
MIT/LCS/TR-265

A DATAFLOW ARCHITECTURE WITH

IMPROVED ASYMPTOTIC PERFORMANCE

Robert E. Thomas

This blank page was inserted to presenie pagination.

A Dataflow Architecture with Improved

Asymptotic Performance*

April 1, 1981

Robert E. Thomas

*This work was done while the author was at the University of California, Irvine.

© Robert Eugene Thomas

CONTENTS

Acknowledgments • • • • • • • • • • • • • • • • • v

Abstract . vii

Section 1: Introduction 1

Section 2: An Analytic, Parallel Computer Model 5

The Binary n-cube •••• 6

Binary n-cube Properties 7

Example Complexity Analyses • • • 14

Section 3: One Implementation of the Parallel
Computer Model • • • • • • • • • • 27

Overview of the Machine's Operation •

Structures and Data Communication • . .
Storage Reclamation
NxN Matrix Multiply and N Element Quicksort

28

31

37

Complexity • • • • • • • • • • • • • • 40
I

I-structures • • • • • • • • • • • • • 43

Partial Differential Equation Complexity 48

Section 4: Experimental Results • • • • • • • • 53

The Irvine Dataflow Simulator •• 53

Experiments: I-structures versus Structures 55

Section 5: Conclusions •
References:

iii

• • 58

79

------- -----------

ACKNOWLEDGMENTS

I am indebted to Professors Arvind and Kim Gostelow,
my advisors, who provided the support, encouragement, and
enthusiastic interest in research which made it easy to
select the topic of this dissertation. I would also like
to thank the members of my committee for suggesting
improvements tb the manuscript.

I am deeply grateful for the financial support
received through the National Science Foundation and the
Department of Information and Computer Science, under whom
I worked as a Teaching Assistant and later as a Research
Assistant.

v

ABS1RACT OF THE DISSERTATION

A Dataflow Architecture with Improved

Asymptotic Performance

by

Robert Eugene Thomas

Doctor of Philosophy in Computer Science

University of California, Irvine, 1981

Professor Kim P. Gostelow, Chair

Large scale integration presents a unique opportunity

to design a computer comprising large numbers of small,

inexpensive processors. This paper presents a design f~r

such a machine based on the asynchronous and functional

semantics of dataflow. Processors within the machine are

interconnected by a packet-switched binary n-cube although

a limited number of other networks may be substituted with

predictable asymptotic effects on performance. Improved

performance of the proposed machine over a previously

reported dataflow architecture is predicted in terms of the

vii

computational time complexity of several example programs:

matrix multiply, quicksort, and iterative solutions to

partial differential equations. Although the example

programs are numerical in nature, the machine is intended

for general-purpose computation since programs are written

in the high level dataflow language Id without knowledge of

the number of processors or interconnections. New storage

management and data communication methods are also

presented which are necessary to obtain the improved

performance. Experimental results from a simulated machine

incorporating some of these methods are given to

corroborate analytic results.

viii

1.0 INTRODUCTION

Large scale integration presents an opportunity to

design a computer comp,r ising hundreds or thousands of

small, inexpensive processors. This opportunity is

attractive for several reasons. First, signal propagation

delay will eventually limit the performance of conventional

sequential computers. Thus multiple execution units of

some sort (e.g., arithmetic/logic units, processors) will

eventually be necessary to increase performance further.

Second, the current trend of rising software costs relative

to hardware costs warrants, in many cases, trading

inexpensive hardware for ease of software production. One

of our approaches for realizing this tradeoff is to

transfer the responsibility for processor and memory

management from the programmer to the machine. We view

automatic resource management as a potential source of

additional parallelism which, if suitable exploited, would

mitigate performance losses normally associated with

dynamic resource management. A third reason multiprocessor

computers are attractive is that redundant processors and

communication links may be used to continue computation in

the face of certain hardware faults. While error detection

and control are beyond the scope of this paper, we believe

the principles of dataflow underlying the architecture

described here provide new opportunities for supporting

high performance "fail-soft• computing.

l

1.1 Principles of Dataflow

Dataflow is a model of computation based on asynchrony

and functionality. Asynchrony means a dataflow operation

(e.g., a machine instruction) may begin execution any time

after receiving its input operands. !.~.!!.~.!_ionality means

every dataflow operation consumes a set of input values and

creates a set of output values without side-effects.

Asynchrony is the basis of concurrency in dataflow while

functionality ensures concurrent operations do not

interfere and therefore need not be artificially sequenced.

Detailed descriptions of various dataflow computational

models and their advantages have been presented elsewhere

[3,12,13,22,40].

1.2 Dataflow Architectures and Complexity Analysis

Many dataflow architectures

[11,12,14,15,22,23,33,42] and a

have been proposed

few prototypes have been

constructed [11,12,23]. Evaluation of these architectures

is an important task, but so far this evaluation has been

more art than science. In an effort to improve the

situation, time complexity analysis was used to design and

evaluate the architecture presented here. Although the

0-notation used in the complexity analysis is admittedly a

rough tool (large constants may be hidden), such analysis

can quickly determine the presence of bottlenecks in large

2

computations. Some readers may also question the

assumption used in the complexity analyses that an

unbounded number of processors are available. Of course,

any realizable machine is limited to a finite number of

processors, communication lines, memory cells, etc.

However, the necessarily limited resources of von Neumann

machines has not lessened the value of complexity analysis

for single processors. Therefore, in the same way that

unbounded memory is assumed in conventional complexity

analysis, unbounded memory and processors will be assumed

in the parallel complexity analyses presented here.

An important practical issue in the application of

dataflow and complexity results to real systems is hardware

and software cost. All too often studies of parallel

computing models do not intend that the model be

implemented (i.e., it is a theoretical model only) or the

little or no aid to the programming of the

At least one solution to this problem

analysis gives

proposed machine.

has been achieved

architecture [22].

and tested by simulation in a dataflow

There it was shown that general

programs can be written in a high level language, lrvine

dataflow (Id) [3]. Only one compilation is then required

for multiple executions with various sized data. An

important result is that parallel programs can be written

without knowledge of the number or the interconnection of

processors. The methods used to obtain these results are

3

extended in this paper to a new dataflow architecture which

has improved asymptotic performance over that described in

[22].

Section 2 of this paper describes a simple parallel

computer model used for the complexity analysis of some

common algorithms.

model of Section

Section 3 describes how the theoretical

2 can be implemented in a dataflow

environment. Section 4 presents experimental evidence

(derived from executing real programs on a simulated

dataflow machine) which lends support to selected results

from Section 3.

4

2.0 AN ANALYTIC, PARALLEL COMPUTER MODEL

Complexity analysis requires an explicit model of the

computing device concerned. Examples of models commonly

used in complexity analyses are the Turing machine and the

"random access machine" [l]. In this section, a simplified

model of a parallel architecture is described for the

purpose of complexity analysis. Implementation of the

model will be discussed in Section 3.

Our parallel computer model comprises an unbounded

number of Erocessing elements (PEs) interconnected by a

communication network. Intuitively, each PE may be

considered a conventional processor directly connected to a

private, unbounded memory. Network communication is

assumed to operate on a "store and forward" packet basis.

For purposes of analysis (as opposed to implementation),

all PEs and communication links are synchronized by a

central clock. This simplifies analysis by reducing the

need for methods based on probabilities. Although the

results thereby achieved apply only indirectly to the

implementation discussed in Section 3, it is considered

prudent to use this kind of analysis before more detailed

analyses are conducted.

The communication network has considerable impact on

the cost of implementing the computing device. For example

the crossbar network, e.g. [45], has cost O(N 2) where N is

the number of nodes, and thus the communication network

5

clearly dominates cost for large N. Although a number of

networks costing less than O(N2) have been proposed

[7,8,18,26,31,32,34,36,37,41,43], relatively little

comparative information has been published about them. A

good start in this direction is the work of Siegel [34],

and Wu and Feng [44]. Wu and Feng discussed the

equivalence of several networks while Siegel compared a

small number of quite different networks in terms of the

computational time complexity of simulating one network

using another. Such comparisons are significant because

they allow complexity results derived from one network to

be applied to other networks.! This is one reason why one

of the networks studied by Siegel, the binary n-cube, has

been chosen as the network of our parallel computer model.

2.1 The Binary n-cube

A binary n-cube is an interconnection of N = 2n PEs

placed at the corners of an n-dimensional cube. Each edge

or link of the cube has two PEsi each PE has n

1careful interpretation of Siegel's results is necessary
since these results were developed for single instruction
stream-multiple data stream (SIMD) computers [16] whereas
the model descriijed here is not a SIMD because each PE is
assumed to have its own instruction stream. An example use
of Siegel's results appears in Section 5: Conclusions.

6

bi-directional one-message-at-a-time (i.e., half-duplex)

links connecting it to n other PEs. Examples of n-cubes

are given in Figure 2.1. This paper assumes that at any

given instant each PE can transmit or receive (but not

both) on any ~ of the n links connected to it, although

more concurrent implementations are also possible. The

interconnections of the n-cube can be expressed formally

using Pn-l•••P 0 to denote the binary address of an

arbitrary PE and Pi as the complement of Pi• The ith

function defining the n-cube interconnections is given by

cubei(Pn-1•••Pi+lPiPi-1•••P0) =

Pn-1•••Pi+lPiP1-1···P0 0 < i < n

In the sequel, the notation for a particular communication

link will be abbreviated from cubei(x) to cubei when the

' address x is obvious from context.

2.2 Binary n-cube Properties

The Hamming distance between two binary numbers (PE

addresses) is the number of bit positions which differ in

the two numbers. Let bitj(z) denote the jth bit in address

z. The following routing algorithm may be used to direct a

message from PE x to PE y. Select any i such that 0<i<n

If no such i exists then the

message has arrived; otherwise, transmit the message using

7

function cubei(x) and repeat with the new address x. This

has the effect of reducing the Hamming distance by one at

each step of transmission, and since the largest Hamming

distance is n = log N, at most log N steps2 are needed to

transmit a message. This routing a19orithm also implies

that if two PEs are separated by Hamming distance m then ml

distinct paths exist between the two PEs. Another

interesting capability of the n-cube is the most distant N

message transfer described by Sullivan and Bashkow [37).

In this transfer, each PE (concurrently with all other PEs)

sends a single message to that PE at the greatest Hamming

distance from it. The algorithm3 is as follows:

Algorithm 2.1 [37).

