Application of Data Flow Architecture to

Computer Music Synthesis

by

Carol Andrea Cesari

© 1981 by the Massachusetts Institute of Technology

February 1981

This work was supported in part by the National Science Foundation under the research grant

MCS-7915255

Muassachusetts Institute of Technology
Laboratory for Computer Scicnce
Cambridge, MA 02139

This empty page was substituted for a
blank page in the original document.

Application of Data Flow Architecture to

Computer Music Synthesis

by

Carol Andrea Cesari

Submitted to the Department on Electrical Engincering and Computer Science
on February 2, 1981 in partial fulfillment of the requirements for
the Degrees of Bachelor of Science and Master of Science

Abstract

A computer music synthesis system is the most flexible of synthesis systems It offers a composer
extensive control over the sound of his piece. A user of such a system describes his composition in
some synthesis language. The computer uses this description to calculate samples of a voltage
waveform that can be fed to D/A converters at a specified sampling rate. The D/As’ outputs are in
turn fed to loudspeakers that produce the sound of the user’s composition. Real time performance is
unattainable on existing computer synthesis systems due to the sequential nature of conventional
computers. Unless the parallelism that is present in the sample calculation process is exploited, real
time performance will remain unobtainable. This thesis presents a proposed computer synthesis
system that includes a data flow machine, a computer whose architecture is highly parallel. The
Music-11 synthesis system at MIT was used as a model in its design. An analysis of the algorithms
uscd in the sample conversion process and how it would run on the data flow machine is presented.
An example of how a compostion would be described in a synthesis language and how it would run
on the proposed system is given.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Electrical Enginecring and Computer Science

Keywords: sound synthesis, voltage waveform, hardware synthesizers,
real-time performance, orchestra file, score file, MUSIC-11,
data flow, VAL, streams, pipelining.

This empty page was substituted for a
blank page in the original document.

Acknowledgments
I would like to thank Prof. L'cnnis for the support, help and above all tihie encouragement in the
preparation of this thesis. Special thanks go to the members of the Computation Structures Group
for being near whenever a problem needed discussion. I express my gratitude to Barry Vercoe and
the members of the Experimcﬁtal Music Studio for educating me in the ways of music synthesis. I
offer thanks to my family whosc love has sustained me throughout my life and special thanks to my -

husband whose love will always nourish me and give me hope.

This work was supported in part by the National Science Foundation under the research grants

MCS-7915255

This empty page was substituted for a
blank page in the original document.

CONTENTS

1. INTRODUCTION

1.1 Hardware Synthesizers
1.2 Computer Synthesis Systems

1.3 Intent of Thesis

11

1.4 Thesis Outline

2. SYNTHESIS TECHNIQUES

....................... 11

13

2.1 Additive Synthesisccoveereemvvrecemrereesenens

13

3. MUSIC-11 SYNTHESIS LANGUAGE

16

3.1 Orchestra File

w 17

3.2 Score File .

21

3.3 Additional Orchestra File Information

26

3.4 Performance

30

4. DATA FLOW CONCEPTS

32

32

4.1 Program Graphs :
4.2 Machine Architecture .

36

43 VAL ‘

42

4.4 Translation of VAL Code to Flow Graphs

4.5 Pipelined Flow Graphs

48

4.6 SITCAMISoeveeerrrereissnssssassasssonsasoressssssssnsassssssesessassassassssssasensarse

52

3. DATA FLOW IMPLEMENTATION OF MUSIC SYNTHESIS

60

5.1 Physical Layout of the Music-df System
5.2 Music-df Language

62

5.3 Orchestra File Conversion

5.4 Signal Functions

84

108

5.5 Function Tables

108

5.6 Sinusoidal Sum Function Table

6. EXAMPLE AND CONCLUSION ovverervrrercasarersesessessssesssessesssssesssacssssssssssssssssasss

6.1 Example ...

6.2 Conclusion

1. INTRODUCTION

For several decades, sound synthesis has been used in the performance of music. Though the
sound of traditional instruments can be mimicked using sound synthesis, its major attraction for
many composers is the ()pp_ortunity it providcs to create totally new an unconventional sound.

Sound synthesis systems are the means to employ the technique of sound synthesis. Two basic
types of sound synthesis are hardware synthcsizers and computer synthesis systems. Both follow the
basic design shown in Fig. 1.1. Thcy all accept a sct of controls froﬁ] a user as input and produce a
voltage waveform to be fed to one or more loudspeakers. The cones in the loudspeakers vibrate
according to the voltage waveform applicd to their terminals. These vibrations produce a pressure
waveform that is perceived as sound. The difference between the two types of systems is the

implementation of the controls and the manner in which the voltage waveform is produced.
1.1 Hardsware Synthesizers

Hardware synthcsizers were the first synthesis systems to be built and are still in heavy use today.
The major portion of their makeup is signal generators and modifiers that can be patched (cascaded)
together to produce a voltage waveform. Among the list of components used are oscillators, envelope
generators, mixers (signal adders) and filters. Suppose a composcr wishes to produce the waveform:
X(t) = Al(t)sinwt + Ay(t)sin2at

Then the components of the synthesizer would be connected as shown in Fig. 1.2. In this example,
the controls that the user must provide are the amplitude (in units of voltage) to the envclope
gencrators and fundamental frequency to the oscillators.

Originally the conncctions made between components were made through cords with plugs.
But as synthcsizer technology has progressed, a simple flick of the switch can connect two

components in most synthesizers. The input to a component may be the output of another

—>
voltage
—p
input . waveform
controls

generator

.
){ JJK rd ’J-‘\ e ~
N N Z N

SYNTHESIS SYSTEM

Fig. 1.1

envelope A#"
amp1 ———> e
generator sine wave
- oscilator
w
> x2
Aft)
envelo é
amp2 ——> pe > .
generator sine wave
oscillator

INSTRUMENT BLOCK DIAGRAM FOR A

HARDWARE SYNTHESIZER
Fig. 1.2

component. It may also be a knob on the component that can be put at a constant setting or changed
dynamically during performance by a human hand. Keyboards are generally used to control
frequency (pitch). For cxample, in Fig. 1.2, the performer might input » through a keyboard with
onc hand and d&namically adjust the amplitudc input to the envelope gencrators by turning a knob
with the other hand. The duration of the note would cqual the time that the key is depressed.

It is common practice for a performer to decide what kind- of sound he wishes to produce, make
the necessary connections and then play the instrument he has created by sing the keyboard and
manipulating thc switches or knobs.

The major advantage of a synthesizer is that performance takes place in real-time due to the
nature of the hardwarc components. ‘The limitations howcvcrv are apparent. If the performer wishes
to dynamically change any other characteristics of his sound besides pitch, he must usc knobs and

switches. Since man has only two hands this can be difficult at times.
1.2 Computer Synthesis Systems

Most computer sound synthesis systems are some vérsion of Fig. 1.3. A wuser enters a
description of his composition in some computer language at the terminal. When he wishes to héar
his composition, the uscr calls a program that takes his file as input and outputs a series of numbérs
that correspond to samples of a voltage waveform. Depending on whether the composer wishes
mono, stereo or quadraphonic sound, samples are scnt to one, two or four channels. Each channel
cgntains buffer memory to hold the samples. The buffer contents arc fed at the sampling rate to D/A
converter. The filter smooths the D/A output and produces a continuous waveform. This waveform,
after amplification, drives the loudspeaker to produce the musical sound.

The great advantage of such a system is the extensive control a composcr has over the sound his
piece. Details, down to the milisccond can be specified. Also, since signal generators and modifiers

are in the form of coded functions, many instruments of arbitrary complexity can play

-10-

N P
21 buffer 1pac __>_Iov{pa$ >pm plifier
memory . filter
buff er " |oac>PPaSSlot o i it er
|___| memory > filter
COm-I
put e—>] disk
b b
> buffer > |___llowpass .
| memory S DAC filter am plif ier
>1 buff er > towpass| o -
- | memory - DAC filter amplifier
cor::drol pli
a sampling
a ddress ~ rate
circuitry osci llat or

COMPUTER SYNTHESIS SYSTEM

Fig.1.3

-11-

simuitancously. The major disadvantage of computer synthesis systems is that they cannot perform
in rcal time. In order to acheive real time performance, one sample of the output waveform must be
computed every 20-30 microscconds for good quality sound. Even for a simple instrument, real time

performance is impossible on a synthesis system similar to the one in Fig. 1.3.
1.3 Intent of Thesis

Real time performance is unattainable on a synthesis system similar to the one in Fig. 1.1
because of the sequential nature of conventional computers. The conversion from the composer’s
files 1o samples of the output wavefurm is a parallel process. Unless the parallclism that is inherent in
this conversion is exploited, real time performance is unobtainable. A computer whose architecture
is highly parallel must be included in the system. One such computer is a data flow machine.

The purpose of this thesis is to investigate the possibility of a synthesis system that is capable of
rcal time performance, through the design of a system using a computer whose architecture is based
on data flow principles. The major requirements of such a system arc that the system be easy for a
composer to use and that the synthesis language be a natural way of expressing a composition. The
ﬂexibility and freedom of expression that presently exist in sophisticated computer synthesis systems
should not be sacrificed. The Music-11 computer synthesis system at MIT and the Music-11

synthesis language are used as models to help incorporate these feature into the proposed system.
1.4 Thesis Outline

Chapter two presents some sound synthesis techniques to give the reader a feeling of some
principles that composer might use in the composition of his piece. Chapter three details the
Music-11 synthesis system and synthesis language. Chaptei four explains data flow concepts and the
architecture of the data flow machine that is used in this paper. VAL, a high-level iangliage used in

the expression of algorithms that are to run on a data flow machinc, is presented along with streams, a

-12-

data typc extension to the language. Chapter five describes the proposed real time computer
synthesis system. An cxample of how the system would operate is presented in chapter six to exXpose
the advantages and disadvantages of the system. Chapter six also draws some conclusions about the

systemn and suggests further rescarch.

-]3 -
2. SYNTHESIS TECHNIQUES

Musical sound can be described in terms of its physical attributes or its psychological attributes.
Physical attributes include intensity, complexity (meaning the wave is not just-a simple sinusoid but a
sum of sinusoids). absorption and reverberation, resonance and modulation. These atiributcs can all
be described in terms of the physical properties of the sound wave which are amplitude, frequency,
period and phase. Psy'chological attributes include pitch, loudness, timbre, sound location and
rhythm.

There is a direct correspondence between some physical and psychological characteristics. For
instance, pitch depends on the fundamental frequency of the sound wave and what we perceive to be
the sound location depends on absorption and reverberation. Counterintuitively, loudness is not a
function of amplitude only but a function of ampiiludc and frequency.

Synthesis techniques help composers to produce desired psychological sound characteristics by
varying parameters that can be controlled, that is the wave’s physical attributes. Synthesis techniques
are an arca of active rescarch. Two of t.he-most commonly used techniques are additive synthesis and

FM synthesis.
2.1 Additive Synthesis

Additive synthesis is based on the summation of harmonically related sinusoids:

M
X(= 2 Ak(t)sin(kw + Zka(t))t
k=1
where

X(t) = output wavcform as a function of time
w = fundamental frequency in radians
k = harmonic number

Ak(t) = amplitude of kth harmonic as a function of time
Fy(t) = frequency deviation of the k! harmonic as a function of time

Theoretically, any waveform can be represented and hence any sound can be produced from a sum of

-14-

sinusoids. The problem lies in knowing which harmonics are present in a sound and also knowing
their respective amplitudes and frequency dcviétions. Analysis of many different musical sounds has
been donc using filters that extract certain harmonics from a waveform. These studies have provided
a large amount of information about different instrumental sounds. They allow us not only to
reproduce sounds that are sometimes indistinguishable from the original but open the way to many
new sounds.

The result of most sound anatysis is the detection of which harmonics are present in a particular
sound wave. Thus a big advantage of additive synthesis'is that a composer can dircctly specify the
harmonics in his waveform. The instrument block diagram in Fig. 1.2 is hased on additive synthesis
with M =2,

This popular technique is based on an cquation that has been used for many years in radio

transmission. It’s use in sound synthesis was first suggested by Chowning{6]. It appears in his article

in this form:
X(t) = A(t)sin(at + I(t)sinBt)
where
X(t) = output waveform as a function of time
A(t) = amplitude as a function of time
a = carrier frequency in radians/sec
B = modulating frequency in radians/sec
I(t) = modulation index as a function of time
Using the identity:

sin(f +asinw) = JO(a)sinﬂ +
infin :
2 Jy(a)sin(8+kw)+(-1)sin(8-ke))
k=1
where Jk(a) = k!N Bessel function at the point a, the FM cquation can be expanded to:

-15-

X0 = At Jp(KY))sinat
+1y(I(t)sin(a+ B)t - sin(a-A)t]
+I(1())fsin(a +28) - sin(a-28)]
+...}

This last equation shows -;hat we obtain sinusoids of frequencics a, (a4), (a+28). (a£38) eic. As
an cxample, if « = 27*200 and 8 = 2%*100 the resulting waveform will have sinusoids of 200,
(100,300). (0,400), (-100,500) ctc. Noting that sin(-w) = -sin{w), this waveform will appear to have a
+ fundamental frequency of 100 cps with all harmonics present. The ampliu.des of these harmonics
will depend on A(t), the index of modulation and the Bessel functions.

The FM synthesis technique is attractive because it allows a highly complex waveform to be
expressed in one simple equation. However FM synthesis does not lend itself to analysis as easily as
additive synthesis and it is difficult to develop an intuitive feel for the resulting sound. The
modulation index determines the relative strengths of the fundamental and its partials. However if a
composer knows which partials he would like to be present in his waveform, there is no method to
derive an index of modulation that will produce the desired waveform:. Thus, most most of the early
studies of FM synthesis trcated the FM cquation empirically by plugging in different functions for

A(t) and I(t) and listening to the results.

-16-

3. MUSIC-11 SYNTHESIS LANGUAGE

The EMS (Experimental Music Studio) f?ncility at MIT uses a set-up much like the synthesis
system shown in Fig. 1.3. Its processor is a DEC PDP-11/50 and the souﬁd synthesis language is
called Music-11.

Music-11, a lunguagé used for computer music composition, was developed by Barry Vercoe at
MIT. The dcsigp of Music-ll is traditional in that it retains many of the concepts of hardware
synthcsizers. To play a composition using Music-11, the user must create tw o files, an orchestra file
and a score file. The orchestra file is a collection of instruments described in terms of oscillators,
filters, cnvelope gencrators etc. which are functions provided by Music-11. Thus, the orchestra file
may be likened to the components of a hardware synthesizer and the connections made among them.

The score file is a list of notes that are to be played on each instrument. For each note the
following information is needed: the instrument on which the note is to be played, the starting time
of the note, the duration of the notes and several parameters that arc to be passed to the orchestra file.
The contents of the score file are analégous to the input controls a player gives to a hardware

synthesizer while performing. The interaction between these two files may be viewed as in Fig, 3.1

31 Orchestm File

The orchestra file consists of a header and one or more instrument blocks. The header has the

following format:
sr = <int>
kr = <ind
ksmps = <int>

nchnls=<int>
where <int> stands for any integer value.
The variable sris the sampling rate. This means that the DAC in Fig. 1.3 will receive a number

of samples every sccond cqual to sr. A signal that contains sr values for each second in time is an

-17-

SCORE ORCHESTRA

instrument

b 4

A 4

v

instrument

4

INTERACTION BETWEEN MUSIC-11 FILES
Fig. 3.1

-18-

audio signal and is said to vary at the audio rate. For good quality sound srshould be at least 30,000.
Hardware limitations of the synthesis system imposc an upper bound of 50,000.
‘The variable kr is the control rate. It is a sampling rate for signals that should vary more slowly
with time than audio signals. An example of one such signal is an amplitude envelope.
‘The variable ksmps is cqual to sr/kr. Because ksmps must be an integer a restriction is imposcd.
It is that sr must be divisible by kr. Also, sr, kr and ksmps must remain fixed throughout a synthesis.
The variable nchnls spccifizs the number of output channcls and thus the number of
loudspeakers that are used.
lﬁslrumcm blocks are structured as follows:
instr n
<body>
endin
where n is an integer that serves as the instrument identifier and endin signals the end of the
instrument definition. The body is a lincar sequence of statements. Several types of statcments are
available in Music-11, however only one of them, the function statement will be considered in this
discussion. Other statement types will be introduced as they arc needed.

