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ABSTRACT 

The thesis is divided into two parts. In the first part. we describe and analyze 
several new VLSJ layouts for the shuffie-exchange graph. These include 

1) an asymptotically optimal, 8(N2/!og2N)-area layout for the N-node shuffie­
exchange graph, and 

2) several practical layouts for small shuffle-exchange graphs. 
The new layouts require substantially less area than previously known layouts 

and can serve as the basis fqr designing large scale shuffie-exchange chips. 

In the second part of the thesis, we develop general methods for proving lower 
bounds on the layout area. crossing number, bisection width and maximum edge 
length of VLSI networks. Among other things, we use these methods to find 

1) an ·N-node planar graph which has layout area 8(NlogN) and maximum · 
edge length 8(Nl72/togl/2 N). 

2) an N·node graph with an O(N1/2)-separator which has layout area 
9(Nlog2 N) and maximum edge length 8(Nl/2/ogN/loglogN), and 

3) an N·node graph with an O(N°)-separator (for a)//2) which has maximum 
edge length 8(Na). 

The area results indicate· that some graphs with O(N1/2)-separators (and, in 
particular, some planar graphs) do not have linear-area layouts. thus disproving a 
popular conjecture. The edge length bounds indicate that the layouts of some 
networks must have very Jong wires (possibly as long as the width of the layout). 
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INTRODUCTION 

. The recent engineering advances in Very Large Scale Integrated (VLSI) circuitry 

have made it possible to wire tens of thousan~s of transistors onto a single chip. In 

the near future, it is expected that fabrication of chips containing millions of 

transistors will be commonplace [MCSOJ. In order that this massive computational · 

resource be efficiently utilized, theoretical researchers have been actively trying to 

answer such questions such as: 

1) "What is a good model for VLSI chip design and computation?," 

2) "What communications networks can best perform important operations 

such as sorting, matrix multiplication and discrete Fourier transform?" and 

3) "What is the best method of laying out a network on a chip?." 

Several models have been proposed for VLSI computation [T80J,..S81,CM81]. 

The most widely accepted is due to Thompson and is known as the Thompson 
model ff79,T80]. Thompson's model of a VLSI chip is quite simple. The chip is 

presumed to consist of a grid of vertical and horizontal tracks which are spaced 

apart by unit intervals. Processors are viewed as points and are located only at the 

intersection of grid tracks. Wires are routed through the tracks in order to connect 

pairs of processors. Although a wire in a horizontal track is allowed to cross a wire 

in a vertical track, pairs of wires are not allowed to overlap for any distance (i.e., in 

they cannot overlap in the same track). Further, wires are not allowed to overlap 

processors to which they are not linked As an example, we have drawn a 

Thompson model layout of a 4-processor network in Figure 1. 

17. I 
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Figure J: A Thompson model layout of a 4-processor network in 
which each processor is linked to e1•ery other processor. 
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Much has also been accomplished in the way of finding good communications 

networks for VLSI. For ex.ample, the complete binary tree [MC80], the 2-
dimensional mesh [fK77,KL78,MC80], the cube-connected-cycles graph [PV79] 

and the shuffie-exchange graph [S71,L75,L76,NS79,P80,S80,SR80a, T79,T80] are all 

known to be capable of performing a wide range of operations. The shuffie­

exchange graph, in particular, is an incredibly powerful and efficient· 

communications network. Among other things, it can be used to compute discrete 
Fourier transforms, multiply matrices, sort lists and evaluate polynomials. Except 

for sorting (which requires O(log2N) time), these operations require no more than 

logarithmic time and constant space per processor. This is exponentially faster than 
the running times of the corresponding sequential algorithms and the 

corresponding parallel algorithms on networks such as the 2-dimensional mesh. 

As, in addition, the processors required for these operations are quite simple, the 

shuffle-exchange network is very well suited for VLSI implementation on a chip. 

The shuffle-exchange graph comes in various sizes. In particular, there is an 
· N-node shuffie-exchange graph for every N which is a power of two. E.ach node of 

the (N = 2")-node shuffie-exchange graph is associated with a unique k-bit binary 

string. ak-I · · • a0 . Two nodes wand w' are linked via a shuffle edge if w' is a left 

or right cyclic shift of w (i.e., if w = ak-r · · a0 and w' = ak-2" • · O<f1k-I or 
w·· = a0 • • • ak_1a1 , respectively). Two nodes w and w' are linked via an 

exchange edge if wand w' differ only in the last bit (i.e., if w = ak-J" • • a10 and 
w' = ak-r • . a11 or vice-versa). As an example, we have drawn the 8-node 
shuffle-exchange graph in Figure 2. Note that the shuffle edges are drawn with 

solid lines while the exchange edges are drawn with dashed lines. We shall follow 

this convention throughout the thesis. 

100 101 

010 011 

Figure 2: The 8-nodc shuffle-exchange graph 
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The third question of interest to VLSI researchers ("What is the best method of 

laying out a network on a chip?") has proved to be, by far, the most difficult. It is 

also the subject of this thesis. In order to answer the question for a particular 

network, we must do the following three things: 

1) decide what it means for a layout to be "good," 

2) find a "good" layout for the network, and 

3) prove that the layout is as "good" as possible. 

Most people agree that a "good" layout is one which does not require much 

area. This is quite reasonable since small layouts are easier to wire on .a chip, cost 

less and have far higher yields than layouts with larger amounts of area. Recently, 

there has also been interest in designing layouts with short wires. Although wire 

length considerations are not as important as area considerations, it is possible that 

layouts with long wires may ·be less efficient and run slower (due to longer 

. transmission times) than layouts with shorter wires. Both quantities are easily 

expressed in terms of the Thompson model, which is nice from a mathematical 

point of view. For example, the layout area of a network is the minimum amount 

of area required to Jay out the network in the Thompson model. (The area of a . . 

layout in the Thompson model is defined to be the product of the number of 

vertical tracks and the number of horizontal tracks which contain a processor or 

wire segmerit of the layout) Similarly, ihe maximum edge length of a network is 

the minimum amount of wire which is needed to embed the longest edge in any 

Thompson model layout of the network. 

Good layouts are known for several communications networks; including the 

complete binary tree [MR79,PRS81,BL81], the 2-dimensional mesh and the cube­

connected-cycles graph [PV79]. The known layouts for the shuffle-exchange graph, 

however, are not very good. Thompson [TSO] was the first to find a nontrivial 

layout for the shuffle-exchange graph. In particular, he found an O(N2/log1/2N)­

area layout of the N-node shuffle-exchange graph. He also showed that any layout 

for the N-node shuffle-exchange graph must have at least fl.(N2/log2N) area. Hoey 

and Leiserson [HL80) improved the upper bound by finding an O(N2//ogN)-area 

layout for the N-node shuffle-exchange graph. Neither Thompson's nor Hoey and 

Leiserson's layouts are practical, however, and neither meets Thompson's 

asymptotic lower bound. 
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In Part I of the thesis, we find good layouts for the shuffle-exchange graph. In 

particular, we describe an asymptotically optimal O(N2/log2N)-area layout for the 

N-node shuffie-exchange graph. Although the layout is not optimal for small 

values of N. we show how it can be modified in order to produce good layouts for 

small shuffle-exchange graphs. As these layouts are practical, it should now be_ 

possible to build a shuffle-exchange chip. 

Finally, we are left with the task of proving that a layout which appears to be 

good is, in fact, optimal. Although TI1ompson [T79,T80], Vuil1cmin [V80] and 

Lipton and Sedgewick [I..:S81] have all shown how to prove area lower bounds for 

certain computationa11y useful networks (such as the shuffle-exchange graph), it is 

not known ho\v to prove such lower bounds in general. For example, no nontrivial 

lower bounds have been found for the class of graphs which have O(N1/2)­
separators. (TI1is class includes the very important class of planar graphs.) Nor 

have any methods been discovered. for proving nontrivial lower bound~ on the 

maximum edge length of a network. 

In Part JI of the thesis, we describe several techniques for proving good layout 

area and maximum edge length lower bounds. In particular, we concentrate on 

finding good lower bounds for the crossing number, wire area and maximum edge 

crossh1g of a network. The crossing number of a graph is the minimum number of 

pairs of edges which n~ust cross in any drawing of the graph in the plane. The 

maximum edge crossing of a graph is the largest number of edges which must be 

crossed by some edge in any drawing of the graph. The wire area of a network is 

simply the minimum amount of wire which must be used to embed the network in 

the Thompson model. It is clear that for any network, 

crossing number < wire area < layout area 

and also that 

maximum edge crossing < maximum edge length . 

In addition, the crossing number, wire area and maximum edge crossing are 

worth minimizing independent of layout area and maximum edge length 

considerations. This is due to the fact that 

1) chips with a large number of wire crossings (and, in particular, those with 

wires which cross many other wires) have substantially n1ore problems with 
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capacitive coupling (i.e., interference between overlapping wires) than do 

chips with fewer cros&ings, and 

2) chips with high wire area cost more and experience lower yields than do 

chips with lesser wire area. 

Unfortunately, the results of Part II indicate that the crossing number and wire 

area are usually as large (up to a constant factor) as the layout area. In addition, 

the maximum edge crossing is often nearly as large as the side length of the chip. 

More importantly, however, crossing number and wire area arguments can be used 

to prove better lower bounds on the layout area and maximum edge length than 

were possible with existing techniques. In particular, we wiff use such arguments 

to find 

1) an N-node planar graph which has layout area 8(J:flogN) and maximum 
edge length S(Nl/2//ogl/2 N), 

2) an N-node graph with an O(N1/2)-separator which has layout area 

8(Nlog2N) and maximum edge length 8(Nl/2/ogN/loglogN), and 

3) an N-node graph with an O(Na)-separator (for a> 1/2) which has maximum 
edge -length 8(Na). 

The aiea results indicate that not all graphs with O(Nl/2)-separators {and, in 

particular, riot all planar graphs) can be laid out in linear area, thus disprovin~ a 
-

popular conjecture. The edge length bounds indicate that layouts of certain 

networks must have some very long wires (possibly even as long as the side length 

of the layout). Taken together, these results answer all of the previously open 

questions concerning layout area and maximum edge length of VLSI networks 

with known separators. · 
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PART I 

LAYOUTS FOR THE SHUFFLE-EXCHANGE GRAPH 



CHAPTER 1 

REVIEW OF KNOWN LAYOUTS 

In this chapter, we review the known layouts of the shuffie-exchange graph. In 

section 1.1, we describe Thompson's [TSO] straightforward O(N2//ogl/2N)-area 

layout This is followed in section 1.2 by a detailed description of Hoey and 

Leiserson's complex plane diagram. The complex plane diagram is very helpful in 

finding good layouts for the shuffie-exchange graph. For example, Hoey and 

Leiserson [HL80] have used the diagram to find an O(N2//ogN)-area layout for the 

N-node shuffle-exchange graph. In Chapter 2, we will use the diagram to find a 

variety of layouts for the N-node shuffle-exchange graph including one which 

requires only O(N2/Jog3/2 N) area (Such a layout has also recently been found 

independently by Steinberg and Rodeh [SR80b].) The complex plane diagram will 

also be used in Chapter 4 as an aide in the construction of good practical layouts 

for small shtiffie-exchange graphs. 

1.l Tl1ompson's Layout . 

Thompson was the fl~ to investigate VLSI layouts for the shuffle-exchange 

graph. In his thesis [f80], he showed that any layout for the N-node shuffie­

exchange graph requires at least D.(N2//og2N) area. (We reprove this fact using 

crossing number arguments in Part II of the thesis.) In addition, he described a 
layout requiring only O(N2//ogl/2N) area. In what follows, we present 

Thompson's layout and give a simple proof that it does, in fact, require just 
O(N2//og1/ 2N) area 

Given any k-bit string w, define the size of w to be the number of 1-bits it 

contains. For example, the size of 101 JO is 3. Thompson's idea was to lay out the 

N = 2k nodes of the shuffle-exchange graph on a straight line in order of 

nondecreasing size. It is easily seen that shuffle edges link nodes which have the 

same size and that exchange edges link nodes which have sizes differing by one. 

Thus the edges of such a layout are relatively short In particular, the number of 

horizontal tracks needed to embed all of the edges is at most 0( max B) where 
I~ S~ k 
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Bs is the number of nodes of size s. This is due to 'the fact that at most 

O(Bs-1+Bs+Bs+i> edges can cross any vertical cut of the layout which is located 
between a pair of nodes of size s. 

It is easy to show that Bs = C(k.s) for each s where 

C(k.s) = k!/[s!(k-s)!] 

is the well-known function for binomial coefficients. It is also welJ-known that 
C(k.s) achieves its maximum value at s= k/2 for any k. Using standard asymptotic 
analysis, it is easily shown that C(k.k/2) - 9(2k/k1/2) for large k .. (For a good 
review of such techniques. see Bender and Orszag's book [B078].) Thus 
Thompson's layout requires only O(N/log1/ 2N) horizontal tracks. Since at most 3 

vertical tracks are needed to embed the vertical portions of the edges incident to 
any given node, we can conclude that Thompson's layout has area 9.(N~/logi/2N). 

1.2 Hoey and Lciserson's Complex Plane Diagram 

In [HL80], Hoey and Leiserson observed that there is a very natural embedding 
of the shuffle-exchange graph in the complex plane. In what follows, we describe 
this embedding (henceforth referred to as the complex.plane diagram) and point 
out some of its more important properties. In addition, we give a brief description 
of the method used by Hoey and Leiserson to transform the diagram into an 
O(N2/logN)-area layout for the N-node shuffle-exchange graph. 

L2.1 Definition 

Let 8k = e2vVk denote the kth primitive root of unity. Given any k-bit binary 

string w = Dk-I ••• Do , let p(w) be the map which sends w to the point 

p(w) =. Dk-18kk-l + ... + D18k +Do 

in the complex plane. As each no~e of the (N = 2k)-node shuffle-exchange graph 
corresponds to a k-bit binary string, it is possible to use the map to embed the 
shuffle-exchange graph in the complex plane. For example, we have done this for 
the 32-node. shuffle-exchange graph (whence k= 5) in Figure 1-1. As is usual, we 
have drawn the shuffle edges with solid lines and the exchange edges with dashed 
lines. For simplicity, each node is labeled with its value instead of its 5-bit binary 
string. (By the value of a node, we mean the numerical value of the associated 
k-bit binary string.) 
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+2i 

+li 

Oi u 

-li 

-2i 

-2 -1 0 +l +2 

Figure 1·1: The complex plane diagram/or the 32-node 
shuffle-exchange graph. (Takenfrom [HL80].) 

1.2~2 Properties 

Examination of Figure 1-1 indicates that the complex plane diagram has some 

very interesting properties. First, it is apparent that the shuffie edges occur in 

cycles (which we call necklaces) which are symmetrically placed about the origin. 

This phenomenon is easily explained by the following identity: 

ak-I8kk + ak-28kk-I + ... + a18/ + ao8k 

ak-i8 k k-I + · · · + 0 08 k + 0 k-I 

A0 k-2 ... aoak-1>. 

Thus traversal of a shuffie edge corresponds to a 2'1T/k rotation in the complex 

plane. 

Except for degenerate cases, the preceding identity also indicates that each 

necklace is composed of k nodes, each a cyclic shift of the other. Such necklaces 

are called full necklaces. Degenerate necklaces contain fewer than k nodes and, 

because they must have some symmetry. arc mnppcd entirely to the origin of the 
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complex plane diagram. For example, {00000} and {0101, 1010} are degenerate 

necklaces while both {101, 011, 110} and {11100, 11001, 10011, 00111, 01110} are 

full. 

It will often be convenient to_ refer to a necklace by one of its nodes. In 

particular, we will use the notation < w> to indicate the necklace generated by w. 
This is simply the collection of cyclic shifts if w. For example, the necklace 

generated by 101 is <JOI> = {101, 011, 110} . 

Exchange edges are also embedded in a very regular fashion by the complex 

plane diagram. In fact, each exchange edge is embedded as a horizontal line 

segment of unit length. This phenomenon is explained by the identity 

ak-18/-l + ... + a18k + 1 

p(ak-1 ... a1l). 

In some cases, several exchange edges are contained in the same horizontal line 

of the diagram. Such lines are called levels. For example, there are 9 levels in the 

diagram of the 32-node shuffie-exchange graph shown in Figure 1-1. We will use 

the properties of levels in Chapter 2 to find an O(N2/log3/2N)-area layout for the 

N-node shuffle-exchange graph. They will also be used in Chapter 4 to find good 

practical . layouts for small shuffie-exchange graphs. 

1.2.3 An O(N1 /logN)· Area Layout 
. 

In [HL80], Hoey and Leiserson showed how to u.se the complex plane diagram 

to construct an O(N2 /logN)-area layout for the N-node shuffie-exchange graph. 

Their method was very involved, however, and we have chosen not to include it 

here. The basic idea is to use the structural properties of the complex plane 

diagram to find an O(N/log1/ 2 N)-separator for the N-node shuffie-exchange graph 

whenever N is of the form 22r for some r>O. The separator can then used to 

construct an O(N2//ogN)-area layout by using Leiserson's general layout technique 

for graphs with known separators [L80a]. 

Shortly after writing [HL80], Hoey and Leiserson found a far simpler 

O(N2/logN)-area layout for the N-node shuffle exchange graph which was, in 

addition, valid for all N. By the that time, however, we (as well as several others) 

had also observed that the complex plane diagram could be used to find a simple 

layout for the shufne-cxchange graph. This layout is described in Chapter 2. 
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CHAPTER 2 

LAYOUTS BASED ON THE COMPLEX PLANE DIAGRAM 

In this chapter, we present several layouts of the shuffie-exchange graph which 

are based on Hoey and Leiserson's complex plane diagram. We commence in 
section 2.1 with a straightforward O(N2 /logN)-area layout of the N-node shuffie­

exchange graph. ·As we mentioned in Chapter 1, this layout has also been 

discovered by many others (including Hoey and Leiserson). In section 2.2, we 

show how the layout can be modified so as to require only O(N2/log3/2N) area. 

The latter layout was also discovered independently by Steinberg and Rodeh 

[SR80b]. We conclude the c~apter by mentioning an additional O(N2/lo~/2N)­
area layout as well as a layout which might require even less area. 

2.1 A Straightforward O(N2//ogN)-Area Layout 

In this section, we describe a straightforward layout of the shuffle-exchange 

graph which ·requires only O(N2/logN) area. The layout is fanned from a grid of 

levels and necklaces which we ·refer to as the level-necklace grid. Each row of the 

grid corresponds to a level of the complex plane diagram. The columns are 

divided into consecutive column pairs, each pair corresponding to a necklace. In 

particular, the leftmost column of each column pair corresponds to that part of the 

necklace which is contained in the left half of the complex plane. Similarly, the 

rightmost column corresponds to the part of the necklace contained in the right 

half of the complex plane. We assume that the rows are ordered from top to 

bottom so as to be consistent with the natural ordering of the levels in the complex 

plane but (for the time being) place no restrictions on the left-to-right order of the 

necklaces. 

Each node of the shuffle-exchange graph is placed at the intersection of the row 

and column of the grid which correspond to the Jevel and part of the necklace (left 

half or right half) to which it belongs in the complex plane diagram. For example, 

we have done this for a random ordering of the necklaces of the 32-node shuffie­

exchange graph in Figure 2-1. 
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necklaces 

<3> <7> <31><11> <l> <5> <O> <15> 

1 
G 7 

2 IL ... 
3 14 2 15 

3 
22 4 5 23 

4 
11 10 

levels 5 .... 
12 19 31 13 1 18 0 30 

6 .... 
21 20 

7 

8 

a. IL IL 
26 8 9· ... 

17 28 16 29 

27 

9 
24 25 

Figure 2· 1: A level-necklace grid for the 32-node shuffle-exchange graph. 

