
l-ljgh Level VAL Constructs

in a Static Data Flow l\'Iachine

by

Kenneth Wayne Todd

© 1981 by the Massachusetts Institute of Technology

June 1981

This research was supported by the Department of Energy
under the contract DE-AC02-79ER10473.

Massachusetts Institute ofTcchnology
l .dburatory for Computer Science

Cambridge, MA 02139

- 2 -

High Level VAL Constructs

in a Static Data Flow Machine

by

Kenneth Wayne Todd

This report was submitted as a thesis to the Department of Electrical
Engineering and Computer Science on 19 February 198lin partial
fulfillment of the requirements for the Degree of Master of Science

Abstract

The Dennis-Misunas Form 1 Data Flow Machine can best be described as a static and scalar
machine. Despite these two limiting characteristics, it is still possible to translate the whole of the
functional programming language VAL into the base language of this machine. Methods for
translating the various high level constructs of VAL are presented which exploit the parallelism
inherent in programs written in VAL mainly by pipelining through a single expression (vertical
parallelism) rather than employing many copies of that same expression (horizontal parallelism),
although the latter is not ruled out. These methods are tested by translating two different versions of
a vector dot product algorithm, and the results obtained from running these translations on an
interpreter are analyzed.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Electrical Engineering and Computer Science

Key words: VAL, static data flow machine, instruction cells, pipelining, sharing, streams.

--- ~ -------

- 3 -

Acknowledgments

I would like to thank my father who encouraged me not to quit, and my thesis advisor who

would not let me.

-4-

Table of Contents

Index to Figures ~.. 5

1. Introduction ... 6

I.I. The VAL Programming Language ...•......... 6
1.2. The Static Data Flow Computer····················-·····--····--································-····· JO
1.3. Instruction Cells .. 12

2. The Translation of VAL into Instruction Cells .. 17

2.1. Simple Expressions .. 17
2.2. The Let-in Construct ... 19
2.3. The If then-else Construct .. 20
2.4. Functions .. 23
2.5. The Forall-eval Construct ... 29
2.6. A"ays ... 34
2. 7. Records ... 39
2.8. Unions/1'he Tagcase Construct .. 41
2.9. The Forall-construct Construct .. 43
2.10. The lter Construct ... 48
2.11. A Few Notes About Pipelining ... 57

3. An Example ... 59

4. Conclusion .. M

Appendix 1. Instruction Cell Opcodes .. 6S

Appendix 2. Array Operations Implemented Using Forall·Construct 70

References .. 74

-5-

Index to Figures

Figure 1.1. The Dennis-Misunas Form 1 Data Flow Machine .. 11
Figure 1.2. Blow-up of an Instruction Cell .. 14
Figure 1.3. An IADD Instruction and its Operands ... 14
Figure 1.4. Instruction Cell Abbreviations Used in this Thesis ... 15
Figure 2.1. The let Construct ... 20
Figure 2.2. The if Construct ... 22
Figure 2.3. Calling the Function ... 24
Figure 2.4. Arbitrating the Function Calls .. 25
Figure 2.5. Pipelining the Return Address Around the Function Body 26
Figure 2.6. Storing the Return Address of the Function Caller .. 27
Figure 2.7. Returning the Results of the Function ... 28
Figure 2.8. Testing for Bad Low and High Index Values in the forall eval. 31 ·
Figure 2.9. Pipelining Through The Element Expression of the forall eval. 32
Figure 2.10. Producing the Final Result of the forall eval ... 33
Figure 2.11. Binary Tree of •op Instructions ... 33
Figure 2.12. Snapshot of the Heap ... 36
Figure 2.13. Operations on the Heap ... 37
Figure 2.14. The Tagcase ... 42
Figure 2.15. Setting Up the forall construct. ... 45
Figure 2.16. Stream Generation for the Element Expression in the forall construct. 46
Figure 2.17. Initializing the Elements of the Array Created by the forall construct. 47
Figure 2.18. The iter Construct .. 49
Figure 2.19. A Pipelined Implementation of the iter Construct ... 51
Figure 2.20. Storing the Iteration Result in the Buffers. , 52
Figure 2.21. The Buffer Head Generator _. .. 53
Figure 2.22. The Buffers for the iter Construct .. 54
Figure 2.23. The if Construct as an Iter-End ... 54
Figure 2.24. The if Construct as an ltcr-End (cont) ... 55
Figure 2.25. A Redefinition Arm in the iter Construct ... 56
Figure 2.26. A Terminating Arm in the iter Construct ... 56

-6-

1. Introduction

I. I The VAL Programmi~g Language

Traditional programming languages such as FORTRAN and ALGOL reflect the concept of store

which is present in von Neumann computers. These languages perform their computations by

manipulating and changing variables located in this store. Such changes are called side effects. It is

because of these side effects that the flow of data is so difficult (if not impossible) to trace, and without

knowledge of this flow, it is also a difficult task to determine parts of programs which are data

independent and can thus execute concurrently.

Functional programming languages, on the other hand, lack this concept of a global storage

area that can be changed at will. These languages still make use of a storage area of some sort, but

this area is kept hidden from the programmer. Variables no longer exist in their traditional sense as

objects whose values vary but instead as value names, le., names denoting values. When a value

name is declared, it is assigned a value which it retains for the duration of its life. This is known as

the single assignment rule.

The programming language VAL [l] (Value-Oriented Algorithmic Language) is one such

functional language. It is a high-level language designed particularly for expressing algorithms on

computers that are capable of achieving parallel execution, especially those machines based on data

flow architecture. The current version of VAL leans mainly towar~ numerical applications, but

future versions of the language will address other areas of application.

Since it is a functional language, the basic programming unit of VAL is the function. Each

function is passed a set of one or more argument values and computes a set of one or more values

from these argument values which arc returned to the caller. The function is granted access to only

-7-

those values that are passed to it as arguments, meaning that there are no "global variables". In

addition, changing the value of these arguments is prohibited since VAL is side effect free.

There are no explicit input/output facilities in VAL since such would cause side effects. Instead,

the VAL user calls the desired function by supplying values for its arguments. The function then

begins to execute, possibly calling other functions in the process, and tenninates upon the completion

of computing the resultant values. These values are then returned to the user and most likely are

displayed on the user's tenninal.

The body of a function consists of various subexpressions which are combined in some

mathematical sense like addition or subtraction. Besides function calls, these subexpressions are built

from the let, if, forall, tagcasc, and for constructs, and like function calls, each is functional in the

sense that each produces a set of values from the argument values and value names defined locally

within the function. The let allows for the declaration and definition of one or more value names that

are to appear within the scope of an expression. The if construct returns the value of one of n

expressions, depending on the values of n-1 Boolean expressions. The forall is used to generate one

or more sets of values of unifonn type within each set and to return them either as arrays in the

construct case or to return the results of applying some operation on each set in the eval case. The

tagcasc uses the tag of a oneof value to determine which one of several expressions is evaluated and

returned. The for is used to perform iteration, where the results of one iteration cycle depend on the

results of the previous cycle.

As an example of the let and if constructs, the following VAL function is given:

-8-

function quadratic..formuld._A, B, C: real returns real, real)

let determinant: real : = B • B - 4.0 • A • C
in

if determinant< 0.0 then undeflreal], undef[real]
else (~ B + SQR_T(determinant)) I (2.0 • A),

(- B - SQR1{determinanl)) I (2.0 • A)
endif

endlet
endfun

The let declares the value name determinant to be of type real and defines its value as the determinant

of the binomial AX2+.Bx+C. This value name is then used within the body of the expression

proceeded by the "in" of the let, which is an if construct If the determinant is less than zero, then the

values returned by the if construct are undeflreal], undeJ{real]; otherwise, the values returned are the

roots of the binomial. These values are then returned to the let construct, which in tum are returned

by the function.

The following function is an example of the for construct:

functionfactorial(N: integer returns integer)
for

i: integer : = N;
product: integer : = 1

do
if i < = 1 then product
else

it er
product : = product• i;
i:= i- 1

enditer
enclif

endfor
endfun

This expression calculates the factorial of N. Both i and product are loop names whose values may

change with each iteration cycle. Initially, i has the value of N and product has the value of 1. At the

beginning of each cycle, i is tested to see if its value is less than 1. If so then the iteration tenninates

and the value of the for and hence the value returned by the function is that of product; otherwise, as

-9-

specified by the "iter", the value of product is redefined to be that of the current value of product

times the current value of i, the value of i is redefined to be one less than its current value, and

another cycle of the iteration is perfonned. ·

The factorial can also be calculated using the forall as follows:

functionfactorial(N: integer returns integer)
for all i in [l, NJ
eval times i
endall

endfun

This forall generates a set of values {l, 2, ... , N} as specified by the expression "t' that are all

multiplied together as specified by the "times". This value is then returned by the forall to the

function, which returns this value to the caller.

The last example that is given now is of the tagcase. Let Xbe of type

oneof[A: integer; B: real; C: boolean; D: boolean]

This function computes some nonsensical value depending on the tag of X:

function tagcase_-example(
X: oneol(

A: integer;
/Jo. real;
C: boolean:
D: boolean]

returns real)
tagcase S : = X

tag A: real(S) I 3.0
tagB: S 12.0
otherwise: 0.0

endtag
endfun

If X has tag A and value 6 then the value of the tagcase is 2.0. If X has tag Band value 7. then the

value of the tagcase is 3.5. If the tag of Xis either C or D, then 0.0 is the value of the tagcase. Once

the value of the tagcase has been computed, it is returned to the function, which returns it to the

-10-

caller.