Function statements are required to have the form:
<sig> function inpl,inp2,inp3...

function can be one of the many signal generator or modificr function that Music-11 offers, perhaps a
filter or an oscillator. The function’s input parameters are given by inpl, inp2 and inp3. The number
of input parameters will vary from function to function. The output of function is <(sig> and with the
exception of one function in Music-11 is either an audio or control signal. If sig is an audio signal
then it is required to have the variable name an where n is any positive integer. If sig is a control
signal, its variable name must be kn.

Function statements alone can be used to express simple instrument block diagrams such as the

-19-

onc in Fig. 1.2. Supposc it is desired that the output of the cnvelope generators in Fig. 1.2 be lincar.
The line function in Music-11, |
kn line ia, idur, ib
will create such a signal. Its first and third inputs define the endpoints of a lincar scgment. The
sccond input is the duration in scconds of the envelope.
A sinusoidal oscillator is also nceded for the instrume{it in Fig. 1.2 For this purpose, the
function escil is provided:
an oscil xamp, xcps, ifn, iphs
It is used as an all-purposc oscillator in Music-11 and outputs samples of a periodic wave. The third
input parameter, ifi, is an integer identifier of an array that contains onc cycle of a stored function.
Thesc arrays are called function tables. The output of escil is obtained by cycling through the
function table at a frequency equal to xcps. Each function table access is multiplied by xamp. Thus
xamp determines the amplitude. The input iphs is explained in chapter three,
One more function is needed, the out function. The out function along with euts and outq
specify to which speaker(s) the signals ar;: to be sent. They have the following format:
out asig
outs asigl,asig?
outq asigl,asig2,asig3,asigd
The function out is uséd for monophonic sound. It stipulates the signal asig is the final output signal
for the performance, the one that should be heard and it is to be sent to one speaker. In outs, asig/
and asig2 are the final output signals and each is to be sent to a different speaker thus producing
stereophonic sound. The user chooses outq when quadraphonic sound is desired.
With these three functions in hand it is. possible to construct a Music -11 diagram for the
instrument in Fig. 1.2. The Music-11 diagram is shewn in Fig. 3.2. s cquivalent in Music-11 code

would be:

-20-

p5 ia
p3 — idur line
p6 —— ib amp
' oscil
1
pé -1
p7 » ia
—! idur line
p8 ——»1 ib I———>><amp
pixcps oscil
1 —» ,ifR

MUSIC-11 INSTRUMENT DIAGRAM

Fig. 3.2

-21-

instr 1

: ia idur ib

k1 line ps, p3. pb

: xamp xcps ifn iphs
al oscil kI, p4, 1, -1

: ia idur ib

k2 line p7, p3. . p8
; xamp xcps ifn iphs

a2 oscil k2, 2*p4, 1, -1
out al+a?
endin

Lines beginning with a semicolon arc comments. The inputs to line an. the frequency input to
oscil are not dircctly specified in the instrument description because they are cxternally controlled.
The score file provides the external control, so, p3-p7 are paramcters whose valucs are given in the

note statements in the score file.
3.2 Score File

The score file like the orchestra file has its own statement types and is only a sequence of these
statements. The final line in a score file n';ust always be a single e, signifying the end of the file. Thus
the general form is: |

{statement>

{statement>
<{statement)

¢
where <statement> is one of several score statement types. The statement types thét are nceded to be
able to write a score file to control the instrument defined in the last section are the note, stored
function and temnpo statements.
Note statements make up the majority of the score file and hold most of the control over the

instrument. These statements follow the format;

-22-

ipl p2 p3 pd pS...pI28

where

pl - identifier of instrument for which this statement is

intended

p2 - starting time in beats for this note

p3 - duration of this note in beats

p4.pS...pl1 28 - parameters used to control the instrument
Though 128 parameters can be specified, only as many as the composer needs to control his
instrument have to be included in the note statement. This is true for all score statement types.

The stored function statement is used to create an array that holds cqually spaced samples of

one of scveral functions provided by Music-11. Its format is:

fpl p2 p3 p4 pS p6...pl28
where

pl - integer identifier of the function table
p2 - creation time in beats of this function table

p3 - the function table size (restricted to be 2" or 2™-1 in
Music-11)

p4 - integer identifier of the function generator to be used

D3, p6...pl 28 - input parameters of the function generator
An example of a function gencrator is one that computes one cycle of a sum of sinusoids. Its integer
identificr is 10. 'The input parameters inp$5, inp6... determine the relative strength of the harmonics in
the sine wave. A user may specify up to 123 harmonics to be present in the wave. If p4 is positive
then the wave will be scaled to a peak amplitude of 1. If p4 is negative, no scaling will take place. For
example,

f1100256-104208
causes 256 samples of one cycle of the wave

4sinw +2sin2w + 8sindw

to be stored in an array and its integer identifier to be 1, whereas if the statement

-23-

f1100256104208
is included in the score file the same array as before is constructed and then scaled so that the
maximum value in th_c array is cqual to one. For both of thesc cxamples the function table will be
generated immediately before the tenth beat of the piece is performed.

The stored function and notc statements cxpress time m the unit of beats. Musically, this is a
natural way to think of time progression in afomposition. However the orchestra file requires that
the unit of time for any of its inputs be seconds. The lcmpo‘stu[cmcm in the score remedics this
problem by giving guidclines on the beat to sccond conversion. The tempo statement takes the form:

t pl p2 p3 p4 p5...pl28
where

pl - starting beat (restricted to equat zero)

p2 - initial tempo in beats/min

p3.p5,p7...p127 - starting beat of next tempo

P4,06,p8...p128 - tempos corresponding to starting beats
It is easy to think of the input parameters as defining points on a tempo vs. bcat graph. For example
the statement,

t0 60 10 60 20 120
produces the graph in Fig. 3.3(a). The first ten beats are played at 60 beats/min. Between beats 10
and 20 an accelerando from 60 to 120 beats/min occurs. From beat 20 on, the tempo stay constant at
120 beats/min. The last defined tempo pn in a tempo statcment always remains the tempo starting at
beat pn-1 throughout the remainder of the piece,

The curve between beats 10 and 20 depicts how accelerandi arc modelled. This curve is
proportional to 1/x and is constrained by Music-11’s method of beat to second conversion. Music-11
carrics out its beat to second conversion by first drawing a graph whose x coordinate is beats and

whose y coordinate is 1/tcmpo = min/beats. Such a graph for the above tempo statement example |

is shown in Fig. 3.3(b). For a given note whese beat duration occurs between beats X} and X2 the

-24-

y
(min/beat) 4
120 —+ S
d-f"-/
60 ' -
| { f .
I T] >
10 20 30 X
0 (beats)
(a)
Y
(beats/min) 4
1/60
1/120 T
{ [.
1 | jal
0 10 30 5y
20 (beats)
(b)
TEMPO STATEMENT GRAPHS

Fig. 3.3

-25-

arca under the graph is computed between these two points. Since the arca is in units of minutes, it is
divided by 60 to obtain the desired unit of seconds. For example, the duration in seconds of a note
that starts at beat 10 and is 2 beats long would be equal to the outlined arca in Fig. 3.3(b) divided by
60.

Now all the necessary tools have been presented to assemble a score file to play the instrument
in Fig. 3.2. A ‘translation of the admittedly boring scorc in Fig. 3.4(a) is shown i Fig. 3.4(b). Lines -

beginning with ¢ are comment lines,
3.3 Additional Orchestra File Information

Now that the reader is familiar with the basics of the Music-11 language, some additional
information about the orchestra file is introduced. It was not presented in the previous two sections

to avoid confusing the reader.
3.3.1 Rates of the signal function input parameters

As mentioned before, the output of a signal function can be either control or audio rate. The
input parameters of a signal function can also be different rates, but certain input parameters .are
restricted to be different rates. For instance, the oscil inpht parameter ifn is allowed to vary no faster
than once each note (at the note rate). It can also be a constant, the slowest rate possible. In general
an input parameter prefixed with an i (ie. ifh, iphs of oscil and ia, ib, idur of line) must be ote rate or a
constant. An input parameter prefixed with a k must vary at the control rate or.a slower rate. An
input parameter whose first letter is x (ic. xamp, xcps of oscil) is restricted to vary at the audio rate or
a slower rate. Finally, if an input parameter is prefixed with an a (ic. asig of out) it must vary at the

audio rate only.

e il e N R e

—26-

<}
4

(a)

SCORE

pl p2 p3 p4 p5 pé p7 p8
0 60

1 0 256 10 1

instr start dur xcps ia ib ib

ia
1 0 2440 10000 5000 9000 6000
1 2 2 880 8000 6000 4000 2000
1 4 2 440 10000 5000 9000 6000
(b)
SCORE FILE

Fig. 3.4

-27-

3.3.2 Goto statements

Goto statements belong to an orchestra statement type that was not discussed in the scction in
the orchestra file. Nevertheless, these statements are extremely useful because they allow conditional
branching. A goto statement may take one of the following two forms:

| goto name
or
if kn <test> km goto name
The first goto statement causes an unconditional transfer of coﬂtrol. to the statement whose label is
name. The sccond goto statement, <test> is onc of the following: =, ~=, >, {, >=, <K=, If
kn <test> km is true than a transfer of control to the statement labelled by name is made. Otherwise,
the control is advanced to the next statement.

Fig. 3.5 shows an example of an orchestra file that uses goto statements. The instrument block
models an instrument whose amplitude envelope depends on whether note’s frequency is above or
below 1000 cps. The function expon outputs a line segment with endpoints iz and b like line except

the line segment is exponential instead of linear.

3.3.3 Global variables.

All the variables in the orchestra file examples thus far have been local to the instrument block
that contained them. However Music-11 allows global variables in the orchestra file. The Music-11
compiler recognizes a variable as global when it is prefixed by a g. An -example of an orchestra file
that uses a global variable is shown in Fig. 3.6. The signal function reverb reverberates its first input
by a number of scconds cqual to its second input. The global variable gal is used to accumulate the
outputs of instruments 1 and 2. The sole purpose of instrument 3 is to reverberate the accumulated

signal.

- 28~

sr = 50000
kr = 1000
ksmps = 100
nchnls = 1

instr 1

i p4>1000 then goto below
ia idur ib
k1 line 1000, p3, 500
goto finish
: ia idur ib
below: k1 expon 700, p3, 400

: xamp xcps ifn iphs

finish: al oscil k1, p4, 1, -1
out al

endin

EXAMPLE OF AN ORCHESTRA FILE CONTAINING GOTO STATEMENTS

Fig. 3.5

.—29-

sr = 50000
kr = 500
ksmps = 100
nchnls = 2

instr 1

xamp xcps ifn iphs
al oscil k2, k3, 1, -1
gal = gal + al
endin

instr 2

xamp xcps ifn iphs
al oscil k2, k3, 1, -1
gal = gal + al

endin
instr 3
gal init 0
asig idlt
al reverb gal, 249
gal =0
outs al/2, al/2
endin

EXAMPLE OF AN ORCHESTRA FILE CONTAINING A GLOBAL VARIABLE

Fig. 3.6

-30-

3.4 Performance

When the user is satisfied with his files and wishes to hear them performed, he goes through a
two step process. He must first run the program perf which outputs a sound file using the orchestra
and score files as inputs. Then he must invoke the program convert with the sound file as input.

The program perf ﬁ.rst processes the score by sorting it according to p2 and converting the beat
values of p2 and p3 to scconds in agreement with the directions of the tempo statement. Then the
orchestra and score files are compiled so they are acceptable input.w the Music-11 monitor which
performs the actual sample calculation, The orchestra file is compiled-into a list of function calls
corresponding to cach signal function. Each signal function has its own privat2 data space in which to
store the results. If the output of one function is the input of another, then the appropriate links are
made between the two data spaces. .

‘The Music-11 monitor is an cvent-driven program that uses the score file as its event list. The
monitor’s clock is initialized to zero and advances at time increments cqual to one control period
(1/7kr). At the beginning of each control period, the monitor checks the score statement at the top of
the event list to see if its clock is greater than or equal to p2. If so the monitor will act in accordance
with the statement type. If the statement is a function statement, the monitor will create a function
table by allocating an amount of space in memory equal to p3 and fill it with samples of the
appropriate function. If the statement is a note statement then the note parameters pn, n > 3, are read
into the data space of the instrument specified by pl. After the monitor is done scanning the event list
for current events, it carries out the specified function calls in the compiled orchestra file. For
instance, for the instrument description in section 3.1, the monitor would call line and store the result,
call oscil and store the result, call line and store the result, call oscil and store the rcsult. Finally it
would add the outputs of the two oscil functions and write the rcsult to a soundfile. The out

functions tell the monitor which signals are to be saved on the soundfile. Thus the monitor is outputs

_31-

calculated samples of the users’s composition.

Since the signal functions arc called every control period, the functions that output control rate
signals produce one real value and the functions that output audio rate signals produce an array of
real values of size ksmps.

The program convert uscs the sound files as input. This program regulates the feeding of the

buffersin Fig. 1.3 so that the samples in the sound file arce fed to the DACs at the sampling rate.

-32-

4. DATA FLLOW CONCEPTS

It has been shown in the previous chapter that the composition language Music-11 cannot
perform in real-time on its present processor. In fact, real-time performance of a composition written
in any language similar to Music-11 is unattainable on any machine whose design adheres to the Von
Neumann style of architcéturc. To realize real-time performance, a different architectural style must
be used. One such architccture is data flow.

Research in data flow computer' architecture was initiated to develop an alternative to the Von
Ncumann architecture. Whereas the conventional Von Ncumzu_m machine must cxccute each
operation in a program in sequence, a data flow, machine allows many operations to be done in
parallel increasing the computation rate and thus potentially decrecasing the program exccution time.

Data flow machines arc capable of high performance due to a unique architecture. An attempt
is made in this chapter to give the reader a better than surface level understanding of the machine
architecture that is used in this paper, present some principles of data flow and introduce VAL, a high

level language written at MIT expressly for use with data flow machines.
4.1 Program Graphs

Data flow program graphs provide a useful tool in the analysis of parallclism within an
algorithm. When an algorithm is expressed in a program graph, concurrency appears naturally. A
brief discussion of program graphs and how they are interpreted follows.

Figure 4.1(a) shows an example of a simple program graph. The. inputs are g, b, ¢ and d, the
output is x. The mathematical operators enclosed by circles are called actors, the arrows are called
arcs and the black circles are referred to as tokens. Tokens represent cither clementary or structure
values. Elementary valucs may be real, integer or boolcan values. Structure values are compound

data types such as arrays or records.

-33-

s=(x+y)/w

DATA FLOW GRAPHS

Fig. 4.1

(b)

t=(x+y)*z

An actor may firc (perform its operation) only when all of is input arcs carry a token and its
output arc is empty. Upon firing the actor consumes the input tokens and places a token containing
the computed value on its output arc. The output arc may input more than one actor in which case a
link provides the necessary number of tokens. For example, the link in Fig. 4.1(b) cnsures that the
quantity (x +) is dclivered to both the divide and multiply actors.

Every actor abides by these firing rules except for three types of actors. They arc the merge
actor, the T-gate and the F-gate (FFi3. 4.2(a,b.c)).

