
Ap11Ikation of Data Flow Architecture to

Computer Mu:sk Synthesis

by

Carol Andrea Cesari

© 1981 by the Massachusetts Institute ofTcchnology

February 1981

This work was supported in part by the N:itional Science Foundation under the research grant

MCS-7915255

ivla~s;1cl1u sc tts ln:;titute ofTcchnology
I _ahoralory l(ir Computer Science

C1111hridgc, :Vii\ 02139

This empty page was substih1ted for a
blank page in the original document.

Application of Data Flow Architecture to

Computer Music Synthesis

by

Carol Andrea Cesari

Submitted to the Department on Electrical Engineering and Computer Science
on February 2, 1981 in partial fulfillment of the requirements for

the Degrees of Bachelor of Science and Master of Science

Abstract

A computer music synthesis system is the most flexible of synthesis systems It offers a composer
extensive control over the sound of his piece. A user of such a system describes his composition in
some synthesis language. The computer uses this description to calculate samples of a voltage
wavefonn that can be fed to DI A converters at a specified sampling rate. The D/ As' outputs are in
turn fed to loudspeakers that produce the sound of the user's composition. Real time performance is
unattainable on existing computer synthesis systems due to the sequential nature of conventional
computers. Unless the parallelism that is present in the sample calculation process is exploited, real
time performance will remain unobtainable. This thesis presents a proposed computer synthesis
system that includes a data flow machine, a computer whose architecture is highly parallel. The
Music-11 synthesis system at MIT was used as a model in its design. An analysis of the algorithms
used in the sample conversion process and how it would run on the data flow machine is presented.
An example of how a compostion would be described in a synthesis language and how it would run
on the proposed system is given.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Electrical Engineering and Computer Science

Keywords: sound synthesis, voltage waveform, hardware synthesizers,
real-time performance, orchestra file, score file, MUSIC-11,
data flow, VAL, streams, pipelining.

This empty page was substih1ted for a
blank page in the original document.

- 3 -

Acknowledgments

I would like to thank Prof. ['Cnnis for the support, help and above all tile encouragement in the

preparation of this thesis. Special thanks go to the members of the Computation Structures Group

for being near whenever a problem needed discussion. I express my gratitude to Barry Vercoe and

the members of the Experimental Music Studio for educating me in the ways of music synthesis. I

offer thanks to my family whose love has sustained me throughout my life and special thanks to my

husband whose love will always nourish me and give me hope.

This work was supported in part by the National Science Foundation under the research grants

MCS-7915255

This empty page was substih1ted for a
blank page in the original document.

·4·

CONTENTS

1. IN"l"ltODUCI'ION ••••••·•··•·········••·•·••·•·•·•··•·····•·•·•·•··•••·••··•••·•••••········•···•·••••••··········· 6

1.1 Hardware Synthesizers .. 7
1.2 Computer Synthesis Systems .. 9
1.3 Intent of Thesis .. 11
1.4 Thesis Outline .. 11

2. S''N""fHESIS TJ~CHNJQUES ••••••••.•••.•••••.•..•.•••••.••••••••.•.•••.••.••••••••.•.•.•••••.•..•.••..•.. 13

2.1 Additive Synthesis ... 13

3. MUSIC· 11 SYN"I'l-I~IS LANGUAGE••.................•.................•..•........... 16

3.1 Orchestra File ... 17
3.2 Score File .. 21
3.3 Additional Orchestra File Infonnation .. 26
3.4 Pcrfonnance ... 30

4. DA TA FI,OW CONCEPIB•.•.••..•.•..•...•..•..•••••••••........•••••••••...•.........•••••.••••....•. 32

4.1 Program Graphs ... 32
4.2 Machine Architecture .. 36
4.3 VAL .. ~ .. 42
4.4 Translation of VAL Code to Flow Graphs .. 44
4.5 Pipelined Flow Graphs ... 48
4.6 Streams .. 52

5. DATA FLOW IMPLEMENTATION OF MUSIC SYNTHESIS 60

5.1 Physical Layout of the Music·dfSystem ... 60
5.2 Music·dfLanguage _, ... : 62
5.3 Orchestra File Conversion .. 66
5.4 Signal Functions .. 84
5.5 Function Tables ... 108
5.6 Sinusoidal Sum Function Table ... 108

- 5 -

6. EX.\l\1PLE AND ('ONCLUSION ... 115

6.1 Exa1nplc .. 115
6.2 Conclusion .. 126
6.3 Suggestions For Future Research .. 127

-6-

1. INTROI>UCrION

For several decades, sound synthesis has been used in the perfonnance of music. Though the

sound of traditional instruments can be mimicked using sound synthesis, its major attraction for

many composers is the opportunity it provides to create totally new an unconventional sound.

Sound synthesis systems arc the means to employ the technique of sound synthesis. Two basic

types of sound synthesis arc hardware synthesizers and computer synthesis systems. Both follow the

basic design shown in Fig. 1.1. They all accept a set of controls from a user as input and produce a

voltage wavefonn to be fed to on.! or more loudspeakers. The cones in the loudspeakers vibrate

according to the voltage waveform applied to their terminals. These vibrati.)ns produce a pressure

wavefonn that is perceived as sound. The difference between the two types of systems is the

implementation of the controls and the manner in which the voltage waveform is produced.

1.1 Hardware Synthesizers

Hardware synthesizers were the first synthesis systems to be built and are still in heavy use today.

The major portion of their makeup is signal generators and modifiers that can be patched (cascaded)

together to produce a voltage waveform. Among the list of components used are oscillators, envelope

generators, mixers (signal adders) and filters. Suppose a composer wishes to produce the waveform:

X(t) = A1(t)sinwt + A2(t)sin2wt

Then the components of the synthesizer would be connected as shown in Fig. 1.2. In this example,

the controls that the user must provide arc the amplitude (in units of voltage) to the envelope

generators and fundamental frequency to the oscillators.

Originally the connections made between components were made through cords with plugs.

But as synthesizer technology has progressed, a simple flick of the switch can connect two

components in most synthesizers. The input to a component may be the output of another

input
controls

•

•

•

-7-

voltage

waveform

generator

SYNTHESIS SYSTEM

Fig.1.1

.-8-

envelope A{t)
amp1 _ ... _ ..

-,
generator

,,
sine wave

_,,., osciHator
--,.

~ x2 ,,
+

',

A~t)
~

envelope
~

- ...
generator

-,.
sine wave

amp2

... oscillator
~

INSTRUMENT BLOCK DIAGRAM FOR A

HARDWARE SYNTHESIZER

Fig.1.2

- 9 -

component. It may also be a knob on the component that can be put at a constant setting or changed

dynamically during perfonnancc by a human hand. Keyboards arc generally used to control

frequency (pitch). For example, in Fig. 1.2, the performer might input w through a keyboard with

one hand and dynamically adjust the amplitude input to the envelope generators by turning a knob

with the other hand: ll1e duration of the note would equal the time that the key is depressed.

It is common practice for a perfonner to decide what kind of sound he wishes to produce, make

the necessary connections and then play the instrument he has created by t sing the keyboard and

manipulating the switches or knobs.

lbe major advantage of a synthesizer is that performance takes place in real-time due to the

nature of the hardware components. 'Ille limitations however ar~ apparent. If the performer wishes

to dynamically change any other characteristics of his sound besides pitch, he must use knobs and

switches. Since man has only two hands this can be difficult at times.

1.2 Computer Synthesis Systems

Most computer sound synthesis systems are some version of Fig. 1.3. A user enters a

description of his composition in some computer language at the terminal. When he wishes to hear

his composition, the user calls a program that takes his file as input and ou&puts a series of numbers

that correspond to samples of a voltage waveform. Depending on whether the composer wishes

mono, stereo or quadraphonic sound, samples are sent to one, two or four channels. Each channel

contains buffer memory to hold the samples. The buffer contents arc fed at the sampling rate to DI A

converter. The filter smooths the DI A output and produces a continuous waveform. This waveform,

after amplification, drives the loudspeaker to produce the musical sound.

The great advantage of such a system is the extensive control a composer has over the sound his

piece. Details, down to the milisccohd can be specified. Also, sinec signal generators and modifiers

are in the form of coded functions, many instruments of arbitrary complexity can play

control
and

address
c ire uit ry

-10-

buff er i---...-;M

memory

buff er
, memory

buff er
memory

buff er
memory

lowpass
f i tter

lowpass
I i tter

sampling
rate

oscl Hat or

m pl ii ier

amplifier

amplifier

amplifier

COMPUTER. SYNTHESIS SYSTEM

Fig.1.3

/

'
/

'
/

'

. 11-

simultaneously. The major disad\'antage of computer synthesis systems is th<tt they cannot perform

in real time. Jn order to acheive real time performance, one sample of the output wavcfonn must be

computed every 20· 30 microseconds for good quality sound. Even for a simple instrument, real time

performanc:e.is impossible on a synthesis system similar to the one in Fig. 1.3.

1.3 Intent of Thesis

Real time performance is unattainab1e on a synthesis system similar to the one in fig. 1.1

because of the sequential nature of conventional computers. The conversion from the composer's

files to samples of the output wavcfonn is a parallel process. Unless ihc p<irallelism that is inherent in

this conversion is cxp1oited, real time performance is unobtainab1e. A computer whose architecture

is highly parallel must be included in the system. One such computer is a data flow machine.

The purpose of this thesis is to investigate the possibility of a synthesis system that is capable of

real time performance, through the design of a system using a computer whose architecture is based

on data flow principles. The major requirements of such a system arc that the system be easy for a

composer to use and that the synthesis language be a natura1 way of expressing a composition. The

flexibility and freedom of expression that presently exist in sophisticated computer synthesis systems

should not be sacrificed. The Music-11 computer synthesis system at MIT and the Music-ll

synthesis language arc used as models to help incorporate these feature into the proposed system.

1.4 Thesis Outline

Chapter two presents some sound synthesis techniques to give the reader a feeling of some

principles that composer might use in the composition of his piece. Chapter three details the

Music· I I synthesis system and synthesis language. Chapter four explains data flow concepts and the

architecture of the data flow machine that is used in this paper. VAL. a high-level language used in

the expression of algorithms that arc to run on a data flow machine. is presented along with streams. a

- 12 -

data type extension to the language. Chapter the describes the proposed real time computer

-

synthesis system. An example of how the system would operate is presented in chapter six to expose

the advantages and di sad\ antages of the system. Chapter six also draws some conclusions about the

system and suggests further research.

- 13 -

2. S\'NTHEStS T•:CHNIQUFS

Musical sound can be described in terms of its physical attributes or its psychological attributes.

Physical attributes include intensity, complexity (meaning the wave is not just a simple sinusoid but a

sum of sinusoids). absorption and reverberation, resonance and modulation. 111csc attributes can all

be described in terms of the physical properties of the sound wave which arc amplitude, frequency,

period and phase. Psychological attributes include pitch. loudness. timbre, sound location and

rhythm.

There is a direct correspondence between some physical and psychologkal characteristics. For

instance, pitch depends on the fundamental frequency of the sound wave and what we perceive to be

the sound location depends on absorption and reverberation. Counterintuitively, loudness is not a

function of amplitude only but a function of amplitude and frequency.

Synthesis techniques help composers to produce desired psychological sound characteristics by

varying parameters that can be controlled, that is the wave's physical attributes. Synthesis techniques

arc an area of active research. Two of the most commonly used techniques arc additive synthesis and

FM synthesis.

2.1 Additive Synthesis

Additive synthesis is based on the summation of harmonically related sinusoids:

where

M
X(t) = I Ak(t)sin(k.., + 2"Fk(t))t

t=l

X(t) = output waveform as a function of time
.., = fundamental frequency in radians
k = harmonic number
Ak(t) = amplitude of tth harmonic as a function of time

Fk(t) = frequency deviation of the tth harmonic as a function of time

Theoretically, any waveform can be represented and hence any sound can be produced from a sum of

-14-

sinusoids. lbe problem lies in knowing which harmonics are present in a sound and also knowing

their respective amplitudes and frequency deviations. Analysis of many different musical sounds has

been done using filters that extract certain hannonics from a waveform. These studies have provided

a large amount of information about different instrumental sounds. They allow us not only to

reproduce sounds that are sometimes indistinguishable from the original bm open the way to many

new sounds.

'Ille result of most sound analysis is the detection of which harmonics arc present in a particular

sound wave. Thus a big advantage of additive synthesis is that a composer can directly specify the

harmonics in his wareform. The iustmment block diagram in Fig. i.2 is hased on additive synthesis

with M=2.

This popular technique is based on an equation that has been used for many years in radio

transmission. It's use in sound synthesis was first suggested by Chowning(6]. It appears in his article

in this form:

where

Using the identity:

X(t) = A(t)sin(at + I(t)sinpt)

X(t) = output waveform as a function of time
A(t) = amplitude as a function of time
a = carrier frequency in radians/sec
p = modulating frequency in radians/sec
l(t) = modulation index as a function of time

sin(O+asinw) = J0(a)sin0 +
in fin ·

I Jk(a)(sin(O+ kw)+(-l)ksin(O-kw))
k=l

where Jk(a) = kth Bessel function at the point a, the FM equation can be expanded to:

. 15.

X(t) = A(t)tJo(l(t))sincrt

I

+ J l(l(t)Xsin(a + /l)t • sin(a·/J)t)

+J2(1(t))(sin(a + 2/l)t · sin(a-2/0t)

+ ... }

lnis last equation shows that we obtain sinusoids of frequencies a, (a.:tfl), («±2/J). (a±l/l) etc. As

an example, if a = 2w*200 and {J = 2v*100 the rcsulling wavcfonn will have sinusoids of 200,

(100,300). (0,400), (·100.500) etc. Noting that sin(-c.>) = -sin(w). this wavcfonn will appear to have a

fundamental frequency of 100 cps with all harmonics present The ampliu.des of these hannonics

will depend on A(t). thc index of modulation and the Bessel functions.

ll1e FM synthesis technique is attractive because it allows a highly complex wavcfonn to be

expressed in one simple equation. However FM synthesis docs not lend itself to analysis as easily as

additive synthesis and it is diflkult to develop an intuitive feel for the resulting sound. "Ille

modulation index determines the relative strengths of the fundamental and its partials. However if a

composer knows which partials he would like to be present in his waveform, there is no merl1od to

derive an index of modulation that wilt produce the desired waveform~ Thus, most most of the early

studies of FM synthesis treated the FM equation empirically by plugging in different functions for

A(t) and l(t) and listening to the results.

- 16 -

3. MllSIC-11 SYNTHESIS LANGUAGJ.:

The EMS (Experimental Music Studio) facility at MIT uses a set-up much like the synthesis

system shown in Fig. 1.3. Its processor is a DEC PDP-11150 and the sound synthesis language is

called Music· IL

Music-11, a language used for computer music composition, was developed by Barry V crcoc at

MIT. 111e design of Music-11 is traditional in that it retains many of the concepts of hardware

synthesizers. To play a composition using Music· II. the user must create rn o flies, an orchestra file

and a score file. The orchestra file is a collection of instruments dcscribccl in terms of oscillators,

filters, envelope generators etc. which arc functions provided by tvlusic-11. Tims, the orchestra file

may be likened to the components of a hardware synthesiz~r and the connections made among them.

Tile score file is a list of notes that are to be played on each instrument. For each note the

fo11owing infonnation is needed: the instrument on which the note is to be played, the starting time

of the note, the duration of the notes and several parameters that arc to be passed to the orchestra file.

The contents of the score file are analogous to the input controls a player gives to a hardware

synthesizer while performing. The interaction between these two flies may be viewed as in Fig. 3.1.

3.1 Orchestra File

The orchestra file consists of a header and one or more instrument blocks. lbe header has the

following fonnat:

sr =<int>
kr =<int>
ksmps = <int>
nchnls= <int>

where <int> stands for any integer value.

The variable sr is the sampling rate. This means that the DAC in Fig. 1.3 will receive a number

of samples every second equal to sr. A signal that contains sr values for each second in time is an

SCORE

-17-

ORCHESTRA

instrument

model

instrument

model

instrument

model

INTERACTION BETWEEN MUSIC-11 FILES

Ftg. 3.1

- 18 -

audio signal and is said to vary at the audio rate. For good quality sound srshould be at least 30.000.

Hardware limitations of the synthesis system impose an upper bound of 50,000.

'Ibe variable kr is the control rate. It is a sampling rate for signals that should vary more slowly

with time than audio signals. An example of one such signal is an amplitude envelope.

'Ibe variable ksmps is equal to srl kt. Because ksmps must be an integer a restriction is imposed.

It is that sr must be divisible by kr. Also, sr, kr and ksmps must remain fixed throughout a synthesis.

The variable nchnls spccifi:~s the number of output channels and thus the number of

loudspeakers that are used.

Instrument blocks arc structui"ed as follows:

instr n
<body>
end in

where 11 is an integer that serves as the instrument identifier and cndin signals the end of the

instrument definition. The body is a linear sequence of statements. Several types of statements are

available in Music-11, however only one of them, the function statement will be considered in this

discussion. Other statement types will be introduced as they arc needed.

