MIT/LCS/TR-268

DERIVED PAIRS, OVERLAP CLOSURES, AND REWRITE DOMINOES: NEW TOOLS FOR ANALYZING TERM REWRITING SYSTEMS

John V. Guttag
Deepak Kapur
David R. Musser

This blank page was inserted to preserve pagination.

DERIVED PAIRS, OVELLAP CLOSURES, AND REMRITE DOMINOES:
 NEW TOOLS FOR ANALYZMN TETM DESTITINA SYSTEMS

John V. Outtas ${ }^{1}$
MT Laboratory for Computer Scionce
Deopek Eapur
General Blectric Research and Developeent Center
David R. Muser
Goneral Electric Researeh and Development Center

Abstract

Starting from the seminal work of Geuth and Bendix, we develop several notions useful in the study of term rewritias systems. In partienlar wo introdzee the notions of "derived pairs" and "overlap olossre" and show that they are meeful in analyzing sets of rewrite reles for various propertios related to termination. We also introdece a men representation, besed on rewrite dominoes, for rewrite rules and sequences of rewrites.

Eeywords: Confluence, Criticel pair, Derived pair, Geth-Bendix, Overlap closure, Restricted termination, Rewrite dominoes, Term rewriting systems, Uniform termination

[^0]
1. INTRODUCTION

We introduce three new tools for the study of tern rewriting systens. Derived pairs of a rewrite rule generalize the well-known idea of "critical pairs" introduced by Knath and Bendix (1970) in their development of a method of proving the confluence property. The overlap glospre of a sot of rules is a set of rules that corresponds to a subset of the transitive closure of the rewriting relation. Its construction is based on the use of derived pairs obtained from superpositions of the right hand side of one rule with the left hand side of another. This process is closely related to the Inuth-Bendix process, which uses critical pairs for generating new rules in an attempt to achieve confluence. We use the overlap closure in proving - or disproving - that a rewriting rolation is uniformy terminating. ${ }^{1}$ It thus provides an interesting dual method to the Inath-Bendix process, in which the validity of the critical pair test for confluence depends upon uniform termination. The combination of uniform termination and conflnence provides a decision procedure for the theory of the equations corresponding to the original rules.

In the study of derived pairs and overlap closures we found it usoful to devise a new way of representing rewrite rules and sequences of rewrites using What we call revifite dominoes and "rewrite domino layouts". We will introduce this representation and ase it in presenting the proofs of our main results about the overlap closure. We believe that this representation also will be useful in the study of other areas of rewrite rule theory.

Like the Knuth-Bendix process, the overlap olosure process may fail to terminate (that is, it may continue to generate nev rules indefinitely). In fact, when the original rules are uniformly terminating, it will usually happen that overlap closure generation is nonterminating. In this case, the overlap closure process does not by itself yield a proof of uniform terminetion, but it may be useful as an aid in applying othor known methods of proving uniform termination [sec Huet and Oppen, 1980]. It can also be used in proving what wo call "restricted termination," i.e., termination for all terms up to given size. Some applications of restricted termination are discussed in [Guttag, Kapur and Musser, 1981].

Perhaps more important is the case where the original rales are not uniformly terminating. One would often like to be able to detect this situation quickly, e.g., in order to avoid wasting time attompting to construct a proof of uniform termination. We show that under some ressonable restrictions on the form of rewrite rules, the overlap closure construction provides such a test.

1. more commonly called finitely terninating or noetherian.
I.e., we show that if the rules are globally finite (that is to say, the number of different terms to which any term can be rewritten is finite) and every rule is right-linear or every rule is left-linear, the overlap closure construction can be used to effectively search for cycles in the rewriting relation. (That it does so "quickly" enough to be useful is a claim for which we have limited empirical evidence, as discussed in the Conclusion section).

2. DEFINITION OF OYEPLAP CLOSURE

For the most part we use standard definitions and terminology for term rewriting systems from Huet (1980) and Het and Oppen (1980). There are few exceptions, such as "uniform termination" for "finite ternination," and "terminal form" for "normal form." In [Guttag, Kapur, and Masser, 1981], the reader will find a thorough discussion of this background material. Here we confine onrselves meinly to the definitions of "derived pairs," agereralization of the Knuth and Bendix's notion of "critical pairs," and of "overlap closure."

Two terms are said to overlep if one is maifiable with a nonvariable subterm of the other. If sand overlap, we define their anmposition: eithor
a) s unifies with a nozvariable subterm t of t, by the most general unifier (m.g.u.) θ, in which case $\theta(t)$ is called a mperposition of and t; or
b) a nonvariable subtern st of unifies with t, by m.g.i. θ, in which case $\theta(s)$ is called a sperposition of s and t.

