MIT/LCS/TR-269

The Complexity of
Concurrency Control for
Distributed Databases

Paris C. Kanellakis

Tius blank page was inserted to preserve pagination.

THE COMPLEXITY OF CONCURRENCY CONTROL
* FOR DISTRIBUTED DATABASES

by

Paris C. Kanellakis

Diploma, National Technical University of Athens
(1976)
SM., Massachusetts Institute of Technology
(1978)

Submitted in Partial Fulfillment
of the Requircments for the Degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology
September 1981

© Massachusetts Institute of Technology 1981 |

Signature of Audwr_____ﬂw_{%:?

“_ Department of Electrical Engineesing and Computer Science, September 1, 1981

CérFiﬁe;l by f jr @!Wa /LM

Christos H. Papadimitriou
Thesis Supervisor

Accepted by

- Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

This empty page was substituted for a
blank page in the original document.

The Complexity of Cbncurrency Control for Distributed Databases
by
Paris C. Kanellakis

Submitted to the Department of Electrical Engincering and Computer Science
on September 1, 1981 in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy

Abstract

This study is an analysis of the distributed version of database concurrcncy control. It provides
concrete mathematical evidence that the distributed problem is an inherently more complex task

than the centralized one.

The notions of transaction, concurrency, history, scrializability, scheduler, etc., for centralized

databases are now well-understood both from a theoretical and a practical point of view. A formal

model for the case of distributed databases is presented. The transactions are partially ordcred sets
of actions, as opposed to the totally ordered straight-line programs of the centralized case. The
scheduler is also a distributed program. Three notions of performance for a scheduler arc studied
and interrelated: (i) parallelism, (ii) the computational complexity of the decision problems that it
has 10 solve, (iii) the cost of communication between the various parts of the scheduler. In fact the

‘number of messages necessary and sufficient to support a given level of parallelism is equal to the

length of a combinatorial game. This game, which captures the difference between the centralized
and the distributed problem, is PSPACE-Complete. This implies t_hat'unless NP=PSPACE, a
scheduler cannot simultaneously minimize the communication cost and be computationally efficient.

The model presénred can also serve as a framework for the study of distributed cbncurréncy _
control by locking. For two transactions an efficient characterization of safe distributed locking

- policies is derived. The new graph-theoretic approach generalizes the geometric method used -in the

centralized case. -

Thesis Supervisor: Christos H. Papadimitriou
Title: Associate Professor of Computer Science and Engimeering

Key words: concurrency control, distributed databasc. communication, complexity, PSPACE-
complete, games, locking. ‘

This empty page was substituted for a
blank page in the original document.

Acknowledgements

I am particularly indebted to my thesis advisor, Professor Christos Papadimitriou, for his
guidance and support. His suggestions of general rescarch directions, his technical contributions, and
his illuminating comments on the presentation of these results have been invaluable.

I would like to thank Professor Robert Gallager for his constant support and for inumerable
discussions, which helped clarify and simplify many of the idcas in this thesis. I would like to thank
Professor Peter Elias, for contributing his viewpoints to this thesis.

Many thanks are due to all my fricnds who have made the meairch environment at M.LT. so
exciing and my life as a graduate student so plasant, ‘

Most importantly T must express my gratitude to my parents, whose encouragement and
warmth have always been my most valuable source of support. ‘

This thesis was prepared with the support of National Science Foundation grants ECS-79-
19880 and MCS-79-08965. '

This empty page was substituted for a
blank page in the original document.

jii

Table of_ Contents

page
Abstract o : | i
Aknowledgements : ii
Table of Contents | 1ii
1. Introduction 1
1.1 The Main Goals and New Results 1
1.2 A Review of Database Concurrency Control 6

A Model for Distributed Database Concurrency Control 12
2.1 Model Definition 12
2.2 Properties and Limitations of the Model 26

3. Communication-Optimal Schedulers and Games . 31
3.1 A Recursive Characterization of Communication Complexity 31
3.2 Games related to Distributed On-line Computation | 47

4. The Complexity of PREFIX - 54
4.1 PREFIX is PSPACE-Complete ' 54
42 TheEfﬁaency of Commumcatlon-Opnmal Schedulers ‘ 82

5. The Combinatorics of Locking : 84
5.1 Distributed Locking ' - - | 84
5.2 The Safety of Distributed Locked Transaction Systems 88

5. Conclusions and Open Problems - | o '102
References = f _ . 104

- Index of Terms | 108
Index of Figures and Tables o 11

Biographical Note . , 113 .

This empty page was substituted for a
blank page in the original document.

1. Introduction

There is now considerable literature, bath theoretical and applied, concerning
the database concurrency control problem - that is, maintaining the integrity of a
database in the face of concurrent updates. Most of the theoretical: work so far has
been concerned with the centralized problem, in which the database resides at one
site, and the update requests are submitted to a single process, called the scheduler,
which implements the concurrency control policy of the database [7,25,37]. There is
also some interesting applied work on distributed databases [2,3,4,28,36]. It is often
said that the concurrency control problem is. much trickier and harder in the
distributed case, than in the centralized case. Tlus is evxdenced by the existing
solutions, which are extremely complex and sometimes. incorrect.

In this thesis we examine how the complexity of various problems, related to
concurrency control, is affected when we attempt to solve them for distributed
databases. The main focus.is in two areas, semhngﬂxty and safe lockmg policies,
where efficient centralized solutions exist. Our approach and results also add to the
theory of distributed computation, mdependent!y of thenr database context.

1.1 The Main Goals and New Results

Our main goal is to demonstrate the differences between the centralized and

dlstnbuted versions of natural computational problems. We examine such problems _

from the area of database concurrency control, because we also wish to determme the
limits of performance of concurrency control mechamsms. '

. We investigate two features of distributed oomputatlon which d1stmgu1sh it
from centralized computatlon First, the uncertalnty of the order of events in a
distributed environment [19] The order of events i§ no lotiger best viewed as total, as
in the centralized case; instead it is. a partial order, whose structure depends on the .
number of sites of the distributed system. So our analysis will highlight differences
- between total and partial orders. The second element is:the need for communication
between sites, if the performance of an on-line distributed system is to match that of
an on-line centralized system.

In order to find concrete differences we compare the computational complexity

of centralized and distributed tasks. We will use standard concepts from the theory of
computational complexity, (i.e., deterministic polynomial time P, nondeterministic
polynomial time NP or its complement co-NP and polynomial space PSPACE,
[1,11,33,34]), as well as notions from the theory of combinatorial games [5,8,29]. The
contributions of this thesis are summarized in the next three sections.

(I)_The Model

We have developéd a simple mathematical model of distributed 'databases,
which captures the intricacies of distributed computation that are most pertment to
the database domain. Some novelties of our mode! are:

‘(1) User transactions are arbitrary partial orders of atomic steps, thus
generalizing the straight-line programs of the centralized case. The order
corresponds to both time-precedence and mformat.lon flow, and it captures
the notion of dlstnbuted time". '

(2) The scheduler, the concurrency control agent of the system, is itself a
distributed program, consisting of communicating sequentml processes. [15],
one for each site. :

(3) Redundancy (the requirement that two entities stored at different sites be
two copies of the same "virtual entity”) is not treated at the syntactic level,
but is considered as part of the integrity constraints of the database.
Redundancy was at the root of the complexities of most previous attempts to
formalize distributed databases.

As a consequence, there are three measures of perfomiance in a distributed
database (centralized theory deals with the first two):

(a) Parallelism, measured as the set of allowable interleavings of user actions.

(b) Complexity of the computational problems that the processes of the
scheduler must solve.

(c) Communication, measured as the number of message exchanges between
the processes of the scheduler.

A simple analysis, Theorems 1 and 2, verifies that the model is s indeed a
consistent generalization of the centrallzed model.

(ID_Schedulers and Games

The three measures of performance of schedulers present interesting tradeofTs.
For example, let us fix (a) (think of it as the parallelism specs of the system). By
expending many messages, we can reduce the problem of distributed concurrency
control to the centralized one (by broadcasting each request) and thus solve it in
polynomial time for most reasonable specs: [25}. It turns.out that, based on a priori
information about transactions, we can minimize the number of messages sent, by
executing an exponential number of computation steps (and using polynomial space;
this is the upper bound of our main result). Finally we cannot have a scheduler
simultaneously using the minimum pumber of messages and running in polynomlal
t'me at each site, unless NPz PSPACE (this follows from the lower ‘bound).

Specifically our main result states that for a certain parallelism specification
~ (which in fact can be fixed to be the popular senahzablllty principle [3,17,25,31,40))
minimizing commumcatnon ‘costs is a computat;oml problem complete for PSPACE.
[1,11,33,34]. Thus, our result appears to be concrete mathematical evidence
suggesting that distributed concurrency control is indeed an inherently more complex
 task than centralized concurrency control (under quite general conditions, centralized
schedulers can be implemented in polynomial time [25]).

Our result also adds to the literature on distrlbuted'compntaﬁon,‘ independently
of its database context. It states, loosely speaking, that one cannot tell efficiently
whether distributed processes can - cooperate successfully for performing (an
otherwise easy) on-line computational task, at fixed communication cost. It can
therefore be considered as complementing the result of Ladner for Jockout propertics
of "antagonistic” processes [18]. On the other hand, Yao has asked [38} whether
minimizing communications costs for some distributed combinational computation is
computationally intractable; we answer this in the case of an on-line computation.

The proofs of both our upper and lower bounds are quite intricate. For the |
upper bound we need a complicated characterization (Theoxem J) of the incomplete
historics of actions (i.c., partial orders of events in the S)stcm) that can be completed .

within a fixed number of messages. This upper bound holds for serializable histories,
as well as for all similar parallelism specifications that can be achieved in a
centralized manner. For the lower bound we relate distributed scheduling to a game
played on graphs (the "conflict” graph of the transactions). Intuitively one player
(Player II) is the distributed scheduler, and the other (Player I) is an adversary who
submits user requests so as to force the scheduler to use as many messages as
possible. Player I wants to prolong the game as much as possible, whereas Player II
tries to bring it to an end as soon as possible (other than that there is no winner or
looser). The rules are related in a simple way to the cycles of the graph.. We prove
that this game is complete for PSPACE, and then show that our constructs can
faithfully reflect a special Kind of distributed concurrency control situation. Both
- steps involve intricate "gadget” construction (Theorem 4). '

1IT) Distributed Lockin

A very common way of implementing concurrency control is by locking. In this
method each entity is equipped with a binary semaphore (its lock) and transactions
synchronize their operation by locking and unlocking the entities that they access.
The purpose of locks is not mutual exclusion of shared resources as in operating
system theory. Instead they are used to enforce correct sequencing of the indivisible
transaction steps.

Locking policies have been extensively studied in the centrzilized case
[7,13,21,26,30,39,40} and applied to distributed databases [22,23,35]. Our model
provides a framework for the rigorous study of distributed locking. |

The most elegant result in the theory of centralized locking is a geometric
method, which efficiently characterizes the safe locking policies for two transactions.
We examine the distributed version of this problem (i.e., when the transactions are
partial orders instead Qf total orders of steps). We propose an alternative graph-
theoretic approach for the centralized problem, which in addition provides an -
efficient sufficient condition for the distributed problem (Theorem §). This condition
is also necessary for transactions distributed at two sites (Theorem 6).' Therefore this
is a positive result (as opposed to the negative complexity results of Chapter 4). It
also indicates how the difficulty of the problem may be affected by th: number of
sites at which we distribute it.

The material is organized as follows. Section 1.2 contains a review of database
concurrency control, in which the various notions and results in the area are briefly
described. Chapter 2 consists of the model definition (Section 2.1) and its simple '
properties, Theorems 1 and 2 (Section 2.2). The relation of distributed scheduling
and games is rigorously established in Chapter 3. An upper bound on the complexity
of the distributed problem is derived in Section 3.1 (Theorem 3). The games are
defined in Section 3.2. Chapter 4 is an analysis of the complexity of these games and
contains the main technical result, the lower bound in Section 4.1 (Theorem 4). The
consequences of this result on the existence of schedulers are in Section 4.2, Chapter
5 provides a framework for the study of distributed locking (Section 5.1), and a
characterization of safe two-transaction systems (Section 5.2), Theorem 5 for
sufficiency and Theorem 6 for necessity. Finally, Chapter 6 contains the conclusions
and a list of open problems and directions for further research.

The material on the model deﬁniﬁon (Chapter 2) and distributed locking
(Chapter 5) represents a joint effort with Prof. C.H. Papadimitriou. Part of this work,
namely Chapters 2,3 and 4 appear. in [16].

12 A Review of Database Concurrency Control

A database consists of a set of named data objects called entities. The values of
these entities must at any time be related in some ways, prescribed by the consistency
requirements (or integrity constraints) of the database. When a user accesses or
updates a database, he may have to violate temporarily these consistency
requirements, in order to restore them at some later time, with the specific data
changed. For example, in a banking system, there may be no way to transfer funds
from an account to another in a single atomic step, without temporarily violating the
integrity constraint "the sum of all balances equals the total liability of the bank”,
For this reason, several steps of the interaction of the same user with the database are
grouped into a transaction. Transactions are assumed to be correct, that is, they are -
guaranteed to preserve consistency when run in isolation from other transactions.

When many transactions access and.'update the same database concurrently, the
cousistency of the database may fail to be restored after all transactions have
completed. If, for example, tmnsacnon 1 consists of the two steps

x;=x-100 :
x:=x+190

and transaction 2 of the single step x:=1.15 * x, and the consistency requirement is
simply "x=0", then executing transaction 2 between the two steps of transaction 1
turns a consistent database into an inconsistent one. This is despite the fact that both
transactions are individually correct, that is, each preserves database consistency when
run alone. We must therefore find ways to prevent such undesirable interleaving,
without excessively harming the average user delay and other measures of the
efficiency of the system. This is the database concurrency control problem, already
discussed extensively in the literature (see [37]).

In this section we present a brief (and by no means complete) review of the
many results on concurrency control. We start by describing the elements of
mathematical models used to study these problems in the centralized case. This
setting will help us to present the theory of centralized database concurrency control
(part-a). We then discuss how distributing the database affects the formulation of the
problem and describe some of the proposed practical solutions (part-b).

(a) The centralized case

Intuitively a database consists of entities and a finite set of transactions. Each
transaction is a total order on its actions, which are operations performed indivisibly.
An action pof a transaction T is, in general, an update (i.e., a read and then a write)
of an entity Xp» based only on the values of entities updated by actions that precede
this action in the order of T.

A history, for a set of transactions T= {T}..T,}, is a total order representing an
interleaving of all transaction steps. It is therefore a total order respecting all
transaction steps. It captures the order of events at the one site, where the database is
stored. A prefix of a history h is an initial portion of h. H is the set of all histories,
that is, all imterleavings for all sets T of transactions.

We are interested in correct histories (i.e. histories that take the database from a
correct initial to a correct final state). A well-known and generally accepted correct
subset of H is that of serializable histories (SR). A serial history is one with no
interleaving of actions of different transactions. A history is serializable iff it is
equivalent (in the obvious schema-theoretic sense with uninterpreted function
symbols for updates) to some serial history. Since each transaction is by itself correct
a serializable history is obviously correct. Serializability has been widely recognized
as the right notion of correctness (e.g., [2,3,4,17,25,31,40]). In fact it is shown in [17]
that it is the most liberal notion of correctness. possible, when only syntactic
information (ie., entity names) is available.

A scheduler is an algorithm "handling incoming requests. It might use a priori
information (e.g, the syntax of 7) and run time information (e.g., the order of
incoming requests). The input and output of a scheduler are strings of actions in 7. In
fact, one is the history of réquests and the other the history of their execution. A
~ scheduler is said to realize a set of histories C-(where C is a subset of H) if:
(i) for all inputs, the output is a sequence in C, '
(ii) for all inputs in C,.the scheduler grants all requests immediately upon receipt.
This captures the on-line and optimistic features of schedulers [25]. ' ’

These sets C were proposed in [25] as a measure, whereby the performance of
schedulers can be'c‘:valuated in a uniform setting. This measure expresses the class of
all sequences of transaction steps that can be the response of the concurrency
controller to a stream of. execution requests. The richer this class, the fewer

unnecessary delays and rearrimgements of steps will occur, and the greater the
parallelism supported by the system.

A second measure of performance of a scheduler is the computational complexity
.of the decision problems it must solve. -

The area of concurrency control was unified in [25] by formulating the problem
as a relation between the two performance measures: |

CC: The problem of Concurrency Control is, given a set C of correct histories,
find a scheduler which realizes it and is computationally efficient.

A basic theorem in [25] is that such a scheduler exists iff the prefixes of C are
polynomial time recognizable (i.e. in P).

The obvious question in this setting is whether an efficient serializer (ie.,
scheduler realizing SR) exists. The answer is yes. Testing a history for serializability,
or a prefix for whether it has a serializable completion, is an easy task in the
centralized case. The algorithm is based on conflict graphs. The conflict graph G(T)
for a transaction system T is a multigraph, with a node for each transaction in T and
an edge between Ty and Ty labeled x, whenever Ty and T, both update entity x. -
The order of executions of actions in a history assigns directions to the edges of
G(T). We call this resolving the conflicts between transactions. This result is the
- "folk" theorem of ooncurrehty control [2,17,25,28,37):

"A history h is serializable iff it resolves conﬂiéts without creating directed cycles
in G(T). Similarly, a prefix has a serializable completion iff the already resolved
conflicts do not create a directed cycle in G(1)."

The pioneering work in the field was [7], which also introduced concurrency
control mechanisms such as two phase locking and predicate locks. It was followed by
many interesting contributions (e.g. [2,13,31]). A number of concurrency control
mechanisms were compared in the uniform setting of the parallelism measure C
introduced by [25], where CCSR. Moreover it was shown, that if we distinguish
between read and write actions then deciding whether a history is scrializable (i.e. in .

SR) becomes NP-Complete [25].

A very common way for implementing concurrency control is locking. In this
method each entity is equipped with a binary semaphore (its lock) and transactions
synchronize their operation by locking and unlocking the entities that they access. In
fact, variants are possible in which locks of different kinds are defined, and certain
kinds may coexist whereas others may not (e.g. shared or read locks, intention locks
{13]). The lock-unlock steps are inserted in a transaction according to some locking
policy. A locking policy may have the property that, if all transactions are locked
according to it, then any execution respecting the locks is guaranteed to be
serializable. Such a locking policy is called safe.

Given a transaction system 7, there are certain well-known locking policies that
can be applied to it. One is the two-phase locking (2PL) policy [7]. In it we insert
locks surrounding the accesses of all entities, in each transaction subject to the
following rule: The last entity to be locked is locked before the first entity is
unlocked. Thus the transaction is divided into two phases: the locking phase, during
which locks are acquired but not released, and the unlocking phase, in which locks
are released but not requested. In an extremely conservative interpretation of this
- policy, we could lock all entities before the first step, and unlock them after the last.
More reasonably, we could request locks for entities at the first step that they are
accessed, and release locks at the end of the transaction. In fact, it is shown in [17]
that the latter interpretation of 2PL is the best possible concurrency control, when
syntactic information is acquired in an incremental, dynamic manner. It was first
shown in [7] that 2PL is safe (though deadlock-prone).

If the entities are unstructured (that is, transactions access them in all possible
paﬁems) then 2PL is the best possible locking policy. Suppose, however, that the
entities form a tree, and are accessed by transactions as follows:

(i) A transaction accesses a subtree, whose root is the first entity to be accessed (after,
of course, it is locked). . | |

(ii) After this, when an entity'is locked, its parent must be locked and not yet
unlocked. ,
Then this locking policy, called the tree policy is shown in [30] to be both safe and
deadlock-free. This holds for the more general digraph policy of [39]. In fact, the-
latter is generalized in [39] to the hypergraph policy which, it is proved, is the most
general possible safe and deadlock-free policy.

