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ABS1RACT OF THE DISSERTATION 

A Dataflow Architecture with Improved 

Asymptotic Performance 

by 

Robert Eugene Thomas 

Doctor of Philosophy in Computer Science 

University of California, Irvine, 1981 

Professor Kim P. Gostelow, Chair 

Large scale integration presents a unique opportunity 

to design a computer comprising large numbers of small, 

inexpensive processors. This paper presents a design f~r 

such a machine based on the asynchronous and functional 

semantics of dataflow. Processors within the machine are 

interconnected by a packet-switched binary n-cube although 

a limited number of other networks may be substituted with 

predictable asymptotic effects on performance. Improved 

performance of the proposed machine over a previously 

reported dataflow architecture is predicted in terms of the 
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computational time complexity of several example programs: 

matrix multiply, quicksort, and iterative solutions to 

partial differential equations. Although the example 

programs are numerical in nature, the machine is intended 

for general-purpose computation since programs are written 

in the high level dataflow language Id without knowledge of 

the number of processors or interconnections. New storage 

management and data communication methods are also 

presented which are necessary to obtain the improved 

performance. Experimental results from a simulated machine 

incorporating some of these methods are given to 

corroborate analytic results. 
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1.0 INTRODUCTION 

Large scale integration presents an opportunity to 

design a computer comp,r ising hundreds or thousands of 

small, inexpensive processors. This opportunity is 

attractive for several reasons. First, signal propagation 

delay will eventually limit the performance of conventional 

sequential computers. Thus multiple execution units of 

some sort (e.g., arithmetic/logic units, processors) will 

eventually be necessary to increase performance further. 

Second, the current trend of rising software costs relative 

to hardware costs warrants, in many cases, trading 

inexpensive hardware for ease of software production. One 

of our approaches for realizing this tradeoff is to 

transfer the responsibility for processor and memory 

management from the programmer to the machine. We view 

automatic resource management as a potential source of 

additional parallelism which, if suitable exploited, would 

mitigate performance losses normally associated with 

dynamic resource management. A third reason multiprocessor 

computers are attractive is that redundant processors and 

communication links may be used to continue computation in 

the face of certain hardware faults. While error detection 

and control are beyond the scope of this paper, we believe 

the principles of dataflow underlying the architecture 

described here provide new opportunities for supporting 

high performance "fail-soft• computing. 
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1.1 Principles of Dataflow 

Dataflow is a model of computation based on asynchrony 

and functionality. Asynchrony means a dataflow operation 

(e.g., a machine instruction) may begin execution any time 

after receiving its input operands. !.~.!!.~.!_ionality means 

every dataflow operation consumes a set of input values and 

creates a set of output values without side-effects. 

Asynchrony is the basis of concurrency in dataflow while 

functionality ensures concurrent operations do not 

interfere and therefore need not be artificially sequenced. 

Detailed descriptions of various dataflow computational 

models and their advantages have been presented elsewhere 

[3,12,13,22,40]. 

1.2 Dataflow Architectures and Complexity Analysis 

Many dataflow architectures 

[11,12,14,15,22,23,33,42] and a 

have been proposed 

few prototypes have been 

constructed [11,12,23]. Evaluation of these architectures 

is an important task, but so far this evaluation has been 

more art than science. In an effort to improve the 

situation, time complexity analysis was used to design and 

evaluate the architecture presented here. Although the 

0-notation used in the complexity analysis is admittedly a 

rough tool (large constants may be hidden), such analysis 

can quickly determine the presence of bottlenecks in large 
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computations. Some readers may also question the 

assumption used in the complexity analyses that an 

unbounded number of processors are available. Of course, 

any realizable machine is limited to a finite number of 

processors, communication lines, memory cells, etc. 

However, the necessarily limited resources of von Neumann 

machines has not lessened the value of complexity analysis 

for single processors. Therefore, in the same way that 

unbounded memory is assumed in conventional complexity 

analysis, unbounded memory and processors will be assumed 

in the parallel complexity analyses presented here. 

An important practical issue in the application of 

dataflow and complexity results to real systems is hardware 

and software cost. All too often studies of parallel 

computing models do not intend that the model be 

implemented (i.e., it is a theoretical model only) or the 

little or no aid to the programming of the 

At least one solution to this problem 

analysis gives 

proposed machine. 

has been achieved 

architecture [22]. 

and tested by simulation in a dataflow 

There it was shown that general 

programs can be written in a high level language, lrvine 

dataflow (Id) [3]. Only one compilation is then required 

for multiple executions with various sized data. An 

important result is that parallel programs can be written 

without knowledge of the number or the interconnection of 

processors. The methods used to obtain these results are 
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extended in this paper to a new dataflow architecture which 

has improved asymptotic performance over that described in 

[22]. 

Section 2 of this paper describes a simple parallel 

computer model used for the complexity analysis of some 

common algorithms. 

model of Section 

Section 3 describes how the theoretical 

2 can be implemented in a dataflow 

environment. Section 4 presents experimental evidence 

(derived from executing real programs on a simulated 

dataflow machine) which lends support to selected results 

from Section 3. 
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2.0 AN ANALYTIC, PARALLEL COMPUTER MODEL 

Complexity analysis requires an explicit model of the 

computing device concerned. Examples of models commonly 

used in complexity analyses are the Turing machine and the 

"random access machine" [l]. In this section, a simplified 

model of a parallel architecture is described for the 

purpose of complexity analysis. Implementation of the 

model will be discussed in Section 3. 

Our parallel computer model comprises an unbounded 

number of Erocessing elements (PEs) interconnected by a 

communication network. Intuitively, each PE may be 

considered a conventional processor directly connected to a 

private, unbounded memory. Network communication is 

assumed to operate on a "store and forward" packet basis. 

For purposes of analysis (as opposed to implementation), 

all PEs and communication links are synchronized by a 

central clock. This simplifies analysis by reducing the 

need for methods based on probabilities. Although the 

results thereby achieved apply only indirectly to the 

implementation discussed in Section 3, it is considered 

prudent to use this kind of analysis before more detailed 

analyses are conducted. 

The communication network has considerable impact on 

the cost of implementing the computing device. For example 

the crossbar network, e.g. [45], has cost O(N 2 ) where N is 

the number of nodes, and thus the communication network 
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clearly dominates cost for large N. Although a number of 

networks costing less than O(N2 ) have been proposed 

[7,8,18,26,31,32,34,36,37,41,43], relatively little 

comparative information has been published about them. A 

good start in this direction is the work of Siegel [34], 

and Wu and Feng [44]. Wu and Feng discussed the 

equivalence of several networks while Siegel compared a 

small number of quite different networks in terms of the 

computational time complexity of simulating one network 

using another. Such comparisons are significant because 

they allow complexity results derived from one network to 

be applied to other networks.! This is one reason why one 

of the networks studied by Siegel, the binary n-cube, has 

been chosen as the network of our parallel computer model. 

2.1 The Binary n-cube 

A binary n-cube is an interconnection of N = 2n PEs 

placed at the corners of an n-dimensional cube. Each edge 

or link of the cube has two PEsi each PE has n 

1careful interpretation of Siegel's results is necessary 
since these results were developed for single instruction 
stream-multiple data stream (SIMD) computers [16] whereas 
the model descriijed here is not a SIMD because each PE is 
assumed to have its own instruction stream. An example use 
of Siegel's results appears in Section 5: Conclusions. 
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bi-directional one-message-at-a-time (i.e., half-duplex) 

links connecting it to n other PEs. Examples of n-cubes 

are given in Figure 2.1. This paper assumes that at any 

given instant each PE can transmit or receive (but not 

both) on any ~ of the n links connected to it, although 

more concurrent implementations are also possible. The 

interconnections of the n-cube can be expressed formally 

using Pn-l•••P 0 to denote the binary address of an 

arbitrary PE and Pi as the complement of Pi• The ith 

function defining the n-cube interconnections is given by 

cubei(Pn-1•••Pi+lPiPi-1•••P0) = 

Pn-1•••Pi+lPiP1-1···P0 0 < i < n 

In the sequel, the notation for a particular communication 

link will be abbreviated from cubei(x) to cubei when the 

' address x is obvious from context. 

2.2 Binary n-cube Properties 

The Hamming distance between two binary numbers (PE 

addresses) is the number of bit positions which differ in 

the two numbers. Let bitj(z) denote the jth bit in address

z. The following routing algorithm may be used to direct a 

message from PE x to PE y. Select any i such that 0<i<n 

If no such i exists then the 

message has arrived; otherwise, transmit the message using 

7 



function cubei(x) and repeat with the new address x. This 

has the effect of reducing the Hamming distance by one at 

each step of transmission, and since the largest Hamming 

distance is n = log N, at most log N steps2 are needed to 

transmit a message. This routing a19orithm also implies 

that if two PEs are separated by Hamming distance m then ml 

distinct paths exist between the two PEs. Another 

interesting capability of the n-cube is the most distant N 

message transfer described by Sullivan and Bashkow [37). 

In this transfer, each PE (concurrently with all other PEs) 

sends a single message to that PE at the greatest Hamming 

distance from it. The algorithm3 is as follows: 

Algorithm 2.1 [37). 

For i from 0 to n-1 do 

Using links cubei, all PEs transmit/receive 

each message with destination address which 

differs from the message's current address in 

the ith bit position; 

2
All logarithms will be taken to the base two. 

3
The notation "For i ••• do" implies that every PE uses 

the same value ~i at the-Same time in the order given. 