Now consider ordered pairs of terms (x, s) and (t, n) ench that s and t overlap, as above. (If the variables of t must be renamed, the same renaning must be applied to u.) Then along with the superposition $\theta(t)$ or $\theta(s)$ we obtain the derived pair of terme, $\langle p, q\rangle$, where
a) if s unifies with nonvariable subtern t / i by m.g. m_{o}, θ,

$$
\begin{aligned}
& p=[\theta(t) \text { with } \theta(x) \text { at } i]^{1} \\
& q=\theta(n) ;
\end{aligned}
$$

b) if nonvariable subterm s/i unifies with t by m.g.n. θ,

$$
\begin{aligned}
& p=\theta(x) \\
& q=[\theta(s) \text { with } \theta(u) \text { at } 1] .
\end{aligned}
$$

In the case of a rewriting systen $R=\left\{\left(\mathcal{I}_{i} \rightarrow r_{i}\right)\right\}$, the derived pairs obtained from the pairs $\left(x_{i}, 1_{i}\right)$ and $\left(1_{j}, r_{j}\right)$) are called oxition pairs.

[^1]Consider, for example, obtaining a oritical pair from the rewrite rales:

$$
\begin{gathered}
x^{-1} \bullet x \rightarrow 0 \\
\left(x^{\prime} \bullet y^{\prime}\right) \bullet z^{\prime} \rightarrow x^{\prime} \bullet\left(y^{\prime} \bullet z^{\prime}\right)
\end{gathered}
$$

We begin by constructing the ordered pairs (e, $x^{-1} 0 x$) and $\left(\left(x^{\prime} \bullet y^{\prime}\right) \bullet z^{\prime}, x^{\prime} \bullet\left(y^{\prime} \bullet z^{\prime}\right)\right)$. Now $x^{-1} \bullet x$ can be unified with $x^{\prime} \bullet y^{\prime}$ using the substitution $\theta=\left[x^{-1} / x^{\prime}, x / y^{\prime}\right]$. This leads to the derived pair〈○ $\mathrm{z}^{\prime}, \mathrm{x}^{-1}$ - ($\mathrm{x} \bullet \mathrm{z}^{\prime}$) > which is a critical pair of the rules.

Using derived pairs, the overlap closure of \underline{R}, written $O C(\underline{R})$, is defined inductively as follows:
a. Every rule $r \rightarrow s$ in \underline{R} is also in $O C(\underline{\underline{R}})$.
b. Whonever $x \rightarrow s$ and $t \rightarrow u$ are in $O C(\underline{R})$, overy derived paix $\langle p, q$ 〉of (r, s) and (t, u) is in $O C(\underline{f})$ (as $p \rightarrow q$).
c. No other rules are in $O C(\underline{R})$.
"Examples of overlap closures:"
i. Let $\underline{R}=\{f(x) \rightarrow g(x)\}$, then $O C(\underline{R})=\underline{R}$.
ii. Let $\underline{R}=\{f(x) \rightarrow g(h(x)), h(x) \rightarrow \mathbf{k}(x)\}$, then $O C(\underline{R})=\underline{R}$ U $\{f(x) \rightarrow g(k(x))\}$.
iii. Let $\mathbb{R}=\{x \bullet(y \bullet x) \rightarrow(x \bullet y) \bullet z\}$, then from the superposition (x ($\left.x^{\prime} \cdot \mathrm{y}^{\prime}\right)$) z^{\prime} we obtain the rule

$$
x \bullet\left(\left(x^{\prime} \bullet y^{\prime}\right) \bullet z^{\prime}\right) \rightarrow\left(\left(x \bullet x^{\prime}\right) \bullet y^{\prime}\right) \bullet z^{\prime}
$$

and from the superposition ($x \bullet\left(\left(x^{\prime} \bullet y^{\prime}\right) \bullet z^{\prime}\right)$ wo obtain

$$
x \bullet\left(x^{\prime} \bullet\left(y^{\prime} \bullet z^{\prime}\right)\right) \rightarrow\left(x \bullet\left(x^{\prime} \bullet y^{\prime}\right)\right) \bullet z^{\prime}
$$

These rules then lead to further rules, and $O C(\mathbb{B})$ is infinite. iv. Let $\underline{R}=\{f(x) \rightarrow g(x), g(h(x)) \rightarrow f(h(x))\}$. Then $O C(\underline{R})$ consists of R and the reflexive rules $f(h(x)) \rightarrow f(h(x))$ and $g(h(x)) \rightarrow g(h(x))$.

The overlap closure $O C(\underline{\text { R }}$) has a rich structure since the overlap closure construction preserves some properties of a rewriting system. The following theorem shows that every derived pair of two rewrite rules is also a rewrite rule, implying that the overlap closure $O C(\underline{R})$ is a rewriting systom.
2.1. Theoren. If x, s, t, n are teras such that (x, s) and (t, n) are rewrite rules, then every derived pair $\langle p, q\rangle$ of (r, s) and (t, n is also a rewrite rule.

Proof. One just has to verify that for each case in the definition of derived pair that every variable that occurs in q occurs also in p.

