
Cambridge

A Design Methodology

for

Self-Timed Systems

by

Narinder Pal Singh

© Massachusetts Institute of Technology

February 1981

This work was supported in part by the National Science Foundation

under the research grants MCS75-04060 A01 and MCS79-15255.

Massachwrntts Institute of Technology

Laboratory for Computer Science

Ma~1saclwsctts 02139

. 2.

A Design Methodology

for

Self· Timed Systems

by Narinder Pal Singh

Submitted to the Department of Electrical Engineering and Computer Science on 16 January

in partial fulfillment of the requirements for the degree of Master of Science.

Abstract

This thesis presents a design methodology for self-timed systems which will be extremely

attractive for implementing systems in VLSI. Self-timed systems are characterized by the absence

of a timing reference to which all operations are synchronized. Currently most systems are

implemented using a synchronous design methodology where all operations are synchronized to

a global clock. However, this approach will not be attractive in the future for implementing

systems in VLSI due to the high communication costs in VLSI and the prohibitive task of

managing timing constraints global to a VLSI integrated circuit.

The methodology proposed in this thesis defines a set of modules which form the building

blocks for implementing an arbitrary self-timed system. The various module types are based on

familiar programming constructs such as iterations, conditionals and constructs that aid in the

activation and synchronization of parallel processes, such as, forking and joining. The modules of

a self-timed system communicate with each other via an asynchronous communication protocol,

and the correct behavior of the system is independent of the delays in the communication

medium. This methodology simplifies the design effort by restricting the timing constraints to be

local to the modufes of the system.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Computer Science and Engineering

Keywords: self-timed systems, speed independent logic, asynchronous design

methodology, VLSI.

. 3.

Acknowledgments

I am indebted to Professor Jack B. Dennis for his guidance and support which has greatly

improved the contents of this thesis and made all of this possible. I am also thankful to Clement

Leung, Andy Boughton, Dean Brock and Bill Ackerman for reading the many drafts of this thesis

and providing helpful comments. I would specially like to thank my wife Sue for sacrificing so

much on her part for the sake of my education. Fin.ally I would like to thank the Laboratory for

Computer Science for allowing me to use its facilities in preparing this thesis.

--------- --------------~--~

. 4.

Table of Contents

1. Introduction••..•..•....•••.....•.•••..••..•..•.••.•.•••.....•.•••.•.••••••••.....••..•••..•••.••..••• S

1.1 Requirements for the Realization of a System .. 6
1.2 Synchronous Approach to System Realization .. 6
1.3 Self-timed Approach to System Realization ... 13
1.4 System Realization in VLSI 16
1.5 Synopsis of Thesis ... 18

2. Definition of Self-Timed Systems ••••••.••. ••.••••••••••••.••••.•.•••••••.••..• ••• .•...••••• •••• 19

2.1 Communication Protocol ... 21
2.2 Input/Output Behavior of Self· Timed Modules .. 22
2.3 Legal Interconnection of Self· Timed Systems .. 40
2.4 Underlying Circuit Model for Hardware Realization 42

3. Design of Control Modules ... · ...•••.••••••....•••.•.••••.•.•.•..••.•.••••.••••••....••.••.•••••.•.• 43

3.1 Design of the Control Circuits ... 43
3.2 Design of the Control Modules .. 45
3.3 Timing Requirements for the Control Modules : 51

4. Design of the 'User' Modules ..•.•••.•••••••••.•••••••••.•.••••••..••.•••••••••.•.••.••..••••••..•. 64

5. Design Example of a 2X 2 Router ••••••.••..••••.•••••••••••••••••.•••..•••••.•••...•.••.••..•..• 68

5.1 Synchronous Design of a 2X2 Router .. 69
5.2 Self· Timed Design of the 2X2 Router ... 82
5.3 Comparison of the Design Methodologies 92

6. Summary and Conclusion .•..•..••••••••••••••••••••••••••••••••••••.•••.•••••..••.••.••.•••••.•••. 94

6.1 Areas for Further Research ... 95

-5-

1. Introduction

The design methodology employed in the realization of an Information Processing system is

driven to a large extent by the technology of the times. At present, almost all digital systems are

implemented using a Synchronous design methodology. Synchronous systems have been

popular in the past due to the low level of integration available for logic devices. However, these

systems will not be as attractive in the future if they are realized using VLSI (Very Large Scale

Integration).

Before the invention of the transistor, vacuum tubes were used primarily in the realization of

logic-elements. Due to the poor reliability and high cost of vacuum tubes, the most appropriate

design methodology was the one that used the fewest logic-elements. Although the reliability of

the logic devices is greatly improved in present LSI (Large Scale Integration) systems, the number

of logic devices still contributes significantly to the cost of the system.

Presently, integrated circuit technology is experiencing an exponential growth in the

number of transistors that can be put on a single silicon chip [10]. With such an explosive growth

rate, the cost of the logic-elements will not be the significant consideration in the realization of a

system. System reliability and performance, on the other hand, will play a more important role if1

choosing between the synchronous and asynchronous approaches to system realization.

This thesis presents a design methodology for self-timed systems. The term Self-timed is

used to denote systems whose operation is not synchronized to any reference timing source. One

of the earliest forms of digital self-timed systems can be found in the relay-logic of the

pre-electronic era [15]. There have been a number of other self-timed design methodologie~
proposed [16, 11, 1,4,8], but these have either not been complete, or the realization of a system

f -~.

using these methodologies has not been straightforward.

The methodology proposed in this thesis will present a few basic self-timed modules from

which it will be possible to implement an arbitrary system. The choice of modules has been

influenced by familiar programming constructs such as conditionals, iterations,

sequencing,forking, synchronizing, etc. The philosophy behind the design methodology is to

present a set of self-timed modules which can be used as building blocks for implementing

systems. The methodology is the rules by which more complicated building blocks can be

. 6.

constructed from the set of self-timed modules and more primitive building blocks.

1.1 Requirements for the Realization of a System

In designing any system, it is always useful to consider the design process as a hierarchy of

levels. The design is first specified at the highest level in the hierarchy. Each level in the hierarchy

abstracts away the details that are not relevant to that level. To complete the design process, one

must translate the design from the highest level in the hierarchy to the next lower level, and so on

till we are at the lowest level. The lowest level in the design hierarchy must necessarily include

every aspect of the physical realization of the system. For example, Figure 1.1 shows a possible

hierarchy of design for a system realized in VLSI.

The top level in the design hierarchy will generally be an algorithmic representation of the

system. At this level of the design, the notion of the time metric has been abstracted away

completely. The algorithmic representation of the system specifies the sequence constraints for

the operations of the system. A Petri-net [12] can be considered as an abstraction of the design of

a system at the algorithmic level.

The algorithmic design must eventually be translated down to the lowest level in the design

hierarchy. At the lowest level the sequence constraints of the system must necessarily be bound

to the time metric. It is essential that the sequence constraints of the system are not violated

under any normal operating conditions in the realization of the system.

There are two basic approaches to realizing a digital system, these are: 1) the synchronous

approach to system realization, and 2) the self-timed or asynchronous approach to system

realization. These design approaches differ in the way they maintain the sequence constraints of

the system and how they bind these constraints to the time metric. The next two sections present

a brief description of these two approaches to system realization.

1.2 Synchronous Approach to System Realization

-7-

Algorithmic Representation
of the Design =r= ---

____ C_e_ils for-~1plernonti~--~

Components of the Algorithmic D8sign

---i-
,__~L_a_y_o_u_t_of--~~e-11s __ a_n_d1~1r_1t_e_r_c_o_-_n~ne~~c~t~~~~ C: Mask Generation

v

Fabrication of the l.C. J
Figure 1.1 Hierarchical Design in VLSI

. 8.

Synchronous. systems have the common characteristic that their operations are

synchronized to a system clock. The clock in most synchronous systems is either single-phase or

two-phase. The single-phase clock is a single periodic waveform, while the two-phase clock

consists of two independent periodic waveforms that do not overlap. The basic requirement for

the design of a synchronous system is that all feedback paths must be broken with clocked

storage elements.

The simplest form of a synchronous system is a synchronous sequential machine. There are

two important varieties of these: the single-phase clocked synchronous sequential machine, and

the two-phase clocked synchronous sequential machine. Figure 1.2a shows a single-phase

synchronous sequential machine. Such a machine has a set of zero or more inputs, outputs, and

feedback paths. The feedback paths are used to store the state information of the machine. If the

machine does not have any feedback paths, it is completely combinatorial. In general, the

machine consists of a set of registers that are clocked with the single-phase clock, and

combinatorial logic. The outputs of the machine can be obtained from two sources; they can

either be a subset of the present state variables, or they can be a function of the present state and

the present inputs.

A single period of the clock defines the basic unit of operation of a single-phase

synchronous sequential machine. Figure 1.2b shows a single cycle of operation for a

single-phase synchronous sequential machine, and the timing requirements for the clock. When

the clock becomes true the next state information is copied from the input of the registers. The

new present state and the new inputs to the machine define the new next state of the machine.

The true level of the clock must be long enough to load the outputs of the registers from their

inputs. Also, the true level of the clock must not be so long that the new next state propagates to

the inputs of the registers. The entire clock period must be long enough to allow the next state

variables at the output of the combinatorial logic to be valid before the next cycle of the clock

begins. Also, if the registers are dynamic, the clock period must be less than the refresh period of

the dynamic logic. Therefore, there is a two-sided timing requirement on both the true level of the

clock, and the clock period itself for the sequential machine to function correctly (Figure 1.2b). In

general, it may not be possible to satisfy these timing requirements, and a system built using the

single-phase synchronous scheme will not be reliable with variations in circuit parameters. Many

existing synchronous systems give the illusion of being single-phase synchronous systems

-9-

(02---)

Inputs Combinatorial Outputs
Logic

Present State ~ 01 ~ Next State

Reg

Clock

Figure 1.2a Single Phase Synchronous Sequential Machine

4--- T1 x T2 >

Clock

ps.e:en• _____ xzzx _________ __,xzzx __ _
Next
State --~--~~XZZX~~---------X
Outputs ________ X/2X X
Inputs _______ X//X X

1) Max(01) < T1 < Min(01) + Min(D2)

2) Max(D1) + Max(02) < T1 + T2 <Refresh Period

3) '01' is the register delay
while .the clock is true

4) '02' is the combinatorial delay

Figure 1.2b Timing Diagram for a Single Clock Period

. 10.

because they have a single system wide clock. In actuality, the clocked logic devices in these

systems convert the single phase system clock into two non-overlapping local clocks.

The correct behavior of the machine is guaranteed by satisfying the timing relationships

mentioned above, and by correctly programming the combinatorial logic. The sequence

constraints are bound to time-metric by the single-phase clock. The rising edge of the clock

defines the transition of the system from one state to the next; and the actual amount of time that

the system is in a particular state is equal to the period of the clock. Single-phase synchronous

systems are attractive in that a single periodic waveform is used both to define transitions from

one state to another, and also to bind the state of the system to the time-metric.

Figure 1.3a shows a two-phase synchronous sequential machine. It is similar to the

single-phase synchronous sequential machine except that it has two periodic non-overlapping

clocks and two independent register sets that are clocked with opposite phases of the clock. As a

result of the two register sets, the two-phase synchronous sequential machine has the additional

intermediate state variables. In the two-phase synchronous systems there is never any closed

feedback path due to the non-overlapping constraints on the clocks. Figure 1.3b shows the

operation of a two-phase synchronous sequential machine for a single clock cycle and the timing

requirements for the clock. This scheme provides for high reliability since the timing constraintS

on the clock are completely one-sided, and hence guaranteed to be satisfiable, if the registers are

not dynamic storage elements. If the registers are dynamic storage elements, there is a two-sided

timing requirement on the clock period. The period of the clock labeled 'T 4' in figure 1.3b acts a.S

a buffer to accommodate clock skew in a two-phase synchronous system. Due to the one-sided

timing requirements for the clock period (for static registers), 'T4' can be made sufficiently long to

ensure correct operation of the system for a given clock skew. Single-phase synchronous

systems, on the other hand, do not have the freedom to increase the clock period to reduce their

sensitivity to clock skew. Most synchronous systems are built using the two-phase clocking

scheme because of the increased reliability compared to the single-phase clocking scheme, or

due to the inability to satisfy the two sided timing relationships that are required for the

single-phase clocking scheme. The price for the increased freedom in two phase clocked systems

is a reduction in performance. The clock period in a two-phase synchronous system must be

greater than the clock period in a single-phase synchronous system by the time required to load

the 'intermediate state' registers.

------------- ---------------

-11-

02

Inputs
Combinatorial

Logic

Outputs

Present State Next State

Reg

Clock1

Intermediate
State

Clock2

Figure 1.3a Two Phase Synchronous Sequential Machine

Clock1

Clock2

Present
State

Next
State

Outputs

< T1 > -;>r2t T3

___ XZ/X_~~~~~XZZX-~~
~--xzzx xzzx~~

~--xzzx xzzx __ _
1~=~~iate ____________ X/ZX ___________ ><Z
Inputs ~--XZZX~~~----~XZZX~~

1) Max(D1) < T1 2) Max(D1) < T3

3) Max(D1) + Max(D2) < T1 + T2
5) '01' is the register delay

while the clock is true

4) T1 + T2 + T3 + T 4 < Refresh Period 6) '02' is the combinatorial delay

Figure 1.3b Timing Diagram for a Single Clock Period

- 12 -

The correct behavior of a two-phase synchronous system is also guaranteed by meeting the

timing requirements on the clocks and by correctly programming the combinatorial logic. The

rising edge of the first phase of the clock defines the transition of the system from one state to the

next. The states are bound to the time metric by the clock period. This scheme of synchronous

logic is attractive due to its high reliability and the way in which two non-overlapping clocks are

used to define the state transitions and to bind these state transitions to the time metric.

1.2.1 Interconnection of Synchronous Sequential Machines

It is possible to realize an arbitrary system using only a single synchronous sequential

machine, but such a methodology would complicate the understanding and design of the system~

Also, such an approach inherently restricts the parallelism in a system since it does not allow two

or more activities to execute simultaneously. It is more economical to structurally decompose the

entire system into an interconnection of smaller subsystems. The exact degree to which the

system should be decomposed into smaller subsystems is an engineering decision that depend~

on the objectives of the design. These objectives can include trade-offs between minimizing the

area of the system, minimizing the number of devices in tl'le system, maximizing the speed of the

system, etc. These subsystems can each be realized as a single synchronous sequential machine.

It is allowable to connect a set of synchronous sequential machines in a cycle if the outputs of

each machine in the cycle are a subset of their present state variables. If the outputs of each

synchronous machine are a function of their present state and their present inputs, then it i~ not

allowable to connect a series of such machines in a cycle.

The wiring delays associated with the interconnect of the sequential machines are extremely

important in designing such a system. In designing the individual sequential machines the timing

constraints to be satisfied were only local to the registers and the combinatorial logic of the

sequential machine. In building a system that consists of a network of interconnected sequential

. machines, the timing constraints are no longer local. If it is assumed that the interconnect delays

between the sequential machines are zero, then any network of sequential machines will function

correctly as long as their topological interconnection is correct, and each sequential machine

functions correctly. A path in a synchronous system is defined to be a sequence of wires and

combinatorial logic, where the start and end of the path are either register storage elements or

inputs/outputs of the system. Also, the signal at the end of the path must be dependent on the

signal at the start of the path. If the interconnect delays between the sequential machines are are

. -··-··· ·---···~--------

''"·:;'

- 13-

not zero, the additional timing constraints to be satisfied are that all signal paths must have a

delay less than a single clock period. If the clock skew between all interconnected sequential

machines is not zero, the maximum value for the clock skew between any two interconnected

sequential machines must also be included in the timing requirements mentioned above. If the

two-phase synchronous clocking scheme is used, it is further assumed that the the registers at

the two ends of every path will be clocked with opposite phases of the clock. The correct

operation of the entir~ system is then guaranteed by satisfying the timing requirements for each

individual machine, the timing requirements for all paths in the system and by correctly

interconnecting these sequential machines.

