
MIT/ LCS/TR-269

The Complexity of
Concurrency Control for
Distributed Databases

Paris C. Kanellakis

This blank page was inserted to presenie pagination.

THE COMPLEXITY OF CONCURRENCY CONTROL
· FOR DISTRIBUTED DATABASFS

by

Paris C. Kanellakis

Diploma, National Technical University of Athens
(1976)

S.M .• Massachusetts Institute ofTecluiology
(1978)

Submitted in Partial Fulfillment
of the R~uircments for the Desree of

Doctor of Philosophy

at the

Massachusetts Institute ofTechnology
September 1981

© Massachusetf:S Institute of Technology 1981

Signature of Auchor <ZL,4
Department of Electrical Engineering and Computer Science, September 1. 1981

Certifiedby _ ____._G.,..u...k ~._.....,..._~df ~ /p...I...~;.....=...(........,.____ ____ _

Christos H. Papadimitriou
Thesis Supervisor

Accepted by _______________________ _

Anhur C. Smith
Chairman. Departmental Committee on Graduate Students

This empty page was substih1ted for a
blank page in the original document.

The Complexity of Concurrency Control for Distributed Databases

by

Paris C. Kanellakis

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 1981 in partial fulfillment of the requirements for

the Degree ~f Doctor of Philosophy

This study is an analysis of the distributed version of database concurrency ci>ntrol. It provides

concrete mathem.atical. evidence that the distributed problem is an inherently more complex task
than the centralized one.

The notions of transaction, concurrency, history, scrializability, scheduler, etc., for centralized

databases are now well-understood both from a theoretical and a practical point of view. A formal

model for the case of distributed databases is presented. The transactions are partially ordered sets

of actions. as opposed to the totally ordered straight-line programs of the centralized case. The

scheduler is also a distributed program. Three notions of performance for a scheduler arc studied

and interrelated: (i) parallelism. (ii) the computational complexity or the decision problems that it

has to. solve. (iii) the cost of communication between the various parts of the scheduler. In fact the

number of messages necesSary and srifficient to support a given level of parallelism is equal to the

length of a combinatorial game. This game, which captures the difference between the centralized

and the distributed problem, is PSPACE-Complete. This implies that unless NP=PSPACE. a

scheduler cannot simultaneously minimize the communication cost and be computationally effteient

The model presented can also serve as a framework for the study of distributed concurrency

control by locking. For two transactions an etrtcient characterization of safe distributed locking

policies is derived. The new graph-theoretic" approach generalizes the geometric method used -in the

centralized case. ·

Thesis Supervisor: Christos H. Papadimitriou

Title: Associate Professor of Computer Science and Engineering

Key words: concurrency control, distributed database. communication, complcxi!y, PSPACE

complctc, games, locking.

This empty page was substih1ted for a
blank page in the original document.

(

ii

Acknowledgements

I am particularly indebted to my thesis advisor, Professor Christos Papad~itriou, for his
guidance and support His suggestions of general research directions, his technical contributions. and
his illuminating comments on the presentation of these results have been invaluable.

I would like to thank Professor Robert Gallager for his constant support and for inumerable
discussions, which helped clarify and simplify many of the ideas in this thesis. I would like to thank
Professor Peter Bias. for contributing his viewpoints to this thesis.

Many thanks- are due to all my friends who have made the research environment at M.I.T. so
exciting and my life as a graduate· student so pleasant.

Most importantly I must express my gratitude to my parents, whose encouragement and

warmth have always been my most valuable source or support.

This thesis was prepared with .the support or National Science Foundation grants ECS-79-
19880 and MCS-79-08965.

This empty page was substih1ted for a
blank page in the original document.

iii

Table of Contents

page

Abstract i

Aknowledgements ii

Table of Contents iii

1 lntroduction 1
LI The Main Goals and New Results 1
1.2 A Review of Database Concurrency Control 6

2. A Model for Distributed Database Concurrency Control U
2.1 Model Definition U
2.2 Properties and Limitations of the Model 26

3.- Communication-Optimal Schedulers and Games 31
3.1 A Recursive Characterization of Communication Complexity 31
J.2 Games related to Distributed On-line Computation 47

4. The Complexity .of PREFIX 54
4.1 PREFIX is PSPACE-Complete 54
4.2 The Efficiency of Communication-Optimal Schedulers 82

S. The Combinatorics of Locking 84
5.1 Distributed Locking 84
5.2 The Safety of Distributed Locked Transaction Systems 88

6. Conclusions and Open Problems 102

References 104

Index of Terms 108

Index of Figures and Tables 111

Biogrnphical Note 113

This empty page was substih1ted for a
blank page in the original document.

1

1. Introduction

There is now considerable .literature, both theoretical and applied, concerning
the database concurrcnc_y control: problem ~ that is. maintaining the integrity of a
database in the face of concurrent updates. ~ of the theoreticat work so far has
been concerned with the centralized problem, in which the database resides at one
site, and the update requests are submitted to a single process, called the scheduler,
which implements the concurrency control policy of the database [7,25,37). There is
also some interesting applied work on ·distributed databases [2,3,4,28,36). It is often
said that the concurrency CQntrol prob!~, ~ '.Jnuch trifki~r and harder in the
distributed ~ than in the centraUz~ case. .l'his is evidenced by the existing

. ~' --.. .
solutions, which are extremely complex .and . ..soinetimes- incorrect

In this thesis we ·examine how .the .. ~ity o(various probJems, related to

concurrency contra~ is affected when we ~pt to . solve th~ for distributed
databases.· The maiit focus. is. in two .. areas. ~: .a,nd safe locking .. policies,

. .. ' - -; ,, -· ' - , i - .

where efficient centraHzed solutions exist Our app~ and results also add to the
theory of distributed computation, independently of their database context

1.1 The Main Goals ~d New Results

Our main goal is to -demonstrate the differences between the centralized and
distributed versions of natural computational problems. We' examine such problems
from the area of database concurtency conttoL

1 be6wse we atsd wish to determine the
'1 . . .•. .

limits of performance of concurrency control medlanisms.

We investigate two fearures of distributed computation, which distinguish it
from centralized computation. First;, the' uncertainty of the order of events in a
distributed environment [19]~ The 'otder of events is no longer best viewed as total, as
in the:centralizedtjlse; ~j,tJs,a partial 0~9e,r, \,Vh~ structure depends on the
number of sites of the distributed system. So our analysis will highlight differences
between total and partial orc.ters. The second element isrthe need for communication
between sites. if the performance of an on-line distributed, system is to match that of
an on-line centralized system.

In order to find concrete differences we compare the computational complexity

2

of centralized and distributed tasks. We will use standard concepts from the theory of
computational complexity, (i.e., deterministic polynomial time P, nondeterministic
polynomial time NP or its complement co-NP and polynomial space PSPACE,
[l,11,33,34]), as well as notions from the theory of combinatorial games [5,8,29]. The
contributions of this thesis are summarized in the· next three sections.

Q) The Model

We have developed a simple mathematical model of distributed databases,
which captures the intricacies of distributed computation that are most pertinent to

the database domain. Some novelties of our model are:

· (1) User transactions are arbitrary partial orders of atomic steps. thus
generalizing the straight-line programs of the centrali~ed case. The order
corresponds to both timC-precedence and information flow, and it captures
the notion of "distributed time".

(2) The sch~ler, the concurrency control agent of the system, is itself a
distributed program, consisting of communicating sequential proc~ [15j,
one for "each site.

(3) Redundancy (the requirement that two entities stored at different sites be
two copies of the same "virtuQI entity") is not treated at the syntactic level,
but is considered as part of the integrity constraints of the database.
Redundancy was at the. root of the complexities of most previous attempts to

formalize distributed databases.

As a con~uence, there are three measures of performance in a distributed
database (centralized theory deals with the first two):

(a) Parallelism, measured as the set of allowable interleavings of user actions.

(b) Complexity of the computational problems that the processes of the
scheduler must solve.

(c) Communication, measured as the number of message exchanges between
the processes of the scheduler.

.·

3

A simple analysis. Theorems 1 and ~· verifies that the ~odel is indeed a
consistent generalization of the centralized model.

(II) Schedulers and Games

The three measures of performance of schedulers present interesting tradeoffs.
For example, let us fix (a) (think of it ~·· the J)i\r~lism specs of the system). By
expending many messages. we can reduce the problem of dtstributed concurrency
control to the centralized one (by bro.adcasting each ~) . and thus solve it in
polynomial time for most reason.able speci;{~S). h tums,,out that. based on a priori
information about transactions, we can minimize the-,RUmber.of messages ~nt, by
executing an exponential number of computation steps (and using polynomial space;
this is the upper bound of our main result) .. Finally we cannot have a scheduler
simultaneously using the minimum number of messages and running in polynomial

~ ,, '

tm.e at each site, unle$ NP= PSPA.CE (this follow~· from the tower 'bound).

Specifically our main result states ~at for a certain parallelism spcciOcation
(lvhich in fact can be fixed to be the. popular ser~liza~ilit1 principle [3,17,25,31,40D
minimizing communication ·costs is a computational problem complete for PSPACE
[1.11,33,34}. Thus,_ our" result appears ~ be concrete mathematical evidence
suggesting that distributed concurrency control is indeed an inherently more complex
task than centralized concurrency control (under quite general conditions, centralized
schedulers can be. implemented in polyllOJl)ial. time (25)) •.

Our result also adds to the literature on distributed computation, independently
of its database context. It states, loosely speaking, that one cannot tell efficiently
whether distributed processes. can coope.rate su~fully for performing (an
otherwise easy} on•line computational task, at fixed communication cost It can
therefore be considered as complementing the·railtof U.dner for lockout properties

of "antagonistic" p~ (18). On the other hand, Yao has asked 1381 whether

minimizing communications .costs for some diWibuted; wmbinational computation is
computationally intractable; we answer this in the case of an Qn-line computation.

The proofs of both our upper and lower bounds are quite intricate. For the
upper bound we need a complicated characterization (Theorem 3) of the incomplete
histories of actions (i.e .• partial orders of events in the system) that can be completed.

r,

4

within a fixed number of messages. This upper bound holds for serializable histories,
as well as for all similar parallelism specifications that can be achieved in ·a
centralized manner. For the lower bound we relate distributed scheduling to a game
played on graphs (the "conflict" graph of the transactions). Intuitively one player
(Player II) is the distributed scheduler, and the other (Player I) is an adversary who
submits user requests so as to force the scheduler to use as many messages as
possible. Player I wants to prolong the game as much as possible, whereas Player II
tries to bring· it to an end as soon as·possible (other than that there is no winner or
looser). The rules are related in a simple way to the cycles of the graph.. We prove
that this game is complete for PSPACE, and then show that our constructs can
faithfully reflect a special kind of distributed concurrency control situation. Both
steps involve intricate "gadget" construction (Theorem 4).

(III) Distributed Locking

A very common way of implementing concurrency control is by locking. In this
method each entity is equipped with a binary semaphore (its lock) and transactions
synchronize their operation by. locking and unlocking the entities that they access~
The purpose of locks is not mutual exclusion of shared resources as in operating
system theory. Instead they are used to enforce correct sequencing of the indivisible
transaction steps.

Locking policies have. been extensively studied in the centralized case
[7.13.2U6,30J9,40} and applied to distributed databases (22,23,35]. Our model
provides a framework for· the rigorous study of distributed locking.

The most elegant result in the theory of centralized locking is a geometric
method, which efficiently characterizes the safe l~king pol~cies for two transactions.
We examine the di~buted version of this problem (i.e .• when the transactions are
partial orders instead ~f total orders of steps). We propose an alternative graph
theoretic approach for the centralized problem. which in addition provides an ·
efficient sufficient condition for the distributed problem (Theorem 5). 111is condition
is also necessary for transactions distributed at two sites (fheorem 6).' Therefore this
is a positive result (as opposed to the negative complexity results of Chapter 4). It
also indicates how the difficulty of the problem may be affected by th•: number of
sites at which we distribute it

5

The material is organized as follows. Section 1.2 contains a review of database

concurrency control, in which the various notions and results in the area are briefly

described. Chapter 2 consists of the model definition (Section 2.1) and its simple

properties, Theorems 1 and _2 (Section 2.2). The relation of distributed scheduling

and games is rigorously established in Chapter 3. An upper bound on the complexity

of the distributed problem is derived in Section 3.1 (Theorem 3). The games are

defined in Section 3.2. Chapter 4 is an analysis of the complexity of these games and

contains the main technical result, the lower bound in Section 4.1 (Theorem 4). The

consequences of this result on the existence of schedulers are in Section 4.2. Chapter

5 provides a framework for the study of distributed locking (Section 5.1), and a

characterization of safe two-transaction systems (Section 5.2), Theorem 5 for

sufficiency and Theorem 6 for necessity. Finally, Chapter 6 contains the conclusions

and a list of open problems and directions for further research.

The material on the model definition (Chapter 2) and distributed locking

(Chapter 5) represents a joint effort with Prof. C.H. Papadimitriou. Part of this work,

namely Chapters 2,3 and 4 appear in [16].
..

.·

6

11 A Review of Database Concurrcn.cy Control

A database consists of a set of named data objects called entities. The values of
these entities must at any time be related in some ways, prescribed by the consistency

- requirements (or integrity constraints) of the database. When a user accesses or
updates a database, he may have to violate temporarily these consistency
requirements, in order to restore ·them at some later time, with the specific data
changed For example, in a banking system, there may be no way to transfer funds
from an account to another in a single atomic step,· without temporarily violating the
integrity constraint "the sum of all balances equals the total liability of the barik".
For this reason, several steps of the interaction of the same user with the database are
grouped into a transaction. Transactions are assumed to be correct, that is, they are
guaranteed to preserve consistency when run in isolation from other transactions.

When many transactions llt'CC$. and update the same database concurrently, the
consistency of the database may fail to be restored after all transactions have
. . .

completed. If, for example. transaction 1 consists of the two steps

x;=x-100 ;

x:=x+lOO

and transaction 2 of the single step x: = 1.15 • x, and the consistency requirement is
simply "x=O", then executing transaction 2 between the two steps of transaction 1
turns a consistent database into an inconsistent one. This is despite the fact that both

transactions are individually correct, that is, each preserves database consistency when
run alone. We must therefore find ways to prevent such undesirable interleaving,
without excessively banning the average user delay and other measures of the
efficiency of the system. This is the database concurrency control problem, already
disc1J5Sed extensively in the literature (see [37)).

In this section we present a brief (and by no means complete) review of the
many results on concurrency control. We start by describing the elements of
mathematical models used to study these problems in the centralized case. This
setting will help us to present the theory of centralized database concurrency control
(part-a). We then discuss how distributing the database affects the formulation of the
problem and describe some of the proposed practical solutions (part-b).

7

(a) The centralized case

Intuitively a database cons\sts of entities and a finite set of transactions. Each

transaction is a total order on its actions, which are operations performed indivisibly.

An action p of a transaction T is, in general, an update (i.e., a read and then a write)

of an entity Xp, based only on the values of entities updated by actions that precede

this action in the order of T.
. .

A history, for a set of transactions T={T1 ... Tm}• is a total order representing an

interleaving of all transaction steps. It is therefore a total order respecting all
transaction steps. It captures the order of events at the one site, where the database is

stored. A prefix of a history _h is an initial portion of h. H is the set ·or all histories,

that is. all interleavings for all sets T of transactions.

'Ve are interested in correct histories (i.e. histories that take the "database from a

correct initial to a correct final state). A well-known and generally accepted correct

subset of H is that of serializable histories (SR). A serial history is one with no

interleaving of actions of different transactions. A history is serializable iff it is

equivalent (in the obvious schema-theoretic sense with uninterpreted function

symbols for updates) to some s~rial history. Since each transaction is by itself correct

a serializable history is obviously correct Serializability has been widely recognized

as the right notion of correctness (e.g .• [2,3,4,17,25,31,40]). In fact it is shown in (17]

that it is the most liberal notion of correctness. possible, when only syntactic

information (i.~ entity names) is available.

A scheduler is an algorithm ·handling incoming requests. It might use a priori

information (e.g... the syntax of 1) and run time information (e.g., the order of

incoming requests). The input and output of a scheduler are strings of actions in T. In

fact. one is the history of requests and the other the history of their execution. A

scheduler is said to realize a set of histories C· (where C is a subset of H) if:
(i) for all inputs, .the output is a sequence in C,

(ii) for all inputs in C,. the scheduler grants all requests immediately upon receipt

This captures the on-line and optimistic features of schedulers [25].

These sets C were proposed in [25] as a measure, whereby the performance of

schedulers can be evaluated in a uniform setting. This measure expresse) the class of

all sequences of transaction .steps that can be the response of the concurrency

controller to a stream of execution requests. The richer this clas~;. the fewer

8

unnecessary delays and rearrangements of s~eps will occur, and the greater the
parallelism supported by the system.

A second measure of perfonnance of a scheduler is the computational complexity
. of the decision problems it must solve.

The area of concurrency control was unified in (25) by formulating the problem
as a relation between the two performance measures:

CC: The problem of Concurrency Control is, given a set C of correct histories,
find a scheduler which realizes it and is oompu~onally efficient

A basic theorem in [2S] is ~at such a scheduler exists itT.the prefixes of C are
polynomial time recognizable (i.e. in PJ.

The obvious question in this se~g is whether an efficient seriallzer (i.e., ··
scheduler realizing SR) exists. The answer is yes. Testing a history for serializability,
or a prefix for. whe~er it has a serializable completion, is an easy task in the
centralized case. The algorithm is based on conflict graphs. The conflict graph G(7)

for a transaction ·system T is a niultigraph, with a node for each transaction in T and
an edge between T 1 and T2 labeled x, whenever T 1 and T1 both update entity x.
The order of executions of actions iii a history assigns directions to the edges of
G(1). We call this resolving the conflicts between transactions. This result is the
"folk" theorem of concurrenty control [2,17,25,28,37):

"A history his serializable i_ff it resolves conflicts without creating directed cycles
in G(1). Similarly, a prefix has a serializable completion iff the already resolved
conflicts do not create . a directed cycle in G(7)."

The pioneering work in the field was [7], which also introduced concurrency
control mechanisms such as two phase locking a:nd predicate locks. It was followed by
many interesting contributions (e.g. [2,13,31]). A number of concurrency control
mechanisms were compared in the uniform setting of the parallelism measure C
introduced by [25], where C~SR. Moreover it was shown, that if we distinguish
between read and write actions then deciding whether n history is scri.1Jizable (i.e. in

.•

9

SR) becomes NP-Complete [25].

A very common way for implementing concurrency control is locking. In this

method each entity is equipped with a binary semaphore (its lock) and transactions

. synchronize their operation by locking and unlocking the entities that they access. In .

fact, variants are possible in which locks of different kinds are defined, and certain

kinds may coexist whereas others inay not (e.g. shared or read locks, intention locks

[13]). The lock-unlock steps are inse1ted in a transaction according to some locking
policy. A locking policy may have the property that, if all transactions are locked

according to it, then any execution respecting the locks is guaranteed to be

serializable. Such a locking policy is called safe.

Given a transaction system T, there are certain well-known locking.policies that

can be applied to it. One is the two-phase locking (2PL) policy [7]. In it we insert
locks surrounding the accesses of all entities, in each transaction subject to the
following rule: The last entity to be locked is locked before the first entity is

unlocked. Thus the transaction is divided into two phases: the locking phase, during

which locks are acquired but not released, and the unlocking phase, in which locks
are released but not requested. In an extremely conservative interpretation of this
policy, we could lock all entities before the first step, and unlock them after the last
More reasonably, we could request locks for entities at the first step that they are

accessed, and release locks at the end of the transaction. In fact; it is shown in [17]
that the latter interpretation of 2PL is the best possible concmTency control, when
syntactic information is acquired in an incremental, dynamic manner. It was first

shown in [71 that· 2PL is safe (though deadlock-prone).

If the entitits are unstructured (that is, transactions access them in all possible
patterns) then 2PL iS the best possible locking policy. Suppose, however, that the

entities form 8: ~. and are accessed by transactions as follows:.
(i} A transaction accesses a subtree, whose root is the first entity to be accessed (after,

of course, it is locked).
(ii) After thi~ when an entity is locked, its parent must be locked and not yet

unlocked.
Then this locking policy, called the tree policy is shown in [30] to be both safe and

deadlock-free. This holds for the more general digraph policy of [39]. In fact, the·
latter is generalized in (39] to the hypergraph policy which, it is proved, is the most

general possibJc safe and deadlock-free policy.

10

Safe locking policies were characterized in [39). The limitations of the parallelism
that can be provided by locking were investigated in [26). Safety of two-transaction
locked systems can be efficiently decided [21]. by employing a geometric
methodology reminiscent of that used by Dijkstra for studying deadlocks [6]. Besides
its independent interest and elegance, the two-transaction solution is the building
block for resolving the general case. It turns out that a locking policy defined on d>2
transactions is safe iff all of its two-transaction subsystems are safe, plus a
combinatorial condition. This combirt~orial condition turns out to be NP-Complete,
but it is simple enough to have some interesting corollaries. For example, all specific
locking policies mentioned above can be shown to be safe as immediate
consequences of the condition.

(b) The distributed case

The assumption that the database is stored at one site is not always true ..
Distributing the database .among various sites might be neces.ury and .even desirable. ·
In fact the current trend in technology is towards distributed databases
[2,3,4,28,35,36].

