for step 4.

Since the attribute values that define the variations are known at the beginning of

the procedure, it is possible to determine then which variations apply to each object

A.2.2. 7 Exceptions

This entry of the procedure template is used to specify processes to be used to

handle specific exception conditions. As noted previously. the default action for all

exceptions is to suspend the procedure, notify the responsible agent of the

exception, and resume processing when that agent has dealt with the problem.

149

There are two types of exceptions that appear in a procedure specification:

predefined exceptions and ad hoc exceptions. Predefined exceptions are those that are

built into OSL; these are defined below. Ad hoc exceptions are those that are not

built into OSL, but are identified by the analyst in writing an OSL specification.

A.2.2. 7.1 Predefined exceptions

There are three kinds of predefined exceptions in OSL:

Activity-specific exceptions
Each individual activity (q. v.) defined in OSL has associated with
it a set of named exceptions, each of which identifies a potential
problem specific to the activity.

Timing constraint violations
Each timing constraint (q. v.) defines an exception that occurs if it
is violated.

General exceptions
There are several exceptions defined that cover possible
problems with a procedure in general. These include:

- Missing personnel: Someone responsible for making a
decision is not available.

- Lost document: A document containing information
that is unavailable elsewhere in the environment bas
been lost.

- Backout: A decision that was made at some step is
reversed.

- Cancellation: The entire procedure is terminated
abnormally.

150

A.2.2. 7 .2 Ad hoc exceptions

In designing a language such as OSL, it is impossible to anticipate all possible

exception conditions. Therefore, the procedure template allows for the specification

of ad hoc exceptions, those that are identified by office workers or anticipated by an

analyst. Each of these exceptions is identified by a unique name, and some

procedure for handling it is specified. The general procedure description for

exception handling uses the same state/step/event model as the main-line;

alternatively, it may be the special procedure DEFAULT, indicating that the default

exception action, as described above, is used

A.2.2. 7.3 Exception specifications

The fonn for the Exception-handling entry is:

Timing constraint:
<timing constraint#: procedure>

Activity:

General:

<activity#:
<exception name: procedure»

Missing personnel:
procedure

Lost documents:
<document name: procedure>

Cance 11 at ion:
procedure

Backout:
procedure

Ad hoc:
<exception name: procedure>

where exception name is either a built-in activity exception name or a unique name

for an ad hoc exception.

A.2.2.8 Details

The detail entry provides a place for the expression of more detail about

individual activities than is necessary or desirable in the main line procedure. Such

detail may involve partial algorithms for making a choice, names of external

151

procedures (such as statistical calculations) that can be used to perform an activity,

or simply another layer of structure expressed in the OSL model or another

language.

The format of the detail entry keys each detail to a specific activity. Its purpose

is to provide a structure for whatever information about activity implementation is

desirable for a given specification. For example:

2.3 Select first three if time is critical.

A.2.3 Event Specification

An event specification describes the condition upon which the event occurs.

Event specifications are used in function specifications to indicate when procedures

are invoked, and in process specifications to indicate when steps are invoked. There

are several types of events in OSL, each of which has its own form for specification.

Events may be compounded by combining individual event specifications. A

compound event is defined with the following syntax:

event specification
or

compound event or event specification
or

(compound event) and (compound event)

where an event specification is one of the forms (trigger event, time event,

environment event, communications event, or activity event) defined in the

following subsections.

A.2.3.1 Trigger Event

A trigger event occurs upon the explicit command of an authorized person, and

IS used in a function specification to indicate that a procedure invocation is

dependent upon that person. The form is

152

by role

A.2.3.2 Time Event

A time event occurs upon a specified date or date/time. This time may be

specified either in absolute terms (e.g., September 1) or relative to another event

The forms are

on [date; time after/before event#]

A.2.3.3 Environment Event

An environment event occurs when a specified condition in the environment

obtains. This condition may be based upon the value of an attribute, or upon some

action that changes an entity. The forms are

when Attribute • Value
or

when Entity is [updated: created; deleted]

The first form states that the event occurs when the attribute first attains the

given value. The second form states that the event occurs when the specified action

is taken.

A.2.3.4 Communication Event

A communication event occurs when a specific communication entity (q. v.) is

received, or when a communication entity is not received after a specified time. We

define a receipt event as one of the following forms:

153

------ ~· -------

~.' '~·.· :-s.·~·

receive communication
or

receive communication with Attribute = value
or

receive communication matching entity on allribute(s)
or

receive reply to communication

where communication is a specified entity of type COMMUNICATION or one of

its derivatives (DOCUMENT, MEMO, etc.). Then a communication event is one of

the following forms:

[receipt event; no receipt event after time]

where time may be either an absolute date/time or a time relative to another event,

expre~ed as an event expression (as defined in the timing constraint subsection).

A.2.3.5 Activity Event

An activity event occurs upon the initiation or completion of some activity.

Activities are identified by their complete prefix number.

[complete; start] Activity#

A.2.4 Activities

Activities are the fundamental operational constructs of OSL Although some

activities have a more specialized syntax, the general form for an activity

specification is:

{subject} activity name {arguments} {modifier} {predicate} {soun:e}

The subject names the person or role that is to perform the activity; if omitted,

the default is the responsible role specified for the procedure.

Some activities have optional arguments that serve to define more precisely the

actions that they represent

154'

·~------------ --- -

The predicate is the thing upon which the activity acts. It may be any entity or

class; if omitted, the default is the entity specified as the object of the procedure.

Modifiers specify more precisely the predicate to be acted upon, and take one

of the following forms:

matching on Attribute name(s)
first
last
any
each

Each of these modifiers serves to identify a particular member or members of

the predicate class: "first" and "last" define particular members of classes that have

some ordering defined; "any" specifies an arbitrary single member of the class; and

"each" specifies that all members of the class are to be acted upon in the same

manner. The "matching" modifier identifies those predicate class members that

have (the specified) attribute names and values matching those of the object.

The source provides general information about where information is obtained

to perform the activity. It may take one of the following forms:

us 1 ng entity
consulting [role: party]

Using indicates that the named entity provides useful information for

performing the activity. Consulting is used to name someone who is used as an

information resource for the implementation of the activity.

Each activity has a more specific syntax, and these are described in the

subsections below, along with its meaning and the possible exceptions to it. For each

activity, the following are given in the definition: the meaning of the activity, the

syntax, and the set of activity-specific exceptions and their meanings. Curly

brackets ({ }) are used in the syntax descriptions to enclose optional parts of the

155

specification. Square brackets ([]) enclose a set of options from which one is to be

chosen.

Activities are divided into four categories, each of which involves a particular

type of manipulation of entities or processes:

- Basic activities, which are concerned with the existence of classes and
entities, and their attribute values;

- Decision activities, which are concerned with various decisions that
pertain to entity instances;

- Aggregate activities, which are concerned with decisions that pertain to
groups of entity instances;

- Control activities, which are concerned primarily with the control
structure of a procedure, and are most commonly used in exception­
handling processes.

A.2.4.1 Basic Activities

A.2.4.1.1 Create

Create a new instance of a given class. This activity has the effect of adding a .
new entity (such as a document. a program, an employee), with all appropriate

attribute values, to the environment The Detail subsection may be used to specify

how the values for the attributes are to be set.

Create class name

Exceptions:

repeated unique attribute value
an attribute of the created entity that has the "unique"
characteristic was set to a value already used by another entity in
the clas&

156

bad attribute value
an attribute of the created entity was set to a value that was not in
the value class specified in the class definition.

can't create

A.2.4.1.2 llelete

the instance cannot be created for any reason (e.g., a document
instance is to be created but there are no fonns available).

Remove an entity permanently from the environment Examples might be the

destruction of a document. the deletion of a completed project, the tennination of

an employee. Any attempt to reference the entity after it is deleted is an error.

Delete instance

Exceptions:

doesn't exist
the named instance does not exist in the environment

A.2.4.1.3 Set

Change a (primitive) attribute value. This activity is used whenever a primitive

entity is changed, reflecting a change in the environment. (Note that values of

derived attributes change without explicit action.) Attributes that do not have the

"mandatory" characteristic may have the value .. unkncwn"; SET is used when the

value becomes known.

Set Attribute • va 1 ua

Excep,tions:

bad value
the value to which the attribute was set is not a member of the
value class specified in the class specification.

157

A.2.4.1.4 Calculate

Perform a specified mathematical operation on the attributes of an entity or

class. The particular expression may be specified; alternatively. the name of a (non­

OSL) procedure to perform the operation may be specified.

Ca 1 cul ate attribute = formula
01'

Ca 1 cul ate attribute = routine name(routine argument(s))

Exceptions:

error Some error occurred in carrying out the calculation

A.2.4.1.5 Revise

Review an existing entity and change the value of a TEXT attribute. This

activity is used in situations where some significant unstructured (text) portion of an

entity must be changed. usually as part of a rewriting action.

Rev 1 s e attribute

Exceptions:

none

A.2.4.1.6 Archive

Place some information about an entity in an archive file. The attributes of the

archive file, which is defined in the environment. specify what information is to be

saved. If no archive is specified, then the archive specified in the "Archive"

attribute of the entity is used.

Archive {entity} {in archive}

Exceptions:

nonexistent entity
The specified entity does not exist

158

-----------~~-------

nonexistent archive
The specified archive does not exist

A.2.4.1. 7 Send

Transmit an entity to another location; the entity is generally of type

COMMUNICATION or a derivative. (It is meaningless to Send an abstraction. or

to transmit an organization). A destination is any entity of type PAR TY or ROLE

(or derivatives) defined in the environment; if not given explicitly in the activity

specification, the destination is the value of the "To" attribute of the entity. A list of

destinations may be specified, in which case the activity is equivalent to a number of

SEND activities, each with a single destination. in any order.

Since communications entities always refer to some more fundamental entity

(see the discussion in the Environment section), the notion of a "copy" has a slightly

different meaning here than in usual practice. When an approved entity (q. v.) is to

be transmitted, then the approval characteristic is also transmitted; this is normally

implemented by sending a physical. signed "original." The SEND activity allows the

specification of "copy" transmittal. Such a copy is identical to an original except that

the value of the approved attribute(s) is "copy"; the meaning is that this is a copy of

which the original is authorized. A copy of an unauthorized entity would be

identical to the "original"; the value of the approved attribute is either

"unapproved" or "unknown.'"

Send {(copy)} {entity} {to destination(s)}

Exceptions:

nonexistent entity
The specified entity does not exist

wrong destination
The specified destination does not exist, or is otherwise
incorrectly specified

159

'"·-

communications failure
The transmittal cannot be accomplished for any other reason.

A.2.4.1.8 Add

Include an entity in a specified subset A subset (q. v.) is a subclass whose

members are only those added to the subset by an ADD activity. The class named in

the activity specification must be defined in the environment as a subset

Add entity to class

Exceptions:

incorrect operation
The specified entity is not a member of the parent class of the
specified subclass.

subclass overflow

A.2.4.1.9 Remove

Adding the entity to the subclass violates a constraint on the size
of the subclass.

Remove an entity from a specified subset

Remove entity from class

Exceptions:

wrong entity
The specified entity is not a member of the specified subclass.

subclass underflow
Removing the entity from the subclass violates a constraint on
the size of the subclass

160

A.2.4.2 Decision Activities

A.2.4.2.1 Approve

Approval is the authorization or sanction of an entity by a person legally

entitled to do so; it is the abstraction of which a signature is the most common

implementation. The APPROVE activity has the effect of changing the value of the

specified attribute from whatever it was ("unknown" "unapproved" "approved"

"conditionally approved") to "approved." The attribute must be of type

APPROVAL (q. v.). If no attribute is specified, then the entity must have only one

attribute of type APPROVAL.

Approve attribute {entity} {by role}

Exceptions:

not approved
The specified person cannot or will not approve the entity. This
is considered an exception because the appearance of an
APPROVE activity in a process specification means that in normal
operation the approval will occur.

unavailable
The required person is unavailable.

nonexistent entity
The specified entity does not exist.

nonexistent attribute
The specified attribute does not exist

A.2.4.2.2 Verify

Confirm the correctness of information. Normally used with communications

entities to check that field values are consistent and do not violate any constraints.

this activity may also be used to represent verification that all components of an

161

abstract entity are present and satisfy any constraints, or that the value of some

attribute is correct

Ver 1 f y { attribute(s)} {entity}

Exceptions:

not verified
There is something wrong with the entity or attribute being
verified.

nonexistent entity
The specified entity does not exist

nonexistent attribute
The specified attribute does not exist

A.2.4.2.3 Evaluate

Examine an entity (or some physical representation or aspect of it) and record

findings by setting a specified text attribute. The attribute must be of type

EVALUATION. A role indicating who is to do the evaluation may be specified.

Evaluate {attribute(s))} {entity} {by role}

Exceptions:

nonexistent entity
The specified entity does not exist

nonexistent attribute
The specified attribute does not exist

unavailable\ The person who is to do the evaluation is not available.

unable to evaluate
The person who is to do the evaluation cannot do so for any
reason (other than absence).

162

------~ -- ---------- ~-----

A.2.4.2.4 Negotiate

Come to an agreement (with one or more other parties) about some aspect of an

entity; the agreement is reflected in the value(s) of the relevant attribute(s). This

activity reflects the common situation in which a decision must be reached, but a

single person does not have the required information and/or authority to make the

decision himself. The others involved in the negotiation may be either of type

PARTY or ROLE.