Notice that we used just one vertical track to embed the necklaces <O> and <31> 
in the grid. As each necklace contains just one node, it is clear that this is 

sufficient In general, necklaces which are mapped to the origin by the complex 

plane diagram are a nuisance since they become lumped together in a single point 

of the level-necklace grid. Fortunately, there are relatively few such nodes. In 

particular, Hoey and Leiserson showed the following. 
-

Lemma 2· 1 (Hoey and Leiserson JHL80]): At most O(N/logN) nodes of the N-

node shuffle-exchange graph are mapped to the origin of the complex plane diagram 

Proof: Every node which is mapped to the origin of the complex plane diagram 

is adjacent (via an exchange edge) to a node at position (J,O) or (-1,0). Any node 

which is not mapped to the origin is contained in some full necklace, at most two 

nodes of which are contained in positions (J,O) or (-1,0). Thus for every pair of 

nodes which are mapped to the origin, there are at least k = /ogN nodes which 

are not mapped to the origin. Thus at most O(N/k) = O(N//ogN) nodes can be 

mapped to the origin o 

Since at most O(N/logN) nodes are mapped to the origin, we can (for the time 

being) ignore them. 11:ey can always be inserted later at a cost of. at most 

O(N/logN) additional vertical and horizontal tracks. Since any Jayout of the 

shuffle-exchange graph which we will consider will have at least fl(N/logN) vertical 

13 

-------------- .---~~----- -----



and horizontal tracks, the added tracks can increase the area of the final layout by 

at most a constant factor. We will also use this strategy in Chapter 3 when we 

ignore several O(N//ogN)-sized sets of nodes. 

Since each full necklace contains at most k = logN nodes, it is easy to see that 

the N-node shuffle-exchange graph has at most O(N//ogN) full necklaces. Thus at 

most O(N//ogN) vertical tracks are needed to embed all of the shuffle edges in the 

level-necklace grid. It is also easy to show that at most N horizontal tracks are 

needed to embed all of the exchange edges (one track is used for each exchange 

edge). Thus the total area of the layout for the N-node shuffle-exchange graph is 

O(N2/logN). As an example. we have added the edges of the 32-node shuffie­
exchange graph to the level-necklace grid in Figure 2-1 · to produce the layout 

shown in Figure 2-2. Note that we have omitted <O> and <JJ> in this layout since 

they are mapped to the ongm of the complex plane diagram. 

necklaces 

<3> <7> <11> <l> <5> <15> 

1 - - - -6 7 

[ -- -- - - - - -
2 3 2 

- -- -- -- -- - - -- -14 15 

t - -- -- -- - - -- -
3 22 3 

- -- -
4 5 

4 - -- -
11 0 

f - -- - - -
levels 5 12 13 l 30 

- -- -- -- -- - -
19 18 

6 - -- --
21 20 

{ - -- -- -- -- -- -
7 26 27 

- -- --
8 9 

i - -- -- - -- -- -- -- -
8 28 

[ - -- -- -- -- - -
17 16 

9 - -- -
24 25 

Figure 2·2: Layout produccdfrom the level-necklace grid shown in Figure 2-1. 
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2.2 An Improved O(N2//og3/1N)·Area Layout 

It is possible to improve the layout described in section 2.1 by reducing the 

number of horizontal tracks needed to embed the exchange edges. This can be 

done in two ways. First. exchange edges which are in the same level of the 

complex plane diagram but which do not overlap in the level-necklace grid can be 

inserted on the same horizontal track. As more exchange edges are inserted on the 

same track, fewer total tracks will be needed to embed all of the exchange edges. 

Secondly, the necklaces can be re-ordered so as to increase the average number of 

exchange exchange edges which can be inserted on each horizontal track. 

Although we do not know how to best order the necklaces in general, we have 

found several orderings which yield O(N2/!og3/2N)-area layouts for the N-node 

shuffle-exchange graph. For instance, we will show in what follows that such a 

layout can be constructed by arranging the necklaces from left to right in order of 

nondecreasing size. (The size of a necklace is simply defined to be the size of any 

of its nodes.) This observation has also been made by Steinberg and Rodeh in 
[SR80b]. 

In order to bound the number of horizontal tracks needed to insert the exchange 

edges, we will show that the maximum overlap· of exchange edges on each level 

occurs in between necklaces of size k/2. Since. the maximum overlap of exchange 

edges on each level is an ~pper bound on the number of horizontal tracks needed 

to insert the exchange edges on that level, we can thus conclude that the total 

number of horizontal tracks needed to insert all of the exchange edges is at most 

O(B k/l) - O(N/log1/ 2N) . 

Thus the resulting layout will have area at most O(N2//og}/2N). 

It is not immediately clear why the maximum overlap on each level occurs 
between nodes of size k/2, however. In what follows, we break up each level into 

sublevels (for which the analysis is easier) and show that the maximum overlap on 

each sublevel occurs between necklaces of size k/2. Before doing this, however, we 

must introduce some further notation. 

Consider a node of the form ak·I" •• a10 for which either ak-;=0 or a;=O or 

both for each i-S:k. We wiIJ refer to such a node as basis node. A node 

bk-I" · · b0 is said to be generared by the basis node ak-1" · • a0 if 
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1) bk·i=ak-i and b;=i1; whenever ak·i=ai for 1 < i < k, and 

2) bk·i=b; whenever ak·i=ai=O for 1 < i < k. 

For example, 10000 generates 10001, 11100 and 11101 but not 11111. 

It is not difficult to show that if u generates v, then both u and v are on the same 

level of the complex plane diagram. For example, let u = ak-r • • a0 and 

v = bk-I· • · b0 and observe that 

.P(.v) - .P(.u) = (bk-1 - ak-1) 8kk-J -i- •• • +(bi- a1) 8k + (bo- ao) 

ck-18kk-1 + • .. + c18k +co 

where ck·i= ci for each ' 1 < i < k . Since 8 k k-i is the complex conjugate of 

8 / for 1 < i < k , we can conclude that P<. v) - .P(.u) is a real number and thus 

that u and v are in the same level of the complex plane diagram. 
. . 

It is also easy to show that each node of the shuffle-exchange graph is generated 

by a unique basis node. In particular, the node which generates bk-r · · b0 can 

be found by 

1) settin~ b0=0 and (if k is even) setting bk/2=0, and 

·2) setting bi=bk·i=O for each i such that (originally) bi=bk·i=l. 

Since exchange edges -link nodes which are in the same sublevel, we can 

conclude from the preceding arguments that it is possible to partition each level of 

the complex plane diagram into sublevels so that the nodes in each sublevel are 

precisely the nodes generated by some basis node. We will now show that the 

maximum overlap at each sublevel occurs between necklaces of size k/2. 

Since the necklaces have been arranged from left to right in order of 

nondecreasing size, we can use arguments similar to those of section 1.1 to 

conclude that the overlap of exchange edges between two nodes of size s in any 

sublevel is at most 0( max Bs') where Bs' is the number of nodes in that 
1~5~k 

sublevel with size s. A straightforward counting argument shows that each basis 

node of size r generates 

1) C(k/2 - r, 1) nodes of size s= r+ 2i for any i < k/2 - r , and 

2) C(k/2 - r, 1) nodes of size s= r+ 2i+ 1 for any i < k/2 - r 
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when k is odd, and 

1) C(k/2 - r - 1, z) + C(k/2 - r - 1, i - /) 

s=r+2i for any i < k/2 - r, and 

C(k/2 - r, z) nodes of size 

2) 2C(k/2 - r - 1, 1) nodes of size s= r+ 2i+ 1 for any i < k/2 - r - 1 

when k is even. We can therefore conclude that in all cases, the maximum value 

of B5 ' occurs when i = (k - 2rY'I a1_1d thus when s= k/2. This concludes the 

proof. 

As an example, we have drawn such a layout for the 32-node shuffle-exchange 

graph in Figure 2-3. Note that far fewer horizontal tracks are needed for this 

layout than are used for the layout in Figure 2-2. For completeness, we have 

included the necklaces <O> and <31> even though they are degenerate. 

levels 

necklaces 

<0> <l> <3> <5> <7> <11> <15X3l> 

1 

2 

3 

4 

4 

5 { tt>- -
6 

7 

8 

9 

8 

6-- - - - - -- -

3 4- - - - ·- - 5 

-------- 22 -- - - 3 

1 

1 

26 27 

6 7 8- --- -- - 29 

- -- -- -- - -24 25 

Figure 2-3: An improved layout for the 32-node shuffle-exchange graph. 
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2.3 Other Layouts 

It is not difficult to find · other orderings of the necklaces which produce 

O(N2/log1/2N)-area layouts for the N-node shuffle-exchange graph. For example. 

Lepley [LLM81] used standard statistical methods to show that the arrangement of 

necklaces from left to right in order of nondecreasing radius produces such a 

layout. (By the radius of a necklace. we mean the radius of the circle in the 

complex plane which contains the necklace.) The proof is similar to the one in 

section 2.2. In particular. it is shown that the maximum overlap in most levels 

occurs in the same place and that the total overlap of all of the levels at that point 
is 8(N//og1/ 2 N). 

Although we consider it likely that better orderings of the necklaces exist. we do 

not know of any ordering which (provably) results in a layout with less than 

o(N2/log1/2N) area. There is another ordering of interest. however. That is the 

ordering of the necklaces according to the minimal number represented by each 

necklace. (The minimum number represented by a necklace is simply the smallest 
value of any node in the necklace.) Coincidentally. the layout displayed in Figure 

2-3 has such an ordering. Using techniques which are developed in Chapter 3. it is 
possible to show that the combined. maximum overlap of exchange edges in all 
levets is at most O(NloglogN/logN) for this ordering. This is substantially better 

than the O(N/log1/ 2N) overlap found in previous orderings and also very close to 
the lower bound of O(N/logN). Unfortunately. we do not know how to show that 

the maximum overlap at each level occurs in the same place. In fact. it appears 

that this may not be the case. (We are deeply indebted to Kleitman for pointing 

out the possibility of such an improvement Although we were not able use his 

idea in the context of complex plane diagram layouts. it was crucial to the 

development of the asymptotically optimal layout described in Chapter 3.) 

For orderings which have a small combined maximal overlap but for which the 

maximal overlap at each level is difficult to compute (such as the ordering by 

minimal value represented), it may be possible to improve the situation by altering 

the level structure. As Miller pointed out to us, there are many possible levelings 

of the exchange edges. (By a leveling, we mean any arrangement of the exchange 

edges in levels which is consistent with the necklace structure of the complex plane 

diagram.) Although we have investigated several levelings, we have not found any 

(provably) better layouts for the shuffie-exchange graph by this method. 
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CHAPTER 3 

l\tlORE SOPHISTICATED LAYOUTS 

In section 3.3 of this chapter, we describe an asymptotically optimal 

O(N2 /log2 N)-area layout for the N-node shuffle-exchange graph. Unlike the 

previously described layouts, the optimal layout is fairly sophisticated and requires 

a substantial amount of preliminary machinery. Most of the necessary definitions 

and lemmas are included in section 3.1. In section 3.2, we describe and analyze a 

near-optimal preliminary version of the optimal layout The optimal layout is then 

described in section 3.3. In section 3.4, we extend the methods developed in earlier 

sections in order to show that certain useful supergraphs of the N-node shuffie­

exchange graph can also be laid out in O(N2/tog2N) area. We have also 'included 

an appendix to the chapter in which we prove Lemmas 3-1 through 3-4. 

3.1 Preliminaries 

The layouts described in this chapter are based on some important combinatorial 

properties of s.trings which· contain long blocks of consecutive zeros. Before 

describin~ the layouts, however, it is useful to review some of these properties. In 

this section, we mention several combinatorial lemmas and definitions which will 

be heavily used in the analysis which follows later. As the proofs of the lemmas 

are somewhat complicated; they have been included in the appendix. 

In what follows, we will be particularly interested in the size and location of the 

longest block of consecutive 0-bits in the k-bit binary string associated with each 

node. In order that the size of this block be the same for all nodes within a 

necklace, we allow blocks to begin at the end and end at the beginning of a string. 

For example, the longest block of zeros in the string 01010 starts at the fifth bit anq 

has length two. 

Let '¥ k(t) denote the number of k-bit strings for which the longest block of 

consecutive zeros has length t. For example, '11J2)=3. The following combina­

torial lemma provides a good asymptotic bound on the growth of 111 k(t). 
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Lemma 3·1: For (logkY2+/oglnk < t << k and k-·oo, 
-(t+ 2) -(t+ 1) 

'11 k(t) - 2k (e·k2 • e·k2 ) . 

In order to illustrate the important features of the function in Lemma 3-1, we 
-

have sketched a graph of i-k'l' lt) versus t in Figure 3-1. The maximum of 

7klJ! k(t) occurs at t = · logk-1 whence 

--
(el/2 - JYe 

.23865. 

For t > logk - 1, 7klJ! it) decreases exponentially as t increases. For t < logk - 1, 
.z-k'I! k(t) decreases doub(iJ exponentially as t decreases . 

double 
exponential 

cl.Popoff 

• 23 

0 logk-1 

exponential 
. dropoff 

/ 

k 
t 

Figure 3-1: Density of k-bit b.inary strings for which the 

longest block of consecutive zeros has length t. 

Roughly speaking, Lemma 3-1 states that the longest block of consecutive zeros 
in nearly 1/4 of aJl k-bit strings has length precisely logk - 1. Further, there are 
not many strings of -length k \\1ith substantially more than logk consecutive zeros 
and even fewer strings for which the longest block of consecutive zeros has length 
substantially less than logk. This infonnation is further quantified in the following 
lemma.· 

Lemma 3·2: The number of k-bil strings for which the longest block of 
consecutive zeros has length less than /ogk - log/nk • I or length greater 1ha11 2/ogk 
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is at most 0(2k/k) = O(N/logN) . 

As we mentioned in Chapter 2, we may ignore O(N/logN)-sized sets of nodes 
which have undesirable properties. As such nodes can be inserted with the 
addition of at most O(N/logN) vertical and horizontal tracks, we can always add 
them later without increasing the total area by more than a constant factor. By 
Lemma 3-2, we can thus henceforth consider only those nodes for which the · 
longest block of zeros has length between logk - loglnk - 1 and 2logk. 

We will also be interested in the size of the second longest block of consecutive 
zeros in each string. Usually, the size of the second longest block of zeros will be 
very close to the size of the.longest block of zeros. We state this observation more 
precisely in the following lemma 

Lemma 3·3: The sum over all necklaces of the difference in length between the 

longest and second longest blocks of consecutive zeros is at most O(N/logN). 

Using information about the size and location of blocks of zeros within the 
necklace, it is possible to distinguish one particular node in the necklace. More 
precisely, we define the distinguished node of a necklace to be the node containing 
the longest l~ading block of zeros. For example, 00101 is the distinguished node of 
<OJOJO>. Should two or more· nodes of a necklace begin with equal and maximal 
length blocks of zeros, then each node of the necklace contains at least two blocks 
of zeros of maximal length. In such cases, we distinguish that node for which the 
leading block of zeros is maximal and for which the second occurence of a 
maximal length block of zeros is as near as possible to the beginning of the string. 
For example, 01011 (not 01101) is the distinguished node of the necklace <JO/OJ>. 

For some necklaces, such as <l 1 l> and <JOJO/OJ>, there is no uniquely 
distinguished node. As we show in the following lemma, such necklaces ·are 
sufficiently rare that we need not consider th~m further.·· 

Lemma 3·4: At most O(N/logN) nodes are contained in necklaces which fail to 

have a uniquely distinguished node. 

We refer to the leading block of zeros of a distinguished node as the primary 

block of zeros. If a distinguished node has two or more maximal length blocks of 
zeros, then the maximal length block following the primary block is rcfcrrrcd to as 
the secondary block of zeros. These definitions can be easily extended to any node 
contained in a necklace which has a uniquely distingui_shcd node. For example. 
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the primary block of zeros of 01010 starts in the fifth bit and has length two. Note 

that this string does not have a secondary block of zeros. As another example, we 

note that the secondary block of zeros in the string 11010 consists solely of the fifth 
bit Note that the secondary block of zeros (if it exists) always has the same length 

as the primary block of zeros. 

If the fast bit of a node occurs in the primary block of zeros, we call that node a · 

primary node. Similarly, if the last bit of a node occurs in the secondary block of 

zeros, we call the node a secondary node. For example, 10110 is a primary node, 

11010 is a secondary node and 10010 is neither primary nor secondary. 

Note that all primary and secondary nodes are necessarily even. (We say that a 

node is even if its last bit is 0 and odd if its last bit is 1.) Note also that, by Lemma 

3-2, we need only consider necklaces which contain between logk - logbzk - 1 and 

2/ogk primary nodes. Such necklaces will also have at most 2/ogk secondary 

nodes. 

In what follows, we will represent nodes in terms of their corresponding 

distinguished nodes. More precisely, we use the not~tion ak·J' • ·a;+ /iif1;-/' · · a0 
to denote the node a;.J' • • Orflk-1' · ·a; . For example, 00101 denotes the node 
10010. Using this notation, a primary node has the form O· · • 0. · ·Ow while a 
secondary node has the form . O • •• Ow' O • •• O • •• Ow" where O • •. Ow and 

0 . .. Ow' 0. ~ . Ow" are assumed to be distinguished nodes. 

3.2 A Near-Optimal Layout 

We are now prepared to .describe a near-optimal preliminary version of the 

optimal layout In section 3.3, we will show how to modify this layout in order to 

construct an optimal O(N2/!og2N)-area layout for the N-node shuffle-exchange 

graph. 

3.2.1 Location of the Nodes 

The near-optimal layout is constructed from a logN x O(N//ogN) grid of 

nodes. Each column of the grid corresponds to a necklace of the shuffle-exchange 

graph. The nodes of each necklace are ordered from top to bottom so that the ith 

node is a left cydic shift of the (i-J)st node for each i and so that the distinguished 

node is p1aced in the bottom row. The necklaces are crdered from left to right so 

that the values of the distinguished nodes form an increasing sequence. For 
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example, we have constructed .such a grid for the 32-node shuffle-exchange graph 
in Figure 3-2. In the figure, we have represented each node in tenns of the 
associated distinguished node. This representation readily illustrates the fact that 
the last bit of any node in the ith row corresponds to the ith bit of the associated 
distinguished node. Note that the necklaces <OOOOO> and <11111> have not been 
included since they are degenerate. 

00001 00011 00101 00111 01011 01111 

00001 00011 00101 00111 01011 Ollll 

00001 00011 00101 OOlll 01011 Ollll 

00001 00011 00101 001I1 010I1 01111 

00001 00011 00101 00111 0101r 0111I 

Figure 3·2: The grid of nodes for the 32-node shuffle-exchange graph. 

3.2.2 Insertion ·or the Edges 

It is easily observed that th.e shuffle edges can be inserted in the grid wit:Q the . .. 

addition of O(N//ogN) vertical and 2 horizontal tracks. In the following, we will 
show that the exchange · edges can ·be inserted with the addition of 
O(NloglogN//ogN) vertical and horizontal tracks. ·Thus the total area of the layout 
is O(N2(/og/ogN)2//og2N). This is only a factor of O((log/ogN)2) off from the 
lower bound of O(N2//og2 N). 

The analysis is divided inio two parts. In part (a). we show that only 
. . 

O(NloglogN//ogN) exchange edges link nodes which are in different rows of the 
grid. Thus such edges can be inserted with the ffddition of at most 
O(Nlog/ogN//ogN) vertical and horizontal tracks. In part (b), we conclude the 
analysis by showing that at most O(N//ogN) horizontal tracks are needed to insert 
the exchange edges which link two nodes in the same row. 
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(a) Exchange Edges 'Vhich Link Nodes in Different Rows 

Consider an exchange edge which links two nodes that are in different rows of 
the grid. In particular, assume that the edge is incident to an even node in the ith 

row for some i. By definition, the even node can be represented as lt-O°w' where 
I wl = i-1 and nOw' is the distinguished node of < n.Ow' >. The exchange edge is 
also incident to the odd node.wlw'. By assumption, wlw' is not located in the ith · 
row and thus wlw' is not a distinguished node. Since wOw' is a distinguished 
node, we know that the ith bit of wOw' (the bit that was changed in order to -produce wlw') must be in the primary or secondary block of zeros of n.Ow'. 