In· a distributed environm~nt the transactions, histories and prefJ.Xes become
partial orders and the scheduler consists of many communicating sequential
processes, one at each site. The model presented in. Chapter 2 abstracts ~e relevant
properties of transactions, actions,· histories, prefixes, and schedule~ It extends the
parallelism measure of schedulers, the concept of serializability and conflict graphs to
the distributed case. The new elements are. that the scheduler uses message passing
between sites and that the conflicts are partitioned into the conflicts at every site. 'The
problem of Distributed Concurrency Control (DCC) can be formalized as was tliat of
Concurrency Control (CC). A rigorous treatment of this problem will require the
selection of a formal system. in which to express distributed algorithms e.g. (9,15,24).
Such a system, with the. least possible restrictions, is selected in the next chapter.

The problem of concurrency control has been examined by designers of
distributed databases and various solutions have been proposed Because of other
important considerations in a distributed environment, concurrency control is
viewed (and rightly so) as only one of a number of goals of such systens (e.g. other
problems are, optimal partitioning of the database, distributed query prJcessing [12],

------- -----

..

11

properties of the communication medium, importance of deadlocks between sites

[22,23], reliability of updates [14]}. What is not clear from these involved distributed

algorithms is, whether the distributed version of concurrency control, by itself, is a

more complex task than its centralized version. This in fact is the subject of the

present study.

A survey of distributed database concurrency control algorithms is contained in

[4]. These algorithms are classified into methods using transaction timestamps to

resolve conflicts [19] and methods using locking (particularly the two phase locking

rule) [7]. The methods are compared on the basis of the three measures indicated in

Section 1.1 (i.e. parallelism, complexity, communication). with an. additional

distinction between delaying or aborting requests that cannot be safely granted.

Another issue that is jnvestigated is the ~ffect of having conflicts between read and

write actions or write and write actions. There are methods, which cannot be

classified into this timestamp v.s. locking scheme (e.g. voting methods used in [36]).

There are also experimental comparative studies [10,20).

A concurrency control method, which stands out among all these algorithms is ..

that employed by SDD-1 [2,3]. The reason for this is its preanalysis of a-priori

information (i.e., the structure of the conflict graph) in order to enhance parallelism.

An obvious queStion is. why should not a similar preanalysis be used to enhance the

communication .between the processes of the scheduler.

Finally let us mention a new r~search direction, which developed from the

distributed· problem. but is important even for the centralized case. It is tacitly

assumed that there is one version of each entity in the database and an update

creates a new version making the old one obsolete. It might be possible to use older

versions in addition to the conflict graph, in order to perform concurrency control.

This is done by changing the se·mantics of "read" and "write" (e.g., Reed's rule [27],

before-and-after values [32]). This change in the model can have profound

consequences, since it fotroduces a spac~parallelism tradeoff (i.e., by using more

versions the sets of interleavings C that can be realized by schedulers can be

enriched).

u

2 A l\1odcl of Distributed Database Concurrency Control

This chapter contains the definition of our model for distributed database
concurrency control. Th~s model generalizes the centralized model. is simple and can
be used for the analysis of all practical solutions proposed to date.

2.1 Model Defmition

A distributed database is a collection of sites. Each site ba5 its own processor and
data. The sites are interconnected by a network and are controled by a distributed
database management system {DDBMS). In Fig. 2.1 we show the· architecture of a 2-
site system; horizon~ arrows join modules of the same distributed p~
Fonnally, a distributed database is de.tined as follows:

Definition 1: A Distributed Database Design (DDD) is a quadruple <GD. Data.
Stored-at, IC> whe~: .

(i) Gn=(V,E) is a graph, where every node corresponds to a site and every link
to a two-way communication link between sites.

(ii) Data is a set of variables (or entities), deno~ed {x,y.z, ... }
(i.e. plzysical data items).

(iii) Stored-at : Data -+ V is a function that detennines the site. where each
physical data item is stored

(iv) IC is a set of integrity constraints on the values of the Data.a

Note that multiple copies of the same logical data. item are considered as different
physical data items storeq at different sites. The fact that they are copies and must
remain identical for reasons of consistency is· part of the integ~ty constraints, and is
not treated separately.

The users interact with the database using transactions. In our model a transaction
is a distributed program. not identi tied with a particular site.

.•

13

Definition 2: A transaction T, in a given DOD, is a directed acyclic graph (dag)
T=(N,A) such that:

(i) every node p is associated with one site of the system, site(p) and with an
entity Xp stored at that site.

(ii) all nodes associated with the same site are totally ordered in A.

A transaction system Tis a set of transactions {Ti}.o

Note that it is assumed that transactions are correct programs (e.g. update all
copies of the same logical item in order to preserve the integrity of the database). We
denote the partial order imposed by a transaction Ti on its actions as >Ti·

Definition 3: The nodes of a transaction are the actions performed by the
transaction. The semantics of an. action p is the indivisible execution of the following
two steps

tp := Xp
Xp : = f p(tp.--.tq) where q ranges over all actions that are ancestors of p in

the transaction of p. ·

Here the t's are temporaries (i.e., a workspace local to the transaction) and the
x's are physical items in the database. The fi's are uninterpreted function symbols.D

Hence the nodes of transactions stand for indivisible actions. We do not specify
the details of the exact nature of the computation perfonned by each action. Instead
we view an action p of a transaction T as an uninterpreted function symbol fp, with
one output and l{ql q >T p}I+ 1 inputs. The transactions are in fact program
schemata. where all updates are treated by the concurrency control mechanism as
uninterpreted updates. Designing the database (i.e., deciding how many copies of
each item there are and where they are stored) and writing correct transactions (e.g.,
which copies to update, which other integrity constraints to satisfy) are problems at a
higher level than concurrency control, and are not treated here.

14

Figure 2.1 System Architecture

. . :· .. . - ...

1

8
1 5

2

I

3 2 1.

(a) e I
(b) i

I
I

1 4 1

; 2 (c).

Figure 2.2 Transactions

15

The particular model of actions used was chosen for its clarity. Other models,

such as those illustrated in examples 2 and 3 below could as well have been used, to

produce results similar to those of Chapters 3 and 4.

Example 1: Consider the transaction of Fig. 2.2(a). Actions 1,2,3 are perforffied

at site 1, actions 4,5 at site 2, and 6 at site 3. The actions performed at the same site

are totally ordered. The actions are updates as in Definition 3, so every node can be

associated with a variable and the site this variable is stored at. This model

generalizes the centralized model of [17).

Example 2: Consider the transaction of Fig. 2.2(b) with actions (1,2),(3,4),(5,6)

performed respectively at sites 1,2,3. If p is odd it is a read action with a readset of

data items stored at its site. If it is even it is a write action with a writcset instead, and

· this update depends o~ all readsets (e.g., action 6 has writeset w6[x,y] and depends

on readsets R l[w], R 3[u~v], RS[x], where w is stored at 1, u,v at .2. and x,y at 3). This

type of actions and transaction is used in SDD-1 [2,3].

Example 3: Consider the transaction of Fig. 2.2(c), where action j is performed

at site j (there is oajy one action per site). Dataset(j), of arbitrary cardinality, is

updated based on its previous values and those of datasets of ancestor actions. This is

a very simple model that makes the centralized version trivial (a transaction is an

action), yet it presents interesting problems in the· distributed case.

An edge in a transaction T between actions at different sites (called a cross-edge),
denotes both temporal precedence and a transfer of information (i.e., in Fig. 2.2(a)

update 5 needs data from update 1). These cross-edges correspond to user-defined

messages, which the system tnust service.

A history is a description. of a set of transactions and the process of their

execution on the system. In a distributed system [19) it is in general impossible to tell

which one of two evei:its occured first. (because communication is not always

instantaneous). Because of this uncertainty~ we describe the execution order of the

actions by a partial order. If two events are incomparable in this partial order, any

one could have preceded the other. There are two restrictions on the partial orders.

First, what happens at every site is totally ordered; this is consistent. with the

centralized problem and guarantees that the result of the execution is uniquely

determined as in the case of individual transactions. Second, user-specified

precedences arc always respeclcd. Formally:

16

Definition 4: A history is a pair <T,,,), where T= {Ti ,1 <i<m} is a transaction
system and .,, is a directed acyclic graph (dag) on the nodes of the transactions Ti
such that:

(i) Nodes p with the same site(p) are totally ordered. .
(ii) For any transaction Ti and actions p,qe: Ti and p >Ti q we have that p> .,,q

(where> tr denotes the partial order imposed by tr). a

Definition 5: A prefax of a history h=<T,w> is a pair <T,a>, where a is the
induced subgraph of" by a subset of its nodes such that. if action pE:a all ancestors q
of p in ,.. belong tO a.C

A history may be viewed as a special case of a parallel pr~ schema (see Fig.
2.3). The resulting schemata and the rigorous treatment of their equivalence under
Herbrand interpretation (25) closely- resemble the centralized case. .

Definition 6 :Two histories h1 =<T.•1> and h2=<T.w2> are equivalent (h1:=::h2)
iff their schemata are strongly equivalent (that is equivalent under the Herbrand
interpretation of the function symbols and variables).a

Let H denote the set of all histories. Recall that a partial order can be considered ·
as a set of -total orders (those ·compatible with it). Let H+ denote the set o(all
histriries (T,.,,.), where ,, is a total order. Therefore a history represents a particular

·subset of this basic set H +. The histories with only transaction-defined cross-edges
(arcs between actions at different sites) are maximal wheri considered as sets of total
orders. Yet histories can have other cross-edges also (e.g .• arc (4,6) in Fig.2.3), whose
presence restricts the allowable total interleavings of actions. The goal of concurrency
control is to recognize on-line large sets of correct total inter1eavings.

17

(x) (z) I

~
start start

I

~)~
i
i

3 4 (w) I
T1

T
2

6 j
t1 .. x t3 .. z I

(a) transactions x .. f1{t1) z .. f3(t3,t1}
I

x.y smr-ed at site A
z.w stored al site 8 I

/
1.

14 .. x t5 .. z
I

J< .. f4(t4,t5) z .. 15(15) I
'

4 5 I
6 l 2 t2 .. y l6 .. w

I

y .. f2(t2,t1)
I

(b} a rnstory
.. f6(t6,t5) l

I

end end

(c) its schema

Figure 2.3

18

Since individua1 transactions are correct (i.e., take the database from a correct
initial to a correct final state), histories in which transactions are executed one after
the other (serial histories) are correct. Also those histories that are equiva1ent to
th~m, called serializable, are correct We denote the set of serializable histories by.SR
(SRt;H).

Definition 7: A history h is serial iff
(i) The execution of actions at each site introduces a total order of transactions at

that site (i.e. there are no .transactions Ti,Tj h•j with actions p,q€ Ti, re Tj performed
at the same site with p preceding .r and r preceding q). ·

(ii) If Ti precedes. Tj at one site it doeS so at all sites. where both transactions
have actionslJ ·

Definition 8: A history is serializable ifT it is equivalent to a serial history.a

In the next section we will show that deciding serializability is an easy task. This

task becomes NP-Complete if the model with read and write actions (instead of
updates) is used· (25}. Even in that case SR has interesting efficiently ~gnizable
subsets (i.e.. DSR[25]). What is signjficant, is that deciding whether a history is
serializable in a centralized or distributed model are practically identical tasks. We
disam this similarity in the next section.

As in the centralized case, synchronization is necessary only between actions of a
transaction system which operate on the same data (i.e., conflict).\ These conflicts are
represented by the conflict graph G(1).

19

Definition 9: For the transaction system T={Ti, l<i<m}, the conflict graph . .

G(1) is an undirected multigraph (V,E), with a partial order ~i associated to the
edges incident upon each node i, such that:

(a) V ={ii 1 <i<m}, with node i corresponding to transaction Ti.

(b) E is a multiset of edges. E= { copies of edge ij I for every copy of ij there is a

distinct pair of actions {p,q} with pETi, qET} i:;t:j and Xp = xq}

(c) For two edges incident at node i we have ij >i ik iff the action in Ti
corresponding to ij is identical to or prec~des the action in Ti corresponding to ik.D

Note that an edge in E denotes a conflict between two transactions. Every edge ij

in E corresponds to a_pair of actions {p,q}, which update the same variable. Based

on where this variable is stored we can partition E into as many multisets as there are

sites (e.g., "red" and "green" edges for two sites). For an example see Fig. 2.4.

An ordered mixed multigraph G=(V,E,A,{>i}) is a mixed multigraph with Ea

multiset of edges, A a multiset of directed edges and a partial order >i at each node i

of the edges incident at the node .. Conflict graphs are such objects with A=f!J.

Since a conflict (or an edge in G(1)) corresponds to two actions at the same site.

and a history h=(T,.,,) has a total order of the actions at each site, we can say that a

history resolves all conflicts. That is, if edge ij corresponds to the pair of actions

{p,q}, pETi, qETjt i:;t:j, we direct ij from i to j iff p>.,,q.

Definition 10; A prefix <T,a> of a history assigns a direction (ij) to an edge ij of

the conflict graph G(1) iff all histories, -which have < T,a> as prefix, assign ij the

direction (ij). Thus .a prefix <T,·a> determines an assignment of directions to some

edges of the conflict graph.

Conversely an assignment of directions to edges of the conflict graph is
. .

realizable by a prefix, if there is a prefix of a history assigning these directions and

no others.D

Thus a prefix < T.a> determines a unique ordered mixed multigraph G«(1),

which is G(7) with svmc of its edges directed.

~o

a.! si~ 2

! (:x.)

2(J)

3('1)

'tC1)
1i

(w)

·. -r.
'(1A1)

J(2)

ca.1

. Figure2.4
{a) Transactions (~.g. action 1 updates x)
(b) Conflict graph

'2
I:\
1f:\

\
\ r ' \ ~ .., ' ' t

' ' 1 I
~· . '=-',
•'
~

(b)

•red.•
. " M•i _._ ___ ,~

21

Up until now the_ distributed problem appears to be a straight-forward
generalization of the centralized case. What is considerably more complex in the
distributed case is the subject of schedulers. and their design to meet performance
specifications. For an exposi~ion of the relatively simple theory for the centralized
case see [25).

Our schedulers will be distributed algorithms characterized by the parallelism
they provide and by their efficiency. We will measure parallelism using sets of
histories C, that is subsets of H. The efficiency of the schedulers will be measured by
the worst-case number of steps they execute and the worst-case number of messages
they use. We will be interested in the following special C's:

Definition 11: Consider a set of histories CkH. such that for each hEC the only
cross-edges (edges between action.s at different sites) are defined by the transactions.
Such a C we shall call a concurrency control principle.D

C is chosen in sucli a way, that all hEC are correct. The larger C is, the higher
the level of para1lelism supported by this concurrency control principle. Examples of
concurrency control principles are serializability and serial (one-at-a-time) execution.
Obviously, the former supports moi·e parallelism. Thus concurrency control
principles are very natural classes of histories measuring parallelism. although not all
subsets of H can be expressed as such.

A scheduler Q is a distributed algorithm (We do not explicitly specify the
model of computation, although we shall use a concurrent language notation as
needed). It consists of a set of communicating sequential processes [15), one for
each site. Its instructions may involve the following:

1) Local Computation
2) Receiving an execution request for an action q.
3) Granting an execution request of an action q.
4) Sending a message to another site (i.e. send(<mcssage>))
5) Receiving a message from another site

22

Each history h corresponds to a set .{h +}of total orders (those that do not
contradict h}. Let h + denote any total order which respects the partial order of
history h. If C is a set of histories, we let c+ = {h + ,hEC}. H is the set of all

. histories. An element of H+. is a string, that is, a mapping from {1,2, ... ,n} to N,
where N is the set of all actions and INI = n. In fact it is a pair < T. string>, but we
omit T when it is obvious from the context. The jth symbol of h + EH+ is
denoted by hj +.

We thus assume that there is a total order on the arriving execution requests.
This is a simplifying analytical tool (a formalism of the familiar notion of a
timestamp) and is not used by the scheduler, whose processes still perceive the
world in terms of partial orders. We therefore have a global clock, whose ~cks
are the arrivals of execution requests. This sequence of execution requests is the
input of the scheduler. What is the output of a scheduler? It cannot be just a
sequence of actions, as the relative· ordering of the granting of requests with
respect to their arrival is also important The output of the scheduler is an n·
tuple of strings S=(s1.s2.-·.5n)E(N*)". Here 5.i denotes the sequence of granted
requests between the jth and G + 1)-st (after the jth ifj = n) arrivals of requests. .
N* is the set of all strinp constructed. from the set of actions N and includes the
empty string. The concatenation of the n strings, conc(S), should be in H +.

Thus a scheduler Q, besides being a distributed algorithm, is a
nondeterministic mapping, (i.e. a set of mappings) from H+ to (N*)n.

For each total order h +, Q will produce a stream S of granted requests: one
nondeterministic elem.ent is th~t of the various communicalion delays.. A set of
communication delays is a function d, which ~igns to each execution of a send
instruction by a process of Q a nonnegative real number. Not all functions are
delay functions. The delay function has to be feasible, in that an action p must
be executed before a successor q of p, in· its transaction, can be requested. Note
~at the zero fanction d=<i is always a feasible delay function. Therefore the
mapping <ld:H+ -+{N*)D is well-defined for each feasib~ delay function d,

assuming that local compubJ.tion proceeds at a rate far faster than the arrival of
requests and messages.a

23

Consider a set of histories C~H. Scheduler Q realizes C if all outputs of Q are

in C- and thus presumably correct- and, furthermore, if Q is fed with a history in C

and all delays are 0, then Q grants all requests without making them wait It is

argued in [25] that these are traits, in the centralized case, of all schedulers that are

on·line and optimistic (two intuitive properties shared by all existing schedulers). The

same arguments are applicable to justify Definition 12, where total orders and strings

of actions are used to formalize this intuition.

F.ach process makes decisions about whether to grant or delay pending requests.
These decisions can only depend on the information available to each process

(i.e., T and the requests that it knows have been granted or are pending). This can be
viewed as a consequence of.the power of the set of instructions used (see above).

Definition 12: ·We ·say that Q is a realization of C ifT
(a) conc(Qd(h+))EC+ for all hEH, and delay functions d.

(b) Qo(h +)=(h1 + ,hn +) for all hEC.o

We illustrate the above definition in Fig.2.5. If h +EH+ is the input to Q there
are many possible computation paths (i.e., sequences of events in the system). This is

because of the essentially random delivery time of the messages. So every path has

associated with it the delays of messages used along this path and has output

(s1.S2 •. -.sn)E(N*)11. The conditions are that the granted requests always form a
correct history (a) and, moreover, if requested actions form a correct history and all

delays are zero, then the requests must be granted immediately (b). these conditions

must hold for all computation paths. So there is a difference between the use of the
term nondeterminism above and that of classical complexity theory.

There also is a feedback effect from output to input (i.e., requests cannot be

made if their ancestors in transactions have not been granted). This problem; which

is due to our choice of an input-output description could restrict the set of inputs to a .

particular scheduler. Yet all prefixes of histories in C must still be inputs to all

. schedulers realizing C. This is also true for all prefixes not in C that are minimal

(their prefixes are in C). These will be the only inputs of interest in Theorem 3.

24

•, • ,.\r ...
. ';,· . · .. t ... ·~

- -·- ,..,, ...

Figure2..5

Definition 13: The computational complexity of Q is the worst-case sum of the
counts of all Ioc&l computations by Q over all p~ of Q. The communication
complexity of Q is the worst-case count of all send instructions executed by all
proces,,es of Q.a ·

Note that apart from the messages generated by the scheduler processes of the
system there is also user defined communication, implied by transaction cross-edges
(e.g. some action at site. 2 needs data from site 1). Tills communication is assumed
free, since it is unavoidable, and can be used to pass informa1fo11 between sclleduler .
processes at no coSl.

A scheduler Q is polynomial time bounded (or computationally efficient) if its
. .

computational complexity is bounded by a polynomial in n (i.e., n=INI. N is the set
of actions of 1). This means that all possible computation paths have computational
complexity (number of local steps) bounded by a polynomial in n.

.• .

25

We may even augment tlie computation power of our schedulers if we allow . .
them, in their local computation steps. to consult an oracle (11] for a hard
computational problem (say an NP-Complete problem). Many of our results will still
hold for such schedulers.

Finally in order to characterize communication complexity we define the
following classes M c:Cb):

Definition 14: For a prefix <T.a> of C and an integer t»O we say that :
<T.a>E},/J._b) if there is a realizatipn Q of .c such that the total sum of send
instructions executed at all processes of Q after < T,a> is b or less.

Let b*(1) be the ·least b for which <T,!25>EAfcCb). A scheduler whi~h achieves
b*(.7). for every T. is called communication·optimalD

Note that MJ..b)=0 if b<O and 1lfcCb)~A./c(b+ 1). This definition describes the
communication used if both proc~es of the scheduler are started with initial
infonnation <T.a>.

What Definition 14 says is that a priori information about the syntax of the
transactions could be used to enhance the communication performance (worst-case
number of mes.5a1es used at run time) of the concurrency control mechanism. This is
analogous to the conflict graph anaiysis used· to improve parallelism in SD.0-1 (2,3].
A communication optimal scheduler is the limit in m~e performance attainable.
subject to a parallelism requirement C.

In Section 2.2 we will show that our model is a simple generalization of the
centralized case. anci that there exists a computationally ;eff~nt·scheduler realizing
SR. In Chapter 3 we wfil, .recursively characterize·. the· cJ~ M c!..b) and prove that
there exists a communication optimal scheduler realizing SR. Finally in Chapter 4 we
will examine the complexity of deciding whether a prefix is in MsR(b) and prove
that. if N~PSPACE. no scheduler can realize SR and be both computationally
efficient and communication optimal. This will be true even if yve restrict our system
to two sites, and our transactions to sequences of six updates each.