Let us consider some other properties, based on the properties of its rules, of a rewriting systen

A term is said to be linazr if no variable occurs in it more than once. A rewrite rule is left-linear if its left tern is linear, sisht-linear if its right term is linear, and linear if its left and right terms are linear.

A rewriting system is called left-linear, right-1inear, or linear, based on whether each of its rules is left-linear, risht-1inear, or linear, respectively. The following theorem implies that the overlap closure OC(R) of a right-linear (left-linear, 1 inear) B is also right-linear (left-1inear, 1 inear).
2.2. Theoren. If $r \rightarrow s$ and $t \rightarrow u$ are two right linear rules with disjoint variable sets, then each of their derived pairs, $\langle p, q\rangle$ is also right linear.

Proof. There are three cases:
(i) unifies with the subterm t / i of t by their m.g.u. θ.

The corresponding derived pair 〈p, q〉 has

```
p=[0(t) with 0(r) at i]
```

$$
g=\theta(u)
$$

Since s is linear, by Leman 1 in the Appendix, substitutions for any two distinct variables in t / i in θ do not have common variable. The variables in t other than the ones in t / i do not play any role. so o(n) is linear.
(ii) the subterm s / i of s unifies with t by theix m.g.u. θ.

The corresponding derived pair $\langle p, q\rangle$ has

$$
p=\theta(r)
$$

$$
q=[\theta(s) \text { with } \theta(u) \text { at i] }
$$

Since s/i is linear, by Lemal 1 in the Appendix, substitutions for any two distinct variables in t in θ do not have a common variable. So, $\theta(s)$ and $\theta(u)$ are linear, and q is thus linear.
(iii) if subterns of s do not unify with t, or s does not unify with subterms of t, thon there are no derived pairs of $r \rightarrow s$ and $t \rightarrow a$.

By a similar argument, it can also be proved that overy dorivod pair of two loft linear rules is loft linear.

The name "overlap closure" cones from the fact that the rules of OC(R) are a subset of the transitive olosure of the rewriting relation of B :
2.3. Leman. If $p \rightarrow q$ is in $O C(\underline{R})$ then $p \rightarrow^{+} q$ (using \mathbb{R}).

Proof. By induction on the construction of $p \rightarrow q$ in $O C(\underline{R})$. The basis of the induction is the case that $p \rightarrow q$ is included in $O C(\underline{R})$ by virtue of being a rule of R. Then obviously $p \rightarrow^{+} q$ holds. If $(p \rightarrow q)$ is included in $O C(\underline{R})$ by being a derived pair of (x, s) and (t, u) then by the induction hypothesis for the two rules (r, s) and (t, u), we have $r \rightarrow^{+}$, and $t \rightarrow^{+}$. By the definition of derived pair and the transitivity of \rightarrow^{+}, we then have $p \rightarrow^{+}$q.
2.4. Corollary. If $O C(\underline{Q})$ contains a reflexive rule, $t \rightarrow t$, then the rowniting relation of R has a cycle.

Proof. Immediate from the above loman.
We would like to have the converse of this corollary, that if the rewriting relation of \underline{R} has a cycle, then $O C(\underline{R})$ contains a reflexive rule. This would pernit soarching for cycles by incromentally computing $O C(\underline{Z})$, looking for a reflexive rule. While we have not been able to prove this in full generality, we will present in the next section a restricted version and its proof. The proof is not easy, because the overlap closure of f is in general much smaller than the full transitive closure of R. It is this small size, relative to the transitive closure, however, that makes it feasible to use the overlap closure as the basis of an approach to proving uniform ternination or, at least, a useful notion of "restricted termination," discussed in [Guttas, Kapur, and Mussor, 1981].

3. REIRITE DOMINOES AND THE MAIN OVERLAP CLOSURE THEOREM

In order to be able to prove the major result about the overlap closure, we need to be able to deal precisely with the various cases of overlap betweon successive applications of rewrite rules in a rewrite sequence. We have found it useful to introduce a now representation of rewriting that helps to make such cases clear.

The domino representation (or rewrite dowino) of a rewrite rule is a rectangle divided into left and right halves in which are inscribed tree representations of the left and right terms of the rule. Function symbols in the teras are represented by labelled oircles in the trees. Variable symbols are represented by labeled rectangles, called "variable boxes." For examples of some rules and their corresponding rowrite dominoes, see Figure 1.

For each kind of domino (that is, each donino corresponding to a spocific rule), we assume there is an infinite stock of dominoes of that kind with their variable rectangles filled in with all possible terms. For oach such domino, we also assume an infinite number of copies are available in the stock.

A sequence of rewrites can be represented by a donino layont, which is a two-dimensional arrangement of dominoes that obeys the rules of matching corresponding to those of term rewriting (Section 2). Before giving the formal definition of a layout, we refer the reader to an example of a rewrite sequence using the rules given in Figure 1 and its corresponding domino layout as shown in Figure 2. Another example is in Figure 3, and the two layouts in Figures 2 and 3 could be concatenated to give a single longor layout.