Negotiate attribute with [role(s), part>(s)J

Exceptions:

nonexistent attribute
The specified attribute does not exist

nonexistent party
One of the roles or parties specified does not exist

unavailable
One of the roles or parties specified is unavailable.

unable to agree
The negotiation has failed to produce a decision.

A.2.4.3 Aggregate activities

A.2.4.3.1 Select

Create or add to a subset by picking one or more entities from a specified class;

SELECT indicates that more entities are available than are needed. The first class

name in the activity specification identifies some class in the environment that is

defined to be a subset The class from which the subset is selected must be either

the parent of the subset class (in which case the parent name can be omitted) or

163

.
another subset of the same parent If n is omitted, it is assumed to be one; it

specifies the number of entities to be selected.

Select {n} class {from class}

Exceptions:

nonexistent class
One of the specified classes does not exist

insufficient
There are not n entities in the "from" class.

unable The selection cannot be made for some reason (other than
insufficient entities)

A.2.4.3.2 Allocate

Distribute entities from a given class among several subsets; ALLOCATE

indicates that fewer entities are available than are needed. The operation is to take

some number (n) of members of the "from" class, and add each of them to one of

the "to'' subsets. If n is omitted, then all the members are allocated. The "to"

subsets must be defined in tlie environment to be subsets of the "from" class.

Allocate {n} from class to classes

Exceptions:

nonexistent
One of the specified classes doesn't exist

insufficient
There are not n members of the "from" class to be allocated.

164

A.2.4.3.3 Group

Partition the members of a class into subsets.

Group class 1 nto subsets

Exceptions:

none

A.2.4.4 Control activities

A.2.4.4.1 Notify

Inform someone of an exception condition. (Note that if the person to be

notified is the person responsible for the procedure. then the activity specification is

equivalent to the default exception-handling proc~.)

Notify {role}

Exceptions:

nonexistent
The specified person does not exist

unavailable
The specified person is unavailable.

A.2.4.4.2 Retrigger

Reset a timing constraint This causes the timing constraint to be set for the

specified time in the future.

Retrigger constraint number + time

Exceptions:

165

none

A.2.4.4.3 Initiate

Cause a procedure to be invoked.

Initiate procedurename

Exceptions:

nonexistent
The procedure specified is nonexistent

A.2.4.4.4 Terminate

With a procedure name as object, cause all processing associated with the

named procedure to stop, regardless of its current state. (This will cause an

exception in the halted procedure.) Without an object, terminate the current step.

Terminate {procedure name}

Exceptions:

nonexistent
The procedure specified is nonexistent

nonactive
The procedure specified is not active.

A.2.4.4.5 Perform

Initiate another OSL procedure; this differs from the INITIATE activity in that a

PERFORM activity is not finished until the named procedure reaches its final state,

whereas an INITIATE activity is finished as soon as the named procedure is started

Perform procedure name

Exceptions:

166

------ --------------- --------

unable The named procedure cannot be completed, for any reason.

A.2.4.4.6 Return

This activity is used to specify that an entity is to be sent back to the party, role,

or organizational unit from which it came. REfURN is used primarily in processes

that handle exceptions to the VERIFY activity when an approval attribute is being

verified. In such a case, the defaults for the REfURN activity are that the

unapproved entity is to be returned to whoever did not approve it.

Return {entity} {to entity}

Exceptions:

none

A.2.4.4. 7 Repeat

REPEAT is used in an activity-specific exception handler to indicate that the

activity is to be repeated n times before any further exception condition is raised. If

n is omitted, it has the value 1.

Repeat {n}

Exceptions:

none

A.3 Environment Specifications

This section describes the components of an OSL environment specification,

including definitions of the built-in entity types.

167

------ ------ ------- -------- - ---'--------- -- --- --------------

A.3.1 Overall Structure of an Environment Specification

The environment specification is divided into two major parts:

"Identifications" and "Definitions." All class definitions in an environment are

organized in alphabetical order, in the Definitions part, for easy reference.

Preceding these definitions, the Identifications part is a summary of all the class

names and their types. This summary is organized in a particular order, with the

following outline:

Organizational context
Classes describing the relevant aspects of the organization of
which the office is a part. Includes:

External context

- The instance definition for the organization
itself.

- The organization hierarchy and personnel
hierarchy instance tables.

- Class type descriptions of other relevant aspects
of the organization.

Class type descriptions of items external to the organization
that are of interest to the office being described

Internal context
Classes describing relevant aspects of the office itsel[This
includes special subsections providing separate identification
of the class names for the following kinds of classes:

- Documents, communications and their
derivatives

-Names

168

----~-- ----

A class type description is one of the following forms:

class-name is [class-type; class derivation]
01'

class-name • class-name

where class-type is the name of a built-in or derived entity type, and the "= ..

represents an alias definition. Each of these items is described in the following

sections.

A.3.2 Class Definitions

An OSL environment is not just a coHection of entities. Rather, the relevant

entities in the office's "world" are organized into classes, each representing a set of

entities of the same type. There are two kinds of classes in an OSL description:

built-in classes and derived classes (defined relative to some other class(es) in the

environment). For example, the built-in entity type EMPLOYEE implicitly defines

the built-in class EMPLOYEES; we may define a (derived) class of MIT­

EMPLOYEES of type INTERNAL-EMPLOYEES; subsequently, we may define

the class OSP-EMPLOYEES as a particular subclass of MIT employees (Le., by the

value of some attribute).

There is also a kind of class whose members are of the special built-in type

name. Names serve to represent other entities, and take the form of numbers or

strings of characters. There are several built-in name classes in OSL; name classes

may also be defined as required to specify the environment

Each class has a class name, which must be unique within the environment A

class may also have an alias, a second unique name by which the class is known; the

alias is usually shorter than the class name, and is used only for convenience.

169

A.3.2.1 Built-in Classes

Each built-in entity type defines a built-in class consisting of all entities of that

type. Since these classes are defined as part of OSL, they do not appear as part of

any environment definitions. They may be used, however, as the value class of any

attribute. See the subsection A.3.5 for definitions of these items.

A.3.2.2 Derived Qa~

A derived class is one that is defined in terms of other classes. :Each member of

a derived class is a1so a member of one or more of the classes from which the

derived class is defined. A class in terms.of which a derived class is defined is ca1led

the derived class's JXlrent class. A derived class may have one or more parent classes,

each of which may be a built-in or a derived class.

There are severa1 kinds of possible class relationships; each kind is reflected in

one of the possible means of defining a derived class. Restriction and subset provide

for derivation of a class in terms of a single parent; merge-members. common­

members, and missing-members provide for derivation in terms of multiple parent

classes.

A.3.2.2.1 Restriction

A restriction defines a class as consisting of a11 members of the parent class that

have a particular attribute value or set of values. There are two forms for defining

restriction classes. One is used only when the parent class is a built-in class:

class name { = alias } 1 s parent class
<allribute specifzcations>

Some of the attribute specifications are "type attribute restrictions"; these are

specifications of type attributes (defined in subsection A.3.3.3.1) in the form

170

attribute name: value class

where the value class is either the class defined as the value class of the attribute in

the built-in type definition (subsection A.3.5), or a defined subclass (restriction or

subset) of that value class.

The second form for defining a restriction class can be used with a built-in or

derived parent class:

class name { = alias } is parent class
where <attribute restriction>
<additional attributes>

An attribute restriction has one or more of the following forms:

predicate
(restriction}
not restriction
restriction or restriction
restriction and restriction

where a predicate has one of the following forms:

chain comparator chain
chain comparator constant
is a v a 1 u e of attribute name of class name

A chain is a form of reference (described in Section A.3.3.2.2) and a comparator is

one of:

• ...
)

<
)•

<•
1s in
1s not in
contains
does not contain

and a constant is any number or a string of characters surrounded by double quotes

(" ").

The attributes of the derived class and its members include all those of the

171

parent class and its members. These inherited attributes (q. v.) need not be included

in the definition of the derived class (unless they are part of an attribute restriction

specification); only attributes that apply only to the derived class and its members

need be specified.

The derived class provides a means of defining interesting subclasses of a given

class, and allowing additional attributes to be assigned to the entities in that

restriction. Note that entities that are members of the restriction class are

simultaneous1y members of the parent class, and that membership of any member

of the parent class in a restriction class can always be determined by ref erring to the

value(s) of its restricted attribute(s).

An example of a restriction class:

ACCEPTANCE-LETTER is LETTER
where Result = "admit"
Reply: LETTER-REPLY

This example defines the class of research coordinators as consisting of all the

jobs (roles) in the OSP whose name is "R-C"; the parent class OSP-JOBS is itself a

restriction of the class MIT-JOBS. F.ach research coordinator job (member of the

class RFSEARCH-COORDINATORS) is characterized by the set of attributes that

defines all OSP jobs (which in turn includes the set of attributes that defines all MIT

jobs), as well as by an additional attribute indicating which kinds of programs each

research coordinator is responsible for.

A.3.2.2.2 Merge-members

The merge-members derivation defines a class as containing all the members of

each parent class. (Ibis is equivalent to a set-theoretic union operation). The

format for such a derivation is:

172

class name is
merge-members in <parentclassname>
<additional attributes>

An example of a merge-members derivation is:
REVIEWER

merge members of FACULTY, ADMISSIONS-STAFF

This example defines researchers as being any faculty or senior staff.

A.3.2.2.3 Common-members

The common-members derivation defines a class as containing only those ·

entities that are members of all of the parent classes. (This is equivalent to a set·

theoretic intersection operation). The format for such a derivation is:

class name 1 s
common-members of <parent class name>
<additional attn'butes>

An example of a common-member derivation might be:

ADMISSIONS-FACULTY
common-members of ADMISSIONS-STAFF, FACULTY

This example defines the class whose members both hold faculty positions and

work in the admissions office.

A.3.2.2.4 Missing-members

The missing-members derivation defines a class as containing all those entities

that are members of one parent class but not of another. (This is equivalent to a set·

theoretic difference operation.) The format for such a derivation is:

class name 1 s
missing-members of parentclassnamel not 1n parentclassname2
<additional attributes>

An example of a missing-members derivation might be:

173

ADMISSIONS-NON-FACULTY
missing-members of ADMISSIONS-STAFF not in ADMISSIONS-FACULTY

defining the class of all employees of the admissions office who are not faculty.

A.3.2.2.5 Subset

A subset class derivation is similar to a restriction class derivation in that it
defines the derived class in terms of a single parent A subset simply defines a

subclass whose membership is determined specifically by an activity; this is in

contrast to a restriction derivation, in which the membership of the derived class is

defined a priori in the class specification. The subsection on Activities describes

those activities that add members to and remove them from subsets. The format for

a subset class definition is:

class name
subset of parent class name
<additional attributes>

An example of a subset would be a class WAITLISTED-APPLICANTS,

defined as a subset of class APPLICANTS, and representing those applicants who

were explicitly placed in the class WAITLISTED-APPLICANTS. In this case, no

attribute of a member of the class APPLICANT would indicate a priori whether that

applicant is or is not also a member of WAITLISTED-APPLICANTS, although a

derived membership attribute may be defined for that purpose (see Section

A.3.3.4.2.)

A.3.2.2.6 Redundancy in Oass Derivations

There are two related issues that are of significance in using the various

derivation facilities. First, the merge-members, common-members, and missing­

members derivations make sense only when all the parents have reasonably similar

member types~ It would probably make no sense, for example, to merge a class

whose members are of type EMPLOYEES with one whose members are of type

174

AGREEMENT; therefore, OSL requires that the parent classes of multiple-parent

derived classes be subclasses of the same built-in type.

Second, because many classes may be derived from a single parent, it is often

the case that there is a choice in how to derive a particular class. (In the missing­

members example above, the same class of admissions non-faculty could have been

derived by a restriction of ADMISSIONS-STAFF, by a common-members

derivation of ADMISSIONS-STAFF and MIT-NON-FACULTY, or several other

derivations. All these derivations would result in the same derived class.) This

redundancy is provided in OSL to allow the analyst to choose the derivations that

most closely match the office he is modeling. All equivalent derivations are

"correct"; the best is the one that most reflects the environment

A.3.2.3 Name Classes

Names are special entities that serve as representations, rather than as

descriptions of actual entities; name entities have no attributes other than a value.

They are thus the "lowest level" of the OSL environment specification mechanism.

All name classes are derived from the built-in type TEXT, which includes anything

that can ~e written with the standard character set (including the digits 0-9).

There are two basic means of name class definition. The first is enumeration, in

which all possible values of the name are specified:

class name is NAME
{value, wilue, wilue, . . . }

The second is by derivation from any other name class(es), using the same

derivation mechanisms described in Section A.3.2.2. A ·name class may also be

defined by a combination of these methods.

175

A.3.3 Attributes

The attributes of an entity (or class) describe the properties of the entity (class),

and may serve to indicate relationships to other entities (classes) in the environment

All attributes are defined using the same syntactic mechanisms. The syntax of

attribute definition is:

Attribute name: value detenninant { (characteristics)}

The value determinant describes either the class from which the value may

come, for a primitive attribute (q. v.), or the way in which the value is derived, for a

derived attribute (q. v.). Characteristics apply only to primitive attributes, and

designate certain special properties of the attribute's possible values (see Section

A.3.3.4.1).