The state of such a system is a function of the state variables of all the synchronous

sequential machines in the system. The transitions of the periodic global clock define the

transitions in the sequence domain of the state of each sequential machine, which in turn define

the transitions in the state of the entire system. The clock period also binds the duration of a state

of the system to the time metric.

1.3 Self·timed Approach to System Realization

Self-timed systems are characterized by the absence of any global clock to which all

operations are synchronized. The basic building block of self-timed systems is the self-timed

module. This is analogous to the synchronous sequential machine of synchronous design

methodologies. The operation of the self-timed modules themselves is also not synchronized to

any local clock. A basic requirement for self-timed systems is that they must operate correctly

independent of the delays in the interconnect wires between the modules of the system. The wires

that connect self-timed modules are called channels. l ! '

Figure 1.4 shows the general structure of a self-timed module. At its terminals, it consists of

a set of O or more input and output ports. In order for a self-timed system to function correctly

independent of the channel delays, the modules must obey an asynchronous communication

protocol. This has been commonly referred to as handshaking. Data flow in a channel is required

to be from a source module to a destination module, but the synchronization signals will in

general be bi-dir~ctional on a channel.

-14-

_
Input Self-Timed Output

Ports
Module

Ports

-.. .' ,._

Figure 1.4a Terminal Structure of a Self-Timed Module

__:::. ~

__:::. Combinatorial __:::,. Outputs Inputs

__:::,
Logic

,--> r-

Presen t State Next State

Figure 1.4b Asynchronous Sequential Machine

- 15 -

The interior of the self-timed modules will in general consist of an asynchronous sequential

machine. The inputs to this asynchronous sequential machine are the data signals of the input

ports and the synchronization signals of the output ports. Similarly, the outputs of the

asynchronous sequential machine are the data signals of the output ports and the

synchronization signals of the input ports. THe asynchronous sequential machine itself consists of

combinatorial logic and feedback paths.

The present state variables of the asynchronous sequential machine are the next state

variables delayed by the delays of the feedback wires. As in the synchronous case, the outputs of

the asynchronous sequential machine can be obtained from two sources; the outputs can either

be a subset of the present state variables of the system, or they can be a function of the present

state variables and the inputs to the module. If the outputs are a subset of the present state

variables of the asynchronous sequential machine, then they can be guaranteed to follow the

communication protocol. If the outputs are a function of the present state and the inputs to the

system, then the terminal behavior will be dependent on the delays of the combinatorial logic of

the module. The designer will have to guarantee the correct behavior at the outputs in this case

by carefully analyzing the delays in the interconnect and logic elements of the module.

To guarantee the correct behavior of a self-timed module it is allowable to make

assumptions about the delays internal to the module. But it is the task of the designer to ensure

that these assumptions are valid under all normal operating conditions. The motivation in dividing

a self-timed system into self-timed modules is to make the timing constraints local to the interiors

of the modules for the correct operation of the system. This is in contrast to the synchronous

design methodologies where the timing constraints to be satisfied are global to the entire system.

The simplest form of a self-timed system is a single self-timed module. The correct operation

of the system is guaranteed by ensuring that the module follows the communication protocol

under all normal operating conditions and by correctly programming the asynchronous

sequential machine internal to the module. The state of the system is a function of the state

variables in the asynchronous sequential machine of the module. The transitions from one state

to another of the system are bound to the transitions of the state of the asynchronous sequential

machine. These transitions are dependent only on the delays internal to the module, and the

delays in the input and output channels connected to the module.

. 16.

It is possible to implement an arbitrary system using only a single self -timed module. But as

in the case of a single synchronous sequential machine, such a methodology would complicate

the design and understanding of the system. In addition, the designer of the system will have to

meet timing constraints that are global to the entire system. This would lose the prima,Y

advantage of self.timed systems over synchronous systems. It would be more appropriate to

structurally decompose the system into the interconnection of a number of self-timed modules.

The exact degree to which a system is broken up into self-timed modules is an engineering

decision depending on the objectives of the design. __

The correct operation of such a system is guaranteed by guaranteeing the correct functional

operation of each module in the system and by interconnecting these modules correctly. The

state of such a system is a function of the state of all the modules in the system. The transitions of

the state of the system correspond to the transitions of the state of any module in the system. The

state transitions do not occur at discrete time periods; in general, the time between state

transitions can be arbitrary.

1 .4 System Realization in VLSI

The most explosive growth in electronics has been in the VLSI technology. This has been

both in the number of devices that can be built on a single silicon chip, and also in the reduction

of the switching delays of the devices. The complexity of VLSI devices approximately doubl~

every year [9]. This trend has been going on since the early 1970's, and is expected to go on well

into the mid-1980's before decreasing. It is expected that by the end of 1980 it will be possible to

have 100,000 devices on a single silicon chip. The switching time of the elementary devices has

also been steadily decreasing. Based on past trends, it is expected that the switching time of the

most elementary devices will be about 0.2 nanoseconds by the end of 1980 [10].

The self -timed design methodology proposed in this thesis is motivated in part by the rapid

advances that have been made, and that are expected to be made in the future in VLSI. Due to the

availability and low cost of VLSI, it is appropriate to come up with a design methodology

applicable to this technology. As will be seen shortly, synchronous systems are not well suited for

the high density VLSI technology. In the past, the VLSI technology had been profitable only for

applications with extremely high volume. Now however, the process for realizing a VLSI circuit

has been split up into a number of disjoint activities. These are: 1) logic design, 2) mask

-17 -

generation, and 3) fabrication. This has helped reduce the cost of realizing VLSI circuits for the

low volume user. For example, it is possible to put 15 separate designs on a single silicon wafer

[6). The cost for generating the masks for a single wafer are about 7,000 dollars, and about 2,000

dollars for processing a batch of about 15 such wafers [6]. With a total ·cost of about 10,000

dollars, the cost per design can be reduced to under 1,000 dollars.

The relationships between the parameters of a device, and the physical geometries of the

device are extremely important as the geometries are scaled down. For example, as the feature

sizes of the devices are reduced, the resistance per unit length of the wires increases by the

square of the reduction. The capacitance per unit length, however, remains constant [14]. Also,

the switching times of the elementary devices decreases linearly. In analyzing the delays in a

system it is important to consider both the delays of the switching elements and the delays in the

interconnect wires. The wires in Silicon Gate nMOS devices act like transmission lines, which is

similar to other high density technologies. The delay in a transmission line is proportional to the

product of: 1)the square of the length of the line, 2) the capacitance per unit length, and 3) the

resistance per unit length. If device geometries are reduced by a factor of 10, then the switching

times of the devices can be expected to reduce by a factor of 1 O also. Since the capacitance per

unit length remains constant, and the resistance per unit length increases by the square, the

delay in sending a signal the same distance goes up quadratically also. This means that the delay

in sending a signal from one part of the chip to another will go up by a factor of 100. More

importantly, the ratio of the wire delays to the switching times of the devices goes up by the cube,

or 1000 in this case.

If a synchronous system is implemented on a single chip, the clock period must be long

enough to allow a signal to be transmitted from any one part of the system to any other. There is

no incentive to localize the communication in a synchronous system. Even if a pipelined

architecture is used, the clock must be distributed to all the pipelined elements. The clock in a

synchronous system can be considered as a signal from every element in the system to every

other element. The information that the clock carries is the mutual consent of all the elements as

to when they will change their state. The efficiency of a synchronous system is defined to be the

ratio of the switching delays of the elementary devices to the clock period. For a synchronous

system to be efficient, the clock period must be a few multiples of the switching time of the

devices [14]. As mentioned earlier, the ratio of the wire delay to the switching time of the devices

-18.

increases cubically with the reduction in the geometries. If feature sizes are reduced by a factor of

1 O, the efficiency of a synchronous system communicating over the same distance will go down

by a factor of 1000. This wili clearly be an unacceptable design methodology in the future.

Any design methodology that successfully takes advantage of VLSI must allow for, and push

towards the localization of communication. The self-timed approach to system realization seems

most appropriate at meeting these objectives. Synchronous systems will not be able to fully

exploit the VLSI technology due to their poor efficiency and reliability considerations. To increase

efficiency, a synchronous system can be realized as a collection of independently clocked

communicating synchronous machines. Each synchronous machine in such a system will require

logic to synchronize its external asynchronous inputs. The probability of synchronization failures

in any synchronizing scheme can never be reduced to zero [2]. Self-timed systems are not subject

to synchronization failures since the modules in these systems function independent of any

reference timing source. From a performance standpoint self-timed systems have the advantage

that their operations are limited by the average delays of the system, while the performance of

synchronous systems are limited by the worst case delays.

1 .5 Synopsis of Thesis

Chapter 2 gives the formal definition of the self -timed design methodology proposed in this

thesis. The model of a self-timed module is given, along with the communication protocol

between modules. Chapter 2 also defines the behavior of the various module types in a self-timed

system. Also, the assumptions made on the underlying technology used to realize the systems are

defined. Chapter 3 gives the general design methodology for realizing control modules In a

self-timed system. The chapter concludes by presenting the design of the control modules

defined in the methodology of this thesis. Chapter 4 is similar to Chapter 3, except that it gives a

general design methodology for realizing data transformation modules in self-timed systems.

Chapter 5 contrasts the design of a 2X2 router using a synchronous design methodology, and the

methodology presented in this thesis. Finally, chapter 6 gives a summary of the methodology and

the areas for further improvement and research.

· 19.

2. Definition of Self-Timed Systems

In the design methodology proposed in this thesis, every self-timed system is a network of

self-timed modules. A self-timed module is a finite state machine with a set of input and output

ports. Figure 2.1 shows the general structure of a self-timed system in terms of self -timed

modules. The modules of a self-timed system fall into one of the following classes: 1) control

modules, or 2) 'user' modules. The control modules are used to perform the data routinQ

functions, while the 'user' modules are used to perform the data transformation functions in a

self-timed system. Self-timed modules are restricted to communicate with other modules via

channels. A channel is a bundle of wires that connects the output port of a module to an input

port of some other module. The channels of a self-timed system are assumed to have unknown

delays. One of the primary goals of this design methodology is to define self-timed systems whose

behavior is independent of the delays of the interconnect. However, if a self-timed system has the

potential for deadlocking then its behavior can be influenced by the channel delays of the system;

In certain cases it may be possible to avoid or cause deadlocks with certain values for the channel

delays.

It is important to make the distinction between self-timed modules and a self-timed

system.The simplest form of a self-timed system is a self-timed module. If two self-timed modules

are connected, then their connection defines a new self-timed system. Self-timed modules fo""

the atomic building blocks of self-timed systems. It is not possible to combine two self-timed

modules and create a larger self-timed module. Conversely, it not possible to decompose a

self -timed module into a connection of two or more smaller self-timed modules.

In the proposed design methodology a self-timed system consists of a single network of

interconnected modules. The is no separation of the control and data flow sections of a self·ti_med

system. The data flow and control flow sections of a self-timed system correspond to the data flow

and control flow sections of every channel and module of the system.

All modules in a self-timed system fall into one of the categories listed below. The

input/output behavior of these modules will be given in a tater section of this Chapter, but

informally, their behavior closely corresponds to their names.

1) user
2) conditional
3) iteration

-20-

Module

Module

Module

Figure 2.1 Structure of a Self-Timed System

Module

k

. 21 .

4) register
5) union
6) arbitration
7) fork
8) join
9) predicate
10) source
11) sink
12) switch

Modules of type 2 through 12 are called the control modules, these modules route the data

at their input ports to the output ports according to the defined sequencing constraint for the

particular control module. The functionality of the control modules is fixed and cannot be

changed by the designer of the system. The only exception to this is the 'predicate' module,

where the predicate is specified by the designer. The only parameter at the control of the designer

is the width of the data paths at the input and output ports of the control modules. The

functionality of the 'user' modules is under the complete control of the designer.

2.1 Communication Protocol

The communication channels of a self-timed system transmit: 1) data signals, and 2) a

synchronization signal. Note that the signals on a channel do not directly correspond to wires.

Each data signal is physically transmitted on a pair of wires, and each synchronization signal is

physically transmitted on a single wire. The data signals are directed from the source module to

the destination module of the channel, while the synchronization signal is directed from the

destination module to the source module of the channel. A channel in a self-timed system can be

used to transmit an arbitrary (but finite) number of values at one time.

Every channel in the self-timed system must transmit one synchronization signal. The only

exception to this .is the predicate channel, which has two synchronization signals. In addition,

every channel must transmit at least one data signal. Communication over each channel is

assumed to be unbuffered, that is, direct source and destination module synchronization is

required for information transfer over a channel.

-22.

All data signals in a self-timed system are encoded using the dual rail signaling protocol.

Figure 2.2a shows the interpretation of a signal using the dual rail signalling protocol. A signal is

transmitted on a pair of wires, line 1 and line2. Each wire can be in one of two states, either true or

false. Throughout this thesis, the symbol "1" will be used to represent true, and the symbol "O" to

represent false. Figure 2.2b shows the signal constraint for each data signal on a channel. Once

the signal is in a "O" or "1" state, it must pass throug.h the undefined "·" state before changing to

a new value of "1" or ."O." Under normal operation, the signal should never be in the defined but

unknown "?" state.

The communication protocol chosen for this thesis is the reset signaling protocol. Figure

2.3a shows the sequence constraints for a single transaction on a channel with this protocol. This

is defined as the channel constraint of a self -timed system. A single transaction on a channel is

defined to be the sequence of actions on a channel by which a set of data is transferred from the

source to the destination module of the channel. If the synchronization signal of a channel is

false, it indicates that the destination module of the channel is waiting for a new set of data from

the source module. However, if the synchronization signal of a channel is true, it indicates that th~

destination module of the channel has accepted the current data on the channel. T~~

synchronization signal of the channel is called the acknowledge signal. As mentioned earlier, the

only exception to this is the predicate . channel, which has two synchronization signals. The

synchronization signals of the predicate channel are labeled "t" and "f." For a given channel

transaction of the predicate channel, only one of the two acknowledge signals goes through th~

reset signaling protocol shown in figure 2.3a. The request signal is not explicitly transmitted on a

channel but is generated at the input port of the destination module of the channel from the data

signals. Figure 2.3b shows the sequence constraints between the data signals of a port and the

· request signal. A channel is defined to be reset if all the data signals of a channel are in the

undefined "·" state and the acknowledge signal of the channel is "O."

2.2 Input/Output Behavior of Self-Timed Modules

This section will present the input/output behavioral for the 12 module types mentioned in

the previous section. Examples of the use of the various modules can be found in Chapter 5 which

presents a design example for a 2X2 router. The only exceptions are the 'iteration,' 'source,' and

'sink' modules for which simple design examples will be included. The input/output behavior of

each module type will be given for a single module transaction. A single module transaction

-23-

Line1 Line2 Signal Definition

0 0 Undefined'-'

0 1 Zero 'O'

1 0 One'1'

1 1 Defined but Unknown '?'
r----

Figure 2.2a Dual-Rail Signaling Protocol

Figure 2.2b 'Signal Constraint' for Dual-Rail Data

-24-

Request _ _J l_ __ _

Acknowledge

Figure 2.3a 'Reset Signaling' Protocol

Request

Port Data
Signals

__ ___.I
1) All Signals Undefined

2) Sorne Signals Defined

3) All Signals Defined

3

2 2

Figure 2.3b Request Signal Generation for an Input Port

-25-

corresponds to a single transaction on one or more input ports of the module followed by a single

transaction on one or more output ports of the module. The only exception to this is the 'iteration'

module, where a single transaction at the input port can lead to O or more transactions on the

iteration output port. A module is said to be reset if every input and output port of the module is

reset. A single module transaction starts with the module in the reset state, and ends with the

module in the reset state.

