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ABSTRACT 

A severe software crisis is currently being experienced by the data processing community 
due to intolerable maintenance costs. A system is introduced to reduce those costs by the translation 

of existing COBOL software into HIBOL; a very high level language that is significantly easier to 
maintain. HIBOL, uses a single .type of data object, caMed a "flow", which is an indexed stream of 

data values. Computation is expressed as operations acting on flows. 

The translation process relies on a method for program abstraction developed by Richard 
Waters which expresses programs as a hierarchical structure, called an analyzed plan, in which 

control and data flow is made explicit. In this formalism, loops are expressed as a composition of 
stream operators acting on stream data flow. 

This paper discusses in detail how an analyzed plan for a COBOL program can be translated 

into a HIBOL program. It is currently possible to translate into HIBOL analyzed plans for a relatively 

small (but well defined) subset of. COBOL. programs~ Suqgestiortfi Bf~ ~ as to how that subset 
could be expanded through further research. 
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1 . Introduction 

In the last ten years, there have been many efforts to simplify. ttie task of producing large 

e~ror ·free softwar.e systems; Although no one w~ argue with u,. !Tl$rits of su~ efforts, they alone 

are not sufficient to relieve the current software crisis that is being experienced by the data 

processing community. In addition to aids in the production of new software systems, aids in the 

maintenance of e>riating software are needed. This thesis is asteptowants\JQh an·aid. 

The system. SATCH, is designed to perform the.$emjAutomatic Translation of COBOL into 

HIBOL. HIBOL is a very high level speci,Jicati()ll -langaagejn.wmcn ... pr~essing applications are 
not programmed procedurally, but simply described as a group of stereotyped operations acting on 

streams [3, 18,27). ·Since the· HfBOL repreaentatiOn ekpliCitty~ the tunctional specifications 

of· the applicatk)n Sy9tem, it 18 retattwty easy. to 'Uridefatand '. antt . maintain. The· t-llBOL can 

subsequently be :tranalated bac1t into COBOL ·[27). The~~ i8 ·1hat· ·u. COBOL predUced by the 

system wm be con8iderablY more ettuctured, and P<>ten*"Y 1"0ftt efflefent,·than the input COBOL 

program. More ~tJyf theifflBOL ~n Of ~tan\- (l81'11b4J retained $0 that future 

changes to the functional specifications of the praoramtlin b& tmptementad by'.modtfying·the HfBOl 

program and automaticatty nrgenerating 1he corresponding COBOL tSrbQtam; 

1.1 Motivation 

In order to see the long term potential of a system such as SATCH, the following scenario 

can be envisioned. ·The manager of a.data ~·faetlitY~""8toneof his$yat8ms has 

reached the point Where me cede 48'· ·• ·convoluted 'lilM' lt,;can rto tonger be· maintained In a 

reasonabte fatdlton, :He woukt:ftketo hM'ttle·'8)'8tem N'{JifMf!tlfroM'88111teb; but '*;naalizes the 

trem8rideua coat ... ~. · tn Mktllion1ntr~._1i0t .tiM'...-~'tc> f)lace on such·a · 

project. Without SATCH, he is doomed to live with the ClHNM"8tlhl'dW.,_118,lhortcOn'linga. 

Howfier, if aprodtlction'Wwsion of·ttwiSA"fCH'Sjltamdld·••~'"" would have another 
alternative. He·can Input 9\&>COBOl.l"_..nurts'into''SA'fCM·one •·•time. ·for eecH PfC>Gr&m·*> 
p;®essed, he-gets a eutpUt of:anothera>aot propan...-lseuHJr1o;und8ratand and iarprobably 

more· efficient .. More importlll'ltly(he reo8ives a Hl80L ~W!Mch embckla8 ·lht tunc1tonal 

speciffcdons. for the applcaton •. iFor-,~«x•ot· ~;;""* t11rl>ody>compumt1ons .that · 

cannot aasDy·be expslliled In- H1BOt, the oiifiNIHX>BOl ~·itN1111inedV The HIBOl program 
can also be utilized as documentation for the system, and can therefore reduce the need' for 11'8 .,.... 

consuming production of bulky documents for the system written in some leas concise form. 
'· 
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Future modification to the functional specifications can then be implemented as direct 

alterations of the HIBOL code; the need to maintain the system via modifications to COBOL programs 

is (largely) eliminated. The updated HIBOL program can then be used to automatically produce the 

newly desired COBOL program. Note that this process also updates the documentation for the 

system with no additional effort 

Although the process of initially converting from the existing COBOL programs to the HIBOL 

programs would be expensive and somewhat difficult, it would not be nearly as bad as a total system 

rewrite in COBOL In either case, it is a one time expense. The benefit of the conversion to HIBOL is 

that the incremental cost of system maintenance is greatly reduced. 

Admittedly, the above scenario will not be actualized in the immediate future. However, the 

technology needed to produce such a system should be available within th•. foresee~e future, as 

indicated by the level of the current technology discussed in tbi8 thesis• The component of the 

system introduced in this paper represents an attempt. t& ovei:eome the only evident theoretical 

barrier. Now that this ,component has been shown feasibfe, it should be PQSsibJe to resolve the 

remaining difficulties by further research and a lot of hard work in tbe form of some excellent 

engineering. The obvious merits of the production of such a system should make the effort 

worthwhile. 

1.2 System Overview 

Figure 1· is a schematic representation of the entire syetem. Farst, a surface plan is extracted 

from the raw COBOL code. The surface plan is then an~ed in terma of PJan BuiJding MEttttoc:ls 

(PBMs). The analyzed plan is·then translated into a valicH·4180L oP"ogr&IQ• From this HIBOL program, 

a new COBOL program can be pFOduced. The process that tmnstatea an anal~ plan into a. HIBOL 

program is the novel component of the system. 

The first process extracts a surface plan from the raw COSOL code. A surface plan contains 

all the information contained in the original code, but in aJanguage Independent form. tt is a direct 

abstraction of the control and data flow in. th&original program. Enough information is explicit in the 

surface plan that it is theoretically possible to execute iL. The original 1notion of a plan was developed 

by Rich and Shrobe [~]. The detailed structure ot;a surf~ pllJn wasde'l9lepecl by Waters as part of 

his PhD research (31,32). Burke and Waters have written a program that produces .surface ptaf)S for 

COBOL program$. 

The real interest in the surface plan representatiqn of the COBOL program fies in the fact that 

it can be automatically analyzed further in terms cf PBMs. The PBMs, the type and form of which 

were developed by Waters (31,32], are a small set of well defined control and data flow structures into 
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Fig. 1. SATCH Overview 

ANALYZED TRANSLATION ~ HIBOL 
PLAN 7 PROGRAM 
/1 I' . : 

ANALYSIS 

SURFACE ·COO£ 
PLAN GENE.R A TI ON 
/i I' 

PLAN 
EXTRACTION 

' I/· 
COBOL COBOL 

PROGRAM PROGRAM 

which programs· can be analyzed. He has implemented a·program·tharcproduees an analyied plan 

from a surface plan. 

The next component of the system embodies the curreRt r8"af.ch •. It is responsible for the .. . ·~ .. 

translation of the analyzed plan for the COBOL program in~·;&·.HlBQ.. program th~ ~rforms the 

same data processing function. JI is _intended to produce HIBOL .eodEHf'Mltfajthfully embodies the 

original functional specification impJicitly contained in~ COBOl,prQl(am.. . 

Once the HIBOL is produced, it is used as input to a cocte generator. The target language 

can be any conventional high leV4ll l819Jage such a COEIPL. or ·PL/~. -,Currently, PL/1 can be 

prod~ from HIBOL by-the use of an automatic progr~ming syetem~ PROJOSYSTEM I (27). 

There are some prsblem& with the unc.onstraioed use of. PROTOSYST;~ J tn produce PL/1 from 

HIBOL. Within the current scenario, however, the ~ ,can.·.~ :pot\Strained to avoid these 

difficulties. It would be relatively straightforward to reimplement the portion of the PROTOSYSTEM I 

which produces the target language ayntax so that COBOL coutd:beproduced Instead« PL/1. 

It must be stressed that this thesis should be viewed as• feasi9i~study. The major thrust ol 
this thesis is to show that it is possible to proctuce HJBOL f{OJll,'COBOL··W~ vecy little human 

inlervention using technology &hat is eitfl8r currently av~ Of.wh!cll ~utd b8come.avai~ in 

the foreseeable future. It is not tl}eJntention of thia_..to~.aftn(IJ1JC>lution.to. the problem of 
COBOL to HIBOL translation. 
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1 .3 Related Work 

There have been three general approaches to the elimination of the software maintenance 

crisis. First, many attempts have been made to reduce the maintenance burden through the creation 

of more structured and constrained programming languages (15,35] that are intended to facilitate the 

writing of more correct programs. A second approach has been to design languages in which the 

program is written in a form that resembles functional specifications for, the program, and then have a 

system automatically produce the actual code for the program. Many of these languages fall into the 

category of the so called "very high level" languages [7,8,27). A third approach has been to design 

interactive systems in which the programmer and the system assist one another in the design of a 

program (4,6, 16,25]. 

The first approach, constrained programming languages, has the advantage that once a 

program Is written that is accepted by the compiter for the language, it has a higher probability of 

executing correctly. This r:ecktces the need for, maintenance aimed at assuring that the program · 

operates according to the functional specifications. It does nothing to reduce the maintenance 

required when the functional specifications are changed. The second approach, very high level 

languages, has the advantage that the resultant programs are easier to maintain when the functional 

specifications char'ige. This is a rcsuft of the fact that the programs represent the functional 

specifications in a more Slt'aightforward and therefore more perspicuous manner. The last approach, 

interactive systems, reduces both types of maintenance becau8e the interactive system used to 

produce the software can be employed for its maintenance as well. 

Unfortunately, though all of these l!pproacheS ·can be used to reduce the cost of 

maintenance of software Systems that are implemented ~g them, they cannot be used to reduCe 

the·maintenance of·preexistmg'software systems; The systemdescrlbecHn this document, SATCH;. ls 

aimed at the reduction of the cost of maintaining existing software~ 

The reason that these approaches cannot be used to reduce. the maintenance of existing 
software is that they attempt to automatically translate increasingly high level program descriptions 

into some tower level description; They do not ·attempt·ta translate ·from lower· level languages to 

higher fevef ones. To my knowledge, the work of Rich, Watef's, and the other members of the 

Programmer Apprentice Group at MIT [2S;31,32] is the only effort that has been made to date to 

automatically produce ariy type of an abstractfon·frioin Bil exiStfhg' prOgram. It is this work that is the 

theoretical foundation of the SATCH system. 

Some work has been done at the University of Texas at Austin by John Hartman (9) in an 

attempt to provide a methodology for restructuring COBOL programs into abstract data modules. 

Such a methodology could be applied by programmers to restructure existing COBOL programs prior 
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to performing maintenance on them thereby reducing maintenance costs for those cases in which the 

methodology is applicable. The goals of the work by Hartman differ from the goals of this thesis in 

that Hartman's methodology is designed to be applied by a person, while we wish to abstract from an 

existing program via a machine. Perhaps, through further research, his methodology could be made 

precise enough to be automated. In any case, a HIBOL program is :easier to maintain than a 

restructured COBOL program for the same computation. 

Within the data processing community, severaf systems have been designed to produce 

COBOL from some "higher level" language based on the notion of stereotyped operations.in COBOL 

[5,34]. None of them, however, are in the form of specification languages; rather, they are essentially 

macro packages or structured preprocessors. One of the$e. MetaCOBOL {2), can be used to 

translate from a COBOL program written to be executed on one vendor's f11'achil'W! ihto a COBOL 

program that can be run on another vendor's machine. This is merely a syntactic change, however, 

and does not involve either abstraction or non-trivial control or data flbw'allerationa • . ' 

Another project .in language to .language translation was recently:completeci'by Kent Pitman 

at MIT (23]. He wrote a ,program to translate FORTRAN programs into USP. Thennstation is done 

in two steps. First, the FORTRAN is translated into a LISP form.in wtlich-1001oop&and other standard 
-· ' ., . -

FORTRAN constructs are expr.eesed as LISP macros. In the second phase, the,mac;.ros are expanded 

into an interpretable and/or compilable form. The two step proc9f1Srn·]~ ad~antage Shat the form 

containing the macros is.somewhat rnaintainabJe, white.the expanded:fc:lrm is ~Qch lesS so. Still, in 

Pitman's project, maintainabiltty (and therefore readability) of the l'eSUltant cOde was only a 

secondary goal, while the maintainability of the HIBOL pioduced from a COBOL pragramwua major 
!~·~. ' . ' ' 

goal of the research described in this thesis. A more importaatrdistinctial1 isthat.tthe FORTRAN to 

LISP translation is done almost entirely on a syntactic basis. WtHJe ~. ~ to HlaOL translation Is 

not. 

1.4 Example Programs and Their Translations. 

This section presents -four COBOL programs.:: and the- corresponding · HIBOL programs 

generated by the current implementation of the SATCH system. TWo Oltbeseexamples, DBINIT and 
. r . :• . . 

LOC-LIST, are programs taken from running software systems cur.ren~,Jr\. uae in tfte data processing 

community. Although the reader is not expected to u~rstand !fte~Pl'Qo~~ .i lhis point, they are 

included here to give the reader a feel for the task at hand. ll;f'~;' .... 'the large compression 

that takes place, especially in the translation of the PROCEDURE or/tS.ONior a-COBOL program into 
')1;· '" •; 

the COMPUTATION DIVISION of the corresponding HIBOL prugram. :Thaleeicampleswill be referred 

to throughout the remainder of the document. The reader is invited to tum back to these listings 

whenever It seems appropriate to do so. 
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Fig. 2. COBOL Program for PAYROLL 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECHON. 
FILE-CONTROL. 

- 14 • 

SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI. 
SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO. 
SELECT EMPLOYEE-COUNT-OUT ASSIGN TO DA-2301-S-ECO. 
SELECT TOTAL-GROSS-PAY-OUT ASSIGN Tl);-l~A-23-01-S-TGPO. 

DATA DIVISION. 
FILE SECTION. 
FD hourly-wage-in 

LABEL RECORD IS OMITTED 
DATA RECORD IS.hourly-wage-rec. 

01 hourly-wage-rec. 
02 emp1oyee-nutllber 
02 hourly-wAf8 

FD gross-pay-out 
LABEL RECORD IS OMIH£D 
DATA RECORD IS gross-pay-rec. 

01 gross-pay-rec. 
02 employee-nullb•r 
02 gross-pay 

FD emplo1 .. -count•out 
LABEL RECORD IS OMITTED 
DATA RECORD IS empl~e-cottnt-rec. 

01 employee-count-rec. 
02 employee-count 

FD total-gross-pay-out 
LAB£l RECORD ts OMITTED 
DATA Rf~ORD IS total-gross-pay-rec. 

01 total-gross-pay-rec. 
02 total-gross-pay 

PBOCEOUftf OIVISIOI. 
1n1tial1zat1on SECTION. 

MOVE ZERO TO total-gross•pay. 
MOVE URO TO emp10,1ee-count. 
OPEN INPUT hltllrl'f"'wage-1n. 
OPEN OUTPUT gross-pay-out. 

mainline SECTIOI. 

PICTURE rs 9(9). 
PICTURE I~.~~V99. 

PICTURE IS. 9(9.). 
PICTURE IS 999V99. 

PlCTURE IS 9{6); 

PIClURE IS 9(7)V99. 

READ hourly-wage-in AT END GO TO end-of-job. 
MOVE 9111Ployee-number OF hourly-wage-rec 

TO 8lllflloyee-number OF gross-pay•rec. 
MULTIPLY hourly-wage BY 40 GIVING gross-pay. 
ADD 1 TO employee-count. 
ADD grou.,.., TO. to'41-grou..,ay. 
WRITE gross-pay-rec~ 
GO TO iuinHae. 

end-of-job SECTION. 
CLOSE hourly-wafe-1n. 
CLOSE gross-pay-out. 
OPEi OUTPUT .-ployee-count-out. 
WRITE ea111lo,wee-~011at,.rec. 
CLOSE ..pioyee.,-count-C>ut. 
OPEi 'OUTPUT ~·t•l1roas-pay-eut, 
WRITE total-gross-pay-rec. 
CLOS.f total-gross-,..y·ovt. 
STOP RUN. 

Gregory G. Faust 
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Fig. 3. HIBOL Program for PAYFlOLL 

DATA DIVISION 

KEY SECTION 
KEY EMPLOYEE-NUMBER 

INPUT SECTION 

F lELD TYPf IS NUMBER 
FIELD LENGTH IS 9 

FILE HOURLY-WAGE 
KEY IS EMPLOYEE-NUMBER 

OUTPUf SECTION 
FILE GROSS-PAY 

KEY IS EMPLOYEE-NUMUER 
FILE EMPLOYEE-COUNT 
FILL TOlAL-GROSS-PAY 

COMPUTl\l ION DIVISION 

- 15 -

TOTAL-GROSS-PAY IS {SUM OF {HOURLY-WAGE • 40.)) 

EMPLOYEE-COUNT JS (COUNT OF HOURLY-WAGE) 

GROSS-PAY IS (HOURLY-WAGE • 40.) 

Introduction 
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Fig. 4. COBOL Program for PAYROLL2 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

- 16 -

SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI. 
SELECT HOURS-WORKED-IN ASSIGN TO OA-2301-S-WH. 
SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO. 
SELECT TOTAL-GROSS-PAY-OUT ASSIGN TO DA-2301-S-TGPO. 

DATA DIVISION. 
FIL£ SECTION. 
FD hourly-wage-in 

LABlL RECORD IS OMITTED 
DATA RECORD IS hourly-wage-rec. 

01 hourly-wage-rec. 
02 employee-number 
02 hourly-wage 

FD hours-worked-in 
LABEL RECORD IS OMITTED 
DATA RECORD IS hours-worked-rec. 

01 hours-worked-rec. 
02 employee-nulllber 
02 hours-worked 

FD total-gross-pay-out 
LABEL RECORD IS OMITTED 
DATA RECORD IS total-gross-pay-rec. 

01 total-gross-pay-rec. 
02 tot a 1-g rou-pay 

FD gross-pay-out 
LABEL RECORD IS OMITTED 
DATA RECORD IS gross-pay-rec. 

01 gross-pay-rec. 
02 employee-number 
02 gross-pay 

WORKING-STORAGE SECTION. 
77 end-of-hours-ind PICTURE 9 VALUE ZERO. 

88 end-of-hours VALUE 1. 
77 end-of-wage-ind PICTURE 9 VALUE ZERO. 

88 end-of-wage VALUE 1. 
77 compare-ind PICTURE 9. 

88 wage-eq-hours VALUE 1. 
88 wage-lt-hours VALUE 2. 
88 wage-gt-hours VALUE 3. 

PROCEDURE DIVISION. 
initialization SECTION. 

MOVE ZERO TO total-gross-pay. 
OPEN INPUT hours-worked-in 

hourly-wage-in 
OUTPUT gross-pay-out. 

PERFORM read-wage. 
PERFORM read-hours. 

mainline SECTION. 

PICTURE IS 9(9). 
PICTURE IS 999V99. 

PICTURE IS 9(9). 
PICTURE IS 999. 

PICTURE IS 9(7)V99. 

PICTURE IS 9(9). 
PICTURE IS 999V99. 

IF end-of-wage OR end-of-hours THEN GO TO end-of-jo~. 
PERFORM compare. 
IF wage-eq-hours THEN PERFORM wage-eq-hours-proc. 
IF wage-lt-hours THEN PERFORM wage-1 t-hours-proc. 
IF wage-gt-hours THEN PERFORM wage-gt-hours-proc. 
GO TO mainline. 

read-wage. 
READ hourly-wage-in AT END MOVE 1 TO end-of-wage-ind. 

read-hours. 
READ hours-worked-in AT END MOVE 1 TO end-of-hours-ind. 

Gregory G. Faust 
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Fig. 4. COBOL Program for PAYROLL2 (CONTINUED) 

compare. 
IF employee-number OF hourly-wage-rec 
> employee-number OF hours-worked-rec 

THEN MOVE 3 TO compare-ind 
ELSE IF employee-number OF •ourly-wage•rec 
< employee-number OF hours-wort•d·rK 

THEN MOVE 2 to compare-ind 
ELSE MOVE 1 TO compare-ind. 

wage-eq-hours-proc. 
PERFORM produce-output. 
PERFORM read-wage. 
PERFORM read-hours. 

wage-lt-hours-proc. 
PERFORM read-wage. 

wage-gt-hours-proc. 
PERFORM read-hours. 

produce-output. 
MOVE employee-number OF hourly-wage-rec 

TO employee-number OF gross-pay-rec. 
MULTIPLY hourly-wage BY hours-worked GIVIIG 
ADD gross-pay TO total-gross-pay. 
WRITE gross-pay-rec. 

end-of-job SECTION. 
CLOSE hourly-wage-in. 
CLOSE hours-worked-in. 
CLOSE gross-pay-out. 
OPEN OUTPUT total-gross-pay-out. 
WRITE total-gross-pay-rec. 
CLOSE total-gross-pay-out. 
STOP RUN. 

Fig. 5. HIBOL Program for PAYROLL2 

DATA DIVISION 

·KEY SECTION 
KEY EMPLOYEE~NUMBER 

FIELD TYPE IS NUfllllER 
FIELD LENGTH IS 9 

INPUT SECTION 
FILE HOURLY-WAGE 

KEY IS EMPLOYEE-NUMBER 
FILE HOURS-WORKED 

KEY IS EMPLOYffwlftlillfR 

OUTPUT SECTION 
FILE TOTAL-GROSS-PAY 
FILE GROSS-PAY 
KEY IS EMPLOYEE-NUMBER 

COMPUTATION DIVISION 

TOTAL-GROSS-PAY IS (SUlll or (HOuftLY.:WAGE :. HouRS-WORK!O)') 

GROSS-PAY IS (HOURLY-WAGE • HOURS-tlURKED) 

Introduction 
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Fig. 6. COBOL Program for DBINIT 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 
FI LE -CONTROL. 

SELECT CRADATE ASSIGN TO UT-S-LCRADATE. 
SELECT CRADB ASSIGN TO DA-1-LCRAOB 
ACCESS IS SEQUENTIAL 
RECORD KEY IS CRADB-RECORD-KEY. 

DATA DIVISION. 
FILE SECTION. 
FD CRADATE 

LABEL RECORD IS OMITTED 
DATA RECORD IS DATEREC. 

01 DATEREC. 
03 BILLING-PERIOD PICTURE X. 

88 BEGINNING-NEW-PERIOD VALUE '1'. 
FD CRADB 

LABEL RECORDS ARE STANDARD 
RECORDING MODE IS F 
BLOCK CONTAINS O,ft£COR8S 
RECORD CONTAINS 44 CHARACTERS 
DATA RECORD IS DBREC. 

01 CRADBREC. 
03 DELETE-OR-DATE-INDICATOR PICTURE X. 

88 DATE-RECORD VALUE 'D'. 
88 RECORD-DELETED VALUE HIGH-VALUE. 

03 CRAD8-RECORD-KEY. . 
06 CRADB-DEPARTMENT PICTURE XX. 
05 CRADB-EMP-CLASS PICTURE XX. 
06 CRADB-EMP-NO PICTURE X(6). 

03 CRADB-YrD·HOUHS. PICJURE S9(4)V9. 
03 CRADB-JTD-llOURS PICTURE S9(4)V9. 
03 CRADB-WHK-HCURS PICTURE S9(4)V9. 
03 CRADB~WEEK-LABOR~COST ~ICTUltE S9(5)V99. 
03 CRAOB-PERIOD-HOURS PICTURE S9(4)V9. 
03 CRADB-PERIOD-LABOR-COST PICTURE S9(6)V99. 

WORKING-STORAGE SECTION. 
77 END-OF-CRADB-INDICATOR PICTURE S9 VALUE ZERO. 

88 END-OF-CRADB VALUE l. 
77 END-CRADATE-INDICATOR PICTURE S9 VALUE ZERO. 

88 NO-CRADATE VALUE 1. 

PROCEDURE DIVISIOfl. 
1n1t1a11zation SECTIOfl. 

OPEN INPUT CRADATE. 
OPEN 1-0 CRADQ. 
READ CRADATE AT END MOVE +1 TO END-CRADATE-INDICATOR. 
IF NO-CRADATE THEN NEXT SEITEICE 

ELSE PERFORM control-010 UNTIL END-Gf,,.CllADB. 
CLOSE CRADATE CRAOB. . 
STOP RUN. 

control-010. 
PERFORM read-cradb-OZO. 
IF END-OF-CRADB THEN NEXT SENTENCE . 

read-cradb-OZO. 

ELSE PERFORM in1t1a11ze-030 
PERFORM rewr1te-040. 

READ CRADB NEXT RECORD AT END ;MOVE +l TQ fJID...OF~-lJIQICAT.OR. 
in1t ial ize-030. 

·MOVE ZEROES TO CRADB-WEEK-HOURS CRADB-WEEK-LAIOR"l"COST. 
IF BEGINNING-NEW-PERIOD . 

THEN MOVE ZEROS TO CRADB-PERIOO-HOURS 
CRADB-PERIOD-LABOR-COST. 

rewrite-040. 
REWRITE CRADBREC. 

Gregory G. Faust 
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Fig. 7. HIBOL Program for DBINIT 

DATA DIVISION 
KEY SECTION 

INPUT 

KEY CRADB-EMP-NO 

KEY 

KEY 

SECTION 
FILE 
FILE 

FILE 

FILE 

fl LE 

FILE 

FILE 

FILE 

FIELD TYPE IS STRING 
FIELD LENGTH IS 5 
CRADB-EMP-CLASS 
FIELD TYPE IS STRING 
FIELD LENGTH IS 2 
CRADB-DEPARTMENT 
FIELD TYPE IS STRING 
FIELD LENGTH IS 2 

BILLING-PERIOD 
DELETE-OR-DATE-INDICATOR 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRADB·EMP-NO 
CRADB-YTD-ttOURS 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRADB·EMp-NO 
CRADB-JTD-HOURS 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRADS-EMP~NO 
CRADB-WEEK-HOURS 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRADB-EMP-10 
CRADB-WEEK-LABOR-COST 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRAOB-EMP~NO 
CRADB-PERIOD·HOURS 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP•CLASS CRAoa-EMP•NO 
CRADB-PERIOO-LABOR-COST 
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-ClASS,CRAD8-EMP-Nf) 

OUTPUT SECTION 
FILE DELETE-OR-DATE-INDICATOR 

KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRAOl-EMP-NO 
FILE CRADB-YTD-HOUHS 

KEYS ARE CRAOB-DEPARTMENT CRADB-EMP-CLASS CllAOB-~MP-NO 
FILE CRADB-JTD-HOURS 

KEYS ARE CRADB-OEPARTMENT CRAD8-£MP-CLASS CRADS-EllP .. 10 
FJLE CRADB~WEEK-HOURS 

KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRAOB-EJ4P-NO 
FILE CRAOB-WEEK-LABOR-COST 

KEYS ARE CRADB-DEPARTMENT CRADB-EMP-~lASS C&AD8-EMP-NO 
FILE CRADB-PERIOD-HOURS 

KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLA$S CR~-EllP-ltO,. 
FILE CRADB-PERIOD·LABOR-COST 

KEYS ARE CRADB-DEPARTMENT CRADB·EMP-C~A$5; CRM)B·fMP-'aG · 
COMPUTATION DIVISION 

. . . 
DELETE-OR-DATE-INDICATOR IS DELETE-OR-DATE-INDICATOR IF (BILi.;l-'-PERIQD PRESENT) 

CRADB-YTD-HOURS IS CRADB-YTD-HOURS IF (BILLING-PERIOD PRESENT) 

CRADB-JTD-HOURS IS CRADB-JTl>-HOURS IF (BILLING-PERIOD PRESEIT) 

CRADB-WEEK·HOURS IS O. IF ((BILLING-PERIOD PRESENT) AID 
((LAST PERIOD'S CRADB-WEEK·HOURS) PRESENT)) 

CRADB-WEEK-LABOR-COST IS 0. IF ((BILLING-PERIOD PRE~IT) MD. . . . 
((LAST PERIOD'S CRADB-WEEK-LABOR-COS.T.) PRESE¥T)} 

CRADB-PERIOD-HOURS IS 
CRADB-PERIOD-HOURS IF (NOT (BILLING-PERIOD • "19)) 

. ELSE 0. IF ((BILLING-PERIOD '" "1") AND 
((LAST PERIOD'S CRADB-PERIOD-HOURS} PRESENT)) 

CRADB-PERIOD-LABOR-COST IS 
CRADB-PERIOO-LABOR-COST IF (NOT (BILLING-PERIOD '" "1")) 

ELSE 0. IF ((BILLING-PERIOD • "1") AND 
((LAST PERIOD'S CRADB-PERIOD-LABOR-COST) PRESENT)) 

Introduction 
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Fig. 8. COBOL Program for LOC·LIST 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

- 20-

SELECT LIB-IN ASSIGN TO LOCIN. 
SELECT LIB-TRANS ASSIGN TO LOCTRANS. 
SELECT LIB-OUT ASSIGN TO LOCOUT. 

DATA DIVISION. 
FILE SECTION. 
FD LIB-IN 

LABEL RECORDS ARE OMITTED 
DATA RECORDS ARE LIBIN-REC. 

01 LIBIN-REC. 
02 IN-REC. 
03 LOCATION-ONE PICTURE 99. 
03 LOCATION-TWO PICTURE 99. 
03 LIB-BUILDING-NAME PICTURE X(35). 

FD LIB-OUT 
LABEL RECORDS ARE OMITTED 
DATA RECORDS ARE LIBOUT-REC. 