A.3.3.1 Attribute Names

An attribute name must be unique within its class. By convention. all attribute

names are written in small letters with initial capitals

A.3.3.1.1 Hierarchical names

Attribute names may be hierarchical, that is, an attribute name may refer to

several component attributes. For example,

Employee-id:
Last-name: TEXT (mandatory)
First-name: TEXT (mandatory)
Middle-initial: TEXT
ID#: INTEGER (untque)

Reference may be made either to the entire hierarchy ("Employee-id" in this

case) or to any of its components. A component reference is formed by

concatenating the names of each level of the hierarchy, separated by periods, e.g.,

"Employee.Middle-initial".

176

Hierarchical attributes need not have names for all the components. if the

hierarchy is always referred to as a unit An example of such an attribute is:

Fiscal-approval:
APPROVAL by AD-Resp
APPROVAL by RC-Resp

A.3.3.1.2 Alternate names

An attribute may have more than one naine, any of which serves to identify the

attribute. Alternate names are indicated by the following form:

Attribute name: Attribute name: value determinant

This capability is most useful when it is desired to attach an alternate identifier

to a type attribute. For example, the class PURCHASES in Appendix I is of built-in

type TRANSACTION (q. v.), which has a type attribute "Party I"; the following

attribute definition provides for a more convenient name for the attribute. which

can be referred to as either "Party I" or "Purchaser":

Purchaser: Partyl: SPONSORED-RESEARCH-PROGRAMS

A.3.3.2 References

References to classes, entities, and attributes must be made for various purposes

in an environment specification. The following describes the formats used for

referencing these items.

A.3.3.2.1 References to Classes

Since classes are uniquely named within an environment, the class name serves

as a sufficient reference to the chm.

177

-- --~-------------- ----------

A.3.3.2.2 References to Attributes; Chains

Within a class, attribute names are unique; therefore, when referring to an

attribute within its class, as, for example, in defining the derivation of another

attribute (q. v.), the attribute name is sufficient

When referring to an attribute of an arbitrary class, the name of the attribute is

concatenated with the name of the attribute. (For example, since the form "MIT­

EMPLOYEES" refers to the set of members of the class named MIT­

EMPLOYEES, the form "MIT-EMPLOYEES.Supervisor" refers to the set of

"Supervisor" attributes of the members of class MIT-EMPLOYEES.)

These concatenated formats are examples of a general reference format called a

chain. Since the value of an attribute is an entity of some class, it may have

attributes of its own. It is possible to reference an attribute of an entity that is the

value of an attribute of an entity, ad infinitum. Thus, the set of supervisors of

employees would be referred to as "MIT-EMPLOYEES.Supervisor"; the set of

supervisors' names would be "MIT-EMPLOYEES.Supervisor.Name"; the set of

supervisors' supervisors' names would be "MIT­

EMPLOYEES.Supervisor.Supervisor.Name"; for a given member of MIT­

EMPLOYEES, his supervisor's supervisor's name would be

"Supervisor.Supervisor.Name" and so on.

A chain is defined to be either the name of a class, or the name of an attribute,

or the name of a class followed by any number of attributes, or the names of any

number of attributes, concatenated together in any length, so long as the chain

follows some path defined in the environment

178

A.3.3.2.3 References to Entities

In order to refer to a particular member of a class (rather than the class itself, or

an arbitrary entity), some means must be available to identify the particular member

of interest Such identification is made possible by the use of "unique attributes"

(q. v.). By specifying the value of a unique attribute, a unique member of a class is

designated:

class-name(unique-attribute-name•value)

For example:

MIT-EMPLOYEES(Id•"012-34-5678"}

Note that such a reference may be used in a chain:

MIT-EMPLOYEES(Id•"012-34-5678").Supervisor.Superv1sor.Name

would refer to one specific value, rather than the set of names described above.

A.3.3.3 Kinds of Attributes

There are three kinds of attributes, distinguished by their applicability:

member attributes, common attributes, and class attributes.

A.3.3.3.1 Member attributes

Member attributes are those that describe an aspect of individual members of a

class. (For example, the name of an employee). This is the default attribute kind,

and an attribute that is not otherwise specified will be a member attribute.

There is a special kind of member attribute called a type attribute. Type

attributes are those attributes that are associated with the definition of the built-in

type (as shown in subsection A.3.5).

179

A.3.3.3.2 Common Attributes

Common attributes describe some aspect of individual members of a class that

has the same value for each member of the class. (For example. the value of the

attribute "Organization .. for all members of the class MIT-EMPLOYEES is

"MIT'.)

A common attribute is specified by placing the word "common.. in the

characteristics subsection of the attribute specification.

A.3.3.3.3 Class Attributes

Class attributes describe properties of the class itself. not its individual

members. (For example, the class ADMISSIONS-STAFF might have a class

attribute "Number" to indicate the number of members of the class.)

A class attribute is specified by placing the word "class" in the characteristics

subsection of the attribute specification.

A.3.3.4 Attribute Values

Each attribute has a value. This value may be one or more entities. or an entire

class. The value determinant part of the attribute specification indicates the possible

values of the attribute. and may include the means by which that value is derived. If

just the value class of the attribute is specified. the attribute is a primitive attribute; a

derived attribute specification includes a derivation expr~ion describing how the

attribute value is found

A.3.3.4.1 Primitive attributes

Primitive attributes are those whose values may be any member of the value

class (or any members. in the case of a multiple-valued attribute). Except in the case

180

of mandatory attributes (see below), the value of a primitive attribute may also be

the special value "unknown... Primitive attributes are specified in the following

fonn:

Attribute name: value class (characteristics}

The value class may be the name of a built-in class (Le., the class of all members

of some built-in entity type), or of any class defined in the environment.

Primitive member attributes may have a number of independent characteristics,

each indicated by placing the appropriate keyword in the parentheses following the

value class. If no characteristics are provided, the parentheses are not needed

These characteristics include:

common Designates a common attribute (q. v.). ··common" and ··class" are
mutually exclusive.

class Designates a class attribute (q. v.). "class" and "common" are
mutually exclusive.

unique Designates a unique attribute, indicating that each member of the
class must have a different value for that attribute. If several
attributes of an entity are unique, any one may serve to identify a
particular member of the class. If a combination of attributes
together provides a unique identifier for a member, those
attributes should be defined as the second-level attributes of an
hierarchical attribute(q. v.), whose top level would have the
"unique" characteristic.

multiple Designates a multiple-valued attribute. The value of a default
(single-valued) attribute is a member of the value class of the
attribute, while the value of a multiple-valued attribute is a
subclass of the value c~ For example, the "Address" attribute
of an MIT-EMPLOYEE has a single value taken from the class
ADDRESS.ES; the "Role" attribute has as its value a subclass (of
arbitrary size) of the class MIT-JOBS. This definition
corresponds to a rule in the MIT environment that an employee

181

has one address, but may fill several roles (reacher, Researcher,
Committee member, etc.)

mandatory

restricted

Designates a mandatory attribute, one that cannot have the value
"unknown".

Designates a restricted attribute, one that can only be changed by
a specified person or persons. The form for a restricted attribute
IS

{(by <person>)}

For the special case of primitive type attributes, the value class must be one of

the following (The value class of the type attribute "Role" of class MIT­

EMPLOYEES (which is of built-in entity type EMPLOYEES) is used in the

examples. Note that the definition of EMPLOYEES indicates that the value class of

the type attribute "Role" is ROLES):

- the built-in class defined as the value class of the attribute in the type
definition (e.g., the value class of the "Role" attribute of MIT­
EMPLOYEES could si,n.ply be ROLES).

- some derived cJass whose members are of the type of the value class of
the attribute defined in the type definition, or some subclass of that class
(e.g., the value class of the "Role" attribute is the derived class MIT­
JOBS, which is of type ROLES; it could also be any class derived from
MIT-JOBS, or any other built-in class of type ROLES.)

A.3.3.4.2 Derived attributes

A derived attribute is defined by one of several types of derivation expr~ions

that indicate how the value of the attribute is derived from other information in the

environment. Such a derivation may take several forms:

- A derivation may be defined in tenns of values of other attributes of the

182

entity. Such a specification may include a chain; the general form for
such a specification is

attribute name: chain

For example, the value of the "Program" attribute of CONTRACT­
CHANGE entities is defined as

Program: Contract.Program

indicating that the value is the same as the value of the "Program"
attribute of the (GRANT /CONTRACT entity that is the value of the)
"Contract" attribute of the CONTRACT-CHANGE.

- A derivation may use the class derivation mechanisms restriction, merge­
members, common-members, or missing-members applied to classes or
chains in the same way as derived classes are defined:

Attribut~name: restrict chain where relation
Attribut~name: merge-members in chain
Auribut~name: common-members in chain
Attribut~name: missing-members in chain not 1n chain

- A derivation may be an inversion derivation. An inversion on an
attribute A of entity E indicates that the value of the inverted attribute
for each member is the set of all entities E that have E as the value of
their attribute A. The syntax of an inversion is

attribute name: i overt attribute name of chain

For example, consider the class MIT-ACCOUNTS, having an attribute
defined as

Source: invert Account of SPONSORED-RESEARCH-PROGRAMS

Then the value of the "Source" attribute of a given MIT-ACCOUNT,
say the one identified by Account# = "U345", would be the set of all
SPONSORED-RESEARCH-PROGRAMS that have "U345" as the
value of their "Account" attribute.

- A derivation may be as a test of membership in a subset (q. v.). A
membership attribute has a boolean value, whose value depends upon
whether the entity is a member of some subset The form for a
membership derivation is

attribute name: if exists in class name

183

- A derivation may be defined as an ordering within the class. An
ordering derivation is specified as

attribute name: order by [increasing or decreasing] chain

indicating that the value of the attribute is the number assigned to the
member based upon an ordering upon the value of the chain. The value
of such an attribute will of course change as entities are created and
destroyed.

- A derivation may be defined as a matching derivation. The value of the
derived attribute is the same as the value of a specified attribute of the
entity that matches the current entity in a specified attribute. For
example, consider a (hypothetical) attribute "OSP-Project-Nos" of
FACULTY, representing the set of account numbers for all the
sponsored research programs for which the faculty member is the
principle investigator. Then the attribute derivation would be defined as

OSP-Project-Nos: Account of matching SRP.Pr-Inv

The value of "OSP-Project-Nos" for a particular member of the
FACULTY class is found by first finding the set of SPONSORED­
RESEARCH-PROGRAMS (SRP) whose value of "Pr-Inv" is the
FACULTY of concern; the value of "OSP-Project-Nos" is then the set
of values of the "Account" attributes of those SPONSORED­
RESEARCH-PROGRAMS.

- A derivation may be defined as a calculation derivation, indicating that
some arithmetic calculation on one or more values or classes. The
following are fonns of possible calculation derivations:

maximum of chain
m1 n imum of chain
average of chain
sum of chain
number of members in chain
chain + chain
chain - chain
chain • chain (multiplicadon)
chain I chain

184

A.3.3.5 Special Attribute Types

There are a number of attribute types used for special purposes. They are

described in the following subsections.

A.3.3.5.1 Refers and Same Attributes

A refers attribute is used to indicate that the entity being described exists to

store, format, or transmit information about some other entity. It is therefore used

primarily with communication entities, which generally are of interest only insofar

as they refer to some more abstract entity. This relationship is indicated by the use

of the attribute "Refers"; the value of the attribute is the name of the class to which

the communications pertains:

Refers: chain

A Same attribute is used to indicate that the named attributes are identical to

(both name and value) those of the same name in the referred entity:

Same: <allribute name>

An example of the use of these attributes is shown in the following class

definition:

ACCOUNT-ACTION-NOTICE = F001 is DOCUMENT
where Refers: SPONSORED-RESEARCH-PROGRAM
To: "Sponsored-accounting", "Keypunch", Pr-Inv, Dept/Lab.Head
File: OSP-Master-F1le
Same: Account#, Budget, Sponsor, Start-date, Title
Date-issued: DATE
Type: F001-TYPE

Thus, each member of the class ACCOUNT-ACTION-NOTICES refers to

some member of the class SPONSORED-RESEARCH-PROGRAMS, and their

attributes "Account#" have the same value.

A Same attribute may also specify that attributes of another attribute value may

be copied:

185

Same as attribute name: <attribute name>

A.3.3.5.2 Dependent attributes

A dependent attribute is one whose derivation depends directly upon the value

of another attribute. The syntax for a dependent attribute is

attribute name:
< 1 f attribute • value than derivation>

The "Fiscal-Approval" attribute of a RESEARCH-PROPOSAL-SUMMARY entity

includes a dependent attribute derivation.

A.3.3.6 Attribute Inheritance

Some attributes in OSL are inherited. In general, member attributes are

inherited, while class attributes are not; common attributes are sometimes inherited.

Of course, attributes characteristic of a derived class may be defined, but they

always inherit some attributes from parent classes.

The type attributes (q. v.) of a derived class are inherited from the definition of

the built-in entity type.

The attributes of a derived class are inherited from the parent(s) according to

the following rules:

- For single-parent derivations, all the member and common attributes of
the members of the parent class are attributes of members of the derived
class.