In presenting the logic symbols and timing constraints for the various modules the following

conventions are observed.

1) all channels are drawn as bold lines with a slash.
2) the data signals of a channel are drawn as bold lines without a slash.
3) the acknowledge signals of a channel are drawn as normal lines.
4) all transitions of the data signals of a channel from the completely undefined to the completely
defined state (and vice-versa) are assumed to pass through the unlabeled intermediate state
where some data signals are defined and others are undefined.
5) if the signal transitions are shown to occur at the same time then their order can be arbitrary.

The 'user' modules have exactly one input port and one output port. The number of data

signals on the input and output ports of a 'user' module are arbitrary (but not 0). A single module

transaction for the 'user' module is given in Figure 2.4. The data flow section of a 'user' module

defines the data at the output ports as a combinatorial function of the data at the input port. The

'user' modules can be used in conjunction with the 'register' modules to build an arbitrary finite

state sequential machine, or they can be used by themselves in implementing arbitrary data

transformation functions.

The 'conditional' module is used to conditionally transfer control to one of two subsystems

in a self-timed system. The module has one input port and three output ports. Figure 2.5 gives the

terminal structure of a conditional module, and the sequence constraints between the input and

output ports. Every data signal at the input port must be connectable to at least one of the output

ports. After the input port gets defined, the predicate port data signals are defined with a subset of

the data of the input port. Only one of the two acknowledge signals of the predicate port should

now change to "1." If the "t" acknowledge becomes a "1," a subset of the data at the input port

is switched to the data at the "true" output port of the module. Similarly, if the "f" acknowledge

signal becomes a "1," a subset of the data at the input port is switched to the data at the "false"

output port. Once the acknowledge signal from the output port that was selected becomes true,

-26-

Input Po-rt----./'----ait1 ___ M_Uo-Sd_e_~_le ___ J___.1------1-~-u-tp~ort
(a) 'User' module logic symbol

b
Input Port a
Data

a

b

Output Port a a
Data

Acknowledge 0 0
Output Port

Acknowledge 0 0
Input Port

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined 4) "1" - Siynal True

(b) Input/output behavior of the 'User' module

Figure 2.4

-27-

"t" .. ,"

Predicate Port ~ Predicate Port

Data Signals Acknowledge Signals

Input Port
Data

Input Port

Predicate Port
Data

Acknowledge "t" or "f"
Predicate Port

Output Port
"true" or "false" Data

Acknowledge Output Port

.L --,

a

a

If If
_L

_.. Conditional
--,

...,.

Module
_L
I

(a) 'Conditional' module logic symbol

b

b

0

b

0
"true" or "false" ---------'

Acknowledge
Input Port

1) "a" - All Data Signals Undefined

2) "b" - All Data Signals Defined

0

3) "O" - Signal False

4) "1" - Signal True

(b) Input/output behavior of the 'Conditional' module

Figure2.5

"true" Output Port ...

;'false" Output Port __...

a

a

Q

a

0

. 28.

the acknowledge to the input port is made true. The input port then resets, followed by the

resetting of the predicate port and the resetting of the "true" or "false" output port that was

selected by the predicate.

The 'iteration' module is used to control the repeated execution of a subsystem in a

self-timed system. The module has two input ports and three output ports. Figure 2.6 shows the

terminal structure of the iteration module along with the sequence constraints between the input

and output ports. Every data signal of both input ports must be connectable to at least one of the

output ports. In the figure the body of the iteration is executed once. Once the input port becomes

defined, the predicate port data signals are defined with a subset of the data of the input port. One

of the two acknowledge signals of the predicate port must then change to "1." If the "f"

acknowledge signal becomes true, then a subset of the data of the input port is connected to the

output port. A single channel transaction now follows at the input and output port of the module.

This is the case when the predicate is false and the iteration is terminated. If instead the

acknowledge "t" signal becomes true, a subset of the data signals of the input port are switched

to the iteration output port. A single transaction now occurs at the iteration output port of the

module. This transaction corresponds to a single execution of the body of the iteration. The

self-timed subsystem connected between the iteration output port and the iteration input port is

the body of the iteration. When the acknowledge signal of the iteration output port becomes true,

the predicate port data signals are reset. Note that the input port of the 'iteration' module is still

defined. When the predicate port data signals are reset, the acknowledge "t" signal must reset.

This results in the resetting of the data signals of the iteration output port. Once the acknowledge

signal of the iteration output port becomes false, the data signals of the predicate port are defined
•

with a subset of the data signals of the predicate input port. This results in the re-evaluation of the

predicate. Note that the first time the data signals of the predicate port are defined with a subset

of the data signals of the input port. If the predicate evaluates true, all subsequent re-evaluations

of the predicate are performed with a subset of the data signals of the iteration input port.

Similarly, if the predicate evaluates true the first time, the data of the iteration output port is

defined with a subset of the data of the input port. However, on all subsequent true evaluations of

the predicate the data at the iteration output port is defined with a subset of the data of the

iteration input port. If the predicate evaluates false the first time, the data of the output port is

defined with a subset of the data of the input port. If however the predicate evaluates false on the

second or later re-evaluation, the data signals of the output port are defined with a subset of he

Input Port

Predicate Port
Data Signals

,
I

-29-

"t" "f"
Predicate Port
Acknowledge Signals

Output Port

Iteration Input

Iteration

Module Iteration Output

Port ---1----t"
Port

(a) 'Iteration' module logic symbol

b
Input Port
Data a

1
Acknowledge 0
Input Port

b t2
Predicate Port a a
Data

Acknowledge "t" 0

Acknowledge "f" 0

Iteration Output b
a Port Data

Iteration Output 0
Port Acknowledge

Iteration Input a
Port Data
Iteration Input 0
Port Acknowledge b
Output Port a
Data

Output Port 0

Acknowledge

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined . 4) "1" - SignafTrue

(b) Input/output bahavior of the 'Iteration' module

Figure2.6

a

0

a

0

0

a

0

0

a

0

. 30.

data signals of the iteration input port. Whenever the predicate evaluates false, a single

transaction on the output port is followed by the resetting of the module.

As an example of the use of the 'iteration' module, consider a system that adds two

non-negative integers. The input channel of the system receives both numbers to be added

simultaneously. The input channel of the system can be connected to the input port of the

'iteration' module. The 'predicate' module connected to the 'iteration' module tests if the second

integer is zero. The self-timed subsystem connected between the iteration output port and the

iteration input port increments the first number and decrements the second. The output port of

the 'iteration' module then delivers the correct SU')'l of the two input integers.

The 'register' modules can be used to pipeline the operation of a self-timed system, or to

build a sequential machine when used in conjunction with 'user' modules. These modules

correspond to the registers of synchronous systems. The 'register' module has one input port and

one output port. The number of data signals at the input port are the same as the number of data

signals at the output port. Figure 2.7 shows the terminal structure of the 'register' module along

with its timing constraints. When the input port of the 'register' module gets defined, the data

signals of the port are stored in the buffer internal to the module. The data at the output port of the

'register' module is identical to the data at the input port of the module. The acknowledge line of

the input port is set to true after the data has been stored in the 'register' module. The input port

data signals can now change to the undefined state. The acknowledge of the input port is set to

false only after the current data has been accepted by the module connected to the output port of

the 'register' module. Once the data at the output of the 'register' module has been accepted, the

buffers of the register module are all set to the undefined '·' state. This corresponds to a spacer

state for the 'register' module. After storing the spacer in the buffers, the acknowledge of the

input port is set to false. It is important to note that if a sequence of 'register' modules are

connected, then no two adjacent modules can both store data. However, it is possible to have all

the 'register' modules in the sequence store spacers. This corresponds to the sequence of

'register' modules being empty. If the sequence of 'register' modules is full, the information stored

in these modules will alternate between data and spacers.

Input Port
I

-3 J_-

Register

Module

(a) 'Reg ster' module logic symbol

b

Input Port Data ~
b

Output Port Data
a I

Acknowledge 0
Input Port

Acknowledge 0
Output Port

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined 4) "1" - Signal True

(b) Input/output behavior of the 'Register' module

Figure 2.7

Output Port

a

a

0

0

Input Port1

Input Port2

Input Port1
Data

Output Port
Data

Acknowledge
Output Port

Acknowledge
Input Port1

Input Port2
Data

Acknowledge

lnputPort2

a

a

0

0

a

0

_ ..

-32-

Union
Module

{a) 'Union' module logic symbol

b

b {Input Port1)

1 .

a

0

{b) lnpuVoutput behavior of the 'Union' module

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined 4) "1" ·Signal True

Figure2.8

Output Port
_L _...._

7 -

a
b {Input Port2)

a

1

0

b

a
1

. 33.

The 'union' module is used to share a hardware resource in a self -timed system. The 'union'

module has two input ports and one output port. The number of data signals of all the ports of the

module must be the same. Figure 2.8 gives the terminal structure of the 'union' module and its

input/output timing constraints. tn the figure, input port2 is initially blocked by a transaction of

input port1. The inputs to the module are not assumed to be ordered, that is, a request to use the

resource can come from both ports at arbitrarily close time intervals. If one input port gets defined

while the other is reset, the output port of the 'union' module is switched to the input port that is

defined. At this point the output port is considered granted to the defined input port. At this point

a single module transaction, similar to the 'user' module, follows with the selected input and

output ports. At the completion of this cycle the output port is considered free. If the second input

port gets defined while the output port is not free, the transaction on the second input port is

blocked. There is an arbiter internal to the 'union' module that guarantees the mutual exclusion of

the output port to only one of the two input ports. If both input ports get defined at about the same

time, the arbiter non-deterministically chooses one and grants the output port to it.
·.1

The 'arbitration' module is used to arbitrate between a pair of processes in a self-timed

system. The two processes may or may not share the same hardware resources. The module is

useful in preventing both the processes from being active at the same time. The processes are the

subsystems connected to the output ports of the arbitration module. The 'arbitration' module haS

two input ports and two output ports. Each input port is associated with its own output port. The

number of data signals on each input/output port pair must be the same, but the number of data

signals of the two input or two output ports need not be the same. Figure 2.9 gives the terminal

structure of the 'arbitration' module and its input/output timing constraints. In the figure, input

port2 is initially blocked by a transaction of input port1. The input ports to the 'arbitration' module

need not be ordered, the two input ports can request arbitration at about the same time. An

arbiter internal to.the module guarantees the mutual exclusion of the output ports to only one of

the two input ports. When the request is granted to an input port, the output port associated with it

is switched to the input port. From this point on, a single module transaction follows similar to the

'union' module where the input/output ports are the port pair selected by the arbiter. The input

port not selected must wait for the entire module transaction to complete with the selected port

before it can proceed.

Input Port1

Input Port2

Input Port1
Data

Output Port1
Data

Acknowledge
Output Port1

Acknowledge
Input Port1

Input Port2
Data

Output Port2.
Data

Acknowledge
Output Port2

Acknowledge
· Input Port2

L
I

a

a

0

0

a

a

0

0

..

-34-

Arbitration
Module

(a)' Arbitration' module logic symbol

b

b

1

1

(b) Input/output behavior of the 'Arbitration' module

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined 4) "1" - Signal True

Figure2.9

Output Port1
.L
I

Output Port2
.L , ,...

a

a

0

0

b

a

b

a

1

0

~

-35-

Output Port1
J _.,

Input Port
I JJ Fork

I

I ,..

Module Output Port2
I •

(a) Tork' module logic symbol

b

Input Port _J- a
Data

b

Output Port1 a I a
Data b

Oulput Port2 a a
Data

Acknowledge 0 ,- 0
Output Port1

Acknowledge 0 l 0

Output Port2

Acknowledge 0 ~
Input Port

1) "a" - All Data Signals UndetinecJ 3) "O" - Signal False

2) "b" - i'\11 Data Signals Defined 4) "1" - Sigilal True

(b) Input/output Lehavior of th,, Tork' module

Figure 2.10

. 36-

The 'fork' module is used to enable parallel operation in a self-timed system. The module

has one input port and two output ports. Every data signal of the input port must be routed to at

least one of the two output ports. Figure 2.10 shows the terminal structure of the 'fork' module

and its input/output timing constraints. The 'fork' module starts off concurrent activities at its

output ports whenever its input port becomes defined and waits for both output activities to

terminate before allowing another module transaction.

The 'join' module is used to synchronize the operation of modules in a self-timed system.

The module has two input ports and one output port. The number of data signals on the input

ports need not be the same. The number of data signals of the output port is the sum of the

number of data signals of the two input ports. Figure 2.11 shows the terminal structure of the 'join'

module and its input/output timing constraints. The 'join' module starts the operation of its output

port only after both its input ports become defined.

The 'predicate' module is used to control conditional execution of sections of a self-timed

system. The module has one input port and no output ports. Figure 2.12 shows the terminal

structure of the predicate module and its input/output timing constraints. The predicate module is

the only control module whose functionality can be specified by the designer. The predicate

module consists of combinatorial logic whose functionality defines the predicate. When the

predicate port becomes defined, the combinatorial logic of the 'predicate' module sets exactly

one of the two acknowledge "t" or "f" signals to true. The "t" acknowledge signal indicates that

the predicate evaluated true, and similarly, the "f" acknowledge signal indicates that the

predicate evaluated false. The data signals of the predicate port can now change to the undefined

state. The combinatorial logic of the 'predicate' module must then reset the acknowledge "t" or

"f" signal that was true. It is important to note that the value of the predicate is only dependent on

the data signals of the predicate port.

A 'source' module is used to stimulate repeated operation of a section of a self-timed system

indefinitely. It has exactly one output port which has the same data value from one transaction to

the next. Figure 2.13 shows the terminal structure of the 'source' module and its input/output

timing constraints. As an example of their use, a 'source' module can be used to supply a

constant to a subsection of a self-timed system. Similarly, a 'sink' module has exactly one input

port and is used to mark the end of a computation at an output port of a module. Figure 2.14

shows the terminal structure of the 'sink' module and its input/output timing constraints. As an

-37-

I
Output Port

Input Port1

Join

Module
i-..--1.,.L..._ __ ~

Input Port2 / ___ ...,,,_ ,----1"4

(a) '.Join' module logic symbol

b

Input Port1 ~ a
Data

b
Input Port2 ~ L a
Data

b

Output Port a a
Data

Acknowledge 0 l 0
Output Port

Acknowledge 0 0
Input Port1

Acknowledge 0 r 0
Input Port2

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined 4) "1" - Signal True

(b) Input/output behavior of the 'Join' module

Figure 2. -11

-38-

Predicate Port

Data Signals

"t"

"f"

i Predicate

4-----=t __ M_o_d_u_le_" __ _,
Predicate Port
Acknowledye Signals

(a) 'Predicate' module logic symbol

Predicate Port
Data

Acknowledge "t" or "f"

a

0 _J

1) "a" - All Data Sionals Undefined

2) "b" - 1111 Data Sionals Defined

b

(b) Input/output behavior of the 'Predicate' module

Figure 2.12

3) "O" - Signal False

4) ''1'' - Sional True

a

Output Port
Data

Acknowledge
Output Port

a

0

-39-

~ource
I ~~dule
[__ __.

(a) 'Source' module logic symbol

b

a

0

(b) ln!Jut/output behavior of the 'Source' module

Figure 2.13

lnputPort s· ~
~~--J'~·~""~~~M-o_'~-~___J

Input Port
Data

Acknowledge
Input Port

(a) 'Sink' module logic symbol

b

_a _J

0

(b) Input/output behavior of the 'Sink' module

1) "a" - All Data Signals Undefined 3) "O" - Signal Fal:>e

2) "b" - /\II Data Signals Defined 4) "1" - Signal True

Figure 2.14

0

Output Port

- 40 -

example of the use of a 'sink' module, consider a self-timed subsystem that has a 'sink' module

connected to one of the output ports of a 'conditional' module. In such an arrangement the

computation is to be terminated if a certain condition exists. The condition is defined by the

'predicate' module connected to the 'conditional' module and can be an error condition, the end

of computation, etc.

