S S .

Protecting Externally Supplied Software
in Small Computers

by -

Sﬁ:phen Thomas Kent
September 1980

© Stephen Thomas Kent 1980

This research was supported by IBM through émcrwonw'y fundmg made~ :
available to the M.L.T. Laboratory for Computer Scwnoe SR

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts
02139

Acknowledgments

A number of individuals have contributed in one way or another to the production
of this thesis and/or to my ¢njoyable, extended stay at the Laboratory for Computer
Science. In this small space I can acknowledge only some of those who have aided
me in this endeavor. To those who are not included in this brief list 1 offer my
sincere thanks and an apology.

Dr. David Clark has been extremely helpful throughout this ordeal. Through our
weekly discussions he provided critical review, encouragemen’ and numerous
suggestions that have improved the readability of the final product. Despite his
many responsibilitics, he always strived to read drafts of chapters quickly and,
ofttimes, he succeeded. My readers, Prof. Liba Svobodova and Prof. Fernando
Corbato, contributed many helpful suggestions for improving the thesis and [thank
them for their perseverance in reading and commenting upon the manuscript.

In the six years 1 have spent at LCS [have learned much from casual conversations
with my fellow students and the lunchtime sub-committee. While working on this
thesis | benefited immensely from such conversations, especially those involving
Allen Luniewski, Karen Sollins and Dave Reed. [also must thank Wayne Gramlich
for his assistance in resolving text formatting problems and Eliot Moss for his help
with file transfer problems.

Of course, no list of acknowledgments is complete without mention of the two
women in my life: my mother and my wife. Although she has not been involved in
production of this thesis, my mother has provided support, counsel and love for
almost 30 years and 1 have benefited immensely from her numerous and varied
contributions to my life. I gratefully acknowledge the many important contributions
of my wife, Rachel. She has endured my protracted graduate career while pursuing
a doctorate of her own, an impressive task in its own right. Even when her own
research has not proceeded smoothly, she has encouraged me and commiserated
with me. Her meticulous proofreading of this and other documents has been
excellent. I could not have written this thesis without her love and understanding.

Finally, I wish to acknowledge the support provided by 1BM through discretionary
funds made available to the M.L.T. Laboratory for Computer Science.

Protecting Externally Supplied Software
-in Small Computers

by
Stephen T. Kent

Submitted to the
Department of Electrical Engineering and Computer Science on 22 September 1980
in partial fulfiliment of the requirements for the Degree of Doctor of Philosophy.

Abstract

The increasing decentralization of computing resources and the proliferation of
personal and small business computers create new problems in computer security.
One such problem is the protection of externally supplied sofiware, i.e., software
supplied by other than the users/owners of these small computers. In the case of
personal and small business computers, proprietary software serves as the primary
example. In distributed systems comprised of autonomously managed nodes,
members of the user community may act as vendors of external software in a less
formal context. In these contexts dual security requirements arise: vendors require
encapsulation of their software to prevent release and to detect modification of
information, whereas users require confinement of external software in order to
control its access to computer resources. The protection mechanisms developed to
support mutually suspicious subsystems in centralized systems are not directly
applicable here because of differences in the computing environment, e.g., the need
to protect external subsystems from physical attacks mounted by owners of these
small computers.

This thesis employs two tools to achieve the security requirements of vendors of
external software: tamper-resistant modules (TRMs) and cryptographic techniques.
The former provide physical security, i.e., while the TRM is intact it prevents the
release or modification of information contained within and breaking into a TRM
results in destruction (erasure) of the sensitive information. inside. . Packaging all of
the sensitive components of a computer system (processor and storage) in a single
TRM is often impractical, but selected portions of a system can be protected
effectively in this fashion. Cryptographic techniques are employed in two ways in

this application: to secure communication among TRMs and to protect information
held in physncaily unprotected <torage 0utsnde aTRM. : -

These tools addre5° the problem of encapsulzmng extemal soﬁware but do not
provide the confinement required by users. Extefnal software cun.be confined in
two ways: through the use of a secure operating system in conjunction with a TRM
supplied by a third-party or by providing separate processors for vendors and users
and employing some simple hardware to’implemeént access con:rol for the user.
Designing small computer sysiems incorporating these security features requires
careful analysis of a number of opttons in- makmg tradeoffs among performance
cost, flexibility and secunty

Keywords: computer *security, protected subsystems, p'roprieta'ry' software,
cryptography, personal computers, dtstnbuted S} fstems, Data Encrypt:on Standard,
public-key-cryptography

Table of Contents

Acknowledgments
Abstract

Table of Contents
Table of Figures
Table of Tables

Chapter One: Introduction

1.1 Motivation
1.1.1 Protection Problems That are Mitigated by Decentralization
1.1.2 Protecting Proprictary Software in Centralized Systems
1.1.3 Effects of Decentralization on Protection of Extemat Software
1.2 Problem Definition and Solution Criteria v
1.2.1 Protected Subsystems as a Paradigm for themaﬂy Supphed
Software
- 1.2.2 Solution Evaluation Criteria
1.3 A Solution Approach
1.3.1 A System Modecl and Tamper-Resistant Modules
1.3.2 Two Approaches to Protecting External Software
1.3.3 Two Approaches to Meeting Clients’ Secunty chmrements
1.4 Related Work
1.5 Thesis Outline
1.6 How to Read This Thesis

Chapter Two: The System Model, TRMs and Cryptography

2.1 The System Model Revisited
2.1.1 Variations on the Basic Model
2.1.2 Processor and Storage %ystem Parameters
2.1.3 Other Peripherals = '
2.1.4 Basic Bus Characteristics -
2.1.5 Graphic Conventions for Bus Tramactxons
- 2.1.6 Standard Bus Transactions ' ' :

© W N

11

12
12
14
17
21
2]

24
25
26
28
33
36
39
41

43
43

49
55

59
61

2.1.7 Bus Utilization
2.2 Tamper-Resistant Modules
2.2.1 TRM Characteristics
2.2.2 A Monolithic TRM Approach
2.3 Cryptographic Terminology, Concepts and Techniques
2.3.1 Terminology and Basic Concepts
2.3.2 Block Cipher Techniques
2.3.3 Stream Cipher Techniques
2.3.4 An Application Example: Secure Network-based Distribution of
External Software
2.3.5 Parameters for Actual Ciphers
2.4 Conclusions

Chapter Three: An Encrypted Bus Approach to Protecting
External Software

3.1 Configurations and Overview
3.2 Security Requirements for the Encrypted Bus Approach
3.3 Securing Simple Transactions

3.3.1 Securing simple read Transactions

3.3.2 Sccuring simple write Transactions

3.3.3 Securing interrupt Transactions
3.4 Securing Aggregate Transactions

3.4.1 A Transfer Protocol for Data Aggregates

3.4.2 Sccuring aggregate read and aggregate write Transactions
3.5 Additional CBI Design Considerations
3.6 System Integration Issues

3.6.1 Interfacing Non-Secure Devices on the 170 Bus

3.6.2 System Initialization

3.6.3 Response to Potential Security Violations

3.6.4 Distributing TRMs and External Software

3.6.5 Secure Archival Storage Reloading Constraints
3.7 Conclusions

Chapter Four: An Encrypted Storage Approach to Protecting
External Software

4.1 Security Requirements in the Encrypted Storage Approach
4.2 Basic Techniques for the Encrypted Storage Approach
4.3 Techniques for Encrypted Transfer and Archival Storage
4.3.1 Version Differentiated Names and the Archival Unit VIT

66
67
68
71
76
77
81
88
93

97
99

101

102
106
109
111
122
129
132
133
135
140
144
144
146
148
151
152
154

156

159
164
168
168

4.3.2 Format of Transfer and Archival Units .
4.3.3 170 Operations on T&A Storage
4.3.4 Robustness of the Archival Storage Protection Measures
4.3.5 Effects on Performance, Storage Utilization and the Operatmg
System
4.4 Techniques for Secondary Storage
441 The VTT Hierarchy
4.4.2 170 Operations on Secondary Storage
4.4.3 Performance, Robustness and Storage Utilization Issues
4.4.4 A Note on the Size of Secondary Storage VTs
4.5 Techniques for Encrypted Primary Memory
4.5.1 Downsizing and Storage of EDCs
4.5.2 Downsizing of VTs: The Cryptographic Refresh Process
4.5.3 A VTT Hierarchy and VTT Cache Management
4.5.4 Encryption and EDC Calculation for Cache Lines
4.6 Conclusions

Chapter Five: Muiti-Vendor Systems and Client Security
Requirements

5.1 Confining External Software
5.1.1 Preventing Information Leakage in Srmple Applications
5.1.2 Preventing Leakage in Distributed Applications
5.1.3 Controlling Access to Shared Resources

5.2 Computer Systems Supplied by a Third-Party
5.2.1 Options for Software-Enforced Encapsulation
5.2.2 Distributing External Software in the Third-Party Design
5.2.3 Distributing User-Written External Software in Distributed

Systems

5.3 Multi-TRM Computer Systems
5.3.1 Configuration Options for the Multi-TRM approach
5.3.2 A Hybrid Scheme for Distributed Systems

5.4 Conclusions

Chapter Six: Conclusions and Topics for Further Research

6.1 Review

6.2 Comparative Evaluation of the Encrypted Bus and Encrypted Storage
Approaches

6.3 Applicability and Limitations

6.4 Topics for Further Research

169
171
173
175

177
177
181
183
187
188
190
191
194
199
208

212

213
214
215
217
218
219
221
223

226
227
234
234

237

237
240

243
245

Appendix: Expansions of Acronyms Used in the Thesis 248
References 250

Biographical Note 253

Ta ble of Figures

Figure 1-1: A Simple Model of the Systems of Interest

Figure 1-2: An Encrypted Bus Approach System Configuration

Figure 1-3: An Encrypted Storage Approach System Configuration

Figure 1-4: A Multi-TRM System Configuration -

Figure 2-1: The Basic Model for the Computer Systems of lnterest

Figure 2-2: A Dual Bus System Model '

Figure 2-3: Event Graphs and nmmg Dmgr&ﬂas for Standard read and
write Transactions ‘

Figure 2-4: Event Graph and Tnmmg Dnagmm fora Stzmdard intem:pt
Transaction:

Figure 2-5: Event Graphs and Tlmmg Dmgrams for Extended Standard
Transactions .

Figure 2-6: Using a Single TRM to Proteci a System : ‘

Figure 2-7: Conventional and Public-Key Cipher Configurations.

Figure 2-8: Providing Secrecy, Authenticity and lntegnty wnth Public-Key
Ciphers

Figure 2-9: Electronic Code Book Mode for Block Ciphers

Figure 2-10: In-block and Additive Initialization Vector Techniques

Figure 2-11: Plaintext-Ciphertext Block Chaining (PCBC)

Figure 2-12: Autokey Stream Cipher Example

Figure 2-13: Cipher Feedback Mode Strcam Cipher

Figure 2-14: Message Format for Secure Connection Application

Figure 3-1: Two System Configurations Employing TRMs with CBlIs

Figure 3-2: Two More System Configurations Employing TRMs with CBIs

Figure 3-3: Event Graph and Timing Diagram for an ECB Mode Secure
Read '

Figure 3-4: Event Graph for a simple secure read

Figure 3-5: Timing Diagram for a simple secure read

Figure 3-6: Timing Diagram for Successive simple secure read Transactions

Figure 3-7: Event Graph for a simple secure write '

Figure 3-8: Timing Diagram for a simple secure write

Figure 3-9: Timing Diagram for Successive simple secure write
Transactions

Figure 3-10: Event Graph for a secure interrupt

Figure 3-11: Timing Diagram for a secure interrupt

27
29
31

5

63

65

72

n

19

82
84
86
89
92
95
103
104
113

118
120
123
124
126
128

130
131

Figure 3-12: Event Graph for an aggregate secure read

Figure 3-13: Timing Diagram for an aggregate secure read

Figure 3-14: Fvent Graph for an aggregate secure write

Figure 3-15: Timing Diagram for an aggregate secure write

Figure 4-1: Two System Configurations Employing a« TRM and an SSI

Iigure 4-2: Two More System Configurations Employing a TRM and an
SSI

Figure 4-3: A Simple Model for Encrypted Storage Operations

Figure 4-4: Format of Sccure T&A Storage Media

Figure 4-5: Hierarchic Organization of Secondary Storage VI'T

Figure 4-6: Event Graph for a Read of an Encrypted Cache Line

Figure 4-7: Timing Diagram for a Read of an Encrypted Cache Line

Figure 4-8: Event Graph for a Cache Line Write

Figure 4-9: Timing Diagram for a Write of an Encrypted Cache Line

Figure 4-10: Timing Diagram for a Combined Read-Write Opcration

IFigure 5-1: Sccure Installation of a User-Written, Distributed Subsystem

Figure 5-2: A Single Bus Multi-TRM System Configuration

Figure 5-3: A Dual Bus Multi-TRM System Configuration

Figure 5-4: Another Dual Bus Multi-TRM System Configuration

10

136
137
138
139
157
158

161
170
178
201
203
204
206
207
225
228
229
230

Table of Tables

Table 2-1: Characteristics of the Computer Systems of Interest
Table 2-2: Bus Lincs for the System Models
Table 2-3: Symbols Used in Event Graphs and Timing Diagrams

11

54
57
60

Chapter One

Introduction

1.1 Motivation

The past several years have witnessed a marked growth in decentralization of
computing facilities. Evidence of this trend appears in the proliferation of personal
and small business computers and development of distributed computer systems
composcd of autonomously managed computers. (This last class of computers is the
focus of much research and is described in more detail later in this section.) This
trend is the result of a number of factors including decreasing hardware costs and a
desire to tailor computing resources to individual and organizational needs [7].
Improved protection1 of information is often listed among the advantages accruing
from decentralization of computing resources [33]. In many cases decentralization
does make protection ecasier but at least one security problem that has proven
tractable in centralized computers becomes more complex as a result of
decentralization. The characterization and solution of this problem is the subject of

this thesis.

1.1.1 Protection Problems That are Mitigated by Decentralization

The stmplest security mechanisms implemented in centralized computers provide

complete isolation of users, perhaps allowing total sharing of some files [29].

1'l'hc terms protection and security arc uscd throughout this thesis to describe techniques for
controlling who may access a computer and the information stored within it; they are not interpreted
to encompass threats such as natural disasters.

12

Decentralized computers implicitly provide isolation since each user is supplied with
his. own computer. (In fact, some of these:cdmputers may support multiple users,
but the assumption is that these users are equivalent for- protection purposes.)
Mareover, the user need not rely on personnel at a central facility to protect his data.
Thus simple isolation is better achieved using :decentralized computers. More
sophisticated - protection mechanisms. ih centralized computers permit users to
explicitly control which users may access: specific files and what typef of access is
permitted, e.g., ,reading or »wxitihg Controled sharing in decentralized systems is
readily accomplished through -message transmission: over @ communication network.
Such sharing may. simply involve transmitting files between. users or may be based

on sophisticated schemes for managing distributed databases. '

When a network is used to selectively share information, communication security
measures are fequired to protect the transmitted datd- from disclosure and
undetected modification in transit and to securely jdgmiﬁy -users to one another [16]
(providing the basis for access control dcms;ons}. -These .communication security
measures ‘m‘ay be provided in whole or part by the network.or. may be exclusively
the responsibility of the user, depending on the size and geographic rénge of the
user community, network characteristics and user security requirements.
Nonetheless, it is often argued that contiolled sharing is better achieved in
deccntralized systems since such sharing takes. place only through: message
exchanges via a network rather than through shared memory interactions involving
an operating system and programs of bther users [33) .

Some- security problemns associated "wi‘tﬁ “borrowed 'p'ro‘g'rar:ns also may be
mitigated in decentralized systems. The secunty concérn’ here is that borrowedi
software may contam a ’Fro;an Horse’ [3] le the soﬂware not on!y performs 1ts |

case is that the fender of the software i 1mposes no constraints on its use but that the

13

Introduction

borrower wants to control access of the software to his data and he wants to prevent
the software from disclosing his data to other users. The protection mechanisms
required to control access of borrowed software to uscr data are the same for both
centralized and decentralized systems. Preventing borrowed software from
disclosing data to other users is difficult or impossible in centralized systems [29] but
may be feasible in decentralized computers, since essentially the only mcans of
leaking information to the outside world is via a network. Thus if a borrowed
program has no legitimate need for network access, or a very restricted requirement
for such access, this problem is casily solved. (Borrowed programs that make
significant use of a network as part of their normal function are not more easily

confined i decentralized systems.)

1.1.2 Protecting Proprietary Software in Centralized Systems

The preceding discussion indicates that decentralization of computing simplifies
the problem of protecting information in many cases. However, the problem of
protecting externally supplied software, i.e., software supplied by one party (the
vendor) for restricted use by another party (the client), becomes more difficult as a
result of decentralization. Proprictary software, sold or rented/leased by a vendor to
clients, i1s the primary example of external software but some distributed systems
provide other examples, as described later. Vendors want to restrict clients’ access to
proprietary software, permitting execution but preventing disclosure of the software.
The concern here is that clients may illicitly re-distribute the software or may study
the software to extract proprietary algorithms. Vendors also may require a secure
accounting capability, including the ability to revoke a client’s access to proprietary
software (prevent him from executing the software), in support of usage-based and
time-based billing policies. In centralized computers proprietary software usually is

offered (sold, rented or leased) for execution directly on a client’s computer.

14

However, sometimes proprietary software. is made available for a fee through a
service bureau (a computer facility that sellsrjomputer'time and services). The
protection measures available to a vendor depend on which way the software is
offered.

If proprietary software is executed on a chents computer a ‘number of ad hoc
technological protectron measures are avaﬂable to the vendor along with various
legal measures (trade- secret Ilcensmg contracts contammg non- dlsclosure clauses,
copyrights and patents) [21]. Some vendors do not cxplrcrtly attempt to protect their
software, believing that various:vendor-supplied :suppoet services are critical to
marketing of the software and that simplc theft of the software is not a problem. In
many cases only object code is provided, in .an.‘effort to conceal the algorithms
employed and to preclude maintenance hy other:than the vendor. Vendors may
even include ‘extraneous code or engage in circuitous coding - practices to deter a
client from extracting the underlying structuse of the program or. to demonstrate the
origin of code in disputes over authorship [8]. -Some’ vendors-employ a simple form
of cryptographic coding, in which a."bootstrap": program decodes the proprietary
software prior to.execution. ‘These technological ineasures:usualty-are not employed
to protect databases and the only aceess revocation: mechanism avadable to vendors
is the withholding of enhancéments and bug ﬂmfor,:thesoﬁware; : :

If propnetary soﬂware is made avarlab[e to chents through a servrce bureau the
vendor may take advantage of operatmg system protectlon mecharusms that allow
chents to execute but not read (copy) or modn"y the software e. g the rmg

protectron mechamsms of Multrcs [30I These protectlon mechamsms may be qurte
sophrstrcated allowmg the vendor to charge on; a per-use or trme basrs provrdmg_.
qurck Tevocation of access if a c]rent farls to pay and prot;:ctlng not only programs
but also databases associated w1th the propnetasryusofzt&fair(; “However clrents usrng

proprietary software at a service bureau facility must trust the facility to safeguard

15°

Introduction

their information, a problem that usually does not arise if the software is executed
on the client’s computer. The:vendor also must trust the service bureau to act as his
agent, protecting his software and properly charging for its.use. ‘The client also must
pay for computing resources at the service bureau, an unnecessary expense for a
client with his own computer facilities. Moreover, clients with their own computer
facilities may be further penalized by having to maintain and further process
proprietary software input or output at the service b’uryeau_‘ or by transporting this

data between their facilities and the service bureau.

There is substantial disagreement among. vendors as to the effectiveness of either
legal or ad hoc technological measures for protecting proprietary software. Yet
vendors of proprietary software do not secem to be deterred by this situation. [n the
case of proprietary software executing on client equipment, the client is usually a
business or other institution for which there is. insufficient financial incentive to
attempt to subvert the ad hoc technelogical-measures or to risk the possible
repercussions of violating the legal pm’tectiouﬂmeasures. Thus the lack of sound
technological protection mechanisms has not been a serious problem in this context.
Proprietary software made available through service bureaus can be protected from
clients and it is to the advantage of the service bureaus to provide such protection as
they gain financially by forcing users to procure time from the bureaus to run this
software. The use of service bureaus as agents for proprietary software also has the
advantage that a large number of users can gam access to the soﬁware but only a
small number of facnhty personnel need be trusted by the vendor to protect the
software. [n some instances the vendor of proprtetary soﬁware may also operate the
service bureau, ehmmatmg questtons of vendor-serwce bureau mtstrust. Fmally,
some service bureau users cannot afford their own facnlmes and thus have no’

alternative to this way of usmg propnetary soﬁware

16

lmroducﬁm

1.1.3 Effects of Decentralization on Protection of External Software

The same types of approaches to protectmg externally supphed software are
available in the decentralized systems of interest, but the pfoblem may be much
more severe in this context. 1f propnetary software isoﬁ"ered f’or dlrect executlon on
inadequate in this marketpiace. Sonfie evidefice atready éxists that curr ent owners of
personal computers engage in extensive informal trading.of proprietary software, in
violation of contractual agreements and copyright laws. -One supplier.of proprietary
software for personal computers estimates that as many. as 90%.0f the copies of his
software in use were not purchased from him [24].. ;lts;may?,be argued that this
alarming statistic is not representative of the market as. a,whole or that it is not
indicative of the fate of sales of such software in the future: In particular, it is
probably true that many of the current owners of personal computers are themselves
e_m:ploye,d in the computer field and are thus xpﬁqre{v likely to delve into their system
hardware and, software and engage in these activities than would the average naive

user.

However, it is difficult to predict the moral climate that will é{ﬁara’cteri-ze users of
such systems and there are other reasons to fear that legal means will be insufficient
to protect proprietary software in the personal computer marketplace The very size
of the projected personal computer marketplace and- the poSsnbi’hty that a small
number of manufacturers may dominate this marketpface (resulting in a large body
of software compatible processors) make the ‘emefgence of "bootleg” copies of
proprietary software a likely event. Even.in.the case. of relatively .inexpensive
software, violations of copyright.seem inevitable if an_analogy. to phonograph
records and home stereo systems can be made. Moreover, the growth of
communicationv networks makes distribution of both legitimate and purloined

copies of software easier, further complicating the situation. Vendors could offer

17

Introduction

proprietary software through service bureaus, to protect their interests, but this
negates many of the features brought about b)},degq;ntrgli;a;tjon, including jmprow"ed
protéction fqr userdata ;:angrsk 6_f personal computers:may balk at buying time
from a service bureau and paying,fqr.communicatioas to access these centralized
facilities. Thus service bureaus are an inapprog;iétgz and perhaps an unacceptable

means of offering proprietary software for persopal.computers.

~ The preceding comiments were directed pl‘imaﬁly at personal computers but it
seems likely that many of these ‘observations apply‘to the small business computer |
market as well. Although the size of this market (in numbers of machines) may not
approach that of personal computers, small business computers may proliferate
more quickly because their utility is, presumably, readily demonstrable. Small
businesses generally have greatcr'pu'rcha’siﬁg power than individuals and thus more
sophisticated (and more costly) proprietaty software may appear, increasing the
profit potential for vendor and pirate alike. It is hard to project the moral and
financial climate that will develop and thus difficult to determine how severe a
problem informal trading or sales of bootleged proprietary software may become.
Nonetheless, it seems prudent to assume that protection of proprieté_ry software will
be as important for small business computers as for personal computers. Again,
providing proprietary software through service bureaus is contrary to the
decentralization trend and is probably unacceptable in this context. Thus there is a
great need for an improved means of protecting proprietary software executed in

personal and small business computers,

A slightly different requirement for protection of external software arises in the
context of distributed systems comprised of autonomously managed nodes. In these

2Only proprictary software that makes usc of special facilities not available at the client’s computer,
¢.g., a flatbed plotter or array processing hardware, is best offered through a service bureau.