- A merge-members class inherits all the member attributes that are
shared by the parents. No common attributes are inherited.

- A common-members class inherits all the member attributes of all of its
parents. No common attributes are inherited.

186

- -~-----------------

- A missing-members class inherits all the member and common
attributes of its first parent Thus, for a derivation

missing-members in A but not in B

all the member and common attributes of A would be inherited.

A.3.4 Defining Entity Instances

A class specification defines a homogeneous set of entities of a given type-the

class's members. In some cases, it is desirable to define a single instance of some

entity type, whether a member of some class or not. OSL provides several means for

defining specific entity instances. One is via an explicit CREATE activity (cf.) in a

procedure specification. The others are static mechanisms that are part of the

environment specification.

A.3.4.1 Instances of Built· in Entity Types

The more general method of defining an instance follows the syntax of the

definition of a class or entity type:

Define Instance of built-in entity type:
<Type attribute name • value>

This syntax simply allows the definition of an instance of any kind of entity type;

each type attribute is given a value, which must be of the value class of the attribute

defined in the type definition. The instance is given a name, which must be unique

among class and instance names; in this manner, instances that may not have unique

attributes defined can be referenced.

Consider the following example:

Define Instance of ORGANIZATIONS
Name "' "MIT"
Address • "77 Massachusetts Avenue

Cambridge, MA 02139"
C-E-0 • "President"

187

-------- - ·------ ------ ---

This defines an instance of type "organization" named "MIT." The instance

definition provides a specific value for each (type) attribute of organizations:

"Name" is given a value of class TEXT; "Address" of class ADDRESS; and "C-E-

0" of class MIT-JOBS, which is a class of type INTERNAL-ROLES.

A.3.4.2 Defining Class Members

A similar syntax allows for the definition of a particular member of a class

already defined in the environment:

Define Member of classname:
<list of Attribute name • value>

In this case, a value is specified for each non-optional, and for any optional.

primitive attribute of the entity. Each value must be a legal value of the attribute's

specified value class. The value may be specified as an independent value:

class name(key values)

or as a derived value using any of the normal attribute derivations. (Note that the

instance must be of an entity class; name class instances are defined by the class

definition.)

A.3.4.3 Tabular Instance Definition

The final means of specifying instances is tabular, and is used primarily in

defining environmental networks as well as logs and other inherently singular

entities. The tabular fonnat simply lists a few critical attributes as columns, and

individual entities and are represented by rows of attribute values.

An an example, consider the following personnel hierarchy: .

188

Name
President
Provost
VP-Fin-Ops
Director-OSP
R-C
A-D

Organizational-unit
Office-President
Office-Provost
Office-VP-Fin-Ops
OSP
OSP
OSP

Reoorts-to
Chairman
President
President
VP-Fin-Ops
Director-OSP
Director-OSP

Current-holder
P. Gray
F. Low
S. Cowen
G. Dummer
several
several

This is a tabular definition of several members of the class MIT-JOBS, including

values for four key attributes.

A.3.5 Built·in Entity Types

This subsection defines all the built-in entity types. F.ach definition includes

the attributes that are part of each entity, along with the cJass from which the values

of the attribute may be drawn.

OSL incJudes in its built-in entities several broad categories of interest in a

typical office environment These include various kinds of organizational divisions,

people. jobs. documents. etc.. as well as more abstract notions such as agreements,

schedules, and so on. While it is hoped that the built-in entity types will adequately

support most applications, it will sometimes be impossible to find one that "fits." In

such a case, the generic type ENTITY can be used to define a built-in class. In the

following. we will use the term "entity" to mean any entity type at all.

In the descriptions. the term "area" is used to designate the part of an

organization being described in a given OSL specification. The area is the starting

point for the organizational, external, and external context pieces of the

environment, as described previously; it also provides the context in which several

of the built-in entity types are defined

The following subsections are arranged alphabetically, inasmuch as the

relationships among the entity types do not admit of an obvious linear arrangement

189

-- --------------

The fonnat of an entity description includes an English description of the entity

and its characteristics, followed by the set of built-in (type) attributes that are

included in the type definition to provide for the characterization, in the following

fonnat:

Attribute name: value class (characteristics)

The characteristics are the same as those defined in Section A.3.3.4.1, plus the

special characteristic "optional," which indicates that the attribute need not be used

in every derived class of that type.

Note that each entity type has a "Name" attribute. For some types (Name

labeled with "unique"), this attribute provides a unique identity for each such

entity. For other types, each entity has a (not necessarily unique) name. A third

category (Name labeled with "optional") covers those types for which individual

entities are not normalJy named (such as documents); if the Name attribute is left

out of a class of such type, the Name attribute is, by default, a class attribute with a

value equal to the class name.

A.3.5.1 Account

An account is a record (q. v.) of transactions (q. v.). An account has a unique

account number, and some role (q. v.) that is responsible for it

Name: TEXT (optional}
Number: TEXT (unique)
Responsible: ROLE

A.3.5.2 Agreement

An agreement is a relationship that indicates mutual responsibilities among

parties. The minimal characteristics for defining an agreement include the

identification of all the parties, the period over which the agreement is to hold (start

190

---------~-- ---------

and end dates). and the agreement itself. While in the general case this is just a text

value, in any particular use it might be a hierarchical attribute describing various

specific aspects of the agreement

Agreement: TEXT
End: DATE
Name: TEXT {optional}
Partyt: PARTY
Party2: PARTY
arbitrarynamberof <Partyn: PARTY>
Start: DATE

A.3.5.3 Appointment

An appointment is an agreement (q. v.) among one or more parties to meet at a

given time, possibly involving specific physical facilities (rooms, equipment, etc.) It

is often the case that an appointment is a piece of a larger structure, a schedule

(q. v.); if so, the .. Refers" attribute relates the appointment to the schedule.

Date: DATE
Facilities: ENTITY {multiple) {optional}
Length: INTERVAL (optional}
Name: TEXT {optional)
Partyt: PARTY
arbitrary namberof <Partyn: PARTY>
Refers: SCHEDULE (Qptional)
Time: TIME

A.3.5.4 Approval

Approval is a type that is used only as a primitive attribute value class specifier.

An approval is a signature or other implementation of an authorization by some

responsible person of the entity of which it is an attribute value. (It is most often

used on documents and other communications.) An approval is created only by the

execution of an APPROVE activity (see description in next section).

By: PERSON
Date: DATE
Signature: TEXT

-------------~---

191

A.3.5.5 Archive

An archive is a file (q. v.) that provides for long-term. long-access-time storage

of entities or information about entities. The definition includes an attribute

describing how long information is to be kept after entering the archive.

Destroy-after: INTERVAL (optional)
Name: TEXT
Refers: ENTITY

A.3.5.6 Communication

A communication is used to transmit information about an entity. (Specific

kinds of communications include documents, memos, etc, which are defined

separately; a "communication" type is used only when none of the more specific

types is appropriate.) Since a communication always refers to another entity, that

entity is specified in the "Refers" attribute. The office(s) or person(s) from whom

the communication is expected to come and to whom it is to be sent can also be

specified. If a reply is required,' that communication is specified as the "Reply"

attribute. Finally, the body of the communication may be specified as text, or with

any other attributes that are required.

Body: TEXT (optional)
From: ORGANIZATIONAL-UNIT or ROLE (optional, multiple)
Name: TEXT (optional)
Refers: ENTITY
Reply: COMMUNICATION (optional)
To: .ORGANIZATIONAL-UNIT or ROLE (optional, multiple)

A.3.5. 7 Date

A date is a restriction of the TEXT name class that includes any legal date or

day of week specification, e.g. January 22 or Thursday

192

A.3.5.8 Document

A document is a formal, written communication (e.g., a form).

Body: TEXT (optional)
From: ORGANIZATIONAL-UNIT or ROLE (multiple, optional)
Name: TEXT (optional)
Refers: ENTITY
Reply: COMMUNICATION (optional)
To: ORGANIZATIONAL-UNIT or ROLE (multiple, optional)

A.3.5.9 Employee

An employee is a person employed by some organization. The following

attributes describe a minimal set of characteristics for an employee. Note that one

person may hold many roles.

Company: ORGANIZATION
ID: TEXT (unique)
Name: TEXT
Office: ORGANIZATIONAL-UNIT (multiple)
Role: ROLE (multiple)
Supervisor: EMPLOYEE (multiple)
Title: TEXT (optional)

A.3.5.10 Evaluation

Evaluation is used only as the value class of a primitive attribute. An

evaluation is the text that results from the execution of an EV ALU A TE activity. (Such

an activity provides for someone to examine an entity (usually a document) and

provide some comments-the evaluation-about his examination. See the next

section for a more complete description.)

Name: TEXT

A.3.5.11 File

A file is a physical storage structure for a group of entities, the constituents. It

includes an ordering attribute that serves to indicate by which attributes the

193

-·-·-- ·-----------~---~

constituents are ordered within the file, and a time at which the constituents are

removed form the file (to be archived or destroyed).

Name: TEXT (optional)
Constituents: ENTITY (multiple)
Ordering: <attribute name>
Remove: TIME

A.3.5.12 Internal·employee

An internal employee is an employee of the organization of which the area

being described is a part (See ''Internal-organizational-unit"). The characteristics

are the same as for an employee, except that the organization is not specified, since

it is inherently a common attribute of known value.

ID: TEXT (unique)
Name: TEXT
Office: ORGANIZATIONAL-UNIT (multiple)
Role: ROLE (multiple}
Supervisor: INTERNAL-EMPLOYEE (multiple)
Title: TEXT (optional)

A.3.5.13 Internal·organizational·unit

Each OSL specification focuses on the functions carried out by one or more

offices within an organization. That organization is described in the "organizational

context" subsection of the environment description. An internal organizational unit

is any subpart of that organization. (In Appendix I, the organization is MIT; in that

context, an internal organizational unit is any subpart of MIT.)

An internal organizational unit is characterized by a name, a supervisor, and a

parent, the unit(s) of which it is a direct part or to which it reports. (fhe "Parent"

attribute provides a mechanism for expr~ing the relationships shown in an

organizational chart.)

194

Name: TEXT
Parent: INTERNAL-ORGANIZATIONAL-UNIT (multiple)
Supervisor: INTERNAL-EMPLOYEE

A.3.5.14 Internal·role

An internal role is a role (q. v.) within the organization of which the area is a
part. Except for the lack of the unneeded "Company" attribute, it is identical to a

role.

Current-holder: EMPLOYEE (multiple)
Location: ORGANIZATIONAL-UNIT (multiple)
Name: TEXT
Reports-to: ROLE (multiple}

A.3.5.15 Log

A log is a structure whose purpose is to provide a record of events concerning

some entity. The "Period" attribute may be used to indicate what period of time the

log covers. The "Entry" attribute indicates what information is to be saved upon

execution of a LOG activity (see next section). The "Entry.Copy" attribute takes a

list of attribute names (attributes of the "Refers" entity), indicating which of those

attribute values are to be recorded Of course, other attributes may be added to the

"Entry" definition for specific logs.

Entry:
Copy: <attributename> (optional)
Date: DATE (optional}
Time: TIME (optional}

Name: TEXT (optional}
Refers: ENTITY
Period: INTERVAL (optional)

A.3.5.16 Memo

A memo is a written, informal communication.

195

From: ROLE
Message: TEXT
Name: TEXT (optional)
Refers: ENTITY
Reply: COMMUNICATION (optional)
To: ORGANIZATIONAL-UNIT or ROLE (multiple)

A.3.5.17 Message

A message is an informal communication, often representing the result of a

telephone call or other ephemeral action.

Date: DATE
From: ORGANIZATIONAL-UNIT or ROLE (multiple)
Message: TEXT
Name: TEXT (optional)
Refers: ENTITY
Reply: COMMUNICATION (optional)
Time: TIME
To: ORGANIZATIONAL-UNIT or ROLE (mult1ple)

A.3.5.18 Number

A number is a restriction of the TEXT name class that includes all legal

numbers.

A.3.5.19 Organization

An organization is any business (in the legal (corporation, partnership,

proprietorship) sense) with which the area deals (e.g., MIT, IBM, Joe's Pizza). Each

organization has a name, an address, and a person who is in charge.

Address: ADDRESS
c-e-o: EMPLOYEE
Name: TEXT

196

A.3.5.20 Organizational·unit

An organizational unit is any subpart of an organization. It is characterized by

specifying the organization of which it is a part, its parent unit (see description of

parent in "Internal-organizational-unit"), and the person in charge.

Name: TEXT
Organization: ORGANIZATION
Parent: ORGANIZATIONAL-UNIT
Supervisor: EMPLOYEE

A.3.5.21 Party

A party is any person or organization. This is a generic type used primarily for

defining more specific parties.

Name: TEXT

A.3.5.22 Person

A person is a real person (as opposed to an organization).

Name: TEXT

A.3.5.23 Project

A project is a (partially ordered) set of tasks, with a project manager in charge.

Each task has attributes that provide ordering information, and the project itself has

"pointers" to the first and last tasks.

Elements: TASK (multiple)
First: TASK (multiple)
Last: TASK (multiple)
Manager: EMPLOYEE
Name: TEXT

197

---------------~

A.3.5.24 Record

A record is an organizing structure for other, heterogeneous, entities, which are

called constituents. It is used to gather together information about an entity. (As an

example, consider the various messages, documents, etc. that make up a medical

record, all referring to a particular person.)