A 'switch' module is used to conditionally block the operation of a component of a self-timed

system. This is similar in concept to semaphores in programming languages which are used to

synchronize sequential processes. Figure 2.15 shows the terminal structure of the 'switch'

module and its input/output timing constraints. In the figure, the switch is initially in the off state.

The input and output ports must have the same number of signals (greater than one), and the

control input and control output ports must have exactly one data signal. The module has a switch

internal to it that conditionally connects the input port to the output port. The state of this switch

can be altered by the control input port. The switch is turned on as soon as the control input port

gets defined with a '1' value. However, the control input port cannot turn off the switch while a

transaction is in progress at the input and output ports. If the switch is in the on state and the

input port gets defined, a single channel transaction takes place at the input and output ports.

Once the switch has been turned on or off, the control input port is connected to the control

output port and a single channel transaction takes place.

2.3 Legal Interconnection of Self-Timed Systems

This section will present the interconnection rules for the modules of a self-timed system.

However, these rules will not guarantee the absence of deadlocks in a self-timed system that

satisfies these interconnection rules. The task of the detection and prevention of deadlocks is left

entirely to the designer of the system. The goal in presenting the following interconnection rules is

to prevent the obvious cases where deadlocks are guaranteed to occur, and to prevent

interconnections that cannot possibly have any meaning.

1) the channels of a self-timed system can only connect the output port of a module to the input
port of some other module.
2) the number of data signals of the source and destination module ports of a channel must be the
same. Also, the corresponding data and acknowledge signals must be connected correctly.
3) the input port of a 'predicate' module can only be connected to the predicate output port of a
'conditional' or 'iteration' module, and vice-versa.
4) every input and output port of a module must either be connected to another module or be an

Input Port

Control Input
Port

L
•

_L

-41-

__..,
~

Switch
Module

..

(a) 'Switch' module logic symbol

b

Input Port ~ Data
b

Output Port a
Data

Acknowledge 0
Output Port 1

Acknowledge 0
Input Port

b {on)

Control Input a a
Port Data b

Control Output a a
Port Data

Acknowledge

Control Output Port 0 0

· Acknowledge
0 Control input port 0

(b) Input/output behavior of the 'Switch' module

1) "a" - All Data Signals Undefined 3) "O" - Signal False

2) "b" - All Data Signals Defined 4) "1" - Signal True

Figure 2.15

.L ,

.L , ,..

b {off}

b

1

1

Output Port

Control Output
Port

a

a

0

0

a

a

~

~

. 42.

input or output port of the system.
5) every cycle in a system must have exactly '2*n + 1' 'register' modules in it, for some 'n' greater
than zero. For the simple case with 'n' equal to one we have a single feedback register. A
feedback register must store both the present state and next state variables, and each variable
must be separated from the other by the spacer state.
6) every pipeline register must have '2*n' 'register' modules in it, for some 'n' greater than zero.
Because of the reset signalling protocol, we must also store the spacer state for every pipelined
signal.
7) external connection into or out of the body of the iteration (the self-timed subsystem connected
between the iteration output port and the iteration input port of an 'iteration' module) is
disallowed.

2.4 Underlying Circuit Model for Hardware Realization

The next two chapters will present the design of control and 'user' modules. The circuit
I

model used in specifying the designs of the modules assumes that both the logic elements and

interconnect have delays associated with them. The signals at the outputs of the logic elementS

are assumed to be at one of two possible levels "O" or "1," and the logic elements are assumed to

switch instantaneously between these two levels.

It is assumed that the module designs presented in the next two chapters will be realized in

nMOS VLSI where it is possible to meet the timing requirements within a module by adjusting the

interconnect and/or logic element delays. In nMOS, the delays associated with the interconnect

wires can be varied by changing their width and also by changing their material. The delay of the

interconnect wires is inversely proportional to the width of the wires, and metal wires have the

least delay followed by diffusion and polysilicon wires. The delay of the logic devices can be

varied by changing their size. For a given load, the delay is inversely proportional to the size of the

drivers. Also the load itself can be increased by adding parasitic capacitance.

. 43.

3. Design of Control Modules

This Chapter will present designs for the 11 control module types that were specified in

Chapter2. The design for each module type is a template which can be used to realize an arbitrary

module of a given type. The number of data signals at the input and output port of each module

type is variable, however, the designer must maintain the correct relationship between the

number of signals at each input and output port as defined in section 2.2.

Every module in a self ·timed system must function correctly independent of the delays in the

input and output channels of the module. The correct behavior of a module can be guaranteed

independent of the delays in the channels by ensuring that the outputs of a module change only

after all internal signals are stable. This can be accomplished by satisfying timing constraints that

are entirely local to the modules. The designs of the various module types are given in the last

section of this chapter. These designs are given in terms of the control circuits whose behavior

and designs are presented in the next section.

3.1 Design of the Control Circuits

There are seven different control circuits used in the design of the control modules. These

are: 1) 'C' circuit, 2) 'D' circuit, 3) 'Switch' circuit, 4) 'Register' circuit, 5) 'Multiplexor' circuit, 6)

'Demultiplexer' circuit, and 7) 'Arbitration' circuit.

The 'C' circuit has two inputs and one output and is used as a synchronizing element (Figure

3.1 a). When both inputs are the same the output follows the inputs, and when the inputs are

different the output retains its previous state. This behavior is illustrated in the flow table of Figure

3.1b. The design of the 'C' circuit in terms of single rail boolean gates is given in Figure 3.1c, but

correct behavior of this circuit requires that the internal feedback delay be less than any external

feedback delay. A better realization is given in Figure 3.1d where the output changes state only

after the internal signals have stabilized. This design is given in terms of a hysteresis gate whose

transfer characteristics are given in Figure 3.1 e.

- 44 -

The 'D' circuit is used to generate the request signal for an input port to a module as

illustrated in Figure 2.3b. The logic symbol for the circuit is given in Figure 3.2a and its realization

in terms of boolean gates and a 'C' circuit in Figure 3.2b. If the channel data signals are reset the

output of the 'D' circuit is "O" and does not change to "1" until every data signal becomes

defined. Once the output of the 'D' circuit changes to "1" it remains a "1" until every data signal

of the input port resets.

The 'switch' circuit is used to control the data signals at an output port of a module. The

circuit has dual rail data inputs, dual rail data outputs and a single rail control input (Figure 3.3a).

When the control signal is "O" the data signals of the output are all in the undefined state, ar1d

when the control signal is "1" every data signal of the output is connected to its corresponding

data signal at the input. Figure 3.3b gives the design of the 'switch' circuit for a single dual rail

data signal using single rail boolean gates.
•i'

The 'register' circuit is used to store dual rail data signals. The circuit has dual rail data

inputs, dual rail data outputs and a single rail load input (Figure 3.4a). When the load signal is "1"

the output data signals follow their corresponding input data signals, and when the load signal is

"O" the output data signals maintain their previous state. The flow table for a single line of a dual

rail register is given in Figure 3.4b, and a realization of this flow table using boolean gates is given

in Figure 3.4c. The correct operation of this circuit depends on the requirement that the internal

feedback delays should be less than any external feedback delays. A design not having these

requirements is given in Figure 3.4d in terms of boolean gates, a tri-level 'OR' gate (Figure3.4e)

and a hysteresis gate (Figure 3.4f).

The 'multiplexor' circuit is used to multiplex dual rail data signals. The circuit has two sets of

dual rail data inputs, one set of dual rail data outputs and two single rail control inputs (Figure

3.5a). The number of dual rail signals at the inputs and output must be the same, and every dual

rail data signal at the output corresponds to a pair of dual rail data signals, one from each input.

Both control signals should never be "1" simultaneously, and whenever a particular control signal

is "1" the dual rail signals at the output are connected to their corresponding signals from the

selected input. When both control signals are "O" the dual rail signals of the output are in the

undefined state. Figure 3.Sb gives the design of the circuit for a single dual rail data signal at the

inputs and output using single rail boolean gates.

-------------- ----------------- ------

.45.

The 'demultiplexor' circuit is used to demultiplex dual rail data signals. The circuit has two

sets of dual rail data outputs, a set of dual rail data inputs and two single rail control inputs (Figure

3.6a). The number of dual rail data signals at the outputs and input must be the same and every

signal at the input corresponds to a pair of signals, one at each output. Both control signals

should never be "1 " simultaneously and whenever a particular control signal is "1 " the

corresponding output signal set is defined with data of the input. Whenever a control signal is "O"

the data signals of the corresponding output set are in the undefined state. Figure 3.6b gives the

design of the demultiplexor circuit for a single dual rail data signal using boolean gates.

The 'arbitration' circuit is used to arbitrate two input requests and grant a request to only

one of its two outputs. The 'arbitration' circuit has two input and output 'request-acknowledge'

signal pairs (Figure 3.7a) where each input signal pair corresponds' to a unique pair at the output.

Each 'request-acknowledge' signal pair is assumed to follow the reset signaling protocol defined

in Figure 2.3a. The request signals of input1 and input2 can arrive concurrently to the 'arbitration'

circuit, but the output request will be granted mutually exclusively to only one of output1 or

output2 [3]. When an output request is granted to a particular input, the request signal of the

selected input is connected to the request signal of the corresponding output. A complete cycle

of the reset signaling protocol must take place with the selected input and output signal pair

before the request for the waiting input can be granted. Figure 2.7b gives the realization of the

'arbitration' circuit using the 'C' circuit, boolean gates, d.c. voltage sources and comparators.

To guarantee the correct behavior of the 'arbitration' circuit, the designer must ensure that

the delay from the "a1 '" input to the "al" output must be greater than the delay from "a1'" input

to the output of the top "nand" gate in figure 3.7. A similar timing constraint must be satisfied for

"a2'" and "a2."

3.2 Design of the Control Modules

This section will present the designs for the control modules using the control circuits of the

previous section. The design of some of the modules involves the use of the 'C' circuit and the

'register' circuit that were defined in the last section. The specification of the initial state of a

self-timed system must involve the specification of the initial state of every 'C' circuit, 'register'

circuit and the inputs to the system.

----·---

. 46.

The design of the 'register' module is given in Figure 3.8 where the dual-rail data signals are

stored in the 'register' circuit. The data stored in the module alternates between a defined state

and the spacer state. If the module is storing spacer data and the input port becomes defined,

this data must be copied into the register only after the current spacer data has been accepted at

the output. This synchronization is provided by the 'C' circuit. When the acknowledge signal of

the output port changes to "O" the "load" signal of the 'register' circuit is set to "1." The 'O'

circuit at the output P.Ort sets the acknowledge signal of the input port to "1" and resets the

"load" signal via the exclusive-or gate, once the data has been stored in the module. The input

port data signals can now reset, but this spacer data cannot be stored in the module until the

current register data has been accepted at the output port. This synchronization is also p~ovided

by the 'C' circuit. When the acknowledge signal of the output port changes to "1" the "load"

signal of the 'register' circuit is set to "1." The '0' circuit at the output port resets the

acknowledge signal of the input port and resets the "load" signal once the spacer data has been

stored in the module.

The design of the 'union' module is given in Figure 3.9. The module is a port multiplexor,

where at any time at most one input port can be connected to the output port. The 'multiplex9r'
. t:

circuit performs the multiplexing of the data signals of the input ports, and the arbitration circuit

'AC' arbitrates the requests from the two. input ports and guarantees that only one input port ca11

be connected to the output. When an input port becomes defined, the 'D' circuit of that input port

sets the request input to the arbitration circuit to "1." If the resource is free and the arbitration is

successful, the corresponding request signal at the output of the arbitration circuit is set to "1"

and the multiplexor connects the data signals of this input port to the output. The acknowledge

signal of the output port can now change to "1 " which will cause the the selected acknowledge

· input of the arbitration circuit to change to "1" and the acknowledge signal of the selected input

port to change to "1." The data signals of the selected input port can now reset which will cause

the request input to the arbitration circuit to reset. The arbitration circuit, however, will not reset

the request signal at the output until both the acknowledge and request signals of the selected

input are "O." Therefore, the spacer data at the selected input port is transmitted to the output

port. The acknowledge signal of the output port can now reset which will cause the selected

acknowledge input of the arbitration circuit to reset and the acknowledge signal of the selected

input port to reset. When both the acknowledge and request signals of the selected input port

become "O" the request signal at the output of the arbitration circuit is reset and the output port

----- ------- -------- -----

. 47.

is free.

The design of the 'arbitration' module is given in Figure 3.10. The module is similar to the

'union' module except that each input port has its associated output port. Therefore, two 'switch'

circuits are required to conditionally connect an input port to its associated output port, instead

of the 'multiplexor' circuit.

The design of the 'conditional' module is given in Figure 3.11. The 'demultiplexer' circuit is

used to conditionally connect a subset of the data signals of the input port to one of the two

output ports. The data signals of the predicate port are connected to a subset of the data signals

of the input port. When the input port data sign~ls become defined the data signals of the

predicate port also become defined, and the predicate module must set one of the two

acknowledge signals "t" or "f" to "1." If the "t" acknowledge signal is set to "1," the

demultiplexer connects a subset of the data signals of the input port to the "true" output port.

The acknowledge signal of the "true" output port can now change to "1" which will set th~

acknowledge signal of the input port to "1." The input port data signals can now reset whlc~

results in the resetting of the data signals of the predicate port. The acknowledge "t" signal must

next be reset by the predicate module. The "2" control input to the demultiplexor, however, is not

reset since the acknowledge signal of the "true" output port is "1." Therefore, the spacer data of

the input port is transmitted to the "true" output port. The acknowledge signal of the "true"
"

output port can now reset which results in the resetting of the acknowledge signal of the input

port and the resetting of the "2" control input to the demultiplexer. A similar set of events occur

when the predicate module sets the "f" acknowledge signal to "1" and the "false" output port is

selected.

The design of the 'iteration' module is given in Figure 3.12. The 'multiplexor' circuit is used

to select either the input port or the iteration input port for the next cycle of operation of the

module. The input port is selected by the multiplexor when the iteration is first started, and for all

subsequent cycles of the iteration the iteration input port is selected. The two cross-coupled

"nor" gates at the input ports control the selection of the appropriate input port. The

'demultiplexer' circuit is used to transmit the selected input port to either the output port or the

iteration output port. If the predicate evaluates false the selected input port is connected to the

output port, and otherwise connected to the iteration output port. When the module is reset the

input port, the predicate port, the output port and the iteration output ports are reset. The

-48-

self-timed subsystem connected between the iteration output port and the iteration input port

comprises the body of the iteration. Since the body of the iteration forms a cyclic structure it

must have at least one feedback register (3 register modules connected in series) in the cycle.

Because the body of the iteration must have a feedback register the data signals of the iteration

input port must be defined when the module is reset.

When the iteration module is reset the control signal "1" of the multiplexor is set to "1."

Therefore, when the input port becomes defined it is connected to the output of the multiplexor.

The predicate port data signals are connected to a subset of the data signals at the output of the

multiplexor, and the predicate module must next set one of the two acknowledge signals to "1. 11
'

If the 11f 11 acknowledge signal is set to 11 111 it signals that the iteration has terminated and a subset

of the data signals at the output of the multiplexor are connected to the output port. The

acknowledge signal of the output port will next change to 11 1 " which will set the acknowledge

signal of the input port to 11 1. 11 When the input port data signals reset the acknowledge "f" signal

will change to "O" but the "1 11 input to the demultiplexor will not be reset since the acknowledge

signal of the output port is set. The spacer data of the input port will therefore be transmitted to

the output port which will cause the acknowledge signal of the output port to reset followed by

the resetting of the acknowledge signal of the input port.