We draw trees oriented sideways with the root at the left, and we will use nested triangles to represont trees schenatically. We define a mit layout fron t to w to be horizontal arrangement of a tree t, a domino with trees u and v, and another tree w.

RULE

1. $f(x, g(y, z)) \rightarrow g(f(x, y), z)$

2. $f(x, f(y, z)) \rightarrow f(f(x, y), z)$

3.I $f(x, k()) \rightarrow x$

3. $h(x) \rightarrow i(x)$
4. $h(x) \rightarrow j(x)$

5. $f(i(x), j(x)) \rightarrow l(x)$

Figure 1. A set of rewrite rules and their corresponding rewrite dominoes.

Figure 2. A rewrite domino layout and the corresponding rewriting sequence (using dominoes of
Figure 1).

Figure 3. Another layout (a continuation of the layout in Figure 2).

1. at sone position, i, in there is a subtree t^{\prime} that is identical to u, ignoring the variable boxes that appear in u;
2. the roots of t^{\prime} and u are horizontally aligned;
 aligned.

A layout fron to t is defined as

1. a unit layout from to V ; or
2. the concatenation of a layout from to u with a layont from u to v, with both copies of u dropped from the arrangoment; or
3. any arrangement obtained from a layout by translating horizontally any domino, as long as no other domino or end tree is overlaid or crossed (this allows compaction of a layout by placing one domino above another when they match disjoint subterms).

The examples in Figures 2 and 3 illustrate number of observations we can make about this representation of rewriting:

1. In a domino layout there is no distinction betweon different orders of rewriting when the rules are being applied to disjoint subterms; e.g.. the layout in Figure 3 would not be different if rule 5 had been applied before rule 4 or before rule 3. One can think of these rules being applied in parallel, since the order of application is always imaterial in this case. The layout representation just makes this property especially ovident.
2. To the property that "the rightmost tern of a revrite sequence is terminal" corresponds the property that there is no way to play a domino on the layout" (formally, there is no way to concatenate a unit layout onto the layout). The layout is said to be blogked. (The layout in Figure 3 is blocked.)
3. Thus the rules have the uniform termination property if and only if every possible layout eventually is blocked. Equivalently, there are no infinite layouts.

Our purpose with this representation of rowriting is to provide a conceptual tool for finding and presenting proofs of new results about term rewriting systems. The first result we will prove with the aid of rewrite dominoes is one that will allow us to speed up the search for ofeles by considering only those sequences of rewrites in which a "major rewrite" occers.

A rewrite $t_{0} \rightarrow t_{1}$ is called a major rewrite if it is by application of a rule, $t \rightarrow u$, to the entire term t_{0}; i.e., for some substitution $\theta, \theta(t)=t_{0}$ and $\theta(u)=t_{1}$. When only a proper subterm of t_{0} is matched, $t_{0} \rightarrow t_{1}$ is called a ninor rewrite.

In a layout, a domino is called a major domino (of the layout) if it represents a major rewrite, and a minor domino otherwise. Pictorially, major dominoes are those that span the width of the layout.

A agjor cycle is a cycle in which at least one of the rewrites is major.
3.1. Theoren. If a rewriting relation has a cycle, it has a major cycle.

Proof. Let us define the corridor of a domino in a layout to be the horizontal strip across the layout determined by the position and width of the domino:

Any two corridors in a layout are oither disjoint or one is contained in the other. Therefore, we can find a corridor that is spanned by a domino and which contains a layout as follows: start with any leftmost domino and follow its corridor to the right; whenever a domino is encountered that doesn't lie in the corridor, adopt its corridor. When we reach the right end, we have a corridor containing a layout including domino that is major with respect to it. If the whole layout is cyclic, the identified layout will be also, and will represent a major cycle.

We now want to define somo terminology and some manipulations of layouts that will be useful in proving theorems about the overlap closure of a set of rules. Consider an adjacent pair of dominoes in a layout. Let t and a be the trees on the adjacent halves, where a subtree t ' of t is identical to u (possibly $t^{\prime}=t$):

If either of t, or is contained entirely within a variable box, i.e.. the match is not betwoon two nonvariable subterms, wo say that the pair of dominoes
is weakly matched, and otherwise that it is strongly natched.
Exemples. In Figure 3, the domino pair

is weakly matched. Similarly the pair

that appers in the concatenation of the layouts of Figeres 2 and 3 is veakly matched, while all the other adjacent pairs are strongly matched.