1.2 The Static Data Flow Computer

The computer that this thesis will attempt to translate VAL for is known as the Dennis-Misunas

Form I Data Flow Machine [5, 6), which is shown in Figure I.I. The machine consists of N

processing units, M memory modules, and two communication networks. From the instruction cell

memory modules flow operation packets, each containing an opcode, its operands. and the addresses

of where to send the results. These enter the arbitration network, whose job it is to route each packet

to one of the processing units. The processing units receive these operation packets from the

arbitration network, perform the specified operations on the given operands. and create result packets

consisting .of either the result or an acknowledge signal and the destination address. The distribution

network receives these result packets and uses the destination addreu of each to send.the resuh or

acknowledgment to the proper location in the instruction cell memory modules.

There are two things to note about this machine. Fust, it is a totally scalar machine in that it

operates solely on scalar values: Booleans, integers, reals, and characters. It has no built-in facilities

for handling array, record, and union types in that it lacks a structure memory and processor.

Second, it is a static machine, meaning that. the generation of instruction. cells. that mate up a

program is completed before the cells are loaded into the memocy modules and execution

commences. There is no runtime generation of cells.

result
packets

ISTRIBUTI

NETWORK

-11-

PROCESSING
UNIT

0

•
•
•

PROCESSING
UNIT
N-1

INSTRUCTION
CELL

MEMORY
MODULE

0

•
•
•

INSTRUCTION
CELL

MEMORY
MODULE

M-1

operation
packets

ARBITRATION

NETWORK 1---~

Figure 1.1. The Dennis-Misunas Fonn 1 Data Flow Machine.

1.3 lnslruction Cells

Each instruction cell .module contains a number of inslruclion cells. A cell consists of an

opcode, places to hold the actual values of its operands,. destination addresses that specify where to

send the result of applying the opcode, to the operands, 'and some control and accounting·

information. Appendix I lists the set of ogcodes that will be used throughout this thesis. This is a . .

basic set, performing elementary scalar operations along with instructions for controlling the flow of

data values.

There are three operands per cell, the first two of which are long ones which can contain any

scalar value, be it of type Boolean, integer, real, or character. However, no type information is

retained about these operands: such is either irrelevant as in the ID instruction or types can be

determined by the opcode as in the ADD and IADD instructions. This allows for a smaller size

instruction set and a high degree of flexibility in using the heap (to be explained later on). Since VAL

is a strongly-typed language, the compiler can perform all the ty~ checking necessary; thus, any type

checking done by. the machine itself is redundant The third operand is a short one of type Boolean

and serves a special purpose bf giving each ce11 the power to gate its outputs. Each operand has two

status bits associated with it, one when clear indicating that the corresponding operand is a constant

.
and the other when clear marking that the operand has received its value. For simplicity, if an

operand is either a constant or unused by its opcode,· then its constant and received bits are always

clear.

The destination addresses are.simply the numbers.of those instruction cell that are to receive

something from the execution of the cell, and the control information determines what that

something is, if it is to be anythin~ at all. For each destination address, there is a four bit use field that

is associated with it. Two bits of this field arc used to determine whether the destination cell is to

-13-

receive an acknowledgment or the result, and if it is to get the result, then to which operand to send it

to. The other half of the use field i_s used in conjunction with the third operand to provide the gating

power. One bit, the T-bit, when. set indicates that the destination cell is to receive whatever has been

preordained if the third operand is true. The other bit, the F-bit, works in the same fashion but for

the value of false. Thus, if only the T-bit of a use field is set then the behavior of the cell toward the

corresponding destination is like that of a T-gate. Likewise, setting only the F-bit yields an F-gate. If

both bits are set then the result or acknowledgment is sent unconditionally, and if neither are set then

the destination address is unused.

Another part of the control information contains the number of acknowledge signals that the

cell has yet to receive before it can execute. This number is set after the cell fires to the number of

cells that are sent the result of execution. As each receiving cell executes, it sends an acknowledge

signal back to the source cell. With each reception of an acknowledgment, the source cell decrements

this number by one. When it finally turns zero, the cell is assured that all of the receiving cells have

consumed the result and are ready for another one. The cell can now execute again, pending the

arrival of all of its operands. (The MERGE and SER instructions deviate from this procedure.slightly

and will be explained later.) Thus, the acknowledge signals prevent a cell from producing results

faster than its receivers can handle them.

The final part of the control information concerns the resetting process of the cell after the

operation packet has been created and sent on its way. The values of the constant bits are copied into

the corresponding received bits, and the value for the acknowledgments needed is reset to one of two

values, depending on whether the value of the third operand is true or false.

Figure 1.2 shows an enlargement of the notation that wi11 be used to represent the cells

appearing in the diagrams throughout this thesis. Figure 1.3 shows an example of such, whose

cell number (optional) .

<opcode>
T

<operand # 1) F

<operand # 2> •
r•

<operand # 3> p
(either true or false)

needed/reset-true/reset-false

-14-

t-- -
1-- -
1-- -

..... ...
_ ...
..... ...

~

~

~

SEND THE RESULT:
unconditionally
if operand # 3 is true

if operand # 3 is false

SEND AN ACKNOWLEDGMENT:
unconditionally

if operand # 3 is true

if operand # 3 is false

Figure 1.2. Blow-up of an Instruction Cell.

IADD

1 ...
• ,..

....... --...-..
p

true
..

0/1/1

Figure 1.3. An IADD Instruction and its Operands.

opcode is IADD, which has received the value 5 for its first operand, which has yet to receive the value

of its second operand, and whose third operand is a constant true. Its acknowledgments needed value

is initially zero, and its acknowledgment reset values for both values true and false of the third

operand are one.

Figure 1.4 shows five abbreviations that will be used in the diagrams to help keep them simple.

The first one replaces a result and acknowledge line with a a single thicker line. The second one

replaces many identical cells with a single one and the third is its acknowledge line shorthand

corresponding to the first abbreviation. The fourth is used for those cells that do not need any gating

(a)

{b)

(c)

(d)

(e)

· 15.

/
· "T" or "F" optional

ID

true
x/y/z

'-------- "T" or "F" opUona(

MERGE

x/y/z

What is drawn

~ - - - - - -·

.....
"P'

.~ ,.
~

ID

true
x/y/z

•
•
•

ID

true
x/y/z

~

~

~ - - - - - -·

ID

true
x/y/O

MERGE

x/y/z

What is meant

Figure 1.4. In~truction Cell Abbreviations Used in this TI1esis.

- 16 -

capacity and thus do not care about the values of their third operands. Notice also how an unused

operand is denoted by the shading. TI1e last one is used in conjunction with the MERGE and SER

instructions and will make sense once these two operations have been explained.

-17-

2. The Translation of VAL into Instruction Cells

2.1 Simple Expressions

The simplest of expressions are those that use only operators for which there are instruction

that perform the specified operations. For example, if A and- B are both expressions of arity one

(I-tuples of values), then the following are all simple expressions, providing that the operations being

performed are defined for the types of A and B:

A
-A
AIB
A&B
-A
abs(A)
A+B
A-B
A•B
AIB
mod(A, B)

min(A, B)
max(A, B)
A<B
A<= B
A>B
A>= B
A=B
A-= B
integer(A)
real(A)
character(A)

is pos_over(A)
is neg_over(A)
is over(A)
is pos_under(A)
is neg_under(A)
is under(A)
is unknown(A)
is zero_divide(A)
is aritb_error(A)
is miss_elt(A)
is undet(A)
is error(A)

For each of these expressions, there exists a single instruction cell type that can perform the

desired operation. With two exceptions, the translation is straight forward: the value of A is sent to

the first operand of the cell and the value of B, if required, is sent to the second operand In the case

of the expression "A", no cell is needed since the value of this expression has already been obtained,

le., its value is simply the value of A. As for the case of" -A", A's value is sent to the second

operand of either a SUB or ISUB instruction depending on A's type, and the first operand is set at a

constant zero.

A slight problem turns up in that many of the above binary operators are also well defined for

an arbitrary number of operands. The compiler handles this situation by building a balanced binary

tree out of instruction cells of the proper type. The operands arc grouped in pairs and the compiler

-18-

generates instruction cells to perform the operation on each of the pairs to produce a set of partial

results, the number of which is at most half one plus the number of operands. It then recursively

performs this process of grouping and cell generating with the partial results until just one value is

left, i.e., the final result For example, the expression

A+B+C+D+E+F

is translated as

((A + B) + (C + D))+ (E + F)

and not as

((((A + B) + C) + D) + E) + F

A problem still· remains in that the "+" and " - " operators have the· same priority and can

appear in expressions together without any parenthesization, where each " - " indicates the addition

of the negated quantity to the right of the operator. For this situation, the compiler performs the

same recursive process. of grouping and cell generation as before, except that when a group is

preceded by a minus sign, the operation performed on the two elements of the group is the opposite

of the one indicated, i.e., if an addition is supposed to occur, a subtraction takes place instead, and

vice versa. In case the first operand is preceded by a unary minus, it is initially subtracted from zero.

For example, for the expression

-A+B-C-D+E-F-G+H-J-X

the compiler performs the following transformation steps:

~-~+~-C)-~-~-lf+~+~-.1)-X

((0 - A) + (B - C)) - ((D - ~ + (F + ~) + ((H - .I) - K)

(((0 - A) + (B - C)) - ((D - ~ + (F + ~)) + ((H - .I) - K)

'The same rules for the "+" and'.'-" operators apply correspondingly to the"•" and"/" operators

and the "= " and " - = " operators as well.