10

Safe locking policies were characterized in [39]. The limitations of the parallelism
that can be provided by locking were investigated in [26]. Safety of two-transaction
locked systems can be efficiently decided [21], by employing a geometric
methodology reminiscent of that used by Dijkstra for studying deadlocks [6]. Besides
its independent interest and elegance, the two-transaction solution is the building
block for resolving the general case. It turns out that a locking policy defined on d>2
transactions is safe iff all of its two-transaction subsystems are safe, plus a
combinatorial condition. This combiratorial condition turns out to be NP-Complete,
but it is simple enough to have some interesting corollaries. For example, all specific
locking policies mentioned above can be shown to be safe as xmmedxate
consequences of the condmon : |

(b) The d:stnbuted case

The assumpnon that the database is stored at one site is not always true. .
Distributing the database among various sites might be necessary and even desirable. -
In fact the current trend in technology is towards distributed databases
[2,3,4,28,35,36]. |

In- a distributed environment the transactions, histories and prefixes become
partial orders and the scheduler consists of many communicating sequential
processes, one at each site. The model presented in Chapter 2 abstracts the relevant
properties of transactions, actions, histories, prefixes, and schedulers. It extends the
parallelism measure of schedulers, the concept of serializability and conflict graphs to
~ the distributed case. The new elements are, that the scheduler uses message passing
between sites and that the conflicts are partitioned into the conflicts at every site. The
problem of Distributed Concurrency Control (DCC) can be formalized as was that of
Concurrency Control (CC). A rigorous treatment of this problem will require the
selection of a formal system, in which to express distributed algorithms e.g. [9,15,24].
Such a system, with the least bossible restrictions, is selected in the next chapter.

The problem of concurrency control has been examined by designers of
distributed databases and various solutions have been proposed. Because of other
' important considerations in a distributed. environment, concurrency control is
viewed (and rightly so) as only one of a number of goals of such systeras (e.g. other
problenis are, optimal partitioning of the datubase, distributed query processing [12],

11

properties of the communication medium, importance of deadlocks between sites
[22,23], reliability of updates [14]). What is not clear from these involved distributed
algorithms is, whether the distributed version of concurrency control, by itself, is a
more complex task than its centralized version. This in fact is the subject of the
present study. '

A survey of distributed database concurrency control algorithms is contained in
[4]. These algorithms are classified into methods using transaction timestamps to
. resolve conflicts [19] and methods using locking (particularly the two phase locking
rule) [7]. The methods are compared on the basis of the three measures indicated in
Section 1.1 (ie. parallelism, complexity, communication), with an'. additional
distinction between. delaying or aborting requests that cannot be safely granted.
Another issue that is investigated is the effect of having conflicts between read and
write actions or write and write actions. There are methods, which cannot be
classified into this timestamp v.s. locking scheme (e.g. voting methods used in [36]).
- There are also experimental comparative studies [10,20].

A concurrency control method, which stands out among all these algorithms is
that employed by SDD-1 [2,3]. The reason for this is its preanalysis of a-priori
information (i.e., the structure of the conflict graph) in order to enhance parallelism.
An obvious question is, why should not a similar preanalysis be used to enhance the
communication between the processes of the scheduler.

Finally let us mention a new research direction, which developed from the
distributed” problem, but is important even for the centralized case. It is tacitly
assumed that there is one version of each entity in the database and an update
creates a new version making the old one obsolete. It might be possible to use older
versions in addition to the conflict graph, in order to perform concurrency control.
This is done by changing the semantics of "read” and "write" (e.g., Reed’s rule [27],
before-and-after values [32]). This change in the model can have profound
" consequences, since it introduces a space-parallelism tradeoff (i.e., by using more -
versions the sets of interleavings C that can be realized by schedulers can be
enriched).) '

12 .

2 A Model of Distributed Database Concurrency Control

This chapter contains the definition of our model for distributed database
concurrency control. This model generalizes the centralized model, is simple and can
be used for the analysis of all practical solutions proposed to date. |

2.1 Model Definition

A distributed database is a collection of sites. Each site has its own processor and
data. The sites are interconnected by a network and are controled by a distributed
database management system (DDBMS). In Fig. 2.1 we show the architecture of a 2-
site system; horizontal arrows join modules of the same distributed process.
Formally, a distributed database is defined as follows:

Definition 1: A Distributed Database Design (DDD) is a quadruple <GD, Data,

- Stored-at, IC> where:

() Gp=(V.E) is a graph, where every node corresponds to a site and every link
to a two-way communication link between sites.
(ii) Data is a set of variables (or entitnes) denoted {x.y.z,...}
(i.e. physical data items). :
(iii) Srored-at : Data — V is a function that determines the site, where each
physical data item is stored. '
(iv) IC is a set of integrity constraints on the values of the Data.0

Note that mrultiple copies of the same /ogical data item are considered as different
physical data items stored at different sites. The fact that they are copies and must
remain identical for reasons of consistency is part of the mtegnty oonstramts, andis
not treated separately.

The users interact with the database using transactions. In our model a transaction
is a distributed program, not identified with a particular site.

13

Definition 2: A transaction T, in a given DDD, is a directed acyclic graph (dag)
T=(N,A) such that: |

(i) every node p is associated with one site of the system, site(p) and with an
entity Xp stored at that site.

(ii) all nodes associated with the same site are totally ordered in A.
A transaction system T is a set of transactions {T;}.0

Note that it is assumed that transactions are correct programs (e.g. update all
copies of the same logical item in order to preserve the integrity of the database). We
denote the partial order imposed by a transaction T; on its actions as Dy

Definition 3: The nodes of a transaction are the actions performed by the
transaction. The semantics of an action p is the indivisible execution of the following
two steps '

tp = xp '

Xp i= p(tp,...,tq,...) where q ranges over all actions that are ancestors of p in
the transaction of p. :

Here the t's are temporaries (i.e., a workspace local to the transaction) and the
X's are physical items in the database. The f;’s are uninterpreted function symbols.00

Hence the nodes of transactions stand for indivisible actions. We do not specify
the details of the exact nature of the computation performed by each action. Instead
we view an action p of a transaction T as an uninterpreted function symbol f,, with
one output and |{g] q > p}l+1 inputs. The transactions are in fact program
schemata, where all updates are treated by the concurrency control mechanism as
uninterpreted updates. Designing the database (i.e., deciding how many copies of
each item there are and where tﬁey are stored) and writing correct transactions (e.g.,
which copies to update, which other integrity constraints to satisfy) are problems at a
higher level than concurrency control, and are not treated here.

14

site-2
BMS

site-1
DO

Figure 2.1 System Architecture

Figure 2.2 Transactions

15

The particular model of actions used was chosen for its clarity. Other models,
such as those illustrated in examples 2 and 3 below could as well have been used, to
produce results similar to those of Chapters 3 and 4.

Example 1: Consider the transaction of Fig. 2.2(a). Actions 1,2,3 are performed
at site 1, actions 4,5 at site 2, and 6 at site 3. The actions performed at the same site
are totally ordered. The actions are updates as in Definition 3, so every node can be
associated with a variable and the site this variable is stored at. This model
generalizes the centralized model of [17].

Example 2: Consxder the transaction of Fig. 2.2(b) with actlons Q, 2) (3,49),(5.6)
performed respectively at sites 1,2,3. If p is odd it is a read action with a readset of
data itemns stored at its site. If it is even it is a write action with a writeset instead, and
- this update depends on all readsets (e.g., action 6 has writeset W6[x,y] and depends
on readsets Rl[w] R3[u Ry Rs[x] where w is stored at 1, u, v at 2, and x,y at 3). This
type of actions and transaction is used in SDD-1 [2,3].

Example 3: Consider the transaction of Fig. 2.2(c), where action j is performed
at site j (there is only one action per site). Dataset(j), of arbitrary cardinality, is
updated based on its previous values and those of datasets of ancestor actions. This is
a very simple model that makes the centralized version trivial (a transaction is an
action), yet it presents interesting problems in the distributed case. '

An edge in a transaction T between actions at different sites (called a cross-edge),
denotes both temporal precedence and a transfer of information (i.e., in Fig. 2.2(a)
update 5 needs data from update 1). These cross-edges correspond to user-defined
messages, which the system must service.

A history is a description of a set of transactions and the process of their
execution on the system. In a distributed system [19] it is in general impossible to tell
which one of two events occured first, (because communication is not always
instantaneous). Because of this uncertainty, we describe the execution order of the -
actions by a partial order. If two events are incomparable in this partial order, any
one could have preceded the other. There are two restrictions on the partial orders.
First, what happens at every site is totally ordered; this is consistent. with the
centralized problem and guarantees that the result of the execution is uniquely -
determined as in the case of individual transactions. Second, user-specified
precedences are always respected. Formally:

16

Definition 4: A history is a pair <T,»>, where T={ T; ,1<i<m} is a transaction
system and « is a directed acychc graph (dag) on the nodes of the transactions T;
such that:

(i) Nodes p with the same site(p) are totally ordered. .

(ii) For any transaction T;and actions p.q€ T; and p >1; q we have that p>_q
(where >, denotes the partial order imposed by «). O

Definition 5: A prefix of a history h=<T,x> is a pair <T.a>, where a is the
induced subgraph of » by a subset of its nodes such that, if action p€a all ancestors q
of p in » belong to «.O |

A history may be viewed asa special case of a parallel program schema (see Fig.
2.3). The resulting schemata and the rigorous treatment of their equivalence under
Herbrand interpretation [25] closely resémble the centralized case. |

Definition 6 :Two histories hy =<T,#1> and h2 <T 12> are eqmvalent (= h2)
iff their schemata are strongly equivalent (that is equivalent under the Herbrand
interpretation of tpe function symbols and variables).0

Let H denote the set of all histories. Recall that a partial order can be considered
as a set of -total orders (those ‘compatible with it). Let H+denote the set of all
histories <T,x>, where # is a total order. Therefore a history represents a particular
subset of this basic set Ht. The histories with only transaction-defined cross-edges
(arcs between actions at different sites) are maximal when considered as sets of total
orders. Yet histories can have other cross-edges also (e.g.,arc (4,6) in Fig.2.3), whose
presence restricts the allowable total interleavings of actions. The goal of concurrency
control is to reéognize on-line large sets of correct total interleavings.

) ' : 2)

z &)
) 3 4 [
T1 Tz 6

{2) transactons

»y siored at site A
zwstored at siteB
1
3 .
4
6
2
{b) z hestory

17

Istart l

i start I

Y

(c)its schema

Figure 2.3

t1ex | [13«z
xeH(t1) z+f3(13,t1)
A 4
Jtdex h‘ 152
[k et4(14,t5) z+I5(15)-
Y - ‘
[t2ey ’ t6rw
Cjyefo(t2t) w +16(t6,15)

|

18

Since individual transactions are correct (i.e., take the database from a correct
initial to a correct final state), histories in which transactions are executed one after
the other (serial histories) are correct. Also those histories that are equivalent to
them, called serializable, are correct. We denote the set of serializable histories by SR

(SRCH).

Definition 7: A history h is serial iff

(i) The execution of actions at each site introduces a total order of transactions at
that site (i.e. there are no transactions Ti,Tj i#j with actions p,q€ T;, r€ Tj performed
at the same site with p preceding r and r preceding q). ' :

M IfT preceds TJ at one site it does so at all sites, where both transactions
-have actions.J

Definition 8: A histo:y is serializable iff it is equiva!ént to a serial history.0

In the next section we will show that deciding serializability is an easy task. This
task becomes NP-Complete if the model with read and write actions (instead of
updates) is used [25]. Even in that case SR has interesting efficiently recognizable
subsets (ie., DSR[25]). What is significant, is that deciding whether a history is
serializable in a centralized or distributed model are practically 1dent1cal tasks. We
discuss this similarity in the ‘next section,

As in the centralized case, synchronization is necessary only between actions of a
transaction system which operate on the same data (i.e., conflict). These conflicts are
represented by the conflict graph G(7).

19

Definition 9: For the transaction system T={Tj, 1<i<m}, the conflict graph
G(7) is an undirected multigraph (V,E), with a partial order 2; associated to the
edges incident upon each node i, such that:

(@ V={i] 1<i<m}, with node i corresponding to transaction Tj.

(b) E is a multiset of edges. E={ copies of edge ij | for every copy of ij there is a
distinct pair of actions {p,q} with p€T;, q€T; i»j and xpzxq}

(c) For two edges incident at node i we have ij >; ik iff the action in Tj
corresponding to ij is identical to or precedes the action in T; corresponding to ik.00

Note that an edge in E denotes a conflict between two transactions. Every edge ij
in E corresponds to a pair of actions {p,q}, which update the same variable. Based
on where this variable is stored we can partition E into as many multisets as there are -
sites (e.g., "red” and "green” edges for two sites). For an example see Fig. 2.4.

An ordered mixed multigraph G=(V,E,A,{>;}) is a mixed multigraph with E a
multiset of edges, A a multiset of directed edges and a partial order >; at each node i
of the edges incident at the node. Conflict graphs are such objects with A=4@.

Since a conflict (or an edge in G(7)) corresponds to two actions at the same site .
and a history h=<7',w> has a total order of the actions at each site, we can say that a
history resolves all conflicts. That is, if edge ij corresponds to the pair of actions
{p.a}, PET;, q€T;, i#j, we direct ij from i to j iff p>,q. |

Definition 10: A prefix <T,«> of a history assigns a direction (ij) to an edge ij of
the conflict graph G(T) iff all histories, -which have <T,a> as prefix, assign ij the
direction (ij). Thus a prefix <T,a> determines an assignment of directions to some
edges of the conflict graph. -

Conversely an assngnment of directions to edges of the conflict graph is
realizable by a prefix, if there is a prefix of a history assigning these directions and
no others..d

Thus a prefix <T,a> determines a unique ordered mixed multigraph G*(7),
which is G(7) with some of its edges directed.

20

at 5;{61 ' ot SitlZ
%4(::)_
{
22(y)
3z)
T,
hty) -
| (w)

______"ved" |
. _---.anm.

()

. Figure 24
(a) Transactions (e.g. action 1 updates x)
(b) Conflict graph

21

Up until now the. distributed problem appears to be a straight-forward
generalization of the centralized case. What is considerably more complex in the
distributed case is the subject of schedulers, and their design to meet performance
specifications. For an exposition of the relatively simple theory for the centralized
case see [25]. . '

Our schedulers will be distributed algorithms characterized by the parallelism
they provide and by their efficiency. We will measure parallelism using sets of
histories C, that is subsets of H. The efficiency of the schedulers will be measured by
the worst-case number of steps they execute and the worst-case number of messages
they use. We will be interested in the following special C’s:

Definition 11: Consider a set of histories CCH, such that for each h€C the only
cross-edges (edges between actions at different sites) are defined by the transactions.
Such a C we shall call a concurrency control principle.Od

C is chosen in such a way, that all heC are correct. The larger C is, the higher
the level of parallelism supported by this concurrency control principle. Examples of
concurrency control principles are serializability and serial (one-at-a-time) execution .
Obviously, the former suppofts more parallelism. Thus concurrency control
principles are very natural classes of histories measuring parallelism, although not all
subsets of H can be expressed as such.

A scheduler Q is a distributed algorithm. (We do not explicitly specify the
model of computation, although we shall use a concurrent language notation as
needed). It consists of a set of communicating sequential processes [15], one for
each site. Its instructions may involve the following:

1) Local Computation i .

2) Receiving an execution request for an action gq.

3) Granting an execution request of an action q.

4) Sending a message to another site (i.e. send{<mcssage>))

5) Receiving a message from another site

2

Each history h corresponds to a set {h™ }of total orders (those that do not
contradict h). Let h denote any total order which respects the partial order of
history h. If C is a set of histories, we let CT ={h* heC}. H is the set of all
histories. An element of H* is a string, that is, a mapping from {1,2,...n} to N,
where N is the set of all actions and |[N|=n. In fact it is a pair <7, string>, but we
omit T when it is obvious from the context. The jth symbol of hteHtis
denoted by h;+.

We thus assume that there is a total order on the arriving execution requests.
This is a simplifying analytical tool (a formalism of the familiar notion of a
timestamp) and is not used by the scheduler, whose f)rocesses still perceive the
world in terms of partial orders. We therefore have a global clock, whose ticks
are the arrivals of execution requests. This sequence of execution requests is the
input of the scheduler. What is the output of a scheduler? It cannot be just a
sequence of actions, as the relative ordering of the granting of requests with
respect to their arrival is also important. The output of the scheduler is an n-
tuple of strings S=(5],5.-.5,)€(N*)". Here s; denotes the sequence of granted
requests between the jth and (j+1)-st (after the jth if j=n) arrivals of requests. .
N is the set of all strings constructed. from the set of actions N and includes the
empty string. The concatenation of the n strings, conc(S), should be in H¥.

Thus a scheduler Q, besides being a distributed algorithm, is a
nondeterministic mapping, (i.e. a set of mappings) from Ht to (N*)I.

For each total order h+, Q will produce a stream S of granted requests; one
nondeterministic element is that of the various communication delays. A set of
communication delays is a function d, which assigns to each execution of a send
instruction by a process of Q a nonnegative real number. Not all functions are
delay functions. The delay function has to be_feasible, in that an action p must
be executed before a successor q of p, in its transaction, can be requested. Note
that the zero function d=0 is always a feasible delay function. Therefore the
mapping Qg:HT->(N*)? is well-defined for each feasible delay function d,
assuming that local computation proceeds at a rate far faster than the arrival of
requests and messages.[]

23

Consider a set of histories CCH. Scheduler Q realizes C if all outputs of Q are
in C- and thus presumably correct- and, furthermore, if Q is fed with a history in C
and all delays are 0, then Q grants all requests without making them wait. It is
argued in [25] that these are traits, in the centralized case, of all schedulers that are
on-line and optimistic (two intuitive properties shared by all existing schedulers). The
same arguments are applicable to justify Definition 12, where total orders and strings
of actions are used to formalize this intuition. ’

Each process makes decisions about whether to grant or delay pending requests.
These decisions can only depend on the information available to each process
(i.e., T and the requests that it knows have been granted or are pending). This can be -
viewed as a consequence of -the power of the set of instructions used (see above).

Definition 12:-We say that Q is a realization of C iff
(2) conc(QghT))eC™ for all heH, and delay functions d.
®) QythT)=(hy*,..hy*) for all heC.o

We illustrate the above definition in Fig.2.5. IfhT€H™ is the input to Q there
are many possible computation paths (i.e., sequences of events in the System). This is
because of the essentially random delivery time of the messages. So every path has
associated with it the delays of messages used along this path and has output
(81,52,...,sn)e(N*)n. The conditions are that the granted requests always form a
correct history (a) and, moreover, if requested actions form a correct history and all
delays are zero, then the requests must be granted immediately (b). These conditions
must hold for all computation paths. So there is a difference between the use of the
term nondeterminism above and that of classical complexity theory.

There also is a feedback effect from output to input (i.e., requests‘ cannot be
made if their ancestors in transactions have not been granted). This problem; which
is due to our choice of an input-output description could restrict the set of inputsto a .
particular scheduler. Yet all prefixes of histories in C must still be inputs to all
~ schedulers realizing C. This is also true for all prefixes not in C that are minimal
(their prefixes are in C). These will be the only inputs of interest in Theorem 3.

%

compidation ften*

. - FRIEN C

Figure 2.5

Definition 13: The computational complexity of Q is the worst-case sum of the
counts of all local computations by Q over all processes of Q. The communication
complexity of Q is the worst-case count of all send instructions executed by all
processes of Q.0 | '

Note that apart from the messages generated by the scheduler processes of the
system there is also user defined communication, implied by transaction cross-edges
(e.g. some action at site 2 needs data from site 1). This communication is assumed
free, since it is unavoidable, and can be used to pass information between scheduler .
processes at no cost. '

A scheduler Q is polynomial time bounded (or computationally efficient) if its
computational complexity is bounded by a polynomial in n (i.e., n=|N]|, N is the set
of actions of 7). This means that all possible computation paths have computational
complexity (number of local steps) bounded by a polynomial in n. |

25

We may even augment the computation power of our schedulers if we allow
them, in their local computation steps, to consult an oracle [11} for a hard
computational problem (say an NP-CompIete problem). Many of our results w:ll still
hold for such schedulers. : -

Finally in order to characterize communication complexity we define the
following classes M(b): '

Definition 14; For a prefix <T,a> of C and an integer b>0 we say that :
{Ta>eM{b) if there is a realization Q of .C such that the total sum of send
instructions executed at all processes of Q gfter <T,a> is b or less.