26

2.2 Properties and Limitations of the Model

The model presented in S~ction 2.1 consisted of extending the definitions of
centralized concurrency control by introducing. where . necessary, partial orders
instead of total orders and by partitioning the conflicts according to sites. A more
technical part was involved with defining the· class of allowable distributed
schedulers. We can now state the distributed problem we will examine:

DCC:· The problem of Distributed Concurrency Control is, given a set of
histories C (which we can prove correct), find a scheduler, which realizes Candis
efficient (in terms of both·· 1oca1 computation and communication).

Similarly to [25] we can prove:

Theorem 1: C has a computa~onally effi~ent realization ifT the set ·or prefixes of
C is in P (Le., deterministic ·polynomial time).

Proof: Since we ai.n expend an indefinite amount of communication between
the different modules of a scheduler, the problem reduces to the centralized one {one
site gathers all.information and makes all decisions). Therefore the constnictive proof
of (25] is applicable;. For arbitrary delays this construction gives us outputs in c+ ;
for 0 delays Definition 12(b) is also satisfied.a

Since the analysis we will be presenting deals primarily with the assignment of
. .

directions to edges of the. conflict graph G(1) by a prefix <T.a>, we need a
characterization of realizable assignments (see Definition 10)

27

Lemma 1: Given a conflict graph G(7)=(V,E,9J,{>)). An assignment of
directions to a multiset X of its edges, producing the ordered mixed multigraph
(V,E\X,Ax.{>i}) is realizable ifT,

(a) If ij E X and· is ~irected from i to j and ik >i ij then ik E X.
(b) Ax has no directed cycles (i1i2i3 .. .ini1) such that:

iii2 >i2 i1iJ. i2i3 >il iJi4, ... , inil >n i1i2.

Proof: "only if' Given a prefix <T,a> of a history let us first assign the direction
(ij) to any edge ij in G(1), which corresponds to a pair of conflicting actions {p,q},
under the following conditions:
(1) pETi, q€Tj
(2) p€a

(3) if qEa ~en p>trq

Obviously all histories, which have < T,a> as prefix re5olve. these conflicts in the .
same way. Moreover if an ·edge ·has not been given a direction then both its actions
p',q~ are not in a. We can complete <T,a> with sufllxes of histories that have p',q' in
both orders. This proves that the directions. we have constructed are exactly those ..
assigned by (T,a);. - .

Because of causality both conditions (a) and (b) obviously hold for the directions
constructed above.

"if' Given an assignment Ax we construct the following digraph (Vo.Ao)

Vo (vertex set):

If (ij)EAx and ij corresponds to conflicting actions {PA}, pETi then pEVo ..
H pEVo. pETi then all ancestors of p in Ti belong to Vo.

Ao (arc set):

H p,q belong to the same Ti and p>·nQ then (pq)EAo.
Ir p,q corresi>ond to aii (ij)EA x then {pq)EA().

Since (b) is true (Vo.Ao) is acyclic and since. (a) .is true transaction precedences
are respected. Thus (Vo.Ao) has the same nodes as some prefix and respects all its
conflict resolving orderings (see "only if' part of the proof). By topologically sorting
the nodes of (Vo.Ao) we can produce the desired prefix.a

28

We will now characterize the serializab~e histories and prove ~hat the prefixes of
SR are polynomially recognizable (in P).

For the model of actions we are using (i.e., tp: =xp; xp: = fp(tp·····tci····)) we say
that action p reads a variable x from q in history h = < T.• >. if Xp = Xq = x and q is the
ancestor of p closest top in "· The reads x from relation in our model is always a
chain of all actions p, for which Xp=x. The chains for all x's give us the reads·from
relation. It is easy to see that we can represent the reads-from relation for a given
history h = < r,.,, > as a directed multigraph D(h), with nodes corresponding to

transactions and edges corresponding to e4ges of these chains (labelled by the
variable read and the action reading it). In D(h) we can ignore arcs of the form (i.i)
because we can deduce these from T.

Since histories are prograril schemata. we have from standard schemata
equivalence theory [25]:

Proposition 1: Two histories h1 =<T.•1> and hi-=<T.•2> are equivalent iff · '·
D(h1}=D(hi) (i.e, they have the same actions and the·same r~from relation).a

. . .

For other models of actions it is necesmy to distinguish between live_ and dead
transactions (25]. In our model, all transactions are live. Obviously for a serial history

hs· D(hs) is acyclic.

The following theorem (an obvious generalization of the centralized case) is yet
another variant of a veritable "folk" theorem f3,17,25,28,40]:

Theorem 2: A history h is serializable ifT it resolves conflicts without creating
...

directed cycles in G(7). Similarly, a prefix has a serializable completion ifT the
atready resolved conflicts do not create a directed cycle in G(T).

Proof: Let D(h) represent the reads·from · relation for h. If h~hs fo.r h8 serial
then D(h)=D(hg). which is acyclic. If D(h) is acyclic we can find a total order of .
transactions by topologically sorting it and then consider the serial history which

29

respects this total order on all processors. This serial history has the same D(h). The

only difference from the centralized case is that D(h) can be partitioned into as many

subdags as there are sites.

It is easy to see that D(h) is acyclic iff G(7) with the assigned directions is

acyclic. A scheduler, recognizing serializable interleavings and knowing of all

requests (operating in a centralized manner), would arbitrate requests on-line by

making sure that the assignment of.directions to the conflict graph introduces no

directed cycles. This ain be done in polynomial time. Therefore there is a

computationally efficient scheduler realizing . SR.a

. It is easily seen from the above analysis that histories with the same total orders

on each site are equivalent, and cro~'."edges .are· not need~d. for deciding

serializability. These edges, between actions.at different sites, can be used in relating

liistories and performance of distributed schedulers.

Let us end this Chapter with a brief discu~ion on the properties of our model.

The advantages of this model ~re:.

(a) generality: All models of transactions and schedulers proposed have the

properties of our model. Variations in the format of transactions (i.e. defining

· separate read and write actions) do not affect the results that will be presented.

{b) mathematical simplicitly: All cases are treated uniformly (i.e. copy

equivalence is just one more instance of the integrity constraints). All questions are

reduced to questions on concrete combinatorial objects (e.g. conflict graphs}. There

are no hidden assumptions since the performance measures (parallelism, computation

steps, messages) and the mod~.1- of distributed algorithms are well-defined

(c) coqipatibility: The model is an extension of the centralized case. In Section

5.1 we will be able to express distributed locking policies in the model, just as was

done in the centralized case.

(d) correctness: Serializability is not the only notion of correctness, but it is

certainly the most generally accepted one. It is intimately related to the a priori

information about the syntax of T.

.30

On the other hand· there are some disadvantages:

(e) Restricting attention to the three measures of performance: We ignore goals
which are important for distibuted systems but hard to treat mathematically· (e.g.
reliability of the update mechanism. which is usually handled by two phase co1Mi11
protocols[l4D.

CO The assumption that all syntactic information is known at run time:
Infonnation about transactions is not always available before the transaction is
initiated. There is a . whole spectrum of po~ibilities, between total syntactic
information being known before run time (static case) and the completely dynamic
case, in which information is acquired for each action separately as it is presented for
execution.

{g) The measure of parallelism used (i.e., the size of the set C{;H) is a crude .
approximation of the average .user delay (25).

These disadvantages are shared by most fonnal work on database concurrency
control

-------- ---~-------------- -~--- ------------------

31

3. Communication·Optimal Schedulers and Games

We will now state and prove a theorem, which relates the structure of histOries
and their prefixes with the number of messages necessary and sufficient to achieve a
performance C.

3.1 A Recursive Characterization of Communication CompJe,xity ·

As defined in Section 2.1 the performance measure for parallelism C is a set of
histories {i.e. C~). In this section we require C to be a concurrency control principle
(see Definition 11). Concurrency control principles are very natural clnsses of

· histo:ies l'T!easuring parallelism (examples are serializability SR, and serial execution
S). Let PR(C) be the set of prefixes of histories in C. Two properties of Care used in
our recursive · characterization of communication complexity. First, if C is a
concurrency control principle, then for each: h€ .C the only cross-edges (edges
between actions at different sites) are defined by the transactions. Second. we have ·
an efficient (polynomial time in n) test of membership of a prefix in PR(C) (for
example, if C =SR Theorem 2 provides us with such a test). If no such test is
possible, concurrency control is quite hopeless, even in the centralized case (25).

Let us briefly review the notation used. A prefix is denoted as a pair <T.a>,
where T represents Ehe transactions (a priori syntactic information) and a the order
in which some actions were executed. We use · a for < T,a> when there is no
ambiguity about T. Also (/Jla)i denotes the prefix of /J that contains a and all actions
of p at site i (the p;ojection of p at site .i given a). So a is a prefix of /J and (/Jla)i.

Finally we use MJ..b), where Al~b)~ PR(C), for the set of all prefixes <T.a.> of C
such that there is a realization of C which, when struted with < T.a.>, sends b or fewer
messages.

32

Theorem 3: Let C be a concurrency control principle, <T.a> a prefix in PR(C), .
and b a nonegative integer. Let i denote an index ranging over the site number
iE{l.2}. Then the following are equivalent:

(I) <T.a> € k!cf..b)

(II) Y <T,p>
{

(I) <T,p> ¢ PR(C) !3) Yi <T,(/J/a)i> € Mcf..b)
if then

(2). Yi <T.(Jlta)i) € PR(C) 4) 3i <T.(Jlta)i> ~ Mcf..b·2)a

~ formally (II) reads as follows:
"For all continuations.a1,a2 of er such that a 1 is a with some actions at site I added,
and «2 is a with some actions at site 2 added. and such that their least common
continuation /l is not a prefJX of C (while a1,a2 are) the following holds:
<T.a1>.<T.a2>E i\ltf.b) and one of them is in MJ.b-2)."

We will first give an intuitive interpretation of Theorem 3 (which is illustrated in
Fig. 3.1). Consider a scheduler, which realizes C. starts from <T.a> and receives input
requests < T JJ>. Each one of the scheduler processes ~ i€ {1.2}, can see (/JI a)1, without
sending any messages. This is because process i (e.g. p~ 1 in Fig. 3.1). knows a

(e.g. 0 in Fig. 3.1), receives the Bctions of fl to be executed at site i (e.g. actions 4 and.
5 in Fig. 3.1) and using the transaction-defined mes.uges (e.g. action 5 needs data
from action 6 in Fig. 3.1) can learn about some actions at the other site (e.g. actions 6
and 8 in Fig. 3.1).

. A situation that forces communication is one where the projections of the input, .
that each process sees directly, seem correct (i.e. <T.(Jlla}.> € PR(C)) and therefore
must be executed on-line to achieve the goal C, yet the real input could be incorrect
(i.e. <TJJ> (PR(C}). For the example in Fig. 3.1. a=flJ and there is a unique
minimal "bad" continuation /l. We use «i as a shorthand for (pta)i• when there is no
ambiguity.

Theorem 3 tells us that these are the only cases for which we need
communication between scheduler processes; furthennore to guard against such
"bad" p's only one (p!a)i (say (p!a)i* or ai* for short) has to be in A../cf..b·2). The

communicntion protocol is built in such a way, that the corresponding site i* will ask

33

for the approval of the other site in order to execute ai*· There is therefore a
balancing of the send instructions among the two processes of the scheduler, with
each send instruction guarding against a "bad" /J.

The rigorous proof of Theorem 3 is given below. In one direction it entails an
adversary argument and case analysis. For the other direction we give an explicit
recursive construction of scheduler processes that realize C, within the prescribed
number of messages. The basic idea of this construction is the following: Let a1.a2 be
correct continuations of a and projections of an incorrect /J. Let Qi (i = 1,2) be a
message-optimal protocol, given that ai has been executed. Then the Qi's can be
combined to produce a Q that is message optimal, given that a has been executed If
Qi uses more messages than ~· then the process of Q at site j will have the send
instruction guarding against /J.

(c)

~·it '2
34

~le i

T
t.(2)

3('Jj
T

.f~ . ,
. T'

V.t/
/

Lt<~ '('I) /
A

T' 1

(b)

48 (1)

't(v)

-4

I

(al

I
I

I
I

CJ(x)

18 8

6

Figure 3.1
(a) Transaction system (u,v,w at site 1, x,y,z at site 2) (e.g. action 1 updates x)

(b) Conflict graph (i.e.--.. - =conflicts at site 1, ---- .. = conflicts ~t site 2)

(c) Illustrating Theorem 3. Above: prefixes. Below: assignments of directiOns.

--------------- ---------- ------

9

i

35

Proof of Theorem: Let ai denote (JUa)i. Theorem 3 recursively characterizes
<T,a> E AfJ..b), based on prefixes <T,a1>. <'r.a2>. which properly contain <T.a>. The
containement is proper because of conditions (1),(2) of the Theorem. The last actions
of <T JJ> at sites 1and2 ·(p1 and p2 respectively) are concurrent and not contained in
a. Consequently a1 containing p1 and a2 containing p2 are not prefixes of each other.
Note that in order to terminate the recursion we use the following facts: if b<O then
Mtf..b)=0 and if h is a history in C then hE A!J..O). For b=O the statement of the
theorem becomes: "< T,a> € J./ J..0) iff .no prefixes < T JJ> exist satisfying conditions
(1).(2) and (3)".

"l=>II" We will now prove that if p exists with properties (1),(2) and (3) and

{<T.a1> (Altf..b)} V {<T.a2> ft M~b)} V {<f.-1> • Mib .. 2) A <T.a2> (Mc(b-2)}
then <T.a> ¢ Mc(b) •. This is obvious ifone·ofthe two r.-niembers of the above or
clause is true. If both are false but the third member is true we· will prove that
communication involving two messages is forctd;~between the execution of <T.a.>
and that of <T,a1> or <T.a2> for all sehedulers teaftzingC. Prir this we will use the

~ .

general specifications for a programming syStem' as oUtlined in Section 2.1.

Consider the· following situation that the process of the SCheduler at site 1 (site 2)
can face. It receives requ~t P1(p:i)!''while·krt9Wirrgithat cdtaln requests <T.1> have
been granted with t=a.1-{p1} {y=a2-{p2}). •tFbtt t:O··cfecide whether to grant or
delay 91 (p2). If it grants the request. then accordins,:to its l~al view of the input the
result would be corrc~ct Its .local view Qf the input ~ be the actual input. that is it

could be the case that the ,input history is in C.clt has <1:a1> {<T,a2>) as a 'prefix, and
no other requests have been submitted at the other site yet Therefore the scheduler
cannot delay p1(p:z) for the purpose of waiting for SQJllO future request submitted at
site 1 (site 2). It has the following two options. Firfil, the process of the scheduler at

site 1 (site 2) can either grant p1 (p:z) directly or after receiving a m~ge from the
process at the. other site. Second, it can inform tfie Other. site of p1~ or it can
withhold· that inf~ation. These t\Vo Options expressed 8 sets of instructions in our
programming system gi.ve rise to the ortlifour possible cases for site 1 (site 2) to
handle p1(p2}. These are cases Al-A4 (citses BI-84 are symmetric).

36

Case Al: if (input as seen at site 1 is in PR:(C)) then grant p1

In this case the process at site 1 does not wait or in form site 2 of its
decision.

Case A2: if (input as seen at site 1 is in PR(C)) tben grant p1
send (message to site 2)

In this case the process at site 1 does not wait but infonns site 2 of its
decision. The message can p<)tentially contain all available infonna~on at site
1. The order of these instructions can be interchanged.

Case A3: wait (for message from site 2)
if (input as seen _at site 1 is in PR(C)) then grant p1

In this case the p~ at site 1 waits for infonnation from site 2. but
does not send any information. Interchanging the order of these steps will be
treated similarly with case Al

Case A4: . send (message to site 2)
nit (for message from $ite 2)

if (input as seen at site 1 is in PR(C)) then grant p1

In this case the procCss at site I informs site 2 of its problem, and waits
for an answer before proceeding. Any permutatio~ of these steps also uses two
messages.

. We will now reach a contradiction by examining two possibilities.

(i) If either the process at site 1 uses the instructions of case A4 or the p~ at .. .
site 2 uses. the instructions of ca5e B4 then two messages are consumed in executing
either <T.a1> or <T,a2>. Since we assume these prefixes belong to MJ.b) and not to
M J.b-2) and they are prefixes of < T.a> •. we will have to use (b-1) + 2 = b + l>b
messages at least to achieve our perfonpance goals starting from < T.a>.

(ii) For all other combinations of cases of instructions we will also find
contradictions.

Using case Ai instructions for site I and case Bj instructions for site 2, for
ijE {1,2}, we obviously have situations where the input prefix is <T,p>«i:PR(C) and

37

is (incorrectly) executed without rearrang~ng requests.
In any one of the remaining combinations either site 1 uses instruc.tions of case

A3 or site 2 uses instructions of case B3. We will reach a contradiction using AJ
instructions (B3 is symmetric). Let the input history h* be in C and have <T.a1> as
prefix. When the request for p1 will be. submitted to the proces.5 of the scheduler at
site 1, the process will wait for a message from. the other site, which will determine its
decision (granting p1 o.r making it wait for future requests from other transactions).
But when actions or< T,a1> are being ex~uted at site 2 no such message can be sent
This is because according to site 2 both <T.a1> ~nd <Tp.2> are pos.5ible (proper)
continuations and decisions cannot be made excluding .o~e or the other. So the
message site 1 is waiting for will be sent when desceJ1rlants of <T,a1> arrive at site 2.
Thus· we force action p1 to wait for some action wh;ch is notits ancestor ~n h*, and
therefore h*, although in C, is not executed on-line as required by Definition U of
Section 2.L

.. II=>I": Under the conditions of the theorem we will construct a realization of
C achieving the desired performance.· That is we will present a scheduler, which will
consist of two processes (i.e. LOCALSCHEDi(<T,a>,b), i= 1,2) and recognize on-line
all histories hi C with <T.a> as prefix, without executing more than b ·send
instnictions in the worst case. The algorithm is written in a programming system with
the capabilities outlined in Section 2.1.

The LOCAISCHED processes (see Fig. 3.2 for i = 1) communicate with
transactions and with each other using messagu The messages received by a process
are ·buffered in a FIFO queue. The variables that the scheduler processes use for
recording the state of the system are the state variables si• ri, tj, Pi• and b. The·
variables mi (modes) are used to synchronize the .. two processes, so that when one
process asks the other a question it expects an answer before e~amining other
requests. The execution of send instructions is contf9led by the co.nditions of
Theorem 3. The procedures Gran~ graut requests. Finally the procedures Delay1,

·Dela)·*i handle the cases where the input is discovered to be incorrect Let us explain
the above features in some detail.

38

LOCALSCHED1{<T.a>,b)
1. s1:=<T.~>; r1:=<T.a>; t1:=flJ; p1:=flJ; m1:..:_norma/;
2 \Vhen queue nonempty do ·
3. if m 1 =normal

then M: =first message of queue (delete it from queue);
else wait (for message of type Q or A); M: =first such message;

4. (Based on M assign)
s1: =(state of 1);

r1: =(state of I that is also known by 2);
P1:=(set of pending requests, at most one per site);
t1:=(state of 1 resulting if .. pending requests were granted);

5. (Respond to message M) do ·one of three cases (R,A,Q);
6. od end

case R:
if t1 (PR(C) then Delay1(p1) else ~.

case A:

if 3/J s.t. {t1 =(plr1)i} /\ {pfPR(C)} /\ {(JJ/r1)i€PR(C)} /\ {t1€McCb·2)}
then m1 =wait; send <2,Q,p1.s1>;
else s1: = t1; Grant1CP1.S1);

iC p1 is in s1 then Grant1(p1.si); LOCALSCHED1(s1,b-2); else Delay*1(p1,s1);

case Q:

if t1E PR(C) then s1:=t1;

if m1 =normal then send <2,A,flJ,s1>;
if t1E PR(C) then Gnint1(p1,s1); LOCALSCHED1(s1,b-2); else Dc1ay*1(p1,s1);

Figure 3.2 LOCALSCHED at l

39

(a) Messages: The messages received by the scheduler process at site 1 (for those
received at site 2 interchange 1 and 2) have the following format, (i.e. there are three
types of messages): <l. type, requested action, state at site 2>.

R (for type=request). This is a message from a transaction to ·the
scheduler process at site 1. It contains a request for an action p at site 1. State
information about site 2 is included (else it is l(J), when data from site 2 is
necessary to compute p. This happens . when an ancestor of p, . in the
transaction of p, bas b~ executed at site 2. Then the transaction defined
message can be used to transmit information about the state at 2. EXamples of
such messages are <l,R,p,fii> or <LR,p,l(J).

Q (for type=question). This is a message from the scheduler process at
site 2. This process needs site l's approval in order to decide whether to ·grant
some request p. when it is at state 52. An example fqr such a message is
<l,Q.p.si>.

A (for type= answer). This is a message from the scheduler process at site
2 answering a_ type Q message of. the process at site 1. Site 2, having fttll
knowledge of the system, determined whether the pending request at site 1
should be granted. All necessary information has been incorporated in the
state at 2. An example .for such_ a message is <I,A,flJ.si>.

(b). State: The state of each LOCALSCHEDi · (sJ is the prefix in PR(C). that the
process at site i.knows has been executed. For example with C=SR the state is G(1)
(see Definition 9 Section 2.1), ~ith a. partial as.5ignment of directions that can be
realized by a prefix. For this case correctness is guaranteed if ac,yclicity is maintained
in the directed part of the conflict graph. In addition to si WCAISCHEDi keeps an
estimate of the. state of the other scheduler process ri. With this estimate it keeps
track of the part of si that the other site might not have heard of. Every time a

message is received or a request is granted ~i. and ri are consistently updated. Finally
Pi is used to store pending requests and ~ the state that would result if these requests
were granted. The variable b keeps count of site i"s ~te of the number of send
instructions executed or the number of messages of ty~ Q and A.