8 



To see how this works, note each PE initially contains one 

message at Hamming distance n from its destination. Since 

N/2 PEs are directly connected in an n-cube to the other 

N/2 PEs by links cube. 
1 for each i (i.e., there is a 

distinct partitioning for each i), N/2 messages can be 

exchanged in two time steps for each iteration thus 

bringing all messages one step closer to their 

destinations. Therefore, 2 log N steps4 are required to 

complete the transfer. Given the assumption that at any 

given step a PE may service only one of the n links to 

which it is connected5 this algorithm is optimal since: 

1. At each step the Hamming distance of all messages 
transmitted is decreased by the maximum possible, 
i.e., by one; 

2. Every step uses the maximum possible concurrency, 
i.e., N/2 transmissions. 

The following four capabilities of the n-cube will be 

used extensively in the sequel. The first is the N-way 

4 In [37] only log N steps were required because full-duplex 
links were assumed. 

5This assumption precludes "pipelining" of the transfer 
algorithm as discussed in [37]. If each PE could 
concurrently transmit/receive on all links to which it is 
connected, then another (new) message could be started 
immediately after the first message has departed from its 
source PE since a given link is used only once in the 
execution of the algorithm. This would allow each PE to 
send m distinct messages to the PE most distant from it in 
(m-l)+log N steps. However, with the assumptions used in 
this paper, 2m log N steps are required for this transfer 
since the algorithm must be repeated m times. 
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broadcast which distributes a single message from one PE to 

all other PEs in log N steps [37]. Assume the message to 

be broadcast is transmitted to the original broadcasting PE 

on a hypothetical link cube_1 • The algorithm is: 

Each PE that receives a broadcast message on link 

cubei retransmits the message using (in order) 

links cube. for i<j<n. 
J 

The first transmission (for· j=0) from the original 

broadcasting PE using cube0 can be thought of as splitting 

the original n-cube into two disjoint, identical cubes of 

size N/2. Two PEs (the original and the receiver on link 

cube0 ) now have the message and each becomes the source to 

broadcast the message to the sub-cube in which that PE 

resides. This process is repeated until the resulting 

sub-cubes contain only one PE which terminates the 

broadcast. 

The second important capability of the n-cube is the 

N(N-1) transfer where each PE transmits N-1 distinct 

messages, one to each of the other N-1 PEs. With this 

transfer, N PEs each send (N-1) messages for a total 

delivery of N(N-1) messages in N log N steps. (Note that 

the N(N-1) transfer is easily adapted to perform matrix 

transpose assuming each PE initially contains exactly one 

row of the matrix.) The algorithm for the N(N-1) transfer 

is the same as the one used in the most distant transfer, 
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i.e., Algorithm 2.1. 

Theorem: The N(N-1) transfer can be done in N log N steps. 

Proof ~ Induction: The basis is trivially true for N = 2. 

Inductive step: Assume the N(N-1) transfer requires 

N log N steps for an n-cube of size N. Let the address of 

an arbitrary PE of an (n+l)-cube of size 2N be Pn ••• p 0 • 

Each PE of the (n+l)-cube starts with 2N-l messages; N of 

these messages will have destinations d with bit0 (d) = p 0 

and N-1 will have destinations with bit 0 (d) = p
0 

since no 

PE sends a message to itself. Using Algorithm 2.1, for i=0 

each PE thus transmits N messages and receives N messages 

using a total of 2N steps. Exactly one of the messages 

received by each PE must be addressed to itself so each PE 

now contains 2N-2 = 2(N-l) undelivered messages which are 

addressed exactly like the messages of two N(N-1) transfers 

within each of the two sub-cubes defined by the set of 

addresses Since links will not be used 

again, each of these two sub-cubes can act independently. 

By the inductive assumption the two N(N-1) transfers within 

each sub-cube require 2N log N steps. The total is 2N + 

2N log N = 2N(log N + l) = 2N log 2N steps. [] 

Again, this is optimal under the given assumptions for the 

same reasons as were given in the most distant N message 

transfer discussion. 

The third important capability of the n-cube is the 
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N-1 linear transfer where a single PE sends a distinct 

message to each of the other N-1 PEs in O(N) steps. 

Although an algorithm seems to exist6 for doing this 

transfer in exactly N-1 steps, the proof is nontrivial and 

its description is not needed for the purpose of this 

paper. The O(N) algorithm is simply transmit messages (in 

any order) at every other time step. This algorithm 

requires 2(N-l) steps for transmission from the source PE 

plus at most log N steps for the last message to arrive 

since no conflicts are possible. Thus 0(2(N-l)+log N) = 

O(N) steps are required. 

The fourth important capability of an n-cube is the 

ease and flexibility with which partitions may be defined. 

Some of these partitions are given in the following 

definitions. A kn,m-partition is a set of m, e~m~n, 

distinct integers j, e~j<n, specifying the partitioning of 

an n-cube into k disjoint m-cubes. Each of these m 

integers represents a distinct bit position in the n-cube 

PE address pn-l•••Pe· 

Theorem 2.1. Let k=2n-m. Then there are n!/(m!(n-m) 1) 

distinct kn,m-partitions of an n-cube. (See Figure 2.2a 

for example.) 

6
send messages in order of decreasing destination Hamming 

distance and select links so that no one link is used twice 
in succession. 
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Proof: Consider for the moment that the n-m bits not in 

the partition are fixed to some arbitrary value. Then the 

m bit positions in the partition define a set of 2m 

distinct PE addresses which can be re-labeled to intege.rs 

j, 0~j<2m, by ignoring the other n-m bit positions. These 

re-labeled PEs and their connections satisfy the cube 

interconnection functions and thus define an m-cube. There 

n-m 
are k=2 such m-cubes since the n-m fixed bits may assume 

n-m 
2 different values. All m-cubes are disjoint because 

their original addresses are distinct and because an m-cube 

link must connect two PEs within the same m-cube. Finally, 

there are n!/(ml (n-m) I) distinct combinations of n bit 

positions taken m at a time each of which defines a 

distinct partition of an n-cube. [] 

The complement of a k -partition is the set {i 0<i<n} n,m -
(kn,m-partition), i.e., all bit positions not in the 

kn,m-partition. 

Corollary 2. la. Each (n-m)-cube specified by tbe 

complement of a k -partition shares exactly one PE with n,m 

each m-cube specified by the k -partition (Figure 2.2b}. n,m 

Proof: Follows immediately from the proof of Theorem 2.1 

by reversing the bit positions which are fixed with those 

that are variable. [] 
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2.3 Example Complexity Analyses 

This subsection presents the complexity analysis of 

three numerical algorithms. The methods and results are 

intended to demonstrate the n-cube's capability for 

concurrent communication and to serve as a basis for 

generalizing the methods to non-numerical algorithms. 

Besides the already mentioned assumptions, the analyses 

assume the •uniform cost criterion• [l]. This means that 

primitive machine operations such as+, *, etc. are assumed 

to take constant time regardless of the size of the 

operands. 

2.3.l Related Work and Data Structure Assumptions -

The application of parallel processors to numerical 

problems has been studied for some time. For example, 

Squire and Palais give a program (without analysis) for 

matrix inversion on a proposed parallel machine 

incorporating a circuit-switched binary n-cube [35). Many 

studies have been done for Illiac IV-like interconnections 

e.g., [19,25,30,39]. The advent of VLSI has further 

encouraged work in the area of •computation grids• [28]. 

The usual assumption made in these studies is that a PE 

works with a constant, usually small, number of data 

elements. One reason for this is the speed of the results 

obtained; for example, an O(log N) algorithm has been 
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shown for NxN matrix transpose on the perfect shuffle 

network [36]. 

The difference between the current approach and the 

others cited is that here the PEs work with complete rows 

of data instead of single elements. Although this approach 

may result in an increase in time complexity (e.g., O(N) to 

O(N log N) for matrix multiply), aggregates of data larger 

than a single element are required for the implementation 

proposed in Section 3 which is intended to avoid one of the 

problems of "array computers": the exacting data layout 

and communication requirements that make such computers 

difficult to program. Furthermore, since the location of 

individual data elements is usually implicitly buried in 

the user's program, continuing operation with the loss of 

just one communication link or processing element becomes a 

difficult problem. An alternative approach using 

aggregates of data combined with dataflow allows th~ 

physical location of data to be divorced from the user's 

program as is shown in Section 3. The scheme proposed 

there allows the machine to function as long as at least 

one PE remains operational and sufficient memory is 

available (although time complexity may, of course, 

suffer). 
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2.3.2 NxN Matrix Multiply -

In this subsection, it is shown that two NxN matrices, 

A and B, can be multiplied in O(N log N) time (N=2n without 

loss of generality) using a 2n-cube (N2 PEs) when the 

location of the input is favorably distributed. The 

average time required over all passible input distributions 

is unknown at this time but is conjectured to be O(N log N) 

assuming no PE begins or ends with more than a constant 

number of input or result rows. 