-19-

2.2 The Let-in Construct

The let is the simplest of the· high-level constructs included in VAL. In its general form it looks

like this:

let Z : = /et_definition!/..X)
in in_expressionf.. Y, Z)
endlet

Here, X, Y, and Z are vectors of scalar values, possibly of dimension zero. The values of Zs elements

are computed as some functional combination of the values of the elements of vector X. Vector Z is

local to the let construct. and its value is defined only within the in expression. Once the value of Z

has been derived, it is used along with the value of vector Y to determine the value of the let

construct (another vector). as specified by the in expression. Note that the vectors X and Y need not

be disjoint

The let contributes nothing to the completeness of VAL. Indeed, the above construct could

simply be replaced by the following with the end result being the same:

in_expressionf.. Y, /et_definition!/..X))

Hence, the purpose of the let construct as far as the programmer is concerned is to declare and define

temporary value names to appear in a given expression in order to help promote the clarity and

readability of the program. For the data flow machine, however, the main function of the let

construct is to evaluate expressions only once that occur repeatedly within a scope.

The translation into instruction cells of the let construct is shown in Figure 2.1. The boxes

labeled "let definitions" and "in expression" are used to stand for instruction cells linked together in

some fashion to produced the desired results from the given inputs. The two numbers underneath

the boxes are their acknowledgments needed and reset-true values. Since it is unknown in the

context of the figure how many places use the values of Y, Z, and the let construct, the reset values

-20-

LET z x DEFINITIONS --iH

v.Jn.
-~

IN
EXPRESSION ~result

Figure 2.1. The let Construct

are left as question marks. In reality, the compiler needs only to keep a reference count to detennine

these reset values. Note also that Y is sent through a series of ID instruction cells. This is to tum the

construct into a pipeline. Should there be no need or desire for pipelining, Y can be fed directly into

the in expression.

To infonn the compiler whether or not to make this and other constructs pipelinable, there is

envisioned to exist an advice file for the program. This file would be headed by the words "optimize

throughput" if pipelining is desired, and either "not optimize throughput" or "optimize space" if no

generation of ID buffers is wanted.

2.3 The If then-else Construct

The general fonn of the if construct appears below.

if predicate(P)
then true_expression(X, Y)
else false_expression(Y, Z)
end if

Once again, P, X, Y, and Z are all vectors of scalar values, with X, Y, and Zall being disjoint

The semantics of this construct at first appear simple: evaluate the predicate; if it results in the

• 21 •

value true, then the value of the construct is the value of the true expression and if its value is false

then the false expression's value is the construct's value. However, VAL has expanded its set of

Boolean values to include undeflboolean] and miss_elt[boolean]. The construct must now be defined

to produce an intelligent result when the predicate evaluates to one of these error values. The

following let construct tells the story:

let pred: boolean : = predicate(P)
in

if is error(pred) then undefl •]
else if pred then true_expression(X, Y)
else fa/se_expression(r .. Z)
end if

en diet

The problem of bad Boolean values is now solved since the test filters out all error values and causes

the value of the if construct to be undef of the proper types and arity (denoted by the "•" in

"undefl•)").

There are two basic ways to translate a conventional if-then-else into instruction cells. In the

first, the data flow machine evaluates the predicate, true expression, and false expression in parallel

and then uses the result of the predicate to choose whether the value of the true or false expression

will be gated to the outside world. This has the advantage of achieving a high degree of parallelism,

but at the expense of performing needless computation in that both the true and false expressions are

both evaluated but only the results of one are used. This is not something to be overly concerned

about, unless the thrown away computation is particularly long, the worst case of which being when it

turns out to be infinite.

The other way to transform the if-then-else is given in [3] and (7). The predicate is evaluated

first and then its value is used to gate the inputs to the true and false expressions, letting only the

proper set of inputs through to the selected expression. This way avoids needless computation but at

·-;)·

-;t y •

1

z-;}•
0 1

p PREDICATE
EXPRESSION

2

-22-

TRUE
EXPRESSION

1

FALSE
EXPRESSION

0/1

1 ~-
result

Figure 2.2. The if Construct

the price of not being as parallel as the first one. Using this method, Figure 2.2 shows how the VAL if

construct can be translated into instruction cells.

There are a few things to note about this diagram. First, the value of "s" is the sum of the sizes

of X, Y, and Zand "r" is the arity of the result Second, like the let construct, identity operators have

been added to achieve maximum throughput when pipelining. Because it is pipelined, the MERGE

instruction ce11 has been introduced. Before it can execute, its acknowledgments needed value must

be zero, its third operand must have been received, and if the value of that operand is true then the

first operand must have been received, and if its value is false, then the second operand must be

present. The result of its execution is simply the value of the first operand if the third operand has

- 23-

the value of true, or the value of the second operand if the third is false. The resetting processing of

the cell is just like all the others, except that the value and received status of the one operand that

went unused remains untouched. This is all done so as to allow simultaneous execution of both the

true and false expressions by different activations of the if construct while preserving the FIFO

property of the construct For example, if an activation of the if construct which takes the false

branch is followed by an activation which takes the true branch, and the second activation produces

its results before the first does, then the MERGE will prevent the results form the second one from

being put out by the if before the results from the first one have been released.

For some predicates, particularly the error tests, it can be determined at compile time that they

will never yield error values as results. For such cases, the error test is not needed and the

conventional if~then-else translation is adequate.

As a closing remark, an expression with the form

if A then B elseif C then D else E endif

is just a recursive version_ of the if construct above. _It is translated as

if A then B else (if C then D else E endif) endif

2.4 Functions

There are two basic ways to handle functions in the Form 1 data flow computer. The first is the

simplest and most straight forward of the two: at each invocation site_ of the function, the compiler

textually replaces the function call by the body of the function. The other is significantly more

complicated: only one body of the function is used which is shared among aU calling sites. The

compiler generates the appropriate instruction cells so as to arbitrate between calls to the function

from the different activation sites.

- 24-

Qearly, the first method yields the better runtime .of the two and is the best method if a

function is called from only .one point or if it is small in. size. On the other hand, for larger functions

with multiple activation sites, the second method utilizes the resources of the instructi~n cell. memory

modules more efficiently. This section presents the tTilDSlation of this second method which is based

upon work presented in [9l

Figure 2.3 shows how the function call is set up and viewed by the caller. The function takes n

arguments and returns m values. The value of the rh argument is th~ result of the execution of cell

number x - i, and the value of the rh returned value is stored in the first operand of cell number

X + i. When the function is ready to be called. i.e., when cells X ..,...1 through X.,.... n lack only an .

acknowledgment to commence execution, the caller ~nds an acknowledgment to cell X. which causes

this cell to fire. The result from executing cell X, which is also the integer.X, is sent to a~binary tree.of

SER instructions so that requests to call the function from different calling sites can be arbitrated. See

Figure2.4.

ready
to call

function

•
L - -

X-_r

~ _...
t---1

-r

1Ji'

• • •

ijJ-

n-th
parameter

FUNCTION
AND

·:cAtlL1NG
MECHANISM

first
parameter

return
address

Figure 2.3. Ca11ing the Function.

. ;

first
return
value

·•

m-th
return
value

_..

_...

• • •

•
• • I

-~
_ ...

• • •

BINARY TREE OF SERIALIZERS

Figure 2.4. Arbitrating the Function Calls.

return
address

r - - • from first formal

/

to first actual

'

r - - • from n-th formal

./

to n-th actual

'

At this point, an explanation of how the SER instruction functions is needed. Before it can fire,
--- -

its acknowledgments needed value must be zero and at least one of the first two operands must have

been received; the third operand is always received. When it executes, if only ont of the first two

operands is present then the result is the value of that operand; otherwise, the resitlt is the value of

the first operand if the third operand's value is false, or the second operand if the third operand is

true. The value of the third operand is then seU<;> trueJf itjs tlle ~.t opeJJn~ tllaJ is ~nsumed, or to

false if the second operand is used. Resetting the acknowledgments needed value and the operand

that is used is perfonned in a fashion just like the MERGE. This method of arbitration prevents the

monopolization of the function body by a single caller that might otherwise occur in using the SELECT

instruction of[9] instead of SER.

The request X to use the function body filters through the binary tree of SER instructions until it

finally reaches the root. It is then sent to a series of ISUB instructions, whose results arc sent to

ACKFANs. Each ACKFAN causes an acknowledgment to be sent to the cell number given as the value

- 26-

of its first operand. Thus, cells X - I through X - n are acknowledged, causing each of these cells to

execute. The values prod~ced by these cells are then sent directly to the function body. The

execution of the body then commences and tenninates with the production of the results.

While the function body is executing, the return address X mustbe kept around in order that it

can meet the results when they exit the body and send them back to the caller. The simplest method

to accomplish this is to pipeline the return address around the function body by using ID instructions,

as shown in Figure 2.5. This is fine for smaller functions, but larger functions wind up executing a

large number of these IDs with each call. What would be better would be to have a FIFO queue by

which the return addresses could temporarily be stored. Figure 2.6 shows how such a queue can be

implemented. The queue itself is a series of N consecutive ID instruction cells. starting at cell number

Mand ending at M + N-1. The store phase takes the first return addreSs it receives and puts it in the

return --+~ ..
address q.J ..

first
parameter

•
•
•

n-th --+
parameter

FUNCTION BODY

~return • qaf address

first
t--•retum

value

•
•
•

m-th
1---.... • return

value

Figure 2.5. Pipelining the Return Address Around the Function Body.