Let b*(7) be the least b for which <T,8>€M(b). A scheduler which achieves
b*(7), for every T, is called communication-optimal.0l

Note that M (b)=¢ if b<0 and A (b)CM (b+1). This definition describes the
communijcation used if both processes of the scheduler are started with initial
information <Ta>. . |

What Definition 14 says is that a priori information about the syntax of the
transactions could be used to enhance the Com_municatibn performance (worst-case
number of messages used at run time) of the cqncurrency control meéha_nism. This is
analogous to the canflict graph analysis used to improve parallelism in SDD-1 [2,3].
A communication optimal scheduler is the hmnt in message performance attamable .
subject toa parallelism requirement C.

In Section 2.2 we will show that our model is a simple generalization of the
centralized case and that there exists a computationally efficient scheduler realizing
SR. In Chapter 3 we will recursively characterize the classes M (b) and prove that -
there exists a communication optimal scheduler realizing SR. Finally in Chapter 4 we
will examine the complexity of deciding whether a prefix is in Mgpg(b) and prove
that, if NP=PSPACE, no scheduler can realize SR and be both computationally
efficient and communication optimal. This will be true even if we restrict our system
to two sites, and our transactions to sequences of six updates each.

26

2.2 Properties and Limitﬁtions of the Model

The model presented in Section 2.1 consisted of extending the definitions of
centralized concurrency. control by introducing, where necessary, partial orders
instead of total orders and by partitioning the conflicts according to sites. A more
technical part was involved with defining the class of allowable distributed
schedulers. We can now state the distributed problem we will examine:

DCC: The problem of Distributed Concurrency Control is, given a set of A
histories C (which we can prove correct), find a scheduler, which realizes C and is
efficient (in terms of both 'local computation and communication).

Similarly to [25] we can prove:

Theorem 1: Chas a computauonally efficient realization xff the set of prefixes of
C is in P (ie. deterministic polynomial time). '

Proof: Since we can expend an indefinite amount of communication between
the different modules of a scheduler, the problem reduces to the centralized one (one
site gathers all information and makes all decisions). Therefore the constructive proof
of [25] is applicable. For arbitrary delays this construction gives us outputs in C¥;
for 0 delays Definition 12(b) is also satisfied.0

Since the ahalysis we will be presenting deals primarily with the assignment of
directions to edges of the conflict graph G(7) by a prefix <T.a>, we need a
characterization of realizable assignments (see Definition 10)

27 .

Lemma 1: Given a conflict graph G(T)=(V.E.2,{>;}). An assignment of
directions to a multiset X of its edges, producing the ordered mixed multigraph
(V.EXX, Ax.{>;}) is realizable iff, "

(@) If ij € X and is directed from i to j and ik >; ij then ik € X.

(b) Ax has no directed cycles (iyii3...ini1) such that

iy 2 Bi3, Bi3 24 1314 inf) 25 11 |
Proof: "only if" Given a breﬁx {T,> of a history let us first assign the direction
(ij) to any edge ij in G(7), which corresponds to a pair of conﬂxctmg actnons {pa}.
under the following conditions:
(1) peT;, q€T;

(2) p€a _
(3) if q€a ghen P>,q

Obviously all histories, which have <T,a> as prefix resolve these conflicts in the
same way. Moreover if an edge has not been given a direction then both its actions
p’.q are not in a. We can complete <T,«> with suffixes of histories that have p’,q’ in"
both orders. This proves that the dxrectlons we have constructed are exactly those
assigned by <T,a. - :

Because of causality both conditions (a) and (b) obv1ously hold for the directions ‘
constructed above :

"if* Given an assignment Ay we construct the following digraph (Vo.Ap)

Vo (vertex set):
If (i)€Ax and ij corresponds to conflicting actions {p.q}. peT then peVp.
If peVy, peT; then all ancestors of p in T belong to V.

Ag (arc set):
If pq belong to the same Tj and p>pq then (pq)GAo

If p.q correspond to an (ij)€Ay then (pq)€Ay.

Since (b) is true (Vg.A) is acyclic and since (a) is true transaction precedences
are respected. Thus (Vg,Ag) has the same nodes as some prefix and respects all its
conflict resolving orderings (see "only if" part of the proof). By topologically sorting
the nodes of (Vp.Ag) we can produce the desired prefix.0 |

28

We will now characterize the serializable histories and prove that the prefixes of
SR are polynomially recognizable (in P).

For the model of actions we are using (i.e., tp:=Xp: Xp:= p(tp....,tq,...)) we say
that action p reads a variable x from q in history h=<T,#>, if Xp=Xq=X and q is the
ancestor of p closest to p in . The reads x from relation in our model is always a
chain of all actions p, for which x]'p=x. The chains for all x’s give us the reads-from
relation. It is easy to see that we can represent the reads-from relation for a given
history h=<{T,»> as a directed multigraph D(h), with nodes corresponding to
transactions and edges corresponding to edges of these chains (labelled by the
variable read and the action reading it). In D(h) we can 1gnore arcs of the form (1 i)
because we can deduce these from 7.

, Since histories are program schemata, we have from standard schemata
equivalence theory [25): -

Proposition 1: Two histories hy=<T,x}> and hy=<T.#p> are equivalent iff - -
D(h1)=D(hy) (i.e, they have the same actions and the same reads-from relation).0

For other models of actions it is necessary to distinguish between live and dead
transactions [25]. In our model, all transactions are live. Obviously for a serial history

hg, D(hg) is acyclic.
The following theorem (an obvious genetalization of the centralized case) is yet |
another variant of a veritable "folk" theorem [3,17,25,28,40]:

- Theorem 2: A history h is serializable iff it resolves conflicts without creating
directed cycles in G(7). Sumlarly, a prefix has a serializable completlon iff the
already resolved conflicts do not create a directed cycle in G(7).

Proof: Let D(h) rebresent the reads-from relation for h. If h=hg for hg serial
then D(h);D(hs), which is acyclic. If D(h) is acyclic we can find a total order of
transactions by topologically sorting it and then consider the scrial history which

29

respects this total order on all processors. This serial history has the same D(h). The
only difference from the centralized case is that D(h) can be partmoned into as many
subdags as there are sites. '

It is easy to see 'that D(h) is acyclic iff G(7T) with the assigned directions is
acyclic. A scheduler, recognizing serializable interleavings and knowing of all
requests (operating in a centralized manner), would arbitrate requests on-line by
making sure that the assignment of .directions to the conflict graph introduces no
directed cycles. This can be done in polynomial time. Therefore there is a
computationally efficient scheduler realizing SR.O '

It is easily seen from the above analysis that histories with the same total orders
on each site are equivalent, and cross-edges are - not needed . for deciding
serializability. These edges, between actions. at different sites, can be used in relating
histories and performance of distributed schedulers.

Let us end this Chapter with a brief dnscussnon on the propertles of our model.
The advantages of this model are:. :

(a) generality: All models of transactions and schedulers proposed have the
properties of our model. Variations in the format of transactions (i.e. defining
“separate read and write actions) do not affect the results that will be presented.

(b) mathematical snmphcmy All cases are treated uniformly (i.e. copy
equivalence is just one more instance of the integrity constraints). All questions are
reduced to questions on concrete combinatorial objects (e.g. conflict graphs). There
are no hidden assumptions since the performance measures (parallelism, computzition
steps, messages) and the model of distributed algorithms are well-defined.

(c) compatibility: The model is an extension of the centralized case. In Section
5.1 we will be able to express distributed locking policies in the model, just as was
done in the centralized case. |

(d) correctness: Serializability is not the only notion of correctness, but it is
certainly the most generally accepted one. It is intimately related to the a priori
information about the syntax of T.

30

On the other hand there are some disadvantages:

(e) Restricting attention to the three measures of performance: We ignore goals
which are impertant for distibuted systems but hard to treat mathematically (e.g.
reliability of the update mechanism, which is usually handled by two phase commi:

protocols[14]).

() The assumption that all syntactic information is known at run_time:
Information about transactions is not always available before the transaction is

initiated. There is a. whole spectrum of possibilities, between total syntactic
information being known before run time (static case) and the completely dynamic
case, in which information is acqmred for each actlon separately as it is presented for
execution.

(2) The measure of garallehsm used (ie the size of the set CgH) is a crude
approximation of the average user delay [25].

These disadvantages are , shared by most formal work on database concurrency

31

3. Communication-Optimél Schedulers and Games

We will now state and prove a theorem, which relates the structure of histories
and their prefixes with the number of messages necessary and éufﬁcient to achieve a
performance C. ' '

3.1 A Recursive Characterization of Communication Comple;(ity< .

As defined in Section 2.1 the performance measure for -parallelism C is a set of
histories (i.e. CCH). In this section we require C to be a concurrency control principle
(see Definition 11). Concurrency control principles are very natural classes of
" histories measuring parzallelism (examples are serializability SR, and serial execution
S). Let PR(C) be the set of prefixes of histories in C. Two properties of C are used in
our recursive - characterization of communication complexity. First, if C is a
concurrency control principle, then for each h€ .C the only cross-edges (edges
between actions at different sites) are defined by the transactions. Second, we have
an efficient (polynomial time in n) test of membershxp of a preﬁx in PR(C) (for
example, if C=SR Theorem 2 provides us with such a test). If no such test is
possible, concurrency control is quite hopeless, even in the centralized case [25].

Let us briefly review the notation used. A prefix is denoted as a pair <Ta>,
where T represents the transactions (a priori syntactic information) and a the order
in which some actions were executed. We use a for <T,a> when there is no
ambiguity about T. Also (8/a); denotes the prefix of g that contains « and all actions
of 8 at site i (the projection of g at site i given). So « is a prefix of g and (B/a);
Finally we use M(b), where M (b)C PR(C)_, for the set of all prefixes <T,a> of C
such that there is a realization of C which, when started with <T,a>, sends b or fewer
messages. | :

2

Theorem 3: Let C be a concurrency control principle, <T,a> a prefix in PR(C),
and b a nonegative integer. Let i denote an index ranging over the site number
i€{1,2}. Then the following are equivalent: -

(D <Ta> € Mc(b).

(1) <T.> ¢ PR(C) B) vi <T(B/a)p € Mb)
aMv<rp iy . then |
(2) Vi <T(B/a)p € PR(C) 4) 3i <T(Bra)p € M{b-2)0

Les formally (II) reads as follows:
"For all continuations aj,a; of @ such that «, is « with some actions at site 1 added,
and « is a with some actions at site 2 added, and such that their least common
continuation 8 is not a prefix of C (while aj,a, are) the following holds:
{Ta;><Tay>€ M b) and one of them is in M (b-2)." |

We will first give an intuitive interpretation of Theorem 3 (which is illustrated in
Fig. 3.1). Consider a scheduler, which realizes C, starts from <7,a> and receives input
requests <7,8>. Each one of the scheduler processes i, i€{1,2}, can see (8/a);, without
sending any messages. This is because process i (e.g. process 1 in Fig. 3.1), knows a
(e.g. 2 in Fig. 3.1), receives the actions of 8 to be executed at site i (e.g. actions 4 and .
5 in Fig. 3.1) and using the transaction-defined messages (e.g. action 5 needs data
from action 6 in Fig. 3.1) can learn about some actions at the other site (e.g. actions 6
and 8 in Fig. 3.1).

. A situation that forces communication is one where the projections of the input,
that each process sees directly, seem correct (i.e. <I(87a)> € PR(C)) and therefore
must be executed on-line to achieve the goal C, yet the real input could be incorrect
(i.e. <T8> ¢ PR(C)). For the example in Fig. 3.1, a=2 and there is a unique
. minimal "bad" continuation 8. We use o; as a shorthand for (8/a);, when there is no

ambiguity. | -

Theorem 3 tells us that these are the only cases for which we need
communication between scheduler processes; furthermore to guard against such
"bad” p’s only one (p/a); (say (B/a);« or a;« for short) has to be in M(b-2). The
communication protocol is built in such a way, that the corresponding site i* will ask

33

for the approval of the other site in order to execute aj«. There is therefore a
balancing of the send instructions among the two processes of the scheduler, with
each send instruction guarding against a "bad" 8.

The rigorous proof of Theorem 3 is given below. In one direction it entails an
adversary argument and case analysis. For the other direction we give an explicit
recursive construction of scheduler processes that realize C, within the prescribed
number of messages. The basic idea of this construction is the following: Let a},a, be
correct continuations of « and projections of an incorrect 8. Let Q; (i=1,2) be a
message-optimal protocol, given that «; has been executed. Then the Q;’s can be
combined to produce a Q that is message optimal, given that a has been executed. If
Q; uses more messages than Qj, then the process of Q at site j will have the send
instruction guarding against 8.

r

©

4

Tl

e 3

Figure 3.1

Y
/6 |
= ' _
Oy |
. A

/
e

(a) Transaction system (u,v,w at site 1, x,y,z at site 2) (e.g. action 1 updates x)
(b) Conflict graph (i.e. ==~~ =conflicts at site 1, =— . = conflicts at site 2)
(c) Mustrating Theorem 3. Above: prefixes. Below: assignments of directions. .

35

Proof of Theorem: Let a; denote (8/a);. Theorem 3 recursively characterizes
{T,a> € M(b), based on prefixes <7,a;>, <'T,a2>, which properly contain <T,a>. The
containement is proper because of conditions (1),(2) of the Theorem. The last actions
of <T 8> at sites 1 and 2 (p; and p, respectively) are concurrent and not contained in
a. Consequently o; containing p; and «; containing p, are not prefixes of each other.
Note that in order to terminate the recursion we use the following facts: if b<0 then
M{b)=2 and if h is a history in C then h€ M/0). For b=0 the statement of the
theorem becomes: "<T,a> € MC(O) iff no prefixes <T,8> exist satisfying conditions

(1):2) and (3)".

"I=1I" We will now prove that if g exists with properties (1),(2) and (3) and
LT € MO} V {KTap> ¢ MAD)}.V {<Tap> ¢ MLb-2) A<Tap> ¢ M{b-2)}
thea <T.a> & M {b). This is cbvious if one of the two fiest members of the above or
clause is true. If both are false but the third member is true we-will prove that
communication involving two messages is forced, between the execution of <T,a>
and that of <T,ep> or <T,a3> for all schedulers feafizing C. For this we will use the
general specifications for a programming system ‘as outlined in Section 2.1

Consider the following situation that the process of the scheduler at site 1 (site 2)
can face. It receives request pl(p7) ‘while knowing-that certain requests <T,y> have
been granted with y=a;-{p;} (y=ay-{p,}). It 'has o decide whether to grant or
delay py(p,). If it grants the request, then. accordmg to its local view of the input the
result would be correct. lts local view of the mput can be the actual input, that is it
could be the case that the input history is in C, it has <T, 1> ({T,a,>) as a prefix, and
no other requests have been submitted at the other site yet. Therefore the scheduler
cannot delay p;(p,) for the purpese of waiting for some fusture request submitted at
site 1 (site 2). It has the following two options. First, the process of the scheduler at -
- site 1 (site 2) can either grant p; (p,) directly or after receiving a message from the
process at the. other site. Second, it can inform the other site of py(p,) or it can
withhold that information. These two options expresséd as sets of instructions in our
programming system give rise to the only" four possible cases for site 1 (snte 2) to
handle p;(p,). These are cases Al-A4 (cases B1-B4 are symmetrlc)

36

Case Al: if (input as seen at site 1 is in PR(C)) then grant p,

In this case the process at site 1 does not wait or inform site 2 of its
decision.

-Case A2: if (input as seen at site 1 is in PR(C)) then grant p;
send (message to site 2)

In this case the process at site 1 does not wait but informs site 2 of its
decision. The message can potentially contain all available information at site
1. The order of these instructions can be interchanged.

Case A3: wait (for message from site 2)
if (input as seen at site 1 is in PR(C)) then grant pi

In this case the process at site 1 waits for information from site 2, but
does not send any information. Interchanging the order of these steps will be
treated similarly vuth case AL

Case A4: send (message to site 2)
wait (for message from site 2)
if (input as seen at site 1 is in PR(C)) then grant p,

In this case the process at site 1 informs site 2 of its problem, and waits
for an answer before proceedmg Any pennutahon of these steps also uses two

messages.
‘We will now reach a contradiction by examining two possibilities. |

(i) If either the process at site 1 uses the instructions of case A4 or the process at
site 2 uses the instructions of case B4 then two messages are consumed in executing
either <T,a;> or <T,ay>. Since we assume these prefixes belong to M (b) and not to
Mb-2) and they are prefixes of <T.a>, we will have to use (b-1)+2=b+D1b
messages at least to achieve our performance goals starting from <T7.a>.

(ii) For all other combinations of cases of mstructxons we will also find
contradictions, ' , :

Using case Ai instructions for site 1 and case Bj instructions for site 2, for
‘ij€ {1,2}, we obviously have situations where the input prefix is <T,g>¢PR(C) and

37

is (incorrectly) executed without rearranging requests.

In any one of the remaining combinations either site 1 uses mstruct10ns of case
A3 or site 2 uses instructions of case B3. We will reach a ‘contradlctxo_n using A3
instructions (B3 is symmetric). Let the input history h* be in C and have {T,a;> as
prefix. When the request for p; will be submitted to the process of the scheduler at
site 1, the process will wait for a message from the other site, which will determine its
decision (granting p; or making it wait for future requests from other transactions).
But when actions of <7,«;> are being executed at site 2 no such message can be sent.
This is because according to site 2 both <T,a)> and <T,a,> are possible (proper)
contlnuatlons and decisions cannot be made excludmg one or the other. So the.
message site 1 is waiting for will be sent when descendants of <T,a)> arrive at site 2.
Thus-we force action p; to wait for some action whtch is not its ancestor in h*, and
- therefore h*, although in C, is not executed on-line as required by Definition 12 of
Section 2.1

"lI=I": Under the conditions of the theorem we will construct a realization of
C achieving the desired performance. That is we will present a scheduler, which will
consist of two processes (i.e. LOCALSCHED{T,a> b), i=1,2) and recognize on-line
all histories in C with <T,a> as prefix, without executing more than b send
instructions in the worst case. The algorithm is written in a programming system with
the capabilities outlined in Section 2.1.

The LOCALSCHED processes (see Fig. 3.2 for i=1) communicate with
transactions and with each other using messages. The messages received by a process
are -buffered in a FIFO queue. The variables that the scheduler processes use for
recording the state of the system are the state variables s, 1, t, p;, and b. The.
variables m; (modes) are used to synchronize the.two processes, so that when one
process asks the other a question it expects an answer before examining other
requests. The execution of send instructions is controled by the conditions of
Theorem 3. The procedures Grant, grant requests. Fmally the procedures Delay;,
'Delay* handle the cases where the input is discovered to be incorrect. Let us explain
the above features in some detail.

38

LOCALSCHED(XT,a>,b) :
L s5;:=LTa>; 1):=<Tad; t:=9; pj:=@; my.=normal,
2. when queue nonempty do -
3. if my=normal '
then M:=first message of queue (delete it from queue);
else wait (for message of type Q or A); M:=first such message;
4. (Based on M assign)
5;: =(state of 1);
rj:=(state of 1 that is also known by 2);
py-=(set of pending requests, at most one per site);
t:=(state of 1 resulting if pending requests were granted);
5. (Respond to message M) do one of three cases (R,A,Q);
6. od end '

case K:
if t;¢ PR(C) then Delay,(p,) else
xf 3g st {y=0/m)} A {B¢PR(C)} A {(8/1),€PR(C)} A {tleMc(b~2)}
o then m,; =wais; send <2,Q,p;.5)>;
else 51- —tl, Grantl(pl,sl),

case A: , . .
if p; is in 5; then Granty(p,,s{); LOCALSCHED,(s,,b-2); else Delay®*;(p;.5));

case Q: . -

if y€ PR(C) then spi=1ty3

if m;=normal thenh send <2,A,8,5>;

if t,€ PR(C) then Grint((p,.s)); LOCALSCHED(s;,b-2); else Delay*;(p;.s;);

Figure 3.2 LOCALSCHED at 1

39

a) Messages: The messagés received by the scheduler process at site 1 (for those
received at site 2 interchange 1 and 2) have the following format, (i.e. there are three
types of messages): <1, type, requested action, state at site 2.

R (for type=request). This is a message from a transaction to the
scheduler process at site 1. It contains a request for an action p at site 1. State
information about site 2 is included (else it is @), when data from site 2 is
necessary to compute p. This happens when an ancestor of p, in the
transaction of p, has been executed at site 2. Then the transaction defined
message can be used to transmit information about the state at 2. Examples of
such messages are <1R,p,5,> or <LR,p,®.