Now suppose we have two weakly matched dominoes, as in Figure 4a, where t^{\prime} is contained in the x variable box. If the (s,t) domino is right-linear (i.e., t is linear), then the pair of dominoes can be transposed as follows: remove the (u, v) domino from the layout and move the (s, t) domino to the right, so that copies of the (x, V) domino can be inserted to the left of the (s, t) domino, one adjacent to each x box in (see Figure 4b). Then the resplting confinmation is still a layout, (the dominoes all match, using the same set of rules) with the same end trees. This is the case also when a symetric kind of transposition is performed on the layout in Figere 5a, prodzeing the layout in Figure 5b, whore we assume that the (u, ∇) domino is left-1inear.

Such transpositions cannot necessarily be performed on strongly matched dominoes, but we will define a different kind of manipulation for this case. Strong matching corresponds to the concept of overlapping in the definition of derived pairs: if (r, s) and (t, n) are rules that have derived pair $\langle p, q\rangle$, then the dominoes corresponding to (x, s) and (t, n) can be placed in a layout so that they are strongly matched. The layout configuration shows just where the strong match occurs and identifies a potential derived pair.

Sappose now that instead of our stock of dominoes corresponding to aiven rule set E , we have a stock corresponding to $O C(\underline{R})$, the overlap closure of R . Then for any strongly matched pair of dominoes in a layout there is a domino in our stock which corresponds to a derived pair generated by the matching pair. By Lemma 3 proved in the Appendix, we can replace the strongly matched pair in the layout by the "derived pair donino" thes identified, and the result will still be a layout with the same end trees.

We are now in a position to prove:
3.2. Theorem. Suppose the rewriting relation of R is globally finite and overy
 contains a reflexive rule.

Proof. (By construction.) Let

$$
\begin{equation*}
\mathbf{t}_{0} \rightarrow \mathbf{t}_{1} \rightarrow \cdots \rightarrow \mathbf{t}_{\mathbf{n}} \rightarrow \mathbf{t}_{0} \tag{*}
\end{equation*}
$$

be a given oycle. Corresponding to (*) is a oyclic domino layout
(**)

where the dominoes correspond to rules of R. In fact since each of these rules is also in $O C(R)$, we may take this layort as a layout of doninoes corresponding to rules of $O C(R)$. We will show how to manipalate this layozt to foris that shows there is a reflexive rule $t \rightarrow t$ in OC(R).

We describe the manipulations as an algorithm operating on the cyclic layout (*) 。

Step 1. [Extract major cycle.] As in the proof of Theorem 5.1, extract from (**) a sublayout representing a major cycle, making it the layout subject to the following steps. Also replace t_{0} with its subterm matehed by the layout.

Step 2. [Push major dominos to right end.l Manipulate the layout to form in which all of the major dominoes are together at the right ond, by means of transpositions or replacements by derived pair dominoes: wherever D is a major domino and \underline{E} is a minor domino adjacent to \underline{D} on the right
either \underline{D} and \underline{E} are weakly matched, in which case they can be transposed, or they are strongly matched, in which case they can be replaced by the derived pair domino they define - which is a major domino. This derived pair domino is also right 1 linear, as Leman 1 in the Appendix shows.

Step 3. [Look for cycle mong major dominoes.] There is now nonempty sequence of major dominoes $D_{1}, \ldots, D_{\text {n }}$ at the right end of the layout:

$$
t_{0} \square \square \square D_{1} \cdot \cdots D_{m}<t_{0}
$$

These dominoes can only be strongly matched - except for the case where the right-hand side of D_{i} is just a variable, but shortly we will show that such a possibility can be ruled out. If there is some contiguous subsequence $D_{i}, \ldots D_{j}$ that forms a cyclic layout

$$
u_{0} D_{i} \cdots D_{j}
$$

then, since there can only be strong matches, these dominoes can be combined by $j-i+1$ replacements into a single domino \underline{D} that forms a cyclic layout:

Let \underline{D} represent (p, q). Then there is a substitution θ such that $n_{0}=\theta(p)$ and $\theta(q)=n_{0}$, ice.. θ unifies p and q. Furthermore, a derived pair of (p, q) and (p, q) is the reflexive rule $(\theta(p), \theta(q))$. Since this is in $O C(\underline{B})$, we terminate the algorithm.

Step 4. [Duplicate.] If no such subsequence exists, construct a copy of the layout adjacent to it and return to Step 2 with the resulting layout:

$$
<t_{0} \square \square \square \square D_{1} \bullet \bullet \square D_{m} \square \square \square \square \square D_{1} \square \bullet \square D_{m}<t_{0}
$$

That concludes the statement of the algorithm. Before considering the question of termination of the algorithm, we dispense with the detail mentioned in Step 3: the case of adjacent major dominoes \underline{D} and \underline{E} where the right term u of \underline{D}
is just a variable. We can assame the left term of D is not just variable (if it were then it would have to be the same variable as and we would already have a reflexive rule). Since the layout is cyclic, if we drop D from the lay out, wo obtain a layout that has as its right ond term proper abterm identioal to the ieft end term. Prom this we conclude thet the texm rewriting relation is not globaily finite, contrary to assmption. This contradiction rulos ont the case under discussion.