01 LIBOUT-REC. 
02 OUT-REC. 
03 LOCATION-ONE PICTURE 99. 
03 LOCATION-TWO PICTURE 99. 
03 BUILDING•NAME PICTURE X(35). 

FD LIB-TRANS 
LABEL RECORDS ARE OMITTED 
DATA RECORDS ARE LIBTRANS-REC. 

01 LIBTRANS-REC. 
02 DELETE-IND-IN PICTURE X. 
02 TRANS-REC. 
03 LOCATION-ONE PICTURE 99. 
03 LOCATION-TWO PICTURE 99. 
03 Tff.ANS-BUtlDlfftHfAfltE PICTURE X(35). 

WORKING-STORAGE SECTION. 
77 DELETE-IND PICTURE X VALUE SPACE. 

88 DELETE-FLAG VALUE 'D'. 
77 END-OF-LIB-IND PICTURE 9 VAlUE ZERO. 

88 END-OF-LIB VALUE 1. 
77 END-OF-TRANS-IND 'PICTURE 9 VALUE ZERO. 

88 END-OF-TRANS VALUE 1. 
77 COMPARE-IND PICTUlt£ 9 VAltJf ZfttO. 

88 TRANS-EO-LIB VALUE 1. 
88 T~ANS-LT-LIB VALUE 2. 
88 TRANS-GT-LI9 VALUE 3. 

PROCEDURE DIVISIOI. 
HOUSEKEEPING SECTION. 

OPEN INPUT LIB-IN LIB-TRANS 
OUTPUT LIB-OUT. 

PERFORM READ-TRANSACTION. 
PERFORM READ-LIBRARY. 

MAINLINE. 
IF END-OF-TRANS THEN GO TO FINISH-LIB. 
IF ENO-OF-LIB THEN GO .TO FINISH-TRAIS. 
PERFORM COMPA~E. 
IF TRANS-EQ-LIB THEN PERFORM TRANS-EQ-LIB-PROC. 
IF TRANS-LT-LIB THEN PERFORM TRAN~·LT-LIB-PROC. 
IF TRANS-GT-LIB THEN PERFORM TRANS-GT-lIB-ltROC. 
PERFORM PRODUCE-OUTPUT. 
GO TO MAINUllE. 

READ-LIBRARY. 
READ LIB-IN AT END MOVE 1 TO END-OF-LIB-IND. 

READ-TRANSACTION. 
READ LIB-TRANS AT ENO MOVE 1 TO ENO-OF-TRANS-IND. 

Gregory G. Faust 
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Fig. 8. COBOL Program for LOC-LIST (CONTINUED) 

COMPARE. 
IF LOCATIO~-ONE OF TRANS-REC > LOCATION-ONE OF IN-REC 

THEN MOVE 3 TO COMPARE,.IflD . . . .. 
EL.SE IF LOCAlJ.ON~~E OF JRANS,-REC < LDCAJlO~'."Oltf &F. IN-:RfC 
THEN MOVE t TO COMPARE-lND . 
ELSE IF LOCATION-TWO. OF r~..alc > LQGATI~-nlO ~f·.lN-MC 
THEN MOVE 3 TO COMPARE-IND 
ELSE IF LOCATIOl-l:WO Of: TRANS-REC < ·.LOCATIOtl.;.iwo OF J:l,-RfC 
THEN MOVE 2 TO COMPARE-IND 
ELSE MOVE 1 TO COMPARf~1ND; . 

TRANS-EQ-LIB-PROC. 
MOVE DELETE-IND-IN TO DELETE-IND. 
MOVE TRANS-REC TO OUT-REC. 
PERFORM READ-LIBRARY. 
PERFORM READ-TRANSACTION. 

TRANS-LT-LIB-PROC. 
MOVE DELETE-IND-IN TO DELETE-IND. 
MOVE TRANS-REC TO OUT-REC. 
PERFORM READ-TRANSACTION. 

TRANS-GT-LIB-PROC. 
MOVE IN-REC TO OUT-REC. 
PERFORM READ-LIBRARY. 

PRODUCE-OUTPUT. 
IF NOT DELETE-FLAG THEN WRITE LIBOUT-REC. 
MOVE SPACE TO DELETE-Ill>. 

FINISH-LIB. 
IF END-OF-LIB THEN GO TO EOJ. 
MOVE IN-REC TO OUT-REC. 
PERFORM PRODUCE-OUTPUT. 
PERFORM READ-LIBRARY. 
GO TO f1NISH-LlB~ 

FINISH-TRANS. 

EOJ. 

IF END-OF-TRANS THEN GO TO EOJ. 
MOVE DELETE-IND-IN TO DELETE-IND. 
MOVE TRANS-REC TO OUT-REC. 
PERFORM PRODUCE-OUTPUT. 
PERFORM READ-TRANSACTION. 
GO TO FINISH-TRANS. 

CLOSE LIB-IN LIB-TRAllS LIB-OUT. 
STOP RUN. 

Fig. 9. HIBOL Program for LOC·LIST 

DATA DIVISION 
KEY SECTION 

KEY LOCATION-ONE 
FIELD TYPE IS NUMBER 
FIELD LENGTH IS 2 

INPUT SECTION 
FILE LIB-BUILDING-NAME. 

KEY IS LOCATION-ONE 
FILE DELETE-IND-IN 

KEY IS LOCATION-ONE 
FILE TRANS-BUILDING~NAME 

KEY IS LOCATION-ONE 
OUTPUT SECTION 

FILE BUILDING-NAME 
KEY IS LOCATION-ONE 

COMPUTATION DIVISION 
BUILDING-NAME IS LIB-BUILDING-NAME IF (NOT (TRANS-BUILDING-NAME PRESENT)) 

ELSE TRANS-BUILDING-NAME IF (NOT (DELETE-IND-IN • "D•)) 

Introduction 



Introduction -22 - Gregory G. Faust 

1.5 Outline of Remaining Chapters 

The remainder of this document is broken into six chapters. Chapters 2 and 3 give brief 

introductions to COBOL and HfBOL, respectively. Chaptt~r 4 pl'Qvlt:tes an in-depth description of 

analyzed plans. Chapter 5 discusses the current implementation of the portion of the system that 

translates the analyzed plans into HtSOL. Chapter 6 discusses pOsstble methods; of improving and 
,', 

expanding the translation process. Chapter 7 discusses: .the entire system from a more global 

perspective and suggests directions for"further research. 
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2. COBOL 

Since COBOL is a very widely known language, and references for COBOL abound, this 

chapter will give the briefest possible introduction of thosa features of COBOL· that must be 

understood by the reader in order to comprehend the remainder of thtS'do'cument. Aeaders familiar 

with COBOL are invited to skip all but the first section of this chapter. Readers who want further 

information about COBOL are referred to [22) and [11]. 

COBOL (COmmon Business Oriented Language) is a high level programming language 

designed by the Conference On DAta SYstems Languages (CODASYL);for t.Js~_'in data processing 

tasks. It now has several standard versions supported by the Amer~o Nati~ $landard Institute 

(ANSI). The COBOL syntax used in this document does not exactly match any Of;the ANSI standards 

or any particular vendor's ilyntex. all of wtilch ~_In~ ~ays. -~.it foUows a common 

subset, and certain esoteric syntax req~ are ignor•Mflft~...,. 

2.1 Example Programs 

A sample COBOL program is shown in Figure 10. This program, entltlfkl "PA VROLL", will be 

used for many ex~mples throughout this document, and therefore abo"'lf;kbe understoQd by the 

reader. To this end, a short discussion of the function perforftlett~tti~ ~is appropriate . . _, _,, _-' .... :,/' . ' 

' - . , 
PAYROLL is a IJ'lativefy trivialprogram which might appea(Jn •. :Simple pay(Oll system. It 

uses a single input· file catied "HOURLY-WAGE-IN". HOURLY-W*'5E·IN -cor'ttairis two fields, 

"EMPLOYEE-NUMBER" and "HOURLY-WAGE". EMPLOYEE-NUMBERJt,tbe kfJY iekl f9r this file. It 

is a nine digit social security number that is used to specifyWhidf~~ ~record in the file 

is associated with. HOURLY-WAGE is the single data faeRf that ~Jb~:,~'wage earned by 

the corresponding employee. , , ... ' . n ' 

PAYROLL produces three output files. The first of th., ~-PAY-OUT. contains a 
record for each record contained in HOURLY-WA~w: ~-PA¥~ has two fields: 

, · -: · . r r: ; : .- .. :·· _1 - - , • :..- • :_~ _; :. • • , • •• - • 

EMPLOYEE-NUMBER and GROSS-PAY. EMPLOYEE-NUMbER isl.gain~ key field. GR.~PAY is 

a data field that contains1he.we8kly gross pay earned by the~/ Th& pr<>gram·assumes all 

employees work forty hours per week. The other two output lites., ~PU>YE.E-GQUNT-OUT and 
' ••M -<J' • ,,~ ' ' " - ' : -,~ ,_ ' • 0 

TOTAL-GROSS·PAY-OUT, each contain only a single recetd .. ~'lleylhave'·no key fields. 

EMPLOYEE-COUNT-OUT has a single data'fkild, !i4PloYef!-~~ ~fJP~VWrls ttle number of 

employee·recctrdspt,Ocesaad l)y1he program. TOTAL-GROSS·PA¥•ClliL-alsolh8aa single data field, 

TOTAL-GROSS-PAY, which contains the total gross pay earned by all the employees whose records 

are processed by the program. 
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Fig. 10. COBOL Program for PAYROLL 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PAYROLL. 
AUTHOR. G. FAUST. 
INSTALLATION. POP10. 
DATE-WRITTEN. 2/20/80. 
DATE-COMPILED. NEVER. 

ENVIRONMENT DIVISION, 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

, FILE-CONTROL. 
SELECT HOURLY-WAGE-IN ASSIGN TO OA-2301-S-HWI. 
SELECT GROSS-PAY-OUT ASSIGff TO' DA .. 23tf1-S•GPO. 
SELECT EMPLOYt:E-COUNT ... OUT ASSlGlhT.Q QA-230.1-S..,ECO. 
SELECT TOTAL-GROSS-PAY-OUT ASSIGN TO DA-2301-S-TGPO. 

DATA DIVISION. 
FILE SECTION. 

FD hourly-wage-in 
LABEL RfCORD IS OMITTED 
DATA RECORD IS hourly-wage-rec. 

01 hourly-wage-rec. 
02 employee-nullber 
02 hourly-wage 

FD gross-pay-out 
LABEL RECORD IS OMITTED 
DATA RECORD IS gross-pay-rec. 

01 gross-pay-tee. 
02 employee-number 
02 gross-pay 

FD employee-count-out 
LABEL RECORD IS OMITTED 
DATA RECORD IS employee-count-rec. 

01 emp 1 oyee-count-rec. 
02 employee~count 

~D total-gross-pay-out 
LABEL RECORD IS OMITTED 
DATA RECORD IS total-gross-pay-rec. 

01 total-gross-pay-rec. · 
02 total-gross-pay 

PICTURE IS 9(9). 
PICTURE IS 999V99. 

PICTURE IS 9(9). 
PICTURE IS 999V99. 

. PICTURE IS 9(6). 

PICTURE IS 9(-7 )V99. 
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Fig. 10. COBOL Program for PAYROLL (CONTINUED) 

PROCEDURE DIVISION. 
initialization SECTION. 

MOVE ZERO TO total-g.ross-pay. 
MOVE ZERO TO employee-count. 
OPEN INPUT hourly-wa9e-in. 
OPEN OVTPUT gross-pay-out. 

mainline SECTIOK. . . 
READ hourly-wage-in AT END GO TO end-of .. job. 
MOVE emp l oye.e-numbe r OF hourl y.:..l!lage-rac 

TO employee-number OF gross-pay-rec. 
MULTIPLY hourly-wage BY 40 GIVING g·ross-pay. 
ADD 1 TO employee-count. 
ADD gross-pay TO total-gross-pay. 
WRITE gross-pay-rec. 
GO TO mainl1*•· ' 

end-of-job SECUON. 
CLOSE hourly-wage-in. 
CLOSE gross,,'"pay•out. 
OPEN OUTPUT' empJoyee-count-o-..t.. 
WRITE employee-count-rec. 
CLOSE· employee.:..·count-out. 
OPEN OUTPUT t.ot•l-groH-,pay-out •. 
WRITE total-gr~ss-pay-rec. 
CLOSE total~gross-pay-out. 

STOP RUN. 

COBOL 

COBOL programs for the other examples used in this docurmtnl{PAYROLL2, OBJNIT, and . . . . . . 

LOC-LIST} can be found in Section 1.4. The second example, PAYROLL2, is an expanded version of 

PAYROLL which eliminateJ!hft:~n that-:'9Very~ WOlkf;~ ~.a week. Instead, 

HOURS-WORKED, a data field il:l:the,MOlJR~WOR~IN.tikJ1,is "88d.~ tbe cqm,putation of GROSS. 

PAY. PAYROLL2 is 8l'l important ;teat,'*4t .bEloa,uae. it ~·-~ that uses data fieldl 
from two different Dies. 

The third program, DBINIT, is a simple data base initialization program wt'!ich uses tw9 inpUt 

files. The first of these files, CR ADA TE, has only a single record with a single data field. This 

singleton .piece. of mformatioo,. ~ ~';SJlLING~PERIOQ". contrcib ihft· ~zatioo of certain data 
-

field.a in the seconq file. :U. •&>nd- ~d~RAQB, is an-~-that~ acc.ssad seqventiatly. 
Note that the program 4Q8a ~thi119 ai,111 ff. CRAQ.\lE-Ja ~-~ ~ Jf .tbe-valw. Qf BU..LING

PERiOD is unknown. This prog,.:Wlas,includad ~ of 'it$; UM,(11,~iWfll:tE to perform a ru. 
update operation. 

--------------
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The fourth program, LOC-LIST is an example of a file update program using a transaction 

file. The first input file, LIB-IN, is a library file containing building names associated with location 

code key fields. The second input file, LIB-TRANS, is the transaC!tion file used to update the library. 

The updated library is output into the only output file, 'UB~OUT .. The updated llbrar-y will contain a 

record for every set of key values that appears in only one of ,the two input files. In addition, if a set of 

key values appears in both input files, then the data values in the updated library file are taken from 

the transaction file, except when the first field of the transaction file, called "DELETE-IND-IN", 

contains a "D" (mnemonic for delete) in which case no record wiff appear in the updated library file 

for that set of key values. This program is an important example because it performs a file merge 

operation. 

As can be seen in Figure 10, a COBOL program is broken up into four main divisions; 

IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The IDENTIFICATION DfVISION is 

primarily for documentation of the program, and contains no lnlo~tion that is pertinent to the 

current discussion. The only information that is contained 1n 'the ENVIRONMENT DtVISION that is 

pertinent is the information concerning file organizations and.file .ac~. methods. (None of this 

information is shown in Figure 10 because allflles acaessedby this program take the default value for 

these two parameters.) The DAT A DIVISION contains iOtormation Bbc:>ut the structure of files in terms 

of the data fields that comprise a record in those files, as well as information ,about 811 other variables 

used within the program. The PROCEDURE DIVISION contains a procedural representation of the 

algorithm used to implement the desired computation. 

2.2 ENVIRONMENT DIVISION 

For the purposes of this document, there are two possible~ for a file that is used 

within a COBOL program; sequential and indexed; A &equenttal, fife can: either otiglnate from a 

magnetic tape, or from a random access device suctt a&tr.fnagfMttlc:filk. lnefther eue, the feature of 

a file that makes it a sequential file is that the records in that file are stored (or can·be viewed as being 

stored) in contiguous locations on a memory device.· Whether for input or output, they can only be 

processed in that order. 

An indexed file is broken into two components; the data itself, and an indexed list of pointers 

into that data. How each of thesecempGneMs is actuatty steriltf on 'a .fnet'R(jry device is not important 

The important point is that the data ean· be·accaas'achequemilllf, a8iHidofle with a sequentlat file, or · 

randomly using an index to ·'J)Oint to a p8rtiCulat recon,f; The ~MethW ibSed to access· records fn an 

indexed file is, appropriately, called the "access method". 
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The file organization for each file that is accessed by a COBOL program is specified in the 

ENVIRONMENT DIVISION, with the default being sequential .organization. In addition .• if the file is 

specified to be organized as an indexed file, the RECORD KEY must be specified as well as the 

access method for that file. The RECORD KEY is used to specify the porti(>n of the record structure 

that contains the key fields for that file. (The record ~r1,1cture for a fijeWiilJ be.discY,ssed:below). If the 

access method for an indexed file is random access, the NOMINAL KEY must also be specified. The 

NOMINAL KEY is a storage area used in the PROCEDURE DtVtSION.ofthe program to contain the 

index which specifies the location in the ·me that should be accessed by the ne)(t INPUT /OUTPUT 

operation. 

2.3 DATA DIVISION 

The DATA DIVISION of a COBOL program is broken into two sections; FILE and WORKING

STORAGE. The FILE SECTION contain$, for. each flle .that wilJ -be-~~ by the program, 

information about the structure of an individual record within that file. The WORl<ilNG-STORAGE ; - . . . ' . . . -. \. 

SECTION contains information about ~I other variables and storage, areas.~ during the execution 

of the program. 

Associated with each file accessed by a COBOL program : is a buffer area. All 

INPUT /OUTP~T operations performed on a file place information .In, or take information from, that 
< ' • • • .., ~- - • -

buffer area. The buffer area for a file is given a structure, called tti,e "buffeM~tructure" or "record 

structure", in the FILE SECTION which specifies th!1J fields that art:t cor;a,ain9fi within a record in that 

file. Definitions of the record structures for the files ace~ by PAYROLL are shown in Figure 10. A 
' - ' - ~-: ~ . ·:' - . . ' - ' . 

record structure can be an arbitrary tree stru_cture. The level of a particular structure element is 
, : - ~· ' ·; . . .. 

indicated by the number that precedes the name given to that structure element. Lower numbers are 
• ) ' i ' . ·, ' • :.:. -, : ~ ' - - ' ' • ·' • ' 

closer to the root of the tree. For example, consider the structure definition for the buffer associated 

with HOURLY-WAGE-IN. HOURLY·WAGE·REC & the ..me -vWen' to.the strtJcture'etement that 
: .. '. 

corresponds to the entire buffer area. The leaves of the tree are the individual fields in the file. In this 

example, they are EMPLOYEE~NUMBER and HOUALY-WAOE; 

Fig. 11. PICTURE Elements 

PICTURE ELEMENT 

9 
v 
x 

(num) 

MEANING 

Decimal Digit 
Implied Decimal Point 
Any ASCJ.I CharHt.er 
Repeat Count: The pre~eding P~CJURE element 

is r.epe~ted nu.m times. 
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Each leaf element in the structure is given a PICTURE clause. The PICTURE clause specifies 

the data type and length of the particutar field by giving a picture of the typical value stored in that 

field. Figure 11 gives a list of common picture elements and their meaning. An examination of 

Figures 10 and 11 will reveal, for example, that 'EMPLOYEE-NUMBER is a nine digit integer and 

HOURLY -WAGE is a five digit number with two of the digits to the right of the decimal point. 

The WORKING.STORAGE SECTION defines al1 data areas used during the execution of the 

program except those corresponding to file buffer areas. Data areas .defined in WORKING-STORAGE 

can have tree structures exactly like the structures associated with file buffers. In addition, there are 

two variable types that are unique to WORKING.STORAGE: 77 variables, and 88 variables (so named 

because of the numbers used to designate them). A 77 variable is a simple variable with no structure 

whose type and length is specified in a PICTURE clause. 

An 88 variable is used to set up a flag. It does not define an additional storage area, but 

provides a named way to refer to a predicate~ one that decides whether or not a given area contains a 

particular value. For example, consider the portion of WORt<fNG•STORAGE defined in Figure 12. 

Initially, the COMPARE-FLAG-AREA contains a 0, so specified by the VALUE clause which can be 

used anywhere within the WORKING-STORAGE SECTION to initialize storage areas. The two 88 

variables, NEGATIVE and NON'-NECA TIVE, are used in the PROCEDURE DIVISION to test if that area 

currently contains a 1 or a 2. When the area contains~ a 1, NEGA TfVE will evaluate to TRUE. 

Otherwise it will evaluate to FALSE. Similarly, NON-NEGATIVE will evaluate to TRUE when the area 

contains a 2, and to FALSE otherwise. Initially, they wHr both evaluate to FALSE (since the area 

contains a O) and will continue to do so until a 1 or 2 is moved into COMPARE-FLAG-AREA. In order 

to make all this work, a COBOL program that includes the definition of coMPARE·FLAG-AREA shown 

in Figure 12 may welf contain a statement of the form 

IF var1ab1e < 0 THEN MOVE 1 TO COMPARE-FLAG-AREA 
ELSE MOVE 2 TO COMPARE-FLAG-AREA. 

somewhere within the PROCEDURE ~DIVISION. The reader should note that the inclusion of ~ 

variables In COBOL makes using flags trivial, and they will, therefore, appear often in COBOL 

programs. Any system that hopes to transtate COBOL programs needs to be able to handfe ftags In a 

reasonable fashion. 

Fig. 12. Example Use of 88 Variables 

11 COMPARE-FLAG-AREA PICTURE 9 VALUE ZERO. 
88 NEGATIVE VALUE 1. 
88 NON•NEGATIVE VALUE 2. 
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2.4 PROCEDURE DIVISION 

The PROCEDURE DIVISION contains a procedural representation of the particular algorithm 

used to implement the desired computation. For the purposes pf this document, it is .only necessary 

to understand a small subset of the possible statement forms that can appear in the PROCEDURE 

DIVISION. 

A variable name used in the PROCEDURE DIVISION must provide a unique reference to a 

data storage area. Names that correspond to 77 and 88 variables must always be unique. Names that 

refer to substructures, however, may not be unique. To eliminate this difficulty, COBOL supplies the 

OF clause to be used in references to data areas in structures. For example, suppose that tWo 

structures both contain substructure data areas ~'*9d with the same nani~. Then a unique 

reference to the substructure area in the first structure is: 

substructure-name OF structurs-name-1 

while a unique reference to the substruCJ!.fre.area in the second stru~ure is:. 

substructure-name OF structure-name-Z 

There are four main statements that affect control ftow wtttrin a COBOL program: STOP RUN; 

GO TO,· IF-THEN-ELSE, and·PERFORM. Three'oUJitem are verY.Sirriple and are shown in Figur91~t 

(The square brackets are used to signify en ePti6nal 'parameter). '.''f'he SWP RON statement:· 

terminates execution of the program. . The COBOL GO TO and IF-TWEN-ELSE .conatructs are no 

different from their counterparts used in proc8Qural l8f)gU'988 in gef'!~ra.t;. &pd need no further 

explanation. 

Fig. 13. Simple Statements that Affect Control Flow 

STOP RUN 

GO TO label 

IF prsd1cate THEN 1mperat1ve-statement~1 
[ELSE 1mperat1ve-statement-2] 

Fig. 14. PERFORM Syntax when Used to Implement a Subroutm.. Call 

PERFORM paragraph-one (THROUGH paragraph-two] 
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The PERFORM Btatement, however, is unique to COBOL. It is used to implement two 

different constructs: a loop construct and a weak form of subroutine call. The syntax of the 

PERFORM statement when used as a subroutine call is shown in Figure 14. In COBOL, a paragraph 

is 1\11 the code starting at a label, Which is used as the paragraph name, and continuing up to but not 

including the next label. The PERFORM statement in Figure .14 indicai~s that control should'be 

passed to the label signified by paragraph-one and that processing will continue either to the end of 

that paragraph, or to the end of paragraph-two if the optional THROUGH clause is used. In either 
' 

case, control is returned to the statement following the PERFORM after the above stated processing 

is completed. This is a weak form of subroutine call t>ecause no arguments are· passed; the 

paragraphs that are processed use only global values and recursion is not allowed. 

Used as a loop construct, the PERFORM statement has three po$Sibfe forms as shown in 

Figure 15. These forms should be self explanatory: ·Note that these forms affow for both the indexed 

loop construct and the DO-WHILE construct. 

COBOL has a number of statements used to manipulate data. The data manipulation 

statements used in this document are shown in Figur& 16.n'ln the·MUL TJPL Y·and DIVIDE statements 

using the BY clause, if the GIVING clause is omitted the result of the operation is placed in 

operand-1~ If the GIVING ciause ia.inci~J,bQth ,oper~ ~- the¥.were, and the result is 

placed into result. The DIVIDE statemeot ~the INTQ,,._,'fs the~ as the DIVIDE 

st•ment; "sing the BY clause except ,that the oper1'~ _..,~ In the ADO and SUBT.RACT 

Fig. 15. PERFORM Syntax when us.r(J as a Loop Construct 

PERFORM paragraph-one [THROUGH paragraph-two] Integer TIMES 

PtRFORM. paragraph•OJHI [THROUGH p.aragraph-t•o) UNTIL pred1-cat• 

PERFORM paragraph-one [THROUGH paragrapft-twa] 
VARYING v.artab1e FROM 1nteger-1 TO 1nteger-2 
BY tnteger-3 UNTIL pred1cate 

Fig. 16. Data Manipulation Statements 

MULTIPLY operand-1 BY operand-2 [GIVING result) 
DIVIDE operand-! BY operand .. 2 {GIVING r&•u1t] 
DIVIDE operand-1 INTO operand-2 [GIVING result) 
ADD operand-1 TO opera11tl'-'2 [GIVING result] 
SUBTRACT operand-1 FROM operand-Z [GIVING result] 
MOVE source TO dest1nat1on 
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statements, if the GIVING clause is omitted, the result is placed into operand-2. If the GIVING clause 

is included, both operands remain as they were and the result is placed into resu 1 t. The MOVE 

statement is Used to move information from one data area into another. 

Statements used to manipulate files are shown in figure 17. The OPEN statement is used to 

prepare files to be accessed. There are three possible acoess 4!J>e$; INPUT. OUTP!JT, and 1-0. A file 

opened for INPUT is read only. A file opened for OUTPUT is write only .. A file e>pened for 1-0 can be 

read from and written to. The CLOSE st"tement is used to release aJile. when it is no longer needed. 

The three different forms of the READ statement are used to access information in different 

types of files. The first form is used tp acctl$l files •hat ~,·a-sequential file organization. The 

second form is used to access-lites that have an ~file organiza~C)ll when~the ~ccess method is 

random access. The U;lird form-is used t<>:~ file$ tnath4we ..,,iftdelCe<f f~ orpniiation when the 

access method is sequential access. The AT END and INVAt.10 :KliY clauses specify that the 

imperative-statement should be performed when th~ requested record cannot be read from the 

file. 

The WRJTE statement is used tQ place information into a file. Jt can be used on any of the file 

types. When applied to a sequential file,.tfle WRIT!;. ~taktlaya ~·records to the end of 

the file, When used on an indexed file accessed randomly, it writes a record at the place in the file 

d99ignated by the NOMINAL KEY .. When used on an inde'ked 1118 accassed'*"'IUentially, it wrttes over 

the record most recenttvrem. The REWRtTe·atatetnenN:tan amy,M USfjj on ftfeS opened wtth an 

io-type of 1-0. It alw8¥a writes 'Over thtt. record moatfeCenlly acCeailed. Note'lftat (for esoteric 

reasons not discusalid here) a READ statemeatt· takes: a....._ asfts· argument while a WRITE or 

REWRITE statement takes a fife-buffer-structure-name as its argument 

Fig. 17. Fne MantputaUon Staaments 

OPEN to-type f11e-name-,1 [ f11e-name-2 • ] 
[to-type f1le-nat1Jt-3 (fHe-name-4 :]] 

Whef"e 1o-type is one of.: lNfUl, OUTPUT, or I-0 

CLOSE f11e-name-1 [ff1e-name-2 ••• ] 

. READ f11e-name AT EMO 1mpllrat f VEt"'."StatCJJD•nt. 
READ f11e-name INVALID K'EY fmpe'rltfve:.,;statement 
READ f11e-name NEXT RECORD AT ENO 1mperat 1ve-statement 

WRITE f11e-buffer-structure-name . . 
REWRITE f11e-buffer-structure-name [INVALID KEY fmperat fve-statemsnt] 
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3. HIBOL 

HIBOL is a very high level single assignment programming language designed for expressing 

data processing application programs in such a way that the form of the program closely resembles 

functional specifications for the application. It is intended to be automatically translated into a 

conventional high level language such as PL/1 or COBOL via an automatic programming system 

called PROTOSYSTEM I (27]. It is a descriptive rather than a procedurat language; the exact 

procedures used to effect the actuat processing are not explicitly represented. A HtBOL program for 

the PAYROLL example is presented in Figure 18. 

The kernel idea for PROTOSYSTEM I was initiaft.y conceived by Wiltiarn Martin [17]. Martin 

and Ruth (27, 18,8,28] then developed PROTOSVSTEM I (Which prOduees compR-able PL/1 programs 

and the necessary IBM JCL from HIBOL) with the helP of'bthers: most notably Baron, Burke, Kornfeld, 

Morgenstern, and Thomas [3, 14,21,30). 

HIBOL can be viewed as a language in which algorithms are expressed in terms of 

computations performed on streams. It is important to keep this viewpoint in mind for two reasons. 

First, it will aid in the understanding of HIBOL primitives and how they interact. Second, it will be used 

in a later chapter to relate H1BOL to-other programming languages. 

The basic elements of description of a data prooessing ·application can be broken into two 

categories: those that describe data and those that describe aperations:perfonned on that data. ln 

HISOL, the descriptive elements are correspondingly ditlided . into .a, DA TA OIVJSION · and a 

COMPUTATlON DIVlSION. The next two aections.oftbis dlapter .. similarly divided. 

3. 1 DAT A DIVISION 

HIBQL uses a singfe data type calted a "flow". A flow is a set of related data items each of 

which is associated with a unique multi-component index. Each ~ component is cat led a "key". 