Q (for ty:pozquestion). This is a meosage from the scheduler process at
site 2. This process needs site 1's approval in order to decide whether to grant
some request p, when it is at state s,. An example for such a message is

<19Q1p’s2>’

A (for type=answer). This is a message from the scheduler process at site
2 answering a type Q message of .the process at site 1. Site 2, having full
knowledge of the system, determined whether the pending request at site 1
should be granted. All necessary information has been incorporated in the
state at 2. An example for such a message is <LA B.5p.

ggz tate: The state of each LOCAISCHED (sy) is the prefix in PR(C) that the
process at site i knows has been executed. For example with C=8R the state is G(7)
(see Definition 9 Section 2.1), with a partial assignment of directions that can be
realized by a prefix. For this cdse correctness is guaranteed if acyclicity is maintained
in the directed part of the conflict graph. In addition to s; LOCALSCHED; keeps an
estimate of the state of the other scheduler process r;. With this estimate it keeps
track of the part of s; that the other site might not have heard of. Every time a
message is received or a request is granted s; and r; are consistently updated. Finally -
p; is used to store pending requests and ti‘thé state that would result if these requests
were granted. The variable b keeps count of site i’s estimate of the number of send
instructions executed or the number of messag&s of types Q and A.

(c)_Synchronization of the scheduler processes: The modes (m) are binary
variables used by the scheduler processes to guarantee that every question is
answered. A mode is cither nommnal, indicating that ncw requests are processed, or

40

wait, indicating that the process at i needs an answer in order to decide on pending
requests and handles no requests until it receives one. As can be seen from Fig. 3.3 a
type A message is never received when the mode is normal. The two sites never
deadlock (wait for each other indefinitely), because of the effect of A and Q type
messages on the mode.

(d) Communication Protocol: Every incoming request is examined (if the mode
is normal) and if it renders the local state incorrect it is delayed. If its execution leads
to a correct local state (t;) we determine whether send instructions should be
executed. We first examine whether it is possible for a malicious adversary to give as
input to the other site requests, also leading to a correct local state for the other site,

-but such that the total input is incorrect. If this is not possible the request is granted.
If, on the other hand, this is possible some strategy has to be worked out for
communication. In that case we also test whether t€ M(b-2). If this is not so the
request is granted without informing the other site. If this is so, site i sends a Q
message in order to ask for the other site’s permission to proceed. If it receives a go-
ahead then we notice that, after sending two messages, both local processes are in
fact LOCALSCHED;(S ey Dpey) With common new state and new message
parameters. This makes it possible to give an inductive proof of correctness.

Three decision questions are. actually answered:
{te PRO}Y -
{does a "bad™ B exist thh t;=(projection of g at i gwen p}?
{te M (b-2)}?

(¢) Granting requests: When LOCALSCHED; decides to grant a request it
allows the transaction to update the variable of the requested action. Also if this
transaction will send a message to some other site it will incorporate in that message
the local state s;. All this is achieved using Grant,(p,;s;) (i.e., if p; contains a request
for an action at site i, then let the transaction of this action perform its update and
use s; in any messages it.SBIIQS to the other site, else no operation). ‘

(N Delaying requests: If a request is received when the mode is waif the request
remains in the queue and will eventually be processed in its order of arrival. It is
delayed at most by the communication delay of a Q and an A message. If on the
other hand the scheduler discovers that the pending requests (at most one at each
site) would lead to an incorrect execution then it delays one pending request. There

41

are two cases:

For only one site t.¢ PR(C). Then the process at i delays the pending
request at i by putting it at the end of its queue (busy waiting). The scheduler
continues functioning as if the input were correct. This is accomplished using
Delay;(p;) (i.e., if p; contains a pending request at i, then put it at end of i’s
queue, else no operation).

Both sites discover that tié PR(C). This happens through an exchange of
a Q and an A message (one pending request at the site that sent the Q
- message) or of two Q messages (one pending request at each site). In this case
Delay*(p;,s) is used. One pending request is delayed. If there are two
pending requests the younger one is delayed_ and the older one granted. Since
consistent timestamps [19] can always be- assigtied to events in a distributed
system, there is no problem in determining the younger of the two pending
requests. Both processes of the scheduler know tﬁat,the,input is incorrect and
that a common prefix s* has been executed. In this case no more send
instructions have to be executed to realize C (see Def. 12 Section 2.1), because
a predetermined correct completion of s* can be executed.

- Figure 3.3 The mode at 1

42

Let invien(<T,a>)={number of actions in T}-{number of actions in a}

For the conditions (I) and (II) of Theorem 3 we have proven that (I) implies (II).
We will prove that (II) implies (I) by induction on invlen.

Induction hypothesis. For invlen({T,a>)=j we have that, if (IT) is true then (I) is
true and moreover after <T,a> has been executed LOCALSCHED;(<7,a>,b), i=1,2
realizes C and sends at most b messages.

For j=0 this is trivially true since {T,a> is a history in C, there are no more
requests left and <T,a>€ M (0)C M (b). So we assume the hypothesis is true for j<j*
and (II) is true for <T,a> with invlen j* and some b (that depends on <7,a>). Since
we have to prove (I), we have to exhibit a realization of C that after {T,a> sendsb or
fewer messages. We consider the scheduler Q that realizes C by submitting all
- requests to one site, except when the input prefix <T,a> has been executed. From
that moment on Q uses LOCALSCHED{(<T,«>,b), i=1,2. We need only consider the
operation of the scheduler after <T,a>. There are two cases:

Case A: he C. First we will examine the case where no send instructions are
executed and then the case where some are executed.

A.1: No send instructions are executed. Then the output has to be h and

no request p waits for the execution of a request which is not an ancestor of p
~in h (Def. 12 is satisfied). This is because on every request p the test (Is new
state in PR(C)?) is always true and involves only local computation; The
reason for this is that bs; definition of C, as a concurrency control principle, h.
has no crossedges that are not forced by the transactions. Thus the part of the
input each scheduler sees is automatically a prefix of h. Therefore it is
unnecessary to wait for a message from the other site to verify that what the
local scheduler sees is indeed a prefix of PR(C). Finally note that b>0.

A.2: Two or more send instructions are executed (the first two resulting in
an exchange of a Q and an A message or two Q messages). Up to the first
exchange the previous arguments, of A.l, hold. In order to exccute send
instructions a prefix g must exist that satisfics the conditions (1),(2) of
Theorem 3 and has the new state t; of a scheduler process as a projection.

43

Also t; must be in M(b-2), which can be decided since invien(t;)<j* (by the
induction hypothesis and the "only if' part of the proof). Finally since
Mb-2) is not empty b>2. After the exchange LOCALSCHED;(S;¢y:b-2)
i=1,2 is used and we can invoke the induction hypothesis -since
invlen(s;e,)<i*. So h is outputed on-line with at most 2+(b-2) send
instructions after <T7,a>.

Case B: h¢ C. First we will prove that the output of the scheduler Q is a history
in C (B.1). Finally that no more lthan' b send instructions are executed (B.2).

B.1: Let the output (the granted requests) be a history h* not in C. Then
it has (perhaps more than one) prefixes, called y, such that y¢ PR(C), y has
{T,«> as prefix and y is minimal (all its prefixes are in PR(C)). Let us call q;
and q, the final ‘actions of y, not in <T,a>, which are at sites 1 and 2
respectively. At least one of them must exist. Without loss of generality let site
1 grant q; before site 2 grants q, (if y has a q,). Since y is minimal we have
that either g, does not exist, or q; is an ancestor of q, in h* or q; and q, are
concurrent in h* and then v is an example of a g prefix of Theorem 3. If aQ
does not exist then, when the process at site 1 receives q; it cannot grant it,
because it sees from the information available to it that the result would be
incorrect. If q; is an ancestor of g, in h*, (that is there is a transaction
crossedge making q; an ancestor of g, in-h*) then site 2 knows q; has been
executed (through a transaction defined message) and delays q,. Finally if y
is an example of a g prefix of Theorem 3, then some exchange of two

~ messages has to take place before q, and ql are granted. By (I) one of the

~ projections of vy is in M (b-2), b>2, and thus, before both requests are ganted,
one of the processes sends a Q message. If this exhange results in
LOCALSCHED(s,ew:b- 2) i=1,2 being initiated we. can use induction to

~ argue that y-cannot have been executed. If the exchange results in Delay®; i
i=1,2 being called, both processes output a correct predetermined completion

~ of a common state s*. Thus we conclude that vy cannot have been executed
and the output of the scheduler is always in C.

B.2: Since b>0, if no send instructions are executed we have no problem.
If send instructions are executed, let us look .t the first round of
communication (two Q messages or one Q and one A message). If as a result.
of this exchange LOCALSCHED;(s,.,.b-2) i=12 is initiated with s..€.

new?

4

M(b-2), we know that invien(s .,)<j* and b>2 (See A.2). By induction no
more than b-2 send instructions are used after this and again our goals are
met. If as a result of this exchange Delay®; i=1,2 is initiated at both sites
(which is possible since the input h¢ C), then we know that b>2. This is
because (IT) holds and a "bad” g exists. After both sites call Delay®*; they have '
a common state s* and use no more send instructions, because the completion
of s* is predetermined and can be recognized locally. Thus no more than b
send instructions are ever exécuted.

This completes the proof of Theorem 3.0

Corollary 3.1: If-C, a concurrency control principle, has a computationally
efficient realization, then it has a communication-optimal realizatiori, which can be
implemented in space polynomial in n (n=number of actions of 7). |

Proof: It follows from Theorem 1 that, since Chasa computationally efficient
realization, recognizing if a prefix is in PR(C) can be done in polynoxmal time in n.
Consider the following reahzanon Q

Q: (1) Each site computes b” from T, where b*= b*(Il) min{b/<T, ¢>€ M/ b)}
(2) Site i uses LOCALSCHED,(KT,2>,b*) (i=1,2)

By the constructive pfoof "of Theorem 3 Q is a realization of C. using the -
minimum (b*) number of messages. From this proof we have that four
computational tasks are performed by LOCALSCHED. These are:

(@) Given t, does t¢ PR(C)?
This can be performed in _' polynomial time (and therefore space).

(b) Given t€ PR(C), i#j, and r<t, is there a § such that:
ft=G/} A {8€ PRO} A (/)€ PROY

This can be performed in nondeterministic polynomial time (and therefore -space).

(c) Given t€ PR(C), b>0, does t€ M (b-2)?
Using Theorem 3, the polynomial characterization of PR(C) and the theory.of
alternation [5], we have that both this task and step (1) of Q can be |mplemented in
poly nomlal space.

45

(d) Finally if Q discovers that the input is incorrect and Delay?; is called at both
sites then a correct completion of s* can be efficiently computed. This can be done
based on a predetermined ordering of the actions and the test of membership in
PR(C).) ‘

This compietes the proof of the existence of a communication-optimal scheduler
realizing C in polynomial space and exponential time.O

We will end this section with some comments on Theorem 3.

(1) Message lengths: Let us examine the length in bits of the messages sent. If
|7}=n there are at most n! states and in order to uniquely code a state we need
O(nlogn) bits. Also we never send more than 2n messages. In the proof of Theorem 3
we have used an inefficient format for messages <...s;. Although for clarity of
presentation we used s; (O(nlogn) bits) in our messages, we could have as well used
5;\r; (i.e., each site will hear of every action at most once). Thus in total O(nlogn) bits
will be used in the worst case. :

(2) More than two sites: The two site case, while being the simplest distributed
configuration is sufficient for the results of Chapter 4. If more sites are used and the
mode of communication is a broadcast mode, Theorem 3 can be easily generalized.
On the other hand a network of sites makes optimal communication a more difficult
problem, since it implicitly adds the problem of appropriately routing the messages.

(3) Persistency: We have examined schedulers that realize C and consist of two
processes, one at each site. Each of these processes knows of some pending requests
and a prefix of a history in C that has been executed (its state).

We call such realizations of C persistent if whenever a process i discovers that
the execution of a pending request p; would make its state s; incorrect, it delays D;
indefinitely and proceeds as if only the requests in.s; had been submitted.

If PR(C)€e P there are persistent polynomial time schedulers realizing C, as is
obvious from the proof of Theorem 1 and [25): On the other hand the scheduler of
Corollary 3.1 is not persistent. For some incorrect inputs Delay* is used. This is
because persistency requires that messages are sent even after the input is discovered
to be incorrect. To illustrate this suppose our scheduler starts with <T,a>€ M (b) and
receives a "bad” input <7,8> with projections <T,a>€ M(b-2) and <T,a;>¢ M (b-2).

46

It is possible for <T,ay> to have been executed when the scheduler, at the expense of
two messages, discovers the input to be incorrect. If we want our scheduler to be
persistent, starting from <T,a,> it has to use more than b-2 send instructions.
This difference between on-line computationally efficient and on-line
communication efficient algorithms, which accept the same strings, arises because of
the nature of resources we are trying to optimize. In one case we wish to achieve
performance C at asymptotic computation cost O(nk), in the other at fixed (say n/15
or 200) communication cost.
From the proof of Theorem 3 it is easy to see that:
"CT,a>€ M(b) iff there is a persistent realization of C, which if the input is in C
sends at most b messages after <T,a>".

We have related communication complexity of schedulers achieving parallelism
C, with the computational problems <T,a>€ Mb)? (which are in PSPACE).

If the input history is in C and <T.@>€ Mb) a user's delay D is bounded by:
b(commumcatxon delay/message) > D >0. ' '
If the input history is not in C there is a user who has to wait for other users.

The approach of Theorem 3 and the formulation of the scheduling problem are
pretty much independent of concurrency control and serializability. The application
to databases provides practical motivation and analytical tools (i.e., mixed ordered
multigraphs). In fact the entire methodology can be extended to distributed on-line
computation of combinatorial functions of two integers, which in a dlstnbuted
environment- are stored at two different sites [38].)

47

32 Games related to Distributed On-line Computation

In this section we will define decision problems for the sets of prefixes, which
were recursively characterized in the previous section.

Distributed scheduling is related, using M(b), to a game on prefixes, PREFIX,
whose rules are displayed in Fig. 34. In this game Player I corresponds to a
malicious adversary who wishes to force communication. His move is a "bad”
continuation B of the current position «. Player II corresponds to the two
-cooperating scheduler processes. Each one of his choices i* indicates, which of the
two processes has the responsibility of guarding against the "bad” continuation g (by
questioning the other process before proceeding). Player I wants to prolong the game
as much as possible, whereas Player II tries to bring it to an end as soon as possible
(other than that there is no winner or loose'r)

'From Theorem 3 we can deduce the following property of communication-
optimal realizations of C:

Corollary 3.2: The minimum number of messages sent by a communicetionQ
optimal realization of C equals the length of PREFIX(XT,@>) if both players play
‘optimally (we call this the minimax length of :PREFIX). =

Proof: Follows from Theorem 3 and the theory of alternation [5).- Note that
although in general we define PREFIX from an arbitrary initial position <Tagp>, we
are in fact interested in ap=2. T represents the static (a-priori) information on
transactnon schemata, that is used to optimize communication. Thus {< Ta>¢ Mc(b)"}
is equxvalent to {Is the minimax length of PREFIX((Ta)) greater than b "} O

In the following section we will analyze the game PREFIX for C=SR. If we
-choose serializability (SR) as our concurrency control principle the board position
becomes the conflict graph G(7T) with some of its edges directed. The moves of
Player I become choices of directions to undirected edges of G(7). Much insight into
PREFIX in this case is gained by studying a game played on mixed graphs called
CONFLICT and dlsplayed in Fig. 3.5. This game is our departure point in the -
PSPA(,E -Complcteness proof given in the next section.

PREFIX(KT.ap)

Initial position: For ﬁXed‘ C, a prefix {Tap
Position before player I's move: A prefix <T.>
Player I’s move: Select a prefix <TB> such that

(1) g is a continuation of a, with projections a;=(8/a); i=12
(2) aja, are prefixes of C
(3) B is not a prefix of C

Plgyer IT’s move: Select i*€ {1,2} and set a:=aje

Players I and II take turns moving. .Playa-_ II always moves when I does.
Player I's goal is to prolong the game as much as possible. |
Player IT’s goal is to end. the game as soon as possible.

-

Figure 3.4
- The game PREFIX

49

CONFLICT(Gy)
- Initial position: A mixed graph Gy=(V,EpAp)
(Ey . partitioned into "red" and “green")
Position before player I's move: A miked graph G=(V,E,A)
Player I's move: Select an assignment of directions (Ay) to an XCE such tlaat
(I) R(H) is the "red"("green") subset of X

(2) AgUA, AHL_JA have no directed cycles
(3) AxUA has a directed cycle

Player IT’s move: Select Y€ {RH} and set E:=E\Y and A:=AUAy

Players I and II take turns moving. Player II abways moves when I does."
Player I's goal is to prolong the game as muck as possible.
Player II's goal is to end the game as soon as possible.

Figure 3.5
The game CONFLICT

CONFLICT +(Gy)

Initial position: An ordered mixed multigraph Go=(Vq.Ep.Ap.{2;})
(Ey partitioned into "red” and "green")

Position before player I's move: An ordered mixed multigraph G=(V,EA,{>;}) -

Player I's move: Select a closed assignment (Ay) to an XCE such that
(I) Ax has projections Ay',Ay8
2) Ax'UA, AxBUA have no directed cycles
(3) AxUA has a directed cycle

Player IT'’s move: Select y€ {r,g} and set E:=E\(edges in AyY) and A:=AUAyY

Players I and II take turns moving. Player II always moves _When I does.
Player I's goal is to prolong the game as much as possible.
Player IT's goal is to end the game as soon as possible.

) - Figure 3.6
The game CONFLICT+

51

The game CONFLICT abstracts, in the legal moves of Player I, only the rules of .
PREFIX derived from an unordered conflict graph (8 has to create a cycle in the
conflict graph, while (8/a); i=1,2 should not). In fact the assignments of directions to-
edges of G(T) in PREFIX should also correspond to prefixes g and (8/a); i=1,2 (see
Lemma 1, Section 2.2). CONFLICT can obviously be played on multigraphs with no
modifications of its rules.

We will now generalize the game CONFLICT to CONFLICT * (see Fig. 3.6),
where in addition to the rules of CONFLICT a precedence rule is observed.

The input to the new game CONFLICT +(G) is an ordered mixed multigraph
G=(V.EA{>;}). (V) is the vertex set, (E) is the multiset of undirected edges
partitioned into "red” and "green”, (A) is the multiset of directed edges and {>;} are
partial orders (e.g. all undirected edges incident at node i form a partial order >).
All conflict graphs (see Def. 9, Section 2.1) are such constructs. If A#@ some
conflicts have been resolved and the >;’s correspond to transaction partial orders.

Definition 15: Given an-ordered mixed multigraph G=(V,EA,{>;}), and an
assignment (Ay) of directions to a multiset of edges XCE, we call this assignment
closed (with respect to G) when:

If ije X and is dlrected from i to j and ik >; ij then ike X.O

| Given a conflict graph G(7) and an assignment of directions to some of its edges
(Ay), that has no directed cycles, then Ay is realizable by a prefix in' SR iff it is
closed. This follows easily from Theorem 2 and Lemma 1 (see Section 2.2).

Let the undirected edges of G be partitioned into "red” and "green”, and let Ay
be a closed assignment .of directions to XCE. It is easy to see that the following _
closed assignments are uniquely determined. They are called the projections of Ay.

