

2

ACKNOWLEDGEMENTS

During my four years at MlT, my thesis supervisors, Albert Meyer and Vaughan Pratt,

were always generous with their time, giving me much expert guidance and warm encouragement.

l am deeply grateful. Many thanks to Michael Sipser and Neil Immerman for so readily and

amiably agreeing to be readers. The students of the Theory Group were, without exception,

always helpful and supportive. Extra thanks are due to Andy Moulton for so cheerfully enduring

my constant conversational forays into his office.

Loving care, essential for the continued mental health of thesis-fixated graduate students,

was provided by someone Yery special: Denise.

This research was funded in part by the National Science Foundation under grant MCS

7910261.

37

[18] M. 0. Rabin, "Decidability of Second Order Theories and Automata on Infinite Trees",
Transactions of the American Mathematical Society, 141, 1-35, 1969.

[19] M. 0. Rabin, "Automata on Infinite Trees and the Synthesis Problem", Hebrew
University Dept. of Mathematics Technical Report No. 37, 1970.

[20] K. Segerbcrg, "A Completeness Theorem in the Modal logic of Programs" (preliminary
report), Notices of the American Mathematical Society, 24, 6, A-522, 1977.

[21] R. S. Streett, "Propositional. Dynamic Logic and Program Divergence", M. S. thesis
proposal, Dept. of EECS, MIT, 1979.

[22] R. S. Streett, A Propositional Dynamic Logic for Reasoning About Program Divergence,
M. S. thesis, Dept. of EECS, MIT, 1980.

[23] R. S. Streett, "Propositional Dynamic Logic of Looping and Converse", Proceedings of
the 13th ACM Symposium on the Theory of Computing, 375-381, 1981.

3

1 Introduction

Dynamic logic [5, 6, 15, 16] applies concepts from modal logic to a relational semantics of

programs to yield various systems for reasoning about the before-after behavior of programs.

Analogous to the modal logic assertions 0 p (possibly p) and Op (necessarily p) are the dynamic

logic constructs <a>p and [a]p. If a is a program and p is an assertion about the state of a

computation, then <a>p asserts that after executing a, p can be the case, and [a]p asserts that after

executing a, p must be the case.

A dynamic logic includes both a programming language for representing programs and an

assertion language for expressing properties of computation states; different dynamic logics result

from the selection of different programming and assertion languages. The underlying assertion

language of propositional dynamic logic or PDL [5, 6, 16] is the propositional calculus; its

programming language consists of regular expressions over uninterpreted program labels and tests,

i.e., the programming primitives arc black box programs, and more complicated programs are built

up using the nondeterministic control structures of sequencing, testing, choosing, and iterating.

Although PD!~ can express many interesting properties of programs, Pratt has shown that

it is not powerful enough to capture the notion of infinite looping in regular programs [16].

However, by adding a natural formula construct delta to PDL, we obtain a programming logic

strong enough to express a useful propositional notion of infinite looping. The resulting logic iS

aiso strong enough to express all formulae of two other propositional logics of programs:

Mirkowska's Propositional Algorithm!c Logic (PAL) [12] and Den-Ari's, Manna's, and Pnucli's

Unified Logic of Branching Time (UB) [l].

A striking feature of PDL is that it satisfies the following finite model property: an

arbitrary (perhaps infinite) model of a PDL fonnula p can be reduced to a small finite model of p

by merging those states which sati~fy exactly the same subformulae of p. This property plays a

key role in the known decision procedures for PDJ, [5, 17]. This technique docs not extend to

delta-PDL, since there is a formula which is satisfiable in an infinite model which cannot be

reduced to a finite model by merging states. This delta-PD/, fonnula is therefore not equivalent to

any PDL formula, and so delta-PDL is strictly more expressive than PDL Nevertheless, we shall

sec that delta-POL is decidable and docs satisfy a finite model property.

Pratt's original formulation of dynamic logic included the programming construct converse

[15]. Given a program a, the converse of a is the p!'ogram which nms a backwards, i.e., which

undoes all the computations performed by a. Conrerse-PDJ., the cxte11~ion of PD!. to include the

converse construct, satisfies the same finite model property as PDJ, and the known decision

procedures for PDL extend witlhmt difficulty to co11versc-PIH [5, 17].

36

Bibliography

[1] M. Ben-Ari, Z. Manna, and A. Pnueli, "The Temporal Logic of Branching Time",
Proceedings of the 8th ACM Symposium on the Principles of Programming Languages,
164-176, 1981.

[2] J. de Bakker, Mathematical Theory of Program Correctness, Prentice-Hall, 1980.

[3] E. W. Dijkstra, "Guarded Commands, Nondeterminacy, and Formal Derivation of
Programs", Communications of the ACM, 18, 8, 1975.

[4] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[5] M. J. Fischer and R. E. Ladner, "Propositional Dynamic Logic of Regular Programs",
Journal of Computer Science and Systems, 18, 194-211, 1979.

[6] D. HareL First Order Dynamic Logic, Springer- Verlag Lecture Notes in Computer
Science 68, 19?9.

[7] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming", Communications of
the ACM, 8, 576-580, 1969.

[8] R. Hossley and C. W. Rackoff, "The Emptiness Problem for Automata on Infinite
Trees", Proceedings of the 13th IEEE Symposium on Switching and Automata Theory,
121-124, 1972.

[9] R. McNaughton, "Testing and Generating Infinite Sequences by a Finite Automaton",
lnfonnation and Control, 9, 521-530, 1966.

[10] A. Meyer, "Weak Monadic Second Order Theory of Successor Is Not Elementary
Recursive", Boston Logic Colloquium, Springer-Verlag Lecture Notes in Mathematics
453, 1974.

[11) A. Meyer and K. Winklmann, "On the Expressive Power of Dynamic Logic",
Proceedings of the llth ACM Symposium on the Theory of Computing, 167-175, 1979.

[12] G. Mirkowska, "Complete Axiomatizations of Algorithmic Properties of Program
Schemes with Bounded Nondeterministic Program Schemes", Proceedings of the 12th
ACM Symposium on the Theory of Computing, 14-21, 1980.

[13) R. Parikh, "A Completeness Result for Propositional Dynamic Logic", Proceedings of
the Symposium on the Mathematical Foundations of Computer Science, Springer-Verlag
Lecture Notes in Computer Science 24, 1978.

[14] R. Parikh, "A Decidability Result for a Second Order Process Logic", Proceedings of
the 19th IEEE Symposium on Foundations of Computer Science, 177-183, 1978.

[15] V. R. Pratt, "Semantical Considerations on Floyd-Hoare Logic", Proceedings of the 17th
IEEE Symposium on Foundations of Computer Science, 109-121, 1976.

[16] V. R. Pratt, Applications of Modal Logic to Programming. MIT LCS Technical Memo
TM-116, 1978.

[17] V. R. Pratt, "Models of Program Logics", Proceedings of the 20th IEEE Symposium on
the Foundations of Computer Science, llS-122, 1979.

4

The two constructs delta and converse interact to make delta-converse-PDL significantly

different from either delta-PDL or converse-PDL. · Delta-converse-PDL docs not satisfy the finite

model property: there is a fonnula satisfiable in an infinite model but not in any finite model.

This proves that delta-converse-PDL is strictly more expressive than either delta-PDL or converse­

PDL. The failure of a logic to satisfy the finite model property is often taken as an indication of

its undecidability, but in this case the evidence is misleading; delta-converse-PDL is in fact

elementarily decidable, viz., decidable in time bounded by an eightfold composition of exponential

functions.

There is a straightforward proof of the decidability of de!ta-PDL by embedding it into

SnS, the second order theory of several successors [21]. (This method was used by Parikh to prove

the decidability of a logic which he called Second Order Acyclic Process Togic (SOAPL) [14].) The

upper bound on the complexity of delta-PDL obtained in this way is not elementary, since SnS

cannot be decided in elementary time [10]. In any case, there docs not appear to be a

straightforward embedding of de!ta-converse-PDL into SnS.

Models of delta-PIJL and SOAPL formulae can be viewed as labelled graphs. These

graphs can be unravelled or unwound into tree-structured models in which programs conform to

the tree structure. i.e., programs connect nodes only to their descendants in the tree. The

translation of these logics into SnS depends crucially on this fact. The decidability of SnS can be

established via a reduction to the emptiness problem of awornata on infinite trees [18]. A

quadruply exponential time decision procedure for de!1a-PDL can be obtained by directly reducing

deli a- P DL satisfiability to this emptiness problem, bypassing the translation into S'nS [22]. The

reduction involves the construction, for each fonnula p, of an automaton which accepts, in some

sense. models of p. It follows by automata theoretic arguments that every satisfiable formula has a

finitely gcnerablc model, i.e., a model obtained by unravelling a finite graph. It is not difficult to

show that this finite. graph is itself a model, so that delta-PDL docs satisfy the finite model

property. The quadruply exponential upper bound on the computational complexity of de!ta-PDL

can be improved by an exponential factor by showing that the automata used to decide delta-PDL

satisfiability belong to a special class whose emptiness problem is exponentially easier than the

general case.

Models of delta-converse-PIH formulae are also labelled graphs and these graphs can also

be mrnound into tree-structured models. However, unlike the tree models for the previous logics,

programs in dPlta-converse-PDL tree models do not conform to the underlying tree structure;

programs can link arbitrary nodes of the tree. The presence of such programs prevents a

straightforward reduction of delta-com1erse-PDJ, to the emptiness problem for automata on infinite

trees. However, the semantics of the converse construct suggests a definition of deterministic two­

way au10111a1a on infinile frees such that the sati:;Ciability problem for delta-converse-PDL is

reducible to the emptiness problem for these newly defined automata. The d<:ci<lability of de!1a­

co11vcr.se-J>/J/, follm-1s from a reduction of the lwo 1\,11· emptiness problem to the ordinary <1r unc-

35

In addition, Parikh showed that adding additional axioms

(9) p __. [a]<a ->p

(10) p __. [a -]<a>p

to the above complete axiomatisation for PDL yields a complete axiomatisation for converse-PDL

[13]. A natural question to ask is whether there is are one or more axioms concerning the D..

construct which, when added to the above complete axiomatisations for PDL and converse-PDL,

yield complete axiomatisations for delta-PDL and delta-converse-PDL.