2.3.2.1 One Possible Input Row Distribution -

Let P2n-1•••PnPn-l•••P 0 denote a PE address in the 

2n-cube. The N rows of matrix A are distributed over N 

distinct PEs such that the address of those PEs satisfy 

P2n-1···Pn = Pn_1 ••• p 0 (Figure 2.3a). Each of these PEs is 

an element of exactly one of the n-cubes (the front and 

back faces in Figure 2.3a) spe~ified by the 

N2n,n-partition, {i 0~i<n}. The N rows of matrix B are 

evenly distributed over the PEs of the n-cube defined by 

x 2n-l•••xn0 ••• 0 where x indicates a bit position which 

varies among PEs in the same n-cube (Figure 2.3c). This 

n-cube is one of the n-cubes specified by the partition 

{i I n~i<2n} which is, of course, the complement of the 

N2n,n-partition above. By Corollary 2.la, the n-cube in 

which B is distributed shares exactly one PE with each 

n-cube containing exactly one row of A; this is the 

16 



"favorable" input distribution requirement. 

2.3.2.2 The Matrix Multiplication Algorithm -

1. Transpose B to form at over n-cube x 2n-l•••xn0 ••• 0 

using a N(N-1} transfer in N log N steps (Figure 

2. 3c} • 

2. N-way broadcast each row of st residing in PE 

to all PEs in the n-cube 

P2n-1···Pnxn-l•••x 0 in N log N steps (Figure 

2.3d). This can be done for all rows at the same 

time, since the n-cubes are distinct. 

3. N-way broadcast each row of A residing in PE 

P2n-1···PnPn-l•••P 0 to all PEs in the n-cube 

x 2n_ 1 ••• xnpn_ 1 ••• p 0 in N log N steps (Figure 

2.3b}. This step can also be done for all rows at 

the same time. 

4. Each PE now contains a row of A and a column of B 

and can form the inner product in O(N} steps 

(Figure 2.3e}. 

5. Using a "reverse" N-1 linear transfer, the N 

el em en ts of each result row can be brought 

together within the same PEs which initially held 

a row of A in O(N} steps. This step can also be 
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done for all rows at the same time. 

The total is (3N log N) + O(N) = O(N log N). 

2.3.3 Quicksort of N Distinct Elements -

The analysis of quicksort presented here is simplified 

because there is no need to repeat the work of others. It 

is well known the average time complexity of quicksort on a 

single processor is O(N log N) while the worst case 

complexity is O(N 2) [24]. Let the N (=2n without loss of 

generality) distinct numbers to be sorted reside in an 

arbitrary PE of an n-cube. Assume this vector was 

transmitted ·to that PE on a hypothetical link cube_1 • The 

quicksort algorithm is: 

18 



For each PE receiving a vector to be sorted on link 
cubej do 

1. Let A be the input vector received by a 
particular PE on link cube.; 

J 

2. For i from j+l to n-1 do 

a. Select the median of A which can be done 
in O(length of A) [l, p.97]; 

b. Construct (within the same PE) a new 
vector A' using elements from A which are 
less than or equal to the median; transmit 
all other elements of A using link cube. 
as a vector to be independently sorted; 1 

c. Let A = A'; 

3. For i from n-1 downto j+l do 

Concatenate A with the sorted vector 
received on link cubei to form a new A ; 

4. Transmit the resulting sorted vector A on 
link cube .• 

J 

To see how this works, imagine the n-cube is split into two 

disjoint (n-1)-cubes. The source PE splits the input 

vector into two equal parts and transmits one of the parts 

to the other (n-1)-cube where it is independently sorted. 

Each N/2 element vector is then split again and one-half is 

sent to an (n-2)-cube to be independently sorted, and so 

on, until the length of each vector is one. No PE (or 

link) does more than O(N) work in this splitting phase. 

The vectors are then concatenated by reversing the above 

process starting with vectors of length one and ending with 

a vector of length N. Again no PE does more than O(N) 
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work. Therefore, n-cube quicksort requires O(N) time. 

2.3.4 Binary n-cubes and Mesh Connected Computers -

Before analyzing a portion of a partial differential 

equation problem, we will briefly explore the relationship 

between ~esh £Onnected ~omputers (MCC) and n-cubes. A MCC 

is an interconnection of N = 2n identical PEs. The PEs are 

arranged in a q-dimensional sq_1x ••• xs 0 array, where each 

si is a power of two and sq-l *· •• *s0 = N. A PE address is 

expressed in standard coordinate indices as PE ( i l q- , ••• , 

Each PE(iq-l' ••• , ik, ••• , i 0 ) is 

connected to its nearest two neighbors in each of q 

dimensions PE(iq-l' ••• , ik:!;l, ••• , i 0 ), 0~k<q, provided 

they exist. PEs at the boundaries of the mesh have fewer 

than 2q connections unless the MCC is specified to have 

"wraparound connections". Each PE in a MCC with orthogonal 

wraparound (OW) is connected to exactly 2q neighboring 

These 

definitions are due to Nassimi and Sahni who consider 

optimal routing on MCCs [30]; fast sorting algorithms on 

MC Cs are discussed in [29,39]. Illiac IV is a 

two-dimensional MCC with slightly different wraparound 

connections called "propogating wraparound" [30] • 

. An interconnection network can be represented by a 

directed graph denoted by {V, E} where Vis a set of 

vertices (PEs) and E is a relation which is a subset of VxV 

20 



representing edges (connections) between vertices. Since 

only bi-directional links are considered here, E will 

automatically be a symmetric relation, i.e., if (v1 , v 2 ) e 

E then (v 2 , v 1 ) e E. A network {v1 , E1 } is a subnet of 

network {V1 , E 2 } if E1 ~ E 2 (note the set of vertices is 

the same). Network {V 1 , Ei} is topologically equivalent to 

network {V 2 , E 2 } if there exists at least one function f 

called a re-labelin~ function satisfying: 

a) f is one-to-one and onto from domain V 1 to range V 2 ; 

b) \:;f ((a, b) E El) 

c) "d ( (x, y) e E
2

) 

(f:a, f:b) E E 2 ; 

(f-l:x, f-l:y) E El. 

Theorem 2.2. An OW MCC of size N is a subnet of an n-cube 

of size N. 

Proof: Consider the concatenation of the binary --
representations of the MCC coordinates iq-1···i0 to be a 

binary PE address. Let G. ( x) 
J 

re present a j-bit Gray code 

mapping the integers x, 02x<2j, into the corresponding Gray 

code value. The re-labeling function f maps from MCC 

address i . 
q-1 • • • 1 0 to n-cube ... 

Glog s
0

(i 0 ). f is clearly one-to-one and onto by a simple 

combinatoric argument. Next consider an arbitrary element 

(iq-1' ... , ik:!:l, • • • I i 111» which is mapped by f to 

( (Gl og s (iq-1) , 
q-1 

... , Glog sk(ik), ... , Glog s0(i111)), 

(Glog sq-1 (iq-1), ... ' Glog sk(ik~l), • • • I Glog s (i0))). 
0 
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This link is an element of the n-cube interconnection 

relation since, by definition of a Gray code, consecutive 

Gray code values vary in exactly one bit position which 

conforms to the definition of the n-cube interconnection 

functions. Thus under the re-labeling function f, an MCC 

is a subnet of an n-cube. [] 

Pease proved a similar result for a more general network, 

the "indirect binary n-cube" (31]. 

Corollary 2.2a. An OW MCC of size N such that sk = 4, 

0~k<q, is topologically equivalent to an n-cube of size N 

(e.g., Figure 2. 4). 7 

Proof: The number of CM MCC connections per PE is 2q and 

the number of n-cube connections per PE (log N) is the same 

when sk = 4, 0~k<q. By Theorem 2.2 (the OW MCC is a subnet 

of the n-cube) the two networks must be topologically 

equivalent. [] 

A re-labeling function is said to configure one network 

into another network. When the domain of the re-labeling 

function is physically part of a larger or more connected 

network, PEs and connections not included in the domain 

network may be ignored rather than physically deleted. A 

7 
When all sk=2, the ow MCC and n-cube are also equivalent 

since an n-cube is defined as a (q=n)-dimensional cube 
of side two. 
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single network may thereby be configured into a number of 

other networks by distinct re-labeling functions acting on 

possibly different subnets of the original network. 

Corollary 2.2b. Let an n-cube be configured as a 

sq_1x ••• xs 0 MCC. Then this n-cube can be split into two 

disjoint (n-1)-cubes by a hyperplane bisecting the MCC in 

any one of the MCC's dimensions of size sk provided sk~2 

(e.g., see Figure 2.5). 

Proof: Re-label the PEs from MCC addresses to n-cube 

addresses as in Theorem 2.2 but with special consideration 

given to the Gray code mapping coordinate index ik where k 

is the index of the bisected dimension. Let LMB represent 

the left most bit position in the binary representation of 

ik. Select 

0~ik<sk/2, and 

the Gray code such that bitLMB(ik) = 0 for 

bitLMB(ik) = 1 for sk/2~ik<sk (e.g., a 

standard reflected Gray code). Then the 2n,n-1 -partition = 
{j I 0 ~ j < n} - {the position of LMB in an overall n-cube 

address} specifies the desired partitioning of the n-cube 

into two disjoint (n-1)-cubes. [] 

Corollary 2.2b may be applied recursively to partition 

an n-cube configured as a MCC into many different m-cubes 

of various sizes (each a power of two). These m-cubes may 

be MCC hypersolids or hyperplanes ranging in size from half 

of the MCC to parts of individual rows of the MCC. In the 

sequel, MCC hyperplanes will be denoted by listing the 
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fixed coordinates within parentheses e.g., Ci 1=s, ie=0). 

2.3.5 Partial Differential Equation Complexity -

The "nearest neighbor" connections of MCCs fulfill a 

major part of the communication requirements for iterative 

solutions to _eartial differential equations (PDE). 