Ay! (where i="red" or "green"):
(1) Ayic Ay
() Ayl is closed
(3) all i edges of X are given directions in Ayl

52

If {>;} become the empty partial orders for every node, CONFLICT* becomes
CONFLICT (ie, X=RUH, Ax" = Az, Ay® = Ap). The real interest of
CONFLICT™ is its relation to PREFIX. A prefix <T.a> in PR(C) dectermines a
unique mixed ordered multigraph G%(7) (see Def. 10, Section 2.1). In the next
section (Lemma 2, Section 4.1) we will show that for C=SR, PREFIX(XT.a>) and
CONFLICT +(G2(D)) are equivalent. An examplé of CONFLICT, where an optimal
game leads to four moves is presented in Fig. 3.7.

e 1 H
1O
! i | i
@ ()
—T] ™
: [i o
e S 4 |
© «
r t :
S U
(@

Figure 3.7
(3 G(7) initial position (= "red", -~~~ "green")
(b) I's first move -
(c) II chooses "red”
(d) I’s second move
(&) II chooses "red”
(f) no legal moves for I

53

We will close this section with a brief discussion of an important special case of
the question {{T.a>€ M(b)?} namely b=0. This problem is obviously in NP, .
because all we have to do is guess a prefix satisfying conditions (1),(2) of Theorem 3
and check these conditions in polynomial time. : '

In the next section (Corollary 4.2, Section 4.1) we will prove that
{<T.>EM0)?} is NP-Complete. This leaves us with the problem {<T.2>€ ML0)7}.
We say that the conflict graph G(7) of a transaction system T contains a mixed cycle,
if it contains a cycle with edges e; and e,, where ¢, corresponds to a conflict at site 1

"red”) and e, to a conflict at site 2 (“green"). |

Corollary 3.3: For C=8R, if G(T) contains no mixed cycle then <T.z>€ M (0).
This is also a necessary condition, whenever the transactions in T have no
crossedges. | |

Proof: The sufficiency is obvious from the characterization of SR and conditions
(1),(2) of Theorem 3. The necessity for transactions with special structure is easy for
two transaction systems. For more transactions we can use a straightforward
induction on the number of transactions (nodes of G(1).0

For general transaction systems T and C=3R, the complexity of vdetevrmining if
{{T.3>¢ M 0)7} is an interesting open question. For example all systems in Fig. 3.8
are in MJ0), yet their conflict graphs contain mixed cycles. '

4

i ——

\Y

. w—— - —

.3 2

4. The Complexity of PREFIX

* This chapter contains our main result, which is an analysis of the game PREFIX
for C=SR.

4.1 PREFIX is PSPACE-Complete

We will now prove the following theorem:

Theorem. 4: Let C=SR. For input T and b>0, aetennining whether the
minimax length of PREFIX(XT.@>) is greater than b is PSPACE-Complete.

. All the games we will examine in this section are in PSPACE. This follows
easily from the analysis in Chapter 3. Therefore we will present only the reduction of
‘a well known PSPACE-Complete problem to PREFIX. This is the problem QBF
(i.e., what is the truth value of a quantified boolean formula)[11,33,34].

OBF:

Input: A quantified boolean formula I of the form:

3 VXp3xX3.. 3% VX F(RpXp,eerXp) |
where F is a boolean formula without quanuﬁem in 3CNF (3-conjuncnve
-normal form) of the variables x;,...x, (n=even).

Q estion: Is I, true"

QBF can be viewed as a game between two players, the 3-player and the v-
player. These players take tumns assigning values to the variables in the order these
variables are quantified in [(i.e., from left to right). First the 3-player assigns a
value to x;, then the v-player assigns a value to x, etc. The 3-player wins if the
values assigned to the x;'s i=1,...,n make F(x,,x,,...X,) true, otherwise he looses. The
3-player has a winning strategy iff 1 is true. This PSPACE-Complete problem is
used in most reductions to games, [5,11,33,34,8,29)].

55

Another game on boolean formulas used in our proof is AE-QBF. This is similar
to QBF only the v-player makes all his moves before the 3-player.

AE-QBF: | -

Input: A quantified boolean formula I, of the form:
VXyVX4.. VX 3X13X3..3%) Fxp.X9,...Xp) o

where F is a boolean fonnula' without - quantifiers in 3CNF (3-conjunctive
normal form) of the variables x;,...x, (n=even).

- Question: Is L, true?

| AE-QBF is 1 /-Complete, where T1F is a class of thc polynomial time hierarchy
[33,11] corresponding to one V3 alternation (see Fig. 4.1). '

PSPACE

ZEf=0P=AL=P
N for all k>0
R Aic+IP=sz

| Ek,,f:Nsz

‘nk-:-I‘P: coZy,

Figure 4.1
| | The polynomial time hierarchy
PY={L: there is a language L’€ Y st L is. P- time Turing reducible to L'} -
NPY ={L: there is a language L'€ Y st L is NP- time Turing reducible to L'} |

56

Our reduction of QBF to PREFIX will proceed in four parts, which we outline
below from (I) to (IV).

() We show that CONFLICT, as defined in Fig. 3.5, is MP-hard . We
accomplish this by reducing AE-QBF to CONFLICT in Lemma 1. The input graphs
to CONFLICT are mixed (i.e. they may contain directed edges).

(II) We generalized CONFLICT to the game CONFLICTY, that has in-
addition to the rules of CONFLICT a partial order on edges incident at a node. The
definition is such that all possible conflict graphs G(7) can be inputs to
CONFLICT*. In Lemma 2 we prove that the game PREFIX (for C=SR) is a

special case of CONFLICTY.

(III) We prove that CONFLICT *+ is PSPACE-Complete, even when the input
is a graph without directed edges. We accomplish this in Lemma 3 using many of the
constructs of Lemma 1. ‘

(IV) Finally we prove that PREFIX(T.@>) is PSPACE-Complete by showing
that the graphs in Lemma 3 are in fact conflict graphs for some transaction system.

In Lernma 1 we will examine the game of CONFLICT (see Fig. 3.5). Its input is

a mixed graph G=(V,E,A), where E is partitioned into "red" and “"green”, Player 1

picks an assignment of directions for a "red” subset of E(Ag) and for a "green"

subset of E(Ay). The choices he makes must be legal (i.e. AUAR,AUAy have no

directed cycles, AUARUAy has a directed cycle). Player II chooses "red"("green")

making the new directed board position AUAR(AUAy) from A. Player I wants to
make the game last and Player II wants to terminate it.

The direction of an undirected edge e can become fixed during the game in two
ways. First if Player I chooses e as part of Ap(Ap) and Player II chooses
"red"("green"). After this e becomes part of A, the directed section of the board
position. On the other hand, even if e has not bccome'part of the directed (A) before
Player I makes his new move, it is possible for A to contain a directed path between
the endpoints ‘of e. Now e's direction is fixed, because it can only be used in one
direction, if Player I's moves are to be legal. It is easy to see that if a move by Player
Iis legal Ap(Ay) must contain edges, whose directions have not been fixed. Because _
of this observation the following fact is easily seen to be true.

57

(0) If G has z "green" edges CONF LICT(G) lasts at most 2z moves. If Player I
makes a move with two "green” edges, whose directions have not been fixed, a move
of "green" by Player 1I would consume two "green" edges. Moreover if Player I
makes a move with exactly one “green” edge (e), whose direction has not been fixed,
then no matter what the response of Player II is e’s direction becomes fixed
(i.e., either e becomes part of the new A or a path is mcluded in the new A
connecting the endpoints of e).

We will use the notation MN for ani undirected edge and (MN) for a directed
edge from M to N. Similarly MM,.. Mk will bé an unchrected and (M1M2 Mk) a
directed path from M; to Mk | '

58

Lemma 1: Given a mixed graph G and a nonnegative integer b, determining
whether the minimax len_gth of CONFLICT(G) is greater than b is I, -hard.

Proof: For an arbitrary instance I, of AE-QBF we construct the mixed graph
G(1,,) using the rules (a) to (d) below. We will prove that I, is true iff the game
CONFLICT can last more than n moves on G(Ip).

(a) For every existentially quantified variable x;, i=1,3,..,n-1 in I, a copy of the
graph in Fig. 4.2(c) is included as a subgraph of G(I,). This subgraph contains 6
directed edges and 2 "red" undirected edges, namely T;D; (labelled with 1) and F;E;
(labelled with 0). Actually this is the graph of Flg 4. 2(b) w1thout nodes A;,B;,M,N;.
These are the 3-subgraphs. |

(b) For every universally quantified variable x;, i=2,4,....n in I} a copy of the
graph in Fig: 42(a) is included as a subgraph of G(I,)). This subgraph contains 6
directed edges, 1 "red” undirected edge T,D; (labelled with 1) and 1 "green”
undirected edge FE; (lzbelled with 0). These are the v-subgraphs.

(c) For every clause of the 3CNF formula of I| (i.e. F(x}.x,.....X5)) a copy of the
graph in Fig 43 is included as a subgraph of G(I,). This subgraph contains 35
directed edges and 21 "red” undirected labelled edges. For the kth clause (uvvvw),
‘(starting from left to right in F(x,x,,....X,)), which has literals u,v,w, we have seven
possible paths from C; to G, ;. Each one of these paths corresponds to an
assignment of values to the literals u,v,w, of the clause, which makes the clause true
(i.e. only assignment 000 is excluded). The assignment can be read from the labels of
"red” edges on the path. Every one of the three columns, of seven labels each,
corresponds to the possible values of one literal. Also for one literal (say u) four
 directed edges go to F, and three to T,, depending on the label of the "red” edge

from which the directed edge starts. We call these directed edges (to F,or T)

backedges. We use the following rule: :

u=x; = F,=F, and T,=T;

u==-x; = F,=T; and T,=F; for x; a variable of I,

The backedges are connected so that if the labels correspond to values of
variables and literals a backedge connects two undirected edges iff their latels are
inconsistent (e.g. x;=1, u="X,, a backedge connects T\D; and "red" edges with
labels 1 in the column of u). These are the clause-subgraphs.

59

(d) The graph G(I,) is constructed by identifying nodes with the same name.

- Thatis Sp’s of 3-subgraphs with Sq’s of v-subgraphs if p=q. Also F;’s or T;;'s of 3--

and V-subgraphs are identified with Fq’s or Tq’s -of clause-subgraphs if p=q. We
also identify C;=S,, .. If there are m clauses in I; we add the "green" edge

S1Cm+1-

An example is provided in Fig. 44 for the -AE-QBF:
I, = VXVX43X3Xg (X VEVX)A(X) VX4V X,), if we delete the nodes A;,B,M;N;
i= 13 and A13,A12,A34 We will first examine some simple propertx&s of G(Ip).

(1) Let G(I,) contain z "green" edges. Then CONFLICTy (G(1,) can last 2z-2
moves and at most 2z moves. Here z=n/2+1. The game can last 2z moves, because
of observation (0) (nght before Lemma 1). It can last always 2z-2 moves, because -
Player I can play z-1 times on the z-1= n/2 nuxed cycles (F-E-;I'-D-Fi) i=24,...n. His
moves are legal no matter what the response of Player I is.

(2) Let (Sy..Cpy4p) be any dlrected path from S; to C . not using the
"green” edge S,Cp ; and respecting the directed edges in G(I;)). We note that each

pair F;E;, T,D;, i=12,. .,n,formsaculsetsepamtingslandcmﬂ Thus(S, m+l)

contains FE; or T;D; for all i=1,3,...n.

3) Al paths (SI~Cm+1) have to contain node C,. If they contain a backedge it

- is easy to see that they have to pass through Cl at least two times. Therefore simple

paths (containing a. node only once) (5,.C m+) do not contain backedges.
Let.us proceed with the proof of eqmvalence

"only if” lfInxstmethen Player!ﬁfstmakas n/2 moves on the v-subgraphs :

' using the mixed cycles (F,ET,D,F), i=24,. Wl The n/2 moves of Player Il fix

directions for all the undirected edges FE,, TD i=24,..n. His choice of "red” turns

~ T;D; into (T;Dy) and fixes the direction of F‘F.l to (EF), (because of the directed
path (E;T;D;F;), which. now becomes part of A). This corresponds-to assigning x; the -

value 1. Similarly his choice of "green”. turns F;E; into (F;Ep and fixes the direction
of T;D; to (D;T)). This corresponds to assighing. x; the value 0.

At this point in CONFLICT 2z-2 moves have be:n made and we can say that
the choices of Player II have assigned values x*; to the variables x;, i=24,...,n. Since
I, is true there exist values x*; of the variables x;, i=13,..,n-1, which make

60

F(x*;,x*;,..x*,) true. This assignment of values {x*} to variables {x}'implies an
~assignment of values to the literals of every clause {u(x*)} (eg, u=-x, x*=1
~ implies u*=0).

Let us describe the n/2+1st move of Plater I. Consider the simple path
(81-Crn4-1)* which consists of the following subpaths in the various subgraphs of
G(L,). ' | |

(SkTyDySy 1) ifx* =1, k=1,2,3,...n. In v-subgraphs the direction of TyD; has

been fixed to (TyD,). In 3-subgraphs (T,D,) is used. |

(SyFiESy+ 1) if x* =1, k=123,...n. In v-subgraphs-the direction of F E; has

been fixed to (FyE;). In 3-subgraphs (FE;) is used.

In the kth clause-subgraph the path from C to C;,;, whose labels are the

values assigned to the literals of the clause by {x*}. Such a path exists since no

clause is assigned the values 000 by {x*}.

We note that, because of the way (S;..C,, ;1)* traverses v-3- and clause-
subgraphs, the directed edges of G(I,)) and (S;..C,,;1)* form no directed cycle. Note
that no backedge has both its endpoints on (S,..C, , 1)*, because the labels in the
various subgraphs along (8;-Cp41)* are consistent.

Using the rules of Fxg. 3.5 Player I picks:
A "green” set H={S5,C,,,} and directs it (Ay) from C, , to §;.
A "red" set R={"red" edges in (§,..Cj, +1)"} and directs them (AR) along the

path (8;.Cp)"

This is a legal move since: ARUA, AyUA are acyclic, ARUAL{UA is not.
Therefore if 1, is true CONFLICT can last n+2 moves.

"if" If I is false we will prove that CONFLICT(G(I,)) cannot last n+2 moves.
We will assume CONFLICT(G(I;)) can last n+2 moves and reach a contradiction.

The move of Player I, which has "green” edge $;C,, , 1€ H must be his n/2+1st
move. This is because, if the direction of some “green" édge has not been fixed yet,
any simple path (§,..Cg,, ;) that Player I chooses would make it possible to fix the
directions for two "green" edges. This follows from property (2) of such paths,
proven above, and the structure of the v-subgraphs. Thus Player I must make n/2
_ moves involving the "green™ edges in the v-subgraphs first. Moreover any choice of
Player 11 will fix their dircction, (by obscrvation (0)). We will prove that there is a

61

sequence of choices by Playér II that will not-let Player I move another time.

Since I, is false then —I is true or,
o IXy3xg. 3K VX VXSLYX -F(xl,xz, Xp)

Let the values of the x;’s, i=2,4,...,n making this formula true be x*;. For the first
n/2 moves of Player I, each one necessarily involving a single F;E;, whose direction -
has not been fixed, the response of Player II should be:

If x*;=0 then "green". This fixes the directions of T;D; and FE; into (D;T;) and
(F,E) respectively. o
If x*=1 then "red". This fixes the direction F,E; into (E;F).

The n/2+1 st move of Player I is now constrained in several ways in order to be
legal. First for the "green” set we know SICm_,_le:‘H because it is the only "green”
edge, whose direction has not been ﬁxed. Second for the "red” set we know that
{undirected "red” edges of a path (S;..C;,,)}C R. Finally (S5,..Cp,,;) and the
directed part of G(I,,) must not contain a cycle. This path (S;..Cp, ,.;) must be simple
(no backedges by property (3)) and thus pass through ali the subgraphs:

In a clause-subgraph it has to use one of the seven paths. |

In a V-subgraph its behavior is constrained by the way the directions of edges

T,D;, FE; (of which it contains exactly one) have been fixed.

In a 3-subgraph it is constramed to contain exactly one of T,D;, FE Else -

(81.Cpp+1) and the directed part of G(I,)) would contain a cycle. We extend the

assignment {x*} in the following way for i=1,3,....n-1:

If (S-Cryy) contains T;D; then x%=1 else x*=0. |

Thus every candldate path (Sl m+1) actually corresponds to an assignment
{x*} of values to the variables and {u*} to the literals of F. This assignment can be
read from the labels of edges along the path. In fact {x*} and {u"‘} are mconsnstent.

By the way x*, i=24,..n were chosen every candxdate asmgnment makes
F(x*;,...x*,) false. Thus a consistent assignment {u(x*)} to the literals must make the
literals in some claise (say the kth clause) 000. Our candidate path (S,..C,, _,_1) uses
a subpath (C..C,,) in that clause, which has a label 1 for one of its literals.
Because of the initial connection of backedges, the bg_;ckedge of that literal ends at a
node that belongs to the path (S;..Cp,) in a V- or 3-subgraph. Therefore ARUA
cannot be chosen to be acyclic and no candidate n/2+ 1st move of Player I can be
legal. This is the desired contradiction. O

62

A
~

. R e a7
N ./ B P

Si

Figure 4.2

_ v
F: ° ¢

(C) .3 xi

63

T,.,_'

Figure 4.3 The kth clause subgraph

'3;‘-‘9‘11'39:, ’V‘xq (x,vx,vx;) A (2, V X, V)

Figure 4.4 Ap example

Fy
to Ty

......)

IRYAY

aht X @]

.o
< .)
- |) PR e e
L | | _ 4 4 3 & 8 a8 |
APPAAALS APy v NASVAAAASY NAPAPUUAAARAS AP RS VA, i%‘%‘é

We will now examine the game CONFLICT+(G), which has as input an
ordered mixed multigraph G=(V,E,A,{>;}). The edge multiset E is partitioned into
"red" and "green". The undirected edges incident at node i belong to the patial
order >; The game is like CONFLICT((V,E,AA)) the only difference is that
assignments Ay (corresponding to AgUAy), Ay’ (contmnmg all selected "red" edges
and corresponding to Ag) and Ay® (containm2 all selected green edg&s and
corresponding to Ay) must be closed That is: - '
if (ij)€ Ay and ik >; ij then (ik) or (ki)e Ay (unless of course ik already is in A). All
this is described exact}y in Definition 15 and Fig. 3.6 of Section 3.2.

As indicated in the previous section CONFLICT (see Fig. 3.5) is a special case
of the game CONFLICT+ (see Fig. 3.6), which is important because of its relation
to PREFiX (- Fig. 3.4). The inputs of CONFLICT* . ae slightly more general
constructs, (i.e., ordered mixed. multlgraphs) instead of mixed graphs. They are
motivated from conflict graphs and realizable assignments of directions to their

edges.

From Definition 10 Section 21 and Lemma 1 section 2. 2 we have that a prefix
<T«> uniquely determines an ordered mixed mumgmph This is because, given
{T.a> we can construct G¥(T)=(V,EA,{>;}), which is the conflict graph (G(1)),
with some conflicts resolved (A) some -conflicts unresolved (E), and the transaction
orderings on the unresolved conflicts. The assignment of directions A is closed (with
respect to the conflict graph G(7)) and moreover if C= SR it has no directed cycles -
(see Theorcm 2.

66
Lemma 2: Given a prefix <T,> in PR(SR) and a nonnegative intéger b, then

the minimax length of PREFIX({T.a>) equals the minimax length of
CONFLICT H(G2(D)).

Proof. Let us recall the following facts:

(a) An assignment of directions (Aj) to undirected edges (Z) of the
conflict graph G(7) is realizable by a prefix iff:
(i) Az is closed (with respect to G(I))
(ii) AZ has no directed CYC]C (iliZ"‘inil) s.t.. iliZ Ziz i2i3,...,ini1 Zu i1i2'

(b) Consider two realizable aésignments AA’ of directions to_edgw ofa
.conflict graph G(7) and let <T,a> be a prefix realizing A. It is easy to see that
if ACA’ then -A"\A is closed (with respect to G*(7)).

(©) Also recall that continuations <T8> of <T,a> in PREFIX, with
projections «; i=1,2 have properties:
{T.,> realizes A, A has no cycles
<T.g>¢ PR(SR), <T 8> realizes A’, A’ has a cycle
<T,ap€ PR(SR), <T,ap realizes A, A; has np cycle i=12. .
We have that, ANA, A)\A, A)\A are closed (with respect to G*(7)).
Moreover if 1 is the "red" site and 2 the "green” site and Ax=A"\A then we
have AxrzAl\A, Axg=A2\A. .

To prove the lemma we use induction on j, where j=|actions in T and not in a.
For j=0 and any b the lemma is true, since no move is possible (all conflicts are
- resolved). We will assume the lemma is true for all b and all j, 0<j<j*-1 and prove it
true for j*. For.every move in one game we will exhibit a move in the other, leading
to assignments realizable only by stictly larger prefixes. |

"only if” from the discussion above a move in PREFIX corresponds to a move
in CONFLICT* and no matter what the choice of Player II is the resulting
assignment of directions to the conflict graph G(7) is strictly larger than A and
realizable. |

"if" A move in CONFLICT* produces assignments Ay, Ay", AyS8. Since these
are closed (with respect to G*(7)) and the existing directed part of the board A is
closed (with respect to G(7)) we have that AyUA, Ax'UA, AyBUA are closed (with

67

respect to G(D).