Otherwise, the primary and (if it exists) secondary blocks of zeros of wlw' would 
be identical in location and size to the primary and secondary blocks of n.Ow'. 
This would imply that wlw' is also distinguished, a contradiction. Thus n.Ow' 

must be a primary or secondary node. As was previously mentioned, we can 
assume that each necklace has at most 2/ogk = 2/oglogN · primary and _2/oglogN 
secondary nodes. Thus at most 4/oglogN nodes in each necklace are both even and 
·incident to an exchange edge which links nodes in different rows. Since every 
exchange edge is incident to an even node and since there are O(N/logN) 
necklaces, we can conclude that there are at most O(NloglogN/logN) exchange 
edges which· link nodes in different rows. 

{b) Exchange Edges \Vhich Link Nodes in the Same Row 

We next show that those exchange edges which link two nodes that are in the 
same row can be inserted with the addition of at most O(N/logN) horizontal tracks. 
Once again, the analysis is divided into two parts. In the first part, we show that at 
most O(N/logN) exchange edges are_ contained in the first logk rows. Such edges 
can be trivially inserted wif:h the addition of O(N/logN) horizontal tracks. In the · · , 
second part. we show that only 2k-i horizontal tracks are needed to insert. the 

. K 

exchange edges in the ith row for any i > logk. Since· . ~ 2k-i < 2k/k = 
,,,q_~, 

N/logN , this '~ill be suffic.ient to show that at most O(N/logN) additional 
horizontal tracks ·are ·necessary to insert the remaining exchange edges. 

Consider a necklace '.vhich has t primary nodes for some t'5:logk. By definition, 
the nodes in the first t rows of such a necklace are all even. Tims, such a necklace 
can have at most r = logk - t odd nodes in the first logk rows. By Lemma 3-1, 
we know that there are 
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such necklaces for (logkY2+loglnk < t << k. By Lemma 3•2, we can assume that 

t ~ logk - loglnk - 1 and thus the total number of odd nodes occurring in the first 

logk rows is at most 

IOJ_, k -t-2 -t-J 
- ~ (logk - t) (2k/k) (e-k2 - e·k2 ) 

t • ie,1< • "+'« - I 

'°'"'11+• k ~ ki"2-logk . ki"l-logk 
(2 /k)-"" r(e- - e- ) 

l"tO 

c:lO ,,r-2 
< (2k/k) ~ e·~ 

O(N/logN). 

Since every exchange edge is incident to an odd node, the above bound implies 

that at most O(N/logN) exchange edges are contained in the first logk rows. 

We next consider the number of horizontal tracks necessary to insert the 

exhange edges ~ontained in the· ith row for 1)/ogk. 1l1is number is identical to tht; 

maximum number of exchange edges that can overlap each-other at a single point 

of the iih row. In Figure 3-3, we illustrate the necess~ conditions for two 

exchange edges to overlap in the ith row. All representations are in terms of 

distinguished nodes. 

wOru" wlw" 

level i wai.1' wlw' 

• 
wOw "' wlw"' 

lwl = i-1 w "' < w' < w" 

Figure 3-3: Necessary condi1io11sfor exchange edges to 01•crlap in the ith row. 
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Note that the even end of fill exchange edge is always to the left of the odd end. 

Also note that any node which occurs between wOw' and whv' must be 

represented as n~w" where w")w' or as wlw"' where w"'(w'·. In either case, the 

exchange edge incident to the overlapped node extends beyond the exchange edge 

linking wOw' to wlw'. Since there are at most 2k-i - 1 nodes between wOw' and 

wlw', thes~ facts imply that at most 2k-i exchange edges can overlap at any point 

of the ith row. This observation completes the argument that the near optimal 

layout requires only O(N2(loglogN)2//og2N) area. 

3.3 An Optimal O(N2//og2N)-Area Layout 

In this section, we will modify the layout described in section 3.2 in order to 
produce an optimal O(N2/log2N)-area layout for the N-node shuffle-exchange 

graph. In particular,. we will relocate the primary and secondary nodes of each 

necklace so that they are closer to and in the same row as the nodes to which they 

are linked via an exchange edge. Before going into the details of this relocation, 

however, it is necessary to introduce seine additional terminology. 

3.3.f l\1ore Definitions 

In order to construct an optimal layout for the shuffle-exchange graph, we have 

found it necessary· to break up each necklace into two or, possibly, three pieces. 

The basic piece of each necklace consists of all those nodes which are neither 

primary nor secondary. The primary piece of each necklace consists of the primary 

nodes while the secondary piece ·consists of the secondary nodes (if there are any). 

For example, the basic piece of <OJOJJ> is {01011, 01011, 01011}, the primary 

piece is {01011}, and the secondary piece is {01011}. 

It is also necessary to extend the notion of a distinguished node to include pieces 

of .necklaces. The distinguished node of a basic piece is the same as the 

distinguished node of the associated necklace. The distinguished node of a primary 
piece of a necklace is. that node. of the necklace which becomes distinguished when 

we ignore the primary block of zeros (i.e., when we temporarily replace the 

primary block of zeros in each node of the necklace with an equal-length block of 

ones). Similarly, the distinguished node of a secondary piece of a necklace is that 

node which becomes distinguished when we ignore the secondary block of zeros. 

For example, 0101 IOI I I is the distinguished node of the basic piece of 

<OIOI IOI I I>, OJ IOI I JOI is the distinguished node of the primary piece, and 
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011101011 is the distinguished node of the secondary piece. Note that the 

distinguished nodes of the primary and secondary pieces of any necklaces are 

necessarily odd nodes and thus are contained in the basic piece of the necklace. 

It is important to note that some necklaces (such as <01111>) have a 

distinguished node but do not have a distinguished node for the primary or 

secondary piece of the necklace. Fortunately, arguments such as those used to 

prove Lemmas 3-3 and 3-4 can be used to show that at most O(N//ogN) nodes are 

contained in such necklaces. Thus, we can assume henceforth that every piece of 

every necklace has an associated distinguished node. 

3.3.2 Location of the Nodes 

As in section 3.2, the layout is constructed from a /ogN x O(N//ogN) grid of 
nodes. Each column of the grid corresponds to a piece of a necklace. The nodes 

of each piece are arranged within a column so that a node of the form 

ak-1" • • iik-i" • • a0 (where ak-1" • • a0 is assumed to be the distinguished node of 
the associated piece) is placed in the ith row of the grid. Note that nodes in the 

basic piece of any necklace (these include all odd nodes) are in the same row as 
they were in the near-optimal layout described in section 3.2. The columns are 

ordered from left to right so that the values of the distinguished nodes of the 
associated pieces form a nondecreasing sequence. For example, we have 
constructed . such a grid for k = 5 in Figure 3-4. 

01011 

00Io1 01001 01011 

00101 01001 01011 01101 

-0010I 01011 

basic primary basic seconda.ry primary 
<00101> <00101> <01011> <01011> <01011> 

Figure 3·-': RclocaJcJ nodes/or the 32-nodc slwfjlc-exclwngc graph. 
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Note that the necklaces <OOOOJ>, <OOOJJ>, <OOJ 11), and <OJJ 11> have not been 
included in Figure 3-4 smce their associated primary pieces do not have 
distinguished nodes. 

3.3.3 Insertion of the Edges 

As each necklace is broken up into at most four contiguous pieces in the 
modified grid {the basic piece may have been broken up into two contiguous 
pieces), the shuffie edges can be inserted with the addition of at most O(N//ogN) 

vertical and horizontal tracks. In what follows, we will show that at most 
O(N/logN) vertical and horizontal tracks are needed to insert all of the exchange 
edges as well. Thus the area of the layout will be O(N2/Jog2N), which is optimal. 

As before, we divide the analysis of the exchange edges into two parts. We first 
show that at most O(N/logN) exchange edges link nodes which are in different _ 
-rows. of the grid. Such edges can thus be trivially inserted with the addition of at 
most O(N/logN) vertical and horizontal tracks. We then show that those exchange 
edges which link two nodes in the same row can be inserted with the addition of 
only O(N//ogN) horizontal tracks. The arguments will be very similar to_ those in 
section 3.2.2. 

(a)_- Exchange Edges \Vhich Link Nodes in Different Rows 

Consider an exchange edge which links two nodes which are in different rows of 
-the grid.· Since only primary and .secondary nodes have been relocated, we can 
conclude from the arguments of section 3.2.2a that the even node which is incident 

-to the edge is either a prim~ry or secondary node. In what follows, we will show 
that the even node is, in fact, a primary node. 

Assume for the purposes of contradiction that the even -node is a secondary 
- node. Then this node can be represented as nOw' where wOw' is the distinguished 
node of the secondary piece of <wOw' > and lwf = i-1 for some L By definition, 
nOw' is located in the ith row of the grid and is linked to wlw' via the exchange 
edge. Since wlw' is odd, it is contained in the basic piece of <wlw'>. By 
assumption, wlw' is not also in the ith row and thus wlw' cannot be the 
distinguished node of <wlw' >. Since the lengths of the two blocks of zeros in 
wlw' created by switching the itlz bit from 0 to I are less than the length of the 
primary biock of zeros (in fact, the sum of their lengths is precisely one less than 
the length of the primary block). wlw' will be the distinguished node cf <wlw' > 
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precisely when wOw 'is the .node distinguished in < li-Ow' > · by ignoring the 

secondary block of zeros. By definitiort, this is the case precisely when li-Ow' is the 

distinguished node of the secondary piece of <wOw' >. By assumption, wOw' is the 

distinguished node of the secondary piece of <nOw' > and thus we can conclude 

that wlw' is the distinguished node of <wlw' >. a contradiction. 

Next consider a primary node which is incident to an exchange edge linking two . 

nodes in different rows of the grid. By the preceding arguments, this node must be· 
'1 '1 

of the fonn w10::-:0~1w' where wlO . .. Olw' is the distinguished 

node of the primary piece of <wJO . .. Olw' > and either t1 or t2 is larger than or 

equal to the length of the longest block of zeros in wllw'. Otherwise, 
'1 11 

wJO-::-:--OJ~lw' would (by definition) be the distinguished node of 
11 '2 '1 '1 

...-"'-- --A.- . -"---~ 
<wJO · .. 010 .. . Olw' > al).d thus wlO .. . 010 .. . Olw' would be on the same 

0 ~ . 
-""------"'-- d" . E . row as wJO · . • 000 • • • Olw' , a contra 1ct10n. ach necklace contams at most 

2r such primary nodes where r is the difference between the lengths of the longest 

and second longest block of zeros in any string of the necklace. By Lemma 2-3, we 

can concludt; that there· are at most O(N//ogN) such primary nodes in the entire · 

shu.ffie-exchange graph. Thus, at most O(N//ogN) exchange edges link nodes 

which are in different rows. 

(b) Exchange Edges-\Vhich Link Nodes in the Same Row 

Using the analysis developed in section 3.2.2b, it is not difficult to show that at 

most O(N//ogN) horizontal tracks are needed to insert the exchange edges which 

link two nodes that are in the same row. In particular, there are still only 

O(N//ogN) odd nod~s in the top /ogk rows of the grid and thus at most O(N/logN) 

exchange edges are contained in the top /ogk rows. These can be trivially inserted 

with the addition of just O(N//ogl\i~ horizontal tracks. 

Again following the methods of section 3.2.2b, it is not difficult to show that two 

exchange edges ov.erlap on the ith row only if the first ; bits of the associated nodes 

are identical. Thus at most 2k-i tracks are needed to insert all of the exchange 

edges in the ith row for all 1)/ogk. Summing, we can again conclude that at most 

O(N/logN) additional horizontal tracks arc needed to insert the remaining 

exchange edges. 
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3.3.4 Comments 

The methods developed in this chapter can be used to find several other optimal 

layouts for the shuffle-exchange graph. The key variant is the method by which a 

node is distinguished. In particular, this method must be impervious to small 

alterations in the necklace. (This is so that most exchange edges will link nodes 

which are in the same row of the grid.) Only by changing the value of a bit in a · 

small segment of the necklace (such· as in the primary or secondary block of zeros) 

should we be able to globally change the distinguished node. 

Another method of distinguishing a node is to select that node in the necklace 

which has the minimal value. Although the proof is very difficult, it can be shown 

that the layout for the N-node shuffle-exchange graph constructed in this manner 

has at most O(N2/fog2N) area. In the following section we will desribe additional 

methods of distinguishing nodes. 

At this point, we should also note that the layout just described is not known to 

have optimal maximum edge length. In Part II of the thesis, we show that every 

layout of the N-node shuffle-exchange graph must have some edge of length at 

least Q(N//og2N). All the layouts we have considered thus far contain wires of 

length 9(N/logN). 

3.4 Layouts \Vith Additional Edges 

For some applications (such as the calculation of the discrete Fourier transform), 

it is useful to consider networks which have more than just shuffle and exchange 

edges. In particular, we will be interested in layouts for the shuffle-exchange graph 

which also include shift, r.everse and transpose edges. In what follows, we_ will . I I 

show how to modify the optimal layout for the shuffle-exchange. graph so that 

these additional edges can be inserted without increasing the total area by more 

than a constan.t factor. 

3.4.1 Shift Edges 

Shift edges link the ith node to the (i+ l)st node for all odd i. When combined 

with the exchange edges. the resulting network will have links between the ith and 

the (i+ /)st nodes for alJ i. The inclusion of such edges facilitates the computation 

of discrete Fourier trnnsforms at sequential intc.rvals of a continuous signal. In 
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such applications, the input data contained in the ith processor is shifted to the 

(i+ l}st processor for each i after each computation of a discrete Fourier transform. 

The graph consisting of shuffie, exchange and shift edges is known as the· shuj]1e­
shift graph. 

Using the methods developed in section 33, it is not difficult to show that the 

N-node shuffle-exchange graph can be laid out using only O(N2/tog2N) area. As 

before, the necklaces are broken into two or three pieces and placed in a grid 

according to the value of the associated distinguished node. Thus the shuffle edges 

can be inserted as before using only O(N/logN) vertical. and horizontal tracks. 

For most odd nodes, adding a 1 to the value of the node changes only a 

relatively small number of bits at the end of the string. 'Thus it can be shown that 

at most O(N/logN) shift edges link nodes which are in different rows. These can 

be easily inserted using only O(N//ogN) vertical and horizontal tracks. Of those 

edges which link nodes in the same row, at most O(N/logN) are contained in the 

first logk rows. For 1)/ogk, at most 2k-i shift edges overlap at any point of the ilh 

row. By introducing an extra vettical track for each necklace piece, it is possible to 
separate the layout of the shift edges on each level from that of the exchange 

edges. Thus. both can be inserted simultaneously in the ith row using onlx 0(2k-~ 
total horizontal tracks. By the arguments of section 3.3, this means that at most 

O(N/logN) additional· horizontal tracks are needed to embed all of the remaining 

shift and exchange edges, thus completing the argument 

3.4.2 Reverse Edges 

Reverse edges link pairs of nodes that are associated with binary strings which 

are reverses of each other. For example, ak-1" • -a0 is linked to a0 • • -ak-I vi.a a 
reverse edge. Since the algorithm which computes discrete Fourier transforms on 

the shuffle-exchange network leaves the outpu~ for nod.e ak-I • • • a0 in node 

a0 • • • ak-I , reverse edges provide a fast and convenient way of straightening out 

the solution. The graph consisting of shuffle, exchange, shift and reverse edges will 

be refemed to as the shuffle-shift-reverse graph . 

. Using the techniques developc.d in section 3.3, it is also possible to show that the 

N-node shuffle-shift-reverse grnph can be laid out in O(N2/tog2N) area. The basic 

idea is to modify the layout described in section 3.4.1 so that 
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1) pieces of necklaces which are reverses of each other are paired together in 

the left-to-right ordering, and 

2) pieces of necklaces are folded m half. 

The first constraint insures that the maximal overlaps of the reverse edges in 

each row will be small while the second constraint insures that most reverse edges 

link nodes which are in the same row. Although it is not immediately obvious, it 

can be checked that these modifications do not substantially change the procedure 

for inserting the shuffie, shift and exchange edges which was described in section 

3.4.1. Thus all of the edges can be inserted using at most O(N/logN) vertical and 

horizontal tracks. 

3.4.3 Transpose Edges 

Transpose edges link the ith node to the (N-1-t)tlz node for each i. Viewed in 
terms of binary strings, transpose edges link each node to its complement 

. Although we do not know of any specific applications of transpose edges, they 

would be useful for problems that require frequent transposition of the data. 

By further modifying the optimal layout for the shuffie-shift-reverse graph, it is 

possible to add transpose edges without increasing the total area by more than a 

constant . factor. In particula~. the layout should be modified so that 

1) pieces of necklaces which are complements of each other are paired together . . 
in the left-to-right ordering, and 

2) the distinguished noqe is selected on the basis of the location of the longest 

block of consecutive "identical.· bits (be they zeros or ones). 

The first constraint insures that the maximal .overlaps of the transpose edges in 

each row are small while the second constraint insures that most transpose edges 

link nodes which are ~n the same row. Although we do not present the details 

here, it is possible to show that such a layout can be constructed using only 
O(N2//og2N) area, the least possible. 

32 

.· 



- Appendix: Proofs of Lemmas 3· l Through 3·4 

We now present the proofs of Lemmas 3-1 through 3-4. Such results can also be 

found in the recent work of Guibas and Odlyzko [G08la,G08lb]. We are deeply 

indebted to Kleitman for suggesting the proof of Theorem 3-1. 

-In what follows, we will write 'Y JJ.t) to denote the number of k-bit strings 

which do not contain t-1 consecutive ~eros. Except for the string of all zeros 

(which we ignore), these are precisely the strings which do not contain the 
I . 

substring v1 = fi( . . 6 . The proofs of Lemmas 3-1 through 3-4 depend heavily 

on the following combinatorial result 

Theorem 3·1: For large t and k, 

- ·t ·t ·2t 
'Y k(t) = 2k e·k2 tfJ(t2 .kt2 ) • 

Proot We first count the number 'Y k' (t) of k-bit strings· which do not contain 

an occurrence of v1 between the beginning and end of the string (i.e., for the time 

being we ignore the occurrences of v1 which begin at the end and end at the 

beginning of a string). 

Fix t and let fi denote the number of i-bit strings ending with v1 but which do 
' 00 

not contain any other occurrences of v1 in the string. Set F(x) = ~xi. Note 

that"¥ k' (t) i~ the (k+ t)th coefficient of F(x). Let /;') denote the n~~ber of i-bit 

strings ending in v1 which contain precisely j occurrences of v1 and set 

fJl(x) = ~ J}'l xi . 
(.:o l . 

Since occurrences _of v1 cannot overlap, it is not difficult to show that f'l(x) is 

identical to F{x) i for all j > 1 . 

Let g; be the number of i-bit strings which end in v1 (regardless of the number of 

other occurrences of v1 which appear in the string) and set G(x) = ~ g;xi. Since 
. L•o 

g;=2i-r for all i > t. it is easily seen that G(x) = xl/(J-2x) . Also note that 
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[I /(1 - F(x))] - 1 

and thus that 

F(x) = G(x)/(G(x) + 1) 

= x1 / (J - 2x + xi) . 

Thus ~ k' (t) is simply the kth coefficient of I / (I - 2x+ xi) . For example, 

; / (2)=5 which is the coefficient of x! in the expansion ~f. I/ (1 - 2x+ x2) . 