Although convergence, stability, etc. complicate the issue 

[17], for simplicity the analysis here considers only 

nearest neighbor communication requirements. For this 

purpose, an n-cube of appropriate size is configured as an 

OW MCC in accordance with Theorem 2.2. Unlike most studies 

of PDE solutions which assign one data element to each PE 

of a MCC, here a row of data elements is assigned to each 

PE; again the motivation is to meet the requirements of 

the implementation to be presented in Section 3. 

Consider a q-dimensional sq_1x ••• Xs 0 PDE problem where 

each sk includes boundary data at indices 0 and sk-1. This 

problem may be mapped onto a q-dimensional MCC of size 

sq-1X ••• Xs1X O(s 0 ) such that each data row Ciq-11•••1i1) of 

size s 0 is placed in PE(iq_1 , ••• ,i 1 ) in MCC hyperplane 

e.g. see Figure 2.6. The computation then 

progresses along the dimension of size O(s 0) such that MCC 

hyperplane Ci 0=k) contains the state of the problem at 

iteration k. An informal description of the data movement 

is as follows, where z is the actual value of O(s 0) and a 

PE is called active when the necessary data are available: 
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For k from 1 until (convergence is achieved) do 

For j from 1 to s 0-2 do 

Each active PE sends the jth element of its row to 

each of its nearest 2(q-l) neighbors in MCC 

hyperplane (i 0 =k) provided they exist. When the 

necessary data is present, each active PE computes 

an element for the next k-loop iteration, and 

passes this result along the dimension of size z to 

its neighbor in MCC hyperplane (i 0=(k+l) mod z), 

i.e., orthogonal wraparound connections are used 

when k=z-1; 

For each element produced in a k-loop iteration, an 

interior PE will thus send 2(q-l) elements to neighbors, 

receive 2(q-l) elements, and send one result element to the 

next hyperplane. The PE computation for each such result 

is assumed to take at most O(q) time and thus the time 

required to produce the first elements for iteration k+l is 

O (q). The PEs in hyperplane ( i 0=k+l) which receive th.i.s 

data may then begin to exchange data and compute results as 

soon as ~he first few elements of each input data row 

arrive. The final computation for each row of size s 0 may 

thus be thought of as being carried out by a O(s 0 )-stage 

circular "pipeline". The time required is O(qs 0 ) to 

initially distribute computation in the pipeline. All 

stages may then compute concurrently to finish in O(qT) 

time where T is the number of k-loop iterations required 
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for convergence. The total is O(q(s 0 + T)) for the overall 

PDE computation.B 

8
The time required for the P8E problem using a comparable 

number of PEs where each PE is assigned only a constant 
number of data elements (as in most array computer 
algorithms) is O(qT). 
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3.0 ONE IMPLEMENTATION OF THE PARALLEL COMPUTER MODEL 

In the previous section, several complexity analyses 

were derived based on a simple parallel computer model. 

This simple model is not proposed as an implementation 

since machines based on centralized control often lack the 

flexibility, ease of programming, and extensionality 

desired for general-purpose computation. 

The present section shows that the control of a 

machine based on the n-cube model can be decentralized with 

minimal effect, in the best case, on time complexities 

derived in Section 2. Of course, flexibility and ease of 

programming are quite subjective and no proofs cah be 

presented for the claimed improvements. Instead, the 

following characteristics of the proposed machine are cited 

to support the claim: . 

1. The machine is to be programmed in the high level 
language, Id (Irvine dataflow) [3], instead of the 
assembly-like -languages usually required for 
effective use of other multiprocessor computers. 
Id provides for transparent expression of 
parallelism (i.e., parallel operation is the 
default mode rather than the exception); Id is 
also side-effect free (functional) and shares many 
of the advantages of other applicative languages 
such as FFP [6], pure LISP [27], and LUCID [5]; 

2. Automatic memory management is provided along with 
a structured data type; 

3. Id programs are independent of the number of 
processors or their interconnection. 

Decentralized control has been demonstrated in a 
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number of dataflow systems [12,14,15,22,42]. However, 

analyses of these systems has not yet produced time 

complexity results as good as those derived in Section 2. 

The sequel describes how the n-cube model and a dataflow 

system [22] can be combined to obtain the benefits outlined 

above. Dataflow is asynchronous by definition and thus 

each PE in the proposed machine will communicate 

asynchronously without centralized clock or control. Since 

the analyses in Section 2 depended on a central clock, the 

results of those analyses represent best cases for the 

asynchronous system. Hence, the complexity results derived 

in the sequel are not intended to prove an actual dataflow 

machine would attain these best case results because 

providing adequate scheduling may be difficult; rather the 

purpose of the analysis is to suggest that time complexity 

analysis is indeed a useful design and evaluation tool 

since by its use major bottlenecks in previous iterations 

of the architecture have been systematically identified and 

eliminated. 

3.1 Overview of the Machine's Operation 

As mentioned above, the 

asynchronously ~nterconnected 

dataflow machine 

n-cube of N PEs. 

is an 

Although 

the distributed PE memory is organized as one address space 

each PE is solely responsible for managing its own random 
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access memory. Program code is compiled into a data 

structure, so the following applies to both object code and 

program data. The location of each data structure is 

specified by a unique identifier (pointer) which may be 

passed anywhere in the machine. When actual data is 

required, the requesting PE forwards a message to the PE 

where the data is located; the receiving PE services the 

request by sending back the requested data. 

The following is a brief summary of the execution of 

Id programs; details may be found in [3, 22]. A compiled 

Id program is a directed graph where each node represents 

an operation and each link indicates that the result of one 

operation becomes the input to another. An operation can 

be any (side-effect free) function which consumes one set 

of inputs and produces one set of outputs. An execution 

instance of an operation is called an activity and each 

activity is given a unique activity name. Each value 

resulting from an activity's execution is concatenated with 

the value's destination activity name into a packet called 

a token. Destination activity names are computed from the 

activity names of input tokens according to a set of rules 

located in each PE called the ~-interpreter. 

All input tokens to an activity must be directed to 

the same PE even though those input tokens may have been 

produced by many distinct PEs. The U-interpreter ensures 

that all tokens destined for the same activity have 
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identical activity names. An assignment function is used 

by each PE to map the activity name of a result token to a 

physical PE address.9 This address is then used to direct 

the token through the interconnection network to the PE 

holding the destination activity. Different assignment 

functions may be used concurrently in the machine so long 

as all PEs which are to send tokens to the same activity 

use the same assignment function. 

A PE may contain many activities and each activity may 

be in any one of several stages of completion. The first 

stage commences when the activity's first input token 

arrives and lasts until sufficient input tokens are present 

to enable execution to begin. The activity then progresses 

through a series of stages which include operation code 

fetch, data fetch (if needed), operation execution, and 

output token generation and transmission. Activities are 

"multiprogrammed" within a single PE so that temporarily 

blocked activities (e.g., awaiting data fetch) need not 

monopolize execution resources. This capability allows 

flexibility in assigning processor resources since a single 

PE is sufficient to execute an entire program (assuming 

sufficient memory is available). 

9
A detailed discussion of several specific assignment 

functions and their effects may be found in [22]. 
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3.2 Structures and Data Communication 

The ability to specify computation on data types such 

as arrays, lists, records, etc. is often crucial for 

convenient expression of algorithms. In Id, such data 

types may be represented by structures. A structure is a 

set of {selector, value) pairs where a selector is an 

integer, and a value is any value, including another 

structure (13]. < > denotes the empty structure while 

<i:x, j:v, ••• > represents a structure with value x at 

selector i, value v at selector j, etc. Two functions are 

defined on structures. The select function (denoted by 

x(i]) has two arguments, a structure x and a selector i, 

and yields ·the value at selector i. The append function 

has three arguments: a structure, a selector, and a value 

to be appended to the given structure at the specified 

selector. Append does not modify the given structure but 

instead makes a copy of it with the new selector and value 

placed appropriately. Various implementations of 

structures are discussed in (21). For simplicity, only one 

of these implementations, the vector representationl0, is 

discussed in the sequel although generalization to the 

B-tree representation (21) has many advantages, e.g. the 

(21) this implementation was called "array" 
representation. 
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representation of sparse arrays. 

In this paper, the following implementation of 

structures is assumed. Each structure is associated with a 

unique address (pointer). In vector representation, a 

contiguous vector of memory cells is allocated to contain 

the elementary values or pointers to substructures which 

collectively comprise the elements of the structure. 

Select is implemented by indexing in the usual way. 

However, append in general requires a copy be made of the 

entire vector and the new value placed appropriately. 

Substructures need not be copied as is shown in [13,21]. 

Copying of the original vector can also be avoided when 

only one pointer exists which refers to that vector. In 

this case, append may safely update the vector in place. 

Figure 3.1 shows a structure representing a NxN matrix 

where the (selector, value) set nearest the root is called 

the top level, and the collected substructure (selector, 

value) sets is called the bottom level. Level names can 

also be generalized to q-level structures where the top 

level is the first level, the next level from the root is 

the second level, and so on until the qth level. Hence a 

level name is derived from the path length from the root to 

the named level. 

For the moment, the important problem of storage 

reclamation of structures will be ignored. We assume all 

object code and data aggregates are represented by 
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structures, and furthermore that the programmer specifies 

(perhaps by type declaration) the largest number of 

elements each structure may hold so that sufficient space 

is initially allocated to contain it. The n-cube message 

transfers of Section 2 can then be implemented using 

structure operations as will be shown below. 