We will show that AxUA is realizable by a <7,8>, which is a continuation of ~

{T,a>. Using Lemma 1, Section 2.2 all that remains to be proven is that AxUA has
no directed cycles of form (i) above. It is easily seen that such a cycle would be
completely contained (because of the closure property) in either AyTUA or AxBUA.
But since Ax"UA, AyBUA, must be acyclic such a cycle cannot exist. Thus AyUA is
realizable, in fact using the construction of Lemma 1, Section 2.2 we can choose
T8> to be a continuation of <7,a> . Then it is easy to verify that Ax"UA, AxSUA
are the assignments determined by the projections of <I,8> (whnch are strictly larger
than A). '

‘Thus whén CONFLIC’I" + has a move PREFIX has one also.0

We will now prove that CONFLICI’ *+(G) is PSPACE-Conq;lete, even if the
directed part of G is empty.

638

~ Lemma 3: Given an ordered graph G=(V,E,{>;}) and a nonnegative integer |
b, determining whether the minimax length of CONFLICT ¥ (G) is greater than b is
PSPACE-Complete.

Proof: For an arbitrary instance I, of QBF we can construct the mixed grilph
G'(I,) using the following subgraphs.

(a) For x;, i=13,...n-1 3-subgraphs of Fig. 4.2(b). These are similar to those
employed in Lemma 1, with additional nodes A;B;M;N; and their edges.

(b) For x;, i=24,..,n V-subgraphs as in (b) of Lemma 1. '

(c) For every clause in F(x,,...x;) clause-subgraphs as in (c) of Lemma 1.

(d) The connections are as in (d) of Lemma 1, with the added edges:
directed (A;A;49). (Ajj+2Biy7) i=13,...0°3 |
directed (A;A541): (Aj+1Fj+D i=13....0-1
undirected "red” A;B;.,. i=13,..n-3,. AjFjy1 i=13,..0°L

An example is exhibited in Fig. 4.4. Using G’(I;) we can construct the following
ordered graph G(I)=(V.E®,{>}). Assume I, has n variables and m clauses:

V: The vertex set of G'(I,,) with an additional vertex for every directed edge in
G'(L,), which has K ,=10n+35m-2 directed edges. |V|=18n+64m-2.

"E: These are the undirected edges of G'(I), partitioned into “red" and "green”
as in G’(Iﬁ) moreover we replace every directed edge (RQ) of G'(I,) (see Fig. 4.5(a)) .
with a triangle (see Fig. 4.5(b)). ThusG(I,) has no directed edges. It is a graph
partitioned into "red” and "green" and has 23n+n/2+91m-5 "red” and 11n+35m-1
“green” edges.

{2;}: To every edge incident at a node i we assign a number. We use the rules
of Fig. 4.6 and Fig. 4.5(c). The ordering >; is the strict (no two different elements are '
equal) total ordering imposed by these numbers at i.

For the kth triangle PQR 1<k<K,, which replaces a dxrected edge (RQ) we assign:
at P PQ«1+kK, - PR«2+kK, :
at Q QP<1+kK; QR€2+kK,
at R RP«1+kK, RQ«2+kK,

For the undirected edges of G'(I,) we use the numbers 1,23 as in Flg 4.6. Note:
at A; AB>AF; 12AB;,,; i=13...n-1 (the last for i#n-1)
at Fi+l Fl+1A _>_Fl+1E|+1 i= 1,3,...,11'1
at B, 5 B 7A2Bi oA, i=13...n-3.

3 directed cJ,!;

c——"red"
L AAAN "%mvt.'

’ ""’"] divected

oty | (® @

Figure 4.6

.. ZA‘_};.“..._..__-__:{ e

N
\

: ' R 3
A_" 2\\ ‘ Bt-dz !
.) \‘ . ‘) . . H
4 \‘ 2

(C))

70

' Figure 47 {

n

~ We will prove that [is true iff CONFLICT +(G(In)) can last more than 2z-2
moves, where z=11n+35m-1 (the number of "green" edges).

"only if" Assume that I, is true. We will describe a strategy that will enable
Player I to make z moves (and the game to last 2z moves).

First Player I plays on all the triangles, that we substituted for directed edges of
G'(Ip)- At his kth move he plays in the K -k+1st trlangle 1<k<K (PQR in Fig.
4.5). The first move is:

Ax={@QP)(PRI.RQ}

A={PRIRQ}

AxE={(QP)(RQ}

These arz closed assignments (Def. 15, Section 3.2), wrth respect to the position of
the board. Moreover if (A) are the directed edges on the board before the kth move
AyUA has a cycle, while AyTUA, AyBUA do not. No matter what Player II's choices -
will be RQ becomes the directed (RQ) in the new A. By induction Player I can play
similarly on all triangles. Note that when Player 1 has played in all K, triangles
PQR, all (RQ)’s are in the directed part of the board and the directions of the other
edges of the triangles have been fixed. Thus without loss of generality we can assume
all directions on the triangles as being in A. and exclude them from our further
arguments about closed assngnments.

Now Player I will make n moves alternating between 3- and V-subgraphs (which
correspond to the varables of I x;; i=1,...n), from the subgraph of x; to the
subgraph for x,,. Recall that QBF I can be viewed as the instance of a game between
two players (the 3-player and the V-player), where the 3-player has a winning
strategy. Player I will pattern his strategy on the winning strategy of the 3-player of
the QBF game (for moves i+K,, 1<i<n).

~The i+K, th move of Player I (1<i<n) is:

(a) Ifi=13,...n-1 and the 3-player makes x;=x*=1 (based on the values x"J '_
that have been assigned for 1<j<i) then: :
Ax={(T ,Dl),(DlM,),(B,A,), and (A;,B) if D1}

Ax"={(T;D), (DiM) and (A;,B if D1}
Ay8={(B;A;), and (A;,B) if i>1}
It is easy to check tht if the board position has d:rected edges A, these assignments

72

are closed. Also AyUA has cyde (T,D,M;B,AT) and Ax"UA, AxSUA do not have
any cycle (A;;B;’s direction had been ﬁxed 1o (A;.,B;) anyway). No matter what the
response of Player II 1s to this move, the path (5,T;D;S; ;. 1) and the new directed part
of the board form no directed cycles.

If the 3-player makes x;=0 we use the symmetric cycle (F,E;N;B,AjF).

(b) If i=24,...n then Playef I uses cycle (T;D;F,ET;
Ax={(TD)(FE).(A;. F}
AX {(Tl l) (APIFI)}
AxE={(FiE)(A;1F)}
Again it is easy to see that the move is legal But now Player II's response is -
significant. A choice "red” would correspond to the V-player assigning x;=x*=1
and would fix directions to (T;D;) and (E;F;). Then (STDSH_I) only forms no
cycles with the new directed part of the board. A choice "green” would be symmetric
(ie. x;=x*=0 and only (5;F;E; Sn+1) forms no cycles with the new dtrected part of
the board)

We have now reached the zth (z=n+ K +1) move of Player I, and the 3-player
has won his QBF game on I, using assignment {x*}. Thus the derived assignment
{u(x*)} to the literals makes every clause of the formula of I, true. We can use the
same move as was the last move in Lemma 1 and trivially check that it is legal.

"if" If I, is false we will prove, that although 2z-2 moves are possible, 2z moves
are not, in CONFLICT *(G(I,)). In this case = is true and the v-player has a
winning strategy in the QBF game. We will pattern the strategy of Player II on this
strategy of the v-player.

Suppose that CONFLICT +(G(I,)) can last 2z moves. It is easy to see, that
every move of Player | must contain exactly one "green” edge, whose direction has
not been fixed by previous moves, (observation (0) before Lemma 1). So we can view -
sequences of z legal moves by Player I as permutations of the z "green” edges and
name every move by the "green" edge, whose direction it fixes.

(a) First let us look at legal PQ-moves, that is moves whose "green” unfixed
edge belongs to a triangle. If this move (Ay) produces a cycle as in Fig. 4.7(a) we can
infer the following: The edge (RQ) must belong to Ax"UA and Ay8UA. This is
because Ax"UA must contain a directed path (P...Q) and QR 2Q QP. (Recall that

13

QP is the only "green” edge without a fixed direction in Ay). Thus no matter what
the response of Player 11 is to such a PQ-move the edge (RQ) becomes pait-of A. On
the other hand a PQ-move producing a cycle (Ay) as in Fig. 4.7(b) is never legal.
This is because AyBUA must contain {(PQ).(QR).(RP)} a cycle. The existence of a
path (Q..P) in Ay"UA and the fact that RQ>zPR>pQP force this situation. Thus
PQ-moVes fix the direction of QR to (RQ). Finally if Player I were ever to usec a QR
in the direction (QR), in some other e-move (e a "green” unfixed edge), then a
response of “red” by Player I would consume two "green” edges (i.e., e and PQ).
Therefore Player I should regard edges RQ as directed (RQ), in order to be able to play
Z times. . '

(b) Let us examine the A,Bymoves i=13,...n-1 and ’F;Ei-moves i=24,.n.
Since the directed edges of G'(I,) have to be respected, we can only have (B;A;)€Ax
- and (FiE)€Ay for legal assignments in these moves. This is because AxUA must -
contain a cycle and ail other edges incident at A; (respectively F;) have fixed
outgoing (respectively ingoing) directions. Now we can justify the construction in
Fig. 4.6(d) and 48. If (B;A;)€Ay from the >p; order we have that (A;,B;J€ AxUA
(e.g. the direction of A;5B; is fixed to (A;,B) because of the directed path
(Aj2Ai2;B) in G'(1,)). From the >,;., order we have that (Bj. A,) or (A;.,B;.5)€
AxUA. Similarly if (FE)€Ax then (B, A;;) or (Aj B)€ AxUA. We have
established that the A;Brmove must precede the A;, \B;, r and Fi, E;, j-moves
i=13,...,n-1. :

- (c) Finally let us examine the Cp, , 1S,-move. For this move we need a simple

path (S;..Cy, ;1) that respects directed edges in G’(I,), can contain no backedges of
- G'(1) (similarly to (3) of Lemma 1), and has to pass through S, and S ; (the last
v-subgraph). If the F,E, -move has not been played yet the use of either (T,Dp) or
(FLE,) by the (8;..C, 1) path would fix the direction of F E,. Thus the C,,S-move
has to follow all the AB; and FiErmoves i=1,2,.,n.

We will now siow that Player I1.can force Player I in a game, which simulates a
QBF(I,) game, where Player I is the 3-player, Player II is the v-player and moreover -
has a winning strategy. Player I chooses the values of x; i=13,...n-1 and II the values
~ of x;i=24,...,n. Player I determines when Player II makes his choices (as-long as x; -
precedes x; . ; i=13,...n-1). Thus the best Player I can do is assign a value to xy,
force II to assign a value to x,, assign a value to x;, etc. Let us describe how these
assignments take place. '

74

(1) The A;Brmove assigns a value to X; i=1 ,3,...n-1. The only possible choices
for Ay are cycles (B;A{T;D;M;B;) for x*;=1 or cycles (B;A;F; E,N B;) for x*;=0. This
is because directed edges in G’(I,) must be respected, and for x*;=1 we have the

following (x*;=0 is symmetnc)

(BxA Bl+2Al+2 .) would use up Bi+2.Ai+2°
iA;T;D;FiE;...) would introduce a cycle in AyfUA.

(BA;T,D;S; 1) would fix the direction of F; ;E; ;.

The strategy of Player II will be to always play "red", ﬁxmg the dxrectxons of T;D,,
FE; and makmg vertex A; inaccessible from S;

2 'I'he F,E;-move assigns a value to x; i=24,...,n. The arguments are exactly as
in the V-subgraphs of Lemma 1. Player II's choice fixes the direction of F; .E;, thereby
making x*; 1 or 0 and allowing a unique path from S; to S; ; as in Lemma 1. Player
II assigns values to the x*’s according to the winning strategy of the V-player (recall
that I, is false and thus the v-player has a winning strategy).

As a result of all this analysis we see that when it is tine for the C, ;S,-move,
Player II has -forced F(x*},...x*;) to be false, and constrained (S;...Cp) tO 2
unique path through -the 3- and v-subgmpbs (e.g., the labels on the path are {x"}
exactly as in Lemma 1)

Thus the arguments of Lemma 1 apply to show that the CmSi-move canno_t be

‘legal and CONFLICT+(G(I,)) cannot last 2z moves. O

75

We have now practically' completed the proof of Theoréx_n 4,

Proof of Theorem 4: In Lemma 1 we have proven that CONFLICT(G) is
N P-hard. Using this lemma we have shown, in Lemma 3, that CONFLICT +(G) is

PSPACE-Complete for G an ordered graph (no directed edges). In Lemma 2 we
have shown the equivalence of PREFIX(<T.@>) and CONFLICT *(G(7)). In order
" to complete Theorem 4 all we have to do is argue that the ordered graph in the
reduction of Lemma 3 is a conflict graph for some T:

In fact G(In)z(V,E,ﬂ,{Zi})zG(D because,
V: every vertex i corresponds to a transaction T;
E: every edge e=ij corresponds to transactions T; and T updating a uniquely
defined variable x.. If e is "red” xe is stored atsite 1, if e 1s "green” X, is stored at
site 2. -
{=;}: All orders are strict total orders, because every edge ij is assigned a dlfferent
number at i, thus all vemces are realizable by transactions.

Thus we have shown PREFIX({7.2>) to be PSPACE-Complete

- The question, whether PREFIX(XT,a>) can last more than b moves, has several’
interesting subcases.

For <T.a>:
(1) GX(7) is a graph and {>;} are stnct, (e.g., every. transaction updates a variable
only once. Two transactions never share more than one variable. Three transactions
do not share a variable).
~ (2) a=2 (e.g., there are no directed edges or all conflicts are unresolved)
(3) The transactions in T contain no cross-edges (e.g., each >; consists of two total
orders one "red” and one "green”. The "red” and "green" edges are incomparable.
This actually means that there are no transaction defined messages).
(4) The {>;} are of fixed sizeé (e.g., no more than L actions per transaction).

For b whether it is arbitrary or 0.

These cases with their complexities are exhibited in Table L

conditions ({T,a>)

D&(2)

(1)&(2)&(4) L=6

(D&(2)&(4) L=4

(D&(3)&(4) L=6

2)&(3)

76

Complexity

PSPACE-Complete
Theorem 4

" PSPACE-Complete

Corollary 4.1

| nf_w..

Corollary 4.1

PSPA CE-Con;plete
Corollary 4.3

in PSPACE

Complexity (b=0)

in NP

in NP

- in NP

NP-Complete
Corollary 4.2
in P

Corollary 3.3

Tablel:Is minimax. length of PREFIX(<Ta>) greater thanb ?

n

Corollary 4.1: Whether the minimax length of PREFIX(T,@>) is greater than b |
is PSPACE-Complete, even if the degree of the graph G(7) is less or equal to 6. It is
i f-hard even if the degree of G(T) is less or equal to 4. ‘

Proof: We will slightly modify the gadgets of Lemma 3 without changing the
validity of its arguments. We replace clause-subgraphs with Fig. 4.9a, v-subgraphs
with Fig. 4.9b and 3-subgraphs with Fig. 49c. Let us for the moment ignore the
nodes A,;,B; i=13,...n-1. The construction gives us (by Lemama 1) that our decision
problem is I1P-hard. Moreover the only configurations at nodes are those of
Fig. 4.10, thus our transactions need never have more than 4 actions If on the other
* hand we add in nodes A; and B; and connect A;B;,,,F;, using the subgraph of
Fig. 411 then the arguments of Lemma 3 are still valid. The only difference from
Lemma 3 is that A;B;-moves must precede the moves in the triangles corresponding
to (A;B;, ,) and (A;F;). We can thus show that our decision problem is PSPACE-
Complete even 1f transactions are restricted to 6 actions.

~ Therefore [KT.2>€ Mc(b)?] is PSPACE-Complete even if transaction systems
are very restricted.C] : |

Consider the foilowing combinatorial problem, which is in NP.

'PATH(G, s,t)

Input: A mixed graph G=(V,E;A) (V=set of vertices, E=set of undu'ected
edges, A=set of directed edges) and two distinguished nodes s and t.
Qutput: Is there an assignment (Ap) of directions to the edges in E, such that
the digraph (V,AgUA) is acyclic, and contains a directed path from s to t?

Note that, if A is acyclic, there is always an Ag* such that (V,Ag*UA) is acyclic.
- Also it is easy to determine in the mixed graph G=(V,E,A) if t is reachable from s.
But both conditions simultaneously are hard to decide.

7
| : b_ac'ad,cs
A

Pl S TN
"\‘.‘ n‘w l)‘\
s’ S o Rl ’
——’ e E \“‘"’c
. i 7 S 7’ key
" A\I e “s/

Figure 4.9 \

i
(]
-
- 13
S et E

Figure 4.10

p‘igm.n‘"\‘

a4,

80

Corollary 4.2: PATH(G.s,t) is NP-Complete, even if G has at most 2 undirected |
edges incident at a node and at most 1 directed edge incident at a node.

Proof: Consider Lemma 1, where all edges F,E; become "red". Then the frst
player chooses the values for all variables, and our QBF game becomes the
satisfiability problem. Finding a proper path (S;..Cy,;) would answer
PATH(G(1,).S;,.C+1)- This and the refinements of Corollary 4.1 prove the
Corollary.O

Corollary 4.3: Whether the minimax length of PREFIX((T.a>) is greater than b
is PSPACE—Con;pIete (for b arbitrary) and NP-Complete (for b=0). This is true
even if the transactions in T have no cross-edges and a fixed number of actions.

Proof: Another way of stating Corollary 4.2 is that the decision question
KT.>€ML0)7] is co-NP-Compleéte. The analysis that follows (for b arbitrary) also
applies to this case. therefore determmmg if PREFIX(<7.a>) can last more than 0

moves is NP-Coanete.

In Lemma 3 we totally ordered all edges incident at a node, by assigning
numbers to them. Thus the transaction system realizing the {>;} of G(I;) had to
‘have cross-edges. In fact cross-edges are the only way we know of forcing the
creation” of desired directed edg&.)

Given an instance of QBF(I,) we can construct the ordered mixed graph G"(I,)
as follows (recall the mixed graph G'(I,) and the ordered graph G(I,) of Lemma 3):

G"(y)=(V.EA.{>;}) where:
(V.EA)=G'(l,), with one exception. The edges A;B;,, (i=13,...,n-3) and AjF,
(i=13....n-1) are "green" and not "red".
{2;} are those implied by the orders of G(l,) of Lemma 3.

We can prove that I is true iff CONFLICT "'(G"(In)) can last more than n
moves. The argument that is needed to prove equivalence is identic_al with that of
Lemma 3. Note that G"(I) has 2n "green” edges of which n-1 have fixed directions.

It is easy to see that a prefix <T,a> can be constructed, from a transaction system
without cross-edges, such that G“(I)_:G”(In). (G*(T) is G(T) with the resolved

81

conflicts). Thus by Lemma 2, we complete the proof of Corollary 4.3. By using the
gadgéts of Fig. 4.9 we can restrict the transaction systems to sets of transactions with
- at most 6 actions (e.g., the nodes A, have two "green”, two "red” and two directed
- outgoing edges. "Green"” and "red" edges at the same node are incomparable).

This proves that the decision question [KT.a>€M (b)?] is PSPACE-Complete
even for Ts without cross-edges and with a fixed number of actions per
transaction.Od

~ Fronr this analysis of special cases we. see that two sets of constraints give us
equal power:
{D&(2)&(4) L=56} and {(1)&(3)&(4) L=6}

' Let us now examine the final speéial case, namely b=0. Since we fix b we

* cannot use the equivalence above. From Corollary 4.2 we have that if a#2 and if T

has no cross-edges the problem is NP-Complete. From Corollary 3.3 if T has no
cross-edges and «=@ the problem is in P.

We have left open - two interesting problem3'

(a) vaen T without cross-edges and b20, is the minimax length of
PREFIX(KT.2>) greater than b moves? We conjecture this problem is PSPACE—
Complete.