The set of all possible sets of values for the keys of a particular flow is called the "universal key 

space" of that flow. The set of sets of key values that aetuaJly appear io ~.gi~en _instance of a flow is 

ealled the "actual key space" for that instance of the Bow. For e><ample, if a flow has a single key that 

is a four digit integer representing a client identification number, then the cardinality of the universal 

key space for that flow is 10,000, while the cardinalitY. of the actual key space for that flow is the 

number of clients that actually exist and might be as to\Y as Xer'o or as high as 1(),000. 

Each element of a flow has a set of key values and a single data value. The typical data 

processing concept of a file record containing a set of. key values and multip1e data values (such as a 

COBOL file record) is abstracted in HIBOL as separate flow elements from different flows, all of which 
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have the same set of key values, and each of which has one of the data values. This method of 

describing the organization of sets of data values disassociates the logical organizati.on of ,the data 

from the physical organization of the data; the semantics of HIBOL describe the logical organization 

while leaving the physical organization unspecified. 

A named flow is called a "data-set". Data-sets are divided into three categories; input, 

output, and variable. Input and output data-sets define the tnputs to a.id i:>uti>uts from the 

computation represented by a HIBOL program. The variable data-sets are used for intermediate 

values formed in the computation. 

The DATA DIVISION at the top of the HIBOL program for PAYROLL shown in Figure 18 gives 

an example of the specification of data-sets. The first part of the DAT A DIVISfON i8 the KEY 

SECTION. In this section, each key that is going to be used in the specificatiot1of.-.y.ofrthe data-sets 

must be specified along with its field type and length. In thiS1'XilMpai;' r:'MfltOYEE-Nl:JMBER Is the 

sole key and is an integer with a field length of nine (a social securttw~' · ·.,). , 

The next two Sections of the DATA DIVISION specify the input'tmcfotltput data-sets that are 

going to be used in the program (see Figure 18). Each data-set specif~is .~fd :by.ttte 

keyword "FILE". The HOURLY·WAGE, and GROSS-PAY data~sets Q<>th use .. the key ~MPLO~E· 
' · ..•... i i: ·..... ·.. '. c. . . . ' : 

NUMBER, while TOTAL-GROSS-PAV and EMPLOYEE-COUNT do not have any key at all. In this 

latter case, the cardinality of the universal key sp.- is one, 1ind the~ apeee wilfcc>Atain at 
most a singleton value. If the PAYROLL example used any vari• ~V~l~lE S~~,, 
identical in format to the INPUT and OUTPUT sections, would appear in the DAT A DIVISION right 

after the INPUT SECTION. 

3.2 COMPUTATION DIVISION 

Following the DATA DMSIQN .iS the COMPUTA'T.~ .Qfyi$roN .. The .. COMPUTATION 

DIVISION contains a single definition for each output 8flCll ,,,.....,. ..... ,..~ Each data-set deranitlon 

is of the form 

data-set-name IS f1ow-exprtns1on 

The flow expression on the right h8nd side of a data-set deflnttiorf mUSt 'haVe'\he arne untversal key 

space as the data-set referr8d to by the nam~ti;on ttte rett h&n(fsiW;,· 'nte ·~ti~ of a ftow 1 

exPressJC>n dictate that there ts an impMtftiiltlon oYef alf~•ottftiiibtu&tWy&pace of'the ffoW · 
represemed·by ttlat expresslon. 
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Fig. 18. HIBOL Program for PAYROLL 

DATA DIVISION 

KEY SECTION 

KEY EMPLOYEE-NUMBER 
FIELD TYPE IS NUMBER 
FIELD LENGT~ IS 9 

INPUT SECTION 

FILE HOURLY-WAGE 
KEY IS EMPLOYEE-NUMBER 

OUTPUT SECTION 

FILE GROSS-PAY 
KEY IS EMPLOYEE-HUMBER 

FI LE EMPLCff!E';.,tOUllT 

FILE TOTAL-GROSS-PAY 

COMPUTATlON DIVISION 

- 34. 

TOTAL~GROSS-PAY IS (SUM OF (HOURLY-WAGE • 40.)) 

EMPLOYEE-COUNT IS {COUNT Of .HOURLY-WAGE) 

GROSS-PAY IS (HOURLY-WAGE• 40.) 

Fig. 19. HIBOL Syntax for Conditional Expressions 

data-set-name IS flow-expression-1 IF predicate-1 
(ELSE flow..;expression-2 lF preditate-2]. 
(ELSE f la.--eapression-.a] 

Gregory G. Faust 

There is only one statement form in HIBQ4 that can, ~se conditional computation. This 

statement form i$ sho~n in figl.lf• 19. .The ~yntax of ~form resemblea ~ IF-THEN-ELSE, but it has 
. . 

the ~mantics of.a CASE c~tg.ic;t, Since data-,se~;:;qaBJec;aflbe,Oivell the value.corresponding to 

the flow expression of any of the clauses, those flow expressions must all. express flows that have the 

same universal key space as the data-set referred to by data-set-name. The conditional form Is 

defined over the union of the actual key spaces of the flow expressions used in the clauses. When 

such a conditional form is evaluated for a particular index value in that union, the predicates are 
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evaluated in order, starting with pred ica te-1. As soon as anv Qf tbeln evaluates to TRUE, the 

conditional form is given the value o.f the flow expression corresponding.to it for that set of key values. 

If none of the predicates evaluates to TRUE and the optional final 8..~ clauae is includ9d, the 

conditional form is given the vatue of the final flow expression. It none ot~e predtcafes evaluates tQ 

TRUE and the optional final ELSE clause is not included, the value ~t ttJe·,Ci:Oflditional. form is 

undefined and the corresponding index is excluded from the actual key space of the resultant flow. 

For example, consider the HIBOL program fragment$BGwn in Figµre 20 .. In this example, the 

output data-set PROFIT ABLE-DEPARTMENT contains an element f9f: every element in the input 

data-set. DEPARTMENT-BALANCE, which has a balance greater than zero. The elements in the 

actual key space of DEPARTMENT-BALANCE that have a balance less-than or equal to zero are 

excluded from the actual key space of PROFfT ABLE~DEPARTMENT.' 

Flow expressions can contain the usual arithmetic operations appearing in any programming 

language. The syntax tor'._euch arithmetio·operatons; Shown ln ~ et;'is exactly what one might 

expec::t; The semantics of such expressions·, however, is quite dtfteRtl1t1rOrn the'eeMaf'tllcs of simffar 
looking expressions in other languages. The two low exrwessrons U9eCf :as opetand& to the arithmetic 

Fig. 20. HIBOL Program Fragment with Conditional Form 

DATA DIVISION 

INPUT SECTION 

FILE DEPARTMENT ... BALANC£ 
KEY IS DEPARTMENT-NUMBER 

OUTPUT SECTION 

FILE PROFITABLE-DEPARTMENT 
KEY IS DEPARTMENT-NUMBER 

COMPUTATION DIVISION 

PROFITABLE-DEPARTMENT IS DEPARTM£~T-BALANCE If DE~ARTM£NT~BAtANC£ > 0. 

Fig. 21. HIBOL Syntax for Arithmetic Operators 

f1ow-express1on-1 • f1ow-exp~ss~jan-Z 
f1ow-express1on-1 I f1ow-express1an-2 
f1ow-express1on-1 + f1ow~a~p~ess1an-Z 
f1ow-express1on-1 - f1ow-express1an-2 
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operators must have the same universal key space. In the case of the multiplicative operators, the 

actual key space of the resultant ftow is the intersection of the actual key spaces of the two operands. 

In the case of the additive operat6rs, the actual key space of the resultant ffow is the union of the 

actual key spaces of the operands. To understand this in more detail, the concept of a PRESENT 

predicate must be introduced. 

A PRESENT predicate, applied to a flow, evaluates to TRUE for all index values that are 

elements of the actual key space of that ftow, and to FALSE ror atlother possible index values for that 

flow. So, for example, the predicate 

HOURLY-WAGE PRESENT 

is TRUE for all values of the key (EMPLOYEE,NUMBER) ~'correspond to actuaJ employees, and 

FALSE for all other possible employee numbers. 

Retu_rning to the discussion of arithmetic oper~tors, .· the semantics of flow expr•ons 

involving arithmetic operators are easier to understand in the form into which they are expanded by 

the automatic programming system. Examples are shown in. Figure 22. It should be clear· that the 

expanded expressions do produce the desired int~c~ion @lld union of the actual key spaces. In 

either case, elements in the resultant flow are given key values that correspond to the key values of 

the elements in the operand flows from which they are produced. 

Arithmetic operators can be used with operand flows that are not simply data·sets. In a case 

in which one of the operand flows is a constant, the resultant flow has the same actual key space as 

the non-constant operand flow. In a case in which either ofJthe-'bperand ftows is some now 

Fig. 22. Expanded Forms of Arithmetic Flow Expression• , 

data-set-na .. -l IS data-set-na .. -2 • data-set-naae-3 

is expanded into: 

data-set-name-l IS data-set-naae-Z • data-set-n .. •-3 If ,' d4t1·s.t-na11e-Z PRESENT 
MID data-set~name-3 PRESENT 

data-set-name-1 IS data-set-name-2 + data-set-name-3 

i~ expanded into: 

data-set-name-l IS data-set-name-2 + data-set-name-3 IF data-set-nMe-Z PRESENT 
AND data-set-name-3 PRESENT ,, 

data-set-name-2 IF data·s•t-name-2 PRESENT 
< ., 

data-set-name-3 IF da.ta-set-name-3 PRESENT 
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expression, the semantics are just as if that flow had been a data-set, although the PRESENT 

predicates appearing in the expanded form of the expression will be more c:ompfex because the How 

expression does not have a name associated with it. An example of the use of an arithmetic operator 

in a flow expression appears in the definition for the GROSS-PAY data-set in Figure 18. 

In addition to arithmetic operators, HIBOL pr.ograms can Include reduction operatorS. The 

reduction operators, the syntax of whiCh is shown in Figure 23, produce resultant flows with Indices 

composed of fewer key compofilents. The key components-Of the resultant flow must be a subset of . 

the key components of the flow used as the operand of the reduction operator. A data element in the 

resultant flow with a particular index derives its value from all the data elements in the operand flow 

with the same values for all key components in the common subset. For example, consider the HIBOL 

program fragment shown in Figure 24. The·tnput data-set, CHECK-AMOUNTS, contains an element 

for each check written by each bank customer during one accounting period. The outPUt data·set. 

CUSTOMER-TOTAL, contains an element for each customer that is the sum of the amounts of the 

checks written by that customer in that accounting period. 

Fig. 23. HIBOL Syntax for Reduction Operators 

SUM OF f1ow-express1on 
COUNT OF f1ow-express1on 
MAX OF f1ow-express1on 
MIN OF f1ow-express1on 

Fig. 24. Sample HIBOL Program Fragment with Reduction Operator 

DATA DIVISION 

INPUT SECTION 

FILE CHECK-AMOUNTS 
KEYS ARE CUSTOMER-NUMBER CHECK-NUMBER 

OUTPUT SECTION 

FILE CUSTOMER-TOTAL 
KEY IS CUSTOMER;NUNBER 

COMPUTATION DIVISION 

CUSTOMER-TOTAL IS SUM OF CHECK-AMOUNTS 
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Two other examples of the use of reduction operators can be seen in the definitions for 

TOTAL-GROSS-PAY and EMPLOYEE-COUNT in Figure 18. Note that in both these cases, the 

resultant data-sets have no key components at all, and therefore contain only a singte element. 

Another feature of HIBOL is that the same data-set can appear in both the INPUT and 

OUTPUT sections of the DAT A DIVISION. This is done when the HlBOL program performs an update 

operation on that data-set. It must be possible in the CeMPUT A TlON DIVISION, however, to 

distinguish references to the input data-set from ,references to the C!JtltpUt data-set. This is done 

through the use of the LAST PERIOD construct References to the inputdata-set use the syntax 

LAST PERIOD'S data-set-name 

while references to the output data set simply use the syn.tax 

data-set-nallfe 

There are many other features of HIBOL, including specifications for time intervals at which 

certain data sets should be generated. running totals, and formatted output reports, which will not be 

presented here. Although the set of HIBOL statement forms described above is not exhaustive, it is 

sufficient for the purposes of this document. All HIBOL code that has been produced by the SATCH 

system to date uses only those HIBOL constructs that nave already been discussed. The f"eader is 

invited to turn now to Section 1.4 where corresponding COBOL and HIBOL. programs are given for 

four examples (including PAYROLL), before returning to a discussion of some of the more global 

features of the HIBOL language. 

3.3 Features of HIBOL RevisHed 

The specifications given in the C .. OMPUTATION DIVISION of .a, J·llBOL prj)Qram need not be 
• ' ' ' 1'.' ~ -

ordered in any special way by the programmer. Each can be viewed as a definition of the values that 

will be produced for a certain data-set. The autoprogramming system, PROTOSYSTeM · I, wH' 

correctly order those computations for which the ordering is important Note thet this view of 

computation as definition requires that any data set name can appear at m0$t once on the left hand 

side of a computation specification; i.e. HIBOL is.e single aeaignment ~·· Another ramification 

of this view is that potential concurrency of computation can be recognized by the system and could 

be exploi~ed if the target code were generated for a parallel hardware configuration. 

Perhaps the most far reaching effect of this programming $fyte is that there is no explicit 

notion of iteration or recursion. The only implicit iteration is that which iterates.over the elements (or 

subsets of the elements) of an actual key space. Since HIBOL .does not have explicit iteration, 

recursion, GOTOs, or a jump of any kind, it cannot be used to express certain computable functions 

------------
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in any reasonable fashion. These functions, however, rarely appear in business data processing 

applications, a11d therefore, this lack of expressive power should not be considered a major 

drawback. The semantics of HIBOL were designed by Hammer et. at to express exactly the functions 

that appear most often in business data processing appHcations. 

In fact, it is in just this restriction of expression that the great u~ilily of HIBOL lies. The beauty 

of the language lies in the fa~:tbat.the progra~mer is not reqwred to.worry about the details of the 

iterations. The necessity to.deal with these details is.one of the things.thatmak_es the maintenance 

task so diff icutt in other langu"ges. m addition, the number of identifk,iN's ttuit. the programmer has to 

deal with is substantially reduced, and the ones that do appear _usually have a direct correspondence 

to some quantity, in the real world. These are the features of Ht80L that make it well suited for 

increased programmer productivity and program Clarity in the domain of· data processing 

applications. 

--------------·- -~·--
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4. Plans and Plan Building Methods 

Now that the essential features of HIBOL have been discussed, we can take a closer look at 

the analyzed plan from which the HIBOL is produced. While reading this chapter, it is important to 

consider the key features of HIBOL as we go along in order to grasp the applicability of the structure 

of an analyzed plan to the transtation process. This chapter is meant to contain enough information 

to make the applicability apparent and to render the following Chaf7te~'comprehenslble. A much 

more detailed account of plans, Plan Building Methods, the process which creates a surface plan, 

and the process that analyzes a plan in terms of 'PBMs, can be found in Water!' PhD thesis (31,32]. 

A plan is a detailed representation of a program designed to have several useful properties. 

First, the plan represents the program completely; it contains all the information necessary ior 

execution. Second, it is language independent. Therefore, it can be used to represent a program 
originally written in many different languages. Third, much of the information that is implicit in the 

program is made explicit. In particular, the control flow and data flow between different sections of 

the program are explicitly represented. Finally, the plan exhibits locality; features of a component of a 

plan can be discerned by examining information local to that component. 

4. 1 Surface Plans 

The basic unit of a plan is a "segment". Different segments of a plan are hierarchically 

linked via subsegment and supersegment relations. A surface plan, an example of which is shown in 

Figure 25, is a representation of a program that is logically organized in much the same way as the 

original source language representation of the program. It has only the simplest hierarchical 

~tructure: a root segment that has all other segments in the plan as immediate inferiors. Each of the 

subsegments has no internal structure. They all represent primitive logical, arithmetic, or control 

operations. 

These primitive segments, and in fact segments in general, can be placed in one of three 

categories, "simple", "split" or "join", depending on their interaction with control flow. A simple 

segment accepts control flow from exactly one place and produces control flow to exactly one other 

place. Examples of primitive simple segments include primitive arithmetic functions such as PLUS or 

TIMES, and primitive logical functions such as EQUAL or GREA TEA-THAN. Exactly which primitive 

logical and arithmetic functions can occur in a plan depends upon the source language from which 

the plan was built, but· a standard set of primitive functions is shared by most programming 

languages. The library of primitive function used when the source language is COBOL is given in 

Appendix I. 
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Also included among the simple segments are ,constants. They differ from other simple 

segments in that they do not have any incoming data flow. They can be viewed as functions with no 

arguments that have a singleton value for their range. 

A split accepts control flow from exactly On~ place, '1fld produces control flow to more than 

one place. There are only two different primitive split segments: PIF and PIFNULL., PIF takes a single 

bit boolean argument and transfers control to.a first .segment.if lhe booJean is TRUE andt to a second 

segment if the boolean is FALSE. PIFNULL is simply the converse of PIF. · 

A join accepts control flow from more than one place and produces control flow to exactly 

one other place. There is only one primitive join segment. It is calleQ ·.~JOIN". 

The segments of a surface plan are connected via control flow linkJ and data flow links. A 

data flow link Is a link between two dat;l "ports". A port can be thought-of asa place·where an 

incoming or outgoing data value can be stored. Each segment has $8Sociated wtth·ft a unique port 

for each input and output data value. Data flow between any two subs&gMenta-Of-the eurfaeeplan, or 

between a port of the supersegment and a. port of_ o_ne ?f its. sub9e0"'8nts, is represented by an 

explicit data flow link. 

A control flow link is a link· between ·two segment "cases". ·Each case corresponds to a 

particular control environment. Each segment has associated! with it a unique case-for eacft possible 

control flow path into and ou1 of the segment. A case for in~ing control flow~ called an "in-case" 

and a case for outgoing control flow is caHed an "out-case". For example, a sptit• a.singl&m-case, 

and at least two oUt•cases. As with data flow, control flow. informationjs knoWf! 9!:1ly ~ithin the 

supersegment of the two segments involved in the flow. 

Consider the simplified surface plan for PAYROLL shown in Figure·a Theboxes.repre&ent 

segments, solid lines represent data ffow,-and dottecHinea r,present-controt·ftow;, The outermost 
! 

large box represents the segment for PAYROC.L itself. (Thi$ bampte ha ·been simplified in several 

ways. First, the computation of EMPLOYEE-COUNT has tJii,en etltir81y eliminated. Second, for 

brevity, the file open and file close functions have been remov8d. Third, the data flow for all of the file 
' .. ' : -

objects except for the flow associated with the HOURLY-~AGE FILE-OBJECT (HWF) has been 

removed. The HOURLY-WAGE FILE-OBJECT was.Jett in so .tbaf frae operation of the EOFP predicate 
. - :•.. - ·-· ~- ,:, .~ . . "., -~ - ' .. -

could be understood.) 

Several· of the feature$ Of surface plans can be seen In this eiample; First of all, note the 

control flow throughout the plan. There is a large control flow to(,p':ffi~t entotnpasSes most of the 

program; namely the main read/write loop. Control remains within this loop as long as control passes 

through the NO case of the PIF, which in tum occurs for as long as EOFP yields a FALSE boolean. 
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Fig. 25. Partial Surface Plan for PAYROLL 
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This process is initiated when control is passed to CASE1· of the JOIN and terminates the first time 

control passes to the YES case of the PIF. 

Now examine the data flow. In particular, note the flow associated with TOTAL-GROSS-PAY 

(TGP) or HOURLY-WAGE-FILE (HWF). The initial value for the flow is passed through CASE1 of the 

JOIN into the main loop. Subsequent values are passed around the loop through CASE2 of the JOIN. 

This looping of the data continues, with each new value for the flow depending on its previous value, 

until the loop terminates in which case the final value is received outside the loop. 

Given that the plan shown in Figure 25 needed to be simplified from the actual surface plan 

for PAYROLL (a relatively trivial program) in order to make it at all comprehensible to the human eye, 

it should be obvious that the surface plan contains large quantities of relatively mundane and 

unorganized information. It would be a very difficult and expensive task to try to match portions of the 

surface plan with any patterns that might represent fairly global features of the program. What is 

needed is more organization of the available information. 

4.2 Analyzed Plans and Plan Building Methods 

A surface plan can be analyzed in terms of plan buildino methods (PBMs). The PBMs are a 

set of stereotyped ~ays in which plan ~ments can be aggregated into canonical groupings. An 

instance of a PBM corresponds to a logical locality in the program, not necessarily a locality in the 

actual code for the program. Each PBM has a unique set of "roles" associated with it. A segment 

created to represent an instance of a PBM. has a ~t of ~~ffl.4:).nw ~ch. qf which fills one of the 

roles of the PBM. Each subsegment can only fiU one r:ote of one PBM. Therefore, each segment in 
- I ,•• ' - > • • )• 

the analyzed plan will have exactly one imm8diate superior 8Xc8pt for the single most· superior 

segment. 

The analysis process begins by searching for a set of subsegments of the surface ptan that 

can be grouped together aecorcting to the resttietlons, Of one·of'the PBMs. A new Segment IS created 
to represent the grouping. All of the data flow and control flow information pertaining to any of the 

subsegments is included in the description of the new segment, and the Cteseription of the original 

supersegment is appropriately mo9ified· The aearcb pr~. is~~ with the. newly created 

segment considered to be indivisible. The process continlJEtS untiL~4Jf®pi09 (Wb,sumes. tt\e entire 

plan. Jh~ result is a. hierarchical structure in whidl .~ ll&gmen,t., ~ tbps«t ,pp11espondlng to . ' . ' - . ' . ' ' - . - - ' ~ . . ~ . - ~ ' ' 

primitive funotions, is an instance of one of the .PBMs. Th~.leaves.qli~ffl l)lerarqhy.are the.same 

primitive segments that comprised the surface plan ,for: the program~. : 
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Fig. 26. Taxonomy of Plan Building Methods 

composition 

conditional 

PB Ms 

augmentation 

single self recursion 

RECURSIVE PBMs termination 

temporal composition 

Figure 26 gives a taxonomy of PBMs. As can. be seen in the figure, PBMs can be broken into 

two major categories: "straight-line" and "recursive". This distinction is "based upon the manner in 

which the segments that instantiate the PBMs interact with control flow. The recursive PBMs are 

used to express the portions of programs that involve loops of control flQw while the straight-line 

PBMs are used to express the PGrtioos of pr<>gr8f11S that do not involv49 loops. 

4.2.1 Straight-line PBMs 

There are three straight-line PBMs: "composition", "predicate", and "conditional". The 

PBM "composition" altows for the combination of an arbitrary number of simple segments into a 

single simple segment; no Splits or joins can be included. In the genEmll caSe, the data flow lihks in a 

composition will form a collection of· {poSsib.ly unconnected) directed acyclic graph$. Each of the 

subsegments of the composition fills an "action".role. 
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The PBM "predicate" is a generalization of the pr-imitive split. It has a single in·case, but an 

arbitrary number (at least 2) of out-cases. The control flow links of a predicate wiH form a directed 

acyclic graph. The subsegments can. be either primitive sptits or other predicates, or primitive joins, 

which fitl roles called "pred" and "join", respectively. Ajoin subaegment acts to:form the logical OR 

of the predicates that supply it with control flow. A predicate.8Ubasgment that. receives control flow 

from another predicate subsegment forms ttle logical ANOof itseltanct thtrpi'edicate. that supplies the 

control flow. By using these constructs in combination; .predicates ot arbitrary complexity can be 

built. 

The PBM "conditional" is an embodiment of the structured programming concept of a 

conditional. It has a single "pred" rote, fit!ed . by a subsegment. that le an instantiation of the PIBM 

predicate, that controls which of several "actions" will be executed. The action roles can be filled by 

any simple segment tn addftton, it contains a single "jom• rOte; illfed by a jOfn segmeht, that collects 

the control'flow from atr ·of the actions: An itistance ofthe'PBM eonditkft1al h8s a single in-case, and a 

single out-case; It iS' a sifnpte &eOment. A condtttonal afSO has tti9 vfJ,y uaeM propetty ttbif during any 

given execution of the condifionaf e><actty one of the actioriS·Wftbe e>tetuted. A conditional can have 

an optional "initialization" role which can be filled by any simple segment. The inltlafization 

subsegment is executed before the predicate and therefore is exec.uted regardless of the result of the 

execution of the predicate. 

4.2.2 Recu;slve PBMs 

The recursive PBMs are designed to handle loops and otber forma.ofiaingje self rec~. A 

program is single self recursive If ·it contains exactly one recursive call to Itself, either directly or 

indirectly: Aioop Is an 8)(8mpte Ofsingltf981f reairskm'Since;lf'Catt b81~ irl tetM8 of tail 

recursion; Other forms of recurSion cannot curremlY 'be anaty'acftn ~·Cit "8Ms: . HO*e'Ver, since 

COBOL does not support 8ny type of recursion ~ foops; ht cu~t ~we sufficient tor the 

anatysts of COBOL programs. 

The most general recursive PBM is simply called "single self recursion" (SSR). An SSA haa 

three roles; an optional "initialization", a "body", and a "recurrence". The initialization is a simple 

seginent that is only executed ·ortee, While the bod)"-11 executed''tepeatedly. 'the recurrence 

repi8sents a reeursive lristanceiof the body. TherefOte; It is~\ttlf1e·body at the paint of the 

recUrsive calf to the body, and ttwitthave the samEi ports and C8* that the bod1 haS. 

Since the recurrence subsegment is·at'8CIM'SMlinstanoe of thebodyi and the recUrsloncan 

potentiaUy occur to infinite depth, inclusion within ihe '18CUll'ence of the entire.structure of the body 

would result in an infinite graph; To allow the graph•te> AIM8ifl finite: while stiff capturing the notion of 

a potentially infinite recurse, the recurrence is given no internal structure, but instead is linked to the 
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body by a special recurrence link. Then, during execution of the body, if the next segment to be 

executed is the r~currence, the values in the incoming data flow ports oJ the recurrence are 

transferred to the corresponding ports of the body and control is passed to the body via the 

recurrence link and the body is executed again. m this way, control and data flow is circulated 

around in the execution without the existence of. any explioit:ccmtrol or data now cycles in the plan. 

This lack of control and data How-cycles is .very helpkJl in nertain types of symbolic evaluation in 

which symbolic values are pushed along contml and data flow Jinks. 

The drawback of the PBM SSR is that its body can be arbitrarily complex and the recurrence 

buried arbitrarUy deep within it. It would be usefuUoi:be able to. break single self recursions into 

smaller, less complex pieces. This is.done via the PBM ••t~ comp0$ition". 

The PBM "temporal composition" is simMar to the straigJlt-line PGM composition except that,. 

all of its subsegments are instances of the PBM SSA inateaQ Qhtraigbt~line PBMs. In addition, since. 
-J'· " ' ' ' ' • ! ~ ' 

some of the subsegments may produce. data valves r8QIJ'.$i.vew ~ ate usecUn other subsegments, 
' ' :· ' . '.,· ,,_. . . . ' ' 

some of the data flows between Sl.4b$egmei;Us repres,nt a temporal ~U,ence of values instead of a 

single value. 

The temporal sequences of values are called "temporal data flows". A temporal data flow 

into a segment is called a "temporal input", while a temporal data flow out of a segment is called a 

"temporal output". These temporal flows can be viewed as streams, and the eubsegments of a 

temporal composition that interact with them can be viewed as stream operators. More will be said 

later about this view of tempOFal.compositionand &emporal·data Iowa. 

Three re8'ricted f~ of the PBM SSR, c;alled "~"."filter", and "termination", 
' ' ' .· - / . • . '1- . - .- ' ' . ' 

are used to f9fm ~ut l~j\gments '.of ~~ ,co~ .. '" or<Jer for ,&fl ~·to .bfi an 
augmentation, the body of #le,SSR m~ be~ in the foU~ ~ys. First. the body of the 

augmentation must have a single in-case and a single out-case. Second, the~ must have only two . 

subsegments. One of them must be the recurrence. The other, called the "augmentation function", 

can be any simple segment. 

The augmentation fun6*ion is executed on~ for ~ recursive execution · of the 

augmentation. The executioft,oftiJ,e ~Jjo~ fuMttonmay LllMJ 'fKVor pcodu~data valuea~ 
are passed into and/or. out QI the augmentation. ~-.~~.we. ~' \li,a! temporal data 

' ~ ·~ - . -. " -- - . -. '· - . - ' ·~ ' 

flows. If the augmentation function only uses data values that are produced within the augmentation, 

then the· augmentation ia called a "generatin9''augmentiltian~ on.imply a Mgenerator". If the 

augmentation function uses some data valu8S'Jhatiare produced:outsfde:the augmentation( then the 

augmentation Js called a "con1t1ming ·augmentatioilf';onimpty· a "consumer". 
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Fig. 27. Generating Augmentation in the Analyzed Plan for PAYROLL 
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Consider the simple example of an augmentation shown in Figure 27. The bold lines 

represent temporal data flow and the curly line represents the recurrence link. This augmentation is 

the generator for the temporal composition in PAYROLL. The initialization of the augmentation opens 

the file HOURLY-WAGE FILE-OBJECT (HWF) for input. The augmentation function is
1 

a CREAD 

acting on the HWF. Temporal outputs are created for each of the outputs of the CREAD function, as 

well as for the HOURLY-WAGE FILE-OBJECT itself. 

Let us examine the data flow associated with the HOURLY-WAGE FILE-OBJECT in more 

detail. The HWF is fed into the CREAD the first time from the COPENI initialization. All subsequent 

values of the HWF used by the CREAD actually come from the output of the CREAD itself through the 

recurrence segment. In this way, the values for the HWF are fed back in a loop without any loop in the 

data flow itself. Note that the non-temporal output for the HWF (coming out of the bottom of the 

augmentation) is tbe value of the HWF that ia,J)foduced the last time the augmentation is executed, 

while the temporal output for the HWF is a temporal sequence of all the values that the HWF data flow 

assumes at the input to the CREAO. The DFJOIN is not a control flow join but is l'llerely used as a data 

fl.ow join. 