If the predicate module sets the acknowledge 11t" signal to 11 1 11 it indicates that another

cycle of the iteration must be performed. A subset of the data signals at the output of the

multiplexor are connected to the iteration output port. After the data signals at the iteration

output port become defined the acknowledge signal of the iteration output port should change to

"1 11 followed by the resetting of the data signals of the iteration input port. The resetting of the

data signals at the iteration input port will cause the "1" input of the multiplexor to reset followed

by the setting of the "2 11 input of the multiplexor. The predicate port data signals will therefore

reset causing the acknowledge "t 11 signal to reset. However, the 11 2 11 input of the demultiplexer

will not be reset since the acknowledge signal of the iteration output port is set. The spacer data

at the output of the multiplexor will therefore be transmitted to the iteration output port. This will

cause the acknowledge signal of the iteration output port to reset followed by the defining of the

data signals at the iteration input port. The set of events from this point on are similar to those

when the iteration was first started except that the data signals of the iteration input port are

selected by the multiplexor instead of the data signals of the input port. When the iteration

-49.

terminates the "2" input to the multiplexor resets followed by the setting of the "1" input. The

iteration module is thus in the same initial state at the end of the iteration.

The design of the 'source' module is given in Figure 3.13 where the box labeled "constant"

defines a constant dual rail datum. If the acknowledge signal of the output port is reset the data

signals of the port are defined with the constant. The acknowledge signal of the output port

should next change to "1" which will cause the data signals of the output port to reset. The cycle

of operation is repeated again once the acknowledge signal of the output port resets.

The design of the 'sink' modulf' is given in Figure 3.14. Wheri the data signals of the input

port are defined the 'D' circuit sets the acknowledge signal to "1." This should be followed by the

resetting of the data signals of the input port which will cause the resetting of the acknowledge

signal of the input port.

The design of the 'fork' module is given in Figure 3.15. When the module is reset all the

input and output ports are reset. Starting from the module reset state, when the data signal~ of

the input port become defined the data signals of both output ports are defined with a subset of

the data signals of the input port. The 'C' circuit guarantees that the acknowledge signal of the

input port is not set to "1 " until the acknowledge signals of both output ports are set to "1." The

data signals of the input port should reset after the acknowledge signal of the input port becomes

"1 " causing the data signals of both output ports to reset. The 'C' circuit also prevents the

acknowledge signal of the input port from resetting until the acknowledge signals of both output

ports reset.

The design of the 'join' module is given in Figure 3.16. The data signals of the output port

· consist of the data signals of both input ports. When the module is reset both input ports and the

output port are reset. Starting from the module reset state, the output port data signals will not be

defined until the data signals of both input ports are defined. The acknowledge signal of the

output port should change to "1" after the output port becomes defined. This will cause the

acknowledge signals of both input ports to be set to "1." The data signals of the output port will

not reset until the data signals of both input ports reset. Once the data signals of the output port

reset, the ackno~ledge signal of the output port should reset which will cause the resetting of

the acknowledge signals of both input ports.

··------ ---·--------------

. 50.

The design of.the 'predicate' module is given in Figure 3.17. The combinatorial logic defines

a single dual rail signal whose value defines the value of the predicate. Chapter 4 will present the

general design methodology for realizing dual rail combinatorial circuits. The module is in the

reset state when the predicate port data signals are reset and the two acknowledge signals are

reset. Starting from the module reset state, when the data signals of the predicate port become

defined, the combinatorial logic will define the value of the dual rail predicate signal to either "1"

or 11 0. 11 The dual rail to single rail decoder connects "line1 11 of the of the predicate signal to the

acknowledge "t 11 signal and "line2" to the acknowledge "f" signal. After the selected

acknowledge signal is set to 11 1 " the predicate port data signals can reset which will cause the

dual rail predicate signal to change to the undefined state. The acknowledge "t" or "f" signal that

was set to "1" should now reset, thereby returning the module to the reset state. Since the two

lines of a dual rail signal are never both true simultaneously we are guaranteed that only one of

the two acknowledge signals of the predicate port can be true at any time.

The design of the 'switch' module is given in figure 3.18a. The design is given in terms of the

'arbitration' module "A 11 and the 'SW' circuit. The 'SW' circuit is similar to the 'switch' circuit

except that it has a state variable that controls the state of the switch (Figure 3.18b). When the

control input to the 'SW' circuit gets defined with a value of "1" th~ switch is turned on, and when_

it gets defined with a value of "O" the switch is turned off. The 'arbitration' circuit "A" prevents

the state of the switch from being set in the middle of a transaction between the input and output

ports, and also prevents a transaction between the input and output ports when the state of the

switch is being set.

If the input port gets defined when the switch is off the data signals are blocked at the input

of the 'SW' circuit. However, if the switch is on, the data signals of the input port are transmitted to

the output of the 'SW' circuit. If the data signals at the output of the 'SW' successfully arbitrate

through the 'arbitration' module a single transaction follows between the input and output ports of

the 'switch' module. If arbitration is not successful, the control input port must have won the

arbitration. The input port data signals will be output to the output port (after the transaction on

the control input and control output ports has terminated) if the switch was turned on. If the

control input signal turned the switch off, the input port data signals will be blocked till the switch

is turned on.

-------- ----------

. 51 .

3.3 Timing Requirements for the Control Modules

This section will present the timing requirements for the control module designs given in the

previous section. In defining the timing requirements each delay will be specified as the delay

between two signals within a module. It should be assumed that this delay includes the delay of

every logic element and interconnect in the path between the two signals. For the starting signal

. of the path the delay also includes the delay of the logic element driving the the signal, and for the

terminating signal of the path the delay also includes the delay of the interconnect connected to

the logic element driving the terminating signal of the path. If the terminating signal is connected

to an input of a control circuit, then this delay must also include the time required for all signal

paths to settle within the control circuit from this input. ·'

The design of the 'register' module is given in figure 3.8. In the module, the delay from the

output of the 'D' circuit (at the output port) to the "load" input of the 'register' circuit must be less

than the delay from the output of the 'D' circuit (at the output port) to the acknowledge signal of

the input port.

The design of the 'union' module is given in figure 3.9. In the module, the delay from the

"r1 '" output of the 'arbitration' circuit to the "1 " input of the 'multiplexor' circuit must be greater

than the delay from the "r1'" output of the 'arbitration' circuit to the "a1"' input of the

'arbitration' circuit. A similar requirement holds for the "r2'" output of the 'arbitration' circuit, the

"2" input of the 'multiplexor' circuit and the "a2'" input of the 'arbitration' circuit.

The design of the 'arbitration' module is given in figure 3.10. There are no additional timing

requirements for the correct operation of this module.

The design of the 'conditional' module is given in figure 3.11. In the module, the delay from

the acknowledge signal of the "false" output port to the acknowledge signal of the input port

must be greater than the delay from the acknowledge signal of the "false" output port to the "1"

input of the 'demultiplexer' circuit. A similar requirement holds for the acknowledge signal of the

"true" output port, the acknowledge of the input port and the "2" input of the 'demultiplexer'

circuit.

. 52.

The design of the 'iteration' module is given in figure 3.12. In the module the delay from the

acknowledge signal of the output port to the acknowledge signal of the input port must be greater

than the delay from the acknowledge signal of the output port to the "1" input of the

'demultiplexor' circuit. A similar requirement holds for the acknowledge signal of the iteration

output port, the acknowledge of the iteration input port and the "2" input of the 'demultiplexor'

circuit.

The design of the 'switch' module is given in Figure 3.18a. The delay from the data outputs

of the 'SW' circuit to the input of the 'arbitration' module should be less than the delay from the

control output of the 'arbitration' module to the control input of the 'SW' circuit. This ensures that

there are no gliches at the output port if the switch is turned off after the input port data signals

are defined at the output of the 'SW' circuit. For the 'SW' circuit to function correctly, the delay

from the control input signal to the control output signal should be greater than the delay from the

control input signal to the "control" input to the 'switch' circuit.

The following control modules do not have any additional timing requirements to guarantee

their correct behavior: 1) the 'source' module (figure 3.13), 2) the 'sink' module (figure 3.14), 3)

the 'fork' module (figure 3.15), 4) the 'join' module (figure 3.16) and 5) the 'predicate' module

(figure 3.17).

(a) 'C' circuit logic symbol

(c) Realization of the 'C' circuit

using logic gates

o~t

-53-

ln1

ln2

Output

v

ln1,ln2

Out

(b) Flow table for the 'C' circuit

R
_,-.-.1 --

/.· /

R

(cJ) Realization of the 'C' circuit
using a hysteresis gate

I

Out

'---'-----"------+ Input
V/2 V

(e) Input/output bel1avior of the hysteresis gate

Figure 3.1 Design of the 'C' circuit

Channel

Data Signals

D

Request

{a) 'D' circuit logic symbol

-54-

Channel Data Signals

• •

• •

Line1 Line2 Line1 Line2

•
•

•
•

(b) Realization of the 'D' circuit

Figure 3.2 Design of the 'D' Circuit

Data
....... Switch

Inputs

Control

{a) 'Switch' circuit logic symbol

Data
-""

Outputs-..

Line1
Line1'

Line2
Line2'

Control

(b) Realization of the 'Switch' circuit
for a single data signal

Figure 3.3 Design of the 'Switch' Circuit

Data .. Register Input

Load

-55-

Data _11o.

Output --...
Out

Load, Input

00 01 11 10

0 0 0 0

1 0

(a) 'Register' circuit logic symbol (b} Flow table for"the 'Register' circuit

Load ---- Out
Line1/2

Line1/2

(c) Realization of the 'Register' circuit
using logic gates for a single data line

a b c

0 0 0

0 1 1

1 0 2

1 1 2

(e) Input/output behavior of

the tri-level 'OR' gate

Load -------1
Line'-"1 /;..::2.__,...-t

(d) Realization of the 'Register' circuit

with a tri-level 'OR' gate
and a hysteresis gate for a single data line

Ou ut

0 2

(f) Input/output behavior of
the hysteresis gate

Figure 3.4 Design of the 'Register' Circuit

Input

Out

Line1/2

In

In

-56-

Line1
put1 ..
put2

.....
Multiplexor Output rg Input 1

Line2 ---~ _..

r.. r..

2

(a) 'Multiplexor' circuit logic symbol

1

Line1

lnput2

Line2

2

(b) Realization of the 'Multiplexor' circuit
for a single data signal

Figure 3.5 Design of the 'Multiplexor' Circuit

t
Output 1..:.

_a.J
Demultiplexor ...

lnpu

Output2
f\. ~

1 2

(a) 'Demultiplexer' circuit logic symbol

Line1
Line1

Line2
Line2

Line1

2
Line2

(b) Realization of the 'Demultiplexor' circuit
for a single data signal

Figure 3.6 Design of the 'Demultiplexor' Circuit

~
Output

Output 1

Output2

-5 7-

a1 a1'
/ L..

lnput1 r1 __::::,.
r1'
~

Output1

AC
..., ~

a2
4 4

a2' lnput2 Output2

(a)' Arbitration' circuit logic symbol

a1
<

a1'
---------------~~

lnµut1

r1'
Output1 ,, _____ ,____.·: _ __ _

!nput2

c ~· _:!:_/·~---_.,...
---.._-.......:.._..-)("

~-:-<»-----~-~~ ~ ''-t>
r2'

a2'
Output2

(b) Realization of the 'Arbitration' circuit

Figure 3.7 Design of the 'Arbitration' Circuit

Input
Port

Data

Acknowledge

D

-58-

Register

Load

c

Figure 3.8 Design of the 'Register' module

Input
Port1

Data

Acknowledge

Acknowledge

Input
Port2

Data

r1 r1'

a1
a1'

AC
a2'

a2

r2 r2'

D

Figure 3.9 Design of the 'Union' module

lnput1

Output
1

Multi-

Plexor

2

lnput2

Output
Port

Data

Acknowledge

Output Port

Data

Acknowledge

---------- -------.,--~-~-------

Input Port1

Data

Acknowledge

Acknowledge

Data

Input Port2

-59-

Switch
Control

r1 r1'
a1 A a1'

a2 c a2'

r2'

Control

Switch

Figure 3.10 Design of the 'Arbitration' module

Predicate
Channel

"t" "f"

Data ~~

Input
Port

Data

Acknowledge

i' "
1 ...

Output1 ---
Demul-
tiplexor

.... Input

~ Output2

-- _.,, ... 2

Figure 3.11 Design of the 'Conditional' module

Output Port1

Data

Acknowledge

Acknowledge

Data

Output Port2

"false"
ort OutputP

Data,...
...L- Acknowledge

D-- Acknowledge
.-I!..

·~ Data

"true ..
Output Port

Input Port

Acknowledge

Data

Data

Acknowledge

Iteration
Input Port

-60-

Predicate Port

Data "t" "f"
Output Port

Acknowledge

Acknowledge

ln1
Out1

Data

·1

Multi-

2
Plexor

Out i-------+----------... 1 In

Demulti
Plexor

1

ln2

Figure 3.12 Design of the 'Iteration' module

Con- Switch
stant ...

Control

'I'

~
~

Figure 3.13 Design of the 'Source' module

2

Data
..... ..

"""""
Ac know led

Out2
Data

Acknowledge

Iteration
Output Port

Channel

Output

ge

Input
Port

Input
Port1

Input
Port2

-61-

data

:
Acknowledge

Figure 3.14 Design of the 'Sink' module

Figure 3.15 Design of the 'Fork' module

Data

.,,,,

Acknowledge
.....

Data

--"' --.-
....._

Acknowledge

Figure 3.16 Design of the 'Join' module

Data Output
Port .. ,.. -::;-

""II:"

Acknowledge

--------- ----------------------

Predicate Port

Data

Acknowledge

Signals
'"E-

.....
'

-62-

Dual Rail .. Combinatorial - ..
Logic

j

"t"

"f"

Figure 3. i 7 Design of tile 'Predicate' module

Dual Rail
to .. Single Rail

Decoder

Input Port

Control Input
Port

1 Acknowledge

1 Data

L ine1

2Data L ine2

2 Acknowledge

-63-

1 1'L ... T

SW
2 2'L

~ P' ~ T

IN1 OUT1
..... ..L -,....

A

1_
IN2 OUT2 _..

-,.... I

Figure 3.18a Design of the 'Switch' module

Switch _., _., .,,. --.-

Control

+

rl>c c 1--

__,,, __,,, .,.. .,..

_,. ,. ,.

Figure 3.18b Design of the 'SW' circuit

Control Output
Port

Output Port

1' Acknowledge

1' Data

Line1'

Line2'
2' Data

2'Acknowledge

. 64.

4. Design of the 'User' Modules

The 'user' modules perform all the data transformation functions in a self ·timed system. The

modules have exactly one input port and one output port. Figure 4.1 gives the design of the 'user'

modules in terms of dual rail combinatorial logic. The functionality of the 'user' modules is

specified by defining the dual rail combinatorial logic of the module.

Dual rail combinatorial circuits consists of an acyclic interconnection of dual rail boolea"

logic elements. The dual rail logic elements are the dual rail 'and,' gates 'or,' gates and 'inverters.'

Chapter2 defined the input/output timing constraints for the 'user' modules. The 'user' module is

reset when both the input and output ports are reset. Starting from the module reset state, the

signals of the output port should not change to the defined state until the signals of the input port

are defined. Similarly, the signals of the output port should not change to the undefined state until

the signals of the input port change to the undefined state. To guarantee the correct terminal

behavior of the 'user' modules, each dual rail logic element must change to a defined state only

after all its inputs become defined. Similarly, the output of a dual rail logic element must change

to the undefined state only after all its inputs become undefined.