(b) Given T can PREFIX((T,ﬁ)) last more than 0 moves? This problem is in
NP and we conjecture it is also in P. |

82

4.2 The Efﬁcienéy of Communication-Optimal Schedulers

In the previous section we have analysed the compleiity of various cases of
PREFIX, or equivalently examined. various cases of the decision problem
KT.a>¢ M (b)) |

In Section 3.1 we described a programming system in which we can express all
distributed schedulers. These schedulers consist of two processes, one at each site
(Q;.Q,) and realize SR (Definition 12, Section 3.1). That is an input history h€H can ‘
lead to many possible computation paths. By executing the instructions on such a
path the scheduler outputs a history in C. For each path the output is in C, moreover
if heC and the delays of all messages are 0 the output must be h. We call the
scheduler polynomial time bounded if the number of instructions the processes

“execute is bounded by a polynomial in n (for all possible paths). The size of the
input is measured by n, which is the number of actions in T. '

Corollary 4.4: Unless NP=PSPACE, there is no communication-optimalr
scheduler, which realizes SR and is polynomial time bounded. This is true even if
. each transaction is restricted to be a sequence of six updates.

Proof: Suppose such a scheduler Q existed. We know that [KT.2>¢M(b)] is
PSPACE-Complete (even for restricted transaction systems, Corollary 4.1). We will
prove that there exists a nondeterministic polynomial time bounded decision
procedure for this problem. This. would imply that NP=PSPACE, an unlikely fact.

Given T and b>0 we do the following:
() guess a history h=<T;>€ SR (this can be easily checked)
(2) simulate the operation of Q on this history

(3) whenever a message is sent we guess its delay and in géneral guess a
computation path of Q. |

(4) keep count (with m) of the number of messages sent

(5) if m>b then say yes else say no

83

If KT.2>¢ M (b)7] is true there will exist an input h and a computation path. of
Q, where more than b instructions are executed. We can guess the input and the
computation path with a polynomial number of guesses, this is because the size of h
'is O(n) and all paths are polynomial bounded. If mdb thzit means that all schedulers
have to use more than b messages for mputs from the transaction system 7. This is
obviously a nondeterministic polynomial time bounded algonthm for our problem.O0

Similar results would hold even if we augmeoted our programming system with
the power to consult oracles in the polynomial hierarchy [11} (1 €., the hierarchy
would collapse beyond a certain level). : :

Let us note two open problems.

(a) If we assume P=PSPACE it follows that we can construct efficient
schedulers (in both measures). The consequences of NP=PSPACE on the other,
hand are unclear.

(b) If the decision problem KT, z)éMc(b)V] is only NP-hard the arguments of ,
Corollary 44 no longer apply. .

Our results indicate that, a communication optimal scheduler must- be
computation inefficient. It is still possible to analyze the information in T and design
various efficient, communication suboptimal realizations of SR. We will end this
section by defining a simple open edge deletion problem. This problein can be used
as an upper bound on the minimum: number of messages in order to realize SR.
Because of its simplicity it is also of independent combinatorial interest.

DMC(G)

Input: An undxrected graph G, w1th edges partltloned into "red” and "green"”

Out ut: Find the minimum number of edges, whose deletlon produoes a graph
* with no cycles containing both "red” and "green" edges.

5. The Combinatorics of Locking

The most common technique used for the resolution of conflicts in concurrency
control is locking. In this chapter we will extend the elegant analysis of locking
described in [39] from the centralized to the distributed case. In the process, the
geometric criterion of [39] will be replaced by a simple combinatorial condition
(i.e., the strong connectivity of a directed graph). ‘

5.1 Distributed Locking

Let us first present a simple extension of the definitions for locking, which
appear in [39]. We will utilize the notions of Distributed Database Design (DDD),
transaction, action, history and serializability from Section 2.1, with the following
additions: '

Definition 16: For the DDD=<Gp, Data, Stored-at, IC>, the Data is partitioned
into variables (Var) and locking variables (LVar). The function lock-of: Var—»LVar
determines for every variable x, its lock X, (i.e., X is the lock-bj(x)). The constraint
AxeLvar) X=0 is part of the integrity constaints I1C.O .

We will use x for variable and X for its lock. Note that, as for all Data, locking
variable X is stored-at site(X). We might have that site(x)=site(X) (e.g., a central site
is used for all locks). We might have that X is the lock of x only and site(x)= site(X)
(e.g., the fully distributed case). Or we could have two variables, which are at the
same or different sites, and have the same lock (e.g., primary copy locking). The
locks we will be dealing with are stored at a particular site, and are not global
variables stored at many sites.

The transactions and histories are partial orders’ of actions as in Definitions 2
and 4, but we can have more types of actions.

85

Definition 17: An action is either an update of a variable (in Var) as defined in
Def. 3 or a lock X or unlock X step for some-locking variable X (in LVar).
(2) The semantics of "lock X" are, (X:= if X=0 then 1 else error)

(b) The semantics of "unlock X" are, (X:= if X=1 then 0 else error)
We abreviate "lock X" as Lx and "unlock X" as Ux, where X=lock-of(x).00

Note that we are dealing with exclusive locks. We will not discuss shared locks
(e.g., read or intention locks [13] |

Let T—{Tl,T w1y} denote an (ordmary) tmnsactlon system that is w1thout :
"lock™ or unlock" steps.

Deﬁann 18: A locking policy L is a mappmg, which given an (ordinary)
transaction system T transforms’ it into a- locked tnmsactlon systeth 1.(7). The
locking policy transforms each T; of T mto L(T) = 1,2 ,m) by inserting only
Lx,Ux steps and precedences between them subject to the following constraints:

(1) The only way to insert Lx or Ux steps, is as a Lx-Ux pair with Lx before and
Ux after an update of x, in the partial order of L(Tl) Moreover for each x there is at
most one Lx-Ux pair in L(T}). '

_ (2) For every update of an x in Tj there is a Lx before and an Ux after it in the
partial order of L(T;).0

: Note that a locking, policy could be nondetertmmsttc (ie. 1t could produce many
~different L(T)'s for a given T).

, In a locked transaction L(T) all actions at the same site are totally ordered, by
Def. 3 of transactions. As in the case wnthout loeks. a dxstubuted locked transaction
represents a set of total orders of its actions (1.;, those that respect its pamal order).
A new feature for the distributed case is: we can have actmns p.q concurrent in T
and Lx's, UX’s inserted in T;, with such precedences as to make p an ancestor of q in
L(T}). In other words the locking pohcy can restrict the p'lrallellsm inherent in T;.

86

Let h be a history (or a prefix of a history) of L(7). We say that h is legal
(i.e. preserves the 1C of locks in Definition 16) if between any two occurrences of Lx
in h there is an occurrence of Ux. We denote this as heM(L(7)). Let L‘l(h) be the
induced subgraph of h if all lock and unlock steps were removed. The set of histories
Oo(L)= L'I(M(L(T))) is called the output of the locking policy L and captures the
“parallelism supported by L.

Definition 19: A locked transaction system L(7) is safe if every history in O(L)
is serializable. It is deadlock-free if for any legal preﬁx aofa hlstory of L(I) there is .
a suffix o such that aw € M(L(]))D

It is easy to see that if L(7) is safe we can realize M(L(7) using a scheduler,
which consists of a simple lock manager and a mechanism for avoiding or breaking
deadlocks. The deadlock problem becomes more accute in a distributed
~ environment, where it requires the use of messages [22,23].

As an example of a distributed lockmg policy consider two-phase locking (ZPL)

2PL: All lock steps in a distributed locked transaction must precede all unlock
steps in the transaction’s partial order.

Every total order consistent with a 2PL distributed transaction is a 2PL
centralized transaction. Thus we can infer, from the safety of centralized 2PL, its
safety for the distributed case. Similar easy generalizations exist for the safe and
deadlock-free tree-[30], digraph-[39] or hypergraph-[39] policies, which apply to'the
structured Data case.

An example of a distributed 2PL transaction system is presented in Figure 5.1,
This example also shows that O(2PL) (i.e., the set of legal output histories without
the locks) is not a concurrency control principle as defined in Def. 11 Section 2.1
This is because the ordering of lock, unlock steps introduces cross-edges that were
not part of the initial transactions T.

Our main task now will be to generalize the results of [39] towards a
characterization of safe systems.

81

0 26 - 300 4y

(a)
Lx Ly Loy
1Mz - 3N‘*
ux by VX Uy
O

©

- - Figure5.1
(@ T (xX at site 1 and y,Y at site 2)
(b) L(7) two phase locked
(c) history s where s€ M(1(7))
(d) history h where h=L"1(s), he O(L).

5 6ty

»'4_ 2

1

3L 4

st s
(¢

| () h without crossedges is not in OL) |

88

52 The Safety of Distributed Locked Transaction Systems

Let T; (i=1,2) denote a pair of locked distributed transactions and T; ¥ (i=12) a
pair of totally ordered locked distributed transactions. The jth step of Ti+ is T J+
1<j<m;. As noted above T;j={T;t | T;* respects >p;} (i=12).

Consider a transaction system {T;+, i=12}. In the coordinated plane
(T;F.To) (see Fig. 5.2) take the two axes to correspond to Ty +and Ty *, and the
integer points 1,2, etc. on these axes to correspond to the steps Ty +.Tpt, etc.
(respectively T21+,T22+, etc.) of the transactions. A point p may represent a
possible state of progress made toward the completion of Ty + and Ty*. These
transactions will contain properly nested lock-unlock steps. Each variable x such that
both T;+ and T contain a Lx-Ux pair, has the effect of creating a forbidden
region (a rectangle delimited by the grid-li:is corresponding to the Lx-Ux steps), the
~ points of which do not represent reachable states (see Fig. 5.2). Adding such
- rectangles to the plane has some consequences. For example, the point u is now
reachable, yet not in any. rectangle; in contrast, point d is a state of deadlock.

A history, that is totally ordered, has the following geometric image[39]. It is a
nondecreasing curve from the point (0,0) to the point (m2+l mj+1), not passmg
through any other grid point and not through any rectangle (e.g. h in Fig. 5.2). To
read the history off any such curve we simply cnumerate the grid lines that it
intersects. Two totally ordered serial histories are represented by the curves hy, hz in

Fig. 52. |
-t |
T Sy
tor . —
Uz 9 =
z 3 . §“ ‘:‘.‘,ﬂ_ |
Lz 7 714
Y ST INRRRIZ A,
34 NI E
% 3P RIS 'ar
Lx 2 NN AR
Ly o :
+ |
- Y i 3 4 5 6 7 8 30 —r-2+
Lx Ly x Y UxUy Lz 2 Uz
I l
Figure 5.2 The (Ty *. T,)-plane |

89

From [39] we have the follow.ing characterization.

Proposition_2: A history, whrch is totally ordered, for the transaction system
{Ti,+- i=12} is not serializable iff the correspondmg curve separates two
rectangles 0

No two rectangles touch at a grid point (by our deﬁmnon of locked transactron
systems). In order to study the safety of {T; + , i=1,2} the on}:Sctlons we have to
consider are pairs of Lx-Ux steps, where both Ti'"’s update x. TheMollowing Lemma "
for distributed locked transactions is a direct consequence of Proposition 2, because
every nonserializable history corresponds to some sef of totally ordered
nonserializable histories,

Lemma 1: A distributed locked transaction system {T7,T7} is safe iff for all
pairs T1+ T2+ there is no curve (correspondmg to a hrstory) that separatos two
'rectangles in the (T1+, T,) planel:l

‘An example of an unsafe system {T},T,}, where only relevant Lx-Ux steps are
given, is provided by Fig. 53(a). In Fig. 5.3(b) we have a pair Ty, Tyt that
happens to be safe. In Fig 5.3(c) we have a palr T1+ T2+ that illustrates why the |
system is unsafe. :

Since there is an exponential number of possible pairs T+, T an iterative
application of the test- of Proposition 2 (which involves an Ofnlognloglogn)
computation of a "closure” for a geometric region of rectangles [21]) is no longer
efficient. '

Our contribution will be an efficient combinatorial (as opposed to geometric)
test (i.e. sufficient condition) of safety for distributed locked transaction systems. Our
combinatorial test (Theorem §) provides an alternate way of characterizing the
~ centralized problem. It is also a necessary condition of safety (Theorem 6) for
centralized transactions and transactions distributed at twe sites. For more sites a
complete and efficient characterization is an open problem.

Figure 5.3 , .
(a) Distributed locked transactions (x at site 1 and y,2 at site 2)
(b) safe {T1*+.T*} |
(c) unsafe {T1*+.Tp*}
(d) DL(T1,Ty) '

91

Let us define:

DL(Ty,T7): Given two locked distributed transactions Ty,Tp construct the
digraph DL(T},T9)=(V,A) such that:.
 (a) V the vertex set, with vertex x iff both 'Tl’ and T contain a Lx-Ux pair.
(b) A the arc set, with arc (xy) iff (Ly >p; Ux and Lx > Uy).

An example of DL(T},T)) is presented in Fig. 5.3(d). From the definition of
DL(T1,Ty) we have that (xy)e A iff the upper-left corner of the x-rectangle is in the
lower-right corner formed by the y-rectangle on all possible (T +.T5)-planes (see
Fig. 5.4). This implies that in every such plane no curve COrresponding to a history

‘can pass below the y-rectangle and above the x-rectangle. :

. mat med)

. Ux
L‘é 4
|
o 1x Ua LY

| Figurc 5.4 |
(xy)€ DL(Tl,Tz). Only three types of paths are at most feasible.

9

Theorem_ J5: Let {Tl,Tz} be a locked transaction system If DL(T 1.T2) is
strongly connected, then {T},T7} is safe.

Proof: Let T; and Tz conflict at variables x1.x,...xy. Then for
DL(T}.Ty)=(V,A) we have V={x1.x3,..xg}.

In a (T3 F,T)-plane we can associate every path s, that corresponds to a |
possible output history of a lock manager, to a vector of k binary values
s=(b1,by....bg). These values are:

bj=1 if s passes above the xl-rectangle

bj=0 if s passes below the x;-rectangle

Therefore if (xjx;)€ A we can say that for all (T;*.T)*)-planes and paths s

bisbj (ie. only bj=1, bj=1 or b;=0, bj=_0 or b;=0, bj=l are allowed).

Since DL(T},T,) is strongly connected there is a directed path '(xi...xj) and a .
directed path (xj...xi) for 1<i,j<k, i=j. Thus always bis...sbj and bj <..<b; for all ij.
This implies that the only allowable values for the vectors s are (0,0...,0) and
(1.1.....1). Thus for all (T +,T,*)-planes there is no path correspondmg to a history
separating two rectangles. Therefore {T1,Tp} is safe.n

In order to characterize safety of a distributed system we need a succinct way of
describing the forbidden- regions in all (Ty+.Tp*)-planes. We use this
characterization (as in the proof of Theorem 5) to produce a short proof, that all
paths, which correspond to output histories of a lock manager, must either pass
below or above all forbidden regions.

The simple condition of safety provided by Theorem 5 is a sufficient one. It is
necessary for centralized transactions (Lemma 2), where another obvious complete
characterization is the geometric pattern on the unique (Ty +,T2+)-plane. Itisalsoa
necessary characterization for transactions distributed between two sites (Theorem 6).
Recall that the safety question is in co-NP, whereas its negation is in NP, that is to

- prove a system unsafe all we have to do is guess a nonserializable hxstory in O(L) and
verify that fact in polynomial time.

We should point out that DL(T},T;) ignores some of the precedences of Ty and
T,. This restricts the proof of necessity to two sites and indicates that a complete

g

characterization of forbidden regxons for an arbitrary number of sites could be a hard
- problem. |

If DL(T,T2)=(V.A) is not strongly connected then it has more than one
strongly connected components. Among these there is a strongly connected
compohent with no incoming edges from other strongly connected components. We
~ call such a component a dominator X, where XCV denotes its set of nodes. In fact
the only property of the dominator we will use is that there are no incoming edges in
- X from nodes in V\X (and not its strong connecﬁviiy)g

We will prove necessity of the condition in Theorem 5 using the following
intuitive construction. Given Ty,T,, DL(T},T9)=(V,A) not strongly connected and a
dominator X, we will construct two special total orders Ty ¥, Tp*. In Tyt the
actions (Lx-Ux, x€X) will be executed as late as possible after the actions (Lz-Uz,
2¢X). In Tl we do the opposxte ‘Phis tends to isolate the forbidden region
corresponding to X in the upper-left corner. Each time we will argue that this region
“and all other rectangles can be separated as in Fig. 5.5, by a curve which will
obviously correspond to a possible output history. Therefore we will prove something
stronger than lack of safety namely: "If X is such that there are no incoming edges ig
X, then we can separate all x-rectangles from all z-rectangles, x€ X, ze V\X".

Lemma 2: Given a locked transaction system {Tj,T}, where T}.T; are totally
ordered, if DL(T},T;) is not strongly connected then {T},Tp} is unsafe.

Proof: Obviously there is-only one (T 1+,T2 +)-plane. Pick a dominator X in
DL(T;,T). By Theorem 5 all.its rectangles farm a region that is above an increasing
curve, whose comers correspond to lower right corners of x;-rectangles, x;€ X
(see Fig. 5.6). Let z¢ X, then the z-rectangle must be below that curve. If it is not
there is an x;€ X sich that Lz >y, Ux; and Lx; >y Uz (since T}, T, are totally
ordered) implying that (zx;)¢ DL(T},Ty) a contradiction.0 | ’

Figure 5.5

.T‘..* —p
vz - X -
| %, f— - u-m-E~==¢ '
$
] ’QQ-M“E““N ; . _
| 4
i
b
Lz Ux; B

Theorem 6: Let T= {TI,TZ}A be a locked transaction systém, where T1,T, are
distributed at two sites. If DL(Ty,T9) is not strongly connected then T is unsafe.

Proof: For this type of distributed transactions there could be an exponential
number of possible (T} +, T)-planes. Let X be-a dominator of DL(T,T;). We use
X to construct two special total orders Ty+, T+ that will help us separate all x-
rectangles (x€ X), from all z-rectangles (z¢ X)' and, since X and V\X are nonempty,
this will provide us with a certificate of unsafeness. We will use the shorter notation
>; instead of >r; and >; for "precedes or can be concurrent to in transaction Tj".

Let z, x, y be such (if they exist) that:
6)) ¢ X and x,y€ X]
- (2) Lz >, Ux andLy)le |
‘Then we can infer:
(3) x=y and Uy >, Ux and Uy > Ux
Since X is a dominator of DL(I‘I,Tz) it cannot contain either of the directed edges
(zx) or {zy). We can infer (3) because, if x=y (zx)€ DL(Tl,Tz) or if (Ux >, Uy) then
(Lz >, Uy) and (zy)€ DL(Tl,Tz) or finally if (Lx N Ly) then (Lx >; Uz) and (x)€ .
DL(T1,T9). , . :

" Forany z, x,y satlsfymg (1) (2) and (3) we can- construct the following partial
orders: _

'I'l is Tl with the added precedence Ly >1’ ILx

Ty is T2 with the added precedence Uy >2 Ux
Obviously T (i=1.2) are partial orders. Also 'F is Ty (i=1,2) with at most one
-precedence added (ie., if the additional precedence. were already in Tj then T Tl).
Therefore if {Tl T2} is unsafe so is {T1,To} L :

Based on the existence of only two sxtes we w111 prove the followmg important -
fact about the new system T'= {Tl T2} ‘

(D Xisa dominator of DL(I‘1 T2)

Since x, y, Z are distinct vanables we have three cases; case (@) xy stored at the
- same site, case (b) x,y stored at different Sltes and z stored at the s'lme site as x,
case (c) x,y stored at dlfferent sntcs and z stored at the same snte as y

96

Case (a): If x,y are stored at the same site we must have (Ly > Lx) and

(Uy >, Ux) (these actions cannot be concurrent in Tl or Ty). Therefore T =T;j
(i=1,2) and (I) follows trivially.

Case (b): We have that x and z are stored at the same site and (Lz >, Ux) (the
possible positions of Lz are illustrated in Fig. 5.7). Since (zx)¢ DL(T;,T7) we must
have (Uz >; Lx) (i.e. these actions cannot be concurrent in Ty, because x and z are at
~ the same site). Since (Ly >} Uz >; Lx), we have that already (Ly >; Lx) and therefore
Ty =Ty. We only add precedence (Uy >, Ux) to Ty to obtain T2'._

The only way for new edges to be generated in DL(TI',Tz’) fromaz'¢ Xintoa
x’€ X, is for (Lz’ >, Uy) and (Ux >, Ux’) (x’ could be x). Moreover z’ and x’ should
be stored at different sites (otherwise Lz’,Ux’ would have been ordered already in -
T,) and in T;=Tj we must have (Lx’ >, Uz).