The merge actor has threc inputs. The inputs labelled T and F may be any value. The
rcmaining value must be a boolcan valuc. The open arrowhcad shows that a boolean value is
expected as opposed to solid arrowhcads which denote non-boolcan values. If the boolean input
contains a truc token and the T input contains a token then the merge actor will fire and produce a
token containing the T input value on its output arc while absorbing the boolean and T input tokens.
No token was nceded on the F input for this to occur. If an F token did exist, it would stay there

¥
until a false tokcn arrived on the boolean input. In this casc the actor would fire by consuming the
boolean and F input tokens and placing a token carrying the F input value on its output arc.

T-gates require two inputs, a boolean input and a non-boolean input. The actor will not fire
until both inputs are present. When the T-gate docs fire, it duplicates the non-boolcan input. If the
boolean input is false the gate merely consumes the tokens and produces no output. The F-gate
behaves in a complimentary fashion.,

Three other operations that may not be familiar to the reader are select, append and create.
They all operate on structures. Sclect(struc, sel) uscs the sel input to locate a value within the struc
input. The sel input might be an index and struc input an array The output can be cither an
clementary or structure value. Append(struc,newval,scl) returns a structurc exactly like the input

struc except with newval at the place in the structure specified by sel. The operation create takes no

inputs and returns an empty structure. Both append and select follow the firing rules.

merge actor

(a)

-35-

T
v A J
T-gate F-gate

Fig. 4.2

4.2 Machine Architecture

Figure 4.3 shows the architecture of the data flow machine chosen in this paper. Its design is
similar to those in [12,9].

The instruction memory holds instruction blocks. Instruction blocks are made up of instruction
cells. An instruction cclllis a block of memory and has a unique address. It is compriscd of an
opcode, and space for oﬁcrands and destinations. Destinations are addresses of instruction cells. The
amount of space allotted to operands and destinations depends on the specific machine design.

When an instruction cell contains all the operands necessary to carry out the instruction
designated by the opcode and has reccived a specified number of acknowledge signals, it becomes
enabled and fires. Upon firing, an operation packet is constructed and sent through the arbitration
network. An operation packet contains the opcode, operands and destinations. The operation packet
is routed to the correct processor through examination of the opcode. If the opcode specifies an
operation that accepts structures as operands then the packet is sent to the structure processor (the
box containing SP in Fig. 4.3). Otherwise it goes to a scalar processor (the boxes containing P). The
processor performs the operation denoted by the opcode and generates resuit and/or acknowledge
packets for the destinations designated in the instruction cell. Result packets consist of the result of
the opération and address of the instruction cell for which it is bound. Acknowledge packets contain
an acknowledge signal and an instruction cell address. These packets are delivered to the instrucﬁon
memory through the distribution network.

The structure of the arbitration and distribution networks arc discussed in [12] and will not be
detailed in this paper. The design for the structure controller used in this paper is presented in [8]. It
contains a structure controller and structure memory as shown in Fig. 44. The structure controller
interprets and carries out the opcration specified in the operation packets by accessing the structure

memory where the structures are stored.

-37-

Instruction Cell

Memory

distri-
bution

network

cell
block

Y

‘_____T'Jg&

A 4

[L cen

block

arbitra-
tion

processors

2
>

—»

Y

cell
block

) 4

STRUCTURE PROCESSOR

\ 4

arbitra-
tion

network

A 4

DATA FLOW MACHINE

Fig. 4.3

STRUCTURE
CONTROLLER

}

STRUCTURE
MEMORY

Fig. 4.4

A 4

N

-38-

4.2.1 Instruction cell

A closer look at the instruction cell is ca]léd for. The instruction cell design proposed by [19]
has been adopted in this paper. Though an instruction cell is actually a block (32 bytes) of memory, it
is more convenient to represent an instruction cell as in Fig. 4.5(a). Opcration denotes the opcode
ficld in the instruction ccli and the three slots marked operand characterize the operand ficlds. The
sections labelled data type specify whether the operand is 1 (integer), R (real), B (boolean), S
(structure) or N (not used). A c that resides along side an operand in a slot designates that that
operand is a constant. Constants may never be changed during the course of program exccution. An
operand slot designated to hold a constant may initially be empty at the start of program cxccution
but once it is filled, it can never be written on.

The letters m and n are integer values. m is the instantancous number of acknowledges the
instruction cell needs to fire during execution and n is the acknowledge reset value. After an
instruction cell has fired, m is reset to n. [Each time an acknowledge signal is received, m is
decremented. When m is equal to zero, the instruction cell fires if all opcrands are present.

An instruction cell can send packets to up to six dcstinations (represcnted by the arrows). The
six packets can be any combination of result and acknoWledge packets.

Figure 4.5(b) shows how the program graph of Fig. 4.1(b) would be translated into instruction
cells. For cach cell in this figure m is the initial number of acknowledge signals necded. The solid
lines represent result packets while the dotted lines signify acknowledge packets. The add instruction
cell cannot firc until it receives acknowledge signals from both the di.v and mul instructions cells.
This insures that the add will not write over an operand that has not been used. The add instruction
cell sends acknowledge signals to the cells that supplicd it with its operands. The fact that n=1 for
the div and mul instruction cclls implies that their results are each sent to one instruction cell. As a

gencral rule of thumb, an instruction cell should acknowledge any cell from which it receives an

-39-

m/n
operation R
,?gg operand , ‘—"‘E
8 | operand ———
?ﬁ% operand e

INSTRUCTION CELL PROTOTYPE

(a)

o)
Fig. 45

D o

"r S

o T —>

e a1 [

0/2

add "J I

X _ 07 f — — — — o — — — —J

‘y_""" r g e —— - — — —— -

n | ._1 l

T mul o |

: o

n _"
————

CELL GRAPH TRANSLATION OF s={x+y)/w,t={x+Yy)*z

opecrand. However, in some cases, as we shall sce later, some acknowledge signals can be climinated.
Every operation that takes two operands on the flow graph level (ie. add) hés the built in
capability of a T or F gatc on the jnstruction cell level through the use of the third operand slot. The
third operand becomes a boolean input. Result and acknowledge packets can be conditionally sent
based on the value of the: third operand. For example, when the program .gruph in Fig. 4.6(a) is
translated into instruction cells (Fig. 4.6(b)), the add operator and the two gates can be expressed as
one instruction ccll. If the third operand is not used the result and acknowledge packets are sent to
their destinations unconditionally. Whenever the third operand is used to conditionally send a result,
two acknowledge reset values are needed. For the add instruction cell, the true acknowledge reset
value is / and the false acknowledge reset valuc is 2. If the third operand is true when the add cell
fires, the number of acknowledges necded is set to /. Similarly, if the third operand is false when the

cell fires, the number of acknowledges needed becomes 2.
4.3 VAL

Data flow program graphs are a valid tool to use in the expression of data flow algorithms, but
writing a large program in such a graph language can be troublesome task. For this reason, the
language VAL was written, The motivation behind the development of VAL was the need for a high
level language in which one can write algorithms to run on a data flow machine. One of the main
goals of VAL is to make concurrency easily identifiable. This is achieved by the exclusion of side
effects.

It is assumed that the reader is familiar with some block-structured language. Therefore only
two VAL constructs will be explained that may be foreign to the reader. They are the let and for

constructs,

—41-

DATA FLOW GRAPH TRANSLATION OF

if d = 0then (a + b-c)*2 else sqrt{a+ b-c) + (a+ b-c)

(a)
Fig. 4.6

a _——_———— - - mult 1
—¥r) rl2 '
i | z |
' n T 0
0/1/2, : 0/1 o/z !
~?ﬁh—- e e — o — _1 add merge |t} -~
c —hr £ hr r

— £ x r .
Pl 1 e] o In G T
d- - - - ——— _ 4 - _ B I JRLTE B aeep—_—
. 0/0 :
| : sqrt !
| r !
t A |
0/2 | L . I
| ' ' |
d——i; ‘F-;-____: G e oo 2 \
1

i

n I

CELL GRAPH TRANSLATION OF if d=0 then (a+b-c)*2
else sqgrt(a+b-c)+(a+b-c)

(b)
.Fig. 4.6

-43 -

4.3.1 LET Construct

The let statcment takes on the following form:

let
{dcclaration lis
in ;
{expression>
endlet

A declaration list is simply a list of _variéblc declarations. In a let block, a variable may be assigned a

L .

valuc only in the declaration list. Once a variable has been assigned a valu::, no reassighment may

take place. Thus, the declaration list,

y:real :=3.1;

x:real :=y/5;
is Iegal VAL code whereas,

y:real :=3.1;

y:=y/5;
is'not acceptable VAL code.

An expression is one or more simple expressions separated by commas. A simple expression
for our purposes is loosely defined as VAL code that can be evaluated down to a value. This vélue
may be any of the accepted data types in VAL. The arity of an expression is cqual to the number of
simple expressions it contains. For instance 4.3 and true are values and therefore expressions of arity
one. An cxpression of arity two could be 5.2/8, sin(.32).

An example of a lef statement is,

let
x:real ;= 2.
y:veal:= 31;
in
x*y
endiet

This statement is equal to6.2.

4.3.2 FOR construct

For the present discussion, only a subsct of possible for statcments will be considered. This
subset includes for statements that contain iteration forms. The for statement is presented by means
of an cxample.

Figure 4.7 shows a fér staterrient that calculates x™. The declaration list, (lines 2-4) has the same
single assignment restriction as in the let construct. However, variables declared in the for statement

may be

for
factor : real : = x;
powercount : integer : =n;
returnval : real ;=1;

do
if powercount X0
then iter
returnval : = returnval*factor;
powercount: = powercount-1;
enditer
else returnval
endif

endfor

Fig. 4.7

reassigned within the iter statement. Only variables in the declaration list between the for and do

may be reassigned.
4.4 Translation of VAL Code to Flow Graphs

Three examples of translating VAL code to flow graphs are given in this section. The first two

cxamples are of conditional statements. The last example deals with an iteration construct.

-45-

4.4.1 Conditionals
Fig 4.8 shows the data flow graph for the VAL conditional statement,

if test_expression
then truc_expression
else false_expression
endif
'The boxes themselves contain data flow graphs. The box labelled test graph cvaluates test_expression
of the conditional statement and yiclds a boolcan value of either true or false. 1f it is true, the inputs
to the t-gates are allowed to feed into true graph and true_cxpression is evaluated. Otherwise the
inputs to the F gates are allowed to flow through false graph in order to evaluate false_expression.
The number of outputs of truc graph and false graph equal the arity of the conditional expression
and must equal each other. The merge gates climinate race conditions that may occur between the
truc and false branches of the graph. They also insure that the at set of outputs correspond to the
nt set of inputs.
As an example of a conditional statement, the reader is referred to Fig. 4.6(a) which is a flow
graph translation of
if d=0 .
then (a+b-c)*2

else sqrt(a+b-c)+(a+b-~)
endif

4.4.2 Iteration

As an examplc of translating iteration constructs, Fig. 4.9 depicts the flow graph translation of
the VAL code in Fig. 4.7. There is an initial value of false on the boolcan input of the merge
operators, to allow the inputs to drop into the itcration loops. The ">0" operator outputs n
consccutive true values followed by one false value. Each true .valuc allows the tokens to cycle

around their respective loops onc time. When the final false token is produced, the T-gates swallow

-l G-

\
/

test
graph

false graph

DATA FLOW GRAPH TRANSLATION OF
A CONDITIONAL STATEMENT

Fig. 4.8

—47-

-
il

A 4
returnval

DATA FLOW GRAPH OF THE POWER FUNCTION

Fig. 4.9

their inputs, bringing the iteration to a halt. The F-gate allows its input to pass to its output arc, to
become the output of the graph.

Note that after the iteration process has ended, false tokens are left on the boolean inputs of the
merge operators. In other words, the graph will return to its initial state. This allows consecutive sets
of tokens to flow through the graph, cach set producing a correct output token. In this paper, this is a

neccssary feature of flow graphs, as shall be seen in chapter three.
4.5 Pipelined Ilow Graphs

When algorithins arc expressed in data flow graphs, the operations that can be done in parallel
become easily identifiable, For instance, in Fig. 4.2(b) it is clear that the add and multiply operations
can firc simultaneously. When actors on the samc level can perform their opc‘rations in parallel, there
is horizontal concurrency. However vertical concurrency (pipelining) can also be exploited for higher
perforrhance.

Every time one or more actors fires simultaneously, a tick occurs. Thus, for Fig. 4.10(a), it takes
three ticks for the inputs x and y to help produce an output on the arc labelled z. This is because the
depth of the graph is 3 actﬁrs. Suppose it is desired to calculate ((2*x)+y-4)/5 for many values 6f X
and y. Then we can allow successive sets of x and y inputs to flow through the graph at the same time
as shown in Fig. 4.10(a-f). Now an output is produced every other tick. When an output appears
every second tick then the graph is maximally or optimally pipelined.

Note that new inputs cannot be put on the graph input arcs until, the *2 and -4 opcrators have
acknowledged that they have fired. Recalling the machine architecture, acknowledge packets must
traverse the same routing nctworks as result packets so their transit time is the same.

The graph in Fig. 4.11(a-f) is not maximally pipelined. This is because a new x input cannot be
accepted until the token on the output arc of the multiplication actor has been consumed. However,

a maximally pipclined graph can be obtained through the modification of the graph in Fig. 4.11. The

-49-~

(d) (e) ()

MAXIMALLY PIPELINED GRAPH OF ((2*x) +y-4)5

Fig. 4.10

-50-

modificd graph is shown in Fig. 4.12. It contains an additional opcrators called identity operators.
When an identity operator fires, it simply reproduces the input on its output arc. Thus the identity
operator acts like a buffer in this case. The reader can verify that the resulting graph is maximally
pipclined.

In general any data flow graph that does not contain a closed path can be maximally pipclined
by adding cnough identity operators so that every path in the graph holds the same number of actors,
The modification of Fig. 4.11 is an example. The addition of the identity operator made the x to ¢

path two operators long to match the length of the x to sand y to 7 paths.
4.6 Streams

At this point it is useful to introduce a new data type, streams. Currently, VAL does not
support strcams. However for the purpose of this paper, streams will be used as if they exist in VAL
The motivation behind the inclusion of stream data type is that Music-11 instrument descriptions are
essentially descriptions of digital signal processing networks. It is natural to think of signals as
streams of values as they flow through networks.

Streams are ordered scquences and can possibly be infinite. The members of a stream are
restricted to be of the same data type, though there are no restraints on the data type. Hence there
may be a strcam of integers, a stream of arrays and even a strcam of steams.

A stream will be represented by its ordered members separated by commas, enclosed by square
brackets. An example of a four member stream of real is x = [I.1, 2.2, 3.3, 4.4]. The value 4.4 is the

h member of that

first member of the strcam. A stream variable with a subscript of n denotes the ot
stream. For example x, = 3.3. Between the last member and the left bracket of every stream there is

an implicit eos (end of stream) value. Its use will become clear in a later scction.