It is obvious that each step of this algorithm is offective and terminating. Overall termination is guaranteed by the following facts:
a. At the k th execution of Step 2, the number of major dominoes, m, at the right end is at least 2^{k}.
b. Let $t_{0}^{\prime}[k]$ denote the term to the left of D_{1} in the layout at the k th oxeontion of Step 3. Since each $t_{0}[k]$ is derived from t_{0} and the rewriting relation is slobally finite, there are only finitely many distinct posibilities for $t_{0}[k]$. By a), then, there is one groh torm for which arbitrarily long layouts of major dominoes exist. Again by globel finiteness, these layouts cannot all contine vithont producins term, 0_{0} thet is a duplicate of some term previously obtained in the layout.

Since the algorithm alway terminates, and does so with a reflexive rule in OC(R), this proves the theorem.

The corresponding theoren obtained by replacing "right-1inear" by "1oftlinemr can also be proved in a similer maner. Combining these theorens with Corollary 4.3, we have:
3.3. Theorer. Suppose the rewriting relation of P is globally finite and every rule in R is right-1inesx or every rale in R is loft-ikear. Then the rewriting relation of R is uniformiy terminating if and only if OC(R) contains no reflexive rule.

Some applications of this theorem are explored in [Guttag, Kapur, and Muser, 1981]

Recently, Dershowitz (1981) has propossed a "forward chain" construction for rewriting systems and proved that a right-linear rewriting systen is uniformly terminating if and only if it has no infinite forward ohains. However, for left-1inear systens the analogous result requires that the left-hand sides of the rales be nonoverlapping, a problen that we had independently oncountered when considering the forvard chain construction and a similar backard chain construction. We were thus led to invont the overlap closure construction. The
following example from Dershowitz (1981) illastrates the advantage of the overlap closure construction over forward chains. Using the forward chain construction, it is not possible to deternine the nonterninetion of this left-linear rewrite system, as pointed ost by Dershowitz. The rewriting system is

$$
\begin{aligned}
& f(a(), b(), x) \rightarrow f(x, x, b()) \\
& b() \rightarrow a() .
\end{aligned}
$$

These rules have only two forward chains, both finite:

$$
f(a(), b(), x) \Rightarrow f(x, x, b()) \Rightarrow f(x, x, a()), \text { and } b() \Rightarrow a(),
$$

but wo cannot conciude anything about the termination of the rules because they are not right-linear and, although they are left-limear, the left-hand sides are overlapping. But in the overlap closure constrsetion, the rules have a derived pair rule

$$
f(b(), b(), x) \rightarrow f(x, x, b()),
$$

which, when overlapped with itself, gives the reflexive rule

$$
f(b(), b(), b()) \rightarrow f(b(), b(), b()),
$$

as a derived pair, proving that the reles are monterminating.

4. CONCLUSION

We have disoussed two ways to make use of finite subsets of the overlap closure: proving restricted termination and disproving uniform termination. We have oxplored, without much success, using such finite subsets as parts of proofs of uniform termination. We conjeoture that for certain classes of term rewriting systens it shorld be possible to comprote bound, n, such that if a cycle exists, there exists a cycle in which every term is of size n or less. For such classes, the overlap closure would provide a decision procedure for uniform termination.

Another open question bout the generality of the overlap closure construction is whether the assuntion of left-linearity or right-linearity is necessary. Although we have not been able to find proofs of our results withont this assumption, wo have also been unable to construct a cousterexample. In any case, as discmsed above, the overlap closmre constraction is more general than oither forward or backward chain oonstruotions.

For the cless of term rewriting systems to which it may be applied, constructing the overlap closure is as useful as constructing the complete transitive closure. Furthermore, using the overlap olosure to show restricted termination or the absence of uniform termination will always involve compring fewer terms than would using the transitive closure. Ve do not jet have much ompirical or analytical evidence as to the absolute officiency of using the overlap closure for these purposes. The key question is how many terms must be examined in order to demonstrate that no cycle is possible for terms of up to size n. The fow examples we have tried, using a preliminary implementation, we have found encourasing.

ACONOTLEDGEENTS

The basic idea of conducting a search for repeated terms (cycles) or subterms sprang from discussions in 1977 between one of the authors (Musser) and Dallas Lankford. We thank P. Gloess, G. Huet, and J. Levy for their interest and assistance in refuting some of our earlier conjectures, thas helping us arrive at the notion of the overlap closure and the theorens of Section 3. We also thank R. Narendran for assistance in constructing the proof of the theorens in the Appendix and J. Goguen for discrssions of the approach to term rewriting used in OBJ. John Guttag's research is apported in part by the National Science Foundation under grant MCs78-01798 and by an Office of Naval Research Contract With DARPA funding 制00014-75-C-0661.