Constituents: ENTITY (multiple)
Name: TEXT
Refers: ENTITY

A.3.5.25 Role

A role is a responsibility for performing a particular set of actions. A person

may simultaneously have several roles, and several people may simultaneously or

sequentially fill one role. (For example, an MIT faculty member might fi11 the roles

of course lecturer, student advisor, committee chairman, and principal investigator;

the role of course lecturer would have many simultaneous holders, though for a

specific course the role of lecturer might have a single holder at any given time.)

The characteristics of a role include its name, the organizational unit in which it is

carried out, its current holders, and the role that is responsible for supervising it

Company: ORGANIZATION
Current-holder: EMPLOYEE (multiple)
Location: ORGANIZATIONAL-UNIT (multiple)
Name: TEXT
Reports-to: ROLE (multiple)

A.3.5.26 Schedule

A schedule is a structure for allocating the time of some resource; it is an

ordered set of appointments (q. v.). A schedule is normally set up for a particular

interval (a day, week, month, etc.) and contains an arbitrary number of

appointments.

198

Elements: APPOINTMENT (multiple)
Frame: INTERVAL (optional)
Name: TEXT
Resource: ENTITY (multiple)
Start-date: DATE (optional)
Start-time: TIME (optional)

A.3.5.27 Task

A task is a responsibility to perform some action(s). In some cases, a task is a

part of a larger project (q. v.), in which case it follows one or more other tasks. There

is at least one person who is responsible for accomplishing the task, and there may

be specified starting and completion dates.

Completion: DATE (optional)
Description: TEXT
Follows: TASK (optional, multiple)
Name: TEXT
Precedes: TASK (optional, multiple)
Refers: PROJECT (optional)
Responsible: PARTY (multiple)
Start: DATE (optional)

A.3.5.28 Text

Text is a special class that is at the base of all name classes. It consists of all the

characters in any standard alphabet (e.g., ASCII].

Defining the value class of an attribute as TEXT indicates that it is

uninterpreted information, rather than an entity of any sort.

7.4.0.l Time

Time is a name class that is defined as any legal representation of a time

specification; this be a specific time of day, e.g., 10: ooam or an interval, e.g •• 3 weeks

199

.,,

A.3.5.29 Transaction

A transaction is an event that represents some mutual action on the part of two

or more parties, for which an account is kept. Examples in Appendix I include

purchases and trips.

Account: ACCOUNT
Date: DATE
Partyl: PARTY
Party2: PARTY
arbitra1:v number of <Pa rty11: PARTY>

200

.
~;';

.,...,
to\,. ' .. , .
~,·"'»:.~.~.·
~·~ «', ,,

~,$'•, Appendix B

Formal Syntax of OSL

This Appendix contains the formal grammar that defines OSL's syntax. It is

described in a modified BNF form, with the following metasyntactic conventions:

-The left side of a production is separated from the right by a .. _ ..

- Syntactic categories are capitalized, while literals are in lower case, with
or without initial capitals. A few literals are in uppercase or otherwise
ambiguous; they are enclosed in single quotation marks (• ')

- The first level of indentation in the syntax description is used to help
separate the left and right sides of a production; all other indentation is
inOSL

- Symbols:

{ } means the enclosed item is optional.

[] means one of the enclosed choices must appear; choices are
separated by a semicolon (": "). (When used with " { } •• one of
the choices may optionally appear.)

< > means one or more of the enclosed can appear, separated by
spaces with optional commas.

< < > > means one or more of the enclosed can appear, vertically
appended

• • encloses a "meta-description" of a syntactic category. to
explain it informally. (Not all context-sensitive descriptions are
indicated in this manner, particularly some of the obvious ones as
defined in the Language Reference Manual.)

201

SPECIFICATION +­
ENVIRONMENT-PART
OPERATIONAL-PART

OPERATIONAL-PART +­

{«FUNCTION»}
«PROCEDURE»

FUNCTION +-

Function NAME
{Structure: CLASS-NAME}
Resource: CLASS-NAME
Responsible: CLASS-NAME •of a role or person•
Initialization: INIT-SPEC
{Structure initialization: INIT-SPEC}
Required Reports Received: [<<REQ-REPORT-REC-SPEC>>; None]
Required Reports Generated: [<<REQ-REPORT-GEN-SPEC>>: None]
Other Events: [<<OTHER-EVENT-SPEC>>: None]
Termination: TERM-SPEC
{Structure Termination: TERM-SPEC}
Quantitative Information:

F-QUANT-INFO

IN IT-SPEC +-
EVENT-SPEC: PROCEDURE-NAME

REQ-REPORT-REC-SPEC +-
TIME: COMMUNICATION-NAME: PROCEDURE-NAME; PROCEDURE-NAME

COMMUNICATION-NAME +­
CLASS-NAME

REQ-REPORT-GEN-SPEC +-
TIME: COMMUNICATION-NAME: PROCEDURE-NAME

OTHER-EVENT-SPEC +­
EVENT-NO: PROCEDURE-NAME

EVENT-NO +­
NUMBER

TERM-SPEC +-
EVENT-SPEC: PROCEDURE-NAME

202

F-QUANT-INFO +-
Number of resources: NUMBER
Number responsible: NUMBER
Number of personnel: NUMBER
Initiation: FREQUENCY
Termination: FREQUENCY
{Other-events: <<EVENT-NO: FREQUENCY>>

FREQUENCY +-
NUMBER/TIME

PROCEDURE +-
Procedure PROCEDURE-NAME
Focal Object: OBJECT-CLASS-NAME
Responsible: ROLE-CLASS-NAME
Main line: PROCESS-SPEC
{Timing Constraints: TC-SPECS}
{Quantitative Information: P-QUANT-INFO}
{Variations: <<VARIATION-SPEC>>}
{Exceptions: EXCEPTION-SPECS}
{Details: <<DETAIL-SPEC>>}

PROCEDURE-NAME +­
CONSTANT

OBJECT-CLASS-NAME +­
CLASS-NAME

ROLE-CLASS-NAME +­
CLASS-NAME

PROCESS-SPEC +-
<<state STATE-NAME

EVENT/STEP-SPEC>>

EVENT/STEP-SPEC +­
Event.EVENT-NUMBER EVENT-SPEC
Step.STEP-NUMBER

STEP-SPEC »

STATE-NAME +­
CONSTANT

EVENT-NUMBER +­
NUMBER

STEP-NUMBER +­
NUMBER

TC-SPECS +­
<<TIMING-CONSTRAINT>>

203

TIMING-CONSTRAINT +-
CONSTRAINT-NUMBER. EVENT-NUMBER SCALAR-COMPARATOR EVENT-EXPRESSION

EVENT-EXPRESSION +­
EVENT-NUMBER [+; -] TIME

CONSTRAINT-NUMBER +-
NUMBER

P-QUANT-INFO +­

Total time: TIME
Number responsible: NUMBER
Number of personnel: NUMBER
Objects: NUMBER
{Exceptions:

<<EXCEPTION-NUMBER: FREQUENCY>>}
{Variations:

<<VARIATION-NUMBER: PROBABILITY>>}
{Branching:

{<<STEP-NUMBER -+ STATE-NAME: PROBABILITY>>}
{<<STATE-NAME {EVENT-NUMBER): PROBABILITY>>} }

PROBABILITY +­
. NUMBER

VARIATION-SPEC +-

VARIATION-NUMBER. where ATTRIBUTE-EXPRESSION:
{delete:

{<<Event EVENT-NUMBER>>}
{<<Step STEP-NUMBER>>} }

{add:
<<EVENT/STEP-SPEC>> }

{replace:
{<<EVENT-SPEC>>}
{<<STEP-SPEC>>} }

VARIATION-NUMBER +­
NUMBER

EXCEPTION-SPECS +-

{Tirni ng constraint:
<<TC-EXCEPTION>>}

{Activity:
<<ACTIVITY-NUMBER:

<<EXCEPTION-NAME: PROCESS-SPEC>> >> }
{General:

{Missing personnel: PROCESS-SPEC}
{Lost documents: <<DOCUMENT-NAME: PROCESS-SPEC>> }
{Cancellation: PROCESS-SPEC}
{Backout: PROCESS-SPEC}
{Ad hoc: <<EXCEPTION-NAME: PROCESS>> } }

204

-~

DOCUMENT-NAME +­
CLASS-NAME

EXCEPTION-NAME +-
CONSTANT •o or more defined with each activity•

DETAIL-SPEC +-
<<ACTIVITY-NUMBER: CONSTANT •any description of the activity•>>

EVENT-SPEC +-
(EVENT; EVENT or EVENT-SPEC; {EVENT) and {EVENT-SPEC)]

EVENT +-
[TRIGGER-EVENT; TIME-EVENT; ENVIRONMENT-EVENT;
COMMUNICATIONS-EVENT; ACTIVITY-EVENT]

TRIGGER-EVENT +-
by ROLE-CLASS-NAME

TIME-EVENT +-
on (DATE; TIME (after; before] EVENT-NUMBER]

ENVIRONMENT-EVENT +-
when (ATTRIBUTE-NAME = VALUE;
ENTITY is (updated; created: deleted]]

COMMUNICATION-EVENT +-
[RECEIPT-EVENT; no RECEIPT-EVENT after TIME]

RECEIPT-EVENT +-
receive (COMMUNICATION-NAME {[with ATTRIBUTE-NAME = VALUE;
matching ENTITY on <ATTRIBUTE-NAME>]};
reply to COMMUNICATION-NAME]

COMMUNICATION-NAME +­
CLASS-NAME

ACTIVITY-EVENT +-
[complete; start] ACTIVITY-NUMBER

STEP-SPEC +-

<<SUBSTEP-SPEC>>

SUBSTEP-SPEC +-
[BRANCH-SPEC; ACTIVITY-SPEC]

BRANCH-SPEC +-
(where ATTRIBUTE-EXPRESSION add

<<ACTIVITY-SPEC>>
{end in STATE-NAME}:

where ATTRIBUTE;...EXPRESSION end in STATE-NAME]

205

ATTRIBUTE-EXPRESSION +­

(ATTRIBUTE-NAME = VALUE;
ATTRIBUTE-EXPRESSION or ATTRIBUTE-EXPRESSION;
(ATTRIBUTE-EXPRESSION) and (ATTRIBUTE-EXPRESSION);
ARITHMETIC-FUNCTION NUMBER-OPERATOR CHAIN]

ACTIVITY-SPEC +-

ACT IV ITY-NUMBE R. ACTIVITY

ACTIVITY-NUMBER +­

STEP-NUMBER.ACTIVITY-NO.

ACTIVITY-NO +­
NUMBER{SMALL-LETTER}

SMALL-LETTER +-

•s ;ngle lowercase letter•

ACTIVITY -
{SUBJECT} BUILT-IN-ACTIVITY {MODIFIER} {SOURCE}

SUBJECT +-
(CLASS-NAME; ENTITY]

BUILT-IN-ACTIVITY +-
(CREATE; DELETE; SET; CALCULATE; REVISE; ARCHIVE; SEND; ADD;
REMOVE; APPROVE; VERIFY;·EVALUATE; NEGOTIATE; SELECT; ALLOCATE;
GROUP; NOTIFY; RETRIGGER; INITIATE; TERMINATE; PERFORM; RETURN;
REPEAT]

MODIFIER +-
(match; ng on <ATTRIBUTE-NAME>; first; last: any; each]

SOURCE +-
(us;ng ENTITY; consulting (ROLE-CLASS-NAME; PARTY-CLASS-NAME]]

CREATE +-

Create CLASS-NAME

DELETE +-

Delete ENTITY

SET+-
Set ATTRIBUTE-NAME = VALUE

CALCULATE +-
Calculate ATTRIBUTE-NAME {= •expression•}

REVISE +-
Rev;se ATTRIBUTE-NAME

206

-~~ --- ------------

ARCHIVE +-
Archive {ENTITY} {in ARCHIVE-CLASS-NAME}

SEND +-
Send {(copy)} {ENTITY} {to <DESTINATION>}

DESTINATION +­
PARTY-CLASS-NAME

ADD +-
Add {ENTITY} to CLASS-NAME

REMOVE +-
Remove {ENTITY} from CLASS-NAME

APPROVE +-
Approve APPROVE-ATTRIBUTE-NAME {ENTITY} {by ROLE-CLASS-NAME}

APPROVE-ATTRIBUTE-NAME +-
ATTRIBUTE-NAME

VERIFY +-
Verify {<ATTRIBUTE-NAME>} {ENTITY}

EVALUATE +-
Evaluate {<EVAL-ATTRIBUTE-NAME>} {ENTITY} {by ROLE-CLASS-NAME}

EVAL-ATTRIBUTE-NAME +-
ATTRIBUTE-NAME

NEGOTIATE +-
Negotiate ATTRIBUTE-NAME with

< <ROLE-CLASS-NAME> <PARTY-CLASS-NAME> >

SELECT +-
Select {NUMBER} CLASS-NAME {from CLASS-NAME}

ALLOCATE +-
Al locate {NUMBER} from CLASS-NAME to. <CLASS-NAME>

GROUP +-
Group CLASS-NAME into <SUBSET-NAME>

SUBSET-NAME +-
CLASS-NAME

NOTIFY +-
Notify {ROLE-CLASS-NAME}

RETRIGGER +-
Retrigge r {CONSTRAINT-NUMBER} + TIME

207

-- ----------

INITIATE +-

Initiate PROCEDURE-NAME

TERMINATE -
Terminate {PROCEDURE-NAME}

PERFORM -
Perform PROCEDURE-NAME

RETURN -
Return {ENTITY} to {PARTY-CLASS-NAME}

REPEAT -
Repeat {NUMBER}

ENTITY -
[CLASS-NAME; CHAIN; CLASS-NAME(ATTRIBUTE-NAME = UNIQUE-ID)]