(d)

-51-

(e)

()

UNPIPELINED GRAPH OF s = (x*3)-1, t = (y-4) *x

Fig. 4.11

-52~

MAXIMALLY PIPELINED GRAPH OF s =(x*3)-1, t = (y-4)*x

Fig. 4.12

-53-

4.6.1 Stream functions

There are seven stream functions available to the user. They are described below:

1) first{ x) - returns the first member of stream x.
ex. first([1,3.5,7D =1
ex. first({[1.3{5.71h=[L.3]

2) rest(x) - returns the stream x without the first member
ex. rest([1,3,5,7)=[3.5.7]

3) consl(y. x) - returns a stream whosc last: member is the
value y and whosc members before y are
those of stream x.
ex. consl(1.[3,5,7)=[3.5,7.1}

4) catenate(x,z) - returns a strcam whose members arc the
concatenation of the members of strecams
xand y.
ex. append([1,3.5).12.4D)=[1,3.5.2,4]

5) stream_merge(x,),b) - rcturns a stream s whose
construction is determined by the boolean
strcam b. If the value of bn is true then Sp

is chosen from stream x otherwise it is

chosen from strecam y. Note that the sum
" of the number of members in x and the

number of members in y must be equal to

the number of members in b.

ex. strcam_merge([1,3112].[rruefalse, truel)

= [L23]

6) stream_extend0(x,y) - returns two streams. x and y must
be of type stream[type] where type can be
any data type cxcept stream. Let x be of
length n and y be of length m. If nD>m
then x and a stream s are returned where
s;=y; for i¢=nm and s5;=0 for
i2n-m. If m > nthen astream sand y are
returned where s; = x; for i ¢ =nt-n and

s; = 0fori>m-n.
ex. stream_extend0([1,2,3LISD = [1,2.3] .
[5.0.0]

T) stream_extend1(x,y) - similar to stream_extend0 cxcept
that the value of I instead of 0 is used to
extend the shorter stream. o

Any function or operation that can be carricd out on the data type of a stream’s members can
be carried out on a stream itsclf. When it is performed on the stream, the function or opcration is
applicd to each member of the strcam to produce an output stream. For the stream x=/1,9,16,81]
some cxamplcs are given.

1) sqri(x)=[1,3,4,9]
2) x*2=[2,18,32,162]
-3) x<20=[true, true,true false]
Both opcrands may be strcams but when they are, they must have the same namber of members. As
an example, for y=/24,6,8], x-y=[-1,5,10,73].

Strcams may also be used in conditional statements,

if 1es1(z) then x else y endif
where fest is a conditional test and z x, y are streams. The value of this conditional statement is a
stream s. The test is performed on each member of z. If tesy(z,) is true then s, is equal to x, and y,,
is discarded. If tesi(z,) is false then s, iscqual to y, and x, is discarded. The three streams X, y and z
must all be the same size. Streams x and y are required to have members of the same data type.

An importémt property of streams is that members of a stream may be accessed before the
stream is fully constructed. This is necessary if streams are allowed to be infinite in size. An exarﬁple
will help to clarify. The function construct_even constructs an infinite strcam of consecutive even
integerg whose first member is x. The let block in Fig. 4.13 assigns the value of construct_even(0) to y

and produces 2*y as its value. Because of the nature of streams the multiplication starts as soon as the

first members of y arc available and will continue as long as members of y are produced.

-55-

function construct even(x : integer returns streamfinteger});

for
outstrecam : streamfinteger] ;= [];
X integer ;= x;
do
if false then outstream
clse iter
outstream : = consl(outstream,x);
X:=x+2;
enditer
endif
endfor
endfun;
(a)
let
y @ streamfinteger] : = construct even(0);
in
2*y
endlet

(b)

Fig. 4.13

-56-

4.6.2 Flow graph representation of streams

In this paper, the representation of streams in flow graphs is a sequence of tokens the last of
which is always an eos token. So a strcam multiply y*2 would be drawn as in Fig. 4.14(a). The
"=cos" condition is to test for the cos token and prevent it from becoming a input to Lhc‘multiply
actor. The function strca-m_mcrge is easy to translate into a flow graph (Fig. 4.14(b)). Strcam
conditionals are also readily translated into flow graphs (Fig. 4.14(c). It is assumed that streams x, y
and z are all the same size.

In order to draw graphs of stream_extend0 and stream_extend1, two new operations on the
instruction cell level are introduced. These operations are extend0 and extendl. An extend0 cell (Fig.
4.15(a)) has the following firing rules. Let the first and second inputs to the extend0 ccll be a and b
respectively. If a £ eos and b £ eos then a becomes the output. All acknowledge signals are sent. If
a = eos and b £ eos then the output is 0, the eos value remains in the first operand slot after firing
and only acknowledge signals marked f are sent. If a 7 eos and b = eos then a becomes the output,
the eos token stays in the second operand slot and only acknowledge signals marked t are sent. If a
= eosand b = eos, the output is an cos token and all acknowledges are sent. The extend! instruction
cell behaves in a similar manner except that if a = eos aﬁd b 7#£eos then the value 1 is the output.

The functionstream_extend0 is defined on the cell graph level in Fig. 4.16(b).

-57~

= e0s,

=£0

stream merge(x,y,b)

(b)

Fig. 4.14

-58-

STREAM CONDITIONAL

(c)

Fig. 4.14

-59-

extend0
o .
{25 I) I
f — »
n ~

EXTENDO INSTRUCTION CELL

(a)
0/1 0/? o
X id extendO t ___J
—_—r > r
n .
i r
+ — f
n n g _I

o | — e

id ' extend0 |
Yy : l'—l.

- r r
r »
n n t —I
A_ o]
INSTRUCTION CELL TRANSLATION OF STREAM EXTEND(X,Y)
(b)

Fig. 4.15

S. DATA FLOW IMPLEMENTATION OF MUSIC SYNTHESIS

The third chapter described a representative computer synthesis system and synthesis language,
both named Music-11. It was shown that a computer synthesis system similar to the Music-11 system
that allowed the modelling of rcasonably complex instruments cannot perform in real time due to the
scquential nature of convéntional computers. The potential for parallel computation in the sample
calculation process is great. One can easily sec the parallclism at the level shown in Fig. 3.1. Since
each instrument is an independent :ntity, the sound outputs for cacﬁ instrument can be calculated at
the same time. Concurrency also exists in the models of each instrument in the orchestra file. For
example if the model in Fig. 3.2 is used, the two sinusoidal components can be computed in parallel
before summing. And yet another level of paraliclism lics in the algorithms for many of the unit
gencrators. A computer synthesis system could derive numerous bencfits from data flow. This
chapter describes a proposed ixﬂplementation of a synthesis system that contains a data flow

computer. This proposed system will be referred to as Music-df.
5.1 Physical Layout of the Music-df System

The Music-df system is envisioned to look like Fig. 5.1. The composer uses a language similar
to Music-11 to create and edit orchestra and score files on the host computer. This computer is a
machine whose architecture is conventional and could possibly be a PDP 11/50. When the user is
satisfied with his files, he invokes a program that first sends the function statcments of the score file
to the data flow machine where the appropriate function tables are constructed. The orchestra file is
compiled into executable instruction cells on the host machine and transmitted to the data flow
machine. Then the host computer sorts the score file and carrics out the beat to sccond conversion
following the specifications of tempo statements in the same manner as for Music-11. After the

sorting and orchestra file compilation have taken place, the note statements of the score file are sent

host

computer

data

> flow

machine

-61

lowpass
» DAC
filter
lowpass
DAC »
‘_‘> filter
lowpass
DAC >
filter
lowpass
DAC Tl tilter

PROPOSED MUSIC-DF SYSTEM

Fig. 5.1

-62-

to the data flow machine and performance begins.
5.2 Music-df Language

The language that is to be used on the system will be called Music-df. It is similar to Music-11
and retains much of the syntax of the Music-11 language except for several changes in both the
orchestra and score files. Some of the changes are made from necessity while others are done to
make the files more readable and meaningful to someonc other than their ccmposer. The following
two sub.scctions describe the meodifications that ar¢ made to the Music-11 language to derive

Music-df a language that will run on the Music-df system.
5.2.1 Orchestra file modifications

In Music-df kr and sr are restricted to be defined as real numbers in the orchestra header. They
must be whole numbers and as in Music-11 sr must be divisible by kr. Ksmps still must be defined as
an intcger and equal to int(sr/kr).. Unlike Music-11, kr,sr and ksmps are available to the composer
and can be used in expressions in the orchestra file. |

The signal naming restrictions are lifted in Music-df. Control rate signals and audio rate signals
need not be named kn and an, respectively. The user may choose any name he wishes. This however
may pose a problem. Consider the two fragments of Music-11 code:

: ia idur ib
k1 line 10000, 5, 5000

and

; ia idur ib
al line 10000, S5, 5000

Even though the input parameters for line are the same in both cases, k1 and al are not equivalent
signals. They vary at different rates and are calculated differently. The Music-11 monitor knows

which type of signal the output should be by noticing whether the first character of the output signal

-63-

is k or a. This naming restriction no longer exists in Music-df. So, two functions cxist in Music-df,
kline for control rate signals and aline for audio rate signals. For cvery function in Music-11 that can
output cither an audio or control rate signal two corresponding functions are offered in Music-df.
'The function name is prefixed with anaork.

Another naming restriction that is lifted is that instrument identifiers be integers. In Music-df
instrument identifiers are character strings. This allows an identifier to be descriptive. It is uscful
when reading an orchestra file to be able to know at a glance that an instrument block probably
describes a clarinet-like instrument because the instrument identifier is “clarinet”.

Since the orchestra file is to be compiled into instruction celis that run on a data flow machine
there are two features of the Music-11 language that must be replaced. One is the tolerance of side
effects through the use of usc of global variables. An important usé of side‘cvﬂ'ects i;n Mu.sic;ll occurs
when each instrument is to be modificd in an identical manncr before becoming an output. The
global variable. accumulates the output signals of all the instruments so that their sum can be
modified instead of having to modify each onc separately. Fig. 3.6 is an example where the
modification is reverberation. It is a desirable feature to be able to accumulate the instruments’
outputs so Music-df rctains this capability by keeping global variables while excluding side effects.

A Music-df translation of Fig. 3.6 is shown in Fig. 52. In Music-df the orchestra file is required
to lie between a beginorchestra and an endorchestra line, making it a block in its own right. A new
statement, the output statement signals the output of the instrument block in which it is contained. In
Music-df, the instrument block outputs may be assigned to global variables whose scope is the
orchestra block. Global variables may be used in any instrument block but they may not bc modified
in any way within an instrument block. Now the insttuments’ outputs can be summed and modified
{or not modified) as a whole before becoming the argument to an out statement. The out statements
are restricted to lie outside the instrument blocks in the orchestra block. The modification of the sum

of the instruments’ outputs may consist of several signal functions whose input parameters the

—64-—

beginorchestra

sr=50000.
kr=500.
ksmps=100
nchnls=2

al = instrument one

xamp xcps ifn iphs
al aoscil k2, k3, 1, -1
output al
cndin

a2 = instrument two

xamp xcps ifn iphs
al aoscil k2, k3, 1, -1
output al
endin

; asig idlt
al reverb al+a2, 2.49
outs al3/2, a3/?

cendorchestra
MUSIC-DFF ORCHESTRA FILE THAT CONTAINS GI.OBAL VARIABLES

Fig. 5.2

-65-

composer may wish to vary from note to note. Therefore the uscr can specify these parameters in
score file note statements whose first parameter is out. This is a reserved instrument name. No other
instrument may be called out.

Another feature of the Music-11 orchestra file that cannot be translated into data flow is goto
statements. The instruction cell language of a data flow machine is fundamentally different from the
machine language of a conventional computer. In keeping with data flow principles it has no concept
of a program counter. Therefore a goto statement is mcaninlglc;s and cannot cxist in data flow. The

following conditional statement is offcred in Music-df in licu of goto statements,

if signall <test> signal?

then

{truecode>
else

{falsecode>
endif

where signall and signal? may be signals of any rate and <test> is one of the following: =, ~=., ¢,
>=, {=. <truccode> and <falsecode> can be any legal Music-df code that can occur in instrument
blocks. As an example, the Music-11 instrument block in Fig. 3.5 would become the following

Music-df instrument description:

instrument one

if p4> 1000

then

: ia idur ib
k1 kline 1000, p3, 500

else

: ia idur ib
k1 kexpon 700, p3, 400

endif

; xamp xcps ifa iphs

al goscll ki, fr 1, -1

output al

cndia

The following restriction is placed on the conditional statement in Music-df. Let rate be the

rate (ic. audio, control, note) of signall or signal? whichever has the ﬁighest rate. Any signal
(variablc) that is defined in the conditional statcment and used outside the conditional statement
cannot have a rate slower than rare. The instrument dcscription'abovc adheres to this 1_'u1e because k1
is control rate and p4 is note rate.

Finally, in Music-df once a valuc is assigned to a variable name it cannot be reassigned. The
scope of a variable name introduced and defined in an instrument block is that instrument block
alone. The scope of a variable name introduccd and defined in the orchestra block but outside the
instrument blocks is the entire orchestra file less any instrument blocks where the same variable name

is reintroduced and defined.
5.2.2 Score file modifications

The only changes to the score file are that the single Ictter that specifies the score statement types in
Music-11 is expanded to a word in Music-df. The letter i is replaced by note, f by functiontable, t by
tempo and e by end. The only exception is the letter ¢ which is continued to be used for comment
line. As an example, note statements take the form, |

note p! | p2 p3 pd...pl28

in Music-df where p/ is now a character string.
5.3 Orchestra File Conversion

The converted orchestra file in the data flow machine may be viewed as Fig. 5.3 where all the
boxes contain executable instruction cells. The instrument blocks labelled instrument one and
instrument n contains translations of the instrument descriptions in the orchestra file. Their inputs
come from the note parameter packets sent by the host machine. The instrument outputs are then
summed and modified using the parameters from the note statements whose first parameter is equal

to ‘out’,

pm

p2

pm

p2

pm

-67—-

 J

v

v

instrument »-
» SUM »
_ one
. sum > output
modifi-
cation
y > Sum
" instrument .
Sisum
> last
»
ORCHESTRA FILE

Fig. 5.3

v

It is important to note that if the desired sampling rate of 50 Khz is to be achieved, the four
output lines of the output modification box must produce a value every 20 microscc. In order for this

to occur, the instruction cell translation of the orchestra file must be maximally pipelined.
5.3.1 Instrument translation

At first thought, it may scem that the instruction cell graphs in the boxes labelled instrument
one and instrument last in Fig. 5.3 could be direct translations of the instrument blocks in the
orchestra file. However, if they were in fact direct translations of the instrument blocks, the
performance would not occur in the manner that the composer wishes if the score file contained rests.

For example, consider the score,

¢ instrument start- duration. . .
note one 0 2.

note one 4 2.

note one 8 2.

end

for a one instrument orchestra. If the instrument boxes in Fig. 5.3 contained direct translatibons of the
instrument blocks, then three two-second notes will be played in succession. But according to the
score there should be a two-second rest after the first and sccond notes. During these rests the
instrument should remain silent. The equivalent of silence is an output of zero for each sample of the
rests” durations. Thus the instrument boxes in Fig. 5.3 must contain a control structure to ensure each
instrument is played (or not played) at the appropriate times.

The control structure must eventually be expressed at the instruction cell level. But it is easier
to first describe the control structure in a high-level language (in this case, VAL) and then translate it
into instruction cells. In order to do this, it is assumcd. that each instrument in the orchestra file is a
VAL function that takes the paramecters from the note statements in the score file as its input
parameters, It is assumed that a VAL function exists for each instrument block in tl_le orchestra file.

These VAL instrument functions are direct translations of the orchestra file instrument blocks and

-69 -

take the parameters from the note statements in the score file as their input parameters. The data
type input parameters -of the instrument functions is streamfreal]. Thus the instrument functions
accept a stream of p2, a strcam of p3, a strcam of p4 ctc. as their inputs. The output of each
instrument function is of vtype stream|stream[real]] cach strcam in the strcam of strcams
corresponding to a notc in the score file. The output may be of arity one, two of four depending on
mono, stereo or quadrophonic sound. A control structure that will accomodate rests is acheived by
the four VAL functions in Figs. 5.4’a-d). Since p2 and p3 in the score filc not= statements specify the
starting time and duration of each note, the variable names starttime and noteduration are the
variable names for p2 and p3 in the VAL functions of Fig. 54.