Let A_x) = I - 2x+ x1 • It is easily observed that gc~x), dfi..xYdx) = 1 and 

thus that A_x) does not have any multiple roots for t > 2 . Thus we can expand 

t 
/i..xY1 = ;L A;/(x·r;) ,. , 

where {r; I I < i < t} is the set of distinct (and possibly complex) roots of Ji..x) and 

A-' . 
- [(x·r;Y/i..~>l,1 

I /[dfi..xYd.xl, 
i 

for 1 S i < t. Once the roots of A_x) are known, we can calcul~te v k' (t) from 
the formula 

t 
- -L A.r:<k+l) 

. l l 
(.~I 

Although we do not know how to find the roots of A_x) explicitly for large t, we 

can describe them asymptotically. First observe that as 1-00, the absolute value 

of every root must approach either 1/2 or 1. Otherwise the absolute value of one 

term of Ji..x) will dominate the sum of the absolute values of the other two terms. 

For example, if '11 < c < 1/2 as 1-00 for some root rand constant c, then 

I > 12~ + lr'I for large I. 

If there are to be any roots r such that '11-I/2, it is essential that r-1/2. 
Otherwise, the real part of p(r) cannot vanish for large 1. · By substituting 

(J/2)e-(1> for r where i_t)-o as 1-00, we find that 
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1 - &(.t) + z-t eti.t) - 0 

and thus that 

1 - (J + (1) + 0((1)2)) + 2"1 (J + 0(1(1))) = 0 

Thus (t) = 7 1+ f/...1) where lc/...1)1 << 7 1 as 1-00. Another iteration of this 

process reveals that f/...1)= 0(172') and thus that 

-1 -21 
r = (1/2) e2 e0<12 > as 1-00 . 

In fact, there is precisely one root, say r1 , which approaches 1/2 as 1-00. 

The absolute values of the remaining roots approach 1. In particular, the absolute 

values of these roots must be greater than or equal to 1 for large 1. Otherwise there 

would be a root r and a function e(1)-o+ such that 1'1=1-e(t) . But then 

· 1211 2 - 2e(I) 

> 1 + II - e(l)l1 

1 + lr'I 

for· 1>2 and it would be impossible for Ji..r) to vanish for large 1, a contradiction. 

It remains to compute the A; . Since d/i..xYdx = 1x1-1 - 2 • we find that 

A1 = -(J/2)+0(17') and that _ A; = 0(1/1) for 2<i<I • Thus 

"i k' (1) = 0(1) - [-1/2 + 0(12"')] 2k+I e·(k+I)i
1 
/)(k1i

2
') • 

_,, 
Replacing 1 +O(t7') with /J(l2 ) and simplifying, we conclude that 

"¥ k I (1) = 2k e·ki
1 
e'J(li

1
, kti

21
) 

for large t and k. 

-The only strings which are included in the count of 'I' k' (l) but not in that of 
I 1- I . - ........-"-~ v k(t) are. those of the form o .. . OwJO. . . O where 1 < i < 1-l and w is a string 

which is included in the count of ~ k-t' (l) . Thus 

+'k(l) = ~ k I(/) • (t • /) +k-t' (l) 
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2k e-ki' efj(ti1, kti2'> _ (t _ 1) 2k-1 e-(k-t)l-1 eOCti1, kti21
) 

2k e-ki1 efj(ti', kti2'> 

for large t and k. - This completes the proof of the theorem D 

We can now prove Lemmas 3-1 and 3-2. 

Proof of Lemma 3· 1: From the definition, we know that 

-i',ft) i'k(t+2) - i'k(t+l) 

2k e-kiri+iJ eO(ti', kti2'> _ 2k e-ki(t+IJ efj(ti', kti2'> 

for large t and k. For t > (logkY2+ loglogk, both t:Z-1 and kt:Z-21 vanish as 
k-oo. In what follows, we will show that if t << k , then 

e-ki(1+2J - e-k2-r1+1J >> O(t:Z-', kr:z-21) 

and thus that 

Assume for the purposes of contradiction that 

-k2-(t+i) -k2-{t+ /) 
e - e < O(t:Z-1, ktZ-21) . 

Then, e-kiri+iJ - e-ki(t+JJ which means that e-k2-(i+iJ + ki(t+JJ - 1 and 

thus that k2-<1+2> - O • Thus we can use a Taylor series expansion of the 
exponentials to find that 

e-k2-r1_+2J - e-k2-r1+1J - (J - k2-(t+ 2~ - (J - k2-(1+ I~ 

k2-(t+2) 

>> 0(171, kt:Z-2') 

provided that t < < k , a contradiction D 

Proof of Lemma 3·2: The number of k-bit strings which do not contain a block 

of logk - loglnk - I consecutive zeros is 
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IS 

- 2k e·ki/ogk+loglnk 
'I' k(logk - loglnk) -

- 2k/k 

- O(N//ogN) . 

The number of k-bit strings which contain a block of 2/ogk+ 1 consecutive zeros 

2k - 9i k(2/ogk + 2) .... 2k - 2k e-ki
210

gk-l !J((logkYk
2
) 

2k - 2k [J - J/(4k) + O((logkyk1)] 

2k/4k 

O(N/logN)D 

The proofs of Lemmas 3-3 and 3-4 depend on the following corollary to 

Theorem 3-1. 

Corollary 3-1: For bounded m and p and large k and t, 
~ 

f\'\ -tf; '1' k-mt + / t) 

Proof: - We first observe that for t < 2/ogk/3 , 

-'1' k·mt+p(t) < '1' k(2/ogk/3) 

,.,, 2k e·k2-(2logkYJ 

and thus that 

for any finite m and p as k-oo . 

For larger values of t, 
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-t • "¥ (t) - 2k-m1+p e·k2 
k-mt+p 

and thus 
k.,.f 'S.t£.. 

WI - ....., -I 

~'l'k-mt+p(t) - ~2k-mt+pe·k2 . 
t=~ -t,l~ 

3 ~ 

By making the change of variables r = t - logk , we can see that the preceding · 
sum is at most 

oO 

(]k+P/km) ~ z-mr e·i' 
.,.= ·eD 

and thus at most 0(2k/km) = O(N/logN) o 

Proof of Lemma 3·3: A string whose longest block of zeros has length t and 
t+'l 

. ~ 
whose second longest block of zeros has length s<t is of the f<?rm wJO • •• Ow', 

where the longest block of zeros in WW I has length s. By definition, there are at 

·most kV k-t-1(s) such strings. Thus the sum over all necklaces of the difference 
between the sizes of the longest block and second longest block of zeros is at most 

k "t 

< (J/k) L ~ (t·s) k '1' k-t-i(s) 
t•c s =c> 

I( t -
~ L (t-s) ['1' k-t-l(s+ 2) - ¥ k-t-J(s+ 1)) 

°t'"'O S•o -
K K _ 

~ ~-vk-ts> 
s=1 r.:s 

I( { -s ·s ·2s., IC. ·s ) = · ~ 2k e·k2 eO(s2 , ks2 , l: z-t e12 
s=1 t.:.' 

I< 
< ~ ( 2k e·ki

3 
e0(si

3
, ksi

2
) z-s pCsi

3
) ) 

s:1 

IC 

~ 2k-s e·ki
3 

eDCsi
3
, ksi

21 
s:, 
K_ 

< ~ '1' k-J.s) 
:S• I 

O(N/logN) 

by Corollary 3-1 o 
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Proof of Lemma 3·4: Consider a necklace which fails to have a uniquely 

distinguished node. Each node in such a necklace must have one of the following 

three forms: 

.... Y" 
~ ~ 

3) W1l!.:.:,:_9W2~W~W~W5 
-t 't'" t ~ 

where t is the length of the longest block of zeros in any of the strings. It is easily 

seen that there are at most 

K/z 
1) k L ¥ k-21(1+ 2) nodes of the first type, 

t•1 

ICl.5 -

2) k2 L ~ k-31(1+ 2) nodes of the second type and 
t•I 
t<I'/ 

3'~~ -3) k ~ ~ k-4tt+ 2) nodes of the third type. 
t=• 

By Corollary 3:-1, we can thus· conclude that there are at m~st O(N//ogN) such 

nodes al~ogether D 
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CHAPTER 4 

PRACTICAL LAYOUTS 

Although the O(N2/tog2N)-area layout for the shuffle-exchange graph described 

in Chapter 3 is (up to a constant) asymptotically optimal, it is not optimal for small 

values of N (e.g., N = 128). In fact, none of the general layout procedures thus far 

discussed provide good layouts for small shuffle-exchange graphs. For practical 

applications, however, these are precisely the shuffle-exchange graphs for which we 

need good layouts. 

In this chapter, we descibe techniques for finding good layouts for small shuffle­
exchange graphs. Although the techniques (which are described in section 4.2) do 

not yet constitute a general procedure for finding truly optimal layouts for all 
shuffle-exchange graphs, they can be used to find "very nice" layouts for "small" 

shuffle-exchange graphs. As examples, we have included layouts for the 8-node, 
16-node, 32-node, 64-node and 128-node shuffle-exchange graphs in section 4.3. 
The layouts· are "very nice" in the sense that: 

1) they .requ~re much less area than previously discovered layouts, 

2) they have a certain natural structure which facilitates efficient layout 

description, chip manufacture and 110 management, and 

3) they require the minimal amount of area for layouts with such structure. 

4.1 Preliminaries 

We have chosen to use the Thompson grid model rrso] to illustrate our 

techniques because of its widespread acceptance and its simplicity. For practical 

layouts, however, the assumption that processors can be represented by points is 

clearly false. Nontheless, we show in section 4.1.1 that good Thompson model 

layouts can stiJI be used to find good practical layouts. Thus we will be able to rest 

assured that the Thompson model is, in fact, an acceptable means for describing 

practical layouts of the shuffle-exchange graph. 
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We must also be sure that the layouts we design can be effectively used in 
practice. For example, it is important that the layouts have a suitable input/output 

structure so that data can be put on and taken off the chip efficiently. In section 

4.1.2, we describe a general class of layouts for the shuffie-exchange graph which 

appear to satisfy such constraints. The remainder of the chapter will then be 

devoted to finding optimal layouts within this class. 

4.1.1 A Closer Look at the Thomps~n Model 

The manner in which the Thompson model is useful for describing practical 

layouts varies with the size of the processors involved. For example, if one desires 

to use the shuffie-exchange graph as a permuter, then each processor need only 

contain k storage registers and some I/O hardware. Such a processor can be easily 

hardwired in a kxk square. In order to achieve maximum parallelism, each wire of 

the Thompson model layout is reproduced k times so that an entire k-bit word can 

be transmitted in one time step. For example, the optimal 2x6 Thompson model 

layout for the 8-node shuffle-exchange graph (which is shown in Figure 4-3 in 

section 4.3) can be transformed into the more realistic 6xl 8 layout shown in Figure 

4-1 by tripling the grid lines and replacing the point processors by 3x3 boxes (into 

which the g.uts of each processor can later be wired). 

Figure 4· 1: A transformed Thompson model layout 
for the 8-node shuffle-exchange graph. 

For some applications, the processors themselves require an entire chip. For . 
example, every processor of a shuffie-exchange graph used to compute discrete 

Fourier transforms must be equipped with a floating point multiplie~. Using the 

best technology currently available, only a few floating point multipliers can be 

wired onto a single chip. In this case, a Thompson model layout can be used to 
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design an efficient layout of chips where each chip contains a single processor. 

(Such a device is currently urn;ler development at IBM.) The wires, as before, are 

replicated to achieve maximum parallelism but now serve as links between chips. 

Since the wires must be much wider in such a device, the side length of a processor 

(the chip) is about the same as the combined width of all the wires (pins) attached 

to it By following an expansion procedure similar to the one described in the 

previous example, a good Thompson model layout can thus be used to design a 

good practical layout 

4.1.2 A Class of Practical Layouts 

In this chapter, we will consider layouts for the shuffle-exchange graph for 
which: 

1) each necklace appears as _a rectangle consisiting of arbitrarily long segments 

of two vertical tracks and unit length segments of two horizontal tracks, 

2) the horizontal tracks are divided into pairs, each pair containing at most one 

full necklace and any number of degenerate necklaces, and 

3) each exchange edge appears as a horizontal line segment 

For example, the layouts described in Chapter 2 have this form. 

Such layouts are particularly_ well suited for practical implementation since their 

structure facilitates efficient description, chip manufacture and data management 

For example, by attaching a pin to each of the S(N//ogN) necklaces (this is 

feasible for small N), it is possible to load N input values into an N-processor 
shuffle-exchange chip in just O(logN) steps. 

Even more importantly, we will show in the following section how to find 

layouts with the above form which require very ~mall amounts of area. Thus very 

little is lost by restricting our attention to such layouts. 

4.2 Optimization Techniques 

In this section, we explain how to find layouts for small shuffle-exchange graphs 

which are optimal up to the constraints described in section 4.1.2. For the most 

part, our methods are comprised of common sense, heuristics and exhaustive 

searches. 
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4.2.1 Ordering the Necklaces 

The first step in finding optimal layouts of the form described in section 4.1.2 is 
to order the necklaces from left to right so that the number of exchange edges 

which overlap at each point of the ordering is kept small. More precisely, we wish 

to find an ordering of the necklaces for which the maximum number of exchange 

edges overlapping at any point is minimized. For example, no more than 6 

exchange edges overlap at any point of the ordering used to produce the layout for 

the 32-node shuffie-exchange graph shown in Figure 4-2. If we switched the 

necklace <.5> with <JJ>. however, 9 exchange edges would overlap in the gap 

between <7> and <.5>. Since the maximum overlap is a lower bound on the 

number of horizontal tracks necessary to insert the exchange edges, we can easily 

see that the latter ordering is inferior since any layout it produces must have at 

least 9 horizontal tracks. Note that the layout in Figure 4-2 has just 6 ~orizontal 

tracks. 

<O> <l> <3> <5> <7> <11> <15><31> 

7 11+ 15 

5 10 11 22 23 

12 -------- 13 30~1 

18 19 

a- -- - 9 20 -- - 21 26 1 

16 17 24 -- - 25 28 - - -- 9 

Figure 4· 2: A good ordering of the necklaces 
for the 32-node shuj]le-exchange graph. 

As we mentioned in Chapter 3, it is not known how best to order the necklaces 

in general. For small shuffie-exchange graphs. however, there are several simple 

heuristics which produce optimal orderings. · For example, arrangements of the 

necklaces from left to right in order of nondecreasing size or, alternatively, in order 

of increasing minimal number represented are usually quite close to optimal· for 

small shuffie-exchange graphs. In fact, such orderings are within a necklace swap 

of optimal for N<256 (k<S). Note the the ordering displayed in Figure 4-2 could 
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have been produced by either of these methods. 

Probably the most difficult task is proving that a good ordering is. in fact. 
optimal. The techniques we have used to prove optimality depend heavily on 
exhaustive searches. For k'S.8. the techniques have suceeded in proving the 
optimality of good orderings. For 9<k<l3. we have found good orderings but 
have been unable to prove that they are optimal. We have summarized the results 
in Table 4-1. Note that for each k, the maximum overlap of the best known 
ordering serves only as a lower bound for the number of horizontal tracks that will 
be required for any layout with that ordering. In some cases. additional horizontal 
tracks may be required. 

Table 4·1 

Afaximum Overlap of Best Known Orderings 

maximum overlap of 
k N best known ordering optimal? 

3 8 2 yes 

4 16 3 yes 

5 32 6 yes 

6 64 10 yes 

7 U8 18 yes 

8 256 33 yes 

9 512 62 ? 

10 1024 115 ? 

11 2048 214 ? 

12 4096 388 ? 

13 8192 754 ? 

4.2.2 Inserting the Exchange Edges 

The second step in constructing optimal layouts for small shuffle-exchange 
graphs is to insert the exchange edges using as few horizontal tracks as possible. 

44 



Recall that in Chapter 2, we showed how to use the complex plane diagram as one 

method of inserting the exch~nge edges. Although this method is theoretically 

nice, it is not very practical since it uses an excessive number of horizontal tracks to 

insert the exchange edges. For example, IO horizontal tracks were used to insert 

the exchange edges in the layout shown in Figure 2-3 whereas only 6 tracks were 

required in the layout shown in Figure 4-2 (even though the same necklace 

orderings were used for both layouts). 

The complex plane diagram can still be of use when inserting exchange edges, 

however. For example, notice that the top-to-bottom orderings of the exchange 

edges across most of the vertical cuts which are located between necklaces in the 

layout in Figure 4-2 are the same as the orderings for the corresponding cuts in 

Figure 2-3. In general, knowledge of the level structure of the complex plane 

diagram is very helpful in optimizing the insertion of the exchange edges. _ In fa<; . 

we relied heavily on _such knowledge when constructing the optimal · fayouts 

displayed in section 4.3. 

For very small shuffie-exchange graphs (e.g., for k<5), it is possible to find 

optimal embeddings of the exchange edges by trying all reasonable possibilities. 

For somewh~t larger shuffie-exchange graphs (e.g., k=6,7), however, the task is 
substantially more difficult In order to find the optimal layouts shown in section 
4.3, we 

1) first located the center of the region of maximum overlap and (using the 

complex plane diagram as a guide) inserted the exchange edges which 

crossed the region (one edge on each horizontal track), 

2) next inserted the exchange edges located in neighboring regions without (if 

possible) introducing any additional tracks, and 

3) lastly inserted the remaining exchange edges (again without adding any new 

horizont:a! tracks). 

Steps 1 and 3 are easy but step 2 can be difficult In some cases it is necessary to 

interchange the left and right parts of some necklaces or to slide a node around 

from one part of a necklace to the other. For k = 6 and 7, it is also necessary to 

introduce an extra horizontal track at step 2. For larger shuffle-exchange graphs, it 

would probably be necessary to introduce even larger numbers of horizontal tracks. 
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4.2.3 Additional Savings 

All of the practical layouts we have considered thus far have two horizontal 

tracks which are used solely for the purpose of connecting the left part of each 

necklace to the right part. It is not difficult to show that these tracks can be 

eliminated without affecting th!! rest of the layout As an example of how this can 

be accomplished, we suggest that the reader compare the layout of the 32-node · 

shuffle-exchange graph shown in Figure 4-2 with that in Figure 4-5. 

Even larger savings can be had for some shuffle-exchange graphs by doubling 

up the degenerate necklaces with full necklaces in the same pair of vertical tracks, 

thus reducing the number of vertical tracks used. Of course, it is necessary to 

rearrange the exchange edges somewhat but, as degenerate necklaces have very few 
nodes in small shuffle-exchange graphs, this can usually be done without 

introducing any additional horizontal tracks. For example, substantial savings can 

be achieved in this manner for the 16-node and 64-node shuffle-exchange graphs. 

4.3 Optimal Layouts 

In the following figures, we exhibit layouts for the 8-node, 16-node, 32-node, 64-

node and 128-node shuffie-exchange graphs which are optimal up to the 

constraints described in section 4.1.2. The layouts were found via the techniques 
described in section 4.2. 

._. "'11:--tr-t- .. 
o U~L-16 1 

4 5 

Figure 4·3: A 2x6 layoutfor the 8-node shuffle-exchange graph. 

·on-:·n--n7 ~~5 
8 9 12 3 

-..-.--
4 5 10 11 

Figure 4·4: A JxB layoutfor the 16-node shuffle-exchange graph. 
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- - - - - - - -
2 3 6 7 14 15 

- --

~H~ 
--

~u· 4 23 ..... _ .. 
0 1 13 30 31 

- - -< ~19 18 
- - ~ . 

8 9 20 21 26 27 
- -- - - ---

16 17 24 25 28 29 

Figure 4·5: A 6xl4 layoutfor the 32-node shuf]le-exchange graph. 