- 27-

M

M

return address __________ _.

STORE PHASE

M

M

RETRIEVE PHASE

• ii
•

BUFFERS

I
I
I

/ - - J • • • ' ____ J

•
•
•

IL-------------•
I I
L - - - - - - - - - - - - -•- •

•••

return
address

Figure 2.6. Storing the Return Address of the Function Caller.

first operand of cell number M, the second address it gets in cell M + 1, and so on. After it has filled

cell M + N-1, it starts back at cell M. The retrieve phase works in the same manner, except that it

causes the cells to execute, sending the return addresses to greet the return values of the function.

Using this method, only nine cells fire per function call to save the return address at the cost of only

eight extra cells. It is important thatthe size N of the queue be large enough so that the queue does

not become filled beyond its capacity. Should such an event occur, a new return address would

overwrite an old one stored in the qu~ue.

return
address

•
• •

-28-

first return value

f----,
l'l!l'Pll'f'll'-. I •

to catting program

•
•
•

m-th return value

• to calling program

Figure 2.7. Returning the Results of the Function.

When the function body finally produces its results, their values are sent back to the caller (cells

X + 1 through X + m) in a fashion similar to the one which sent the actuals to the formals. See Figure

2.7. The return address is sent through a series ofIADD instructions. Their results are then sent to the

second operands of FANl instructions. whose first operands have obtained the return values. The

FANls execute, sending the values of their first operands to the first operands of the cell numbers

specified by their second operands. Thus, the values produced by the functions are returned to the

caller.

Actually, this implementation of functions is not totally free from deadlock. For example, let

there be two expressions which share the same function with the output of one expression being the

input to the other one. Supposed the first expression receives a constant stream of inputs and

produces a stream of outputs faster than the second expression can process them. Things would back

up into the first expression and eventually into the function body. If the second expression would

-29-

then call the shared function, if would not be able to complete because of the backing up.

To solve this problem, a slight modification needs to be made to the sharing scheme. Instead of

cells X + 1 through X + m sending acknowledgments to the FANls of Figure 2.7, they send them to cell

X. This prevents any site from calling a shared function unless the call can be completed and the

values returned.

2.5 The Forall-eval Construct

The general form for the f orall eval construct is

forall i in [lo_expressiot(Y), hi_expression(Z)]
eval forall-op element_expressior(i. X)
endall

where X, Y, and Z are all vectors. not necessarily disjoint

Using the let and if constructs, the forall eval can be rewritten to more explicitly reveal what

computation is being performed.

let

in

lo: integer : = lo_expressiot(Y);
hi: integer : = hi_expressiol(Z)

if is error(/o) I is error(h1) then undet(•)
elseif lo> hi+ 1 then undet[•)
else init
~ element_expressiol(lo, X)
o~ e/ement_expression(lo + 1, X)

O<!P e/ement_expressiot(hi, X)
end if

endlet

If either the low or high mdex is an error value or if the low index is greater than the high index plus

one, the value of the construct is undcf of the proper types and arity. Otherwise, the result is the

- 30-

value obtained by applying the element expression to each of the integers in the range [lo, ·hi] and

performing the selected operation on the resulting values. Table 2.1 gives the values for init and O~

corresponding to the choice made for "forall-op". Notice that init is simply the identity for the

chosen operator.

The basic plan for evaluating the forall eval construct is to pipeline all hi-lo+ I activations of

the element expression through one copy of its body. First, though, the tests for bad low and high

index values must be performed. This part of the translation is straight forward and is shown in

Figure 2.8.

Having gotten the easy part out of the way, the complex part now needs to be tackled. The plan

itself is simple: generate a stream of inputs (lo, X), (lo+ 1, X), ... , (hi, X) to be fed into the element

expression which will produce a stream of results from out of the element expression. As each value

is put out by the element expression, it is OC!T'-ed with the partial result, whose value is initially init, to

produce a value which the partial result then takes on. A stream of Boolean values is also needed, to

decide when the partial result is the final result so that it can be sent on its way.

Figure 2.9 accomplishes all of this: generating the input stream, operating on the output

stream, and returning the final value when it has been calculated. The *OP is the opcode that

corresponds to 09 , "init" is defined as before, and "x" is the size of vector X. This scheme also

Table 2.1. The Values for init and Oc:P Based on the Selection of"forall-op".

fQratJ-sm i.ai1 ~
plus OorO.O +
times 1or1.0 •
min pos_over[•] min
max neg_oycr[•] max
or false I
and true &

- 31-

x

z

LO
EXPRESSION

02

HI
EXPRESSION

Figure 2.8. Testing for Bad Low and High Index Values in the forall eval.

x

lo

hi

81

BO

allows for a second activation of the forall to begin its use of the body of the element expression as

soon as the first one has tenninated its stream generation.

When finally computed, the sub-result is then sent through a chain of two MERGES that are

needed because of the error tests performed earlier. This is shown in Figure 2.10.

For a higher degree of parallelism, it is possible to pipeline through several copies of the

element expression, the number ofwhich could be specified in the advice file for the source program.

In the general case of n copies numbered 0 through n-1, the "lo" of Figure 2.9 is replaced by "lo+i"

in the ;th copy, and the value of the second operand of the IADD instruction is changed from 1 to n in

all copies. The sub-results arc then O"J ·cd through a binary tree of *OPS as shown in Figure 2.11

~---

lo...::-,
I
I
I
L. -

01?

·--------·

- 32-

~---,

ELEMENT

EXPRESSION

I
1n1t I

I

1

Figure 2.9. Pipelining Through The Element Expression of the forall er.al.

- 33-

sub-result

81 BO

Figure 2.10. Producing the Final Result of the forall evaL

before they are sent on to the MERGF.s.

· Multi-dimensional forall evals are treated recursively, just as the elseif is treated in the if

construct For example,

forall i in I A, BJ, j in [C, D]
eval forall-op E
endall

is equivalent to

sub-result-0

sub-result-1

sub-result-n - 2

sub-result-n -1

•
•
•

I

:··---...i: ~---•.,. sub-result

I

Figure 2.11. Binary Tree of •op Instructions.

26 Amzys

foraH i in [A, BJ
em

foralljin (C, DJ
e•al forall-<JP E
endall

eMall

-34-

•

The VAL language supports dynamic arrays. Since the Fonn 1 data flow machine is totally

static in nature it cannot support anything dynamic. Thus, if dynamic. arrays are going to· be

implemented, it is going to have to be done with the aid of program transformations performed in

software.

The inclusion of dynamic arrays in a language suggests using a heap of some fonn implemented

on· the computer supporting the language. In a static data flow machine, a heap can be ronstructed

by using an odd number of FANl instruction cells, the first operands of which hold soR1e piece of

data, be it the value of an element of an array, a cell number (pointer) within the heap, or total

garbage.

The heap itself is divided up into a series of consecutive blocks, of which there are two types:

free and allocated. A free block consists of an even number of consecutive FANl cells. The data held

by its first cell is a pointer to the last cell in the block, while the. last cell pojnm to the first cell of the

'
ne~t free block in the heap. The last free block in the heap has the vaklt&rits last cell set to uodefl•i

As with all properly implemented heaps, no two fr~iblocks are ever adjacent to each other.

The other type of block is one allocated to an array. Like the free block, it consists of an even

number of cells. Its first two cells hoJd the values of the lower and upper bounds of the array

respectively, and the rest of the cells hold the array elements. Should an array actually be odd in size,

- 35-

the last cell in the block goes unused.

The reason for having every block an even number in size is to avoid the situations that create

free blocks of size one. Note, though, that the heap itself is odd sized. That odd cell is at the front of

the heap and is used to point tcfthe first free block in the heap, or it contains the value undef[•] if the

whole heap has been allocated. As an example, a snapshot of the heap with two free blocks and one

allocated block is shown in Figure 2.12.

To manage the heap, there is a single system function called heap which is shared by all users of

the heap but not directly aooessible-by them. When an array is created, a call is made to the manager

in the form of heap(true, lo, hi), where lo and hi are the lower and upper bounds of the array to be

built respectively. If the bounds are legal, then the manager allocates a block in the heap, sets the first

operands of the first and second cells to the values of the lower and upper bounds, and returns the

cell number of the first cell in the allocated block; otherwise, the function call produces undef[•]. The

value undef[•] is also retumed "if there is no free block big enough to hold the prospective array.

Thus. an array is simply an integer whose value is interpreted as a pointer to the base of an allocated
._

block in the heap. To free an allocated block, heap(false, base_cell_no, 0) is called, which frees up the

allocated block that begins with cell number base_ce/Lno.

It remains to be said how to get at and set the data held by the cells. As shown in Figure 2.12,

each cell has received its first operand, has not received its second, has its third constant at the value

true, needs no acknowledgments and never expects any. All each one needs before it can fire is its

second operand, which because the cell is a FAN!, is the number of the cell to receive the value of the

first operand, Le., the data held by the cell. Figure 2.13 shows how this data can be both accessed and

changed. Note that the heap b~haves like magnetic core memory in that it has the attribute of

destructive readout. The FAN2s retrieve the given cel1's data and the FAN ls replenish it, either with

• 36.

x
POINT~R TO THE FIRST CELL ~
OF THE FIRST FREE BLOCK - - _ -.gi"

FIRST FREE BLOCK

ALLOCATED BLOCK

LAST FREE BLOCK

•
• •

----$ _, - .--..... ··-

Pi;rv.
---~"

--- .~ ~
• • •

---~
- - - -

-""~
•
•
•

-~--~
Figure 2.12. Snapshot of the Heap.

cell number
of element

cell number ~
of element ::;-+qi"

I~

- 37-

heap restore .

r-~-J.r---• value of element

HEAP FETCH

HEAP STORE

new
value

Figure 2.13. Operations on the Heap.

the cell's old value for a heap fetch or with a different value in the case of a heap store.

value of
element

Like the function heap, fetching and storing element values in the heap can also be performed

by system calls not directly accessible by the VAL programmer. The heap fetch is written as the

function heap_/etch(cell_no) and the heap store appears as heap_store(cel!_no, value). Thus, if A is an

array in the machine, then heap.fetch(A) returns the lower bound of A and heap.fetch(A+ 1) yields

A's upper bound.