The function convert_streams takes streams starttime and noteduration as inputs and outputs
two strecams. One output strcam restduration contains real values corresponding to durations in
scconds of all the rests in the score. The second stream bval is made up of boolean values and
determines whether the next duration is to be chosen from the stream noteduration or the stream
restduraiton. If the next value in bval is true the next duration will be taken from noteduration,
otherwise restduration will yicld the next duration. Thus bval decides whether the next duration is an
actual note or a rest. Taking the above score, suarttime=[04.8] and noteduration=[2,22].
Convert_streams(starttime,noteduration) yields two streams restduration={2,2] and
bval={true,false,true,false true].

The function silence expects its input restduration to be a stream of recal values whose unit is
seconds. For each member of restduration, silence constructs a stream of zeroes. The number of
samples in this strcam is equal to the number of samples in a time duration cqual to that member of
restduration. 'I‘hese streams are assembled into one stream to make the stream{stream{real]} output
that silence produces.

The function repeat_bool accepts two inputs, one bval, of type stream[bool] and the other

totattime of type stream[rcal]. These strcams should be the same size. For each totaltime,, a stream

~70-

function convert streams(starttime,notcduration : streamfreal] returns

for

do

endfor
endfun

stream[real] streamfbool]);

starttime : stream|real} : = starttime;
noteduration :stream[real] : = noteduration;
bval : streamfhool] :=[];

restduration ; stream[real] : = [];
laststarttime : real ; =0;

lastnoteduration : real : =0;

if starttime = eos then restduration,bval
clse iter
restduration.bval : = if laststarttime + lastnoteduration = first(noteduration)
then const{bval.true),restduration
else consliconsl(bval.false),true),
cons)(restduration, first(noteduration)-laststarttime-lastntoteduration)
endif:
laststarttime: = first(starttime);
lastnoteduration: = first{noteduration);
starttime: = rest(starttime);
noteduration: = rest(notcduration);
enditer
endif

(a)

function silence(restduration : streamfreal] returns stream|stream[real]});

for

do

endfor
endfun

durations : stream[real] : = restduration;
quict : streamstream[real]] : = [];

if durations = [] then quiet
clse iter
quict : = consl(quict,for
quict2 : stream|real} : = [];
count : integer : = int(first(durations)*kr)*ksmps;
do
if count <= 0 then quiet2
else iter
quict2 : = consl(quict2,0.0);
count : = count-1;
enditer
endif
cndfor))
durations : = rest(durations);
enditer
endif

(b) '
CONTROL STRUCTURE FUNCTIONS
Fig. 5.4

-71-

function repeat bool(totaltime : streamfreal] ; bval : streamfbool] returns streamstream{bool]});

for
duration : streamfreal} : = totaltime;
decide : streamfstreamfbool]];
bval : streamfbool} : = bval;
do
if durations = [] thea decide
else iter
decide : = consl{dccide.for
decide? : streamfhool} : = [};
count : integer 1= int(first(durations)*kry*ksmps;
do
if count <= 0 then decide? '
else iver
decide? : = consl{dccide2, first(bval));
count : = count-1;
enditer
endif
endfor))
durations : = rest{durations);
bval : = rest(bval);
cnditer
endif
cudfor

endfun

©

function control(starttime,noteduration,p4. . .pm: streamfreal] returns stream[stream{real]);

let
playl,play2.play3.play4 : stream]real] : = <namc>(starttime,noteduration,p4. . .pm);
bval,restduration : streamjhool} streamfreal] : =
convert streams(starttime, noteduration);
totaltime : streamfreal] : = strcam merge(noteduration, restduration,bval);
quict : streamfstreamfreal]] : = silence(restduration);
decide : streamstreamjbool]] : =repeat’bool(totaltime,bval);
in
stream merge(playl.quict,decide), stream merge(play2,quict,decide),
stream merge(play3,quict,decide), stream merge(playd,quict,decide)
endlet .
endfun

(d)
CONTROL STRUCTURE FUNCTIONS
Fig. 5.4

-72-

of boolcan values is constructed, whose members are all equal to bval,,. The size of cach stream is the
number of samples in a duration of totaltime,. For A = [2,3}, B = [truc.false}, kr=1, ksmps=1,
repeat_bool(A,B) = [[true,truc],[false,falsc,false]].

The function control (Fig. 5.4(d)) uses the output streams of convert_streams to either play the
instrument or initiate rests. The function <name> is a description of the sound of the instrument
whose identifier is <name>. The output of the function control is of aﬁty four because the output of
the function <name is of arity four, signifying quadrophonic sound.

Thc flow graphs for these four functions are shown in Fig. 5.5(a-d). Fig. 5.5(d) is important to
note because it depicts what may be called the total instrument. The total instrument consists of the
function control whose output is fed through a function destrcam. The function dcstrcam accepts an
input of stream|streamfreal]]. Its output contains all the rcél values present in the input except that
its data type is streamfreal]. The flow graph for destream is depicted in Fig. 5.5(c). In subsequent
figures, whenever a box labelled instrument <name> appcars, it replaces Fig. 5.5(d). A box labelled
<name> represents the description of instrument <name> in the orchestra file or in other words a
direct translation of the instrument block.

The instruction cell graphs for convert_streams and control are straightforward and will nof be
detailed. The cell graphs for silence and repeat_bool however bear investigation. Since these
functions output audio rate signals they should be maximally pipclined. This means that the ">0"
operator should output a value every other tick. A straightforward cell graph translation of these
doces not yicld optimally pipelined functions. The boxed part of Fig. 5.5(b) is where the problem lies.
A dircct translation of these cells is shown in Fig. 5.6(a). The reader can sece that this graph does not
produce an output value every other tick. Fig. 5.6(b) shows a non-direct translation that is maximally
pipelined. Itis this graph portion that replaces the box labelled loop control in Fig. 5.6(a). (The loop
control box is used in several more figures as a substitution for the four flow graph actors in Fig.

5.5(a).) Figs. 5.7(a,b) show maximally pipclined versions of silence and repcat_bool.

-73-

startt}me noteduration

DATA FLOW GRAPH FOR THE FUNCTION CONVERT-STREAMS
(a)

Fig. 5.5 restduration

-74-

restduration

0.0 eos

quiet

FLOW GRAPH FOR THE FUNCTION SILENCE

(b)
Fig. 5.5

-75~

totaltime

= e0s

false

— — —— —] ——— — —

DATA FLOW GRAPH FOR THE FUNCTION REPEAT-BOOL
decide (©)

Fig. 5.5

-76-

starttime

noteduration p4 pb

convert-
streams

rest
bval| dyration

{name>

stream-
merge

otaltime

repeal-bool

decide

control

\ 4

silence

quiet

play

instrument <named

DATA FLOW GRAPH FOR THE FUNCTION CONTROL
AND THE TOTAL INSTRUMENT

(d)
Fig. 5.5

-77-

!
f eos lr
’/ ‘»._\\\) _\
B '\\' r _ \"'_
\;& eos:,/ { =eos
e . v
N N\
. e
_\ . P
- -
\\. P -~
4

DATA FLOW GRAPH OF DESTREAM
(e)

Fig. 5.5

-78-

merge , gt
counf TH. >
— i ilo ¢l
b | false | n id sub
r 1 > t >
L . n ij1 ¢
—3h n
\4

Direct Translation
(a)

Y.

A 4

count lifo el de

1
i i j1 ¢
b ifaise ft—- 0/?--l b
| 1 o
‘- — — » i
—»1i|0 ¢
o1
Maximally Pipelined Translation ¥
(b)

INSTRUCTION CELL TRANSLATIONS OF LOOP-CONTROL SUBGRAPH
Fig. 5.6 '

p3r

~79-

i mlt int Imult |
> f—r > —»1i
Ln T ikr ~ n i
b n ' n n
i merge
1o cit i — loop
n i control
—>1b J—+b
merge
|| R

e v r— — t— —— — — — —— — a—— —

INSTRUCTION CELL TRANSLATION OF SILENCE
(a)
Fig. 5.7

r_Ps_n

totaltime

-80-

sample

number

compu-
tation

loop
contiol

id
>1b
n
n _1
|
bval £q oL Imen e i t
>h S 210 = —>1b
0 rose n >h n t
n b b |falsd —->h

INSTRUCTION CELL TRANSLATION OF REPEAT-BCOL

(b)

Fig. 5.7

-81-

5.3.2 Instrument output summing

The simplest implementation of the boxes labelled sum in Fig. 5.3 would be add instruction
cells (Fig. 5.8(a)). The number of add instruction cells needed would be n-/ where n is the number of

instruments in the orchestra file. But consider the following score file that plays a two instrument

orchestra,
c instrument start duration.
note one 0 2.
note one 2 4 .
note two 0 10.

end
Instrument two plays six beats longer than instrument once and thus outputs more samples than
instrument onc. If the two instruments cach send their output to different speakers the piece will
sound as it was intended to sound. However if the output of the instruments is summed before being
sent to a speaker there is a problem. If the number of output samples from the instruments does not
« match up and the summing implementation in Fig. 5.8(a) is used, there will be values left in
instruction cells after p'crfonnance. Fig. 5.8(b) shows a solution to the problecm. The output of the
instrument whose output stream is shorter is extended to the length of the output stream of the other
instrument, its ncw members equal to zero. The two stréams are then added. If the two streams were
to be multiplicd, extendl operators would replace the extendd operators. To sum the output of n
instruments, each instrument’s output would be destreamed and n-7 of the box labelled stream sum

in Fig. 5.8(b) would be used.
5.3.3 Orchestra output modification

The contents of the output modification box in Fig. 5.3 are shown in Fig. 5.9. The rcader is
reminded that starttime and noteduration arc equivalent to p2 and p3. Note that Fig. 5.9 assumes

monophonic sound whereas Fig, 5.3 depicts an orchestra that outputs to four speakers. The input

-82-

SUM
instrument
add
one R
r i -
- r »
instrument n
two
incorrect
(a)
SUM
id
r
n
instrument extendQ n add
one > T Lo [
r r —>
n " id b merge
r leos
. 1>
n r
i n
instrument Eando n id
two mLr b
r eq n
n > N
r feos .
Correct

INSTRUCTION CELL TRANSLATIONS OF INSTRUMENT SUMMING

(b)

Fig. 5.8

-83-

starttime notedulration instrumentsum p4 pm

instrument out

J

DATA FLOW GRAPH OF OUTPUT MODIFICATION
Fig. 5.9

.84-

instrumentsum is the output of a sum box in Fig. 5.3 and its type is streamfreal]. Ifit is to be used as
an audio rate input to a signal function in the out instrument, it must be of type stream|stream[real]].
Therefore in instrumentsum is exiended to contain a number of values equal to the number of

samplcs in the total playing time of the instrumcat out (ic. the sum of all the p3 values). Let n2 be the

number of members in a stream, # not necessarily cqual for two arbitrary streams, Then it is required
n-1

that 2 p3; for the instrument out be greater than or cqual to p2n_ 1+P3
k=0

After instrumentsum is extended, ¢os tokens are inserted in the stream, the -alues between the eos

n-1 for any instrument.
tokens corresponding to the noteduration values in the score file note statements for the instrument
out. The insertion of these eos tokens converts instrumentsum from type stream{real] to type
stream|stream{real]] so that it can now become an input to the instrument out.

If the orchestra file had four output strcams (quadraphonic sound), then the boxed subgraph in
Fig. 5.9 would be duplicated three times to accomodate the extension and data type conversion of

four input streams.
5.4 Signal Functions

This section deals with the building blocks of the orchestra file, the signal functions. These
ﬁmctiqns can be broken down into three groups, the envelope generators, the oscillators and the
signal modifiers. In the next three subsections, at least one example of each function type is worked
through. For each function, VAL code is given first so that the reader can more casily understand the
algorithm involved. The VAL code is followed by a flow graph representation and then an
implementation using instruction cells. In deriving the instruction cell graphs, several considerations
were taken into account.

In Music-11, each signal function is called every control period. As explained in the first
chapter, this means that functions producing control rate signals output one real value for each

function call and functions producing audio rate signals output an array of real values of size ksmps.

-85 -

In Music-df, a signal function is called only once during the entire performance. Thus the output of
each function when expressed in VAL is of type stream|[streamfreal]]. Each strcam in this stream of
strcams corresponds to a note in the score file. If the output of the signal function is control rate,
each stream in the output stream will contain int(p3*kr) real valucs. If the output strecam is audio
rate, cach stream will consist of int(p3*kr)*ksmps.
In Music-11 most signal functions take input signals that can be one of scveral rates. For

instance in the Music-11 statement,

an oscil xamp, xcps, ifn ,iphs
The inputs xamp and xcps may be constants, note rate, control rate or audio rate. On the other hand,
the signal functions in Music-df expect an input to be the highest possible rate. For example the
xamp variable in Music-df aoscil function is expected to be audio rate. If it is not audio rate, then
aoscil will not yicld the desired output. Oftentimes, a composer would like to use a control ratc‘signal
as the xamp or xcps input. In order that the user not have to concern himself, it is assumed that an
orchestra file compiler will check the inputs to the signal functions and convert them if necessary.
For this purpose, Music-df has the following conversion functions. |

1) constant_to_control

2) constant_to_audio

3) note_to_control

4) note_to_audio

5) control_to_audio
These functions convert a data type of the left hand side the function name to a data type of the right
hand side of the function name. For instance, constant_to_control converts a constant number to a
control rate strcam and note_to_audio converts a note rate strcam to an audio rate stream. As an
example, for the following lines in an orchestra file,

; ia idur ib

ampenvelope kline p§, p3, pé

: xamp xcps ifn iphs
sig aoscil sigl, 440, 2, -1

-86 -

the compiler would recognize that aoscil expects its first two inputs to be audio rate. Thus
control_to_audio(ampenvclope) and constant_to_audio(440) would become the first two inputs to
aoscil instcad of ampenvelope and 440.

It was mentioned in section 5.2 that the orchestra file must be maximally pipclined if
performance is to occur in real time. Thus the signal functions which are components of the
orchestra file must also be maximally pipelined. All the signal functions are translated such that they
output not only audio ratc signals but also control rate signals cvery other firing to cover the
possibility that sr = kr. All control rate and audio rate inputs to a signal function arc assumed to
arrive at the functions’ input cells simultancously and at an optimally pipelined rate. Note rate
signals vary so slowly that that nced not flow through a graph at an optimally pipelined rate.

Finally, kr, sr and ksmps are treated as constants since they do not vary within an orchestra file.
5.4.1 Envelope generators

Music-11 offers seven envelope gencrator functions. The simplest one to study but not the least
instructive is line. This function was bricfly explained in chapter one. The orchestra function
statement for line in Music-11 takes either of the forms,.

kn line ia, idur, ib
or

an line ia, idur, ib
Thus in Music-11, line can output either a control or audio rate signal. For Music-df two VAL
functions were written, Kkline and aline. Both functions produce an output of type
stream[strecam[real]]. The output of klinc is control rate and the output of aline is audio ratc. The
VAL function kline is shown in Fig. 5.10(a). In Music-df, kline needs one more input than in
Music-11. This input is p3. This is because kline are called only once during the performance and

needs a way of knowing how many samples to output per note.

function kline(ia,idur,ib,noteduration : streamfreal] returns stream[stream[real]]);

for

do

endfun

funtion segment(ia,idur,ib,rate : real; count : integer returns streamfreal]);

for

do

endfor

endfun

-87-

outstreams : streamfstream|real]] :=[];
noteduration : stream[real] : = noteduration;
ia ; streamfreal] : = ia;

idur : strecam|real] : = idur;

ib : strecamfreal] : = ib;

if noteduration = eos then outstreams
else iter
outstreams : =

consl{outstreams,

scgment(first(ia),first(idur),first(ib), kr,int(kr*first(notcduration))))

noteduration : = rest(noteduration);
ia :=rest(ia);

idur : = rest(idur);

ib 1 = rest(ib);

enditer

endif

cndfor

)

inc : real : = (ib-ia)/(idur*rate);
y : real ;= ia;

oustream : streamfreal} : = [];
count : integer : = count;

if count > 0 then iter

outstrcam := consl(outstream,y);
y i = y+inc;

count : = count-1;

enditer

else outstream

endif

(b)
VAL FUNCTIONS KLINE AND SEGMENT
Fig. 5.10

b

-88 -

For ecach member in the input strcams of kline, the function segment (Fig. 5.10(b)) is called.
The function scgment outputs samples of a linear segment whose endpoints are ia anci ib. The input
idur is the amount of time that elapscs between the endpoints. The input rare determines the rate of
the output strcam. If rate=sr, the output will be audio rate and if rate= kr, the output will be control
rate. The length of the output stream is equal to the function input couns. When kline calls segment,
count=int(kr*p3). This ensures that the size the segment's output stream is equal to the number of
control samples in p3 scconds, the note duration. Note that idur docs not have to equal p3. -1t only
serves to define the slope of the line segment. If p3 < idur the segment will be truncated and never
rcach the value ib. If p3) idur, the scgment will pass the value ib and continue on the same defined
line.