4 

2 

rt-a- - - - 19 38 9 

-·-------~- ----8 9 36 37 0 

7 14 

34 35 

5 31 

5 sln i+s - 47 

.; ---~~ -- 55 

49 22 23 58 59 

- - - -- --- --------~- - --- -40 1 2 53 

0- - - - -~2-- --- --- 43 

l 

Figure 4·6: An 1 lxlB layoutfor the64-node.shufjle-exchange graph. 
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20 --------. I I JU J26 71t 5 2 ___ ,.._ 
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.... 
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66 g7 35152 -·--·- -·-- ·-- ·-. ·-
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17 19 150 151 -·--·-- ·--33 56 157 • 
99 160 -- ·--·- -·-- ·--·-97 36 -----' 72 73 101 Ult ·-.. , 18 89 117 127 126 

IU IU 120 au ---------- .. 10 u 101t lOI --·- ... -----------·--.-----------ltO It 1 

Figure 4·7: A /9x36 layoutfor the I 28-node shuffle-exchange graph. 



4.4 Other Layouts 

To this point, we have considered only a specific class of layouts for the shuffle­

exchange graph. As these layouts are quite good, it is not clear that we need to 

consider others. Nevertheless, it is worth pointing out that slightly better layouts 

do exist for some shuffle-exchange graphs. For example, by considering layouts in 

which the exchange edges are allowed to bend and in which two or more full 

necklaces can occupy the same pair of vertical tracks, it is possible to construct the 

layout for the 32-node shuffle-exchange graph shown in Figure 4-8. 

~--u·1 29-Ils 25 2r.. 
I 931 - 30 r - - 19 

- - - - - I_ - - - -
26 1 3 I 2 

I - - - -
22 23 15 I lr.. 7 

I 

1-luO S~f n2~ 3 117 
lB 1 -eo I 

- -- __ _J 

21 20 9 B 6 

Figure 4-8: An improved 7x9 layoutfor the 32-node shuffle-exchange graph. 

It is likely that slight improvemen~ can also be made for larger shuffle-exchange 

graphs. At this point, however, we feel that research efforts should be directed 

more towards implementation of the good layouts already discovered. Once this is 
done, it will be much dearer whether or not the effort necessary to further reduce 

the layout area is justified. 
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PART II 

LO\YEH BOUND TECHNIQUES FOR VLSI 



CHAPTER 5 

REVIEW OF KNOWN TECHNIQUES 

In this chapter, we review the known techniques for determining the layout area 

and maximum edge length of an arbitrary VLSI network. We also preview the 

results we will prove in Chapters 6 through 8 of the thesis. A comparison of our 

lower bounds with the previously known upper and lower bounds can be found in 
Tables 5-2 and 5-4. 

5.1 Area Bounds 

One of the most important problems in the theory of VLSI is the determination 
of the minimum amount of area required to lay out a network on a chip. Given an 
arbitrary graph, this problem has two parts; namely, 

1) finding a good layout for the graph, and 

.· 2) showing that the layout is optimal. 

There are. a variety of techniques known for finding good layouts for specific 
graphs [MR79, PV79, S79, HL80, ~C80, PV80, SR80b, TSO, BL81, KLLM81, 

LLM81, LM81, PRS81, T81], but the only known general technique is due to 

Leiserson [L80a,L80b]. In particular, he showed how to construct a good layout for 
any graph for which a good separator is known. (An N-node graph is said to have 

an .f(N)-separator if it can be partitioned into two equal-sized subgraphs G1 and G2 
such that at most .f(N) edges link G1 to G2 and both G1 and G2 have ./(N/2)­

separators.) We have summarized Leiserson's results in Table 5-1. 

There are two difficulties with Leiserson's method. First, it is not always 

possible to find a good separator for a graph. For instance, a minimal O(!v'//ogN)­

separator was not found for the shuffie-exchange graph until after an optimal 

O(N2/log2N)-area layout was discovered. Secondly, the layouts produced by 

Leiserson's technique are not always optimal - even if a minimal separator is 

known. For example, Leiserson·s technique requires fJ(N/og2N) areato lay out the 

N-nodc mesh, substantially more than is really needed. For the most part 
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Table 5·1 

Upper Bounds on the Layout Area of 
N-Node Graphs With Specified Separators 

separator 

·Na, a ( 1/2 

Na, a=l/2 

Na, a) 1/2 

upper bound 
on layout area 

N 

Nlog2N 

N2a 

however, Leiserson's method is a good one and certainly the most general 

technique currently available. 

Once a good layout for a network has been found, it remains to show that the 
layout is optimal. This is accomplished by proving a good lower bound on the 

layout area of the network. The only known methods for proving such lower 
bounds are due to Thompson [T79,T80], Vuillemin (V80] and Lipton and 
Sedgewick [LS81]. They have concentrated on the related problem of proving 

lower bounds for the bisection width of a graph. (The bisection width of a graph is 
the minimum number of edges which must be removed in order to separate the 
graph into two disjoint and equal-sized subgraphs.) 

Thompson was the first to notice the relationship between bisection width and 

layout area. In particular, he showed that the wire area of a graph with bisection 
width b is at least O(b2). In what follows, we. prove the slightly weaker (and 
simpler) result for layout area. 

Theorem 5· 1 (Thompson fI79]): The layout area of a graph with bisection width 
b is at least D(b2). 

Proof: Consider an optimal layout of a graph G with bisection width b. Cut the 

layout horizontally so that precisely 1/2 of the nodes of Gare above the cut (For 

an example, see the diagram in Figure 5-1). Since at least b edges must cross the 

cut, the layout must contain at least b-1 vertical tracks. A similar argument 

reveals that the layout must also have at least b-1 horizontal tracks. Thus the area 

of the layout is at least (b-1)1 = Q(/l) O 
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Figure 5· 1: A horizontal bisection of a layout 

Although the task of finding a good lower bound on the bisection width of a 

graph is difficult in general, Thompson [f79] was succesful in finding good 

bisection width lower bounds for a variety of computationally useful networks. 

For example, he used information transfer arguments to show that any network 

which is capable of computing the discrete Fourier transform on N elements in T 
steps must have bisection width at least fl(N/1). Among other things, he was thus 

able to conclude that at least O.(N2/log2N) area is required to lay out the N-node 
shuffle-exchange graph. 

Thompson·~ work has r~cently been extended; first by Vuillemin [V80] and then 

by Lipton and-Sedgewick [LS81]. Vuillemin characterized a broad class of graphs 

for which Thompson's lower b~:mnd arguments can be applied while Lipton and 

Sedgewick showed how to use crossing sequence arguments to prove lower bounds 

for an even larger class of graphs. 

Although the methods of Thompson, Vuillemin. Lipton and Sedgewick are quite 

elegant and useful in establishing good bisection width lower bounds for certain 

graphs, their applicability is inherently limited to graphs for which the layout area 

is no more than a constant times as large as the square of the bisection width. 

Thus they have not been of use in resolving two of the key open questions in VLSI 
theory; namely, 

1) "How· much area is needed to lay out a planar graph?" and 

2) "How much area is needed to lay out a graph which has an O(N1/1)­
separator?." 
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The planar graph question is particularly important since, as we will show in 
Chapter 7, the layout problem of an arbitrary graph can be reduced to that for a 

planar graph. No nontrivial lower bounds have been found for either problem, 

however. As we mentioned previously, the best procedure known requires 
O(Nlog2N) area to lay out an arbitrary N-node graph with an O(Nl/2)-separator. 

As Lipton and Tarjan [L T77] have shown that every N-node planar graph has an 

O(N1/2)-separator, the O(Nlog2 N)-area layout procedure also works for planar 

graphs. Although it is suspected that better layout procedures exist for planar 
graphs, none have yet been found 

Jn the thesis, we pursue an entirely different strategy in developing new lower 

bound techniques for VLSI. Whereas previous researchers have been concerned 
primarily with the bisection width of a network, we shall be concerned with its 

crossing number and wire area. Both are lower bounds on the layout area of any 
graph. In fact, we will show in ·Chapter · 7 that 

O(b2) < c+ N < w < A 

for any N-node graph with bisection width b, crossing number c, wire area w and 
layout area A. 

The preceding inequality implies that every lower bound technique for the 
bisection width of a graph is also a lower bound technique for its crossing number 

and wire area. Thus nothing is lost by forgetting about bisection width and 

concentrating ones efforts on finding good lower bounds for the crossing number 
and wire area of a graph. In fact, much can be gained. For example, we wi11 use 
such techniques to find · . 

1) an N-node planar graph which has layout area 0(NlogN), and 

2) an N-node (nonplanar) graph with an O(Nl/2)-separaror which has layout 

area 0(Nlolf N): 

The first result demonstrates that not all planar graphs can be laid out in linear 

area, thus disproving a conjecture thought by many to be true. The second result 
indicates that Leiserson's O(N/oglN)-area layout technique for graphs with 

O(N1/2)-separators is optimal at least some of the time and thus cannot, in general, 

be improved. 

For easy reference, we have summarized our results. along with the pn~viously 
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known upper and lower bounds in the following table. The upp·er bounds are due 

to Leiserson [L80a] and represent the maximal amount of area needed to lay out 

any graph with the designated property. The lower bounds, on the other hand, 

represent the minimal amount of area required to lay out a specific class of graphs 

with the designated property. The previously known lower bounds are, for the 

most part, trivial. The only exception is the N2a bound which, as a corollary of 

Theorem 5-1, is due to Thompson [179). 

Table 5·2 

Area Bounds 

prev10us our upper 
separator lower bound lower bound bound 

Na, a ( 1/2 .N N 

Na, a=l/2 N Ntog2N Ntog2N 

Na, a) 1/2 N2a N2a 

(planar) · N NlogN Nlog2N 

5.2 Edge Length Bounds 

There has been a great deal of interest lately in the problem of minimizing the 

length of the longest wire in VLSI layouts [BL81,CM81,PRS81]. It is not difficult 
to show that the length of the longest wire in any reasonable, area-optimal VLSI 

layout is at most a constant times the square root of the layout area. (Otherwise, 

some wire would be longer than the perimeter of the layout, which is 

unreasonable.) Bhatt and Leiserson [BL81] recently found better layouts for graphs 

with small separators. We have summarized their results in Table 5-3. (For 

completeness, we have also included the trivial bound for graphs with large 

separators.) 

It is worth noting that the layouts which achieve the bounds in Table 5-3 

simultaneously achieve the best known bounds for layout area. Thus no layout 
area/maximum edge length tradeoffs are apparent 
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Table 5·3 

Upper Bounds on the Maximum Edge Length of 

N-Node Graphs With Specified Separators 

separator 

Na, a=l/2 

Na, a) 1/2 

upper bound. on 
maximum edge length 

N 1/ 2//ogN 

Nl/2/ogN//og/ogN 

Very little has been accomplished in the way of lower bounds, however, since 
bisection · width arguments do not seem to be applicable to edge length 

considerations.· In fact, the only known lower bound for maximum edge length is 

the trivial lower bound derived from the diameter of a graph. (The diameter of a 

graph is the greatest distance between any pair of nodes in the graph where 
distance is defined to be the lerigth of the shortest path linking the pair of nodes.) 
The precise . lower bound is · stated in the following theorem. 

Theorem 5·2: Any layout of a graph G with diameter d and layout area A has 
some edge of length at least Al/2/3d 

Proofi Let r be any layout of G and q be the length of the longest wire in r. 
We will user to construct another layout r' of G which has at most 9d2q2 area. 
Since any layout for G has at least A area, this will be sufficient to show that 
q ~ Al/2/Jd 

Since every pair of nodes in G is linked by a path of length d or less, we can 

conclude that every pair of nodes are within distance dq of each other in r. 
(Otherwise, some edge would have length greater than q in f, a contradiction.) 

Thus, all of the nodes are contained in some dq x dq square in r. Since every 

wire which leaves the square must re-enter at some other point, we can conclude 

that at most 2dq wires can cross the boundary of the square at any point By 

rewiring the portion of r \Vhich is outside the square, it is possible to produce a 

second layout r' for G which has at most 2dq additional horizontal tracks and 2dq 

additional vertical tracks. (One additional horizontal track and one additional 
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vertical track are needed to replace each wire.) Thus the total area of r' is at most 

9d2q2. (As an example of how the rewiring should be done, we have included 
Figure 5-2.) D 

r - - - - - - - - - - - - -- - - -, boundary 

: b . c l~ ca ci 
I a I 
I I 
I 

I 
1 d I 
I a-'---
L _____ --- ---- ____ _J 

Figure 5·2: Rewiring the outer portion of a layout. 

It is not difficu_lt to construct N-node graphs with .f(N)·separators which have 
/ogN diameter for any j(_N). By Theorem 5-2, any layout of such a graph must 

have a wire of length fl(f(N)/logN). Using crossing number and wire area 
arguments. however, we will find examples of graphs which must contain even 

longer wires. In particular. we will describe 

1) an N-node planar graph for which any layout must have a wire of length 
9(Nl/2//og1/2N), 

2) an N-node graph with an O(N1/2)-separator for which any layout must have 
a wire of length 9(Nl/2/ogN//og/ogN), and 

3) an N-node graph with an O(N1-1/')-separator for which any layout must 
have a wire of length S(Nl-1/') for any r>3. 

The latter two results achieve the known- upper bounds for maximum wire 

length. They also indicate that some wires in some layouts must be very long 

(possibly as long as the length of the entire layout). 

For convenience, we have summarized our edge length results along with the 
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previously known upper and lower bounds in Table 5-4. The ·upper bounds are 

due to Bhatt and Leiserson [BL81] while the lower bounds are all easy corollaries 

of Theorem 5-2. 

Table 5·4 

lrlaximum Edge Length Bounds 

prev10us our upper 
separator lower bound lower bound bound 

Na, a ( 1/2 Nl/2/logN N 1/ 2/logN 

Na, a=l/2 N1/ 2/logN N 1/ 2 logN/loglogN Nl/2/ogN/loglogN 

Na, a) 1/2 Na//ogN Na N« 

(planar) N 1/ 2/logN N1/ 2/log1/2N N1/ 2 logN/loglogN 

58 

--------- - --~~---- ----- ----~, ~-- -- -------



CHAPTER 6 

NET\VORK CONSTRUCTIONS 

In this chapter, we will describe the networks for which we will later establish 

layout area and maximum edge length lower bounds. As the networks are new 

and interesting in their own right, we will discuss each at some length. 

6.1 The 2·Dimensional Mesh of Trees 

The N-node 2-dimensional mesh of trees will be the first example of a graph 

with an O(Nl/2)-separator known to have layout area 8(N!og2N) and maximum 

edge length 8(N1/ 2togN/loglogN). 

6.1.1. Definition 

The 2-dimensional nxn mesh of trees Af2,n (where n is assumed to be a power of 

2) is defined .as follows. Starting with an nxn matrix of nodes and adding nodes 

wherever necessary, construct a complete binary tree in each row and column of 

the matrix. The trees should be constructed so that 

1) the leaves in each tree are pr~cisely the nodes in the corresponding row or 

column of the original matrix, and 

2) the subgraph induced on the nodes in each quadrant is M2,n/2 • 

For example, we have drawn Af 2,4 in Figure 6-1. The nodes in the original 4x4 

matrix are represented by dots. The nodes which were added in order to form row 

trees are drawn as small triangles while those added to form column trees are 

shown as small squares. The row tree edges are drawn with solid lines while 

dashed lines represent edges of column trees. Notice that if we were to remove the 

roots of the row and column trees of Al 2•4 and the edges incident to them, we 

would be left with 4 copies of Al 2,2 , one in each quadrant In general, if we 

remove the nodes and edges in the top k levels of the binary trees in M 2•11 , • we 

will be left with 2lk copies of Mi.nIA . This important property of meshes of trees 

is used extensively throughout Chapters 7 and 8. 
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Figure 6·1: The4x4 mesh oftreesM2•4. 

6.1.2. Properties 

It is not difficult to show that the nxn mesh of trees M i.n has 

1) N = 3n2·2n = 9(n2) nodes, 

2) bisection width n = 9(Nl/2) , 

3) diameter 4/ogn 9(/ogN) and 

4) an O(N1/2}-separator. 

By applying the methods discussed in Chapter 5, we can thus conclude that the 

N-node 2-dimensional mesh of trees has 

1) crossing number at most O(N!og2N), 

2) layout area between O(N) and O(Nlog2N), and 

3) maximum edge length between O(N1/2//ogN) and O(N1/2/ogN/log/ogN). 
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In fact, we will show in Chapters 7 and 8 that the N-node 2-dimensional mesh of 

trees has 

1) crossing number 8(NlogN), 

2) layout area 8(Ntog2N), and 

3) maximum edge length 8(N1/ 2fogN/loglogN). 

Thus the 2-dimensional mesh of trees is the first graph with an O(N1/2)­
separator known to acheive the upper bound for layout area discovered by 

Leiserson [L80a) and the upper bound for maximum edge length discovered by 

Bhatt and Leiserson [BL81]. 

6.1.3 Applications 

Computationally, the nxn mesh of trees is a very powerful network. Among 

other things, it can be used to 

1) multiply a fixed nxn matrix by m different n-vectors in m + 2logn (word) 

steps, 

2) · sort a list of n m-bit words in 2m + 5logn (bit) steps, and 

· 3) link n input terminals to n output terminals in any order in logn (bit) steps. 

The algorithms and processors needed for these operations are quite simple. For 

example, the processors needed for sorting and switching need only contain a few 

and and or gates while those for matrix-vector multiplication need only contain a 

word multiplier or adder. We describe the algorithms needed for these operations 

in the following three subsections. 

(a) Matrix· Vector Multiplication 

Given any fixed nxn matrix S=(s;) , we will show how to program M2,n to 

compute the product of S and any m input n-vectors in m+ 2/ogn (word) steps. 

As S is fixed. it is not considered to be part of the on-line input Rather, it iS 
considered to be part of the program (in the fonn of off-line input) and thus we 

assume that the value of sij is initially stored in the (i,J) leaf of Al 2,11 for each i and 

j. The algorithm proceeds as follows. · 

Given any input vector v=( ''.i) • input the jth entry ''.i into the root of the jth 
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column tree for each j, l 9<n • Pass the entries of v down the column trees so that 

after /ogn steps, each leaf in the jtlz column tree has received the value of vi . 
Computation of the n2 products {sijvj I I < i, j < n} can now take place simul­

taneously. Afterwards, we can find the entries of the product vector Sv by 

summing the values of the leaves in each row tree. This operation takes an 

additional /ogn steps. 

The total running time of the algorithm just described is I+ 2/ogn . By 

pipelining the input vectors through the column trees and the output sums through 

the row trees, it is not difficult to see that m such products can be calculated in 

m+2/ogn steps. 

{b} Sorting 

The algorithm for sorting proceeds as follows. Starting at the _roots, input (bit by 

bit} the ith word to be sorted into the ith row and column trees for each i, l<i<n. 
Pass the bits down each tree so that after logn steps the leading bit of the ith word 

has reached each leaf of the ith row and column trees. Comparison of the ith and 

jth words for all i and j can now proceed simultaneously. After at most m 
additional steps, the {iJ) leaf has decided whether the ith word is smaller- or larger 

than the jth word. Ties are broken arbitrarily (e.g., depending on the values of I 
and J). Once this is done, each leaf transmits a 0 or a I to its column tree father 

depending on whether its column tree word was smaller or larger than its row tree 

word. Each column tree then sums f:hese values in order to determine the position 

of its word in the final ordering. (If the sum is carried out bit by bit starting with 

the least significant bit, this process takes 2/ogn steps.} This information is then 

used to mark a path in each eolumn tree from the root to that leaf which is also in 

the appropriate row tree (again taking 2/ogn steps). It is now a simple matter to 

transmit the bits of the Ith word along the unique path from the ith column tree 

root to the appropriate row root for each I. As the paths are all pairwise disjoint, 

this process takes only m + 2/ogn steps. 

The algorithm just described sorts a list of n m-bit numbers in 2m+ 7/ogn steps. 