A transfer begins with a source message configuration 

and terminates with a destination messa1~ configurati~. 

The inverse of a transfer begins with the original 

destination message configuration, 

the original transfer, and terminates 

reverses each step of 

with the original 

source message configuration. 

requires the same time as the 

Clearly the inverse transfer 

original transfer. In a 

transfer based on structures, the values to be transmitted 

are grouped into a structure and a pointer to that 

structure is distributed to the PEs which are to receive 

one or more of the values. Each PE then sends a request 

(for each value it requires) to the appropriate PE which is 

holding that part of structure containing the required 

value. PEs receiving such requests service them by 

selecting and replying with the value requested. Each PE 

acts independently, but the collective effect is called a 

request/acknowledge transfer. Each of the n-cube transfers 

can be implemented by the request/acknowledge mechanism 

without changing the best case order of time complexity. 

Consider first the N-way broadcast and an additional 

33 



implementation mechanism called a cache tree.11 A cache 

tree is a distributed cache which automatically configures 

itself into the logical tree appropriate for each data item 

broadcast. The PE holding the value to be transmitted is 

the root of the broadcast tree; the tree also includes 

each requesting PE as well as all PEs in the paths from the 

requesting PEs to the root PE. The cache tree may be 

implemented by an associative memory table in each PE. An 

entry in the table consists of a two part key (a structure 

pointer s and a selector i} and a data field containing the 

value si if it is available; otherwise, the data field 

contains a pointer to a 1 ocally held list of requests 

received from other PEs for that same value s .• When a PE 
1 

receives a request, it looks up keys s and i in the cache. 

If the value is found, the PE replies as if it were the 

root PE with the value s.; otherwise the request is added 
1 

to the list of requests for that value. If the list was 

11 
The cache tree was independently developed by Sullivan, 

Bashkow, Klappholz, and Cohn who called it a "conflict 
filter" [38]. However, Dr. Bashkow has indicated (by 
personal communication} that the cache tree is not included 
in current designs for the CHoPP machine, perhaps because 
of the difficulty of maintaining consistency in multiple 
copies of data. This problem does not arise in a 
functional environment such as dataflow because values are 
never modified; in practice this means cache values are 
read-only although redundant values other than the original 
source may be deleted, for example by a least recently used 
policy, without affecting correct operation. 
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previously empty, the request is also forwarded toward the 

root PE. When the response value s. is received, the PE 
1 

enters the value in its cache and sends a copy of the value 

for each of the requests in the list associated with keys s 

and i. An instance of a broadcast tree is thus dynamically 

constructed as requests filter toward the root PE and no PE 

need receive more than log N requests.12 After the tree is 

constructed the lists of requests in the caches are used to 

direct the actual broadcast of the data item. In the 

n-cube network, any PE can be the root for a broadcast and 

many such broadcasts may be progressing simultaneously.13 

Clearly the best case order of time complexity for the 

cache tree N-way broadcast does not change over the 

broadcast of Section 2 since communication time is at most 

multiplied by a constant. 

Next consider the N(N-1) transfer. (Discussion of the 

12
The order of request transmission must be carefully 

scheduled in the inverse broadcast phase to ensure no more 
than log N requests are actually received by any one PE. 
Achieving such optimum scheduling is difficult; however, 
scheduling policies approximating the desired behavior may 
prove to be adequate. 

13simultaneous transfers can be "timesliced" so that the 
total time required is the sum of the individual transfer 
complexities. 
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N-1 linear transfer will be omitted since a similar 

argument applies to it as well.) Let the N values to be 

transferred from each PE constitute one row of a NxN matrix 

which is represented by a structure as in Figure 3.1 where 

the top level may be located in an arbitrary PE of an 

n-cube. In the N{N-1) request/acknowledge transfer each 

destination PE requires a pointer to every row of the 

matrix. Hence in the first phase of the transfer, all PEs 

request via a cache tree a pointer to the first row 

requiring a best case time of O{log N), then the second 

row, and so on until the Nth row for a total best case time 

of O{N log N). In the second phase, each PE sends N 

requests for the N values it is to receive. These requests 

collectively form an {inverse) N{N-1) transfer. In the 

third phase each PE holding a. row of values to be 

transmitted selects and sends the requested values 

collectively forming another N{N-1) transfer. Each PE 

receives N values and appends them into a vector; each 

such append requires only constant time because only one 

pointer to the structure being formed need exist. Pointers 

to each result row may be collected by an inverse N-1 

transfer and appended together in O{N) time to produce a 

new NxN matrix represented by a structure. The total best 

case time required for the request/acknowledge N{N-1) 

transfer remains O{N log N) since each step requires no 

more than O{N log N) time. 
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3.3 Storage Reclamation 

The above mechanisms are adequate to implement the 

transfer algorithms of Section 2 without affecting the 

order of time complexity if storage reclamation is ignored. 

Of course storage reclamation must be dealt with in a 

practical machine. The reference count scheme [10] is 

often proposed [13,21] for storage reclamation in dataflow 

because structure definitions preclude circular references. 

In the reference count scheme, each structure has an 

associated non-negative integer called the reference count 

indicating the number of copies of the pointer referring to 

that structure. The reference count is incremented and 

decremented -as copies 

created and consumed. 

of the pointer 

When the count 

are respectively 

is zero, the 

structure 

However, 

is no longer needed and 

in a distributed processor 

may be reclaimed. 

environment the 

classical reference count scheme incurs substantial 

communication overhead when copies of pointers are made 

since a request/acknowledge communication is required to 

update the reference count before the new pointer may be 

released.14 This communication overhead is unacceptable as 

can be shown by considering the cache tree above. Su-ppose 

the value to be broadcast is a pointer to a structure. 

Then each time an internal node in the cache tree 

replicates ._his 

the PE holding the 

pointer, it must first send a request to 

structure to increase the reference 
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count. Since N-1 copies of the pointer will be made in a 

N-way broadcast, the PE holding the structure requires O(N) 

time to process the reference count; thus reference count 

processing can increase broadcast time from O(log N) to 

0 (N). 

A generalization of classical reference counting 

called weighted reference counting may be used to reduce 

such overhead (2]. In this scheme, an arbitrary positive 

intege: called the pointer reference weight (PRW) is 

associated with each instance of a pointer. Corresponding 

to the reference count in the classical scheme, each 

structure has an associated non-negative integer called the 

structure reference weight (SRW) which is the sum of the 

PRWs of all pointers referring to that structure. (In the 

classical scheme, all implied pointer reference weights are 

equal to one and thus the SRW is the same as the reference 

count.) As in reference counting, when a pointer is 

destroyed its PRW must be subtracted from the referenced 

structure's SRW. However, when m copies of a po inter wi"th 

a PRW equal to x are made, if x>m then no change to the SRW 

is required. In this case the pointer's PRW may be "split" 

14
The PE ~aking the copy must wait for acknowledgment that 

the reference count was actually increased. Otherwise, the 
asynchronous operation of the machine could allow a 
reference count decrement to occur from the destruction of 
an otherwise unrelated instance of the pointer; this could 
lead to premature reclamation of the structure. 
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into arbitrary positive intege:s x1 , ••• ,xm such that x = 

x1+ ••• +xm where xi becomes the PRW on the ith copy of the 

pointer. (The original instance of the pointer is 

destroyed.) 

Since changes to the SRW may be avoided when copies of 

a pointer are made, the reference weight scheme can 

dramatically reduce time overhead. For example, reconsider 

the problem of broadcasting a structure pointer to N PEs. 

If the PRW of this pointer is at least N then the broadcast 

can be done in O(log N) time because splitting the 

pointer's PRW at each internal node of the cache tree 

increases each PE's work by only a constant factor. 

The cache tree can also reduce time overhead in a SRW 

decrease operation. Suppose N PEs each request the value 

si from structure s. Each request contains a pointer 

referring to s and since select destroys the pointer it 

receives as an argument, the PRW of the pointer referring 

to s in each of the N requests must be subtracted from the 

SRW of s. This can be done in O(log N) time by having each 

internal cache tree node accumulate the decrease in SRW as 

it services incoming requests for s. 
l • However, when an 

internal cache tree node has no a priori information about 

the number of si requests it will receive, it is not 

convenient to accumulate all such decreases in SRW before 

sending the first request for s. t th t PE 
1 o e roo • This 

problem can be handled by delaying transmission of decrease 
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SRW messages until copies of si have actually been 

delivered to the PEs which originally requested si• These 

PEs then initiate an additional inverse broadcast to sweep 

together all decrease SRW messages into one decrease SRW 

value which is forwarded to the PE holding structure s. 

The total time required for the request/acknowledge data 

broadcast and a broadcast to accumulate the SRW decrease 

messages remains O(log N). Other policies with various 

tradeoffs in timeliness of storage reclamation versus 

concurrency potential are also possible using the reference 

weight scheme. 

3.4 NxN Matrix Multiply and N Element Quicksort Complexity 

The above mechanisms are adequate to implement the 

matrix multiply and quicksort algorithms of Section 2 

without affecting the best case order of time complexity. 