Conjecture: The following two axioms

(11) D..a ~ <a>D..a

(12) [a*](p __. <a>p) --. (p --. D..a)

arc sufficient to produce complete axiomatisations for de/ta-PDL and delta-converse-PDL.

The complexity theory results in this thesis have depended very heavily on results

concerning finite automata on infinite trees. Below are two interesting open problems concerning

two-way automata.

Open Problem: Can nondeterministic two-way automata be simulated by one-way automata?

Open Problem: How many states are required to simulate a two-way automaton with a one-way

automaton? In particular, is there, for infinitely many n, a two-way automaton with n states which
n 2n 22n

cannot be simulated by a one-way automaton with less than 2n (or 22 or 22 or 22) states?

5

way emptiness problem.

Although delta-converse-PDL docs not satisfy the finite model property, the models of a

delta-converse-PD L fonnula arc recognizable by a finite automaton. As before, it follows that

every satisfiable fonnula has a finitely generable model, i.e .. a model obtained by unravelling a

finite graph. Although in general this finite graph is not a model of the original formula, it is a

representation of a model, so that delta-converse-PDL satisfies a finite representation property.

This clarifies why the logic is decidable.

Most of the results in this thesis which concern delta-PDL originally appeared, in different

form. in the author's Master's thesis [22]. A preliminary version of the results in this thesis

concerning ddta-converse-PDL appeared in the Proceedings of the Thirteenth ACM Symposium on

the Theory of Computing [23].

34

6 Conclusions and Open Problems

The main results of this thesis are elementary recursive decision procedures (i.e., algorithms

which run in time O(expm n) for some m, where n is the length of the input) for delta-PDL and

delta-converse-PDL. The existence of these algorithms establishes upper bounds on the

computational time complexity of the satisfiability problem for these logics. Unfortunately, the

best lower bound for these logics is the following one proved by Fischer and Ladner for PDL.

Theorem 6.1 [6]: There is a constant c > 1 such that PDL (and hence its extensions) cannot be

decided in time en. where n is the length of the formula tested.

The large gaps between the best known upper and lower bounds, doubly exponential in the

case of delta-PDL and septuply exponential in the case of delta-converse-PDL, leave room for

further work in the complexity theory of these logics.

Open Problem: What are the exact computational complexities of delta-PDL and delta-converse­

PDL? In particular, does either or both require doubly exponential time to decide?

Since PDL is decidable, it has an uninteresting complete recursive axiomatisation: the set of

all valid formulae. However, one would still like to find a simple and natural complete

axiomatisation. In the case of PDL, a completeness proof for the following set of axioms was first

announced by Segerberg [20]; the first complete proof to appear is due to Parikh [13].

Axioms:

(1) All the tautologies of the propositional calculus

(2) [a](p - q) - ([a]p - [a]q)

(3) [a;b]p ~ [a][b]p

(4) [aUb]p ~ [a]p & [b]p

(5) [a*]p - p & [a]p

(6) [a*]p - [a*][a*]p

(7) [a*](p - [a]p) -+ (p - [a*]p)

(8) [p?]q ~ (p - q)

Rules of Inference:

(Modus ponens) If p and p - q are theorems, then q is a theorem.

(Generalization) If p is a theorem, then so is [a]p.

6

2 Syntax, Semantics, and Expressive Power

In this chapter we formally define the syntax and semantics of delta-converse-PDL (which

contains PDL, delta-PDL, and converse-PDL as sublogics). We then show how a large number of

logical constructs used in proving program correctness can be expressed in delta-converse-PDL.

We next prove some relationships between delta-converse-PDL, its various sublogics, a\ld two other

propositional logics of programs, the Propositional Algorithmic Logic (PAL) of Mirkowska [12) and

the Unified Temporal Logic of Branching Time (UB) of Ben-Ari, Manna, and Pnueli [1].

We are given a set I10 whose elements are called atomic programs and a set cI>0 whose

elements arc called atomic formulae. Capital letters A, B, C, . . . from the beginning of the

alphabet will be used as variables over n0, and capital letters P, Q, R, ... from the middle of the

alphabet will be used as variables over cI>0.

The set of programs, I1, and the set of formulae, cl>, of delta-converse-PDL are then

defined inductively (note the use of letters a. b, c, ... as variables over I1 and p, q, r, ... as

variables over cl>):

n: (1) no ~ I1

(2) If a, b E I1 then a;b, aUb, a*, a E n

(3) IfpEcI> then p? E I1

cl>: (1) cI>o ~ cI>

(2) If p E cI> then -ip E cI>

(3) If a E n and p E cl> then <a>p, D..a E cI>

The sublogics of delta-converse-PDL are defined as follows. TI1e formulae and programs of

converse-PDL are those not containing any occurrence of D..a. The formulae and programs of

delta-PDL are those not containing any occurrence of a-'. The formulae and programs of PDL

are those containing neither D.. a nor a - .

Definition: A structure is a triple· S = < U, F= s• < > i> where

(1) U is a non-empty set, the universe of states.

(2) F= s is a satisfiability relation on the atomic propositions, i.e. a predicate on U x Il0.

(3) < > s assigns binary relations on states to the atomic programs.

Definition: A structure S = < U, F= s· < > 8> is a tree strncture if and only if U is a tree and for all

states u and v and atomic programs A, u<A>sv only if u and v arc neighbors in the tree, i.e., either

v is a successor of u or vice versa. T~c tree structure S is 011c-way if and only if for all states u

ifR@d4tkl4#JkJP:Llldt£4AMBWPJ@lv.
1·;-"".- .•. , ·'·. . .

...

~· ,r-,_

. . ,-.
I

.. ..

7

and v and atomic programs A, u< A> sv only if v is a successor of u.

Definition: Given a structure S, I= sand <>scan be extended to arbitrary formulae and programs

as follows: ·

(1) u l=s •p iff not u l=s p.

(2) u I= s <a>p iff 3v. u<a> sv & v I= s p.

(3) u l=s !:::.a iff 3u0, u1,

't/n > 0. un<a>sun+i·

. such that u0 = u and

(4) u<a;b>sv iff 3w. u<a>sw and wsv.

(5) u<aUb>sv iff u<a>sv or u5 v.

(6) u<a*> 5 v iff u<a> /v.
(7) u<a->5v iff v<a>5u.

(8) u<p?> 5v iff u = v and u I= s p.

If a and bare programs, then a;b is the program which executes first a, then b. The programming

connectives U and * are nondeterministic; if a and bare programs, then aUb is a program which

permits a choice of either a or b, and a* is a program which permits a choice of some number

(possibly zero) of iterations of a. If p is a fo1mula, then the program p? can be thought of as an

abbreviation for if p then skip else abort, i.e., it permits execution to proceed if p is true and

interrupts execution if p is false. If a is a program, then a is the converse of a, i.e., it undoes the

computations performed by a (however, since a can take several input states to the same ouput

state, doing a followed by a can take a state to some other state besides itself). If a is a

program, then !:::.a is a formula which is true whenever there is a way tu repeatedly execute the

program a without stopping.

The primitive constructs of delta-converse-PDL can be used to define many other interesting

constructs as abbreviations. For example:

A correctness assertion: [a]p = df •<a>-ip

Boolean operators: P & q = df<p?>q

p -+ q = df [p?]q
p v q = df -ip -+ q
p ~ q = df(p-+ q) & (q-+ p)

Propositional constants: true = df P V, P

false = df P & -,p

32

Rabin [8, 19] has shown that every nonempty automaton recognizable set of infinite trees

contains a finitely generable tree, i.e., an infinite tree which can be obtained by unwinding a finite

graph. Although delta-converse-PDL does not satisfy the finite model property, Rabin's result

shows that every satisfiable delta-converse-PDL formula has a finite representation. In the case of

delta-PDL formulae, however, it is possible to transform the generating graph for an image for the

formula into a finite model.

Theorem 5.11: For all delta-PDL formulae p, if p is satisfiable, then p has a finite model.

Proof If pis satisfiable, then by the preceding·results, there is a scheme S = <TN+l' 1=:8, <>;>

for p whose image f is finitely generable. Hence there is a finite subtree T of TN+ 1 and a

generating map J: front(T) --+ int(T) such that f = f 0 .!*. Define a finite structure R = <T, I=: R'

< > R> as follows. For x E T and P an atomic program, let x I=: R P iff x I=: s P. For x and y E T

and A an atomic program, let x< A> RY iff either x E int(T) and x<A> sY or x E front(T) and

J(x)< A> sY· We will prove, by structural induction on formulae, that for all y E TN+ 1 and q a

subformula of p, y I=: s q if and only if .!*(y) I= R q.

If q is an atomic sub formula P, then y I=: s P iff J*(y) I=: s P, since the image of S is generated by

T and J. By the definition of R, J*(y) I=: s P iff .!*(y) I=: R P. If q is a negated subformula, then y

I=: s q iff J*(y) I= R q follows from the inductive hypothesis and the definition of negation.

If q is a diamond sub formula <a>r, then suppose y I= s <a>r. Then by Lemma 5.2 there must be

an execution sequence b1 · · · bk E L(a;r?) and a sequence {Y)o:s;nSk of elements of T N+l

such that y0 = y and for 0 ;=;; n < k, yn<bn+l>sYn+I· We leave it to the reader to verify that for 0

Sn< k, J*(yn)<bn+l>RJ*(yn), so that J*(y =yo) l=R <a>r.

Conversely, suppose x = .!*(y) and x I= R <a>r. Then there must be an execution sequence

b1 · · · bk E L(a;r?) and a sequence {xnlosn<k of elements of T such that x0 = x and for

0 S n < k, xn<bn+l>sxn+l· Inductively define a sequence {ynJo<nSk of elements of TN+l as

follows. Let Yo = y and having defined y rt define y n + 1 in accord with the relationship between

xn and xn+l· If bn+l is a test, then xn+l = x, so let Yn+l = Yn· Otherwise, bn+l is an atomic

program (since p is converse-free), and xn+ 1 is a successor: the mth say, of xn if xn E int(T), or of

J(xn) if xn E front(T). In this case let Yn+l be the mth successor of y. It is now straightforward to

prove that J*(y n) = x~ for 0 n S k, and that y n < bn+ 1 > sY n+ 1 for 0 < n < k. Hence, y I= s <a>r.