18

Introdaction

distributed systems each node (computer). operates under the difection of an
independent user, but the users co-operate to provide some services, e.g., distributed
databases. Systems of this sort are a topic of current vesearch and there are no
extant examples nor experience to draw upon. - Nonetheless, one can project
protection requirements associated with a form:of externally supplied software in
this environment, ie., software produced by a user/vendor at one node’ for
execution at nodes throughout the system. - As an example, consider a distributed
database that is fuily replicatedat_ each node: for robustness and for ease of access.
The database may contain some: information that should: not be accessible to some
users, even though every node maintains a copy of the database. ‘Thus each user
must rely on the database management software to enforce some advertised access

control policy at all the nodes.

In the case of a distributed database, the software at each node should prevent
unauthorized reading or updating (via- messages) by other nodes. 1t also should
prevent unauthorized reading and detectunau‘t:honimd update attempts by the node
owner. Although it might be pessible to prevent a node:owmer from attempting
unauthorized updates to the database, such update attempts, if detected, will not
affect the integrity of the distributed database as a whole. This is because
distributed systems must be prepared to cope with local outages, e.g., a disk crash at -
a node, without compromising the integrity of the entire database. - Thus, if the
software at a.node determines that a portion of its copy of the database is modified
as a result of an attempted unautherized update by the node owner, the software
will treat that portion asidamaged,rand not affect ether nodes.

In general, in these dlstrlbuted systems, it seems desnrable to be able to mstall} |
software at a node (with the permission of the node owner) Wthh can be protected |
from unauthorized disclosure and undetected modlﬁcatlon The avallabthty of

mechanisms that provide such protection for external software enhances

19

Introduction

significantly the flexibility of distributed systems composed of autonomous nodes.
For example, distributed instances of extended type managers [33] could be created
at one node and made available throughout the system in a secure fashion. Objects
could be created at one node and transmitted to other nodes with the assurance that
only the type manager for the objects would be able to examine and "appropriately”
modify the representation of the objects. Although a number of other mechanisms
are required to support this sort of object migration, the ability to protect copies of a
distributed type manager at each node (from attacks by the node owner) is central to
the concept. These security requirements cannot be met by the use of a centralized
computing facility without seriously compromising the distributed nature of these

systems.

The preceding discussion has shown how the need for protection of externally
supplied software in the decentralized systems of interest differs, in some respects,
from the need for such protection in centralized systems. First, the legal and ad hoc
technical measures employed to protect proprietary software exccuting on client
computers may be inadequate in the case of decentralized systems. Sccond, use of
proprietary software offered through service bureaus negates many of the
advantages of decentralization and thus may be unacceptable to users of personal
and small business computers. Finally, distributed systems composed of
autonomous nodes present new examples of externally supplied software which, if
they can be adequately protected, could significantly enhance the flexibility of such
systems. This suggests that improved technological measures for protecting
externally supplied software for execution on client computers are required for the
decentralized computer systems described in this section. The next section provides
a more precise statement of the problem and establishes criteria by which proposed

solutions will be evaluated.

Introduction

1.2 Problem Definition and Solution Criteria

The preceding section identified two examples of externally supplied software
that require protection in the decentralized systems environment: proprietary
programs for personal or small business computers and distributed applications
software for certain types of distributed systems. This section examines in greater
detail the security requirements associated with these examples and abstracts from
them a general statement of the problem to be solved. The concept of protected
subsystems in centralized systems is introduced and modified for use in the
decentralized systems context. Protected subsystems serve as the model for
discussing protection of external software. Some criteria for acceptable solutions are

presented and some solution approaches are evaluated with respect to those criteria.

1.2.1 Protected Subsystems as a Paradigm for Externally Supplied

Software

As noted in the preceding section, vendors require that proprietary software
(programs and attendant databases) be protected from disclosure and re-
distribution. In the extreme, disclosure may result in the complete exposure of the
inner workings of the program, enabling the attacker not only to make copies of this
software but also to understand the algorithms well enough to produce his own,
equivalent software. less severe disclosure may occur if only portions of the
software are exposed or if only hints as to the algorithms employed in the program
can be extracted, requiring significantly more effort by an attacker to generate
equivalent software. On the other hand, it may be possible to re-distribute
programs without knowing their content, e.g., if the programs were encrypted but
the necessary cryptographic variables were not unique to a single client. For
proprietary software that is rented or leased, a vendor may require a secure

accounting capability, including a revocation mechanism, in support of usage- or

21

Introduction

time-based billing policies. Finally, clicnts may wish to protect themselves from

proprietary software, treating it as a potential Trojan Horse.

In the distributed systems context described above, users acting as vendors of
external software have analogous security requirements. Here there may not always
be a need to prevent disclosure of the programs (the algorithms used may not be
considered proprictary) but databases associated with this software probably require
conccalment, as explained earlier. There is also a need to detect attacks that violate
the integrity of the software, to prevent spurious information from being propagated
throughout a distributed system application. For example, a query directed to a
node maintaining a copy of a replicated database should cither elicit a "correct”
response or should go unacknowledged, rather than returning a response based on
data that has bcen modified as a result of tampering. Although it might be
suggested that externally supplied software should be protected from modification,
it was noted above that merely detecting such attacks provides adequate security and
is in keeping with the autonomous nature of the nodes. In particular, it is usually
assumed that a user may "unplug” his node from the communication network,
making all locally resident software and databases inaccessible to the remainder of

the distributed system.

A general statement of security requirements for external software, from the
standpoint of vendors, can be abstracted from the preceding discussion. 'The
requirements are quite similar to those usually associated with protected subsystems
in centralized systems, although some slight modifications are necessary to account
for the scope of attacks to be considered. Schroeder [31] defines a protected
subsystem as "a collection of programs and data bases that is encapsulated so that
other executing programs can invoke only certain component programs within the
protected subsystem, but are prevented from reading or writing component

programs or data bases, and are prevented from disrupting the intended operation

22

Introduction

of the component programs,” From the standpoint of vendors, external software
should be treated as protected subsystems with the caveat that modification
(writing) and disruption by physical attacks need not be prevented, only detected.
Note that detecting modification of code ‘is often critical to. preventing disclosure,
e.g., if an attacker can undetectably modify code, he might -effect disclosure by
changing an address used in an output operation :so that the program: outputs itself!

The protected subsystem concept also models closely the security requiremerrts of
clients (users) with respect to external software. Restricting software so that it is
granted appropriate access privileges to the minimal ¢colfection of data and programs
required to perform its advertised function and.so that it does. aof release that data
to others is referred to as confinement [19]. Clients require confinement of
externally supplied software to prevent release ot modification of their own software
and other externally supphed software Chents also can employ conf' nement
measures to restrrct access of extemal software to varrous system resources. Thus
interactions between ‘external software. provided: t'ay drﬁ'mm vendors or between
externally and locally supplied software should be characterlzed by mutual susprczon
and protectron from | program -based attacks should be symmemc for both classes of
software.

This discussion points. ‘, out that vendors émd elients= ‘have dual security
requirements. Vendors require external software to be protected. against program-
based - or physical ‘attacks that result in releasé “orr’uﬁaetected modification of
information or ‘.Yinvocatiori‘ at other thanspecrﬁedextemal i‘nterfaces. They also
require that thissoﬂwar'e not be re-distributabie. 'Cﬁents‘.re‘quire‘ external software
to be confined, i.e., they require protection from program-based attacks launched by
external software that would result in unauthoﬁzed release modification or
invocation of other externally supplied or loeally produced software Clients also

require the ability to control the use of computer resources by external software.

23

Introduction

Although these requirements can be combined into a fairly uniform statement about
supporting mutually suspicious subsystems “and confinement,- the above-nofed
dichotomy between vendor and client requirements is important since it suggests an
appropriate division of responsibility for achieving these requirements, The
primary goal of this thesis is the design of computers: that meet vendor security
requircments, although systems that meet both sets of requirements are described in
Chapter 5. | ‘

1.2.2 Solution Evaluation Criteria

In addition to meeting the security requirements noted above, protection
mechanisms for use with externally supplied software in decentralized computers

should meet some additional criteria.

Decentralization The protecﬂon mechamsms must themse!ves be decentmhzed.
The rationale here is' that centrafized apptroaches to’ prov1dmg
protection tend .. 0. negate the: adwvantages:. gained ‘from
decemrahzatlon

Effectiveness The mechamsms should provxde a unified approach to meeting
the security requirements over a broad spectrum of attacks. To
provide a given level of security, based on an anticipated threat
environment, only parameters of the mechanisms should be
changed, not the mechanisms themselves.

Generality/Flexibility
The protection mechamsms should be applicable to a wide range
of applications executing on a variety of system configurations
and equipment. The mechanisms should not be dependent on a
particular technology or equipment type. E

Low Cost The cost of equipment required to implement the protection
mechanisms must not be prohibitive. The "bottom line” is that
the use of the protection mechanisms should reduce losses by
more than the cost of the mechanisms themselvs.

24

Introduction

Good Performance :
The addition of protection mechanisms to a computer often
degrades performance. However, one must strive to minimize
the severity of any performahce degradation.

Transparency ~ Protection mechanisms should be unobtrusive, so that writers of
external software need not be very much aware of them. These
mechanisms should have little or no effect on the design of
external software, : :

This collection of criteria tends to rule out most measures currently employed to
protect proprictary software. For example, use of service bureaus to offer external
software is ruled out because it negates the advantages gained from decentralization.
The ad hoc measures described in section 1.1.2 ‘do mot 'meet"the effectiveness
criterion. These measures also do not provide a unified approach to protection nor
are they parameterizable to provide different levels of security for different
environments. The protection measures deseribed in the next section aftempt to

meet these criteria. -

1.3 A Solution Approach

In order to meet the security requirements and evaluation criteria established in
Section 12, a combination of physical, ¢ryptogriphic and ‘software protection
measures are employed. Information stored or processed in computer system
components is protected from physical attacks resulting in drsclosure or undetected
modification in one of two ways: by providing physwal protection for a component
or by using cryptographic techniques to conceal and error check information stored
in or transmitted by the component. These basic techniques meet the security
requirements of vendors of external software and.are sufficient. in situations where
all of the exiemal software executed on a computer is provided by a single vendor.

In more elaborate systems, where external software is supplied by several vendors or

25 .

Introduction

where external software interacts with client-supplied software, more conventional
hardware and software security measures are employed in conjunction with the
preceding techniques to provide the security required by mutually suspicious

subsystems. This section briefly describes the proposed solution approach.

1.3.1 A System Model and Tamper-Resistant Modules

Before discussing the proposed solution approach, it is necessary to introduce a
simple model of the computer systems of interest. The model, shown in Figure 1-1,
consists of a processor (CPU), three levels of storage: primary memory (P-MEM),
seccondary memory (S-MEM) and transfer and archival storage (T&A), and various
170 peripherals, e.g., terminals or network interfaces. The only unusual component
in this model is the transfer and archival (T&A) storage. This level of storage is used
in two ways: vendors may ransfer (distribute) copies of external software to clients
using this level and external software may use it for secure archival storage, hence
the name. (Vendors also may distribute external software via communication
networks.) Storage media used at this level must be demountable and the files
contained therein are usually viewed as outside of the file system proper. These two
characteristics distinguish T&A storage from secondary memory, i.€., secondary
memory need not be demountable and it contains the file system. The system
components are connected by a bus used for addressing and data transfer, like the
DEC UNIBUS [9] or the IEEE S-100 bus [11]. This architecture is typical of current
personal and small business computers and serves as the model for the computer

systems of interest.

If no precautions were taken, it is apparent that external software executing on
this hardware could be attacked in a number of ways that would violate the security
requirements of vendors. Physical attacks launched against the processor, bus or

any of the storage devices could result in disclosure or undetected modification of

26

[ntroduction

CPU

P-MEM S-MEM T&A other peripherals

Figure 1-1: A Simple Model of the Systems of Interest

information. (Other peripheral devices included in the model are not security
relevant since they do not store or process sensitive information.) It is obvious that
some form of physical protection is required, at least for the processor if not other
components. To evaluate the results of physically protecting portions of the system,
the concept of a tamper-resistant module (TRM) is introduced. All information
contained within a TRM is protected from disclosure and undetected modification
in the following scnse. As long as the TRM is intact, data inside the module cannot
be discerned or modified by an attacker and if the TRM is breached the sensitive
data within is destroyed (erased). The implementation of TRMs will vary
considerably depending on the value of the external software being protected and
the perceived sophistication of potential attackers. For example, packaging
components on a single VLSI chip may provide adequate protection in some cases
whereas permanently scaled, seamless metal containers may be required in other

environments.

This thesis does not address the detailed problems of engineering tamper-
resistant modules, but rather assumes that TRMs can be constructed to provide

whatever level of physical security is required to protect external software in the

27

Introduction

systems of interest. However, some observations can be made about characteristics
of TRM-packaging. For example, TRM-packaging usually is not free and the cost
increases with the volume of the TRM. Maintenance of components ina TRM ;nay
be difficult or mpossnble (ifthe TRM is permanently sealed) TRM-packagmgmay
impose constraints on system growth and may limit equipment selection. Since
sensitive data within a TRM must be destroyed if.the TRM is opened, it may be
difficult ta package large quansmes of non»volatﬁe stom@ “Encapsulating
demountable storage media in TRMs also may pose problems These and other
considerations suggest that packagmg an entlre computer WIthm a single TRM,
supplied by a vendor, is not an ideal way to protect external software provided by
that vendor. Many of the shortcomings of TRM packaging can be avoided or at
least mitigated by using TRM packagmg n cohjunctlon ‘with cryptographlc

techniques.

1.3.2 Two Approaches to Prdtecting gitefnal Software

There are. two basic ways to use cryptography in conjunction with TRM
packaging: the encrypted bus approach.and the encrypied storage @wwch In the
encrypted bus approach, the computer: system is: divided into several pieces, each
contained in a TRM. Communication between. the. TRM-packaged pieces is
provided by a physically unprotected bus. Here eryptographic technigues are used
to secure inter-TRM communication over the uapretected bus.. In the encrypted
storage approach, the processor and some memory are packaged in a single TRM
and all other storage is physically unprotected. . Hege cryptegraphic: techniques are
used to protect data held in physically unprotected storage and transmitted over the
unprotected portions of the bus. Both appmaches oﬂ‘er an eﬂ'ectlve decentralized
means of protecting external software but they dlffer m how well each meets other

criteria.

Intreduction

- other peripherals

Figure 1-2: An Encrypted Bus Approach System Configuration

Figure 1-2 illustrates one of several system configurations-based on the encrypted
bus approach. In this configuration the processor and primary memory reside in
one TRM whereas secondary and T&A storage devices are packaged in separate
TRMs. (The-bald boxes about these components represent the TRM packaging.)
Communication among the TRMs is encrypted on the physically unprotected ‘bus.
Partitioning the system in this fashion reduces’some of the TRM paekaging
problems, e.g., this design results in smalter TRMs and it supports expansion
through adding or changing TRMs. It may even be possible to provide TRM-
packaged demountable media in this design for T&A storage, although secure
network communication offers a more practical means of distributing external
software. Since all of the security relevant system compeonents are protected by
TRMs only the bus can be attacked. To counter these attacks, each TRM is
equipped with a cryprographic. bus interface (CBI). ‘The: CBIs:employ cryptographic
techniques to conceal and error-check data and addresses transmitted on the bus,
thus preventing disclosure and detecting modification: attacks. ‘

Introduction

In many respects the bus functions as a miniature communication ncetwork in
which bus operations correspond to messages. The attacks to which bus opel‘atidns
may be subjected are the same as those encountered in general purpose
communication networks, e.g., release of message contents and message stream
modification [16]. Thus communication security techniques can be applied to
secure bus operations. However, bus communication is very special and many
standard communication security measures are not directly applicable here. For
example, bus transactions take place at very high speeds with low delay and involve
very small quantities of data. Protection mechanisms must be able to sustain
maximum transaction rates, introduce little or no delay on transactions and
minimize the number of additional bits transmitted for sccurity purposes. Yet the
data and addresses in bus operations must be concealed and checked to verify that
they are properly ordered and not modified in transmission.

However, some of the special characteristics of bus communication simplify the
task of securing bus operations. Most bus communication is very stylized in nature
and this can be used to advantage in designing the encrypted bus protection
measures. For example, one can take advantage of the fact that data transfers
between primary memory and secondary or T&A storage involve data aggregates
(e.g., disk sectors) that can be protected as a whole, rather than on a per-bus-
operation basis. The high reliability and overall simplicity of bus communication
simplifies bus protection measures, avoiding the need to provide efficient error
recovery and/or to handle out-of-order message arrival. The cryptographic
techniques developed for the encrypted bus approach are specially engineered to
take advantage of the eccentricities of bus communication while keeping up with
high transaction rates and minimizing overhead (delay and extra bits transmitted).
These techniques also cope with the problems posed by having TRM-packaged and

standard devices connected to the same bus.

30

Introduction

- Computer system designs based on the encrypted bus approﬁch satisfy the criteria
for decentralization, effectiveness, good performance aaditransparency and they are
fairly general. Although this approach solves:many:of the problems encountered in
trying to package an entire computer as a TRM,-some problems stilt remain. For
example, in partitioning the system, the pieces must :not become too small or the
cost of TRM-packaging and CBIs will.become excessive. It probably is not practical
to TRM-package demountable media, yet such media may be required for archival
storage even if external soﬁwafe .is distributed via networks. Problems in erasing
large quantities of non-volatile storage and the need for-periodic .m_aimenant:e may
preclude packaging some storage devices as: TRMs; - The need to enclose all security
relevant componenis in TRMs also may. limit equipment choices. Thus this
approach is not as flexible as might be desired and the cost of TRM packaging may

be a problem.

1

|S-MEM*} | T&A® | . other peripherals

Figure 1-3: An Encrypted Storage Approach System Configuration

Figure 1-3 shows an encrypted storage approach system configuration
comparable to the encrypted bus approach design.in Figure 1-2. In this. design the
processor and primary memory are contained in a single. TRM but secondary and

31

Introduction

T&A storage devices and the bus connecting these devices to the TRM are all
physically unprotected. (The asterisks in the figure indicate storage containing
encrypted data) The TRM is cquipped with a secure storage interface (SS1) that
employs cryptographic techniques to conceal and error-check data stored in these
devices, to prevent disclosure and detect modification. This design provides
excellent flexibility, generality and low cost. For example, the problem of building a
TRM capable of erasing large quantities of non-volatile storage is avoided in the
illustrated design since secondary and T&A storage is outside the TRM. All
equipment outside the TRM is "off-the-shelf,” allowing the clients great flexibility
in selecting components and reducing costs. The fact that this design requires only

one special device, an SSI, also contributes to its low cost and simplicity.

In the encrypted storage approach, data is aggregated into storage units that are
read/written as an entity, e.g., groups of files that are archived and reloaded
together (at the T&A storage level) or disk sectors (at the secondary storage level).
Each storage unit is encrypted independently, in a fashion that is a function of both
its address (or name) and a version tag, and an error detection code is associated
with each unit. A table is maintained recording the current version tag associated
with each storage unit. (This table is either contained wholly inside the TRM or it is
stored outside the TRM and is protected using these measures recursively.) These
techniques not only conceal the contents of storage very effectively, but allow the
SSI to determine if a storage unit returned as the result of a read operation is from
the correct location and if it is the most recent data stored at that location. The
constraint that only the most recent copy of a storage unit be returned must be
tempered in some circumstances for archival storage and it is not applicable to

transfer storage (since such storage is read-only).

Except for designs in which primary memory is encrypted, i.e., located outside

the TRM, the cryptographic techniques employed in the encrypted storage

32

Introduction

approach do not encounter stringent performance constraints. The space required
for error detection codes and for version ta@isa very small fraction of that devoted
to "real” data storage, except in the case of encrypted primary memory. If primary
memory is encrypted, it is essential that the processor be equipped with a cache
memory, to reduce the fraction of space devoted to overhead and to minimize the
impact of delays imposed by encryption. Hierarchic structuring of the version tag
tables for secondary storage and primary memory avoids the need to devote large
amounts of space to VTTs and approprtate cachmg of pomons of the hierarchy
minimizes the performance lmpact of thlS structurmg Computer system designs
based on the encrypted storage approach satrsfy the crrtena for decentrahzatron

effectiveness, ﬂexrblhty, low cost and are farrly general These desrgns are not as
transparent as those developed under the encr ypted bus approach largcly due to the
need to mamtam VTTs. Thelr performance is ,generally good except for those

conﬁguratlons in which prlmary memory 1s encrypted

1.3.3 Two Approaches to Meeting Clients’ Security Requirements

The preceding section briefly ‘described twd"ap?proaches to meeting the security
requirements of vendors. - These approaches protéct external software supplied by a
single vendor but they do not address the problems of meeting client security
requirements or of executing external software from miultiple véndors on a single
computer- system; : Thése two problems afe guite similar in “that both 'require
protection mechanisms that allow software from vepdors.and from the client to
mteract as mutually susprcrous subsystems. This can be.accomplished in two ways.
A trusted thrrd party can supply a TRM-packaged computes, based:on one of the
two approaches described in t_he prece,dmg section, with 4 secure operating system.
Both the c]ientand the vendors must trust this computer, to execute their software
while meeting one another’s security requirements. . Vendors can transfer external

33

Introduction

software to such computers either by forwarding. it through the third-party or by
using cryptographic techniques based -on: public-key ciphers [26}. This approach
requires some standardization - efforts so that external software from multiple
vendors can be executed or third-party equipment under the secure operating
system p,rovid'ed. The major problem-here is that both vendors:and clients must rely
on the third-party to produce a secure: operating system and a secure TRM-based

computer.

An alternative to this approach is to allow each vendor to supply his own TRM-
packaged processor and memory and to connect these modules togcther under the
control of a client processor. Flgure 1-4 1Ilustrates one way this could be
accomplished. In this example two vendors have supphed TRMs each contammg a
processor and pnmary memory. Secondary and T&A storage are shared among the
TRMs and the client processor. "The clrent processor controls access to these and
other shared system resources through an access comrol bus coup[er (ACBC) ‘The
access control mechanisms used here are snmtlar to those employed in centralized
systems but are somewhat simpler to implement here due to the hardware isolation
provided by the design. This approach. has the advantage that no mutual frust is
required since each vendor supplies his own TRM., This approach allows vendors to
select their own processor base but some, standardization of TRM interfaces and
operating system interfaces is still required., It.also remains.to be seen if the cost of
TRM:s can be reduced to a.point at which this becomes economically feasible.

In distributed systems members of the user community need to act both as clients
and as vendors in writing and using external softwaré. In fact, a user may act as both
client and vendor for the same software. A combination of the preceding two
approaches can be employed to meet this complex security requirement. Each node _
in the distributed system can consist of a client processor and a TRM supplied by a
third-party, configured as in Figure 1-4. The third-party TRM is used to execute

u

Introduction

CPU CPU

o]

=l

P-MEM P-MEM

ACBC

CPU

P-MEM S-MEM* T&A* other peripherals

Figure 1-4: A Multi-TRM System Configuration

external software supplied by other members of the user community, treating each
user as a separate vendor. To solve the problem of vendors being their own clients,
another third-party TRM is used to distribute the locally produced external
software. In this fashion a would-be vendor submits his software (source code) to an
installation server TRM which compiles code and distributes it securely to the

TRMs at the user nodes. Since this software is not proprietary, the client-users can

35

Introduction

be allowed to review the source code and decide if they want to use the software. In
this fashion users can decide for themselves if some distributed application
implements an advertised security policy that achieves their requirements for

confinement.

1.4 Related Work

The central topic of this thesis, the development of protection measures for use
with externally supplied software in decentralized computing facilities, has received
little attention in the open literature. The genecral problem of protecting
information stored in centralized computer systems has been the subject of much
rescarch. (See [29] for an excellent bibliography.) Most of this research deals with
protection of information from program-based attack or with controlling physical
access to central computer facilities. Although the concepts developed in such
research are applicable to the problem of protecting external software in
decentralized systems, most of the dctailed mechanisms developed for centralized
systems are not relevant to this "physically hostile” environment. The major
exception is the use of a secure operating system to provide protected subsystems in
third-party, multi-vendor computer system designs. Multi-vendor systems in which
each vendor supplies his own TRM also may make use of some conventional access

control mechanisms in managing shared resources,

There has been relatively little published research dealing with protection
problems in distributed systems. Much of this research assumes that the nodes that
make up the system are under the control of a single authority, e.g., see [5], as
opposed to the autonomous nodes considered in this thesis. In designing distributed
systems composed of autonomous nodes, usually the tacit assumption is made that

software executing at remote sites cannot be protected from physical or program-

36

Introduction

based attack by the user at the node if the concept of nedal autonomy is to be
supported. Thus the protection measures developed for such systems tend to be
limited in scope [33]. One report [20] proposed. using cryptographic methods to
protect data objects in distributed systems, atlowing the objects to be transmitted to
nodes for examination while. being able to detect modification of the objects upon
return to their "owner,” However this is a very limited facility that does not address
the full range of protectlon problems described and solved in this thesis.