(c) Synchronization of the scheduler processes: The modes (mi) are binary
variables used by the scheduler processes to guarantee that every question is
answered. A mode is either nomzal, indicating that new· requests arc processed. or

40

wait. indicating that the proces5 at i needs ~ answer in order to ~ecide on pending
requests and handles no requests until it receives one. As can be seen from Fig. 3.3 a
type A message is never received when the mode is normal. The two sites never
deadlock (wait for each other indefini~ely), because of the effect of A and Q type
messages on the mode.

(d) Communication Protocol: Every incoming request is examined (if the mode
is normal) and if it renders the local state incorrect it is delayed. If its execution leads
to a correet local state (1i) we determine whether send instructions should be
executed We first examine whether it is possible for a malicious adversary to give as
input to the other site requests. also leading to a correct local state for the other site.
but such that the total input is incorrect If this is not pas.5ible the request is granted
If, on the other hand. this is possible some strategy has to be worked out for
communication. In that case we also test whether 1i€ MJ.b·2). If this is not so the
request is granted without infonning the other site. If this is so. site i sends a Q
message in order to ask for the other site's permi$ion to proceed.. If it receives a go
ahead then we notice that, after sending two mesmges. both local processes are in
fact LOCALSCHfil.(Sne~bnew> with common new state and new message
parameters. This makes it possible ·to give an inductive proof of correctness.

Three decision questions are actually answered:
{1i€_ PR(C)}?
{does a "bad .. fJ exist with 1i=(projection of fJ at i given rJ}?
{~€ Mc:(b-2)}? .

(e) Granting requests: When LOCALSCHEDi decides to grant a request it
allows the transaction to update the variable of the requested action. Also if this
transaction wilt send a message to some other site it will incorporate in that m~e
the local state 5i· All this is achieved using Granti(pi,sJ (i.e .• if Pi contains a request
for an action at site. i. then let the transaction of this action perform its update and
use si in any messages it senc:15 to the other site. else no operation).

(0 Delaying requests: If a request is received when the mode is wait the request
remains in the queue and will eventually be processed in its order of arrival. It is
delayed at most by the communication delay of a Q and an A message. If on the
other hand the scheduler discovers that the pending requests (at most one at each
site) would lead to an incorrect execution then it delays one pending request. There

41

are two cases:

For only one site 1i~ PR(C). Then the proces.5 at i delays the pending
request at i by putting it at the end of its queue (busy waiting). The scheduler
continues functioning as if the input were correct This is accomplished using
Dclayi(pi) (i.e .• if Pi contains a pending request at i, then put it at end of i's
queue. else no operation).

.
Both sites discover that 1if PR(C). This happens through an exchange of

a Q and an A message (one pending request at the site that sent the Q
message) or of twq Q messages (one penQ.ing request at each site). In this case
Delay*i(pi.sJ is use~ One pending request is delayed. If there are two
pending requ~ the younger one is delayed and the older one granted. Since
consistent timestamps [19] can always be assigned to events ,in a distributed
system. there is no problem in detennining the younger of the two pending
requests. Both processes of the scheduler know tha~ the input is incorrect and
that a common prefix s* has been executed. In this case no more send
instructions have to be executed to realize C (see Det: U Section 2.1), because
a predetermined correct completion of s* can be executed

Figure 3.3 The mode at 1

I
I
I
I

I
I

42

Let invlen(<T.a>)={number of actions in 7}{number of actions in a}

For the conditions (I) and (II) of Theorem 3 we have proven that (1) implies (II).
We will prove that (II) implies {I) by induction on invlen.

Induction hypothesis-. For in vi en(< T.a>) = j we have that, if (11) is true then {I) is
true and moreover aft.er < T.a> has been executed LOCALSCHEDi{< T.a> ,b), i = 1,2
realizes C and sends at most b m~ges.

For J=O this is trivially true since <T.a> is a history in C, there are no more
requests left and <T.a>€ Af J..O)c Mtf..b). So we assume the hypothesis is true for j<j*
and (II) is true for <T.a> with invlen j* and some b (that depends on <T.a>). Since
we have to prove en. we have to exhibit a realization of c that after <T.a> sends b or
fewer messages. We consider the scheduler Q that realizes C by submitting all
requests to one site, except when the input prefix <T.a> has been executed From
that moment on Q uses LOCALSCHEDiC < T.cr>,b). i = 1,2. We need only consider the
operation of the scheduler after <T.a>. There are two cases:

Case A: h€ C. First we will examine the case where no send instructions are
executed and then the case where some are executed.

A.l: No send instructions are executed Then the output has to be h and
no request p waits for the execqtion of a request which is not an ancestor of p
in h (Def. 12 is satisfied). This is because on every request p the test (Is new
state in PR(C)?) is always true and involves only local computation. The
reason for this is that by definition of C, as a concurrency control principle. h
has no crossedges that are not forced by the transactions. Thus the part of the .. .
input each scheduler sees is automatically a prefix of h. Therefore it is

unnecessary to wait for a message from the other site to verify that what the
local scheduler sees is indeed a prefix of PR(C). Finally note that b>O.

A.2: Two or more send instructions are ex~uted (the first two resulting in
an exchange of a Q and an A message or two Q messages). Up to the first
exchange the previous arguments. of A. l, hold. In order to execute se11d

instructions a prefix f1 must e~ist that satisfies the conditions (1).(2) of
Theorem 3 and has the new state ~ of a scheduler process as a projection.

43

Also 1j must be in Mc(b-2), which c~ be decided since il.zvlen(~)<j* (by the
induction hypothesis and the "only if'. part of the proof). Finally since
Al ~b-2) is not empty b> 2. Aft.er the exchange LOCALSCHEDi(snew·b-2)
i= 1,2 is used .and we can invoke the induction hypothesis since
inv/en(snew)<j*. So h is outputed on-line with at most 2+(b-2) send
instructions after <T,a>.

Case B: hf C. First we will prove that the output of the scheduler Q is a history
in C (B.1). Finally that no more than· b send instructions are executed (B.2).

B.l: Let the output {the granted requests) be a history h* not in C. Then
it has (perhaps more than one) prefixes, called y, such that y(PR(C), y has
<T,a.> as prefix and y is minimal {all its prefixes are in PR(C)). Let us call q1
and q2 the final ·actions of 1, not in <T.a>, which are at sites 1 and 2
respectively. At least one of them must exist Without loss ofgenerality let site
1 grant q1 before site 2 ~rants q2 (if y has a qi). Since y is minimal we have
that either q2 does not exist, or q1 is an ancestor of q2 in h* or q1 and q2 are
concurrent in h* and then 1 is an example ofa /J prefix of Theorem 3. If q2
does not exist then, when the ·process at site 1 receives q1 it cannot grant it,

. . .. ,/

because it sees from the information available to it that the result would be
incorrect If q1 is an ancestor of Qi in h*,' (that is there is a transaction
crossedge making q1 an ancestor of q2 in h*)then site 2 knows q1 has been
executed (through a transaction defined message) and delays q2• Finally if y

is an example of a fJ prefix of Theorem 3, then some exchange of two
messages has to take place before q2 and q1 are granted. By (II) one of the
projections of y is in /v/c(b-2), b>2, and thus, before~both requests are ganted,
one of the processes sends a Q message. If this eKhange results in
LOCALSCHED~snew·b-2) i= 1,2 being initiated we. c.an use induction to

argue that y ·cannot have been executed. If the exchange results in Delay•i
i =1,2 being called, both processes output a correct predetermined completion
of a common state s*. Thus we conclude that y cannot have been executed ·
and the output of the scheduler is always in C.

B.2: Since b>O, if no se11d instructions are executed we have no problem.
If send instructions are executed, let us loot ~t the first round of
communication (two Q messages or one Q and one A message). If as a ~ult
of this exchange LOCALSCHE[)i(s11cw·b-2) i= 1,2 is initiated with sncwE.

'·

44

klt!.b-2), we' know that invlen(snew)<j* and b~2 (See A.2). By induction no
more than b-2 send instructions are used after this and again our goals are
met. If as a result of this exchange Delay*i i= 1,2 is initiated at both sites
(which is possible since the input hE C), then we kriow that b> 2. This is
because (II) holds and a "bad" fJ exists. After both sites call Delay*i they have
a common states• and use no more send instructions, because the completion
of s* is predetennined and can be recognized locally. Thus no more than b
send instructions are ever execµted.

This completes the proof of Theorem 3.a

Corollary 3.1: If· C, a concurrency control principle, has a computationally
efficient realization, then it has a communication-optimal realization, which can be
implemented in space polynomial in n (n =number of actions of 7).

Proof: It follows from Theorem 1 that. since C has a computationally efficient
realization, recognizing if a prefix is in PR(C) can be done in polynomial time in n.
Consider the following realization Q: ·

Q: (1) Each site computes b* from T, where b*=b*(7)=min{b/(T,flJ)€ Mt!.b)}
(2) Site i uses WCAI.SCHED~<T,tzJ>,b*) (i=l,2)

By the constructive proof' of Theorem 3 Q is a realization of c. using the
minimum (b*) number of messages. From this proof we have that ·four
computational tasks are perfomied by WCAISCHED. These are:

(a) Given ~ does t€ PR(C)?
This can be perfonned in ·polynomial time (and therefore space).

(b) Given tE PR(C), i;tj, and rSt, is there a fl such that:
{t=cP/r)i} A {.B(. PR~C)} A ·{(p/r)j€ PR(C)}? .
This can be perfonned in nondeterministic polynomial time (and therefore ·space).

(c) Given t€ PR(C), b>O, does tE AfJ,.b-2)?
Using 111eorem 3, the polynomial characterization of PR{C) and the theory. of
alternation {5], we have that both this task and step (1) of Q can be implemented in
polynomial space.

---~~---~·-· ------------

45

(d) Finally if Q discovers that the input is incorrect and ~clay*i is called at both
sites then a correct completion of s* can be efficiently computed. This can be done
based on a predetermined ordering of the actions and the test of membership in
PR(C).

_This completes the proof of the existence of a. communication-optimal scheduler
realizing C in polynomial space and exponential time.a

We will end this section with some comments on Theorem 3.

(1) Message lengths: Let us examine the length in bits of the messages sent If
111 =n there are at most n! states and in order to uniquely code a state we need

. .
O(nlogn) bits. Also we never send more than 2n messages. In the proof of Theorem 3
we have used an inefficient format for messages < ... ,si>~ Although for clarity of
presentation we used~ (O(nlogri) bits) in our messagm, we could have as well used
5i \ri (i.e., each site will hear of every action at most ooce). Thus in total O{nlogn) bits
will be used in the worst case.

(2) More than two sites: The two site case, while being the simplest distributed
configuration is ·sufficient for the results of Chapter 4. If more sites are used and the
mode of commlJ?ication is a broadcast mode, Theorem 3 can be easily generalized.
On the other hand a network of°sites mitkes optimal communication a more difficult
problem, since it implicitly adds the problem of appropriately routing the memges.

{3) Persist.ency: We have. examined schedulers that realize C and consist of two
processes. one _at each site. EaCh of these processes knows of some pending requests
and a prefix of a history in C that has been executed (its stale).

We call su~h realizations of C persistent if whenever a process i discovers that
the execution of a pending request Pi would make its state si incorrect, it delays Pi
indefinitely and proceeds as if only the .requests in si had been submitted.

If PR(C)€ P there are persistent polynomial time schedulers realizing C. as is
obvious from the proof of Theorem 1 and [25]: On the other hand the scheduler of
Corollary 3.1 is not persistent For some incorrect inputs Delay* is used. This is
because persistency requires that messages are sent even after the input is discovered
to be incorrect To illustrate this suppose our scheduler starts with < T.a>E Al c:Cb) and
receives a 0 bnd" input <T.p> with projections <T.a1>E Afc(b-2) and <T.a2>ctAlc.{b-2).

46

It is possible for < T,a2> to have been execut~d when the schedule~. at the expense of
two messages, disco\·ers the input to be incorrect If we want our scheduler to be
persistent, starting from < T.a2> it has to use more than b-2 send instructions.

This difference between on-line computationally efficient and on-line
communication efficient algorithms. which accept the same strings, arises because of
the nature of resources we are trying to optimize. In one case we wish to achieve
performance C at asymptotic computation cost O(nk), in the other at fixed (say n/lS
or 200) communication cost .

From the proof of Theorem 3 it is easy to see that:
"<T.a>E AfJ..b) ifT there is a persistent realization of C, which if the input is in C
sends at most b messages after <T.a> ...

We have related communication complexity of schedulers achieving parallelism
C, with the computational problems <T.cr>E MJ.b)? (which are in PSPACB).

If the input history is in C and ~T,S>E MJ.b) a user's delay D is bounded by:
b(communication delay/memge) > D ~O.
If the input history is not in C there is a user who has to wait for other users.

The approach of Theorem 3 and the formulation of the scheduling problem are
pretty much independent of concurrency control and serializability. The application
to database5" provides practical motivation and analytical tools (ie.. mixed ordered
multigraphs). In fact the entire methodology can be extended to distributed on·line
computation of combinatorial functions of two integers, which in a distributed . .
environment- are stored at two different sites (38].

47

3.2 Games related to Distributed On·line Computation

In this section we will defive decision problems for the sets of prefixes, which
were recursively characterized in the previous section ..

Distributed scheduling is related, using M c(b), to a game on prefixes. PREFIX,
whose rules are displayed in Fig. 3.4. In this game Player I corresponds to a
malicious adversary who wishes to force communication. His . move is a "bad"
continuation p of the current position a. Player II corresponds to the two
cooperating scheduler processes. Each one of his choices i* indicates, which of the
two processes has the responsibility of guarding against the "bad" continuation p (by
questioning the other process. before proceeding). Player I wants· to prolong the game
as much as possible, whereas Player II tries to bring it to an end as soon as possible
(other than that there is no winner or looser).

· From Theorem 3 we can deduce the following property of communication
optimal realizations of C:

Corollary 3.2: The minimuni number of messages sent l,ly a communication
optim al realization of C equals the length of PREFIX(<T.eJ>) if both players play
optimally (we. call this the minimax length of~J>l\EFIX) .

. .
Proof: Follows from Theorem 3 and the theory of alternation [5]. ·Note that

althougi'l in general we define P~EFIX from an arbitrary initial position <T.ao>, we
are in fact interested in a0=0. T represents the static (a-priori) information on
transaction schemata. that is used to optimize communication .. Thus { < T.a>f M cCb)?}

is .equivalent to {Is the minimax length of PR:{::FIX{<T,a>} greater than b ?}.o

In the following section we will analyze the game PREFIX for C=SR. If we
choose serializability (SR) as our concurrency control principle the board position
becomes the conflict graph G(1) with some of its edges directed. The moves of
Player I become choices of directions to undirected edg~ of 0(7). Much insight into
PREFIX in this case is gained by studying a game played on mixed graphs called
CONFLICT and displayed in Fig. 3.5. This game is our departure point in the
PSPACE-Complctencss proof, given in the next section.

48

PREFIX(< T,a0>}

Initial position: For fixed C, a prefix <T.ao>

Position before player I's move: A prefix· < T,ti>

Player I'S move: Select a prefix <T,p> sucA that

aJ ~ is a continuatio~ of a. with projections· ai={.B!a)i i=l,2
(2) «1.a2 are prefixes of C
(3) fJ is not a prefa of C

Pkzyu H~ mtr1e: Select i*E {1,2} and set a:=ai•

Players I and II take turns nuwing. Player JI alwtzys moves wlten I does.
Player I's goal is to 11rolong tlte game as macli as possible.
Player II's ·gOlll is to e111i die gtU11e as soon as possibl&

FigureJ.4
. The game PREFIX

·,,

49

CONFLICT(Go)

Initial position:. A mixed graph G0=(V(}t£o,Ao)
(f.o. partitioned into "red" and "green")

Position before player J's move: A miXed graph G=(V,aA)

Player.J's nwve: Select an assignment of directions· (Ax) to an XcE such that

(1) ·R(H) is the "red"("green'l subset of X

(1) ARUA, AHUA have no directed cycles
(3) AxUA has a directed cycle

Player ll's nwJ1e: Select Y € {R,H} and set E: = E\ Y and A: - AUAy ·
'

Players I and II take turns moving. Pia.ye' II always mt>Pes when I does. ·
Player I's goal is to pn:Jlong the game as maci as posnble.

Player II's goal. is •· end tlie game a sobn ·as possible.

Figure 3.5
The game CONFLICT

so

CONFLICT+ (Go)

Initial position: An ordered mixed multigraph G0=(V0,fo,Ao,{2:!'i})
(E.o partitioned into "red .. and "green")

Position before player l's move: An ordered mixed multigraph G=(V,E,A,{~i})

Player I's move: Select a closed assignment (Ax) to an X~E such that

(I) Ax h~ projections Axr~r
(2) AxruA, Ax&t.JA have no directed cycles ·
(J) AxuA has a directed cycle

Player /l's move: Selecty€ {r,g} IUlll set E:=E\(edges in Ax!} and A:=AUA.,C

Players I and II take tlll'llS moving. Player II always mopes . when. I does.
Player l's goal is to prolong the game as macA as possill/&
Player 0} goal. is to. end tlle game as soon as possi/JI&

Figurel.6
~e game CONFLICT+

-------- ----------

51

The game CONFLICT abstracts. in the legal moves of Player I. only the rules of
PREFIX derived from an unordered conflict graph (fl has to create a cycle in the
conflict graph, while (flt a)i i = 1,2 should not). In fact the assignments of directions to
edges of G('J) in PREFIX s~ould also correspond to prefixes p and (/JI a)i i = 1,2 .(see
Lemma 1, Section 2.2). CONFLICT can obviously be played on multigraphs with no
modifications of its rules.

We will now generalize the game CONFLICT. to CONFLICT+ (see Fig. 3.6),
where in addition to the rules of CONFLICT a precedence rule is observed.

The input to the new game CONFLICT+ (G) is an ordered mixed multigraph
G={V,E;A,{>J). (V) is the vertex set, (E) is the multiset of undirected edges
partitioned into "red" and "green". (A) is the multiset of directed edges and {>i} are
partial orders (e.g. all undirected edges incident at node i form a partial order ~i).
All conflict graphs (see Def. 9. Section 2.1) are such cons~cts. If A'#:0 some
conflicts have been resolved and the >i's correspond to transaction partial orders.

Definition 15: Given an·ordered mixed multigraph G=(V,E,A,{>i}), and an
assignment (Ax) of directions to a multiset of edges XcE, we call this assignment
closed· (with respect to G) when:

If ijE X and is directed from i .to j and ik >i ij then ikE X.a

Given a conflict graph 0(1) and an assignment of directions to some of its edges
(Ax). that has no directed cycles, then Ax is realizable by a prefix in SR iff it is
closed. This follows easily from Theorem 2 and Lemma 1 (see Section 2.2).

Let the undirected edges ofG be partitioned into "red" and "green", and let Ax
be a closed assignment .of directions to XC:E. It is easy to see that the following
closed assignments are uniquely detennine.d. They are called the projections of Ax.

Axi (where i= "red" or "green"):·

(1) Axic: Ax
(2) Axi is closed
(3) all i edges of X are given directions in Axi

.·

52

If {>i} become the empty partial orders for every node, CONFLICT+ becomes
CONFLICT (i.e., X=RUH, Axr = AR, Ax& = AH). The real interest of

CONFLICT+ is its relation to PREFIX. A prefix <T.a> in PR(C) determines a
unique mixed ordered ·multigraph aa(1) (see Def. 10, Section 2.1). In the next
section (Lemma 2, Section 4.1) we will show that for C=SR, PREFIX{<T.a>) and
CONFLICT+(aa(1)) are equivalent An example of CONFLICT, where an optimal
game leads to four moves is presented in Fig. 3.7.

• • •
' • ' !

1 • t
I
I

_! iO I • • •

T
• • • t • !

I • • • •

Ca).

;

(c.)

(e)

. ""!
. I

• I

!

• I
I
I

' I

Figure3.7

..
I .
I

I

I • I ..

'

(a) G(7) initial position (-"red", - - - "green")
(b) rs fust move
(c) II chobses "red"

{d) rs second move
(e) II chooses "red"

(t) no legal moves for I

(h)

DI
(dJ

l
I

(SJ.

SJ

We will close this section ·with a brief discussion of an important special case of
the question {<T.a>E Af c(b)?} namely b=O. This problem is obviously in NP,
because all we have to do is guess a prefix satisfying conditions (1),(2) of Theorem 3
and check these conditions in polynomial time.

In the next section (Corollary 4.2, Section 4.1) we will prove that
{<T.a>EMc(O)?} is NP-Complete. This leaves us with the problem {<T.0>E JVJ.O)?}.
We say that the conflict graph G(1) of a transaction system T contains a mixed cycle,
if it contains a cycle with edges e1 and ei. where e1 corresponds to a conflict at site 1
("red") and ei to a conflict at site 2 ("green").

Corollarv 3.3: For C=SR, if G('J) contains no mixed cycle then <T.0>E Mc(O).
This is also a necessary condition, whenever the transactions· in T have no
Clm'Sedges.

Proof: The sufficiency is obvfous from the characterization of SR and conditions
(1),(2) of Theorem 3. The neceSsity for transactions with special structure is easy for
two transaction systems. For n:iore transactions we can use a straightforward
induction on the number of transactions (nodes of G(1)).D

. -

For general transaction systems T and C-SR. the oomplexity ofdetermining if
{ < T.0>E M c(O)?} is an interestin~ open question. For example all systems in Fig. 3.8
are in A.ftf._0}, yet their conflict graphs contain mixed cycles.