REPERENCES

N. Dershowitz, ''Termination of Linear Rewriting Systems - Prelininary Version," in Autonata, Langmages, and Profrening, Bighth Colloquium, Israel (Eds: S. Even and O. Kariv), LNCS 115, Springer Verlag, New York, 1981.
J.A. Goguen and J. Tardo, "An Introduction to OBJ-T," Proc. of Conf. on Specificstion of Reliable Softrere (1979).
J.V. Guttag, E. Horowitz, and D.R. Musser, "Abstract Data Types and Software Validation, " Conan. A.C.M. 21 (1978), 1048-1064.
J.V. Guttag, D. Kapur, and D.R. Musser, On Proying Daifors Termination and Restricted Termination of Rovriting Systeng, Report No. 81CRD272, G.E. C. Research and Development, Schenectady, New York, Nov. 1981.
G. Huet, "'Confluont Reduotions: Abstract Properties and Applications to Term Rowriting Systese,' ' J. ACM 27 (1980), 797-821.
G. Huet, D.S. Lankford, "On the Uniform Halting Problem for Term Rewriting Systens." Rapport Laborie 283. IRIA. Mars 1978.
G. Huet, D.C. Oppen, 'Equations and Rewrite Reles: a Survey,' Fornal Laggugges Pexspectiyes and Open Problens (R. Book, od.), Academic Press (1980).
D.E. Knuth, P. Bendix, 'Simple Word Problems in Universal Algebra.' Compntational Problomes in Abstract Alrebra (J. Leeoh, ed.), Pergamon Press (1970). 263-297.
D. Musser, "Abstract Data Type Specification in the AFFIRM system." IERE Transinotions on Softwere Enginering 6 (1980), 24-31.
G.E. Peterson and M.E. Stiokel, Complete Sets of Rednotione for Equational Theories With Cownlete Dnification Alporithen. Tech. Report, Dept. of Computer Seience, U. of Arizoma, Tueson, Sept. 1977.

APPENDIX

1. Lemme Let t and u be unifiable terms with disjoint variable sots, and θ be their most general unifier. Let θ^{*} be the restriction of θ to the variables of u, say $\theta^{*}=\left[\theta_{1} / v_{1}, \ldots, \theta_{n} / v_{n}\right]$. If t is linear, then all variables in $\theta_{1} \ldots \ldots, e_{n}$ are distinct.
 occurrences of x by distinct variables $x_{1} \ldots, x_{k}$ that do not appear in t and u. Let u^{\prime} be the resulting torm, which is linear.

By Leman 2, in the m.g.u. θ^{\prime} of t and $u^{\prime \prime}$, substitutions for distinct variables in t and e^{\prime} do not have common variable. Let σ_{z} be the w.g. u. for the set of terms $\theta^{\prime}\left(x_{i}\right), 1 \leq i \leq k$, the substitutions for the variables used to replace multiple occurrences of x in u. If these σ_{x} for overy variable x having miltiple occurrences in are composed with θ^{\prime}, we get a unifier of t and u.

In this unifier, substitutions for variables in u do not have a comon variable. From this, it is evident that tho m.g. 0 . θ of t and n cannot have substitutions for variables in u that share common variables.
2. Leman. For two unifiable terms t and u, if t and are linear, then the substitutions in their m.g. m_{g}. θ for any two distinct variables of t or u do not have common variables.

Proof. By induction on the structure in term t.

Basis: t is a variable.

Then $\theta(t)=0$ and the statement trivially holds.

Inductive step: $\quad t=f\left(t_{1}, \ldots, t_{n}\right)$

For t and u to be unifiable, oither u is variable or $u=f\left(u_{1}, \ldots, u_{n}\right)$. The case of u being a variable is handled as in the basis step.

For the case $u=f\left(u_{1}, \ldots, n_{n}\right)$, for each $i, 1 \leq i \leq n_{,} t_{i}$ mast unify with u_{i} by their m.g.n. θ_{i}, say. By the inductive hypothesis, the statement holds for each of θ_{i}. Since t and n are 1 inear, the disjoint union of $\theta_{i}, 1 \leq i \leq n, i s$ the m.g.u. θ of t and u. It follows that the statement of the lema holds for θ also.
3. Leman. Suppose $t_{0} \rightarrow t_{1}$ using $r \rightarrow s$ applied at position $i, t_{1} \rightarrow t_{2}$ using $t \rightarrow z$ applied at $1 . j$, and s / j and t overlap determining the derived pair $\langle p, q\rangle=\langle\theta(r),[\theta(s)$ with $\theta(n) a t j]\rangle$. Then $t_{0} \rightarrow t_{2}$ using $p \rightarrow q$ applied at i. A similar result holds for the case in which suifies with a subterm of t.

Proof. Rename the variables of t and u, if necessary, so that s and t have no variable in common. There is some subterm t_{0} / i and a substitution θ_{1} suoh that $\theta_{1}(x)=t_{0} / i$ and $t_{1}=\left[t_{0}\right.$ with $\theta_{1}(s)$ at i].