For i from 0 to n-1 do

Using links cubei, all PEs transmit/receive

each message with destination address which

differs from the message's current address in

the ith bit position;

2
All logarithms will be taken to the base two.

3
The notation "For i ••• do" implies that every PE uses

the same value ~i at the-Same time in the order given.

8

To see how this works, note each PE initially contains one

message at Hamming distance n from its destination. Since

N/2 PEs are directly connected in an n-cube to the other

N/2 PEs by links cube.
1 for each i (i.e., there is a

distinct partitioning for each i), N/2 messages can be

exchanged in two time steps for each iteration thus

bringing all messages one step closer to their

destinations. Therefore, 2 log N steps4 are required to

complete the transfer. Given the assumption that at any

given step a PE may service only one of the n links to

which it is connected5 this algorithm is optimal since:

1. At each step the Hamming distance of all messages
transmitted is decreased by the maximum possible,
i.e., by one;

2. Every step uses the maximum possible concurrency,
i.e., N/2 transmissions.

The following four capabilities of the n-cube will be

used extensively in the sequel. The first is the N-way

4 In [37] only log N steps were required because full-duplex
links were assumed.

5This assumption precludes "pipelining" of the transfer
algorithm as discussed in [37]. If each PE could
concurrently transmit/receive on all links to which it is
connected, then another (new) message could be started
immediately after the first message has departed from its
source PE since a given link is used only once in the
execution of the algorithm. This would allow each PE to
send m distinct messages to the PE most distant from it in
(m-l)+log N steps. However, with the assumptions used in
this paper, 2m log N steps are required for this transfer
since the algorithm must be repeated m times.

9

broadcast which distributes a single message from one PE to

all other PEs in log N steps [37]. Assume the message to

be broadcast is transmitted to the original broadcasting PE

on a hypothetical link cube_1 • The algorithm is:

Each PE that receives a broadcast message on link

cubei retransmits the message using (in order)

links cube. for i<j<n.
J

The first transmission (for· j=0) from the original

broadcasting PE using cube0 can be thought of as splitting

the original n-cube into two disjoint, identical cubes of

size N/2. Two PEs (the original and the receiver on link

cube0) now have the message and each becomes the source to

broadcast the message to the sub-cube in which that PE

resides. This process is repeated until the resulting

sub-cubes contain only one PE which terminates the

broadcast.

The second important capability of the n-cube is the

N(N-1) transfer where each PE transmits N-1 distinct

messages, one to each of the other N-1 PEs. With this

transfer, N PEs each send (N-1) messages for a total

delivery of N(N-1) messages in N log N steps. (Note that

the N(N-1) transfer is easily adapted to perform matrix

transpose assuming each PE initially contains exactly one

row of the matrix.) The algorithm for the N(N-1) transfer

is the same as the one used in the most distant transfer,

10

i.e., Algorithm 2.1.

Theorem: The N(N-1) transfer can be done in N log N steps.

Proof ~ Induction: The basis is trivially true for N = 2.

Inductive step: Assume the N(N-1) transfer requires

N log N steps for an n-cube of size N. Let the address of

an arbitrary PE of an (n+l)-cube of size 2N be Pn ••• p 0 •

Each PE of the (n+l)-cube starts with 2N-l messages; N of

these messages will have destinations d with bit0 (d) = p 0

and N-1 will have destinations with bit 0 (d) = p
0

since no

PE sends a message to itself. Using Algorithm 2.1, for i=0

each PE thus transmits N messages and receives N messages

using a total of 2N steps. Exactly one of the messages

received by each PE must be addressed to itself so each PE

now contains 2N-2 = 2(N-l) undelivered messages which are

addressed exactly like the messages of two N(N-1) transfers

within each of the two sub-cubes defined by the set of

addresses Since links will not be used

again, each of these two sub-cubes can act independently.

By the inductive assumption the two N(N-1) transfers within

each sub-cube require 2N log N steps. The total is 2N +

2N log N = 2N(log N + l) = 2N log 2N steps. []

Again, this is optimal under the given assumptions for the

same reasons as were given in the most distant N message

transfer discussion.

The third important capability of the n-cube is the

11

N-1 linear transfer where a single PE sends a distinct

message to each of the other N-1 PEs in O(N) steps.

Although an algorithm seems to exist6 for doing this

transfer in exactly N-1 steps, the proof is nontrivial and

its description is not needed for the purpose of this

paper. The O(N) algorithm is simply transmit messages (in

any order) at every other time step. This algorithm

requires 2(N-l) steps for transmission from the source PE

plus at most log N steps for the last message to arrive

since no conflicts are possible. Thus 0(2(N-l)+log N) =

O(N) steps are required.

The fourth important capability of an n-cube is the

ease and flexibility with which partitions may be defined.

Some of these partitions are given in the following

definitions. A kn,m-partition is a set of m, e~m~n,

distinct integers j, e~j<n, specifying the partitioning of

an n-cube into k disjoint m-cubes. Each of these m

integers represents a distinct bit position in the n-cube

PE address pn-l•••Pe·

Theorem 2.1. Let k=2n-m. Then there are n!/(m!(n-m) 1)

distinct kn,m-partitions of an n-cube. (See Figure 2.2a

for example.)

6
send messages in order of decreasing destination Hamming

distance and select links so that no one link is used twice
in succession.

12

Proof: Consider for the moment that the n-m bits not in

the partition are fixed to some arbitrary value. Then the

m bit positions in the partition define a set of 2m

distinct PE addresses which can be re-labeled to intege.rs

j, 0~j<2m, by ignoring the other n-m bit positions. These

re-labeled PEs and their connections satisfy the cube

interconnection functions and thus define an m-cube. There

n-m
are k=2 such m-cubes since the n-m fixed bits may assume

n-m
2 different values. All m-cubes are disjoint because

their original addresses are distinct and because an m-cube

link must connect two PEs within the same m-cube. Finally,

there are n!/(ml (n-m) I) distinct combinations of n bit

positions taken m at a time each of which defines a

distinct partition of an n-cube. []

The complement of a k -partition is the set {i 0<i<n} n,m -
(kn,m-partition), i.e., all bit positions not in the

kn,m-partition.

Corollary 2. la. Each (n-m)-cube specified by tbe

complement of a k -partition shares exactly one PE with n,m

each m-cube specified by the k -partition (Figure 2.2b}. n,m

Proof: Follows immediately from the proof of Theorem 2.1

by reversing the bit positions which are fixed with those

that are variable. []

13

2.3 Example Complexity Analyses

This subsection presents the complexity analysis of

three numerical algorithms. The methods and results are

intended to demonstrate the n-cube's capability for

concurrent communication and to serve as a basis for

generalizing the methods to non-numerical algorithms.

Besides the already mentioned assumptions, the analyses

assume the •uniform cost criterion• [l]. This means that

primitive machine operations such as+, *, etc. are assumed

to take constant time regardless of the size of the

operands.

2.3.l Related Work and Data Structure Assumptions -

The application of parallel processors to numerical

problems has been studied for some time. For example,

Squire and Palais give a program (without analysis) for

matrix inversion on a proposed parallel machine

incorporating a circuit-switched binary n-cube [35). Many

studies have been done for Illiac IV-like interconnections

e.g., [19,25,30,39]. The advent of VLSI has further

encouraged work in the area of •computation grids• [28].

The usual assumption made in these studies is that a PE

works with a constant, usually small, number of data

elements. One reason for this is the speed of the results

obtained; for example, an O(log N) algorithm has been

14

shown for NxN matrix transpose on the perfect shuffle

network [36].

The difference between the current approach and the

others cited is that here the PEs work with complete rows

of data instead of single elements. Although this approach

may result in an increase in time complexity (e.g., O(N) to

O(N log N) for matrix multiply), aggregates of data larger

than a single element are required for the implementation

proposed in Section 3 which is intended to avoid one of the

problems of "array computers": the exacting data layout

and communication requirements that make such computers

difficult to program. Furthermore, since the location of

individual data elements is usually implicitly buried in

the user's program, continuing operation with the loss of

just one communication link or processing element becomes a

difficult problem. An alternative approach using

aggregates of data combined with dataflow allows th~

physical location of data to be divorced from the user's

program as is shown in Section 3. The scheme proposed

there allows the machine to function as long as at least

one PE remains operational and sufficient memory is

available (although time complexity may, of course,

suffer).

15

2.3.2 NxN Matrix Multiply -

In this subsection, it is shown that two NxN matrices,

A and B, can be multiplied in O(N log N) time (N=2n without

loss of generality) using a 2n-cube (N2 PEs) when the

location of the input is favorably distributed. The

average time required over all passible input distributions

is unknown at this time but is conjectured to be O(N log N)

assuming no PE begins or ends with more than a constant

number of input or result rows.

2.3.2.1 One Possible Input Row Distribution -

Let P2n-1•••PnPn-l•••P 0 denote a PE address in the

2n-cube. The N rows of matrix A are distributed over N

distinct PEs such that the address of those PEs satisfy

P2n-1···Pn = Pn_1 ••• p 0 (Figure 2.3a). Each of these PEs is

an element of exactly one of the n-cubes (the front and

back faces in Figure 2.3a) spe~ified by the

N2n,n-partition, {i 0~i<n}. The N rows of matrix B are

evenly distributed over the PEs of the n-cube defined by

x 2n-l•••xn0 ••• 0 where x indicates a bit position which

varies among PEs in the same n-cube (Figure 2.3c). This

n-cube is one of the n-cubes specified by the partition

{i I n~i<2n} which is, of course, the complement of the

N2n,n-partition above. By Corollary 2.la, the n-cube in

which B is distributed shares exactly one PE with each

n-cube containing exactly one row of A; this is the

16

"favorable" input distribution requirement.

2.3.2.2 The Matrix Multiplication Algorithm -

1. Transpose B to form at over n-cube x 2n-l•••xn0 ••• 0

using a N(N-1} transfer in N log N steps (Figure

2. 3c} •

2. N-way broadcast each row of st residing in PE

to all PEs in the n-cube

P2n-1···Pnxn-l•••x 0 in N log N steps (Figure

2.3d). This can be done for all rows at the same

time, since the n-cubes are distinct.

3. N-way broadcast each row of A residing in PE

P2n-1···PnPn-l•••P 0 to all PEs in the n-cube

x 2n_ 1 ••• xnpn_ 1 ••• p 0 in N log N steps (Figure

2.3b}. This step can also be done for all rows at

the same time.

4. Each PE now contains a row of A and a column of B

and can form the inner product in O(N} steps

(Figure 2.3e}.