It is a simple exercise to speed up the alogorithm to obtain the 2m+5/ogn step 

bound. We should also point out that this algorithm is similar to the one described 

by Muller and Preparata in [MP75]. The VLSI implementation of the algorithm is 

new, however, and far superior to many of the VLSI sorting algorithms discussed 

by Thompson in his recent sur\ey paper [T81]. 
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(c) Switching 

Given the algorithm just described for sorting, it is clear how to program M2.n to 
serve as a switching network for n input and output lines. For example, assume 

that the ith input line is to be. connected to the jth output line for some i and j. In 

order to do this, we first hook up the ith input line to the ith column root We 

next establish a path from the root of the ilh cloumn tree to that leaf in the tree 

which is also in the jth row tree. This_ can be done by inspection of the binary 

representation b1 • • • blogn of the number j. More precisely, at the kth level of the 
binary tree, we branch left or right depending on whether bk is 0 or 1 
(respectively). Lastly, we link the appropriate leaf of the jth row tree to the root of 

the jth row tree and then to the jth. output line (again taking logn steps). 

The algorithm just described takes 2/ogn steps to link n input lines to n output 

lines in any order. It is not difficult to show that if the row tree connections are 
hardwired in advance (i.e., by linking the root of each row tree to an of its leaves), 

then the input-output connections can be properly made in just logn steps. 

6.2 The ~Dimensional l\1esh of Trees 

The N-node r-dimensional mesh of trees (for r>2) will be the first example of a 
graph with an O(Na)-separator (for a> 1/2) known to have maximum edge length 

9(N°). 

6.2.1 Definition 

The 2-dimensional mesh of trees can be easily generalized to higher dimensions. 

For example, the 3-dimensional nxnxn mesh of trees M3.n can be constructed as 
follows. Starting with an nxnxn cube of nodes and adding nodes wherever 

necessary, constru~ a set of n2 complete binary trees in each of the three 

dimensions of the cube. As before, the trees should be constructed so that the 
leaves are precisely the nodes of the original cube and so that the subgraph 

induced on each octant of nodes is "113,n/2 • The general r-dimensional mesh of , 
trees Mr. 11 is formed from an ~ hypercube in a similar manner. In 

general, removal of the roots and edges which are in the top level of the binary 

trees will leave 2' copies of Mr,n/l • 
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6.2.2 Properties 
~ 

~ 
It is easily observed that the· r-dimensional nxnx . .. xn mesh of trees Mr.n has 

(for bounded r) 

1) N = (r+ J)n' - rn,..I = 8(n') nodes, 

2) bisection width n,..1 = 8(Nl-I/') , 

3) diameter 2rlogn = 8(/ogN) , and 

4) an O(N1-1/')-separator. 

Thus we can easily infer that the N-node r-dimensional mesh of trees has (for 

bounded r) 

1) crossing number at most O(N2-2/'), 

2) layout area 8(N2-2/'), ·and 

3) maximum edge length between Q(Nl-1/r//ogN) and O(Nl-1/'). 

In fact, we will show in Chapter 7 that the graph has 

.1) crossing number fJ(N2-2/'), and · 

2) maximum edge length. 8(Nl-l/'). 

Thus the r-dimensional mesh of trees is the first graph with an O(Na)-separator 

(for a> 1/2) known to achieve the trivial upper bound on maximum edge length. 

6.2.3 Application to l\1atrix Multiplication 

Computationally, the r-dimensional mesh of trees is a very powerful network. 

For example, Mr.n can be used to multiply m pairs of nxn matrices in m+ 2/ogn 
(word) steps. The algorithm is very similar to the one used by M 2.n to compute 

matrix-vector products. It proceeds as follows. 

At each time step, a pair of matrices is entered into the network via the roots of 

the trees in two of the dimensions (one dimension for each matrix). The entries 

are passed down through the trees so that after /ogn steps, the leaf in the (r,s,t) 

position of the cube contains the (r,s) entry of the first matrix and the (s,r) entry of 

the second matrix for each r,s and t. All n3 multiplications can then be perfonned 

simultaneously. The entries or the product matrix arc then calculated by summing 
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the values of the leaves of each tree in the third (previously unused) dimension. 
This process takes an additional logn steps. As the network is easily pipelined, it is 
clear that the total computation time is just m + 2/ogn (word) steps. 

6.2.4 A Further Generalization 

The r-dimensional mesh of trees was defined as a natural generalization of the 
computationally powerful 2-dimensional mesh of trees. M r,n can also be viewed as 
a generalization of the r-cube, also a very powerful communications network. For 
example, Mr,2 is an r-cube with every edge replaced by a path of length 2. Viewed 
in this light, the r-dimensional mesh of trees motivates the definition of a shufjle­
tree graph in the same way that the r-cube motivates the definition of the shuffie­
exchange graph. Although we have yet to investigate this graph in detail, it is quite 
possible that it has important applications. 

(As an aside, we should caution the reader that the asymptotic estimates given in 
section 6.2.2 do not necessarily apply to Al ,,2 since r was assumed to be bounded. 
·The correct estimates are not difficult to work out, however.) 

6.3 The Tree of Meshes 

The N-node tree of meshes will be the first example of a planar graph known to 
have 8(NlogN) layout area. 

6.3.1 Definition 

The tree of meshes is similar to the 2-dimensional mesh of trees in that it 
combines the structure of a mesh with that of a complete binary tree in a natural 
way. Unlike the 2-dimensional mesh of trees, however, the tree of meshes is a 
planar graph. It is formed by replacing each node of a complete binary tree with a 
mesh and each edge by several edges which link the meshes together. More 
precisely, the root of the binary tree is replaced by an nxn mesh (where n is 
assumed to be a power of 2), its sons are replaced by n/2 x n meshes, their sons are 
replaced by n/2 x n/2 meshes, and so on until the leaves are replaced by 1 xi 
meshes. In the place of each right edge of the binary tree (i.e., one which links a 
node to its right son), we link the rightmost column of nodes in the mesh 
corresponding to the father to the topmost row of nodes in the mesh corresponding 
to the right son. Similar replacements are made for left edges of the binary tree. In 
both cases, the connections arc made so as to preserve the column and row order 
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of the nodes and to insure that the resulting graph will be plan·ar. The resulting 
graph is refered to as the nxn tree of meshes and wi11 be denoted by Tn . For 
example, we have drawn T4 in Figure 6-2. 

-""! ~ 

IL 

.. 

...-

1 r 1 rr 1 r l i ! !.! . l l 
Figure 6·2: The 4x4 tree of meshes T4 • 

6.3.2 Properties 

It is easily seen that the nxn tree of meshes Tn has 

1) N = 2n2/ogn+n2 = 9(n2/ogn) nodes, 

2) bisection width n = 9(Nl/2//ogl/2N) • 
. 

3) diameter Bn = 9(Nl/2//ogl/2N) • and 

4) an O(Nl/2//ogl/2N)-separator. 

Thus we can easily infer that the N-node tree of meshes has 

1) layout area between fl(N) and O(NlogN). and 

2) maximum edge length between D(logl/2N) and O(Nl/2/ogl/2N). 

In fact, we will show that the graph has 
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1) layout area 9(NlogN) and 

2) maximum edge lengtli 9(/ogN). 

The maximum edge length bound is fairly straightforward. We will show in 

Chapter 8 that the wire area of the N-node tree of meshes is 9(N/ogN). As the 

graph has 9(N) wires, we can conclude that some of them must have length at least 

O(logN). The lower bound can, in fact, be achieved by a straightforward 

modification of the H-tree layout for binary trees [MR79]. 

In section 6.4, we will show how to augment the N-node tree of meshes so that 

any layout will have to contain a wire of length at least .fl(Nl/2/log1/ 2N). 

6.3.3 Applications 

The tree of meshes is a particularly interesting planar graph since it can embed 

arbitrary planar graphs much more efficiently than can the ordinary mesh. For 

example, it is not known how to embed an arbitrary planar graph in less than an 

8(Nlog2N)-node mesh. As we show in part (a) of this section, however, any N­

node planar graph can be embedded in an O(NlogN)-node tree of meshes. 

The tree of meshes can also be used to embed many norrplanar graphs which 

have O(N1/2}-separators. For example, we will show in part (b) of this section how 

to embed M2,n in T2n for any· n. This result will later allow us to give a simple 

proof that the N-node tree of meshes has wire area at least fl(NlogN). 

(a) Embeddings of Planar Graphs 

Jn [LT77], Lipton and Trujan prove an O(N1/2)-separator theorem for the class 

of planar graphs. Recently, Bhatt and Leiserson [BL81] generalized this result by 

showing that the class of planar graphs has an O(Nl/2)-simultaneous separator. 

(An N-node graph G is said to have an J(N)-simultaneous separator if for any 2-
coloring (say, black and white) of the nodes of G, there are disjoint subgraphs G1 
and G2 of G such that G1 and G2 each contain 1/2 of the black nodes and 1/2 of 

the white nodes of G, at mostJ{N) edges link G1 to G2 , and both G1 and G2 have 

./(N/2)-simultaneous separators.) In the following theorem, we show that any N­
node graph with an O(N1/2}-simultaneous separator can be embedded in an 

O(N/ogN)-node tree of meshes. As a corolJary, we will thus be able to conclude 

that any N-node planar grnph can be embedded in an O(NlogN)-node tree of 

meshes. 
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Theorem 6-1: Every N-node graph with an O(N1/2)-simultaneous separator can 
be embedded in an O(NlogN)-node tree of meshes. 

Proof: Let G be an N-node graph with an J(N)-simultaneous separator (/(N) 
will later be chosen to be O(Nl/2) ). Partition G into two subgraphs G1 and G2 in -
accordance with the usual separator theorem. Color the nodes of G1 ( G2) white or 

black according to whether or not they are linked to a node in G2 (G1). (To be 

precise, we should also weight each node according to the number of nodes in the 

other subgraph to which it is adjacent.) Now use the simultaneous separator to 

partition G1 and G2 . Proceed in this manner until only isolated nodes remain. At 
each step, color the nodes in the subgraph white if they are adjacent to some node 

outside of the subgraph and black if they are adjacent only to nodes within the 

subgraph. 

After the first step, at most J(N) edges will link each (N/2)-node subgraph to the 

other. After the second step, at most J(Ny2+ J(N/2) edges will link each (N/efr 

node subgraph to any other. Using induction, it is not difficult to show that after k 

steps, at most 

J(Ny2k-l + J(N/2y2k:-l + J(N/4)/2k-3 + · · · + J(N/2k·2'y2 + J(N/2k-l) 

edges will link each (N/2k)-node subgraph to any other. In particular, for J(N) = 
O(N1/2) , we can conclude that at most O(ml/2) edges will link any m-node 

subgraph produced by-_this process to any other subgraph. 

Each subgraph produced by the above procedure corresponds in a natural way 

to a mesh of the tree of meshes. For example, G corresponds to the root mesh, G1 
and G2 correspond to the second level meshes, and so on. In general, each m-node 
subgraph corresponds to an 8(m)-node mesh. Thus each mesh can be used as a 

swi~ching network to embed the O(m1/2> edges which link the corresponding 

subgraph to other subgraphs. As an example of how this is done, we have 

included Figure 6-3. In each switching network, the edges entering from the top 

are linked to the edges entering from the sides. The nodes of Gare embedded in 

the bottom levels of the tree of meshes o 

Corollary 6-1: Every N-node planar graph can be embedded in an O(N logN)-node 
tree of meshes. 

Proof: Obvious O 
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(b) Embedding of M1,n in Tin 

Although we have not worked out the details, it appears likely that any N-node 

· graph with an O(N1/2)-separator can be embedded in an O(NlogN)-node tree of 

meshes. In section 7.4.3, we prove a slightly weaker result; namely that every N­

node graph with an O(N1/2)-separator can be embedded in some O(NlogN)-node 
planar graph. 

Of particular importance, however, is the fact that M i.n can be embedded in Tin 

for any n. For example, consider the embedding of Ali.4 in Ts displayed in Figure 

6-4. The embedding has been drawn as though it were construted as part of a 

larger embedding (say of M2,s) in order to illustrate the recursive nature of the 

general embedding procedure. In addition, the nodes and edges of A-I 2,4 have been 

drawn as they appear in Figure 6-1. For clarity, we have represented the nodes of 

. Ts as pinpoints and omitted its edges altogether. Also notice that we have not 

included the bottom two levels of T8 since they are not needed for the embedding. 

The embedding of Mi,n in Tin for arbitrary n?::,4 proceeds as follows. 

step J: Remove the roots of the row and column trees of Al 2,n and all the edges 

incident to them. 

step 2: Embed the four copies of Mi,n/l obtained from step 1 in four separate 

copies of Tn by_ calling this procedure recursively. 
-

step 3: Embed the 2n roots of the row and column trees in the 2n x 2n mesh 

so that 

1) the column roots are located at positions (~t) for 1 < i < n/2 and 

3n/2 < i < 2n, and 

2) the row roots are located at positions (2i-J,2i-l) and (2i-l,2t) for 

n/4 < i < 3n/4 . 

step 4: Draw left and right horizontal edges from each column root to the left 

and right outer columns of the 2n x 2n mesh and then to the appropriate node in 

the top row of the corresponding n x 2n mesh. Similarly draw two left edges 

from each row root with position (2i-l,2i-J) for some i and two right edges from 

each row root with position (2i-l,21) for some i. 

step 5: ll1e n x 211 meshes are used as switching networks. In particular, we 
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Figure 6-4: The embedding of Af2,4 in T8 • 
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use them to make the following connections: 

1) (J,1) to (i,J} for 1 < i ~ n/4 (column tree connection) 

2) (1,1) to (i+ n/2, J) for n/4 < i < n/2 (column tree connection) 

3) (I, 2i - J) to (i,J) for n/4 < i < 3n/4 (row tree connection) 

4) (J, 21) to (i, 2n) for n/4 < i < 3n/4 (row tree connection) 

5) (1,1) to (5n/2-i+l, 2n) for 3n/2< i< 7n/4 (column tree connection) 

6) (1,1) to (2n - i+ 1, 2n) for 7n/4 < i ~ 2n (column tree connection) 

step 6: Each n x 2n mesh can be easily linked to two copies of Tn , each of 
which contains an embedding of M 2,,,/2 produced by this procedure. In particular, 
attach the wire leaving via the ith row of the n x 2n mes)). to the node i_n the ith 

column of the appropriate nxn mesh of Tn for each n. (Note that the nodes in the 

nxn meshes are roots of M 2,n/2 and will become second level nodes ·or Af2,n>. 

6.4 The Augmented Tree of Meshes 

As we me~tioned in section 6.3.2, the N-node ~ee of meshes can be laid out ~ 
that· every wire has length at most O(logN). By slightly modifying the graph, 

however, it is possible to increase the maximum edge length dramatically. The 

basic idea is to add a complete binary tree with n2 leaves to th.e nxn tree of meshes 
so that the leaves of one are linked in a one-to-one fashion with the leaves of the 

other. It is important that the attachments between the two graphs be made so that 
the resulting graph (which we call the nxn augmented tree of meshes Tn ') is planar. 
·For example, we have drawn the 4x4 augmented tree of meshes in Figure 6-5. 

It is easily seen_ that the augmented tree of meshes has, up to a constant, the 

same bisection width, diameter, separator, layout area and number of nodes as does 
the original tree of meshes. By adding the binary tree, we have simply decreased 

the distance between any two leaves of the tree of meshes. In Chapter 8, we will 

show that any layout of the N-node tree of meshes has two leaves which are spaced 
at least O(Nl/2/og1/2N) apart We will thus be able to conclude that the maximum 

edge length of Tn' is at least fl(nlogn) = fl(Nl/2//ogl/2N). Using the techniques 

developed by Bhatt and Leiserson in [BL81]. it is not difficult to show that the 

lower bound is attainable. 
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CHAPTER 7 

CROSSING NUMBER ARGUMENTS 

J 
In this chapter, we demonstrate the power of the crossing number ~ a lower 

"l;' 

bound technique for VLSI. We commence by showing that the crossing 'number is 

at least as large (up to a constant) as the square of the bisection widtht In section 

7.2, we describe a powerful method for finding crossing number lower bounds. 

This method is then used in section 7.3 to find tight lower bounds on the crossing 

numbers of a variety of networks. \Ve conclude in section 7.4 with a collection of 

miscellaneous results. Included are additional upper and lower bounds for the 

crossing number of a network as well as a procedure for embedding an arbitrary 

N-node graph with an O(N1/2)-separator in an O(NlogN)-node planar graph. 

7.1 The Relationship Between Crossing Number and Layout Area 

We first show that crossing number arguments are at least as powerful as 

bisection width arguments in establishing lower bounds for layout area. 

Theorem . 7· 1: If G is an N-node graph with crossing number c and bisection 
width b, then c+ N > Q(b2). -

Proof: Let D be a drawing of G in the plane with c crossings. Replace each 

crossing of D with an artificial node. Call the resulting graph G' and note that it 

has precisely c + N nodes. Using the weighted version of the Lipton-Tarjan planar 

separator theorem [LT77], it is possible to bisect the real nodes of G' (by assigning 

weight 1 to the real nodes and weight 0 to the artificial nodes) without cutting 

more than O((c+ N)1/2) edges. After replacing the artificial nodes with their 

original edge crossings, it becomes apparent that we have, in fact, constructed an 

O((c+ N) 1/2) bisection for G. Squa1ing, we find that c+ N ~ Q(b2) D 

Using a similar proof technique, we can show that the crossing number is also 

close to an upper bound for the layout area of a graph. Jn fa.ct, should a really 

good layout algorithm for planar graphs be found, then the following result could 

become useful in laying out arbitrary graphs. 
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Theorem 7·2: Given an optimal drawing D for an N-node graph G with crossing­
number c, it is possible to construct a layout for G with area at most 
O((c+ N)log2(c+ N)). Should a procedure be found which lays out an arbitrary N­
node planar graph in A(N) area, then we could construct a layout for G with area at 

most O(A(c+N)). 

Proof: As in the proof of Theorem 7-1, we replace each edge crossing of D with 
an artificial node. The resulting graph G' has c+ N nodes and is planar. Using 
the methods developed by Lipton and Tarjan [LTI7] and Leiserson [L80a], G' can 
be laid out in O((c+ N)log2(c+ N)) area It is then a simple matter to replace the 
artificial nodes with their original edge crossings to obtain the desired layout for G. 
Alternatively, Should an A(N)-area planar graph layout procedure be discovered, 
we could construct an O(A(c+ N))-area layout for rG O 

As we have just seen, the idea of replacing edge crossings with artificial nodes is · 
simple but powerfuL Jai-Wei and Rosenberg have also employed this strategy in 
. their work with embeddings of graphs in binary trees [JR81]. 

7.2 A General Method for Proving Lower Bounds 

In this section, we will describe a general method for proving crossing number 
lower bounds. A variant of this method will later be used to prove lower bounds 
for bisection width and wire area. The basic idea is as follows. 

Given a drawing D for an N-node graph G, we will construct a drawing D ' for 
the complete graph on N nodes KN by tracing over the edges of D. For example,. 
we have done this for the 4-node graph shown in Figure 7-1. The edges of the 
original graph are drawn with dashed lines while. solid lines indicate edges of K4 • 

If we are carefl!l not to trace over each edge of D too many times during the. 
construction of D ', it may be possible to infer something about the number of 
crossings in D by counting the number of crossings in D '. This is due to the fact 

that the number of crossings in D is closely related to the number of crossings in. 
D' . For example, if e1 and e2 are edges of G which cross in D and e1 is traced 
over s1 times while e2 is traced over s2 times, then the crossing of e1 with e2 will 
appear s1s2 times in D '. Such a crossing of D' is called a crossing of the first kind. 
For example, there are four crossings of the first kind in the drawing of K4 in 
Figure 7-1. 

75 



arossings of 
the first kind 

·"'-. crossing of the 
seaond kind 

Figure 7· 1: Construction of K4 from the drawing of a 4-node graph. 