Function statements arc required to have the form:

<sig> function inpl,inp2,inp3 •••

function can be one of the many signal generator or modifier function that Music-11 offers, perhaps a

filter or an oscillator. The function's input parameters are given by inpl, inp2 and i11p3. 111e number

of input parameters will vary from function to function. The output of function is <sig> and with the

exception of one function in Music-11 is either an audio or control signal. If sig is an audio signal

then it is required to have the variable name a11 where n is any positive integer. If sig is a control

signal, its variable name must be kn.

Function statements alone can be used to express simple instrument block diagrams such as the

-19 -

one in Fig. 1.2. Suppose it is desired that the output of the envelope generators in Fig. 1.2 be linear.

The line function in Music-11,

kn line ia, idur. ib

will create such a signal. Its first and third inputs define the endpoints of a linear segment. The

second input is the duration in seconds of the envelope.

A sinusoidal oscillator is also needed for the instrument in Fig. 1.2 For this purpose, the

function oscil is provided:

an oscil xamp. xcps. if11, iphs
•

It is used as an all-purpose oscillator in Music-11 and outputs samples of a periodic wave. ·n1e third

input parameter. if11, is an integer identifier of an array that contains one cycle of a stored function.

These arrays arc called function tables. The output of oscil is obtained by cycling through the

function table at a frequency equal to xcps. Each function table access is multiplied by xamp. Thus

xamp determines the amplitude. The input iphs is explained in chapter three.

One more function is needed, the out function. The out function along with outs and outq

specify to which speaker(s) the signals arc to be sent They have the following format:

out asig
outs asigl,asig2
outq asig/,asig2,asig3,asig4

The function out is used for monophonic sound. It stipulates the signal asig is the final output signal

for the performance, the one that should be heard and it is to be sent to one speaker. In outs, asigl

and asig2 arc the final output signals and each is to be sent to a different speaker thus producing

stereophonic sound. The user chooses outq when quadraphonic sound is desired.

With these three functions in hand it is possible to construct a Music -11 diagram for the

instrument ia fig. 1.2. The Music-11 diagram is shown in Fig. 3.2. Its equivalent in Musie-11 code

-20-

p5 ia
p3 idur line
p6 ib

oscil
1

p4 -1

p7 ia
idur line

p8 ib
oscil

1
-1

MUSIC-11 INSTRUMENT DIAGRAM

Fig.3.2

instr 1
ia

kl line p5,
xamp

al oscil kl,
ia

k2 line p7,
xamp

a2 oscil k2,
out al+a2

end in

- 21 -

idur
p3,
xcps
p4,
idur
p3,
xcps
2*p4,

ib
p6
if n
I,
ib

.P8
ifn
I,

iphs
-1

iphs
-1

Lines beginning with a scmico1on arc comments. The inputs to line an.~ the frequency input to

oscil arc not directly specified in the instnuncnt description because they arc cxtcrna1ly contro1lcd.

The score fi1e provides the external control, so, p3-p7 are parameters whose values arc given in the

note statements in the score file.

3.2 Score File

The score file like the orchestra file has its own statement types and is only a sequence of these

statements. The final line in a score ti1e must always be a single e, signifying the end of the fi1e. Thus

the general fonn is:

<statement>
<statement>
<statement>

e

where <statement> is one of several score statement types. The statement types that are needed to be

ab1e to write a score file to control the instrument defined in the last section arc the note, stored

function and tempo statements.

Note statements make up the majority of the score file and hold most of the control over the

instrument. These statements follow the fonnat:

where

- 22 -

i pl p2 p3 p4 p5 ... pl 28

pl - identifier of inslrumenl for which this statement is
intended
pl - starting time in beats for this note
p3 - duration of this note in beats
p4.p5 ... pl .?8 - parameters used lo control the instrument

Though 128 parameters can be specified, only as many as the composer needs to control his

instrument have to be included in the note statement. This is true for all score statement types.

The stored function statement is used to create an array that ~olds equally spaced samples of

one of several functions provided by Music-11. Its format is:

where

f pl pl p3 p4 p5 p6 ••. pl28

pl - integer identifier of the function table
p2 - creation time in beats of this function table
p3 - the function table size (restricted to be 2n or 2n-1 in

Music-11)
p4 - integer identifier of the function generator to be used
p5,p6 ... pl 28- input parameters of the function generator

An example of a function generator is one that computes one cycle of a sum of sinusoids. Its integer

identifier is 10. '11le input parameters inp5, inp6 ... determine the relative strength of the harmonics in

the sine wave. A user may specify up to 123 harmonics to be present in the wave. If p4 is positive

then the wave will be scaled to a peak amplitude of 1. If p4 is negative, no scaling wi11 take place. For

example,

fl 100 256 -10 4 2 0 8

causes 256 samples of one cycle of the wave

4sinw + 2sin2w + 8sin4w

to be stored in an array and its integer identifier to be 1, whereas if the statement

- 23 -

fl 100 256 10 4 2 0 8

is included in the score fiJe the same array as before is constructed and then scaled so that the

maximum value in the array is equal to one. For both of these examples the function table will be

generated immediately before the tenth beat of the piece is performed.

The stored function and note statements express time in the unit of beats. Musically, this is a

natural way to think of time progression in a composition. However the orchestra file requires that

the unit of time for any of its inpt:ts be seconds. lbe tempo statement in the score remedies this

problem by giving guidelines on the beat to second conversion. The tempo statement t<1kes the form:

where

t pl p2 p3 p4 p5 ... pl 28

pl - starting beat (restricted to cquahero)
p2 - initial tempo in beats/min
p3,p5,p7 ..• pl 27 - staning beat of next tempo
p4,p6,p8 ... pl 28 - tempos corresponding to starting beats

It is easy to think of the input parameters as defining points on a tempo vs. beat graph. For example

the statement,

t 0 60 10 60 20 120

produces the graph in Fig. 3.3(a). The first ten beats are played at 60 beats/min. Between beats 10

and 20 an accelerando from 60 to 120 beats/min occurs. From beat 20 on, the tempo stay constant at

120 beats/min. The last defined tempo p11 in a tempo statement always remains the tempo starting at

beat pn-I throughout the remainder of the piece.

'lbc curve between beats 10 and 20 depicts how accelcrandi arc modelled. This curve is

proportional to l/x and is constrained by Music-B's method of beat to second conversion. Music-11

carries out its beat to second conversion by first drawing a sraph whose x coordinate is beats and

whose y coordinate is I/tempo= min/beats. Such a graph for the above tempo statement example

is shown in Fig. 3.3(b). For a given note whose beat duration occurs between beats x1 and x2• the

(min/beat)

120

60

(beats/min)

1/60

1/120

-24-

y

,_,/

-+-'----------/

0 10 20

(a)

y

0 10 20

(b)

TEMPO ST A TEMENT GRAPHS

Fig. 3.3

30

30

x
(beats)

x

(beats)

- 25 -

area under the graph is computed between these two points. Since the area is in units of minutes. it is

divided by 60 to obtain the desired unit of seconds. For example, the duration in seconds of a note

that starts at beat 10 and is 2 beat~ long would be equal to the outlined area in Fig. 3.3(b) divided by

60.

Now all the necessary tools have been presented to assemble a score file to play the instrument

in Fig. 3.2. A translation of the admittedly boring score in Fig. 3.4(a) is shown in Fig. 3.4(b). Lines ·

beginning with c arc comment lines.

3.3 Additional Orchcstm File Information

Now that the reader is fmmliar with the basics of the Music-l l language, some additional

information about the orchestra file is introduced. It was not presented in the previous two sections

to avoid confusing the reader.

3.3.l Rates of the signal function input parameters

As mentioned before, the output of a signal function can be either control or audio rate. The

input parameters of a signal function can also be different rates. but certain input parameters are

restricted to be different rates. For instance, the oscil input parameter ifi1 is allowed to vary no faster

than once each note (at the note rate). It can also be a constant, the slowest rate possible. In general

an input parameter prefixed with an i (ie. ifn,iphs of oscil and ia. ib, iduroflinc) must be ote rate or a

constant. An input parameter prefixed with a k must vary at the control rate or.a slower rate. An

input parameter whose first letter is x (ic. xamp, xcps of oscil) is restricted to vary at the audio rate or

a slower rate. Finally, if an input parameter is prefixed with an a (ic. asig of out) it must vary at the

audio rate only.

.-26-

t~ J f J I
(a)

SCORE

c pl p2 p3 p4 p5 p6 p7 p8
t 0 60
f 1 0 256 10 1
c instr start dur xcps ia ib ia ib

1 0 2 440 10000 5000 9000 6000
i 1 2 2 880 8000 6000 4000 2000
I 1 4 2 440 10000 5000 9000 6000
e

(b)

SCORE FILE

Fig. 3.4

3.3.2 Goto statements

Goto statements belong to an orchestra statement type that was not discussed in the section in

the orchestra file. Nevertheless, these statements arc extremely useful because they allow conditional

branching. A goto statement may take one of the following two fonns:

goto name

or

if kn <test> km goto name

The first goto stacement causes an ·.mconditional transfer of control. to the statement whose label is

name. The second goto statement, <test> is one of the fo11owing: =. - =. >. <. > =, < =. If

kn <test> km is true than a transfer of control to the statement labelled by name is made. Otherwise,

the control is advanced to the next statement

Fig. 3.5 shows an example of an orchestra file that uses goto statements. The instrument block

models an instrument whose amplitude envelope depends on whether note's frequency is above or

below 1000 cps. The function expon outputs a line segment with endpoints ia and ib like line except

the line segment is exponential instead oflinear.

3.3.3 Global variables.

All the variables in the orchestra file examples thus far have been local to the instrument block

that contained them. However Music· I I allows global variables in the orchestra file. The Music· 11

compiler recognizes a variable as global when it is prefixed by a g. An example of an orchestra file

that uses a global variable is shown in Fig. 3.6. lbe signal function reverb reverberates its first input

by a number of seconds equal to its second input The global variable gal is used to accumulate the

outputs of instruments 1 and 2. The sole purpose of instrument 3 is to reverberate the accumulated

signal.

sr = 50000
kr = 1000
ksmps = 100
nchnls = 1

instr 1

-28-

if p4> 1000 then goto below
ia idur ib

kl line 1000, p3, 500
goto finish

' ia idur ib
below: kl cxpon 700, p3, 400

, xamp xcps ifn iphs
finish: al oscil kl, p4, 1, -1

out al
end in

EXAMPLE OF AN ORCHESTRA FILE CONTAINING GOTO STATEMENTS

Fig. 3.5

sr = 50000
kr = 500
ksmps = 100
nchnls = 2

instr 1

xarnp xcps ifn iphs
al oscil k2, k3, 1, -1
gal =gal +al

end in

instr 2

xarnp xcps ifn iphs
a 1 oscil k2, k3, 1, -1
gal =gal +al

cndin

instr 3
gal init 0

asig idlt
a 1 re' crb gal, 2.49
gal= 0
outs al/2, al/2

end in

--29-

EXAMPLE OF AN ORCHESTRA FILE CONTAINING A GLOBAL VARIABLE

Fig. 3.6

- 3Q-

3.4 Performance

When the user is satisfied with his files and wishes to hear them pcrfonncd, he goes through a

two step process. He must first run the program perf which outputs a sound file using the orchestra

and score files as inputs. Then he must invoke the program convert with the sound file as input

The program perf first processes the score by sorting it according to pl and converting the beat

values of pl and p3 to seconds in agreement with the directions of the tempo statement. 'fllcn the

orchestra and score tiles arc comp'led so they arc acceptable input to the Music-11 monitor which

pcrfonns the actual sample calculation. The orchestra file is compi1ed·into a list of function calls

corresponding to each signal function. Each signal function has its own privat~ data space in which to

store the results. If the output of one function is the input of another, then the appropriate Jinks are

made between the two data spaces.

'lbc Music-11 monitor is an event-driven program that uses the score file as its event list The

monitor's clock is initialized to zero and advances at time increments equal to one control period

(l/kr). At the beginning of each control period, the monitor checks the score statement at the top of

the event list to see if its clock is greater than or equal to pl. If so the monitor will act in accordance

with the statement type. If the statement is a function statement, the monitor wi11 create a function

table by a11ocating an amount of space in memory equal to p3 and fiU it with samples of the

appropriate function. If the statement is a note statement then the note parameters pn, n > 3, arc read

into the data space of the instrument specified by pl. After the monitor is done scanning the event list

for current events, it carries out the specified function cans in the compiled orchestra file. For

instance, for the instrument description in section 3.1, the monitor would call line and store the result,

can oscil and store the result, can line and store the result, can oscil and store the result Finally it

would add the outputs of the two oscil functions and write the result to a soundfile. The out

functions tell the monitor which signals are to be saved on the soundfilc. Thus the monitor is outputs

- 31 -

calculated samples of the users's composition.

Since tJ1e signal functions arc called e\'ery control period, rhe functions that output control rate

signals produce one real value and tJ1e functions that output audio rate signals produce an array of

real \alues of size ksmps.

The program convert uses the sound files as input. This program regulates tl1e feeding of tJ1e

buffers in Fig. lJ so that the samples in tJ1e sound file arc fed to tJ1c lli\Cs at the sampling rate.

- J2 -

4. D,\ TA FLOW CONCEPTS

It has been shown in the previous chapter that the composition L1nguage Music-11 cannot

pcrfonn in real-time on its present processor. In fact, real-time perfonnancc of a composition written

in any language similar to Music-11 is unattainable on any machine whose design adheres to the Von

Neumann style of architecture. To realize real-time perfonnancc. a different architectural style must

be used. One such architecture is data flow.

Research in data flow computer architecture was initiated to develop an alternative to the Von

Neumann architecture. Whereas the conventional Von Neumann machine must execute each

operation in a program in sequence, a data flow machine allows many operations to be done in

parallel increasing the computation rate and thus potentially decreasing the program execution time.

Data flow machines arc capable of high pcrfonnancc due to a unique architecture. An attempt

is made in this chapter to give the reader a better than surface level understanding of the machine

archii.ecture that is used in this paper, present some principles of data flow and introduce VAL, a high

level language written at MIT expressly for use with data flow machines.

4. l Program Graphs

Data flow program graphs provide a useful tool in the analysis of parallelism within an

algorithm. When an algorithm is expressed in a program graph, concurrency appears naturally. A

brief discussion of program graphs and how they are interpreted foHows.

Figure 4.l(a) shows an example of a simple program graph. The inputs are a. b, c and d. the

output is x. The mathematical operators enclosed by circles arc called actors, the arrows arc called

arcs and the black circles arc referred to as tokens. Tokens represent citl1cr elementary or structure

values. Elementary values may be real, integer or boolean values. Structure values are compound

data types such as arrays or records.

a b c

x

X = (a*b)·(C + d)

(a)

d

-33-

w

s

s = (x + y)/w

DAT A FLOW GRAPHS

Fig. 4.1

x y z

t

t=(x+y)*z

(b)

- 34-

An actor may fire (perform itc; operation) only when all of is input arcs carry a token and its

output arc is empty. Upon firing the actor consumes the input tokens and places a token containing

the computed Yalue on its output arc. The output arc may input more than one actor in which case a

link provides the necessary number of tokens. For example, the link in Fig. 4.l(b) ensures that the

quantity (x+ J) is delivered to both the divide and multiply actors.

Every actor abides by these firing rules except for three types of actors. ·n1ey arc the merge

actor, the T-gate and the F-gate (Fi~- 4.2(a,b,c)).

The merge actor has three inputs. The inputs labelled T and F may be any value. 1l1e

remaining value must be a boolean value. The open arrowhead shows that a boolean value is

expected as opposed to solid arrowheads which denote non-boolean values. If the boolean input

contains a true token and the T input contains a token then the merge actor wilt fire and produce a

token containing the T input value on its output arc while absorbing the boolean and T input tokens.

No token was needed on the F input for this to occur. If an F token did exist, it would stay there

until a false token arrived on the boolean input In this case the actor would fire by consuming the

boolean and F input tokens and placing a token carrying the F input value on its output arc.

T-gates require two inputs, a boolean input and a non-boolean input The actor will not fire

until both inputs are present. When the T-gate docs fire, it duplicates the non-boolean input If the

boolean input is false the gate merely consumes the tokens and produces no output. The F-gate

behaves in a complimentary fashion.

Three other operations that may not be familiar to the reader are select, append and create.

They aU operate on structures. Sclect(struc,sel) uses the sel input to locate a value within the struc

input. The se/ input might be an index and struc input an array The output can be either an

elementary or stmcture value. Appcnd(struc,newval,sel) returns a structure exactly like the input

struc except with newval at the place in the structure specified by set. The operation create takes no

inputs and returns an empty structure. Both append and select follow the firing rules.

merge actor

(a)

-35-

T-gate

(b)

Fig. 4.2

F-gate

(c)

- 36-

4.2 Machine Architecture

Figure 4.3 shows the architecture of the data flow machine chosen in tl1is paper. Its design is

similar to those in (12,9).