If q is a delta subformula !::..a, then y I= s !::..a if and only if .!*(y) I= R !::..a follows by an

argument almost identical to the previous one for diamond subformulac. We conclude that A I= R

p, since A I= s p and p is a subformula of p. Therefore the structure R is a finite model of p.

I

Program constants:

Deterministic control structures:

Dijkstra's guarded commands [3]:

8

k . fl s 1p = df true.

abort =ctr false?

if p then a else b = df(p?;a) U (•p?;b)

while p do a = df(p?;a)*;•p?

/Fp-+ a II q-+ b Fl =ctr(p?;a) U (q?;b)

DO p-+ a 11 q-+ b OD =ctr((p?;a) U (q?;b))*;(•p & •q)?

de Bakker's weakest preconditions [2]:

de Bakker's strongest postconditions [2]:

Hoare's partial correctness assertions [7]:

p{a}q =ctr p-+ [a]q

A well-foundedness or convergence assertion:

An infinite looping assertion [6, 11, 16], defined inductively:

OOA =ctrfalse
oo(a;b) =ctr ooa V <a>oob

OO(aUb) =ctrooav oob

OO(a*) = df<a*>ooa V /J.a

OO(p?) = df false

(Alternatively, one can amend the syntax by adding the oo A's to n0, allowing structures to

decide arbitrarily which primitive programs loop and which do not.)

Dijkstra's weakest precondition operator [4]:

w~a, p) = ctrlalP & <a>tme & •OOa

Definition: If p E <I> and S is a structure, then S is a model of p or S satisfies p if and only if u
I= s p for some u E U, and p is satisfiable if and only if some structure satisfies p. The

satisfiability problem for dc/ta-converse-PJJJ, is the problem of deciding whether or not an arbitrary

dc!ta-co11vcrs(·-PIJJ formula is satisfiable.

31

converse-PDL satisfiability can be decided in time O(exp8 k), where k is the length of L11e formula

tested. I

Theorem 5.9: Given a delta-PDL formula p of length k, there is a deterministic complemented

pairs automaton AP, with no more than O(exp exp k) states and 0(exp k) pairs, which accepts

exactly the images of one-way schemes for p. Furthermore, AP can be constructed in time

0(exp exp k).

Proof. The proof is very similar to tl1at of Theorem 5. 7. By Corollary 5.6, it is sufficient to

construct an automaton accepting exactly tlle N+ 1-ary LP-trees satisfying the conditions (1)-(7)

and an extra condition: (8) .f(x) contains no negative literals, for all x. It is straightforward to

construct a complemented pairs automaton B with three states (a start state, an accepting state, and

a failure state) and one pair which accepts exactly the trees satisfying conditions (1), (2), (5), (6),

and (8). On tlle assumption tllat condition (8) is fulfilled, only forward paths need be considered

to check conditions (4) and (7). It is not difficult to construct complemented pairs automata Cn
and Dn which check conditions (3) and (4) respectively and which have exactly one pair and no

more tllan O(exp k) states.

Given a deterministic m state automaton recognizing a regular set X (not containing the empty

string) over an alphabet L, a construction of McNaughton's [9] yields a deterministic pairs

automaton on infinite strings, with O(exp m) states and O(m) pairs which accepts exactly tlle

infinite strings in L*;r. Since McNaughton's machine is a deterministic pairs automaton on

infinite strings, it can be viewed as a complemented pairs automaton accepting exactly the infinite

strings not in L*;..¥°°.

For 6.a E c!(p), let Ea be tlle complemented pairs automaton resulting from applying tlle above

construction to a deterministic automaton_ accepting { TJob1 · · · bkTJ k E C(a) I k ~ 1 and

6.a <£ '170}. Let Fa be an automaton on infinite trees which, runs the automaton Ea down every

patll from the root in order to reject any tree containing a node x such that !:::.a <£ f(x) and an

infinite patll from x which a repeatedly fits. Each Fa can be constructed to have no more tllan

0(exp exp k) states and 0(exp k) pairs.

Finally, the automaton B and the Cn's, Dn's, and Fa's can be combined in a cross-product

construction to yield the desired AP. AP has no more tllan O(exp exp k) states and O(exp k) pairs

and can be constructed in time O(exp exp k). I

Theorem 5.10: The satisfiability problem for delta-PDL is decidable in time O(exp3 k), where k is

tlle length of the formula tested.

Proof Given a formula p of length k, Theorem 5. 7 constructs a complemented pairs automaton AP

on infinite N+ 1-ary trees with no more than O(exp exp k) states and O(exp k) pairs such that AP

accepts some tree if and only if p is satisfiable. Hy Theorem 3.8. the emptiness problem for AP can

be decided in time 0(exp1 k). I

9

Definition: If p E <I> and S is a structure, then p is valid in S if and on1y if u I= s p for all u E U,

and p is valid if and only if p is valid in all structures.

Definition: A set X of fonnulae expresses a second set Y of fonnulae if and only if for every fonnula p

E Y there is a fonnula q E Y such that p - q is valid. The set Xis more expressive than the set Y if

and only if X expresses Y but Y docs not express X.

The following theorems rank delta-converse-PDL and some of its sublogics with respect to expressive

power. Theorem 2. 1, due to Fischer and Ladner, establishes a property of PDL and converse-PDL

formulae which Theorems 2.2 and 2.3 show is not shared by all delta-PDL and delta-converse-PDL

formulae. We conclude that delta-PDL is more expressive than PDL. that delta-converse-PDL is more

expressive than either delta-PDL or converse-PDL, and that converse-PDL does not express delta­

PDL. Finally, Theorem 2.4 shows that converse-PDL is more expressive than PDL and that delta-PDL

does not express converse-PDL. so that converse-PDL and delta-PDL are incomparable in expressive

power.

Theorem 2.1 [5]: Converse-PDL (and hence also PDL) satisfies the collapsing finite model property:

every model of a formula cannot be collapsed to a finite model by identifying states. The resulting

finite model has at most 2n states, where n is the length of the fonnu1a.

Theorem 2.2: Delta-PDL docs not satisfy the co11apsing finite model property; there is a fonnula with

an infinite model which cannot be collapsed to a finite structure without altering the truth value of the

formula at some state.

Proof Consider an infinite structure S with an infinite reverse A-chain (i.e., a sequence {un} n~O

of states such that u . 1< A> 5u for all n), but no infinite forward A-chains (i.e., sequences n-r n

{un} n~O of states such that un <A> Sun+ 1 for all n). Then for every state u along the reverse A-

chain, u I= s -, 6. A. However, S cannot be collapsed to a finite structure T without identifying
two distinct states, u and v say, on the chain. If w is the collapse of u and v in T, then
w<A;A*>rw, and hence w l=T 6.A. I

Theorem 2.3: Delta-converse-PDL does not satisfy the finite model property; there is a satisfiable

formula which is not satisfied in any finite model.

Proof Consider the satisfiable formula 6.A & -i<A*>.6.(A). If u0 I= s t:.A & -i<A*>!:J.(A-),

then u0 1=5 t:.A and u0 1==5 -i<A*>!:J.(A). Hence there is an infinite A-chain u0<A>su1 · · ·

un<A>sun+l · · · . If ui = u
1

for an:y i < j, then u; l=s t:.(A) and so u0 l=s <A*>!:J.(A), a

contradiction. So all the u i arc disti net. Hence, 6. A & -i<A*> 6.(A-) is satisfiable only in
infinite models. I

30

Proof A straightforward extension of the preceding proof. I

Theorem 5.7: Given a delta-converse-PDL formula p of length k, there is a deterministic two-way

tree automaton AP which accepts exactly the images for p. Further, AP need have no more than

0(exp exp k) states and can be constructed iri time 0(exp exp k).

Proof By Lemma 5.5, it is sufficient to construct an automaton accepting exactly the N + 1-ary "i.P­
trees satisfying the conditions (1)-(7), where N < k is the number of diamond subformulae of p.

It is straightforward to construct an automaton B with four states (two start states, an accepting

state, and a failure state) which accepts exactly the trees satisfying conditions (1), (2), (5), and (6).

For 1 :$; n :$; N, let An be a deterministic automaton on finite strings which accepts the regular set

C(an;qn?). The An's can be constructed to have no more than O(exp k) states. Let Cn be an

automaton on infinite trees which, for every node x in the tree labelled with <an>qn, runs the

automaton An down the path x;{xnOm} m~O· looking for an initial segment which the program

a ; qn? fits. Let D be an automaton on infinite trees which, for every node x in the tree not ·
n n ·

labelled with <an>qn, runs the automaton An down every path starting with x, rejecting the tree if

an;qn? fits any finite path starting with x. The Cn's and Dn's can be constructed to have no more

than O(exp k) states.

Given a deterministic m state automaton recogmzmg a regular set X not containing the empty

string, there is a construction, due to McNaughton [9]. of a deterministic automaton on infinite

strings, with no more than 0(exp m) states, which accepts exactly the infinite strings not in .xOO.
For !:::..a E cl(p), let Ea be the result of applying McNaughton's construction to a deterministic

automaton accepting {110b1 · · · bk1Jk E C(a) I k ~ l}. Let Fa be an automaton on infinite trees

which, for every node x not labelled with !:::..a, runs the automaton Ea down every path from x in

order to reject any tree containing a path from x which a repeatedly fits. Fa can be constructed to

have no more than O(exp exp k) states.

Finally, the automaton B and the Cn's, Dn's, and Fa's can be combined in a cross-product

construction to yield the desired AP. AP has no more than O(exp exp k) states and can be

constructed in time O(exp exp k). I

Theorem 5.8: The satisfiability problem for delta-converse-PDL is decidable in time O(exp8 k),

where k is the length of the formula tested.