Note that since there is no way for control flow to be passed to the out-case of the body, 

execution of an augmentation in isolation will never terminate. In addition, a consumer cannot be 

repeatedly executed in isolation as it needs to receive temporal data flow from outside itself. 

Therefore, an augmentation cannot stand alone within a plan. It is meant to be a meaningful fragment 

of a temporal composition, and can only be used as such. 

A "termination" is the second restricted fonn of the more general SSR. The body of a 

termination is constrained in the following ways. First, as subsegments, it has a recurrence and a split 

segment. The split segment tilts the "prect .. role and is additionally called the "termination test". 

Second, one of the out-cases of the termination test must pass control to the in-case of the 

recurrence, and at least one of the out-cases of the tenrunation test must pass control to an out-case 

of the body. An out-case of the body will receive control flow from both an out-case of the recurrence 

and an out-case of the termination test. This calls for the inclusion of the appropriate number of joins 

as subsegments of the body. 

For example, consider the termination for the temporal composition in PAYROLL shown in 

Figure 28. The termination function, EOFP, tests the temporal input HOURLY-WAGE FILE-OBJECT 

(HWF) to determine whether to pass control to the recurrence or to the out-case of the body . . 
Execution of the termination will continue as long as end of file has not yet been reached. As soon as 

the EOFP predicate senses that end of file has been reached on the HWF, control is passed to the 

out-case of the body, and the recursive execution of the termination stops. The DUMMY temporal 

data flow will be explained later. 

-- ---------------,--- ------------
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Fig. 28. Termination in the Analyzed P.tan,lor PAVROU .. '· 
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A termination is the only fragment or a temporal· composition that can temunate by itself, and 

is the only fragment that can cause the temporal composition as a whole to terminate. Therefore, it is 

the only fragment that passes control flow to an out-case or the temporal composition. Nonetheless, 

since it requires temporal input, it cannot stand alone, and is only used as a fragment of a temporal 

composition. 

A filter is the third constrained form of the more general SSR. The body of a filter is 

constrained in the following ways. First, it must have only one in-case. and one out-case. Second, it 

must have exactly three subsegments. One of them must be the recurrence. The other two segments 

are a split and a join. The split has the same number of out-cases as the join has in-cases. Each 

out-case of the split directly passes control to a corresponcftrlg .in.Case, of the join. 

The filter has the effect that some of the temporal inputs to the filter are broken up into 

temporal outputs. Each of the temporal outputs of a fittet'.-is assoeiated with one of the out-cases of 

the split. A given value in a temporal input will be contained in a corresponding temporal output if 

control is passed to the out-case of the split with which that tat.Porat output is associated. 

For example, consider the filter -shown in Figure 29. tt has a temporal input which is a stream 

of numbers. The split segment is a predtcate that tests each O! thevatues in the telllporal input to see 

if they are less thari zero or 'ri'of. 'tile 'tYlo terrip0ral"ootpur5"contain the negative and non-negative 

values in the temporal Input respectively. 

Note that a filter is similar to an augmentation in that it cannot terminate in isolation and it 

requires temporal input. Therefore, a filter cannot to be used.in isolation .but only as a fragment of a 

temporal composition. 

In many respects th~ operation of a termination is very similar to the operation of a filter. A 

termination can have temporal outputs that are eaeh·associated with an out-case of the termination 

test, similar to the temporal outputs of filters. The difference lies in the fact that a fitter will select 

certain values interspersed within a temporal data flow, while a termination will truncate values off of 

the end of a temporal data flow. This difference can be seen by viewing the difference between the 

DUMMY data flow produced in the termination Shown in Figure 28 and the two temporal outputs of 

the filter shown in Figure 29. In addition .. a .termination can_ cause the execution of the_entire temporal 

composition in which it appears to termillate, while a fiititr cannot. 

Although it is easier to understand the internal structure of the fragments of a temporal 

composition in terms of their function during execution, it is often easier to describe the contribution 

of each subsegment of a temporal composition to the entire operation of that temporal composition 

by viewing the subsegments as stream operators. In this way, the external properties of the 

-· ---·------- -------
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Fig. 29. Example Filter 
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subsegments can be expressed in a much more succinct manner. In addition, the function that the 

temporal composition represents can often be described without considering the values of certain of 

the input data values; information without which execution is not possible. This allows for a 

description of the general function represented by a particular temporal composition. 

For example, consider the temporal composition in the analyzed plan for PAYROLL shown in 

Figure 30. A detailed view of the analyzed plan for the first two subsegments, the ·generating 

augmentation and the termination, have afready been given above. The other augmentations have 

internal structures very similar to the CREAD augmentation and therefore will not be shown in detail. 

The first of these takes the HOURLY-WAGE (HW) temporal output of the CREAD augmentation as its 

temporal input and multiplies it by the constant 40, producing a temporal output for GROSS-PAY 

(GP). This temporal output is, in turn, passed to two additional augmentiations. One of them is the 
.. -'t,'' ... 

CWRITE augmentation that has an initialization that performs a COPENO operation on the GROSS. 
PAY FILE-OBJECT (GPF), and an augmentation funetiOO that writes the values of GROSS-PAY into 

that file. The other one has an initialization that produces the constant ZERO and an augmentation 

Fig. 30. Temporal Composition in the Analyzed Plan for PAYROLL 
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function of PLUS that computes the sum of GROSS-PAY. The non-temporal output of this 

augmentation is TOTAL-GROSS-PAY (TGP) and is passed to an output port of the temporal 

composition to be written outside·of·thetemporal composition. 

The remaining augmentation pedorms the computation for EMPLOYEE-COUNT (EC) and 

also has an initialization tha,t pr-0ch.1ctl$ ZERO and an auglllentatk>n .function of PLUS .. The difference 

is that the second argument to the PLUS is the constant ONE. Therefore, all data values that are 

needed by the augmentation are Internally generatM. The function of the DUMMY temporal data 

flow, generated In the termmatlon and associated with the NO case of the EOFP predicate, Is to 

provide a controt signal to the consurning augmentation which tells it how many times to execute. · 

The non-temporal output EC is passed out of the tem,,e>rat composition. 

Fig. 31. Analyzed Plan for PAYROLL 
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4.2.3 Analyzed Plan for PAYROLL 

Now that most of the components of the analyzeq plan for PAYROLL have been described, 

we can take a look at the entire plan shown in Figure 31 . The top level segment of the analyzed plan 

is a compositton in which most of the subsegments perform primitive file operations. The only 

exception is the central temporal composition, the internat strue1Ufe Of which has afready been given. 

This example should make it clear that although the entire hier,archy of the analyzed p~an for 

a program can be quite complex, any particular .levet -in ~· -hienlrohy is fairly simple. It is the 

hierarchical nature of an analyzed plan, as watt as the _$impJ.icity at each level in the hierarchy, that 

contribute to the fact that an analyzed plan is a ~h more organ~ ·source of information about a 

program than either the original code for the program or the surface plan for the program. 

4.3 Conclusion 

By comparing the COBOL code for PAYROLL with the analyzed plan for that program, it can 

be seen that the analyzed ptan is much easier to reasqn about The P8Ms group informattqn that may 

be contained in distant parts of the actual code into neat functional localities. This locality makes it 

possible to make conclusions abot:lt certain computations witR,out coasklering the-entire program. In 

addition, a programming language like COBOL has many constructs for the transfer of data values 

from one place in the program to another. The analyzed pl~ for the same computation uses data 

flow as the single construct for data value transfer. The stereotypicality of the analyzed plan further 

reduces the number of distinct possibilities that need to be consid.,-ed at any _one step in a deductive 

process. It is the reduction in the number of facts about the pr~ which need to be considered 

sin:tultaneously that makes die PBM representation of a program pafticularly useful/ for abstract 

processing. 

A given computation can be subdivJded into smaller chunks in several ways including 

processes, ~bprograms, straams, and data abstractions. Jlle an~ described here, via the PBM 

temporal composition, uses the streams abstraction. This is crttical tQ the translation of the COBOL 

programs into HIBOL. Since HIBOL is essentially a method of e~ng data processing functions 

in terms of OJ>erations on streams (data sets), the initial analysis of the COBOL programs in terms of 

stream operators (augmentations, terminations, and filters) is a sigrtificant first step in the tran$1ation 

of COBOL into HIBOL. 

--· - --- -··· - - ----
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5. Current Implementation of the Translation·Procese 

The three formalisms for the description of data processing programs discussed so far, 

COBOL, HIBOL, and analyzed plans, are the result of the work of others. This and the following two 

chapters describe the research effort of this thesis. 

5. 1 General Description 

The diagram shown in Figure 32 highlights the current implementation of the SATCH system. 

Starting with a COBOL program, the COBOL parser (impk!l'neflted-by·Burke} produces two distinct 

outputs. First, information is extracted from the DAT A lDIVlSiON and pl~ced in.~ file to be used later in 

the data division query phase of the translati~ process. Seco~d,. '"'~ PROCEDURE DIVISION is . . 

transformed into a lisp-like format that represents the computation in terms of the primitive ,flln,ctions 

described in Appendix I. This representation of the PROCEDURE DIVISION is then used by Aile plan 

extraction and analysis phase (implemented by Waters) to produce the analyzed plan as described in 

the previous chapter. 

The translation process is divided into three subprocesae8. iitte· first two subprocesses, the 

symbolic evaluation of the analyzed plan and the data.divisionquery, can theoretically proceed in 

either order. For reasons that will become clear, the symbolic evaluation of the.!lfl~ly~eq plan is done 

before the data division query. Since the third subprocess, HIBOL production, use8 tt1e results of the 

first two subprocesses, it cannot proceed until they are completed. 

The symbolic evaluation of the analyzed plan is by far the most time consuming of the three 

subprocesses. It proceeds by making an assertion .about th~ ~~I~ of every OU~ data port on every 

segment, and an assertion about every out-case of every split segment 

A key feature of COBOL programs is that they do not return values. Therefore, the only way 

they can produce results is by the side effect of writing data val~tnto fttes; . This means that the only 

information that needs to be transferred from the symbolic evaluatio~ ,Q#; .iQ._ ~ plan for the 

program to the HIBOL production phase are the values of the dat~ flows that are used as arguments 

to CWRITE and CREWRITE. After this information is gathered fromthl!ranatyad ptan, the plan is no 

longer needed in the translation process. The syntax and semantics of the intermediate language 

that is used for assertions and to transfer information to the HIBOL production phase will be 

discussed later in some detail. 

Much of the information that is originally contained in the DA TA DIVISION of the COBOL 

program is transferred to the translation phase directly from the COBOL parser and is not passed to 

the plan analysis phase at all. Unfortunately, some specific information that is needed in order to 
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Fig. 32. Current SATCH Implementation 
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produce the HIBOL is not directly contained in the the DATA OIVISION·of.the COBOL program, nor 

can it be gleaned from the analyzed plan for the PROCEDURE DIV!SlON. kl particular, in most 

instances it is impossible to tell which fields in a data file represent key Jields and which are data 

fields. This information is gathered in the data divisioffquery subf)f0Cl888. · 

The subprocess that produces the actual, HIPOL 1.1ses the information gathered in the 

previous two subprocesses. In doing so, it makes certain as,sumptiomt~tU;le fo~m of the original 

COBOL program. These assumptions will be discussed in the next sectij)p .. lt aJ$o .1Jses extensive 
' . ' ' ' '" . ·' , . ~-· ' 

knowledge about the semantics of HIBOL in wi attempt to prodf;lce HJBql.. th;lt is ,a faithwl translation 

of the semantics of the original COBOL program without redu~dantl~ ~cify¥ig.restrictions U1at are 

implicit in HIBOL. Elimination of the specification of implicit restrictions leads to the production of 

HlBOL code that might be harder ior a HIBOL paraer tor~. hut tnat:.iSeasierfor a.human. reader 

to understand. 

5.2 Range of COBOL Programs Currently Translatable. 

The current implementation of the translation process makes use of certain assumptions 

about the type of COBOL program that is represented in the'. ·~n~Yiecf plan. Some of these 

assumptions stem from the limits of the ex~essibifity ~f .':flBOL. ~ ~~ fr~ a desire to reduce · 

the domain to a manageable size. 

The translation proeess ls-designed to·work on three1>8stc types.of prog.rams. The simplest · 

type of program Is one which reads iri a fife and outputs anolh'er JHe. The Input and-output Ilk$ must 
have the same key fields: tti. addition', the oUtl)utfite c0ntafns exactlY 'oft'e record "for each recOld in 

the fnput flle and eact1 record In the output fife rias th8 ·satne values ftir"'fit·key Nd& as·ihe rec:otd In 

the input file that was used to create It. In HIBOL terms, this means that the actaat key space of each 

output file Is identical to the actual key space of the input file. The PAYROLL and DBINIT programs 
+ ' ' . .~· . ~ 

shown in Section 1.4 are examples of this type of program. 

The second type of program ·ta an extension of the first in which the carnputatlon of the vafue 

of the data fields in the Output ftftt 'requires informaliOn etintalnect tn the data fi8fds of two (or mote) 

input mes. The input.fites·and tht! dutput"flle must attf1aW·:me 'Sanie•t<eyfields:'· Since the computation 

for a data field in the output file requires information from a recol'd tn "ftch·· Of the Input. files, the 

output file onl~ contains a record if a record with identical. key field valu'6 ap~ars in all of the input 

file&. In HIBOL terms, this mea'ns that th~ actual key sP8ce of the output me is the intersection of the 

actual key spaces of the input files. The PAYROLL2 pr()~;;pn ~w~·in. Section 1.4 is an example of 
,. ; ·,,, . 

this type of program. 
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The third type of program also produces an output me using information contained in two (or 

more) input files but each record in the output file only uses information contained in a record from 

one of the input files. This occurs, for example, when a program performs a file merge operation. The 

input files and the output file must have the same .key fields. Since a value for a data field in the 

output file can be computed from information contained in a record in any one of the input files, the 

output file contains a record for each unique set of l<ey field values appearing in any of the input files. 

A record in the output ftte is given the same values for the key fields as the record in one of the input 

files from which 1t was created. ln HfBOt terms, this means that the actual key space of the outptJt file 

is the union of the actual key spaces of the input files. The LOC-LIST program shown in Section 1.4 is 

an example of this type of program. 

· All of these types of programs have. cemin features m common. First, all top.level loops in 

the COBOL program are logically driven by file reads and terminated by end of file predicates. . Sinca 

HIBOL has no explicit loop construct, loops other than these cannot in general be reasonably 

expressed in HIBOL. Second, these types l)f programs db not t:ontairi'non;focaf error exits from atny 
of the loops or from the program itself. Such non-local jumps are usually not expressible in HIBOL 

and also are not well expresSed within analyzed· plans. Third, all input
1 
data files (and therefore all 

output data files) are homo9eneous. That is, aft records in a file are assumed to have data and key 

fields which contain the same type ~f information~ the corresp~iriQ.data and key fields in all the 

rest of the records in that file. This means that the file cannot contain any singular header or trailer 

records with a different interpretation from the rest of.,the rec;~. ••~:be Possible to produce 

HIBOL from COBOL pro~ams that . do access. files that C9lltain: ti~ or. tr8'Jer records. but the 

translation. process wa,vld hav~:to:.;Qenerate data-~, form• r~~ ·.~ wereJndependent from 
the data-sets genera~ for the r• of the. records .. Currently, a single data·set is generp.ted for each 

.' ' ' . .: ' ' (,• . 'J' , . ., 

data field in each data file. 

Certain additional restrictions are also required. First, it is assumed that all Input files are 

read sequentially, and all output files are written s8Quenti81.Y. h1 a t&t8r chapter suggestions are made 

as to how this ~nt m~ be eliminated as I~ u ~ pr~qam,.~I '-'Is irlto 9M of the three 

basic categories. Note that it foJlows from this cpnsV~ph~. in pr~, of ~ .second and third 

type (intersection and union), ttle Jn put data files used, i..-. ~ction tl,),pi:Q4,uce the Ot.ttput me must 
be sorted in the same key field order. 

Second, it is assumed that the COBOL program contains no nested loops. This is a rather 

harsh constraint and would have to.be eliminated before transt&tion from CoeoL into HIBOL could be . . ' ~. 

applicable to the real world. bne group of P,ograms ~·lminated by this assumption are those that 

produce subtotals for certain data fields in a record as a secondary key field changes value. 
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Third, it is assumed that no output is performed on any files other than dataiiles. That is, it is 

assumed that the program produces no formatted output reports. Although HIBOL does have a 

report generation feature, the generation of formatted reports is an orthbgonal issue to the rest of the 

semantics of HIBOL. In a later chapter, some suggestions are made as to how translation of 

formatted reports might proceed. 

Fourth, for simplicity, it is currently assumed that, within a given program, all key field names 

from different files that actually correspond to the· same key are identical. This constraint is 

particularly easy to eliminate, and a method for doing so will be dfscu'ssed in a later ·chapter. 

The above constraints are not as restrictive as_ they migtit 8"'!1· The three basic pr~ram 

structures discussed above represent the heart of the domain of programs that can be expressed in 

HtBOl. In addition, programs which Incorporate ·othef ·f&afuies tttm do not'.iritertere with the main 

read loops can still be translated. For example, a single progrBm Ctita piod&e oUtpufmes ftom inptit 

files using any or all of the three basic strategies, so long as the read/write loops used to produce 

those output files are completely separate from one another and therefore cannot interact. Also, 

reduction operations that produce gr.and totals are allowed because the.y.do .. not require nested loops. 

. It is also possible to translate programs which do not prodµce a r~ if.l· th_e C>YJf>,t4! file. f9r each set 
. . ' "' ' . . - .. ,' .. . . ' - . ~ 

of key values that could cause a record to be produced. For example, In the LOC-LIST program, a 

output record is not produced for a record in the transaction me if that record contains a "D" in the 

delete-Hag field. (Note that it is not permisaibletoadd~tO#le outplaflile in a Similar fashion). 

Unfortunately, the current implementation of the translation process does not verify that the 

program that it is processing lldheres to-·tne mumpttons MdleM'eptrictions discus8$d above. A 

more robust system would have to do significaqt ~fng to detanmne if She program that It is 

5.3 Brief Example 

Before delving into all of the detail of the _cyrren~ implementatton pnic9ss, let us exarnioe its . 
operation on a simple example program; namely PAYROLl,..-.for·tllihpUclty, only th& processing 
needed to produce the HIBOL for the output data-set GROSS-f>AY Witf be~; TOTAL-GROSS· 

PAY and EMPLOYEE-COUNT wHI not be considered. This'discussion Is not meant to make the 

operation of the translation process- crystal clear, but merely t~ give a flavor for _the type of processing 

that is taking place. 
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5.3.1 Symbolic Evaluation of the Analyzed Plan 

Let us consider the portion of the analyzed plan for PAYROLL shown in Figure 33. This 

figure shows an abbreviated version of the analyzed plan for the main temporal composition (and is, 

in fact, a subset of Figure 30). The subsegments are symbolically evaluated in an order that is 

consistent with their control and data flow dependencies (left to right in Figure 33). 

The first subsegment of the temporal composition to be symbolically evaluated is the 

generating augmentation, which has CREAD as its central function. The assertion that is formed for 

the HOURLY-WAGE (HW) output port of that subsegment is: 

(CREAO-VAL HOURLY...:WAGE-'IN HOURLY-WAGE) 

This assertion specifies that the value at this output port is the result of reading the HOURLY-WAGE 

data field in the HOURLY-WAGE-IN file. 

Fig. 33. Partial Analyzed Plan for PAYROLL 
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Also pertinent to this discussion is the assertion that is formed for the HOURLY-WAGE-FILE· 

OBJECT (HWF) output port of this augmentation: 

{SEFO HOURLY-WAGE-IN) 

This assertion specifies·that the value at this output port is the file-obj8ct HOURLY-WAGE-IN that has 

been side-effected by the read operation (S~FO·is an acronym toc"Side 'Effected F.Jte Object"). 

The next subsegment to be evaluated is the terminat1()il subsegment, which has EOFP as its 

central function. The assertion that is formed for the single ol.it-c~e c>f the termination is: 

{EOFP {SEFO HOURLY-WAGE-IN)) 

This assertion specifies that the termination subsegment (and, thereforei;the temporal compaeition as 

a whole) terminates when end-of-file has been reached on the HOURLY-WAGE-IN file. 

·.,r-t :-~>) ;' :~.,,,~ . ~~' 

The next subsegment to be evaluated is the consuming augmentation that has TIMES as its 

central function. Thia: aug~~ ~.the effect t.b,,sl,tbJ, ~ .• foe:~ ~ing data flow is 

multiplied by forty; Ac~rdin,gl¥1 :tti,~ion that.is fomled:fPr;the ~~AY.{GP~~tput pOrt Qf 
that subsegment is: 

(TIMES (CRIAD .. VAL HOURL:Y.:.WAGE-IN HOURLY-WAGE) 40.) 

The last subsegment to be symbolically evaluated is the consuming augmentation that has 
• ' - • . ' , • • .. ~- • ' ~ :> '; 

CWRITE as its central function. When this a0gment.8tion. is evaluated. a record is made of the fact 

that the output data fiekf ,GROSS~PAY is, ~oei~ted 'with' th~:,~~own · ~ve ... In .. ditlon, the 

predicate whlch co~trots how,often it is 'wrttten (the prediCtite' ~n ~ frOnJ th~~~~ of the 
te~~ination) is sto.red: ,. . . . . ·. . . · - . , : · · . '· . · 

5.3.2 DATA DIVISION Query 

In the DATAOtvtSIONOuiry·phase, the user ofthtt'SATCH sYStem IS asked to suppty1hekey 

fields for each of thfr fttea ~~in the COBOL P,()gtam. 1tn thlS'ex~. the 'user speclffea that 
EMPLOYEE-NUMBER iS the xey~fiefcffor both the .HOiJR[y:~~ fae atld'the ~Rbss~P'AY~OUf 
file. 

5.3;3 HIBOL Productton 

In the HIBOL production phase, a new assertion far•GRQSS.PAYta·formed bycof'Abinlng the 

old assertion for GROSS-PAY with the predicate which specifies under what circumstances it is 

written. Since GROSS-PAY is written within a temporal composition, the predicate that is used is the 

negation of the predicate which terminated that temporal composition (stored during the symbolic 
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evaluation phase). Therefore, the predicate that is used is: 

{NOT {EOFP {SEFO HOURLY-WAGf-IN}}} 

The new ass~rtion (the form of which is not imDortant herel specifies that the value of 

{TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-\IAGE) 40.) 

is written into the output data field GROSS-PAY for every value of the input data field HOURLY-WAGE 

that appears in the HOURL.Y-WAGE-IN file. 

This assertion is then translated into the corresponding HIBOL statement: 

GROSS-PAY IS (HOURLY-WAGE • 40.) 

5.4 Symbolic Evaluation of an Analyzed Plan 

As stated above, the symbotic evaluation Of an anatyzectptatl'for the PROCEDURE DIVISION 

of a COBOL program proeeeds by maktng: assertions about eaeW dlltpu11.,0rt ·for each segment. The 

form of an assertion depends on the PBM that was used to form the segment. In same ca8fts, more 

specific patterns are used to make spec~I case assertions. Tt,is ia ,,.nicufariy true for augmentation 

segments. 

In addition to assertions for output ports, an assertion is made for each out-case of every 

split segment. The assertions specify under what condition c~~trol .will be pasSect to that case. These 
, ·.·' . ' ' 

assertions differ from the assertions for data ports in that they.take the form of predicates instead of 
• , > T 

object descriptions. That is, they are expressions that u8e bootean operators instead of the arithmetic 

and other special form operators that are used to describe objects. 

When a given segment is symbolically evaluated, first its subsegments are symbolically 

evaluated in an order consistent '1eif .. CQn~ol flow aQ,fi1 ~. ~ .. ~. starting with a 
' ~,,(,....., "• L O 1 .. ,u- • .-

subsegment which depends on none of the .other~~· for ~~trol ordata flow. Then· 
after the symbolic evaluatton of the-subsegmerits Ui co~~ ., ~on is made about each of. 

the segment's output ports, or if it is a split segment, each of its out-cases. 

Both predicate and object assertions are made in terms of primitive objects. Therefore, 

primitive objects will be discussed in the next section. The two sections after that will discuss 

predicate and object assertions, respectively. 
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5.4.1 Primitive Objects 

The only explicit inputs to a COB.OL program are file otJjects. However, there are also 

implicit inputs to the program; namely the data and key fields in the files. These two types of input 

produce two of the three types of primitive objects. The syntax (literals are in bold face and 

non-terminal symbols are in italics while 'primitive function name$ are in the normal font) tor tile 

objects is: 

(SEFO ftle-name) 

where SEFO is an acronym for Side Effected File Object. The syntax for the primitive objects resulting 

from CREAD operations is: 

(CREAD-VAL file-name fteld-name) 

Since several files may have fields that have the same name, the fie1d-names that are used are 

actuany bliffer-structure path names that uniquely iclentify·a partlcutar field; · 

The third type of prrmitive object is a constant.- These f8jl into two subtypes, numeric and 

literal. The syntax for numeric constants is simply the·numeral itself. The SYAta>dor literal constants 

is: 

{STRING some-sequence-of-characters) 

In addition, tt)ere is a special constant. UNDEf llEO, whiGnJ& the initial value given to every data area 

that is not explicittY initialized in the DA TA DIV~ION of the,COBOL program, 

5.4.2 Predicate Assertions 

The simplest instance of the PBM predicate will have two subsegments: an initiaHzation that 

is one of the primitive boc>lean functions, tor example EQUAL, combined wtth a PIF. ·The assertion 

that specifies the value for the output data port of the initialization is bl.int in an obvious manner. The 
primitive boolean function is simply combfned·in pretix:ortter with the ·Yahies for the objects 1hat it· 

uses as arguments. For example, the predicate assertion that wotild ,~ 'formed from a primitive 

EQUAL function acting on two primitive CREAD-VAL objects would be: 

{EQUAL (CREAD-VAL f11e1 f1e1d·name1) (CREAD-VAL f11B2 fieJd-nameZ)) 

Note that f 11e1 and f 11 e2 might be the same if the fields to be compared are both from the same 

file. 

The output data port of the iriitiaflzation wilt be linked via data flow to the Input port of the PIF. 

(Recall that PIF is the split primitive that tests a simple boolean operand). The Plf will have two 

out-cases. An assertion wilt be made about one of the case$: cafled the YEs case, that is the same as 
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the assertion that was made about the output data port of the initialization. An assertion will be made 

about the other case, called the NO case, that is the negation of the assertion made for the YES case. 

Using the above example, these assertions state that control win be passed to the YES case of the PIF 

when 

(EQUAL (CREAD-VAL f11e1 fie1d-name1) (CREAO-VAL fOeZ fie1d·nameZ)) 

is true, and control will be passed to the NO case when 

(NOT (EQUAL (CREAD-VAL fjJe1 fje7d-name1) (CREAD-VAL fjJ~2 fjeJd-nameZ))) 

is true. 

If the primitive split were a PIFNULL instead of a PIF, then the assertions associated with the 

YES and NO cases would simply be reversed. 

-
The simple predicate described above will only nave two out-<:ases,.each corresponding to 

one of the out-cases of its PIF subsegment. Symbolic evaluation of the predicate is completed by 

simply making an assertion about each of the out-cases that is identlcai to the :&Ssertion that was 

made about the corresponding out-case of the P1F. 

As stated in Chapter 4, compound predicates are built out of simpler predicates in two ways. 

One way is for a predicate, call it PRED2, to receive control flow from an out-case of another 

predicate, can it CASE1 of PRED1. Because of the order tn 'Which ·segments are symboficaHy 

evaluated, PRED1 will always be evaluated before PRE02;· PRED2 is then evaluated as usuaf except 
that the normal assertions that would have been made had it occurred in isolation are each ANDed 

with the assertion governing CASE1 of PRE01. .For example, suppose that PRED2 is the· simple 

EQUAL predicate discussed above, and. CASE1 of PRED1 was asserted to be active when some 

arl;litrary predicate, call it pred1, is true. Then assertions will be made stating that contr,c;>I will be 

passed to one case of PRED2 when 

{AND predJ (EQUAL (CREAD .. VAL f1lel f1e1d-name1) 
(CREAD-VAL ft1e2 fte1d-name2))) 

is true, and to the other case when 

(NOT (AND predl (EQUAL (CREAD-VAL fOsl ffeld-namel) 
(CREAD-VAL f11e2 fte1d-name2)))) 

is true. 

The other way in which compound predicates are formed is when a join segment receives 

control flow from an out-case of two different predicates. In this event, an assertion is made about the 

single out-case of the join that is the OR of the two assertions that govern the two in-cases of the join. 
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which in turn are governed by the two predicates that pass control to the join. For example, suppose 

that the join is passed control from an out-case of two predicates, and thatthose cases are asserted 

to be acuve when two predicates, call them predl and pre:tl2, are :true. Then an assertion will be 

made about the out-case of the join that is of the form: 

(OR predl pred2) 

A compound predi~e. in general, can have many joins and simpler predicates as 

subsegments. 1t can also have many out-cases, each of which is passed control from,an out-case of 

one of its subsegments. When a cofllPf)und predicate is symbolicaHy evaluated, first all of the 

subsegments are evaluated, and. then an assertion is made about,•ach·of its, out-cases which is 

identical to the assertion that was made about the out-case oft~~ subsegrpent that passes control to 
, '~ . 

it. 

It should be dear that the expressions for the:msertions in 'a compound predicate can be 

very complex. If the assertions for compound predicates were made accon:tin9 to the rules that have 

been given so far, they would be in an unreadable form. This is also true of the assertions that are 

made· about complex obJedts. To· reduce this problem, 9everat simpfffieation techniques have been 

used.· These witf'be'CtiscuSsed in a later section. 