ENVIRONMENT-PART +­
IDENTIFICATIONS
DEFINITIONS

IDENTIFICATIONS -
ORG-CONTEXT
EXTERNAL-CONTEXT
INTERNAL-CONTEXT

ORG-CONTEXT -
Organizational Context

INSTANCE-DEF •of the organization of which the office is a part•
ORG-H IE RA RC HY
PERS-HIERARCHY
<<CLASS-DESCRIPTION>> *describing the organization•

EXTERNAL-CONTEXT +-

External Context
<<CLASS-DESCRIPTION>> •external to the organization•

INTERNAL-CONTEXT +-
Internal Context

<<CLASS-DESCRIPTION>> •internal to office, except documents, etc•
Documents and communications

«CLASS-NAME»
Names

«CLASS-NAME»

CLASS-DESCRIPTION +­
[CLASS-DESC; ALIAS-DESC]

CLASS-DESC -
CLASS-NAME is [CLASS-TYPE; CLASS-DERIVATION]

208

ALIAS-DESC +-
CLASS-NAME = CLASS-NAME

CLASS-TYPE +­
ENTITY-TYPE

ORG-HIERARCHY +-
Name Parent Supervisor
<<TAB-INSTANCE-DEFINITION>>

PERS-HIERARCHY +-
Name Organizational-unit Reports-to Current-holder
<<TAB-INSTANCE-DEFINITION>>

DEFINITIONS +­
«CLASS-SPEC»

CLASS-SPEC +-
[CLASS; NAME-CLASS]

CLASS +-
CLASS-NAME {= CLASS-NAME} is CLASS-ORIGIN
<<ATTRIBUTE-DEFINITION>>

CLASS-ORIGIN +­
[CLASS-TYPE;

CLASS-DERIVATION]

CLASS-NAME +-
•string of capitals possibly including '-'•

NAME-CLASS +-

CLASS-NAME is 'NAME'
'{' <STRING> '}'

CLASS-DERIVATION +-
[RESTRICT; SUBSET; COMMON-MEMBERS; MERGE-MEMBERS; MISSING-MEMBERS]

RESTRICT +-
restrict CLASS-NAME {where RESTRICT-PREDICATE}

SUBSET +-
subset of CLASS-NAME

COMMON-MEMBERS +-
common members in <CLASS-NAME>

MERGE-MEMBERS +-
merge members in <CLASS-NAME>

209

MISSING-MEMBERS +-

missing members in CLASS-NAME but not in CLASS-NAME

RESTRICT-PREDICATE +-

[SIMPLE-PREDICATE; (RESTRICT-PREDICATE); not RESTRICT-PREDICATE;
RESTRICT-PREDICATE and RESTRICT-PREDICATE:
RESTRICT-PREDICATE or RESTRICT-PREDICATE]

SIMPLE-PREDICATE +-

[CHAIN SCALAR-COMPARATOR [CONSTANT; CHAIN]:
CHAIN SET-COMPARATOR (CONSTANT; CLASS-NAME; CHAIN]:
is a value of ATTRIBUTE-NAME of CLASS-NAME]

CHAIN +-

[CHAIN-DEF; CLASS-NAME.CHAIN-DEF]

CHAIN-DEF +-

[ATTRIBUTE-NAME; CHAIN.ATTRIBUTE-NAME]

SCALAR-COMPARATOR +-

[EQUAL-COMPARATOR; >; >: <: <]

EQUAL-COMPARATOR +­

[=; NOTEQUALS[]]

SET-COMPARATOR +-

[is in; is not in; contains: does not contain]

CONSTANT +-

[STRING: NUMBER]

STRING +-
•a string constant•

NUMBER +-
•a number constant•

PATTERN +-

•a name class definition pattern•

ATTRIBUTE-DEFINITION +­

[REGULAR-ATTRIBUTE-DEFINITION;
REFERS; SAME: DEPENDENT-ATTRIBUTE]

REGULAR-ATTRIBUTE-DEFINITION +-
ATTRIBUTE-NAME: {<ATTRIBUTE-NAME:>} VALUE-DETERMINANT

VALUE-DETERMINANT +-
[PRIMITIVE-ATTRIBUTE-FEATURES; DERIVED-ATTRIBUTE-FEATURES]

210

·i;

ATTRIBUTE-NAME +-
•string of lowercase letters beginning with a capital•

PRIMITIVE-ATTRIBUTE-FEATURES +­
VALUE-CLASS {(CHARACTERISTICS}}

CHARACTERISTICS +-

<multiple; co11111on; class: unique; mandatory: by PERSON>

VALUE-CLASS +­

CLASS-NAME

DERIVED-ATTRIBUTE-FEATURES +-

[CHAIN; INTER-ATTRIBUTE-DERIVATION
MEMBER-SPECIFIC-DERIVATION;
CLASS-SPECIFIC-DERIVATION]

INTER-ATTRIBUTE-DERIVATION +­
[common-members in <CHAIN>;
merge-members in <CHAIN>;
missing-members in CHAIN but not in CHAIN;
CHAIN-EXPRESSION;
[maximum, minimum, average, sum] of CHAIN;
number of {unique} members in CHAIN;
restrict ATTRIBUTE-NAME {where RESTRICT-PREDICATE}]

MEMBER-SPECIFIC-DERIVATION +-
[invert ATTRIBUTE-NAME of CLASS-NAME;
if exists in CLASS-NAME;
order by [increasing; decreasing] <CHAIN>;
ATTRIBUTE-NAME of ma·tching CHAIN]

CLASS-SPECIFIC-DERIVATION +-

[number of {unique} members in this class;
[maximum; minimum; average; sum]

of ATTRIBUTE-NAME over members of this class]

REFERS +-
Refers: CHAIN

SAME +-

[Same: <ATTRIBUTE-NAME>;
Same as CHAIN: <ATTRIBUTE-NAME>]

DEPENDENT-ATTRIBUTE +­

ATTRIBUTE-NAME:
<<if <ATTRIBUTE-NAME> = CONSTANT then

DERIVED-ATTRIBUTE-FEATURES>>

CHAIN-EXPRESSION +-

[CHAIN; (CHAIN); CHAIN NUMBER-OPERATOR CHAIN]

211

----- ------~ --

NUMBER-OPERATOR +--
[+; -; •: /; !]

INSTANCE-DEF -
[DEFINE-INSTANCE; TAB-INSTANCE-DEF]

DEFINE-INSTANCE -
Define Instance of CLASS-NAME

<<ATTRIBUTE-INSTANCE-DEF>>

ATTRIBUTE-INSTANCE-DEF +­
ATTRIBUTE-NAME: ATTRIBUTE-VALUE

TAB-INSTANCE-DEF +­
<ATTRIBUTE-VALUE>

ENTITY-TYPE +-
•one of the following built-in entity types:

ACCOUNT; AGREEMENT; APPOINTMENT; APPROVAL;
ARCHIVE; COMMUNICATION; DATE; DOCUMENT; EMPLOYEE;
EVALUATION; FILE; INTERNAL-EMPLOYEE;
INTERNAL-ORGANIZATIONAL-UNIT; INTERNAL-ROLE; LOG;
MEMO; MESSAGE; NUMBER; ORGANIZATION;
ORGANIZATIONAL-UNIT; PARTY; PERSON; PROJECT;
RECORD; ROLE; SCHEDULE; TASK; TEXT; TIME; TRANSACTION'

each entity type requires the definition of certain attributes,
as specified in the Reference Manual•

212

Appendix C

Admissions Office Case

Notes:

- This description represents the product of an office analysis conducted
without the benefit of OAM/OSL It is for use only in the OAM/OSL
training course.

- This example was produced from a case study performed in 1978; the
Admissions Office has since undergone ftUljor changes in its information
system support structure, and we make no claim to represent its current
operations.

The Admissions Office works relatively independently; formal communications

within MIT are minimal and consist of the class size. received from the Chancellor,

and a general report to the President. both annually. Other important

interdepartmental communications are handled informally but regularly by weekly

meetin~ of the Vice President for Administration and Personnel and the heads of

the departments which report to him. These include Admissions, Student Financial

Aid, and Career Planning and Placement (CPP), among others. The Admissions

Office works closely with Financial Aid, and needs information from that office and

from CPP in order to inform and counsel prospective students. Other important

nodes include the Registrar, Freshman Advisory Committee, and the academic

departments (for graduate admi~ions).

The functions of the Admissions Office include undergraduate recruitment,

selection and admi~ion; transfer student selection and admission; graduate and

special student admi~ion; foreign student admission and counseling; and

213

;•.
~ ...
. ·>~4,'.· ... ,·;
·,,,. ·.: .: ..

. ·;.,

miscellaneous information source. We describe in detail two procedures:

Undergraduate Admissions and Graduate Admissions. In the latter, the Admissions

Office acts only as a central information switch for the Departments, which make

the actual decisions.

The following are the major steps in the admissions procedure

- A preliminary application is sent to prospective students.

- The applicant returns to the Admissions Office {henceforth called
"Office") a filled-in preliminary application card; receipt of this
document initiates the applicant's file in the adm~ions system.

- Timely receipt of documents required to complete the application is
controlJed by the Office by generating appropriate letters.

- Completed applications are reviewed.

- Admission decisions are made on reviewed applications.

- Acceptance decisions from admitted students are received, allowing
information on the incoming class to be transmitted to other Institute
offices.

Currently, the Office uses a combination of paper and automated record­

keeping procedures. The Office of Administrative Information Systems (OAIS)

provides a computer-based file. the applicant system (called "the System" in the

sequel). which serves as a central repository for information about the status of each

prospective student's application; however, all information in the System is also

kept on various paper records in the Office, so as to be available to queries.

Insertions (of new applicants) are sent to OAIS in batches of 100; updates are

batched weekly; both have a one or two day turnaround. The "being made up" file

and the "earlier material" basket (see below) are artifacts of the batch processing;

they serve as index and (temporary) storag~. respectively, for information about

applicants for whom an initial entry to the System is being made.

214

The Office keeps a "general file," which contains any correspondence about

prospective students (e.g., interview reports, references, etc., although not simple

requests for application materials from the student) who have not filed a

preliminary application, and who therefore have not entered the admissions

procedure per se.

The remainder of this section describes the details of the procedure.

Initial contact with the admissions procedure is made by one of three routes:

1. About 9000 people each year make initial personal contact with the
Office by mail, phone or in person. In this case the prospect is sent
(given) a brochure containing a Preliminary Application Card. No
record is kept of this contact. If this initial contact comes late in the
admissions season (Le., past the middle of September), a special Final
Application packet is sent in response; this packet includes a Preliminary
Application Card in a color different from that of the regular cards, so
that when it is returned the Office can know that the Applicant already
has his Final Application. .

2. Office personnel visit high schools and return lists of students to the
Office; brochures with Preliminary Application Cards are sent to these
students. If such information is available, material appropriate to sex
and minority status is also sent. Tue visits are made with output from the
Office's School File, which contains names of all applicants from that
high school in previous years, as well as results of their application; a
printout of this file is made once per year for the recruiting trips.

3. The Office receives a mag tape from the Educational Testing Service
each Spring, which contains the name, address, sex, and race of about
27000 prospects (the Search List). Brochures/Preliminary Applications
are sent to each person on the list; additional information for women
and minority prospects is sent as appropriate. The Search list is retained
for several other mailings, but not used again in this procedure.

In all cases, if the student is appplying from a country other than the US or

Canada, the standard card is not used; a Preliminary Application for Foreign

Students is sent instead.
215

The next task is initiated by receipt of the Preliminary Application. If this is a

foreign application, a special foreign "being-made-up" card (FBMUC) is created

and placed in the foreign "being-made-up" file (BMUF). This application is

supposed to arrive with a number of documents from the student's school. and the

entire package is sent to the Foreign Student Office. This office makes a judgment

as to whether the application is legitimate and acceptable, and if so, it is returned to

the Office (possibly to the college transfer or graduate student admissions

procedures. rather than this one), where it is handled in the same manner as US

applications. except where noted

US and Canadian students return the Preliminary Application Card. It is first

checked for completeness; if it cannot be completed from information available, it is

returned with a letter. A complete Card consists of two identical cards, labelled .. B"

and "R." The B card is placed in the (U.S.) BMUF. If there is any correspondence

in the General File concerning this Applicant. it is removed from the file and placed

in a basket on the Administrative Assistant's (AA) desk (this folder is now called

"earlier material"). A check is also made in the College Board File (see below). to

see whether test scores have been sent; if so, the College Board card is sent to OAIS

for insertion into the Applicant's record when it is created. The R card is given to

the appropriate section clerk ("Clerk"), who is reponsible for handling all materials

for each Applicant in the (alphabetic) section. The Oerk enters the information

from the card (which includes name & address. demographic and high school data)

into the System; these "new preliminaries" (insertions to the System) are sent to

OAIS whenever a batch of 100 is completed (once each day or two). The Clerk holds

the R card in a temporary file.