(The PDE problem is considered in a later subsection.) An 

Id program for matrix multiply is given in Figure 3.2 where 

the more readable syntax "new x[i] +- v" represents "new x 

append(x,i ,v)" for appends within loops and 

represents "select ( ... select 

(select(x,i), j) ••• , m)" within expressions. This program 

differs from a conventional matrix multiply program in two 

respects. First, the matrices are represented by 

structures (Figure 3.1) and thus A[i] returns a pointer 
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referring to the ith row of matrix A. Second, since 

structure representation biases element access (i.e., in 

lexicographic order) the B matrix is first transposed 

before the multiplication is performed so that rows of st 

represent columns of B. 

The Id program for matrix multiply (as well as all 

other programs considered in this paper) is independent of 

the size of the input. Thus the program can be distributed 

. h 2 . i using a cac e tree to N PEs in O{log N) t me; hence all 

PEs are assumed to hold a complete copy of the program 

although this would not necessarily be the case in a real 

machine. As was discussed earlier dataflow code is a 

collection of interconnected functions and copies of each 

function may begin execution when the necessary arguments 

arrive. However, for the purpose of complexity analysis it 

is sometimes helpful to view the initiation of function 

execution differently. A PE is said to initiate the 

execution of a function if it supplies all arguments 

required for that function. A part of each of the 

following complexity analysis determines the time for a 

single PE {the starting point for the computation) to 

initiate the various parts of a program using the transfer 

mechanisms of Section 2. 

The following concerns the time complexity of matrix 

transpose {Figure 3.2). The rows of each matrix are 

assumed to be distributed as described in Section 2.3.2.1 
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while the top level of each structure may reside in any one 

of the PEs also holding a row of the same structure. The 

transpose procedure and its nested i-loop may be initiated 

in any PE holding a row of matrix B. Under the 

U-interpreter, the i-loop then initiates N copies of the 

j-loop each in a distinct PE holding a row of B in O(N) 

time using a N-1 linear transfer. The transpose can then 

be completed in O(N log N) time simply by 

request/acknowledge N(N-1) transfer. 

using a 

In the multiply procedure, each i-loop initiates N 

copies of the j-loop in N distinct PEs and each j-loop then 

initiates N copies of the k-loop for a total of N2 ~-loop 

initiations in N2 PEs all in O(N) time. The time for 

structure access is determined in the following. Since 

row A is one of the inputs to a k-loop initiation, 

sufficient copies of pointers referring to rows of matrix A 

are made by the U-interpreter without increasing the order 

of time complexity of program initiation (assuming the 

reference weights of the original pointers are large 

enough). Each k-loop initiation then uses a single copy of 

one of these pointers N times to request the N elements of 

a row of A. The case for matrix B is slightly different 

since at [ j J occurs in the j-loop which generates a total of 

N2 requests for pointers. These requests may be satisfied 

in O(N log N2) = O(N log N) time using a cache tree. Thus 

all requests for pointers may be satisfied in 0 (N 1 og N) 

42 



time. The actual data 

transfers as described 

elements are 

in Section 

then 

2 

acquired by 

but using 

request/acknowledge communication. Pointers referring to 

rows of the result matrix can then be appended together 

using a N-1 linear transfer in O(N) time. Thus matrix 

multiply can be done using structures to represent 

matrices, a high level Id program to represent the 

algorithm, and the pointer reference weight scheme to 

provide for storage reclamation without increasing the best 

case order of time complexity over that derived in Section 

2. 

An Id program for quicksort is given in Figure 3.3. 

Since the numbers to be sorted can be represented in a 

one-level structure, no special consideration for structure 

representation is needed. Thus the data transfer algorithm 

given in Section 2.3.3 is directly applicable in this case 

to give a best case time complexity of O(N). 

3.5 I-structures 

If an iterative solution to the PDE problem is 

programmed using a q-level structure, the pipelining and 

hence the degree of parallelism described in Section 2 will 

be lost. Consider the compilationl5 of a simple Id loop 

which builds a structure x (Figure 3.4). The L and L-1 

boxes generate and strip away, respectively, context for 
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each loop initiation much like conventional systems 

generate and strip away context for each initiation and 

return of a procedure. Similarly, the D and o-1 boxes 

generate and strip away a unique context for the values 

within each iteration of the loop. Such context changes 

are directed by the U-interpreter and need not be 

considered further here. Boxes with internal values such 

as < > or v produce that value when triggered by any input 

token. The ~ operator performs the identity function by 

passing each input token directly to its output port. The 

switch operator decides to which output port (T or F) each 

input token is to be sent based on the corresponding 

boolean valued token received at its side port. Forks in 

lines indicate that the token input to the fork is to be 

replicated so' identical tokens are placed on each output 

line. 

The point of interest in Figure 3.4 is that the output 

of the append box, ..!:!.!! x, is circulated on each iteration 

of the loop and thus x does not appear on the loop return 

line until the loop terminates. This ordered construction 

of x is required by the semantics of structures as can be 

seen in the following example. Replace the third line of 

the program in Figure 3.4 with •new x ~ append(x, f(i), 

15ra . 1 . . di d . d i 1 i [ 3] comp1 at1on is scusse in eta n • 

---------- -------- ~----------
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g(i))". Since f(i) need not be a one-to-one function, the 

selectors used for the m appends need not be distinct. 

Hence the final value at each selector of structure x is 

not known until the loop terminates. The effect of these 

build-before-use structures on the PDE problem is to delay 

initiation of the computation for the next iteration of the 

outer loop until the current iteration is complete, and 

hence no pipelining between outer loop iterations is 

possible. 

One solution to this problem is to use I-structures 

instead of structures.16 I-structures may be regarded as 

structures constructed in a restricted way. In the sequel 

only one operational semantics and implementation of 

I-structures is considered. Arvind and Thomas present a 

more complete theory of I-structures and compare 

I-structures with other functional data types [4]. The 

restriction on I-structure construction used here is that 

the value at each selector of a particular structure may be 

appended to at most once (termed the single assignment rule 

for selectors).17 

The single assignment rule suggests an I-structure 

implementation which allows values to be selected from an 

16 h 1 . . d Anot er so ut1on is to use a ata type 
[3] instead of structures. However, 
inappropriate for expression of numerical 

called •stream" 
streams are often 
algorithms [4]. 
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I-structure before that I-structure is complete. Figure 

3.5 shows the compilation of the same program fragment as 

in Figure 3.4 but where x is considered an I-structure 

instead of a structure. The I-structure pointer gener~tor 

box allocates memory for the I-structure (the bounds of the 

I-structure must be supplied), initializes the value at 

each selector to the ~-present or empty valuel8 , and 

sends out two pointers referring to the I-structure. For 

error checking these pointers are marked •read-only" or 

•upaateable• since in this simple model only the inside of 

the loop is allowed to append to the I-structure. This 

allows the clean up box to convert the I-structure to a 

structure when the loop terminates by changing all empty 

values remaining in the structure to the undefined value. 

Note that the output of pointer x does not depend on 

termination of the loop.19 Thus values at individual 

selectors of an I-structure may be selected from outside 

17
This rule differs from the single assignment rule for 

program variables [9] since the validity of the rule for 
program variables may be determined at compile time. The 
validity of the single assignment rule for structure 
selectors cannot in general be determined until execution 
is complete as was shown in the example above' where 
function f (i) determined the selectors. 

18Alternatively, 
allocation and 
reinitialized on 

memory could be 
then each 

deallocation. 

mass 
•memory 

initialized before 
block• would be 
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the loop as each value is appended to the I-structure 

within the loop. 

Impl emen ta ti on of I-structures is similar to 

structures except a presence ~ is associated with each 

I-structure selector. This presence bit is checked when a 

select is attempted from an I-structure. If the presence 

bit is on, select simply returns the value at that 

selector. However if the presence bit is off, the value at 

that selector is really a pointer to a list of select 

requests for that value. Each such request is delayed by 

adding the request to the list; the PE servicing that 

request may then go on to other tasks. When the value 

eventually becomes available through an append operation, 

each request on the list for that selector is satisfied by 

sending a copy of the selected value. Append also checks 

the presence bit when appending to an I-structure. If the 

presence bit is already on for the selector being appended 

to then the single assignment rule for that selector has 

been violated and an appropriate error message may be 

issued. 

19 
Since termination of I-structure programs does not depend 

on termination of embedded loops, I-structure programs are 
more defined in the sense that an I-structure ~rogram may 
produce results when an otherwise equivalent structure 
program does not. 
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3.6 Partial Differential Equation Complexity 

I-structures allow the pipelining desired in the PDE 

problem since I-structures need not be complete before 

values are selected. The following considers the time 

complexity of an I-structure program which solves for one 

variable of a q-dimensional sq_1x ••• Xs 0 PDE (Figure 3.6). 

Assume the initial data is laid out in a sq_1x ••• Xs 1x O(se) 

OW MCC as described in Section 2 but where the data is 

represented as a q-level structure x 0 • Recall each si 

includes boundary data at indices 0 and si-1, while the 

coordinate 

MCC, and 

indices 

a 1 ist 

iq_1 , ••• ,i 0 indicate a PE address in a 

of fixed coordinates in parentheses 

represents a MCC hyperplane. Assume the levels .of 

structure x0 are distributed such that x 0 [jq_1 , ••• ,jml' 

0<m<q, is located in any PE in MCC hyperplane (iq_1=jq-l' 

••• , i =j , ia=0) where m=q means the only restriction is m m 11 

i 0=0, e.g. Figure 3.7. Thus the top level may reside in 

any PE in hyperplane (ie=0) while lower levels are 

restricted to the MCC hyperplanes from which most select 

requests for each structure will originate in the nearest 

neighbor access pattern of the PDE program (Figure 3.6). 