5.4.3 Object Assertions 

The assertions formed for primitive objects were d~ussed above. The following three 

sections will discuss assertions made in primitive segments, segments that are instances of straight

line PBMs, and segments that are instancea of ~PBMB; .respectively~ 

5.4.3.1 Primitive Function Aaaenton1 

AssertiQns about output Ports of primitive arithmetic functions tllat dQ not fall into any special. 
' - . ' . . :. <·. •· 

category are formed in an obvious manner. The primitive function of the segment is combined, in 

prefix order, with the assertions about the input port& to the-aments. i=orexmnple. :auppose that 

there is a primithte TIMES function 1bat has two input porlS. ByJoMawtng data flow linka'to each ot the · 

input porta·back to the,previqus,-.ment, an aasef'tion,:can,tae found far ead\ of the input d>jecta. 

Suppase thatth&assertionsfoundin thJsmannerare·objl and obj2.· Then the assertion that wiH be 

formed tor the output port of the segment is: 

{TIMES objl obj2) 

---------- ------------------------
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Special assertions are formed for the primitive functions that perform simple operations on 

file objects: COPEN!, COPENO, COPENIO, CCLOSE, and NTERP-RI. AH of these functions have the 

property that they take a file object as their only input and pr-Oduce a file .object as their onty output. In 

all cases, the assertion that is for med for the output is just the prrmitive object: 

(SEFO file-name) 

In addition, special assertions are formed for CREAO functk>ns. The CREAD function is 

unique in that it takes a single input, a file object, and produces many outputs. One of the outputs is 

the file object, and the others are all field values. The output assertion for the file object is as above. 

An assertion is made for each of the other output ports that is of the form: 

(CREAD-VAL ff le-name f1e1d-name) 

where the f1e1d-name is one of the names in the buffer-structure associated with the file in the 

DAT A DIVtstON ·of the COBOL program. These field names are· contained within 1he analyzed plan 

and do not come from the DATA DIV4SJON information produced in·the'COBOL. parser. 

CWRITE and CREWRITE functions are.also handled ~ly. These functions take.a.file 

object as well as a number of other inputs that correspQOd to fields of tl'l8.! file. The ~ogle output is 

the file object and is given the usual assertion. Symbolic evaluation of these functions also has the 

side-effect that the assertions that correspond to the fields, along with the associated field names, are 

placed in a file to be used by the HIBOL production phase of the translation process. The transferal of 

this Information will be discussed in a tater section. 

5.4.3.2 Object Assertions Formed in Straight•line PBMs 

More complex object assertions are formed within, aeg111811ta that ~t straight-One 

PBMs. The assertions. formed within predicate segments have already been discussed. The 

assertionsformed in·compasifion segmems and COl1ditfonal ae0mentl48tediacusaed in ttriS'section. 

In a composition, the assertions that are made about :ttie ·output PortS come ,from the 

subsegments that make up the composition. After aH the 8UbsegmeintB Of the composition have been 

symbolically evaluated, an assertion is made about each,of.the~.JJQrtsthat is:identlcaHo lie 

assertion associated with the output port of the sut:agment l\atproducea. data flow to that part. The 

composition itself lends no special form to the assertions. 

A conditional, on the other hand, does cause the formation of a particular type of assertion. 

Recall that a conditional is composed of a predicate, a group of actions, and a join. The join 

subsegment not only joins control flow, but also joins data flow. Each output port of the join is 

associated with as many input ports as the join has in-cases. For example, if the join has three output 

----------- r ----·· 
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ports, and four in-cases, then it will also have twelve input ports, three for each of the four in-cases. 

Also recall that each of the in-cases of the join is associated with an out-case of the 

predicate. Because the predicate has the property that exactly_ one of its out-cases will be active on 

any given execution of the conditional, the join has the properyy that exactly one of its in-c.~ will be 

· active. This causes exactly one of the input ports associated with a particular output port of the join 

to receive a data value on any given execution. 

Since the assertions about the output ports of the join are made during a symbolic evaluation 

of the conditional, they need to include ail the possible values that that output port can assume. This 

. is done by forming a set of predicate-object pairs for each output port. The set for a particular output 

port is found by associating the predicate that corresponds to each in-case of the join with the data 

value that the output pert would receive had that predicate been true. The syntax of such an obJ«;t 

is: 

(XCASE (predl obj1) (pred2 obj2) ... (predn oiijn)) 

The keyword XCASUs included as an indicator of the type of~· 

Although the syntax of an XCASE construct clp~ly resembles the syntax of a LISP COND 

construct, the semantics of an XCASE and a COND differ in that the ordeu _in which the clauses appear 

in a COND matters, while in an XCASE the order in which the predicate-object pairs appear does not 
. . . ["\ - . . ' ' ' ; .". -

matter. 

5.4.3.3 Object Assertions Formed in Recursive PBMs 

The initialization of an· augmentation is a simpte s8Qment. Therefore, the assertions that are 

made about its output ports are just those that have been diacusaed above. The augmentation · 

function is also a simple segment and is ~so given ~~that are the same 8' those discussed 
. . ' ~ '.' ; . '' ' 

above. The exception occurs when the augmentatiot:I function is a temporal composition. This 
. . . - : '· ... ('; ' i - lo;· . ' ' ~ ;·: . . . . '; ' - • 

happens as a r~lt of the nesting of loops. The current ~tatton of the tr~ation process 
"',(• '" .. ; . , 

does not hancUe this case. 

After the initialization and augmentation function haVe been symbolically evaluated arid 

assertions made about their output ports, asserti0fl8 ... made about ,the output, po~ of the 
'·' ,_ . . ' ; , .. '' ' ··.: 

aug~entation -body. These, are made by sm,pty ~crying f9fW&J'd the ~ons made. about the 
'" . ' . "· - : /; - . ' '.. ;- . . -_ . ' ~ ' 

output ports of th_e augmentation function that correspond to them. ~e that.this .is. similar to the way 
·' ' / . . .., '·. .. . . 

in which assertions are made about the output ports of composition segments. 
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It is also necessary to make assertions about the temporal and non-temporal outputs of the 

augmentation. Currently, the temporal outputs are given assertions that are identical to the 

assertions given to the data ports from which they get their values. Unfortunately, this means that 

these assertions are indistinguishable from assertions made about non-temporal data nows. The pros 

and cons of this choice are discussed in another section. 

In addition to temporal outputs, an augmentation can also have non-temporal outputs. In the 

analyzed plans for COBOL programs, these arise in two ways. First, a file object can be side-effected 

in an augmentation and then passed out of the augmentation to be used in another segment in the 

plan. In this event, the output port that corresponds to the file object is given the usual file object 

assertion, namely: 

( SEFO f i1 e-name) 

The second non-temporal output type results from reduction operators such as COUNT or 

SUM. The reduction operators are recognized when the augmentation satisfies special criteria. For 

example, a SUM operation can be recognited when an augfllEmtation has an inftialization that 

produces the constant zero and an augmentation function that is a PLUS. The PLUS function will 

take one argument from an input to the body .that first gets its value from the initialization and 

subsequently gets its values from the output of the PLUS function. The second argument will be a 

temporal input to the augmentation. The non-temporal output of the augmentation is then the SUM of 

the temporal input to the augmentation. The assertion that would be formed in this event is: 

(SUM obj) 

where obj is the assertion found by following data flow back from the temporal input port to its 

source. 

Terminations and filters are handled in much the same way as augmentations. The 

subsegments of the filters and terminations that represent straight-tine PBMs are evilluated as always 

and the usual assertions formed. However, the temporal outputs of terminations and fitters need to be 

handled in a special way. These temporal outputs represent stream values; generated in some 

augmentation, that have been changed by the action of the \ermination or fitter. 

Recall that each temporal output of a termination or filter corresponds to a temporal input 

that has been associated with a certain predicate. In the case of a termination, this predicate 

indicates at which place the temporal input should be truncated. In a filter, this predicate indicates 

under what circumstances a value from the temporal input is included in the temporal output. 
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Both of these situations are handled by forming an XCASE construct with two predicate

object pairs. One of the pairs is formed by associating the predicate with the object assertion that is 

associated with the corresponding temporal input. The other predicate;object pair is formed by 

associating the negation of the predicate with the special primitive object UNDEFINED. ·Note that 

XCASEs formed in this way have the same properties as XCASEs formed in conditionals. Clearly, given 

any predicate and its negation, exactly one of them ~ill be true. Also note that in the case of a 

temporal output of a terminatic>n, this 8$Sertion form assume~ that the.t~rmination predicate is such 

-that once it is TRUE: for some value in the input stream,, it is_ TRUE for all remf,lining values in the input 

stream. This assumption is met by EOFP predicates (which are assumed to terminate all loops). 

For example, suppose there is a filter with a temporal ini>Ut that is associated with the 

assertion obj1, and which has a temporal output that correspoilds to that temporal-input and which is 

associated with the predicate pr ed 1. Then an assertion wiU ~ made ab9ut the temporal output that 

is of ~he form: 

(XCASE (predl objl) ((WT predl) U&EFllED)) 

In. this way assertions are made about the temporal outputs· of terminations and filters that 

state that, when a given predicate is true, the temporaf data flow· has a value that is the same as It had 

before it was operated on by the termination or filter. The assertions also state that when that 

predicate Is not true, the temporal data flow has no varue. i.Ji'itortunafeJY, tlke,the assertic>ns produced 

for temporal ~utput ports of augmentations, these sssertlons are indiStinguishable from aSsertions 

representing single values. 

5.4.4 Assertion Simplification Methods 

It can be seen from the above dtscussion that there are only three types of assertions in the 

system; primitive objects, expressions composed of primitive functions (botti'&rtthmetic and boolean) 

acting on other objects, and XCASEs. The XCASEs are the onty complex objects. Unfortunately, the 

way the assertions are bunt, XCASEs can appear In· exprE*lsions and In pr8dicate-obJect pairs of other 

XCASEs. This causes unnecessary complexity in all-lhe asaerticm~ 

All assertions in the system are kept as simple as possible by transforming the ones that 

contain XCASEs as comPof1811tS so th•t either the XCASE is eliminated or the XCASE is at the top level 

- only. This is done for each assertion that is made In the system. This means that when a_ new 
assertion is formed, XCASEs can be nested at most one level deep in the assertion. This fact is used 

in the simplification procesa. 
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The transforms are such that predicates are often built which are not in simplest terms. 

These predicates are simplified through the use of a disjunctive normal form predicate simplifier that 

was designed by Deepak Kapur [12]. This predicate simpJ.ifier lies at the heart of the assertion 

simplification process. 

5.4.4.1 Simplification of Predicate Assertions 

When a predicate assertion is first formed in the system, it may contain an XCASE as an 

argument to a boolean function. Since an XCASE is an object, if will never appear as an argument to 

AND, OR, or NOT, but can only appear as an argument to comparative function such a$ EQUAL, 

GREATERP, etc. What is needed is a transform that will eliminate the XCASE from the expression. 

The transform that is used is given in Figure 34. 

In this example, the Second argument to a comparative function is an XCASE. It is assumed 

that this XCASE is already simplified. This means that obj1 through objn are not XCASEs. ·Note 'that 

if the first argument to the comparative function had' atso been an lCASt'I then the same transform 

could have been applied to each of the clauses that were produced in the first application of the 

transform, thereby eliminating all XCASEs from the expr•ssion. An inspection of Figure 34. should 

reveal that the resultant predicate has tile intended truth value. 

Once the transform has been applied, the expression is further simplified. The disjunctive 

normal form predicate simplifier does no~ l<now about the type of primitive objects that a given 

predicate will be expressed in terms of. Therefore, before the precncate is passed to th~~.sii;n~ifier, it 

undergoes a prepass in which some of the subexpressions that are composed of a comparative 

function operating on two constants are replaced by TRUE or FALSE. ·For .example, 

(EQUAL (STRING abc)(STRING def)) 

can be replaced with FALSE. 

Fig. 34. Transform to Remove XCASEs in Comparative Functions 

Becomes: 

{ comparat 1ve-funct 1on obj {XCASE ( pr,ed1 t;>bjl) 
( predZ obj2) 
( predn obj n)) ) 

(OR (AND pred1 (comparative-function obj obj1)) 
(AND predZ ( comparat 'ive-funct 1on obj obJZ)) 
(AND predn (comparative-function obj objn}}) 
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In addition, any subexpression that involved a comparative function in which one of the 

arguments is the constant UNOEfIN£0 is replaced with FALSE. This replacement is done because 

objects can be undefined but predicates cannot. Note that this replacement with FALSE (followed by 

simplification) is equivalent fa first converting the XCAS.E to one in :which at most one of the predicates 

is TRUE by removing the predicate-object pair fr1 which the object is UNDE"FINED (if any), and then 

performing the transform to eliminate the XCASE from the comparative funct10n. 

The expression is then passed ta the genera1 -predicate simplifier: · The result is a disjunctive 

normal forrn in which the clauses ate as simple as possible and are in a danOnicat order. 

As an example of the use of the predicate simplification transforms, let use consider the 

predicate in the termination of thetemporaJ compositiOn.ift PAYROLL! (see Section 1.4). In this 

example, a flag is used to store the Information about Whethet or not 8ftd of file has been reached. 

Because COBOL allows- SB varMbles to be used; flags of lhta type «re very common in ·coBol 
programs. let us simplify the. example by considering only the portion Qf ,~ termination test that 
tests whether end of file has been reached on the HOURLY-WAGE file. The actual predicate in the 

analyzed plan checks for the value of the Hag. The initial expression for the predicate as. well as the 

final assertion actually formed for the predicate are show.n. in Figure 35. 
. ' '' ' ., . . 

5.4.4.2 Simplification of Object Assertions 

The first transform for object assertions IS tlSecf to simpfify arithmetic expressions. Arithmetic 

expressions, as initiaffy formed, ean O()ntain XCAS!i8·'8S'~:.to·artthrnetlc functions such as 

TIMES and PLUS. What is needed is a transform that will change arithmetic expressions that contain 

XCASEs into an XCASE In. which the ob;ecfs' ~,,the Prect~~~t pa.nl are arithmetic expressions 

Fig. 30 •. Example Pr.icate Simplil.ication from PA:Y.ROl..L2 

The expression before simplification is: 
(EQUAL 1. ( XCASE ((£Of~ ( S£f0 .OOURLY-WAG£ - INH -lw) 

((NOT (EOFP (SEFO HOURLY-WAG,~- IN))) 0.))) 

The expression after transform to eliminate the XCASE: 
(OR (AND (EOFP (SEFO HOURLY•WAGE.-.II}) {E-OtlAl l. t.:').) 

(AND (NOT (EOFP (SEFO Hel:IRLY~WAGE-IN))) (EQUAL 1. 0.))) 

The expression after the prepass: 
(OR (AND (EOFP (SEFO HOURLY-WAGE-IN)) TRUE) 

(AND (NOT (EOFP (SEFO HOURLY-WAGE-IN))) FALSE)) 

The final assertion after simplification: 
(EOFP (SEFO HOURLY-WAGE-FM)) 
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that do not contain XCASEs. This keeps the XCASE forms at top level instead of nested within the 

arithmetic expressions. The transform that is used is shown in Figure 36. 

In this example, the second argument to a binary arithmetic function is an XCASE. As before, 

it is assumed that the XCASE was already simplified and that obj 1 through objn are, therefore, not 

XCASEs. Had ttie first argument also been an XCASE, then the same transform could be applied to 

each of the objects in the predicate-object pairs resulting from the first application of the transform. 

The result is an expression that will have XCASEs nested at·most one level deep, but .in which none of 

the arithmetic expressions contain an XCASEs. The nested .XCASEs, if any, are later removed with 

another transform. 

The arithmetic expressions that result from the transform shown •n Figure ~ can be reduced 

further by replacing any subexpression that contains an arithmetic function in which the constant 

UNDEFINED is used as an argument with the constant.UNDEFJIED. F« example, 

(TIMES arg1 UIDEFINED) 

is replaced with UNDEFINED. 

XCASEs that are nested one level deep can result in two ways. One is by the application of 

the transform discussed above. The other occurs when a. conditional stijlment is nested within an 

action of another conditional segment in the analyzed plan. In either case, it is desirable to eliminate 

the nested XCASE. If this were not done, then XCASE.s nested to an arbitrary ~th would eventually 

be formed. The transform that is used to eliminate nested XCASEs is shown in Figure 37. 

In this example, one of the objects in a predicate-object pair of an XCASE is another XCASE. 

It is assumed that this nested XCASE is already simplified and that, therefore, obj21 through obj2n 

do not contain XCASEs. Note that the same transform can be appliecfto any of-the predicate-object 

pairs in the top level XCASE in which the obfect is an XCASE: The result of applying this transform is 

an XCASE that contains no nested XCASEs anywhere in the Qbjects of #le predicate-object pairs. An 

Fig. 36. Transform to Remove XCASEs in Arithmetic Expressions 

Becomes: 

(ar1thmet1c-funct1on obj (XCASE (pred1 obj1) 
(pred2 obj2) 
(predn objn))) 

(XCASE (pred1 (ar1thmet1c-funct1on obj obj1}) 
(pred2 (arithmet1c-funct1on obj obj2)} 
(predn (ar1thmet1c-funct1on obj objn))) 
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Fig. 37. Transform to Eliminate Nested XCASEs 

Becomes: 

(XCASE (pred11 obj11) 
(pred12 (XCASE (pred21 objZt) 

( pred22 obj2~) 
(pred2n objZn))) 

( pred1n objtn)) 

{XCASE (pred11 obj11) 
((AND predl2 pred21) obj21) 
((AND pred12 pred22) obj22) 
((ANO pred12 pred2n) objZn} 
(pred1n obj1n)) 

Translation Process 

examination of Figure 37 should reveal that the resultant XCASE has the same semantics as the initial 
' . . 

XCASE. 

There is one remaining transform that can be applied to XCASEs. This transform is used 

when two or more predicate-object pairs contain the same Object. Such 'an XCASE contains more . + . :.· . 
predicate-object pairs than is necessary. In this event, the number of predicate-object pairs can be 

reduced by applying the transform shown in Figure 38. This transform can be used to condense all 

sets of predicate-object pairs that contain the same object. The r-esutt is an XCASE in which all of the 

objects are distinct. In order to see that this transform retai(l$. the ~ar,tics of ~e initial XCASE, Jt 

must be recalled that the predicates in the initial XCASE have the property that exactly one of them will 

be true at a time. Therefore, the ORsthat are formed have-~ a Mt of predicates. in which 

at .most -one of them is true. This· property ensures that the 1'881!1itant .XCASE- is equivalent to the initiat· 

one. 

Fig. 38. Transform to Condense Predicate-object Pairs containing Identical Objects 

Becomes: 

(XCASE (pred1 obj1} 
(predZ obj1) 
(predn objn)) 

(XCASE {(.OR predl pred2) obj1} 
(prodn objn)) 
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After all of the above transforms are applied to a given XCASE, then each of the predicates in 

the predicate-object pairs is passed to the disjunctive normal form predicate simplifier. Some of the 

predicates may be identically FALSE. In this case, the predicate-object pair containing that predicate 

is simply removed from the XCASE. Removal of predicate-object pairs in this fashion can result in an 

XCASE in which atl predicate-object pairs except one have been removed, and the single remaining 

pair may contain a predicate that is identically TRUE. In this event, the entire XCASE is eliminated and 

the object of the last remaining pair is used as the final form of the assertion. 

In all cases, the final result of the application of all the transforms discussed above is an 

assertion for an object that is either a primitive obiect, an arithmetic expression in simplest form that 

contains no XCASEs, or an XCASE in which all of the predicates are in canonical form and do not 

contain XCASEs, and all of the objects are in simplest form and do not contain XCASEs. 

For example, consider the simplification steps taken to simplify an expression for GROSS· 

PAY, taken from PA YROLL2 (see SeCtion 1.4) shown in Figure 39. This expression is fir~t built at the 

end of the conditional that checks to see if the key fields are equal before calculating GROSS-PAY. 

Because this simplification is done to each assertion before it is added to the plan for the 

program, all object assertions in the system are always in simplest form. This is not only a great aid in 

debugging, but also ensures that the expressions that are ~ed on to the HIBOL production phase 

are as simple as possibte. 

5.4.5 Communication between Symbolic Evaluation and HIBOL Production 

As indicated above, when a CWRtTE or CREWRITE fUnctton is evaluated in the symbolic 

evaluation of the analyzed ptan, the assertions that had been tormed for the non-file•ob;ect arguments 

to the write function are stored so they can be used in the HIBOL production phase. However, Just 

this information is not quite enough. It is also necessary to store the control environment in which the 

write function is evaluated. 

The control environment is kept in a stack that is manipulated· during the symbolic 

evaluation. Each time an action of a conditional is evatoatect, the predicate 1hat determines under 

what conditions that action will take place is pushed on the stack. The stack is then popped after the 

evaluation of that action is complete. 

In addition, within a temporal composition, it Is sometimes the case that certain 

augmentations receive dummy temporal data flow from a termination or filter. These dummy temporal 

data flows do not contain any data values, but simply cause the augmentation to only be executed 

when the predicate of the termination or filter with which they are associated is true; To take this fact 
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Fig. 39. Example Simplification of an Object Assertion 

Expression initially formed: 

(XCASE ((EQUAL (CREM-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER) 
{CR£AD-VAL ffOURS-WORKED-iff EMPt0YE£"'NUM8tR)) 

Translation Pr6cess 

(TIMES {XCASE ((NOT (EOfP·"{SEFO''M00RlY;WAG£ ... JM))) · 
(CREAb·VAl ttOURt't~WAGi:-lti HOURtY-WASE)) 

({EOFP·fSEFO HOtmLY·-GE';;.JNl) '·. 
UIBEHIEOH . 

(XCASE ({NOT (EOfP {SEFO HOURS.o.WORMED"'IN))) 
(C'REAO,.VAl'ttOURS .. WORKED~IN'HOURS-WORKED)) 

(( EOFP (SEFO HOURs..:woRKEO•IN)) . . 
UNDEFIN£D))))' .. 

((NOT (EQUAL (CR£AD"'VAl HOURtY•WAGE-IN' EMPl9YEE-MtJM9ER) 
( CR!AD-VA.l ff6URS;...W01UC1m-·tll iMPiOYEE-NUM8ER)}) 

UNDEFINED)) 

Expression after simplification of arith111etft expression: 

{XCASE ((EQUAL {CREAD-VAt. HOURlY-WAGE ... ·tN EMPt.0¥EE ... NUM8ER) 
(CREAD•VAL HOURS-~ORMf&-1N·£Mf>lOYiE~NUMBER)) 

(XCASE ((AND {NOT (EOFP {$!FO MOURlV-.lifAGEi,;IIU) 
{NOT (EOFP (SEFO HOURS.;votmEO-Jlt)})) · 

(TIMES { CHAO-v.u·,HOURf.Y-WAG£- IN''H0UIUJ¥•WAGE) . 
. · ( CA!AfJ•VAt MOURS•WOftKlli•ltFHoURSi.!W@t\KED}) ). 

({OR { EOF P {SE FO HOURL Y-WqE •111) .. . i :~ '' 

{EOFP {SEFO HOURS·WORK~D•IN))) 
UNDE'1111D))) 

{ (NOT (EQUAL (CR&AD .. VAL HOURlV-Wft&E;.;INi»EMPlOVEE-NUMBER) 
{CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)}) 

UNDEFINED)) 

Expression after tranafoMR to eU•inate neste.d XCASI: 

{ XCASE ( (AND {EQUAL (CREAD-VAL HOURLY-WAGE~ trt EMPLOVEf.:.IUMSER) 
{CREM..YAt HOURS~RlE .. ll';fMPt..Of.fE•wtJM8£R)) 

(AND {NOT {EOFP {SEFO HOURLY-WAGE-IN))) 
(-NO! {f;QFP .(SEf() HQURS:-W(),6~ED-.l~J)JJJ 

(TIMES (CREAD-VAL HOURLY.:.WAGE..:111 KO'U"RLY.:.WAGEl . 
(.CIMO..VM.'. 140UttS·WOft~ED· f.ft: '-ftOUQ'!'WORlllQ)i)} ·. 

((AND ( EQUAi.. (.CR£iA~·¥AI- Jic:>llB1--~~w,AG~-lJl 1 EMPl,.,0,Y,E~~~ER). 
(CRE'Al>.;,VAL HOUR~.:.lWRKED-lN EMPLOYE£:.IUMBER)) 

tOR (fOff• 'fS!JO+.ffOUk,Y'4ME..,I•Jt; · .' t· :; : ... : 

(EOFP {SEFO HOURS-WORKED-IN)))) 
UNDEFINED) 

{{NOT (EQUAL {CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER) 
(CREAD'"VAL HOIJai""WOMED"':J#: EttPLOYE·f.,.NUMBER))) 

UNDEFINED) ) 
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Fig. 39. Example Simplification of an Object .Assertion (Continued) 

Expression after condensing clauses with identical objects: 

(XCASE ((AND (EQUAL (CREAD-VAL HOURlY-WAGE-IN EMPLOYEErtlUM.BER) 
( CREAD-VAL HOURS-WORK~D- U1 EMPLOYU .,.NUMO£ R)) 

(AND (NOT (i.OFP (SEFO ffOURt¥-:.,AG£-lN))). · 
{NOT (fiOfP (SEFO HOURS~!fff)aKEO.·lffH))) 

(TIMES (CREAD-VAL HOURLY·WAGE-l ... :HOU6lY-WAG£) 
( CREAD-VAL HOURS-WORKED- IN HOU~·WORK.~Q·))) 

((OR (AND (EQUAL (CREAD-VAL HOURLY~W~GE-IN EMPtOYEE-NUMBER) 
(CR£AD-VAL HOURS-WORKED-IN EMffLOYEE-NUMBER)) 

(OR (EOFP (SEFO liOURLY-WAGE-IN)) 
( EOF P ( SEFO liOURS-WORKEP· Ilt~))) • . 

(NOT (EQUAl (CR~AD;-VAl liOURlY~WAG£~IN.fMPlOYH-NUl4BER) 
(CREAD-VAL HOURS-WORK£D-IN ~MPlOYEE-NUMBER)))) 

UNDEFINED)) 

Final assertion after predicate simplification: 

(XCASE ((AND (EQUAL (CREAD-VAL lfQURLY-WAGE-11 £MPLiOYEE-NUfilBER) 
(CREAD~VAL HOUftS-W0R4<6D~ll fMPLOYEE-NUM~ER)) 

(NOT ( EOF p ( SEFO tJOORlY .. WASiE~un)) . 
(NOT (EOFP ($EFO HOURS•WORKEl)~IN)))) 

(TIMES (CREAlrVAL :ttOURl;Y-WA6£-IN HOURU--W~GE) 
(OR&AO~VAb; H0UftS,.WOlU<6P-IN HOURS-WORKED))) 

((OR (EOFP (SEFO HOURLY~WAGE~IM)) 
(EOFP (SEFO HOURS-WORKfD·lNH 
(NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPlOYEE•NUMBER) 

(·CREM>-VAL HOUftS,,,WORKED-H EMPLOYEE-NUMBER))))) 
UNDEFINED) 

into account, when an augmentation that has a dummy temporal input is· symbolically &Yaluated, the 

predicate that is associated wilh that ,dummy input,~~ onto tile .cpntroJ environment stack. The 
' •• '-: < ' ' 

stack is then popped when evaluation of that augmentation is complete.. 

Within temporal compositions, there is an··· .. addttlonal Implicit factor in ihe control 
' < - : 

environment. Recall that an. augmentation within a temporal compesition is ortty executed if none of 

the terminations in the 1ernporal composition have cauSEld the '1()~ 'tb terminate. Therefore, the 

negation of the predicates that cause the loop to tennmate JftU8t w eonsidered part of the control 

environment. 

The control environment ot write functions is saved through the following mechanisms. A list 

is kept of all temporal compositions in the plan along with the predicates that cause '98ch to terminate. 

When a write function is symbolically evaluated, the control environment stack is saved as well as the 
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Fig. 40. Information Transferred Between Phases in PAYROLL 

Temporal Composition: TEMPCOMP-1 
Termination Predicate: (EOFP (SEFO HOURLY-WAGE-IN)) 
Output Expressions: 
(GROSS-PAY-REC_E,MPLOYEE-NUMBER IS 

Translation Process 

(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE-REC_EMPLOYEE-NUMBER)) 
(GROSS-PAY IS (TIMES (CR£AD-VAL HOURLY-WAGE..;IN 1fOURLV-WAGE) 40.)) 

Temporal Composition: OUTPUT-NOT-IN-TEMPCOMP 
Termination Predicate: NIL 
Output Expressions: 
(EMPLOYEE-COUNT IS {COUNT (NOT {EOFP {SEFO HOURLY-WAGE-IN))))) 
{TOTAL~GROSS-PAY lS 

(SUM (TIMES {CREAO-VAL HOURLY-WAGE-IN HOWU.Y-WAGE) 40.))) 

Filename: HOURLY-WAGE-IN 
Open Type: COPENI 

Filename: GROSS-PAY-OUT 
Opentype: COPEMO 

Filename: EMPLOYEE-COUNT-OUT 
Opentype: COPENO 

Filename: TOTAL-GROSS-PAY-OUT 
Opentype: COPENO 

name of the temporal composition in which it is located. Write functions not located within temporal 

compositions are associated with a special dummy temporal composition caltect OUTPUT·NOT·JN· 

TEMPCOMP. 