Proof Given a formula p of length k, Theorem 5.7 constructs a two-way automaton AP on infinite

N+ 1-ary trees with no more than O(exp exp k) states such that AP accepts some tree if and only if

p is satisfiable. By Theorem 5.10, there is an equivalent one-way automaton B on infinite N + 1-ary

trees with no more than 0(exp6 k) states. It is straightforward to construct a one-way automaton

C on infinite binary trees with no more than O(N + 1 exp6 k) = 0(exp6 k) states, whose emptiness

problem is equivalent to H's. The emptiness problem for one-way automata on infinite binary

trees is decidable in time O(cxp exp 111). where /11 is the number of state:; [8. 18). Therefore. ik!Ja-

10

We shall prove later (see Lemma 5.3) that delta-converse-PDL satisfies a tree model property; every

satisfiable delta-converse-PDL formula has a tree model. For delta-PDL a stronger property holds:

every satisfiable delta-PDL formula has a one-way tree model (see Corollary 5.4).

Theorem 2.4: Converse-PDL (and hence also delta-converse-PDL) does not satisfy the one-way tree

model property; there is a satisfiable converse-PDL formula which is not satisfied in any one-way

tree model.

Proof Consider the satisfiable formula P & <AXA->•P. Suppose u I= s P & <AXX>•P, where

S is a one-way tree model. Then u I= s P and there is an immediate successor v of u such that

v 1=8 <A->•P, so that there must be a state w such that w<A>5 v and w l=s •P. Since Sis a

one-way tree model, w must be the parent of v, so w = u. But this is impossible, since we have

u 1=8 P and w l=s •P. I

The remainder of this chapter relates the expressive power of delta-PDL to that of two other

propositional logics of programs: the Propositional Algorithmic Logic (PAL) of Mirkowska [12] and

the Unified Temporal Logic of Branching Time (UB) of Ben-Ari, Manna, and Pnueli [l]. UB is an

intensional logic of programs, as opposed to PDL and PAL, which are extensional. Programs

appear explicitly in the formulae of PDL and PAL, and different formulae can refer to completely

different programs. The formulae of a temporal logic do not explicitly refer to programs; rather,

every fommla is taken to refer to a single program, which is fixed by the choice of a U B-structure.

Definition: The formulae, TI UB• of U B, are defined inductively as follows:

(l) I1o ~ I1uB

(2) If p, q E TIUB' then -ip, p V q, 3Xp, 3Fp. 3Gp E I1uB

Definition: A VB-structure is a tuple S = <U. I= S' ::::::> s> where U is a set of states, I= s is a

satisfiability relation on the atomic propositions, and ::::::> s is a total binary relation on U (i.e., for

every state u there is at least one state v such that u ::::::> s v).

Definition: Given a U B-structure S = < U, I= s• ::::::> S>· I= s can be extended to all U B formula'e as

follows.

(1) u I= s •p iff not u I= s p.

(2) u I= s p V q iff u I= s p or u I= s q.

(3) u 1=8 3Xp iff 3v. u ===:>s v and v 1=5 p.

(4) u l=s 3Fp iff 3v. u =>s* v and v l=s p

(5) u I= s 3Gp iff there is an infinite sequence {un} n~O of states such that u0 = u and

for all n, un l=s p and un ~s un+I·

The logic U 13 is a temporal logic of discrete branching time; given a program a. the binary relation

~s relates computation states at time t to pu~'ihle comput1tion states at the next time f + 1.

29

(2) if xi+l is the predecessor of xi' then the inverse of bi+l E }{xi).

Remark: A program a fits a singleton path x if and only if there is a compressed execution

sequence T/ E C(a), consisting of a single set of subformulae of p, such that T/ ~ j(x). If f is the

image of a one-way scheme and if a is a converse-free program, then a can fit only forward paths

and only condition (1) is needed to determine the forward paths which a fits.

Definition: Given a };P·tree f. a program a repeatedly fits an infinite path {xn} n~O if and only if

there is a infinite, increasing sequence of indices {i.}1>o such that i0 = 0 and a fits {xn}i. <n<i.
1 - rl- -1

for j > 1. · ·

Lemma 5.5: A ~p"tree f is an image for p if and only if the following conditions are satisfied

(1) p E j(A).

(2) for 1q E c/(p}, 1q E j(x) if and only if q (£ j(x).

(3) if <an>qn E j(x), then there is an initial segment w of the infinite path x;{xnOITIJ-m~O such

that an;qn? fits 7T.

(4) if <an>qn (£ J(x), then for. all finite paths w starting at x, an;qn? does not fit w.

(5) for !::.a E c/(p), ~a E j(x) if and only if <a>b.a E j{x}.

(6) for !::.a E c/(p}, if a fits the singleton path x, then ~a E J{x).

(7) for !::.a E cl(p}, if !::.a (£ j(x). then for all infinite paths w starting at x, a does not

repeatedly fit w.

Proof. We leave it to the reader to verify that an image for p satisfies (1) - (7). Conversely, given

a N+l-ary ~P-treefsatisfying (1) - (7), we can define a two-way tree structure S = <TN+l· l=s,
<>s> by letting x l=s P iff PE j(x) and x <A>sY iff either y is a successor of x and A E j(x) or y

is the predecessor of x and A E j(x). The reader can verify that f is the image of S. We

proceed, using structural induction on fonnulae and conditions (2) - (7), to establish that for all x

E TN+l and q E c/(p), x l=s q iff q E j{x).

If q is an atomic subfo_rmula P, then x I= s P iff P E j(x) follows from the definition of S. If q is

a negated subfonnula 1r, then x ~ 8 -.,, iff 1r E .f(x) follows from condition (2). If q is a

diamond subformula <an>qn, then (x I= s <an>qn) -+ (<an>qn E j(x)) follows from condition (4),

and (<an>qn E j(x)) -+ (x I= s <an)q
11

) follows from condition (3). If q is a delta subformula ~a,
then (x l=s !::.a) -+ (!::.a E j(x)) follows from conditions (4), (6). and (7), and (~a E fix)) -+ (x

I= s ~a) follows from conditions (3) and (5). By condition (1), A I= s p, and by condition (3), for

1 ~ n =::; N, if x I= s <an>q
11

, then 3y. x < y < xn000 & x<an;q
11
?> sY· Hence Sis a scheme for p.

I

Corullmy 5.6: If pis a delta-Pf)/, formula, thC'n a rP-tree fis a one-way image for p if and only if

conditions (1) - (7) abmc ;ire satisfied and, for all x. fix) contains no negative literals.

11

The formula 3Xp is true in a state at time t if that state can become, at time t + 1, a state in

which pis true. The formula 3Fp is true in a state at time t if that state is or can become, at some

later time t + n, a state in which p is true. The formula 3Gp is true in a state at time t if from

that state there is an infinite sequence of successive states in which p is true. We can define three

dual formulae: V Xp = df •3X•p, V Fp = df •3F-ip, and 'rJGp = df •3G•p. The formula V Xp
is true in a state if p is true in all possible next states. The fonnula 'rJ Fp is true in a state if p is

true in that state and in all possible future states. The formula V Gp is true in a state if, from that

state, every chain of successive states contain~ a state in which p is true.

Definition: Let A be a fixed atomic program. Let t: Il VB --+ Il be a translation defined as

follows.

(1) Pt = P

(2) (•p)t = •(pt)

(3) (p v q)t = (pt v qt)

(4) (3Xp)t <A>(pt)

(5) (3Fp)t <A*>(pt)

(6) (3Gp)t b.((pt)?;A).

Definition: If S = <U. I= s ==> s> is a UR-structure, then let St

structure in which I= st = I= s and <A> st = ==> s
<U, I= st· <>st> be any

Theorem 2.5: UB is embeddable in delta-PDL; if pis a UB formula satisfied at a state u in a UB­

structure S, then u l=st pt. Further, p has a UB-model if and only if [A*]<A>true & Pt is

satisfiable.

Proof By structural induction on formulae. I

Propositional Algorithmic Logic is very similar to PDL. One major difference is that the semantics

of programs in PAL is defined in ~erms of computation sequences rather than binary relations as

in PD L (one might say that PAL has an operational semantics and PD L a denotational semantics).

The other major difference is that PAL contains a powerful total correctness assertion for

nondeterministic programs, D(a)p, which is true when every execution sequence of a terminates in

a state in which p is true. Since the truth value of D(a)p depends on the presence or absence of

nonterminating execution sequences of a, PDL does not express PAL. Delta-PDL, however, does

express PAL.

28

arbitrarily. Finally, given cp, define a structure T = <TN+ 1, I= 7, < > 1> by letting x I= T P if and

only if cp(x) 1=8 P and letting x<A>ry if and only if x and y are neighbors and cp(x)<A>scp(y).

By construction T is a scheme for p. I

Corollary 5.4: Every satisfiable delta-PDL formula has a one-way scheme.

Proof Given a satisfiable delta-PDL formula p, construct the map cp as in the proceeding proof,

but define T = <TN+l' 1=7' <>?by letting x l=T P if and only if cp(x) l=s P and letting

x<A>rY if and only if y is a successor of x and cp(x)<A>scp(y). By construction Tis a one-way

scheme for p. I

Schemes are easily transformed into trees suitable for input to automata on infinite trees.

The trees obtained in this way are automaton recognizable; this fact leads immediately to decision

procedures for delta-PDL and delta-converse-PDL.

Definition: If pis a delta-converse-PDL formula, Ilp denotes the set of literals appearing in p. Let

LP = Powerset(cl(p) U Il).

Definition: Given a scheme S = <TN+ 1, I= s• <> ;> for a de/ta-converse-PDL formula p, the image

of Sis the N+l-ary LP-tree/such that for all x E T/>l+l'j(x) = {q E c/(p) Ix l=s q} U {a E
np I y<a> sx where y is the predecessor of x}. An image for p is an image of a scheme for p.

Remark: If the scheme. S is one-way and if f is the image of S, then for all x, j(x) contains no

negative literals.

It is technically convenient to define a version of execution sequences in which all

subsequences of tests are compressed into single sets of formulae. Note that it is no more difficult

for a finite automaton to recognize the co!Ilpressed execution sequences of a program than the

ordinary execution sequences: if the latter set is accepted by a n state automaton on finite strings,

then so is the former.