The instruction memory holds instruction blocks. Instruction blocks arc made up of instruction

cells. An instruction cell is a block of memory and has· a unique address. It is comprised of an

opcode, and space for operands and destinations. Destinations arc addresses of instruction cells. lbc

amount of space allotted to operands and destinations depends on the specific machine design.

When an instruction cell contains all the operands necessary to carry out the instruction

designated by the opcode and has received a specified number of acknowlrdgc signals. it becomes

enabled and fires. Upon firing. an operation packet is constrncted and sent through the arbitration

network. An operation packet contains the opcode, operands and destinations. The operation packet

is routed to the correct processor through examination of the opcode. If the opcode specifies an

operation that accepts structures as operands then the packet is sent to the structure processor (the

box containing SP in Fig. 4.3). Otherwise it goes to a scalar processor (the boxes containing P). The

processor performs the operation denoted by the opcode and generates result and/or acknowledge

packets for the destinations designated in the instruction cell. Result packets consist of the result of

the operation and address of the instruction cell for which it is bound. Acknowledge packets contain

an acknowledge signal and an instruction cell address. These packets arc delivered to the instruction

memory through the distribution network.

The structure of the arbitration and distribution networks arc discussed in (12) and will not be

detailed in this paper. The design for the structure controller used in this paper is presented in [8). It

contains a structure controller and structure memory as shown in Fig. 4.4. The structure controller

interprets and carries out the operation specified in the operation packets by accessing the structure

memory where the structures arc stored.

distri

bution

network

-37-

Instruction Cell

Memory

cell
block

cell
block

cell
block

arbitra
tion

arbitra
tion

DATA FLOW MACHINE
Fig. 4.3

STRUCTURE

CONTROLLER

~

_]

STRUCTURE

MEMORY

STRUCTURE PROCESSOR

Ag. 4.4

processors

- 38 -

4.2.1 Instruction cell

A closer look at the instruction cell is called for. The instruction cell design proposed by (19]

has been adopted in this paper. Though an instruction cell is actually a block (32 bytes) of memory, it

is more convenient to represent an instruction cell as in Fig. 4.5(a). Operation denotes the opcode

field in the instruction cell and the three slots marked operand characterize the operand fields. The

sections labelled data type specify whether the operand is I (integer), R (real), B (boolean), S

(structure) or N (not used). A c that resides along side an operand in a slot designates that that

operand is a constant. Constants may ne\'er be changed during the c~urse of program execution. An

operand slot designated to hold a constalll may initially be empt) at the start of program execution

but once it is filled, it can never be written on.

The letters m and /1 arc integer values. m is the instantaneous number of acknowledges the

instniction cell needs to fire during execution and 11 is the acknowledge reset value. After an

instruction cell has fired, m is reset to 11. Each time an acknowledge signal is received, m is

decremented. When m is equal to zero. the instruction cell fires if all operands are present

An instruction cell can send packets to up to six destinations (represented by the arrows). The

six packets can be any combination of result and acknowledge packets.

Figure 4.5(b) shows how the program graph of Fig. 4.l(b) would be translated into instruction

cells. For each cell in this figure m is the initial number of acknowledge signals needed. The solid

lines represent result packets while the dotted lines signify acknowledge packets. The add instruction

cell cannot fire until it receives acknowledge signals from both the div and mul instructions cells.

This insures that the add will not write over an operand that has not been used. The add instruction

ce11 sends acknowledge signals to the cells that supplied it with its operands. 'Ille fact that n= I for

the div and mul instruction cells implies that their results are each sent to one instruction cell. As a

general rule of thumb, an instruction cell should acknowledge any cell from which it receives an