A substantial body of literature deals with legal protectlon for propnetary
software (see [21]), but not with the development of technologlcal measures to
protect such software. A notable exception is a patent [1); issued in September 1979,
which proposes cryptographic mechanisms for protecting proprietary software for
use with personal computers. The patent. describes. a microprocessor designed to
execute enciphered programs. This design is superficially ‘sirhilar to the encrypted
storage approach configuration #llustrated in Figure 1-3 but it differs in a number of
ways. For example, the protection provided liy this patented design applies only to
object code and read-only databases, not to modifiable databases. (The inventor
claims that the mechanisms could be used to protect such databases but significant
cryptographic weaknesses would become apparent in such applications.) -This
restriction precludes a number of applications.both for proprietary software and for

distributed systems software.

The same cryptographic limitations that preclude use of this design‘ for
modifiable databases also restricts the design to executmg only one program per
microprocessor chip. This is in marked contrast to the system designs proposed in
this thesis each of which is capable of executing an essentially urttimited number of
program products from vendors. In fact, the cryptographic techniques presented in
the patent are capable of concealing no more: than one primary memory image
worth of code/data, so secondary and T&A storage mechanisms are inapplicable

37

Introduction

here. More importantly, this patented microprocessor design includes no facilities
for detecting modification of code or data. As noted earlier, the lack of such
measures permits some attacks that could result in disclosure of the code or data, so
this design does not even provide complete protection against disclosure. The lack
of modification detection mechanisms also severely limits the range of applications
which can be protected by this design, e.g., the design is incapable of providing
secure accounting or revocation facilities or of supporting distributed systems
software as described above. Thus this patented design differs in many respects

from those presented in this thesis.

The arcas which are most directly related to this thesis are cryptography and
communication sccurity research. This thesis does not develop cryptographic
algorithms but it does rely on an understanding of basic cryptographic techniques
and of characteristics of modern ciphers, e.g., the Data Encryption Standard [23] and
the RSA public-key algorithm [26], in developing the encrypted bus and encrypted
storage approach of protection mechanisms. The problems of protecting
information transmitted on a bus in the computer systems of interest differ
somewhat from those encountered in protecting information in general purpose
communication networks, but communication security research does offer some
help. For example, research in this area provides a taxonomy of threats that are
applicable to the thesis problem and offers techniques for dealing with these threats
in general purpose communication cnvironments. Some of these techniques are
directly applicable to the problems encountered in this thesis and others can be

modified to meet the specialized requirements encountered in this context.

Some research has been carried out on the use of cryptography to protect files in
centralized systems. Commercially available software developed at IBM [12]
provides key management facilities and cncryption/decryption primitives that can

be used with files on sccondary storage, but these mechanisms must be explicitly

38

Introduction

invoked by the user and no higher-level, encryption-based protection mechanisms
are provided, i.e., there is no specific support for mechanisms to detect modiﬁcation
of data. Moreover, the elaborate key management facilities: provided by this
software is designed for multi-user centralized systems, not: the single-user,
decentralized systems which are the topic of this thesis. Thus this work has very
little relationship to the topic of this thesis. ~Other researchers {18, 27] have
suggested using cryptographic ' techniques ‘to- protect information stored (and
executed) at centralized systems, but these suggestions: have not been accompanied -
by detailed proposals or even thorough analyses of the security requirements. [t is
easy to postulate encryption as a means of protecting informatiorr m this cohtext but,
as this thesis illustrates, there are a number of difficult problems that must be solved

in implementing such mechanisms.

In summary, the problem of designing protection mechanisms for use with
externally supplied software in decentralized computing-environments has received
little attention. The only work that parallels this thesis is that of a patented
microprocessor design which, as noted above, does not address the full range of
problems described and solved in this thesis. Research in pretection of information
in centralized systems, communication security,. cryptographic file security and
distributed system protectron mechanisms ali contnbute in some fashron to the work
descnbed in this thesrs but thrs work studres and solves problems that have not been

addressed prevrously

1.5 Thesis Outline

Chapter 2 explores in detail the system model mtroduced in thrs chapter The
chapter projects values of various parameters for processors, busses and storage and

peripheral devices that might be used m?_:the systems of irhterest over the next 3-5

Introduction

years. 'This chapter also examines the concept of tamper-resistant modules in
greater depth, noting some of the problems that may arise in ¢ngineering such
modules. The simplest approach to protecting external software based on the use of
a TRM is described and evaluated. The chapter concludes with a brief discussion of
cryptography and a simple application example, secure network-based distribution
of external software. The protection mechanisms developed in Chapters 3 and 4
employ cryptographic techniques, so this discussion is intended as background for

the reader who may be unfamiliar with fundamental cryptographic techniques.

Chapter 3 develops designs for protecting external software based on an
encrypted bus approach. It contrasts security requirements for this approach to
those usually associated with communication systems. The chapter develops
cryptographic-based protection mechanisms to secure transactions on a physically
unprotected bus connection TRM-packaged devices that form a computer system.
In developing these mechanisms, special attention is paid to minimizing the impact
of protection measures on the performance an(i overall cost of the computer system,
System initialization procedures, error response and recovery measures and
procedures for adding new TRMs to a system are presented. This chapter describes

ways of interfacing non-secure devices to these encrypted bus systems .

Chapter 4 develops system designs based on an encrypted storage approach. The
security requirements in this approach differ somewhat from those in the encrypted
bus design. These differences are examined through the use of an abstract model
that captures the essential features of this approach independent of the system
configuration employed. Cryptographic-based protection mechanisms are
developed to secure data held in physically unprotected storage. The protection
mechanisms employed here differ noticcably from those developed in Chapter 3.
Again, special attention is paid to minimizing the impact of these protection

mechanisms on system performance and cost.

40

Introduction

Chapter 5 explores the problems of developing computer systems that execute
software supplied by multiple vendors and of meeting user security requirements in
the context of systems executing external software. This chapter uses the system
designs of chapters 3 and 4 to achieve these dual requirements. These requirements
can be met in two ways, either through the use of third-party supplied TRMs with
trusted operating systems or through the use of separate TRMs (one per vendor)
combined into a single computer system. Both of these approaches are described

and evaluated in terms of cost, effectiveness and acceptance by users and vendors. .

Chapter 6 summarizes the results of the thesis, examines the applicability and
limitations of the proposed mechanisms and suggests possible directions for further

research in this area.

1.6 How to Read This Thesis

Theses can be read at a number of levels, ranging from cuisory perusal to critical,
in-depth analysis. Those who wish only an overview of the research described in
this thesis probably should read only this introductory chapter and the Concluding
chapter. Such readers are already more than half-way through if they have not
cheated (by skipping material before this section). Brave souls who desire a detailed
understanding of all the protection mechanisms developed in the thesis will have to
wade through each chapter, section and subsection. However, individuals with
some understanding of cryptography may skim the discussion of this topic presented
in section 2.3. Special provisions have been made for readers seeking a thorough
understanding of this research but not wanting to examine all of the proposed
mechanisms in detail. At one or more points in Chapters 3, 4 and 5, instructions
have been included to direct the reader around detailed discussions of specific

protection mechanisms. One can gain a fairly good understanding of this research

41

Introduction

by following these directions, even if all of the detailed discussions are avoided. As
a further aid to the reader, a list of acronyms used in this thesis is provided as an

appendix (page 248).

42

Chapter Two

The System Model, TRMs and Cryptography

This chapter begins by describing in greater detail the compflter system model
introduced in section 1.3.1. Variations on the basic model are introduced and
projected characteristics of devices in these systems are exfrapolated from current
device specifications. This model provides an engineering contextr for the design
and evaluation of the protection mechanisms explored in the thesis. Next, the
chapter explores the use of tamper-resistant modules (TR Ms) to physically protect
security-relevant system components and thus prot\ect external software meetmg the
requirements of vendors. A sxmple system desngn employmg a smgle TRM can
meet vendor security requirements, but there are a number of limitations associated
with this simple design. To overcome these elimimticns;, more elaborate designs
combining TRMs and cryptographic techniques are developed in Chapters 3 and 4.
This chapter concludes by introducing the readef to some crypfegraphic concepts

and examining cryptographic techniques for use in the latter chapters.

2.1 The System Model Revisited

A simple model for the computer systems of interest was introduced in Section
1.3.1. This model, reproduced in Figure 2-1, and variations on-it are described in
greater detail in this section. The model provides a framework in which detailed
designs of protection mechanisms are developed- and evaluated and it includes only
those details that affect these mechanisms. For example, most details of bus
arbitration are ignored as they are largely irrelevant to the proposed protection

mechanisms, whereas timing characteristics of devices in the system are presented

43

"The System Model, TRMs and Cryptography

since they are necessary in evaluating the performance impact of such mechanisms.
This model attempts to embody the high level architecture of personal and small
business computers that will be constructed in the next 3-5 years. However,
diffcrences between this model and computers actually produced need not preclude
the adoption of the protection mechanisms developed in the thesis. In fact, the
protection mechanism designs that are most likely to prove feasible are largely
independent of details of processor and primary memory operation. Thus, although
the system model attempts to capture salient features of real computers, deviations

from this model do not affect all the protection mechanisms proposed in this thesis.

CPU

P-MEM S-MEM T&A other peripherals

Figure 2-1: The Basic Mode! for the Computer Systems of Interest

Before proceeding to a discussion of variations on this basic model, some
additional comments are in order. In Figure 2-1 and other system configuration
diagrams each storage system component is depicted as a single box. This is not
meant to imply that in é\’ery case there is but one of each of these devices nor that
multiple instances of a device are packaged together. In the basic system model
there is only one processor (CPU) but there may be multiple, independently
packaged instances of the storage devices. In particular, when storage devices

containing sensitive data are TRM-packaged, additional, non-TRM-packaged

44

The System Model, TRMs and Cryptography

devices may be used to hold client data since vendors are not trying to protect this
data from physical attack. This device replicaﬁon is not required for vendor secuﬁty
but may be preferred by clients since it gives them full access to their data. (This
dual packaging strategy is not applicable to transfer storage since it is used
exclusively by vendors.) Thus, these configuration diagrams illustrate minimal

implementations.

In section 1.3.1 there was a brief discussion of how secondary storage (S-M EM)
differs from transfer and archival storage (T-&A). It was noted j;hat transfer and
archival storage is always demountable whereas secondary storage may be non-
demountable. Thus these two types of storage are not neéeSSarily distinguishable
based on the devices used to implement them, i.e., a demountable disk might serve
as either transfer and archival or secondary storage. A second distinguishing feature
is that files on T&A storage are viewed as being outside of the file system maintained
on secondary storage. The.assumption here is that program files are transferred into
primary memory for execution .from the file system (via swapping or demand
paging). Portions of data files are read and written by transfers between primary
memory and secondary storage, e.g., disk sectors may be the object of suéh transfers.
Externally supplied software distributed to a client on.transfer storage media is
moved to a permanent home on secondary storage befere use. A sensitive file on
secondary storage may be recorded on secure archival storage media and later can
be reloaded, i.e., copied to the file system under its original name.

There are three possible reloading constraints associated with files maintained on
secure secondary storage: unconstrained, non-reloadable and most recent only. Some
files have no constraints on reloading, i.e., the client is free to reload any 'ar'chiw)ed
copy of the file. An object code file produced by a proprietary -conipiler might fall
into this class since the vendor has no concern over which version of the file is
executed by the client. Other files are non-reloadable, i.e., under no circumstances.

45

The System Model, TRMs and Cryptography

should these files be archived and later reloaded. Accounting files used by
proprietary software may fall into this category since if they..were reloaded the client
could "turn back the clock” on the billing function they provide. Special
precautibns must be taken to ensure the Teliability- of these files and these
precautions may significantly increase the space oceupied by the file. Vendors also
may require some files to be archived and reloaded together by the operating system
(tp enforce some consistency conslraims) and these can be grouped. into archival
um'ts on archival srorage The same concept can be applred to files that make up
external software packages yielding transfer umls on transfer storage Ways in

which these groupmgs can be |mp]emented securely are exammed Iater .

In. between these two extremes are files that may be reloaded only. from the most
recent archived copy- of the files. . For example, -a:database may :be ‘periodically
checkpointed (archived) and.a small transaction Jog may keep.track of the updates
that take place between checkpoints: The database:should be reloaded only from
the most recent archived copy and:the small transaction tog can be non-reloddable.
These reloading constraints apply:not only to:individual. files but also'to groups of
files.that must be archived and reloaded: together; to ensure comnsistency across file:
boungdaries. (Such: consistency also may-be achieved explicitly by including some
information in each file that:binds it to the: other files archived ‘at the same time;)
Even if there are no constraints with respect to timeliness associated with reloading a
file (unconstrained), it may:be required that:other files archived at the same time
must be reloaded along with thls ﬁle Thus even unconstramed ﬁles may have soame

constramts on reloadmg.

2.1.1 Variations on the Basic Model

“The computer system pictured in‘Figure 2-1 employs 4 single, general purpose
bis- to interconnect all of the system devices: “Figure 2-2-iustrates a variation’ on _

46.

The System Model, TRMs and Cryptography

this mddel, a dual-bus system in which primary memory is attached via a dedicated
memory bus whereas other devices are attached to an /0 bus and the two busses are
connected via a bus coupler at the processor. (The bus coupler provides functions
necessary to mate the two busses, e.g., buffering and inter-bus arbitration.) A dual
bus system offers several advantages over a single bus system. The memory bus,
since it is quite short and since it is specialized in function, can be made faster than a
general purpose or 1/0 bus, thus reducing effective access time to primary memory.
The 1/0 bus is used to interconnect devices: with less s&nngent performance .
requirements and thus can be slower than a general purpose bus. In this way more
expensive, high speed bus interfaces are employed only on:the memory bus (2
interfaces) and less expensive bus interfaces are used on the 170 bus where many
more interfaces are required. This c_onﬁguration also reduces contention on both

busses, further improving performance.

- CPU

P-MEM | |S-MEM| | T3A | _ otherperipherals

Figure 2-2: A Dual Bus System Model

Dual bus systems provide improved performance at the cost of a bus coupler and
two high speed bus interfaces. This performance gain entails some cost and since
high performance is not a major design parameter for the systems of interest, one

expects to see both single and dual bus systems in practice. Another way to improve

41

The System Model, TRMs and Cryptography

syStem performance is to add a cache memory to the processor. (System model
diagrams do not explicitly illustrate the preserice of a cache at the processor.) The
major mativation for using cache memory-is that it réduces the effective access time
- of primary memory. As processors'in the systems of interest become faster,
inclusion of cache memeory will probably become appropriate. - Moreover, use of
cache memory allows somewhat slower, cheaper primary memory to be employed
with only a minimal effect on effective access tifine. - This is-an’important feature as
processor costs will be small relative to primary mewiory costs in many of these -
computer systems. Finally, use of cache memory reduces bus ¢ontention and may

eliminate the need for.a very high speed bus, i.¢.; one capable of keépmg up ‘with

processor-generated references to primary memory.

Agam the performance gam achleved here 1s not w1thout cost. The addmon of
cache memory to a processor is a non-trivial engmeermg task and the cost of the
resulting system is correspondingly increased. Thus one expects to encounter both
cache-equipped and cacheless systems in practice. A cache can be added to a
processor in either a single or dual bus system, yneldmg four. iﬁwc sys{em
conﬁguratxons smgle bus cacheless, smgle bus cache- eQmpped dual 'Eus cuthei&es‘
and dual bus cachc eqmpped In general system performance lmpmves with
successive conﬁguratlon choices on thiS’hSt”lF a sngic’burqachelmsysteiﬁ Is the
slowest ‘aitd &' diial Bus; cache-equipped system the s tesﬁ, In illystzating system
configurations, if the choice between single and dual bus designs or the inclusion or
omission of a cache is irelevant to:proposed ;security, mechanisms, the generic
model of Figure 2-1 will be used. Otherwise, specific bus configurations will be

shown and the inclusion or omission of a cache will be noted in the text.

- The System Model, TRMs and Cryptography

2.1.2 Processor and Storage System Parameters

Most details of processor operation are irrelevant to the model but a few
parameters are critical to the formulation and evaluation of design options. One of
the most important parameters is the processor word size, i.e., the number of bits of
data normally fetched and transformed by the processor. A word size of 32 bits is
projected for the systems of interest. This is a larger word size than most personal
computers employ at this time, but already there are single chip processors with 32-
bit registers, e.g., the MC68000 [22], and full 32-bit microprocessors will probably be
announced before the end of 1980. The processor should be capable of directly
addressing about 16M-32M bytes of primary memory, to take advantage of the
continuing improvements in memory technology. Bus addresses should be a little
less than 32 bits, to support byte addressing of primary memory (24 to 25 bits) and
for control of peripheral devices. The size of these addresses and the word size
suggests that one set of bus lines should be used alternately for addresses and data,
to reduce the cost of bus interfaces. This is esb’ecia‘lly important for the general

purpose and I70 busses since a number of devices will be connected to these busses.

If the processor is equipped with a cache memory, several additional parameters
come into play: cache size, line width and update scheme? A survey of existing 32-
bit, cache-equipped processors turns up cache sizes ranging from 8-32 Kbytes and
line width of 8-32 bytes. - As noted earlier, the systems of interest are not intended
for extremely high throughput, so the projected cache size for these systems is 8
Kbytes. For most systems a line width of 8 or 16 bytes (2 or 4 words) will be
appropriate but a 32-byte line width will be required in support of some encrypted
storage protection mechanisms. Since the systems of interest generally support only

- asingle user, the hit rate for a cache of this size may be in the range of 95-98% [6].

3A cache line is the group of words trcated as a unit for addressing and replacement purposes.
Within the cache, there are a number of cache line frames, each capabic of holding one line.

49

'The System Model, TRMs and Cryptography

Cache memory control logic will employ ene of two schemes for updating the
cohtents of primary memory: write-thraugh or write-back. In.a write-through cache,
a write to a word in the cache is propagated to primary memory immediately, so that
primary memory ‘and the cache remain "in sync." (In fact, the update of primary
memory normally is buffered by the cache so that the processor does not have to
wait for the primary memory access to complete, so there is a short time window
when the two are not in sync.) If the target of a write is not in the cache, then the
update takes place only in primary memory, i.e., the cache is not affected. In a
write-back cache, writes are effected only .in the cache, i.e., an attempt to modify a
word not in the cache results in a fetch of the appropriate cache:line from primary
memory. Updates are propagated to primary memory only when modified cache
lines are evicted as part of the cache replacement strategy. . (Note that an entire
modified cache line is copied into primary memory; there.is no attempt to keep
track of which words in the line were modified.) In.a write-back cache anywhere
from 20-60% of the misses result in eviction.of modified lines; i.e., the evicted line is
written into primary memory. Unless otherwise stated, caches: in this thesis are
aSsumed to be write-through.

To estiméte the performance characteristics of the processor and various levels of
storage, one must adopt some rules of thumb. . Recent trends in semi-conductor
technology provide several such rules for projecting the performance and cost of the
systems of interest [2]. These projections are useful in that they provide a basis for
evaluating proposed designs in terms of technological (and economic) feasibility.
For example, one rule of thumb notes that.the compenent’ count per IC chip
approximately doubles every year and memory chip capacity quadruples every two
to three years. At the same time, raw speed of IC chips doubles every five years. As.
production techniques are refined the cost of producing chips with constant
performance characteristics drops by about 20% per year. Using these rules of
thumb, one-can extrapolate from »currentpmdha speéiﬁcations to project some of

the characteristics of systems that will come into existence over the next 3-5 years.
501 .

The System Model, TRMs and Cryptography

Based on these trends, the minimum instruction execution time for processors in
the systems of interest should range from about 1008s (10 MIPS maximum) for a
high performance multi-chip CPU (the "top of the line" im: this class of systems) to
about 600ns (1.6 MIPS maximum) for a slow, single chip- processor (a "low end"
entry in this class). It is assumed that the fastest instructions are register-to-register
operations, no memory references are involved so this time is also taken as the
minimum time between processor-generated memory references The mean time
between processor- generated memory references is assumed to be about a factor of -
3 or 4 greater than this minimum, accounting for longerms_tructron execution times
and references for instruction operands. This yields processors witlt average speeds
ranging from 0.4 to 3. 3 MIPS'(assumlng matched primary memory access times as
described below). For the storage components of the system there are a number of
relevant device characteristics: access time and transfer rate, mean trme between
references, storage capacrty of the devrce size of data aggregates transferred to and
from the device and the mean time between fallure (MTBF) of the device. In
general, going from the lowest level in the storage hrerarchy (cache memory) to the
hrghest (T&A storage) the access time, mean t|me between references capacity and

data aggregate size all i increase whereas the MTBF and transfer rate decrease

The volatility and demountability of storage devices are also relevant to the
system model. Cache and primary memory are constructed from solid state
components and are volatile whereas secondary memory and T&A storage are non-
volatile. Only T&A storage is required to be demountable but secondary storage
may also be demountable depending on the technology employed Note that even
though magnetrc bubble memorres may see mcreased applrcatlon in thrs time frame
such memories are not expected to be prrce competmve wrth removable magnetrc
media for many apphcatlons and thus W|ll not srgmﬁcantly drsplaee such medla. In
fact, the recent unprovements m non-demountable drsks eg - Wmchester
technology disk drives, make it lrkely that magnetlc bubble memones wrll not

51

The System Model, TRMs and Cryptography

signiﬁcantly displace disks for some time. Thus the predominant form of secondary
storage employed in these systems is likely to be magnetic disks. Also, not all system
configurations will provide separate devices for secondary and T&A storage, thus

demountable media may serve a dual role in some systems.

Now consider projected values of some these parameters for devices at various
levels in the storage hierarchy. In high performance systems employing a cache, the
effective access time will be about the same as the minimum instruction execution
time. (The memory chips used in caches are static RAMs so the cycle time and
access time are the same.) This access time includes checking to see if the requested
word is in the cache and the transport delay between the cache and processor. Thus
a processor with some instruction lookahead facilities can maintain a continuous
stream of references to the cache for minimum time instructions. This suggests an
effective cache access/cycle time of about 100ns, which yiclds a transfer rate of 320
Mbits/s. Access time for primary memory (using 64-256 Kbit chips) should range
from about 100ns to 200ns, exclusive of bus t‘ranspon time, with cycle time about
twice access time. Bus time will add some 200ns to 300ns to this access time (for
transport), yielding an effective primary memory access time of about 300-600ns, so
the maximum primary memory transfer rate ranges from about 106-213 Mbits/s.
(This transfer rate assumes a non-interleaved memory; cache-equipped systems will
require at least two-way interleaving for quick transfer of cache lines, increasing the

transfer rate.)

In a cache-equipped system, the effective memory access time seen by the
processor is determined by the access times of the cache and primary memory, by
bus transport time and by the hit rate. A cache-equipped system using fast (100ns
access time) primary memory and a fast (100ns transport time) bus can achieve an
effective average access time of 104-110ns, based on a 95-98% hit rate. For a cache-

equipped system using slower primary memory (200ns access time) and a slower bus

52

The System Model, TRMs and Cryptography

(200ns‘transpon time), the effective average access time is 110-125ns, based on this
hit rate range.4 This illustrates the enormous improvements that cm:]3 ’b\é obtained by
inclusion of a cache memory. Even if performance is not a critical concern,
economics may dictat_'e;use of a cache since it allows use of slawer, cheaper memory
chips for primary memory. At this time, the location of the "break even” point,
based on the cost of equipping a processor with a cache versus the cost of memory

chips and the anticipated size of primary memory, is not agbvious.