If 2 and x were stored at the same site, x” must be stored at the site of y. Thus in
Ty we must have had (L2’)2 Uy and Uy >, Ux’) (otherwise ‘the new edge would
have introduced a cycle in Tz) Therefore Lz’ and Ux’ were already ordered in Tq,
contradiction.

Ifz and v were stored at the same srte, X" must be stored at the other site and
Fig. 5.7 illustrates the possible pdsitions of Lz’ and Ux’ in T,. From these ranges of
Lz’ and Ux’ in T, we can derive the possible positions of Uz’ and Lx’ in Tj. Since
DL(Ty,T;) cannot contain either (zy) or (zx”) and since (L’ >, Uy and Lz >, Ux’),
we must have (Uz’ >; Ly and Uz >; Lx’). It easily follows from the established ranges
that Tj contains a cycle (UzLx’Uz'LyUz) a contradiction.

This proves (I) for this case.

Case (c): This case is symmetric with case (b). The argument that proves (I) is
similar to the one above. The ranges of Lz', Uy’ in Ty and Uz, Ly’ in Ty are
illustrated in Fig. 5.8. This time the additional precedence is (Ly >)- Lx), and z’¢ X,

y€ X, and 7 ‘must be stored at the site of X, and y’ at the site of y.

This completes the proof of (I).

~ Starting from T we can construct a sequence of transaction systems .T"..T
(of length polynomial in |7]) such that m T
(i) X is a dominator of DL(T1 D))
(ii) If (z¢ X), (x,y€ X), (Lz)2. Ux), (Ly >« Uz) then (Uy o Ux) (Ly >;+Ux).

i
U / H
-?.V z d V i
g _hu Lﬁn—i
1’
2 1
WUx UH'
Y
K4
Ly’
et
- , '
Ux Uy

97

LY Y

A
;L'l'

" Figure 5.7

Case (b)

. e

Figure 5.8
Case (c)

98

Now all we have to do is produce the total orders T} +, Ty from topologically
sorting Tl*, TZ‘. We use two tricks First, we place the Ux (i.e. X in X) steps as early
" as possible in TZ'*_'. Second, we place the Lx (i.e. x in X) steps as /ate as possible in

Ty, moreover if Ux is before Ux’ in Tp* we put Lx before Lx’ in Ty (if
possible). . 4

It is easy to see that a nondecreasing curve lower-bounding the area of the
rectangles in X is created. Also if (Ly 14+ Uz) for some z¢ X, and Ly forms part of
this curve and is closest to Uz (see Fig. 5.9) then we can easily prove that
(Ly >1« Uz). (From the way T1+ was constructed, if there is a closer (Ly; >1» Uz)
we must have (Ly > Ly,) else Ly, would have been scheduled before Ly in ;).
From the properties of T* we know that for all x€ X such that (Lz >+ Ux) we have
(Uy >3+ Ux). By the way Tz ‘was constructed (Uy as early as possxble) we can infer
(Uy)2+LZ).

Therefore z-rectangles are below or to the left .of all x-rectangles in the
(T;*.,Ty*)-plane. This completes the proof of Theorem 6.0

. ;‘Jz -..:..; ----;. S, |
k--. ---—-.

1z

amted o A X L X 1 ¥ W WY
. .

n";.
o

Figure 5.9

The condition of Theorem 6 cannot be applied to systems {T},T>} distributed at
more than two sites. An example demonstrating that fact is illustrated in Fig. 5.10,
where although we have a dominator X ={x}.x9} (Fig. 5.10(a)) we cannot separate it
from the other rectangies (Fig. 5.10(b) and (c)). :

=

-'-!'1 12
z W
(o)

' Figure 5.10
@ T ‘
b T * is not a transaction system
(c) DL(T) has dominator {x1.x9}

100

Thus we can test safety of distributed transaction systems 7= {Tl,'i'z}, on two
sites in O(nz) time [1]. In fact the proof of Theorem 6 gives us the following
nondeterministic poly nomxal time algorithm to decide nf an arbitrary system T is
unsafe.

Algorithm UNSAFE: Given T={T},T;} a locked transaction system.

(1) Guess a (nonempty) set of rectangles, X that are above a curve, which |
corresponds to a nonserializable history. Let Z be the (nonempty) set of the rest of

the rectangl&s.

(2) Start with T)* =T}, Ty" =T, and keep augmenting them by the following
rule: | | :
If z€ Z, x,y€ X, (Lz >3« Ux), (Ly >;» Uz) then add (Uy >2. Ux) (Ly >;» Lx).

(3) Check if T1 T2 are pamal orders and if DL(T 1 Ty) has no edges (zx)
for z€Z, x€ X. '

(4) If (3) is true say yes.

The nondeterministic choice at siep (1) indicates that the decision problem
"Given T'={T},T9} is it safe?” may be co-NP-Complete. Such a result would be
interesting since it would illustrate the effect of multiple sites on the complexity of
the problem. o

L4

Until now we have discussed transaction sysfems T with two transactions. The
question of safety of a system with an arbitrary number of centralized transactions is
co-NP-Complete [39], because of a combinatorial condition introduced by the

“conflict graph G(7). Since the question of safety of a system of an arbitrary number
of distributed transactions is in co-NP, we cannot hope to indicate a difference
between centralized and distributed by further pursuing this problem.

Another interesting issue is that of deadlock freedom. For the centralized case
the geometric approach used for safety [39] gives us a test of deadlock freedom at no
extra cost. The approach using DL(T).T;) does not have this nice proparty.

101

Therefore we have determined three interesting open problems:

(a) Given a system {Tp,Tp} of arbitrary locked distributed transactions, is it
safe?

(b) Can the polynomial time bounds implied by Theorems 5 and 6 be improved
using the special structure of DL(T},T)?

(c) Given a system {T7,T,} of locked distributed transactions, is it deadlock-free
(even if two sites are used and the system is safe)?

102

6. Conclusions and Open Problems

We have examined the complexity of distributed database concurrency control.
We have provided a rigorous mathematical framework for the study of on-line
distributed problems (Chapter 2), established a connection between distributed
computation and combinatorial games (Chapter 3) and finally derived both negative
(Chapter 4) and positive (Chapter 5) complexity resuits.

Our main r&sult (Theorem 4) shows that concurrency control, an on-Ine problem
clearly in NP in the centralized case, is PSPACE-Complete in the distributed case.
This result is quite strong, in that it holds for transaction systems of rather ordinary
appearance (e.g., transactions consisting of sequences of six updates each). Also, the
negative implications of our result (Corollary 4.4) are quite robust. For example
even if the scheduler is equipped with a powerful oracle belonging anywhere in the
polynomial hierarchy, it still cannot minimize communication efficiently," unless the
polynomial hierarchy collapses.-

In the process of proving this negative result, we have related distributed
concurrency control to certain combinatorial games played on graphs. It could be
that this connection is of some practical value, since the length of these games
corresponds to counting messages. There is a more-or-less’ immediate heuristic for
approximating an optimal strategy in the game CONFLICT. This heuristic is based
on the following purely combinatorial problem, which is still open:

() “Given an undirected graph with its edges colored red and
green, find the smallest set of edges that have to be deleted in
order for the multtg graph to have no two-color cycle."

Other open problems from Chapter 4 are related to technical issues (II)&(III) or
to the messages: v.s..computation steps argument of Corollary 4.4 (IV)&(V). This last
argument seems quite general in the context-of distributed computation.

(II) Given T without cross-edges and b>0 is the minimax length'
of PREFIX(<T.@>) greater than b? (conjectured to be PSPACE-
Complete)

(ITT) Given T is the minimax length of PREFIX(T.@>) greater
than 07 (conjectured to be in P)

103

(IV) What are the consequences of NP =PSPACE on the |
existence of efficient schedulers?

) Can a contradiction similar to Corollary 4.4 be derived 1f
KT.2>¢MAb)?] is NP-Complete.

In Chapter 5 a new O(nz) safety test was derived for two-trzinsaction' locked
systems {TpTz}- This is a necessary and sufficient condition, if transactions are

distributed at two sites, and sufficient otherwise. There are a number of interesting =

open problems.

(VD) Given {T,.T,} distributed at an arbitrary number of sites
are they safe? (conjectured to be co-NP-Complete)

‘This would demonstrate the complexity introduced by the number of sites.

(VID) Given {T},T,} distributed at two sites and safe, are they
dead-lock free?

Issues of local and gIobal deadlocks and message-cfficient deadlock manage:s'
recall the analysis of Chapters 3 and 4. '

(Vi) Can the polynomial bounds of O(nz) (nis number of
nodes of the digraph DL) implied by Theorems 5 and 6 be
improved: using the special structure of DL?

This is possible in the O(nlognloglOgn) centralized case.

Finally our analysis of distributed locking can serve as the basis for the
development of novel distributed locking strategles, whlch are not simply
generahzanons .of centralized rules.

This empty page was substituted for a
blank page in the original document.

104

References

1] Aho, AV, Hopcroft, E., Ullman L D "The Design and Ana1y51s of Computer
Algorithms” Addlson-lecy, (1975)

[2] Bernstein, P.A., Rothnie, J.B., Goodman, N. and Papadimitriou, C.H. "The

Concurrency Control Mechanism of SDD-1: A System for Distributed Databases
(The Fully Redundant Case)”, IEEE Trans. on Software Eng., vol. SE-4, no. 3 (1978)

[3] Bernstein, P.A., Shipman, D.W., Rothnie, J.B. "Concurrency Control in a System
of Distributed Databases (SDD-1)" ACM-TODS, vol. 5, no. 1, (1980)

[4] Bernstein, P.A., Goodman N. "Fundamental Algorithms for Concurrency Control
in Distributed Database Systems" Tech Report, Computer Corporatlon of America,

(Feb. 1930)

[5] Chandra, A.K., Stockmeyer, L.J. "Alternation” Proc. 17th FOCS Conference,
pp.58-108, (1976) ' :

[6] Coffman Jr EG.,, Denmng P.J. "()peratmg Systems Theory" Prentnce-Hall,
(1973) : y

[7] Eswaran, KP, Gray, JN., Lorie, R.A. and Traiger, LL. "The Notions of
Consistency and Predicate Locks in a Database System" CACM vol. 19, no. 11,

(Nov. 1976)

[8] Even, S. Tarjan, RE. "A Combinatorial Problemr - which is Complete in
Polynomial Space” JACM, vol. 23, pp.710-719, (1976)

[9] Feldman; J. "A Programming Methodology for Distributed Computing (among
other things)” Tech. Report TR9, Dept. of Compuﬁef Scxence Univ. of Rochester,
(1977)

[10] Garcia-Molina, H. "Performance of Update Algorithms for Replicateﬂ Data in a
Distributed Database”, Ph.D. Dlssertatnon Computer Sc1ence Department, Stanford
Univ., (June 1979)

[11] Garey, M.R., Johnson, D.S. "Computers and Intractability: A Guide to the
Theory of NP-Completeness” Freeman, (1978) ‘

105

[12] Gouda, M.G., Dayal U. "AOptimal Sen;ijoin Schedules for Query Processing in
Local Distributed Database Systems" Proc. ACM-SIGMOD, pp.164-175, (1981)

{13] Gray, I.N., Lorie, R.A., Putzulo, G.R. and Traiger, I.L. "Granularity of Locks

. and Degrees of Consistency in a Shared Database” IBM Research Report RJ1654,

(Sept. 1975)

[14] Hammer, M.M,, Shipman D.W. "Reliability Mechanisms for SDD-1. A System
for Distributed Databases” Tech. Report CCA-79-05, Computer Corporanon of
America (1979) - _

[15] Hoare, C.A.R. "Communicating Sequential Process&s" CACM, vol. 21, no. 8,

© pp.666-677, (1978)

[16] Kanellakis, P.C., Papadimitriou, | CH. "The Cdmplexity (_)f Distributed
Concurrency Control” Proc. 22nd FOCS Conference, (1981)

[17] Kung, HT. Papadimitrion, CH. "An Optimality Theory of Database
Concurrency Control” Proc. ACM-SIGMOD, pp116-126, (1979)

[18] Ladner, R.E. "'i“he Complexity of Problems in Systems Qf Communicating
Sequential Processes” Proc. 11th ACM-STOC, pp.214-223, (1979)

[19] Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed
System”, CACM, vol. 21, no. 7, pp.558-565, (July 1978)

[20] Lin, W.K. "Performance Evaluation of Two Concurrency Control Mechanisms
in a Distributed Database system" Proc. ACM-SIGMOD, pp.84-92 (1981)

[21] Lipski Jr., W., Papadimitriou C.H. "A Fast Algorithm for Testing for Safety and
Deadlocks in Locked Transaction Systems”, Proc. CISS Conference, Princeton (1980)

- [22] Menasce, D.A., Muntz, R.R. "Locking and Deadlock Detection in Distributed -

Databases”, IEEE Trans. on Software Eng.; vol. SE-5, no. 3, pp.195-202, (May 1979)

[23] Menasce, D.A., Popek, G.J., Muntz, RR "A Locking Protocol for Resource
Coordination in Distributed Databases” Proc. ACM-SIGMOD, (1978).

[24] Milne, G., Milner R. "Concurrent Processes and their Syntax" Tech. Report,
Univ. of Edinburgh, (1977)

e gl oo o

106
[25) Papadlmltnou C.H. “Serializability of Concurrent Updates" JACM vol. 26,
no. 4, pp. 631-653, (Oct. 1979) o »

[26] Papadimitriou, C H. "On the Power of Loeking Proc ACM-SIGMOD, pp.148-
154, (1981) '

[27] Reed, D.P. "Naming and Synchromzatlon ina Decentralized Computer System”
Ph.D. thesis, M.LT. Department of EECS, (Sept. 1978)

[28] Rosenkrantz, D.J., Stearns, R.E., Lewis P. M "System Level Concurrency
Control for Distributed Database Systems“ ACM-TODS, vol. 3, no. 2 pp 178-198,
(1978)

291 Schaefer T.G. "Complexity of Some Perfect Information Games” JCSS, vol. 16,
pp.185-225, (1978)

[30] Silberschatz, A. Kedem, Z. "Consistency in Hierarchical Database Systems
JACM, vol. 27, no. 1, pp.72- -80 (Jan. 1980)

[31] Stearns R.S., Lewis, P. M., Rosencrantz, D.J. "Ooncurrency Control for Database

" Systems” Proc. 16th FOCS Conference, pp.19- 32, (1976)

- [32] Stearns R.S Rosencrantz, D.J. "Distributed Database Concurrency Control

Using Before-Values" Proc. ACM-SIGMOD, pp.74-83, (1981)

"[33] Stockmeyer, L.J., "The Polynomial-time Hierarchy” Theor. Computer Sci., 3,

ppl1-22, (1976)

[34] Stockmeyer; L.J., Meyer, A.R. "Word Problems Requmng Exponennal Time" .
Proc. 5th ACM-STOC, pp.1-9, (1973)

[35] Stonebraker, M. "Concurrency Control and Consistency of multiple Copies of
Data in Distributed INGRES" 1EEE Trans. on Software Eng., vol. SE-5, no. 3,
pp.188-194, (May 1979)

[36] Thomas, R.H. "A Majority Consensous Approach to Concurrency Control for
multiple Copy Databases” ACM-TODS, vol. 4, no. 2, pp.180-209, (1979)

[37] Uliman, J.D. "Principles of Database Systeme" Computer Science Press, (1980)

107

[38] Yao, A.C. "Some Compiexity Questions Related to Distributive Computing”
Proc. 11th ACM-STOC, pp. 209-213, (1979)

[39] Yannakakis, M., Papadimitriou, C.H., Kung, H.T. "Locking Policies: Safety and
Freedom from Deadlock” Proc. 20th FOCS Conference, pp.283-287, (1979)

[40] Yannakakis, M. "Issues of Correctness in Database Concurrency Control by
Locking” Proc. 13th ACM-STOC, pp.363f367, (1981)

108

Index of Terms

action

AE-QBF

alternation

assignment of directions

back-edges

closed assignment
communication complexity
communication delay
communication optimal

' computational complexity
computationally efficient
concurrency control (CC)
concurrency control principle (C)
CONFLICT
CONFLICT T

conflict graph

co-NP

consistency

- cross-edges

dataset .
deadlock-free - .
distributed concurrency control (DCC)
distributed database design (DDD)
DMC

entities
equivalent histories

games

G(1)

page
13
35
47
19

38

51
24
2

%
2%

21
49

50

19

21

15
86
26

8

Y

16

47
19

G«(D
history
information
input history

integrity constraints

lock X _
locked transaction system
locking policy

locking variables
lock-of(x)

M)
NP

on-line
optimistic -

ordered mixed multigraph .

output history

P

parallelism
PATH
persistency
PREFIX

prefix <T,a>
projection of 8
projection of Ay
PSPACE

QBF

realizable assignment

109

19 .

16

ER B

B 28K

N

Neus

NaREasANN

19

realization of C
readset

reads-from
redundancy
resolution of conflicts

safe
scheduler
serial
serializable

site(p)

stored-at(x)

timestamps
transaction
transaction system (7)

two phase locking (2PL)

unlock X
update

variable
version

voting

writesét

110

23
15
28

19

36
21
18
18
13
12

11
13
13
86

85
13

12
11
11

15

11
‘Index of Figures and Tables

page.

Figure2 14
Figure 2 - 14
Figure 2 . 17
Figure 2 20
Figure: o | 24
Figure ! _ _ 34
Figure : o .. B
Figure : ' : 41
Figure . - . ' 48
~ Figure . S ' 49
Figure | | 50
Figure | 52
Figure . : 53
Figure - E | 5
Figure : | 62
Figure 63
-Figure 64
Figure | 69
Figure - 70
Figure ° : 70
Figure . B 78
Figure 9
Figure | ’ o 9
Figure . 87
Figure o 38
Figure L 90
Figure. 91
Figure . 9
Figurc 9%

Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Table 1

112

97
97
98
9

76

113
Biographical Note

The author was born on December 3, 1953, in Athens, Greece, where he lived
until 1976. He attended the National Technical University of Athens and received a
Diploma in Electrical Engineering with honors in June 1976.. The following
September he started his graduate work in the Department of Electrical Engineering
and Computer Science at M.LT.. He completed his M.S. degree in Electrical
Engineering and Computer Science in June 1978 and his Ph.D. degree in Computer
Science in September 1981.

The author will join the Computer Science faculty of Brown University as an
assistant professor.

CS-TR Scanning Project
Document Control Form Date: ¥/ (2195

Report# L<c-TR-JC9

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
[Laboratory for Computer Science (LCS)

Document Type:

)Z(Technical Report (TR)] Technical Memo (TM)
O oOther:

Document Information Number of pages: 132{}23-{ mac £5)

- NottohchdeDODfum.prﬂerMudims.dc...anauﬂy.

Originals are: , Intended to be printed as :
X Single-sided or O Single-sided or
0O Double-sided %Double—sided
Print type:

[0 Typewriter [OftsetPress [] LaserPrint
[jmqurmrﬁ\um [0 oOther

Check each if included with document:

0O pbob Form O Funding Agent Form M\cOver Page
jX; Spine K Printers Notes O Photo negatives
O Other:
Page Data:
Blank PagesSey sege mmses: Foitgo) T TLE PA(;K) ;‘, 0,00 IJ 63

Photographs/Tonal Material ey pege rumbes:

Other (note descriplion/page number).
Description : Page Number:

LeGE MAT (1I-8) untt'co TMJL_LM_’@_@E&IS,JMQ@ BLANK &g,
UNE b Buw& i uw:r):n LA
(5-159) PRCES #'xn (-]oZ WNT e BLANK 106113
(iaz- 129)Ju\utzo.d\ﬂd\ CoUAR, N NE CRIITR Mo\ B
TRQTS (_7)

Scanning Agent Signoff: 5 o c
Date Received: 3 /% /95 Date Scanned:] /J7/35 Date Retumed: _7 /i /1>

Scanning Agent Signature: Q/MJ\M y /i/U o Cﬁﬁ‘a% Rev 944 DSILCS Document Control Form catrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