Before the termination of the symbolic evaluation phase, the Jist of temporal composition. 

names and their associated pr&dicates as welt as the .infonnation.aored during the-evaluation of write 

functions are stored in a file to be used in the HIBQL. ~ · ~ The only remaining 

information that is transferred to the HIBOL production phase is the type of open function that was 

used to • each-' file in the COBOL progr&m. As an· example, the irtfonnation transferred from the 

symboffc evaluation phase to the-HfBOL production pttase in the translatlOn ·of PAYROLL Is sh<>wn in 

Figure«>. 
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. 5.5 DATA DIVISION Query 

A file is input to the translation process directly from the COBOL parser that contains virtually 

all of the information that appears in the DAT A DIVISION of the COBOL program. Included is the 

structure of the buffer area associated with each file as welt as the PICTURE clause for each atomic 

variable name in these structures. The only needed informati9n that is not included in this fife, 

because it does not appear anywhere in the COBOL program, is which of the atomic variable names 

in the buffer structure for each file are key fields, and in which order those key fields were used to sort 

the file. An exception occurs when a file is specified in the DAT A DIVISION of the COBOL program to 

be used for random access. In this case, the syntax and semantics of COBOL demand that the 

needed information about key ftelds and sort order be t!Kpticitly . given in the DAT A OfVISION. 

However, the current implementation of the translation process does not handle random access files. 

This information is gathered by simply asking the user of the SATCH system to supply it. For 

each file, a list of the atomic variable names of the corre~ponding buffer structure is dieplayed on tile 

screen along with associated numbers. The user then simply types in the list of numbers that 

correspond to the key fields in the order that they were used to sort the file. This information is then 

added to the file of DAT A DIVISION information to be used in the HIBOL production phase. 

. The fact that this information needs to be gathered from the SA TCH system user is not a 

major drawback of the system. Anyone that is at all familiar with the files that are used in a production 

COBOL system should at least know which fields in each file are key fields even if they do not know 

what the particular program in question is doing. 

5.6 HIBOL Production 

The information gathered in the analyzed ptan symbolic evaluation and the data division 

query is used to produce the actuat HIBOL for the CosoL program. This process Is further 

subdivided into two subprocesses; one. which produces the. DATA DtVJSION. of the HIBOL program, 

and one which produces the COMPUTATION DIVISION.· 

The subprocess that produces the DAT A DIVISION 9f the t:ilBOL program is relatively trivial. 

The names of the key fields, gathered in th~ data division query, aa;weU as the information about the 

corresponding PICTURE clauses, received directly from the COBOL parser, are used to produce the 

KEY SECTION .. The information about the type of OPEN function used for each file, gathered in the 

analyzed plan symbolic evaluation, and the information about the buffer-structure and corresponding 

data and key fields, received directly from the COBOL parser, are used to produce the INPUT and 

OUTPUT SECTIONs. Each data field name in the buffer-structure for every file in the COBOL 

program is made into an individual data-set in either the INPUT SECTION or OUTPUT SECTION 
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Fig. 41. Steps in the P reduction of the COMPUTAT10N DIVISION 

1. Remove assertions for key fields from further consideratioo. 

2. Add to each assertion the negation of the predicates that terminate the temporal 
composition in which they were formed. 

3. Remove predicate-object pairs with an object that is U,.DEFINED from XCASEs. 

4. Consolidate the assertions for a given output data field formed in separate temporal 
compositions into one assertion. 

5. Replace EOFP and comparative predicates with FILE-PRESENT predicates. 

6. Eliminate FILE-PRESENT predica~esthat are redundant wi.th the semantics of HIBOL. 

7. Convert object assertions into tflBOL syntax. 

8. Replace any remaining FILE-PRESENT predicates with PRESE~T predicates. 

9. Convert predicate assertions into HfBOL syntax. 

10. Output final HIBOL expressions into HIBOL file. 

depending on whether the OPEN function used on the file was COPENI or COPENO. A data-set is 

created in both sections if the file was opened via COPENIO. Currently, a VARIABLE SE.CTION is 

never used. 

· The subprocess that produces the COMPUTATION t?IVISION of the HIBOL program is much 

more complex. The largest difficulty in performing tftis .. :task ·is Ute . dtterminatiof:1 of the correct 

predicates to be used in the conditional expressioria. 1herefore,.thl8 SUbprocess·consists mainly of 

the manipulation of various predicates in various ways, starting from the assertions received from the 

symbolic evaluation of the anafvzed ptan. An overview of tbe..,_:pedormed tn· the prod&otion of the 

COMPUTA TlON DtVISlON is given Jn Figure 41. 

The first four steps resutt in a single conditional assertion for 8V!fr1. data fteld of every output . 

file. These assertions will be in one-to-one. corr~ Wit~ #le de&nld output. data·set 
definitions that wm appear in the final HIBOL program. The next six steps convert each of the 

resultant assertions into the corresponding output data-set definition. 
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5.6.1 Remove Key Field Assertions from Further Consideration 

First, all assertions for key fields are dropped at this point and not processed further. The 

key field expressions are dropped because the HIBOL COMPUTATION DIVISION does not contain 

expressions for key fields. It is safe to drop them because, based on our assumptions about the type 

of COBOL programs being processed, the assertions for the key fields are controlled by the same 

basic predicates that control the data fietds and, therefore, no needed information is contained within 

them. 

5.6.2 Assert Negation of Termination Predicates 

Then, for each remaining assertion that was produced in a temporal composition, it is 

asserted that the assertion ho~s whenever the predicates that would cause the temporal composition 

to terminate are FALSE. This is done by forming ap XCA$! with tw0: predicate•object pairs. The first 

pair consists of the negation of the 1ogical OR of the predicates that cause the temporal composition 

to terminate and the original assertion for the objeet, and the second pair consists of the logical OR of 

those same predicates combined with the object UNDEFINED. 

Consider an example from PAYROLL. The original assertion associated with the variable 

GROSS-PAY is: 

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.) 

and the predicate causing the temporal composition to terminate Is: 

(EOFP (SEFO HOURLY-WAGE-IN)) 

The XCASE that would be produced is: 

{XCASE {(NOT (EOFP (SEFO HOURLY~WAGE-IN))) 
(TIMES (CREAD•VAL HOURLY-WAGE-IN HOURLY•WAGE) 40.)) 

{(EOfP (SEFO HOURLY-WAGE-I~}) UIDEFillO)) 

This XCASE would then be simplified using all of the simpfifation techniques discussed in 

previous sections. Note that if the original assertion had Blready. beerl an XCASE, then this prooeaa 

would have the effect of ANDing the predicate in every predicate-object pair with the negation of the 

predicates 1hat terminate the temporal Composition. 14.'further·Gffeet bf this transformation is that all 

assertions formed within temporat compo$itions are riow XCAS£s; · 
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5.6.3 Remove UNDEFINED from XCASEs 

Next, the predicate-object pair of the XCASE, if any, that has an object of UNDEFINED is 

removed from the XCASE. The resultant XCASE no longer has the property that ex~ctly one of the 

predicates will be true at a time, but still has the property that at most one of the predicates will be 

true at a time. It is safe to remove th~se pairs fortwo reasons~ First; from .this point on in the 

translation, no transform will be appli~ :to the XCASEs which.reQUi. that the predicates be all 

inclusive, although transforms will be applied that require that they be mutually exclusive. Second, 

the semantics of HIBOL conditional statements.(into which fhe XCAS!s Win be translated) state that, 

for any given element in the key space, if none of the predicates in the conditiona~ are TRUE, the 

conditional will be undefined for that etei:ne11t, and the element will not beJAcluded in the actual key 

space of the result. In addition, these..Predicate·obiect pair$ .need. UM>&. eliminated at this time so that 

the next operation to be performed on the assertions Witt function ·property.-

. 5.6.4 Consolidate Different Assertio"s fotthe Same Da.ta Field Jpto One 

The last thing that is done to produce a single con41tional expresslbn for every data field of 

every file is to look for assertions for a particular: data field in more than one terfir>oral composition. If 

more than one assertion is found for a given chita field, the :prediOate-obfect :Jairs of one are simply 

appended to the predicate-object pairs of the 01her, forming; a larger XCASE whic'i is th~ simpHfied. 

It is impartant that the resultatlt XCASE·have the same pred~te ~of all~ther XCASEs. For 

this to be the case, the predicateS·1n the two-XCASEs must betmutudy exCttistve. ·· Th1S will, in tum, be 

true if the initial COBOL program adheres to the current assumptions of the system. 

· This transform is necessary to translate~~ ..... ) which perform a flle merge 

operation. (See the LOC-LIST example in Section 1.4). A higlt *'81 ~of the typical analyad plan 

for a file merge operation is shown in F°lgUl'8 42. Tba.anaJvz,ad .JXa,n is a conditional with a temparal 

composition acting as the predicate and two addition,.i ~al compoaitions acting as the actions. 

Note that only the termtnatton '8Ubsegments of ttl1f temP'Orat·COIYlpOlttto're ... shown. 

A summary of the predicates that will be included in every predicate-object pair in an XCASE 

in each of the three temporat·compositions is shown in Figure·«!:· ·tRecatHhatthe l>f"8dtcates In these 

XCASEs are no longer all inclusive since the predicate-object pairai~ ;Uff0~-l1£1H•w 

already been removed). These predicates are included in the XCASEs either because they are the 

negation of the loop ·termin1liott 1iti whlctt ~ tM!y . ..._ mmil&d t;y·~ - 1n:tfle.'Hl8Cll 
production phase as described above, or because they were on the control stack when the temporal 

compoSitton was symbolicalty eva:luat~; In which case'~~,-~ ~~- in. the assertions 

transferred from that phase to the HIBOL productiori: phase., ·ey '~lrl~; this figure, it ·should; be 
< • ' • ·, -, • ; ' < - ~. • ~ ; •• ·~. •, -' ' • -

easy to see that these predicates are in fact mutualtY exclusive aria thll, therefore,· the transform 
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Fig. 42. Sketch of Analyzed Plan for File Merge Operation 
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Gregory G. Faust 

5.6.5 Replace EOFP and Comparative Predicates wtth FIL£-P.RESEIT Predicates 

The next transform replaces all EOFP predicates and all comparative functions applied to 

key fields by FILE-PRESENT predicates. The replacement scheme is shown in Figure 44. The 

replacement for EOFP predicates should be fairly obvious. 
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Fig. 43. Predicates Contained in XCASEs in a File Merge 

TEMPCOMP-1: (AND (NOT (EOFP (SEFO FILE-A))) 
(NOT (EOFP (SEFO FILE-B)))} 

TEMPCOMP-2: (AND (EOFP (SEFO fILE-A)) 
(NOT (EOFP (SEFO FILE-8)))) 

TEMPCOMP-3: {AND (NOT (EOFP (SEFO FILE-A))) 
( EOFP ( SEFO F IlE-B))) 

Fig. 44. Replacement Predicates 

(EOFP (SEFO ffle-name)) 
Becomes: 
(NOT (FILE-PRESENT f11e-name)) 

(EQUAL (CREAO·VAL f 11e-n81181 key-fte ld-name) 
(CREAD-VAL ft1e-name2 key-f1e1d-name)} 

Becomes: · ·· 
(OR (AND {FILE-PRESEIT f11e-name1) 

(FILE-PRE~ENT f11e-name2)) . 
(AND (NOT. (FILE-PRESINT f 11e-name1)) 

{NOT {FILE-PRESENT f11 e-name2)))) 

(LESSP (CREAD-VAL f11e-name1 key-f1e1d-name) 
(CREAD-VAL f11e-name2 key-f1eld-name)) 

Becomes: 
(AND (FILE-PRESENT f11e-namel) 

(NOT (FILE-PRESENT f1le-name2))) 

{GREATERP {CREAD-VAL f11e-name1 lcey_;f1eld-name.) 
(CREAD-VAL f11e-name2 lcey-f1e7d-name)) 

Becomes: 
(AND (NOT (FILE-PRESENT rHe-namel)) 

(FILE•PR£SEIT f1Je-rr811BZ)} 

Translation Process 

The replacements for the c<>mparative functions, hoW8¥8f', are teasebYiou8. It should first be 

noted that in order for the replacement to be pertonned, It muetl>e•the case that th• ttey fields that are 

acted on by the comparative function must be· the same. Currently, 'tw4'key fields from different flies 

are considered the same if they have the same name. Later, a suggestion is made as to how this 

constraint coutd be relaxed. 

------------------- ---------
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The replacement predicates for comparative functions on key fields rely heavily on the 

assumption that the program in which they are formed is one of the three basic types, and that the two 

files under consideration are being read sequentially and are sorted in key field order. The number of 

key fields, however, is unimportant. Let us look more closely at the~ replacement predicates. If the 

value of the key field read from f 11 e -n ame-1 is less than the value bf the key field read from f 11 e
name-2, then that means that the record in ft 1e-name-2 corresppnding to the key value read in 

fi 1e-name-1 is missing while it does appear in fi 1e-name-1. On the other hand, if the value of the 

key field read from f'i1e-name-1 is greater than the value of the key field from fi1e-name-Z, then 

that means that the record in f i 1 e-n ame -1 that corresponds to the key value read in f i 1 e-11 ame-2 

is missing while it does appear in f 1 1 e-n ame- Z. These facts are reflected in the replacement 

predicates for LESSP and GREATERP respectively. 

If the values of the key fields read from both files are equal, then both records appear tor that 

key value. This fact is reflected in the first clause of the replacement predicate for EQUAL. The 

second ·clause of the replacement predicate for EQUAL is included so 'that the the replacement 

predicates considered as a whole will exhibit a very useful property. Namely, they exhibit all of the 

tautologies that are exhibited by GREATERP, LESSP, EQUAL and NOT-EQUAL. For example, after 

simplification with the disjunctive normal form predicate simplifier, the predicate produced from 

(NOT (LESSP (CREAD-VAL f11e-name1 k.ey-f1e1d-name) 
{CREAD-VAL fi1e-name2 key-f"ie7~-name})) 

should be logically equivalent to the predicate produced from 

(OR (GREATERP (CREAD-VAL f11e-name1 k.ey-f1eld-name) 
(CREAD-VAL f11e-name2 key-field-name)) 

(EQUAL (CREAD-VAL f17e-namel k.ey-f 1e ld,-namal 
(CREAD-VAL f"ile-name2 key-f1e Id-name)}) 

both before and after the replacement has been made. The replacement predicates currently used do 

produces the equivalent result. Both the predicates shown above, after replacement, redtlee to 

(OR (NOT (FILE-PRESENT f11e-name-l)) 
(FILE-PRESENT filt-name-2)) 

The fact that the replacement fn'edicates·exhibit this property eliminates the possibility that different 

predicates could be produced after replacement simply ·because. the programmer of the original 

COBOL program chose a partiau!ar form for a predic•te over anequivatent form. 

As an example of the use of predicate replacement, consider the expressions, taken from 

PAYROLL2 (see Section 1.4), for GROSS-PAY both before and after predicate replacement as shown 

in Figure 45. Note that after the replacement, the resultant predicates are simplified. 
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Fig. 45. Example of Predicate Replacement 

Expression for GROSS-PAY before replacement: 
(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER) 

(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)) 
(NOT ( EOFP ( SEFO HOURL Y-WAG.E-: IJt))) 
(NOT ( EOFP (S'EFO HOURS-WORKEO-IN)J)) 

(TIMES ( CREAD-VAL HOURLY-WAGE-IN flOORtiY,..WAGE) 
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))) 

Expression for GROSS-PAY after replac~ment: 
(XCASE {(AND (FILE-PRESENT HOURLY-WAGE-IN) 

(FILE-PRESENT HOURS.'."WORKEO-IN)) 
(TIMES (CREAO-VAL HOURLY-WAG£-IN HOURLY-WAGE) 

( CREAD-VAL HOURS-WORKED- IN HOURS-WORKED)))) 

5.6,6 Eliminate Redundant Fili-PRESENT Predlc~toa 

The next transform eliminates the FILE-PRESENT predicates that are redundant with the 
• ' • , • • • ~ • ' ' ! ' 

semantics of HIBOL. The FILE-PRESENT predicates in the predicate of each predicate-object pair 
' . ' : ~; ,' t . ~:. • '. '. l . .. , 

that refer to the same file as any of the remaining CREAD-VAL objects in either the predicate or object 

of that particular predicate-object pair are eliminated by replacing them wltn TRUE, , and then 

simplifying the predicate. These predicates are redundant with the semantics:of.HIBOL because all 
.~ ' • .> • < T ' • • 0 

HIBOL expressions -00ntaio an !mplicit PRESEN.T. precfi~ate ~r every ~-~t name that appears in 

th~ expression. All predicate-object pairs with a res&JJtant predicate .of FALSE w.e cti:opped lrom the 

XCAS£. It C>Jten happen$ that the resultant .xc~E h8;S only a ~ ~~te.,,object pair with a 

predicate of muE. If th~.C)Ccurs, the XCASE is reduced to the object. of ~pr:edipate-objec:t pair. 

Continuing the example from PAYROLL2 shown in Figure 45,_the expression for GROSS

PA Y at this point in the procesSing ·~-simply: 

(TIMES (CREAD-VAL t{OURLY"'.'WAGE-IN HOURLY-WAG£) 
( CREAD-VAL HOURS-_WORKtO-IN HOURS-WORKED))_ 

5.6.7 Express Objects in HIBOL Syntax 

Next, the object portion of each predicate-object pair as well as those object expressions 

that are not part of XCASE.a are·tcanak>nr)lltUnto HIBQlsyJJtax. ae.-,--~st be done •. First, all 

of '.the a1ithmettc ·opera~ .expressions are converted frmJ,t. ~\to ·fully fliill'SDtbesized mfix form. · 

Second,.certain forms are cooverted U> Ntch·ihe·HJBOLsynt&xt;;for eJ(tlmti)le; TlM.ES is converted to 

"•" and STRING objects are converted' into character strinos. Tflird, CREAO ... VAL expressioAs are 

converted into the appropriate data-set references. If. the file_ melMd . to in the CREAD-VAL 

---- -------- ---------
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expression is opened for input then the resultant expression is simply the data-set name that 

corresponds to the data field. If the file is opened for input-output, then the resultant expression is: 

(LAST PERIOD'S data-set-name) 

to reflect the tact that the data-set name refers to the data-set in the INPUT SECTION and not the 

data-set in the OUTPUT SECTION. (See theOBJNIT exami>le in Section 1.4.) 

5.6.8 Replace Remaining FILE-PRESENT Predicates with PRESENT Predicates 

Next, any remaining FILE-PRESENT predicates are replaced with PRESENT predicates 

acting on data-set names. If the file that the FILE-PRE.S~NT predicate refers to has a single data 

field, then the data-set name that corresponds to that data field is used as the argument to the 

PRESENT predicate. However, if the file has more than one data field, then there is no way to 

automatically determine which data-set name(s), corresponding to particular data field{s), should be 

used in PRESENT predicate(s). From the perspective ·of the· coed.. program, it does not matter 

because if any of the data fields are present tor a given index, then all of the data fields will be present 

tor that index. But, from the perspective of the HIBOL, all of ttie data fields for a given COBOL file 

have each been given an· individual data-set name and the information that dictates that if one is 

present they all are present has been lost. 

On the other hand, it is usually not desirable to demand that all of the data-sets that 

correspond to the original COBOL data fietds for the· ftfe be inclu~ tn PRESENT predicates in the 

HIBOL. Therefore, ~ user of the SATCH system iS Queried ·to determine which of tfle possible 

PRESENT predicates acting on data·set names shout<! be included. This ptoeess is simpltfied by the 

fact that the objects of the predicate-object pairs have al1'eildY been cotwerted to HIBOL syntax, and 

therefore can be shown to the user in a more readable form. The user is shown the HIBOL for the 

object in the predicate-object pair ~ well as a list of the data r.91ds for ea~h ~f the files included in a 

FILE-PRESENT predicate, and asked to supply a list of data field 'n~es for which PRESENT 

predicates should be formed. These PR~SENT predteates:are th9h formed and placed intO the 

predicates of the predicate-object pairs in place of the 'FILE-PRESENT predicates which are then 

simplified. 

5.6.9 Express Predicates in HIBOL Syntax 

The resultant. predieates-are now converted into HIBOL $}1fltax. This is very similar to the 

conversion to HIBOL of the Object-expressions. One difference.is that the logical functions ANO and 

OR are n-ary operators. Therefore, When they are convertedlrtk»inftx notationl copies of the operator 

are placed between every two operands. tn addition, PRESE-NT prediaates acting on data fields from 

a file opened via COPENIO are converted into 
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(LAST PERIOD'S field-name PRESENT) 

instead of the usual PRESENT predicate. (See the DBINIT example .in Section. 1.4). 

5.6.10 Output Final HIBOL for COMPUTATION DIVISION 

The last step in the production of the COMPUTATION DIVfSION of the HIBOL program 

consists of outputting the expressions into the HIBOL file. This consists of outputting an expression 

for every data-set defined in the OUTPUT SECTION. The name of the output data-set is followed by 

"IS" and t~en followed by the HIBOL expression produced above. XCASEs are processed by running 

through the predicate-object pairs first outputting the expression for the object and then the one for 

the predicate, inserting IF and ELSE in the appropriate places. Currently, little effort has been spent 

to get the indentation of conditional expressions correct, ~d the e:icamples shown in Section 1.4 have 

been reformatted by hand. 
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6. Critique of the Current Implementation of the Translation Process 

In the first part of this chapter, several problems that arise in the current implementation of 

the translation process will be discussed, and suggestions made as to how they might be eliminated. 

In the second part of this chapter, suggestions are made as to how the translation process could be 

expanded to handle a larger domain of· C060L programs. 

6.1 Problems Arising in the Current Implementation 

Perhaps the most glaring problem with the current implementation of the translation process 

is that it does not recognize when it has gone astray. It blindly assumes that the program with which it 

is dealing adheres to all the implicit restrictions. If the program does not adhere to the appropriate 

assumptions, the program will still try to produce some HtBOl. program even though it probably wtll 

not be correct. Obviously, a more robust system needs to recognize when it is given a COBOL 

program that it cannot translate and then act accordingly. Later in this chapter, a few minor 

suggestions are made as to how this problem could be somewhat reduced although not eliminated. 

In the next chapter, a suggestion is made about a second generation system that would significantly 

reduce this problem, if not eliminate it. 

The remainder of this section discusses four more specific problem areas in the current 

implementation of the translation process. For some of the problem areas, satisfactory solutions are 

proposed. For others, no satisfactory solutions have yet been determined, although partial solutions 

are proposed. The first subsection discusses issues concerning the assertions formed in the 

symbolic evaluation of the analyzed plan. The second subsection discusses the issue of variable 

names, and how more mnemonic HIBOL code can be produced by the renaming of variables. The 

third subsection discusses the problems encountered in the production of readable HIBOL code for 

count operations. The last subsection discusses the issue of the use of output data-set names on the 

right hand side of data-set definitions in the COMPUT A TJON DIVISION of the HIBOL code. 

6.1.1 Assertions Formed During the Symbolic Evaluation 

One problem with the current method used to form assertions during the symbolic evaluation 

of the analyzed plan is that the assertions formed for temporal data parts are indistinguishable from 

those formed for non-temporal ports. The information that the temporal port contains a stream of 

values instead of a single value is discarded. Therefore, the assertions formed for temporal data ports 

are not semantically correct. 
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Assertions that · are semantically correct could be formed for temporal outputs of 

augmentations by including in the assertion the information that the object is in fact a stream as well 

as the information that indicates for which values of a predicate values in the stream are defined. 

Temporal outputs from augmentations obtain their values from two different places· relative to the 

augmentation function: from an output of the augmentation function or from an i_~put to the 

augmentation func;tion. (See ·the generating augmentation, from PAYROLL shown. in Figure 27.) 
These two cases have similar, but sfightly different, semantics. l:..e1 us examine these two cases in 

more detail. 

Temporal outputs that obtain their values from an output of the augmentation function 

represent streams of values in which all of the values are produced the same way. via the 

augmentation function. These streams have the additional ch,racteri~ ihat they are truncated at a 

point that is determined by the predicates that control the ttNmination subsegments of the temporal 

composition in which they appear. Therefore, semantically correct assertions for these streams must 

contain thrEK;t pieces of infprmation. First, the assertions sh.Quid ind~ t):lat U'ley do in fa~~ refer to a 
- _,. .. . ..,, ' 

stream, and not a sing4e value. Second, they should ~Jhe notion .thal allot.the values injhe 

str~am follow the same prototype. Third, they should include a predicate that jndicateaunder what 

circumstances the vaJu~s in the stream are defined. This predicate is the conjunction. of the 

negations of the pr~icates that terminate the locp. · 

For example, in PAYROLL, the temporal output that contains vaiues for HOURLY·WAGE is 

currently given the following assertion: 

(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 

However, a more semantically correct assertion might be: 

(FOR-ALL-TRUE-OCCURRENCES-OF (HOT (EOFP {SEFO HOURLY:WAGE-IN))) 
. (CREAO-VAL HOURLY-WAGE-IN HOuRLY-WAGE)) 

The inclusion of the old object assertion within the Foa:ALL-TRUE~OCCUllJlEllCES-OF clause 

indicates that the object is in fact a stream, that all of the values in that stream follow the CREAD-VAL 
prototype, and that it has defined values until the end of file is reached m HOURl Y-WAGE ... IN. 

Temporal outputs that obtain their values from Sil. inJ:M,tt to the ~tation function have 

the same semantics as temporal outputs that obtain their "8lue$. from .an ou~,of the augmentation 

fu~on except that the farst value .. jn the stream is diff~t f~ the rest~ the values in U1at it takes 

its value from ~er the initiaUzatiqn of. the ~gmentation or from 0i.&tside ~ augmentation 

altogether. Therefore, a semantically correct assertion for such a temporal output might be: 

((FIRST-V~LUE object1) 
(FOR-ALL-TRUE-OCCURRENCES-OF predicate objectZ)} 

------- - .--
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Such an assertion indicates that the first value of the stream is distinct from the rest of the values of 

the stream, and therefore does not follow the same protot)lpe. For example, a semantically correct 

assertion for the temporal output of the augmentation that perk>rm&. the SUM operation in PAYROLL 1 

would be~ 

{('FIRST-VALUE O.) 
(FOR-ALL-TRU£ ... QCCURREICES-OF (NOT (EOFP (S~fO HOUltLY-WAG£-IN))) 

{SUM (TIMES {~R£AO-VAL HOURLY-,~AGE-1,. HOURLY-WAG,E) 40.)))) 

Semantically correct assertions could be formed for the temporal outputs of terminations by 

using the forms described above. For example, the temporal output oUhe termination in PAYROLL 

(see Ftgure·28) woufd be 

{FOR-ALL-TRUE-OCCURRENCES-OF {NOT (EOFP (SE~O HOURLY-WAGE-IN))) 
00.V) 

Assertions formed for· the temporal outputS of flfters need to ihcorp<>rate the predicate 

assertion that corresponds to the out-ca&e of the fitter preaiCate With whfetl they are assocfated as 

wen as the predicates discu~ a6ove. 'This could be done by'forrriing the logical AND of the fitter. 

predicate and the one which already appears in the inpiJt tempora(fl<>W in the FOR-ALL-TRUE

OCCURRENCES-OF clause. Using the filter example from a ~bus chapter (see Figure 29), the 

temporal output for the negative values could be given the assertion 
<· 'f 

(FOR-ALL-TRUE-OCCURRENCES-OF {AND {NOT stream-truK.tt1on-pred1ca.te) 
( LESSP num 0.)) 

num) 

It should be stated that the assertion forms for temporal outputs described above are still 

based on the assumption that tile terminatio~. -predi~'8 rif«tain 'tAUE ·for · 8lt ·values· in the inPUf 
stream used. as input to the termination after they are TRUE for some initial value. EOFP predicates 

have this pn)perty (andareassumed to tennlnate alftoops). 

Although the assertions for.temporal data ports de8cribed above.woutd be·more semantically 

correct than the ones currently formed, they would be of limited use to the translation process. The 

main reason for this is that the augment8tlon' funcii0n$ that e'V9nttnlHY eottstnne the temporal flows, 

and In particular the augmentation funCtidriS 'that cOfflts~ to Write;'funetions with which we are 

espeeially interested, only have norHe1np0raMttPuts. The tempi:>r&fttbw$ arrive 'at the input temporal · 

data perts of the aogmentatton, but are thefretecbrnposed intO ~;values before being passed 

1. Note that since the partial sums formed in this augmentation are not actually U$ed anywhere, this temporal output does not 
appear in the diagrams for PAYROLL shown in a ptevioua'Ohapter. · · 
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on to the augmentation function. During this decomposition, the information that states that the 

object is a stream would have to be stripped back off, and an assertion formed that again represents a 

single value. This is because the augmentation function operates on a typical value of the input 

stream. Assertions that are currently formed exactty express the typical vatue that is desired. 

In addition, use of the more compfex· assertions- described above would call for the 

development of additional assertion simplification techniques to handle them. The number of 

simplification techniques required goes up as the cross-prodt.lct of the number of different object 

types in the system. This fact creates a desire to limit the number of different object types as much as 

possible. 

Another problem with the creation of the· more complex assertions described above is that, . 

because of the order in which subsegments of the temporal oomposition er.a symbolically evaluated, 

the predicates that terminate the loop are net generally knewn a the time 1hat the assertions are 

formed for the temporal outputs -Of the generating•augrnentatiofts; ,Fqrther~ it is ,net possibte to 

change the order in which the subsegments are .. ~ evalua-11 because the termination 

cannot be evaluated until something is known about the values of its inputs which are, in general, 

produced within some generating augmentation. 

In summary, it would be dUficult to produce more semantically correct.· assertions for 

temporal data ports, their inclusion would call for the development of more simplification teohniqueS, 

and they would be of limited usefulness to the translation process. Therefore, the current 

implementation retains the Jocp termination informatiOi'f'bY storfhg1he ptedicate~dhaf terminate each 

temporal composition, and assoeimtng wtth fJ'lery assertiori' 1>8898d on to the HIBOL produdion 

phase the name of the temporal composition ;in Whfdt 'If was fdrmed. Tbfts' technique hd 'Proved . ' 
adequate for the COBOl prt>grams examined to date. 