Definition: Given a formula p, a compressed (with respect to p) execution sequence is a sequence

110b1111 · · · 11n-lbn1Jn of alternating literals and sets of subformulae of p, beginning and ending with

sets. The set of compressed execution sequences for a program a is C(a) = {110b1111 · · • 11n-lbn1'/n I
there exists q01? · · · q0k ?b1q11? · · · q1k ?b2 · · · bnqn1? · · · qnk? E L(a), where each bi is a

0 1 n
literal, such that 'IJi = {qil, . . . , qik}, for 0 < i ~ n}.

I

Definition: Given a LP-tree f, a program a fits a path _11 = {xi}O<i~n if and only if there is an

compressed execution sequence 110b111 1 · · · 11n-lbn11n E L(a) such that for 0 S i < n. 'IJi ~ f(x) and

for 0 ~ i < n,

(1) if xi+l is a successor of x, then bi+l E .f(xi+l).

12

Definition: The set of programs, n PAL' and the set of fonnulae, cI>PAL' of PAL are defined

inductively as follows.

(l) 0 o ~ nPAL

(2) If a, b E nPAL' then a;b, aUb, a* E nPAL

(3) If p E cI>PAL and a, b E nPAL' then p?, if p then a else b,

while p do a E nPAL

cl>PAL: (l) cl>O ~ cl> PAL

(2) If p, q E cI> PAL' then -ip E cI> p AL

(3) If a E n PAL and p E cI>PAL' then <>(a)p, D(a)p E cI>PAL

Definition: If S is a structure, then a configuration is a pair <u. 77), where u is a state of S and 77

= <a1, ... , ay is a (possibly empty) sequence of programs. The configuration <u. 77) is final if

and only if w is empty.

Definition: Given a structure S, I= s can be extended to arbitrary PAL fonnulae and a binary

relation ==> s on configurations can be defined as follows. If <u. 77 > ==> s * < v, 'T >, then we say that

<u. 77) yields <v, T>. If <u, 77) is not final and in addition there is no configuration <v, T) such

that <u, 77 > => s < v, 'T >, then <u, 77 > is a failing configuration.

(1) u I= s -ip iff not u I= s p.

(2) u I= s <>(a)p iff <u. <a. p?» yields a final configuration.

(3) u I= s D(a)p iff <u, <a, p?» yields neither a failing configuration nor an infinite

chain of configurations.

(4) <u. <A. al, , ay> ==>s <v, <a1, , ay> iff u<A> sv.

(5) <u, <a;b, al, , ak» ==> s <u. (a, b, al, , ay>.

(6) <u, <aUb, al, .. ak» ==> s <u, <c, al, . , ay> iff c = a or c

(7) <u, <a*, al, , ay> ==!> s <u. <a1, , ay>.

(8) <u, <a*, -a1, , aJ?>> ==!> s <u, (a, a*, al, ' ay>.

(9) <u, <p?, al, , a;» =>s <u, <al, ' ay> iff u l=s p.

= b.

(10) <u, <if p then a else b, al, . .. , ay> =>s <u. <c, al, . .. , ak» iff either

u l=s P and c = a or u l=s -ip and c = b.

(11) <u, <while p do a, al, , ak» =>s <u, <al, ' ak» iff u l=s p.

(12) <u, <while p do a, al, . . . , ak» =>s <u. <a . while p do a, a1, ... , ak» iff

u l=s •p.

27

Definition: If a is a delta-converse-PDL program, then IJ..a), the set of execution sequences of a, is

defined inductively as follows:

(1) IJ..A) = {A}

(2) L(a;b) = IJ..a);L(b)

(3) L(aUb) = L(a) U L(b)

(4) IJ..a*) = (IJ..a))*

(5) IJ..q?) = {q}

(6) IJ..£) = {A-}

(7) IJ..(a:bf) = L(b- ;a-)

(8) /~(aubn = L(a- u b-)

(9) IJ..(a*n = L((a-)*)

(10) L((q?f) = {q}.

(11) L((a-n = L(a)

Lemma 5.2: For all structures S = <U, I= s• <> ;> and programs a, u<a> 5v if and only if there is

an execution sequence b1 · · · bk E L(a) and a sequence of states {un}O~n<k such that u0 = u,

uk = v and un<bn+l>Sun+l for 0 S n < k.

Proof By structural induction on programs. I

If pis a satisfiable delta-converse-PDL fonnula, Theorem 5.3 shows that p has a special tree

model, called a scheme, which is easily transfonned into a tree suitable as input to a two-way

automaton. A scheme is a tree structure in which p is satisfied at the root and diamond

subformulae of p are satisfied along specific paths. If p is converse-free, i.e., a delta-PDL formula,

then Corollmy 5.4 shows that p has a one-way scheme, i.e., a scheme which is a one-way tree

structure.

Definition: If p is a delta-converse-PDL fonnula with diamond subformulae <a1>q1 , ... , <aN>qN'

then a scheme for pis a tree structure S = <TN+l' 1=5, <>5> such that A 1=5 p and for all states

x, if x I= s <an>qn then 3y. x < y < xn0
00

& x<an;qn?> sY·

Theorem 5.3: Every satisfiable delta-converse-PDL fonnula has a scheme.

Proof Suppose u0 1=5 p, where S = <U, l=S' <>;>. We construct a a map cp: TN+l -+ U
inductively as follows. Let cp(A) = u0. Inductively, if xis in V and cp(x) = u, then we consider,

for each n, whether u I= s <an>qn. If not, let cp(xnOm) be arbitrary for all m. If so, then there is a

state v such that u<an;qn?>sv. By f,emma 5.2, there is a sequence of states {u)OSiSk and an

execution sequence b1 · · · bk E /,(an;qn?) such that u0 = u, un = v, and and u/bi+l>Sui+l

for 0 ~ i < k. Let m be the number of literals in b1 · · bk. For l ~ i 5 111, let qi(xnoi-J) =
u, where j is the index of the / 17 literal in b1 · · · bk. For i > 111, let qJ(x110;-J) be chosen
J

13

Remark: Note that <>(a)p and D(a)p are not dual to one another, i.e, D(a)p is not equivalent to

•<>(a)•p. Note also that D(if p then a else b)q is sometimes true and sometimes false, but that

D((p?;a)U(•p?;b))q is always false, since

<u, <((p?;a)U(•p?;b));q?» yields <u, <p?, a, q?» and <u. <•p?, a, q?», one of which must be a

failing configuration. Hence if p then a else b cannot be defined, in PAL, to be an abbreviation of

(p?;a)U(•p?;b). Similarly, while p do a cannot be defined, in PAL, to be an abbreviation of

(p?; a*); •p?.

Definition: For each PAL program a, define a PAL formula fail(a)) as follows.

(1) fail(A) = •<>(A)true

(2) fail(a;b) = fail(a) V O(a)fail(b)

(3) fail(aUb) = fail(a) V fai/(b)

(4) fail(a*) = O(a*)fazl(a)

(5) fail(p?) = 'P

(6) fail(if p then a else b) = (p & fail(a)) V (•p & fail(b)) ·

(7) fail(while p do a) = O((p?;a)*)(p & fail(a))

Lemma 2.6: For all structures S, states u, and PAL programs a, u I= s fail(a) if and only if

<u, <a» yields a failing configuration.

Proof By structural induction on programs. I

Definition: Let :j: be a translation from PAL formulae and programs to delta-PDL formulae and

programs defined as follows.

(1) P:j: = P

(2) (•p):j: = •(p:j:)

(3) (O(a)p):j: = <a:j:>(p:j:)

(4) (D(a)p):j: = •((fail(a;p?)):j: V OO(a:j:))

(5) A:j: = A

(6) (a;b):j: = (a:j:);(b:j:)

(7) (aUb):j: = (a:j:)U(b:j:)

(8) (a*):j: =. (a:j:)*

(9) (p?):j: = (p:j:)?

(10) (if p then a else b):j: = if p:j: then a:j: else b:j:

(11) (while p do a):j: = while p:j: do a:j:

26

5 Satisfiability and Finite Models

In this chapter the automata theoretic results of the previous two chapters are used to

obtain decision procedures for delta-PDL and delta-converse-PDL. The notion of a finitely

generable tree is then employed to establish a finite model theorem for delta-PDL and a finite

representation theorem for delta-converse-PDL. First, however, we precisely define the informal

notions of the subfonnulae of a fonnula and the execution sequences of a program.

Definition: If p is a delta-converse-PDL formula, then cl(p), the Fischer-Ladner closure of p, is the

least set of formulae such that

(1) p E cl(p}

(2) if -iq E cl(p}, then q E cl(p}

(3) if <A>q E cl(p} or <A->q E cl(p}, then q E cl(p)

(4) if <a;b>q E cl(p), then <aXb>q E cl(p)

(5) if <(a;b)->q E cl(p), then <b-;a->q E cl(p)

(6) if <aUb>q E cl(p), then <a>q. q E cl(p)

(7) if <(aUb)->q E cl(p), then <a-Ub->q E c/(p)

(8) if <a*>q E c/(p}, then q, <aXa*>q E cl(p)

(9) if <(a*)->q E cl(p}, then <(a -)*>q E c/(p)

(10) if <r?>q E cl(p), then r, q E cl(p)

(11} if <(r?)->q E c/(p), then <r?>q E cl(p}

(12} if ~a E ·c/(p), then <a>~a E cl(p)

Lemma 5.1: If p is a delta-converse-PDL formula of length n, then cl(p} contains at most n

formulae.

Proof A straightforward extension of the corresponding proof for PDL [7]. I

Definition: The elements of cl(p) are called the subformulae of p; this can be misleading, since

<aXa*>q and <a>~a are, by the above definition, subformulae of <a*>q and ~a respectively. A

subformula of p of the form <a>q is called a diamond subformula of p.

Definition: Abusing predicate calculUs terminology, we define a literal to be either an atomic

program or the converse of an atomic program. Atomic programs will sometimes be called positive

literals and converses of atomic programs negative literals. The inverse of a positive literal A is A

; the inverse of a negative literal A is A.

Programs in de!ta-converse-PDr arc extended regular expressions over literals and tests, so

each program denotes a regular set, the set of its execution sequences.

1.!!l!!!l!!L~l~l\.}tJll!J.1,tJ1_."1!_11!r~'~~~~-~-_..1_u1 •,~-!l!llllJllMJIIJ2$#4!\.fijQJJ!tfW!!J:S£#4UJ!l-~4b$~'8tLA J • ..__A;UL.i!t&i!!!:"'i!".ti1:~;~
. . ' . " . ' ·..