5. Using a "reverse" N-1 linear transfer, the N

el em en ts of each result row can be brought

together within the same PEs which initially held

a row of A in O(N} steps. This step can also be

17

done for all rows at the same time.

The total is (3N log N) + O(N) = O(N log N).

2.3.3 Quicksort of N Distinct Elements -

The analysis of quicksort presented here is simplified

because there is no need to repeat the work of others. It

is well known the average time complexity of quicksort on a

single processor is O(N log N) while the worst case

complexity is O(N 2) [24]. Let the N (=2n without loss of

generality) distinct numbers to be sorted reside in an

arbitrary PE of an n-cube. Assume this vector was

transmitted ·to that PE on a hypothetical link cube_1 • The

quicksort algorithm is:

18

For each PE receiving a vector to be sorted on link
cubej do

1. Let A be the input vector received by a
particular PE on link cube.;

J

2. For i from j+l to n-1 do

a. Select the median of A which can be done
in O(length of A) [l, p.97];

b. Construct (within the same PE) a new
vector A' using elements from A which are
less than or equal to the median; transmit
all other elements of A using link cube.
as a vector to be independently sorted; 1

c. Let A = A';

3. For i from n-1 downto j+l do

Concatenate A with the sorted vector
received on link cubei to form a new A ;

4. Transmit the resulting sorted vector A on
link cube .•

J

To see how this works, imagine the n-cube is split into two

disjoint (n-1)-cubes. The source PE splits the input

vector into two equal parts and transmits one of the parts

to the other (n-1)-cube where it is independently sorted.

Each N/2 element vector is then split again and one-half is

sent to an (n-2)-cube to be independently sorted, and so

on, until the length of each vector is one. No PE (or

link) does more than O(N) work in this splitting phase.

The vectors are then concatenated by reversing the above

process starting with vectors of length one and ending with

a vector of length N. Again no PE does more than O(N)

19

work. Therefore, n-cube quicksort requires O(N) time.

2.3.4 Binary n-cubes and Mesh Connected Computers -

Before analyzing a portion of a partial differential

equation problem, we will briefly explore the relationship

between ~esh £Onnected ~omputers (MCC) and n-cubes. A MCC

is an interconnection of N = 2n identical PEs. The PEs are

arranged in a q-dimensional sq_1x ••• xs 0 array, where each

si is a power of two and sq-l *· •• *s0 = N. A PE address is

expressed in standard coordinate indices as PE (i l q- , ••• ,

Each PE(iq-l' ••• , ik, ••• , i 0) is

connected to its nearest two neighbors in each of q

dimensions PE(iq-l' ••• , ik:!;l, ••• , i 0), 0~k<q, provided

they exist. PEs at the boundaries of the mesh have fewer

than 2q connections unless the MCC is specified to have

"wraparound connections". Each PE in a MCC with orthogonal

wraparound (OW) is connected to exactly 2q neighboring

These

definitions are due to Nassimi and Sahni who consider

optimal routing on MCCs [30]; fast sorting algorithms on

MC Cs are discussed in [29,39]. Illiac IV is a

two-dimensional MCC with slightly different wraparound

connections called "propogating wraparound" [30] •

. An interconnection network can be represented by a

directed graph denoted by {V, E} where Vis a set of

vertices (PEs) and E is a relation which is a subset of VxV

20

representing edges (connections) between vertices. Since

only bi-directional links are considered here, E will

automatically be a symmetric relation, i.e., if (v1 , v 2) e

E then (v 2 , v 1) e E. A network {v1 , E1 } is a subnet of

network {V1 , E 2 } if E1 ~ E 2 (note the set of vertices is

the same). Network {V 1 , Ei} is topologically equivalent to

network {V 2 , E 2 } if there exists at least one function f

called a re-labelin~ function satisfying:

a) f is one-to-one and onto from domain V 1 to range V 2 ;

b) \:;f ((a, b) E El)

c) "d ((x, y) e E
2

)

(f:a, f:b) E E 2 ;

(f-l:x, f-l:y) E El.

Theorem 2.2. An OW MCC of size N is a subnet of an n-cube

of size N.

Proof: Consider the concatenation of the binary --
representations of the MCC coordinates iq-1···i0 to be a

binary PE address. Let G. (x)
J

re present a j-bit Gray code

mapping the integers x, 02x<2j, into the corresponding Gray

code value. The re-labeling function f maps from MCC

address i .
q-1 • • • 1 0 to n-cube ...

Glog s
0

(i 0). f is clearly one-to-one and onto by a simple

combinatoric argument. Next consider an arbitrary element

(iq-1' ... , ik:!:l, • • • I i 111» which is mapped by f to

((Gl og s (iq-1) ,
q-1

... , Glog sk(ik), ... , Glog s0(i111)),

(Glog sq-1 (iq-1), ... ' Glog sk(ik~l), • • • I Glog s (i0))).
0

21

This link is an element of the n-cube interconnection

relation since, by definition of a Gray code, consecutive

Gray code values vary in exactly one bit position which

conforms to the definition of the n-cube interconnection

functions. Thus under the re-labeling function f, an MCC

is a subnet of an n-cube. []

Pease proved a similar result for a more general network,

the "indirect binary n-cube" (31].

Corollary 2.2a. An OW MCC of size N such that sk = 4,

0~k<q, is topologically equivalent to an n-cube of size N

(e.g., Figure 2. 4). 7

Proof: The number of CM MCC connections per PE is 2q and

the number of n-cube connections per PE (log N) is the same

when sk = 4, 0~k<q. By Theorem 2.2 (the OW MCC is a subnet

of the n-cube) the two networks must be topologically

equivalent. []

A re-labeling function is said to configure one network

into another network. When the domain of the re-labeling

function is physically part of a larger or more connected

network, PEs and connections not included in the domain

network may be ignored rather than physically deleted. A

7
When all sk=2, the ow MCC and n-cube are also equivalent

since an n-cube is defined as a (q=n)-dimensional cube
of side two.

22

single network may thereby be configured into a number of

other networks by distinct re-labeling functions acting on

possibly different subnets of the original network.

Corollary 2.2b. Let an n-cube be configured as a

sq_1x ••• xs 0 MCC. Then this n-cube can be split into two

disjoint (n-1)-cubes by a hyperplane bisecting the MCC in

any one of the MCC's dimensions of size sk provided sk~2

(e.g., see Figure 2.5).

Proof: Re-label the PEs from MCC addresses to n-cube

addresses as in Theorem 2.2 but with special consideration

given to the Gray code mapping coordinate index ik where k

is the index of the bisected dimension. Let LMB represent

the left most bit position in the binary representation of

ik. Select

0~ik<sk/2, and

the Gray code such that bitLMB(ik) = 0 for

bitLMB(ik) = 1 for sk/2~ik<sk (e.g., a

standard reflected Gray code). Then the 2n,n-1 -partition =
{j I 0 ~ j < n} - {the position of LMB in an overall n-cube

address} specifies the desired partitioning of the n-cube

into two disjoint (n-1)-cubes. []

Corollary 2.2b may be applied recursively to partition

an n-cube configured as a MCC into many different m-cubes

of various sizes (each a power of two). These m-cubes may

be MCC hypersolids or hyperplanes ranging in size from half

of the MCC to parts of individual rows of the MCC. In the

sequel, MCC hyperplanes will be denoted by listing the

23

fixed coordinates within parentheses e.g., Ci 1=s, ie=0).

2.3.5 Partial Differential Equation Complexity -

The "nearest neighbor" connections of MCCs fulfill a

major part of the communication requirements for iterative

solutions to _eartial differential equations (PDE).

Although convergence, stability, etc. complicate the issue

[17], for simplicity the analysis here considers only

nearest neighbor communication requirements. For this

purpose, an n-cube of appropriate size is configured as an

OW MCC in accordance with Theorem 2.2. Unlike most studies

of PDE solutions which assign one data element to each PE

of a MCC, here a row of data elements is assigned to each

PE; again the motivation is to meet the requirements of

the implementation to be presented in Section 3.

Consider a q-dimensional sq_1x ••• Xs 0 PDE problem where

each sk includes boundary data at indices 0 and sk-1. This

problem may be mapped onto a q-dimensional MCC of size

sq-1X ••• Xs1X O(s 0) such that each data row Ciq-11•••1i1) of

size s 0 is placed in PE(iq_1 , ••• ,i 1) in MCC hyperplane

e.g. see Figure 2.6. The computation then

progresses along the dimension of size O(s 0) such that MCC

hyperplane Ci 0=k) contains the state of the problem at

iteration k. An informal description of the data movement

is as follows, where z is the actual value of O(s 0) and a

PE is called active when the necessary data are available:

24

For k from 1 until (convergence is achieved) do

For j from 1 to s 0-2 do

Each active PE sends the jth element of its row to

each of its nearest 2(q-l) neighbors in MCC

hyperplane (i 0 =k) provided they exist. When the

necessary data is present, each active PE computes

an element for the next k-loop iteration, and

passes this result along the dimension of size z to

its neighbor in MCC hyperplane (i 0=(k+l) mod z),

i.e., orthogonal wraparound connections are used

when k=z-1;

For each element produced in a k-loop iteration, an

interior PE will thus send 2(q-l) elements to neighbors,

receive 2(q-l) elements, and send one result element to the

next hyperplane. The PE computation for each such result

is assumed to take at most O(q) time and thus the time

required to produce the first elements for iteration k+l is

O (q). The PEs in hyperplane (i 0=k+l) which receive th.i.s

data may then begin to exchange data and compute results as

soon as ~he first few elements of each input data row

arrive. The final computation for each row of size s 0 may

thus be thought of as being carried out by a O(s 0)-stage

circular "pipeline". The time required is O(qs 0) to

initially distribute computation in the pipeline. All

stages may then compute concurrently to finish in O(qT)

time where T is the number of k-loop iterations required

25

for convergence. The total is O(q(s 0 + T)) for the overall

PDE computation.B

8
The time required for the P8E problem using a comparable

number of PEs where each PE is assigned only a constant
number of data elements (as in most array computer
algorithms) is O(qT).

26

3.0 ONE IMPLEMENTATION OF THE PARALLEL COMPUTER MODEL

In the previous section, several complexity analyses

were derived based on a simple parallel computer model.

This simple model is not proposed as an implementation

since machines based on centralized control often lack the

flexibility, ease of programming, and extensionality

desired for general-purpose computation.