For secondary storage the access umesahd “transfer. mtes vary considerably
depending on the technology employed. For example, magnenc bubble memones
may provide average access times of 10-15ms and transfer rates of O 1 l 5 Mblts/s
whereas fixed disks may exhibit average access times of about 70ms and transfer
rates of 10-15 Mbits/s. Bubble memories, using 4-16 Mbit.chips, may be configured
as small capacity storage devices (4-16 Mbytes) whereas hard dlsks may contain up
to 100 Mbytes. Devices used for T&A storage tend to be relatlveiy slow, at the low
end of the range for secondary storage devices. For exampie; floppy disks may
exhibit access times on the order of 100-400ms and transfer rates of 0.5-1.0 Mbits/s.
Capacity for floppies may grow to 5-10 Mbytes usmg double sided, double density
recording technology. For all of these secondary and T&A storage devices the
(usable) record size is expected to be about 512 bytes.: ‘These characteristics of the
computer systems of interest are collected in Table 2-1.

This effective average access time calculation assumes that on a cache miss the first word fetched
is the one which causcd the miss and that subsg;qucnt st;fgrcnces to word§ in the fotched line occur at
cache specd. This sécond assumpfion may not Kold for long cache Tinics (>4 words) or if a slow bus
and slow primary memory are used.

53

The System Model, TRMs and Cryptography

System Characteristics
- Processor and Bus
*word length: 32 bits
*minimum instruction time: 100-600ns (1 6-10 MIPS)
*average instruction tlme 300]800ns (4—3 3 MIPS)
*bus cycle time: 100-200ns
*multiplexed data/address bus:lines: 32 -
- Cache (optional) o
*9ccess/cycle timc: 100ns
*line width: 8, 16 or 32'bytes. -
A *capaClty 8 or 16 Kbytfs 5 o

- Primary Memory
*access time: 100-2%113

*cycle Ume 200-400ns |
*capacity. 64K-16M words

- Secondary and T&A Stoméé'
*access time: 10-400ms
*transfer rate: .1-10 Mbits/s
*capacity: 5-300 Mbytes

*record snze 512 bytes o

54

¢

. The System Model, TRMs and Cryptography

2.1.3 Other Pe ripherals

In Figure 2-1 peripherals other than storage .devices are lumped together at the
end of the bus under the heading "other peripherals." This heading: includes
terminals, bulk 170 devices and communication facilities, e.g., network interfaces.
These devices are not described in: detail since their operation is not critical:to the
security of external software. For example, external software that interacts with a
user via a terminal must be prepared to accept any input ‘from the user and thus no
tampering with the terminal should affect the secure operation of the software. The
same argument holds for hardcopy. output devices.and even for network interfaces.
(If external software requires seciuire communication facilities, these facilities will be
provided within-the TRM containing the processor.) in designing mechanisms to
protect external sofiware, provisions must be made:to accommodate 1/0 devices,*
i.e., these devices must still function properly. in conjunction with protection
mechanisms. ‘

Only two 170 devices exhlbrt hrgh enough transfer rates to warrant further
discussion; network interfaces and brt—map dtsplays For most personal and small
business computers the network interface will be telephone based and thus is
restricted to relatively low bandwrdth e.g. Iess that 10 Kbtts/s However, in
distributed systems, hlgh speed local area networks wrll probably be employed and
the bandwidth could be in the netghborhood of 10-20 Mblts/s ThlS transfer rate is
equal or greater than that of many secondary storage devrces and thus constttutes a
significant contribution to bus utrllzatron Many systems may be equrpped wrth bit-
map displays in the future. These dtsplays assocrate wrth every prxel on the screen
one bit in a drsplay memory, typrcally on the order of 128 Kbytes (Color blt-map
displays associate several brts with each prxel) The data transfets requnred to-
manipulate the dlsplay may be hmrted pnmarrly by memory access time, SO these
drsplays are capable of very hrgh transfer rates and they can bmome dommant users

of a general purpose or 170 bus.

55

The System Model, TRMs and Cryptography

2.1.4 Basic Bus Characteristics

The busses (general purpose, 1/0 and memory) employed in the model are
abstracted from conventional designs such as the DEC UNIBUS and the 1EEE S-
100 bus. Only those characteristics of bus operation that directly affect the design of
protection mechanisms are included in the model. The bus consists of a collection
of bidirectional lines for transmitting addresses, data and control information, as
detailed in Table 2-2. (Additional lines are provided for timing, arbitration, power,
etc. but are not included the model.) The general purpose and 1/0 bus are
asynchronous or pseudo-synchronous whereas the memory bus is assunmed to be
synchronous. A bus cycle is the time interval required to perform a bus operation.
There are four bus operations: PRESENT-ADDRESS, PRESENT-DATA,
ACKNOWLEDGE and ERROR. The first is used to place an address on the bus,
the second does the same for data (or an interrupt vector) and the third

acknowledges receipt of data. The last operation, ERROR, is described below.

Bus cycles are well defined for synchronous and pseudo-synchronous busses; for
asynchronous busses the minimum time required for a bus operation as described
above will be referred to as the bus cycle time. For the systems of interest the bus
cycle time will range from about 100ns for a memory bus to about 200ns for general
purpose or 170 busses. An arbitration mechanism, which may proceed in parallel
with data transfers, is used to select the next device to use the bus, ie., the bus
master. (Although arbitration is an important aspect of bus design, all of the
commonly used bus arbitration schemes are essentially equivalent from the
standpoint of security and thus no specific arbitration scheme is included in the
model.) Once granted the bus, the bus master uses two or more operations to
complete a bus transaction, e.g., a data transfer, with another device, the slave. (In
asynchronous and pseudo-synchronous busses a handshaking protocol usually is

employed to allow both slave and master to control the duration of the transaction.)

56

BUS LINE

A/DO-31

PARITY0-3

ADDR

DATA

- INT

READ

WRITE

EXT

ACK

ERROR

RESET

The System -Model, TRMs and Cryptography

DESCRIPTION

used to transmit addresses and data

- used to parity check lines A/D@-31

asserted when an address is on lines A7D0-31
asserted when data is on lines A/D0-31

asserted when interrupt vector is on lines A/DO-31

 asserted during read transactions

asserted during write transactions

asserted during exlf:ndqd transactions §

asserted by a slave m,sckpowlcdgs a yvsité or interrupt
asserted; by a slave to mdlcate a bus qpémtips emor} | |

asserted to reset the device se];ctcd by lines A/D0-31

Table 2-2; Bus Lines for the System Models

T‘ne ERROR operatnon noted earlier is |ssued by a slave 1f a transactxon cannot be

successfully completed even though the master uses a tlmeout to detect the. fallure 7

of a slave to mmnd

57

‘The System Model, TRMs and Cryptography

Associated with each device on the bus are one or more addressable cells from or
to which data is read or written (or both). A device examines addresses placed on
the bus to determine if one of its cells is the target of an operation. In the case of
primary memory these addresses correspond to storage cells whereas for other
devices they represent control and status registers. The processor writes into a
control register to initiate an operation and reads from a status register to determine
the outcome of the operation. For example, the processor initiates a direct memory
access (DMA) transfer of data from a disk to primary memory by writing the (disk)
source address, the (primary memory) target address and the number of words to
transfer into appropriate disk control registers. The disk then transfers data to
primary memory, one word at a time, indicating completion of the transfer by
setting an appropriate value in its status register and by generating an interrupt.
Devices that transfer very small quantities of data, e.g., character-at-a-time 1/0
devices, often use device registers to hold the data rather than employing the DMA
technique described above. In such cases the device generates an interrupt and the

processor transfers data between primary memory and the device register.

In systems employing a dedicated memory bus, this bus is assumed to be quite
similar to the general purpose and 170 busses described above. There will be no
arbitration mechanism because there is only one bus master, the bus coupler
(processor), and there is no need for interrupts. The memory bus will be
synchronous with transfers taking a known period of time, since the memory
provides a uniform access time. Thus a memory bus is somewhat simplier than a
general purpose [70 bus. The functions provided by a bus coupler used to interface
these two busses will vary depending on the system design. For example, the
coupler may provide some buffering for speed matching, to account for differences
in the number of bus cycles required for operations on the two busses and to
manage arbitration across the two busses. On a store into primary memory by a
device on the [/0 bus, the bus coupler can generate an ACKNOWLEDGE

58

The System Model, TRMs and Cryptography

immedialely and carry out the transaction on the memory bus asynchronously. On
primary memory fetches initiated by devices on the 170 bus, the bus coupler can
prefetch data in anticipation of subsequent requests from these devices. In this
fashion the 170 and memory busses can operate largely independently and most
transactions on the general purpose bus will not suffer long delays in accessing

primary memory.

2.1.5 Graphic Conventions for Bus Transactions

Two graphic techniques are employed in this thesis to describe bus transactions,
especially the sccure forms of these transactions developed in later chapters. The
first, an event graph, shows the flow of data among the processing steps in the
transaction and provides symbolic timing information. Event graphs indicate points
in a transaction where there is potential for parallelism without making any
assumptions about the performance or configuration of devices. The sccond, a
timing diagram, shows the utilization of various devices during a transaction,
illustrating the parallelism achieved by using a specified number of devices under
stated timing assumptions. Timing diagrams are useful for determining the
transaction time and cycle time of transactions for various equipment

configurations.

In event graphs, processing steps are represented as labelled circles. The labels
consist of a symbol to indicate the type of step and a number to distinguish among
multiple instances of the same step type. Narrative descriptions of transactions refer
to the steps using these labels. Table 2-3 lists the symbols used to label processing
steps. (Some of these symbols refer to operations that are described later in the
thesis; they can be ignored for the moment.) The flow of data (and time) is from
left to right and is indicated by arcs joining process-step circles. The inputs and

outputs of a transaction, as seen by the bus master, are indicated by bold dots and

59

The System Model, TRMs and Cryptography

SYMBOL PROCESSING STEP DESCRIPTION
c encryption/decryptionofa64-bitdatablock
T | transmission of <32 bits on the bus
A access to read 'or-write a memory cell
E calculation df a 64-bit eryptographie errnr detection code
P processdr interrupt handling -
X XOR (modulo 2 sum) of two <32-bit quantities

= comparison of two <32-bit bitstrings -

- Table 2-3: Symbols Used in Event Graphs and Timing Diagrams

are accompanied by explanatory labels. The steps that comprise a bus transac’uon
occur at three sites in the system, the current bus master, the bus and’ the addressed
slave. To illustrate the parallelism inherent in this distributed environment, process
steps are grouped along three-horizontal axes correspondling to the master, bus and
slave,

In timing dlagrams each independent device mstance e g., a cryptographlc device
or bus lines, is represented by a separate labelled ﬁne honzontal line. These

devices are grouped (vemcally) correspondmg to the event graph i.e., bus master
devices are at the top, ﬁllowed by the bus and by slave dewces. Tnne is dwlded

The System Modcl, TRMs and Cryptography

into bus-cycle duration quanta, indicated by fine vertical lines, and these lincs are
numbered at the bottom of the diagram. The actual duration of a bus cycle is not
indicated since only relative times are needed to perform the required calculations.
Cycles during which a device is busy are indicated by a bold horizontal line, labelled
as in the corresponding event graph. Some events, e.g., bit string comparisons or
modulo 2 addition, are not noted since they are quite fast and thus arc effectively
absorbed by adjacent event times. Figure 2-3 illustrates the conventions used in

event graphs and timing diagrams as it describes two simple bus transactions.

Minimum (ransaction time (assuming maximal parallelism) is determined by the
longest path in an event graph, i.e., the sum of the process-step times along that
path. This time is represented as an expression in which lower case versions of
process-step labels are used to subscript a time symbol (7). Thus the time to
transmit 32 bits on the bus is Tz and the time for an encryption/decryption
operation is 7. Again, only major operations (those which appear in timing
diagrams) are ?ncluded in timing expressior{s. Some slight confusion arises in
dealing with memory accesses in event graphs, timing diagrams and timing
expressions. In timing diagrams the symbol A represents the activity of accessing
memory and its duration is the cycle time of the memory access, but in timing
expressions 7' represents the access time of memory. In reading a memory cell, the
value is availgble in time Ta after the address is received even though memory is
busy (unavailable) for the full cycle time. On writing a memory cell, the cycle time

may begin when the address arrives, even though the data may not yet be available.

The event graphs use the symbol A for both read and write accesses.

2.1.6 Standard Bus Transactions

Figures 2-3 and 2-4 provide the event graphs and timing diagrams for the three

standard transactions: read, write and interrupt. (These transactions are referred to

61

The System Model, TRMs and Cryptography

as standard to differentiate them from the secure transactions developed later in the
thesis.) The cvent graphs and timing diagrams for these transactions are fairly
simple but they illustrate the basic featurcs of both methods of graphically
portraying transactions. In the timing diagrams in these figures the assumption is
madec that memory access time is equal 1o bus cycle time, i.e., fast memory is paired
with a fast bus and slow memory with a slow bus. Although other combinations are
possible, this convention is adopted throughout this thesis, simplifying timing
calculations. However, using the event graphs and narrative descriptions provided
throughout the thesis, the interested reader can construct timing diagrams for

transactions under other (less convenient) relative performance characteristics.

A standard read begins when the bus master asserts the address of the location to
be read using a PRESENT-ADDRESS (T1). The slave accesses the indicated
location (A) and responds with the requested data using a PRESENT-DATA (12).
A write begins when the bus master asserts the address of the location to be
modified, using a PRESENT-ADDRESS (T1), then the data is transmitted using a
PRESENT-DATA (T2) and the slave responds immediately with an
ACKNOWLEDGE (13). An interrupt is signalled by transmitting the interrupt
vector using a PRESENT-DATA (T1) and the processor responds with an
ACKNOWLEDGE (T2). Processing of the interrupt (P) begins as soons as the
vector arrives. The transaction time for a read is 2Tl + Ta, for a write it is 3T1 and
for an interrupt it is 27°. The derivation of these timing expressions from the event
graphs is straightl“orwalrd and is verified by the corresponding timing diagrams.
Under the relative timing assumptions noted above, read and write transactions both
require 3 bus cycles and an interrupt requires 2 cycles. Since only one data word is
transmitted every three bus cycles, the effective transfer rate of the bus is one third

of its maximum potential. For busses with cycle times over the range of 100-200ns,

the maximum attainable transfer rate is about 53-106 Mbits/s for these transactions.

62

The System Model, TRMs and Cryptography

Standard Read - - A 0
D A
D T
R A
address data
Master Master
Slave Stave
Standard Write AD
D A A
DT c
R A K
address data ack
Master Master
Bus OEONO® - Bus i
. A
Slave o Slave :

0123

Figure 2-3: Event Graphs and Timing Diagrams for Standard read and
write Transactions
For cache-equipped systems there are one or two additional transactions. Both
write-through and write-back caches require extended read transactions but only
write-back caches require extended write transactions. These transactions transfer

an entire cache line (2, 4 or 8 words) between primary memory and the cache in one

63

The System Model, TRMs and Cryptography

Standaré Interiupt

0123

Figure 2-4: Event Graph and Timing Diagram for a Standard interruptTransaction

transaction. Figure 2-5 provides the event graphs and timing diagrams for both
transactions uging two-word cache lines and ;twonway: ‘'memory interleaving. An
extended read begins by asserting the address of the word which caused the cache
miss, using a PRESENT-ADDRESS (T1). This word is fetched first from primary
memory (Al) and transmltted using a 'PRESENT- DATA (T2) The remal,mng
words in the contammg cache line are fetched (A2) and tmnsmltted (T3) without
issuing ﬁiﬁ‘her PRFSEN’FADDRESS operatggps Anc’xtended‘wnte begifs with a
PRESENI-ADDRESS (T1) followed by PRESENT DATA (T3,T4) operations
confimed by 4n ACKNOWLEDGE (T5). Two-word cache lines yield transaction
times of 2T + ZT for an extended read and 4T for an extended write. Under the
relative txmmg ﬁsumpuoﬂs noted: above, bothy transactims tequiré 4 bus cycles to

transfer two words, a bus transfer rate of 80- 160 Mblts/s.

The higher bus transfer rate achieved in extended transactions comes about by. |
eliminating explicit PRESENT-ADDRESS operatlons assocnated w1th subsequent .
words in the cache line. As the cache line w1dth grows thlS ylelds even greater
transfer rates. For example, a 4-word cache line can be transferred using 7 bus

64 .

'The System Model, TRMs and Cryptography

Extended Standard Read A D D
D A A
D T T
R A A
address data data
Master Master L LL
' 13! T2 IT3 .
Bus Bus
' A1
P-Mem P-Mem1
- |A2
P-Mem2
01234
Extended Standard Write ‘A DD
C 0 A A A
DT T c
R A A K
address data data . 8ck
Master Master
Bus Bus o
At
P-Mem1 —
P-Mem , a2
' P-Mem2
01234

Figure 2-5; Event Graphs and Timing Diagrams for
Extended Standard Transactions

‘The System Model, TRMs and Cryptography

cycles, a bus transfer rate of 91-183 Mbits/s. This approach to implementing
extended transactions requires increascd sophistication on the part of the memdry
controller, to generate the appropriate addresses to fetch or store each word in the
cache line after the first. It is also necessary to interleave memory so that
subsequent accesses can proceed without waiting for a memory access cycle to
complete. Since cycle time is assumed to be about twice access time, two-way
interleaving of memory is adequate for all cache line widths under this scheme. An
alternative approach to implementing cache/memory transfers uses memory
interleaving and additional bus lines to fetch or store multi-word units. However,
the scheme adopted here should provide adequate bandwidth for the processors in

the systems of interest without incurring the expense of extra bus lines.

2.1.7 Bus Utilization

Armed with the performance characteristics of various devices on the bus, one
can make some rough estimates of bus utilization in the systems of interest. Precise
bus utilization figures are application and equipment dependent, but even rough
estimates are useful in evaluating the performance impact of the protection
mechanisms proposed in subsequent chapters. (These mechanisms often increase
bus utilization by "protected” devices.) In general, bus utilization in single bus,
cacheless systems will be very high but can be moderated by the addition of a cache.
In dual bus systems, 170 bus utilization is likely to be low but the memory bus will
be very busy unless a cache is employed. In support of these statements consider
the following estimates. A secondary storage device may demand up to 10-30% of
the bus cycles during a transfer operation, depending on the bus speed and device
transfer rate. T&A storage devices contribute somewhat less to bus demand and are
used less frequently, but they can generate transient loads of 5-10%. The bus

utilization of a network interface depends on network bandwidth but 10-35%

66

The System Model, TRMs and Cryptography

transient utilization is possible. Manipulation of images on a bit-map display can
absorb essentially all of the bus cycles for short periods. Other 1/0 devices place

only minor demands on the bus, e.g., <10% aggregate.

Bus utilization by the processor varies greatly between cache-equipped and
cacheless systems. In a cacheless system, the assumption is made that the bus cycle
time and primary memory access time are chosen to yield an effective memory
access time equal to the minimum instruction execution time, producing a well
balanced system. For example, a 100ns cycle time bus paired with a 100ns access
time memory yields a system capable of supporting a processor with a minimum
instruction time of 300ns (3.3 MIPS maximum). If the average time between
processor-generated memory references is about 3-4 times the minimum instruction
time, the processor will require about 25-33% of the bus cycles on the average with
peak utilization near 100%. Using a cache with a 100ns access time, the same
processor requires an average of 5%-15% of the cycles using a fast bus and memory
and 10%-30% for a slow bus and memory. Of course cache misses generate transient

bus utilization of 100%.

2.2 Tamper-Resistant Modules

As noted in Chapter 1, the vendors of external software have two major security
requirements: preventing disclosure or redistribution and detecting modification of
external software. Using the system model described in scction 2.1, a number of
specific attacks that violate these requirements are readily identified. The
assumption is that the system components identified in Figure 2-1 are unprotected
and that an attacker can examine or modify data in these unprotected components
using appropriate equipment. For example, demountable media used for secondary

or T&A storage can be removed from the system and the data contained therein can

67

The System Model, TRMs and Cryptography

be read or modified. A more sophisticated attacker might attach probes to the bus
to passively or actively wiretap bus transactions, e.g., to record transmitted data or to
generate spurious transactions that modify data in the system. ’

2.2.1 TRM Characteristics

These simple examples illustrate the need to provide some form of protection
against physical tampering for these portions of the system which are critical to the
secure operation of external software. At a minimum, the i)rocessor will ‘be
contained in a tamper-resistant module (TRM) since. the software and databases
otherwise cannot be protected during:execution. A TRM has’ t‘he characteristic that
it prevents release ot modification of the data ‘contained therein as 'Iong as the
module is intact. Ifa TRM is (physically) breachied it is assumed that any ‘se'ns‘itive
information inside the modte is destroyed (eraséd)i“":l;f external software (inclyuding
any databases critical to secure operation) is stored, executed-and transferred wholly
within a TRM, the security requirements of vendors can be met since diselesure and

undetected modification of the software can be prevented.

The difficulty associated with engineering a TRM that performs as noted above
depends on several factors. The guiding principle is¢hat-thé:cost of subverting the -
TRM should be greater than the expected gam resultmg from, the subvers10n Thus
TRM des:gn is mﬂuenced by the value of the software bemg protected The cost of
subverting a TRM mcludes not only the pnce of acqutrmg the module and the
effort involved i in breachmg it, but also any penaltles resultmg from detection of
tampermg For example if a chent were to rent a TRM from a vendor and the
vendor were to inspect the module and dlscover evndence of mmpenng, the vendor
might refuse to fumlsh any other soﬁware to the chent and mlght mstltute legal
action agamst ‘the chent. Thus the cost of subvertmg a TRM must reﬂect the
likelihood of detection and oonsequent institution of punmve measures by a vendor

&"'

The System Model, TRMs and Cryptography

This suggests that engineering a TRM may be much easier if the TRM is not owned
by the client/attacker but rather is rented frém a vendor who retains the right to
inspect the module and who can institute appropriate (legal) measures if evidence of

tampering is discovered.

Although the details of engineering TRMs are beyond the scope of this thesis,
one can make some general observations about characteristics of TRM packaging.
First, it should be noted that some commercial cryptographic devices available
today incorporate fundamental TRM design criteria. For example, these devices |
may be housed in scamless metal cases with access controlled by a pair of high
security locks. These devices are designed to erase the cryptographic keys contained
within whenever the device is opened, to prevent the leakage of information via
electromagnetic radiation, to withstand ekternal electromagnetic interference, etc.
Although these devices are not designed to withstand a prolonged attack by a
sophisticated tamperer, they do suggest that TRMs can be engineered for the level

of security appropriate for commercial applications.

One of the most important characteristics of a TRM is its ability to destroy
sensitive data contained within should it detect any evidence of tampering. This
destruction of data must be carried out quickly to prevent a would-be tamperer
from accessing the information after breaching the TRM. Rapid erasure of a large
quantity of non-volatile memory, c.g., in secondary or T&A storage devices, may
prove difficult or impossible depending on the storage technology employed. Thus
magnetic bubble mcmories might provide an attractive form of secondary storage
for TRM packaging while media such as disks may be less well suited to this

application.

Another aspect of TRMs that must be noted is their impact on flexibility of
system configuration. In configuring a computer system composed of one or more

TRMs, the user will probably be restricted in the selection of components. In part

69

The System Model, TRMs and Cryptography

this restriction arises because not all devices or combinations of devices are
amenable to TRM packaging. Moreover, all devices in a TRM (or a collection of
co-operating TRMs) must be packaged by the vendor of the system since all of these
devices must perform correctly to maintain the security of the external software.
This requirement may result in some combinations of devices being unavailable as a
TRM-packaged system. The ability to expand a system may be hampered by lack of
space within a TRM to incorporate more components. Maintenance of TRM-
packaged devices is hampered since only the TRM vendor is in a position to provide

service while maintaining system integrity.

An important consequence of TRM packaging is the cost incurred. Packaging
one or more devices as a TRM is more expensive than standard (non-secure)
packaging. Although the differential in cost between standard and TRM packaging
varies based on the perceived threat environment, experience in packaging
commercial cryptographic devices indicates that this cost can be quite substantial.
For example, the difference in price betweeﬁ one conventionally packaged (rack
mount) link encryption device and the same device packaged for use in unsecure
arcas (desk top box) is approximately $900, roughly 45% of the total price of the
latter unit. It appears that the majority of this cost arises not from additional
electronic components but from mechanical engineering considerations. Over and
above some base, the cost of building a TRM probably increases with the size of the
TRM, for a fixed level of security. Thus very large TRMs may be impractical
because the cost of packaging would be great and very small TRMs may be
infeasible because the cost of packaging would be significantly greater than the cost
of the protected components. Only over some middle range is TRM packaging

likely to be practical.