To access a specific element of the heap, either an array element or its bounds, the following

function is used instead of the more primitive heap.fetch so as to avoid simultaneous and illegal

accesses to the heap:

-38-

function amiy_acces.(.
A: integer;
operation_tag-. ooeof[

select,
lim~
limh);

index: integer
returns•).

'Ii the array
% detennines the operation to be performed

'Ii used only with select
'Ii integer or type of A's elements

if is error(A) then untlet(•)
em

let

la

lo: integer : = heapJetcl(A);
hi: inteaer : = heapJetel(A + 1)

tagcase opmztion_lag:
taa select:

if is error(index) then undet(•)
elseif index< lo I index> hithen undet[•)
else heapJetel(A + index ~- lo + 2)
mllf

ta& liml: lo
tat /imla: hi

endta&

'I> array_6ml(A)
'I> arnyJimll(A)

ealllet
endif

endf an

The programmer is not allowed direct access to this function nor is there any need for such access.

Instead, access is gained through three basic array operations: element selection, index of highest,

and index of lowest Thus, A[.IJ translates directly as a"ay_acces!i(A, make operation_tafd.selecr. nil].

}), arrayJiml(A) as amiy_accesl(A, make operation_tatl.liml: nil], 0), and arrayJimh(A) as

a"ay_accesl(A, make operation_tagf.limh: nil], 0). By prohibiting the programmer to call this function

directly, compile time checking can be preserved and optimizations in the translation of this function

can be perfonned such as omitting the error test for operation_tag. Only one copy of this function

exists per VAL program, which is shared among all arrays.

Now that a heap is implemented, a way to create and initialize arrays must be devised. To keep

things simple, all arrays except those constructed using the array_cmpty primitive are created by

- 39-

using forall construct, whose translation into instruction cells will be explained in a later section.

Since VAL contains some array constructors that do not use the forall, these must be translated into

equivalent forms that do use forall construct. These translations can be found in Appendix ~- As for

the array_empty[•] constructor, it is translated directly as the call heap(true, l, 0).

2.7 Records

Records in VAL are a means for grouping together logically related data items that are not

necessarily of the same type. Since the Form 1 machine does not support compound types, it does

not support records. It does, however, support scalar types from which records are created.

Therefore, the simplest way to translate a record from VAL into instruction cells is to break it up into

its components. For example, the record

record[reaLpart: real; imaginary_part: real]

is broken up as

real.part: real;
imaginary_parr. real

In the case of a record having other records as components, those component records can.also be

broken up as long as there are no recursive or circular record definitions.

Some records may be large and heavily utilized, and the above implementation may yield a

bulky program. Other records might be recursively defined or contain circular definitions. For

records like these, it is possible to use arrays to hold the values of their components. Given a record

with n components, each component is assigned to a number from 1 to n. An array is then created

with lower and upper bounds of 1 and n respectively, and each element of the array corresponds to a

particular record component. The record is then treated exactly as if it were an array. For example,

in the previous record, the value of real_part would be held in the array element indexed at 1 and the

-40-

element indexed at 2 would hold the value of imaginary..JXZrt.

To create an n-component record using an array implementation, a forall construct could be

used. The index name (the value name appearing just before the in expression of the for11U) is set to

vary over the range of 1 to n . . Within the body, either a tree of if constructs or a tagcase construct is

used to test for the different values of the index name, with the appropriate component value being

stored at the proper location within the heap for the corresponding value of the index name.

To select a component of a record, a simplified version of the array_access function would be

used which lacks the bounds fetching and the range testing:

function recorrLacced..
X: integer;
component: integer
returns•)

if is error(X) then undel[•]
else heap.fetcM..X + component + 1)
endif

endfun

%the record
% the component of the record
% type of an elementofR

Like array_acces.v, only one copy of record_access exists per program and the programmer is allowed

access to it only through the VAL record component selector: To perform the record replace

operation, an array append is performed.

For large records implemented in the latter fashion. the end resuh is possibly a slower

executing program than one that uses the former method, but also one that is smaller in size since

only a pointer to the record and not the entire record itself is being passed around. The choice of

which implementation to use could be specified in the advice file for those records where a choice is

possible.

- 41-

2.8 Unions/The Tagcase Construct

An element of type union consists of a tag and a value. The type of the value can be one of

several types, and the tag is used to select which type that value is. For the Form 1 machine, a union

can be implemented as if it were a record with two components. &ch tag of the union is encoded as

an integer which is stored in the first component of this record. The second component is used to

hold the value part of the union. If one or more selections foi:- the value are record or union types,

then the union can be implemented as an array whose first element holds the tag and which is large

enough to hold the largest sized value.

A straight forward method for translating the tagcase would be to convert it to an equivalent if

construct where the Boolean expressions test for different values and ranges of the tag value. If this

approach were to be used, it would be hoped that the testing would take on the form of a balanced

binary tree so as to reduce the worst case execution time. The drawback to this method is that it is

using many one-out-of-two decoders (if constructs) to create a one-out-of-many decoder (the

tagcase).

Another possible translation which avoids this problem is shown in Figure 2.14. &ch of the t

tags is assigned to an integer in the range from 0 to t-1. After using an if to insure that the tag is not

an error value, the value of the tag is added to the integers from A0 to Ay-1' whose results are sent to

the second operands ofFANl instructions. These FANls are used to direct the value part of the oneor,

vector Y of size y, to one of the t expressions corresponding to the arms of the tagcase. In a similar

fashion, the external values used in the tagcase arms, vector X of size x, are sent to the chosen

expression.

For a pipelined version of this, rac~ conditions must be eliminated and the FIFO property must

Yo

Yy-1

tag

Xx-1

• • •
• • •

• • •

• • •

-42-

• • •

J!!n__
~

EXPRESSION
FOR

TAGOFO

• • •

EXPRESSION
FOR

TAGOFt-1

Figure 2.14. The Tagcase.

• • . .
Rr-1

Ro +t-1

• result
• to
• MERGEs

from
a.ERGEs
• •
I I

..J ••• ,
r - - I

/·

'

I
I

-43 -

be preserved. To achieve this, the value of the tag is pipelined around the bodies of the ann

expressions. Just before the next result is to be produced, the tag value is added to the integers from

R0 to R,_r Each result from these additions is sent to an ACKFAN. By sending acknowledgments to

the proper set of cells, the firing of these ACKFANs dctennine which ann expression is to send its

values to the MERGES of the error testing if. Once the MERGES have fired, the next set of return values

are allowed to emerge from the anns. This is all shown in Figure 2.14 also. Since the tag values

cannot get out of order, the results remain in their proper sequence, thus perfonning the desired task.

2.9 The Forall-construct Construct

Earlier it was shown how a heap can be implemented on the Fonn 1 computer. It was also

shown how to translate a forall eval into instruction cells. The techniques used for these two

constructs will now be used to translate the forall construct.

To the programmer, the forall construct appears as such:

forall i in [lo_expression(_ n. hi_expression(_Z)]
construct elemencexpressio1'_i, X)
endall

In detail, however, it looks like this:

let

in

lo: integer:= lo_expression(.Y);
hi: integer : = hLexpression(.Z);
A: integer:= heap(true, lo, h1)

if is error(A) then undet[•]
else

let

-44.

heap_store(A, e/ement_expressim(lo, X));
heap_store(A, elemenLexpression(.lo + 1, X));

heap_store(A, element_expression(.hi. X))
in A
endlet

eDltif
eMlet

The plan ofattack here is just like the one used in the forall eul, except that the stream of values put

out by the body of the element expression are stored in their proper locations in the heap instead of

being operated on.

The first thing to be accomplished is to call the heap function. Since heap checks that the values

for lo and hi are good,· there is no need for the forall to perfOl'Jll this duty. Presenting heap with bad
.

index values causes the function to return undcf[•]. Thus, the· forall needs only to test the returned

value for undel(•]. This part of the construct is shown in Figure 2.15.

Generation of the input stream to the element expression is accomplished in the exact same

manner as it is in the forall eval. This is shown in Figure 2.16. The rest of the translation, though,

deviates from how the eval is perfonned. Besides needing the stream of Boolean values, a stream of

celJ numbers must be generated so that the elements of the stream leaving the element expression can

be stored in the proper cclJs in the heap. This can be accomplished as shown in Figure 2.17. The

values for the array clements arc generated by the element expression from low to high, and as they

arc produced, they arc stored at the correct locations in the heap via the f'ANl since the heap cell

-45-

x:

y

z

LO
EXPRESSION

2

call '\\
to

heap

Figure 2.15. Setting Up the forall construct.

numbers are also generated from low to high.

x

lo

hi

BASE

BO

Like the forall eval, it is also possible to use several copies of the element expression in order to

achieve greater parallelism. For some integer n. n > 1, n copies of the cells of Figures 2.16 and 2.17

are generated, except for cells Fl, F2, and Fl The two IADD instructions with their third operands

shown have the value of their second operands set to a constant n. In the /h copy, where i ranges

-46-

t---------,
. I

lo~,

I
I
I
L--

L--- I , •..
___ __.