Sometimes, it is necessary for two edges of D ' to cross while traversing the same 

edge of D. Such a crossing is called a crossing of the second kind. Note that there 

is only one crossing of the second kind in the drawing of K4 in Figure 7-1. Since 

D ' can easily be drawn so that no pair of edges cross each other more than once, 

there are usually not very many cro.ssings of the second kind. More precisely, if G 

has. edges e1 , ••. , ek and if edge e; is traced overs; times for each i during the 

construction of D ', then D' can have at most ~s//2 crossings of the second 
kind. For most applications of the method, this riumber is substantially smaller 

than the number of crossings of the first kind in D' and thus we usually do not 

have to worry about crossings of the second kind. 

By showing that the number of crossings in D ' is large, we can conclude that 

there must be a large number of crossings in D. For example, if each edge of Dis 

traced over at most s times during the construction of D ' and D ' is found to have 

y crossings, then we can conclude that D has at least y/s2 crossings. This follows 

from the fact that each crossing of D is replicated at most s2 times in D '. (Note 

that we have neglected crossings of the second kind in this argument.) 

Fortunately, it is easy to find a good lower bound on the number of crossings in 

any drawing of KN . We state the result formally in the foJlowing lemma. The 

proof can also be found in Klcitman's work [K70] but is generaJly regarded as 

folklore. 
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Lemma 7·1 (Kleiunan [K?O]): The crossing number of KN, the complete graph 

on N nodes, is at least N(N·l)(N-2)(N-3Y120 for N>5. 

Proof: Let D be a drawing of KN in the plane with the smallest possible number 

of crossings c(N). We may assume that no pair of edges which cross in D are 

incident to a common node. Otherwise, it would be possible to produce a drawing 

D' for KN with c(N)-1 crossings by exchanging the parts of the crossing edges 

which lie between the common node and the point of crossing. This would 

contradict the minimality of c(N). 

Consider the N subdrawings of D obtained by deleting one of the nodes and all 

of the edges incident to it. Note that each crossing of D appears in precisely N-4 
of the subdrawings. (A crossing does not appear in any of the 4 subdrawings 

which correspond to the deletion of a node incident to an edge of the crossing.) 

Since each of the subdrawings is a drawing of KN-I• each must have at least c(N-1) 

crossings. Thus (N-4)c(N) > Nc(N-1) . Applying the inequality recursively and 

noting that c(5) = 1, we can conclude that 

c(N) > [N/(N-4)] [(N-JY(N-5)] · · · [6/2] 

N(N·l)(N·2)(N-3Yl20 for N>5 D 

7.3 Applications 

Using the technique described in. the previous section, it is possible to prove 

crossing number lower bounds for a variety of networks. In particular, we will 

prove lower bounds for the shuffle-exchange graph, the 2-dimensional mesh of 

trees and the ~dimensional mesh of trees. We commence with the shuffie­

exchange graph. 

7.3.1 Lower Bounds for the Shuffic·Exchange Graph 

Our main result in this section is the following. 

Theorem 7·3: The crossing number of the N·node shuffle-exchange graph is 

8(N2 /log2 N). 

Proof: As WC showed in Part I of the thesis, the N-node shu mc-cxhange graph 

has layout area 8(N2//og2N). Thus O(N2//og2N) is an upper bound for the 

crossing number. In what follows, we will use the method of section 7.2 in order to 
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show that the crossing number -of the N-node shuffle-exchange graph is at least 

Q(N2 //og2 N). 

Let D be any drawing of the N-node shuffle-exchange graph G where N=2k. 

We first show how to construct a drawing D' of KN on the nodes of G without 

tracing over any edge of D more than N/ogN times. 

Given any pair of nodes ak ... a1 and bk ... b1 • draw the edge from 

ak · · · a1 to bk · · · b1 along the path 

ak · · · app1 ~ ak · · · apib1 ~ b1ak · ·. ap2 4 b1ak · · · a3b2 ~ 
b2b1ak · · · a3 ~ ~ bk-I'·. b2b1bk ~ bkbk-I' · · b2b1. 

(In order that every edge of KN not be drawn twice, we should assume that the 

value of ak. · . a1 is less than that of bk . .. b1 but this has no bearing on the 

argument) 

Wherever a;= b; for some i, the preceding path will have a loop. When actually 

drawing the edges of D ',we ignore such loops. For example, the edge from 01100 
to 11101 is drawn along the path 

e. . 
01100 ~ 01101 ~ 10110 ~ 01011 ~ 10101 ~ 11010 ~ 

11011 ~ 11101. 

For convenience, we have labeled the shuffle edges with an ~ and the 
e -

exchange edges with an -=-? . -Note also that we have omitted loops at 10110. 
01011 and 10101 . 

It is not difficult to show that every edge of D is traced over at most N/ogN 
times during the construction of D '. For example, consider the shuffle edge 

linking ak · · · ap1 to a1ak ... a2 . It is traced over during the construction of 

edges of D ' which link a node of the form 
Ir.- i 

, "~ 
0 k-i+ I· · · a2 * · · · * 

to a node of the form 
i 

r "- ' * · · · * 0 1°k .. · 0 k-i+2 

for any i, 1::;i<k (where * indicates either a 0-bit or a /-bit). It is easily seen that 

there arc at most k2k such edges in D 'and thus each shuffie edge is traced over at 

most NlogN times. A similar argument shows that each exchange edge is also . 
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traced over at most NlogN times. 

Since each edge is traced over at most NlogN times, there can be at most 

(3N/2) [(NlogN)2/2] = JN3/(4/og2N) 

crossings of the second kind in D '. This is substantially less than total number 

fl(N4) of crossings in D '. Thus D ' must have fl(N4) crossings of the first kind. 

As each edge of D is traced over at most N/ogN times, this means that D has at 

least fl(N4/(NlogN)2) = fl(N2/tog2N) crossings D 

As the N-node shuffle-exchange graph has 8(N) edges, we can conclude from 

Theorem 7-1 that some edge of any layout for the graph ·must cross at least 

fl(N//og2N) other edges. We do not know whether or not this bound can be 

achieved, however. The only known layouts for the N-node shuffle-exchange 

graph have edges which cross at least fl(N/logN) other edges. 

It is also worth pointing out that the preceding argument can be used· to prove 

that the N-node shuffle-exchange graph has bisection width at least fl(N//ogN). 

The result follows from the observation that KN has bisection width 8(N1) and the 

fact that every edge of D was traced over at most N/ogN times during the 

construction .of D '. This means that the bisection width. of the N-node shuffle­

exchange graph is at least fl(N2/(NlogN)) ~ fl(N//ogN), as claimed. 

In fact, a similar modification of the method described in section 7.2 can be used 

to find tight bisection width lower bounds for all of the networks we have 

investigated. For most of these networks, however, it is much more useful to study 

the corresponding crossing number and wire area bounds. 

7.3.2 Lower Bounds for the 2-Dimensional l\'lcsh of Trees 

In this section, we use a more sophisticated version of the method of section 7.2 

to prove a nontrivial lower bound on the crossing number of the 2-dimensional 

mesh of trees. 

Theorem 7·4: The crossing number of the N-node 2-dimensional mesh of trees is 
at least fl(NlogN). 

Proof: As before, let Af 2. 11 denote the 2-dimensional mesh of trees (where n is a 

power of 2). We will show that the crossing number of M2•11 is at least 
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(n2fogn -12Jn2+121nY40 for all n>l. 

Since M2,n has N=9(n2) nodes, this will be sufficient to prove the desired result 

The proof consists of two steps. In the first, we show how to construct a drawing 
of Kn2 from any drawing of M2,n by tracing over the edges of M2,n . We then 
apply Lemma 7-1 to conclude that there are a large number of crossings among the 
edges in the top levels of the binary trees of M2,n . In the second step, we 
complete the proof by inductively applying the result of the first step. 

step 1: Let D be any drawing of M2,n in the plane. From this drawing, we can 
construct a drawing D' of Kn2 in the following way. First locate the n2 leaves of 
the binary trees of D. They will serve as .the nodes for Kn1 . Given any pair (i,J) 

and (k,l) of these nodes, draw an edge from (i,J) to (k.l) along the unique path 
from (i,J) to (z:l) in the ith row tree of D and then from (i,l) to (k,l) in the Ith 

column tree of D. (In order that each edge not be drawn twice, we shall assume 
that i<k and, when i= k, that j(/.) As usual, we assume that the edges of D' are 
·drawn so that no pair cross each other more than once. 

We next count the number of crossings of the second kind in D '. In order to 
do this, we n_eed to count the number of times each edge of D is traeed over during 
the. construction of D '. It is not difficult to show that each edge in the ith level of 
a binary tree of M 2,n (hencefo~, referred to as a type i edge) is traced over at most 

nii (n2: n27~ < n37i 

times for any i~logn during the construction of D'. Thus at most n672i-I crosses 
of the second kind can occur -at any type i edge of D. Since there are 2; + 1 n type I 
edges in M i,n , we can conclude that the total number of crosses of the second kind 
in D' is at most 

We next count the number of crossings of the first kind (i.e., those 
corresponding to crosses in D). We say that ~ crossing of D is type i-j if it is the 
crossing of a type i edge and a type j edge. Let t iJ denote the number of type i-j 

crossings in D and set t;= ~~iJ. Since each type i edge is. traced over at ~ost n37i 

times, each type i-j crossing of D produces at most (n.?70(11371) = 1162·1-1 crosses 
of the first kind in D'. Thus the total number of crossings of the first kind in D' 
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1s at most 

l~~lt I~ 
22n6z+i[ .. < n6 2z-2i1 .• 
. . . I] . I 
,., J'C. '., 

Summing, we find that the total number of crossings of either kind in D' is at 

most n7 + n6~}-2;t; . By Lemma 7-1, this number must be at - least 
1.:1 

n2(n2-J)(n2-2)(n2-3y120 for n2>5. Simplifying, we can conclude that 

)"9" 
~z-2it; > (n2·J2lnY120 for n>6. ,:., 

IC 

Let sk= Lt; be the number of crossings involving at least one.edge from the 

top k levels ~Y some binary tree of M2,n . In what follows, we will use the 

preceding inequality to show that sk > (n2·J2Jn)k/40 for at least some value of 

k?:.1. Assume otherwise and observe that 

/~ l!J.f 
2z-21,; = :i:.z-2i(srs1-1> 
it I i;: I 

where s0 is defined to be 0. The coefficient of each s1 (i= O) in this sum is z-2i.z-2i-
2 which is positive so for each i we may substitute (n2·J2Jn)V40 as an upper 

bound for s; in order to see that 
1

~i-21t; < [(n2·J2lnY40] ~i-2;[i-(i-J)] 
{sl ~I 

= [(n2-12lnY40] ~4-; . 
b-1 

~" 
Since 2:4-i < 1/3 for all n, we can conclude that ,'.:, 

'}::z-21,i < (n2-J2lnY120 for all n>J21, 
CCI 

a contradiction. Thus for all n>l21, there is a k>J such that sk > (n2-12ln)k/40. 

step 2: Let c(n) denote the crossing number of M2,n . Using the result of step 1, 
we will now show by induction on n that c(n) > (n2/ogn - 12Jn2+121nY40 for all 

n~l. 

As (n2logn - 12Jn2+J2lnY40 is nonpositive for small n, the lower bound 

trivially holds for all n<J 28. Assume that the lower bound holds for all m<n where 

n~ I 28 and let D be any drawing for At l.n . By counting the crossings of D in two 

groups according to whether or not at least one edge of the crossing is contained in 

the top k levels of the binary trees of Atf i.
11 

, we can observe that 
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(Recall the definition of sk and the structure of M2,n .) By choosing k as in step 1 

so that sk > (n 2-J2ln}k/40 and applying the inductive hypothesis for c(_nZ-k). we 

obtain 

c(_n) ~ 22k[n2z-2k(logn-kY40- 12Jn2z-2k/40+121nZ-k/40] + n2k/40 - 121nk/40 

> n2!ogn/40 - 12Jn2/40 + 121n/40 + 12Jn(2k·k-JY40 

~ (n2fogn - 12Jn2 + 121nY40 . 

Thus the inductive hypothesis is established and we can conclude that the 

crossing number of M2,n ·is at least fl(n2logn) = Q(NlogN) D 

In section 7.4.3. we will show that the crossing number of any N-node graph 

with an O(Nl/2)-separator is at most O(NlogN). Thus. we will be able to conclude 

that the crossing number of the N-node 2-dimensional mesh of trees is ·precisely 

.8(NlogN). 

7.3.3 Lower Bounds for the r-Dimensional Mesh of Trees 

By modifying the proof of Theorem 7-4, it can be shown that any layout of the 

~dimensional mesh of trees must have very long wires. In particular. they must be 

as long as the width of any optimal layout for the graph. We state this result more 

precisely in the following theorem. 

Theorem 7-5: Any drawing of the N-node r-dimensional mesh of trees contains 

an edge which crosses at least Q(N1•1/') other edges. 
... 

Proof: The ~dimensional ~ mesh of trees fl../ r,n has 

N = (r+ J)n' - rnr-1 = 8(n') nodes for bounded r. We will show that any layout 

D of M,, 11 contains an edge which crosses at least .fl(n,..') = fl(Nl·I/') other edges. 

thus proving the theorem. The method used is very similar to that of Theorem 7-4. 

As we did for the case of r= 2 in Theorem 7-4. we first construct a drawing D' of 

the complete graph on the n' leaves of A1r,n. Each type i edge of D is traced over 

at most n'+ 1 z-i times by this procedure. Thus the total number of crossings in D' 
is at most 
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where, as before, t;= 
1

~t;; and t;; is the number of type i-j crossings in D. 
~ ~ ~ (~ 

Applying Lemma 7-1, we can conclude that ft:z-2it; > D(n2r-2) . 

Let sk= ~t; be the total number of crossings of D involving an edge from the 

top k levels"bf the binary trees in Mr,n . Using arguments similar to those used to 
prove Theorem 7-4, it is not difficult to show that for large n, there exists a k such 
that sk > D(n2r-22k). As there are only rnr-I(2k+I.2) edges in the top k levels of 

Mr,n for any k, we can conclude that at least one of them crosses at least D(n,..1) 

other edges D 

It is worth pointing out that the preceding arguments can also be used to show 

that the crossing number of the N-node r-dimensional mesh of trees is 8(N2-2/') 

for bounded r> 2. 

7 .4 Further Methods 

In this section, we describe some additional methods for proving crossing 

number bounds. We first generalize Lemma 7-1 to prove a combinatorial lower 

bound on the crossing number of any N-node graph with at least 4N edges. This 

result is the~ used in section 7.4.2 to prove crossing number lower bounds for a 

class of graphs which are similar to the 2-dimensional mesh of trees. We conclude 

by proving a nontrivial upper bound on the crossing number of graphs which have 

O(Nl/2)-separators. As a corollary, we wiil show that any N-node graph with an 

O(N1/2)-separator can be embedded in some O(NlogN)-node planar graph, thus 

generalizing Theorem 6-1. 

7.4.1 A Combinatorial Lower Bound for Crossing Numbers 

In this section, we substantially generalize the result of Lemma 7-1. 

Throughout, we assume that G is a simple graph (i.e., that it has no loops or 

multiple edges). 

Theorem 7·6: If G is a graph with E edges and N nodes where E>4N, then the 

crossing number of G is at least E3/375N2• 

Proof: The proof is by induction on N. For N= I, the result is vacuously true. 

Assume that the result is true for all N '<N where N>J and let G be a graph with 

N nodes and E edges where E>4N. We will show that the crossing number c of 

G is at least £ 3/375N!, thus proving the theorem. There arc two cases to 
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consider. 

case 1: 4 N ~ E < 5N . 

We first use Euler's formula [BLW76] in order to show that the genus of G is 

large. Euler's formula states that 

E + 2 = N + f + 2g 

where f is the number of faces of any proper embedding of G on a surface of 

genus g. Since G has no loops or multiple edges, every face contains at least 3 

edges and thus 3f<2E. Substituting, we find that 

2g E + 2 - N - J 

~ E + 2 - N - (2E/3) 

E/3 + 2 - N 

and thus that g > (E-3Ny6. For 4N < E < 5N, it is not difficult to show that 
(E-3Ny6 >E1/J75N2 and thus that g > £3/375N2. 

Given any graph with crossing number c, it is possible to find a proper 

embedding of the graph on a surface with genus c. We can do this by drawing the 

graph on a sphere so that only c pairs of edges cross and then putting a "handle" 

in the region immediately surrounding each cro_ssing. The edges of the crossing 

can then be redrawn through the handle so that they no longer cross. As the 

resulting surface has genus c, we can conclude that g~c for any graph with genus g 

and crossing number c. In particular, we can conclude that c > E3/375N2 for G. 

case 2: E ~ 5N . 

Let d1 , .•. , ~N be the degrees of the N nodes of G and let D be an optimal 

drawing of G. As usual, we can assume that no pair of edges which cross in D are 

incident to the same node of G. Consider the subdrawing D1 of D obtained by 

deleting the ith node of G and all the edges incident to it This subdrawing is also 

a drawing of a graph with N-1 nodes and E-di edges. Since E>5N and d;<N-1, we 

can conclude that 

E-d; > 4N+l > 4(N-1). 

Tirns we can apply the inductive hypothesis to D; in order to conclude that it has at 
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least (E-di)3/(375(N-J)l] crossings. -

Each crossing of D will appear in precisely N-4 of the N subdrawings of D 
produced by the above procedure. Applying the technique used to prove Lemma 

7-1, we can thus conclude that 

c > [J/(N-4)] ~ (E-d;)3/[375(N-J)2J 
,: ' 

. IV 
= [l/375(N-4)(N-J)2J ~(£1. 3E2d. + 3£d.2- d·3> . l l l 

t l I 

.N 

= [l/375(N-4)(N-J)l] [£1N - 3E2(2E) + ~(JEd/- d/)] . 
,·,.I 

Since 2E = f d; , it is not difficult to show that f (JEd/-d/) attains its 
,~, ~· 

minimal value when d; = 2£/N for 1 < i<N . At this point, 

~(3Ed.2-d.3) > 12£1/N - 8£1/N2 
. l l 

':1 

and thus 

For N?:.2, this expression can easily be reduced to show that c > £3/375N2 D 

It is interesting to note that the lower bound proved in Theorem 7-6 is (up to a 

constant) tight For example, the N-node graph consisting of N2/E disjoint copies 

of K~N has 8(£) edges and crossing_ number at most 0(£1/Nl) for any E>4N. 

7.4.2 Applications 

When defining the 2-dimensional mesh of trees, we required that the binary 

trees be interconnected so that M l,n contain 22k disjoint copies of M 2,nz-k as 

subgraphs for any k. Not only is this definition the most natural, but it also allows 

us to use induction in the lower bound proofs for the network. Surprisingly, 

however, the constraint is not necessary in order to show that M2,n can perform 

matrix-vector multiplication, sorting or switching in O(logn) time. In fact, any 

network consisting of /1 row trees and n column trees which share the same set of 

leaves can do these operations quickly. Thus it is conceivable that some other 

arrangement of the tree interconnections might lead to a network with a smaller 

crossing number. In what follows, we use Theorem 7-6 to show that this is not the 

case. 
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Theorem 7·7: If G is an N-node graph formed in the same way as the nxn mesh 
of trees except that arbitrary interconnections are allowed between the leaves of the 
binary trees. then G must have crossing number at least fl.(NlogN). 

Proof: Let Gk denote the subgraph of G obtained by deleting the nodes and 

edges in the top k levels of the binary trees of G for O<k<logn. For example, if 

~M2,n , then Gk consists of 22k disjointcopies of Mi,nz-k . Otherwise, Gk is a 

graph for which each node of the original nxn matrix of nodes is a leaf of a 

horizontal complete binary tree of depth logn - k and a leaf of a vertical complete 

binary tree of depth logn - k . For each k, let H k denote the graph whose nodes 

are the n2 leaves of Gk and whose edges are the paths in Gk of the form 

leaf- path in horizontal binary tree - leaf- path in vertical binary tree - leaf. 