-39-

m/n

operation = operand
·~

..::
~~~ operand ype ~ 
~ata operand ..:.. .. 

INSTRUCTION CELL PROTOTYPE 

(a) 

.. - - - - - - - - - - - - - -
0/1 J 

div t--
w lot- --- r _! .. r 

n t-1 
+-----

0/2 I add 
x ..... r !!It- - - - - - - - _J 
y .. 
~ r ~- - - - - - - - -, 

n 
J 0/1 +----- mW ~J .. r _J z ...... r 

,.. 
-.. 

·~-n 1-- 1 .. ----·----------
CELL GRAPH TRANSLATION OF s = f)C-+ 'f)/w, t = (x + y)•z 

Ct>) 

Rg,.4.5 



-40-

operand. However, in some cases, as we shall sec later. some acknowledge signals can be eliminated. 

Every operation that takes two operands on the flow graph level (ic. add) has the built in 

capability of a T or F gate on the instruction cell level through the use of the third operand slot. 'Ille 

third operand becomes a boolean input Rcsull and acknowledge packets can be conditionally sent 

based on the value of the third operand. For example, when the program graph in Fig. 4.6(a) is 

translated into instruction cells (Fig. 4.6(b)), the add operator and the two gates can be expressed as 

one instruction cell. If the third OJ 1crand is not used the result and acknowl1•dge packets are sent to 

their destinations unconditionally. Whenever the third operand is used to conditionally send a result, 

two acknowledge reset values arc needed. For the add instruction cell, the tme acknowledge reset 

value is I and the false acknowledge reset value is 2. If the third operand is true when the add cell 

fires, the number of acknowledges needed is set to/. Similarly, if the third operand is false when the 

cell fires, the number of acknowledges needed becomes 2. 

4.3 VAL 

Data flow program graphs are a valid tool to use in the expression of data flow algorithms, but 

writing a large program in such a graph language can be troublesome task. For this reason, the 

language VAL was written. The motivation behind the development of VAL was the need for a high 

level language in which one can write algorithms to run on a data flow machine. One of the main 

goals of VAL is to make concurrency easily identifiable. This is achieved by the exclusion of side 

effects. 

It is assumed that the reader is familiar with some block-structured language. Therefore only 

two VAL constmcts will be explained that may be foreign to the reader. They arc the let and for 

constructs. 



-41-

a b c 

DAT A FLOW GRAPH TRAf\ISLATION OF 

if d = 0 then (a+ b-c) * 2 else sqrt( a+ b-c) +(a+ b-c) 

(a} 

Fig. 4.6 

d 



a 

b 

c 

d 

...._...., _______ , 
,....... - ·-

lKICf I 
mult j4- - - - - - - - - - - - - - - - - - - T ____. ~~- - - - - - - , 

2' I r I ...r. 
I ---. r I ~ r I -n I n I- -- , I 

01112: I 
0/1 O/? I 

; I 

'merge ~ 1- - ~ c:nm 
-e I 

1-~dd 
4 r f i.------- - - - --'....i 

r 4~ .. 
• r f i.-- - - - ..., rl r • r .... 

--,. I-- I ~b f I Mlb 14-, 1 n ~ -;;; ., 1 

~- - - - -- - - •' I I I L - - - - - - - - J I 
- - - - -'I I L - Q /0 - - - - - - - - .J I 

I I · I 
I I sqrt I 

I 4r 1-- I 
I ~ n 

0/2 
I I I 

n -, I 
I I I 

619 I 
L _______ j 

I 
i 

-:r le- - - - - - .. 
I 

J. I n 14-------- - - - - - - - - - - -- - - - - - - - - - - - ..J 

~-------J· 

CELL GRAPH TRANSLATION OF if d=O ~ (a+b-c) *2 
else sqrt(a+b-c)+(a+b-c) 

(b) 
. Fig. 4.6 

... ,.. 
I 

"" ...., 
I 



·~ 

- 43 -

4.3.1 LET Construct 

The let statement takes on the fqllowing form: 

let 
<declaration list> 

in 
<expression> 

end let 

A declaration list is simply a list of variable declarations. Jn a let block, a variable may be assigned a 

value only in the declaration list Once a variable has been assigned a valu ;, no reassignment may 

take place. Thus, the declaration list, 

y: real: =3.1; 
x : real : = y/.5; 

is legal VAL code whereas, 

y: real :=3.1; 
y := y/.5; 

is· not acceptable VAL code. 

An expression is one or more simple expressions separated by commas. A simple expression 

for our purposes is loosely defined as VAL code that can be evaluated down to a value. 'This value 

may be any of the accepted data types in VAL. The arity of an expression is equal to the number of 

simple expressions it contains. For instance 4.3 and true are values and therefore expressions of arity 

one. An expression of arity two could be 5.2/8, sii(.32). 

An example of a let statement is, 

let 

This statement is e_qual to 6.2. 

x: real:= 2.; 
y: rat:= 3.1; 



-44-

4.3.2 FOR construct 

for the present discussion. only a subset of possible for statements will be considered. lllis 

subset includes for statements that contain iteration fonns. The for statement is presented by means 

of an example. 

Figure 4.7 shows a for statement that calculates xn. The declaration list. (lines 2-4) has the same 

single assignment restriction as in the let construct However. variables declared in the for statement 

maybe 

for 

do 

end for 

factor : real : = x; 
powcrcount : integer : = n; 
return val: real;= 1; 

if powcrcount >O 
then iter 
rcturnval : = rcturnval*factor; 
powcrcount: = powercount-1; 
end it er 
else retumval 
end if 

Fig. 4.7 

reassigned within the iter statement. Only variables in the declaration list between the for and do 

may be reassigned. 

4.4 Translation of VAL Code to Flow Graphs 

Three examples of translating VAL code to flow graphs arc given in this section. The first two 

examples are of conditional statements. The last example deals with an iteration construct. 



-45-

4.4.1 Conditionals 

Fig 4.8 shows the data flow graph for the VAL conditional statement, 

if test_ expression 

end if 

then true_exprcssion 
else false_expression 

The boxes themselves contain data tlow graphs. The box labelled test graph evaluates tcst_cxprcssion 

of the conditional statement and yidds a boolean value of eilhcr true or false. If it is tme, the inputs 

to the t-gatcs arc allowed to feed into true graph and truc_exprcssion is evaluated. Otherwise the 

inputs to the F gates arc allowed to flow through false graph in order to evaluate false_cxprcssion. 

lbc number of outputs of true graph and false graph equal the arity of the conditional expression 

and must equal each other. The merge gates eliminate race conditions that may occur between the 

true and false branches of the graph. They also insure that the nth set of outputs correspond to the 

nth set of inputs. 

As an example of a conditional statement, the reader is referred to Fig. 4.6(a) which is a flow 

graph translation of 

if d=O 
then (a+b-c)"'2 
else sqrt(a+b-c)+(a+b-c) 

endif 

4.4.2 Iteration 

As an example of translating iteration constructs, Fig. 4.9 depicts the flow graph translation of 

the VAL code in Fig. 4.7. There is an initial value of false cm the boolean input of the merge 

operators, to allow the inputs to drop into the iteration loops. The ">O" operator outputs n 

consecutive true values followed by one false value. Each tnte value allows the tolens to cycle 

around their respective loops one time. When the fmal false token is produced, the T-gates swallow 



test 
graph 

-46-

inputs 

/\----~~~~~~"' 

• • • . . . . 

true graph false graph 

• • • 

DAT A FLOW GRAPH TRANSLATION OF 

A CONDITIONAL STATEMENT 

Fig.4.8 

l 



-47-

1 x 

returnval 

DAT A FLOW GRAPH OF THE POWER FUNCTION 

Fig. 4.9 

n 



-48-

their inputs, bringing the iteration to a hall The F-gatc allows its input to pass to its output arc, to 

become the output of the graph. 

Note that after the iteration process has ended, false tokens arc left on the boolean inputs of the 

merge operators. In other words, the graph will return to iL'i initial state. This allows consecutive sets 

of tokens to flow through the graph, each set producing a correct output token. In this paper, this is a 

necessary feature of flow graphs, as sha11 be seen in chapter three. 

4.5 Pipelined Flow Graphs 

When algorithms arc expressed in data flow graphs, the operations that can be done in parallel 

become easily identifiable. For instance, in Fig. 4.2(b) it is clear that the add and multiply operations 

can fire simultaneously. When actors on the same level can perform their operations in parallel, there 

is horizontal concurrency. However vertical concurrency (pipelining) can also be exploited for higher 

perfonnance. 

Every time one or more actors fires simultaneously, a tick occurs. Thus, for Fig. 4.lO(a), it takes 

three ticks for the inputs x and y to help produce an output on the arc labelled z. This is because the 

depth of the graph is 3 actors. Suppose it is desired to calculate ((2*x) + y-4)/5 for many values of x 

and y. lllen we can allow successi\'e sets of x and y inputs to flow through the graph at the same time 

as shown in Fig. 4.lO(a-t). Now an output is produced every other tick. When an output appears 

every second tick then the graph is maximally or optimally pipelined. 

Note that new inputs cannot be put on the graph input arcs until, the *2 and -4 operators have 

acknowledged that they have fired. Recalling the machine architecture, acknowledge packets must 

traverse the same routing networks as result packets so their transit time is the same. 

The graph in Fig. 4.ll(a-f) is not maximally pipelined. This is because a new x input cannot be 

accepted until the token on the output arc of the multiplication actor has been consumed. However, 

a maximally pipelined graph can be obtained through the modification of the graph in Fig. 4.11. The 



x 

x 

-49-

x 

(a) (b) 

y 

(d) (e) 

MAXIMALLY PIPELINED GRAPH OF ((2*x) + y-4)5 

Fig.4.10 

x 

(c) 

x y 

(f) 



- 50-

modified graph is shown in Fig. 4.12. It contains an additional operators called identity operators. 

When an identity operator fires, it simply reproduces the input on its output arc. Thus the identity 

operator acts like a buffer in this case. The reader can verify that the resulting graph is maximally 

pipelined. 

In general any data flow graph that does not contain a closed path can be maximally pipelined 

by adding enough identity operators so that every path in the graph holds the same number of actors. 

The modification of Fig. 4.11 is an example. The addition of the identity operator made the x to t 

path two operators long to match the length of the x to sandy to t paths. 

4.6 Streams 

At this point it is useful to introduce a new data type, streams. Currently, VAL docs not 

suppon streams. However for the purpose of this paper, streams will be used as if they exist in VAL. 

The motivation behind the inclusion of stream data type is that Music-11 instrument descriptions are 

essentially descriptions of digital signal processing networks. It is natural to think of signals as 

streams of values as they flow through networks. 

Streams are ordered sequences and can possibly be infinite. 1lle members of a stream are 

restricted to be of the same data type, though there are no restraints on the data type. Hence there 

may be a stream of integers, a stream of arrays and even a stream of steams. 

A stream will be represented by its ordered members separated by commas, enclosed by square 

brackets. An example of a four member stream of real is x =fl.I, 2.2, 3.3, 4.4]. The value 4.4 is the 

first member of the stream. A stream variable with a subscript of n denotes the n1h member of that 

stream. For example x 2 = 3.3. Between the last member and the left bracket of every stream there is 

an implicit eos (end of stream) value. Its use will become clear in a later section. 



x 

s 

x 

s 

-51-

y x y x 

s s 

(a) (b) 

y x y x 

s s 

(d) (e) 

UNPIPELINED GRAPH OF s = (x • 3)-1, t = (y-4) •x 

Fig. 4.11 

y 

(c) 

y 

(f) 



-52-

x y 

MAXIMALLY PIPELINED GRAPH OF s = (x*3)-1, t = (y-4)*x 

Fig.4.12 



- 53 -

4.6.l Stream functions 

There are seven stream functions available to the user. They are described below: 

l) first(x)- returns the first member of stream x. 
ex. first([l,3.5,7D= 1 
ex. first([ll,3)(5,7)})= [l,3} 

2) rcst(x) - returns the stream x without the first member 
ex. rest([l ,3,5, 7])= [3,5,7) 

3) consl(y. x) - returns a stream whose last member is the 
value y and whose members before y are 
those of stream x. 
ex. cons!( l.[3,5, 7]) = [3,5, 7,1} 

4) catenatc(x.z) - returns a stream whose members arc the 
concatenation of the members of streams 
xandy. 
ex. appcnd([l,3,5),(2,4]) = [l,3,5,2,4] 

5) streani_mcrgc(x,y,b) - returns a stream s whose 
construction is determined by the boolean 
stream b. If the value of b n is troe then sn 
is chosen from stream x otherwise it is 
chosen from stream y. Note that the sum 
of the number of members in x and the 
number of members in y must be equal to 
the number of members in b. 
ex. strcanuncrgc({l,3),[2)Jtru~/se.11ueD 
= (1,2,3) 

6) stream_cxtendO(x,y) - returns two streams. x and y must 
be of type stream[ type) where type can be 
any data type except stream. Let x be of 
length n and y be of length m. If n > m 
then x and a stream s arc returned where 
s; = Y; for i< =n-m and s; = 0 for 
i > 11-m. If m > n then a stream sandy are 
returned wheres;= x; for i< =m-n and 
S· = Ofor i)m-n. 
I 

ex. strcaDLextendO((l,2,3).(5D = (1,2,3) , 
[5,0.0) 

7) stream_extendl(x.y) - similar to stream_extemlO except 
that the value of I instead of 0 is used to 
extend the shorter stream. 



- 54-

Any function or operation that can be carried out on the data type of a stream's members can 

be carried out on a stream itself. When it is performed on the stream, the function or operation is 

applied to each member of the stream to produce an output stream. For the stream x=[l,9,/6,81} 

some examples are given. 

1) sqrl(x)=[l,3,4,9} 
2) x*2=[2,/8,32,162} 

· 3) x<lO=[true,1rue,trueJalse} 

Both operands may be streams but when they arc. they must have the same n• 1mber of members. As 

an example, for y=[2,4,6,8}, x-y=[-1,5,/0,73}. 

Streams may also be used in conditional statements. 

if 1es1(z) then x else y endif 

where test is a conditional test and z. x, y arc streams. The value of this conditional statement is a 

stream s. The test is perfonned on each member of z. If tesl(z J is true then sn is equal to x n and y n 

is discarded. If tesl(z
1
.) is false then s

11 
is equal to >'n and x

11 
is discarded. lbe three streams x. y and z 

must all be the same size. Streams ;x and y arc required to have members of the same data type. 

An important property of streams is that members of a stream may be accessed before the 

stream is fully constructed. This is necessary if streams arc allowed to be infinite in size. An example 

will help to clarify. The function constmcLeven constructs an infinite stream of consecutive even 

integers whose first member is x. The let block in Fig. 4.13 assigns the value of construcLeven(O)to y 

and produces 2*y as its value. Because of the nature of streams the multiplication starts as soon as the 

first members of y arc available and will continue as long as members of y are produced. 



-55-

function construct_C\Cn(x : integer returns stream[integer]): 

for 

do 

end for 

endfun; 

let 

in 

end let 

outstrcam : stream( integer] : = [ ]; 
x : integer:= x; 

if false then outstrcam 
else iter 
outstrcam: = consl(outstrcam,x); 
x:=x+2: 
enditer 
end if 

(a) 

y : strcam[intcger] : = construct_cvcn(O); 

2*y 

(b) 

Fig. 4.13 



- 56-

4.6.2 Flow graph representation of streams 

In this paper, the representation of streams in flow graphs is a sequence of tokens the last of 

which is always an eos token. So a stream multiply y"2 would be drawn as in Fig. 4.14(a). 'Il1e 

"=cos" condition is to test for the cos token and prevent it from becoming a input to the multiply 

actor. The function strcam_mcrge is easy to translate into a flow graph (Fig. 4.14(b)). Stream 

conditionals arc also readily translated into flow graphs (Fig. 4.14(c). It is assumed that streams x, y 

and z are aU the same size. 

In order to draw graphs of strcam_cxtcndO and strcam_cxtc~dl, two new operations on the 

instruction cell level arc introduced. These operations arc extendO and extend/. An extendO cell (Fig. 

4.1 S(a)) has the following firing rules. Let the first and second inputs to the extendO cell be a and b 

respectively. If a=/:- eos and b =/:- eos then a becomes the output. Alt acknowledge signals are sent If 

a = eos and b =/:- eos then the output is 0, the eos value remains in the first operand slot after firing 

and only acknowledge signals marked fare sent If a :f:. eos and b = eos then a becomes the output, 

the eos token stays in the second operand slot and only acknowledge signals marked t are sent If a 

= eos and b = eos, the output is an cos token and alt acknowledges are sent The extend/ instruction 

cell behaves in a similar manner except that if a = eos and b :f:.eos then the value 1 is the output. 

lbe functionstrcam_cxtcndO is defined on the cell graph level in Fig. 4.16(b ). 



x 

y 

2*y 

(a) 

y 

-57-

stream merge(x,y,b) 

(b) 

Fig. 4.14 



b 

-58-

x y 

STREAM CONDITIONAL 

(c) 

Fig. 4.14 



0/1 .J 

-59-

extendO 

~ala --ype 
t t--- .. 

ff~ta ype 
f t--- .. 

n 

EXTENDO INSTRUCTION CELL 

{a) 

-----------, 
01? 

x id extendO .u 

y 

__.. 
r --. ~ r .. n ...... r 

I+-. f n n n 

1-t I-- - f- - - -

0/1 I L 01? - I------
id 1+- extendO ,u __.. --. r --,,. r ... 

n --.. r 

n n ·n 
+ _______ _J 

INSTRUCTION CELL TRANSLATION OF STREAM EXTEND(X,Y) 

{b) 

Fig. 4.15 



- 60-

5. DATA FLOW IMPLEMENTATION OF MUSIC SYNTHESIS 

The third chapter described a representative computer synthesis system and synthesis language, 

both named Music-11. It was shown that a computer synthesis system similar to the Music-11 system 

that allowed the modelling of reasonably complex instruments cannot perfonn in real time due to the 

sequential nature of conventional computers. The potential for parallel computation in the sample 

calculation process is great. One can easily see the parallelism at the level shown in Fig. 3.1. Since 

each instrument is an independent !ntity, the sound outputs for each instrument can be calculated at 

the same time. Concurrency also exists in the models of each instrument in the orchestra file. For 

example if the model in Fig. 3.2 is used, the two sinusoidal components can he computed in parallel 

before summing. And yet another level of parallelism lies in the algorithms for many of the unit 

generators. A computer synthesis system could derive numerous benefits from data flow. This 

chapter describes a proposed implementation of a synthesis system that contains a data flow 

computer. This proposed system will be referred to as Music-df. 

5.1 Physical Layout of the Music·df System 

The Music-df system is envisioned to look like Fig. 5.1. The composer uses a language similar 

to Music-11 to create and edit orchestra and score files on the host computer. This computer is a 

machine whose architecture is conventional and could possibly be a PDP 11/50. When the user is 

satisfied with his files, he invokes a program that first sends the function statements of the score file 