Figure 2.16. Stream Generation for the Element Exp~ion in the:forall construct.

from 0 to n-1, lo is replaced by lo+ i and the third IADD instruction ·has its ~and-operand set at

1- i. Just one copy of cells .Fl, F2. and F3 are used, and· the only changes to these is in: F2's

acknowledgments needed and reset values which are both set to n.

Every element in the array must be initialized before the base pointer can be sent out to other

parts of the program. Unlike I-structures (2), uninitialized array indexes do not contain "holes" but

actual values that are pure nonsense. If the array would be prematurely released and some other part

JmJl 81-izif-
0/1

BASE-----+!

x:
I

BASE-----------------1M

F1

. 47.

to heap phr.J_~_::, - l

+ ~: : i.. ________ .J I

ELEMENT
EXPRESSION

BO

Figure 2.17. Initializing the Elements of the Array Created by the forall construct

to heap

of the program tried to access an uninitialized element, that part of the program would receive

garbage for the value of that array's element and not the value that would eventually be created.

Two other points should be mentioned. First, a forall construct that creates n arrays where n >

1, is best transformed into n forall constructs that create one array apiece since the heap function is

not pipelinable and must be shared by an array constructors of the program. Second, the creation of

multi-dimensional arrays is handled in the same manner as multi-dimensional forall cvals.

-48·

2.10 The lterConstruct

The last construct to be examined is the iter construct It appears as such:

for decldef-part
doiter-end
endfor

The decldef-part declares and initializes a number of value names known as loop names. With each

iteration cycle, it is the function of the iter-end to either change the values of these loop values for use

in the next cycle or to tenninate the iteration and return a final set of values. The form of the iter-end

is that of a nested tree of some combination of if and tagcasc constructs with a slight modification. If

the selected arm is to modify the values of the loop names and thus continue the iteration for at least

one more cycle then the arm consists of iter, the redefinitions. and enditer. If the arm is to terminate

the iteration, then the arm is simply an exp~on and the value of-the iter construct is the value of

that expression.

Montz in [7] gives a method for translating the iter into flow graphs. Using these graphs, it is

possible to transform the iter construct into instruction cells. The hasic translation is shown in Figure

218. The loop names are given by the vector z. whose initial values are functions of vector Y.

Vector X includes all external value names used within the iter-end. Both vectors X and Z enter the

iter-end, and either X and a new Z emerge should the iteration be contim~ed another cycle or the

final result comes out and the iteration terminates. The pu~ of the "iter?" lines is to signal

whether the old activation of the iter is to continue, in which case "iter?" is the value true, or if the

old one is done and a new one can now commence, in which case .. iter? .. is false.

Stoy in [9] suggests that pipelining through an iter construct can be advantageous. Since

different activations of the iteration will most likely take a diff~rent number of cycles, he suggests that

a set of buffers be used to hold the results of each activation. and that the contents of the b\.lffcrs be

-49-

false •I'

y ~
FOR 2 ~ next.Z_

DECL-DEFs ...
0/1 01?/?

result

ITER-END jtea_

ri-!' _.. x
-.. x

01? n QI~ /,next Z)

false·~
01? result)
O/x + z (lter?)
0/1 (X)

Figure 2.18. The iter Construct.

released in the proper order. The rest of this section will show how this method for pipelining can be

implemented.

The instruction cells of Figure 2.18 are replaced by those of Figures 2.19 through 2.22. Before a

new activation of the iter can enter the body of the iter-end, it must first be assigned buffers. to hold

its results. The "buffer head generator" performs this function by returning the cell number of the

first one of the buffers assigned to the activation. After X and Z have become ready and the buffers

have been assigned, the ID instruction whose operand is a constant false fires, sending the value false

to the second operand of the SER instruction. This SER instruction along with the MERGES is used to

arbitrate the entrance to the iteration body between new activations and continued old activations,

with the values of the old activations being stored in the first operands of the MERGES and the new

activation's values in the second operands. Eventually, assuming the iteration body is not full of

infinite loops, the new activation is allowed to enter. When it finally comes out at the other end, one

of two courses of action is taken. Should the iteration continue, X. the new value of Z, and the

-so-

pointer to the head of the buffer are all sent back around to the first operands of the corresponding

MERGF.s and the value true is sent to the SER instruction. This part of the scheme is shown in Figure

2.19. If instead the iteration has te~inated. then nothing is sent back to the front Instead, using the

buffer head pointer, the results are sent to the proper locations within the buffers as shown in Figure

2.20. Once stored there, they wait for their eventual release, assuming that there are no infinite loops

among those iterations which must terminate before this one.

Figure 2.21 shows the generator for the buffer head, while the buffers themselves are shown in

Figure 2.22. The generator itself is divided into three sections. The top part generates pointers to the

buffers. The middle -section is to prevent· the iter-end pipeline from becoming full, which would

cause deadlock. The bottom is used to signal the next set of results that is to be sent out to the rest of

the world. The bottom and top sections are similar to designs presented earlier in this thesis and will

not be explained again. The center one signals the top one, telling it whether or not there is room in

the pipeline. After each head pointer is sent out, 1 is subtracted from the number held in the first

operand of the JADD instruction of the second section, whose value is initially one less than the

activation capacity of the buffers. If the previous number is greater than zero (i.e., the new number is

greater than or equal to zero) then there is still room in the pipeline and the top section is signaled;

othei:wise there is no room in the pipeline and the top must wait for an activation of the iteration to

complete. Each time a set of results has been consumed by the outside world, cell H fires, whicll

causes 1 to be added to the number held in the IADD. If this number is now zero, then the top pmt

must currently be waiting for a completion and thus it receives its awaited signal.

The buffers consist of N• r consecutive ID instruction cells beginning with cell number M,

where r is the arity of the result The results for a given activation are stored in cells M + ((i- l)•r)

through M+(~r)-1, where i ranges from 1 to N. The next results to be output by the itcr are those

y

I

L-----------,
BUFFER HEAD
GENERATOR

- 51-

ITER-END

Figure 2.19. A Pipelined Implementation of the iter Construct

result

buffer
head

buffer
head

buffer
head

• • •

- 52-

to buffers

Figure 2.20. Storing the Iteration Result iD lbe Buffers.

stored in the cells of the buffers whose acknowledgments needed.value is zero due to the firing of the

ACKFANS of Figure 2.21.

So far, no mention bas been made on how tO ti'ans1ate the iter-ends.. This is done so now, first

with the if construct After the usual screening of e.rJ'Qf valbes· for the predicate, as shown in Figure

2.23, one of either the true or false iter-ends are executed. as seen in Figure 22'4. It is noted here that

vector Sis the union of vectors X, Z, and any local value name's prodqced by a·1et witltin the iter
"' 'i

body. Of the six sets oflines protruding from the two iter-ends, 011ly two wind up having values: one

of the "iter?s" and if the value of the "iter?" is true then the corresponding_ X and next Z lines have

the other values and if "iter?" has the value false then the correspondi11g r.esultJmespossess the other

values. Using the predicate , the proper source for "iter?" is selected, and then using both the

predicate and the selected "iter?''. either X and the next Z or the result is output along with the value

for "itcr?". Should the predicate originally evaluate to an error, then the value of "itcr?" becomes

IE

M+

N-1

- 53-

M

M

I

1-----• buffer head
- - - - - ;ii. signal to ID ,

I

"¥

L--------,

' from .J result
• •
'•••' r----.J I

I r-----.J

--------,
• • •

/

to buffers

I

r------.J

Figure 2.21. The Buffer Head Generator.

from ACKFANs

from
FAN1s

from ACKFANs

from
FAN1s

• • • •••

- S4-

from ACKFANs

from
FAN1s

from ACKFANs

from
FAN1s

• • •

Figure 2.22. The Buffers for the iter Construct

~ S,-~ .••

PREDICATE
EXPRESSION '

0

Figure 2.23. The if Construct as an Iter-End

• • •

81

tocelH
A

I

•
resulto

tocelH
A
I
I
•

BO

s
true

s
false

TRUE
ITER-END

0/1 next X and
011 (result)
0/1 (iter?}

- 55-

Xand

Xand nextZ

result

iter?

Figure 2.24. The if Construct as an lter-End (cont).

- 56-

false and the result lines are filled with undef[•]s.

For a tagcase as an iter-end, a translation can be worked out by combining the translation given

for the conventional tagcase with those methods jUst..desoribed in translatjn,g an if as an iter;end.

Eventually, the iter-ends filter down until they reach the point of being either an expression or a

redefinition. Figure 2.25 shows how the redefinitions are handled while Figure 2.26 covers the case

for the expressions. Notice that no value for "iter?" is produced. What is done instead can be

illustrated by using Figure 2.24. If one (or both) of the iter-ends takes the form of either Figure 2.25

or 2.26, then the corresponding "iter?" line is removed and the operand Qf the MERGE that would

receive the "iter?" value is replaced by a constant true in the case of a redefinition or false for an

expression.