4 i I ~ 2 --- -----11 \

\
I

3
..... _____ _

2 2

Figure 3.8 G(1)'s for <T.0>€ Mtf..O).

54

4. The Complexity or PREFIX

· 1l1is chapter contains our main result. which is an analysis of the game PREFIX
for C=SR.

4.1 PREFIX is PSPACE·Complete

We will now prove the following theorem:

Theorem 4: Let C=SR. For input T and b~O. determining whether the
minimax length of PREFIX(<T,ta>) is greater than b is PSPACE·Complete.

All the games we will examine in this section are in PSPA.CE. This follows
easily from the analysis in Chapter 3. Therefore we will present only the reduction of
a well known PSPACE·Com,lete problem to PREFIX. This is the problem QBF
(i.e., what is the truth v&Jue of a qu~tified boolean fonnu1a)[ll,33,34t

QBF:

Input:. A quantified .boolean formula In o~ the form:

3x 1 VX23X J·-llu-1 "Xn F(x i .X2, ••• .xJ
where F is a. boolean formula without quantifiers in 3CNF (3-conjunctive

. normal form) of the variables x1,xn (n=even}.
Question: Is 1n true?

QBF can be viewed as a game between two players, the 3·player and the v
player. These players take turns assigning values to the variables in the order these . . .
variables are quantified in 18 (i.e., from left to right). First the 3-player ~igns a
value to x 1• then the V-player assigns a value to x2 etc. The 3-player wins if the
values assigned to the x1's i = I. n make F(x 1 ,x2, ... ,x0) true.· otherwise he looses. The
3-playcr has a winning strategy iff 10 is tme. This PSPA.CE·Comp/ete problem is
used in most reductions to games, [5.11,33,34,8,29).

---- --~--

SS

Another game on boolean formulas used in our proof is AE·QBF. This is similar
to QBF only the v-player mak~ _all his moves before the 3-player.

AE·QBF:
Input: A quantified boolean formula In of the fonn:

VX2 VX4 ... vxn3X13X3 .•• 3Xn-1 F(x1,X2,···.Xn)
where F is a boolean formula· without quantifiers in 3CNF (3-conjunctive
normal fonn) of the variables x1, •.. ,xn (n=even).
Question: Is 1n true?

AE-QBF is ITf-Complete, where IT/ is a class of the polynomial time hierarchy
(33,11] correspon~g to one V3 alternation (see Fig. 4.1).

Figure4.l
The po1ynomial time hierarchy

"2./=Il/=11/=P

for all QO

11k+/=F-" :.

'Ek+f=NPU

nk+f=co-'E1+!

pY ={L: there is a language L'€ Y s.t L is. P- time Turing reducible to L'} ·
NPY ={L: there is a language L'E Y s.t L is NP- time Turing reducible to L'}

56

Our reduction of QBF to PREFIX will proceed in four parts. which we outline
below from (I) to (IV).

(I) We show that. CONFLICT, as defined in Fig. 3.5, is n/-hanl . We
accomplish this by reducing AE-QBF to CONFLICT in Lemma 1. The input graphs
to CONFLICT are mixed (i.e. they may contain directed edges).

(II) We generalized CONFLICT to the game CONFLICT+, that has in
addition to the ·rules of CONFLICT a partial order on ~dges incident at a node. The
definition is such that all possible conflict graphs G(7) can be inputs to

CONFLICT+. In Lemma 2 we prove that the game PREFIX (for C=SR) is a
special case of CONFLICT+.

(III) We prove that CONFLICT+ is PSPACE-Complete, even when the input
is a graph without directed edges. We accomplish this in Lemma 3 using many of the
constructs of Lemma 1.

(IV) Finally we prove that PREFIX(<T.ta>) is PSPACE-Onnplete by showing
that the graphs in Lemma 3 are in fact C<?nflict graphs for some transaction system.

In Lemma 1 we will examine the game of CONFLICT (see Fig. 3~5). Its input iS
a mixed graph G=(V,EA), where Eis partitioned into "red" and "green". Player I
picks an assignment of directio~s for a "red" subset of E{AR) and for a "green"
subset of E(AH). The choices he make$ must be legal (~e. AUAR,AUAH have no
directed cycles, AUARuA8 has a directed cycle). Player II chooses "red"("greenj
making the new directed board position AUAR(AUAff} from A. Player I wants to

make the game last and Player II wants to tenninate it

The direction of an undirected edge e can become fixed during the game in two
ways. First if .Player I chooses e as part of AR(AH) and Player II chooses
"red''("green"). After this e becomes part of A. the directed section of the board
position. On the other hand, even if e has not become ·part of the directed (A) before
Player I makes his new move, it is possible for A to contain a directed path between
the endpoints ·of e. Now e's direction is fixed; because it can only be used in one
direction, if Player I's moves are to be legal. It is easy to see that if a move by Player
I is legal AR(AH) must contain edges, whose directions have not been fixed Because .
of this observation the following fact is easily seen to be true.

51

(0) /f G has z "green" edges CONFLiqT(G) lasts at most 2z_ moves. If Player i
makes a move with two "green" edges, whose directions have not been fixed, a move
of "green" by Player II would consume two "green" edges. Moreover if Player I
makes a move with exactly one "green" edge (e). whose difection has not been fixed,
then no matter what the response of Player II is e's direction becomes fixed
(i.e., either e becomes part of the new A or a pa~ is included in the new A
connecting the endpoints of e).

We will use the notation MN for ari undirected edge and (MN) for a directed
edge from M to N. Similarly M1M2 ... Mt will be an undirected and (M1M2 ... Mk) a
directed path from M 1 to Mt. · ·

58

Lemma 1: Given a mixed graph G and a nonnegative integer b, determining
whether the minimax length of CONFLICT(G) is greater than b is n f-l1artl.

Proof: For an arbitrary instance In of AE-QBF we construct the mixed graph
G(I0) using the rules (a) to (d) below. We will prove that In is true ifT the game
CONFLICT can last more than n moves on 0(10).

(a) For every existentiaHy quanti~ed variable xi, i = 1.3 •... ,n-l in I0 a copy of the
graph in Fig. 4.2(c) is included as a subgraph of G(IJ. This subgraph contains 6
directed edges and 2 "red" undirected edges, namely TiDi (labelled with ~) and FiEi
(labelled with 0). Actually this is the graph of Fig. 4.2(b} without nodes Ai,Bi,Mi,Ni.
These are the 3-subgraphs. ·

(b) For every universally quantified variable xi, i=2,4, ... ,n in In a copy of the
graph in Fi~ 4.2(a) is included as a subgraph of 0(10). This subgraph contains 6
directed edges, 1 "red" undirected edge TiDi (labelled with 1) and 1 "green"
undirected edge Fil; (labelled with 0). These are the v-subgraphs.

(c) For every clause of the 3CNF formula of I0 (i.e. F(x1,x2'···,xJ) a copy of the
graph in Fig. 4.3 is included as _a subgTiiph of 0(18). This subgraph contains 35
directed edges and 21 "red" undirected labelled edges. For the·kth clause (uvvvw),

'{starting from left to right in F(~1,x2, •.. ,xn)), which has literals u,v,w, we have seven
possible paths from C.t to Ct+i· Each one of these paths corresponds to an
assignment of values to the.literals u,v,w, of the clause, which makes the ~lause true
(i.e. only assignment 000 is excluded). The assignment can be read from the labels of
"red" edges on the path. Every· one of the three columns, of seven labels each,
corresponds to the po~ible values of one literal. Also for one literal (say u) four
directed edges go to Fu and. three to TU' depending on the iabel of the "red" edge
from which th~ directed edge starts. We call these directed edges (to Fu or TJ
backedges. We use the following rule:

u=xi ==> Fu =.Fi and T0 . Ti
u=..,xi ~ Fu=Tr and T0 =Fi for xi a variable of 10

·The backedges are connected so that if the labels correspond to values of
variables and literals a backedge connects two undirected edges iff their labels are
inconsistent (e.g. x 1 =I, u = -,x 1• a back edge connects T 10 1 and "red" edges with
labels 1 in the column of ~). These are the clause-subgraphs.

59

(d) The graph G(I0) is constructed by identifying nod~s with the same name.
That is Sp's of 3·subgraphs with Sq's of V·subgraphs if p=q. AlsoFP's or TP's of 3- ·
and v-subgraphs are identified with Fq's or Tq's. of clause-subgraphs if p=q. We
also identify C1::;:sm+t· If_there are m clauses in 10 we add the "green" edge

S1Cm+1· .

An example is provided in Fig. 4.4 for the · AE-QBF:
In=Vxz'dX43X13X3 (x1VXzVX3)A(x2VX4V~x3). if we delete the nodes Ai.Bi.Mi.Ni,
i= 1,3 and A13,A12,A34• We will first examine some simple properties of G(l0).

(1) Let G(I,I contain z "green" edges. Then CONFLICT(G(I,)) can last 2z-2
moves and at most 2z moves. Here z = n/2+1. The game can last 2z moves. because
of observation (0) (right before Lemma 1). It can . last always 2z-2 moves, because
Player I can play z-1 times on the z-1 = n/2 mixed cycle$ {Fi~TtDiFi)• i = 2,4, ... ,n. His
moves. are legal no matter what the response of Player ff is.

(2) Let (Si···Cai+i) be any directed path from S1 to Cni+l• not using the
"green° edge S1Cui+i and respecting the ~irecte4 edges in G,{I0). We note that each ...
pair FiS• TiDi, i= U, .. .A fotjns a cutset ~eparating S1 and Cu.+i· Thus (S1 ... Cm+iJ
con.tains F~; or T/J; for all i~J.2,.-,n. · -'

(3) All paths (Si-C.+i> have to contain node C1• If they contain a backedge it
· is easy to see that they have to pass thrpugh C1 at least· two times. Ther~fore simple

paths (containing a. node only once) fS1-.Cm+iJr'do .not contain backedges.

LeLus proceed with the proof of equivalence:

"only if' If In is true then Player I tint mat. ~ moves on the. v-subgrapbs
using the mixed cycles (FifiTiDiFv. i=2,4, ... ,n. The n/2 moves of Player II fix
directions for all the undirected edges FiEi, TiDi i=l.4, ... ,n. His choice of"red" turns
TiDi into (fiDi)-and .fixes the direction of Fifi.to (l;Fi)• (because of the directed
path (fi TiDiFi)• which 00.w becomes part ()f A). This co~nds,to ~igning xi the

value 1. Similarly his c119ice of "gr~n~·-~ f iei in&o (f,1f.t) 8Jl4 fu.es the direction
of TiDi to (Ditv. This corresponds to assigning; xi the ~ue o.

At this point in CONFLICT 2z-2 moves have been made and we can say that
the choices of Player II have assigned values x• i to the variables xi• i = 2,4, ... ,n. Since
10 is trµe there exist values x•i of the variables xi, r 1,3, ...• n-l, which make

60

F(x*1,x*2, •. .,x* n) true. This assignment of values {x*} to variables {x} implies an . .

assignment of values to the literals of every clause { u(x*)} (e.g., u = ..,x, x• = 1
implies u• =0).

Let us describe the n/2+1st move of Plater I. Consider the simple path
(S1 ... Cm+i)*, which consists of the following subpaths in the various subgraphs of
GO~ .

(SkTkDtSt+i> ifx\=l, k=l.2,3, ... ,n. Inv-subgraphs the direction ofTtDk has
been fixed to (f tDk). In 3-subgraphs (T :tDt) is used.
(SkFkEtSt+i> ifx\=l, k=l,2,3, .. .,n. In v-subgraphs·the direction of FtEt has
_been fixed to CFtEt)· In 3-subgraphs (F:tEt> is used.
In the kth clause-subgraph the path from c; to Ct+l• whose labels ar~ the
values assigned tq the literals of the clause by {x*}. Such a path exists since no
clause is assigned the values 000 by {x*}.

We note that, because of the way (Si-·Cui+i>* traverses Y-3- arid clause
subgraphs, the directed edges ofG(l0) and (S1 ... Cui+1)* fonn no diret.'ted cycle. Note
that no backedge has both its endpoints on (S1 ... <;.+1)•. because the labels in the
various subgraphs along (S1 ... Cm+i>* are consistent

Using the rules of Fig. 3.5 Player I picks:
A "green" set H={S1Cm+il and directs it (AH) from Cui+i to S1.
A "red" set R=f'red .. edges in (S1 ... Cu.+1)*} and directs them (AR) along the

path (Si-·Cm + i)*.

This is a legal. move since: ARUA, AHUA are acyclic, ARUAHUA is not
Therefore if In is true CONFLICT can last n + 2 moves.

"if' If In is false we will pr?ve that CONFLICT(G(IJ) cannot last n + 2 moves.
We _will assume CONFLICT(G(In)) can last n+2 moves and reach a contradiction.

The move of Player I, which. has "green" edge S1Cm:+l€ H must be his n/2+lst
move. This is because. if the direction of some "green" edge has not been fixed yet.
any simple path (S1 ... c.n+1) that Player I chooses would make it possible to fix the
directions for two "green" edges. This follows from property (2) of such paths,
proven above, and the structure of the v-subgraphs. Thus Player I must make n/2
rno\'es involving the "green" edges in the v-subgraphs first Moreover any choi~ of
Player II will fix their direction, (by observation (0)). We will prove that there is a.

61

sequence of choices by Player II that will not, let Player I move another time.

Since I8 is false then ..,In is true or,

3X23X4 ..• 3Xn VX1 VX3 •.• VXn-l -.F(x1,X2, ... ,xn)

Let the values of the xi's, i=2,4, ... ,n making this formula true be x*i· For the first
n/2 moves of Player I, each one necessarily involving a single FiEi, whose direction ,
has not beeri fixed, the response , of Player II should be:

lfx•i=O then "green". This fixes the directions ofTiDi and FiEi into (DiTi) and
(Fi~) Tespectively. ·
If x•i=l then "red". This fixes the direction Fi"& into (EiFi).

The n/2+1 st move of Player I is now constnlint;d in several ways in order to be . ~,

legal. First for the "green" set we know S1Cm+l€ ,H~ because itjs the only ''green"
edge, whose direction has not been fix~d. Second for the "red" se.t we know that
{undirected "red" edges of a path (S1 ... Cm+i>l~ R. Finally (S1 ... Cm+l) and the
directed part of G(I0) must not contain a cycle. This path (S1 ... Cm+ 1) must be simple
(no backedges by property (3)) and thus P8SS through ali the subgraphs:

In a clause-subgraph it has to use one of the seven paths.
In a v-subgraph its behavior is constr,ained by the way the directions of edges
Ti Di, Fii; (of which it. contains exactly one) have been fixed.
In a 3-subgraph it is constrained to contain exactly one of TiDi, FiEi. Else
(S1 ... Cm+l) and the directed part of 0(18) would contain a cycle. We extend the
assignment {x*} in the following way for i= 1,3, ... ,n-1:
If (Sl'··Cui+i) contains TiDi then x•i=l else x•i=O.

Thus every candidate path (S1 ... Cm+i> actually corresponds to an assignment
{x*} of values to the variables and {u*} to the literals of F. This assignment can be .
read from the labels of edges along the path. In fact {x•} and {u*} are inconsistent

By the way x*i· i=2,4, ... ,n were chosen every candidate .assignment makes
F(x*1, ...• x• 0) false. Thus a consi~ent assignment {u(x*)} to the literals must make the
literals in some clause (say the kth clause) 000. Our candidate path (S1 ... Cm-tl) uses
a subpath (Ck···Ck+l) in that clause, which bas a label 1 for one of its literals.
Because of the initial connection of backedges, the backedge of that literal. ends at a
node that belongs to the path (S1 ... Cm+i> in a v- « 3-subgmph. Therefore ARUA
cannot be chosen to be acyclic and no candidate n/2 + 1st move of Player I can be
legal. This is the desired contradiction. o ·

62

)
c:,........ !

.. ~I

I
I

I

"r.J:'

. /
Fi ------o··------_El /

(b) 3%, ///

Figure4.2 I

\
\

//
·'

\
\

\

/
/

I
63

Figure4.3 The kth clause subgraph

64

"3 :x, 'V xa. '3 :x3 V x'i { -x1 v 'Xa" :x3) " { ~" x,. "x3)

Figure 4.4 An exnmpJe

.i .
le li

f
t •FZ·

io 1j : t.~

C..z •
fo 1;

.
fo~

.
t to T3 to ~

C3

- -- - ---- ---------------

6S

We will now examine the game CONFLICT+(G), which has as input an
ordered mixed multigraph G=(V.E,A,{~i}). The edge multiset Eis partitioned into
"red" and "green". The undirected edges incident at node i belong to the partial
order > i· The game is like CONFLICT((V ,E.A)) the only difference is that
assignments Ax (corresponding to ARUAH)• Axr (containing all selected "red" edges
and corresponding to AR) and Ar -(crintalnirig an selected. "green" edg~ and
corresponding to AH) must be closed. ·That is: -
if (ij}€ Ax and ilc ~i ij t1iea (ik) or (ti)E Ax (uni~ of course ik already is in A). All

this is described exactly in Defmition lS and Fig. l.6 of ~ 3.2.

As indicated in ·the previous section CONFLICT (see Fig. 3.5) is a special case
of the game CO~RICT+ (see Pig. 3.6), which is important because of its relation ·
to PREf~X: (~Fig. 3.4). The inputs of CONf,UCf+. are ~ightly more general
constructs, (i.e., ordered mixed. multigraph$), instead gf mixed graphs. They are
motivated ftom conflict graphs and realizable assign..'llents of directions to their
edges.

. .
From Definition 10 Section 21 and Lemma 1 section 2.2, we have that a .prefix

<T.«> uniquely determines an ordered mixed mulagrap'h. This is because. given
<T.a> we ~ construct G-C1)"":""(V.E,A,{;;::i}). wHich Is the tonflict graph (G(7)).
with some conflicts resolved (A). some -conflicts unresolved (E), and the transaction
orderinp,. on the.unresolved conflicts. The asqnment of _directions A is closed (with

. . . _ . ., -. - -

respect to th~ conflict graph 0(1)) and moreover if C::SR it has oo directed cycles ·
(see Theotem 2).. ·

..

66

Lemma 2: Given a prefix <T.a> in P~(SR) and a nonnega~ve integer b, then
the minimax length of PREFIX{< T,a>) equals the minimax length of
CONFLICT+ (G«(T))~

Proof: Let us recall the following facts:

(a) An assignment of ·directions (Av to undirected edges (Z) of the
conflict graph G(T) is realizable by a prefix itr:
(i) Az is closed (with respect to G(1))
(rl) Az has no directed cycle (i1i2 • .Jni1) s.t: i1i2 ~i2 i2i3, ... ,ini1 ~il i1i2.

(b) Consider two realizable assignments A.A' of directions to edges of a
·conflict graph G(1) and let <T,a> be a prefix realizing A. It is easy to see that
if Ar;,A.' then ·A'\A is closed (with respect to 0"(1)).

(c) Also recall that continuations <T,JJ> of <T,a> in t'REFIX, with
projections czi i = 1.2 ha.ve properties:
<T,a> realizes A, A bas no cycles
<TJJ>f. PR(SR), <TJJ> realizes A', A' has a cycle
<T,at>£ PR{SR). <T.«t> reallies Ai. Ai has DD cycle i=U.
We ~ve that, A~ A1\A, A2\A are closed (with respect to Q«(1)).

Moreover.if 1 is the "rec:f' site and 2 the "green" site and Ax=A '\A then we
have Axr=A1\A, Ar=A2\A. ·

To prove the lemma we use induction on j, where j =factions in T and not in a~
For j=O and any b the lemma is true, since no move is possible {all conflicts are
resolved). We will mume the lemma is true for all band all j, O~:Sj•-1 and prove it
true for j*. For~every move in one game we will exhibit a move in the other. leading
to assignments realizable only by stictly larger prefixes.

"only if" from the ciisctmion above a move in PREFIX corresponds to a move
in CONFLICT+ and no matter what the choice of Player II is the· resulting
assignment or directions to the conflict graph 0(7) is strictly larger than A and
realizable.

"if' A move in CONFLICT+ produces assignments Ax. Axr• A~. Since these
arc closed (with respect to 0°(7)) and the existing directed part of the board A is
closed (with respect to 0(7)) we have that AxuA. AxruA. A~UA are closed (with

-~-----· -··-----

67

respect to G(1)).
. ,,.--/

We will show that AxUA js realizable by a <T,p>, which is a continuation Qf /
<T,a>. Using Lemma I •. section 2.2 all that remains to be proven is that AxUA has
no directed cycles of fomi (ii) above. It is easily seen that such a cyde would be
completely contained (because of the closure property) in either AxruA or Ax8UA.

But since AxruA, Ax_8uA, must be acyclic such a cycle cannot exist. Thus AxUA is
realizable, in fact using the construction of Lemma L Section 2.2 we can choose
<T.p> to be a continuation of <T,a>. Then it is easy to verify that AxruA, Ax8lJA
are the assignments determined by. the projections of< T.p> (which are strictly larger
than A).

Thus when CONFLICT+ has a move PREFIX has one also.a

We will now prove that CONF~+(G) is P$P4 CE-:-Comp/ete, even if the
directed part of G is empty.

68

Lemma 3: Given an ordered graph G={V,E,0,{~i}) and a nonnegative integer

b, determining whether the minimax length of CONFLICT+ (G) is greater than b is
PSPA CE-Complete.

Proof: For an arbitrary instance In of QBF we can construct the mixed graph
G'(ln) using the following subgraphs.

(a) For xi, i = 1,3, ...• n-1 3-subgraphs of Fig. 4.2{b). These are similar to those
employed in Lemma 1, with additional nodes Ai,Bi,Mi,Ni and their edges.