to the data flow machine where the appropriate function tables are constructed. The orchestra file is 

compiled into executable instruction cells on the host machine and transmitted to the data flow 

machine. 111cn the host computer sorts the score file and carries out the beat to second conversion 

following the specifications of tempo statements in the same manner as for Music-IL After the 

sorting and orchestra file compilation have taken place, the note statements of the score file are sent 



-61 

host 

computer 

[JAC 

J~ ''"" 
~-d--a-ta-~ EJ-. lo:~~earss 

flow 

machine 
DAC 

~--t~DAC 

lowpass 
/] __ __,_---J.· .... 

"··, __ .......... ___ _ 

--i· __ _,,-· , .... -- ..... -

'"·· ...... '--........... __ 

·1 __,,,/ ,/"_~ 

' 
"'---·-. ~~-----

·1 ,/ .,./ __ ,,--

' ,_ ··, __ -,.._ 
lowpass 

filter 

PROPOSED MUSIC-OF SYSTEM 

Fig. 5.1 



-62-

to the data flow machine and perfonnancc begins. 

5.2 Music·df Language 

·n1e language that is to be used on the system will be called Music-df. It is similar to Music-11 

and retains much of the syntax of the Music-1 I language except for several changes in both the 

orchestra and score files. Some of the changes are made from necessity while others are done to 

make the files more readable and meaningful to someone other than their ct mposcr. The following 

two subsections describe the modifications that arc' made to the Music-11 language to derive 

Music-df a language that will run on the Music-df system. 

5.2.l Orchestra file modifications 

In Music-df kr and sr arc restricted to be defined as real numbers in the orchestra header. TI1ey 

must be whole numbers and as in Music-I I sr must be divisible by kr. Ksmps still must be defined as 

an integer and equal to int(sr/kr) .. Unlike Music-11, kr,sr and ksmps arc available to the composer 

and can be used in expressions in the orchestra file. 

The signal naming restrictions arc lifted in Music-df. Control rate signals and audio rate signals 

need not be named kn and an. respectively. The user may choose any name he wishes. This however 

may pose a problem. Consider the two fragments of Music-11 code: 

ia idur ib 
kl line 10000, 5, 5000 

and 

ia idur ib 
al line 10000, 5, 5000 

Even though the input parameters for line are the same in both cases, kl and al are not equivalent 

signals. They vary at different rates and are calculated differently. The Music-11 monitor knows 

which type of sign.al the output should be by noticing whether the first character of the output signal 



-63-

is k or a. lbis naming restriction no longer exists in Music-df. So, two functions exisl in Music-df, 

kline for control rate signals and aline for audio rate signals. For every function in Music-11 that can 

output either an audio or control rate signal two corresponding functions are offered in Music·df. 

lbe function name is prefixed with an a or k. 

Another naming restriction that is lifted is that instrument identifiers be integers. In Music-df 

instrument identifiers are character strings. 111is allows an identifier to be descriptive. It is useful 

when reading an orchestra file to be able· to know at a glance that an instrument block probably 

describes a clarinet-like instmment because the instmmcnt·identifacr is "clarinet". 

Since the orchestra file is to be compiled into instruction cells ·that run on a data Bow machine 

there are two features of the Music-11 language that must be replaced. One is the tolerance of side 

effects through the use of use of global variables. An important use of side effects in Music-11 occurs 

when each instrument is to be modified in an identical manner before becoming an output The 

global variable accumulates the output signals of all the instruments so that their sum can be 

modified instead of having to modify each one separately. Ft.g. 3.6 is an example where the 

modification is reverberation. It is a desirable feature to be able to accumulate the instruments• 

outputs so M usic-df retains this capability by keeping global variables while excluding side effects. 

A Music-df translation of Fig. 3.6 is shown in Fig. 5.2. In Music-dfthe orchestra file is required 

to lie between a bcginorchestra and an eodorchestra tine. making it a block in its own right A new 

statement, the output statement signals the output of the instrument block in which it is contained. In 

Music-df, the instrument block outputs may be assigned to global variables whose scope is the 

orchestra block. Global variables may be used in any instrument block but they may not be modified 

in any way within an instrument block. Now the instruments' outputs can be summed and modified 

(or not modified) as a whole before becoming dle llJUIDCDl to an out statement. The oat statements 

are restricted to lie outside lhe instrument blocks in die orchestra block. The modification of the sum 

of the instruments' outputs may consist of several signal functions whose input parameters the 

-------------~---- - ----



-64-

bcginorchcstra 

sr=50000. 
kr= 500. 
ksmps= 100 
nchnls=2 

al = instrument one 

xamp xcps ifn iphs 
al aoscil k2, k3, 1, -1 
output al 
end in 

a2 = instrument two 

xamp xcps ifn iphs 
a 1 aoscil k2, kJ, 1, -1 
output al 
end in 

, asig idlt 
a3 rcn·rb a 1 + a2, 2.49 
outs a3/2, a3/2 

cndorchcstra 

l'v!USIC-DF ORCHESTRA FILE TIIJ\T CONTAINS GLOBAL VARIAULES 

Fig. 5.2 



- 65-

composer may wish to vary from note to note. Therefore the user can specify these parameters in 

score tile note statements whose first parameter is out. ll1is is a reserved instrument name. No other 

instrument may be called out. 

Another feature of the Music-I I orchestra file that cannot be translated into data flow is goto 

statements. The instruction cell language of a data flow machine is fundamentally different from the 

machine language of a conventional computer. In keeping with data flow priocip1cs it has no concept 

of a program counter. Therefore a goto statement is meaningless and cannot exist in data flow. The 

following conditional statement is offered in Music-df in lieu of goto statements, 

if signal/ <test> signa/2 
then 

<truecode> 
else 

<falsecode> 
cndif 

where signal I and signa/2 may be signals of any rate and <test> is one of the following: =, - = .>. <. 

>=, <=. <truecode> and <falsecode> can be any legal Music-df code that can occur in instrument 

blocks. As an example, the Music-11 ·instrument block in Fig. 3.5 would become the folJowing 

Music-df instrument description: 

instrument one 

if p4>1000 
then 

ia idur ib 
kl klinc 1000, p3, 500 

else 
ia idur ib 

kl kcxpon 700, p3, 400 
endif 

xamp xcps ifn iphs 
al aoscil kl, p4, 1. -1 
output al --

The fqilowing restriction is placed on the conditional statement in Music-df. Let rate be the 



-66-

rate (ie. audio, control, note) of signal/ or signa/2 whichever has the highest rate. Any signal 

(variable) that is defined in the conditional statement and used outside the conditional statement 

cannot have a rate slower than rate. The instrument description above adheres to this rule because kl 

is control rate and p4 is note rate. 

Finally, in Music-df once a value is assigned to a variable name it cannot be reassigned. The 

scope of a variable name introduced and defined in an instrument block is that instrument block 

alone. The scope of a variable name introduced and defined in the orchestra block but outside the 

instrument blocks is the entire orchestra file less any instrument blocks where the same variable name 

is reintroduced and defined. 

5.2.2 Score file modifications 

lbe only changes to the score tile arc that the single lcuer that specifies the score statement types in 

Music-11 is expanded to a word in Music-df. The letter i is replaced by note, r by functiontablc, t by 

tempo and c by end. The only exc;eption· is the letter c which is continued to be used for comment 

line. As an example, note statements take the form, 

note pl p2 p3 

in Music-df where pl is now a character string. 

5.3 Orchestra File Conversion 

p4 ••• p/28 

The convened orchestra file in the data flow machine may be viewed as Fig. 5.3 where all the 

boxes contain executable instruction ce11s. The instrument blocks labe11ed instrument one and 

instrument n contains translations of the instrument descriptions in the orchestra file. Their inputs 

come from the note parameter packets sent by the host machine. The instrument outputs are then 

summed and modified using the p~rameters from the note statements whose first parameter is equal 

to 'out'. 



p2 -. instrument . . one 
pm 

. 

. 

. 

..... . 
instrument 

p2 . . - last --.. pm 

p2 . . . 
pm 

-67-

-..,. 

4 

-
..... 

""'!'. .... 

ORCHESTRA FILE 

Fig.5.3 

sum 

sum 

sum 

sum 

-. 
t- .. 

. output 
--.. 

... 
modifi-

cation 
_.. 

.... 

-• --.. 

t- .. 
__. 

.... 



-68-

It is important to note that if the desired sampling rate of SO Khz is to be achieved, the four 

output lines of the output modification box must produce a value every 20 microsec. In order for this 

to occur, the instruction cell translation of the orchestra file must be maximally pipe1ined. 

5.3.1 Instrument translation 

At first thought, it may seem that the instruction cell graphs in the boxes labelled instrument 

one and instrument last in Fig. 5.3 could be direct translations of the instrument blocks in the 

orchestra file. However, if they were in fact direct translations of the instrument blocks, the 

perfonnance would not occur in the manner that the composer wishes if the score file contained rests. 

For example, consider the score, 

c instrument scan duration. 
note one 0 2. 
note one 4 2. 
note one 8 2. 
eod 

for a one instrument orchestra. If the instrument boxes in Fig. 5.3 contained direct translations of the 

instrument blocks, then three two-second notes will be played in succession. But according to the 

score there should be a two-second rest after the first and second notes. During these rests the 

instrument should remain silent The equivalent of silence is an output of zero for each sample of the 

rests' durations. Thus the instrument boxes in Fig. 5.3 must contain a control structure to ensure each 

instrument is played (or not played) at the appropriate times. 

The control structure must eventually be expressed at the instruction cell level. But it is easier 

to first describe the control structure in a high-level language (in this case, VAL) and then translate it 

into instruction celJs. In order to do this, it is assumed that each instrument in the orchestra file is a 

VAL function that takes the parameters from the note statements in the score file as its input 

parameters. It is assumed that a VAL function exists for each instrument block in the orchestra file. 

These VAL instrument functions are direct translations of the orchestra file instrument blocks and 



-69. 

take the parameters from the note statements in the score file as their input parameters. 'lbe data 

type input parameters of the instrument functions is stream(rcal). Thus the instrument functions 

accept a stream of pl, a stream of p3. a stream of p4 etc. as their inputs. The output of each 

instrument function is of type strcam(strcam(rcal)) each stream in the stream of streams 

corresponding to a note in the score file. The output may be of arity one. two or four depending on 

mono, stereo or quadrophonic sound. A control structure that will accomodate rests is acheived by 

the four VAL functions in Figs. 5.4! a-d). Since p2 and pJ in the score file not~ statements specify the 

starting time and duration of each note, the variable names starUime and 1101eduratio11 are the 

variable names for pl and p3 in the VAL functions of Fig. S.4. 

The function converLstreams takes streams starllime and notetluratio11 as inputs and outputs 

two streams. One output stream resl<ktratio11 contains rem values corresponding to durations in 

seconds of all the rests in the score. The second stream bval is made up of boolean values and 

determines whether the next duration is to be chosen from the stream noteduration or the stream 

restduraiton. If the next value in bl•al is true the next duration will be taken from noteduration. 

otherwise restduration will yield the next duration. Thus bval decides whether the next duration is an 

actual note or a rest. Taking the above score, Slarltime=[0,4.8) and nottduration=[2.2,2). 

Convert_streams(_start1ime,11oteduration) yields two streams restduration=(2,2) and 

bva/ = (true,falsc,true,false,truei 

The function silence expects its input res/duration to be a stream of real values whose unit is 

seconds. For each member of restduratio11, silence constructs a stream of zeroes. The number of 

samples in this stream is equal to the number of samples in a time duration equal to that member of 

res/duration. These streams are assembled into one stream to make the streain(stream(realJI output 

that silence produces. 

The function rcpeaLbooJ accepts two inputs. one bval, of type streamlbool) and the other 

totMtime of type stream( real). These streams should be the same size. For each 101al1ime,,. a stream 



-70-

function convert_strcams(stantimc,noteduration : stream[real] returns 
stream[ real).stream[bool)): 

for 

do 

end for 
end run 

starttime : stream[ reall : = starttime; 
notcduration :stream[rcal] : = notcduration; 
bval : strcamlhool] : = [ ); 
rcstduration : stream[ real) : = [ ); 
laststarttime : real : = O; 
lastnotcduration : real : = O; 

if starttimc = cos then rcstduration,bval 
else iter 
restduration.bval : = if laststarttimc + lastnoteduration = first(notcduration) 

then consl(bval.true).rcstduration 
else conshnmsl(bvalJalsc),tme), 

consl(rcstduration,first(notcduration)-laststarttimc-lastntotcduration) 
end if; 

Jasto;tarttimc: = first(st<:rttime); 
Jastnotl'duration: = firH(notcduration); 
stantimc: = rcst(starttimc); 
notcduration: = rcst(noLcduration); 
enditer 
end if 

(a) 

function silencc(restduration : strcmn[realJ returns stream[stream[real])); 

for 

do 

end for 
endfun 

durations: stream[ real) : = restduration; 
quiet : slreamlstream[rcaJJ) : = [ ); 

if durations = [] then quiet 
else itcr 
quiet:= consl(quict,for 

do 

endfor)) 

quicl2: stream[ real):= [ ); 
count: integer : = int(first(durations)*kr)*ksmps; 

if count<= 0 then quict2 
else iter 
quict2 : = consl(quict2,0.0); 
count : = count-!; 
enditer 
end if 

durations : = rest( durations); 
enditer 
end if 

(b) 
CONTROL STRUCTURE FUNCTIONS 

Fig.5.4 



-71-

function rcpcat_bool(totaltimc: stream( real] ; bval : strcmnfbool] returns strcmn(strcam[booll)); 

for 

do 

end for 

end fun 

duration : strcmn(rcal): = totaltime; 
decide : strcam(strcamfboolJ); 
bval : strcamfbool} : = bval; 

if durations = [}then decide 
else itcr 
decide : = consl(dccidcJor 

dccidc2 : strtt:1m[IKlOl} : = 11: 

do 

end for)) 

count : integer : = iut(first(durations)*kr)*ksmps; 

if count<= 0 then dccide2 
else iter 
dcddc2 : = consl(dcddc2,first(bval)); 
count:= count-l; 
enditer 
end if 

durations : = rest( durations); 
bval : = rcst(bval); 
cnditcr 
cndir 

(c) 

function control(starttime,notcduraLion,p4 ... pm: strcnmfrcal) rctums strcam[strcam[rcal]); 

let 

in 

en diet 

end fun 

playl,play2,play3,play4 : strcmu(rcal]: = <namc>(starttimc,notcduration,p4 ... pm); 
bval,rcslduration : strcam(hool},strcmnfrcal] : = 

convert SU'eams(starttimc,notcduration); 
totaltimc : strcamfrcal): = strcam_mcrgc(notcduratlon,restduration,bval); 
quiet : strc:uulstrcamf rcallJ : = silcncc(rcstduration); 
decide : strcam(strcmnlhootll : = rcpca(bool(totaltime.bval); 

strcam_mcrgc(playl,quict.dccidc), strcam_merge{pJay2,quiet,dccidc), 
st rc:un _mcrgc(p lay 3,q u ict, dC'cidc ),stream_ Hlcrgc(play4 ,quict,dccidc) 

(d) 

CONTROL STRUCTURE FUNCTIONS 

Ftg. S.4 

------ -------------~ 



-72-

of boolean values is constructed, whose members arc all equal to bval,,. The size of each stream is the 

number of samples in a duration of totallimen. For A = (2,3), B = [true.false], kr= I. ksmps= 1, 

repcaLbool(A,B) = [[true,true].[false,false,falseD. 

lbe function control (Fig. 5.4(d)) uses the output streams of convert_streams to either play the 

instmment or initiate rests. ll1e function <name> is a description of the sound of the instmment 

whose identifier is <name>. lbe output of the function control is of arity four because the output of 

the function <name> is of arity four, signifying quadrophonic sound. 

The flow graphs for these four functions are shown in Fig. 5.5(a-d). Fig. 5.5(d) is important to 

note because it depicts what may be called the total instrument. The ,total instmment consists of the 

function control whose output is fed through a function dcstream. The function destrcam accepts an 

input of strcam(strcam(rcal)]. Its output contains all the real values present in the input except that 

its data type is strcam(rcal). lbe flow graph for destream is depicted in Fig. 5.S(c). In subsequent 

figures, whenever a box labelled instrument <name> appears, it replaces Fig. 5.S(d). A box labelled 

<name> represents the descriptioq of instrument <name> in the orchestra file or in other words a 

direct translation of the instrument block. 

The instruction cell graphs for converLstreams and control are straightforward and will not be 

detailed. The cell graphs for silence and repcat_bool however bear investigation. Since these 
. ' 

functions output audio rate signals they should be maximally pipelined. This means that the ")0" 

operator should output a value every other tick. A straightforward cell graph translation of these 

docs not yield optimally pipelined functions. The boxed part of Fig. 5.S(b) is where the problem lies. 

A direct translation of these cells is shown in Fig. 5.6(a). The reader can see that this graph does not 

produce an output value every other tick. Fig. 5.6(b) shows a non-direct translation that is maximally 

pipelined. It is this graph portion that replaces the box labelled loop control in Fig. 5.6(a). (The loop 

control box is used in several more figures as a substitution for the four flow graph actors in Fig. 

5.5(a).) Figs. 5.7(a,b) show maximally pipelined versions of silence and repcaLbool. 



-73-

starttime noteduration 

bval 

DATA FLOW GRAPH FOR THE FUNCTION CONVERT -STREAMS 
(a) 

Fig. 5.5 restduration 



-74-

restduration 

o.o eos 

quiet 

FLOW GRAPH FOR THE FUNCTION SILENCE 
(b) 

Fig.5.5 



bval 

decide 

false 

- -0-

-75-

DATA FLOW GRAPH FOR THE FUNCTION REPEAT-BOOL 

(c) 

Fig. 5.5 



starttime 

bval 

convert
streams 

rest 
d~ ration 

_!1 -*-
~ s ream

merge 

-76-

noteduration p4 p5 

<name> 

play ~altime 
,~ L 

repeat-bool 

decide 

control 

instrument <name> 

silence 

quiet j 
_._ -...- , 

stream -
merge 

destream 

, 