The present section shows that the control of a

machine based on the n-cube model can be decentralized with

minimal effect, in the best case, on time complexities

derived in Section 2. Of course, flexibility and ease of

programming are quite subjective and no proofs cah be

presented for the claimed improvements. Instead, the

following characteristics of the proposed machine are cited

to support the claim: .

1. The machine is to be programmed in the high level
language, Id (Irvine dataflow) [3], instead of the
assembly-like -languages usually required for
effective use of other multiprocessor computers.
Id provides for transparent expression of
parallelism (i.e., parallel operation is the
default mode rather than the exception); Id is
also side-effect free (functional) and shares many
of the advantages of other applicative languages
such as FFP [6], pure LISP [27], and LUCID [5];

2. Automatic memory management is provided along with
a structured data type;

3. Id programs are independent of the number of
processors or their interconnection.

Decentralized control has been demonstrated in a

27

number of dataflow systems [12,14,15,22,42]. However,

analyses of these systems has not yet produced time

complexity results as good as those derived in Section 2.

The sequel describes how the n-cube model and a dataflow

system [22] can be combined to obtain the benefits outlined

above. Dataflow is asynchronous by definition and thus

each PE in the proposed machine will communicate

asynchronously without centralized clock or control. Since

the analyses in Section 2 depended on a central clock, the

results of those analyses represent best cases for the

asynchronous system. Hence, the complexity results derived

in the sequel are not intended to prove an actual dataflow

machine would attain these best case results because

providing adequate scheduling may be difficult; rather the

purpose of the analysis is to suggest that time complexity

analysis is indeed a useful design and evaluation tool

since by its use major bottlenecks in previous iterations

of the architecture have been systematically identified and

eliminated.

3.1 Overview of the Machine's Operation

As mentioned above, the

asynchronously ~nterconnected

dataflow machine

n-cube of N PEs.

is an

Although

the distributed PE memory is organized as one address space

each PE is solely responsible for managing its own random

28

access memory. Program code is compiled into a data

structure, so the following applies to both object code and

program data. The location of each data structure is

specified by a unique identifier (pointer) which may be

passed anywhere in the machine. When actual data is

required, the requesting PE forwards a message to the PE

where the data is located; the receiving PE services the

request by sending back the requested data.

The following is a brief summary of the execution of

Id programs; details may be found in [3, 22]. A compiled

Id program is a directed graph where each node represents

an operation and each link indicates that the result of one

operation becomes the input to another. An operation can

be any (side-effect free) function which consumes one set

of inputs and produces one set of outputs. An execution

instance of an operation is called an activity and each

activity is given a unique activity name. Each value

resulting from an activity's execution is concatenated with

the value's destination activity name into a packet called

a token. Destination activity names are computed from the

activity names of input tokens according to a set of rules

located in each PE called the ~-interpreter.

All input tokens to an activity must be directed to

the same PE even though those input tokens may have been

produced by many distinct PEs. The U-interpreter ensures

that all tokens destined for the same activity have

29

identical activity names. An assignment function is used

by each PE to map the activity name of a result token to a

physical PE address.9 This address is then used to direct

the token through the interconnection network to the PE

holding the destination activity. Different assignment

functions may be used concurrently in the machine so long

as all PEs which are to send tokens to the same activity

use the same assignment function.

A PE may contain many activities and each activity may

be in any one of several stages of completion. The first

stage commences when the activity's first input token

arrives and lasts until sufficient input tokens are present

to enable execution to begin. The activity then progresses

through a series of stages which include operation code

fetch, data fetch (if needed), operation execution, and

output token generation and transmission. Activities are

"multiprogrammed" within a single PE so that temporarily

blocked activities (e.g., awaiting data fetch) need not

monopolize execution resources. This capability allows

flexibility in assigning processor resources since a single

PE is sufficient to execute an entire program (assuming

sufficient memory is available).

9
A detailed discussion of several specific assignment

functions and their effects may be found in [22].

30

3.2 Structures and Data Communication

The ability to specify computation on data types such

as arrays, lists, records, etc. is often crucial for

convenient expression of algorithms. In Id, such data

types may be represented by structures. A structure is a

set of {selector, value) pairs where a selector is an

integer, and a value is any value, including another

structure (13]. < > denotes the empty structure while

<i:x, j:v, ••• > represents a structure with value x at

selector i, value v at selector j, etc. Two functions are

defined on structures. The select function (denoted by

x(i]) has two arguments, a structure x and a selector i,

and yields ·the value at selector i. The append function

has three arguments: a structure, a selector, and a value

to be appended to the given structure at the specified

selector. Append does not modify the given structure but

instead makes a copy of it with the new selector and value

placed appropriately. Various implementations of

structures are discussed in (21). For simplicity, only one

of these implementations, the vector representationl0, is

discussed in the sequel although generalization to the

B-tree representation (21) has many advantages, e.g. the

(21) this implementation was called "array"
representation.

Jl

representation of sparse arrays.

In this paper, the following implementation of

structures is assumed. Each structure is associated with a

unique address (pointer). In vector representation, a

contiguous vector of memory cells is allocated to contain

the elementary values or pointers to substructures which

collectively comprise the elements of the structure.

Select is implemented by indexing in the usual way.

However, append in general requires a copy be made of the

entire vector and the new value placed appropriately.

Substructures need not be copied as is shown in [13,21].

Copying of the original vector can also be avoided when

only one pointer exists which refers to that vector. In

this case, append may safely update the vector in place.

Figure 3.1 shows a structure representing a NxN matrix

where the (selector, value) set nearest the root is called

the top level, and the collected substructure (selector,

value) sets is called the bottom level. Level names can

also be generalized to q-level structures where the top

level is the first level, the next level from the root is

the second level, and so on until the qth level. Hence a

level name is derived from the path length from the root to

the named level.

For the moment, the important problem of storage

reclamation of structures will be ignored. We assume all

object code and data aggregates are represented by

32

structures, and furthermore that the programmer specifies

(perhaps by type declaration) the largest number of

elements each structure may hold so that sufficient space

is initially allocated to contain it. The n-cube message

transfers of Section 2 can then be implemented using

structure operations as will be shown below.

A transfer begins with a source message configuration

and terminates with a destination messa1~ configurati~.

The inverse of a transfer begins with the original

destination message configuration,

the original transfer, and terminates

reverses each step of

with the original

source message configuration.

requires the same time as the

Clearly the inverse transfer

original transfer. In a

transfer based on structures, the values to be transmitted

are grouped into a structure and a pointer to that

structure is distributed to the PEs which are to receive

one or more of the values. Each PE then sends a request

(for each value it requires) to the appropriate PE which is

holding that part of structure containing the required

value. PEs receiving such requests service them by

selecting and replying with the value requested. Each PE

acts independently, but the collective effect is called a

request/acknowledge transfer. Each of the n-cube transfers

can be implemented by the request/acknowledge mechanism

without changing the best case order of time complexity.

Consider first the N-way broadcast and an additional

33

implementation mechanism called a cache tree.11 A cache

tree is a distributed cache which automatically configures

itself into the logical tree appropriate for each data item

broadcast. The PE holding the value to be transmitted is

the root of the broadcast tree; the tree also includes

each requesting PE as well as all PEs in the paths from the

requesting PEs to the root PE. The cache tree may be

implemented by an associative memory table in each PE. An

entry in the table consists of a two part key (a structure

pointer s and a selector i} and a data field containing the

value si if it is available; otherwise, the data field

contains a pointer to a 1 ocally held list of requests

received from other PEs for that same value s .• When a PE
1

receives a request, it looks up keys s and i in the cache.

If the value is found, the PE replies as if it were the

root PE with the value s.; otherwise the request is added
1

to the list of requests for that value. If the list was

11
The cache tree was independently developed by Sullivan,

Bashkow, Klappholz, and Cohn who called it a "conflict
filter" [38]. However, Dr. Bashkow has indicated (by
personal communication} that the cache tree is not included
in current designs for the CHoPP machine, perhaps because
of the difficulty of maintaining consistency in multiple
copies of data. This problem does not arise in a
functional environment such as dataflow because values are
never modified; in practice this means cache values are
read-only although redundant values other than the original
source may be deleted, for example by a least recently used
policy, without affecting correct operation.

34

previously empty, the request is also forwarded toward the

root PE. When the response value s. is received, the PE
1

enters the value in its cache and sends a copy of the value

for each of the requests in the list associated with keys s

and i. An instance of a broadcast tree is thus dynamically

constructed as requests filter toward the root PE and no PE

need receive more than log N requests.12 After the tree is

constructed the lists of requests in the caches are used to

direct the actual broadcast of the data item. In the

n-cube network, any PE can be the root for a broadcast and

many such broadcasts may be progressing simultaneously.13

Clearly the best case order of time complexity for the

cache tree N-way broadcast does not change over the

broadcast of Section 2 since communication time is at most

multiplied by a constant.

Next consider the N(N-1) transfer. (Discussion of the

12
The order of request transmission must be carefully

scheduled in the inverse broadcast phase to ensure no more
than log N requests are actually received by any one PE.
Achieving such optimum scheduling is difficult; however,
scheduling policies approximating the desired behavior may
prove to be adequate.

13simultaneous transfers can be "timesliced" so that the
total time required is the sum of the individual transfer
complexities.

35

N-1 linear transfer will be omitted since a similar

argument applies to it as well.) Let the N values to be

transferred from each PE constitute one row of a NxN matrix

which is represented by a structure as in Figure 3.1 where

the top level may be located in an arbitrary PE of an

n-cube. In the N{N-1) request/acknowledge transfer each

destination PE requires a pointer to every row of the

matrix. Hence in the first phase of the transfer, all PEs

request via a cache tree a pointer to the first row

requiring a best case time of O{log N), then the second

row, and so on until the Nth row for a total best case time

of O{N log N). In the second phase, each PE sends N

requests for the N values it is to receive. These requests

collectively form an {inverse) N{N-1) transfer. In the

third phase each PE holding a. row of values to be

transmitted selects and sends the requested values

collectively forming another N{N-1) transfer. Each PE

receives N values and appends them into a vector; each

such append requires only constant time because only one

pointer to the structure being formed need exist. Pointers

to each result row may be collected by an inverse N-1

transfer and appended together in O{N) time to produce a

new NxN matrix represented by a structure. The total best

case time required for the request/acknowledge N{N-1)

transfer remains O{N log N) since each step requires no

more than O{N log N) time.

36

3.3 Storage Reclamation

The above mechanisms are adequate to implement the

transfer algorithms of Section 2 without affecting the

order of time complexity if storage reclamation is ignored.