14

Lemma 2.7: For all structures S, states u of S, and PAL programs 4 <u. <a>> yields <v, O> if and

only u<at> s'·
Proof. By structural induction on propams. I

Lemma 2.8: For all structures S. states u of S, and PA:L propams 4 <u. <a>> yields an iDftDite
chain if and only II t-S OO(flt).

Proof. By structural iDduction on proaiams. I

TMorem 2.9: PAL is embeddable in delta-PDL. i.e., tor all strudUreS S. states u of S, and PAL

formulae p. " ... s p if and only " ... s pt.

Proof. Follows directly from Lenmas 2.6, 2. 7, and 2.8. I

.·

25

Proof It is easy to construct, in time O(exp exp m), a one-way automaton C. with no more than

O(exp exp m) states, which accepts an infinite (:L x· Cs)-tree fx g exactly when g is a plan for f It

is straightforward to construct. also in time O(exp exp m), a nondeterministic automaton D on

infinite strings, with no more than O(exp exp m) states, which, when nm along an infinite forward

path of an infinite N-ary Cs-tree g, accepts exactly when that path violates either of the two
conditions for goodness. McNaughton gives a construction which, given a nondeterministic

automaton on infinite strings with k states, produces, in time O(exp exp k), a deterministic

automaton on infinite strings, with no more than O(exp exp k) states, which accepts exactly the

complement of the set of strings accepted by the original automaton [9]. Let E be the result of

applying McNaughton's construction to D; let F be that automaton on infinite trees which runs E

down every infinite forward path, so that F accepts g exactly when g is good. Finally, the desired

automaton B. given an input tree f TN -+ :L, nondeterministically guesses a map g: TN -+ Cs

while simultaneously rnnning the automata C on f x g and Fon g. By Lemmas 4.4 and 4.9, A

and B accept the same trees. The automaton B has no more than 0(exp4 m) states and can be

constructed from A in time O(exp4 m). I

15

3 One-Way Automata on Infinite Trees

Automata on infinite trees, called one-way automata in this chapter to distinguish them

from the two-way automata defined in the next chapter, have been extensively studied [8, 18, 19].

We briefly review the fundamental definitions and theorems.

Definition: The set TN = {0, 1, ... , N-1} * of strings of the first N nonnegative integers can be

viewed as an infinite N-ary tree, in which the empty string A is the root and each string (or node)

x E TN has as its successors the strings xO, ... , x(N-1). The descendant relation is the reflexive

transitive closure of the successor relation; we write y ~ x when y is a descendant of x

(alternatively, we can write x ~ y and say that x is an ancestor of y).

Definition: A finite (infinite) forward path through TN is a finite (infinite) sequence 7T

elements of TN such that for· all n, x n + 1 is a successor of x n·

Definition: If L is a finite alphabet, then an infinite N-ary ~-tree is a func.tion f TN - L.

Definition: A (nondeterministic) one-way automaton A on infinite N-ary L·trees is a tuple

<S, s, M, G> where

S is the set of states.

s E S is the initial state.

M: S x L ---!" Powerset(SN) is the next state function.

G k Powerset(S) is a set of accepting subsets.

Definition: A run of A on an infinite N-ary ~-tree f is a function p: TN - S such that p(A) = s

and for all x E TN• <p(xO), . . . , p(x(n-1))> E M(p(x), j(x)).

Definition: If p is a run of A on f and 7T is an infinite forward path, then lnj(p, 7T) =
{q E S I p(x) = q for infinitely· many x on 7T}.

Definition: An automaton A accepts an infinite N-ary L-tree f if and only if there is a run p of A

on f such that for all infinite forward paths 7T, lnj(p, 7T) E G.

Theorem 3.1: The emptiness problem for an N-ary infinite tree automaton A with m states, i.e., the

problem of deciding. whether or not A accepts any tree at all, can be decided in time

0(exp exp mN). I

Proof Given an m state automaton on infinite N-ary trees, it is a straightforward exercise to

construct an O(mN) state automaton on infinite binary trees, such that the two automata have

equivalent emptiness problems. Hossley and Rackoff [8] give a decision procedure for the

emptiness problem for automata on infinite binary trees which runs in time O(exp exp n), where n

is the number of states of the automaton tested. I

24

these two circuits (since Y. Z :;; 0, the loops cannot be singletons). The required loop for the join

is x;u;x;T;x. In the case of rule (5), <s, X, t> is the expansion of a circuit <t, Y. u> E gmin(y),

where y is a neighbor of x. Inductively, there is a loop 11 on y for <t, Y, u>. The required loop

for the expansion is x;11;x. I

Lemma 4.8: For all paths r;11 ending in a loop 11 on x, p(T;x I r;11) E gmin(x).

Proof By induction on the length of 11. Let s = p(T ;x). If 11 is the singleton x, then by Lemma

4.6, p(T;x I r;11) = <s> E gmin(x). If 11 = x;µ;x where µ is a loop on a neighbor y of x, then

inductively, p(r;x;y I T;x;µ) E gmin(y). Then, by rule (5) for plans, p(T;x I T;x;11) E gmin(x). Ifµ

is not a loop, then by Lemma 4.1, µcontains x, i.e. µ = cp;x;i/;. Inductively, p(T;x I T;x;cp;x),

p(T;x;cp;x I r;11) E gmin(x). Then, by rule (4) for plans, p(T;x I T;11) E gminCx). I

Lemma 4.9: The automaton A accepts an infinite tree f if and only if the minimal plan gmin for A

on f is good

Proof First, suppose A does not accept f. Then there is an infinite path 11 such that lnf(p, 11) fl
G, where p is the run of A on f. If 11 is cyclic on x, then 11 = µ;a;T where u is a loop on x and

p(µ;x) = p(µ:a) E p(µ;x, µ;a) = lnj(p, 11). Then, by Lemma 4.8, p(µ;x I µ;a) E gmin(x), where

p(µ;x) E p(µ;x, µ;a) <£ G, so gmin is not good. If, on the other hand, 11 is acyclic, then by

Lemma 4.2 there is an infinite forward path {xn} such that 11 = a;T0; ... ;r n; ... , where each

T n is a loop on xn. Let_f = {p(T1; ... ;r n·l;xn I T1; ... ;T n)} n>o· We leave it to the reader to

show that f is a series for gmin on {xn}, but that Sum(t) [G, so that gmin is not good:

Conversely, suppose that gmin is not good. Then either there is a node x and a circuit <s, X, s> E

gmin(x) such that s E X <£ G or there is an infinite forward path {xn} and a series f = {<sn' X,,.

tn>} for gmin on {xn} such that Sum(n <£ G. If the first case holds, then by Lemma 4.7, there is a

loop x;11;x such that for all paths T ending in x, if p(r) = s, then p(T, r;11;x) = X and p(T;11;x)

= s. By Lemma 4.5, there is a path Tending in x such that p(r) = s. Letµ = T;11;x;11;x;11;x; ·

· · We leave it to the reader to show that A rejects f, because lnj(p, µ) = X <£ G. If the the

second case holds, then, by Lemma -4.5, there is an infinite path µ = T 1; r 2; · · · such that for all n,

T n is a loop on xn and <srr Xrr tn> = p(T1; · · · ;r n·l;xn I T1; · · · ;r n). Then lnj(p, µ) = Sum(n

<£ G, so that A rejects f in this case also. I

Definition: If f is an infinite N·ary L0·tree and g is an infinite N-ary L1-tree, then the product tree

f x g is an infinite Nary (L0 x L1)-tree defined by (f x g)(x) = <f(x), g(x)>.

Theorem 4.10: Given a detenninistic two-way automaton A with m states, there is a

nondeterministic one way automaton B with no more than O(exp4 m) states which acc~pts exactly

the trees accepted by A. Further. B can be constrnctcd in time O(cxp4 m).

16

The decision procedure for the emptiness problem depends crucially on the fact that every

nonempty set of trees accepted by an automaton contains a finitely gcnerable tree, i.e., a tree

obtained by unwinding a finite graph. In chapter 5 we will use this fact to establish a finite

model property for delta-PDL and a finite representation property for delta-converse-PDL.

Definition: A frontier of TN is a maximal incomparable subset X of TN' i.e., a subset X such that
every element of T is either a descendant or an ancestor of some member of X, but no member of

X is the descendant of any other member of X.

Definition: A finite subtree of TN is a subset T of TN such that T = {x E TN I x S y for some

y E X}, where Xis a frontier. The frontier of T, front(T), is X, and the interior of T, int(T), is

T - front(7). A finite N-ary r-tree is a map f T -+ r. where T is a finite subtree of TN'

Definition: Given an automaton A on infinite N-ary I-trees and a finite N-ary r-tree f T-+ I, a

run of A on f is a function p: T -+ S such that p(A) = s and for all x E int(_T), <p(.xO), ... ,

p(x(n- l))> E M(p(x), ./(x)).

Definition: A generating map for a finite subtree T of TN is a function J: front<._1) -+ int(]). Every
generating map defines a unique function J*: TN -+ T as follows:

J*(A)

J*(xn)

A

J*(x)n if J*(x) E int<._1).

J(J*(x))n if J*(x) E front(]).

Definition: An infinite I-tree f is finitely generable if and only if there is a finite subtree T of TN

and a generating map J such that f = f 0 J*.

Theorem 3.2 (8, 19]: If an automaton accepts at least one tree, then it accepts a finitely generable

tree.

Below we present an alternative formulation of automata on infinite trees. Pairs automata are

equivalent to ordinary automata in the following sense: for every ordinary automaton, there is a

pairs automaton which accepts exactly the same trees, and conversely.

Definition: If 0 = {<Ln, Un>hsnSk is a finite sequence of pairs of subsets of some set S, then

let Fg = {X ~ SIX n Ln = 0 & X n Un -:t:. 0 for some n}. Let Gg = Powerset(~) - Fg

= {X ~ s I x n Un '¢ 0 -+ x n Ln -:I:. 0 for all n }. Note that Gg is closed under unions,

i.e., if X, Y E Gg. then X U Y E Gg.