'r

Figure 4.2 gives the logic symbol and design of the dual rait 'inverter.' The inverter has one

dual rail input and output signal. The realization of the dual rail 'Inverter' is extremely simple and

requires only the renaming of the input signal lines at the output. - . r

'
Figure 4.3 gives the logic symbol and design of the dual rail 'and' gate. The 'and' gate has

two dual rail input signals and one dual rail output signal. The design of the 'and' gate is given in

terms of 'C' circuits and a single rail 'or' gate. When both input signals of the 'and' gate are in the

undefined state the inputs to all the 'C' circuits are "O" and the output of the 'and' gate Is

undefined. If only one input signal becomes defined, there will be no 'C' circuit with both inputs

"1" and the output of the 'and' gate will remain undefined. When both input signals become

defined, exactly one 'C' circuit will have both its input signals "1." The output of this 'C' circuit will

change to "1" and the output of the 'and' gate is defined with the appropriate value. The output of

this 'C' circuit will remain a "1" until both input signals become undefined. Therefore, the output

of the 'and' gate will remain defined until both input signals become undefined. The four 'C'

circuits each decode one of the four possible combinations of the input signals. The output of the

'and' gate should be defined with a value of "1" only when both input signals are defined with a

--- --------- ·---------- -~-------------- ----

- 65 -

value of "1." The other three combinations of the input signals set the value of the 'and' gate to

"O."

The logic symbol and design of the dual rail 'or' gate is given in figure 4.4. The 'or' gate has

two dual rail input signals and one dual rail output signal. The design is similar to the design of the

dual rail 'and' gate, except that the input and output signals are inverted.

From these dual rail logic elements it is possible to realize an arbitrary dual rail combinatorial

function, and hence an arbitrary 'user' module. However, it is not implied that this is the only way

of implementing dual rail combinatorial functions, or even that this is necessarily the best

realization. There are no additional timing requirements for the correct behavior of these logic

elements, besides those mentioned in chapter3 for the 'C' circuit.

Input Port

Data

Acknowledge

-66-

Dual Rail
Combinatorial

Logic

Figure 4.1 Des:gn of the 'User' module

--@>--

...

Figure 4.2a Logic symbol of the dual rail inverter

Input

Signal

Line1

Line2

Figure 4.2b Design of the dual rail inverter

Line1

Line2

Output Port

Data

Acknowledge

Output

Signal

Input 1

lnput2

-67-

Output

Figure 4.3a Logic symbol of the dual rail and gate

Input 1 line1

Input 2 line1

Input 1 line2

Input 2 line2

c

c

c

c .t-----"

Figure 4.3b Design of the dual rail and gate

Input 1

Input 2 ------·JV~----
Figure 4.4a Logic symbol of the dual rail or gate

Input 1 line2

Input 2 line2

Input 1 line1

Input 2 line1

c

c

c

c

Figure 4.4b Design of the dual rail or gate

Output

Output line1

Outputline2

Output line2

Outjput line1

- 68-

5. Design Example of a 2x2 Router

This chapter will present the design of a 2X2 router using the design methodology proposed

in this thesis, and contrast it with a synchronous design. A 2X2 router is a packet switch that has

two input and two output ports. A packet arriving at each input port requests to be output to one

of the two output ports. The router can thus be used in implementing arbitrary NXN packet

routing networks (13). Figure 5.1 gives the terminal structure of a 2X2 router.

A packet is a sequence of one or more bytes, where each byte consists of eight data signals

and the "last_byte_ot_packet" si~nal. Whenever the "lasLbyte_ot_packet" signal is "1" it

indicates that the current byte is the last byte of the packet. The first byte of the packet is called

the address byte. The data signals of the address byte define the direction of the packet for the

various levels of routers in the routing network. The least significant data signal of the address

byte defines the direction signal of a 2X2 router. If the direction signal is false, the packet is

transmitted to the output port "Output1," and otherwise output to the output port "output2." The ·

wires that connect the data signals between routers should be rotated so that the routers at each

level in the routing network look at a different data signal to define their direction signal.

A router is reset when there are no packets being output from either input port. Starting from

the reset state, when an input port becomes defined with the address byte of a packet, the router

must look at the direction signal and forward all bytes of the packet to the selected output port~ If

a second packet from the other input port is to be output to the same output port it must be

blocked until all bytes of the first packet are output. However, if the second packet is to be output

to the free output port, its transmission can proceed concurrently with that of the first packet. It

can be seen that the time required to transmit a byte of a packet through a router is not fixed. The

communication protocol for transmitting the bytes of a packet must therefore be bi-directional.

There are two additional communication control signals associated with every byte of a

packet. These are the 'request' and 'acknowledge' signals. These signals follow the reset

signaling protocol defined in Figure 2.3a. It is important to note that direction of the acknowledge

signal is opposite to that of the packet, while the direction of the request signal is the same as that

of the packet. Wt)en the request signal is "1" at an input port of a router it indicates that a byte of·

the packet is defined and should be transmitted to the appropriate output port. The acknowledge

signal of the input port should change to "1 " once the byte has been transmitted to the desired

-69.

output port and the acknowledge signal of the output port is 11 1. 11 The request signal should next

reset and the router should reset the request signal at the selected output port. When the

acknowledge signal of the output port resets the router should reset the acknowledge signal of

the input port. This marks the end of the transmission of the packet byte, and the next byte of the

packet, or the first byte of another packet, can be transmitted in a similar fashion.

The next section will give the detailed design of a synchronous router. To give a meaningful

comparison of the logical complexity of the synchronous and asynchronous designs, all

component counts for the 'and' and 'or' gates are given for dual input gates.

5.1 Synchronous Design of a 2X2 Router

Before presenting the detailed design of the synchronous router it is important to mention

the assumptions made regarding the synchronous system that the router is a part of.

It is assumed that the entire system operates on the same clock, and therefore the inputs to

the router need not be synchronized. All signals of a channel will change in the same clock cycle

and can be encoded using the single rail protocol by transmitting an explicit request signal with

every byte of a packet. In presenting the details of the design, the_clock and reset logic will be left

out for simplicity.

The block diagram of the synchronous router is given in Figure 5.2. 'M1' is a packet

demultiplexer with one input port and two output ports. When the address byte of a packet

becomes defined at the input port it is output to output port o if the direction signal is false, and

otherwise output to output port 1. 'M1' also remembers the value of the direction signal so that it

can forward the remaining bytes of the packet (if there are any) to the appropriate output port.

The 11 lasLbyte_of_packet 11 signal is used to indicate that the next byte at the input port is the

address byte of a new packet. 'M2' is a packet multiplexor with two input ports and one output

port. 'M2' is in the idle state when no packet is being transmitted from either input. If an input port

becomes defined when 'M2' is idle, all bytes of this packet are transmitted to the output port. If the

other input port becomes defined while a packet is being transmitted, it is blocked until all bytes of

the packet from the selected input are transmitted. 'M2' has an arbiter internal to it that

guarantees that only one input is selected if both input ports become defined when it is in the idle

state.

-70-

Input 1 Output 1
..LL ,

2><2 Router
Input 2 Output2

..L _L ,

Figure 5.1 Terminal Structure of the 2><2 Router

lnpu
0L t 1 ... , Output

.L M1 M2 I -"" , ... 1
_L

, ...
_..

1

--..-~

t2 0 _L
- ... , Output lnpu 2

.L _.. M1 M2 .L
T ...

1
, ...

_.. ..L ... ,

Figure 5.2 Block Diagram of the Synchronous Router

- 71 -

5.1.1 Detailed Design of M1

The design of 'M1' is given in Figures 5.3, 5.4 and 5.5. The design is separated into a data

flow section and a control section. The data flow section consists of a demultiplexor (Figure 5.3b)

which is controlled by the control section. The following signals of the input port are the inputs to

the control section of 'M1 ':

1) DIR - this is the least significant data signal of a packet byte. This signal defines the direction of
the packet during the address byte.

2) LAST - this is the 'lasLbyte_of_packet' signal.

3) REQ - this is the request signal of the input port.

4) ACK - this is the acknowledge signal of the input port.

The demultiplexor has two inputs from the control section, these are:

1) 01 · when this signal is true, the input port is connected to the "OUT1" port of the

demultiplexor.

2) 02· when this signal is true, the input port is connected to the "OUT2" port of the

demultiplexor.

Figure 5.3c gives the design of the demultiplexer for all signals except the acknowledge

signal, while Figure 5.3d gives the design for the acknowledge signal. The designs are different

since the direction of the acknowledge signal is opposite to the direction of all other signals in a

channel. The component count for the data flow section of 'M1' is given below:

1) 22 'and' gates.

2) 1 'or' gate.

The state transition diagram for the control section of 'M1' is given in Figure 5.4, and its

realization in Figure 5.5. In all the state transition diagrams the arcs only show those transitions

that change the state of the machine. For the input combinations for which no arcs are shown it

should be assumed that the machine remains in the same state.

---··----

-72-

OUT1
IN

OUT2

Figure 5.3a Terminal structure of M1

IN

D L R A
I A E C

R SQ K
T

Demulti
plexor

Direction

01 02

t----1--e---- OUT1

OUT2

Figure 5.3b Data flow section of M1

INa
OUT1a

OUT2a

01 02

Figure 5.3c Design of the demultiplexor
f9r all signals except the acknowledge
signal

ACKOUT1

01

ACKOUT2 ACKIN·

02 -~-----I

Figure 5.3d Design of the demultiplexor
for the acknowledge signal

R'A

R'A

Abbreviations ·

Signal notation -

Diagram notation -

State Definition

- 73-

RL d D1 RL'

~

if'

~
D1 R'A'

~. t
\ RD'L

RD'L'

a
RlJL'

I, ~.

w
D2 RDL R'A'

e ·-

w

~

RL D2 RL'

g

R - is the REQ (request) signal.

L - is the LAST {last byte of packet) signal.

A is tlw ACK (acknowlPdge) signal.

D is the Din (direction) signal.

R' - stands for signal "R" inverted.

'1'

D1

c

11'

w

02
f

11'

States are in the center of the boxes in lower case.

Outputs that are "1" are in the top right hand corner of the states in upper case.

"a" Idle, no input packet is being transmitted.

"b" Last byte of a pncket is being output to OUT1.

"c" f\ byte of a packet is being output to Ol.IT1. The current
byte is not the last byte of the packet.

"d" · /\byte has bF..!en transmitted to OUT 1. More bytes remain
to be transmitted.

"e" · Last byte of a packet is being output to OUT2.

"f" - A byte of a packet is being output to OUT2. Tht; current
byte is not the last IJyte of the packet.

"g" · A byte has been transmitted to OUT2. More bytes remain
to be transmitted.

Figure 5A State transition diagram for tho control section of M·1

Present

State

1 2 3

000

000

000

000

000

0 0 1

0 0 1

0 0 1

0 1 0

0 1 0

0 1 0

0 1 1

0 1 1

0 1 1

1 0 0

1 0 0

1 0 0

1 0 1

1 0 1
1 0 1

1 1 0

1 1 0

1 1 0

Inputs Next Outputs
State

OLRA 1 2 3 01 02

- - 0 - 000 0 0

0 0 1 - 0 1 0 0 0

0 1 1 - 0 0 1 0 0

1 0 1 - 1 0 1 0 0
1 1 1 - 1 0 0 0 0

- - 1 - 0 0 1 1 0

- - - 1 0 0 1 1 0

- - 0 0 000 1 0

- - 1 - 0 1 0 1 0

- - - 1 0 1 0 1 0
- - 0 0 0 1 1 1 0

- - 0 - 0 1 1 1 0

- 0 1 - 0 1 0 1 0

- 1 1 - 0 0 1 1 0

- - 1 - 1 0 0 0 1

- - - 1 1 0 0 0 1

- - 0 0 000 0 1

- - 1 - 1 0 1 0 1

- - - 1 1 0 1 0 1

- - 0 0 1 1 0 0 1

- - 0 - 1 1 0 0 1

- 0 1 - 1 0 1 0 1

- 1 1 - 1 0 0 0 1

-74-

Encoding State

0 0 0 a
0 0 1 b

0 1 0 c

0 1 1 d
1 0 0 e
1 0 1 f

1 1 0 g

n+1
1 1(2+3+R+A) + 1'2'3'DR

n+1
2 = 2(1'3LR + 13'R)' + 1'2'3'0'L'R + 12'3R'A'

n+1
3 = 3(2'R'A'+2L'R)' + 1'2'3'R(O'L+OL') + 1'23'R'A' + 123'L'R

01 = 1'(2+3)
02 = 1

Abbreviations -

Signal notation ·

R - is the REQ (request) signal.

L - is the LAST {last byte of packet) signal.

A - is the ACK (acknowledge) signal.

0 • is the DIR (direction) signal.

R' - stands for signal "R" inverted, etc_ ..

Figure 5.5 State transition table for the control section of M1

. 75.

When no packet is being transmitted from the input port 'M1' is in the idle state 11a." It

remains in this state until the address byte of a packet becomes defined at the input po.rt. Figure

5.4 shows that all arcs leaving the idle state have the request signal of the input port set. When an

address byte becomes defined at the input port there are four important cases, depending on the

values of the direction signal and the 11 lasLbyte_ot_packet11 signal. For example, if the direction

signal is false and the 11 lasLbyte_oLpacket 11 signal is true 'M1' enters the state 11b. 11 In this case

the input byte is the first and last byte of the packet and should be output to the output port

110UT1. 11 The "01 11 input to the demultiplexor is set in state "b" so that the input byte can be

transmitted to the output port "OUT1. 11 When the packet byte has been accepted at the output

port 11 0UT1 11 the acknowledge signal of the "OUT1 11 port will change to "1. 11 The demultiplexor

will transmit this signal to the acknowledge signal of the input port. The request signal of the input

port should next change to "O" which will cause the request signal of the output "OUT1 11 port to

change to "O. 11 The acknowledge signal of the 110UT1 " port should now change to 110 11 followed

by the resetting of the acknowledge signal of the input port. When both the acknowledge and

request signals of the input port are reset it indicates that the transmission of the packet byte

through 'M1' is complete. Since this was the first and last byte of the packet 'M1' should return to

the idle state and reset the 1101 11 input to the demultiplexer.

The behavior of 'M1' for the other cases is similar except that it should not return to the idle

state after transmitting the first byte of the packet, if the first byte is not also the last byte of the

packet. For example, if a byte of a packet (that is not the last byte) has been transmitted to output

port 110UT1 11 'M1' enters state 11d. 11 The important difference between the states 11a 11 and 11d" is

that the "D1" input to the demultiplexor is "1" in state "d." The input port is thus connected to

the selected output port of the demultiplexor for the transmission of the entire packet.

The component count for the control section of 'M1' is given below:

1) 9 inverters.

2) 40 'and' gates.

3) 12 'or' gates.

4) 3 flip.flops.

. 76.

5. 1 .2 Detailed Design of M2

The design of 'M2' is given in Figures 5.6, 5.7, 5.8 and 5.9. The design is separated into the

data flow section and the control section. The data flow section consists of the multiplexor (Figure

5.6b) which is controlled by the control section. The following signals from each input port are the

inputs to the control section of 'M2':

1) LAST· this is the 'lasLbyte_ot_packet' signal.

2) REQ ·this is the request signal of the input port.

3) ACK · this is the acknowledge signal of the input port.

The multiplexor has two inputs from the control section, these are:

1) 01 - when this signal is true, input port "IN1" is connected to the output port of the multiplexor.

2) 02- when this signal is true, input port "IN2" is connected to the output port of the multiplexor.

Figure 5.6c gives the design of the multiplexor for all signals except the acknowledge signal,

while Figure 5.6d gives the design for the acknowledge signal. The designs are different since the

direction of the acknowledge signal is opposite to the direction of all other signals in a channel.

The component count for the data flow section of 'M2' is given below:

1) 22 'and' gates.