Data resulting from each succeeding k-loop.iteration is to 

be constructed as a q-level .I-structure to allow 

pipelining. If the placement of the I-structures for each 

of these k-loop iterations also meets the criterion above 

(except i 0=k instead of 0), then the computation can 
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proceed nearly.the same as the PDE computation described in 

Section 2. 3. 5. 

The first step in the complexity analysis of the PDE 

program is to determine the time for program initiation. 

Recall that T is the number of k-loop iterations required 

for convergence. Then the time for the program to unfold 

under the U-interpreter is O(T + sq_1 + ••• +sg) since the 

first PE will spawn T i-loops,20 each of these will 

concurrently spawn sq-l j-loops, etc. Initialization of 

the I-structures for all iterations can be done in time 

linearly proportional to program initiation time since the 

size of the vector to be initialized within the loop in 

each case equals the number of subloops to be initiated.21 

In addition, after each I-structure is initialized a 

pointer referring to that I-structure is released in 

constant time (Figure 3.5) and is returned as a value to 

2 0
Th · 1 · h i 1 · 1 d · · t d is ana ysis assumes t e - oop inc u ing its nes e 

loops may be initiated before all inputs to the loop are 
available. Otherwise, initiations of these loops would 
require initialization of the I-structure x from the 
previous iteration of k. In theory, waiting for this 
initialization tends to negate the advantage of 
I-structures over structures. However, in practice the 
initialization could be made very fast relative to other 
operations in the machine. Such issues have been avoided 
in the analysis by assuming that not all inputs are 
required to initiate a loop. 

21 I . 1 i . . . k 1 n practice such uncontro led nitiation of - oop 
iterations and allocation of I-structures would probably 
waste memory without improving performance over a policy 
which delays initiation so that no more than one (or a 
small number of) concurrent k-loop iteration(s) exist per 
MCC hyperplane. 
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the I-structure within the next outer loop. Thus all 

I-structures may be completely constructed except for the 

elementary values at the bottom level in time linearly 

proportional to program initiation time. The computation 

may then proceed as described in Section 2.3.5 except that 

q levels of structure x must be traversed to access each 

element x[i,j, ••• ,m]. The top level contains s q-1 

selectors and by means of a cache tree all PEs in MCC 

hyperplane {i 0=k) may be sent the required pointer values 

in 

time since there are s * * PEs q-1 ••• sl in that hyperplane 

which is also a (log {sq-l*···*s1))-cube by Corollary 2.2b. 

Similarly, all requests for pointers in the next lower 

level can be serviced in 

time within each of sq-l distinct (log (sq_2• ••• •s1 ))-cuoes 

synonymous by Corollary 2.2b with the sq-l MCC hyperplanes 

(iq-l=j, i 0=k), 0~j<sq_1 , and so on for each structure 

level until the level one removed from the bottom which 

requires 

time. By expanding the log term in each of these equations 
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to make them identical, the sum for all levels to satisfy 

these pointer requests simplifies to 

Assume the values x[i,j, ••• ,m] are concurrently requested 

by all PEs for all k-loop iterations, followed by a request 

for values x[i+l,j, ••• ,m], etc. for a total of O(q) values 

per PE. 22 The time complexity of the overall PDE 

computation is 

O(T + sq-1+ ••• +s0) + 

O(q(sq_1 + ••• +s 1 log (sq_1 • ••• •s1 ))) 

pl u·s the time to do the actual computation from Section 

2.3.5, 

for a total of 

If N=s -s - -s q-1- q-2-···- 0 

O(q3 N log N + qT). 

then this equation reduces to 

In comparison, the complexity of the 

22Note that the caches would automatically tend to 
eliminate the need for actual traversal of all q levels for 
each of the 2q+l values required to compute each result 
value. In addition, the PDE program could be modified to 
minimize red~ndant top level selects as was done in the 
matrix multiply program. For simplicity, these options 
were ignored in the analysis since they have little effect 
on the overall order of time complexity. 
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same problem on a q-dimensional array computer where each 

dimension is also of size N is O(qT) while on a sequential 

machine the complexity is O(q Nq T). 
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4.0 EXPERIMENTAL RESULTS 

Previous sections have analyzed network transfers, 

programs, and mechanisms in terms of computational time 

complexity. In this section analytic results on 

I-structures are supported with evidence from executing 

machine-compiled Id programs on the Irvine dataflow 

simulator [22]. 

4.1 The Irvine Dataflow Simulator 

Although complete simulation of the architecture 

described in Section 3 would be desirable, so far this task 

has not been attempted. Instead the Irvine dataflow 

simulator was modified to independently test the utility of 

I-structures. Although the results are not directly 

applicable to the architecture described in this paper, 

complexity analyses indicate I-structures should reduce 

execution time of many programs on both architectures. 

The following is a brief description of the simulated 

architecture; details may be found in [22]. The Irvine 

dataflow simulator is a detailed deterministic simulation 

of a particular interconnection of PEs. Some PEs called 

memory controllers (MC) are specialized to manipulate 

structures and perform memory management. The 

interconnection network is shown in Figure 4.1 where points 

A and A' are connected together to form two 
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counter-rotating token ~ rings. Each ring is partitioned 

into as many slots as there are PEs and each slot is either 

empty or holds one fixed-length token. Four PEs are 

connected together and to a memory controller by a local 

bus which carries structure access requests and responses. 

Each memory controller is directly connected to a private, 

conventional !emory (M) organized as part of one unified 

address space. MCs are connected together by a global bus 

so every PE has indirect access to any data or code within 

the machine. A group of four PEs connected by a local bus 

to one MCC is termed a ph~sical domain. The collection of 

PEs and MCs connected by the same counter-rotating token 

bus is called a ring domain which is the largest group now 

simulated. Assignment functions (Section 3.1) are chosen 

so closely connected activities (e.g., the activities 

comprising an instance of a procedure or loop body) are 

confined to the same physical domain. Since tokens are 

transmitted on that token bus which provides the shortest 

distance path to its destination, such assignment functions 

tend to reduce communication traffic between physical 

domains thereby promoting unimpeded local communication 

within concurrently operating physical domains. 
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4.2 Experiments: I-structures versus Structures 

For simplicity all communication conflicts are ignored 

in the following complexity analysis intended to aid in 

understanding the experimental results (previous complexity 

results are not directly applicable to the simulated 

architecture). Consider once again a q-dimensional 

s q-lx ••• xs 0 PDE program (Figure 3. 6) • As discussed in 

Section 3. s, if this program were implemented using 

structures the structure y and all of its substructures 

must be complete before the next k-loop iteration can 

beg in. Since each k-loop iteration is dependent only on 

data from the previous k-loop iteration, recall that the q 

nested loops within the k-loop may unfold under the 

U-interpreter and thus the time required to complete each 

k-loop iteration is O(sq_1+ ••• +s 0+q). Therefore the total 

time required by the structure program is 

O(T(sq_1 + ••• +s 0+q)) where Tis the total number of k-loop 

iterations. For the one-dimensional planar hydrodynamics 

code executed in the simulator
23 

this equation reduces to 

O(Ts 0). For ease in understanding experimental results, 

the convergence test was removed and the number of k-loop 

23This code was donated to the University of California by 
the Lawrence Livermore Laboratory. The code is a 
declassified and simplified version of a program which 
simulates shock wave interactions by solving large PDEs. 
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iterations was artificially set to s 0 giving a complexity 

for the structure program of O(s 02). , By comparison, an 
\ . 

equivalent I-structure program requires O(T+s 0 ) = O(s 0+s 0 ) 

= O(s 0 ) since iteration k+l may begin as soon as the first 

three values (in a one-dimensional problem) have been 

computed in iteration k, etc. 

To test this analysis the compilation of structure 

variables in Id loops was changed from the structure schema 

(e.g., Figure 3.4) to the I-structure schema (e.g., Figure 

3. 5) • The hydrodynamics source code was not modified in 

any way. A series of experiments was then conducted by 

varying the number of PEs in the machine for each problem 

size s 0• The minimum execution time from these experiments 

for each problem size was plotted in a complexity graph 

showing the· change in minimum execution time versus problem 

size {Figure 4.2). This graph illustrates substantial 

execution time reduction when I-structures are used even 

for small problem sizes. Although the I-structure curve 

appears almo·st 1 inear, communication conflicts in th·i·s 

architecture would eventually cause the curve to bend 

upwards for larger problem sizes thus showing a real 

complexity higher than O{s 0 ). However the coefficients for 

higher order terms in the actual complexity are small 

enough so that these terms do not appear in the 

experimental results when the simulator is in the "standard 

configuration" [22]. 
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In the case of Gaussian elimination, similar 

complexity analysis (again ignoring communication 

conflicts) 
2 

leads to O(N ) time to solve N equations with N 

unknowns by a structure program while the time for an 

I-structure program is O(N). These analyses are supported 

(although not as dramatically) by the experimental results 

given in Figure 4. 3. Note that Gaussian elimination on a 

. 1 . . 3 sequentia machine requires O(N ) time. 



5.0 CONCLUSIONS: 

Our goal is to design a general-purpose computer 

comprising large numbers of cooperating processors to 

reduce execution time without increasing software costs. 

Toward this goal we chose to base the design of the 

architecture on dataflow since the traditional von Neumann 

model appears little suited for large scale multiprocessing 

[6,13,20,22]. 