It may be cheaper to build a TRM that is permanently sealed, as opposed to one

that includes provisions for controlled access, and the resulting device may be more

70

The System Model, TRMs and Cryptography

secure. The assumption here is that provisions for controlled entry into the module
introduce weak points that must be buttressed by sophisticated and costly security
mechanisms. It may also be easier to detect tampering in permanently sealed
modules. TRMs sealed at the time of manufacture would include no provision for
controlled access for maintenance, thus eliminating the need for trusted field service
personnel. If a component within a sealed TRM fails, the entire TRM would-be
replaced and the failed TRM would require "factory'; servicing and re-pavckaging
(the contents would be erased during servicing). This approach to TRM packaging
would probably work well with devices ‘that are highly reliable, e.g., solid state
devices, but not with electromechanical fdevices that require periodic servicing.
Sealing a TRM eliminates the option for field upgrades'or exﬁpa_ns’ion. Finally, the-
number of components that can be packagi:d iniz“av,sealed TRM is limited by the fact

that the failure of any component may require replacement of the entire TRM.

2.2.2 A Monolithic TRM Approach

As a first approximation to protecting external software, one could imagine
enclosing all of the devices that are critical to the secure operation of the external
software in a monolithic TRM, as illustrated in Figure 2-6. (The specific system
configuration used within the TRM is not important here-since all of the secu\rity
relevant components are entirely within the TRM.) The secﬁﬁiy'requirements ofa
vendor can be met by this sort of system since the processor, all storage required by
external software and the bus connecting these devices are all contained within the
TRM. Note that not all of the system components are enclosed in the TRM.
Terminals and other peripheral devices that do not effect the secure operatidn of
external software can be attached to the bus-outside of the TRM. Even storage
devices for data not essential to the secure operation of external software could be -
attached to this bus extension, e.g., secondaty- storage exclusively for client data

1

The System Model, TRMs and Cryptography

could be provided outside the TRM. In order to attach other devices to the bus
without violating the security: provided by the TRM, the bus extension requires a

special secure bus coupler (SBC).

-~ T&A }. otherperipherals

Figure 2-6: Using a Single TRM to Protect a System

The SBC acts as a filter to prevent unasthorized disclasure or modification of
data within the TRM. To this end, the SBC ensures that bus traffic among devices
within the TRM is not repeated onto the bus extension (to prevent disclosure) and it
controls access to primary memory by. DMA devices outside the TRM:{to prevent
disclosure and modification). These tasks are made easier by: partitioning the bus
address space so that a single address line indicates whether an.addressed device is
inside or outside the TRM. It then becomes trivial for the SBC to avoid repeating
intra-TRM bus traffic onto the bus extension by inspection of this address line. To
control access by DMA devices to primary ‘mesnory, the processor must:inform the
SBC of the locations that should be accessible to DMA devices outside the TRM, -
along with the mode of access allowed, i.e., read or write. - The SBC can be equipped
with a small number of regjsters. tp establish-the beunds-and aecess modes for these

7

The System Model, TRMs and Cryptography

locations. These registers are managed by the processor as part of controlling
"unsecure” DMA devices® and are scanned on transactions initiated outside the

TRM.

This approach to securing external software has several advantages. Little in the
way of special hardware is required, only the SBC is unique to the design, the
remaining devices can be "off the shelf.” The SBC appears relatively easy to
construct and should be capable of operation at bus specds, given the existence of
analogous devices such the the UNIBUS adaptor employed on the VAX 11/780
[10]. The only impact on software is the requirement to co-ordinate management of
the SBC with control of DMA devices on the bus extension, a function easily
assumed by the operating system as part of device management. The design also
provides some flexibility in system configuration. For example, sccondary storage
for client files might be provided on devices attached to the bus extension whereas
secondary storage for external software is provided by devices within the TRM.

Despite the advantages noted above, this design also has a number of drawbacks.

Perhaps the most obvious problem with this design is that it does not provide for
demountable sccure storage. Thus no secure T&A storage can be provided, as noted
by its absence from the TRM in Figure 2-6, and secondary storage contained in the
TRM cannot employ demountable media. The lack of secure transfer storage could
be a major problem if the only alternative were the use of erasable PROM
(EPROM) or factory-recorded secondary storage within the TRM. Note that ROM
is not acceptable for recording external software because of the need to be able to

erase the sensitive information contained in the TRM in case of tampering.

5For the SBC to be completely transparent, it would have to be awarc of the addresses and
semantics of the control registers for all of the devices on the bus extension. This would significantly
complicate the SBC and would limit the choices for devices on the bus extension to those with which
the SBC was familiar. For these reasons a transparent SBC design was rejected.

73

The System Model, TRMs and Cryptography

Simila.rly. only readily erased devices such as bubble memories are suitable for
inclusion as pre-recorded secondary storage. Factory recording of external software
is not very appealing as it does not support distribution of new releases, either for

bug fixes or new products.

However, secure distribution of external subsystems can be provided using
communication facilities and employing cryptographic techniques as described in
the next section. Using such techniques; the vendor can securely transmit copies of
or updates to external software to appropriately: equipped, TRM-packaged
computer systems. . Thus the lack of 'éecurc': transfer storage can beiov‘ercomél, ‘at the
cost of requiring some communication facilities and cryptographic capabilities
within the TRM. Whether the inability to: provide demountable secure storage for
non-transfer purposes is a serious deficiency depends on:the applicitions involved.
For example, an external subsystem. that- managed client databases using data
structures and access techniques that were viewed as proprietary might require
secure demountable media for secondary or archival storage, The inability to
provide secure demouﬁta_ble media for secondary or archival storage is a serious

limitation in some app]icétions.

‘Another difficulty with this:design is that it may encounter the erasure problem
alluded to earlier, because of -the presénce of secondary storage within the TRM.
Again, the seriousness of this problem- will .depend:on-the volume of non-volatile
memory contained in the TRM and the technology used to implement it. Although
this design exhibits some flexibility in allowing. a user to configure a system with
non-security relevant devices outside the TRM, in other ways the design allows little
flexibility. As noted earlier, the users may be quite limited in their choice of
configurations for devices within a TRM, and in this design most of the system is
within the TRM. Since secure secondary storage is avaitable only within the TRM,
some types of storage devices may be prectuded because'of size constraints or

74

The System Model, TRMs and Cryptography

because of the need for periodic adjustment. The number of devices contained in
the TRM probably rules out use of the sealed TRM packaging technique described
carlier and for some systems the size of the TRM required would pose a significant

expense.

The impact of these characteristics on system design are illustrated in the
following examples. One sort of system that might be amenable to the monolithic
TRM design is a very simple personal computer designed exclusively for running a
language system such as BASIC or APL. The TRM could contain the language
system in EPROM or bubble memory and an amount of primary memory suitable
for simple applications could be provided. Secondary memory within the TRM
might not be required, making a small, sealed TRM a real possibility. User
programs and data could be kept in a secondary storage device attached to the bus
extension, along with a terminal and other input/output devices. If the only
external software to be protected wére the language facilities, and if these facilities
did not require distribution of new releases to fix bugs or to add enhancements, this
design might prove adequate. To accommodate a more flexible update strategy, a
cryptographic device, a facility for re-writing the EPROM or bubble memory and

some communication capability could be included to support remote updating.

One can imagine a number of variations on this simple scenario that highlight the
deficiencies of the monolithic TRM design. For example, if the vendor of the
personal computer wanted to sell proprietary application software to his clients,
secure secondary storage within the TRM would be required and the problems of
providing such storage within the design have been pointed out above. These
problems also arise if the vendor requires the object code produced by the language
system to be protected from disclosure, in order to hide the code generation
techniques employed. Similar problems arise in the context of nodes in a

distributed system. For example, a secure database residing at a node would have to

15

The System Model, TRMs and Cryptography

be contained in secondary storage within- the TRM and here the lack of
demountable storage and the problems of large quantities of non-volatile memory
within a TRM essentially preclude use of this design. Thus this design is inadequate

for many classes of applications.

2.3 Cryptographlc Termmology, Concepts and Techmques

Cryptographlc techmques are used in. four dlsunct contexts in this thesis.
Network-based distribution .of external software. requires secure communication
befween a vendor and his TRMs, This method of software distribution is critical to
the monolithic TRM approach, since that approach. does. net support secure T&A
storage, and it may be the preferred dism'butiou ‘methad for the other,,design
approaches as well. . Thns secnon presents the. basic, communication security
techmques necessary for secure, network-based distribution of external software.
The encrypted bus approach examlned in Chapter 3 relies on secure communication
among TRMs connecied via a physically unprotected bus, That chapier preseats
modified cplu-munication secunty techniques for - thxs highly specialized
communiéaﬁbn environment (the bus) The encrypted storage approach.of Chapter
4 develops specnal cryptographic techniques to protect data stored outside a TRM.
Finally, in Chapter 5, cryptographic techniques and protoco]s are used to distnbute
external software to TRMs provided by thlrd-part’y suppﬁers “This chapter is nota
general tutorial on' cryptography; it merely aﬁfempts to provnde some background
necessary to understand the crypmgraphlc téchmques emptoyed in subsequent

chapters.

76

The System Model, TRMs and Cryptography

2.3.1 Terminology and Basic Concepts

A cryptographic algorithm or cipher is an algorithmic transformation performed
on data on a symbol-by-symbol basis. In enciphering or encrypting data, the
plaintext input is transformed into unintelligible ciphertext output. The inverse of
this operation is referred to as decryption or deciphering and it transforms ciphertext
into the plaintext from which it was derived [32]. These transformations are carried
out under the control of a key. In conventional ciphers (CCs) such as the NBS Data
Encryption Standard (DES) [23], the same key is used for enciphering and
deciphering a collection of data. On the other hand, public-key ciphers (PKCs) such
as the RSA algorithm [26] use different, but mathématically related, keys for

encryption and decryption. These terms are illustrated in Figure 2-7.

key key
4 R 1 .
plaintext ciphertext ’ plaintext
+ cc « o ccC -
ENCRYPTION DECRYPTION
key key
e d
¥
plaintext ciphertext plaintext
‘ » PKC -

Figure 2-7: Conventional and Public-Key Cipher Configurations

The System Modcl, TRMs and Cryptography

For both conventional and public-key ciphers the assumption is made that the
algorithm is known not only to the users of the cipher but also to any attackers. The
secrecy, authenticity and inzegriry guarantees? accorded data transformed by these
ciphers derive from their mathematical structure and from the secrecy of keys used
to parameterize the ciphers. In convehtional ciphers, an attacker canoot decipher
ciphertext nor can he generate ciphertext that will decipher into predictable
plaintext without knowledge of the key used to generate the eiphertext. Thus, in
these ciphers, the secrecy of the key provides concealment and the basis for
determining the authenticity and integrity of ciphertext. In public-key ciphers, the
key used to encipher data (key) need not be kept secret. in order to effect
concealment integrity checkmg ThlS is because a dlfferent key (key), related to the
encryption key in a complex fashlon, is used for decryption. Because of the
mathematical structure of public-key ciphers, knowledge of keye does not allow a

cryptanalyst to determine key .

This property of public-key crphers decouples secmcy from authentrcrty and
integrity.. ‘Data transformed ‘unde PKCM n(key - cames no guaramee of
authenticity since this key 18 usually publicly avallablé andﬂnrs anyone can encipher
data using it. Moreover, only the holder of the matching decryption key (key d) can
decipher data encrypted under keye, so this schemeé provides.secrecy. Conversely,
data transformed under key 4 can be deciphered by everyone, since keye is public,
but such data can be verified as authentic and its integei(yecan be checked because
only the holder of key can generate ciphertext that is- predictably decipherable
under key (Despite desrgnauons aﬁ enapfrering and dez;gphermg “keys both PKC
keys transform plamte:rt to ciphertext and invert the tran,sfonnatlon performed by
the complementary key.) Thus transformation under a public key provides secrecy

6ln this context, data is considcred authentic if it was enciphered by an authorized party and its
integrity has not been violated if the ciphertext has not be modified.

78

‘The System Model, TRMs and Cryptography

whereas transformation under a secret PKC key provides a basis for authenticity

and integrity checking.

In communicatibn contexts, a PKC key pair is associated with each user. Secret,
authentic, integrity-checked communication between two users can be achieved by
transforming each message twice at the transmitter and at the receiver, as illustrated
in Figure 2-8. The transmitter first transforms th_e message under his secret key (T-
keyd), for authenticity, and then under the public key of the intended receiver (R-
keye), for secrecy. (Both transformations contribute to the integrity guarantee,)
Upon receipt of the message, the receiver transforms the message under his secret
original plaintext. Of course, the secrecy, authenticity and integrity guarantees
provided by these transformations are valid only if both transmitter and receiver are

correctly informed as to each other’s public keys.

TRANSMITTER RECEIVER |
T-key R-key_ R-key, T-key
¥ ¥ Y R
plaintext ciphertext ‘ : plaintext
— | PkC}— PKC » PKC|—» PKC >

Figure 2-8: Providing Secrecy, Authenticity and Integrity with Public-Key Ciphers

Even though public-key ciphers provide some features not available in
conventional ciphers, the former are not well suited to most of the applications in
this thesis. For example, public-key ciphers offer some pqtential advantages over

conventional ciphers in distributing cryptographic keys. The first three applications -

79

The System Model, TRMs and Cryptography

of cryptography in this thesis, as noted at the beginning of section 2.3, do not
encounter complicated key distribution problems and would not benefit from the
use of public-key ciphers. Thus almost all of the techniques employed in this thesis
are based on conventional ciphers and public-key ciphers are employed only in
some applications in Chapter 5. In fact, public-key ciphers are immediately
eliminated from consideration for most of these applications because of the
relatively low throughput achieved by their implementations, as described in section
2.3.5.

Good ciphers, both conventional and public-key, exhibit high resistance to a
variety of cryptanalytic attacks. Obviously ciphers must resist attempts by attackers
to determine the key required to decrypt a quantity of ciphertext or to discover the
plaintext from which the ciphertext is derived through examination of the ciphertext
(ciphertext only attack). Moreover, an attacker should not be able to deduce the key
used to decipher data even if he is given matching plaintext and ciphertext (known
plaintext attack). The same holds true if the attacker is given the opportunity to
select the plaintext for which matching ciphertext is made available (chosen
plaintext attack). These requirements are motivated by the fact that an attacker will
often be able to know or to choose some plaintext that will be encrypted and
become available to him as ciphertext. For example, in the context of protecting
external software, one might encounter enciphered relocatable program files,
portions of which are likely to contain easily predicted values. In the same context,
an attacker might be able to choose values that would become part of an encrypted

database, providing a chosen plaintext attack.

The ciphers selected for use in this thesis, the DES and the RSA algorithm are
designed to resist the cryptanalytic attacks described above. Nonetheless, one must
exercise care in using these ciphers or subtle weaknesses may arise. For example,

not all cryptographic techniques automatically compensate for plaintext that varies

30

The System Model, TRMs and Cryptography

over a ‘very small range of possible values or plaintext that contains recurring
patterns. Unless suitable precautions are taken, these plaintext characteristics may
be visible in the ciphertext, résultiﬁg Iﬁ'"mﬁj‘ﬁﬁf‘ation disclosure. Techniques for
verifying the authenticity and integrity of. encrypted data in the face of attacks often
rely on the presence of predlctable mformatlon in plaintext and on error
propagation characteristics of cnpher:s. Smbé the plaintext encountered in this thesis
may admit to a wide range of values, predictable information must be supplied
explicitly for security purposes. Dxfferenf}waysof using ciphers yield different error
propagation characteristics and this must be considered in designing mechanisms for
checking authenticity and integrity of data The following sections describe specific

techniques for preventing disclosure and cTetectmg modification.

2.3.2 Block Cipher Techniques

Most modern cryptographic algéfithms (conventional and public-key) are block
ciphers, ie. they operate on fixed-size blocks of. plain;e}jxt,and ciphertext. For
example, the block size of the DES is 64 bits and for the RSA algorithm a block size
of about 320 bits yields comparable security. The simplest way of usihg a block
cipher is sometimes referred to as the electronic code book (ECB) mode [16],
indicating the analogy to manual cryptographic procedures, and is illustrated in
Figure 2-9. (This and subsequent illustrations omit keys for clarity.) However, this
mode: exhibits several shortcomings. If data to be enciphered is smaller than the
block size of the cfpher, the data must be padded to produce a full size block.
Similarly, the entire resulting ciphertextblock must be presented for decryption, i.e.,
it is not possible to decipher a partial block. -If the data to be e‘nc"ryp‘ted' is longer-
than a block it must be broken into block-size piecés and each piece enciphered
separately. This miSmatch between the granularity’ of €ricryption and the size of
plaintext results in waste, e.g.. on average Half ‘of each: block may be wasted due to

this mismatch.

81

The System Model, TR Ms and Cryptography

| plaintext |

enciphern

A 4
| ciphertext |

' .
decipher

I

[plaintext ‘] ‘"

Figure 2-9: Electronic Code Book Mode for Block Ciphers

With respect to concealment, ECB mode has an obvious deficiency, i.e., identical
plaintext blocks are transformed into identical ciphertext blocks. Thus plaintext
patterns that occur aligned on block boundaries are visible in the resulting
ciphertext. In the case of the DES, if plaintext, when divided into 8-byte blocks,
exhibits block-size patterns, then these patterns will be visible in the resulting
ciphertext. Moreover, if the bit pattern used to pad short blocks is éonstant, an
attacker might be able to perform frequency analysis on the ciphertext blocks to
discover the plaintext. For example, if 32-bit wards are enciphered individually and
each is padded with the same bit string, the resulting ciphertext blocks will vary only
over the range of values assumed by the 32-bit words, and this may be small enough

82

The System Model, TRMs and Cryptography

to allow effective 'frequency analysis by an attacker. Because of these deficiencies,
ECB mode is usually employed only for tasks such as distribution of cryptographlc
keys, where the data is random and well matched to the bloék s;ze -

These concealment problemscan besolved by including in each plamtext block a
non-secret, quue bit strmg, a quantity designated as an (m bépck) initialization
vector (IV) mustrated in Figure 2-10. (The term mlttaltzanon vector is oﬂen used in
a more resmcted seqse in cryptography but it serves essentlaﬁy the samé function as
the quantlty de§mbed here.) The inclusion of this bit strmg makes each plaintext
block diffetent and-thus each resulting ciphertext block is dlfferent, effectlvely
concealing patterns and compensating for limited range plaintext, e.g., short blocks.
This technique works since, in the DES, twoplaintext'blocks that differ by as little
as one bit yield ciphertext blocks that differ in approximately 50% of the bit
locations. This techmque suffers. from the drawback that. a; portion.of each block
must be reserved for thls uruque bit string,. thus reduetag available bandwidth in
commumcqtlon app];cqﬂonsio{r.gwastmg space in storage: applications. However, if
an applicaﬁon alreédy; requires inclusion of a unique:bit string as part of each
plaintext block, e.g., sequence numbers in a commupication appl.icatien,mis bit
stri'ng;can serve as an IV s0 no additional space is wasted. -

An alternative technique for combatting the ‘same problem involves combining
each plaintext block with a (block size) initialization vector, via.modulo 2 addition,
before enciphering the block. This additive technique is not quite so secure as the
incluSion of ah in-block NIV singe duplicate ciphertext blocks may result, providing.
cryptanalyuc opportumhes for an attacker.. For example, if two ciphertext blocks
are ldenncal under thls scheme, an attackes can work: backwards from.a knowledge:
of the IVs to determme the sum of the. plaintext blocks. M he has knowledge of
some of the plamtext in one of the blocks - he cap .determine the value of-
correspondmg bits in the other block. If the range of the Vs is suitably large (say 64

83

The System Model, TRMs and Cryptography

[V] plaintext | - 3 R { plaintext |

[Tinit vector |-

| cipher'tﬁextJ . | ciphertext |

Figure 2-10: In-block and Additive Initialization Veetor Techniques

bits), and the IVs are chosen pseado-randomly, this method offers adequate secunty
since the tikelihood of duplicate ciphertext blocks is ‘quite small, The advantage of
this approach is that the TVs take up 1 space in ‘the blocks, but it is necesary to
know the IV associated with a block for decryption. The’ Values of the Vs must be
implicitly derived -from some contextual intformation if ﬂiére is to be any space
saving. For example, in a ‘communication” ﬁppfcat:on the sequence number
implicitly associated with each transmitted block could serve.as.an IV.

The inclusion of a predictable quiantity in eécﬁ'bfb?:k‘provi("fés 4 basis for checking
the authenticity and integrity of the block. The object here 1s o verlfy that the block
was encrypted by an authorized individual and that it Has not ‘been modlﬁed in any
way after being encrypted. For a block mpher such ‘as thé DES; modlﬁcatlon of as
little as one bitin a ciphertext block résults i’ ‘changes to :ipproxxmately 50% of the
plaintext upon decrypuon “The sanie €rTor propaga‘txoh eh‘eCt occurs if a cnphextext
block is deciphered under a key that differs byas Hittd as She bit from the key used
to encipher the block. Thus, the inclusion’ of a pre&ittable bt field in a plalntext

84 =

The System Model, TRMs and Cryptography

block pfovides a check on the authenticity and integrity of the block which an
attacker can subvert with a probability of 27", This is the probability that the n-bit
field is"unchanged if the cipheﬂaext block was modified Or'?‘i’;f'it:@as'eﬁcrypted under
a key other than the key used to decipher it. Such a quarm@ wﬂl be referred to as
an authenticity/integrity check f eld (AICF).

Any predictable quantity cari-be included in each block as an AICF, eg., a
cohstant bit string. .However, the functions of an AICF ,ahq axl IY can be combined
into a_sin@e_ field, reducing _:th,é: §pdgc:overheaé that wéyﬂ,émsukif an in-block IV
and a separate AICF were eniployed. Since a ccmbinea"lV'fAléF field must be
large enough to uniquely 1denufy each block and large enougl to detect spurious or
modiﬁed blocks this may not be the mast space efﬁcieat ta&mnq&e For example, if
the stze of the IV requ;red to umquely 1dem1fy each bk)ck is| ;arggr than the size of
the AICF required to detect modsﬁcatlon then an nnphcit W and aded:cated AICF
couid wastc less space. Despme thls ﬂ)lhty to: combme m glgmons in a single
field, the percentage of each block devoted to such a field eain be significant,
especially if the block size is small For example, in many apphcat:ons a 16-bit
AICF may be adequate, ie., an attacker is allowed a -16 cﬁanw of undetectably
v1olatmg the authenﬂcxty and integrity guarantee p:owdedwby the AICF. Butina
64-bit DES ‘block this 16-bit field. represents 25% overheaq:;apng could reduce the
percentage overhead by usingaéiﬁhér"With a larger block size, butif the application
normally generates plaintext smaller than this block size, waste will result from the
occurrence of partiatly filled blocks.

One can reduce the percentage of space devoted to security measures through

block chaining encryption techniques. Block chaining techfiques encrypt phaintext
of variable lengths (integral multiples of the ‘block size) usingsome form of
feedback to cryptographically relate the resulting ciphertext blocks.” There are a

number of options for feedback mechanisms; the méthod -described below (and-

8s

The System Model, TRMs and Cryptography

[plaintext-1] = [plaintext-2] - [plaintext-37]

| init vector

Iencipher

¢ |
[ciphertext-1}— [ciphettext-Z |—

lt_i;cipher

[init vector j———;é | r———oe

lencipher

| plaintext-1 | { plaintext-2 | | plaintext-3 |

Figure 2-11: Plaintext-Ciphertext Block Chaining (PCBC)

later employed in Chapter 4) uses both plaintext and ciphertext feedback and is
designated as plaintext-ciphertext block chaining (PCBC) [12]. In this method, the
first block in the plaintext chain is added (modulo 2) to a black-size IV and the
result is encrypted. Each subsequent block in the plaintext chain is added to the

86 -

The System Model, TRMs and Cryptography

employed since the error propagation required by an AICF is not present.
However, CBC mode is somewhat simpler than PCBC mode and when used with an
EDC it provides adequate authenticity and integrity guarantees. (The EDC is
adequate in this case since an attacker cannot predictably modify the enciphered
plaintext or the EDC.) This mode is often proposed for communication applications
[16]. Block chaining based on plaintext feedback alone is generally unacceptable,
since plaintext patterns may not be effectively masked, even though this mode does

provide forward error propagation.