Of course storage reclamation must be dealt with in a

practical machine. The reference count scheme [10] is

often proposed [13,21] for storage reclamation in dataflow

because structure definitions preclude circular references.

In the reference count scheme, each structure has an

associated non-negative integer called the reference count

indicating the number of copies of the pointer referring to

that structure. The reference count is incremented and

decremented -as copies

created and consumed.

of the pointer

When the count

are respectively

is zero, the

structure

However,

is no longer needed and

in a distributed processor

may be reclaimed.

environment the

classical reference count scheme incurs substantial

communication overhead when copies of pointers are made

since a request/acknowledge communication is required to

update the reference count before the new pointer may be

released.14 This communication overhead is unacceptable as

can be shown by considering the cache tree above. Su-ppose

the value to be broadcast is a pointer to a structure.

Then each time an internal node in the cache tree

replicates ._his

the PE holding the

pointer, it must first send a request to

structure to increase the reference

37

count. Since N-1 copies of the pointer will be made in a

N-way broadcast, the PE holding the structure requires O(N)

time to process the reference count; thus reference count

processing can increase broadcast time from O(log N) to

0 (N).

A generalization of classical reference counting

called weighted reference counting may be used to reduce

such overhead (2]. In this scheme, an arbitrary positive

intege: called the pointer reference weight (PRW) is

associated with each instance of a pointer. Corresponding

to the reference count in the classical scheme, each

structure has an associated non-negative integer called the

structure reference weight (SRW) which is the sum of the

PRWs of all pointers referring to that structure. (In the

classical scheme, all implied pointer reference weights are

equal to one and thus the SRW is the same as the reference

count.) As in reference counting, when a pointer is

destroyed its PRW must be subtracted from the referenced

structure's SRW. However, when m copies of a po inter wi"th

a PRW equal to x are made, if x>m then no change to the SRW

is required. In this case the pointer's PRW may be "split"

14
The PE ~aking the copy must wait for acknowledgment that

the reference count was actually increased. Otherwise, the
asynchronous operation of the machine could allow a
reference count decrement to occur from the destruction of
an otherwise unrelated instance of the pointer; this could
lead to premature reclamation of the structure.

38

into arbitrary positive intege:s x1 , ••• ,xm such that x =

x1+ ••• +xm where xi becomes the PRW on the ith copy of the

pointer. (The original instance of the pointer is

destroyed.)

Since changes to the SRW may be avoided when copies of

a pointer are made, the reference weight scheme can

dramatically reduce time overhead. For example, reconsider

the problem of broadcasting a structure pointer to N PEs.

If the PRW of this pointer is at least N then the broadcast

can be done in O(log N) time because splitting the

pointer's PRW at each internal node of the cache tree

increases each PE's work by only a constant factor.

The cache tree can also reduce time overhead in a SRW

decrease operation. Suppose N PEs each request the value

si from structure s. Each request contains a pointer

referring to s and since select destroys the pointer it

receives as an argument, the PRW of the pointer referring

to s in each of the N requests must be subtracted from the

SRW of s. This can be done in O(log N) time by having each

internal cache tree node accumulate the decrease in SRW as

it services incoming requests for s.
l • However, when an

internal cache tree node has no a priori information about

the number of si requests it will receive, it is not

convenient to accumulate all such decreases in SRW before

sending the first request for s. t th t PE
1 o e roo • This

problem can be handled by delaying transmission of decrease

39

SRW messages until copies of si have actually been

delivered to the PEs which originally requested si• These

PEs then initiate an additional inverse broadcast to sweep

together all decrease SRW messages into one decrease SRW

value which is forwarded to the PE holding structure s.

The total time required for the request/acknowledge data

broadcast and a broadcast to accumulate the SRW decrease

messages remains O(log N). Other policies with various

tradeoffs in timeliness of storage reclamation versus

concurrency potential are also possible using the reference

weight scheme.

3.4 NxN Matrix Multiply and N Element Quicksort Complexity

The above mechanisms are adequate to implement the

matrix multiply and quicksort algorithms of Section 2

without affecting the best case order of time complexity.

(The PDE problem is considered in a later subsection.) An

Id program for matrix multiply is given in Figure 3.2 where

the more readable syntax "new x[i] +- v" represents "new x

append(x,i ,v)" for appends within loops and

represents "select (... select

(select(x,i), j) ••• , m)" within expressions. This program

differs from a conventional matrix multiply program in two

respects. First, the matrices are represented by

structures (Figure 3.1) and thus A[i] returns a pointer

40

referring to the ith row of matrix A. Second, since

structure representation biases element access (i.e., in

lexicographic order) the B matrix is first transposed

before the multiplication is performed so that rows of st

represent columns of B.

The Id program for matrix multiply (as well as all

other programs considered in this paper) is independent of

the size of the input. Thus the program can be distributed

. h 2 . i using a cac e tree to N PEs in O{log N) t me; hence all

PEs are assumed to hold a complete copy of the program

although this would not necessarily be the case in a real

machine. As was discussed earlier dataflow code is a

collection of interconnected functions and copies of each

function may begin execution when the necessary arguments

arrive. However, for the purpose of complexity analysis it

is sometimes helpful to view the initiation of function

execution differently. A PE is said to initiate the

execution of a function if it supplies all arguments

required for that function. A part of each of the

following complexity analysis determines the time for a

single PE {the starting point for the computation) to

initiate the various parts of a program using the transfer

mechanisms of Section 2.

The following concerns the time complexity of matrix

transpose {Figure 3.2). The rows of each matrix are

assumed to be distributed as described in Section 2.3.2.1

41

while the top level of each structure may reside in any one

of the PEs also holding a row of the same structure. The

transpose procedure and its nested i-loop may be initiated

in any PE holding a row of matrix B. Under the

U-interpreter, the i-loop then initiates N copies of the

j-loop each in a distinct PE holding a row of B in O(N)

time using a N-1 linear transfer. The transpose can then

be completed in O(N log N) time simply by

request/acknowledge N(N-1) transfer.

using a

In the multiply procedure, each i-loop initiates N

copies of the j-loop in N distinct PEs and each j-loop then

initiates N copies of the k-loop for a total of N2 ~-loop

initiations in N2 PEs all in O(N) time. The time for

structure access is determined in the following. Since

row A is one of the inputs to a k-loop initiation,

sufficient copies of pointers referring to rows of matrix A

are made by the U-interpreter without increasing the order

of time complexity of program initiation (assuming the

reference weights of the original pointers are large

enough). Each k-loop initiation then uses a single copy of

one of these pointers N times to request the N elements of

a row of A. The case for matrix B is slightly different

since at [j J occurs in the j-loop which generates a total of

N2 requests for pointers. These requests may be satisfied

in O(N log N2) = O(N log N) time using a cache tree. Thus

all requests for pointers may be satisfied in 0 (N 1 og N)

42

time. The actual data

transfers as described

elements are

in Section

then

2

acquired by

but using

request/acknowledge communication. Pointers referring to

rows of the result matrix can then be appended together

using a N-1 linear transfer in O(N) time. Thus matrix

multiply can be done using structures to represent

matrices, a high level Id program to represent the

algorithm, and the pointer reference weight scheme to

provide for storage reclamation without increasing the best

case order of time complexity over that derived in Section

2.

An Id program for quicksort is given in Figure 3.3.

Since the numbers to be sorted can be represented in a

one-level structure, no special consideration for structure

representation is needed. Thus the data transfer algorithm

given in Section 2.3.3 is directly applicable in this case

to give a best case time complexity of O(N).

3.5 I-structures

If an iterative solution to the PDE problem is

programmed using a q-level structure, the pipelining and

hence the degree of parallelism described in Section 2 will

be lost. Consider the compilationl5 of a simple Id loop

which builds a structure x (Figure 3.4). The L and L-1

boxes generate and strip away, respectively, context for

43

each loop initiation much like conventional systems

generate and strip away context for each initiation and

return of a procedure. Similarly, the D and o-1 boxes

generate and strip away a unique context for the values

within each iteration of the loop. Such context changes

are directed by the U-interpreter and need not be

considered further here. Boxes with internal values such

as < > or v produce that value when triggered by any input

token. The ~ operator performs the identity function by

passing each input token directly to its output port. The

switch operator decides to which output port (T or F) each

input token is to be sent based on the corresponding

boolean valued token received at its side port. Forks in

lines indicate that the token input to the fork is to be

replicated so' identical tokens are placed on each output

line.

The point of interest in Figure 3.4 is that the output

of the append box, ..!:!.!! x, is circulated on each iteration

of the loop and thus x does not appear on the loop return

line until the loop terminates. This ordered construction

of x is required by the semantics of structures as can be

seen in the following example. Replace the third line of

the program in Figure 3.4 with •new x ~ append(x, f(i),

15ra . 1 . . di d . d i 1 i [3] comp1 at1on is scusse in eta n •

---------- -------- ~----------

44

g(i))". Since f(i) need not be a one-to-one function, the

selectors used for the m appends need not be distinct.

Hence the final value at each selector of structure x is

not known until the loop terminates. The effect of these

build-before-use structures on the PDE problem is to delay

initiation of the computation for the next iteration of the

outer loop until the current iteration is complete, and

hence no pipelining between outer loop iterations is

possible.

One solution to this problem is to use I-structures

instead of structures.16 I-structures may be regarded as

structures constructed in a restricted way. In the sequel

only one operational semantics and implementation of

I-structures is considered. Arvind and Thomas present a

more complete theory of I-structures and compare

I-structures with other functional data types [4]. The

restriction on I-structure construction used here is that

the value at each selector of a particular structure may be

appended to at most once (termed the single assignment rule

for selectors).17

The single assignment rule suggests an I-structure

implementation which allows values to be selected from an

16 h 1 . . d Anot er so ut1on is to use a ata type
[3] instead of structures. However,
inappropriate for expression of numerical

called •stream"
streams are often
algorithms [4].

45

I-structure before that I-structure is complete. Figure

3.5 shows the compilation of the same program fragment as

in Figure 3.4 but where x is considered an I-structure

instead of a structure. The I-structure pointer gener~tor

box allocates memory for the I-structure (the bounds of the

I-structure must be supplied), initializes the value at

each selector to the ~-present or empty valuel8 , and

sends out two pointers referring to the I-structure. For

error checking these pointers are marked •read-only" or

•upaateable• since in this simple model only the inside of

the loop is allowed to append to the I-structure. This

allows the clean up box to convert the I-structure to a

structure when the loop terminates by changing all empty

values remaining in the structure to the undefined value.