(b) For xi, i=2,4, ... ,n v-subgraphs as in (b) of Le,mma 1.
(c) For every clause in F(x1, ... ,xn) clause-subgraphs as in (c) of Lemma 1.
(d) The · connections are as in (d) of Lemma I. with the added edges:

directed (AiAu+2). (Au+2Bi+:il i=l,3, ... ,n-3
directed (~An+ 1), (Ajj+1FJ+1) j=U ,n-1
undirected "red .. ~Bi+l• i=l,3, ...• n-3,. ~FJ+I j=l,3, .•. ,n-1.

An example is exhibited in· ~g. 4.4. Using G'(ln) we can construct the following
ordered graph G(IJ=(V,E,ra,{~i}). Assume 18 has n variables and m clauses:

V: The vertex set of G'(IJ with an additional ':.ertex for every directed edge in
G'(IJ, which has Kn=l0n+35m-2 directed edges. IVJ=18n+64m-2

. E: These are the undirected edges of G'(IJ, partitioned into "red" and "green"
as in G'(1n) moreover we replace. every directed edge' (RQ) of G'(IJ (see Fig. 4.5(a))
with a triangle (see Fig. 4.S(b)). Thus-G(IJ has no directed edges. It is a graph
partitioned into "red" and "green" and has 23n+n12+91m-S "red" and lln+35m-l
"green" edges.

{>i}: To every edge incident at a node i we assign a number. We use the rules
of Fig. 4.6 and Fig. 4.S(c). The ordering ~i is the strict (no two different elements are
equal) total ordering imposed ·by these numbers at i.
For the kth triangle PQR 1SkSK0 , which replaces a directed edge (RQ) we assign:

at P PQ+-l+kl<.n · PR+-2+kK0

at Q QP+-l+kK8 QR+-2+kK0

at R RP+-l+kl<o RQ+-2+kK0 .

For the undirected edges of G"(l0) we use the numbers 1,2,3 as in Fig. 4.6. Note:
at Ai AiBi>AiFi+t>AiBi+l i=l,3, ... ,n-1 (the last for i;it:n-1) .

at Fi+l Fi+lAi~Fi+l~+l i=l,3, ... ,n-1
at Bi+i . Bi+ 2Ai~Bi+2Ai+l i= 1,3, ... ,n-3.

.• .

69

<a1
(C)

-~
(a) (b) .~>

Figure4.6

70

p
p

(a.)
(6J

Figure4.8

--- --------

!

I
I
I
\

\
I.

\

71

We will prove that In is true iff CONFLICT+(G(In)) can last more than 2z-2
moves, where z=lln+35m-1 (the number of "green" edges) .

. "only if' Assume that In is true. We will describe a strategy that will enable
Player I to make z moves· (and the game to last 2z moves).

First Player I plays on all the triangles, that we substituted for directed edges of
G'(I0). At his kth move he plays in the Kn-k +1st triangle 1 <k~Kn (PQR in Fig.
4.5). The first move is: ·
Ax= {(QP),(PR),(RQ)} ·
Axr={(PR).(RQ)}
Ax8= {(QP),(RQ)} .
These are closed assignments (Def. 15, Section 3.2), with respect to the position of
the board. Moreover if (A) are the directed edges on the board before the k.th move
AxUA has a cycle., while AxruA, AxgUA do, not No matter what Player H's choices
will be RQ becomes the directed (RQ) in the new A. By induction Player I can play
similarly on all triangles~ Note that when Player I has played in all Kn triangles
PQR, all (RQ)'s are in the directed part of the board and the directions of the other
edges of the triangles ·have been fixed Tulis without loss of generality we can assum~
all directions on the triangles as being in A. and exclude them from our further
arguments about closed assignments.

Now Player I will make n moves alternating between 3- and v-subgraphs (which
correspond to the variables of In xi• .i = l, ... ,n), from the subgraph of x 1 to the
subgraph for Xir Recall that QBF In can be viewed as the instance of a game between
two players (the J-:player and the v-player), where the 3-player has a winning
strategy. Player I will pattern his strategy on the winning strategy of the 3-player of

the QBF game (for moves i-':' Kn• 1 <i<n).

The i+Knth move of Player I (lSi<n) is:

(a) If i=l,3,. .. .n-1 and the 3-player makes xi=x*i=l {based on the values x•j
that have been assigned for ls.j<i) then: .

Ax={(TiDi),(DiMi),(BiAi)• and (~ .. 2Bi) if i>l}
Axr = {(TiDi),(DiMi). and (Ai_2Bi) if i>l}
Ax8={(BiAi),· and (Ai·lBi) if i>l}
It is easy to check tht if the board position has directed edges A, these assignments

72

are closed. Also AxUA has cycle (fiDiMiBiAiTi) and AxruA, Ax8UA do not have
any cycle (Ai_2Bi's direction had been fixed to (Ai_2Bi) anyway). No matter what the
response of Player II is to this move, the path (SiTiDiSi + 1) and the new directed part
of the board form no ·directed cycles.
If the 3-player makes xi =0 we use the symmetric cycle (FiEiNiBiAiFi).

(b) If i=2,4, ... ,n then Player I uses cycle (fiDiFi&Ti) ..
Ax= {(fiDi),(Fifi),(Ai-lFi)}
Axr ={(fiDi).(Ai-lFi)}
Ax'={(FiEJ.(Ai-1FJ}
Again it is easy to see that the move is legal. But now Player II's response is ·
significant A choice "red" would correspond to the v-player assigning xi=x*i=l
and would fix directions to (fiDi) and (fiFi). Then (SiTiDiSi+ 1) only forms no
cycles with the new directed part of the board. A choice "green" would be symmetric
(i.e. xi=x*i=O and only (SiFiEiSi+l) forms no cycles with the new directed part of
the board).

\Ve have now reached the zth (z=n+K0 +l) move of Player I, and the 3-player
has won his QBF game on I8 using assignment {x*}. Thus the derived a~gnment
{u(x•)} to the literals makes every clause of the formula of 18 true. We can use the.
same move a8 was the last move in· Lemma 1 and trivially check that it is legal.

"if' If I0 is false we will prove, that although 2z-2 moves are ~ible, 2z moves

are not, in CONFLICT+ (G(IJ). In this case -,10 is true and the v-player has a
winning strategy in· the QBF game. We will pattern the strategy of Player II on this
strategy of the· v-player.

Suppose that CONFLICT+ (G(I0)) can last lz moves. It is easy to ·see. that
every move of J;>Tay~ I must contain exactly one "green" edge, whose direction has
not been fixed by previous moves, (observation (0) before Lemma 1). So we can view ·
sequences of z legal moves by Player I as pennutations of the z "green" edges and
name every move by the "green" edge, whose direction it fixes.

(a) First let us look at legal PQ-moves, that is moves whose "green" unfixed
edge belong.5 to a triangle. If this move (Ax) produces a cycle as in Fig. 4.7(a) we can
infer the following: The edge (RQ) must belong to AxruA and Ax8UA. This is
because AxruA must contain a directed path (P ... Q) and QR ~Q QP. (Recall that

,_, __ ._.

73

QP is the only "green" edge without a fixed direction in Ax). Thus no matter what
the response of Player II is to such a PQ-move the edge (R.Q) becomes pan of A. On
the other hand a PQ-move producing a cycle (~x) as in Fig. 4.7(b) is never legal.
This is because Ax8UA -must contain {(PQ).(QR),(RP)} a cydc. The existence of a
path (Q ... P) in AxruA and the fact that RQ>-RPR>-pQP force· this situation. Thus
PQ-moves fix the direction of QR to (RQ). Finally if Player I· were ever to use a QR
in the direction (QR), in some other e-move (e a . "green'_' unfixed edge), then a
response of "red" by Player II would consume two "green" edges (i.e., e and PQ).
Therefore Player I should regard edges RQ as directed (RQ), iR order to be able to play
z times.

{b) Let us examine the A;Brmoves i==l.l..~.n:-1 and FjEj_-moves i=2,4~ ..• n.
Since the directed edg~ .of" G!OJ have to be respected. we can only have (B~)€Ax
and (Fi~Ax for ~ assignments in thme moves. 'IlUs is because AxUA must ·
contain a cycle an~ all other edges inti~ at A1 (respectively F1) have fixed
outgoing (respectively ingoing) directions. Now we can jus~fy the construction in
Fig. 4.6(d) and 4.8. If (BiAi)E:Ax from the >-Bi order"we have that (Ai_2Bi)€ AxuA
(e..g. the direction of Ai-2Bi is fixed to (Ai_2Bi) because of the directed path
(Ai_2Ai·2.iBi) in G~(In)). From the_> Ai-2 oi-der we have that(Bi_2Ai-z> or (Ai-l~-V€
AxUA. Similarly if (Fi&)€Ax then (Bi-1~-1> or (Ai-lBi-1)€ AX.UA. We have
established that the A;IJrmove must precede the ~;-1-.J!Ji+T ~nd f;+1Ei+rmoves
l= 1,3, ... ,n-l.

· (c) Finally let us examine the Cm+1S1-move. For this move we need a simple
path (S1 ... <;.+i> that respects directed edges in G'(I0). can contain no backedges of
G'(ln) (similarly to (3) of Lemma 1), and has to pass through 80 and Sn+l (the last
v-subgraph). If the- F nEn ·move has not been played yet the use of either (f 0 DJ or
(F0 EJ by the (S1 ... Cui+i> path would fix the direction ofFnEzi· Thus the C,,,Srmove
has to follow all the· A;Br and F;Ermoves l=l,2, ..• ,n. .

We will now snow that Player Ilcan force Player I in a game. which simulates a
QBF(l0) game-,. where Player I is the 3-player, Player II is the Y-player and moreover ·
has a winning strategy. Player I chooses the values of xi i = 1.3 •...• n-1 and II the values
of xi i=2,4, ...• n. Player I detennines when Player II makes his choices (as- long as xi
precedes xi+l i=l,3 •... ,n-1). Thus the best Player I can do is assign a value to x1,

force II to assign a value to x2, assign a value to x3, etc. Let us describe how these
assignments take place. ·

74

(I) The A;B;-move assigns" a value to X; i= 1,3, ... ,n·l. The only "possible choices

for Ax are cycles (B·AT·D·M·B·) for x*· =I or cycles (B·A·F·~·N·B·) for x*· =0 This . 1 l l l l 1 1 1 l ., 1 l l •

is because directed edges in G'(I0) must be respected, and for x*i =I we have the
. following_ (x*i =0 is symme~c):

(BiAiBi+lAi+l···> would use. up Bi+lAi+l·
(BiAiTiDiFi~···> would introduce a cycle in AxruA.

(BiAiTi~Si+l···> would fix the direction of Fi+IEi+I·
The strategy of Player II will be to always play "red", fixing the directions of Ti~·
FiEi and making vertex Ai ina~ible from Si.

(2) The-Fi~-move assigns a value to xi i = 2,4, ... ,n. The arguments are exactly as
in the v-subgraphs of Lemma 1. Player Il's choice fix-es the direction of Fi~' thereby
making x*i 1or0 and.allowing a unique path from Si to Si+l as in Lemma I. Player
II assigns values t.o the x*i's according to the winning strategy of the Y-player (reaill
that In is false and thus the Y-player has a winning strategy).

As a result of all this analysis we see that when it is time for the <;, + 1 S1-move,
Player II has .forced F(x*1, •. .,x• 0) to be false, and constrained (Si·-Cut+1> to a ··
unique path through ·~e 3- and Y-subgraphs (e.g., the labels on the path are {x*}
exactly as in Lemma 1). ·

Thus the arguments of Lemma 1 apply to show that the CuiS1-move canno~ be

· legal and co~cr+ {G(IJ) cannot last 2z moves. a

. . .

75

We have now practically completed ~e proof of Theorel?- 4.

Proof of Theorem 4: In Lemma 1 we have proven that CONFLICT(G) is
n/-l1a1Tl. Using this lemma we have shown, in Lemma 3, that CONFLICT+(G) is
PSPACE-Complete for G an ordered graph (no directed edges). In Lemma 2 we
have shown the equivalence of PREFIX(<T.fZJ>) ~d CONFLICT+(G(1)). In order
to complete Theorem 4 all we have to do is argue that the ordered graph in the
reduction of Lemma 3 is a conflict graph for some T:

In fact G(I0)=(V,E,fZJ,{>i})=G(1) because,
V: every vertex i corresponds to a transaction Ti.
E: every edge e=ij corresponds to transactions. Ti and Tj updating a uniquely
defined variable Xe. If e is "red" Xe is stored at site 1 , if e is ••green" Xe is stored at
site 2.
{~i}: All orders are strict total orders, becaus~ every edge ij is assigned a different
number at i, thus all vertices. are realizabl(? by transactions.

Thus we have shown PREFIX(<T.fZJ>) to be PSPACE·Comp/ete.o

The questio~ whether PREFIX(< T.a>) can last more than b moves, has several·
interesting subcases.

For <T.a>:
(1) G«(1) is a graph and {~i} are strict, (e.g •• evecy. transaction updates a variable
only once. Two transactions never share more than one variable. Three transactions
do not share a variable).
(2) a=fZJ (e.g., there are no directed edges or ·an conflicts are unresolved) ·
(3) The transactions in T contain no cross-edges (e.g., each ~i consists of two total . .

orders one "red" and one "green". The "red" and "green" edges are incomparable.
This actually means that there are no transaction defined messages).
(4) The {>i} are of fixed size (e.g., no more than L actions per transaction).

For b whether it is arbitrary or 0.

These cases with their complexities are exhibited in Table 1.

!.

76

conditions (< T.a>} Complexity Complexity (b=O)

(1)&(2) PSPACE·Complete in NP
Theorem 4

(1)&(2)&(4) L=6 PSP A.CE-Complete in NP
Corollary 4.1

(1)&(2)&(4) L-:-4 n/-luurl in NP
Corollary 4.1

(1)&(3)&(4) L=6 PSPACE-Complete NP-Complete
'

Corollary 4.3 Corollary 4.2

(2)&(3) inPSPACE in p
Corollary 3.3

Table 1: Is minimax length of PREFIX{<T.a>) greater than b? .

77

Corollary 4.1: Whether the minimax length of PREFIX(< T,0>) is greater than b
is PSPA CE-Complete. even if the. degree of the graph G(1) is less or equal to 6. It is
TI /-hal'd even if the degree of G(1) is less or equal to 4.

Proof: We will slightly modify the gadgets of Lemma 3 without changing the
validity of its arguments. We replace clause-subgraphs with Fig. 4.9a, v-subgraphs
with Fig. 4.9b and 3-subgraphs with Fig. 4.9c. Let us for the moment ignore the
nodes Ai,Bi i = 1,3, ... ,n-l. The constmction gives us (by Lemma 1) that our decision
problem is TI /-/aanl. Moreover the only configurations at nodes are those of
Fig. 4.10, thus our transactions need never have more than 4 actions. If on the other

hand we-add in nodes Ai and Bi and connect Ai,Bi+l•Fi+l using the subgraph of
Fig. 4.11 then the arguments of Lemma 3 are still valid. The only difference from
Lemma 3 is that ~B(moves must prece~e the moves in the triangles corresponding
to (AiBi+l) and CAiFi+i>· We can thus show that our decision problem is PSPACE-
Complete even if transactions are restricted to 6 actions. . ·

Therefore [<T.0>E Mc(b)?] is PSPACE·Complete even if transaction systems
are very restricted.a

Consider the following combinatorial problem, which is in NP .

. PA TH(G,~t)
Input: A mixed graph G=(V,E;A) (V=set of vertices, E=set of undirected
edges, A...:..set of directed edges) and two distinguished nodes s and t

Output: Is there an assignment (AB> of directio~ to the edges in E, such that
the digraph (V ~UA) is acyclic, and contains a directed path from s to t?

Note that, if A is acyclic, there is always an AE* such that (V,AE•uA) is acyclic.
Also it is easy to detennine in the mixed graph G=(V,E,A) ift is reachable from s.
But both conditions simultaneously are hard. to d~de.

78

•••

(a)

"-"~
. J.L ..

. /·· . '.\.
5 -:: }-....

. t '-\ \" ••• _.F,:,,,,,._.,,,,..,t 5' ••

(b)

(c.)

Figure4.9 \

·~--··-··

I

I
I

!'•.._,,~ I, I

... ~""' :
- 'IT

I
I

!

I

I
11. -'..J..---

--- '1)

i
;

' ! .
I

i
i
I

I
I·

I
c.,..., '\ -~;-.