Should the highest level iter-end of the iter construct be simply either a redefinition or

expression, then the above process does not work. This is not something to worry about since these

s --•"I REDEFINITIONS .. 1-~-~ next z

0/1

Figure 125. A Redefinition Ann in the imb>nstruct

S --1•HI EXPRESSION' .. _Ill!.,_.. result

0/1

Figure 2.26. A Tenninating Ann in the itcr Construct

- 57-

two cases misuse the iter construct Should the highest level iter-end be a redefinition then the iter is

actually an infinite loop. On the other hand, should that iter-end be an expression, then the iter

functions as though it is a let construct

A question remains in how many of sets of buffers to allocate. To determine this number, the

number of cells in the "buffer head" loop (or the "next Z' or "x" loops since they should all contain

the Sll!Ile number of cells) of Figure 2.19 is counted. Let a fall cell be one that has received all of its

operands and an empty cell be one that has not received any ofits operands. A full cell can fire only if

there is an empty cell directly in front of it Since it is desired to maximize the number of full cells

that can fire at any given instant, each full cell in the loop should have an empty cell in front of it It

is also desired to have as many full cells and thus activations in the loop as possible. Thus, the loop

should appear as a sequence of alternating full and empty cells. This puts the number of sets to use at

r(the number of cells in the loop)/21, where the extra cell is full should there be an odd number of

cells in the loop.

2.11 A.Few Notes About Pipelining

One of the main goals of the translations presented in this chapter is to take advantage of

pipelining. This section briefly mentions a couple of relevant issues concerning this.

The first thing that needs to be noted is that these pipelined translations will end up with larger

execution times because of all of the ID buffers if the machine doe~ not contain a large enough

number of processors. Because the routing networks will probably be built out of many 2 X 2 routers,

the number of processors will most likely be a power of 2. From my experience of working with

instruction cell programs and running them on an interpreter, for small programs at least 16

processors are needed. For larger sized programs, 32 processors is the bare minimum, with 64 or

- 59-

3. An Example

Using the translation schemes presented in the previous chapter, it is now possible to translate

VAL programs into instruction celts so that they can run on the Form 1 machine. Since tl\is machine

is still in the developmental stage, the best than can be done for now is to run the translations on an

interpreter. This chapter will run and analyze three different translations of two different algorithms

for calculating the dot product of two vectors.

The first algorithm uses an iter construct and appears below:

let

in

lo: integer:= arrayJiml(A);
hi: integer : = arrayJimh(A)

for
sum: real : = O~O;
i: integer : = lo

do
if i > hi then Slim

else
iter

sum : = sum + A[z] • .B[ll;
i:=; + 1

enditer
endif

endfor
end1et

Here, the products of the elements are explicitly added to a partial sum one at a time. This algorithm

is similar to those that might be written in conventional languages like FORTRAN and ALGOL to

perform the sametast.

The other method exploits the inherent parallelism in computing the products by using a forall

eval:

forall i in [array_liml(A), arrayJimh(A)]
eval plus A[z] .- ~1]
endall

Two different translations were derived for the algorithm using the iter construct, one with

pipelining and one without, while the standard translation was used for. the algorithm using the forall

eval using only one copy of the body. Each one was run using the interpreter for instruction cells as

documented in [IO] and the results from execution are displayed.in Table 3.1. As shown there, five

comparisons. are made: the .total number of cells used by each translation, the number of passes each ..

needed to calculate the dot product of two six dimensional vectors and two three dimensional vectors,

and the throughput of each in working with a stream of fifteen pairs. of six dimensional vectors and a

stream of fifteen pairs of three dimensional vectors. (A pass is defined as the execution of just those

cells that are currently on the queue. As they execute, other cells become .ready to fire and are

appended to the rear of the queue but.are not executed until the next pass.)

As expected, the foraU translation yielded the best performance record while the non-pipelined

iter finished last overall. The interesting part, thus, is how the pipelined iter performed in relation to

the other two. For a single pair of vectors, it produced the worst time of the three in both cases as

would be expected because of the amount of overhead. In the stream tests, however, ··aaq-,getting off

to a slow start it quietly caught up and exceeded the performance of the non-pipelined translation by

the fourth pair in the worst case. By the time the dot product of the last pair of the stream of six

dimensional vectors was produced, its execution time was less than ~f of that of the non-pipelined

itcr and it was even challenging the throughput of the forall. The statistics for the throughput of the

stream of vectors of dimension three arc not as impressive, but they do show a definite leaning toward

the performance of the forall.

The price paid for the relatively good execution times of the pipelined itcr was heavy in tcnns

-61-

Table 3.1. Comparison Between Three Different Dot Product Translations.

&fill Pipelined Iter Non-Pipelined Iter

total number of cells used 238 472 225

output times (in passes) for:

a single pair of 3-vectors 85 156 109

a single pair of 6-vectors 106 240 154

a stream of 15 pairs of 3-vectors:
pair #1 87 162 109
pair #2 118 216 185
pair #3 149 247 261
pair #4 180 279 337.
pair #5 211 296 413
pair #6 242 350 489
pair #7 273 384 565
pair #8 304 408 641
pair #9 335 429 717
pair #10 366 481 793
pair #11 397 526 869
pair #12 428 571 945
pair #13 459 616 1021
pair #14 490 656 1097
pair #15 519 696 1173

a stream of 15 pairs of 6-vectors:
pair #1 114 274 154
pair #2 168 390 277
pair #3 222 442 400
pair #4 276 521 523
pair #5 330 560 646
pair #6 384 649 769
pair #7 438 696 892
pair #8 492 728 1015
pair #9 546 775 1138
pair #10 600 801 1261
pair #11 654 820 1384
pair #12 708 844 1507
pair #13 762 863 1630
pair #14 810 885 1753
pair #15 858 903 1874

-62-

.
of memory used due to overhead While the forall and non-pipelined iter both used about the same

number of cells. in their translatio~s. the pipelined iter used twice the number of either of the other

·two.

Thus, it can be seen that pipelined translations of iter constructs should be used only when it is

expected that those iters will be receiving a steady stream of inputs and when there is sufficient

memory available to accommodate the tremendous overhead involved. Otherwise, the non-pipelined

translation should be the order. Above all else, though, the forall should be-u$ed whenever possible,;

Had this algorithm been translated for and run on a conventional (von Neumann) computer, it

would have consumed much lest memory and probably· would ·have run iD less iifne. The lower

memory consumption is due to a few of factors. First, the size of a standard instruction in a -

conventional machine is anywhere from two to eight bytes while an instruction cell uses 32 bytes to

hold everything: opcode, operands, and destination addresses. Second, in order to pipeline through

the bodies of instruction cell programs, ID instructiOD$. are added which are· equivalent to "no-op"

instructions in conventional· machines. Third, the memory usage efficiency that is· achieved from

arrays in the Form 1 machine is only 12.5% (only 4-0Ut of the 32 bytes in each cell is used to hold

data) for arrays of integers and reals.

As for the increased execution speed, this is due to the method used to implement arrays in the

Fann 1 machine, which is accomplished mainly in software. A significant amount-of time is spent

restoring the value of the selected array element since reads into the heap are always destructive. A

conventional computer can perform this in much less time since it does not have to worry about

restoring the value of the_ clement and can normally fetch it with a single instruction through the use

of an index register. Not until ~ft.er a structure processor and memory is added to the data flow

machine which implements arrays in firmware and hardware will data flow programs of this type

- 63 -

surpass the performance of programs run on conventional machines.

-64-

4. Conclusion

This thesis has presented methods by which the various constructs of the present version of

VAL may be translated so as to take advantage of pipelining. Future versions of this languStge plan to

address the issues of input/output, file update, data base applications, streams, and string

manipulation. Once these features and the constructs to implement them are included in VAL,

translations for them will have to be developed if such is deemed plausible. If not, then they will

have to wait for a higher form data ftow machine to run on and the Form 1 will have to be content

with running only a subset of the language.

The translations that have been presented have assumed that the instruction cells cannot handle

a Boolean error value as the third operand. One possible direction for further research would be to

modify the operational semantics of the instruction cells so that when presented with an error value

as the value of the third operand.they execute in a way that will rid the need for explicit error testing

in the if, forall, tagcasc, and for constructs. This wt1I result in a saving of memory along with

improved runtime.

-

- 65-

Appendix 1. Instruction Cell Opcodes

Boolean Instruction Cell Opcodes

Opcode Operation Naine Type of Operands Type of Result Result Produced

AND Logical and. [l], (2]: boolean boolean [l]" [2]

OR Logical or [l], [2]: boolean boolean [1] v [2]

NOT Logical negation [1]: boolean boolean -.[1]
[2): not used

EQV Logical equivalence/ [l), [2]: boolean boolean (1) = [2]
BEQ Test for equality

XOR Logical exclusive-or/ [i), [2): boolean boolean [11 EB (21
BUEQ Test for inequality

BFAN3 Fan to operand #3 [l]: boolean boolean [l] sent to operand # 3 of
[2): inte1er cell whose address is in [2)

Character Instruction Cell Opcodes

Opcode Operation Name Type of Operands Type of Result Result Produced

CEQ Test for equality· [l), (2): character boolean [1) = [2]

CUEQ Test for inequality [l), [2]: character boolean [1] ~ (2)

en Conversion from [l]: character integer integer([lD
character to integer [2): not used

-66-

Integer Instruction Cell Opcodes

Opcode Operation Name Type· of Operands Type of Result Result Produced

IADD Addition · [l], [2]: integer integer [1] + (2]

ISUB Subtraction [1], [2]: integer integer (I] - (2]

IMULT Multiplication [l], [2]: integer integer (1). (2)

IDIV Division [1], [2]: integer integer (l] + [2]

IMOD Modulus [l], [2]: integer integer (I] mod [2]

IABS Absolute value [1]: integer inteaer I Ill I
[2]: not used

IMIN Minimum [1], [2]: integer . iateaer min([l1J2D

IMAX Maximum [1], [2): integer integer mu:Ql1J2D

IEQ Test for equality [1], (2): integer boolean (1) = (2)

IUEQ. Test for inequality (1), (2): integer boolean (1)# (2)

ILT . Test for less than 111. 121: intecer boolean. (1) < (2]

ILE Test for less than (1], [2}: integer booleaD [l) < (2)
or equal to 111. 121: inteaer

IGT Test for greater than [1), [2): integer (1) > (2)

IGE Test for greater than [ll fl]: •teaer .. , ... (l)~lll
or equal to.