The function aline is not shown but is similar to kline except that it calls segment with the count
input parameter equal to int(kr*p3)*ksmps and th§ rate input paramater equal to sr.

The flow graph translation of kline very eraightforﬁwardkas showﬁ in Fig. 5.11(a). For ecach
member in the stream p3, segment constructs a stream. After the last member of stream p3 has
travelled through the merge actor, the ;eos condition will be true as the eos token appears on the
input arc of the predicate operator. This causes an invocation of segment with a count of zero and the
ia, ib, idur variables respectively equal to 0, 1 and 0. This is done to produce the final eos token for
the kline stream{stream|real]] output.

Figs. 5.11(b) and 5.12 depict the flow graph and instruction cell translations of segment. The
function segment outputs either a control or audio rate signal and therefore line must be maximally
pipelined. Fig 5.12 meets this requirement. The three output lines of loop-control originate from the
same instruction cell. Acknowledge signals are left out of the figure to reduce cluttér but it is
important to note the acknowledge signals of several instruction cells so that the reader is convinced
that Fig. 5.12 works correctly. Instruction cell 3 acknowledges cell 1 when its third input is false. It

cannot firc until it has received an acknowledgement from the add instruction cells. Instruction cell 4

-89~

noteduration ia ib ic

segment

DATA FLOW GRAPH FOR THE FUNCTION KLINE

(a)

Fig. 5.11

-90-

idur kr ib ia

count

’ n
g
]

DATA FLOW GRAPH OF THE FUNCTION SEGMENT

(b)

Fig. 5.11

~91-

count

)

id
loop-control >1bl
n
n
La
1 id t] id
. id [T t r—-_'-——-»r
a—pir n n
n b n
] n Isub
ib <L
_. r
n 2 4
div t jadd
—t T 1 mali
— n t ~Pir]
>thl 1t n
. mult |
ur o
P r
[4

INSTRUCTION CELL TRANSLATION OF SEGMENT
Fig. 5.12

-92-

acknowledges cell 2 when its third operand is false. It cannot fire until it has received an
acknowledgement from instruction cell 5. Both cells 3 and 4 acknowledge the output cell of
loop-control. Note that cells 1, 2, and the sub and mult instruction cells do not need to be optimally

pipelined since they fire only once per note.
5.4.2 Oscillators

The oscillators make up the second class of signal gencrators. They output periodic waveforms
and are essential to music synthesis. Without oscillators, there can be no sense of pitch to a sound.
The oscillators in Music-11 arc table, phsor, oscil and foscil. The function table is not really an
oscillator, but is included in this group because when paired with phsor, the two form an oscillator.

Table, phsor and oscil arc discussed in the following paragraphs.
5.4.2.1 The table functions

A function statement in Music-11 using table looks like any of the following three statements,
in table indx, ifn, ixoff
kn table kndx, ifn, ixoff
an table xndx, ifn, ixoff
The table functions simply access the function table ifi1 using a rcal number equal to the sum of the
ndx and ixoffinputs to linearly interpolate between two entries.

In Music-11, table can output a note rate signal (the only signal function to do so), a control rate
signal or an audio rate signal. A separate function for each rate is written in VAL. Functions itable
and ktable are shown in Fig. 5.13.

The output of itable is note rate so it is of type stream[real]. This output strcam contains one
member for each note in the score file. Likewisc, the output stream of ktable contains one member

for each note in the score file, but its members are control rate streams. Both itable and ktable use

the function interp (Fig. 5.14(a)) to access the function table. The index input of interp is a real

-93-—

function itable(indx, ixoff :streamfreal]; ifn : streamfarrayfreal]] retumns stream|real]);

for
index : streamfreal] : = ndx;
xoffset : streamfreal] : = ixoff;
fable : streamfarrayreal]] : = ifn;
oustrcam : streamfreal} : = [];

do
if index = [] then outstream
else iter
oustream : = consl(ontstream,interp(first(ftable),first(ndx) + fi m(offsct))
xoffset : = rest(offset);
ftable : = rest(ftable);
index : = rest(index);
enditer
endif

endfor

endfun

function ktable(ndx : strcam[slrcamlrc.ll]] ifn : streamfarray[real]}; ixoff : stream{real)
returns stream|stream{real}]);

for
index @ stream[stream[real]] : = ndx:
ftablc : stream|streamjreal]] : = ifn;
xoffsct : streamfreal] : = xoff;
outstreams : streamfstream{real]] : = [);
do
if index = [] then outstrecams
else iter
oustrcams : = consl(outstrecams,for
index2 : stream[real] : = first(index);
addstrcam : streamfreat] : = [];
do
if index2 = [} then addstream
else iter
addstream : =
consl(addstream, interp(first(ftablc),first(index2) + first(xof fset));
index2 : = rest(index2);
enditer
endif
endfor
xoffset : =rest(xoffset);
ftable : = rest(ftable);
index : =rest(index);
enditer
endfor
endfun

VAL FUNCTIONS ITABLE AND KTABLE |
Fig. 5.13

number int frac. Interp uses frac to linearly interpolate between entries inf and int+ 1. The function
atable is not depicted but its VAL code and hence its flow graph and cell translations are exactly the
same as ktable. However atable expects its input stream ndx to consist of audio rate streams whereas
the ndx input to ktable must be made up of control rate strcams. Even though the VAL code for both
is the same the user must specify his wishes by writing cither ktable or atable.

The data flow graph for ktable (or atable) is shown in Fig. 5.15. Since interp has a depth of six
actors (Fig. 5.14(b), the dotted lines beside the interp box must each contain six identity operators to

insurc a maximally pipelined graph.
5.4.2.2 The phsor functions

In Music-11 the phsor functions take the form,

kn phsor kcps, iphs
an phsor xcps, iphs

The phsor functions output a moving value phase where 0<=phase< 1.0. This moving value
accumulates an increment dependent on the ¢ps input. The input iphs is a note rate stream and
determines the initial phase value for each note, If iphs=0‘ then the initial phase equals 0, otherwise
the initial phase is the valuc that was last calculated for the previous note. As an example, if the
following statement is included in an orchestra file,

: kcps iphs
k1 phsor 100, O

the output signal k1 will cycle from 0 to 1 with a frequency of 100 cps. Its initial phase will always be
0. Since k1 is a control rate signal the accumulated increment will be 100/7kr. In | general the
increment is equal to kcps/kr (xcps/sr for an audio rate output).

Fig. 5.16 shows the VAL function kphsor. Like all other functions that produce control rate
signals, its output is of type strcann[st;cam[rcalll. The function rmod(x,y) is assume_d to be a built in

operation on the data flow machine. It carrics out a real (as opposed to intcger) mod operation. It

-05-

function interp(ftable : array[real]; index : real returns real);

let

whole : integer : = int(index);
fraction : real : =frac(index);

in

ftable[wholec]+(flable[whole + 1}-ftable[whole]y*fraction

endlet

cndfun;

—

— i3

Vol FUNCTION INTERP

(a)
index

) lint)
i
X

) (43 (1)
l

) e j \'\
é_el) Egl)

J

f——
[\
[¢]
—

g

.

—{

p—

()

\Qn

DATA FLOW GRAPH FOR THE FUNCTION INTERP

(b)

Fig. 5.14

-96—

ifn ixoff ndx

true

DATA FLOW GRAPH FOR THE FUNCTION KTABLE

Fig. 5.15

-97-

function kphsor(kcps : streamfstream|real]] ; iphs : streamfreal}

for

do

endfor

endfun;

returns stream{stream[real]});

cps : stream|stream|real]] : = kcps;
phasc : streamfreal] : =iphs;
outstreams : streamfstream{real]} = [];
phs:real ;= 0.0;

addstrcam : streamfreal] :=[];

if amp = [] thea outstreams

clse iter

addstrcam,phs :

for

do

endfor

cps2 @ streamfreal] : = rmod(first(cps));
phs2: real : = if first(iphs) >= 0.0
then first(iphs)
clse phs
endif;
addstrcam? : streamfreal] : ={];

if cps2 = [] then addstrecam?2,phs2
else iter

addstrcam : = consl{addstrcam,phs);
phs : = rmod(phs + first(cps2)/kr,1.0);
cps2: =rest(cps2);

enditer

endif

outstreams ; = consl(outstrcams,addstream);

cps : =rest{cps);

phs : =rest(phs);

enditer
endif

VAL FUNCTION KPHSOR
Fig. 5.16

-98 -

handles ncgative values of x in the following manncr. rmod(-.3,/.0)=.7 not .3.

The flow graph for kphsor is depicted in Fig. 5.17. The initial phase value of zero is present on
the top left F-gate. For each stream in kcps, the phase iteration scction of the graph produces a
stream of equal size. At the end of each stream kcpsn, an eos token will cause the = eos condition to
be true. The last computed phase value does not drop through the bottom F-gate into the merge
actor but passes through the T-gate to be saved for the next iteration. If iphs,, , ; <0 then the saved
phase values will be the first phasc salue of the iteration involving kcps,, , ;. An eos token will follow
the last iphs member through the graph. When it becomes the input to the "= eos” actor, the actor
will consume the cos token and place a value of frue on the top T-gate. This will allow a zero to drop
into the phase itcration graph portion. The rmod actor will fire with the zero token as an input and
output a zero token on the input arcs of the F- and T- gates. A final eos token from the kcps stream
of streams will causc a frue token to appear on the bottom F- and T- gates. Thus the zero token will
pass through the T-gate and be correctly positioned to leave the graph in in its initial state.

The kphsor flow graph is not maximally pipelined but it can be translated into a cell graph that
is, almost (Fig. 5.18). The box labelled ir'litial phase decide is a direct actor to ccll translation from the
flow graph. The phase iteration graph portion can easily be translated into a cell graph that can
output tokens at the optimum rate However at the end of every itcration cycle when the last phase
value is saved (the last phase value is the output of the rmod instruction cell when its third input is
true), seven cells must fire in sequence (five of them in the initial phase decide subgraph) before the
phase iteration graph can produce an output token. But this firing sequence occurs only once for

every note in the score file. With a sampling rate of 50,000 a notc would have to be less than .001

scconds before the output rate would be scriously impaired.

—99-

initial phase decision

: S

phase iteration

FT

v
DATA FLOW GRAPH FOR THE FUNCTION KPHSOR
Fig. 5.17

-100-

| I 0/1/1 ! 0/0
! rmod |t t :—_] add
. initial BT , »r
Iphs, phase r Mr
decide —>{b il n]
A
1At =
| S I
0/1 | 0/1 & 0/?
keps |9 | div | merge | |
r I > r r QOSQ >
n rlkr ¢ >r
n <t b] b]
T | |
o2 | 0/1 |
eq id l
' r > b —
r Bosc n E
n n
— | 1

INSTRUCTION CELL TRANSLATION OF KPHSOR

Fig. 5.18

-101-

5.4.2.3 The oscil functions

In Music-11, the oscil function takes the form
kn oscil kamp, kcps, ifh, iphs
when outputting a control rate signal and,
| an oscil xamp, xcps, ifi, iphs
when it produces an aﬁdio rate signal. As explained \in chapter one, oscil accesses samples of a
periodic wave stored in a function table ifn at a frequency of kcps (or xcps). These samples are
multiplied by the amp input to produce the output. An example will aid the reader in understanding

the algorithm uscd in obtaining the oscil output.

Consider the statement,
: kamp kcps ifn iphs
k1l koscil 10000, 440, 1, -1

If one cycle of a sinc wave is stored in function table 1, then oscil becomes a sinusoidal oscillator with
frequency of 440 and amplitude of 10000. As explained before, oscil stcps through the function
table. But how is it determined which entry to access in function table 1? It is knc;wn that all
function tables are of type array[real] and have limits ifnf0 : 511]. If the frequency of the signél is
440 cycles/sec, the period is 1/440 scc/cycle. k1 is a control rate signal so thcre are kr samples/sec
and kr/440 samples/cycle. The table con.iains 512 entries/cycle, so the sampling increment should be
(512*440)/ kr entrics/sample or in general (512*cps)/kr entries/sample. In order that an illegal array
access is not made, the accumulated increment x should not be used to read the function table but
tmod(x,512).

The VAL function koscil calculatcs its array index using a method similar to the one outlined in
the previous paragraph. The accumulated increment x is not rmod(512*%cps/kr,512) but
rmod(cps/kr,1.0). The function mblc index is obtained by multiplying x by 512. The calculated

index is a real number and as in the table functions, is used to lincarly iritcrpolatc between two

-102 -

successive entries in the function table. The iphs input determines the initial entry to be accessed in
ifn for each note. If iphs<=0 then the initial entry is zero. Otherwise the initial entry is S12*iphs.
The function koscil can be defined as follows:

function koscil(karnp,kcps:stream|streamfreal}]; ifn:stream[arrayfreal]];
iphs:streamfreal]] returns stream{strcam|[real]]);

let

phasesig:stream|streamfreal]]: = kphsor(kcps,iphs);
oscilsig:streamfstream|real]}: = ktable(phasesig*512,ifn);
in A
kamp*oscilsig
endlet

endfun
The function kphsor is uscd to calculate x and ktable uses 512*x to access if. Since koscil is

composed of two functions that have already been defined, its graph will not be detailed.
5.4.3 Signal modifiers

The third class of signal functions is the signal modifiers. The majority of these functions is a
digital filter of some sort. The simplest of these filters is tone.

The Music-11 format of tone is,

an tone asig, khp, istor

The function tone performs a low-pass filter opcration on the input audio rate signal an. The
half-power frequency of the filter is khp. The algorithm used is the filter equation,
y[n}=b0*x[n]+al*y[n-1}, where x[n] is the input corresponding to asig and b0 and al are filter
cocfficients calculated from the half-power frequency by the function tonc_coeff (Fig. 5;]9(b)). The
input istor determines the initial value of y[n-1] for each note. If isror = 0 the inital valuc of y[n-1] at
the start of the next note is zero. If istors% 0 the inital value of y[n-1] is the last value of y[n] from the
previous note.