2.3.3 Stream Cipher Techniques

The cryptographic modes described above do not accommodate plaintext that is
not an integral multiple of the cipher block size without waste. The 64-bit block size
of the DES is well suited to most of the applications in this thesis since two 32-bit
words fit into a DES block. Much of the plaintext to be encrypted is an even
number of words long and for large data structures or long messages wasting half a
block (32 bits) is usually not a scrious problem. However, when plaintext is sub-
block size, e.g., a 32-bit word, this level of waste poses a serious concern. To solve
this problem, block ciphers can be used as stream ciphers that encrypt plaintext
strings of any size. The central concept is to use the block cipher to generate blocks
of pseudo-random bits, referred to as a cryprographic bit stream, portions of which
are added to the plaintext to conceal it. (Because the cryptographic strength of this
technique is based on the secrecy of this bit stream, PKCs cannot be applied here
directly unless they are used as CCs, i.e., with no public knowledge of the key used

to gencrate the cryptographic bit stream.)

There are a number of ways to generate a cryptographic bit stream using a block
cipher, just as there are several choices for feedback in the block chaining modes

described in the preceding section. For-example, in what is often viewed as the

00

[N

The System Model, TRMs and Cryptography

simplést form of stream cipher, an autokey cipher [32], bit stream generation begins
by enciphering an IV, The resulting crypté bit stream is added to plaintext, to
encipher it, and is fed back as input to the cipher to generate further crypto bit
stream, as illustrated in Figure 2-12. Decryption is identical to encryption, i.e., the
same crypto bit stream is added to the ciphertext to yield plaintext. Plaintext of any
size can be accommodated by this cipher, e.g., by selecting a fixed portion (a bit or a
byte) of each crypto bit stream block to combine with the plaintext and discarding
the remainder. Of course, discarding a portion of the bit stream causes the-
performance of the cipher to suffer, e.g., Figure 2-12 shows only one-fourth of each

block being used so the cipher runs at one-fourth of its maximum rate. -

shift register ' s&iftregister
encipher encipher]
y Y
|| discard | 1 | discard |
—— ; —
plaintext ' ciphertext . plaintext

ENCIPHER DECIPHER

Figure 2-12: Autokey Stream Cipher Example |

The System Model, TRMs and Cryptography

ADepending on the application, the crypto bit stream may be generated
continuously or it can be "re-initialized" periodically with a unique 1V. For
example, in some communication applications a continuous bit stream is transmitted
to conceal all message traffic (or the lack thereof) whereas in other applications a
new 1V is used for each message. Note that the 1Vs must be unique since they
determine the crypto bit stream, and if two messages were enciphered using the
same IV (bit stream), an attacker could add:the messages on a bit-by-bit basis to
yield the sum of the plaintext.- A striking feature -of this stream cipher is that it
provides no error propagation, i.e., if a bit of ciphertext is complemented, the
corresponding plaintext bit is complemented, but no. other plaintext bits are
affected. (However, if a bit of ciphertext is lost, the decrypted plaintext will be
garbled due to shifting over of the crypto bit stream before addition.) Thus neither
an AICF nor a conventional EDC can be used with this stream cipher for
authenticity and integrity checking due to this lagk of error propagation. (An
attacker, knowmg what kind of EDC is employed, can modlfy the plaintext in a
fashion that is mvanam under that EDC algonthm)

However, a cryptograpluc error detection code (CEDC), a cryptographlc function
calculated on the plamtext, can be employed to detect modification. (A CEDC used
to authenticate data Wthh is not encrypted is sometimes refcn'ed to as cryptographzc
check digits[4].) Sincea CEQC is a complex function of the plaintext on which it is
calculated and on the secret key used m the éalgulé&n, an attacker cannot modify
v theﬂplaint.ext in a fashion which is invariant under the CEDC. (An n-bit CEDC, like
an n-bit AICF, allows an attacker a 2™ chance of undetectably modifying the
covered plaintékt;) A CEDC can be calculated in a number of ways. For example, a
block chaining mode hke PCBC or CBC. can be used .to. encrypt the plaintext
(padded if necessary to be an integral number of blocks long) and a portion of the
last ciphertext block generated in this fashion can serve as a CEDC (since it is a

cryptographic function of all the preceding plaintext). The other stream cipher

90

The System Model, TR Ms and Cryptography

mode described below also may be used to generate a CEDC. Thus the lack of error
propagation in an autokey stream cipher does not preclude its use where
authenticity and integrity guarantees are required. However, provndmg these
guarantees requires additional operatrons which may translate into reduced

throughput or additional hardware.

Another stream cipher, cipher feedback mode (CFB) [16], is illustrated in Figure
2-13. To begin, a block-size 1V is input to the cipher and encrypted to generate a
cryptographic bit stream block. The plaintext is added. to thts blt stream and the
resulting’ crphertext i$ shifted into the cipher mput and encrypted to generate the
next crypto bit stream block. If plamtext is supplied in sub-block size quanta, eg.,
bytes or bits, then a corresponding p’ortien of the crypto bit stream is used and the
remainder of each block is discarded, as in the autokey cipher described above. This
process is repeated untl no more plaintext remains o be eicrypted. Decryption is
accomplished by a symmetric, but not identical, procedure, i.e., generating the same
crypto bit stream-and adding it to the ciphertext to-produce the plaintext. Figure 2-
13 illustrates CFB mode encryption and decryption applied o plaintext quanta that
are one-fourth block size.

In CFB mode, as in autokey mode, it is essential that each plaintext chain be
enciphered using a diffetent IV, ‘Since the crypto bit stream is a futiction of both the
IV and the plaintext in CFB mode, using the same IV on two plaintext chains results
in duplicate crypto bit stréam only as loig 4s the plaintext chains are identical.
Nonetheless, to avoid exposing any data, theé IVs should be ‘unique for each
independently encrypted chain. As before, the IV. may be implicitly derived or may
be carried with each chain. This mode provides excelient concealment of plaintext
patterns but the error propagation is limited. | This stream cipher. mode exhibits
error propagation analogous to CBC mode. 1f a bit of ciphertext is.complemented,
the corresponding plaintext bit is complemented but subsequent quanta of plaintext

)|

The System Model, TRMs and Cryptography

shift register N shift register
[I [Je— | = I T Je—
encipher ehcipher :
[T discard | | r "[‘ “discard |
plaintext , , ciphertext =~ . ~ plaintext
ENCRYPTION . DEGRYPTION

Figure 2-13: Cipher Feedback Mode Stream Cipher

are unpredictably garbled until the input shift register is cleared of erroneous
ciphertext. For the DES, the shift register is 64 bits long and thusefror propagation
affects 64 bits of plaintext following the quanta containing the error, This erfor
propa_gavtio'n éha(acteriStic means that the final enciphered quanta of plaintext in a
chain exhibits ’no‘ érror propagation at all. _S:Qr;ne‘_gther.‘-strcampi;_)‘her modes can
offer forward error propagation, but all suffer from the defect that the ﬁnal plaintext
quanta in a chain exhibits no error propégqtion.

Since the last quanta in a chain can be modified with predictable effects, one
cannot place an EDC or AICF and daita it is protecting in this quanta. (An attacker
might be able to modify the data in a fashion that is invariant under the EDC or he
could modify the data and not affect the AICF.) One can avoid this' problem by
isolating the EDC or AICF in the last granule, adjusting the quarita size or padding

92+

. The System Model, TR Ms and Cryptography

the data if necessary to accomplish this. {An AICF can be used only with a stream
cipher rhode that exhibits forward error. propagation, not with the CFB mode
illustrated here.) However, this need to segregate the EDC or AICF mmposes a
throughput penalty and may. introduce some complexity. when plaintext chains are
sub-block size. For example, to encipher 32 bits:of data and a 16-bit- EDC, the DES
must either adopt a 16-bit quanta for enciphering everything or it must change
quanta size from 32 bits for the data to 16 bits for the EDC. The first approach is
simpler but requires three DES. operations per 48-bit data-EBC chain, whereas the
second, more complex approach requires only two DES operations. If this:lack of
error propagation were not a concern, all 48 bits could be enciphered using the
output from one DES operatlon A CEDC as descrlbed above for autokey mode,
also can be used to provnde an authentacny and mt,egmy checakmg capabxhty

2.3.4 An Application Example: Secu re Network based Dlstnbutnon of

External Software

The monolithic TRM desngn presented in sectnon 22.2 suffers from a dearth of
secure T&A storage. In order to distribute external soﬁware using this design, the
vendor requires a secure communication” path between: himself“and cach TRM.
Even in -system désigns where secute T&A ‘storage is available, network-based”
distribution of external software thay be preferred. Secure communication facilities
also may be used to transmit accounting or debugging information ‘to a vendor, so
these facilities are: important’in all system designs. The: foéﬂd'Wiﬁg: discussion
describes how to provide secure communication using the cryptographic techniques
developed in - this chapter. This example introduces the security ‘requirements
usually associated with connection-oriented communication-and présents’ some
common techniques employed to achieve these requirements. Chapters 3 and 4
show how these requirements and techniques are applmb!e to: t:he problem of

computer system design to protect external software.

93

The System Model, TRMs and Cryptography

First it is necessary to define what is meant by secure TRM-vendor
communication. Communication between the TRM and the vendor is effected by
exchanging messages on a full duplex connection (virtual circuit) using some
communication facility, e.g., a public packet switched network [15] or the dialup
phone network. Assume that some standard :tramsport-level communication
protocol [25] is employed, providing a connection that is reliable in the face of (non-
malicious) errors. The security requirements for this application have been studied
extensively and are readily stated.

1. The text of messages must be concealed

2. Characteristics of the connections should be hldden e.g., the length of
~ messages and the identities of the ends of the connection. Observation
of characteristics such as these is termed rraffic analysis: '

3. The authenﬂcnty and integrity of each message must be guaranteed.

4, Each message must be ordered w:th respect to cher messag&s
transmitted on the connection.

5. The timeliness (currentness) of the connection must be ensured. \

| To achieve these requirements an addjtional layer of protocol, a securitx.prdto,ool,
is introduced. This: protocol lies above the transport layer’ and below the
application protocols used to distribute new releases of external software, to report
usage statistics from the TRM, etc. Figure 2-14 illustrates the format of messages in.
the security protocol. In steady state operation; the security protocol aceepts each
message. generated by an application, prefixes it with a sequence number and a
con_trcl field and appends an EDC or AICF. The resulting message is encrypted in
its entirety and delivered to the transport protocol. -

7A properly designed transport layer protocol can provide the facilities required for sectire
communication with the addition of cncryption. 'However most cxisting transport protocols do not
provide these facilities and thus a scparate protocol layer is introduced here.

94

'The System Model, TRMSs and Cryptography

séquence :# control applicatiqngiata _EDC/ACF

Figure 2-14: Message Format for Secure Connection Application

To provide concealment and a basis for authenticity and integrity verification, the
entire message is encrypted using a block chaining technigue such as PCBC or CBC
mode. (The control field can be used to indicate if padding was needed and, if so,
how many padding characters were inserte_d.) These modes are ‘s’im'p'lé,' convenient
and well suited to this application. The sequence number is large enough, say 32-
bits, so that it does not cycle during a connection: To prevent duplicate sequence
numbers from being generated by the ends of the connection, the sequence number
space is divided in half and each end numbers messages using its half of the space.
For example, one end could count using odd sequence numbers and the other end
could use even sequence numbers. By placing the sequence number at the head of
the plaintext chain it serves as an in-block IV. The sequence number also orders all
messages on a connection, fulfilling the fourth requirement. The EDC or AICF at
the end of the message 1s checked to determine,:the a.uvthenticity and integrity of each

message in accordance with the third requirement.

The second requirement, preventing traffic analysis, can be met in part by
padding messages and transmitting dummy messages to hide length and frequency
of transmission characteristics.. - However, ‘this tcehniqﬂel'WaStes communications
bandwidth and may be too expensive to be feasible. Concealing origin/destination
patterns is even harder and cannot be accomplished on an'end-ro-end basis in most

communication networks. Through :origin/destination analysis an attacker could

95

The System Model, TRMs and Cryptography

learn the identities of clients of various vendors, and by examining the volume of
text transmitted he could learn which programs were being distributed. Some
vendors may be concerned about these threats posed by traﬂ’ic 5nalysis and will

will probably ignore such threats.

The final requirement calls for appropriate key distribution techniques and a
connection initiation procedure utilizing a challenge-respdnse protocol. To illustrate
these measures co_nsid‘e,r;:the following scenario for a secure connection between a
TRM and a vendor. Key distribution in this application. is quite simple. (For more
complex key distribution environments, one might use a public-key cipher in ECB
mode to distribute a DES session key, as described in Chapter 5.) At the time of -
m,anu.facturc, or thereabouts, a secret master key is generated and loaded into each
TRM by the vendor. This master key is different for each TRM and is known only
to the vendor. To enable secure communication, the TRM «stablishes a connection
to a vendor computer using the. transport protocol. (The assumption here is that the
TRM initiates the connection singe the. vendor is expected to. be available via a
network at all times, but the TRM may be attached to a netweik only when

required.)

‘The TRM identifies itself to the vendor by transmitting its (unique) serial number
unencrypted. The vendor uses that serial number to Iookup the master key for the
TRM and generates a random session key, to be used only for this connection. The
vendor then enciphers the session key under the TRM master key: and transmits it to
the TRM where it is deciphered and used for further secure communication. The
use of a distinct session key for each connection offers several advantages since the
same plaintext enciphered under different keys yields different ciphertext. Thus,
the IVs used here need be unique only on a per-connection basis to provide
adequate concealment. Also, messages from previous:connections between the

9

The System Model, TRMs and Cryptography

vendor and this client or connections between the vendor and other clients cannot
be replayed or misrouted to confuse either end of the connection (the AICF or EDC
would almost certainly be invalid when enciphered uader a:different key).

With a session key in place, the vendor and the TRM are in a position to
challenge one another to verify the time mtegnty of the connection. Slnce the
vendor generated the sessron key, he knows the connectron is current if the TRM
can send messages that pass the usual mtegrlty and authentrcrty checks (smce the
messages are enciphered under the session key). Thus there is no exphcrt challenge
carried out by the vendor. However, the TRM, must carry out a challenge protocol
to establish that the session key just received is current. - “The TRM effects this
challenge by generating a random bit pattern; encrypting it‘ﬂﬁﬁg the session key
and transmitting it to the.vendor. The vendor decrypts thesbit:pattern, transforms it
in some predetermined. fashion, e.g., complementing half of the-bits in:the pattern,
encrypts this response to the challenge and transmits i to the TRM. The TRM
decrypts and checks this response and if it is correct, the timeliness of the connection
is verified. This prevents either end from being: tricked by a recording of a prior
connection initiation wquenee; Once this procedure is completed, regular message
transmission can begin. (The messages exchanged: during secure. connection
initiation are distinguished from later traffic through appropriate values in the

message control field.)

2.3.5 Parameters for Actual Ciphers

To complete this discussion of cryptographic techniques; it is necessary to project
appropriate values - for ‘cipher. patametefs, based of ‘existing ‘ciphers and
implementations, just as’ processor capabilitiés wete projected in section 212, The
DES serves as our paradigm for conventional ciphers since it is the most thoroughly
studied, modern cofiventional cipher described in ‘the open fiterature and since there

97

The System Model, TRMs and Cryptography

are a number of hardware realizations on which projections can be based. The DES
operates on 64-bit blocks of text and it cmploys a 56-bit key. The a]gorithm
performs an initial permutation on the input block and divides it into two 32-bit
half-blocks. A round of the cipher involves expanding the hall-block, adding in
selected key bits, performing a substitution and a permutation and then adding in
the other half-block and exchanging the half-blocks. Sixteen of these rounds are
performed and the half-blocks are concatenated and permuted again to complete

the encryption/decryption process.

The fastest current DES implementation (a 4-chip set developed by Fairchild)
transforms a 64-bit block in about 3.2us and requires another 1.6ps to load or
unload the data (8 bits at a time), for maximum throughput of about 13 Mbits/s
[14]. 'This chip set, like many other implementations, allows loading of input while
the algorithm is executing. Discussions with the designer of this DES chip-set
indicate that much faster, single-chip implementations could be produced over the
next 3-5 years if suitable demand develops. The projected implementations will be
capable of transforming a 64-bit block in 500-1000ns, corresponding to a bandwidth
of 64-128 Mbits/s. (The data paths for loading and unloading are likely to be 16 or
32 bits wide for the intended applications.) Even if the next generation of DES
chips do not quite achieve this speed, many of the protection mechanisms proposed
in this thesis, most notably encrypted storage designs in which primary memory is
packaged with the processor, can be implemented without significant performance

problems.

The algorithm developed by Rivest er al. (the RSA algorithm) serves as the
paradigm for public-key ciphers for several reasons. The RSA algorithm is the niost
widely known and carefully studied public-key cipher, one for which a hardware
prototype has been constructed and tested, and the only public-key cipher that

supports the double transformation technique for authenticity and integrity

98

The System Model, TRMs and Cryptography

verification described in section 2.3.1. The algorithin encrypts and decrypts blocks
of data by exponentiation with respect to a modulus that is the product of two large
primes. The encryption and decryption keys are the exponents. Since this
algorithm is not a standard no specific block size has been mandated, but to provide
security comparable to that of the DES, blocks (and keys) should be about 320 bits
in length [17]. (Public-key cipher block and key sizes are generally much larger than
those for conventional ciphers because an attacker can carry out only an exhaustive
search for a conventional ciphef k¢y, but he can search for a secret PKC key using
the mathematical structure of the public-key cipher.) This block size could be
changed to better fit application requirements, however decreasing the size weakens
the cipher and increasing it reduces the encryption/decryption rate. As noted
earlier, the prototype RSA single-chip implementation exhibits a projected
throughput of about 5 Kbits/s [28].

2.4 Conclusions

The first portion of this chapter described in greater detail the computer system
model used throughout the remainder of this thesis. This model describes a fairly
conventional, bus-oriented 32-bit computer that is characteristic of many current
mini- and microprocessor designs. The model details introduced in this chapter are
those required to design the protection mechanisms developed in Chapters 3 and 4.
However, not all of the protection mechanisms depend on all of the system
characteristics described here. Thus, some of the protection mechanisms are

independent of many system details.

The second portion of this chapter examined tamper-resistant modules (TRM) in
detail and described how external software could be protected in a computer system

based on a monolithic TRM design. The TRM concept is important since it

The System Model, TRMs and Cryptograbh'y

embodies all of the physical protection characteristics that depend on the level of
security required in a particular environment. In this fashion none of the other
protection mechanisms developed throughout the thesis: need deal with physical
protection issues. . The monolithic TRM design :preséntcd»*in‘ this chapter might be
adequate for some applications but it exhibits a number of limitations, €.8., it cannof
support demountable storage media. Thas motivates the use of cryptographic
techniques to overcome these limitations. The last. portion-of the chapter introduced
some terminology, concepts and techniques from modem cryptography. This
material is included to provide background for readers who are not familiar with
this area. The explanations provided here are not intended as a ‘general primer on.
cryptography, but rather are directed toward: the specific application -areas
encountered in the thesis. E ' '

108 -

Chapter Three
An Encrypted Bus Approach to

Prot'ecting- External Software

Thé arsenal of cryptographic techniques p;‘gséntcd in section 2.3 suggests several
ways to protect external softWare in corripute_r sygtems without enclosing all of the
sccurity relevant components in axsingle TRM. This chapter explores in detail an
approach based on viewing a computer system as a miniature communi¢ation
network. 1In th'is‘ approach, each security rel,_ev'a;nt‘ component (or collection of
components) is enclosed in a TRM and corhmuniéa‘t‘es with other components over a
physically uriprotected bus. Each TRM is equipped. with a special cryptographic bus
interface (CBI) that provides secure communicafion among the TRMs. The major
advantage of this approach over the monolithic TRM design is that it permits
distribution of the secure components among several TRMs. Thus it becomes
possible io incrementally change a system through selective replacement or addition
of TRM-packaged components (for maintenance or expansion) and many problems
associated with TRM siiing become more manageable. One might even provide a
form of demountable storage in this type of system, by péckaging the media and its
access hardware in a demountable TRM, although such storage wQuId not be

competitive with conventional, demountable media in terms of cost or convenience.

10

An Encrypted Bus Approach

3.1 Configurations and Overview .

The system confi guranons pxctured in Flgures 3 1 and 3 -2 charactenze the ways
in which TRM packagmg can be employed in thls commumcatlon security design
approach. SYSTEM A represents the. smallest changq from the monolithic TRM
design, provndmg a separate TRM only for the transfer and archival (T&A) storage
device. SYSTEM B provides greater flexibility by employing separatc TRMs for
secondary as well as T&A storage devices. In both of these confi gurations the
organization of the processor and primary memory, ic., the presenu, or absence of
cache or a dedlcated memory bus, is |rrelevant since they are conwmed wholly
within a single TRM. In these confi guratnons the cryptographlc bus mtel l'ace (CBI)
for the main TRM (the TRM contaifiing the proceéssor) also operates hke_ the secure
bus coupler (SBC) described in section 2.2.2, ie. it keeps u"hEﬁer‘ypte‘d traffic in the
main TRM from appearing on the bus outside this TRM and it restricts aecess to
primary memory locations by DMA devices outside the main TRM. In SYSTEM C
and SYSTEM D the maximum degrée of flexibility available in this design
approach is attained as each device is packaged ina separate TRM. Here the choice
between single and dual bus configurations has a sngmf cant lmpact on the desxgn,
detailed in the following sections. ' '

The techniques described in section 2.3.4 could be applied directly to this design,
but the characteristics of bus communication differ enough from those usually .
encountered in general communication environments to warrant modifying those
techniQues. For exam'ple, since bus operations involve very few bits (about 32 bits
of data or address plus some control bits), the additional information required for
security (e.g.. EDCs and sequence numbers) represents a significant percentage
increase in the amount of data transmitted. Transporting this extra information
requires either additional bus lines, increasing the cost of bus interfaces, or

additional bus cycles, increasing transaction time and reducing bus availability. Ina

102

An Encrypted Bus Approach

CPU

I

~otherperipherals

SYSTEM A .

-TO

CPU

i

other peripherals

- P-MEM]

SYSTEMB

Figure 3-1:. Two System Configurations Employing TRMs with CB[S

103 -

CPU

An Encrypted Bus Approach

i

¥ Other
-} “peripherals.

P e~ TN

SYSTEMC -

B N GEL I

il

! afherperighdrals

R
A ST

SYSTEM D

Figure 32 Two'M(r)re System Con ﬁguraﬁohs Employing TRMs with CBls

]04

An Encrypted Bus Approach

similar vein, the high speed, low delay nature of bus transmission means that any
bandwidth limitations and delays introduced by cryptographic and protocol
techniques could dramatically slow down the system. Thus, in adapting
communication security measures to the bus environment, special care must be
taken to minimize delays, maximize bandwidth and reduce the amount of additional
information transported with each operation. Moreover, the additional hardware
required for secure bus communication must not significantly increase the cost of

the com puter system.

The cryptographic techniques developed in this chapter are carcfully tailored to
the bus cnvironment, taking advantage of the highly structured nature of
transactions and the high reliability of bus communication to minimize overhead on
bus transactions. Special cipher modes and error detection techniques are employed
to minimize the number of additional bits transmitted and the delay associated with
securing bus transactions. In engincering protection mechanisms for the encrypted
bus approach, three classes of transactions involving TRM-packaged system

components are distinguished:
1. Processor-generated references to primary memory
2. Transfers between primary memory and DMA peripherals

3. Transactions used by the processor to control DMA peripherals and
used by these peripherals to interrupt the processor

The first and third transaction types arc referred to as simple in contrast to the
aggregate transactions used to cffect DMA transfers. Transactions of the first type
constitute the bulk of bus traffic. Any reduction in bandwidth or increase in delay
experienced by these transactions significantly affects system performance.
Transactions used for DMA transfers constitute a much smaller percentage of all

bus traffic and they are qualitatively different in that they deal with aggregates of

105

An Encrypted Bus Approach

data. This latter characteristic makes it possible to reduce per-transaction overhead
by validating a data aggregate as a whole rather than checking each word of the
aggregate as it is transferred. The last type of transactions, those employed in the
control of DMAS_ peripherals, are very infrequent compared to the other types of
transactions, and thus system performance is affected only: slightly if these

transactions become somewhat “slower.”