Definition: A pairs aulomaton (8, 18, 19] A is a tuple <S. s, Al, 0), where S. s, and M ·arc defined

as for an ordinary automaton and 0 = {<Ln, Un>}ISnSk is a finite sequence of pairs of subsets

of S. A 11111 of A on a tree f is defined exactly as for an ordinary automaton. The pairs

automaton A acCi'pts f if and only if there is a run p of A on f ~uch that for all infinite forward

23

infinite paths. A circuit of the fonn <s. X, s> with s E X indicates that A can cycle endlessly

through the set X of states while travelling over a cyclic path, while a series describes the state

history of A on an acyclic path. L~mma 4.9 will show that the minimal plan gmin for A on f is
good exactly when A accepts f Note that goodness is preserved under inclusion, i.e., if g and h

are .two infinite N-ary C s·trees such that h is good and V x E TN' g(x) ~ h(x), then g is good.
The lemma below follows immediately.

Lemma 4.4: There is a good plan for A on f if and only if gmin is good.

Proof The minimal plan gmin is included in every plan for A on f, so gmin must be good if any
plan for A on f is good I

The next series of lemmas show that the minimal plan g . contains precisely the circuits . mm
for all loops.

Lemma 4.5: For all x E TN' if <s. X, t> E gmin<x), then there is a path w ending in x such that

p(7T) = s.

Proof If <s, X, t> E gmin(x) then there must be a derivation of this fact by rules (1) - (5) for plans.
We proceed by induction on the structure of derivations. For case (1), the required path is the

singleton x. If <s> E gmin(x) by rule (3), then there is a circuit <t> E gm;iY), where t = MnCt.

fly)) and y is the n1h neighbor of x. By induction there is a path r ending in y such that p(r) = t.
The required path for <s> is r;x. Similarly for case (2). If <s. X, t> E gmin(x) by rule (4), then
there is a circuit <s. Y, u> E gmin(x) such that Y U {u} k X. By induction there is a path 7T

ending in x such that p(7T) = s. If <s. X, t> E gmin<x) by rule (5), then <s> E gmin(x). By
induction there is a path w ending in x such that p(w) = s. I

Lemma 4.6: For all x E TN and · for all paths w ending in x, <p(w)> E gmin<x).

Proof We proceed by induction on the length of paths. If w is a singleton, then p(w) = s0 and

<s0> E gmin(x) by rule (1). If w = r;n, where r ends in A, then p(w) = Lip(r), ./{A)) and

<p(w)> E gmin(x) by rule (2). Finally, if w = r;x, where r ends in y ':!; A and x is the n1h

neighbor of y, then p(w) = Mn(p(r), ./{y)) and <p(w)> E gmiix) by rule (3). I

Lemma 4. 7: For all x E TN' if <s. X, t> E gmin(x) then there is a loop w on x such that for all
paths of the fonn r;w, if p(r;x) = s then p(r;x, r;w) = X and p(r;w) = t.

Proof If <s. X, t> E gmin(x) then there must be a derivation of this fact by rules (l) - (5) for plans.
We proceed by induction on the structure of derivations. For the cases (1) - (3), the required loop

is the singleton x. In the ca~e of rule (4), (\ X. 1> is the join of two circuits <t. r. u> E gmin(x)

and < v. /, 11> E gmin'-'). such that r. / -:/:. 0. I 11ducti\ cly. there arc loops x;a ;x and x:T ;x for

17

paths 'TT, lnj(p, 'TT) E Fg (i.e., ~ Gg).

Pairs automata as defined above will not be used in this thesis. However, by reversing the

standard definition of acceptance, we obtain a new type of automaton, the complemented pairs

automaton. In chapter 5 we will use complemented pairs automata to decide the satisfiability of

delta-PDL formulae.

Definition: A complemented pairs automaton A is a tuple <S, s, M, O>, where S, s, M, and 0

{<Ln, Un>h::;;n::;;k arc defined as for a pairs au~omaton. A run of A on a tree /is defined exactly

as for a pairs automaton. However, the complemented pairs automaton A accepts f if and only if

there is a rnn p of A on f such that for all infinite forward paths 'TT, lnj(p, 'TT) E Gg (i.e., ~ Fg).

The fact that Gg is always closed under unions permits a simplified decision procedure for the

emptiness problem for complemented pairs automata. The interested reader should compare the

procedure below with that of Hossley and Rackoff [8] in order to fully appreciate the similarities

and differences. Note that the running time of the procedure below depends both on the number

of states and the number of pairs of the automata tested. In chapter 5 we will use complemented

pairs automata where k, the number of pairs, is O(logm), where m is the number of states. The

procedure below decides the emptiness problem for such automata in time 0(exp m), as opposed

to time O(exp exp m) for Hossley's and Rackoffs more general procedure.

Definition: A string q1 · · · qm E S* is good with respect to a complemented pairs automaton A

<S, s, M, O> ·if and only if 3i < m qi = qm & {qi+l' ... , qm} E Gg.

Lemma 3.3: The set of strings which are good with respect to a complemented pairs automaton

with m states and k pairs is accepted by a deterministic automaton on finite strings of size at worst

O(exp exp(k+logm)).

Proof It is straightforward to construct a nondeterministic automaton on finite strings, with no

more than O(m x 2k) states, which accepts exactly the good strings. Applying the Rabin-Scott

powerset construction yields the required deterministic · automaton. I

Definition: A finite N-ary L-tree f T ~ L is good (with respect to A) if there is a run p of A on f
such that for all x = n1 · · · nk "in the frontier of T, p(A)p(n1}p(n1n2) · · · p(x) is good.

Lemma 3.4: The set of good trees for· a complemented pairs automaton with m states and k pairs is

accepted by a deterministic automaton on finite N-ary trees with no more than O(exp

exp(k+logm)) states.

Proof. Let B be the deterministic automaton on finite strings guaranteed by the preceding lemma.

The desired tree automaton, given a tree f. simulates A on fin order to construct a run of A on f.
while simultaneously ming H to check every path of this run. I

22

an automaton, so we abbreviate <s, 0, s> to <s>.

Notation: If p: PN __. S and -r, 7T E PN' then p(-r, 7r)
<p(-r), p(-r, 7T), p(7r)>.

{p(JL) I -r < JL < 7T} and p(-r I 7T) =

Definition: Given an automaton A and a tree f, a plan for A on f is an infinite N-ary C 8-tree g

such that for all x E TN:

(1) <s0> E g(x)

(2) if <s> E g(A), then <Ln<s, ./{A))> E g(n) .

(3) if x :t:. A and <s> E g(x) and y is the nth neighbor of x, then <M n(s, ./{x))> E g(y)

(4) if <s, X, 1> E g(x) and <t, Y, u> E g(x) with X, Y :t:. 0, then <s, XU {t} U Y, u> E

g(x), in which case the resulting circuit is called the join of the original two.

(5) if <s> E g(x), y is the nth neighbor of x, x is the mth neighbor of y, t = Ln(s, ./{A)) if x

= A or M n(s, ./{x)) otherwise, v = Ln(u, ./{A)) if y = A or M n(s, ./{x)) otherwise, and
<t, X, u> E g(y), then <s, X U {t,u}, v> E g(x), in which case the resulting circuit is

called the expansion of the first one.

The above five conditions are intended to force a plan to include circuits for all possible

loops through a tree, but they do not rule out the presence of circuits which do not correspond to

any loop. It will be shown, however, that the least or minimal plan contains precisely the circuits

for all loops.

Lemma 4.3: For each automaton A and tree f. there is a plan gmin for A on f such that for all

plans g for A on f and nodes x E TN' gmin(x) ~ g(x).

Proof Define gmin as the pointwise intersection of all plans for A on f I

Definition: Given a plan g and an infinite forward path {xn}, a series for g on {xn} is an infinite

sequence of circuits {<s,,. X,,. tn>} such for all n, <s,,. X,,. tn> E g(xn) and sn+l = Mm(t,t .f(xn)) (or

Lm(tn' ./{A}) if xn = A} if xn+ 1 is the mth neighbor of xn.

Definition: If r is a sequence of circuits, then Sum(n = {s E S I s E X U {t, u}, for infinitely

many <t. X, u> on n.

Definition: An infinite N-ary Cs-tree g is good if and only if

(1) for all x E TN' if <s, X, s> E g(x) and s E X, then X E G.

(2) for all infinite forward paths {xn} and series r = {<s,,. xn. tn>} for g on {xn},

Sum<n E G.

The two conditions for goodness correspond to the two forms. cyclic and acyclic, of

18

Corollary 3.5: The goodness problem for a complemented pairs automaton A on infinite N-ary

trees with m states and k pairs, i.e., the problem of deciding whether A has a good tree, is

decidable in time at worst O(N3 . x exp exp(k + logm).

Proof The preceding lemma shows that the goodness problem for A is equivalent to the emptiness

problem for an automaton B on finite N-ary trees of size at worst O(exp exp(k+logm)). It is

straightforward to construct an automaton C on finite binary trees, of size at worst O(N x exp

exp(k+ logm), such that C and B have equivalent emptiness problems. Rabin [R69] gives a

decision procedure for the emptiness problem for automata on finite binary trees which runs in

time O(n3), where n is the number of states of the automaton tested. I

Theorem 3.6: If A accepts a tree, then A has a good tree.

Proof Suppose A accepts the infinite N-ary ~-tree f Let p: TN -+ S be an accepting run of A

on f We claim that for all infinite forward paths 7T, there is an x = n1 · · · n k on 7T such that

p(A) · · · p(x) is a good string. For if 7T = {xn} n~O is an infinite forward path, then X = Inf(p,

7T) E Gg. For all n, let qn = p(xn). Let i = min{n I Vm ~ n. qm E X}. Let j = min{n > i I qn

= qi & {qi+l' ... , qn} = X}. Let x = x1 · · · x1 Then p(A) · · · p(x) = q0 · · · qi · · · qi with

qi = qi and {qi+l' ... , q} = X. So p(A) · · · p(x) is a good string.

Let T = {x E TN I Vy< x. p(A) · · · p(y) is not good}. We leave it to the reader to establish that

T is a finite subtree of TN and that f restricted to T is a good tree. I

Theorem 3. 7: If A has a good tree, then A accepts some tree.