Another shortcoming of the current, assertion· technique is that auettions formed for file· 

objects do not contain any history of the operations that have been. 'pel'formed on them. This · 

eliminates the ability. .. to;detect ROD4tandat'd read: aequeneas on·the file that could skip over records 

or perform other forbidden operations. A more robust system would have to examine the aequence ot 
operations performed on file-objects fairly closely in order to guarantee that the HIBOL produced Is a 

correct translation of 11'19 initiaH:OBOt.. progfam. · 

6.1.2 .variableNamea 

In the previous chapter. it was mentioned that curr:ently ke,y fi.eld names referring to the same 

key field in different files must be identical, and that structuu.i,names are sometimes added to data 

field names by the COBOL parser in order to make them unique. It is desirable to eliminate this 
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constraint on key field names and to make the names used for both data and key fields more 

mnemonic. 

The DAT A DIVISION of a HIBOL program uses a. single name for a particular key field no 

matter how many data-sets use that key field. This is not a feature that simply increases the 

readability of the HIBOL, but is demanded by the semantics of the language. Currently it is easy to 

produce HIBOL that conforms to this constraint as it is assumed that all key fields that refer to a 

particular key are given the same name in the OOBOL program. 

This constraint could be eliminated by the following change to the data division query 

subprocess. The key field query for the first file proceeds as always. Then, for each subsequent file, 

after the key fields and sort order have been given, a list Of the .currently· known key fields iS presented 

and the user ts. asked to make correspondences between tbe key fields in the current fife and the key 

fields in the accumulated fist. After all input fifes &Fe processed In this manner, the sets of 

corresponding key fields. are presented one at a time and tbe user askecHo supply a mnemonic name 

that should be used for that key field in the final ·HIBOL code. 

This process demands information from the user of the S.ATCH system that is no different in 

kind than that demanded by the current data division query. If the user is able to recognize which 

fields in a given file are key fields, then it should also be possible tO"r.eeogntze·the same·key field in 

different files. 

The semantics of HIBOL demand, as one· might expect, that .au data-set names be unique. 

The exception occurs when ,an input and an. <MJtput data·set haYO U. sa~ name and the HIBOL 

program performs an update operation on that data~'81 (see the DSINIT example in Section 1.4). The 

data field names given in a COBOL program, however, might not be JAOiqtJe., al~ugh the data field 

name together with the name of the structure that it is contained in is aJways unique. Currently, to 

avoid ambiguity, the COBOL parser always proc:tucea.unique identlfiera for1data fields by adding the 

structure name when It ts neceasary to do so. In ·general, the data field name&JIRJduced from the 

COBOL program might not be particularly rmemonic especldy wtterl '.the parss has to add the 

structure name. 

It is possible to produce a HIBOL program that tsmuch,more read&ble &nQ mai11tainable if the 

data-set names are given mnemonic names. The later is made easier by the fact that the HIBOL 

program is sufficiently abstract that each of the data-sets should corresponc:Mo some real worJd 

parameter in the system that the program is an implementation of. Therefore, it may be desirable to 

give the data-sets in the HIBOL program names that diff~r'from 1f1e narnes'for the data fields in the 

COBOL program to which they correspond. 



Gregory G. Faust - 93 - Translation Process Critique 

These data-set names must be supplied by the SAT CH 'system user. The user should not be 

expected to supply a data-set name without being shown~ context in ;v.ihich that data-set will be used. 

However, it is undesirable to ever show the user of th,e SATCH system any expressions in the syntax 

of the assertions formed in the symbolic evaluation of the analyzed plan because, as is clear from the 

examples given above, it is cumbersome and difficult to read. Therefore, the 'best time to query the 

user of the SATCH system for data-set names is after the phase of the HIBOL production subprocess 

in which the expressions are converted into HIBOL syntax, but before the user is queried for the 

data-set names to include in PRESENT predicates used to replace the FILE;.PRESENT predicates. 

The user would be shown one expression at a time. As each expression was presented, the 

user would be asked to supply replacement names for each of. the data fields that are referenced 

which have not already been given a data·set name. .All data fields M>at have atreq been given· a 

name by the user would appear as that new name. The proceas woutd be' continued until all data 

fields had been :given a data•set name. 

It is not known exacUy how difficult it wiU be for the user of the SATCH system to recognize 

the context that is presented for a given data field. Undoubtedly, this portion of the system will require 

some human engineering before the query process coutd proceed. smoothly. ft is hoped that, if 

properly engineered,.tbis query process will not be too·dffficultfor the user. 

It should be noted that tile .above discussion, as well .. .,. the current system implementation, 

makes the implicit assumption that_-~ the data. fields in the. ~rigw,s •t and output files do in tact 

contain different information even thoogh their names (mtAu$ stwcture name) may not be unique. If 
·' . ,_ . . . . 

this assumptjon is not met by a ~ular COBOL prQga;llffl, thfiQ it is atill~ibl' tG produQ8 CQrfect ,·' ' .,.' ·~ . - ; . ' . -

HIBOL, but the renaming process will Qe made more difficult anP·. the HJBOL. tllat is produc.ed may be . 

redundant in some. respec~. It might be better in this case tQ •mply drop aJLbut one of the definitions 

for the data-sets that correspond to data fields that do not contain different information. However, 

recognizing when two data fields are redundant would be quite' difficult. 

6. 1 .3 The COUNT Operation 

The COUNT reduction operator is a source of difficu~y,for.the current implementation. ltis 

unlike any of the other reduction operators in that it does not require any data values as input. This is 

reflected in the analyzed plan by the fact that an augmentation that calculates a count will have a 

DUMMY temporal input (see, for example, Figure 30~/ Att:1hat'cimtrOls;th8'0J)trition of the count 

augmentation is the predicate associated with that DUMMY temporat input. Logically, the COUNT 

operation in the anaiyzed plan takes a predicate as an argument ~nd not ah objeet. 

------ ----~- - -----
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The semantics of HIBOL also acts as if the COUNT operator took a predicate as its argument. 

The syntax of HIBOL, however, demands that the COUNT operator take a data-set as its argument. 

The COUNT operator works as if it counts the number of times that the predicate: 

(PRESENT data-set-name) 

is TRUE. 

There are two reasons why the syntax of HIBOL demands that the COUNT operator take a 

data-set instead of a predicate as its argument. First, it is consistent with the syntax for the other 

reduction operators. Second, and more importantly, it is very difficult, in.general, to count the number 

of times an arbitrary predicate is TRUE. For example; in order to ca1culate the number of times the 

negation of a PRESENT predicate for a•particular data-set is TRUE, the-.program would have to 

subtract the number of data Items that actuatfy appear fer that data·set from the total number of 

possible data items for that data-set. It is not obvious how th&,t:WQgram could calculate the total 

number of possible data items for a data-set, in general. AdditionaUy, it is fairly easy to produce 

predicates that are even more difficult to handle than the negation of a PRESENT predicate. 

Since a COBOL program can count up arbitrary things, it wiH not be possible to produce 

HIBOL COUNT operators in a reasonable fashion for all possible counts appearing in COBOL 

programs. Even in the cases in which the count is expressible in HIBOL, it is difficult to produce a 

data-set name to use as the argument to the HIBOL COUNT operator. Currently, the symbolic 

evaluation phase uses the predicate associated with ·the oUMMv temporal input to the count 

augmentation as the argument to the COUNT operator'. The H180t production phase then attempts 

to convert that predicate into a PRESENT predicate,and1hen uselhe'dat&-set that Is the argument to 

the PRESENT predicate as the argument to the COUNT operation~· For•eXampte, in PAYROLL, the 

predicate that is associated with the DlJMMY temporal inpUt ta the cOurit augmentation is 

(NOT (EOFP (SEFO HOURLY-WAGE-IN)}) 

This predicate easily converts to 

(PRESENT HOURLY-WAGE) 

using the techniques discussed in the previous chapter, and eventually produces 

(COUNT OF HOURLY-WAGE) 

as the final form of the COUNT operator in HIBOL svntu. 

This technique, however, is not very robust. In some instances. the predicate produced may 

contain the conjunction or disjunction of several PRESENT predicates. In other cases the predicate 

may contain a predicate that cannot be reduced to any PRESENT form. There are two other 

processes that might be used instead of the one discussed above to determine the data-set that 
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should be used as the argument to a COUNT operator, although neither of them are very appealing. 

First, it is possible to make an assertion for the in'-case of each segment of the analyzed plan 

which indicates its controt environment.2 Then, when an- augmentation is located during the symbolic 

evaklation which performs a count operation, the predicate that controls the count coukf be 

compared to the control environment of all the other augmentations with the hopes that it will find one 
with the same truth value. Then, if that augmentation has any outputlhat already corresponds to a 

data -set, then that data-set could be used as the argument to the HIBOL COUNT operator. 

This technique has two shortcomings. First, it is difficult in general to tell when two 

predicates have the same truth value unless their surface syntax happens to be identical. This is 

made easier by the fact that the simplification techniques that are used tend to canonicalize the 

predicate expressions, but this alone Is not sufficient to rnSlire thit '·f)f'fKficates with the same truth 

value wilt be recognized as sl.Jth. Second, ·even if a tohtrot envtron~nt·is· found that does match the 

controllhig preclfcate of the count, the data-set that ;s·prottuced'bY that1 augmentation might have no 

conceptual connection with the count operation whatsoever. The use of that data-set name as the 

argument to the COUNT operation might, therefore, be highly ftOlH'llnemonic, although at least it wtn 
be a data-set name that already appears in the HIBOL program. 

A second possible technique is to simply build a dummy data-set. defined in the VARIABLE 

SECTION of the HIBOL program, that can be used as the .argument to the COUNT o~ator. The 
< ' :·· • -;',c > - • - 0 <" • ,' \ ~ '.• • ·,_ '.: •" • ~·· 0 X:':,• 

expression for this dummy data-set that would ap~ in the . COMPt)TATION DIVISION as a 

conditional with a single clause in which the predicate is exactly the one that controlled the count 

augmen~tion.ln the analyzed plan;-end the~~ iajuat~dummr ccmatanl 

· .. 
This technique has the advantage that it will work ~ver it.is pc>ssible ~o produce a HIBOL 

' ' 'l' - . ' ' - . 

COUNT expression at all because it is atway~_ possJbl~ in ti'!~ ci~IJ.~es to produce the needed 
;·1··.· ., +. ; 7;,· '.1. c. ._, •>" , , ' •• 

conditional expression in HIBOL. It has the disadvantage that it introduces a data-set name that is 

alien to the or.lg~ fH'qgfarn for which the,SATCH.~ uaerwill 04t. be able to aupply a mnemonic 

name bec~se it h,as no real world analogue. ""°~· U'!e _ ~Gll.'L _.xpression for this newly 
introduced data.set oontains an arbi~rary coostam. -tha,t . • . •~ ~ real workl significance. 

Altem~ely, the conditional exprtsSion <JOUld· be .used·,~~ a. .:#le .. argum&llt. to the. COUNT 

operator. This -.minat.es the neceesity for the.extra. data·a.t >name. ,but does: not eliminate the 
• • .. •, • • ,. •• • ' • > ~ " • 

arbitrary qonsa.nt~ . Also, the resultantc;taql • .set ~ ,Jor,~~ ~ .wouJd ~· needhlssty 

complex. Either ,way, the HIBOL .CQde prod~ using this tedlAiqwt may look rather stilted to a 

2. This is a possible change to the current system that has certain advantages independent of the problem with COUNT . 
operations. . 
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human reader. 

In summary, there is no single technique for producing COUNT expressions that is 

satisfactory in all cases. Perhaps the best approach to this problem Js to use the three techniques 

described above in order, first trying the.technique that is moat specific but which produces the most 

mnemonic HIBOL code, and going to increasingly general techniques that produce less and less 

mnemonic code as the more specific techniques fail. In this way, the best possible code will always 

be produced, although the average cost of producing HIB0L. code for COUNT operators will be 

substantially increased. 

6.1.4 Subexpression Aliasing 

It is often desirable to define output data:sets in terms of other output data-sets. This can 

simplify the definition and increase its readability. FQr exam,pfe, the definition of TOTAL-GROSS-PAY 

in the HIBOL program for the PAYROLL example (see Section 1.4), without .the use of othe~ output 

data-sets Is: 

TOTAL-GROSS-PAY IS SUM OF (HOURLY-WAGE • 40.) 

Through the use of output data-sets in this definition, it can be ~mplified to: 

TOTAL-GROSS-PAY IS SUM OF GROSS-PAY 

The second expression Is both simpler and more mnemonic. Both expression are totally valid HIBOL 

expressions for the same computation. The difference is striCtly one of style. 

Unfortunately, it is difficult to use output data·aets'in the defirHtion of other output data-sets. 

The difficulty lies in the recognition of those cases where it is possible and/or desirable to do so. 
. r' r, -'. • : ~ ' ., 

Several techniques have been tried to date, none of Which w&Sfound ·acceptable. After a few of Jhese 

have been discussed, a new but untried solution wiU f>e pre'1nsntid: 

One possible solution to this probfem IS to use th~ data field names corresponding to 

the desired output data-set names in the assertions formed 1n the syrribofiC· evatuation·of the analyzed 

plan whenever p()SSible. The an8lyzed ptan :for a program Contains infOrmation that indicateS at 

which points in the program assignment of Yatttes'to d&til'fit91ds takes place. Therefore, every time an 

assertion is made, It is possible to r8pla¢e any subexpression of that assertion With a data field name If 

that data field hu'been assigt\ed 1he value of tt\at subexpi'esaion. Then, in the. HIBOL prodtiefion 

phase, it is simple to form definitions for output data·-'8· m· terms of Other 'output data~sets becau8e 

the assertions for data fields will already be expressed in terms of other output data fields. 
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However, there are two problems with this technique. First, there is the trivial probrem that 

·many data-sets will end up being defined as themselves. For example, the HIBOL expression for 

GROSS-PAY in the example above will be 

GROSS-PAY IS GROSS-PAY 

This can be eliminated by a special check in the symbolic evaluation phase to see that this does not 

occur, but the check is messy and not very elegant. A second and more difficult.problem is that there 

is no guarantee that after a data field is used to define another data field it is not assigned a different 

value before it is written. If suetnedefinition does occur, then one data-set wilt: end -Up defined in 

terms of some data-set name that no longer corresponds to the same subexpression that it repfaced. · 

Elimination of this problem would be quite difficult. 

Another possible technique is to keep a global association list between subexpressions and 

data field names. This list would be compiled during th~-Symbolic eval~tio;.; of ttle analyied plan. 

Each time an assignment point is reaclled in the analyzed pfan, an entry is made in the table .. Then, in 

the HtBOL production phase, the expressions are scannM for any &U~xpressions for which there is 

an entry In the association fist, and if one is found, it is replaced with the corresponding data field 

name. 

This technique makes it easy to ~fiminate the problems cited for the other technique above, 

but it introduces new problems of its oYln. First, a subexpfessfoil that could have been replaced with 

a data fietd name while In the symbolic evatu4tion phasemay not stifl b8 ln ·It$ brigh1at form by the time 
the expression makes it to the HtBOL prOduction pha$e, becaltse it has been; modlfttd by 0ne· of the 
simplification transforms discussed;ln ·ettapter 5. Th~refore, ;81though lt woold have been deSirable to 

replace a gtven subexpression, it no longer appears Verbauhi·ltrd can no longer be f6urid. secohd, It 
ls now possible tb find subexpressions that do match ;ex~ ;n the aisociatii>nl list that it 1s' '1ot . 
desirable to replaee wi1h the corresponding data. ~Id \~ame;'flecause the expreSSlOnln Which It is 

fou'1d conceptuany has nothing to dc{With that data ft~ .?~. aha the resuitlnt code wot.ild not be 

mnemontc at all. 

A third technique that has not as yet been tried Is to simply check all data-set definitions 

against one another just before the final HfBOL exprm1ons are written into the COMPUTATION 

DNfSION looking for matching expression$.· As ccimpared tO the technique ctEtscribed above, this 
technique reduces the chance that·a subexJ:,ressiott.ttlat shoUkt be res)ilbed by a dafa~set name will · 
be missed, but still has the probfenf that <*tain subexpreSSlbns 1'.ay tMi rePiac'ed by data-8ernames .. 

to which they do not conceptuaffy cor~portd. A seconcfJ)'robtem f~ thatthe'search for matching 

expression is quite expensive. 
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In summary, although it would be nice to be able to produce HIBOL in which some output 

data-sets are defined in terms of other output data-sets, until and unless some technique for doing so 

is developed that is better than any of the techniques discussed above it is probably not worth the 

trouble. The current implementation of the translation process expresses all output data-set 

definitions in terms of input data-sets only. 

6.2 Possible Extensions 

This section contains a discussion of two possible extensions to the current domain of 

applicability of the translation process; indexed file access and formatted output reports. 

6.2.1 Indexed File Access 

One construct that is often used in COBOL programs that cannot currently be translated into 

HIBOL is the use of indexed data files. Indexed files can be accessed in either sequential or random 

order. Both of these usages can be translated into HIBOL fairly easily as long a5 the COBOL program 

in which they appear still falls into one of the three basic categories of programs that the translation 

process is currently designed to handle. 

The most significant difference between the translation of COBOL programs that access an 

indexed file and those that don't is that the predicates that are produced in the symbolic evaluation of 

the analyzed plan will contain JNVALID-KEYP predicates as subexpressions when the indexed file Is 

accessed randomly. Recall that the INVALID-KEYP predicate is TRUE if the record associated with 

the NOMINAL KEY requested by the random read does notappear in the me. The INVALID·KEYP 

concept in COBOL very closely corresponds to the HlBOL concept of a data vah.1e not appearing in 

the actual key space for a particular data~set. Therefore. the INVALID·KEYP predicates are handled 

by simply replacing them with the negation of FILE-P~ESENT pred~es in the HIBOL production 

phase as is currently done with EOFP predicates, and the rer:n~nder of the translation process 

continues as always. The accessing of inclexed files in sequential order should require only the most 

trivial changes (if any) to the translation process. 

Translation into HIBOL of COBOL programs that Jncll.,.de the random access of an indexed 

file that does not contribute to the main read loop of the p~ogram .is made trivial by the change given 

above. This construct will most often arise in programs that access Ha:;,rary files that cont~in certain 

additional pieces of information. For example, a program that processes payroll, in addition to 

calculating GROSS-PAY, may need to access the employee namE:t that corresponds to a given 

employee-number. The employee names might be kept in a library file indexed by employee-number. 

The INVALID-KEYP predicates that result from the accessing of the library file would be handled as 

described above, and the translation of such a program should proceed smoothly. This is an example 

------ - - ------- --
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of a construct that can be added to a COBOL program without changing the basic structure of the 

program and therefore could be incorporated into programs of any of the three basic types without 

affecting the basic oategc>ry into which the:program falls. 

There are two apciitional COBOL program scenarios that invoJve indexed files which do 

appear in the main read loop of the program (and thetfJfore do affeet the basic structure of the 

program) that could be translated into HIBOL if · the simple change described above were 

incorporated into the translation process. The first of these involves the random accessing of an 

indexed file combined with sequential access of a normal sequential file. The second involves the 

random accessing of an indexed file combined with sequenti~I access of an indexed file. Both of 

these constructs can only be incorporated into programs whtch perform Intersections and have the 

effect ttlat a progremiJ'ltf>;which one of tbem·is inOQrPoratea can,now,be viewed as a program which 

useaonty a singt& data· file to drive thecomputation:mstead of two (or more) as is usually the case in a 

program which PM1orma 'BR iAierlection. · Therefore, two programa which · perform the same 

computation, one of which: uses only aequential tilea and the other' of: which. fails.into one of the above 

scenarios, have a different basic. struetUI& and do Nt la11 into the.same N8ic .prog1am category. 

In the first possible scenario, two main data ~ files contribute data field values to the same 

computation as discussed in the .previous chapter except tbat,ene of. tlle .. files is an indexed .file that is 
• - ' ' • -- • : '' ' ' / ·-' ~ • ~ • •' c 

randomly accessed. In this scenario, the program loops through the sequential file. For each record 

in that file, it performs a random read,4)C't ,the. iBdPttd ·file ueiag ttle:key field ~ues; obtained from the 

record read. in-lbe sequential; fie, aa,the ~NAL KEV :for· :lke'fllndOftt 8CC98S read. For example. 

consider the COBOL code fffllm• fot':~u"odPled vef8ion of. PAY.AQU..'8howfl in Figure 46. In thill 

example, HOURS-WORKED-IN is a sequential file, while HOURLY-WAGE-9U1t:an;indexed file aha& la 

randomly accessed. Note that the figure does not contain the components of the OAT A DIVISION that 

are' requl~ to sp9eify that HOGAl!.Y-WAGEJfN'.18 &ft indtbtecfifif&'WitlrJiOurtY·w&ge·kttY acting as the 

NOMINAL KEY; 

Fi9. 46~ COBOL.F ra11.nent with One Sequential al.Id Qtlectlldexed Ale 

mainline SECTION. 
READ hours-worked-in AT END GO TO end-of-job. 
MOVE employee-number OF hours-worked-rec TO hourly-wage-key. 
READ,,_h.9,u_rly~!il'au.e-:-1 n 1.NVAqo KEY,. ~o TQ m8:!f\l in•~ ' 
NULTlPtY" hourly-wage ''BY hour$-wdr"ted"GlVlNG oross-pay. 
MOV.Fenip-.tOJ*•"'nvillriir 00F 1Hktrs1flitlat~rff. 

TO ~lo,y~!"'.""'"!mber Of, gross-pay-:rec •. 
WRITE gross-pay--rec. 
GOr lO 111 i:n 1 i ne • 

end-of-job SECTION. 

·~--·---
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Fig. 47. COBOL Fragment with Two Indexed Files 

mainline SECTION. 
READ hours-worked-in t~EXT RECORD AT END GO TO end-of-Job. 
MOVE employee-number OF hours-worked-rec TO hourly-wage-key. 
READ hourly-wage-in INVALID KEY GO TO mainline. 
MULTIPLY hourly;...wage BY hours-worked GtV?NG g'ros1;.._J)ay. 
MOVE employee-number OF ho.urs-wo.rked-;rec 

TO employee-number OF gross-pay-rec. 
WRITE gross-pay-rec. 
GO TO mainline. 

end-of-job SECTION. 

The second possible scenario is atmost identical to 1he first scenariO except. that bOth fl1ea 

are indexed mes, although one of them is read· aequ8fttia11Y~ ·eoeot'providea~for the sequentiaJ 

access of indexed flies through the use of ithe NEXT· RECORD ·.clalMlt ift.the MAD statement (see 

[22}). The other file is read in random ;or'def, using the :key fie1d1vatui&from thttrecom1'98d in the first 

file as the NOMtNAL KEY for the random read. For •••--·•COBOL code fragment shown in · 

Figure 47. Again note that the figure does not contain the components of the DATA DIVISION that are 

required to specify that HOURLY-WAGE-IN is an Indexed ~, wtih hou'rly-wage~key' acting as the 

NOMINAL KEY and that HOURS-WORKED-IN is an lndexe'd ftle 'thafwm be acces8ecl sequentially. 

It is important to note that in both of theaei two ·aoenlDtO&, although two input . files are 

contributing data values to the same computation, thetWofilea'neect.nol belOrted in the same order. 

These are probably the two cases in whief:t ttte':sortlnt ~ ~ in the previouS chapter 

can be most easily eliminated. 

In summary, the important,pointithat mak8';~th•Ar~j0f·,COSOL programs that. 

incorporate indexed access reads that are randomly accessed is that the INVALID-KEYP pr~ 

are replaced with the negation of FILE-PRESENT predicates. As long as the NOMINAL KEYs that are 

used to access an inctexed file are generated in a fashkin that atlo'w. the P,ogram to be claSSiffed 88 

one of the three allowable types,'andalf•oHhe Other·~ lltio'iittttealROL j>r~rilmar4'met.• 

the inclusion of indexed files in a COBOL program should pose no significan.J prob~ems to the 

translation process. 

An interesting by-prQduct of the·~ of. an ·i~~~ed fi_le in a CO$pL Pr~~.·· that the 
COBOL programmer must specify the key fields for.that lle•in •fhe' OlitA- BM$1(I)Ni· · The translation 

process can make use of this information to avoid the r\eeess~ of ~i~:thf~At~ .. ~Jen.} user for 

the key fields or sort order for that file, reducing the length of the data division queryiaubprocess. 
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6.2.2 Formatted Output Reports 

COBOL programs ~t produce formatted output reports differJrom the COBOL programs 

considered so far in two important ways. First, it is most often the case that the production of the 

formatted report wRf call for CWRtTE operations in ;severaf ·diffef'9rif :Ptaces in the program (or 

analyzed plan for the program) aH acting on the same-·fif&.Ob,;eet, Whl .. a data;flle is usualty produced 

with one or at: most a few different CWRITE operations in the program~alt of wh1ch are executed In 

mutually exclusiv'e control environments). Second, In addttfon to the usual computation to derive the 

values of the data fields in the formatted report, there-·wiH'aJSO be computtltion used solely to control 

spacing, page ejects, choice of literal strings, etc. 

Because of these differences, it wifl no longer be sufficient ·te·>Symbolically evaluate the 

analyzed plan and then simply pass on the assertlOnS·for data:ft0ws-Osfld11S arournents to CWRITE 

operations to the HIBC>l. production phase. The syrbbOlk,: ~iorl :can proceed as always, bUt a 

second pass over the analyzed plan will have to be made in which the pattern of CWRITEs performed 
. : : ' - t ·., . : .· : !" ... ; '·- ' . • : ' : 'I:~ : ' ~ ••, . ' 

on a given fihH>b)eCt is examined. The 'difff!trent p<>rttotis of'fhe pattern 6f CWFUTEs that are found 

win contribute to different components of the HIBOL formatted rei>ort feature. 

In HIBOL, a formatted· report is broken dawn lntd 'StYet'at -components, such as report 

headings, report footings, page headings, page footings; typioaMtnes, t1te~ (See [30} <>r [18) for a 

discussion of the HIBOL document facility.) A typical.pattetn'ofCWRITEsfor"&-foi'matted report might 

be broken into these components as follows. Report headings and footings would appear as a series 

of CWRITEs that occur outside of the main loop of the program, with headings coming before and · 

footings after the temporal composition that represents that loop. The main CREAD loop that drives 

the entire computation may appear nested within a second loop that counts up to fifty (or some similar 

constant) in order to control page ejects. Page headings and footings would appear as a series of 

CWRITEs within the temporal composition that represents the page eject loop, but not within the 

nested CREAO temporal composition. The CWRITE that produces the typical line would then appear 

within the nested loop. 

The second pass over the analyzed plan would have to keep track of Its current location in 

the analyzed plan relative to the main temporal compositions. Then, when a CWRITE is located, this 

information would be used to determine which component of the report the output of the CWRITE 

should be relegated to. The assertions about the input data parts ·to the CWRITEs, formed during the 

first pass, are used as always to determine the nature of the data values output by each CWRITE. 

After the second pass is complete, the overall pattern of the CWRITEs, and therefore of the report, 

can be determined. 
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This entire process should be simplified by the fact that there probably are not very many 

different overall patterns that need to be recognized; perhaps at most a few dozen or so. The exact 

number needed is not now known, but can be empirically determined through further research. 

The translation of COBOL programs that produ~e formatted reports also calls for a simplifier 

for expressions that contain combinatioos of SUBSTRING and CONCATENATE operations acting on 

STRING objects. These expressions will arise in the program for the control of spacing and choice of 

literal strings. The simplmer would reduce such expressions into literal constants whenever possible. 

Such a simplifier should not be dUficult to produce. 

As the final step in the translation of COBOL programs that produce formatted reports, the 

HIBOL syntax for the DOCUMENT SECTION of the DATA OJVISION would have.to be produced. This 

syntax is somewhat elaborate, but should not be overly difficult to produce once the pattern of the 

reports is known and the expressions for the string QPerations have been simplified. 

In summary, although the translation of COBOL programs that produce formatted output 

reports into HIBOL requires more elaborate processing of the anal)'Zed plan, additional simplification 

techniques, and a more elaborate HIBOL production phase, it is not beyond the reaches of current 

technology. None of the new features of the translation process described above should be overly 

difficult to produce. Thus, this increase in the domain of applicability ol COBOL to HfBOL translation 

could be achieved through a moderate engineering effort. 
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7. Critique of the SATCH System 

In the previous chapter, several features of the current implementation of the translation 

process were discussed, and suggestions made as to how the translation process could be modified 

to improve its performance. In this chapter, the current implementation 9Uhe entire SATCH system is 

discussed. with some suggestions as to how the system performance C'?)Jld be improved by making 

changes at this more global level. 

7. 1 Semiautomatic versus Automatic Translation 

Although the word "semiautomatic" appears in the title of this thesis, the current 

implementation of the SA TCH system essentially performs the automatic translation of COOOL 

programs into HIBOL. Of the three major components in the system·,''ttie CoBOL parser, the Plan 

analyzer, and the translation process, only the translation proces8 utilizes any human input. 

The translation process utilizes human Input in two 'J)laces. First, the key fields for the flies 

manipulated by the COBOL programs must be specffied. Mtt\ougtr the SATCH u8er is currentJy asked 

to supply this fntonnation for every COBOL program that is uanslated, "'8 :Jitey fiefds for the dlt1rfftes 

remain constant throughout an entire data processing systeih. ·Thel'Eitore, the SATCH sy$tem could 

. be changed' so that the key field information for a data processftlg ~itmput onty onee, ancHhen 

used in the translation of all the COBOL ~ams in that syStem. ThiS' Woufd sigriificanttyreducit' ttJe 
amount of human input required by the system. 

The second form of human input is utilized in ttte:HIBOL pr~ ph8'18 of the:transtation 

process to specify which data field(s) in a file should bttuaectto-adaae·~T predicates 

with PRESENT predicates. This information. however, ja .oniy; needed to!.inereaae :ttle .feadability:,of 

the resultant HIBOL program, and is not required to insure the correct semantics of the HIBOL 

program. Therefore, It would be possible to eliminate this input without affecting the correctness of 

the ttanstation. 