3.2 Security Requirements for the Encryptevd Bus App roach

As noted in Chapter 1, vendors have two major requrrements for protecting
external software in this context: preventmg release of and detecting modification of
mformatlon In computer systems based on the encrypted bus approach, the bus
constitutes the only vulncrable, securrty relevant portlon of the system and thus bus
transactions are the principal target for an mtruder Even though the bus is a
broadcast transmission medium, the ﬂow of data among devrces rs actually
connection-like in nature not broadcast oriented. The flow of data among TRM
packaged devices corresponds to the three types of tramactrons described in the
preceding section, i.e., data flows between the processor and pnmary memory,
between primary memoty and DMA peripherals. and between the processor and
these peripherals. The data flow is thus lmphcrtly segregated into distinct (duplex)
connections, one between each pair of devices as described above. Hence the
requirements for secure bus operation are, at a high level, the same as those for
general purposé connection-oriented ébrnrnuniCaﬁon énvironments as described in
section 2.3.4: preventmg disclosure of message text and traffic analysrs ensuring
message authenticity, integrity and ordermg and cnsurmg the trmelmes of the

connectron

8AH of the 'I"RM-pat:kagcti peripherals arc assumed to be DMA devices. If non-DMA peripherals
were employed, this same class of transactions would be used for control purposes.

106

An Encrypted Bus Approach

These requirements are easily translated to the context of bus communication
among TRM:-packaged devices. Here, disclosure of message text refers to eXposore
of the data in PRESENT-DATA operations. Traffic analysis:in this context involves
exposure of the addresses in PRESENT-ADDRESS operations, identification of the
TRMs engaged in. each transaction, determimation -of “operation types and
observation of patterns of data transfer. The authenticity, integrity and ordering
requirements are directly applied to the bit patterns representing each operation on
the bus. Thus.each received bit pattern.must: be checked to verify that it was
generated by a CBl-equipped TRM in the system, that it was-not modified en route
and that it arrived in proper order with respect to other operations between this
device and its partner in this transaction. The CBIs must be mmalrzed to a known
state and must verify the timeliness of connecuons before data transmission may

begin.

In this context traffic analysis may be a more serious: threat than in the client-
vendor communication scenario described in section 2.3:4.. For example, by
observing the pattern of references to- memory made: by aprocessor, notingvthe
locations accessed and whether the processor reads or ‘writes these locations, an
attacker may be able to deduce quite a bit about the nature of the procedure being
executed. Similar observations of data transfers between primary memory and
cache or between secondary or T&A storage and prrmary memory provide clues as
to the nature of the procedure How much mformatron can be gamed in this fashion
depends to a great extent on the system conf' guratlon For exampie SYSTEM C
and SYSTEM D provrde more opportumtres for trafﬁc analysts than SYSTEM B
which in turn provrdes more opportumtres than SYSTEM A Note that addmg a
cache to the processor in SYSTEM Cor SYSTEM D reduces the opportumtres for
traffic analysis since most references to prrmary memory are satrsﬁed by the cache

and thus do not result in transactlons outside the processor TRM

107

_An Encrypted Bus Approgch

‘The amount of information gained through. traffic analysis also depends on the
extent to which characteristics of traffic are visible. Inztl'a"e;&vomt.case an attacker can
discern the addresses in PRESENT-ADDRESS opesations, as well as identify the
operation types. In a less severe scenario an . attacker could identify the TRMs
involved in a:transaction and determine the transaction type but would not be able
to discover the specific locations involved in the transfer. Although it wounld be
prefcrable if sl traffic analysis were prevented, as'in the monolithic TRM design,
this is prohibitively costly to achieve because of bus characteristics-and so some

compromise is required.

While it is possibl'e and practical to conceul the addresses in PRFSENT-
ADDRESS operatrons it is not feasible o hrde ongm destmatron patterns at the
TRM Tlevel. “An intruder can passrvely wrretap the bus between each TRM and
discover which TRM is transmitting, but not which is receiving. However, bus
transactions follow a very simple pattern of & requeést-operation followed by a
response, so the intruder can easily determine which FRMS: are involved in a
transaction. Since the identity of the TRMs involved in a transaction cannot be
concealed, the only way..to obscure origin-destination patterns is for TRMs to
generate dummy transactions at random intervals. - Yet if the' dummy transactions
interfere with: genuine bus traffic severe performance degradation may result.

1f buses were multlplexed ina trme lelSlon fashron wrth each TRM assigned a
time slot to carry out a transacuon the dummy transacuon techmque could be
employed But the demand access nature of buses and the arbltratron 'schemes
commonly emponed make this techmque mfeasnble for two reasons Fust, a devrce
cannot know in advance whether a dumm‘y'transactlon would conﬂrct with a
genume transaction in blddmg for the bus dunng an arbltratron procedure Second,
even if a dummy transactron ‘were 1mt|ated only when there were no genume

demands, the bus would be busy for an mterval dunng whrch a genuine demand

108

An Encrypted Bus Approach

might-arise. In a system with .a priority structure for bus arbitration the first
- problem could be overcome by having the lowest priority device (usually the
processor) be the only generator of dummy transactions, but the second problem
. would remain. Only on a dedicated memory bus with transaction interleaving could
the processor/bus coupler inject dummy transactions without degrading bus

performance.

The preceding analysis suggests that preventing origin-destiniation analysis and
masking general patterns of bus traffic at the TRM level is infeasible except in
limited contexts. Hiding the types of transactions, i.e., preventing an infruder from
distinguishing among read, write and interrupt transactions or their extended
counterparts, also is infeasible in most contexts because the patterns of bus
utilization and/or the duration of the transaction are different for each type of
transaction. Thus signals on bus control lines, i.e.; lines other than A/D0-31, need
not be concealed. Only in the context of a dedicated memory bus with transaction
interleaving could these transaction characteristics be hidden. (This type of bus
arrangement is highly analogous to a simple, full duplex communication link and
thus is amenable to link encryption techniques, unlike a general purpose or 170
bus.) Thus, if traffic analysis threats such as these are a major concern,
configurations such as SYSTEM A or SYSTEM B should be considered.

3.3 Securing'Simple Transactions :

This section develops techruques for securmg simple transactions. These are the
transactions used in the control peripherals in all four system configurations and in
processor-memory transfers in SYSTEM C and SYSTEM D.. The same protection
mechamsms are apphed to both types of transactions. Processor-memory

transactlons will be processed more quickly than control transactions only because

109

An Encrypted Bus Approach

.the CBIs at the bus coupler and primary memory will incorporate multiple
cryptographic devices and extra bus lines to achieve greater paraliclism, ('ﬁle'need
to employ additional bus. lines to. transport.€rror detection. information for this type
of transaction strongly motivates adoption. of the dual bus configuration, SYSTEM
D, to minimize the cost of the extra lines.) -Otherwise, the. two transaction types are

treated identically, simplifying CBI system design.

For simple transactions, encryption is required both for secrecy and. to enforce
authenticity, integrity and ordering requirements for transactions. Of course the
data in PRESENT-DATA operations must be concealed, and if traffic analysis is a
concern, the addresses in. PRESENT-ADDRESS ‘operations also must be-concealed.
In the case of a simple read transaction, the bus master must verify that the data
returned in a PRESENT-DATA is from the location specified in the immediately
preceding PRESENT-ADDRESS, that the retumed data has not been modified in
transmission -and that it is timely (not.a copy of data from a previous bus operation).
In the case of a simple write transaction the slave must vefify the authenticity,
integrity and ordering of each PRESENT-ADDRESS and PRESENT-DATA and
the master must do-the same for each- ACKNOWLEDGE:: On an interrupt, the
master. must verify the authenticity, integrity and ordering: of the vector in the
PRESENT-DATA and the slave must do the same for the ACKNOWLEDGE it

receives.

Note that the ordering requirements set forth here are strictly per-connection, ie.,
transactions between the processor and primary memory are eXplicitly ordered
among themselves but are not expl’icitly ordered ‘with respect to tranSfers between
DMA devices and primary memory. Thus the requi-remenrts explicitly impbse loeal
ordering (on each connection) but not an explicit global ordering. Yet global
ordering is important. For example, data may be written into primary memory by
the processor and then transferred to‘seeondary’ﬁdmge.' These two transfers take

Ko

An Encrypted Bus Approach

place over two distinct connections and thus do not fall under the explicit, per-
connection ordering requirements set forth above. However, the processor initiates
all data transfers, either directly or through control of DMA device activities, and
thus it imposes a global ordering of these transfers even though the transactions are
not explicitly, globally ordered. For example, in the example noted above, the
processor will not initiate the DMA transfer-to secondary storage until it has written
the data into primary memory. Thus global ordering-is imposed implicitly by the

processor, relying on ex plicit; per-comaection ordering of transactions.

Readers who do not wish to delve into the detaﬂs of how snmple tmnsactlons are
secured should skip to section 3.4 (page 132) to lhe dlscussmn of how agglegate

transacuons are secured.

3.3.1 Securing simple read Transactions

The security requirements stated above for a simple read constitute a relaxation of
those stated in section 3.2 in that the slave does not carry out any authenticity,
integrity or ordering checks on a PRESENT-ADDRESS. These relaxed
requirements allow an intruder to submit a spurious PRESENT-ADDRESS to the
slave and receive an encrypted PRESENT-DATA response. A spurious PRESENT-
ADDRESS will not adversely affect system security so long as the resulting
PRESENT-DATA cannot be used to spoof the master, i.e., the master must be able
to verify that a PRESENT-DATA is an authentic response to the PRESENT-
ADDRESS just issued by the master. (Of courﬁe, the concealment mechanisms also
must not be affected by this relaxation.) If the checks noted above are carried out
on each PRESENT-DATA, then the master cannot be spoofed in this fashion. Thus.
this relaxation of requirements does not introduce any new vulnerabilities and it
avoids the adverse performance effects associated with calculating and traﬁsmitting
an error detection code as part of each PRESENT-ADDRFSS in a simple secure
read.

111

An Encrypted Bus Approach

For processor-memory transactions, the cryptographic facilitics must exhibit a
throughput sufficient to keep pace with bus operation and must introduce minimal
delay. Since both addresses and data are to be concealed on the bus, cryptographic
devices must exhibit a bandwidth of about 106-213 Mbits/s at peak bus utilization.
(These figures are for a cacheless processor; for a cache-equipped processor an even
higher bandwidth is required.) Since the maximum bandwidth projected for single-
chip DES devices ranges from about 64-128 Mbits/s, these devices are not capable
of mecting peak bus traffic requirements in comparably scaled systems. (The
assumption here is that one will employ fast DES chips in conjunction with a fast
bus and fast primary memory, and slow DES chips with a slow bus and memory.)
Moreover, these DES devices require about .5-1.0us to transform a 64-bit block, a
processing delay cquivalent to five bus cycles, and this delay may be a serious
problem even if the bandwidth is adequate. In SYSTEM C and SYSTEM D the
memory and the bus coupler CBIs must keep up with processor-memory

transactions and this is a difficult task.

A stream cipher mode of operation, rather than a block mode, is essential here
because of the need to maximize throughput and to minimize delay. Only about 32-
bits are encrypted in each bus operation, creating an immediate granularity
mismatch between the plaintext and a block mode of operation. A block mode also
imposes a delay (T) to encrypt and decrypt the data since the algorithm cannot be
executed until thectext is available. To better understand why block mode was
rejected, consider the processing steps involved in a simple secure read based on
ECB mode encryption, The event graph and timing diagram in Figure 3-3
illustrates these steps. The address in the PRESENT-ADDRESS and a unique
[V/AICF are encrypted using ECB mode (C1), transmitted (T1,72) and deciphered
at primary memory (C2). (The IV/AICF used here is just a sequence number.) The
data is retrieved (A), enciphered along with the incremented IV/AICF (C3), and
transmitted to the processor (13,T4) where it is deciphered (C4) and the AICF is

checked (=).
112

An Encrypted Bus Approach |

data confirm

address

: D
o A
. T
" A
cal1 | | | TTTTT 1
e e L]
TH|T2 B L b T
Bus ’ . 4
' c2 . 3
S-crypto - ——_H_”
b bt AR
Slave Cf A

01234567890123456789012345

Figure 3-3: Event Graph and Timing Diagram for an ECB Mode Secure Read

The total transaction time for this ECB mode simple secure read is 4T + 4T‘ +
T (25 bus cycleés), as compared to a standard read time of three bus cycles. The
a

timing expression is easy to derive since there are no parallel processing steps in the

113

An Encrypted Bus Approach

event graph, and that is the root of the performance problem. To support the
maximum transaction rate as a standard system, one would have to employ
additional cryptographic units, interleave transactions and add another 32 bus lines
(since twice as many bits arc transmitted here as in a standard read). These changes
would significantly increase the cost of CBIs. Even with these added facilities, this
design cxhibits an inherent delay that translates into over a 730% increase in
effective memory access time for a cacheless processor. For cache-equipped systems
a standard extended read could be sccured in an analogous fashion, but the effective
memory access time would still increase by about 48-120%. These delays are so
great as 1o preclude the usc of this mode even with the CBI enhancements noted

above,

A stream cipher mode of operation provides opportunities for parallelism and for
precomputation of the crypto bit stream, so that a high throughput rate can be
maintained with minimal delay. Since encryption and decryption are accomplished
by adding (modulo 2) cryptographic bit stream to text, if the bit stream can be
computed in advance, almost no delay is introduced for encryption and decryption.
However there are two problems if a stream cipher mode such as CFB is used. First,
in order to take advantage of the error propagation characteristics of CFB, the
quanta size must be adjusted so that data and EDC are covered by different crypto
bit stream quanta. In this application the data is usually 32-bit words or addresses,
so the quanta size would probably be 32 bits. This quanta size halves the bandwidth
provided by the cipher, a serious problem given the timing of DES calculations and
bus cycle times for the systems of interest. Second, there is a delay (7") in providing
the crypto bit stream for the EDC, since this bit strcam cannot be gcencrated until
the data being protected has been encrypted. (Remember, the ciphertext must be

fed back into the algorithm to generate the next quanta of crypto bit stream.)

114

An Encrypted Bus Approach

To avoid these problems of reduced bandwidth from cryptographic devices and
substantial delays for transmission and checking of EDCs, a degenerate form of
autokey cipher mode is used This stream mode employs no feedback from
cleartext, ciphertext or- the crypto bit stream. Instead, each block of crypto bit
stream is generated using a unique IV. Each IV is formed by concatenating a bir
stream ID and a counter that is incremented each time the algorithm is executed.
The bit stream [D distingllishes ‘_éryptog(aphic bit sfream_s generated under the same
key. This stream ciphver modé exhibits séveral vdry important properties. For
example, n cryptographic devices can be uséd in' baféllgi_:fgq.gcpgrate a single bit_
stream by initializing the counters to the values / _througﬁ n and incrementing by n
each time‘(:us?ing the same' bit stream ID for all). This makes the output appear as.
though it céfne from a single, 'fast cryptographic devvi:c‘e and z;_l-lows, using -diffefent
crypto déVice_ conﬁgufratiorns at e‘aé‘h‘ end of »arconnectipn,_, e.g, units of differing
speeds or different numbers of umts to generate the Me bit stream. Moreover,
since no feedback is employed, crypto bit stream blocks can be generated at the
maximum rate for crypto devices that allow ‘loading -the next input- while the

algorithm is being executed (a common design féature in many DES chips).

For securing bus transactions, each TRM generates two distinct bit streams for
each device with which it communicates: a fransmission bit stream and a reception
bit stream. Thus, for each connection, ene crypto bit stream: is used to encipher bus
operations transmitted by the TRM and another bit stream is used to decipher bus
operations that the TRM receives. (Of course these terms are relative since a
transmission bit stream at one TRM is a reception bit stream at the TRM that is the
target of the bus operation.) In communications parlance:a different crypto bit
stream is associated with each independent simplex channel. The¢ endpoints of each
connection generate the two bit streams for that connection in synchrony so that I'Vs

need not be transmitted and so. that the receiver of an operation can precompute the

115

An Encrypted Bus Approach

bit stream needed to decipher the incoming operation. The use of a different bit
stream for each channel is important. If the same bit stream were employed f‘or
more than onc simplex channel, it would be necessary to impose additional
constraints to prevent two TRMs from transmitting data enciphered under the same

bit stream.

This strecam cipher mode permits encryption and decryption of bus operations
with almost no delay, assuming a sufficient number of cryptographic chips are
employed in parallel. However, this stream mode does not provide any error
propagation for authenticity and integrity checks and thus a cryptographic error
detection code (CEDC) must be employed for that purpose. Using a CEDC, the
generation of crypto bit strcam for encrypting and decrypting data is independent of
the CEDC calculation. Thus one DES chip can be dedicated to calculating the
CEDC and crypto bit stream generation can proceed in parallel using other DES

chips.

Since stream mode encryption and decryption can take place with no appreciable
delay and can keep pace with any transmission rate (using multiple units in parallel),
the transaction time for a simple secure read based on this design exceeds the time
for a standard read only by the amount of time devoted to the CEDC generation and
checking. The simplest way to calculate a CEDC in this application is to encrypt the
data to be protected using ECB mode, and to transmit a portion of the resulting
ciphertext block. (It is not necessary to transmit the entire CEDC block since the
receiver of the data can perform the same calculation on the data and compare the
appropriate portion of the result to the received CEDC bits.) If a full, 16-round
DES encryption is performed to calculate the CEDC, the delay introduced by this
operation is T, no bettcr than the delay provided by CFB mode. However this
delay can be réduced by operating on the plaintext for less than the full 16 rounds

and by transmitting a portion of the result encrypted using stream mode.

116

An Encrypted Bus Approach

The idea is to reduce the time required for CEDC calculation but to maintain
security by using enough rounds and by stream cncrypting the resulting CEDC.
After five rounds of the DES, every bit of the output is a complex, non-linear
function of every bit of the input and of every bit of the key. The error propagation
provided by five rounds of the DES makes it impossible to change data in a fashion
that is invariant under this CEDC. Also, if the CEDC is stream mode encrypted
before transmission, the intruder cannot discover the value of a CEDC except
through cryptanalysis of the full 16-round DES. In order to tamper with data
covered by the CEDC (and not be detected), the intruder must either be able to
predict the CEDC generated on a known input or be able to predict the changes in a
CEDC resulting from complementing a bit in a known or unknown input. Because
all of the key bits are involved in determining the value of each output bit, each of
these tasks is probably equivalent to breaking a five-round DES, i.e., discovering the
key. As there is no indication (hat a five round DES can be broken by other than a
brute force attack, and since the matching ciphertext required for such an attack is
itself encrypted under a full strength DES, there is good reason to believe than an
intruder cannot subvert this CEDC scheme.

Figure 3-4 illustrates the steps involved in a simple secure read employing the
stream mode enciphering/deciphering and the CEDC scheme described above.
The master begins by generating its transmission crypto bit stream (C1) using the
stream cipher procedure described above. The address in a PRESENT-ADDRESS
is enciphered using 32 bits of that bit stream (X1) and the result is transmitted (T1).
The address is deciphered at the slave (X2) using the corresponding portion of the
slave reception bit stream (C2). The address is used to retrieve a word from memory
(A). The slave generates its transmission crypto bit stream (C3), enciphers the
retrieved data (X3) using 32 bits of this bit stream and transmits the result in a
PRESENT-DATA (T2). The master deciphers this operation (X4) using the

corresponding portion of its reception bit stream (C4).

117

An Encrypted Bus Approach

Bus

Slave

Figure 3-4: Event Graph for a simple secure read

While steps X3, T2 and X4 are takingv‘plece, the slave can c'ﬂculate the CEDC
(E1), using both' the addreSs and dale as inpdf Once the CEDC is avallable a
portion of it is encrypted (XS) usmg more of its transmnss:on bit stream from C3,
and the result is transmitted to the master (T 3). At the master, once the data is
decryptedv(X4) using corresponding mastef fecebiidh bit stfédm from | C4, it is
concatenated thh the address to calculate the CEDC (E2) When the CEDC
calculated at the slave arrives and is decrypted (X6) it is compared (=) with the
correspondmg portion of the CEDC calculated at the master to verify the
authenticity, integrity and orderiﬁg of the trahedcﬁdn. The decryption of the slave
CEDC (X6) and the comparison (=) can be rebrde_red and re-associated (the
master CEDC can be added to the approplfldte crypto bit stream and the result

118

An Encrypted Bus:Approach

compared to the incoming, encrypted slave CEDC) if performance is improved by

this alternative ordering of steps.

Since master and s}ave generate dlfferent transmrssron bit streams, neither will
transmit data encrphered Lmder the same bit stream that the other is using to
encipher data, regardless of attacks and thus concealment ;s ensured If the data in
the PRESENT-DATA is modrﬁed or |fthe data is ‘not from the requested location,
this will be detected smce ‘the CEDC s a funcqon of both. 'The timeliness of the
transaction also is assured by.nthe: use eﬁdif?ereat crypto- bitstream for each bus
operation and by the CEDC An old transacﬁen wrll !)e rmproperly decrypted
because of the umqueness of the crypto bit stzea{n and thrs Wlll result in a mismatch
in the CEDC check. The m“?mder canndt eompensate fiit the differences in the
crypto bit stream unless. he ca& caleulﬁe@EECs a featsmade ‘tmpractical by the
scheme used here. Thus thrs desrgn achleves ail of the secunty requirements

established for s;mple read transactlons at tl%)e begl nnmg of thls sectron

v'rnr.-:

The minimum transaction time for thls srmple secure read is 2T + T + T 6]
bus cycles) as derived from the tlmmg dxagram in Flgure 35" However the data is
available at the master after 2T l~_+ Ta, the same as for a standard read. Thus
unverified data is available at the master with no additional delay from the
beginning of the transaction, but total transaction: time “increases lay 66%. A
processor employing pipelining might be able to "backup"” if data is discovered to
be invalid within two bus cycles after its delivery, but most systems will have to
abort and shut down under these crrcumstances In many cases, it wrll not be
acceptable to deliver unverified data and the master will incur a 66% increase in
effective access time. Thrs is clearly unacceptable for processor-memory
transactions. However, in a cache-equrpped system a secure extended read can be
implemented in a similar fashion and the effective average memory access time for
verified data increases by only 4-9% in thls case This increase is small enough to be

acceptable in most applications. .

119

An Encrypted Bus Approach

> - >» O
"“ZzZ OO0

+ OO >

Master

M-crypto3

M-crypto2

| M-cryptoir —-—-— ’

BUS SE8 O BN T IEE 935 N ERNS T

S-Cryptol " - |~ ettt -

S-cryptb2

S- crypto3

Slave

01234567890 .

Figure 3-5: Timing Diagram for a simple secure read

Delay in delivery of data is not the only concern here. For processor-memory
transactions the maxlmum standard transactlon rate should be attamable and bus
utilization should not increase sngmﬁcantly The effecnve memory access time
calculations performed above assume that successive simple secure read transactions
can be issued at the same maximum rate as standard read transactnons. Unless the
next transaction is allowed to begin before the CEDC of the precedmg transactxon is
transmitted, this maximum rate cannot be achieved. 'Ihus for processor-memory

1207

An Encrypted Bus Approach

transactions, CEDC transmission must be interleaved with address and data
transmission. One ‘might attempt to transmit the CEDC on the A/D0-31 lines
during the idle cycle in the middle of simple secure read and simple secure write
transactions (see Figutes:3:5 and 3-8). However, this idde cycle will not always occur
at the time when the CEDC should be-transmitted. Moréover, the secure versions
of extended transactions do»-notpmvide‘sachéidke cycles. - . .