DATA FLOW GRAPH FOR THE FUNCTION CONTROL 

AND THE TOTAL INSTRUMENT 

(d) 
Fig.5.5 



-77-

input 

DATA FLOW GRAPH OF DESTREAM 

(e) 

Fig. 5.5 

l 
(I) 

...... _,. 



c 

-78-

merge gt 

oun!j j_ ...... j_ I-

i i 0 c t--.. 
ell> .... ~ n ~ id 

...... i 

J n 

0/1/2 

4lb 

t 

Direct Translation 

(a) 

r-~-----

1 0/1 

n 
n 

-----1 
-, 01? 
__J gt 

n 

Maximally Pipelined Translation 
(b) 

sub I--' 
t ..... li 

i 1 c 
n 

01010 
sub 

1 c 

INSTRUCTION CELL TRANSLATIONS OF LOOP-CONTROL SUBGRAPH 

Fig.5.6 

I 
I 
J 



I 
I 
I 
I 
I 
I_ 

-79-

sample number computation 
----, 

I 
I 
I 
I 
I 

INSTRUCTION CELL TRANSLATION OF SILENCE 

(a) 

Fig.5.7 

loop 
control 



totaltime 

sample 

number 

compu
tation 

-80-

loop 
con!lol 

INSTRUCTION CELL TFIANSLATION OF REPEAT-DOOL 

(b) 

Fig. 5.7 



- 81 -

5.3.2 Instrument output summing 

The simplest implementation of the boxes labelled sum in Fig. 5.3 would be add instruction 

cells (Fig. 5.8(a)). The number of add instruction cells needed would be 11-/ where 11 is the number of 

instruments in the orchestra file. But consider the fol1owing score file that plays a two instmmcnt 

orchestra. 

c instrument start duration. 
note one 0 2. 
note one 2 4. 
note two 0 10. 
end 

Instrument two plays six beats longer than instmment one and thus outputs more samples than 

instrument one. If the two instruments each send their output to different speakers the piece will 

sound as it was intended to sound. However if the output of the instruments is summed before being 

sent to a speaker there is a problem. If the number of output samples from the instruments does not 

• match up and the summing implem~ntation in Fig. 5.8(a) is used, there will be values left in 

instruction cells after performance. Fig. 5.8(b) shows a solution to the problem. The output of the 

instrument whose output stream is shorter is extended co the length of the output stream of the other 

instrument, its new members equal to zero. The two streams are then added. If the two streams were 

to be multiplied, cxtencfl operators would replace the extentl6 operatoB. To sum the output of n 

instruments, each instrument's output would be destreamed and n-1 of the box labelled stream sum 

in Fig. 5.8(b} would be used. 

5.3.3 Orchestra output nwdilication 

The contents of Che output modification box in Fig. 5.3 are shown in Fig. 5.9. The reader is 

reminded that starttime and noteduration arc equivalent to p2 and p3. Note that Fig. 5.9 assumes 

monophonic sound whereas Fig. 5.3 depicts an orchestra that outputs to four spcalcers. The input 



instrument 

one 

instrument 

two 

SUM 

instrument extendO 

one I"". r 

~! r 

n 

instrument 
~xtendO 

two 
H~ r 

'--> r 

n 

L 

1--

-82-

SUM 

add 

r. r 
... 

r 

n 

Incorrect 
(a) 

id 

r--.i r 

n 

n 

. id 

r+ r 

n 

n 
~ 

eq 
-"' - .. r 

r eos c 

Correct 

(b) 

. ..... 

1--

add 

4-1 r 

r+1 f h 
r 

b merge 

r eos c 
I--" 

I+- r ....-
id I-- n 

~ b 

n 

1--
n 

INSTRUCTION CELL TRANSLATIONS OF INSTRUMENT SUMMING 

Fig. 5.8 

t-~ 



-83-

starttime noteduration instrumentsum p4 

tream 

id's 

instrument out 

DATA FLOW GRAPH OF OUTPUT MODIFICATION 
Fig. 5.9 

pm 



- 84-

i11strume111sum is the output of a sum box in Fig. 5.3 and its type is stremu(real). If it is to be used as 

an audio rate input to a signal function in the out instrument. it must be of type stream[strcam[rcal)). 

Therefore in instrumentsum is exlended to contain a number of values equal to the number of 

samples in the total playing time of the instrument out (ie. the sum of all the p3 values). Let 112 be the 

number of members in a stream. 11 not necessarily equal for two arbitrary streams. lben it is required 
n-1 

that l: p3k for the instrument out be greater than or equal to p2n_1+p3
11

_1 for any instmment 
k=O 

After instnmtentsum is extended. 1 os tokens arc inserted in the stream. the ·1alues between the eos 

lokens corresponding to the notcduration values in the score file note statements for the instrument 

lmt. The insertion of these eos tokens converts instrumentsum from typ~ strcam[rcal) to type 

strcam[strcmn(real)) so that it can now become an input to the instmment out. 

If the orchestra file had four output streams (quadraphonic sound). then the boxed subgraph in 

Fig. 5.9 would be duplicated three times to accomodate the extension and data type conversion of 

four input streams. 

5.4 Signal Functions 

This section deals with the building blocks of the orchestra file, the signal functions. These 

functions can be broken down into three groups, the envelope generators, the oscillators and the 

signal modifiers. In the next three subsections, at least one example of each function type is worked 

through. For each function, VAL code is given first so that the reader can more easily understand the 

algorithm involved. The VAL code is followed by a flow graph repreS'cntation and then an 

implementation using instruction cells. In deriving the instruction cell graphs, several considerations 

were taken into account. 

In Music-11, each signal function is called every control period. As explained in the first 

chapter, this means that functions producing control rate signals output one real value for each 

function call and functions producing audio rate signals output an array of real values of size ksmps. 



- 85 -

In Music-df. a signal function is called only once during the entire perfonnance. Thus the output of 

each function when expressed in VAL is of type strcam[strcam[rcat)J. Each stream in t11is stream of 

streams corresponds to a note in the score file. If the output of t11e signal function is control rate. 

each stream in the output stream will contain int(p3*kr) real values. If the output stream is audio 

rate, each stream will consist of int(p3*kr)*ksmps. 

In M usic-11 most signal functions take input signals that can be one of several rates. For 

instance in the Music-11 statement, 

an oscil xamp, xcps. ifn ,iphs 

The inputs xamp and xcps may be constants, note rate. control rate or audio rate. On the other hand, 

the signal functions in Music-df expect an input to be the highest possible rate. For example the 

xamp variable in Music-df aoscil function is expected to be audio rate. If it is not audio rate, then 

aoscil will not yield the desired output. Oftentimes. a composer would like to use a control rate signal 

as the xamp or xcps input. In order that the user not have to concern himself, it is assumed that an 

orchestra tile compiler will check the inputs to the signal functions and convert them if necessary. 

For this purpose, Music-df has the following conversion functions. 

1) const:mt_to_control 
2) constant_to_:mdio 
3) note_to_control 
4) note_to_audio 
5) control_to_audio 

These functions convert a data type of the left hand side the function name to a data type of the right 

hand side of the function name. For instance, const:mt_to_control converts a constant number to a 

control rate stream and notc_to_audio converts a note rate stream to an audio rate stream. As an 

example, for the following lines in an orchestra file, 

ia idur ib 
ampenvelope kl inc p5, p3, p6 

xamp xcps if n iphs 
sig aoscil sigl, 440, 2, -1 



- 86 -

the compiler would recognize that aoscil expects its first two inputs to be audio rate. Thus 

controUo_audio(ampenvelopc) and constant_to_audio(440) would become the first two inputs to 

aoscil instead of ampcnvelopc and 440. 

It was mentioned in section 5.2 that the orchestra file must be maximally pipelined if 

performance is to occur in real time. Thus the signal functions which arc components of the 

orchestra file must also be maximally pipelined. All the signal functions arc translated such that they 

output not only audio rate signals but also control rate signals every other firing to cover the 

possibility that sr = kr. All control rate and audio rate inputs to a signal function arc assumed to 

arrive at the functions' input cell~. simultaneously and at an optimally pipelined rate. Note rate 

signals vary so slowly that that need not flow through a graph at an optimally pipelined rate. 

Finally, kr, sr and ksmps arc treated as constants since they do not vary within an orchestra file. 

5.4. l Envelope generators 

Music-11 offers seven envelope generator functions. The simplest one to study but not the least 

instructive is line. This function was briefly explained in chapter one. The orchestra function 

statement for line in Music-11 takes either of the forms,. 

kn line ia. idur, ib 

or 

an line ia, idur, ib 

Thus in Music-11, line can output either a control or audio rate signal. For Music-df two VAL 

functions were written, kline and alinc. Both functions produce an output of type 

strcam[strcam[rcal)). The output of kline is control rate and the output of alinc is audio rate. lbe 

VAL function klinc is shown in Fig. 5.IO(a). In Music-df, klinc needs one more input than in 

Music-11. This input is p3. This is because klinc are called only once during the performance and 

needs a way of knowing how many samples to output per note. 



-87-

function kline(ia,idur,ib,notcduration : strcam(real) returns stream(strcam(real)J); 

for 

do 

endfun 

outstreams: stream(~trcamfreal)J: =I); 
notcduration : stream( real) : = notcduration; 
ia : stream( real) : = ia; 
idur: stream[ real):= idur; 
ib : strcam(real) : = ib; 

if notcduration = cos then outstreams 
else iter 
outstreams : = 

cons I( ou tstreams, 
scgmcn t( first( ia ),first( idur),first( ib ),k r,int( k r*first( notcduration)))); 

notcduration : = rcst(notcduration); 
ia : = rest(ia); 
idur : = rcst(idur); 
ib : = rcst(ib); 
cnditcr 
cndif 
end for 

(a) 

funtion segmcnt(ia,idur,ib,rate : real; count: integer returns streamfrcal)); 

for 

do 

endfor 

end fun 

inc : real : = (ib-ia)/(idur*rate); 
y : real : = ia; 
oustream: stream[ real):= [ ); 
count : integer : = count; 

if count > 0 then iter 
outstrcam: = consl(otitstrcam,y); 
y: = y+inc; 
count : = count-I; 
end it er 
else outstream 
end if 

(b) 

VAL FUNCTIONS KLINE AND SEGMENT 

Fig. S.10 



- 88 -

For each member in the input streams of klinc, the function segment (Fig. 5.lO(b)) is cailed. 

The function segment outputs samples of a linear segment whose endpoints are ia and ib. The input 

idur is the amount of time that elapses between the endpoints. The input rate detennines the rate of 

the output stream. If rate= sr, the output will be audio rate and if rate= kr. the output wilJ be control 

rate. The length of the output stream is equal to the function input count. When klinc calls segment, 

count=int(kr*p3). This ensures that the size the segment's output stream is equal to the number of 

control samples in p3 seconds, the note duration. Note that idur docs not h;ive to equal p3. It only 

serves to define the slope of the line segment. If p3 < idur the segment will be tnmcated and never 

reach the value ib. If p3 > idur. the segment will pass the value ib and continue on the same defined 

line. 

The function aline is not shown but is similar to klinc except that it calls segment with the count 

input parameter equal to int(kr*p3)*ksmps and the rate input paramater equal to sr. 

The flow graph translation of klinc very straightforward as shown in Fig. 5.ll(a). For each 

member in the stream p3, segment constructs a stream. After the last member of stream p3 has 

travelled through the merge actor, the = eos condition will be true as the eos token appears on the 

input arc of the predicate operator. This causes an invocation of segment with a count of zero and the 

ia, ib, idur variables respectively equal to 0, I and 0. This is done to produce the final eos token for 

the klinc strcam[strcam[rcalJ) output 

Figs. 5.ll(b) and 5.12 depict the flow graph and instruction cell translations of segment The 

function segment outputs either a control or audio rate signal and therefore line must be maximally 

pipelined. Fig 5.12 meets this requirement. The three output lines of loop-control originate from the 

same instruction cell. Acknowledge signals arc left out of the figure to reduce clutter but it is 

important to note the acknowledge signals of several instruction cells so that the reader is convinced 

that Fig. 5.12 works correctly. Instruction cell 3 acknowledges cell I when its third input is false. It 

cannot fire until it has received an acknowledgement from the add instruction cells. Instruction cell 4 



-89-

noteduration ia ib 

segment 

DATA FLOW GRAPH F:OR THE FUNCTION KLINE 

(a) 

Fig. 5.11 

ic 



-90-

idur kr ib ia 

~ count 

DATA FLOW GRAPH OF THE FUNCTION SEGMENT 

(b) 

Fig. 5.11 



ia 

ib 

idu 

-91-

count 

loop-control 

2 4 

t 
f 

INSTRUCTION CELL TRANSLATION OF SEGMENT 

Fig. 5.12 

5 



-92-

acknowledges cell 2 when its third operand is false. It cannot fire until it has received an 

acknowledgement from instruction cell 5. Both cells 3 and 4 acknowledge the output cell of 

loop-control. Note that cells 1, 2, and the sub and mull instruction cells do not need to be optimally 

pipelined since they fire only once per note. 

5.4.2 Oscillators 

The oscillators make up the second class of signal generators. 'They output periodic waveforms 

and arc essential to music synthesis. Without oscillators, there can be no sense of pitch to a sound. 

The oscillators in M usic-11 arc table, phsor, oscil and foscil. The function table is not really an 

oscillator, but is included in this group because when paired with phsor. the two form an oscillator. 

Table, phsor and oscil arc discussed in the following paragraphs. 

5.4.2.1 The table functions 

A function statement in Mus\c-11 using table looks like any of the following three statements, 

in table indx, ifn, ixoff 
kn table kndx, ifn, ixoff 
an table xndx, ifn, ixoff 

The table functions simply access the function table ifn using a real number equal to the sum of the 

ndx and ixoffinputs to linearly interpolate between two entries. 

In Music-J 1, table can output a note rate signal (the only signal function to do so), a control rate 

signal or an audio rate signal. A separate function for each rate is written in VAL. Functions itable 

and ktable arc shown in Fig. 5.13. 

The output of itable is note rate so it is of type stream[ real). This output stream contains one 

member for each note in the score file. Likewise, the output stream of ktablc contains one member 

for each note in the score file, but its members are control rate streams. Both itablc and ktablc use 

the function intcrp (Fig. 5.14(a)) to access the function table. The index input of interp is a real 

-. 
•, -., 



I,\ 

-93-

function itablc(indx, ixoff :stream[ real); ifn : strcmn[arra)'[rcal]J returns strcam(rcal)); 

for 

do 

cndfor 
end fun 

index : stream(real) : = ndx; 
xoffsct: stream( real):= ixoff; 
ftablc : strcan~array(rc:1llJ : = ifn; 
oustrcmn : stream( real) : = [ ); 

if index = [] then outstrcam 
else itcr 
oust ream : = consl(o11tstream.interp(first( ftable)Jirst(ndx) + firs1(offsct)); 
xoffsct : = rest( offset); 
ftablc: = rcst(ftable); 
index : = rcst(indcx); 
cnditcr 
end if 

function ktablc(ndx : strcam[strcam(rcal]); ifn : strcm11(:1rray(rc:1I)): ixoff: strc:uu(rcal) 
returns stn·:1m(strc:u11[rcallJ); 

for 

do 

end for 
cndfun 

index : strcam(strc:uuf rcalJJ : = ndx; 
ftablc : strcamlstrcmn(rcallJ : = ifn; 
xoftsct: strcmn(rcal): = xoff; 
outstremns: strcmn(strcam(rcal)) : = [ ]; 

if index = (] then outstrcams 
else iter 
oustrcams: = consl(outstrcams,for 

do 

end for 

index2 : stn·am[real] : = first(index); 
addstrcam: stream( real) : = [ ); 

if indcx2 = [] then addstrcam 
else itcr 
addstrcam : = 

cons!( addstrcam. in terp(first( ftabJc ). first( i ndex2) + first( xoffset)); 
indcx2 : = rest(index2); 
enditcr 
endif 

xoffsct : = rcsl(xoffset); 
ftablc : = rcst(ftablc); 
index : =rest( index); 
enditcr 

VAL FUNCfIONS ITAJlLE AND KTABLE 
Fig. 5.13 



-94-

number int.frac. Interp usesfrac to 1inearly interpolate between entries illl and illl+ /. The function 

atable is not depicted but its VAL code and hence its flow graph and cell· translations are exactly the 

same as ktable. However atable expects its input stream ndx to consist of audio rate s~reams whereas 

the ndx input to ktablc must be made up of control rate streams. Even though the VAL code for both 

is the same the user must specify his wishes by writing either ktablc or atable. 

The data flow graph for ktablc (or atablc) is shown in Fig. 5.15. Since interp has a depth of six 

actors (Fig. 5.14(b). the dotted line" beside the interp box must each contain six identity operators to 

insure a maximally pipelined graph. 

5.4.2.2 The phsor functions 

In Music-11 the phsor functions take the fonn, 

kn phsor kcps, iphs 
an phsor xcps. iphs 

The phsor functions output a moving value phase where O< =phase<. 1.0. This moving value 

accumulates an increment dependent on the cps input The input iphs is a note rate stream and 

detennines the initial phase value for each note. If iphs=O then the initial phase equals 0, otherwise 

the initial phase is the value that was last calculated for the previous note. As an example, if the 

following statement is included in an orchestra file, 

kcps iphs 
kl phsor 100, 0 

the output signal kl will cycle from 0 to 1 with a frequency of 100 cps. Its initial phase will always be 

0. Since kl is a control rate signal the ac.cumulated increment will be 100/ kr. In general the 

increment is equal to kcps/kr ( xcps/sr for an audio rate output). 

Fig. 5.16 shows the VAL function kphsor. Like all other functions that produce control rate 

signals, its output is of type strcam[strcam[rcal)). The function rmod(x.y) is assumed to be a built in 

operation on the data flow machine. It carries out a real (as opposed to integer) mod operation. It 



-95-

function intcrp(ftable: array[real]; index: real returns real); 

let 

in 

emllet 

endfun; 

whole : integer : = int(indcx); 
fraction : real : = frac(indcx); 

flab le[ whole]+ (ft.able[ whole+ 1]-ftable[ whole])* fraction 

ifn 

1 
(I) 

I 
(I) 

1 

V1d_ FUNCTION INTERP 
(a) 

DAT A FLOW GRAPH FOR THE FUNCTION INTERP 

(b) 

Fig. 5.14 



-96-

ifn ix off ndx 

true true 

interp id's 

DAT A FLOW GRAPH FOR THE FUNCTION KT ABLE 

Fig. 5.15 



-97-

function kphsor(kcps : strcam[strcmn(rcal]) ; iphs : strcam(rcal) 

for 

do 

end for 

cndfun; 

returns strcam(strcam(rcal))); 

cps : strcam(strcmn(rcal)) : = kcps; 
phase : st rcmn( real) : = iphs; 
omstrcams: strcam(strcam(rcal)J = [ ]; 
phs : real : = 0.0: 
addstrcam : stream( real} : = [ ]; 

if amp = []then outstreams 
else itcr 
addstrcam,phs : = 

for 

do 

end for 

cps2: strcmn[rcal): = rmod(lirst(cps)); 
phs2: real : = if first(iphs)>= 0.0 

then ftrst(iphs) 
else phs 

end if: 
addstrcam2 : strcmnfrcal) : = [ ]; 

if cps2 = [ } then addstrcam2.phs2 