Note that the output of pointer x does not depend on

termination of the loop.19 Thus values at individual

selectors of an I-structure may be selected from outside

17
This rule differs from the single assignment rule for

program variables [9] since the validity of the rule for
program variables may be determined at compile time. The
validity of the single assignment rule for structure
selectors cannot in general be determined until execution
is complete as was shown in the example above' where
function f (i) determined the selectors.

18Alternatively,
allocation and
reinitialized on

memory could be
then each

deallocation.

mass
•memory

initialized before
block• would be

46

the loop as each value is appended to the I-structure

within the loop.

Impl emen ta ti on of I-structures is similar to

structures except a presence ~ is associated with each

I-structure selector. This presence bit is checked when a

select is attempted from an I-structure. If the presence

bit is on, select simply returns the value at that

selector. However if the presence bit is off, the value at

that selector is really a pointer to a list of select

requests for that value. Each such request is delayed by

adding the request to the list; the PE servicing that

request may then go on to other tasks. When the value

eventually becomes available through an append operation,

each request on the list for that selector is satisfied by

sending a copy of the selected value. Append also checks

the presence bit when appending to an I-structure. If the

presence bit is already on for the selector being appended

to then the single assignment rule for that selector has

been violated and an appropriate error message may be

issued.

19
Since termination of I-structure programs does not depend

on termination of embedded loops, I-structure programs are
more defined in the sense that an I-structure ~rogram may
produce results when an otherwise equivalent structure
program does not.

47

3.6 Partial Differential Equation Complexity

I-structures allow the pipelining desired in the PDE

problem since I-structures need not be complete before

values are selected. The following considers the time

complexity of an I-structure program which solves for one

variable of a q-dimensional sq_1x ••• Xs 0 PDE (Figure 3.6).

Assume the initial data is laid out in a sq_1x ••• Xs 1x O(se)

OW MCC as described in Section 2 but where the data is

represented as a q-level structure x 0 • Recall each si

includes boundary data at indices 0 and si-1, while the

coordinate

MCC, and

indices

a 1 ist

iq_1 , ••• ,i 0 indicate a PE address in a

of fixed coordinates in parentheses

represents a MCC hyperplane. Assume the levels .of

structure x0 are distributed such that x 0 [jq_1 , ••• ,jml'

0<m<q, is located in any PE in MCC hyperplane (iq_1=jq-l'

••• , i =j , ia=0) where m=q means the only restriction is m m 11

i 0=0, e.g. Figure 3.7. Thus the top level may reside in

any PE in hyperplane (ie=0) while lower levels are

restricted to the MCC hyperplanes from which most select

requests for each structure will originate in the nearest

neighbor access pattern of the PDE program (Figure 3.6).

Data resulting from each succeeding k-loop.iteration is to

be constructed as a q-level .I-structure to allow

pipelining. If the placement of the I-structures for each

of these k-loop iterations also meets the criterion above

(except i 0=k instead of 0), then the computation can

48

-~-------- ~-·-·- -- ---------- ----- -----

proceed nearly.the same as the PDE computation described in

Section 2. 3. 5.

The first step in the complexity analysis of the PDE

program is to determine the time for program initiation.

Recall that T is the number of k-loop iterations required

for convergence. Then the time for the program to unfold

under the U-interpreter is O(T + sq_1 + ••• +sg) since the

first PE will spawn T i-loops,20 each of these will

concurrently spawn sq-l j-loops, etc. Initialization of

the I-structures for all iterations can be done in time

linearly proportional to program initiation time since the

size of the vector to be initialized within the loop in

each case equals the number of subloops to be initiated.21

In addition, after each I-structure is initialized a

pointer referring to that I-structure is released in

constant time (Figure 3.5) and is returned as a value to

2 0
Th · 1 · h i 1 · 1 d · · t d is ana ysis assumes t e - oop inc u ing its nes e

loops may be initiated before all inputs to the loop are
available. Otherwise, initiations of these loops would
require initialization of the I-structure x from the
previous iteration of k. In theory, waiting for this
initialization tends to negate the advantage of
I-structures over structures. However, in practice the
initialization could be made very fast relative to other
operations in the machine. Such issues have been avoided
in the analysis by assuming that not all inputs are
required to initiate a loop.

21 I . 1 i . . . k 1 n practice such uncontro led nitiation of - oop
iterations and allocation of I-structures would probably
waste memory without improving performance over a policy
which delays initiation so that no more than one (or a
small number of) concurrent k-loop iteration(s) exist per
MCC hyperplane.

49

the I-structure within the next outer loop. Thus all

I-structures may be completely constructed except for the

elementary values at the bottom level in time linearly

proportional to program initiation time. The computation

may then proceed as described in Section 2.3.5 except that

q levels of structure x must be traversed to access each

element x[i,j, ••• ,m]. The top level contains s q-1

selectors and by means of a cache tree all PEs in MCC

hyperplane {i 0=k) may be sent the required pointer values

in

time since there are s * * PEs q-1 ••• sl in that hyperplane

which is also a (log {sq-l*···*s1))-cube by Corollary 2.2b.

Similarly, all requests for pointers in the next lower

level can be serviced in

time within each of sq-l distinct (log (sq_2• ••• •s1))-cuoes

synonymous by Corollary 2.2b with the sq-l MCC hyperplanes

(iq-l=j, i 0=k), 0~j<sq_1 , and so on for each structure

level until the level one removed from the bottom which

requires

time. By expanding the log term in each of these equations

50

to make them identical, the sum for all levels to satisfy

these pointer requests simplifies to

Assume the values x[i,j, ••• ,m] are concurrently requested

by all PEs for all k-loop iterations, followed by a request

for values x[i+l,j, ••• ,m], etc. for a total of O(q) values

per PE. 22 The time complexity of the overall PDE

computation is

O(T + sq-1+ ••• +s0) +

O(q(sq_1 + ••• +s 1 log (sq_1 • ••• •s1)))

pl u·s the time to do the actual computation from Section

2.3.5,

for a total of

If N=s -s - -s q-1- q-2-···- 0

O(q3 N log N + qT).

then this equation reduces to

In comparison, the complexity of the

22Note that the caches would automatically tend to
eliminate the need for actual traversal of all q levels for
each of the 2q+l values required to compute each result
value. In addition, the PDE program could be modified to
minimize red~ndant top level selects as was done in the
matrix multiply program. For simplicity, these options
were ignored in the analysis since they have little effect
on the overall order of time complexity.

51

same problem on a q-dimensional array computer where each

dimension is also of size N is O(qT) while on a sequential

machine the complexity is O(q Nq T).

52

4.0 EXPERIMENTAL RESULTS

Previous sections have analyzed network transfers,

programs, and mechanisms in terms of computational time

complexity. In this section analytic results on

I-structures are supported with evidence from executing

machine-compiled Id programs on the Irvine dataflow

simulator [22].

4.1 The Irvine Dataflow Simulator

Although complete simulation of the architecture

described in Section 3 would be desirable, so far this task

has not been attempted. Instead the Irvine dataflow

simulator was modified to independently test the utility of

I-structures. Although the results are not directly

applicable to the architecture described in this paper,

complexity analyses indicate I-structures should reduce

execution time of many programs on both architectures.

The following is a brief description of the simulated

architecture; details may be found in [22]. The Irvine

dataflow simulator is a detailed deterministic simulation

of a particular interconnection of PEs. Some PEs called

memory controllers (MC) are specialized to manipulate

structures and perform memory management. The

interconnection network is shown in Figure 4.1 where points

A and A' are connected together to form two

53

counter-rotating token ~ rings. Each ring is partitioned

into as many slots as there are PEs and each slot is either

empty or holds one fixed-length token. Four PEs are

connected together and to a memory controller by a local

bus which carries structure access requests and responses.

Each memory controller is directly connected to a private,

conventional !emory (M) organized as part of one unified

address space. MCs are connected together by a global bus

so every PE has indirect access to any data or code within

the machine. A group of four PEs connected by a local bus

to one MCC is termed a ph~sical domain. The collection of

PEs and MCs connected by the same counter-rotating token

bus is called a ring domain which is the largest group now

simulated. Assignment functions (Section 3.1) are chosen

so closely connected activities (e.g., the activities

comprising an instance of a procedure or loop body) are

confined to the same physical domain. Since tokens are

transmitted on that token bus which provides the shortest

distance path to its destination, such assignment functions

tend to reduce communication traffic between physical

domains thereby promoting unimpeded local communication

within concurrently operating physical domains.

54

4.2 Experiments: I-structures versus Structures

For simplicity all communication conflicts are ignored

in the following complexity analysis intended to aid in

understanding the experimental results (previous complexity

results are not directly applicable to the simulated

architecture). Consider once again a q-dimensional

s q-lx ••• xs 0 PDE program (Figure 3. 6) • As discussed in

Section 3. s, if this program were implemented using

structures the structure y and all of its substructures

must be complete before the next k-loop iteration can

beg in. Since each k-loop iteration is dependent only on

data from the previous k-loop iteration, recall that the q

nested loops within the k-loop may unfold under the

U-interpreter and thus the time required to complete each

k-loop iteration is O(sq_1+ ••• +s 0+q). Therefore the total

time required by the structure program is

O(T(sq_1 + ••• +s 0+q)) where Tis the total number of k-loop

iterations. For the one-dimensional planar hydrodynamics

code executed in the simulator
23

this equation reduces to

O(Ts 0). For ease in understanding experimental results,

the convergence test was removed and the number of k-loop

23This code was donated to the University of California by
the Lawrence Livermore Laboratory. The code is a
declassified and simplified version of a program which
simulates shock wave interactions by solving large PDEs.

55

iterations was artificially set to s 0 giving a complexity

for the structure program of O(s 02). , By comparison, an
\ .

equivalent I-structure program requires O(T+s 0) = O(s 0+s 0)

= O(s 0) since iteration k+l may begin as soon as the first

three values (in a one-dimensional problem) have been

computed in iteration k, etc.