In response to the new preliminary batch, OAIS creates a record for each

Applicant. and returns a set of mailing labels, two each for the Applicant and the

Educational Council member nearest him, who will conduct the interview (the

216

"Interviewer"). The Interviewer name is chosen by ZIP code by the system from its

list of Interviewers, except for foreign students residing outside the US, whose

Interviewer is determined manually by the Office. If the Applicant is not applying

for the current year, or ifhe already has a Final Application, the Interviewer mailing

label is placed on a postal card, which asks him to have an interview. Otherwise, he

is sent a Final Application with the Interviewer label attached. In either case, the

Interviewer is sent the R card and a report form. If the Applicant is applying for the

current year and there is a record in his folder indicating that he has had an

interview recently enough (since May of year n for admission in September, n + 1),

this is noted on the B card (in the BMUF) and the R card (to the Interviewer), and

the Applicant is notified that another interview is not required by an additional

sticker on the card or Final Application packet

If the Applicant lives too far from the Interviewer, he is informed that his

interview requirement is optional; if he lives in the Boston area, his interview is held

in the Office, which is the address sent to him. In both cases, the R card is destroyed

and no report form is sent. (Current plans call for the establishment of Interviewers

in Boston. This will mean that the procedure will be the same for local Applicants,

although they and any others will still have the option of an interview in the Office.)

Once each week, OAIS returns to the AA a set of documents for each "new

preliminary" (applicant) entered during the week. The set includes two address

labels, an F3 card, a green information card ("Green Card"), a master card

("Master"), and, if appropriate, a "minority" card. These documents contain the ID

issued to the student by the system; this is a U-character alphanumeric code created

from the Applicant's name and birthdate. One of the labels goes to the Information

Office, which uses it to mail a catalog to the Applicant The AA sends the minority

card to the Office staff member who deals with special projects. She then sends any

"earlier material" from the basket along with the rest of the package to the

appropriate Section Oerk.
217

--- ---~--------------------

At this time the Clerk removes the B card/FBMUC from the appropriate

BMUF. For foreign students, the information on the Green Card is checked for

accuracy against the E3, and then is placed in the Case Card File (CCF); for US

students, the Green Card is filed in the CCF without checking.

The Clerk checks information on the E3 and Master against the B card,

correcting the former two if necessary. The remaining address label is used to label a

new file folder. into which goes the B card/FBMUC, correspondence, and the

Interviewer report, if any; the folders are kept in the "Active File." The E3s and

Masters are retained on the Clerk's desk. in separate files.

At this point, the Final Application is out, and further action can be initiated by

the return of the Interviewer's report. or any form from the Final Application

packet The Master contains a checkoff for receipt of each of these forms, as well as

one for completion of the interview. The appropriate area is marked on the card

when a form is received, and the receipt is also noted for the System. The forms are

placed in the Applicant's Active File folder. Specifics for processing these

documents are as follows:

- Final application. This document is processed first by a clerk who looks
for the application fee check, which is supposed to accompany the Final
Application. If the check is there, an entry is made on the clerk's daily
listing, noting the name and amount on the check. The Final
Application form is stamped "fee received" and sent to the appropriate
Oerk. The checks are taken each afternoon to the cashier's office. If
there is no check with the Final Application, the clerk sends a letter to
the Applicant requesting the fee, and attaches a copy of the letter to the
Final Application, which then goes to the Oerk:.

- The Oerk handles further processing of the Final Application, as well as
all other forms. The ID is checked against the Master, with corrections
made on the Master and E3 and to the System if required (the
information on the Final Application is considered official). If the
application is seriously incomplete, a letter is sent to the Applicant, with

218

a copy retained in the folder. Information from the Final Application
form is entered to the System.

- Evaluation forms. Check ID. note receipt on Master, enter receipt and
evaluator code to System.

- Secondary School Report If a transcript does not accompany the report
form. it is returned to the school with a letter requesting the transcript If
a transcript is received. then check ID, note receipt on Master, enter
information from report and transcript into System.

- Interview report. Note receipt on Master and to System. If interview by
Educational Council Member (rather than an Office staff member). read
report for questions requiring answer. If so, send letter or telephone.

College Board reports are received on magnetic tape about once per month. (In

the months following scheduled exams, there are about 4000 names on the tape;

between exams the volume of data is much less.) The tape is sent to OAJS which

enters the scores for all Applicants it has in the System, and returns to the Office a

card containing name and birthdate for each student it could not find in the System.

These cards are then manually checked against the CCF. Those which represent

Applicants in the CCF (i.e.. whose ID numbers were different in the College Board

and the MIT systems) are corrected and resubmitted to OAIS for updating the

System (300-500 of the cards are matched manually). The remaining cards are filed

in the College Board File. Three times each year, the College Board File is

submitted to OAIS for rerunning. to catch those Applicants who have filed

Preliminary Applications since their board scores have arrived. and whose scores

were not located in the initial search.

Once each week during the admismons season, OAIS generates an Application

Summary Report and an Applicant Action Card (AAC) for each Applicant whose

application was completed (i.e., all forms are now in) during the week. The

Application Summary is a complete report of the Applicant's System file, and goes

219

to the Clerk, who pulls the E3 from the desk file and the folder from the Active File,

arranges the folder in "review order," attaches the E3 and Application Summary

Report to the folder, and places it in the "review file." The AAC is placed in the

"out to review" file, to keep track of why the folder is not in the Active File.

Around the end of November, there is an E.arly Action review; the regular

review period starts in January. The procedure is the same for both:

- Each day each member of the admissions staff or the Faculty Committe
on Admissions is given a number of folders to review by the AA, who
selects them at random from the Review File. The reviewer adds
comments and a Personal Rating (a numerical rating, 5-10) to the E3
card and returns the folder to the AA. It is then placed in the second
review file. The rating is on the front of the E3 and the summary on the
back; the card is turned over so that the next reviewer will not see the
previous reviewer's Personal Rating (until he marks his own, or chooses
to look).

- The second review fiJe is handled in the same manner, except that the
AA ensures that if the first review was by a Faculty member, the second
is by an Office staff member, and vice versa. Upon return from the
second review. the AA looks at the two Personal Ratings; if they differ
by more than one, she sends the folder to a staff member who has not
seen it (or to a specific staff member if one of the reviewers so
requested) for a third review.

- When the review of a folder is completed, the two or three Personal
Ratings are entered to the System, along with the raters' initials; the E3
is removed from the folder and placed in the "Reviewed File"; the
folder is returned to the Active File; and the AAC is moved to the
"Roundup File."

At the end of November, OAIS returns a "laundry list" for each Applicant in

the System who asked for E.arly Action on his Final Application Form. The List is a

letter detailing the items missing from the Applicant's folder. A second Laundry List

run is made in January for all "notified and complete" applications, defined as the

220

Applicants in the System who have submitted a Final Application Form, or for

whom three other items from the Final Application packet have been received. Also

at this time, a Seventh Semester Grade Report form is generated for each "notified

and complete"; this is mailed to his school.

Admissions decisions are made at "Roundup" time; again, there is one

Roundup in late November for Early Action, and the regular Roundup in late

February. There is also a Roundup of waitlisted applications in April. Foreign

Applicant Roundup is held about a week after the US procedure, except that there

is no Early Action for foreign Applicants. The procedure is similar for all

Roundups, although the results are slightly different:

- OAIS produces from the System file a set of E3 stickers for all
Applicants in the Reviewed File (except at waitlist Roundup). There are
two stickers produced, one with secondary school information, including
grades, principal/guidance counselor recommendation (a numeric
datum), and the Interviewer name. The second sticker contains the
College Board results, and two numbers computed as a function of
board scores and high school grades; these are the Sil and SI2
(scholastic index) scores. The AA places the stickers on the E3 cards,
separates the cards into minority and non-minority groups, and sends
them to the Director (of Admissions) for action.

-The action procedure involves sorting the E3 cards in a physical array,
indexed by the SI2 figure on one axis, and the highest Personal Rating
on the other. The adm~ions staff then makes a decision on each
Applicant, marks the decision on the card. and returns it to the AA. All
actions are completed within two weeks for the regular (Feb.) Roundup.

- For Early Action, the decision is Admit, Hold, or Discourage. For the
Feb. Roundup, the decision is Admit, Not admitted or Waitlist. At the
waitlist Roundup, only Admit or Not admitted is allowed.

- For Admits, the AA checks for notes on the E3 card, and for missing
grades or scores. If the card indicates that the chemistry /physics
requirement has not been met, the folder is checked to be sure that the

221

·------ --------- -

card is correct If evidence of meeting the requirement is in the folder.
the correction is made on the E3 and to the System. If not. then a
"provisional" note is added to the E3 card, which causes a special letter
to be sent in place of the normal "admitted" letter.

- The AACs are taken from the Roundup File, and marked with the
appropriate action. The AAC is used to mark the action on the Green
Card, and is used for updating the System. AACs for Admits are kept in
a temporary "waiting-for-reply" file; Holds and Discourages are
returned to the Roundup File; Waitlists are moved to a "waitlist" file;
and Not admitteds are destroyed

- The E3 cards are used to generate the appropriate letter, copies of which
go to the Applicant, his school, his Interviewer, and his folder. For
admitted students, a reply form is sent with,the letter. The E3 cards then
go to the "admitted/no reply" file, the "not admitted" file, or the
"waitlist" file, as appropriate. At Early Action, E3 cards for Hold and
Discourage actions are returned to the Reviewed File.

If this is the regular (Feb~) Roundup, all Applicants in the Reviewed File who

haven't completed the College Board exams are sent a letter detailing what test

results are missing. After this Roundup, any Applicant who has filed a Final

Application and paid his fee, but whose application is incomplete, is also sent a

letter telling him what is missing.

All letters for the Feb. Roundup are sent out on the reply date, around March

24. (The Financial Aid Office sends its replies on April 15.)

The next activity is triggered by receipt of the reply form from admitted

students; this is returned to indicate whether the Applicant accepts or refuses the

admission. The AA maintains a tally and several statistical records on these returns

as they come in; the tally is used by the Director to arrive at an estimate of the

acceptance rate, and to make his decisions about the waitlist. The statistical records

are retained in the AA's desk, available for future studies. The procedure for

processing the reply forms for acceptance or refusal is:

222

---~---

- add to tally & stat sheets

- send letter of acknowledgment (copy to folder)

- mark reply on AAC

- mark folder "cancelled"/"coming"

- mark E3 "cancelled" I" coming" with date & reason (if refused)

- if refused:
*mark Green Card "reject"
* send E3 to Financial Aid Ofc (then sent to Educational Council

ofc)
* add demographic information to reply fonn
*on return of E3, place in "admitted/cancelled" file
* send AAC to OAIS for System entry (not returned)

- if accepts:
•place E3 in "admitted/coming" file
* if foreign. assign MIT ID#
* place memo sheet to Freshman Advisory Committee (standard

info) in folder
*send AAC to Financial Aid Ofc (then to Educational Council ofc)
* send returned AAC to OAIS for System entry (not returned)

- send reply fonn to Office staff (statistical project)

- put returned reply form in folder

Alternatively, an admitted student may ask for deferred admission (Le., he

wants to wait a year to enter). In this case, a letter is returned acknowledging the

request and explaining the rules, and the AAC is marked "deferred" and sent to

OAIS. All records (E3, Master, Green Card) are changed to indicate the new

freshman admission year, and the E3 is moved to the "deferred" file, which is

retained until the next year, when it is treated as an "admitted/coming" case.

223

,'·,

Most of the reply forms are received by the May 1 due date. At this point, the

Director uses the tally sheet to act on the waitlist. which typically numbers 300.

These E3 cards are then assigned an Admit or Not admitted action, and processed

accordingly (the letter sent to the Applicant is slightly different from the one sent to

admits in earlier Roundups). The waitlist is processed by the end of May.

The Freshman Admitted List is generated from the System; it lists those who

have accepted admission. The Registrar gets a weekly update on magtape, starting

with the first week of admissions replies. In May, a hardcopy of the list goes to the

Freshman Advisory Committee; after that, corrections are also kept manually by the

AA and a copy is sent to PAC weekly.

In July, the folders for admitted/coming students are sent to the Freshman

Advisory Committee. These are returned to the Office in September.

At the end of September. the Office clears out the cases of the current

(freshman) class. All E3 cards are compared to their respective Green Card cards to

ensure that the actions are recorded correctly on the Green Cards. Green Cards for

admitted/registered students are archived separately from those for other

Applicants. The rest are separated into "not admitted/not registered" and

"incomplete" (application) archives. and the folders corresponding to these cards

are stored. The E3 cards for Applicants not admitted are also archived. For admitted

students. the E3 cards are sent to the Freshman Advisory Committee, which returns

them in a day or two; they are added to the folders, which are then archived. The

System file is used to produce a final statistical run, and then archived All Masters

are destroyed. All archives are kept for three years, then destroyed.