ITR Conversion from fl]: integer real ml([ID
integer to real [2]: not used

ITC Conversion from (1): integer character charactel((lD
integer to character (2): not used

-67-

Real Instruction Cell Opcodes

Opcode Operation Name Type of Operands Type of Result Result Produced

ADD Addition JI], [2]: real real [I]+ [2]

SUB Subtraction [I], [2]: real real [I] - [2]

MULT Multiplication (1], [2]: real real [I] t (2)

DIV Division [I], (2): real real [1] + [2]

ABS Absolute value [I]: real real I llJ I
[2]: not used

MIN Minimum [1], [2]: real real min([l],[2D

MAX Maximum [I], (2): real real max([l],[2])

F.Q Test for equality [I), [2): real boolean (1) = (2)

UEQ Test for inequality [I), [2]: real boolean [I]~ [2]

'I" LT Test for less than [I], [2]: real boolean [1)<[2]

LE Test for less than [I], [2]: real boolean (1) < (2)
or equal to [1), [2]: real

GT Test for greater than [I], [2]: real boolean [I]> [2]

GE Test for greater than [1), [2): real boolean (1) > (2)
or equal to

RTI Conversion from [I): real integer integer([!])
real to integer [2]: not used

-68-

Untyped Instruction Cell Opcodes

Opcode Operation Name Type of Operands Type of Result Result Produced

DIST Distribute [l]: any type of[l] [1]
ID Identity [2]: not used

MERGE Merge [1]: any type of if[3] = tme
[2]: any operand used then [1] else (2]

SER Serializer [1]: any type of if [2] is not received or
[2]: any operand used ([1] is received and

[3] = faJ,w)
then [1] else [2);
[3]: = if(l] is used
then true else false

FANI Fan to operand # 1 (l]: any type of(l] [1] sent to operand # 1 of
[2]: integer cell whose address is in [2]

FAN2 Fan to operand #2 [1]: any type of(l] (1] sent to operand #2 of
[2}: integer cell whose address is in [2]

ACKFAN Acknowledgnient fan [1]: integer none acknowledgment sent to
[2]: integer cell whose address is in (1)

PO Test for positive (1]: any boolean [1) = pos_oyer(•]
overflow [2]: not used

NO Test for negative [1): any hoolean [1] = neg_oyer(•]
overflow (2): not used

OVER Test for overflow (1): any hoolean (1] = pos_oyer(•] V
(2): not used (l) . :::; . tlq..GYer(•)

PU Test for positive · (1): any boolean [1] = pos_under[•]
underflow (2): not used

NU Test for negative [1]: any boolean [l] = neg_under[•)
underflow [2]: not used

UNDER Test for underflow [1): any boolean [I) = pos_under[•] V
[2): not used [l] = neg_under(•]

UNKN Test for unknown [I): any boolean · (l] = unknown(•]
(2]: not used

-69-

Opcode Operation Name Type of Operands Type of Result Result Produced

ZD Test for division [I]: any boolean [I] = zero_divide[•]
by zero [2]: not used

AE Test for arithmetic [I]: any boolean [l)= pos_over[•) V
error [2]: not used [1] = neg_over[•] V

[lJ = pos_under[•] V
[1] = neg_under[•] V
[l] = unknown[•] V
[l] = zero_diYide[•]

ME Test for missing (1): any boolean (1] = miss_elt[•]
element [2]: not used

UNDEF Test for undefined [I]: any boolean [l] = undet[•]
• (2]: not used

ERR Test for error [l]: any boolean [l] = pos_over[•] V
[2]: not used (1] = neg_over[•] V

[l] = pos_under[•] V
(l] = neg_under[•] V
[I] = unknown[•] V
[l] = zero_divide[•) V
(1] = miss_elt{ •] V
(1] = undet[•]

IN Input [l]: integer type of value [I] is printed; value is
[2]: not used read in read in from the terminal

our Output [I]: integer none [l] and [2] are both
[2]: any printed

'• '··

-70·

Appendix 2. Array Operations Implemented Using Forall-Construct

Create/Fill

array_Jill(LO, HI, JI)::.
forall i in [LO, HJ]

construct V
endall.

Create by Elements

Append

Set Bounds

[J: YJ = array.Jill(J, J, JI)

A(J: J1=:
let

in

lo: integer : = arrayJiml(A);
hi: integer : = arrayJimh(A)

forall i in [min(J, lo), max(J, hi))
construct

if i = Jthen v
elseif i > = lo & i < = hithcn AM
else miss_elt(•]
eadif

eadlet

array_adjust(A, J, K) =
let

in

lo: integer : = amyJiml(A);
hi: integer : = arrayJimh(A)

forall i in [J, KJ
construct

if i>= lo& i<= hithen A[1]
else miss_eltf•)
eMif

enclall
end let

-71-

Extend low

array _addl(A, JI) =

Extend High

let /o: integer:= arrayJiml(A) - 1
in

forall i in [lo, array_limh(A)]
construct

if i - = lo then A[1]
else V
endif

endall
endlet

array_addh(A, JI)=

Remove low

let hi: integer:= array_limh(A) + 1
in

forall i in [arrayJiml(A), hi]
construct

if i - = hi then A[1]
else V
endif

endall
endlet

array _reml(A) =

Remove High

forall i in [array_liml(A) + 1, arrayJimh(A)]
construct A[1]
endall

array _remh(A) =
forall i in [array_liml(A). arrayJimh(A) - l]
construct A(r]
end all

- 72 -

Set Low Limit

array_setl(A,]) =

Concatenate

let offset: integer : = J - 1
in

forall i in [J, offset + array _size(A}]
construct A[i - offset]
endall

endlet

let

in

A_hi: integer : = array_limh(A};
B_lo: integer:= array_liml(B);
offset: integer : = B_lo - A_hi - 1

forall i in [array_liml(A), A_hi + array_size(B)]
construct

if i < = A_hi then A[11
else B[i + ojjset]
end if

endall
endlet

-73 -

Merge Defined Elements

array_join(A, B) =
let

in

A_lo: integer:= arrayJiml(A);
A_hi: integer : = array_limh(A);
B_lo: integer : = arrayJiml(B);
B_hi: -integer : = arrayJimh(B).

forall iin [min(A_/o, B_lo), max(A_hi, B_hi)]
construct

if i>= A_lo& i<= A_hithen
let A_ele : = A[z]
in

if i>= B_lo& i<= B_hithen
let B_ele: = B[1]
in

if is miss_elt(A_e/e) then B_ele
elseif is miss_elt(B_e/e) then A_ele
else miss_elt[•]
endif

en diet
else A_ele
endif

endlet
elseifi :> = B_lo & i < = B_hithen B[1]
else miss_elt[•]
endif

endall
endlet

--
·74-

References

[1] Ackerman, W. B. and J. B. Dennis. "VAL-A Value-Oriented Algorithmic Language
Preliminary Reference Manual." Technical Report 218, Laboratory for Computer Science,
MIT, Cambridge, MA, 13 June 1979.

[2] Arvind and R. E. Thomas. "I-Structures: An Efficient Data Type for Functional Languages.'~
Technical Memo 178, Laboratory for Computer Science, MIT, Cambridge, MA, September
1980.

[3] Brock, J. D. and L. B. Montz. ''Translation and Optimization of Data Flow Programs."
Proceedings of the 1979 International Conference on Parallel Processing, August 1979, pp.
46-54. Also Computation Structures Group Memo· 181, Laboratory for Computer Science,
MIT, Cambridge, MA, July 1979.

(4] Chien, A. "Structuring the Fast Fourier Transform for Data Flow Computation."
Computation Structures Group Memo 193, Laboratory for Computer Science, MIT,
Cambridge, MA, June 1980.

(5] Dennis, J. B. and D. P. Misunas. "A Preliminary Architecture for a Basic Data-Flow
Processor." The Second Annual Symposium on Computer Architecture Conference Proceedings,
January 1975, pp. 126-132. Also Computation Structures Group Memo 102, Laboratory for
Computer Science, MIT, Cambridge, MA, August 1974.

[6] Dennis, J. B., C. K. Leung, and D. P. Misunas. "A Highly Parallel Processor Using a Data
Flow Machine Language." Computation 'Structures Group Memo 134-2, Laboratory for
Computer Science, MIT, Cambridge, MA, January· 19'17 (revised June 1980).

[7] Montz, L. B. "Safety and Optimization Transformations for Dara Flow Programs." Technical
Report 240, Laboratory for Computer Science, MIT, Cambridge, :MX:-'l*1uary 1980.

[8] Liskov, B., eLal. "CLU Reference ManuaJ." TechnicaJ Report 225, Laboratory for Computer
Science, MIT, Cambridge, MA, October 1979.

[9] Stoy, J.E. "Functions in the Form 1 Data Flow Machine." Unpublished communication.

[10) Todd, K. W. "An Interpreter for Instruction Cells." Unpublished communication, January
1981.