2) 10 'or' gates.

The block diagram of the control section of 'M2' is given in Figure 5.7a. The state transition

diagram for the control section of 'M2' is given in Figure 5.8, and its realization in Figure 5.9.

When no packet is being transmitted from either input port 'M2' is in the idle state "a." It must

remain in this state until the address byte of a packet gets defined at one of the two input ports.

This is signaled by the request signal changing to "1" at an input port. The arbiter 'A' arbitrates

the requests from_the two input ports and guarantees that the two outputs "R1a" and "R2a" are

never true simultaneously. Figure 5.8 shows that 'M2' remains in the idle state until one of the two

arbitrated request signals "R1a" or "R2a" changes to "1." When a byte becomes defined at an

input port there are four important cases depending on which of the two signals "R1a" or "R2a"

changed to "1" and the value of the "lasLbyte_of_packet" signal of the selected input. For

example, if "R1a" changed to "1" and the "lasLbyte_of_packet" signal was true 'M2' would enter

state "b." In this case the byte from the "IN1" port is the first and last byte of the packet. The

"01" input to the multiplexor is set in state "b" so that the packet byte at "IN1" is output to the

IN1

IN2

IN1a

01

IN2a

IN1

IN2

.. ;' M2

-77-

....___.,,.___. .. __ OUT

Figure 5.6a Terminal structure of M2

R L A
E A C
Q S K
1 T 1 R L A

E AC
Q SK
2 T 2

2

01

Multi
plexor

Direction

02

Figure 5.6b Data flow section of M2

•

ACK OUT

OUT a

02 _____ __,

OUT

ACK1

ACK2

01 02

Figure 5.6c Design of the multiplexor
for all signals except the acknowledge
signal

Figure 5.6d Design of the multiplexor
for the acknowledge signal

ACK1

LAST1

REQ1

REQ2

LAST2

ACK2

1
~

--;>'

' 2

1'

A
2

-78-

--:;..

--:;..

--:;..
c

R1a 0
7 N

T
R2a R --"' ,,.

0
L

7 ,,.

-7

--:;..

Figure 5.7a Block diagram of the control section of M2

D---f""-...
+ -

2

Figure 5.7b Design of the arbiter 'A'

01

-- 02

1'

2'

R1'A 1'

R2'A2 .

Abbreviations •

Signal notation ·

Diagram notation •

State Definition -

-79-

R1l 1 d 01
R1l1'

i'

•
01 R1'A1'

b

+ "' R1al1

R1al1'

a
R2al2'

"' +
02 R2al2 R2'A2'

e

+

"' R2l2 02 R2l2'
g

R1 · is the REQ1 (request1) signal.
R2 · is the REQ2 (request2) signal.
A1 - is the ACK1 (acknowledge1) signal.
A2 · is the ACK2 (acknowledge2) signal.

t

01
c

"'

"'
02

f

"'

L 1 • is the LAST1 (last bYte of packet 1) signal.

L2 · is the LAST2 (last byte of packet 2) signai.

R1' · stands for signal "R1" inverted, etc ..
R1 a, R2a · are the signals at the output of the arbiter.

States are in the center of the boxes in lower case.

Outputs that are "1 " are in the top right corner of the states in upper case.

"a" . Idle, no packet is being transmitted from either input.

"b" - The last byte of a packet is being output from IN1.

"c" • A byte of a packet is being output from IN1. The current byte
is not the last byte of the packet.

"d" · A byte has been transmitted from IN1. More bytes remain to
be transmitted.

"e" · The lest byte of a packet is being output from IN2.

"f" - A byte of a packer is being output from IN2. The current byte
is not the last byte of the packet.

"g" - A byte has been transmitted from IN2. More bytes remain to
be transmitted.

Figure 5.8 State transition diagram for the control section of M2

------ --------------- ----- -~---- ---

I

-80-

Inputs
Encoding State

0 0 0 a
Present R R Next 0 0 1 b

State ALR1 ALR2 State Outputs
0 1 0 c

1 2 3 1 1 1 a 2 2 2 a 1 2 3 01 02 0 1 1 d

000 - 0 - 1 - - .. - 0 1 0 0 0 1 0 0 e

000 - 1 - 1 - - - - 0 0 1 0 0 1 0 1 f

0 0 0 - - - - . 0 . 1 1 0 1 0 0 1 1 0 g

000 - .. - - - 1 . 1 1 0 0 0 0

0 0 1 •. 1 . - - - - 0 0 1 1 0
0 0 1 1 - . - - - - - 0 0 1 1 0
0 0 1 0. 0. .. - - - 000 1 0

0 1 0 - . 1 . - - - - 0 1 0 1 0
0 1 0 1 .. - - - - - 0 1 0 1 0
0 1 0 0. 0. .. - .. - 0 1 1 1 0

0 1 1 . - 0. - - - .. 0 1 1 1 0
0 1 1 - 0 1 . - - 0 1 0 1 0
0 1 1 - 1 1 - 0 0 1 1 0

1 0 0 1 . 1 0 0 0 1
1 0 0 - - - - 1 - .. 1 0 0 0 1
1 0 0 - - 0. 0. 000 0 1

1 0 1 - - . 1 . 1 0 1 0 1
1 0 1 - 1 - .. 1 0 1 0 1
1 0 1 0 - 0. 1 1 0 0 1

1 1 0 .. - .. - - - 0. 1 1 0 0 1
1 1 0 - - - - - 0 1 . 1 0 1 0 1
1 1 0 .. - - 1 1 . 1 0 0 0 1

n+1
1 = 1(2+3+A2+R2) + 1'2'3'R2a

n+1
2 = 2(1'23L1R1+123'R2)' + 12'3A2'R2' + 1'2'3'L1'R1a

n+1
3 = 3(1'2'3A1'R1' + 1'23L1'R1+12'3A2'R2')' + 1'2'3'(L1R1a+ L2'R2a) + 123'L2'R2 + 1'23'A1'R1'

01 = 1'(2+3)

02 =

Abbreviations ·

Signal notation -

R1 - is the REQ1 (request1) signal.
R2 - is the REQ2 (request2) signal.
A 1 - is the ACK1 (acknowledge1) signal.
A2 - is the ACK2 (acknowledge2) signal.
L1 - is the LAST1 (last byte of packet1) signal.

L2 - is the LAST2 (last byte of packet2) signal.

R1' - stands for signal "R" inverted, etc ..

R1a, R2a · are the signals at the output of the arbiter.

Figure 5.9 State transition table for the control section of M2

-81 -

output port. When the packet byte has been accepted at the output port the acknowledge signal

of the output port should change to "1." The multiplexor will transmit this signal to the

acknowledge signal of the input port "IN1." The request signal of the input port 11 1N1 11 should next

reset which will cause the request signal of the output port to change to "O." The acknowledge

signal of the output port should now reset followed by the resetting of the acknowledge signal of

the input port "IN1. 11 When both the acknowledge and request signals of the input port 11 1N1 11

have reset it indicates that the transmission of the packet byte through 'M2' is complete. Since

this was the first and last byte of the packet 'M2' should return to the idle state and reset the 1101 11

input to the multiplexor.

The behavior of 'M2' for the other cases is similar except that it must not return to the idle

state after transmitting the first byte of a packet if the first byte is not also the last byte of the

packet. For example, if a byte of a packet (that is not the last byte) has been transmitted from the

input port "IN1 11 'M2' enters state 11d." The important difference between the states "a" and 11d" is

that the "01 11 input to the multiplexor is 11 1" in state "d." The input port "IN1" is thus connected

to the output port of the multiplexor for the transmission of the entire packet.

It is important to note that in the idle state 'M2' checks the "R1 a" and "R2a" signals to see if

the address byte of a packet is defined at an input port. However, for all subsequent bytes of a

packet (if there are any) 'M2' checks the request signal of the input port. If the second, or later,

byte of a packet is being transmitted from an input port the output port must already be granted to

this input port and arbitration is not required. Also, the request signal of the blocked input can

pass through to the output of the arbiter. If we used the request signals at the output of the arbiter

to define the availability of a packet byte, for the second or later bytes of a packet, a deadlock

could occur.

The component count for the control section of 'M2' is given below:

1) 11 inverters.

2) 47 'and' gates.

3) 14 'or' gates.

4) 3 flip-flops.

5) 2 'nand' gates.

6) 2 comparators.

- 82 -

5.1.3 Component Count for the Synchronous Design

The component count for the synchronous design is twice the component count of M1 and

M2. This is given below:

1) 40 inverters.

2) 262 'and' gates.

3) 4 'nand' gates.

4) 74 'or' gates

5) 12 flip-flops.

6) 4 comparators.

5.2 Self-Timed Design of the 2X2 Router

This section will present a design of the 2X2 router using the methodology proposed in this

thesis. The input and output ports of the router include the signals mentioned earlier in this

chapter. The input/output port signals of the self-timed design differ from those of the

synchronous design since the data signals are encoded using the dual rail signalling protocol and

the explicit single rail request signal is not transmitted.

The block diagram of the router is given in Figure 5.10. The design of the router is specified

in terms of three machines 'M1 ,' 'C1 ,'and 'M2.' 'M1' outputs every byte of a packet at its input port

to its output port with two additional signals "F" and "D." "F" is the first byte of packet signal and

"D" is the direction of packet signal. 'M1' is in the reset state when no packet is being transmitted

to the output port. When the address byte of a packet becomes defined at an input port 'M1' must

transmit it to the output port with the signal "F" set to "1" and the signal "D" set the value of the

least significant data signal of the packet byte. The value of the direction signal must be saved so

that the signal "D_" is set to the correct value for the transmission of the remaining bytes of the

packet. The value of the signal "F" is set to "O" for the transmission of all subsequent bytes of the

packet. When the "lasLbyte_of_packet" signal of the input port becomes "1" it indicates that

'M 1' should return to the reset state after transmitting the current byte of the packet.

. 83-

The machine 'C1' outputs a byte from the input port to the output -port O if the direction

signal "D" is false, and otherwise outputs the input byte to the output port 1. The direction signal

"D" is only used to route each byte of a packet to the appropriate output and is not transmitted at

either output port. The signals at the output ports of 'C1' are therefore the data signals of the

packet byte at the input port of the router and the first byte of packet signal "F."

Machine 'M2' is a packet multiplexor, where the request to output a packet can come fro"1

both inputs concurrently. 'M2' is in the idle state when no packet is being transmitted from either

input port. When an input port becomes defined 'M2' checks to see if it is the first byte of a packet

by examining the.signal "F." If the current byte is the first byte of the packet it must arbitrate for

the resource. If arbitration is successful all bytes of the packet from this input port are transmitted

to the output port. If arbitration is unsuccessful the input port is blocked until all bytes of the

packet from the other input are transmitted. The signal "F" is generated within the router to aid

'M2' in performing its task, but this signal is not transmitted to the output port. The signals at the

output port of 'M2' (and hence the router) are therefore identical to those at the input ports of the

router.

5.2.1 Detailed Design of M1

'M1' is a self-timed finite state machine whose terminal structure and block diagram are

given in Figures 5.11 a,b. 'User1' is a 'user' module that defines the next state and output as a

combinatorial function of the inputs and the present state of the machine. The state variables of

the machine are stored in the feedback registers 'Reg' which consist of three 'register' modules

connected in series. 'J' is a 'join' module that is used to synchronize the inputs and the present

state of the machine, and 'F' is a 'fork' module that forwards the next state variables to the

feedback registers and the outputs to the output port.

The state transition diagram of 'M 1' is given in Figure 5.12, and its realization in Figure 5.13.

When no packet is being transmitted 'M1' is in the idle state "a." It must remain in this state until

the address byte of a packet is defined at the input port. Since 'M1' is a self-timed finite state

machine it will remain in the idle state until the data signals of the input port become defined.

When the input port becomes defined 'M1' sets the first byte of packet signal "F" to "1" and the

direction signal "D" to the value of the least significant data signal of the packet byte. After

transmitting the address byte of the packet with the "F" and "D" signals 'M1' must enter a new

-84-

0 ... 1 ,..
L _.. M1 J C1 M2 L -•

I --,. I ... 1 _.. _L
I ,..

--,.
Output 1

Input 1

0 ~ I ,..,
L_ M1 . J ... C1 M2 _1_...._

I ,.. 1
...

-""- I Output2 -.. 7"
In ut2 p

Figure 5.1 O Block Diagram of the Self-Timed Router

.,.,,... __ _.I M1 1,/-"41 .. --au-tp-ut

Input · ·

Figure 5.11 a Terminal Structure of M1

I REG .L
7 I

p resent State Next State

~
_ ...

USER1 F
7'

J L... _L_ _.. ,--,. --,.
I , ' • ""T -,,..

Input Output

Figure 5.11 b Block Diagram of M1

c

Abbreviations -

Signal notation

Diagram notation

State definition

-85-

L
-.;;;-

dl' L
-<E- ~

a b
..,

7 --,.

L d'L'

"d" - This is the direction signal of the packet. It is defined

by the least sign1ficmt data signal of the address byte.

"L" This is the last byte of packer signal.

L' stands for signal "L" ir:verted.

States are in the center of ihe boxes in lower case.

"a" Idle, no packet is being trnnsmitted.

"b" A byte of the packet is being output to output port1 of the router.

"c" A byte of the packet is being output to output port2 of the router.

Figure 5.12 State transition diagram of M1

Present Next Encoding
State Inputs State Outputs
1 2 d L 1 2 F D 0 0

0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1

0 0 1 1 0 0 1 1

n + 1
0 1 0 0 1 0 0 1 1 L'
0 1 1 0 0 0 0 n+1

2 2L'

1 0 0 1 0 0 1 F 1'2'

1 0 1 0 0 0 1 D 1 +

Figure 5.13 State transition table of M1

State

a
b
c

+ 2'L'd

+ 1 'L'd'

2'd

-86-

state that depends on the value of the "lasLbyte_of_packet 11 signal and the direction of packet

signal. For example, if the "lasLbyte_of_packet" signal is true, 'M1' should return to the idle state

since the next byte will be the address byte of a new packet. However, if the first byte is not the

last byte of the packet 'M1' must remember the value of the direction of packet signal. For

example, if the direction of packet signal is true 'M1' will enter state "c. 11 For the transmission of

the remaining bytes of the packet 'M1' will set the signal 11 F" to 11 0 11 and the signal "D" to "1. 11 If in

transmitting the remaining bytes of the packet if the 11 lasLbyte_of_packet 11 signal is "011 'M1' will

remain in the state "c" since more bytes of the packet remain to be output. However, if the

11 lasLbyte_of_packet" is "1," 'M1' must return to the idle state. The behavior of 'M1' is similar

when the first byte is not the last byte of the packet and the direction signal is false.

The component count for 'M1' is given below. All component counts for the self-timed

design are obtained from the design of the modules given in Chapters 3 and 4.

1} 42 'and' gates.

2} 64 'or' gates.

3} 15 inverters.

4} 3 'exclusive-or' gate.

5} 54 'C' gates.

5.2.2 Detailed Design of C1

'C1' is a conditional machine whose terminal structure and block diagram are given in

Figures 5.14a,b. 'Ca' is a 'conditional' module that routes all the signals at the input port, except

the direction of packet signal 11 D, 11 to one of the two output ports. 'P1' is the identity 'predicate'

module whose input port data signals are connected to the direction of packet signal "D." If the

input port becomes defined and the direction of packet signal is 11 0" is false, all signals of the

input port, except "D, 11 are output to the output port "OutputO." Similarly, if the direction of

packet signal 11 D" is true, all signals of the input port, except 11 0, 11 are output to the output port

11 0utput1. 11 The component count for 'C1' is given below:

1} 3 'or' gates.

2} 40 'and' gates.