else iter 
addstrcam : = consl(addstrcam,phs); 
phs: = rmod(phs+ first(cps2)/kr,l.0); 
cps2: = rcst(cps2); 
cndilcr 
end if 

outstrcams: = consl(outstrcams,addstream); 
cps: =rcst(cps); 
phs: = rcst(phs); 
emliter 
end if 

VAL FUNCfION KPHSOR 
Fig. 5.16 



. 98. 

handles negative values of x in the following manner. m1od( ·.3, 1.0)=. 7 not .3. 

The flow graph for kphsor is depicted in Fig. 5.17. The initial phase value of zero is present on 

the top left F·gate. For each stream in kcps, the phase iteration section of the graph produces a 

stream of equal size. At the end of each stream kcps
11

, an eos token will cause the = eos condition to 

be true. The last computed phase value does not drop through the bottom F-gate into the merge 

actor but passes through the T-gatc to be saved for the next iteration. If iphsn + 1 < 0 then the saved 

phase values will be the first phase :alue of the iteration involving kcps
11
+ 1. '\n eos token will follow 

the last iphs member through the graph. When it becomes the input to the "= eos" actor, the actor 

will consume the eos token and place a value of /rue on the top T-gate. This •.vill allow a zero to drop 

into the phase iteration graph portion. The rmod actor will fire with the zero token as an input and 

output a zero token on the input arcs of the F- and T- gates. A final eos token from the kcps stream 

of streams will cause a true tok~n to appear on the bottom F· and T- gates. Thus the zero token will 

pass through the T-gate and be correctly positioned to leave the graph in in its initial state. 

The kphsor flow graph is not maximally pipelined but it can be translated into a cell graph that 

is, almost (Fig. 5.18). The box labelled initial phase decide is a direct actor to cell translation from the 

flow graph. The phase iteration graph portion can easily be translated into a cell graph that can 

output tokens at the optimum rate However at the end of every iteration cycle when the last phase 

value is saved (the last phase value is the output of the nnod instruction cell when its third input is 

true), seven cells must fire in sequence (five of them in the initial phase decide subgraph) before the 

phase iteration graph can produce an output token. But this firing sequence occurs only once for 

every note in the score file. With a sampling rate of 50,000 a note would have to be less than .001 

seconds before the output rate would be seriously impaired. 



initial phase decision 
0 

phase iteration 

-99-

iphs 

DATA FLOW GRAPH FOR THE FUNCTION KPHSOR 
Fag. 5.17 

kcps 

-------------------- - -------- -----------------



-100-

11--------1 

ip 

rr------=t 
I l 

I 0/1/1 I I 010 

J _i_ , rmod t1t---1_J add 
,~ I--" 

initial L--.+- r -.. r 
h~ 

... 
phase --+ r r 
decide I~ b 

I f--
n n 

~ -t-----h ......_ 

1-t-- - _J 
1-1---· __ _J I .--- -

0/1 

I 0/1 lr 01? 

id div merge J cps ..... J_ I f 1--
r I r r ~OS_c_ 

+ 

k 

kr _c_ n 1-4+ r ... r 

11 n llf:j b n ~I b 
.__, __ _J I I 1-- - -- _J I 

012 I 0/1 I 
eq ~ id I 4 r ...:.. b ,. 

i---------
r t:iosc n 
n n n __ _J ____ _J 

INSTRUCTIOl-.J CELL TRANSLATION OF KPHSOR 

Fig. 5.18 



- 101-

5.4.2.3 The oscil functions 

In Music-11, the oscil function takes the fonn 

kn oscil kamp, kcps, ifii. iphs 

when outputting a control rate signal and, 

an oscil xamp, xcps. ifii, iphs 

when it produces an audio rate signal. As explained in chapter one, oscil accesses samples of a 

periodic wave stored in a function table if11 at a frequency of kcps (or xcps). These samples are 

multiplied by the amp input to produce the output. An example will aid the reader in understanding 

the algorithm used in obtaining the oscil output 

Consider the statement, 

kamp kcps ifn 
kl koscil 10000, 440, 1, 

iphs 
-1 

If one cycle of a sine wave is stored in function table 1, then oscil becomes a sinusoidal oscillator with 

frequency of 440 and amplitude 9f 10000. As explained before, oscil steps through the function 

table. But how is it detennined which entry to access in function table l? It is known that all 

function tables are of type army( real] and have limits ifn[O: 511]. If the frequency of the signal is 

440 cycles/sec, the period is 1/440 sec/cycle. kl is a control rate signal so there are krsamplcs/scc 

and kr/440 samples/cycle. The table contains 512 entries/cycle, so the sampling increment should be 

(512*440)/ kr entries/sample or in general (512*cps)/ kr entries/sample. In order that an illegal array 

access is not made, the accumulated increment x should not be used to read the. function table but 

rmod(x.512). 

The VAL function koscil calculates its array index using a method similar to the one outlined in 

the previous paragraph. The accumulated increment x is not rmod(512*cps/ kr,512) but 

rmod(cps/kr,1.0). The function table index is obtained by multiplying x by 512. The calculated 

index is a real number and as in the table functions, is used to linearly interpolate between two 



-102-

successive entries in the function table. The iphs input determines the initial entry to be accessed in 

ifn for each note. If iph!J< = 0 then the initial entry is zero. Otherwise the initial entry is 512*iphs. 

The function koscil can be defined as follows: 

function koscil(kamp,kcps:stream[stream[rcal)); ifn:strcan~array[real]); 
iphs:stream[ real)) returns strcam[strcam[ real)]); 

let 

in 

end let 

cndfun 

phasesig:strcam[strcam[tcal)J: = kphsor(kcps,iphs); 
oscilsig:strcam(strcam(rcal)): =ktablc(phasesig*512,ifn); 

k.imp*oscilsig 

The function kphsor is used to calculate x and ktable uses 512* x to access ifn. Since koscil is 

composed of two functions that have already been defined, its graph will not be detailed. 

5.4.3 Signal modifiers 
' . 

The third class of signal functions is the signal modifiers. The majority of these functions is a 

digital filter of some sort. lbe simplest of these filters is tone. 

The Music-11 format of tone is, 

an tone asig, khp, istor 

The function tone performs a low-pass filter operation on the input audio rate signal an. The 

half-power frequency of the filter is khp. The algorithm used is the filter equation, 

y[n)=bO*x[n]+al*y[n-1), where x[n] is the input corresponding to asig and bO and al arc filter 

coefficients calculated from the half-power frequency by the function tone_coeff (Fig. 5.l 9(b)). The 

input istor determines the initial value of y[n-1) for each note. If istor = 0 the inital value of y[n-1] at 

the start of the next note is zero. If istor/= 0 the inital value of y[n-1] is the last value of y[n] from the 

previous note. 

Fig. 5.19(c) shows the VAL function tone. Tone calls the function converLcocff (Fig. 5.l 9(a)) 



-103-

function convcrt_cocff{khp : streani(strcamlreal)) returns strcam{strean4rcalfl); 

endfor 

cndfun 

hp : strcamfstrcamf rcalJI : = khp; 
bo : strcantlstrcamfreaJI : ={ J; 
al : strcamJstre..P.calfl : = I); 
sbo: streamJ.rcaJJ : = 11; 
sal: stftl~: = ( f; 
if hp = l ) tht.'11 bO,al 
else iter· 
sbO.sal : = for 

sbO ·: streamfrca1J : =I ]: 
·sa l : streamfren1f : = f I: 
hp2: re.al : = firsl(hp): 
mbO: real; 
mal: real; 

lflip = {ltm ... 1 sbO.sal 
elscit>tt 
mbO.mal : = tonc_cocffi,first{hp2)); 
sbO: = oom'l( sbO.mbOt, 
sal : = rous.l(sal,mal); 
hp2 : = rest{hp2); 
emftter 
cndif 

endfor 
bO : = ro~t(bO,sbO); 
al : = coosl(a2,sal); 
hp:= n.'St(hp); 
end it er 
>Cnttif 

VAL FUNC110N CONVERTCOEFF 
(~) -

function tonc_cocff{hp : real returns rcat); 

Jet 

in 

b: real : = 2.0-cos(2-Pi*first(hp)/sr); 
al : real:= if hp >O.Othen b-sqrt(b*b-1) else ~b +sqrt(b*b-1) crulif; 

all-al 

VAL FUNCHON TONE_COEFF 

(b) 
fl1.s.1t 



-104-

function tonc(asig,khp : strcmn[strcam[rcal]) ; istor : stremn(real) 

for 

do 

end for 

end fun; 

- returns stremn[strcam(rcal)}; 

x,y : strcam[stream[rcal)I : = convcrt_cocfllkhp); 
hO: strc:un[strc:u11lrc:1llJ : =control_to_audio(x); 
al: slrcamlstrcamlrralJI: =control_to_audio(y); 
sig : strc:unlstremn[rcalJ) : = asig: 
stor: strcmn[rcalJ : = istor; 
result : real : = 0.0; 
outstrcams: strcmnfstrcam[real)) : = [ ); 
addoutstrcam : stream[ real) : = [ ]: 

if sig = [ ] then outstrcams 
else iter 
a<ldoutstrcam.rcsult : = for 

do 

end for 

bO : strcmn(rcal) : = first(bO): 
al : slrcmn(n·al): = first(al); 
sig : ~lrcmnlrcall : = lirsl(sig): 
mll<;trcam : strcam(rculJ : = [ ); 
rcsul1 : rc:tl : = if first(istor) = 0.0 

endif; 

then 0.0 
else result 

if sig = [] then outstrcam 
else itcr 
result : = tirst(bO)*lirst(sig) +first( a l)*rcsult; 
outstrcam : = cousl(outstrcam.rcsult); 
bO: = rest(bO); 
al: =rcst(al); 
sig: = rcst(sig); 
cnditcr 

cndir 

outstrcam : = consl(oustrcams,addoutstrcam); 
bO: = rcst(bO); 
al:= rest( al); 
sig: = rest(sig); 
stor: = rcst(stor); 
cnditer 
end if 

VAL FUNCrION TONE 
(c) 

Fig. 5.19 



-105-

to convert the control rate stream of khp to two control rate streams of filter coefficients. The two 

streams arc convened to audio rate streams by the function controLto_audio. 

The flow graph for tone is shown in Fig. 520. In order to give the reader a full understanding, 

a brief example is presented. Let asi~ = x. b00 = c. a!0 = d and is10r0 = I. x. c and dare all 

streams and correspond to the first note in the score. Furthermore, let m be the .length of streams x, c 

and d. Because istor0 = I, the initial zero tot.en drops dtrough the F-gatc and merge actor into the 

filter iteration subgraph. The initi 11 value of true on the input of the mcrg<· actor .allows the value 

zero to rest on the input arc of the F- and T--gatcs. The condition X[J= eos is false so the filter 

subgraph outputs JiOJ = x0 *c0. ll1c value -of JIO] is fed back through the merge actor in the filter 

iteration subgraph where it drops through to the F- and T-gatcs. If m>I. then J[O] becomes the input 

to the multiply operator and the filler iteration subgraph outputs J{l] = x1*c1+Jf0J*d1. When 

>{m-1] is calculated, it becomes the output of the filter iteration .subgraph and is fed back to the merge 

actor where drops through to the two gates. This time. the =eos c-ondition for xis true. Thus J(m-Jj 

is swallowed by the F-gate and falls through the T-gate. The va1ue of islor1 dctcnnines whether 

Jim-/) will remain the same or be assigned the value ZCJ"'() when computing >{m). 

When the last note has been played, the eos token of the isJor stream causes the last calculated 

output to be consumed by the F-gate and a zero value to drop through, me IDCIJC actor of the filter 

iteration subgraph. The final eos token of the asig stream of streams produces a lnte token on the F

and T-gates. Therefore the zero token passes through the T-gate and the graph is restored to its 

original state. 

The cell graph for tone is shown in Fig. 5.21. The tilter iteration subgraph can be translated 

into an instruction cell graph that will output values at an optimum rate between consecutive false 

inputs. When the boolean input is uue (when the = eos condition for asig is true). a sequence of 

seven cells must fire before the next output is produced. However, (his occurs only at the end of each 

note and does not seriously impede the output rate. The box labelled itl cells, rontains a sequence of 

-----



0 

filter 
iteration 

-106-

istor khp 

convert

coeff 

input feed 

DATA FLOW GRAPH FOR THE FUNCTION TONE 

Fig. 5.20 

asig 



al!iiJc I id's 

convert 
khp I coeff 

.o~ 

control_ 
to_audi 

' ~~ 1--~~§_l-id : !>in 
. n _.n 'n' &•:.i,_·-1-t ===~'---n n J __ 

~ IJ 
11>1 I 11 

I 

control_ Jj •lot! ____ j rj I •trl · 
to~aud ... 

CELL GRAPH FOR THE 

FUNCTION TONE 

Fig. 5.21 

I ... 
0 ..... 
I 



- 108 -

m identity instruction cells where m is large enough to insure that the graph is pipelined. 

5.5 Function Tables 

In Music-11 the user can create arrays and use them to store evenly spaced samples of 

waveforms. This is done by including a function statement in the score file. (The reader is referred 

to chapter one for a detailed description of the function statement.) In Music-df. the same capability 

is offered. However, instead of assigning the function generators a number that becomes p4 in the 

function statement, a meaningful name is given to each different wavcfom1 option. For instance 

function generator # 10 in Music-11 becomes sinctablc in Music-df. 

All function tables arc of type :irray[rcal] and contain 513 entries. This size is considered large 

enough, particularly since all the signal functions that access function tables perform an interpolation. 

The last entry is a copy of the first entry so that an illegal array access cannot be made when a signal 

function interpolates. The array limits arc [O: 512). 

A representative function g~nerator. sinctablc is detailed in this section. The algorithm for 

sinctable is expressed first in a VAL function and then a data flow graph. Since the instruction cell 

coding is a direct translation of the flow graph, it is not included. 

5.6 Sinusoidal Sum Function Table 

The Music-11 function generator # 10 was discussed in chapter one. It computes a sum of 

sinusoids and stores them in a function table. In Music-11, a statement containing function generator 

# 10 looks like, 

where 

f pl pl p3 JO strl, str2, str3, ... 

strl,str2,str3. .. - the strength of the first, second, third etc. 

partials 

--------- ---- -



-109-

Function generator #10 in Music-11 becomes the function sinetablc in Music-df(Fig. 5.22(a)). 

It expects its input in a different format than that of Music-11. The first input strength is a stream of 

the strengths of the partials. The function sinctable calls sinscsum (Fig. 5.22(b)) to construct an 

unscaled array and give the maximum value contained by the array. The function sinctablc then uses 

the scale input to determine whether or not to scale the sincsum's output array to a peak value of 1. 

A Music-df function statement using sinctablc has the fonn, 

functiontablc sinctable [strl,str2,str3 ... ].scalt 

The flow graphs for sinctablc and sincsum are shown in Fig. 5.23. The function sincsum 

calculates the 512 points of the wav<;fonn using the equation, 

function_tablc[i): = 

strl *sin(2w /512/l *real(i))+ 

str2*sin(2w /512/2*rcal(i))+ ... 

strn*sin(2w /512/n*real(i)) 

Within the calculation of the contents of each table entry the VAL function sinesum computes the 

contribution of each partial in sequence. It is hoped that a compiler would be smart enough to see 

the potential for parallelism that is not expressed in the VAL function. Consider the case where 

sinesum is called with only one partial. Fig. 5.23(b) depicts the flow graph for this case. If the 

number of partials equals n then the parallelized flow graph would be as shown in Fig. 5.23(c) where 

the number of addition operators needed would be n-1. 



-110-

function s!nctablc(strcngth: stream[real]; scale: real returns am1y[real]); 

let 

in 

end let 

endf un 

function table : array[ real], scalcfactor: real:= sinesum(strength); 

if scale> 0 
then functiontable 
else 

for 

do 

endfor 
end if 

functiontJbk : array[ rcaJ : = function table 
index : integer:= O; 

if index> 512 then functiontable 
else iter 
functiontablc[index]: = functiontablc[indexJ!scalcfactor; 
inde> : = index + l; 
enditer 
end if 

VAL FUNCTION SI NET ABLE 

(a) 

Fig. 5.22 



-111-

function sinesum(strength :streamfreal} retums atray[realf); 

let 
functiontable : arrayfreal) , max : real : = 

for 

in 

e:ndlet 

do 

endfor 

addcntry :reak 
scalcfactor: real:= O; 
count : intt,.er : ::;; o~ 
fimcliontable : arra}'f reaf} : =array_ fiH(O, -1,0); 

if count :;:;: 51.Z then functiontable, scalefactor 
else iter 
addentry : :::;. 

for 

do 

strength~~:= strength~ 
x : re-.tl : =&~ 
partial :real:= l; 

if strength ::::: ( l then x 
clst iter 
x : = x + ftrSt(strcngth)*sin(2*pi/512/partial*£e-.d(count)); 
strength : = rest(slrcugth}; 
partial : = partial + l; 
enditer 
enctif· 

endfolo 
count : ::;;: count + 1 
functiontabk: =array mW lti(functioutablc,addentry) 
scakfactor : = max(scakfactor.ilddentry); 
CPditer 
cmlif 

array_ add _hi( functiont:able, functiontablc(Ol).scalcfactor 

VAL FUNCTION SlNESUM 

(b) 

Fig. 5.22 



saclefactor 

-112-

strength 

sinesum 

functiontable 

DAT A FLOW GRAPH FOR THE FUNCTION SINET ABLE 

(a) 

Fig. 5.23 

scale 



-113-

n 

DATA FLOW GRAPH FOR PARTIAL N IN THE FUNCTION SINESUM. 
(b) 

Fig. 5.23 



-116-

. J =;i.eo 

nuge1horn 1$~b~ - I 1 Id J;j!jl j I - 11 ~!~~I 

clarinet l~,b~ ~ J .J J tlJ?d. - I I J tfJ ll/J. rtJ 

piano 
I~ •b :: LJ ~~j1t11 f; I 1 f=~ fl1f '1 J:-tl 

I l'b"i!J ,J I d j iJ .J 4 .I n--J 

CONVENTIONAL SCORE 

Fig. 6.1 

-----~---------



IK.'ginorchcstra 
sr = 40000 
kr = 5000 
ksmps = 8 
nchnls = 1 

flugclhom = 
instr flugelhom 
notcfrcq = cpspch(p4) 

modcnvclope klincn 

modulator aoscil 

ampcnvclope klincn 

trcmclo koscil 

flugsound aoscil 
output 

cndin 

clarinet= 
instr clarinet 
notcfrcq = cpspch(p4) 
carricrfrcq = 3*notcfrcq 
modfreq = 2*notcfreq 

modcnvclope a linen 

modulator aoscil 

carricrcnvelopc a linen 

clarsound aoscil 
output 

end in 

-117-

kamp 
notcfrcq*p7, 
xamp 
modenvelope, 
kamp 
1000*p5, 
kamp 
p9, 
xamp 
ampcnvclopc*trcmclo, 
flugsound 

xamp 
10000, 
xamp 
modcnvclope 
xamp 
4 *carricrfreq 
xamp 
carricrcnvelopc, 
clarsound 

ORCHESTRA FILE 

Fig. 6.2 
(1of3 pages) 

irise idur 
.06, p3, 
xcps ifn 
notefrcq*.995, I, 
irise idur 
p6, p3, 
kcps ifn 
p8, I, 
xcps ifn 
note freq+ modulator, 1, 

idec 
.02 

iphs 
-1 
id cc 
.03 
iphs 

-1 
iphs 
-1 

irise idur id cc 
.2. p3, 0 
xcps ifn iphs 
mod freq, I, 0 
irise idur idec 
.2 p3, .15 
xcps ifn iphs 
carricrfrcq +modulator, 1, 0 



-118-

pianol= 
instr piano! 
nfreql =cpspch(p4) ;unstretced pitch 
nfrcq2 =nfrcql-(10/nfrcql) 
nfrcq3 = nfreql + (nfreql/200) 
if nfrcql<l96 

;stretched pitch for high notes 
;stretched pitch for low notes 

then nfreq = nfrcq2 
else if nfreql<784 

then nfreq = nfrcql 
else nfrcq = nfreq3 

endif 
end if 
mod I amp= ( nfreq*(8-log( nfreq)) )/(log( nfreq*(log(nfrcq)) 
mod2amp = ( 20*(8-log( nfrcq )))/nfreq 
modi freq= nfrcq +(nfreq/200) 
mod2freq = (nfreq*4 )+ (nft ~q/200) 

ampenv 

modi 
mod2 
slringl 
string2 
slring3 

end in 

piano2= 
instr piano2 

klinscg 

aoscil 
aosdl 
aoscil 
aoscil 
aoscil 
output 

nfrcq l = cpspch(p4) 

ia idurl ib idur2 ic idur3 id idur4 ie idur5 if 
l, p3*.05 .6, p3*.05, .2, p3*.15, .15, pJ*.25 .. 07. p3*.5, 0 
xamp xcps ifn iphs 
modlamp*modlfreq, modlfrcq, l, 0 
mod2amp*mod2frcq, mod2frcq, 1, 0 
ampenv, nfreq+modl+mod2. 1, 0 
ampcnv, nfrcq+modl +mod2+.007, 1, 0 
ampcnv, nfreq+modl +mod2-.007 l, 0 
(slringl + slring2 + slring3 )*7000 

;unstretchcd pitch 
nfrcq2 = nfrcq 1-(10/nfreql) 
nfrcq3 = nfrcql + (nfreql/200) 
if nfrcq 1 <196 

;stretched pitch for high notes 
;stretched pitch for low notes 

then nfrcq = nfrcq2 
else if nfrcq 1<784 

then n freq= nfrcq 1 
else nfrcq = nfrcq3 

endif 
end if 