Fig. 5.19(c) shows the VAL function tone. Tone calls the function convert_coeff (Fig. 5.19(a))

-103-

function convert.coeff{khp : streamstreamjreal}] returns streamstream{realtf]);

for
hp : streamfstream{reall] : =khp;
bo : streamifstreamfrealy] : ={};
al : streamstreampreatf] .= {
sbo: streanjreal] :={};
sal: streamfreat] . = {§;

ifhp =] then b,al

clse iter

sb0sal : = for
sb0 : streamfreat] * ={]
sal : streamrea] .= {];
hp2 : real : = fistthp),
mb0 : red;
mal : real;

il hp = {]then sb0,sal
else iter
mb0.mal : = tonc_cocfRfirst(hp2));
sb0: = coasi(sb0,mbo);
sal ;= consi(sal,mal);
hp2 : = rest(hp2);
enditer
cadif
cndfor

b0 : = consi(h0,sb0);

al : = consl{a2 sal);

hp := rest(hp);

enditer

cndif

endfor

“cndfun

VAL FUNCITON CONVERT COEFF
)

function tone cocff(hp : real returns real);
let
b : real ;= 2.0-cos(2*pi*first(hp)/sr);
al : real : = il hp > 00 then b-sqri(b*b-1) else -b 4+ sqrt(b*b-1) endif;

al l-al
cndiet

cndfun

in

VAL FUNCTION TONE COEFF

M)
Fg.5.19

-104-

function tonc(asig.khp : strc.lm[strc.nn[rul]] istor : stream{real}
returns stream{strcam{real});

for
x,y : streamfstream{real]] : = convert coeffikhp);
bl): streamstreamreal]] : =control to audio(x);
al: stream|streamfreal]) : =control to audio(y);
sig : stream|strecam[real]] : = asig;
stor : stream{real] : = istor;
result : real : = 0.0;
outstreams : strc.unlstrc.un[rcal]] =[k
addoutstream : streamfreal] : =
do
if sig = []thcn outstreams
clse iter
addoutstrcam,result : = for
b0 : streamfreal] : = first(b0);
al : stream{real] : = first(al);
sig : streamfreal] : = first(sig);
outstream : streamfreal] 1= [];
result @ real : = if first(istor) = 0.
then 0.0
else result
endif;
do
if sig = [] then outstream
else iter
result : = first(b0)*first(sig) + first(al)*result;
outstream : = counsl{outstream,result);
b0: =rest(b0);
al: =rest(al);
sig: =rest(sig);
enditer
cndif
endfor
outstrecam : = consloustrcams,addoutstrcam);
b0: =rest(b0);
al:=rest(al);
sig: =rest(sig);
stor: =rest(stor);
cnditer
cndif
endfor

endfun;
VAL FUNCTION TONE
©

Fig. 5.19

-105-

to convert the control rate stream of khp to two control rate streams of filter cocfficients. The two
strcams are converted to audio rate strecams by the function control_te_audio. |

The flow graph for tene is shﬂwn in Fig. 5.20. In order %o give the reader a full understanding,
a brief example is presented. Let asigy = x, b0y = ¢, alg = d and istory = 1. x, cand d are all
strcams and corrcqund to the first note in the score. Furthermorc, let m be the length of streams x, ¢
and d. Because istory = I, the initial zero token drops through the F-gate and merge actor into the
filter itcration subgraph. The initiil value of #we on the input of the fncrgv actor allows the value
zero to rest on the input arc of the F- and T-gatcs. The condition xg=eos is falsc so the filter
subgraph outputs 3{0] = xo*co. The value of 5{0] is fed back through the nierge actor in the filter
itcration subgraph where it drops through to the ¥- and T-gatc§. If m>1, then 3{0] becomes the input
to the muitiply operator and the filter itcration subgraph outputs){1] = x;%c;+,{0)*d,. thn.
Mm-1] s calculated, it becomes the.output of the filter iteration subgraph and is fod back to the merge
actor where drops through to the two gates. This time, the =eos condition fér x is true. Thus y{m-1}
is swallowed by the F-gate and falls through the T-gate. The value of istor; determines whether
3{m-1] will remain the same or be assignc;d the value zero when computing y{mj.

When the last note has.becn played, the eos token of the I'Smrsm;,am causes the last calculated
output to be consumed by the F-gatc and a zero value to drop through the merge actor of the filter
iteration subgraph. The final eos token of the asig stream of streams produces a #rue token on the F-
and T-gates. Thercfore the zero token passes through the T-gate and the graph is restored to its
original state,

The cell graph for tone is shown in Fig. 5.21. The filter iteration subgraph can be translated
into an instruction cell graph that will output values at an optimum ratc between coasecutive false
inputs. When the boolcan input is true (when the = eos condition for asig is truc), a sequence of
seven cells must fire before the next output is produced. However, this occurs only at the end of each

note and does not seriously impede the output rate. The box labelled id cells, contains a scquence of

istor

or

filter
iteration

-l06-

khp

input feed

convert-
coeff

asig

control- ontrol-
ko-audio 0-audio

true
TE)T

\

e0s

FT

DATA FLOW GRAPH FOR THE FUNCTION TONE

Fig. 5.20

=LOT-

— q B 1d ! T E—
N .\}—% —p b —D>
'ﬁ e0s8 ¢ .n n ! &
aé}g_ id's] 1 5 =
Iqd '! id
r r
p{T 3 !
: ok j
|
id |
control_ T i LV r !
ni{ —p L "
) convert, to_audig L |
khp coeff |
- } = i
L, control {4—pT ¢ M L | _.tr“ :
T —H t
to_aud A [T]
[/
1 He— M ~ P] 6¢— |~ CELL GRAPH FOR THE
istor B RERL
- FUNCTION TONE

|
608 C

I Fig. 5.21

s

- 108 -

m identity instruction cells where m is large enough to insure that the graph is pipelined.
5.5 Function Tables

In Music-11 the user can create arrays and use them to store evenly spaced samples of
waveforms. This is done by including a function statement in the score file. (The reader is referred
to chapter one for a detailed description of the function statement.) In Music-df, the same capability
is offered. However, instcad of assigning the function generators a number that becomes p4 in the
function statement, a mcaningful name is given to each different waveform option. For instance
function generator # 10 in Music-11 becomes sinctable in Music-df.

All function tables arc of type array[real] and contain 513 entries. This size is considered large
enough, particularly since all the signal functions that access function tables perform an interpolation.
The last entry is a copy of the first entry so that an illegal array access cannot be made when a signal
function interpolates. The array limits are [0 ; 512}

A representative function generator, sinctable is detailed in this section. The algorithm for
sinetable is expressed first in a VAL function and then a data flow graph. Since the instruction cell

coding is a direct translation of the flow graph, it is not included.
5.6 Sinusoidal Sum Function Table

The Music-11 function generator #10 was discussed in chapter one. It computes a sum of
sinusoids and stores them in a function table. In Music-11, a statement containing function generator
#10looks like,

f pl p2 p3 10 strl, str2, su3,.
where

strl,str2,str3... - the strength of the first, second, third etc.

partials

-109 -

Function generator #10 in Music-11 becomes the function sinetable in Music-df (Fig. 5.22(a)).
It expects its input in a different format than that of Music-11. The first input strength is a strcam of
the strengths of the partials. The function sinetable calls sinscsum (Fig. 5.22(b)) to construct an
unscaled array and give the maximum value contained by the array. The function sinctable then uses
the scale input to détcrmine whether or not to scale the sincsum’s output array to a peak value of 1.
A Music-df function statement using sinetable has the form,
functiontable sinctable [stri,str2,sir3...] scale
The flow graphs for sinetable and sincsum are shown in Fig. 5.23. The function sincsum
calculates the 512 points of the wavcform using the equation,
function_table[i}: =
str1*sin(2w /512/1*real(i))+
str2*sin(2w /512/2*real(i)) + ...
strn*sin(27/512/n*real(i))
Within the calculation of the contents of cach table entry the VAL function sinesum computes the
contribution of each partial in sequence. It is hoped that a compiler would be smart enough to see
the potential for parallclisim that is not expressed in the VAL function. Consider the case where
sinesum is called with only one partial. Fig. 5.23(b) depicts the flow graph for this case. If the
number of partials equals n then the parallelized flow graph would be as shown in Fig. 5.23(c) where

the number of addition operators needed would be n-1.

-110-

function sinctable(strength : stream[real] ; scale : real returns array[real]);

let
functiontable : arrayfreal}, scalefactor : real : = sinesum(strength);
in
if scale >0
then functiontable
else
for
functiontable : arrayfrea] : = functiontable
index : integer := 0;
do
if index > 512 then functiontable
else iter
functiontablc[index] : = functiontable[index]/scalefactor;
inde> ;= index + 1;
enditer
endif
endfor
endif
endlet
endfun

VAL FUNCTION SINETABLE

@

Fig. 5.22

~111-

function sinesum(strength :streamfreal} returns aerayfreal]);

let
functiontable : arrayfreal} , max : real : =
for
addentry :real;
scalefactor ; real 1= Q;
count : integer : = 0;
functioniable : arrayfreal} : = array flK0,-1,0);
do
ifcount = 512 then functiontable, scalefactor
clse iter
addentry : =
for
strength : streamfreal] 1 = strength;
% e =0
partial ;real :=1;
do
if strength = [] then x
else iter
x : = x+ first(strength)*sin(2*pi/512/pastial*reak{count));
strength : = rest{strength);
partial : = partial + 1;
enditer
endfor
count := count + 1
functiontable: = array add hi{functiontable,addentry)
scalcfactor : = max(scalcfactor,addentry);
enditer
endfor
in
array add hi(functiontable, functiontable[0]).scalcfactor
endlet
VAL FUNCTION SINESUM
®)

Fig. 5.22

-112-

strength
sinesum
saclefactor functiontable
F e F
0
fals false false
I T F T F

+1

g

DATA FLOW GRAPH FOR THE FUNCTION SINETABLE
(a)
Fig. 5.23

~113-

2*pi/512 N

ot

strn

parti_aln

DATA FLOW GRAPH FOR PART!AL“;‘J) IN THE FUNCTION SINESUM

Fig. 5.23

-116-

J =160

J-mni
iy
4 ov ﬁ
xv)v ﬁ v
p-
|-
A
4
II..r Iy
il
Lll]ﬂ -
Iy a i
a2 V
jl.ll.’
_ il
m
el
Eing -
.lﬂkv -
AN PErc
el
M +
[o] Q
< e
—i -
[4
T¢] o
o] —
~ (]
S~

m
|
pTY
))”"7 JIJH
SN
B Y
yini
:Jl d
Y
e o
]
TTFFh
i
'S
-
! ¥y]
fix R
41
N T rv
4 TH
thv b
= iR N
(o]
=]
o
il
2

CONVENTIONAL SCORE

6.1

Fig.

beginorchestra
sr = 40000
kr = 5000
ksmps = 8
nchnls =1

flugethorn =
mstr flugelhom
notefreq = cpspeh(p4)
modenvelope klinen
modulator aoscil

"ampenvelope klinen

tremelo koscil
flugsound aoscil
output
endin
clarinet=

instr clarinet

notefreq = cpspeh(p4)
carrierfreq = 3*notefreq
modfreq =2*notefreq

modenvelope alinen
modulator aoscil
carricrenvelope alinen
clarsound aoscil

output
endin

~-117-

kamp irise idur idec
notefreq*p7, - 06, p3, .02
xamp Xcps ifn iphs
modenvelope, notefreq*.995, 1, -1
kamp irise idur idec
1000*ps, pb, p3, 03
kamp keps ifn iphs
p9, p8, 1, -1
xamp XCps ifn iphs

ampenvelope*tremelo,
flugsound

Xamp
10000,

xamp
modenvelope
xamp
4*carricrfreq
xamp
carricrenvelope,
clarsound

ORCHESTRA FILE

Fig. 6.2
(1 of 3 pages)

notefreq + modulator, 1,

irise idur idec
2, p3, 0
Xcps ifn iphs
modfreq, 1, 0
irise idur idec
2 p3, .15
XCps ifn iphs

carricrfreq + modulator, 1, 0

-118-

pianol =
instr pianol
nfreql = cpspch(p4) ;unstretced pitch
nfreq2 =nfreql-(10/nfreql) sstretched pitch for high notes
nfreq3 =nfreql + (nfreq1/200) ;stretched pitch for low notes

il nfreq1<196
then nfreq=nfreq2
else if nfreql<784
then nfreq=nfreql
else nfreq=nfreql
endif
endif
modlamp =(nfreq*(8-log(nfreq)))/(log(nfreq*(log(nfreq))
mod2amp =(20*(8-log(nfreq)))/nfreq
modlfreq=nfreq +(nfreq/200)
mod2freq = (nfreq*4)+ (nfi 2q/200)

; ia idurl ib idur2 ic idur3 id idurd ie idurS if
ampenv klinscg 1, p3*.05 .6, p3*0s5, .2, p3*.15, .15 p3*25, .07, p3*s 0
; xamp xcps ifn iphs
- modl aoscil modlamp*modlfreq, modlfreq, 1, 0
mod2 aoscil mod2amp*mod2freq, mod2freq, 1, 0
stringl aoscil ampeny, nfreq+modl+mod2, 1, 0
string2 aoscil ampenv, nfreq+modl +mod2+.007, 1, 0
string3 aoscil ampeny, nfreq+modl+mod2-.007 1, 0
output (stringl +string2 + string3)*7000
endin
piano2=
instr piano2
nfreql = cpspch(pd) ;unstretched pitch
nfreq2 =nfreql-(10/nfreql) ;stretched pitch for high notes

nfreq3 =nfreql + (nfreql/200) ;stretched pitch for low notes
if nfreqi<196 4
then nfreq=nfreq2
clse if nfreql<784
then nfreq=nfreql
else nfreq=nfreq3
endif
endif
modlamp =(nfreq*(8-log(nfreq)))/(log(nfreq)*(log(nfreq))
mod2amp =(20*(8-log(nfrcq)))/nfreq
mod1 freq = nfreq + (nfreq/200)
mod2freq = (nfreq*4) + (nfreq/200)

: ia idurl ib idur2 ic idurd id idurd ie idurS if
ampenv Klinseg 1, p3*05 .6, p3*.05, .2, p3*.15, .15, p3*25, 07, p3*5 0

: xamp Xcps ifn iphs
modl aoscil modlamp*modlfrcq, modlfreq, 1, 0
mod? aoscil mod2amp*mod2freq, mod2freq, 1, 0
stringl aoscil ampeny, nfreq +modl 4+ mod2, 1, 0
string2 aoscil ampenv, nfreq+modl +med2+.007, 1, 0
string3 aoscil ampenv, nfreq+modl +mod2-007 1, 0

output (stringl +string2 + string3)*7000
endin

ORCHESTRA FILE
Fig. 6.2
(2 of 3 pages)

-119-

piano3 =
instr pianol
pitchl =cpspch(pd)
pitch2 = pitch1-(10/pitchl)
pitch3=pitchl + (pitch1/200)
if pitchl<196
then pitch =pitch2
else il pitch1<784
then pitch =pitchl
else pitch = pitch3
endif -
endif
modlamp =(pitch*(8-log(pitch)))/(log(pitch)*(log(pitch))
mod2amp =(20*(8-log(pitch)))/pitch '
mod]freq = pitch + (pitch/200)
mod2freq = (pitch*4)+(pitch/200)

; ia idurl ib idur2 ic idurd id idurd ic idurS if
ampenv klinseg 1, p3*.05 .6, p3*.05, .2, p3*.15, .15 p3*25. .07, p3*§, 0
: xamp xeps ifn iphs
modl aoscil nmiodlamp*modlifreq. modlfreq, 1, 0
mod?2 aoscil mod2amp*mod2freq, mod2freq, 1, 0
stringl aoscil ampenv, pitch+mod! 4- mod?2, 1, 0
string2 aoscil ampenv, pitch+modl +mod2+.007, 1, 0
string3 aoscil ampeny, pitch+modl+mod2-.007 1, 0
output (stringl + string2 + string3)*700 ‘
endin
pianobass =
instr pianobass
pitchl = cpspch(p4)
pitch2 =pitchl-(10/pitchl)
pitch3 =pitchl +(pitch1/200)
if pitchi<196
then pitch =pitch2
else - if pitchl<784
then pitch=pitchl
else pitch=pitch3
endif
cndif
modlamp =(pitch*(8-log(pitch)))/(log(pitch)*(log(pitch))
mod2amp =(20*(8-log(pitch)))/pitch
modlfreq = pitch + (pitch/200)
mod2freq = (pitch*4)+ (pitch/200)
; ia idurl ib idur2 ic idur3 id icurd ie idurS if
ampenv klinseg 1, p3*05 .6, p3*05, .2, p3*1s§, .15, p3*25, .07, p3*s, 0
: xamp XCps ifn iphs
modl aoscil modlamp*modlfreq, medlfreq, 1, 0
mod2 aoscil mod2amp*mod2freq, mod2freq, : 1, 0
string] aoscil ampeny, pitch +mod1 + mod2, 1, 0
string2 aoscil ampeny, pitch+modl +mod2+.007, 1, 0
string3 aoscil ampeny, pitch+modl+mod2-.007 1, 0
output (string] + string2 + string3)*500.
endin
out flugethorn+clarinct+ pianol + piano2 + piano3 + pianobass
endorchestra

ORCHESTRA FILE
Fig. 6.2
(3 of 3 pages)

- 120 -

above middle C. inr=8 for any note that lics between high C and middle C. For all other notes, .01
is multiplied by the number of half steps it is away from the nearest C below it and added to the
octave pitch value for that C. Therefore the octave pitch value for ID above middle C is 8.02. The
cpspch function is particularly useful when writing score files. No composer wishes to have to look
up the cps value that corresponds to every note in his score.