-·i s. I
Figure4.10

79

'-..
At

~~~~.,l'!»~--..._-_; __ _ 

_ ... .,. ·- , , , , , , , , 

. &,..,. (t< --·> 

l 
i• •,1, ... , "'-• I 

I 
I 
I 

I 

I 
J 



80 

Corollary 4.2: PATH(G,s,t) is NP-Complete, even if G ~as at most 2 undirected 
edges incident at a node and at most I directed edge incident at a node. 

Proof: Consider Lemma 1, where all edges Fi~ become "red". Then the frst 
player chooses the values for all variables, and our QBF game becomes ·the 
satisfiability problem. . Finding a proper path (S1 ... Cm+1) would answer 
PATH(G(I0),S1.Cui+1). This and the refinements of Corollary 4.1 prove the 
Corollary.CJ 

Corollary 4.3: Whether the minimax length of PREFIX(<T.a>) is greater than b 
is PSPACE·Complete (for b arbitrary) and NP-Complete (for b=O). This is true 
even if the traDsactions in T .have no cross-edges and a fixed number of actions. 

Proof: Another way of stating Corollary 4.2 is that the decision question 
[<T.a>EAfc(O)?} is co-NP·Complete. The analysis that follows (for b arbitrary) also 
applies to this case. therefore determining if PREFIX(< T.a>) can last more than 0 
moves is NP-Comp/ettl. 

. . 
In Lemma 3 we totally ordered all edges incident at a ilode. by Eigning · 

numbers to thein. Thus the transaction system realizing the {~i} of G(liJ had to 
have cross-ed~ In fact crcm .. edges are the only way we know of forcing the 
creation·· of desired directed edges. 

-
Given an insnmce of QBF(IJ we can construct the ordered mixed graph G"(I.J 

as follows (recall the mixed graph 0'(18 ) and the ordered graph G(I.J of Lemma 3): 

G .. (IJ=(V.EAQi}) where: 
(V,E,A)-=G'(ItJ. with one exception. The edges ~Bi+l (i=U •... ,n-3) and AiFi+l 
(i=l.3, ... ,n·l) are "green" and not "red". 
{~} are those implied. by the orders of G(ln} of Lemma 3. 

We can prove that In is true itr CONFLICT+(G"(I0)} can Inst more than n 
moves. The argument that is needed to prove· equivalence is identical witl1 that of 
Lemma 3. Note that G"(IJ has 2n "green" edges o( which n-1 have ftxed ~irections. 

· It is easy to see that a prefix <T.a> can be constructed, from a transaction system 
without cross·edges. such that oa(7)=G"(ln). (0"(1) .is G(1) with the resolved 

.• . 



81 

conflicts). Thus by Lemma 2, we complete _the proof of Corollary 4.3. By using the . 
gadgets of Fig. 4.9 we can restrict the transaction systems to sets of transactions with 
at most 6 actions (e.g., the nodes Ai have two "green", two "red" and two directed 
outgoing edges. "Green" and "red" edges at the same. node are incomparable). 

This proves that the decision question [<T.a>EA/c(b)?] is PSPACE-Complete 
even for Ts without cross-edges and with a fixed number of actions per 
transaction.a 

From-this analysis of special cases we see that two sets ofconstraints give us 
equal power: 
{(1)&(2)&{4) L=6} and {(1)&(3)&(4) L=6} 

Let us now examine the final special case, namely b = 0. Since we fix b we 
cannot use the equivalence abo~e. From Corollary 4.2 we have that if a*121 and if T 
has no cross-edges the problem is NP-Complete. From Corollary 3.3 if T has no 
crC>S.5-edges and a= 0 the problem is iD. P. 

We have left open . two interesting problems: 

(a) Given T without cross-edges and b~O, is the mmunax length of · 
PREFIX(<T.121>) greater than b moves? We conjecture this problem is PSPACE
Complete. 

(b) Given T Ca:n PREFIX(<T.0>) last more than 0 moves? This problem is in 
NP and we conjecture it is also in P. 



82 

4.2 The Efficiency of Communication-Optimal Schedulers 

In the previous seC:tion we have analysed the complexity of various cases of 
PREFIX, or equivalently examined. various cases of the decision problem 
[< T.a>EM Jb )?] 

. . 
In Section 3.1 we described a programming system in which we can express all 

distributed schedulers. These schedulers consist of two p~ one at each site 
(Q1.Q2} and realize SR {Definition 12, Section 3.1). That is an input history hEH can 
lead to many possible computation paths. By executing the instructions on such a 
path the scheduler outputs a history in C. For each path the output is in C, moreover 
if hEC and the delays of all messages are 0 the output must be h. We call the 
scheduler polynomial time bounded if the number of instructions the processes 
execute is bounded by a polynomial in n (for all possible paths). The size of the 
input is measured by n, which is the number of actions in T. 

Corollary 4.4: Unl~ NP=PSPA.CE. there is no communication-optimal 
scheduler. which realizes SR and. is polynomial time bounded. This is true even if 
each· transaction is restricted to be a sequence of six updates. 

Proof: Suppose su·ch a scheduler Q existed. We know that [< T JZJ>fM Jb )?] is 
PSPACE-Complete (even for restricted transaction systems, Corollary 4.1). We will 
prove that there exists a nondetenninistic polynomial time bounded decision 
procedure forthis problem. This. would imply that NP=PSPA.CE, an unlikely fact 

Given T and b~O we do the following: 

(1) gu5 a history h=<T.w>E SR (this can be easily checked) 

{2) simulate ~e operation of Q on this history 

(3) whenever a mCsmge ·is sent we guess its delay and in general gutS a 
computation path of Q. 

(4} keep count {with m) of the number of messages sent 

(5) if m>b then say y~ else say no 

.. 



83 

If [<T.0>E£Af c(b)?] is true there will exist an input h an~ a computation path of 
Q, where more than b instructions are executed. We can gtiess the input and the 
computation path with a polynomial nuII.J.ber of guesses, this is because the size of h 
is O(n) and all paths are polynomial bounded Ifm>b that means that all schedulers 
have to use more than b messages for inputS from the transaction system T. This is 
obviously a nondeterministic polynomial time bounded algorithm for our problem.a 

Similar results would hold even if we augmented our programming system with 
the power to consult oracles in the polynomial hierarchy [11} (i.e .• the hierarchy 
would collapse beyond a certain level1 

Let us note two· open problems. · 

{a) If we assume P=PSPACE it follows that we can constru~ efficient 
schedulers (in both measures). ·The consequences of NP=PSPACE on the other 
band are unclear. 

(b) If the decision problem [<T.0>EMJb)?] is only NP-IUU'd the arguments of 
Corollary 4.4 no longer apply. · 

Our results· indicate that. a communication . optimal sclieduler must be 
computation inefficient It is still possible to analyze the information in T and design 
various .efficient. communication subpptimal realizations of SR. We will end this 
section by defining a simple open. edge deletion. probkun. This problem can be used 
as an upper bound on the minimum: nwnber of meases in order to realize SR. 
Because of i1S. simplicity it is also of ind.epondent .combinatorial interest. 

DMC(G) 
Input: An undirected graph G, with edges partitione9 into "red" and "green" 
Otttput: ·Find the minimum number o~ 'edges. whose de~etion produces a graph 
with no cycles containing both "red" and "green" edges. 

·. 

.• 



84 

5. The Combinatorics of Locking 

The most common technique used for the resolution of conflicts in concurrency 
control is locking. In this chapter we will extend the elegant analysis of locking 
described in [39] from the centralized to the distributed case. In the process, ·the 
geometric criterion of [39) will be replaced by a simple combinatorial condition 
(i.e., the strong connectivity of a directed graph). 

5.1 Distributed Locking 

Let us first present a simple extension of the definitions for locking, which 
appear in [39). We will utilize the notions of Distributed Database· Design (DOD). 
transaction, action, history and serializapility from Section 2.1, with the following 
additions: 

Definition 16: FC?T the DDD=<GL> pata. Stored-at, IC>, the Data is partitioned 
into variables (Var) and locking variables (LVar). The function lock·of. Var-+LVar 
determines for every variable x, its lock X, (i.e., X is the lock-oj(x)). The constraint 
A(XELVar) X=O is part of th~ integrity constaints IC.CJ 

We will use x for variable and X for its lock. Note that. as for all Data, locking 
variable Xis stored-al site(X). We might have that site(x)*slte(X) (e.g., a central site 
is used for all locks). We might have that Xis the lock of x only and site(x)=site(X) 

(e.~ the fully distnouted case). Or we could have two variables, which are at the 
same or different sites. and have the same lock (e.g .• primary copy locking). The 
locks we will be dealin$ with are stored at a particular site, and are not global 
variables stored at many sites. 

The transactions and histories are partial orders'. of actions as in Definitions 2 
and 4, but we can have more types of actions. 

.. 



SS 

Definition 17: An action iS either an U(?date of a variable (in_ Var) as defined in 
Def. 3 or a lock X or unlock X step. for some ··locking variable X (in L Var). 
(a) The semantics of "lock X" are. (X: = if X=O then 1 else error) 
(b) The semantics of ~'unlock X" ar~ (X: = if X= 1 :then 0 else error) 
We abrevjate "lock X" as Lx and .. unlock X" as Ux, where X=/ock·oJC.x).a 

Note that we are dealing with exclusive locks. \Ve will not discuss shared locks 
(e.g., read or intention locks (13D 

Let T={T1.T2, ... ,T ml denote an (ordina{Y) transaction· system, that is without 
"lock" or "unlock" steps. 

Definition 18: A locking policy L is a mapping, which given an (ordinary) 
transaction .system T ·transforms· it into a · Ioclced transaction sy~teth L(1). The 
locking policy transforms each Ti of T i~to qt~·6=1), ... .m}. by inserting only 
Lx,Ux steps and precedences between them "subject ·to ·the following constraints: 

(1) The only. v;ay ,to insert Lx or Ux ~·is as a. 4-Ux pair with Lx before and 
Ux after an update of x, in the partial order of L(Ti)· Moreover for each x there is at 
most one Lx-Ux pair in L(Ti). 

(2) For every update of an x in Ti there is a l.x -bd>ft and an Ux after it in the 
partial order of L(fi).a 

Note that a locking, policy could be nondeterministic (i.e. it could produce many 
different L(1)'s for a given 1). 

In a locked tta.nsacUC>n L(f i) all actipns 1't ~e -~--site are totally ordered, by 
Def. 3 of transactions. As in'. tl),e c~ witno\lt kxA, a dS.Q\:>JJted locked transaction 
represents a set of total orders ~f its actions· (iJ;".4 those ui,.l ~~pect its partial order). 
A new feature for the distributed c~ is: : we ca., ,have. ~~ns p,q con~urrent in. Ti 
and Lx's, Ux's inserted in Ti· with such prec~e,nc.es as to make.Pan ancestor of q in 
L(Ti)· In other words the locking policy can restrict the parallelism inherent in Ti. 



86 

Let h be a history (or a ·prefix of a history) of L(1). We say that h is legal 
(i.e. preserves the IC of locks in Definition 16) if between any two occurrences of Lx 
in h there is an occurrence of l:Jx. We denote this as hEM(L(7)). Let L-l(h) be the 
induced subgraph of h if all lock and unlock steps were removed. The set of histories 
O(L) = L -l(M(L( 1))) is called the output of the locking policy L and captures the 
parallelism supported by L 

Definition 19: A locked transaction system L( 7) is safe if every history In O(L) 

is serializable. It is deadlock-free if for any legal prefix a of a history of L( 7). there is . 
a suffix ,,,. such that a."' ~ M(L(1)).a 

It is easy to see that if L(1) is safe we can realize M(L(7) using a scheduler, 
which consists of a simple lock manager and a mechanism for avoiding or breaking 
deadlocks. The deadlock problem becomes more accute in a distributed 
environment, where it requires the use of memges (22,23). 

As an example o.f a distributed locking policy consider two-phase locking (2PL). 

?PL: All lock steps in a distributed locked transaction must precede all unlock 
steps in the. transaction's partial order .. 

Every total order consistent with a 2PL distributed transaction is a 2PL 
centralized transaction. Thus we· can infer, from the safety of centralized 2PL. its 
safety for the distributed case. Similar easy generalizations exist for the safe and 
deadlock-free tree-(30], digraph-[39) or hypergraph-(39] pollCies. which apply to·the 
structured Data case. 

An example o~ a distributed 2PL transaction system is presented in Figure 5.L 
This example also sho~s that 0(2PL) (i.e .• the set of legal output histories without 
the locks) is not a concurrency control principle as defined in Def. 11 Section 2.1. 
This is because the ordering of lock, unlock steps introduces cross-edges that were 
not part of the initial transactions T. 

Our main task now will be to generalize the results of [39) towards a 
chnractcrization of safe syste·ms. 



,.,. 

87 

i(>t> 2(~} 
• • 3Cx) tt C'fJ) 

• • 
(a) 

~cxj: .~~~ 
Vx 0, u,c_ u» 

(b) 

J 2 

.. '2. 

lt 
.. 

l 

5 ' 
5 ' 

(d) 

(c.) 

FiguteS.l 
(a) T (x,X at site Land y,Y at site· 2) 

(b) L(1) two ph• locked 
( c) history s where S€ M(L( 7)) 
(d) history h where b=L-l(s), hE O(L). 

( e) h without cr0$edges is not in O(L) 

5(>') 6(~) 
• • i ., 

:~~ 
~x . u91 

.·. 

"~ t; . 

I 2 

3 "' 
s· .6 

(~) 



88 

5.2 The Safety of Distributed Locked Transaction Systems 

Let Ti (i = 1,2) denote a pair of locked distributed transactions and Ti+ (i = 1~2) a 

pair of totally ordered locked distributed transaclions. The jth step of Ti+ is Tij + 

l~<mi. As noted above Ti= fri + I Ti+ respects ).n} (i= 1.2). 

Consider a transaction system {Ti+, i=l,2}. In the coordinated plane 

(fi+ .T2 +)(see Fig. 5.2) take the two axes to correspond to T1 +and Ti+, and the 

integer points 1,2, etc. on these axes to ·correspond to the steps T11 +.Tu+, etc. 

(respectively T 21+.T22 +, etc.) of the transactions. A point p may represent a 

possible state of progress made toward the completion of T1 + and Ti+. These 
transactions will contain properly nested lock-unlock steps. Each variable x such that 
both T1 + and Ti+ ·contain a Lx-Ux p~r, has the effect of creating a forbidden 
region (a rectangle delimited by the grid lines corresponding to the Lx·Ux steps), the 
points of which do not represent renchable states (see Fig. 5.2). Adding such 

· rectangles to the plane has some consequences. For example, the point u is now 
reachable, yet not in any. rectangle; in contrast. point d is a state of deadlock. 

A history, that is totally orde~ has· the following geometric image[39]. It is a 
nondecreasin~ curve from the point (O,O) to the point (m2 + l, m 1+1), not pming 
through any other grid point and not through any rectangle (e.g. h in Fig. 5.2). To 
read the history off any such curve we simply enumerate the grid lines that it 
intersects. Two totally ordered serial histories are represented by the curves h1.h2 in 
Fig. 5.2. 

·a.:+. 
t.10 

\Jz' 
2· I 
L'I ; 
UA' 
U:1 s 

" lt 
)(. 3 

Lx.2 

T 

, i a " s ' 7 • ' 10 
1.x 11 x 11 u,, lJa Le 2 U:a 

·I 
I 
I 

I 

i 
I 

-i::• i 
2 I 

I 
\ 
I Figure 5.2The(f1 + .T2 +)-plane 

·~----'-----------



From [39] we have the following characterization. 

Proposition 2: A history, which is totally ordered, for the transaction system 

{Ti+, i= 1,2} . 1s not serializable iff the corresponding curve separates two 
rectangles.a 

No two rectangles touch at a grid point (by our definition of locked transaction 
systems). In order to study the safety_ of {Ti+. i = 1,2} the onl)\. actions we have to 

consider are pairs of Lx-Ux steps, where both Ti+·s update x. ~following Lemma 
for distributed locked transactions is a direct consequence of Proposition 2. because 
every nonserializable history corresponds to some set of totally ordered 
nonserializable histories. 

Lemma 1: A distributed locked transaction system {T1.T2} is safe iff for all 

pairs T1 + .T2 + there is no curve (correspondin$ to a history) that separates two 

rectangles in the ff 1 + .T2 +)-plane.a 

An example of an unsafe system {T1.T2}. where only relevant Lx-Ux steps are 

given, is provided by Fig. 513{t). In Fig. 5.3(bl we have a .pair T1 + ,T2 + that 

happens to be safe. In Fig 5.J(c) we have a pair T 1 + ,T2 + that illustrat~ why the 
system is unsafe. 

Since there is .an exponential number of po$ible pairs T 1+,,T2 + an iterative 
application of the ~ of Proposition 2 (whith involves an O(nlognloglogn) 
computation of a "closure" "for a geometric region of rectangles [21D is no longer 
efficienl 

Our contribution will be an efficient combinatorial (as opposed to geometric) 
test (i.e. sufficient condition) of safety for distributed locked transaction systems. Our 
combinatorial test (Theorem 5) provides an alternate way of characterizing the 

e' 

centralized problem. It is also a necessary condition of safety (Theorem 6) for 
centralized transactions a.nd transactions distributed at two sites. For more sites a 
complete and efficient characterization is an open problem. 



90 

u 
L~ 

Laa 
:t:. 

Uca 

L'l 

(}] (cl) 

Ux 
U>i 

(a) 

T.• 
I a.-----------------

L" ~- U,. b Ua UJC . ""Ii+ 

(b) 

Figure 5.3 
(a) Distributed locked transactions (x at site 1 and y,z at site 2) 
(b) safe {T1+.T2+} 

(c) unsafe {T1 + ,T2 +} 
(d) DL(T1.T2) 

... 

---------- -- -------------



91 

Let us define: 

DL(T1,Tz): Given. two locked distributed transactions T1,T2 construct the 
digraph DL(T1.T2)=(V,A) such that: . 

(a) V the vertex set, with vertex x itT both T1 and T1 contain a Lx-Ux pair. 
(b) A the arc set, with arc (xy) iff ( Ly >Tl Ux and Lx >n Uy ). 

An example of DL(f1.T2) is presented in Fig. 5.3(d). From the definition of 
DL(f1.T.i) we have that (xy)E A itTthe upper·./efl comer of the x-rectangle is in the 

lower-right corner fanned by they-rectangle on all possibl~ CT1 + .T2 +)-planes (see 
Fig. 5.4). This implies that in every such plane no curve corresponding to a history 
·can pass below. the y-rectangle and above the x .. rectangle. 

{o,o) 

Figure S.4 
(xy)E DL(f 1.T2). Only three types: of paths are at most feasible. 



92 

Theorem 5: Let {T1.T2} be a locked transaction system. If DL(f 1.T2) is 
strongly connected, then {T1.T2} is safe. 

Proof: Let Ti .and Ti conflict at variables x1.x2 •... ,xk. Then for 
DL(f1,Ti)=(V,A) we have V={x1.x2 •... ,xk}. 

· In a <T1 + .T2 +)-plane we can associate every path s, that corresponds to a 
possible output history of a lock. manager, to a vector of k binary values 
~= (b1.bi ..... bk). These values are: 

bi= 1 if s passes above the xrrectangle 
bi . 0 if s passes below the xrrectangle_ . 

Therefore if (xixj)E A we can say that for all Cf1 + .T2 +)-planes and paths§ 

bj<bj (Le. only bi=.l, bj=l or bi=O, bj=O or bj=O, bj=l are allowed) . 
. 

Since DL(T l•T 2) is strongly conneeted there is a directed path (Xj ... Xj) and a 
directed path (xj-. .xi) for lSijSk, i~j. Thus always bi< ... Sbj and bjs ... <bi for all ij. 
This impEes that the only allowable values for the vectors ~.are (0,0, ... ,0) and 
(1.1, ... ,1). Thus for all ff1 + ,T2 +)-plane5 there is no path corresponding to a history 
separating two rectangles. Therefore {T1,T2} is safe.a 

In order to characterize safety of a distributed system we need a succinct way of 
describing the forbidden· regions in all Cf 1 + .T2 +)-planes. We use this 
characterization (as in the proof of Theorem S) · to produce a short pro0t: that all 
paths, which correspond to output histories of a tock manager, must either pass 
below or above all forbidden regions. 

. 
The simple condition of safety provided by Theorem 5 is a sufficient one. It is · 

necessary for centtnlized transactions (Lemma 2). where another obvious complete 
characterization is the geometric pattern on the unique ff1 + ,T2 +)-plane. It is also a 
necessary characterization for transactions distributed between two sites (Theorem 6). 
Recall that the safety question is in co-NP, whereas its negation is in NP, that is to 

· prove a system unsafe all we have to do is guess a nonserializable history in O(L) and 
verify that fact in polynomial time. 

We should point out that DL(T1.T2) ignores some of the precedences ofT1 and 
T 2· This restricts the proof of necessity to two sites and indicates that a complete 



93 

characterization of forbidden regions for an arbitrary number of sites could be a hard 
. . 

problem. 

If DL(T1.T2)=(V,A) is not strongly connected then it has more than one 
strongly connected components. Among these there is a strongly conneeted 
component with no incoming edges from other $ongly connected components. We 
call such a component a domina1or·x, where X~V denotes its set of nodes. In fact 
the only _property of the dominator we will use is that th~e '1"e no incoming edges in 

- X from nodes in V\X (and not its strong connectivify)~ 

We will ·prove necessity of the condition in Theorew 5 using the. following 
intuitive construction. Given T1.T2. DL(f1.T2)=(V,A) not strongly connected and a 

dominator X, we will construct two special total orders T 1+,T2 + ~ In T 1 + the 
actions (Lx-Ux, xEX) will be executed as late as po~ible after the actions (Lz-Uz, 
zf!X). In T 2 + we do the opposite. Thisc tends to isolate t,he forbidden region 
corresponding. to X in the upper· left corner. Each time we will argue that this region 
and all other rectangles can· be separated as in Fig. 5.5, by a curve which will 
obviously correspond to a possible output history. Therefore_ we will prove something 
stronger than lack of safety namely: "If X is such that there are no incoming edges in 
X, then we can separate all x-rectangles from all z-rectangles, xE X, zE V\X". 

. . 

Lemma 2: .Given a locked trarisa~tion system {T1,T2}. where Ti.T2 are totally 
ordered, if DL(T1.T2) is not stronaty connected then {T1.T2} is unsafe. 

Proof: Obviously there is-only one· &1 + ,T2 +}plane. Pick a dominator X in 
DL(f 1.T2). By Theorem 5 all.its rectangles fQrm a tqioathat is above an increasing 
curve, whose comers correspo~d to lower right· comers of xrrectangles, Xj€ X 
(see Fig. 5.6). let z( X, then tbe z·rectangle must be below that curve. If it is not 