Cancellations of applications by the Applicant are handled in one of two ways,

depending on the timing. If the notice is received before action (on that application),

the procedure is:

224

- --- --- ------

- send acknowledgement letter

- mark AAC "withdrawn" and send to OAIS for System input

- mark Green Card "cancelled"

- mark Master "cancelled"

- mark E3 "cancelled", put in "withdrawn" file

If the cancellation is received after action, and the Applicant was waitlisted, the

above procedure is followed, except that the E3 is placed in the "waitlist cancelled"

file. If the cancellation is from an admitted student, it is treated as a refused

admission; if from an Applicant who was not admitted, it is ignored.

An annual report is provided to the Director, containing statistics on total

applications, and a statistical breakdown of the "admitted and coming" students.

Typically, the Office receives 8500 preliminary applications, and 4500 final

applications (for freshman admission). Of these, approximately 2000 are offerred

admission (about 300 at Early Action) to achieve a typical Freshman class of 1000.

Database

Applicant System (computer-based, operated by OAIS)
contains state and summary of active application
record created when Preliminary Application returned
filed by ID# (= ftname, birthdate))
indexed by sex, race, ZIP
updated on receipt of any Final Appl. form or Interviewer report
updated by ETS College Board score tape or card
updated by "action"
updated by cancellation
updated by response to admission offer
each class archived after Sept freshman registration
Reports:

225

initial documents (new preliminaries)
E3 stickers
laundry list
7th semester grade rept
Applicant summary report & Action Card
Statistical reports
Freshman Admitted List

Auxiliary files:
Educational Council member list, indexed on ZIP
School file

By ZIP
all schools whose students have filed applications

(cumulative), with data on each student
Search File

from ETS
Filed by ZIP
Indexed on sex, race

General File (OF)
by name
Contains correspondence re any Applicant who has not sent Prelim Appl

College Board File
Contains card with name & birthdate for all students who asked EfS to

send scores to MIT, but who haven't filed an application
"Being-made-up" File (BMUF)

byname
Contains card for each student who has filed a Prelim Application, but

for whom there is not yet a case card
Foreign BMUF

Contains foreign "Being-made-up" cards
"Case Card" File (CCF)

by name
Data=(name,addr,10# ,type of application (by color))
Contains card for each case (Applicant who has filed Prelim Application)
Approx 20000/yr (includes transfer & graduate applications)
After class is admitted, archived into one of four subfiles:

Admitted
Not admitted
Incomplete
Special Students

Archives kept 3 years, then destroyed

226

: ;,';

-"
'

Folder Files
Active File

Contains folders for each case, pre- and post-review
Review file

Contains folders of complete applications for review
Subfile for 1st review filed randomly
Subfile for second review indexed on faculty/staff 1st review
Subfile for third review indexed on staff member seen

Archives kept 3 years, then destroyed
AACFiles

Out to review file
Contains AAC for each folder in review file

Roundup file
Contains AAC for each case which has been completely reviewed

Waiting-for-reply file
AA Cs for admitted students who have not replied to offer

Waitlist file
E3 Card Files (E3 card is moved to indicate state of application)

Reviewed file
Admitted/no reply file
Admitted/canceJled file
Admitted/coming file
Deferred file
Waitlist file
W aitlist/ cancelled file
Not admitted file
Withdrawn file

Daily listing
Listing of each A who has sent application fee

Tally list
count of accept/refuse for admitted students
statistics for sex, race, etc.
kept by AA

227

------------ --- ----------- ---------- ---------

References

1. Anthony, Robert N. Planning and Control Systems: A Framework for Analysis.
Harvard University Graduate School of Business Administration, Boston, 1965.

2. Bach, Fred W. Analysis of Communications and Work Flow. In Carl Heyel,
Ed., Handbook of Modern Office Management and Administrative Services,
McGraw-Hill, New York, 1972, pp. 5-10- 5-27.

3. Bair, James H. Productivity Assessment of Office Information Systems
Technology. Trends and Applications: 1978, Distributed Processing, IEEE, 1978,
pp. 12-24.

4. Barber, Gerry and Carl Hewitt. Towards the Development of Office Semantics.
Draft. October 30, 1979.

5. Baumann, L. S. and R. D. Coop. Automated workflow control: A key to office
productivity. AFIPS Conference Proceedings, Vol. 49, AFIPS Press, Arlington, Va.,
May, 1980, pp. 549-554.

6. Bracker, Lynne C. and Benn R. Konsynski. The OFFIS System - A Tool in
Automated Office Design. 1981 Office Automation . Conference Digest, AFIPS,
March, 1981, pp. 417-419.

7. Canning, Richard G. Computer Message Systems. EDP .Analyzer 15, 4 (April
1977).

8. Cook, Carolyn L. Streamlining office procedures--An analysis using the
information control net model. AFIPS Conference Proceedin~. Vol. 49, AFIPS
Press. Arlington, Va., May, 1980, pp. 555-565.

9. Delehanty, George E. Office Automation and Occupation Structure: A Case
Study of Five Insurance Companies. Industrial Management Review 7 (Spring
1971), 99-108.

10. Ellis, Oarence A. and Gary J. Nutt. Office Information Systems and Computer
Science. Comput. Surv. 12, l (March 1980), 27-60.

228

11. Goldstein, Ira P., and R. Bruce Roberts. NUDGE, A Knowledge-based
Scheduling Program. Memo 405. MIT Artificial Intelligence Lab., Feb., 1977.

12. Good, Michael. Etude and the Folklore of User Interface Design. Sf GP LAN
Notices 16 (June 1981), 34-43.

13. Gorry. G. A. and M. S. Scott Morton. A Framework for Management
Information Systems. Sloan Management Review 13, l (Fall 1971). 55-70.

14. Hamill. B. J. and Steele. Work Measurement in the Office. Cambridge
University Press. 1973.

15. Hammer, Michael. W. Gerry Howe. Vincent J. Kruskal and Irving Wladawsky.
A Very High Level Programming Language for Data Processing Applications.
Comm ACM 20, ll (Nov.1977).

16. Hammer, Michael and Jay S. Kunin. Design Principles of an Office
Specification Language. AFIPS Conference Proceedings. 1980 National Computer
Conference, Vol. 49. AFIPS Press, Arlington. Va.. May, 1980, pp. 541-547.

17. Hammer, Michael M. and Marvin A. Sirbu. What is Office Automation?.
Proceedings of the National Computer Conference Office Automation Conference.
AFIPS, March, 1980, pp. 37-49.

18. Hammer. Michael and Michael Zisman. Design and Implementation of Office
Information Systems. Proc. NYU Symposium on Automated Office Systems, New
York University Graduate School of Business Administration, May, 1979, pp. 13-24.

19. Heidorn, G. E. Natural Language Dialogue for Managing an On-line Calendar.
Research Report RC 7447, IBM Thomas J. Watson Research Laboratory, Aug.,
1978. Yorktown Heights, N.Y.

20. Hewitt. C. Viewing Control Structures as Patterns of Passing Messages. Memo
410, MIT Artificial Intelligence Lab., Dec., 1976.

21. Hoos. Ida R. Automation in the Office. Public Affairs Press, Washington. D.C.,
1961.

22. IBM. The Time Automated Grid System (f AG): Sales and Systems Guide. .. ,:
Publication GY20-0358-l, IBM, May, 1971.

229

23. Uson, Richard. Recent research in text processing. Words 9, 1(June-July1980),
32-34; 52-54.

24. Karkula, Steve. Information F1ow in a Television Station. Memo OAM-002,
MIT Lab. for Computer Science, Office Automation Group, Jan., 1979.

25. Keen, Peter G. W. and Michael S. Scott Morton. Decision Support Systems: An
Organizational Pespective. Addison-Wesley, Reading, Mass., 1978.

26. Kunin, Jay S. Notes on a Letter of Credit Support System. Working Paper
WP-001, MIT Lab. for Computer Science, Office Automation Group, Jan., 1979.

27. Kunin, Jay S. Notes on Insurance Company Procedures. Working Paper WP-
002, MIT Lab. for Computer Science, Office Automation Group, Feb., 1979.

28. Kunin, Jay S. Analysis and Specification of Office Procedures. Ph.D. Th.,
Department of Electrical Engineering & Computer Science, MIT, Jan., 1982.

29. Kunin, Jay S. and Michael M. Hammer. Case Studies of Office Procedures: I.
Memo OAM-CXH, MIT Lab. for Computer Science, Office Automation Group, Jan.,
1979.

30. Ladd, Ivor and D. C. Tsichritzis. An office form flow model. AFIPS
Conference Proceedings, Vol. 49, AFIPS Press, Arlington, Va., May, 1980, pp. 533-
539.

31. Liskov, B. and V. Berzins. An Appraisal of Program Specifications. In
P. Wegner, Ed., Research Directions in Software Technology, MIT Press, 1979.

32. Lynch, H.J. ADS: A Technique in System Documentation. Database J, 1
(Spring 1969).

33. Matteis, Richard J. The new back office focuses on customer service. Harvard
Business Review (March-April 1979).

34. Matthies, Leslie H. The New Playscript Procedure: Management Tool for
Action. Office Publications, Inc., Stamford, Conn., 1977.

35. McLeod, Dennis. A Semantic Data Base Model and its ~ated Structured
User Interface. Technical Report TR-214, MIT Lab. for Computer Science, Aug.,
1978.

230

36. Mintzberg, H. The Nature of Managerial Work. Harper & Row, 1973.

37. Myer, T. H. and D. W. Dodds. Notes on the Development of Message
Technology. Proc. Berkeley Workshop on Distributed Data and Computer
Networks, May, 1976.

38. National Bureau of Standards. Guidance on Requirements Analysis for Office
Automation Systems. Tech. Rep. NBS Special Publication 500-72, U.S. Department
of Commerce, Dec., 1980.

39. Ness. 0; Office Automation Project: Personal Scheduler Version 2-1C(6).
Department of Decision Sciences. Wharton School. University of Pennsylvania,
July, 1975.

40. Newell. M .• W. Newman and B. Sheil. A Design for the OfficeTalk Language.
Internal Memo. Xerox PARC, Nov., 1977.

41. Newman, W. Studies of Office Procedures and Information Flow. Office
Research Group, Xerox Palo Alto Research Center, May, 1976.

42. Propst, R. The office - A facility based on change. Herman Miller, Inc.
Zeeland, Mich., ,1968.

43. Ruth, G. R. Protosystem I: An Automatic Programming System Prototype.
Technical Memo TM-72. MIT Lab. for Computer Science, July, 1976.

44. Schoichet, Sandor. Case Studies of Office Procedures: The Office of
Sponsored Research. Memo OAM-022, MIT Lab. for Computer Science, Office
Automation Group, Oct., 1980.

45. Shepard, Jon M. Automation and Alienation. MIT Press, 1971.

46. Sirbu, M. A Regional Sales Office. Working Paper WP-008. MIT Lab. for
Computer Science, Office Automation Group, July, 1979.

47. Sirbu, Marvin A., James W. Driscoll, Robert Alloway, Willam Harper, Moshen
Khalil and Michael Hammer. Office Automation: A Comparison of In-House
Studies. MIT Center for Policy Alternatives, May. 1980.

48. Sirbu, Marvin, Sandor Schoichet, Jay Kunin, and Michael Hammer. OAM: An
Office Analysis Methodology. Memo OAM-016, MIT Lab. for Computer Science,
Office Automation Group, Oct, 1980. Revised Jan. 1981.

231

- --·· ---------- --- -- ~------ --

49. Suclunan, Lucy A. Office Procedures as Practical Action. Proceedings of the
Fifth International Conference on Computer Communications, North-Holland,
Oct, 1980, pp. 355-360.

50. Suchman, L. and E. Wynn. Procedures and Problems in the Office
Environment Xerox Advanced Systems Department, April, 1979.

51. Teichrow, D. Problem Statement Analyzer: Requirements for the PSA. In
Systems Analysis Techniques, John Wiley & Sons, 1974.

52. U.S. Department of Labor, Bureau of Labor Statistics. Adjustments to the
Introduction of Office Automation. U.S. Government Printing Office, Washington,
D.C., 1960.

53. Wegner, P., ed. Research Directions in Software Technology. MIT Press, 1979.

54. Wynn, Eleanor H. Office Conversation as an Information Medium. Ph.D. Th.,
Department of Anthropology, University of California, Berkeley, May, 1979.

55. Zanner, Craig L. and Jay S. Kunin. Case Studies of Office Procedures: The
Industrial Liaison Office. Memo OAM-020, MIT Lab. for Computer Science,
Office Automation Group, Oct., 1980.

56. Zanner, Craig and Sandor Schoichet Case Studies of Office Procedures: The
Work Control Center. Memo OAM-013, MIT Lab. for Computer Science, Office
Automation Group, July, 1980.

57. Zisman, M. D. Representation, Specification and Automation of Office
Procedures. Ph.D. Th., The Wharton School, University of Pennsylvania, 1977.

58. Zisman, M. D. Office Automation: Revolution or Evolution. Sloan
Management Review 19, 3(June1978).1-16.

59. Zloof. Moshe M. Query by Example. AFIPS Conference Proceedings, Vol. 44,
AFIPS Press, Montvale, N. J., 1975, pp. 431-438.

60. Zloof. M. M. and S. P. de Jong. The System for Business Automation (SBA):
Programming Language. Comm. ACM 20, 6 (June 1977).

232

----~---~