modl amp= ( nfreq*(8-log( nfrcq)))/(log( nfrcq)*(log(nfrcq)) 
mod2amp = (20*(8-log(nfreq)))/nfrcq 
modl freq= nfrcq +(nfrcq/200) 
mod2frcq = (nfrcq*4)+(nfrcq/200) 

ampcnv 

modl 
mod2 
string! 
string2 
string3 

end in 

klinscg 

aoscil 
aoscil 
aoscil 
aoscil 
aoscil 
output 

ia idurl ib idur2 ic idur3 id idur4 ie idur5 if 
1, p3*.05 .6, p3*.05, .2, p3*.15, .15, p3*.25, .07, p3*.5, 0 
xamp xcps ifn iphs 
modlamp*modlfrcq, modlfrcq, 1, 0 
mod2amp*mod2frcq, mod2frcq, 1, 0 
ampcnv, nfrcq+modl+mod2, 1, 0 
ampenv, nfrcq+modl+mod2+.007, 1, 0 
ampcnv, nfreq+modl +mod2-.007 1, 0 
(string! + string2 + string3 )*7000 

ORCHESTRA FILE 
Fig. 6.2 . 

(2 of 3 pages) 



-119-

piaoo3= 
instr pianoJ 
pitchl =cfKPCh{p4) 
pitch2 = pitch 1-(10/ pitch l) 
pitch3=pilchl +(pitchl/200) 
if pitchl<l96 

then pitch= pitch2 
else if pitchl<784 

tlH!n pitch= pitch! 
else pitch= pitch3 

enclif 
end if 
modl amp= ( pitch*(8-tog( pitch )))/(log( pitch)*(log(pitch)) 
mod2amp = (20*(8-log(pitch)))/pitch 
modl freq::: pitch +(pitch/200) 
mod2freq =(pitch*4)+(pitch/200) 

ampcnv 

modi 
mod2 
string! 
string2 
string3 

end in 
pianobass = 

klinscg 

aoscil 
aoscil 
aoscil 
aoscil 
aoscil 
output 

instr pianobass 
pitch I= cpspch(p4) 

ia idurl ib idur2 ic idur3 id idur4 ic idurS if 
1. p3*.05 .6, p3*.05 •. 2, p3*.15, .15. p3*.25 .. 07, p3*.5, 0 
xamp xcps ifn iphs 
111odlamp*modlfreq. modlfreq, l. 0 
mod2amp*mod2freq, mod2frcq, 1, 0 
ampcnv, pilch+modl+mod2. 1, 0 
ampenv. pilch+modl+mod2+.007, 1, 0 
ampcnv, pitch+mo<ll + mod2-.007 1, 0 
(string 1 + stri ng2 + stri ngJ )*700 

pitch2 = pitchl-(10/pitchl) 
pitch3 = pitchl + (pitchl/200) 
if pitchl<l96 

then pitch= pitch2 · 
else ir pitch1<784 

then pitch= pitchl 
else pitch= pitch3 

end if 
end if 
modlamp=(pitch*(8-log(pitch)))/(log(pitch)*(log(pitch)) 
mod2amp = (20*(8-log(pitch)))/pitch 
mod l freq= pitch+ ( pitch/200) 
mod2freq = (pitch*4)+(pitch/200) 

ampenv 

mod! 
mod2 
string] 
string2 
string3 

end in 

klinseg 

aosdl 
aoscil 
aoscil 
aoscil 
aoscil 
output 

ia idurl ib idur2 ic idurJ id i<.; :?r4 ie idur5 if 
l, p3*.05 .6, p3*.05, .2, p3*.15, .15, pJ*.25, .07, p3*.5, 0 
xamp xcps ifn iphs 
modlamp*modlfrcq, modlfreq, 1, 0 
mod2amp*mod2freq, mod2freq, 1, 0 
ampenv, pitch+modl+mod2, 1, 0 
ampcnv, pitch+modl+mod2+.007, 1, 0 
ampcnv, pileh+modl+mod2-.007 1, 0 
(string I + string2 + string3)*500. 

out flugclhorn +clarinet+ piano!+ piano2 + piano3 + pianobass 
cndorchcstra 

ORCHESTRA FILE 
Fig. 6.2 

(3 of3 pages) 



-120-

above middle C. int= 8 for any note that lies between high C and middle C. For all other notes, .01 

is multiplied by the number of half steps it is away from the nearest C below it and added to the 

octave pitch value for that C. Therefore the octave pitch value for D above.middle C is 8.02. The 

cpspch function is particularly useful when writing score files. No composer wishes to have to look 

up the cps value that corresponds to every note in his score. 

Two other functions that the reader may not be familiar with arc klincn and klinscg. As can be 

seen from the flugelhorn instrument block, the inputs for klincn arc kamp, irfae, idur and idec. Klincn 

first computes samples of a curve that rises linearly from 0 to I in irise seconds. It remains at the 

value 1 until idur-idec seconds into the note, at which time it decays linearly back to zero in idur 

seconds. l11is curve is then multiplied by kamp to produce klincn's output signal. 

The function klinscg is used in the piano instrument blocks and takes the general form: 

outsig klinscg ia. idurl, ib, idur2, ic, idur3 ... 

Klinscg construct a series of linear segments, the first having endpoints ia, ib and lasting for idurl 

seconds, the second having endpoi:nts ib, ic and lasting for idur2 seconds, the third having endpoints 

ic, id and lasting for idur3 seconds etc. The output of the klinscg function in the piano instrument 

blocks contains five line segments. 

All three. instrument blocks use the FM synthesis technique to produce their output sound. 

The flugclhorn contains a trcmelo of which the depth and speed are controlled in the score file. The 

clarinet is a simple FM instrument 'The piano uses a doubly modulated signal for its output sound. It 

also models the fact that three strings are struck whenever a note is played and that one or more of 

these strings could be out of tune. The stringl, string2 and string3 variables represent these three 

strings. String2 and string3 are slightly off pitch. 

With an orchestra file in hand, the appropriate score file that will play the instrument can be 

written. Fig. 6.3 shows the score fiJe that will play the instruments in the orchestra file according to 

the score in Fig. 6.1. It is important to note that whereas one usually considers a musical piece to start 



-121-

tempo 0 186 
fuKtiontaltlc siaetaWe (11 1 
c flugclbom score 
c p5 = oote amplitude 
c p6= oote amplitude envelope rise time 
c p 7= modl1lation index 
c p8= tmneio frequency 
c p9 = trcmclo amplitude 
c instr start dur pitch p5 p6 p7 p8 p9 
note tlugclhom 5 .15 8.65 10 .2 3 6 50 
note ftugclhorn 5.15 .25 8.07 915 .08 .5 4 20 
note flugelhorn 6 .75 8.05 9 .2 3 6 50 
note flugclhorn 6.15 .25 8.03 815 .08 .5 4 20 
note flugclhom 7 .75 8.00 8 .2 3 6 50 
note flugclhorn 7.75 .25 7.09 7.25 .08 .5 4 20 
note flugclhorn 8 1 7.11 7 .15 3 5 20 
note flugclhom 13 .75 8.05 10 .2 3 6 50 
note flugclhom 13.75 .25 8.07 9.25 .08 .5 4 20 
note tlugclhorn 14 .75 8.05 9 .2 3 6 50 
note tlugclhorn 14.75 .25 S.03 8.25 .08 .5 4 20 
note flugclhom 15 .75 8.00 8 .15 3 5 20 
note flugclhom 15.75 .25 7.09 7.25 .08 .5 4 20 
note flugclhom 16 1 7.11 7 .15 3 5 20 

c clarinet score 
c instr start dur pitch 
note clarinet 1 1 8:.05 
note clarinet 2 .5 8.05 
note clarinet 2.S l 3.05 
note clarinet 3.5 l 8-.05 
note clarinet 4.5 1.5 &.07 
note clarinet 9 1 8.05 
note clarinet 10 .5 8.08 
note clarinet 10.5 1 3.08 
note clarinet 11.5 1 8.07 
note clarinet 12.5 l.S 8.0S 

SCORE FILE 
Fig. 6.3 

(1 of 2 pages) 

-- ------ ------



-122-

c piano scores 
c instr start dur pitch 
c right hand 
note pianol 1 1 8.05 
note piano2 1 1 8.02 
note piano3 1 1 7.10 
note pianol 3 1 8.05 
note piano2 3 1 8.02 
note piano3 3 1 7.08 
note piano! 5 1 8.07 
note piano2 5 1 8.03 
note piano3 5 1 7.10 
note pianol 6.5 1.5 8.05 
note piano2 6.5 1.5 8.03 
note piano3 6.5 1.5 7.09 
note pianol 9 1 8.05 
note piano2 9 1 8.02 
note piano3 9 1 7.10 
note pianol 11 1 8.05 
note piano2 11 1 8.02 
note piano3 11 1 7.08 
note pianol 13 1 8.07 
note piano2 13 1 8.03 
note piano3 13 1 7.10 
note pianol 14.5 1.5 8.05 
note piano2 14.5 1.5 8.03 
note piano3 14.5 1.5 7.09 
cleft hand 
note pianobass 0 2 6.10 
note pianobass 2 2 6.11 
note pianobass 4 2 7.00 
note pianobass 6 2 5.10 
note pianobass 8 2 6.10 
note pianobass 10 2 6.11 
note pianobass 12 2 7.00 
note pianobass 14 1 5.10 
note pianobass 15 1 5.10 
end 

SCORE FILE 

Fig.6.3 
(2 of 2 pages) 



-123-

on the first beat, in the notation of a Music-df score a piece starts on the zeroth beat Thus the 

clarinet plays· its first note on beat l in the Music-df score, not beat two. 

6.l.2 Performance 

With the orchestra and score files written to his satisfaction the musician would invoke a 

performance program on the host computer of the Music-df system. This program would first send 

the functiontablc statement of the score fik to the data flow machine where one cycle of a sine wave 

would be stored in function table no.I. The performance program would then sort all the note 

statements in the score files in ascer.ding order of pl. Then the p2 and p3 values would be converted 

from beat values to second values. The tempo statement in Fig. 6.3 specifics a constant tempo of 180 

beats/min. Thus all p2 and p3 values would be divided by 3. After the score fiJe has been attended 

to, the performance program would compile the orchestra file into instruction cells and send them to 

the data flow machine. The parameters from then the note statements would then be transmitted to 

the data flow machine to play the orchestra. 

6.l.3 Data Row representation of an instrument block 

Chapter five detailed how the orchestra file could be compiled. However it did not give an 

example of how the flow graph for an instrument description, (the box labelled <name> in Fig. 

5.5(d)) might be generated. Fig. 6.4 depicts the flow graph for the clarinet in the orchestra file of Fig. 

6.2. Note that the paths through which note rate signals (ie. p.f) flow need not be maximally 

pipelined. However the paths of the graph through which audio rate signals flow must be maximally 

pipelined. Identity operators would have to be inserted in Fig. 6.4 on the lines labclJcd 1, 2 and 3 to 

ensure that all audio rate paths in the flow graph contain the same number of actors. 



p4 

carrier
freq 

note-to 

audio 

1 

note-to 

audio 

2 

DAT A FLOW GRAPH FOR 

THE CLARINET 

Fig.6.4 

-124-

.12 .15 

alinen 

carrier
envelope 

p3 

1000 .2 0 

alinen 

mod
envelope 

1 

aoscil 

· aoscil 



-125-

6.1.4 System Specincations 

When the orchestra file of Fig. 6.2 is compiled, it consists of 3500 instruction cells. Thus the 

instruction cell memory must contain 112,000 free bytes in which the orchestra file can reside. Of the 

3500 instruction cells fifty arc structure operations. Thus it is thought that two processors are 

adequate in handling the required computation rate. One of them would of course be a structure 

processor. For a sampling rate of 40 Khz the structure processor would have to process structure 

operations at a rate of 2 Mhz. Witt a typical memory access time of 500 nsec this appears achievable. 

Of the remaining 3450 instruction cells containing scalar operations, 1400 take note rate signals as 

their operands. lberefore only 2050 scalar operations need to be processed e\ery 25 microscc. A 

scalar processor with a processing rate of 85 Mhz could easily handle these operations at the desired 

speed. It would be necessary for the data flow machine to have two additional processors. One 

would be dedicated to the handling of the note statement parameter 1/0. The other is required to 

manage the output of the samples to the DACs. The arbitration and distribution networks would 

have to be built so that the difference between the time from which an instruction is enabled to the 

time at which the result arrives at its destination cell is no longer than 25 microsec. 

A look at Fig. 6.1 helps to determine the demands that are set on the transmission rate of the 

note statement parameters. The worst case in tenns of parameters/sec that have to be sent from the 

host to the data flow machine occurs in several places, one of them being in the second measure when 

the flugelhom plays G natural and F natural in succcsion. The section of the sorted score file that 

corresponds to these notes is: 

note 
note 
note 

flugelhom 
flugelhorn 
pianobass 

5.15 .25 .. . 
6 .7S .. . 
6 2 .. . 

It is reasonable to assume that note parameters, p11: n> I, will be sent in packets each packet 

containing the note parameter and the instrument for which it is intended .. A note parameter packet 



-126-

might possibly contain six bytes, four for the parameter value and two for the parameter number and 

the instrument identifier. The flugelhorn instrument takes nine parameters and !11e pianobass 

instrument takes four parameters. Thus a total of nineteen note parameter packets must be sent in 

.25 beats or .0833 seconds. The requirement of me interface between the host computer and the data 

flow machine is mat 228 note parameter packets (possibly 1368 bytes) per second be transmitted. 

6.2 Conclusion 

This thesis set out to investigate the feasibility of real time performance of a musical 

composition on a computer synthesis system. The Music-11 synthesis system and synthesis language 

were used as models in me design of a proposed Music-df system. The Music-df system uses a data 

flow machine to exploit me parallelism mat exists in the performance of a composition. The previous 

section presented an orchestra and score file of medium complexity and illustrated that real-time 

performance of mese files could occur if certain design specifications of the data flow machine and its 

interface to the host computer are i:net · 

The advantages of the Music-df system are apparent Is behavior more closely parallels that of 

a real orchestra. Once me orchestra has been loaded into the data flow machine different score files 

can be used to play it without having to recompile the orchestra. The instruction cell translation of 

the orchestra file returns to its initial state after performance. The savings in storage is large .. On 

conventional computer synthesis systems, the samples of the output voltage waveform must be saved. 

For one minute of sound and a sampling rate of 40 Khz, 2.4 million real values have to be stored. 

Finally, me greatest advantage of the Music-df system from a composer's point of view is the 

relatively small turnaround time. A real time system spares the composer the annoyance of having to 

wait long periods of time to hear his composition. When he fine tunes a parameter, a composer 

would like to be able to hear a sound while the previously produced sound is still fresh in his mind. 

Whether or not the requirements of the data flow machine outlined in the last section can be 



-127 -

met has not yet been determined due to the fact that the first data flow machine whose architecture is 

that of Fig. 4.3 is presently under construction. This machine could well forecast the future of a 

system similar to the Music-dfsystem. 

6.3 Suggestions For Future Research 

It is easy enough to determine the required specifications for the Music-df system so that a 

given orchestra and score file can be performed in real time. However it is impractical to build a 

Music·df system for every orchestra and score file to be performed. It is much more expedient to 

construct an all purpose system that would support many different orchestra and score files. In order 

to determine what the design specifications of such a system would be, more analyses of existing 

orchestra and score files needs to be undertaken. As an example, foF lhc two files presented in this 

chapter, a requirement of the data flow machine was that the structure processor be able to process 

structure operations at a rate of 2 Mhz. With a typical memory access time of 500 nsec, a 2 Mhz rate 

is an upper limit of what the structure processor can handle. The structure controller of Fig. 4.4 can 

handle instructions only as fast as the structure memory will allow .it It is not unusual for an 

orchestra file to have more oscillators than the orchestra file of Fig. 6.2. requiring a higher structure 

processing rate. It is clear that one structure memory cannot meet this requirement. The only 

solution is to have multiple instmction memories. A structure processor consisting of two structure 

memories accessed by on structure controller could deliver a 4 Mhz instruction rate provided the 

operations were evenly distributed between the two memories. The number of structure processors. 

the number of memories in each structure processor arc two of several system parameters that would 

have to be studied more carefully in the design of a more general real time synthesis system. 



-128-

REFERENCES 

(1) Ackerman, W. B. and J. B. Dennis. VAL - A valu~oriemed algorithmic language preliminary 
reference manual. Technical Report LCS/TR-218, Laboratory for Computer Science, Mass. 
Institute of Technology, Cambridge, Mass., June 1979. 

(2) Acherman, W. B. ·A Structure Memory For Data Flow Computers. Technical Report 
LCS/TR-186, Laboratory for Computer Science, Mass. Institute of Technology, Cambridge, 
Mass., August 1977. 

(3) Arvind, and K. P. Gostell ·w. A computer capable of exchangiPg processors for time. 
lmfon11atio11Processing1977, North Holland, New York 1977, 849-854. 

(4) Arvind, K. P. Gostelow, and W. Plouffe. An Asynchronous Programming Language and 
Computing Machine. Techinal Report 114A, Dept. of Information ,md Computer Science, 
University of California. Irvine, December 1978. 

(5) Brock, J. D. and L. n. Montz. Translation and Optimization of Data flow Programs. 
Computation Structur.cs Group, Laboratory for Computer Science, Mass. Institute of 
Technology, Cambridge, Mass. July 1979. 

[6] Chowning, J. M. The Synthesis of Complex Audio Spectra by Means of Frequency 
Modulation. Journal of the Audio Engineering Society, Volume 21, No. 7, September 1973. 

(7] Dennis J. B. and D. P. Misunas. A Preliminary Architecture for a Basic Data-Flow Processor. 
Computation Structures Group, Laboratory for Computer Science, Mass. Institute of 
Technology, Cambridge, Mass, August 1974. 

[8] Dennis J. B. and K. -S. Weng. Application of Data Flow to the Weather Problem. Computation 
Structures Group, Laboratory for Computer Science, Mass. Institute of Technology, 
Cambridge, Mass. May 1977. 

[9) Dennis, J.B., C. K. Leung and D. P. Misunas. A Highly Parallel Processor Using a Data Flow 
Machine Language. Computation Stmctures Group, Laboratory for Computer Science, Mass. 
Institute of Technology, Cambridge, Mass. June 1979 

(10) Dennis J. B. and K. -S. Weng. An abstract impfementation for concurrent computation with 
streams. Proceedings of the 1979 lntemational Conference on Parallel Processing, IEEE, August 
1979. 

[11) Dennis J. B., The Varieties of Data Flow Computers. Computation Structures Group, 
Laboratory for Computer Science, Mass. Institute of Technology, Cambridge, Mass., August 
1979. 

[12) Dennis J. B., G. A. Boughton and C. K. C. Leung. Building Blocks for Data Flow Prototypes. 
Computation Structures .Group, Laboratory for Computer Science, Mass. Institute of 
Technology, Cambridge, Mass., February 1980. 



-129-

[13) Howe, H. S. Electronic Music Sy111hesis. W.W. Norton & Company Inc., New York, 1975. 

(14] Mathews, M. V. The Technology of Computer Music. The MIT Press, Cambridge, MA, 1969. 

{15) Moorer, J. A. Signal Processing Aspects of Computer Music - A Survey. Computer Music 
Joumal, February 1977. 

[16) Oppenheim. A. V. and R. W. Schafer. Digital Signal Processing. Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1975. 

[17) Stanek, J. A Exploration of Co11curre111 Digital Sout1d Sylllhesis on a Prototype Data-Driven 
Machine. Dept of Computer Science, The University of Utah, December, 1979. 

[18) Stoy, J. E. Fu11ctio11s i11 the Fomz I Data Flow Machine. Unpublished C.lrnmunication. 

[19) Todd, K. A11 /11terpreter for lnstructio11 Cells. Unpublished Communication. 

{20) Vcrcoc. B. Reference Manual for 1he Music-fl Suund Synthesis La11guage. Experimental Music 
Studio, Mass. Institute ofTcchnok>gy, Cambridge. MA, 1980. 

{21) Von Foerster, H. and J. W. Beauchamp. Music By Compultrs. John Wiley &. Sons, Inc., New 
York, 1969. 