To test this analysis the compilation of structure

variables in Id loops was changed from the structure schema

(e.g., Figure 3.4) to the I-structure schema (e.g., Figure

3. 5) • The hydrodynamics source code was not modified in

any way. A series of experiments was then conducted by

varying the number of PEs in the machine for each problem

size s 0• The minimum execution time from these experiments

for each problem size was plotted in a complexity graph

showing the· change in minimum execution time versus problem

size {Figure 4.2). This graph illustrates substantial

execution time reduction when I-structures are used even

for small problem sizes. Although the I-structure curve

appears almo·st 1 inear, communication conflicts in th·i·s

architecture would eventually cause the curve to bend

upwards for larger problem sizes thus showing a real

complexity higher than O{s 0). However the coefficients for

higher order terms in the actual complexity are small

enough so that these terms do not appear in the

experimental results when the simulator is in the "standard

configuration" [22].

56

57

In the case of Gaussian elimination, similar

complexity analysis (again ignoring communication

conflicts)
2

leads to O(N) time to solve N equations with N

unknowns by a structure program while the time for an

I-structure program is O(N). These analyses are supported

(although not as dramatically) by the experimental results

given in Figure 4. 3. Note that Gaussian elimination on a

. 1 . . 3 sequentia machine requires O(N) time.

5.0 CONCLUSIONS:

Our goal is to design a general-purpose computer

comprising large numbers of cooperating processors to

reduce execution time without increasing software costs.

Toward this goal we chose to base the design of the

architecture on dataflow since the traditional von Neumann

model appears little suited for large scale multiprocessing

[6,13,20,22].

New computer architectures are often justified by

their •cleverness quotient" or by listing concurrent

operations. The difficulty with such evaluations is either

extreme subjectivity or irrelevance since cleverness or

concurrency gains little when unforeseen bottlenecks

dominate execution time. Instead we suggest complexity

analysis as a tool appropriate for designing and evaluating

multiprocessor architectures since complexity analysis

quickly uncovers major bottlenecks. However, the

complexity analyses in this paper have two shortcomings.

First, large constants may be hidden in the 0-notation used

to simplify analysis; hence small computations may perform

relatively poorly. Second, only a few numerical algorithms

were analyzed and thus more work is needed to show that the

architecture is indeed suitable for general-purpose

computation.

The asynchrony and decentralization present in the

proposed architecture makes accurate analysis difficult and

58

thus salient features were abstracted to derive a parallel

computer model more amenable to analysis. This model is

representative of a class of models since the binary n-cube

on which it is based can be directly simulated by a number

of other networks. For example, Siegel has shown that each

of the n-1 sets of interconnections, cube. 0<i<n, of an
1

n-cube can be simulated with a "SIMD perfect shuffle"

network in n+l steps while the set of interconnections,

cube0 , requires only one step [34). Since the parallel

computer model allows simultaneous cube. transmissions in
1

one step (i.e., each transmitting PE may independently use

a different link i} and there are n-1 such i # 0, the

total for the SIMD perfect shuffle to simulate the parallel

computer network is (n-1} (n+l}+l = n2 • Thus complexity

results derived for the parallel computer model are valid

for the SIMD perfect shuffle when multiplied by at most n 2•

In addition, the binary n-cube was found to have a number

of properties facilitating parallel complexity analysis

including regularity, concurrency potential, and ease of

creating partitions. However, the centralized clock of the

parallel computer model detracts from machine modularity

and programming flexibility. Section 3 of the paper showed

that the clock and other control could be decentralized

with minimal effect on the best case order of time

complexity where some of the mechanisms proposed to do this

included request/acknowledge transfers, weighted reference

59

60

counting, cache trees, and I-structures.

, ,

I ·-- -~

Figure 2.1
Examples of n-cubes

61

3-cube,N=S

4-cube,N=16

\
'

'" ,

' --
~

-~~----- J __ _,

110

o 1 o ...__,.... _ _.
II

000
, , I ~

, , ,
II
II
••100
~---

001

Figure 2.2a

101

62

The four 1-cubes of one of the three (=3!/(1!2!))
possible.4 1 1-partitions of a 3-cube are.i~dicated by
double lin~~ (n=3, m=l, k=4, 4

3
, 1 -partit,ion={t}) •

/

000

,

I
I

!!QQ_ ~- 101 ,

-
~-- -----~---- - -----------..__,,-

Figure 2.2b
One of the two 2-cubes sharing exactly one PE with
each of the 1-cubes in Figure 2.2a is shown with
double lines (complement of 4

3 1-partition = 23 2-
partition = {2, 0}) • ' '

\

I
f. \ .

61

*
0111 1110

>-----1111

0010 1011 Row4
I I
I I I

LUO~ I 0101 ,./'owo- Row2
,

" ,
"

0000
Rowt

0001 1000

Figure 2.3a
Initial configuration of rows of matrix A in a 4x4
matrix multiplication.

, , ,
1

I
I
• 1
~---,

*

2

Figure 2.3b

1 " ,
,

I

• 1 ·---, 2

Result of broadcasting rows of A over 4th dimension
and front to back edges (i.e., the 2-cubes of partition
{ 2,3 }>. The numbers indicate row numbers of matrix A.

* Only one of eight 4th dimension connections is shown.

*
0111 1110 1111

0010
I I
I I
I
._R_o!~ ~~~w_4 1101

0000
/'0100 ,,,," 1100 ,,

Row 1 0001 1000
Row 3

Figure 2.3c
Initial configuration of rows of matrix B and also
the resulting configuration of Bt.

*
2 4 4

1 3
I
I I

'2 2 '4 4 ..._ ___ ·---, ,, ,, , ,, ,, ,,
1 1 3

Figure 2.3d t
Result of broadcasting rows of B over front and back
faces (i.e., the 2-cubes of partition={O,l}). The
numbers indicate row numbers of matrix Bt.

* Only one of eight 4th dimension connections is shown.

6.4

3·1 ..._~, ---'
I

1·1
/

/

/

11·2
~--- -

2· 1

*

2·2

/

I
I

3·4

4·3

11·4 ·--/
1·3.,/ ____ ,,

Figure 2.3e
Combined results of A and Bt broadcasts with inner
products ready to be computed.

* Only one of eight 4th dimension connections is shown.

65

* Only one of eight 4th dimension connections is shown.

*

0101

0000

i
a b

e 0000 0001

f 0100 0101

1100 1101
9

h 1000 1001

a b

Figure 2.4

1000

c

0011

0111

1111

1011

c

d

0010

0110

1110

1010

d

I
~.

1101

1001

e

f

h

:c. ___ -··

66

A 4-cube is topologically equivalent to a 4x4 MCC with
orthogonal wraparound. (All labels represent corresponding
n-cube addresses; MCC labels are not shown.)

67

I

a ..I.
I

a
I
I
t

b b
I

_ _I

Figure 2.5
A 4-cube is configured as a 2x8 MCC (unneeded connections
are ignored). A hyperplane (line) then bisects the MCC
into two 3-cubes where some of the connections are
recovered from those ignored during the original conf ig
uration.

hyperplane (column) (i0 " o l
in which

rows of initial
data are assi9ned ,

"\

-so-
a c::J

PE

z

""--...... --.1

d
ortho9onal

-----. wra.paround
connection

a

b~ one of the
0 (50)-stage
•pipelines"

... g.
-------- 0(50)

Figure 2.6
Example layout of a 2-dimensional s

1
xs

0
PDE problem

68

69

I

A~,

I
1 . . . N

I
I

I I
I

I
1 ... N 1 ... N
I I I I

V1 1 Vl N VN 1 v
• N,N, • '

Figure 3.1
Structure representation of a NxN matrix

procedure transpose (B, N)
(trans : structure[l •• N] I see note* I
initial trans ~ < >
for i from 1 to N do
--new traris [i)~ T

--row : structure[l •• N]
initial row ~ < >
for J from 1 to N do
--new row [j] += B [),i]
return row)

~trans) ;

procedure multiply (A, Bt, N)

*

(C : structure[l •• N]
initial C ~ < >
for i from 1 to N do
--row ~ A [Tf ;

new-c [i] ~ (
--row c : structure[l •• N]

initial row C ~ < >
for J from I to N do
--col~ BtTj] ;-

new-row C [j] ~ (
--rnitial inner-prod ~ 0

for k from 1 to N do
---ri'ew inner prod ~inner_prod + row~A[k]*col~B[k]
return inner-prod)

return row C) -
return C) -

Figure 3.2

The call "multiply(A, transpose(B,N), N)•
returns the product of NxN matrix A and NxN matrix B.

This Pascal-like declaration is not part of Id and is for
illustrative purposes only.

70

procedure quicksort (A, N)
(m ~ N div 2 ;

*

below, ~above ~ (
above, below : structure[l •• N] ;
in it i a 1 be 1 ow ~ < > ; j ~ 0 ;

above ~ < > ; k ~ 0
for i from 1 to N do
(if TTm

- then (if A[i] < A[m]

* see note !

-then new below[j+l] ~ A[i] ; -- new j ~ j+1
else new above[k+l] ~ A[i]
- new- k ~ k+l))

return (.!f j > 1 then quicksort(below, j)
else below),

j '
U:.!. k > 1

return (

then quicksort(above, k)
else above))

sorted : structure[!. .N] ;
initial sorted ~ append(below, j+l, A[m])
for i "'from j+2 to N do
--new sorted[i]-~ aoove[i-j-1]
retllr'n sorted))

Figure 3.3
Id procedure to sort N element vector A

71

This Pascal-like declaration is not part of Id and is for
illustrative purposes only.

72

r - - - - -,

(initial x - < >

for l from 1 to m do

new x - oppend(x,i,v)

return x)

L _J

L

new i

Figure 3.4
Example compilation of an Id loop expression

r - - - - - - - - - - - -

(initial x - <>

for i from 1 to m do

new x - append(x,i,v)

L - -

read-only
I-structure

pointer
x

return

- - -

x)

- - - - -

L

updoteQble
I-structure

pointer
x

Figure 3.5

- - - - -

new i

.,

.J.

Compilation of the same program fragment as in Figure
3.4 but treating x as an I-structure rather than a
structure

73

(initial x ~ xe I Xe contains initial PDE data
represented by a q-level structure I

*

for k from 1 ~ (convergence is achieved) do

new x ~ (
y : _!-structure[e •• sq_1-11 I see note*

initial y ~ <e:x[e], (s 1-l):x[s 1-11> q- q-

fo r i from 1 to sq_1-2 do

new y[i] ~ (
y_sub_plane : !-structure[e •• sq_2-l]

initial y_sub_plane ~ <e:x[i,e], (sq_2-l):x[i,sq_2-1J>

for j from 1 to sq_2-2 do

new y_sub_plane[j] ~ (

row : _!-structure[e •• se-ll

initial row~ <e:x[i,j, ••• ,e], (se-l):x[i,j, ••• ,se-ll>

for m from 1 to se-2 do

new row[m] ~ x[i,j, ••• ,m]/2 +

return row)

(x[i+l,j, ••• ,m] + x[i-1,j, ••• ,m] +
x[i,j+l, ••• ,m] + x[i,j-1, ••• ,m] +

x[i,j, ••• ,m+l] + x[i,j, ••• ,m-l])/(4*q)

return y_sub_plane)
returny}

r et u rii"'X')

Figure 3.6
Sample Id program to solve for

variable x (e.g., temperature) of a PDE

This Pascal-like declaration is not part of Id and is for
illustrative purposes only.