there is an Xj€ X such that Lz >n Uxi and Lxi >Tl Uz (since T1. Ti are totally 
ordered) implying that (zxj)E DL(f 1.T 2r a contradiction.a 



U:e :X: 

L"Xt 

i 

94 

FigureS.S 

• • • 

Figure 5.6 ! 

I 
I 

I 
. I 

~-. ______ __,__ ____ _ 



95 

Theorem 6: Let T={T1.T2} be a locked transaction system, where T1.T2 are 
distributed at two sites. If DL(f1,T 2) is not strongly connected then T is unsafe. 

Proof: For this type of distributed transactions there could be an exponential 
number of possible (f 1 + ,T2+)-ptanes. LetX be·a dominator of DL(T1.T2). We use 

X to construct two special total orders Ti+ ;T2 + that· wilt help us separate all x
rectangles (x€ X), from all z~rect.angles (zf X) and. since X and V\X are nonempty, 
this· will provide us with a certificate of un~ess. We will use the shorter notation 
>i instead of >,-i and >i for .. precede$ or can be Concurrent to in transaction Tf'. 

Let z, x, y be such (if they exist) ~at: 
(1) Z( X and X.YE. X . . 

. (2) Lz >2 Ux and Ly >1 Uz 
Then we can infer: 
(3) X*Y · and Uy >2 Ux and Uy >1 Ux. 
Since X is a dominator of DL(f l•T 2) Jt cannot CQlltain, e~t,her of the directed edges 
(zx) or {zy). We can infer (3) because, itx · y (zx){Dl(r i,T 2), or if (Ux >2 Uy) then 
(Lz >2 Uy) and (zy)E DL(T1.Ti), or finally if (Lx >1 Ly) then (Lx >1 Uz) and (zx)€ 
DL(f 1,T2). . , . 

· For any z, x, y satisfying (1),(2) and (3) we can construct the following partial 
orders: 

• 
T 1 is T 1 with the a4ded precedence Ly >r Lx . . . 

T 2 is T 2 with the added precedence Uy >2• Ux 

Obviously Ti' (i== 1,2) are partial orders. Also Tf is Ti (i= 1.2) with at most one 
. ' 

precedence added (i.e.,ifthe~ditional,precedence,~~alreapy in Ti then Ti =Ti)· 
• I " . 

Therefore if {T1.T2} is unsafe so is ff1.T2}. 

Based on the existe~e of only .two sites we will prove th~ following important · 
. ' '"' . '· .• '-• , ' .: .• 

fact about the ne~ system T ={T1 .T2 }: 

Since x, y, z are distinct variables we ha)'.e th~~; ~(a) x.y stored at the 
same site, case (b) x,y stored at different sites aoA z sto~ed at the same ;site as x, 
case (c) x·,y stored at different sites and z stored at the same site as y. 

• > > ' '" ' ( 



96 

Case (a): If x,y are stored at the same site we must have (Ly >1 Lx) and 
. . 

(Uy >2 Ux) {these actions cannot be concurrent in Ti or Ti). Therefore Ti =Ti 
(i = 1,2) and (I) follows trivially. 

Case.Cb): We have that x and z are stored at the same site and (Lz >2 Ux) (the 
possible positions of Lz are illustrated in Fig. 5.7). Since (zx)( DL(T1.T2) we must 
have (Uz >1 Lx) (i.e. these actions cannot be concurrent in T1. because x and z are at 

· the same site). Since (Ly >1 Uz >1 Lx), we have that already (Ly >1 Lx) and therefore 
' ' Ti =Ti. We only add precedence (Uy >2• Ux) to T2 to obtain T2 .. 

t ' • 
The only way for new edges to be generated in DL(f1 ,T2) from a z'E X into a 

x'E X, is for (Lz' >2 Uy) and (Ux ~2 Ux') (x' could be x). Moreover z' and x' should 
be stored at different sites (otherwise Lz',Ux' would have been ordered already in 

' T1) and in T1 =T1 ·we must have (Lx' >1 Uz'). 
If Z: and x were stored at the same site, x' must be stored at the site of y. Thus in 

T 2 we must have had (Lz' >2 Uy and Uy >2 Ux') (otherwise ·the new edge would 

have introduced a cycle in T 2'). Therefore Lz' and Ux' were already ordered in T 2• a 
contradiction. · 

If z' and y were stored at the same site, x' must be stored at the other site and 
Fig. 5.7 illustrates the possible pOsitions of Lz' and Ux' in T1. From these ranges of 
Lz' and Ux' in Ti, we can.derive the possible positions of Uz' and Lx' in Ti. Since 
DL(T1.Ti) cannot contain either (z'y) or (zx') and since (Lz' >2 Uy and Lz >2 Ux'), 
we must have (Uz' >1 Ly and Ui >1 Lx'). It easily follows from the establis~ed ranges 
that T1 cont.a.ins a cycle (Uzl.Jt~Uz"LyUz) a contradiction. 

This proves (I) for this case. 

Case (c): This case is symmetric with ·case (b). The argument that proves (I) is 
similar to the one above. The ranges of Lz', Uy' in Ti and Uz', Ly' in T1 are 
illustrated in Fi~. 5.8. This time· the additional precedence is (Ly >r Lx), and z'f X, 
y'E X. and z' must be stored at the site of x, and y' at the site of y. 

This completes the proof of (I). 

. ' " -Staning from Twe can construct a sequence of transaction systems T ,T ••.. ,T 

(of length polynomial in 171> such that in r•: . 
(i) X is a dominator of DL(f1 *.T2 *> 
(ii) If (z( X), (x,yE X). (Lz >2• Ux), (Ly >1• Uz) then (Uy >2• Ux). (Ly >1.Ux). 



: 

i;c.'! 
i 

. 
lW 

: . 

' 

~ L-& 

V>f \J~ 

T.' 1 

lb' .. 
I 
: 
i 

l 

' j L'.t' 
: . 
i 

. . 
iu~ 

t 

97 

· Figure 5.7 
Case(b) 

Figure 5.8 
Case(c) 

L'i L~ 

' 
f . i . 

L'1; iL"A' . . . . i f Ux ~ 

lk': . . . 
+ 

T.' 
2. 

LJ 

I ' !lit I I I 

i I . I 
I 
I 

I.:!'! 
I 
I 

' 
T2 



98 

Now all we have to do is produce the total orders Ti+, Ti+ from topologically 

sorting T 1 *, T 2 •. We use two tricks First, we place the Ux (i.e. x in· X) steps as early 
as possible i~ T 2 +. Second, we place the Lx (i.e. x in X) steps as late as possible in 

T1 +. moreover if Ux ·is before Ux' in T2 + we put Lx before Lx' in Ti+ (if 
possible). 

It is easy to see that a nondecreasing curve lower-bounding the area of the 
rectangles in X is created. Also if (Ly >1 + Uz) for some zE X, and Ly forms part of 
this curve and is closest to Uz (see· Fig. 5.9) then we can easily prove that 
(Ly >1• Uz). (From the way T1 + was constructed, if there is a closer (Lye >1• Uz) . 
we must have (Ly >1• Lye) ~lse Lye would have been scheduled before.Ly in T1 +). 

From the properties of 'r* we know that for all xE J( such that (Lz >2• Ux) we have 

(Uy >2• Ux). By the ~ay Ti+ was co~cted (Uy as early as possible) we can infer 
(Uy >2+Lz).. 

Therefore z-recta.ngles are below or to the left of all x-rectangles in the 

Cf 1 + ,T2 +)-plane. This completes the proof of Theorem 6.a 

. . 
~--f :._-_:=-r ...... : ------rr . 

! I t 

.I : : 
• • f f I 

• I . I 
I t : 
I • I 

I t 

V,c U~ !2 

Figure5.9 

The condition of Theorem 6 eannot be applied to systems {T1,T2} distributed at 
more than two sites. An example demonstrating that fact is illustrated in Fig. 5.10, 
where although we have a do~1inator X={x1,x2} (Fig. 5.lO(a)) we cannot 5eparate it 
from the other rectnnglcs (Fig. 5.lO(b) and (c)). 



Lw 

ux.& .\Jw 

(a) T 

Lz 

U2. 

(b) 

(c) 

Figure SJO 

(b) r* is not a transaction system 
(c) DL(1) has dominator {x1.x2} 

Ll! -



100 

Thus we can test safety of distributed transaction systems T={T1,Tzl, on t\Yo 
sites in O(n2) time [I]. In fact the proof of Theorem 6 give~ us the following 
nondeterministic polynomial time algorithm to decide if an arbitrary system T is 
unsafe. 

Algorithm UNSAFE: Given T · {T1,T2} a locked transaction system. 

(1) Guess a (nonempty) set of rectangles. X that are above a curve. which 
corresponds to a nonserializable history. Let Z be the {nonempty) set of the rest of 
the· rectangles. 

(2) Start with T 1~=T1, T 2 • = T 2 and keep augmenting them by the. following 
rule: 
H zE Z x.yE X. (Lz >2• Ux). (Ly >1• Uz) tlae11 add (Uy >2• Ux), (Ly >1• Lx). 

(3) Check ifT1*, T1* are partial orders and ifDL(T1•. Ti•) has no edges (zx) 
for zEZ, x€ X. 

( 4) If (3) is true say yes. 

The nondeterministic choice at step (1) indicates that the decision problem 
"Given T={T1,T2} is it safe?" may be co·NP-Conrplete. Such a resuJt would be 
interesting since it ·would illustrate the effect of multiple sites on the complexity of 
the problem. 

. 
Until now we have discussed transaction systems T with two transactions. The 

question of safety of a system with an· arbitrary number of centralized transactions is 
co-NP-Complete (39), because of a combinatorial condition introduced by the 
conflict graph G( 7). Since the question of safety of a system of an arbitrary number 
of distributed transactions is in co-NP, we cannot hope to indicate a difference 
between centralized and distributed by further pursuing this problem. 

Another interesting issue is that of dead1ock freedom. For the centralized case 
the geometric approach used for safety [39] gives us a test of deadlock freedom at no 
extra cost. The approach using DL(f1.T2) does not have this nice property. 

--~-------~- - ------ -



101 

Therefore we have detennined three interesting open problems: 

(a) Given a system {T i.T2} of arbitrary locked distributed transactions, is it 

safe? 

(b) Can the polynomial time bounds implied by Theorems 5 and 6 be improved 

using the special structure of DL(T1,T2)? 

(c) Given a system {T1,T2} of locked distributed transactions, is it deadlock-free 

(even if two sites are used and the system is safe)? 



102 

6. Conclusions and Open Problems 

We have examined the complexity of distributed database concurrency control. 
We have provided a rigorous mathematical framework for the study of on-line 
distributed problems (Chapter 2), established a connection between distributed 
computation and combinatorial games (Chapter 3) and finally derived both negative 
(Chapter 4) and positive (Chapter 5) complexity results. 

Our main result (lbeorem 4) shows that concurrency control, an on~lne problem 
clearly in NP in the centralized case, is PSPACE-eon.,lete in the distributed case. 
This result is quite strong, in that it holds for transaction systems of rather ordinary 
appearance (e.g .• transactions consisting of sequences of six updates each}. Also, the 
negative implications of our result (Corollary 4.4). are quite robust. For example, 
even if the scheduler is equipped with a powerful oracle belonging anywhere in the 
polynomial hierarchy, it still cannot minimize communication ~fficiently, ·unless the 
polynomial hierarchy collapses.· 

In the process of proving this negative result. we have related distributed 
concurrency control ~ certain combinato.rial games played on graphs. It could be 
that this connection is of some practical value, since the length of these games 
corresponds to counting mmages. There is a more-or-less· immediate heuristic for 
approximating an optimal strategy in the game CONFLICT. This heuristic is based 
on the following purely combinatorial p~oblem, which is still open: 

(I) "Given an undirected graph with its edges colored red and 
gree~ ·find the smallest set of edges that have to be deleted in 
order for the resultig ~ph to have no two--color cycle." 

Other open problems from Chapter 4 are related to technical issues (II)&(III) or 
to the messages· v .s. computation steps argument of Corollary 4.4 (IV}&(V). This last 
argument seems quite general in the context · of distributed computation. 

(II) Given T without cross-edges and b>O is the minimax length 
of PREFIX(< T.~>) greater than b? (conjectured to be PSPA CE
Complete) 

(III) Given Tis the minimax length of PREFIX(<T,0>) greater 
than O? ( ~--onjecturcd to be in I') 



103 

(IV) \Vhat are the consequences .of NP= PSPACE o~ the 
existence of efficient schedulers? 

(V) Can a contr~diction similar to Corollary 4.4 be derived if 
[< T,0>EA/ c(b )?] is NP-Complete. 

In Chapter 5 a new O(n2) safety test was derived for two-transaction locked 
systems {T1,T2}. This is a necessary and sufficient condition, if transactions are 
distributed at two sites, and sufficient otherwise. There are a number of interesting 
open problems. 

(VI) Given {T1.T2} distributed at an arbitrary number of sites 
are they safe? (conjectured to be co-NP-Complete) 

. This would demonstrate the complexity introduced by the number of sites. 

(VII) Given {T 1.T 2} dis~buted at two sites and safe, are they 
dead-lock free? 

Issues of locaJ and global deadlocks. and message-efficient deadlock managers 
recall the analysis of Chapters 3 and 4. 

(VIII) Can the polynomial bounds of O(n2) · (n is number of 
nodes of the digraph DL) implied by Theorems S and 6 be 
improved using the special. structure. of DL? 

This is possible in the O(nlognloglogn) centralized case. 

Finally our analysis of distributed locking can serve as the basis for the 
development of novel distributed locking strategies, which are not simply 
generalizations _of centralized rules. 



This empty page was substih1ted for a 
blank page in the original document. 



104 

References 

[l] Aho, A.V., Hopcroft, E., U\lman, J.D. "The Design and Analysis of Computer 
Algorithms" Addison-Wesley, (1975) 

[2] Bernstein, P.A., Rothnie, J.B., Goodman, N. and Papadimitriou, C.H. "The 
Concurrency ~ontrol Mechanism of SDD-1: A System for Distributed Databases 
(The Fully Redundant Case)", IEEE !rans. on Software·E.ng, vol. SE-4, no. 3 (1978) 

[3] Bernstein, P.A .• Shipman, D.W., Rothnie, J.B. "Concurrency Control in a System 
of Distributed Databases (SDD-1)" ACM-TODS~ vol. 5, no. 1, (1980) 

[4) Bernstein, P.A., Goodman N. "Fundamental Algorithms for Concurrency Control 
in Distributed Database Systems" Tech. Report, Computer Corporation of America, 
(Feb. 1980) 

[5] Chandra, A.K.,· Stockmeyer, L.J. "Alternation" Proc. 17th FOCS Conference, 
pp.~-108, (1976) 

[6] Coffman Jr., EG .• Denning P.~. "Operating Systems Theory" Prentice-Hall, 
(~973) 

[7] Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L. "The Notions of 
Consistency and Predicate Locks in a Database System'\ CACM, vol 19, no~ 11, 
(Nov. 1976) 

(8) Even. S., Tarjan, R.E. "A. Combinatorial Problem · which is Complete in 
Polynomial Space" JACM, vol. 23, pp.710-719, (1916) · 

(9) Feldman; J. ••A Programming Methodology for E>istributed Computing (among 
other things)" Tech. Report TR9, Dept of Computer Science, Univ. of Rochester, 
(1977) . 

(10] Garcia-Molina, H. ~'Perfonnance of Update Algoriduns for Replicated Data in a 
Distributed Database", Ph.D. Dissertation, Computer Science Department. Stanford 
Univ., (June 1979) 

[11] Garey, l'vLR .• Johnson, D.S. "Computers and Intractability: A Guide to the 
Theory of· NP·Completeness'.' Freeman, (1978) 



105 

(12) Gouda, M.G .• Dayal U. "Optimal Semijoin Schedules for Query Processing in 
Local Distributed Database Systems" Proc. ACM·SIGMOD, pp.164-175, (1981) 

(13) Gray, J.N., Lorie, R.A., Putzulo. G.R. and Traiger. I.L. "Granularity of Locks 
_ and Degrees of Consistency in a Shared Database" IBM Research Report RJ1654, 

(Sept 1975) 

(14] Hammer, M.M., Shipman, D.W. "Reliability Mechanisms for SDD-1: A System 
for Distributed Databases" Tech. :Report CCA-79-05, Computer Corporation of 
America (1979) 

(15] Hoare, C.A.R. ·"Communicating Sequential Processes" CACM, vol. 21, no. 8, 
. pp.666~77' (1978) 

(16] Kanellakis, P.C.. Papadimitriou, C.H. "The Complexity of Distributed 
Concurrency Control" Proc. 22nd FOCS Conference, (1981~ 

(171 Kung, H.T~ Papadimitriou,· C.H. ··An Optimality Theory of Database 
Concurrency Control" Proc. ACM-SIGMOD, pp.116-126, (1979) 

[18] Ladner, R.E. 'lhe Complexity of Problems in Systems of Communicating 
Sequential Processes·• Proc. 11th ACM-STOC, pp.214-223, (1979) 

(19] Lampo~ L "Time, Cocks, and. the Ordering of Events in a Distributed 
System", CACM, vol. 21, no. 7, pp.558-565, (July 1978) 

[20] Lin, W.K. "Performance Evaluation of Two Concurrency Control Mechanisms · 
in ·a Distributed ·Database S}lStem" Proc. ACM-SIGMOD, pp.84-92 (1981) 

[21] Lipski Jr., W .• Papadimitriou C.H. "A Fast Algorithm for Testing for Safety and .· 
Deadlocks in Locked Transaction Systems", Proc. CISS Conference, Princeton (1980) 

(22) Menasce, D.A., Muntz, R.R. "Locking and Deadlock Detection in Distributed 
Databases", IEEE Trans. on Software Eng., voL SE-5, no. 3, pp.195-202, (May 1979) 

(23] Menasce. D.A., Popek, G.J .• Muntz, R.R. "A Locking Protocol for Resource 
Coordination in Distributed Databases" Proc. ACM-SIG MOD, (1978). 

[24) Milne. G .• Milner R. "Concurrent Processes and their Syntax" Tech. Report, 
Univ. of Edinburgh, (1977) 



'~:~:::.,' 

106 

[25) Papadimitriou, C.H. "Serlalizability of Concurrent Update~" JACM, vol. 26, 
no. 4, pp. 631-653, (Oct 1979) 

[26) Papadimitriou, C.H. "On the Power of Locking"· Proc. ACM·SIGMOD, pp.148-
154, (1981) 

[27) Reed,·D.P. "Naming and Synchronization··in a ~tralized Computer System" 
Ph.D. thesis, M.I.T. Department of EECS, (Sept 1'78) 

. 
[28) Rosenkrantz DJ., Steams, R.E., Lewis, P.M. "System Level Concurrency 
Control for Distributed Database Systems" ACM-TODS," vol. 3, no. 2, pp.178-198, 
(1978) . 

(291 Schaefer. T.G ... Complexity of Some Perfect Information Games" JCSS, vol. 16, 
pp.185-225, (1978) 

(30) Silberschatz,. A. Kedem, Z. "Consistency in Hierarchical Database Systems" 
.IACM, vol. 27, no. 1, pp.72-80 (Jan. 1980) 

[31) Steams R.S .• Lewis, P.M., Rosencrantz, DJ. "Concurrency Control for Database 
· Systems" Proc. 16th FQCS Conference, pp.19-32, (1976) 

(32] Stearns R.S., Rosencrantz, D.J. "Distributed Database Concurrency Control 
Using: Before-Values" Proc. ACM-SIGMOD, pp.74-83, (1981) 

(33] Stockmeyer,. LJ~ "The Polynomial-time Hierarchy" Theor. Computer Sci., 3, 
pp.1-22, {197 6) 

[34) Stockmeyer.; LI .• Meyer, A.R. "Word Problems Requiring Exponential Time" . 
Proc. 5th ACM-STOC, pp.1-9, {1973) 

[35) Stonebraker, M. "Concurrency Control and Consistency of multiple Copies of 
Data in Distributed INGRES" IEEE Trans. on Software Eng., vol. SE-5, no. 3, 
pp.188-194, {May 1979) 

[36] Thomas~ R.H. "A Majority Consensous Approach to Concurrency Control for 
multiple Copy Databases" ACM-TODS, vol. 4, no. 2, pp.180-209, (1979) 

[37] Ullman, J.D. "Principles of Database Systems" Computer Science Pr~ (1980) 



107 

[38] Yao, A.C. "Some Compiexity Questions Related to Distributive Computing" 
Proc. 11th ACM-STOC, pp. 209-213, (1979) 

[39] Yannakakis, M., Papadimitriou, C.H., Kung, H.T. "Locking Policies: Safety and 
Freedom fr~m Deadlock" Proc. 20th FOCS Conference, pp.283-287, (1979) 

(40] Y annakakis, M. "Isrues of Correctness in Database Concurrency Control by 
Loe.king" Proc. 13th ACM·STOC, pp.363-367, (1981) . . 



108 

Index of Terms 

page 

action 13 
AE-QBF 55 
alternation 47 
assignment of directions 19 

back-edges 58 

clo$ed assignment 51 
communication complexity 24 
communication ~ay 22 
communication optimal 25 
computational ~mplexity 24 
computationally efficient 24 
concurrency control (CC) 8 
concurrency control principle (C) 21 
CONFLICT 49 
CONFLICT+ so 
confilct graph 19 
co-NP. 2 
consistency 6 
c~-edges 21 

dataset 15 
deadlock-free .. 86 
distributed concurrency control (DCC) 26 
distributed database design (ODD) 12 
DMC 83 

. 
entities 12 
equivalent histories 16 

games 47 
G(7) 19 



109 

Q0(7) 19 

history 16 

infonnation 23 

input history 22 

integrity constraints 12 

lockX 85 

locked transaction system 85 

locking policy 85. 

locking variables 84 
lock-of{x} 84 

MJ.b) 2S 

NP 2 

on-line 23 
optimistic · . 23 

ordered mixed multigraph 19 

output history 22 

p 2. 

parallelism 2 

PA1H 78 
persistency 45 . . 
PREFIX 48 

prefix < T,a.> 16 
projection of fJ 31 
projection of Ax SI 
PS PACE 2 

QBF 54 

realiznblc assignment 19 



110 

realization of C 23 
read set 15 
reads-from 28 

redundancy 2 

resolution of conflicts 19 

safe 86 
scheduler 21 
serial 18 
serializable 18 
site(p) 13 
stored-at(x) 12 

timestamps 11 
transaction 13 
transaction system ( 'J) 13 
two phase locking (2PL) 86 

unlock X 85 
update 13 

variable 12 
vers10n 11 
voting 11 

writeset 15 



Figure 2 
Figure 2 
Figure 2 
Figure~ 

Figure~ 

Figure: 
Figure~ 

Figure: 
Figure: 

. Figure. 
Figure: 
Figure 
Figure , 

Figure·· 
Figure 

Figure· 
-Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

Figure 
Figure. 
Figure 
Figurf. 
Figun. 
Figure 

111 

Index of Figures and Tables 

page 
14 
14 
17 
20 
24 

34 
38 
41 
48 
49 
so 
52 
53. 

SS 
62 
63 
64 
69 
69 
70 
70 . 
78 
79 
79 

87 
88 
90 
91 
94 
94 



112 

Figure 5.7 97 
Figure 5.8 97 
Figure 5.9 98 
Figure 5.10 99 

Table 1 76 



113 

Biograp~ical Note 

The author was born on December 3, 1953, in Athens, Greece, where he lived 
until 1976. He attended. the National Technical University of Athens and received a 
Diploma in Electrical Engineering with honors in June 1976.· The following 
September he started his graduate. work in the Department of Electrical Engineering 
and Computer Science at M.l.T.. He completed his M.S. degree in Electrical 
Engineering and Computer Science in J~ne 1978 ~nd his Ph.D. degree in Computer 
Science in September 1981. 

The author will join the Computer Science faculty of Brown University as an 
assistant professor. 



CS-TR Scanning Project 
DocumentControlForm 

Report# Lc:s -TP-..-J..£ J, 

Date : <6' I ( '6 I '15 - -

Each of the following should be identified by a checkmark: 
Originating Department: 

~ Artificial lntellegence Laboratory (Al) 
/"-Laboratory for Computer Science (LCS) 

Document Type: 

~ Technical Report (TR) D Technical Memo (TM) 

D Other: 
----------~ 

Document Information Number of pages: l<r?{1.;t~-1·mA\;"tSJ 
- Not to Include DOD forms, prin1s lnbltruc:tions, etc ... original pages only. 

Originals are: Intended to be printed as : 

X Single-sided or D Single-sided or 

D Double-sided ~,Double-sided 
Print type: 
D TplM'br D i... Print 

D ,...,.Prints D Other: __________________ _ 

Check each if included with document: 

D DODFonn 

~Spine 

D Other: 

D Funding Agent Fonn 

'M.. Printers Notes 

------------
Page Data: 

~CoverPage 
D Photo negatives 

Blank PageSOir,.........,: ftJ'+ow rrut PP<;.£) ; 1 i ,-~Ji \J J(J] 

Photographs/Tonal Material lllf,...........,: ________ _ 

Other 1na1a •• •• -.. .........,: 

Description : 

hmf<i.( f!Jf} f> ( I· 11 

Scanning Agent Signoff: 

Date Received: 5_1.}5_ _ _1.15_ Date Scanned: j_1JJ._19S Date Returned: _l1~Ll q5 

Scanning Agent Signature:_....,Ji_A ..... ~"""""~"""""''0 ..... i_IL\ ........ J_.J_~ ......... -----



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgLwpw Rev. 9/94 