Note that if Gz.M2 n , then Hk consists of 22k disjoint copies of K,,i7 2k • In any 

case, Hk is a reg~lar graph for which each node has degree n2:z-2k.J . 

Given any drawing Dk of Gk, it is easy to construct a drawing Dk' for Hk by 

tracing over the edges of Gk in the natural way. It is not difficult to see that each 
type i edge of G is traced over at most (2lngn·k)37(i·k) = n3:z-2k-i times by this 

procedure for 1)k. Thus each type i-j crossing is reproduced at most n6 7 4k-i-j < 
n674k-2i times for j > i > k . 

Given any drawing D of G, construct l6k separate drawings Dk' of JI k for each 

k~O. Each type i-j crossing of f! will appear a total of 

times in these drawings. In what follows, we will show that there are at least 

Q(nB/ogn) total crossings of the first kind in these drawings. We will thus be able 

to conclude that the crossing number of G is at least fl.(112/ogn). 

As Hk has Ek = O(n4I 2k) edges and Nk = n2 nodes, we can apply Theorem 

7-6 to conclude that Dk' has at least fl.(£k3/N/) = Q(nB:r6k) crossings. Thus 

there are at least Q(n8) crossings among the l6k drawings Dk' . Summing over k 
for O<k5:logn, we find that there are at least Q(118!og11) total crossings among all of 

the drawings {Dk' I 05:k<logn }. It is not difficult to check that there are at most 

0(1/2-5k) crossings of the second kind in each drawing of II k . As there are fik 
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such drawings for each k, we can conclude that there are at most 

total crossings of the second kind in all the drawings {Dk' I O<k<logn }. Thus 
there are at least Q(nBfogn) total crossings of the first kind and the crossing number 
of G is at least Q((nB/ognYn6) = fl(n2/ogn) = Q(NlogN) o 

As a corollary, we can see once again that the crossing number of M2,n is at least 
Q(Nlog2N). 

7.4.3 An Upper Bound for Crossing Numbers 

Since any N-node graph with an O(Na)-separator for some a> 1/2 has an 
O(N2a)-area layout, we can easily see that it also has crossing number at most 
O(N2a). By Theorem 7-1, we can conclude that this bound is tight since many 
such graphs also have bisection width at least U(N«). 

The situation is not as clear for graphs with O(N1/2)-separators, however. For 
example, the best known upper bound on the layout area of an N-node graph with 
an O(Nl/2)-separator is O(Nlog/ N) yet no such graph is known to have a crossing 
number greater than Q(N/ogN). In what follows, we prove a tight upper bound on 
the crossing number of any such graph. 

· Theorem 7-8: The crossing number of any N-node graph with an O(N1/2)­
separator is at most O(NlogN). 

Proof: Given such a graph G, we will construct a drawing for G with at most 
O(NlogN) crossings. In order to construct the drawing, we will 

1) decompose G into subgraphs according to the separator theorem, 

2) draw the subgraphs by recursively calling the procedure, and 

3) draw the edges which link the subgraphs together without introducing too 
many crossings and so that every node remains "close" to the exterior of the 
drawing. 

In order to illustrate the procedure, we will describe in detail how drawings D 1 
and D2 of two m-node subgraphs are used to construct a drawing D of the 
combined 2m-node subgraph. Let c(m) denote number of crossings in D 1 or D 2 , 

whichever is larger. Further let d(m) denote the maximum number of edges which · 
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must be crossed in order to draw an edge from any node in D 1 or D2 to the 

exterior of D 1 and D 2 . Constmct D from the drawings of D 1 and D 2 by drawing 

in the O(ml/2) edges which link them together in the best way possible. Now let 

c(2m) and d(2m) be the obvious values for the constructed drawing D. It is not 

difficult to show that 

c(2m) < 2c(m) + O(m) + O(ml/2d(_m)) 

and that 

d(2m) < d(_m) + O(m1/2) . 

Solving the recurrences in general. we find that d(_m) < O(m//2) and thus that 

c(m) < O(mlogm) . Thus the above procedure can be used to find a drawing for G 
with at most O(NlogN) crossings D 

Using the preccoing result, we can substantially generalize Theorem 6-1. 

Theorem 7·9: Any N-node graph with an O(N1/2)-separator can be embedded in 
an O(NlogN)-node planar graph. 

I'roof: Construct a drawing of the graph with O(Nlog/li) crossings according to 

the. method described in the proof of Theorem 7-8. Replace each edge crossing in 

the drawing with an artificial node. The resulting graph has O(NlogN) nodes, is 

planar and. embeds the original graph D 
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CHAPTER 8 

WIRE AREA ARGUMENTS 

In this chapter, we extend the metho~ of section 7 .2 to prove lower bounds on 
the wire area of a variety of networks. In each proof, we will use a layout of a 
network to produce a layout for the complete graph. By showing that the nodes of 
the layout are wide1y spread out, we wi11 be able to conclude that the wire area of 
the layout for the complete graph is very large. Provided that the edges of the 
original network were not traced. over too many times, we can then reason that the 
wire area of the original network is also large. 

8.1 Lower Bounds for the 2-Dimensional Mesh of Trees 

In this section, we find tight lower bounds for the layout area and maximum 
edge length of the 2-dimensional mesh of trees .. 

Theorem 8· 1: The wire area of the N·node 2-dimensional mesh of trees is at least 
Q(N!og}N). 

Proof: AS usual, we denote the nxn mesh of trees by M 2,-,,_ • In addition, let 
H(n) denote the wire area of M2,n and let a be a positive constant such that 

(•) a < n/(4/ogln) for all n>2, and 

(u) a < 22i-20/(j32fS) for all 1>1 
a.# 

where f3 = ~ j -2 • . also a constant Clearly such a constant exists (a= :z-30 should .m 
suffice) and clearly ~n) ~ an2!og2n for n= 1 and 2. Consider a value of n>4 
which is a power of 2 and assume that for all values of m<n which are powers 2 

that l1-(m) > am2log2m . We will use induction to show that· l\{n) > an2!og2n . 
Since M2.n has N=9(nl) nodes, this will be sufficient to prove the theorem. 

Consider any layout for M2,n which uses H(n) wire. Paf1ition the layout into 
three vertical strips V0 , V1 and V2 so that the center strip contains 3n2/4 leaves 
and each outer strip contains n2/8 leaves. Similar1y partition the layout into three 
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horizontal strips H0 , H1 and H2 so that the middle strip contains 3n2/4 ]eaves 

and each outer strip contains n2/8 leaves. For example, see Figure 8-1. 

- - - - _t - ~~---_-_- p _-_-_-_-___,-. - - - - -

-, 

I - - - - - - - - ----
- - - - - - t- - - - - - - - -

I 

Figure 8·1: Partitioning of the layout/or Mi.n· 

Let p denbte the length of the longest side of the center block formed by the 

intersection of V1 and H1 . Without loss of generality, we assume that the longest 
side is horizontal. In what follows, we will show that p > (a 1/ 2n!ognY8 . 

Since each of the regions V rf1H1 and V2nH1 can contain at most n2/8 

leaves, it is clear that V1nH1 contains at least n2/2 leaves. Consider the n3/2 

subgraphs of M2,n produced by eliminating the top (3/ognY4 levels of the row 
and column binary trees of M 2.n . Each of these subgraphs is isomorphic. to 

M2,n1/4. By the pigeonhole principle, at least 1/2 of these subgraphs have at least 
one leaf in V1nH1 • If p < (a 1/ 2n!ognY8 (oth~rwise we are done), then at most 

4p < (a 1/ 2nlognY2 edges can cross the boundary of V1nH1 • Thus at most 

(a 1/ 2nlognY2 of the .subproblems which have at least one leaf in V1nH1 can 

have some node or part of an edge outside V1nH1 • This means that at least 
(n3/2 - al/2n/ognY2 copies of M2.n1/4 are whoJly contained in V1nH1 • 

Applying the inductive hypothesis, we conclude that V1nH1 contains at least 

(n3/2 - a 1/2n/ogn) •i(nl/4)/ 2 ~ (an2/og2n - a3/2,,J/1!or,3n)/ 32 

~ (an 2fog2nY64 wire. 
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(The last inequality follows trivially from ( • ).) Thus V1nH1 has at least 

(an2log2nY64 area and p > (a 1/2n/ognY8, as claimed. 

We next use the layout for M 2.n to construct a drawing for the complete graph 

on n2 nodes (namely, the n2 leaves of M2,n ). No matter how the edges of the 

complete graph are drawn in the plane (e.g., they may cross or overlap), it is clear 

from Figure 8-1 that the sum of the lengths of all the edges (as measured in 
Euclidean space) is at least n4p/64 > (a 1/2n5!ognY29 . This is due to the fact 

that n4/64 edges pass from region V0 to region V2 and that these regions are 

separated by a distance p. 

Let L; denote the sum of the lengths of the edges in the ith levels of the binary 

trees of M 2,n. Since every level i edge is traced over at most n37i times in the 

drawing of the complete graph, we can conclude that 
lo~ 

~Ljl.-in3 > (al/2n5/ognY29 
('<I 

and thus that 

In particular-, this means that 

00 

for some i < logn . (Recall that fJ = ~ j -2 .) Otherwise, 
• j• I 

L; < (al/2n2/ogn21)/(29pt2) 

for - 1 < i < logn and thus 

'~'L;i-i < '~(al/2n2/ognY(29p;2) 
L• I ~'&I 

< (al/2n2/ognY29, a contradiction. 

Using the straightforward relation 

where i has been chosen so that 

we can condude that 
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tt.(n) ~ 22ia(n71) 2(logn • 1)2 + (a 1/2n2logn2'V(29p;l') 

~ an2tog2n • 2ain2logn + (a 1/2n2logniY(29fJi1> 

> an2log2n 

(fhe last inequality follows trivially from(**).) Thus tt.(n) > D(n2log2n) for all no 

Theorem 8·2: Any layout of the N·node 2-dimensional mesh of trees contains a 
wire of length at least D(N1/2 logN/loglogN). 

Proof: It is sufficient to show that any layout for M 2,n contains a wire of length 

at least D(nlogn/loglogn). Assume for the purposes of contradiction that this is not 

the case and consider a layout of M2,n for which the longest wire has length 

q < < O(nlogn/loglogn) . Using arguments similar to those used to prove 

'Ibeorem 5-2, we first show that (without loss of generality) the area of such a 
layout is at most O(qllog2n) << O(n2log4n) . -~ , -

Since every pair of nodes of M 2.n is linked by a path of length at most 4logn, all 
of the nodes in the layout are contained in a 4qlogn x 4qlogn square. At most 

16qlogn wires may leave and re-enter the square at various points along its 

boundary. ~ithout increasing .the lengths of any of these wires, it is possible to 

rewire the segments outside the square using ai most O(qllog2n) additional area. 

Thus, the resulting layout for M 2,,, will have maximum edge length q and area at 
most O(q2f0g2n). -

The proof is completed by observing that any layout of M2,n wit,li area less than 

O(n2log4n) must have a wire.of ten?.~ at least fl(nlogn/loglogn). From the proof 

of Theorem 8-1, we know that ~L;l"i > (a 1/2n2log11y29 . Thus either 
I. :t.I 

1) there is an i < 4loglogn such that L; > (a 1/2n2/ogn2o/(212loglogn) , or 

2) there is an i > 4loglogn such that L; > (al/2n2/ogn2o/(210p;1) 
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The second condition cannot possibly be true, however. If it were, the area of 

the layout would be at least 

Li > U(n2logn/i1) 

> U(n2!og5n/(loglogn)2} 

> U(n2fog4n) , a contradiction. 

Thus the first condition must be true and there is an i such that Li > 
U(n2logn2Vloglogn). Since there are n2i+ I type i edges in Mi,n, we can conclude 

that at least one of them has length at least U(nlogn/loglogn) D 

8.2 Lower Bounds for the Tree of Meshes 

Using the results of the previous section, it is easy to demonstrate the existence 

of planar graphs which cannot be laid out in linear area and_ which must have long 

wires. In particular, we can conclude the following. 

Theorem 8·3: The wire area of the N-node tree of meshes is at least U(NlogN). 

Proof: As we showed in section 6.3.3b, the N-node 2-dimensional mesh of trees 

can be embedded in an O(NlogN)-node tree of meshes. By Theorem 8-1, we can 

thus conclude that the wire area of the NlogN-node tree of meshes is at least 
U(Nlog2N). - Equivalently, the wire area of the N-node tree of meshes is at least 

U(NlogN). D 

Theorem 8·4: Any layout of.the N-node augmented tree of meshes has a wire of 
length at least Q(Nl/i/logl/iN). 

Proof: In the proof of Theorem 8-1, we showed that any layout of M i,n has two 

leaves which are spaced at least U(nlogn) distance apart Since (as we showed in 

section 6.3.3b) Mi,n can be embedded in Tin· so that the leaves of Mi,n are 
embedded in the leaves of Tin , we can observe that any layout of T2n also has 
two leaves which are spaced at least U(n/ogn) distance apart Since every pair of 

leaves in Tin are linked by a path of length at most O(logn) in Tin', we can 
conclude that some edge of Tin' has length at least U(n) = Q(Nl/i//og1/iN) D 

Had we so desired, we could have proved both results directly, using arguments 

identical to the ones used to prove Theorem 8-1. 
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8.3 Lower Bounds for a Restricted Class of Binary Tree Layouts 

In [BK80], Brent and Kung considered layouts of N-node complete binary trees 

for which every leaf is located on the boundary of some convex region. In 
particular, they showed that the wire area of any such layout is at least fl(NlogN). 

Recently, Patterson, Ruzzo and Snyder [PRS81] extended this result by showing 

that any such layout with area A must have some edge of length O(N/log(A/N)) . 

In particular, this means that if A = O(NlogN), then there must"be some edge of 
length O(N/loglogN) but that if A = 9(N1 + e) for some £>0, then there must 
only be an edge of length fl(N//ogN). In what follows, we show how to use the 
techniques developed in this chapter to give short proofs of these facts. 

Theorem 8·5 (Brent and Kung [BK80]): Any layout of the N·node complete 

binary tree in which every leaf is on the boundary of some convex region requires 

fl(NlogN) area. 

Proof: Given any such layout, we first use the methods of section 8.1 to 
construct a layout of the complete graph on the n = 9(N) leaves of the tree. Since 
the leaves are on the boundary of some convex region, it is easily shown that the 
layout of Kn uses at least fl(n3> wire. 

Let L; denote the sum of the lengths of the edges in the ith level of the tree. As 
each ith level edge is traced. over at most n27i times, we know that 

·~ z.n3ziL; < O(n3> 

and thus that ~J,7; > O(n) ~··Using arguments similar to those in the proof of 

Theorem 8-1, we can concluae that L; > fl(n2l/i2) for at least one value of i. 
Letting K(n) denote the wire area of the binary tree layout, we can see that 

K(n) > 2iK(n7~ + O(n2Vi2) . 

Solving the recurrence, we find that "-(n) > O(nlogn) = fl(NlogN) D 

Theorem 8·6 (Patterson, Ruzzo and Snyder [PRS81]): Any A-area layout of the 

N-node complete binary tree in which every leaf is on the boundary of a convex 

region has some edge of length Q(N//og(A/N)). 

Proof: The proof fo11ows that of the preceding theorem until it is concluded that 
l•_!f\ 

.~L;:Z-i ~ fl(n). Using methods similar to those used.to prove Theorem 8-2, we 
,~, 
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can tl1cn observe that one of the following conditions must be satisfied: 

1) there is an i < 2/og(A/n) such that L; > O(n2Vlog(A/n)) , or 

2) there is an i > 2/og(A/n) such that L; > O(n2Vi2) . 

The second condition cannot possibly hold since, if it did, the layout area would 

be at least Li ~ fl(n2Vi1) which, for i > 2/og(A/n) , means that 

A > O(A2/nlogl(A/n)) 

> O(A) , a contradiction. 

Thus the first condition holds and we can conclude that there is an i such that 
L; ~ Q(nii/log(A/n)). As there are only 2i+ I edges in the ith level, at least one of 

them must have length at least Q(n//og(A/n)) = O(N/log(A/N)) D 
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CONCLUSION 

In Part I of the thesis, we described several new layouts for the shuffle-exchange 
graph. In particular, we found 

1) an asymptotica11y optimal O(N2//og2N)-area layout of the N-node shuffle­
exchange graph, and 

2) practical layouts for small shuffle-exchange graphs. 

As a result, it should now be possible to construct large scale shuffle-exchange 
chips. The only remaining question is whether or not there is a layout of the N­
node shuffle-exchange graph for which every wire has length at most O(N/log2N). 
All known layouts have wires of length at least fl(N/logN). 

In Part II of the thesis, we descibed techniques for finding good lower bounds 
on the crossing number, wire area, maximum edge crossing and maximum edge 
length of a variety of VLSI networks. In particular, we applied these techniques to 
find 

· 1) an N-node planar graph which has layout area 8(NlogN) and maximum 
edge iength 8(Nl/2//ogl/2N), 

2) an N-node graph with an O(N1/2)-separator which has-_ layout area 
8(Nlog2N) and maximum edge length 8(Nl/2/ogN//oglogN), and 

3) an N-node graph with an O(Na)-separator (for a> 1/2) which has maximum 
edge length 8(N°). 

Thus we have answered all the open questions concerning bounds for layout 
area and maximum edge length of networks with known separators. We have only 
partially answered the corresponding questions for planar graphs, however. In 
particular, it would be of great interest to know whether or not every N-node 
planar graph can be laid out in O(N/ogN) area 

97 



area of a layout 4 
artificial node 74 
augmented tree of meshes 72 

basic piece of a necklace 26 
basis node J 5 
bisection width 52 

complex plane diagram 9 
crossing of the first kind 75 
crossing of the second kind 16 
crossing number 5 

degenerate necklace JO 
diameter 56 
distance in a graph 56 

INDEX 

distinguished node of a basic piece 26 
distinguished node of a necklace 2J 
distinguished node of a primary piece 26 
distinguished node of a secondary piece 26 

even node 22 
exchange edge 3 

full necklace JO 

layout area 4 
leftedge 65 
level J J 
leveling J8 
level-necklace grid J 2 

maximum edge crossing 5 
maximum edge length 4 
mesh of trees 59, 63 
minimum number represented 18 

necklace JO 

odd node 22 

primary block of zeros 21 
primary node 22 
primary piece of a necklace 26 
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radius of a necklace 18 
reverse edge 31 
right edge 65 

secondary block of zeros 21 
secondary node 22 
secondary piece of a necklace 26 
separator 51 
shift edge 30 
shuffieedge 3 
shuft1e-exchange graph 3 
shuffle-shift graph 31 
shuffle-shift-reverse graph 31 
shuffle-tree graph 65 
simple graph 83 
simultaneous separator 67 
size of a necklace 1 s' 
size of a node 8 

Thompson model 2 
track 2 
transpose edge 32 
tree of meshes 65 
type i edge ~o 

type i-j crossing 80 

value of a node 9 

wire area 5 
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ADDENDUM 

Much has been accomplished during the period of time between the submission 
of this thesis to the MIT math department in August of 1981 and the publication of 
the thesis as a technical report in June of 1982. In foct, so much has been 
discovered in the interim that it would be possible to write several additional thesis 
on the subject As an aide to those who wish to know more about the new 
material, we have included below a brief bibliography of some of the recent work 
on layout strategies for VLSI. 

Of particular importance is the work contained in [V81], [CS81]. [NMP81] and 
[L82]. In [V81]. Valiant independently proves many of the separator-based results 
which are attributed to Leiserson in the thesis. The mesh of trees· described in 
Chapter 6 of the thesis is independently discovered in [CSSI] and [NMP81] where 
it is used to suppmt a wide variety of fast parallel algorithms. Finally, the work 
reported in [L82] signific~ntly extends the separator-based work of Leiserson and 
Valiant as well as the material in this thesis. 
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