Proof Suppose g is a good tree where g: T -+ ~ and T is a finite subtree of TN'

Let CI be a run of A on g which makes g good. Then CI(A) · · · CI(x) is a good string for all x E

front(1), i.e., there exists a y < x such that if x = yn1 · · · nk then CI(x) = CI(y} and {cr(y), a(yn1}, .

. . , CI(yn1 · · · nk_1)} E Gg. Define a generating map J: front(1) - int(1) by J(x) = y. Note that

for all x E T, J*(x) = x, and that for x ~ T, J*(x) < x. Define f TN - ~ by f = g 0 J*; i.e., f

is the finitely generable tree generated by g and J. Similarly, extend a to TN by defining p = CI
0 J*. We leave it to the reader to prove that p is a run of A on f

We claim that p is an accepting run of A on f For suppose 7T = {xn} n~O is an infinite forward

path. Let Yn = J*(xrr) for n ~ 0 and let Y = !nj{J*, TT). The interior of Tis finite, so 3i. Y =
{Jin I n ~ i}. Also, by the definition of J and J*, Ym+l is either a successor or an ancestor of Ym

for all m. Let Z = {y E intf._1) I J(zn) S y ~ z for some z E Y, zn E fron(1), J(zn) E Y} = fr
E int(1) I Ym+l S y S Ym for some m ~ i}.

We claim that Y = Z. For suppose that yk ~ Z for some k ~ i. We shall show that for all m ~

~ if Ym > yk. then Ym+ 1 > yk. For suppose Ym > yk for some m ~ i. We know that Ym+ 1 is either

a successor or an ancestor of y . If y + 1 is an ancestor of J' . then J' _, 1 < y and)'k < y m m m m-r - m · m
imply that either Ym+ 1 S)'k or Ym+ 1 > yk. But Ym+ 1 S yk and yk < y 111 imply that yk E Z.

21

Definition: A deterministic two-way automaton on infinite N-ary "'i.-trees is a tuple A

<S, s0, L, M, G>, where

(1) S is a finite set of states.

(2) s0 E S is the initial states.

(3) L: S x "'i. -+ sN is the next state map for the root; for s E Sand u E "'i., let L(s, u) =
<L0(s, u), ... , LJs, u)>. Informally, if A is in states on the root, labelled u, then A

will be in state Ln<s. u) on the node n.

(3) M: S x "'i. -+ sN + 1 is the next state map for non-root nodes; for s E S and u E "'i., let

M(s, u) =<M0(s, u), ... , M Js, u)>. Informally, if A is in state son a node labelled

u, then A will be in state Mn(s, u) on the n1h neighbor of that node.

(4) G ~ Powerset(S} is a collection of acceptable sets of states. Informally, A accepts a

tree if for every infinite path w, G contains the set of states entered infinitely often

along w.

Definition: The run of a two-way automaton A on an infinite N-ary "'i.-tree f is the function

p: PN -+ S such that

(1) If w is a singleton, p(-ir) = s0•

(2) If w is a path ending in A. p(w;n) = Ln(p(w), ./(A)).

(3) If w is a path ending in x '# A and y is the n1h neighbor of x, p(w;y)

M iP(w), J(x)).

Definition: If p is the run of A on f and w is an infinite path, then lnj(p, w)

{ s E S I p(r) = s for infinitely man)' finite paths r < w }.

Definition: A two-way automaton A accepts an infinite N-ary "'i.-tree f if and only if for all infinite

paths w, lnj(p, w) E G, where· p is the run of A on f

Lemma 4.2 shows that an infinite path w can take only two forms: either w loops endlessly

on a single node or else w passes through all the nodes of an infinite forward path, looping

(perhaps trivially) on each one. This suggests that a one-way automata might be able to simulate a

two-way automata by successively guessing state information about the loops on each node. This

method of simulation is successful because it is possible for an automaton to check that the guesses

include information about all possible loops.

Definition: If S is a set of states, then a circuit is an clement <s. X, t> where s, t E S <~nd X ~ S.

The collection of sets of circuits is denoted by Cs· Intuitively, a circuit represents the state history

of a two-way automata as it passes through a loop: s nnd t arc the initial and final states and X is

the set of intermediate ~tatc'>. A circuit of the form <s, 0, s> rrprc~.cnts the instar>tanrnus state of

19

contradicting the hypothesis, so Ym+l > yk. If Ym+l is a successor of Ym' then Ym+l > yk also.

Hence, for all m ~ i, if Ym > yk, then Ym+l > yk. Therefore, for all m ~ 4 if Ym > yk, then for all

l ~ m, y1 > yk. Therefore, if 3y E Y. y > yk, then Vy E Y. y > yk. But Yk+l is either a successor

or an ancestor of yk. But if Yk+ 1 is a successor of yk, then 3y E Y. y > yk, implying 'Vy E Y. y >
yk, implying yk > yk, a contradiction. And if Yk+ 1 is an ancestor of yk, then Yk+ 1 ~ yk and yk ~

yk, implying yk E Z, contradicting the hypothesis. Therefore, V k ~ i. yk E Z, i.e., Y ~ Z.

Conversely, suppose that z E Z, but z <£ Y. Then for some k ~ i, Yk+l ~ z ~ yk. But Yk+l =
z or yk = z contradicts the hypothesis that z <£ Y, so Yk+ 1 < z < yk. We shall show that for all m
~ 4 if Ym+l > z, then Ym > z. For suppose Ym+l > z for some m ~ i. We know that Ym+l is

either a successor or an ancestor of Ym· If Ym+l is a successor of ym' then Ym+l > z implies that

Ym ~ z. But Ym = z implies that z E Y, contradicting the hypothesis, so Ym > z. If Ym+l is an

ancestor of y m' then y m > z also.

Hence, for all m ~ i, if Ym+l > z, then Ym > z. Therefore, for all m ~ 4 if Ym > z, then for i < l
~ m, y1 > z. Since Y = {y I Ym = y for infinitely many m}, if 3y E Y. y > z, then Vy E Y. y > z.
But yk, Yk+l E Y, yet Yk+l < z < yk a contradiction. Therefore, Z ~ Y. This concludes the
proof that Y Z.

Hence, Inf{p, 'TT) {u(y) I y E Y} = {u(y) I y E Z}

{u(y) I Ym+l :::; y ~ Ym for some m ~ i}

{u(y) I J(zn) :::; y < z for some z E Y, zn E fron(1), J(zn) E Y}

U zE 1:znEJro~l(1),J(zn)E Y {u(y) I J(zn) < Y < z}.

By the construction of J, each set {u(y) I J(zn) ~ y ~ z} E G0 . Since G0 is closed under

unions, lnf(p, 'TT) E G0 . Since Inf{p, 'TT) E G0 for all infinite forward paths 'TT, p is an accepting

run for A on j Therefore A accepts f I

Theorem 3.8: The emptiness problem for complemented pairs automata on infinite N-ary trees with

m states and k pairs can be 'decided in time at worst O(N3 x exp exp(k+ logm)).

Proof The two preceding theorems show the equivalence of the emptiness and goodness problems

for complemented pairs automata. The result follows immediately from Corollary 3.5. I

20

4 Two-Way Automata on Infinite Trees

Analogously to two-way automata on finite strings, we can define two-way automata on

infinite trees. Two-way automata compute along all infinite paths through a tree, i.e.,

computations begin at all the nodes of the tree and branch in all directions, including back towards

the root. It is technically convenient to allow two-way automata to distinguish the root from all

other nodes. Theorem 4.10 shows how to simulate detenninistic two-way automata by

nondeterministic one-way automata; we do not know whether this result can be extended to

nondetenninistic two-way automata. First, however, infinite trees and paths through infinite trees

are defined, and some simple results proved about the structure of paths.

Definition: Recall that TN is an infinite N-ary tree. Two nodes x and y of TN are neighbors when

either x is a successor of y or y is a successor of x. For 0 ~ n s N-1, the n1h neighbor of x is xn;

if x is the successor of y, then y is the N1h neighbor of x.

Definition: A finite (infinite) path on TN is a finite (infinite) sequence {xn} of elements of TN such
that all n, xn and xn+ 1 are neighbors. Let P N denote the set of finite paths on the tree TN" If 71

= {xnhsn~L and r = {xn}L+lSnSM are two finite paths such that xL and xL+l are
neighbors, then the concatenation of 7T and r is 71;r = {xnh<n<M (defined similarly if r is an

infinite path). The relation 71 < r holds if and only if r = 71-:,CT for some nonempty path CT. A

fonvard path is a path {.A) such that xn+l is a successor of xn for all n. A loop on x is a finite

path {xnhsnSN such that x1 = xN = x. A simple loop is a loop x;71;x such that 71 does not

contain x. A singleton is a path consisting of a single element. An infinite path 71 is cyclic on x if

and only if x occurs infinitely often in 7T; 7T is acyclic if and only if it is not cyclic on any x.

Lemma 4.1: If x;71;x is a simple loop, then 71 is a loop.

Proof Since x;w;x is a path from x to itself, 71 must begin and end with neighbors of x. Any

path, however, which connects two distinct neighbors of x must include x. Hence, if 71 does not

include x, 71 must begin and end with the same neighbor of x. I

Lemma 4.2: If 71 = {xn} n>o is an infinite acyclic path, then there is an infinite forward path

{yn} n~O such that 7r = CT;r0; ..• ;r n; ... , where each r n is a loop on Yn·

Proof Clearly, '!T must contain a least element x. Let CT be a (possibly empty) initial segment of 7T

preceding some occurrence of x in 7T. Let y0 be x and let r 0 be that segment of 71 which extends
from a to include the last occurrence of x in w, so that r 0 is a loop on y0. Inductively, given y n

and Tn = {xm1I~m~Jt· let Yn+l = xM+ 1 and let Tn+l be that segment of 7T which extends

from a: r 0; ... : T
11

tn inclt1de the last occurrence of y
11
+ 1 in 7T. so that r n+ 1 is a loop on Yn+ l'

The reader can \Trifv tlut I 1· } >o i~ ;111 infinite ftirv.ard [)ath. I
- ·Ii II_