Again, there is some subterm $t_{1} /(i, j)$ and a substitntion θ_{2} such that $\theta_{2}(t)=t_{1} /(i . j)$ and $t_{2}=\left[t_{1}\right.$ with $\theta_{2}(n)$ at i.j].

Since the variables of and t are disjoint, we have $\left(\theta_{1} U \theta_{2}\right)(s / j)=\theta_{1}(s / j)=$ $\theta_{2}(t)=\left(\theta_{1} U \theta_{2}\right)(t)$. That is, $\theta_{1} U \theta_{2}$ is anifier of s / j and t and therefore has θ as a factor:

$$
\theta_{1} \mathrm{~J} \theta_{2}=\theta_{3} \cdot \theta, \text { for some substitution } \theta_{3}
$$

Thus $t_{0} / i=\theta_{1}(x)=\left(\theta_{1} \quad U \theta_{2}\right)(r)=\left(\theta_{3}-\theta\right)(x)=\theta_{3}(\theta(x))=\theta_{3}(p)$. That is, t_{0} is metched by p at i. Now consider $\theta_{3}(q)$; it is

$$
\begin{aligned}
\theta_{3} & ([\theta(s) \text { with } \theta(u) \text { at } j]) \\
& =\left[\theta_{3}(\theta(s)) \text { with } \theta_{3}(\theta(n)) \text { at } j\right]
\end{aligned}
$$

$$
=\left[\theta_{1}(s) \text { with } \theta_{2}(u) \text { at } j\right]
$$

Thus $t_{2}=\left[t_{1}\right.$ with $\theta_{2}(u)$ at $\left.i \cdot j\right]$
$=\left[\left[t_{0}\right.\right.$ with $\theta_{1}(s)$ at $\left.i\right]$ with $\theta_{2}(u)$ at i.j]
$=\left[t_{0}\right.$ with $\left[\theta_{1}(s)\right.$ with $\theta_{2}(u)$ at $\left.j\right]$ at $\left.i\right]$
$=\left[t_{0}\right.$ with $\theta_{3}(q)$ at $\left.i\right]$, showing that $t_{0} \rightarrow t_{2}$ using $p \rightarrow q$ applied at i. We omit the proof of the case in which sunifies with a subterm of t.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. MIT/LCS / TR-268	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) "Derived Pairs, Overlap Closures, And Rewrite Dominoes: New Tools For Analyzing Term Rewriting Systems"	5. TYPE OF REPORT \& PERIOD COVERED Technical Report/Dec. '81 6. PERFORMING ORG. REPORT NUMBER MIT/LCS / TR-268
7. AUTHOR(s) John V. Guttag Deepak Kapur David R. Musser	$\begin{aligned} & \text { 8. CONTRACT OR GRANT NUMBER(s) } \\ & \text { MCS78-01798 } \\ & \text { NO0014-75-C-0661 } \end{aligned}$
9. PERFORMING ORGANIZATION NAME AND ADDRESS Laboratory for Computer Science Massachusetts Institute of Technology 545 Technology Square, Cambridge, Ma. 02139	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMEERS
11. CONTROLLING OFFICE NAME AND ADDRESS DARPA 1400 Wilson Blvd., Arlington, Va. 22209	12. REPORT DATE December 1981 13. NUMBER OF PAGES 19
14. MONITORING AGENCY NAME \& ADDRESS(if different from Controlling Office) Office of Naval Research Department of the Navy Information Systems Program Arlington, Va. 22217	15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

This document is approved for public release and sale; distribution is unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Confluence, Critical pair, Derived pair, Knuth-Bendix, Overlap closure, Resricted termination, Rewrite dominoes, Term Rewriting Systems, Uniform termination.
20. ABSTRACT (Conttnue on reverse side if necessary and tdentify by block number)

Starting from the seminal work of Knuth and Bendix, we develop several notions useful in the study of term rewriting systems. In particular we introduce the notions of "derived pairs" and "overlap closure" and show that they are useful in analyzing sets of rewrite rules for various properties related to termination. We also introduce a new representation, based on rewrite dominoes, for rewrite rules and sequences of rewrites.

[^0]: 1. Work partially supported by the Natiomel geiemee Fomadation rnder grazt MCs7s-01798 and by an Offiee of Naval Research Contract with BAPPA fundiag moont4-75-c-0661.
[^1]: 1. The notation [t with at i] stands for the term obtained from t by replacing the subterm at position i by A. $\mathrm{A}^{\mathrm{m}} \mathrm{ab}-$ term position" and "corresponding subterm" within a term is a finite sequence of nonnegative integers separited by "." and a related term determined as follows: to the mell sequence (denoted 〈〉) corresponds the entixe tem. If $f\left(t_{1}, \ldots, t_{n}\right)$ is the subtern at position i then the subtexm at position i.j is t_{j}. We write t / i for the subterm at position i within tern