Therefore, the human input required by the -stem to. translate the<Cl,Jl'fent domain .of COBOL 

programs is minimal. The e.xpan&ion of the.domain, however .,might call for·aniincl'8888.in the·amount 

of humaff intervention as discussed .Oelow, 

7 .2 _Using Analyzed Plans 

Given that the task at hand is to translate a process described in one language (COBOL), into 

the same process described in a more abstr~ct language (HIBOL), the abstraction process is of the 

utmost importance. Currently, most of the abstraction is p0rio~med by ~~e component of the SAT CH 

system that produces the analyzed plan. This component uses general. methods· to abstract away the 
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details of implementation in the source language (in this case, COBOL). The component of the 

system that translates the analyzed plans into HIBOL does a certain amount of abstraction, however it 

uses special case techniques that are specifically designed around the features of the target 

language (HIBOL). The breakdown of the abstraction process into these two components raises a 

key question; Are the general method abstractions that are made in the analysis of plans useful for the 

translation of COBOL programs into HIBOL, or would it be better to apply special case abstraction 

techniques right from the beginning? 

The answer is that the abstractions contained in an analyzed plan are exactly those that are 

needed for the translation of COBOL programs into HIBOL. In general. programs can be abstracted 

in several different ways producing program representations containing very different types of objects 

and oper~tions on those objects. For example, a program can be broken down into subprograms that 

each perform a specific task as is, done in FORTRAN [19] ~d PL/1 [33]. Or it can be broken down in 
.. 

terms of increasingly abstract data objects and operations defined to operate on those objects as is 

done in Alphard [:3p], SMALL T AlK {13), and CLU (15). Or it can be broken down into independently 

acting agents that wait to be .activated dependinQ on the curr~ ... environment as is done in 

CONNIV~R {29] and P~ASMA{lO). Finally, it can be !Jrok,en down into data flows and e>perators that 

act. 0!1 val.ues carried by tho• flows as is don.e in VAL!U an(j HIBOL. Analyzed plans also express 

programs using this last paradigm. Th8fefore, a program ..-essed as an analyzed.plan is.broken 

down into the same abstract ccmiponents as a program~~ in HIBQL. This does not mean that 

any program that can be expressed as an analyzed plan can ~.expressed in HIBOL, but it does mean 

that for those programs that can be expressed in HIBOL the analyzed plan representation of that 

program more closety cor~ to the HtBC>L representation than coukt any repreaentation which 

is based on one of "'8 other Sbetraction technk:JU.-. ·This makea • abstraction ol a COBOL 

program 1Rto an analyzed plan a \l9IY provocative iir8t step tn ttte trart$lation of that program into 

HISOL. 

In spite of the fact that an analyzed plan is ideally suited to the translation of CoaoL 
programs into HIBOL for the reason stated above, the use of analyzed plans in this process has 

certain drawba<:ks. Rrst, a analyzed plan ii an, unwieldy repreaentatton of a program from the 

standpoint .at· human tnteractfon. It was designed to ·rriake It _...,. for a computer program to 

underatand another program, not to make it easier for •'JJ8190W to understand that program. 

Therefore, should it become necessary or desirable to involve a human in the portion of the 

translation process that involves the analyzed plan, the plan itself would be a particularly poor choice 

for the vehicle of discourse between the human and, the, program. Either the analyzed plan would 

have to be temporarily translated into some form that the human can interact with, or the possibility of 

human interaction in that portion of the translation process would most likely have to be abandoned. 

Of lesser importance, the fact that the analyzed plan representation is unwieldy increases the 

-------------·· ···-------------------------------
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difficulty of debugging the portion of the translation process that interacts with it. 

A second shortcoming of the use of analyzed plans in the translation of COBOL programs 

into HIBOL is that the program that produces the analyzed plan from the surface plan does not 

currently incorporate enough knowledge 1lboufthe interattion of'inJ)Utleutput operations With the 

data flows that represent flle·objects. ·The origmat 1esf bed for arialyz9d plans was the FORTRAN 

SCientific Subroutine Package. These subrouttnes, in genefial~ perform n\Jmerical analysis operations 

on matrices and other data objects, but do not perform any·inptit:loutpUt operations; Therefore, 

sufficient knowledge abOUt such operations was never mco\iporilted into the analysis process. This 

shortcoming has led to the production of analyzed plans, in' both the GBINlT and PA YROLL2 

examples, containing temporal compositions with a sittgfe·generSting ~n. which contains 

essentially aff of the computatiOn pettormeetby~the·program, and a· slngttflennfnatfen as their only two 

subsegments. Such analyzed iifans etre·ftl0r8 difftcuft to· work1'Wlttt tfian Ol'l98· 41\' which there are 

several generating and/or eonsuming-auQmetttiltiona each of 'whfetfperfot ms a simpler function. The 

analysis process could b9 'modified to irieorporate the ·~ knowtedge with a· (hopefully) 

moderate amount of effort. 

NOtwithstanding ·the st\ortcGmings of analyzed plans cited abOve, the trans'tation of COBOL 

programs into HIBOL would be much rribre dilficutt;-if not impClsaible; iNithdut thEJ use of them or some 

similar program·,repnt!entation. The turfient ~~ ofthe. ftf1s1iltton proeess reHee upOA 

them impttcitty anct couldnofbe reasoft8blY"1odmedto wOi1Niht>N_.tie~. ·. 

7.3 Future Direction for the Translation Process 
i' 

The current imJ>iem.ntation of the tran&latiort·tJfQCMe _.cdeaigned with the aubaet of 

COBOL programaan.t it .ourNtAltY. can no.lltectn 1"iQd. ·· .~ el -fle, translation-~ to 
operate on.• 1¥ger domm« COSQl. -PrOCPma.>.e>cc8Pt jo,thoee.._.Oted tn,im. ~.chapter~
might be very difficult. Iba PtJr'Pll8·of,lhis-·theeia,WA, ....... :at.ifft_,,IY·d,tfJ•:tranelation.f>f · 

COBOL into HIBOL, not to present a final solution to the probtem. The next attempt to build a COBOL 

to HIBOl translatt>r should replaceitfte-curl'ent'~ Uf M~· process with one 

that incorporates the work ctm.Wty·'betnQ- done' by Rieh and~ &flMT. · The' fEthlairtder ot this 

secllon cteScribes how·th8'1mlf~lforfcf thetranslatten ~-fftllht work.· 

Charles ~.inhis-f.hO_ theaia 126kiprOJ>OMd•JMiKlChJf~!~ &lf)alyzed f)lallS 

by recx>gnizing.9'and8f(J.Rfogram~ ~t\em ... ,M$>oatllmch1'!batK~•rt'~ptan,r~~ · 
~ . - ' - ' . 

inspectiQn'~. "J;he.pt'i>Q88fl:Pf'.0Ceedl ,a·-~ fjrst,,,_;~ . .......,,._ comtef1ed into another 

repr4lSef)t.uon Gaited ·the "plan calcuJus".. This, JJrOC8$$,i8 ielati~.~e. Tho pliUJ calcwlus i8 a 

way 9f expressing a progr~m a nierarchicalrStrMetureJfilakial:to .-ie.Wz"Lt>lans except that the 

primitive elenMlQ~ .in .·the ~ulus.are·essemielly.propasi.:iftJkst~Ql'Aller predicate Qatculua. The ... 
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plan is converted into this representation to aid in the recognition of the plan cliches and facilitate 

logical reasoning about the plan. 

After the plan is translated into the ptan calculus, the recognition process attempts to match 

structures in the plan for the program with precompilecl ~ems tak.enJrom a plan library. The plan 

library contains cliches for both common computational abstractions and common data abstractions. 

A key feature of the matching process is that a given fragment e>f the pfan can simultaneously be used 

to fill roles in several different library cliches. This allows the program to be examined from multiple 

viewpoints. A key feature of the plan library itself is that the plan cliches are built into a taxonomy so 

that certain cliches can be viewed as extensions of other clk:hes .or as specializations of more general 

cliches with added specifications. Another key fEtature of the plan library is that there are names 

associated with all of the computation and. data ~stract,i~,. Ther~e. a system using this ~ 

recognition scheme can converse with a. human using the ~ voc~wary that is used in everyd~ 

conversations among expert programmers. Finally, it is:i~ed-th,at the plan cUches that appear in 

the library could be usSd equally easily for program analys•or program $Yflthesis. 

As part of his PhD research, Rich designed the plan calculus and the taxonomy for library 

cliches, and constructed a sample library containing a co~ l'l"1ldred entries. Currently, a joint 

effort is underway by Rich and Brotsl<y to implement a fiM'ogram to convert analyzed plans into the . 

plan calculus. They are also putting the plan libracy m,tp an~on·»ne data.base. Srotsky, ,as part of his 

Master's research, .intends to desigl;l and implement. a, pre>gr'Hll. that \YUJ. automatically recognize 

instances of library cliches in a program represented in the plan calculus. 

When the programs described above are implemented, the translation process of analyzed 

plans into HIBOL can be rewritten to take advMtaQe of.them. fn M~ view of this scheme, all 

that would be required is that the plan library· be expMded to incltlde the clieftes that appear in 

COBOL programs which closely eorrespend to .HtBOt. constrvc:ta. , l'hen', once the eliches are 
recognized, It would be a falrty triviat procest to eonvert'them:tnto HllBOL syntax. 

This scheme has several advantages over the cur.i;ent4ectloique. used in the translation 

process. First, instead of having all the ~.case )Snowjedge. ~ed,for tb&,trane.lation embedded 

witl:lin LISP code, that knowledge would , be comained . w\U.Wl· ~.·Alan :lit;lrary. This ~es the 

knowledge much more accessible, and far easier to extend and modify, Second, it is hoped that this 

scheme CQUld capture more pertihent kl'KMlettge and tttetefOre prcWide far Ire translation of a much 

larger scope of COBOL programs: This was foresnactoWed ;n:,ttte :ertier'diseUSSion of a possible 

extension to the current translation process that wOUfd atfoW•pragrams that produce. formatted .output 

reports to be translated. The second pass over ~ analyzed plan that was described i fn that 

discussion can be viewed as an ihtermediete po+nt between the' current technique and the one 

described in this section. A third advantage of this' scheme-ls that the knowledge gained during its 

-------------~---··- ----- -----------------------
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implementation could be applied to the translation of other procedural languages into other higher 

level languages, with the implementation of th~e translation systems req\.Hring a relatively minor 

amount of additional effort. For example, it might be possible to apply_ such techniques to the 

translation of a certain subset of FORTRAN programs into APL [24). 

Unfortunately, it is doubtful that it will be possibl~ to translate COBOL programs into HIBOL 

using just the simple scheme outlined above. First, it ifi.~Oubtful that the c~mponent of the system 

that is responsible for the recognition of plan cliches in the plan calculus could successfully operate 

on a plan calculus representation produced from an analyzed plan in which almost all of the 

computation of the program is contained within a single augmentation. Such analyzed plans were 

mentioned in the previous section. The ~ysis process would have to be extended to .. produce 

better analyzed plans for programs th•t ~m in,putloutput operations ~n file-objects before this 

scheme would be possible. As stated before, this 8J<tens1on of the ~ process shoukf not be 

overly difficult. 

Even if the analysis process were so extended,it is.doubtful that the recognition process 

would ever recognize all of a plan in ~ms of kQOWJ'l clich98 for anythiflQ other than the most trivial 

programs. Therefore, this system W<>Uld.prob~ly c:all for maman~ for part· of~ recognition 

process. Unfortunately, the plan .calculus is no better suited .as a vehicle of «:tiscQurse with humans . .. ·,;-... '- . . ' 

than,. the analyzed plan representation. An interlace ~ould have to bf:t lluill ~ intereede between the 

recognition process and the human w.er. The constr\&Gtion of tueh ao interface is 1n4de ~r by the 

fact that the cliches in "-, library have c names, .~ed with ·them , ~at. (;8-0 be used in the 

man/machine dialogue. A program synthesis system curre~tly beinQ ,worked on by Rich and Waters 

requires a similar interface. The interface routine developed as part of that project could conceivably 

be modified.and transported to the COBOl to HfBOL.traA8fdon~ 

In summary, the possibility of applying the method pf plan reGqgnition by inspection to the 

translation Qf coaoL programs to HIBOUs a pro~ pae. AM~h it poaes$0me problems that . 

need to .be. overcome, it offerspronU&e fqr the .Prod~~n of a~:wi#nnuchgreater pert~ 
than the current system. Such a system might well incorporate both a symbplic evaluation of the 

BJ)alyzed plan, similar to the one used in the current system, as well as the recognition of plan cliches. 

7 .4 Translation of HlBOl. i~~~OBOL 

Although the predominant motivat~on. for this ~esis is. to show the feasibility of ~ans,la~ng 

COBOL programs. i,nto HIBOL, i' is necessary to mention the possibility of the translation of HIBOl

programs back into COBOL in order to impart an overall ~ve. 
j - . •. 



SA TCH System Critique - 108 - Gregory G. Faust 

PROTOSYSTEM I [27} is an automatic programming system, developed by the Automatic 

Programming Group at MIT, which can translate HIBOL programs Into compilable Pl/1 cede and the 

corresponding IBM JCL needed to run the resultant· programs. In general, the onty assumPfjorts 

made by the system about the target language is that it IS same higft level proceduraf language that 

supports input/ output operations to sequential and indexed data files. The exception is the final 

component of the system which produces fhe actual· i:>'t/1 :~yntk for the computation. All that is 

required to allow the system to prOduce COBOL programs is to replace the PL/1 syntax generator 

with a COBOL syntax generator. A syntax generator totCOBOL should not be overly difficult to 

produce. 

As stated in Chapter 1, there are some· problems with the unconstrained use of 

PROTOSYSTEM t to produce COBOL programs·frOfh tlfl'B()L. 'To·undefstand the prObtemsand how 

they can ffe Circumvented, a sff(Jhtly more detafleef~' of PAetOSVSTi!M I ls needed . 

. A primary design goal of PROTOSYSTEM I was the ability to produce highly efficient code 

from a HIBOL program. To ~isti this end, PROl'OSYSTEM I iS brOken into two major 

components. · The first of these, the ,.de9ign optimizer"\ ls tatponsible for determining the desired 

"data aggregatibn" and "comf)Utation'aggregalion" ·fof the1'8j)ptication. The data aggregation 

specifies which data·sets should be grouped tOgether fl\ the··samelile-, W what type of files there 

should be (indexed or S&quentiaJ). The computatmn-aggreg&tion:~Which eperations on'the 

data flies shoold be grouped together in the same program. "Ttle .Corid matOr component of th 

system, the .. code Optirmzer", uses the output cttt1trd9signJ~t~ aifd determines the desired 

imptementatton of the piograms theinaelVeS. · 

The design optimizer repreeente tM.JJOl'tion ;d:ht ~that does.most of what-is usu.Uy 

called automatic programming. The code optimizer performs a more welf understood function; one 

strongly resembling that of.an opttmrzlng~. Upolt'.tO'fh~'i>f ih& PROTOSYSTEM I 

project, there remained cettatri:te8earch ~·wltft"resp&et·totffe ctesll2ri Optimitiwthat wef'e not 

completefY resolved. The code optimlmf that·W.~ ~PU1 c6de with very 'good 

run-time characteristics. 

Within the context of the use of PROTOSYSTEM I as a component of the SA I CH system, it is 

highly desirable to produce a single COBOL program for a ~ ~. ·anct the COBOt 
program should operate on the same data files that were used by the original COBOL program from 

which the HfBOL was produCed. Therefore, the ~~ oi>tirniiir ~'cir pt:lorosvstEM I is 
,·. . . ~ '--~··_ .. _ .... . : .. ~ ;.: !:~~,-~-:; ·' f _:· ., 

not required, since the data and computation aggregation Used by lhe'ci>de optimizer should be 

exactly those specified in the original COBOL program. ifiis consriined u~3of PROTOS'fSTEM I, 

within the context of the SATCH system, should result in output COBOL programs that are highly 

run-time efficient. 

------------~ ---··· ·----. -------
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Appendix I ·Plan Primitives for, COBOL Programs 

In this appendix, all of the primitive functions that can appear in a plan that is produced from 

a COBOL program are explained along·wtth tt1e·number and type of tt,leir arguments. Most of these 

primitive functions perform standard operations that commonly appear in any programming 

formalism. These,,standard funciions are included here foNX>mpteteness. The remainder of the 

functions perform operations that are much less standard. Particular attention' will be given to the 

latter. 

Each of these functions can be viewed as a black box, with a number of explicit inputs and 

outputs where the outputs are related tcr~the: inpu• via. lhe tunctioft given.- They should.not be'thought 

to return a value in the usual LISP sense, but rather to produce a value that is carried from the 

function via expftcit data how. Alst>, !some cif tfie·f~ rriay1Jtoduee rt'iore' tttan one vatue as a 

result .of their operation. In addition, certain of the functions that ;Perform operations on file objects 

cause side effects. This will be discussed in greater._. :bek>w .. cf-or ~ reaeona. these:primitlves 

are not actually functions in the usual sense. 

1.1. Boolean Primitives 

Each of the following fun~<>nS result in the production of a single.bit .boolean. The input 

arguments are of various types. 

AND: Binary operator that performs·the standard loglcai AND. BOth arguments 
are booleans. 

EOFP: Takes a file object as input and produces TRUE if the next CREAD of the 
file will produce an end of file condition, and FALSE otherwise. The 
flte obied -.af·ia unalielWby:thia-. 

EQUAL: 
~· ' : ( -.• " 

Binary operator that performs the standard EQUAL function. The input 
arguments can be either both num~ or. both strings. When tt:te 
arguments are strings; a standarcf c{,llati~si~~be is uSed. . 

GREATERP: Binary operator that performs the ''st~nd'ard GREATER-THAN 
function. The input arguments can be. eith$r both numbers or both 
strings. When the ·8fg0menf8'· are'']~ . i ;, iitaridBrci" conatlng 
sequence is used· 

INVALID~KJ:YP: Takes a fil~ object as i~put and. prOduces TRUE .if the next 
CREAD or the file ~i_n prodilce , an .111'/atid key co~ion·, ·and FALSE 
otherwise. Tne'file objecf itsetf'is uniift~ed by thiS'te~t.. This is used 
with indexed files only. 
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LESSP: Binary operator that performs the standard LESS-THAN function. The 
input arguments can be either both numbers or both strings. When 
the arguments are strings, a standard collating sequence is used. 

NOT: Unary operator that performs the standard !Qgical NOT. The input argument 
is a boolean. 

OR: Binary operator that performs the standard logicw QR. ·Both arguments are 
booleans. 

1.2. Arithmetic Primitives 

All arguments to and resutts from the toUowing functions are numbers. 

DIFFERENCE: Binary oper:a~r that produc_es the result of subtracting the second 
argument from the first. 

MINUS: Standard unary minus operation. 

PLUS: Binary operator that produces the sum of two numbers. 

REMAINDER: Binary operator that produces the remainder after dividing the first 
argument by the second argument an integer number of times. In 
other words, It produces the first argumet\t MODULO the second 
argument. 

TIMES: Binary operator that produces the resuJt of multiplying the two arguments. 

1.3. String Operators 

Each of the following functions result in the.production of a string. In this system, a string Is 

a special object type formed by an invocation of STRING. The input arguments are of varying types. 

CONCA TENA TE: Binary operatar that pr~uces a string formed by immediately 
following the Vallie of the first argument With the value of the second 
argument. Both argU,ments.w:e striogs. 

STRING: Unary operator that forms a string object fre>m a ~uence of characters. 

SUBSTRING: Takes three arguments and produces a String. The first argument 
is the string fr()m which U)e substring will be tak.(!r:t· Tl'\.e second and 
third arguments specify the fir;?t · 8'ld last · cl)aracters of the first 
argument to be includeo in the resultant substring, respectively. 
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1.4. File Operators 

All of the following functions take a file object as their first argument. The file object should 

be looked upon as a pointer into a file of data records. The.pointer c~ntains information about the 

next record to be accessed (if eny) as well.as certain statusdt:tformation ,atMi>ui the file. Some of the 

following functions update the file object as a result of their Operation. This is done by merely having 

an output data flow produced that is. different than the incQmi11g aati flow for the file object. This is 

analogous to the way in which all other data values are handled wittlin;a plan. 

In addUion, however, the file that is pointed to by the me object may be side effected by the 

operation of the function. For example, the CREWRfTE fµnction wm destroy information stored in a 

particular record of a file and replace it with new information. The file is permanently altered by this 

operation, anct the okt version of the file is no longer available. Theis& are the only functions 

produced from a COOOL program that can cause skte"effeets; tt·ls cle8rfy stated in the following 

function de$criptions exactly which functions cause side effeda. 

CCLOSE: Takes a file object as its only argument and produces an updated file 
objeet. In addttion, the. fiteia .side effected,such libat.Jt QM no tonger 
be accessed via any filfM1perator ex()ef)t one of !theJotlO!Ning OPEN 
functiena. 

COPEN!: Take$ a file object as its onty .argument and prodf;IGeS an updated file 
object. In addition, the file is side effected such that it can now be 
aoceaaedby CREAO. That is. the lite• .-ed for input only. The fie 
object ia set to point to,juat before the posMion pf 1.M;fkat l'ftCOrd. 

COP~O:. Takes a file obJect •• o.nfy,•gument andPEOd®eS an ~ated file 
obiect. In addition, the.file is sideAft8ct9d ~ Chlat itcan now be 
ac~sed ~ CREAD 4Qd OREWRfTE. ··~ is., the file ie. ppened for 
input/ output &C<les. the file object ia aet to PQint,¥l ·ivlt;before the 
first record. 

COPENO: Takes a file object as its only argument and produces an updated file 
object. In addition, the file is side effected such that it can now be 
accessed by CWRITE. That is, the file is ppened for output only. The 
file object is set to point to just before the position of the first record. 

CREAD: Takes a file object as its only argument and produces an updated file 
object as well as an arbitrary number of data values taken from the 
record in the file that is specified by the file object. The record that the 
data values are taken from depends upon several factors. If the file 
specifications given in the original COBOL program specify sequential 
access for the file, then each CREAD will access the record that is 
currently pointed to by the file object and then update the tile object to 
point to the next contiguous record. Since the COPEN causes the file 
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object to point just before the first record in the file, the first CREAD 
will cause the first record in the file to be accessed. If the file 
specifications given in the original COBOL proQra.m $)ecify random 
access for the file, then each CREAD will attempt to access the record 
in the file that corresponds to a particular set of values of the key 
fields. The set of values of the key 'fiektS that wffl be used to speeify 
the record to be accessed is contained within the ;~e object. If the 
particular key .set specified does not c9rresp~>np to any record that 
actually e~ists within the file, tnen INVAUD-KEYP' will produce TRUE, 
and the CREAD will not take place tassuming' the original COBOL text 
represents a valid COBOL program). If a random access CREAD is 
successfully completed. then the .,tife objeCt fl(C>duced wiU point to the 
record in the file that was just accessed. This ensures that a 
subsequent CREWRITE will access.the correct record. 

CREWRITE: Takes a file object and an arbitrary number of data values as 
argumeqts and produces an.upda.~acUile objecl In addition, the file is 
side effected by overlaying the reeord in the file specified by the file 
object with the argument data values. This is used with indexed files 
opened via COPENIO only. 

CWRfTE: Takes &·file object and an arbttrarynumber of data values as arguments 
and produces an updated fite ob;eet. fn addition, the file is side 
effected by placing a record in the file at the place'~ to by the 
file object. The record is composed from the argument data values. 
This is used with fites openedvta·COPENO only. 

NTERPRI: Takes a file object and an integer as arguments··and produces an 
updated file object. In addition, the 'fie i8 9lde effedtect by placing the 
integer number of end-of -record marks in the file at the place pointed 
to by the me ob;ect. For normat ~ftree the·'seeond 1lt'gt.ttnent ia · 
$1way& 1 ·and NTERPRI is·invak#ihce·fJefore ~iftVocation of 
CWRITE. The use-Of CREWR11'e ~not ..,ire tMtlH ef NTERPRI . 
because the end~of-reeord m8*sW.Oukf,1ilteldy11PPffflr kHhe me. 
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Appendix II ·How to Run ,SATCH 

This appendix contains the instructions for runnlng the SAlCH system. tnclu~ed are the file 

names and locations of all pertinent programs, the naming conventions 'ofthe data files used, and a 

very brief description of some of the more important top-'l&vel program fUnctions. All programs are 

now on ML Although all the programs are currently available and (hopefully) running, there is no 
' ' . 

guarantee that things will remain in their current 'state. 

To run the COBOL parser, type ":satch;cobpar<cr>". The only pertinent top-level function is 

RUN. It takes a single argument which is the name of the flte which contains the COBOL program to 

parse. It produces two output files. The first of these; givEtn a seeond'.fke name of PAOG,' contains 

the. lisp-like representation of the PROCEDURE OMStON. · The second flte, gt~n a second·file name 

of DATA, contains the DATA OtVIStoN Information.· 'For exampf8; the comri\mid "(RUN '((OSK 

DIREC) EXAMPL COBOL))" will parse'the COBOL program in .. dsk:dltec;eftMpt l:ObOt" and produce 

the output files "dsk:direc;exampl prog" and "dsk:direc;exampl data". For further documentation for 

the COBOL parser and/or the answer to any questi~ns about the cOBoL parser, contact Glenn 

Burke (GSB@ML). 

To prOduce an analyzed plan for an output fite of the COBOL parser; type ":lisp forpas;<cr>". 

The pertinent top-level function is PROCE-$$·. ft t:Skes a·8"1g~ argument Wh'k:h is·the name of the fif8 

which contains the PROCEDURE DIVISION output of the COBOf Parser to be analyzed. It produces a 

single output file, given a second file name of PLAN, which contains the analyzed plan. For example, 
~ . ' ' ' ' '• ~.. . ~i·:_·l ... ,; ,~--·"~' - '-,-\ . 

the command "(PROCESS '((OSK DIREC) EXAMPL PROG))" will analyzed the program and produce 

the analYzed plan in "dsk:direc;exampl plan". For further docu~tion t~ the analyzer ~d/or the 
: ': ' : • : • : .-. ; t :. . :· : ._.., • - - < •• .'-< -- 1 J . ~ 

answer to any questions about the analyzer, contact Di~ Waters (OtCK@AI) • 
. , ' • ~ ~. . l. 

To produce HIBOL for an analyzed plan and 1heOATld>MStONinformation, start up a lisp 

using the initialization file on the FAUST directory. This is done bY typing '":flsp faust;faost lisp•. 

Then, one of the following two top-level functions must be run to load the rest of the desired 

environment: SET-UP-FOR-SATCH-i orSET:U·P-FOR-SATCH-C,;Which load~the needed LISP :source 

files ~-USP FASL files, reSpectively (SET-UP-FOR-sATCH:b i~,~r00gly recommended). 

Once the environment is loaded, the rl\ost lritportant tOp·leYef function Is LOAD-TRANSLATE. 

It takes a single argument which is the first file name of the Pfe>gram to be translated. An attempt will 

then be made to load the ~~~"tiles from the SATCH directory.· For example, the command 

"(LOAD-TRANSLATE 'EXAMPL)" will attempt to load "dsk:satch;exampl plan'' and 

"dsk:satch;exampl data". It is possible to load the files from another device and/or directory by first 

setting the global variables GLOBAL-DEVICE and/or GLOBAL-DIRECTORY to appropriate values. 
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LOAD-TRANSLATE will produce two output files, given second file names of FAST and HIBOL, which 

contain the information passed from the symbolic evaluation phase to the HIBOL production phase, 

and the completed HIBOL program, respectively. The same functionality can be gained by calling 

LOAD-DB and TRANSLATE in succession. LOAO.-DB takes the same argument as 

LOAD-TRANSLATE. TRANSLATE takes no argument. 

Once LOAD· TRANSLATE has been run on a particular example program, further testing of 

new versions of the DATA DIVISION Query and/or the HIBOL Production phase(s) can be 

accomplished by using the top-level function FAST-LOAD-TRANSLATE. This function takes the 

same. argument as LOAD-TRANSLATE. Its operation only di~fers in that instead of loading in the 

analyzed plan and performing the symbolic evaluation, it lo~the information needed by the DATA 

DIVISION Query and HIBOL Prodµction phases directly from the file$. with the second file names 

DATA and FAST respectively. The two functions FAST-LO!'O.~DB and FAST-TRANSLATE have the 

same relation to LOAD-DB and TRANSLATE as FAST ·LOAD· TRAN$LA TE has to LOAD-TRANSLATE. 

The entire translation process runs in three different modes which differ only in the amount 
·' 

of information that is written to the terminal. The three modes are controlled by running three 

top-level functions called VERBOSE-MODE, NORMAL-MODE, and QUIET-MODE. These functions 

take no arguments. Th~ default is NORMAL-MOOE. QUIET-t:AQDE should only be used for batch 

jobs. VERBOSE-MODE will print out all sorts of interlllitdiat.e values for variables, and is only useful 

for trying to debug very severe probJems. 

Regardless of which mode the program is running in, the t~rminal will be used to gather 

information from the user. In all cases where user input is r&(JUired, the user will be shown a list of 

data field names and asked to inpµt a list of the desired fields. The user should input the list using the . ~ . . . 

numbers that correspond to the data fields, and not the names themsefves. If it is desirable to select 

none of the fields, Nil is entered. In all cases, the usei is given #le. opportunity to verify the input 

before the program finally accepts it .. 

. " 

The only remaining top-level function of possible pertinence is OB-WALK. This function is an 

interactive command interpreter that affords a way to wander ar9und and print out portions of the 

analyzed plan in a reasonably simple fashion. The set of commands is too large to be discussed here. 

the definition of the function can be found in "ml:satch;sutil >". 

All the source files for the COBOL parser and the translation process are in the archive file 

"ml:faust;arO satch". 
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