-87-

OutputO

Input
Output1

Figure 5.14a Terminal Structure of C1

P1

OutputO

Input Ca
I> Output1

Figure 5. -14b Block Diagram of C1

- 88-

5.2.3 Detailed Design of M2

'M2' is a packet multiplexor whose terminal structure and block diagram are given in

Figures 5.15a,b. Every byte of a packet at an input port is separated into a control section and a

data section. Each byte of a packet can only be output after its associated control signal has

successfully arbitrated for the resource. If the control signal of one input port successfully

arbitrates for the resource then the control signal of the other input port is blocked until all bytes

of the selected port are transmitted. For every byte of a packet from the selected input port the

control signal of the other input port is blocked if the current byte is not the last byte of the

packet, and unblocked if the current byte is the last byte of the packet.

'F' is a 'fork' module that separates the signals of an input port into the control and data

sections. The first byte of packet signal "F" and the "lasLbyte_oLpacket" signal of the input port

form the control section and are output at port "1, 11 while the rest signals of the input port form

the data section and are output at port "2." 'J' is a 'join' module that allows a byte of a packet to

be output only after its associated control signal has successfully arbitrated for the resource. The

"2" input port of the module receives the "lasLbyte_of_packet" signal of the packet byte after it

has successfully arbitrated for the resource. Although the first byte of packet signal "F" is a

control signal it is not output since it is not part of the packet byte. 'U2' is a 'union' module that

outputs the bytes of the selected packet to the output port of 'M2.'

'C2' is a conditional machine whose terminal structure and block diagram are given in

Figures 5.16a,b. The signals at the input port of 'C2' are the "lasLbyte_of_packet" signal and the

first byte of packet signal "F." 'Cb' is a conditional module that conditionally transmits the

"lasLbyte_oLpacket 11 signal of the input port to one of the two output ports. 'P2' is the identity

predicate module whose input port data signals are connected to the first byte of packet signal

"F. 11 The "lasLbyte_of_packet" signal is thus transmitted to the output port "OutputO" if "F" is

false, and otherwise transmitted to the output port "Output1."

If the current byte is the first byte of the packet then the associated control signal must first

arbitrate for the resource. This is accomplished by transmitting the 11lasLbyte_of_packet" signal

through the 'arbitration' module 'A' and the 'switch' module 'S.' The 'arbitration' module·

guarantees that if the control signals of the first byte of both input packets are arbitrating for the

resource only one will pass through the module. The 'switch' module 'S' is used to block the

IN1
2

L,,. F , ,..

1 ;~

F'

C2 F ,_ ,,..

F
,~

-rr

C2
F'

~ ~1
IN2
_u.. F

2 , ..

-89-

IN1

IN2 ---:~: :---11 M21 i--_..,......;' i.- OUT

Figure 5.15a Terminal Structure of M2

1
_L _.._

7 -,.

J
2
~

L.._

' ...
U1 I--

Input Output
I .._ .LJ.. ,.. ...

s
Control Control

.L .. .,.. ,,..
Input Output

A

Control Control
I.._ .LJ.. -,. -' ...

Input s Output

1 .. _u..
-,. 7--..-
Input Output U1

..La. ,,..

2
~

J
1

_L ..., ,..

Figure 5.15b Block Diagram of M2

,~ ...,-,.

U2 0
L..

UT

, ..,....

_L ~
T.,..

-90-

OutputO

Input

Outpul1

Figure 5. ;5a Terminal Structure of C2

P2

·~
-1-

'1
f

f-·-~ It> - OutputO

- Cb
t

L-""'
Input -~-

Output1

Figure 5. -16b Block Diagram of C2

. 91 .

control signal of an input if the resource is already in use by the other input. The data to be

switched is input/output at the input and output ports respectively. Initially the state of both

'switch' modules is "on" so that the "lasLbyte_of_packet" signal at the output of the 'arbitration'

module will also pass through its 'switch' module. Next, the switch for the other input must be

turned off if this is not the last byte of the packet, and otherwise the switch for the other input

must be turned on if this is the last byte of the packet. This is accomplished by transmitting the

"lasLbyte_ot_packet" signal through the 'union' module 'U1' to the control input port of the

'switch' module for the other input. The control signal passes through to the control output port

after setting the state of the 'switch' module, and joins the corresponding data signals at its 'join'

module "J."

If the current byte is not the first byte of the packet then the resource must already be

granted to this input. The behavior is similar to the case for the first byte of the packet except that

it is not necessary to arbitrate for the resource. In this case the "lasLbyte_of_packet" signal is

transmitted from the the "F"' output port of 'C2' to the input of the 'union' module "U1" directly,

thus bypassing the 'arbitration' module and the 'switch' module.

The component count for 'M2' is twice the component count of 'F,' 'C2,' 'S,' 'U1 ,' 'J' and the

component count of 'A' and 'U2.' This is given below:

1) 4 inverters.

2) 90 'or' gates.

3) 102 'and' gates.

4) 16 'nand' gates.

5) 16 comparators.

6) 8 'C' gates.

The component count for the entire router is twice the component count of 'M1 ,' 'C1' and

'M2.' This is given below:

1) 38 inverters.

2) 314 'or' gates.

3) 368 'and' gates.

4) 32 'nand' gates.

5) 32 comparators.

6) 124 'C' gates.

-------- -----· ----

. 92.

7) 6 'exclusive-or' gates.

5.3 Comparison of the Design Methodologies

This section will compare the design of the synchronous and self-timed routers. This is not meant

to be an absolute comparison of the two design methodologies, but merely an indication of the

benefits and drawbacks of each. The issues considered in this comparison are: logica!

complexity, performance, wiring complexity, ease of design and verification.

From the previous sections it is obvious that the logical complexity of the self-timed design is

greater than that ·of the synchronous design. This is a first order comparison of the two designs.

All component counts for the 'and' and 'or' gates were given in terms of dual input gates. Also, n~

attempt had been made to optimize the design for a particular integrated circuit technology. For

example, in nMOS VLSI, one can take advantage of pass transistors to reduce the complexity of a

design.

One measure of the performance of a system can be based on the number of logic gates

between the input and output of the system. This model assumes that the interconnect delays are

negligible in comparison to the delays of the logic elements. For the synchronous system this also

assumes that all delays between clocked storage elements are equal to the clock period. The

clock period is thus optimized so that that it does not add to the delay of the system in any way.

For the self-timed router, a packet at an input port must propagate through 78 levels of logic

before it can appear at an output. The synchronous router, however, only requires 29 levels of

logic from an input port to an output port. There may be additional delays from an input port to an

output port of the synchronous or self-timed routers if there are any arbitration delays.

Synchronous systems can be expected to have a higher performance than self-timed systems

when the size of the system is so small that the interconnect delays are negligible in comparison

to the delays of the logic elements and it is possible to optimize the clock period so that it does not

add to the delay of the system. As mentioned in Chapter1, this will not be a valid assumption for

VLSI circuits in the future. The communication delays will be more troublesome for the

synchronous router since it lacks locality of communication. The self-timed router, on the other

hand, has locality of communication as information transfer is only between adjacent modules. If

the router is to be a part of a larger system incorporated on an entire VLSI chip, the self-timed

router can be expected to have a higher performance than the synchronous router.

. 93.

The self-timed router requires approximately twice the number of wires compared to the

synchronous router. This is due to the dual-rail signaling convention used in the self-timed design

methodology, and the single-rail signaling convention used in the synchronous design

methodology. The wires lengths of the two routers are comparable, except for the clock signal of

the synchronous router which is global to the system.

The design of the synchronous router involves the design of the components of the router,

their connection, and the verification of timing constraints global to the system. The design of the

self-timed router is however independent of any timing considerations (given that the set of

self-timed modules exist). This is analogous to designing a conventional computer program; one

is concerned with the textual content of the program and not the speed with which the various

instructions are executed. The design and verification of the self-timed router is much simpler

than that of the synchronous router. Though the logical complexity of the self-timed router is

greater, its conceptual complexity is not. For example, the machines 'M1 ,' and 'M2' of the

synchronous router have many more states than the design of the machine 'M1' of the self-timed

router. The task of the designer of the synchronous router includes managing the communication

protocol at the inputs and outputs of every machine of the system. In a self-timed system,

however, this is all automated since the channel communication ~rotocol is incorporated into the

design of the modules.

The self-timed router is definitely easier to design and debug. It will require more logic

elements than the synchronous router, but can be expected to have a higher performance when

incorporated in large VLSI systems.

. 94.

6. Summary and Conclusion

This thesis has presented a design methodology for self-timed systems which should be

extremely attractive for implementing systems in VLSI. Self-timed systems are characterized by

the absence of any timing reference to which all operations are synchronized. This is in contrast

to synchronous systems where all operations are synchronized to the global system clock.

In the proposed methodology, a self-timed system is a legal interconnection of self-timed

modules. Self-timed modules thus form the atomic building blocks of every self-timed system. A

self -timed module ,in general, has a set of input and output ports through which it communicates

with the other modules of the system using the asynchronous reset signaling protocol. The wires

that connect the input port of one module to the output port of another module are called

channels. The methodology does not separate the interconnection of modules into a data flow

and control section; the signals of a channel include both control and data information.

There are 12 different module types in the proposed design methodology whose behavior

has been given in Chapter2. The choice of modules has been influenced by famifiar programming

constructs such as iterations, conditionals and by constructs that allow for parallelism and

synchronization, such as forking and joining. Non-determinacy can be introduced into a

self-timed system by incorporating the non-deterministic 'arbitration' and 'union' modules, which

in addition can be used to share hardware resources.

The thesis presents a template for the design of the modules in Chapters 3 and 4. Using

these templates it is possible to realize an arbitrary module of a given type. The designs also

specify the timing requirements that must be maintained within an arbitrary module of a given

type to ensure that its behavior is independent of the channel delays at its input and output ports.

The behavior of a self-timed system is guaranteed to be independent of the delays of the

channels connecting the modules by ensuring that the signals at the output of each module

change only after all signals internal to the module have stabilized. The only exceptions to this

are the cases where a self-timed system has the potential of deadlocking, or when the system is

non-determinate. If the system has the potential of deadlocking, its behavior can be influenced to

either cause or prevent deadlocks by choosing appropriate values for the channel delays. While if

a system is non-determinate, its behavior can be influenced by the channel delays in a path

.95.

leading to an input port of a non-determinate 'arbitration' or 'union' module.

Chapter 5 contrasted the design of a 2X2 router using the design methodology proposed in

this thesis and a synchronous methodology. This design exercise illustrated that the logical

complexity of the self-timed design was approximately two and a half times that of the

synchronous design, although the self-timed design was conceptually simpler since it dealt with

higher level constructs. This design example was for a relatively small system, and it is hard to

appreciate the advantages of the self -timed methodology for such a small design.

For the design of complex systems in VLSI with 100,000 or more logic devices the self-timed

methodology will be more attractive due to its relative ease of design and higher perfOrmance.

Systems of this magnitude can be expected to have a higher performance when designed using

the self-timed methodology compared to a synchronous methodology since their behavior is not

limited by the worst case delays of the system and it is possible to take advantage of locality of

communication. The main disadvantages of synchronous VLSI systems will be their

communication costs and the prohibitive task of maintaining global timing constraints. However,

there are certain specialized synchronous systems where the self-timed methodology would not

be appropriate due to its logical complexity. These include memories, pipelined architectures

and other special purpose architectures exhibiting locality of communication and the absence of

global busses.

6.1 Areas for Further Research

The module interconnection rules of the proposed self-timed design methodology do not

guarantee the absence of deadlocks, they merely prevent the obvious ones from occurring. Due

· to the extremely undesirable nature of this problem it would be appropriate to come up with a

theory of deadlock avoidance using the proposed module types. Hopefully this theory will lead to

improved module interconnection rules that will guarantee the absence of deadlocks in a

self -timed system. If this is not possible, the theory should at least provide an algorithm that will

identify all the cases where the possibility of deadlocks exists in a self-timed system.

. 96.

The existing . methodology does not aid in the hierarchical design of a system; this is

essentially the task of the designer. It would be extremely attractive to incorporate this design

methodology into a top down design environment, such as the AOL (architectural design

language) proposed by Leung [7]. At the lowest level of the design process, a textual description

of the various modules could be automatically translated into a layout using a simple macro type

expansion.

-

Another important question of interest is to analyze the various module types and to see if

they are too primitive or too complex from the standpoints of performance, logical complexity,

deadlock avoidance, ease of design etc. At one extreme it is possible to make the self-timed

modules as primitive as the logical 'and' and 'or' gates, but it is doubtful if this would be of
: }

practical value. It is easier to optimize a design if the constructs are more primitive, but the design

effort must be greater. If the modules are too complex it will not be possible to optimize the

design, and the methodology must also provide for many module types since each module will

lack universal applicability.

One of the strongest criticisms from present designers will probably be regarding the

absence of the familiar constructs such as PLAs and memories. The methodology presented for

realization of dual-rail combinatorial circuits in Chapter 4, though functionally correct, Is not

satisfactory from a complexity viewpoint. It would be appropriate to come up with a more efficient

design methodology for realizing dual rail combinatorial circuits based on the familiar concepts

of PLAs and memories which are omnipresent in most synchronous systems.

. 97.

Bibliography

[1] Armstrong, D.B., Arthur, D.F. and Menon, P.R. "Design of asynchronous circuits assuming
unbounded gate delays," IEEE Transactions on Comouters 18, 12 (December 1969),
1110-1120.

[2] Chaney, T.J. and Mulnar, C.E. "Anomalous behavior of synchronizer and arbiter circuits,"
IEEE Transactions on Computers 22, 4 (April 1973), 421-422.

[3] Chaney, T.J., Ornstein, S.M. and Littlefield, W.M. "Beware the synchronizer," COMPCON-72
IEEE Computer Society Conference, San Francisco, California, September 1972, 317-340.

[4] Clark, B. "A speed independent implementation of data flow schemas," Computation
Structures Group Memo 82, Laboratory for Computer Science, MIT, Cambridge, Ma., July
1972.

[5] Conway, L. and Mead, C. Introduction to VLSI Svstems, Reading, Ma., Addison-Wesley,
1980.

[6] Hon, R.W. "Implementing VLSI systems in a research environment," Proceedings of the
Caltech Conference on VLSI, January 1979, 139-145.

[7] Leung, C.K. "AOL: An architecture description language for packet communicating
systems," Computation Structures Group Memo 185, Laboratory for Computer Science,
MIT, Cambridge, Ma., Oct. 1979.

[8] Misunas, D.P. "Petri nets and speed independent design," Communications of the ACM 16,
8 (August 1973), 474-481.

[9] Moore, G.E. "Are we really ready for VLSI," Proceedings of the Caltech Conference on VLSI,
January 1979, 3-14.

[1 O] Mohsen, A. "Device and circuit design for VLSI," Proceedings of the Caltech Conference on
VLSI, January 1979, 31-54.

[11] Patil, S.S. "An asynchronous logic array," Technical Memo 62, Laboratory for Computer
Science, MIT, Cambridge, Ma., May 1975.

[12] Peterson, J.L. "Petri nets," ACM Computing Survevs 9, 3 (September 1977), 223-252.

[13] Redford, J.L. "A design for a routing module," Computation Structures Note 39, Laboratory
for Computer Science, MIT, Cambridge, Ma., February 1979.

[14] Seitz, C.L. "Self timed VLSI systems," Proceedings of the Caltech Conference on YLSI,
January 1979, 345-355.

[15] Shannon, C.E. "Symbolic analysis of relay and switching circuits," Trans. of AIEE 57 (1938),
713-723.

-98-

[16] Course Notes on 6.032 Cornputc:i.tion Structures, MIT, Department of Electrical Engineering
and Computer Science, Cambridge, Ma., 1979.

[17] Course Notes 011 Cs284 Self-timed Systems, Caltech, Department of Computer Science,
Pasadena, California, 1978.