74

75

S1-t • • •
•
•
• x0 (i]

1111111
r -s1- ••• • •

1111111
• -so-
• PE(j,r,o,)

Xo

p • ••• • •• •
X0 [I., P] •

•
• .
k • ••• .

•
x.D. kJ PE(J,k,o)

•
• • • •

••• j • • • .t • • • S2-1

_ 0 < S0 >

l~/~ -----

Figure 3.7
(q=3)-dimensional PDE initial 'data structure x

0
layout

is shown for MCC plane (io=O) . Top level of x 0 may
reside in any PE (e.g., rightmost PE above) in MCC plane
(io=O), xo[j] may reside in any PE (e.g., top PE above)
in MCC column (i2=j, io=O), and data vector xo[j,k] must
reside in PE(j,k,0).

physical domain d physical domain d + 1

token buses

0 0 0

0 0 0

global bus

Figure 4.1
The interconnection of processors (PEs), memory
controllers (MCs), and memories (Ms) in the Irvine
dataflow simulator.

76

---~-----

100

90
0 Structure program

80 c I - Structure program 4

• e
I- 70
c
0 - 60 :I
u • llC
~

E
50

:I
E
c 40

::E

30

20

2 3 4 5 6 7

Problem Size

Pigure 4.2
Execution time complexity curves for a one-dimensional
planar hydrodynamics simulation. The curves show that.
I-structures reduce execution time through increased
parallelism. The number of PEs used to achieve the

77

minimum execution time appears adjacent to ~ach point.

'· r; _________ , ---- ~

25

e 20
;::
c
0

- 15 ::>
u .,
II(

LIJ

E 10
::>
E
c

::e 5

1

o Structure Program

o I - Structure Program

4

2 3 4 5 6
Problem Size

Figure 4.3

78

12

7 8

I
I ,

. L__-f

Execution time complexity curves for Gaussian elimination·
The number of PEs used to achieve the minimum execution
time appears adjacent to each point.

u

.jl•

REFERENCES

1. Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

2. Arvind, personal communication.

3.

4.

Arvind, K.P.
asynchronous
machine,• TR.
Univ. of Ca.,

Gostelow, and W.E.
programming language

114a, Dept. of Inf. and
Irvine, CA, Dec. 1978.

Arvind, and R.E. Thomas, "I-structures:
data type for functional languages,•
publication), July 1980.

Plouffe, "An
and computing
Comp. Science,

an efficient
(submitted for

5. Ashcroft, E.A., and W.W. Wadge, "Lucid, a nonprocedural
language with iteration•,~ Vol. 20, 7 (July 1977),
519-526.

6. Backus, J., •can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs,•~, Vol. 21, 8 (Aug. 1978), 613-641.

7. Batcher, ·K.E., "The flip network in Staran,• Proc.
International Conf. on Parallel Processing, Aug. "!916,
6 5-71.

8. Bouknight, W.J., S.A. Denenberg, D.E. Mcintyre, J.M.

9.

Randall, Sameh, A.H., and D.L. Slotnick, "The Illiac IV
system,• Proceedin~s of the IEEE, Vol. 60, 4 (April
1972), 36§-388. . ~ ~ ~

Chamberlin, D.D., "The
parallel processing,•
1971), 263-269.

single-assignment approach to
AFIPS ~ ~· Vol. 39 (Nov.

10. Collins, G.E., "A method for overlapping and erasure of
lists,• CACM, Vol. 3, 12 (Dec. 1960), 655-657.

11. Comte, D., and N. Hifdi, "LAU multiprocessor:
microfunctional description and technological choices•,
First European Conf. on Parrallel and Distributed
Processing ~.,---rJ:"c. syre, Ed.), Feb:-!979, 8-15.

12. Davis, A.L., "The architecture and system methodology
of DDMl: a recursively structured data driven machine,•
Proc. Fifth Symposium on Computer Architecture, April
~' 210-21;.

79

- -- --------

80

13. Dennis, J.B., "First version of a data flow procedure
language,• Programming Symposium: Proc. Collugue sur la
Programmation {B. Robinet, Ed.)-;---Lecture Not~ In
eomputer Science, 19, Springer-Verlag, NY, I974;
362-376.

14. Dennis, J.B., C.K.C. Leung, and D.P. Misunas, "A highly
parallel processor using a data flow machine language,•
CSG Memo 134-2, Lab. for Comp. Science, MIT, MA, 198e
(to appear in~ TransactioRs ~Computers).

15. Farrel, E.P., G. Noordin, and Treleaven, P.C., "A
concurrent computer architecture and a ring based
implementation,• Proc. Sixth Symposium on Computer
Architecture, Aprir-I9'79, 1-11.

16. Flynn, M.J., •some computer organizations and their
effectiveness,• IEEE Transactions on Computers, C-21, 9
(Sept. 1972), 94~e. -

17. Forsythe, G.E., and W.R. Wasow, Finite Difference
Methods for Partial Differential Equations, Wiley, New
Yorli, NY,-r§'60.

18. Gecsei, J., "Interconnection networks from three-state
cells," IEEE Transactions on Computers, c-26, 8 (Aug.
1977), 1e-s::7r1. ~

19. Gentleman, W.M., "Some complexity results for matrix
computations on parallel processors," Journal of the
~' Vol. 25, 1 (Jan. 1978), 112-115.

20. Glushokov, V.M., M.B. Ignatyev, V.A.
Torgashev, V.A., "Recursive machines
technology," Information Precessing 74,
(Ed.), North-Holland, NY, 1974, 65-70:'"

Myasnikov, and
and computing

J. L. Rosenfeld

21. Gostelow, K.P., and R.E. Thomas, "A view of dataflow,"
AFIPS !!£.£~.,Vol. 48 (June 1979), 629-636.

22. , "Performance of a simulated data flow
computer", IEEE Transactions~ Computers, Vol. C-29,

10 (Oct. 19~ 905-919.

23. Johnson, D., et al., "Automatic partitioning of
programs in multiprocessor systems,• COMPCON Spring 80
~., Feb. 1980, 175-178.

24. Knuth, D.E., The Art of Computer Programming Vol. 3,
Addison-Wesley;-Reading, MA, 1973.

81

25. Kuck, D.J., and A.H. Sameh, •parallel computation of
eigenvalues of real matrice~,· Information Processing
71, North-Holland, NY, 1972, 1266-1267.

26. Lawrie, D.H., "Access and alignment of data in an array
processor," IEEE Transactions on Computers, C-24, 12
(Dec. 1975), T!45-1155. ~

27. McCarthy, J., •Recursive functions of symbolic
expressions and their computation by machine, Part I",
~' Vol. 3, 4 (Apr. 1960), 184-195.

28. Mead, c., and L. Conway, Introduction to VLSI Systems,
Addison-Wesley, Reading, MA, 1980, Chap:" S:--

29. Nassimi, D., and s. Sahni, •si tonic sort on a
mesh-connected parallel computer,• IEEE Transactions on
Computers, C-27, 1 (Jan. 1979), 2-7-:---

30. , "An optimal routing algorithm for
mesh-connected parallel computers,• Journal of the ~,
Vol. 27, 1 (Jan. 1980), 6-29. - ---

31. Pease, M.C., "The indirect binary n-cube microprocessor
array", IEEE Transactions on Computers, C-26, 5 (May
1977) , 4 5"'8-473. -

32.

3 3.

34.

Preparata, F.P., and J. Vuillemin,
cube-connected-cycles: a versatile network for
computation," Proc. 20th Foundations of Comp.
Oct. 1979, 140::r.r7. ~ - ~

"The
parallel
Science,

Rumbaugh, J.E.,
Transactions on
138-146.

"A dataflow
Computers,

multiprocessor,• IEEE
C-26, 2 (Feb. 19.,.,...,,..

Siegel, H.J., "A model of SIMD machines and a
comparison of various interconnection networks," IEEE
Transactions on Computers, C-28, 12 (Dec. 19~
907-917.

35. Squire, J.s., and S.M. Palais, "Programming and design
considerations of a highly parallel computer,• AFIPS
SJCC ~.,Vol. 23 (1963), 395-400.

36. Stone, H.S., "Parallel processing with the perfect
shuffle", IEEE Transactions on Computers, C-20, 2 (Feb.
1971), 153-=Ibl'. -

37. Sullivan, H., and T.R. Bashkow, "A large scale,
homogeneous, fully distributed parallel machine, I,"
Proc. Fourth Symposium on Computer Architecture, 1977,
rn=117.

38.

39.

Sullivan, H., T.R. Bashkow, D. Klappholz, and
"CHoPP: interim status report 1977,"
Electrical Engineering and Comp. Science,
University, N.Y., NY, 1977.

82

L. Cohn,
Dept. of

Columbia

Thompson, C. D. , and H. T. Kung,
mesh-connected parallel computer,"
(April 1977), 263-271.

"Sorting on a
~' Vol. 20, 4

40. Treleaven, P.C., "Exploiting program concurrency in
computing systems," Computer, Jan. 1979, 42-50.

41. Tripathi, A.R., and G.J. Lipovski, "Packet switching in
banyan networks," Proc. Sixth Symposium on Computer
Architecture, 1979, Tb'l=l67. ~

42. Watson, I., and J. Gurd, "A prototype dataflow computer
with token labelling," AFIPS NCC ~., Vol. 48 (June
1979), 623-628.

43. Wittie, L.D., "Efficient message routing in
mega-micro-computer networks," Proc. Third Symeosium on
Computer Architecture, 1976, 13b='I40.

44. Wu, c., and T. Feng, "Routing techniques for a class of
multistage interconnection networks," Proc.
International Conf. on Parallel Processing, 1978,
197-205.

45. Wulf, W.A., and C.G. Bell, "C.mmp--A
multi-mini-processor," AFIPS FJCC ~., 1972, 765-777.