New computer architectures are often justified by 

their •cleverness quotient" or by listing concurrent 

operations. The difficulty with such evaluations is either 

extreme subjectivity or irrelevance since cleverness or 

concurrency gains little when unforeseen bottlenecks 

dominate execution time. Instead we suggest complexity 

analysis as a tool appropriate for designing and evaluating 

multiprocessor architectures since complexity analysis 

quickly uncovers major bottlenecks. However, the 

complexity analyses in this paper have two shortcomings. 

First, large constants may be hidden in the 0-notation used 

to simplify analysis; hence small computations may perform 

relatively poorly. Second, only a few numerical algorithms 

were analyzed and thus more work is needed to show that the 

architecture is indeed suitable for general-purpose 

computation. 

The asynchrony and decentralization present in the 

proposed architecture makes accurate analysis difficult and 
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thus salient features were abstracted to derive a parallel 

computer model more amenable to analysis. This model is 

representative of a class of models since the binary n-cube 

on which it is based can be directly simulated by a number 

of other networks. For example, Siegel has shown that each 

of the n-1 sets of interconnections, cube. 0<i<n, of an 
1 

n-cube can be simulated with a "SIMD perfect shuffle" 

network in n+l steps while the set of interconnections, 

cube0 , requires only one step [34). Since the parallel 

computer model allows simultaneous cube. transmissions in 
1 

one step (i.e., each transmitting PE may independently use 

a different link i} and there are n-1 such i # 0, the 

total for the SIMD perfect shuffle to simulate the parallel 

computer network is (n-1} (n+l}+l = n2 • Thus complexity 

results derived for the parallel computer model are valid 

for the SIMD perfect shuffle when multiplied by at most n 2• 

In addition, the binary n-cube was found to have a number 

of properties facilitating parallel complexity analysis 

including regularity, concurrency potential, and ease of 

creating partitions. However, the centralized clock of the 

parallel computer model detracts from machine modularity 

and programming flexibility. Section 3 of the paper showed 

that the clock and other control could be decentralized 

with minimal effect on the best case order of time 

complexity where some of the mechanisms proposed to do this 

included request/acknowledge transfers, weighted reference 
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counting, cache trees, and I-structures. 
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Figure 2.1 
Examples of n-cubes 
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The four 1-cubes of one of the three (=3!/(1!2!)) 
possible.4 1 1-partitions of a 3-cube are.i~dicated by 
double lin~~ (n=3, m=l, k=4, 4

3
, 1 -partit,ion={t} ) • 
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Figure 2.2b 
One of the two 2-cubes sharing exactly one PE with 
each of the 1-cubes in Figure 2.2a is shown with 
double lines (complement of 4

3 1-partition = 23 2-
partition = {2, 0} ) • ' ' 
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Figure 2.3a 
Initial configuration of rows of matrix A in a 4x4 
matrix multiplication. 
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Result of broadcasting rows of A over 4th dimension 
and front to back edges (i.e., the 2-cubes of partition 
{ 2,3 }>. The numbers indicate row numbers of matrix A. 

* Only one of eight 4th dimension connections is shown. 
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Figure 2.3c 
Initial configuration of rows of matrix B and also 
the resulting configuration of Bt. 
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Figure 2.3d t 
Result of broadcasting rows of B over front and back 
faces (i.e., the 2-cubes of partition={O,l}). The 
numbers indicate row numbers of matrix Bt. 

* Only one of eight 4th dimension connections is shown. 
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Figure 2.3e 
Combined results of A and Bt broadcasts with inner 
products ready to be computed. 

* Only one of eight 4th dimension connections is shown. 
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* Only one of eight 4th dimension connections is shown. 
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A 4-cube is topologically equivalent to a 4x4 MCC with 
orthogonal wraparound. (All labels represent corresponding 
n-cube addresses; MCC labels are not shown.) 
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Figure 2.5 
A 4-cube is configured as a 2x8 MCC (unneeded connections 
are ignored). A hyperplane (line) then bisects the MCC 
into two 3-cubes where some of the connections are 
recovered from those ignored during the original conf ig
uration. 
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Figure 3.1 
Structure representation of a NxN matrix 



procedure transpose (B, N) 
(trans : structure[l •• N] I see note* I 
initial trans ~ < > 
for i from 1 to N do 
--new traris [ i)~ T 

--row : structure[l •• N] 
initial row ~ < > 
for J from 1 to N do 
--new row [ j] += B [),i] 
return row) 

~trans) ; 

procedure multiply (A, Bt, N) 

* 

(C : structure[l •• N] 
initial C ~ < > 
for i from 1 to N do 
--row ~ A [Tf ; 

new-c [i] ~ ( 
--row c : structure[l •• N] 

initial row C ~ < > 
for J from I to N do 
--col~ BtTj] ;-

new-row C [j] ~ ( 
--rnitial inner-prod ~ 0 

for k from 1 to N do 
---ri'ew inner prod ~inner_prod + row~A[k]*col~B[k] 
return inner-prod) 

return row C) -
return C) -

Figure 3.2 

The call "multiply(A, transpose(B,N), N)• 
returns the product of NxN matrix A and NxN matrix B. 

This Pascal-like declaration is not part of Id and is for 
illustrative purposes only. 
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procedure quicksort (A, N) 
(m ~ N div 2 ; 

* 

below, ~above ~ ( 
above, below : structure[l •• N] ; 
in it i a 1 be 1 ow ~ < > ; j ~ 0 ; 

above ~ < > ; k ~ 0 
for i from 1 to N do 
(if TTm 

- then (if A[i] < A[m] 

* see note ! 

-then new below[j+l] ~ A[i] ; -- new j ~ j+1 
else new above[k+l] ~ A[i] 
- new- k ~ k+l)) 

return (.!f j > 1 then quicksort(below, j) 
else below), 

j ' 
U:.!. k > 1 

return ( 

then quicksort(above, k) 
else above)) 

sorted : structure[!. .N] ; 
initial sorted ~ append(below, j+l, A[m]) 
for i "'from j+2 to N do 
--new sorted[i]-~ aoove[i-j-1] 
retllr'n sorted)) 

Figure 3.3 
Id procedure to sort N element vector A 
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This Pascal-like declaration is not part of Id and is for 
illustrative purposes only. 
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r - - - - -, 

(initial x - < > 

for l from 1 to m do 

new x - oppend(x,i,v) 

return x) 

L _J 

L 

new i 

Figure 3.4 
Example compilation of an Id loop expression 



r - - - - - - - - - - - -

(initial x - <> 

for i from 1 to m do 

new x - append(x,i,v) 

L - -

read-only 
I-structure 

pointer 
x 

return 

- - -

x) 

- - - - -

L 

updoteQble 
I-structure 

pointer 
x 

Figure 3.5 

- - - - -

new i 

., 

.J. 

Compilation of the same program fragment as in Figure 
3.4 but treating x as an I-structure rather than a 
structure 
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( initial x ~ xe I Xe contains initial PDE data 
represented by a q-level structure I 

* 

for k from 1 ~ (convergence is achieved) do 

new x ~ ( 
y : _!-structure[e •• sq_1-11 I see note* 

initial y ~ <e:x[e], (s 1-l):x[s 1-11> q- q-

fo r i from 1 to sq_1-2 do 

new y[i] ~ ( 
y_sub_plane : !-structure[e •• sq_2-l] 

initial y_sub_plane ~ <e:x[i,e], (sq_2-l):x[i,sq_2-1J> 

for j from 1 to sq_2-2 do 

new y_sub_plane[j] ~ ( 

row : _!-structure[e •• se-ll 

initial row~ <e:x[i,j, ••• ,e], (se-l):x[i,j, ••• ,se-ll> 

for m from 1 to se-2 do 

new row[m] ~ x[i,j, ••• ,m]/2 + 

return row) 

(x[i+l,j, ••• ,m] + x[i-1,j, ••• ,m] + 
x[i,j+l, ••• ,m] + x[i,j-1, ••• ,m] + 

x[i,j, ••• ,m+l] + x[i,j, ••• ,m-l])/(4*q) 

return y_sub_plane) 
returny} 

r et u rii"'X') 

Figure 3.6 
Sample Id program to solve for 

variable x (e.g., temperature) of a PDE 

This Pascal-like declaration is not part of Id and is for 
illustrative purposes only. 
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• 
x.D. kJ PE(J,k,o) 

• 
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_ 0 < S0 > 

l~/~ -----

Figure 3.7 
(q=3)-dimensional PDE initial 'data structure x

0 
layout 

is shown for MCC plane (io=O) . Top level of x 0 may 
reside in any PE (e.g., rightmost PE above) in MCC plane 
(io=O), xo[j] may reside in any PE (e.g., top PE above) 
in MCC column (i2=j, io=O), and data vector xo[j,k] must 
reside in PE(j,k,0). 



physical domain d physical domain d + 1 

token buses 

0 0 0 

0 0 0 

global bus 

Figure 4.1 
The interconnection of processors (PEs), memory 
controllers (MCs), and memories (Ms) in the Irvine 
dataflow simulator. 
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Pigure 4.2 
Execution time complexity curves for a one-dimensional 
planar hydrodynamics simulation. The curves show that. 
I-structures reduce execution time through increased 
parallelism. The number of PEs used to achieve the 
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minimum execution time appears adjacent to ~ach point. 
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Execution time complexity curves for Gaussian elimination· 
The number of PEs used to achieve the minimum execution 
time appears adjacent to each point. 
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