Two other functions that the reader may not be familiar with are klinén and klinseg. As can be
seen from the flugethorn instrument block, the inputs for klinen are kamp, irise, idur and idec. Klinen
first computes samples of a curve that rises lincarly from 0 to 1 in irise scconds. It remains at the
value 1 until idur-idec scconds into the note, at which time it decays lincarly back to zero in idur
scconds. This curve is then multiplied by kamp to produce klinen’s output signal.

The function klinseg is used in the piano instrument blocks and takes the general form:

outsig klinseg ia idurl, ib idur2, ic, idur3...
Klinseg construct a scries of linear segments, the first having endpoints /a, id and lasting for idurl
seconds, the second having endpoints ib, ic and lasting for idur2 seconds, the third having endpoints
ic, id and lasting for idur3 seconds etc. The output of the Klinseg function in thevpiano' instrument
blocks contains five linc scgments.

All three instrument blocks use the FM synthesis technique to produce their output sound.
The flugelhorn contains a tremelo of which the depth and speed are controlled in the score file. The
clarinet is a simple FM instrument. The piano uses a doubly modulated signal for its output sound. It
also models the fact that three strings are struck whenever a note is played and that one or more of
these strings could be out of tune. The stringl, string2 and string3 variables represent these three
strings. String2 and string3 are slightly off pitch.

With an orchestra file in hand, the appropriate score file that will play the instrument can be
written. Fig. 6.3 shows the score file that will play the instruments in the orchestra file according to

the score in Fig. 6.1. It is important to note that whereas one usually considers a musical picce to start

~121~

tempo O 180

functiontable sinetable {1}, 1

¢ flugethorn score

¢ p5=notc amphtude

¢ p6=notc amplitude envelope rise time

¢ p7=modulation index
¢ p8=tremelo frequency
¢ p9=tremclo amplitude
€ instr start dur pikch p5
note flugcthomn b WA 8.065 10
note flugelthorn 5715 .25 8.07 9.25
note flugethorn 6 a5 8.05 9
note flugcthorn 675 .25 8.03 825
note flugethorn 7 g5 8.00 8
note flugclhorn 775 .25 7.09 7.25
note flugcthorn 8 1 7.11 7
note flugcthorn 13 75 8.05 10
note flugethorn 1375 25 8.07 9.25
note flugcthom 14 s 8.05 9
note flugelhorn 1475 25 8.03 825
note flugelhorn 15 75 8.00 8
note flugelhorn 1575 25 7.09 125
note flugelhomn 16 1 7.11 7
¢ clarinct score
c instr start dur pitch
note clarinet 1 1 8.05
note clarinet 2 S 8.05
note clarinet 25 1 805
note clarinet 35 1 8.05
note clarinet 4.5 LS 8.07
note clarinet 9 1 8.05
note clarinet 10 S5 8.08
note clarinet 105 1 8.08
note clarinet 115 1 8.07
Bote clarinet 125 15 805

SCORE FILE

Fig. 6.3

(1 of 2 pagcs)

M&MAQ\&@M&O\&Q\-&G\&

.) .) . . . - a . . [. . v
CBREVBVGEVIVEV
W a Y in W W W, Wy e, WD

¢ piano scores

c instr

¢ right hand

note pianol
note piano2
note piano3
note pianol
note piano2
note piano3
note pianol
note piano2
note piano3
note pianol
note piano2
note piano3
note pianol
note piano2
note piano3
note pianol
note piano2
note piano3
notc pianol
note piano2
note pianol
note pianol
note piano?
note pianol

¢ left hand

note pianobass
note pianobass
note pianobass
note pianobass
note pianobass
note pianobass
note pianobass
note pianobass
note pianobass
end

start

W LA h

et ok
[y S

-122-

dur

thithin

Lh h

— el NN N NN NN

pitch

8.05
8.02
7.10
8.05
8.02
7.08
8.07
8.03
7.10
8.05
8.03
7.09
8.05
8.02
7.10
8.05
8.02
7.08
8.07
8.03
7.10
8.05
8.03
7.09

6.10
6.11
7.00
3.10
6.10
6.11
7.00
5.10
5.10

SCOREFILE

Fig. 6.3
(2 of 2 pages)

-123 -

on the first beat, in the notation of a Music-df score a picce starts on the zero'® beat. Thus the

clarinet plays its first notc on beat 1 in the Music-df score, not beat two,
6.1.2 Performance

With the orchestra and score files written to his satisfaction the musician would invoke a
performance program on the host computer of the Music-df system. This program would first send
the functiontable statement of the score filc to the data flow machine where one cycle of a sine wave
would be stored in function table no.1. The performance program would then sort all the note
statements in the scorc files in ascending order of p2. Then the p2 ax;d p3 values would be converted
from beat values to second valucs. The tempo statement in Fig. 6.3 specifics a constant tempo of 180
beats/min. Thus all p2 and p3 values would be divided by 3. After the score file has been attended
to, the performance program would compile the orchestra file into instruction cells and send them to
the data flow machine. The paramecters from then the note statements would then be transmitted to

the data flow machine to play the orchestra.
6.1.3 Data flow representation of an instrument block

Chapter five detailed how the orchestra file could be compiled. However it did not give an
example of how the flow graph for an instrument description, (the box labelled <name> in. Fig.
5.5(d)) might be generated. Fig. 6.4 depicts the flow graph for the clarinet in the orchestra file of Fig.
6.2. Note that the paths through which note rate signals (ie. p4) flow nced not be maximally
pipelined. However the paths of the graph through which audio rate signals flow must be maximally
pipelined. Identity operators would have to be inserted in Fig. 6.4 on the lincs labelled 1, 2 and 3 to

ensure that all audio rate paths in the flow graph contain the same number of actors.

-124-

p4 p3
(= \e? F
cpspch
)
) &)
§~ egs e%s S
F T/ &——(F1i6—{FT
carrier- modfreq , 12 15
: . 2 0
T ‘ D oo § 4
note-to note-to r .
. . alinen alinen
audio audio
carrier- mod-
envelope envelope
2 -
YV Y
1 .
aoscil
3
DATA FLOW GRAPH FOR

THE CLARINET

Fig.6.4

6.1.4 System Specifications

When the orchestra file of Fig. 6.2 is compiled, it consists of 3500 instruction cells. Thus the
instruction cell memory must contain 112,000 free bytes in which the orchestra file can reside. Of the
3500 instruction cclls fifty arc structure operations. Thus it is thought that two processors are
adequate in handling the required computation rate. One of them would of course be a structure
processor. For a sampling rate of 40 Khz the structure processor would have to process structure
operations at a ratc of 2 Mhz. Wit a typical memory access time of 500 nsec this appears achievable.
Of the remaining 3450 instruction cells containing scalar operations, 1400 take note rate signals as
their operands. Therefore only 2050 scalar operations need to be processed cvery 25 microsec. A
scalar processor with a processing rate of 85 Mhz could casily handle these opcrations at the desired
speed. It would be necessary for the data flow machine to have two additional processors. One
would be dedicated to the handling of the note statement paramcter 1/0. The other is required to
manage the output of the samples to the DACs. The arbitration and distribution networks would
have to be built so that the difference between the time from whicﬁ an instruction is enabled to the
time at which the result arrives at its destination cell is no longer than 25 microsec.

A look at Fig. 6.1 helps to determine the demands that are set on the transmission rate of the
note statement parameters. The worst casc in terms of parameters/sec that have to be sent from the
host to the data flow machine occurs in sev¢m1 places, one of them being in the second measure whcr;

the flugelhorn plays G natural and F natural in succesion. The section of the sorted score file that

corresponds to these notes is:
note flugelhorn 5715 25...
note flugelhorn 6 Js...
note pianobass 6 2...

It is reasonable to assume that notc parameters, pn: n>1, will be sent in packets each packet |

containing the note parameter and the instrument for which it is intended. A note parameter packet

- 126 -

might possibly contain six bytes, four for the parameter value and two for the parameter number and
the instrument identifier. The flugelhorn instrument takes nine parameters and the pianobass
instrument takes four parameters. Thus a total of nineteen note parameter packets must be sent in
.25 beats or .0833 seconds. The requirement of the interface between the host computer and the data

flow machine is that 228 nete parameter packets (possibly 1368 bytes) per sccond be transmitted.
6.2 Conclusion

This thesis set out to investigate the feasibility of real time performance of a musical
composition on a computer synthesis system. The Music-11 synthesis system and synthesis language
were used as models in the design of a proposed Music-df system. The Music-df system uses a data
flow machine to exploit the parallclism that exists in the performance of a composition. The previous
section presented an orchestra and score file of medium complexity and illustrated that real-time
performance of these files could occur if certain design specifications of the data flow machine and its
interface to the host computer are met. ‘v :

The advantages of the Music-df system are apparent. Is behavior more closely paréllels that of
a real orchestra. Once the orchestra has been loaded into the data flow machine different score ﬁles
can be used to play it without having to recompile the orchestra. The instruction cell translation of
the orchestra file returns to its initial state after performance. The savings in storage is large. On
conventional computer synthesis systems, the samples of the output voltage waveform must be saved.
For one minute of sound and a sampling rate of 40 Khz, 2.4 million real values have to be stored.
Finally, the greatest advantage of the Music-df system from a composer’s point of view is the
relatively small turnaround time. A real time system spares the composer the annoyance of having to
wait long periods of time to hear his composition. When he fine tunes a parameter, a composer
would like to be able to hear a sound while the previously produced sound is still fresh in his mind.

Whether or not the requirements of the data flow machine outlined in the last section can be

-127 -

met has not yet been determined due to the fact that the first data flow machine whose architecture is
that of Fig. 4.3 is presently under construction. This machine could well forecast the future of a

system similar to the Music-df system.
6.3 Suggestions For Future Research

It is easy enough to determine the required specifications for the Music-df system so that a
given orchestra and score file can be performed in real time. However it is impractical to build a
Music-df system for every orchestra and score file to be performed. It is mﬁch more expedient to
construct an all purposc system that would support many different orchestra and score files. In order
to determine what the design specifications of such a system would be, more analyses of cxisting
orchestra and score files needs to be undertaken. As an example, for the two files presented in this
chapter, a requirement of the data flow machinc was that the structure processor be able to process
structure operations at a rate of 2 Mhz. With a typical memory access time of 500 nsec, a 2 Mhz rate
is an upper limit of what the structure processor can handle. The structure controller of Fig. 4.4 can
handlc instructions only as fast as the structure memory will allow it. It is not unusual for an
orchestra file to have more oscillators than the orchestra file of Fig. 6.2, requiring a higher structure
processing rate. It is clear that one structure memory cannot meet this requirement. The only
solution is to have multiple instruction memories. AA structure processor consisting of two structure
memories accessed by on structure controllér could deliver a 4 Mhz instruction rate pmvide:d- the
operations were evenly distributed between the two memories. The number of structure processors,
the number of memorics in each structure processor arc two of several system paramecters that would

have to be studied more carcfully in the design of a more general real time synthesis system.

(1]

2]

[3]

[4]

3]

[6}

7]

(8]

9]

[10]

[11]

[12]

-128 -

REFERENCES

Ackerman, W. B. and J. B. Dennis. VAL - A value-oriented algorithmic language preliminary
reference manual. Technical Report LCS/TR-218, Laboratory for Computer Science, Mass.
Institute of Technology, Cambridge, Mass., June 1979,

Acherman, W. B. -4 Structure Memory For Data Flow Computers. Technical Report
LLCS/TR-186, Laboratory for Computer Science, Mass. Institute of Technology, Cambridge,
Mass., August 1977.

Arvind, and K. P. Gostelcw. A computer capable of exchangirg processors for time.
Imformation Processing 1977, North Holland, New York 1977, 849-854.

Arvind, K. P. Gostelow, and W. Plouffe. An Asynchronous Programming Language and
Computing Machine. 'Tcchinal Report 114A, Dept. of Information and Computer Science,
University of California, Irvine, December 1978.

Brock, J. D. and L. B. Montz. Translation and Optimization of Data Flow Programs.
Computation. Structures- Group, Laboratory for Computer Science, Mass. Institute of -
Technology, Cambridge, Mass. July 1979.

Chowning, J. M. The Synthesis of Complex Audio Spectra by Mecans of 'Frequency
Modulation. Journal of the Audio Engineering Society, Volume 21, No. 7, Scptember 1973.

Dennis J. B. and D. P. Misunas. A4 Preliminary Architecture for a Basic Data-Flow Processor.
Computation Structures Group, Laboratory for Computer Science, Mass. Institute of
Technology, Cambridge, Mass, August 1974,

Dennis J. B. and K. -S. Weng. Application of Data Flow to the Weather Problem. Computation
Structures Group, Laboratory for Computer Science, Mass. Institute of Technology,
Cambridge, Mass. May 1977.

Dennis, J. B, C. K. Leung and D. P. Misunas. A4 Highly Parallel Processor Using a Data Flow
Machine Language. Computation Structures Group, Laboratory for Computer Science, Mass.
Institute of Technology, Cambridge, Mass. Junc 1979

Dennis J. B. and K. -S. Weng. An abstract impfementation for concurrent computation with
streams. Proceedings of the 1979 International Conference on Parallel Processing, IEEE, August
1979.

Dennis J. B, The Varieties of Data Flow Computers. Computation Structures Group,
Laboratory for Computer Scicnce, Mass. Institute of Technology, Cambridge, Mass., August
1979.

Dennis J. B, G. A. Boughton and C. K. C. Leung. Building Blocks for Data Flow Prototypes.
Computation Structures Group, Laboratory for Computer Science, Mass. Institute of
Technology, Cambridge, Mass., February 1980.

{13
(14]

5]

[16]

7

(18]
{191

[20]

21}

Howe, H. S. Electronic Music Synthesis. W. W. Norton & Company Inc., New York, 1975.
Mathews, M. V. The Technology of Computer Ausic. The MIT Press, Cambridge, MA, 1969.

Moorer, J. A. Signal Processing Aspects of Computer Music - A Survey. Computer Music
Journal, February 1977, '

Oppenheim, A. V. and R. W. Schafer. Digital Signal Processing. Prentice-Hall, Inc.,
Englewood Cliffs, New Jerscy, 1975.

Stanek, J. A Exploration of Concurrent Digital Sound Synthesis ona Prototype Data-Driven
Machine. Dept. of Computer Science, The University of Utah, December, 1979.

Stoy, J. E. Functions in the Form I Data Flow Aachine. Unpublished C>mmunication.
Todd, K. An Interpreter for Instruction Cells. Unpublished Communication.

Vercoe, B. Reference Manual for the Music-11 Svund Synthesis Language. Experimental Music
Studio, Mass. Institute of Technology, Cambridge, MA, 1980.

Von Foerster, H. and J. W. Beauchamp. Music By Compuiers. John Wiley & Sons, Inc., New
York, 1969.