This anaIySIs suggests that a separate set of bus lmes |s requnred to support
interleaving of CEDC transmnssxons for processor-memory transactnons Slxteen
additional lines (CED(()-IS should sufﬁce for most apphcatnons since, if 16 CEDC
bits are transmitted for each transaction, an attacker: has a 27'® chance of
undetectably tampering with a transaction. These bus enhancements (extra lines for
CEDC transmission. and interleaving of this:transmission) are required only for
processor-memory transactions, so they affectonly SYSTEM.C and SYSTEM D,
where the bus segment between the processor and primary memory is unprotected.
These enhancements are most easily and economically implemented in a dual bus
system configuration, where the existence: of only a- single bus master makes
interleaving feasible and equipment cost is. minimized since only two bus interfaces
are involved. Thus SYSTEM D is strongly preferred: over:’'SYSTEM C. In
SYSTEM A and SYSTEM B the simple transactions on the exposed bus segment

are strictly control transactions and the increased’ delay due to CEDC transmission
on the A/D@-31 lines on this segment should not pose a. sigmﬁczmt performance
problem.

For processor-memory transactions, the CBIs at primary memory and on tiie
memory bus connection to the bus coupler each require four cryptographic devices
to maintain the maximum transaction rate. *Figure 3-6 shiows the utilization of the
cryptographic devices, memory and bus lines for a-series of six. successive simple
secure read transaetion; In each three-cycle.transaction, 32 bits of address must be

121

An Encrypted Bus Approach

concealed by the master so a single device (cryptol) can supply the needed 64 bits
every six cycles. The slave must conceal 32 bits of data and 16 bits of CEDC evéry
transaction, for a total of 48 bits every three cycles (at maximum rate). Two
cryptographic devices {crypro2 and crypro3) are used ‘for this: task -since a single
device can generate .only 64 bits every .five cycles. Finally, one crypto device
(crypto?) is required to generate the CEDCs,: using two bus.cycles in each three-
cycle transaction to perform five of the 16 rounds of the DES. Smce this string of
transactions represents a series of processor-memory trzmsactlons, the extra bus lmes
(CED(O-IS) are employed for CEDC transm:ssnon

If the traffic analysis threat is ignored, addresses need not be encrypted and 32
fewer bits would have to be concealed on each transaction. In: this case only three
crypto units are required at the processor and primary meinory, i.e., cryplol can be
eliminated. Even if addresses in processor-memory transactions are concealed, it is
quite likely that address concealment may be omitted for control transactions (those
involving the processor and DMA peripherals) since the device register addresses in
 these transactions provide very little information to an attacker. Unlike processor-
memory transactions, the frequency of control transactions is fairly low and there
should be enough time between these transactions to‘allow a‘single crypto device to
precompute crypto bit stream between uses (whether or not: adtresses are concealed
in these transactions). This would free this device for CEDC calculation during
these transactions. Thus TRM-packaged: peripherals: probably require only one
crypto unit (changing bit stream IDs as required) for simple secure read control

transactions.

3.3.2 Securing simple write Transactions

~The detailed security requirements for simple write transactions provide no
opportunities for relaxation, unlike simple read transactions. ‘The contents of the

122°

Master
M-crypto4
M-crypto3
M-crypto2
M-cryptot

A/D0O-31
CEDCO-15
S-cryptot
S-crypto?2
S-crypto3
S-crypto4

Stave

An Encrypted Bus Approach

A DA CDA CDA CDA CDA G D o
D AD OAD OAD OAD OAD O A 0O
D TD NTD NTD NTD NTD N T N
R AR FAR FAR F AR F AR F A F
T O 0 O A O W O S T O 0 0 S
£2 E2 |4 E2 E2 £2
C4 C4 C4 L
C4 - C4 Cc4
C1 C1
T1 1271 129m 24T 12171 1217 12
13 13 T3 T3 T3 T3
c2 c2
C3 C3 C3
C3 C3 C3
E1 k1 E1 Et E1 E1
A A A A A A

012345678901234567890123435

Figure 3-6: Timing Diagram for Successive simple secure read Transactions

123

An Encrypted Bus Approach

PRESENT-ADDRESS and PRESENT-DATA must be concealed. The slave must
verify that these operations are ordered with respect to other transactions on the
conncction, and that the address and data are authentic and uninodified. The slave
must provide the master with a secure ACKNO\VLEDGE verifying the successful
completion of the simple secure write. These reqmrements can be achleved usmg
many of the same techmques developed for secure reads. Stream mode encryption
and decryption are employed for concealment, and the same CEDC technique is
applicable here to ensure the authenticity, integrity-and orderihg for each operation -
in the transaction. thure 3 -7 shows the event graph for the simple secure write

resulting from an apphcatlon of tbese techniques.

Bus

Slave

Figure 3-7: Event Graph for a simple secure write

124

An Encrypted Bus Approach

The master begins by generating 64 bits of transmission bit stream (C1) for
concealing address and data. The address is encrypted (X1) using half of these bits
and the result is transmitted (T1) using a PRESENT-ADDRESS. The slave receives
this encrypted address and decrypts it (X3) using the corresponding portion of the
slave reception bit stream generated in C2. Back at the master, the data is encrypted
(X2) using the remaining 32 bits from the transmission bit stream generated in step
Cl. The result is transmitted (T2) using a PRESENT-DATA and deciphered at the
slave (X4). At the master, the address and data are used to calculate a 64-bit CEDC
(E1), a portion of which (say 16 bits) is encrypted (X5) using a matching amount of
additional transmission bit stream generated in C3. This CEDC is transmitted to the
stave (T3) where it is deciphered (X6) using the corresponding reception bit strcam

generated in C4.

The slave computes a 64-bit CEDC using the received address and data, and the
corresponding bits of this CEDC are .compared with the CEDC bits from the master
(=1). Ifthese bits match, the write, which was begun earlier when both the address
and data became available, is completed and acknowledged. The
ACKNOWLEDGE is secured by encrypting (X7) and transmitting (T4) a different
portion of CEDC gencrated in step £2. This CEDC is encrypted using slave
transmission bit stream generated in C5. The master verifies the completion of the
transaction by decrypting (X8) this portion of the CEDC, using the master reception
bit strecam from C6, and comparing (=2) it with the corresponding, locally
generated CEDC bits from step E1. As in the secure read transaction, the steps
involved in an CEDC comparison can be re-ordered and re-associated, if necessary,
to provide faster operation. This re-ordering and re-association may be especially
critical at the slave if the CEDC is to be checked and a secure ACKNOWLEDGE
transmitted on the next bus cycle. This transaction offers a number of opportunities

for parallelism, as illustrated in Figure 3-8.

125

An Encrypted Bus Approach

A D
D A A
DT B &
R :A K
Master
, . . {E
M-crypto4 '
M-crypto3 T ™
Tial 1 , [
M-crypto2 2 \
C. |
- M-crypto1 e
T1(T2 T3 [T4
Bus
S-crypto1 e
) o c4 e
S-crypto2
cs A _
S-crypto3 1T - T
K ' L Lol |BRE P
S-crypto4 7 ‘
: : i X A i N
Slave —T T FT

01234567800

Figure 3-8: Timing Diagram for a simple secure write

Total time for this snmple secure wnte is 3T + T (S bus cycles) based in the
ummg dlagram in Flgure 3-8 the same as for a smple secure read.. (An examination
of the event graph ylelds a complex symbph_c{_ggyng Z;t"grm_uhl.: involving nested

minimum functions, which simplifies to this expﬁmion using the relative timing

126

An Encrypted Bus Approach

assumptions adopted earlier.) The address and data are availuble at the slave at the
same points In time as in a standard write, but confirmation of their validity 1s
delayed by two bus cycles, causing an equal delay in acknowledgment of the
transaction. Again the secure version of this transaction takes 66% longer than the
standard version. As an increase in cffective memory access time, this delay is not
quite so serious as in the case of a simple secure read since write transactions
typically constitute only about 20%-25% of all processor references to memory.
Morcover, in systems cquipped with a write-through cache, processor-generated
write transactions may be buffercd to reduce the delay associated with access to
primary memory. (If a write-back cache is employed, buffering of modified, evicted

lines reduces delay on extended write transactions. [6])

Since a simple secure write takes 66% longer than a standard write, a proportional
increase in buffering at the cache will maintain existing performance levels in the
face of this additional delay. (A secure extended write exhibits the same relative
increase in delay.) For cacheless systems, single or double buffering of writes will
absorb this delay in most cases. Although additional buffering can reduce the effect
of the longer transaction time on effective memory access time for the processor, the
transmission of CEDCs during two bus cycles increases bus utilization and thus may
delay other transactions. As with simple secure read transactions, the problem can
be solved by overlapping transmission of CEDCs with address and data
transmission (using additional bus lines for this purpose). Use of the extra bus lines
and this limited transaction interlcaving enables simple secure write transactions to
proceed at the same maximum rate as standard write transactions. Again these bus
enhancements are required only for processor-memory transactions and thus affect
only SYSTEM C and SYSTEM D. Using the same reasoning applicd to simple

secure read transactions, it is apparent that SYSTEM D is preferred here.

127

Master
M-cryptod
M crypto3
M-crypto2
M-cryptol

A/DO-31
CEDCO-15
S-cryptot
S-crypto2
S-crypto3
S-cryptod

Slave

Au Encrypted Bus Approach

A D A D A D A D A D A D
D A DA ADAADAADAADAA A
DT DT CDTCDTOCDTT CDTOC C
R A R A KR AKRAIKZRAIKIRAK K
3
| Ly dddddddidd
SN S . .‘_(-}-,, __l ¢>_ —
1 Et 1 1 E1 E1
C3 (0] C3
(@3] Ci Ct
G C1 C1
Ti1112 T11|72 T11(12 T1i12 T1(T2 T11T2
T3 (T4 T3 (T4 T3 (T4 T3 [T4 T3 (T4 T3 (T4
C2 (4 c2
c2 C2 c2
C4 C5 C4
E2 E2 E2 E2 E2 E2
A A A A 1A A

01234567890123456789012345

Figure 3-9: Timing Diagram for Successive simple secure write Transactions

128

An Encrypted Bus Approach

For processor-memory transactions, the CBls at primary memory and the
memory bus connection to the bus coupler each require four cryptographic devices
to maintain the maximum transaction rate, the same number as for a simple secure
read transaction. Figure 3-9 shows the utilization of memory, bus lines and
cryptographic devices for six successive simple secure write transactions. The master
must conceal 64 bits of address and data and 16 bits of CEDC for cach transaction,
whereas the slave must conceal only 16 bits of CEDC. Three crypto devices
(cryprol, crypto2 and crypro3) are devoted to gencrating bit stream here, with
crypto3 alternating between transmission and reception bit stream generation. (One
could make the assignment of crypto devices to bit stream generation tasks simpler
by devoting a device exclusively to the slave transmission bit stream, but this would
leave two devices idle much of the time.) Again, one cryptographic device (cryptod)
is required to calculate CEDCs and these CEDCs are transmitted on the extra bus
lines EDCO-15.

As was the case with simple secure read transactions, if addresses need not be
concealed then one crypto device can be climinated. Again, even if addresses are
concealed on processor-memory transactions, it seems likely that addresses in
control transactions need not be encrypted. Here too, the frequency of simple
secure write transactions used to control DMA devices should be low enough to
allow a single crypto device to generate the transmission and reception bit streams
between these transactions, freeing the device to generate the CEDC during the
transaction. Thus TRM-packaged peripherals probably require only a single crypto

device to keep pace with simple secure write control transactions.
3.3.3 Securing interrupt Transactions

Only one type of simple transaction has yet to be discussed: an interrupt. The

security requirements for an interrupt arc much like those of a simple write, offering

129

An Encrypted Bus Approach

no opportunity for relaxation. The interrupt vector in the the PRESENT-DATA
must be concealed, and the processor must 'ven'fy that this operation is propeﬁy
ordered, authentic and unmodified. ‘The peripheral .generating the interrupt must
verify that the ACKNOWLEDGE it receives corresponds to the PRESENT-DATFA
just:transmitted. These requirements ‘are readily: achieved -using the techniques
developed above for simple read and simple-write transactions:: Figure 3<10 shows
the event.graph for a secure inlerrupt.

Master

Bus

Slave

Figure 3-10: Event Graph for a secure interfipt

The master begins by generating tfénsmissic')h‘cryptd\ bit stream to conceal the
interrupt vector and CEDC (Cl1). The interrupt vector is enciphered (X1) ‘and
transmitted in a PRESENT-DATA. This vector is-input: to'the' CEDC ‘calculation

130

An Encrypted Bus Approach

*— < -4 Z -
T—xo::

Master

E1

M-crypto3

M-crypto2 oot ——

‘ et .
hﬂ*:pypto1 el

ST T2 |73

Bus ,
C2

S-crypto1

S-crypto2

S-crypto3

Slave T p—p——

0123456788060
Figure 3-11: Timing Diagram for a secdrég ihterrupt

(E1) and 16 bits of the result are enciphered (X3) and transmitted (T2). At the slave
(processor) the interrupt vector and the CEDC aré deciphered (X2 and X4) using
the corresponding slave reception bit stream from C2. A CEDC is calculated locally
on the vector (E2) and the corresponding 16 bits are compared with the transmitted
CEDC (= 1). If the .two values match, the .‘j’r,;,ggr_mpg _is. processed (P) and
acknowledged. The acknowledgment is.effected by encipﬁéring another 16 bits of
the CEDC (X5) using slave transmission bit stream (C3), and transmitting the result

131

An Encrypted Bus Approach

as an ACKNOWLEDGE (T3). The master deciphers the CEDC (X6) using
corresponding master reception bit strcam from (4, and compares it with the

corresponding bits of the CEDC gencrated locally (=2).

The minimum total time for this transaction is 2T’ + T (4 bus cycles), based on
the iming diagram in Figure 3-11. This is twice as long asea standard interrupt, but
since these transactions occur so infrequently (they are strictly control transactions),
the added delay and extra bus utilization should not significantly affect system
performance. The relative infrequency of interrupt transactions, like other control
transactions, means that a single crypto probably suffices to generate both crypto bit
streams and to perform the CEDC calculation. Thus the CBls for peripheral devices

need only one crypto device to handle secure control transactions.

3.4 Securing Aggregate Transactions

This section deals with the problem of securing aggregate transfers. If the simple
secure transactions developed in the preceding section were employed for aggregate
transfers without interleaving CEDC transmissions (including additional bus lines),
utilization of the general purpose or I/0 bus for these transfers would increase by
66%. 1f utilization of this bus is very low, this may be acceptable, but in most cases
this increase will noticeably degrade system performance. Adopting interleaving
and adding extra bus lines to carry CEDCs, as was done for simple secure
transactions, is an expensive proposition in this context. This is due to the number
of devices attached to this bus and to the fact that this bus is not synchronous,
making interleaving more complex. The transactions developed in this section avoid
this problem, i.e., they do not significantly increase bus utilization, yet they provide

for secure transfers of aggregates between DMA devices and primary memory.

132

An Encrypted Bus Approach

3.4.1 A Transfer Protocol for Data Aggregates

The transfer protocol developed here takes advantage of the fact that transfers
between primary memory and these storage devices involve data aggregates larger
than a word, e.g., a disk block or a tape record. ‘Rather than checking the validity of
each word as it is transferred, the authenticity, integrity and ordering of the
aggregate transfer as a whole is checked after the transfer is complete. In this
fashion the data and address in each read or write transaction in an aggregate
transfer is encrypted, but the transaction carries no CEDC and thus bus utilization is
not affected. Only when the transfer is complete is a cumulative CEDC, covering all
of the transferred data and addresses, transmitted for verification. This CEDC
transmission is effected using a simple secure read as developed in the preceding

section.

It might seem that this approach would result in reduced security but a careful
“examination of the protocol indicates that it presents an{ intruder with no new
opportunities for attacks. When a data aggregate is transferred to primary memory
from a storage device, the processor does not access any portion of the aggregate
until the storage device signals that the transfer is complete and verified. As long as
the unverified data is stored only in the locations that are destined to be overwritten
anyway, no real harm results from transféhiﬁg&éia* aggregates in this fashion.
Address filtering of these unverified writes at the slave, restricting them to the
regioni(s) of primary memory which are current targets of such transfers, provides
the necessary control. Note that the term slave is-ased Here (rather than primary
memory) since the filtering and other security functions ¢an be performed at various
points depending on system configuration. In'SYSTEM A and SYSTEM B these
functions are provided by the CBI in the main TRM and in SYSTEM D either the
primary memory, CBl or the. bus coupler CRI (at the 1/0 bus interface) could
perform these tasks. .

133

An Encrypted Bus Approach

In transferring data aggregates from primary memory to storage devices a similar
argument applies. Some storage devices buffer the aggregate until the transier is
complete, since the rate of arrival of words varies depending on bus traffic and may
not be synchronized to the device transfer rate. In this case the aggregate can be
checked before it is written on the non-volatile media. Even if the data is written on
the media before the transfer is complete (as in a non-buffered device), no harm will
result so long as it is possible to identify unverified aggregates on the media.
Incomplete transfers to these devices sometimes occur under normal (non-
malicious) circumstances due to transmission timing problems. Storage devices
(buffered and non-buffered) record an EDC with cach aggregate to detect these and
other errors. If an incomplete transfer occurs or an error is detected by the
cumulative CEDC, the EDC on the media can be set to an error value as a positive
indication of unverified data. Since storage devices act as bus masters, there is no

need for address filtering here, unlike primary memory.

Thus aggregate transfers to and from primary memory are efficiently and securely
implemented using two types of transactions: simple secure transactions to control
the transfer, and aggregate sccure transactions to transfer the data. The general
procedure, for transfers in both directions, is as follows. First, if the transfer ts
directed to primary memory, the processor identifies the range of the transfer at the
slave, 1.e., establishes the upper and lower bounds for primary memory references,
and resets the slave cumulative CEDC register. Next, the processor establishes the
transfer parameters at the storage device, e.g., the starting addresses at source and
destination and the amount of data to be transferred, using simple secure control
transactions. The storage device then carrics out the transfer using aggregate secure

transactions.

As each word is transferred, the cumulative CEDC is accumulated at both the

storage device and at the slave. When the transfer is complete, the storage device

134

An Encrypted Bus Approach

reads the slave control register containing the accumulated CEDC (using a simple
secure read). In the case of a transfer to memory, this control transaction must set a
flag at the slave to prevent further data transfers on this. connection uhtil the CEDC
register is reset for the next transfer. This value is compared to the CEDC
accumulated at the storage device, and.thé status register at the ;storaige device is set
accordingly. (The EDC on the non-volatile media is voided if the comparison fails
or if an incomplete transfer error occurs.) The storage device sends a secure
interrupt to the processor, when this procedure is complete and the processor

retrieves the contents of the device status register using a simple secure read.

Readers who are not interested in. the details of securing aggregate transfers
should now skip to section 3.7 (page 154) for a summary of the highlights and a

review of the conclusions reached in this chapter

3.4.2 Securing aggregate read and aggregate write Transactions

The event graphs and timing diagrams for an aggregate secure re;ad and an
aggregate secure write are shown in Figures 3-12, 3-13, 3-14, and 3-15. The
encfyption/decryption mode and cryptographic error . detection techniques
employed here are essentially the same as those used in simple secure transactions.
The CEDC calculation must be made cumulative in a fashion that not only detects
modification of individuai words but also detects positional changes (reordering) of
words in the data sggregate. The method ‘adopted here is to chain the CEDC
calculations by adding the output of the / CEDC calculation to the input of the
i+1" CEDC calculation. This is essentially CBC mode encryption (using a
shortened DES) appligd to the CEDCs.

In an aggregate secure read, the master begins by generating transmission
cryptographic bit stream (C1) in the usual fashion, The.address-ig. the PRESENT-

135

An Encrypted Bus Approach

address data

Master

Bus

Slave

Figure 3-12: Event Graph for an aggregate secure read

ADDRESS is enciphered using 32 bits of that bit stream (X1) and transmitted (T1).
The slave deciphers the address (X2) using a corresponding portion of the slave
reception bit stream generated in C2. The appropriate word is retrieved (A),
enciphered (X2) using 32 bits of slave transmission bit stream (C3), and transmitted
(T2) in'a PRESENT-DATA. The data is also added to the cumulative CEDC (X4)
and a new running CEDC is calculated on the result (E1). At'the ‘rhéster, the data is
deciphered (X5) using corteSpondinébi& from the master réception bit stream (C4),
and is made available both for storage and for calculation of a new cumulauve
CEDC value (X6 and E2). Figure 3-12 illustrates these processing steps

An aggregate secure write proceeds in much the same fashion. “Mie address in the
PRESENT-ADDRESS and the data in the PRESENT-DATA' afe enciphered (X1

An Encrypted Bus Approach

49— » O U >
o » - » ©

Master

M-cryptod

M-crypto2

M-crypto1 ~ f=t=g=t=

Tij |12

S-crypto1 e S

S—cryptb2 i S

t

E1

S-crypto3

Slave

01234567890

Figure 3-13: Timing Diagram for an aggregate secure read

and X2), using 64 bits from the master transmlssmn bit stream (Cl) and transmltted
(T1 and T2). The data also is fed into the cumulatlve CEDC calculatlon (X4 and
El). The slave dec1phers the address'and data (X 3 and XS) usmg the slave receptlon
bit stream (C2), and transmits an unencrypted ACKNOWLEDGL (T 3) Thie slave
checks the address against the range registers.(<>) and, if it is-within the prescribed
bounds, the data is stored and fed into the cumulative CEDC calculation (X6 and
E2). Figure 3-14 illustrates these processing steps. -

137

- An Encrypted Bus Approach

address data

Master

Bus

Slave

Figure 3-14: Event Graph for an aggregate secure write

R

The minimum nme for bioth transactlons is 2T + T (three bus cycles), the same
as for comparable standard transactmns as mdncated in Figures 3-13 and 3-15. Note
that the CEDC calculation is performed én 64-bitinputs, so it is executed only once
for every two transactions. Since the meximum transfer rate for secondary and T&A
storage devices ranges: -fsom :abeut:: 1-15 - Mbits/s, - a: singlé ‘erypto: unit probably
suffices to generate both the crypto bit stream and to calculate the cumulative
CEDC ‘As it was_noted m sectnon 3 3 that a smgle crypto devnce 1s probably

sufﬁc1ent o secure coptrol transactlons tlus analxs;_s suggests that the CBIs for

TRM packaged secondary and T&A storage requnrg?ut one crypto devnce to handle
both types of uansactmns,

* This aggregate secure transfer protocol réquires an additional two to four control
transactions:. oae to trahsfer the cumulative CEDC, one to-resét the CEDC reglster
at the slave and, in the case ofumitopﬁmarymem AWO' transacth

13!

An Encrypted Bus Approach

A D
D ‘A A
DT c
' o "R A K
Master T H . _
_ ‘ 11 Fial 14
M-crypto2 3 . s
M-cryptot I e e R
Bus T T
S-cryptot r— p———p——————{
B KRR S Ez HE: T
S-crvoto? 1L « = P
v | Uk |
Slave

012345678890
Figure 3-15: Tlmmg Diagram for an'aggrgggie:secm"q write

establish the bounds of the transfer. An aggregate transfer in a standard system

requires one transaction for every word transferred plus five control transactions (as.
~detailed earlier). Thus, in a typical 512-byte transfes, .the. additional bus cycles
required by extra control. transactions to secure the tranpsfer constitufe a negligible

(1.5-3%) increase in bus utilization. for DMA transfers. Moreover, the total time for

such transfers is not noticeably increased (<1%) singe the extra control transactions

require only a few. microseconds whereas a 512-byte tramsfer takes on the order of
500us at 8 Mbits/s.

139

An Encrypted Bus Approach

3.5 Additional CBIl Design Considerations

The cryptographic techniques employed for aggregate secure and simple secure
transactions employ a different bit stream 1D for each simplex channel, ensuring
that the generated bit streams are distinct. In a computer system consisting of n
TRM-packaged (DMA) storage devices, there are logically 2n connections: one
between each of these devices and the processor (for control purposes) and one
between cach of these devices and primary memory (for data transfer). This yields
4n bit streams, two for each connection! However, it is possible to combine the
control connection and the data transfer connection for each DMA peripheral
device into a single connection if both connections are managed by a single CBI at
each end (to synchronize use of the bit strcams). Combining these connection pairs
halves the number of distinct bit streams that must be generated, making the CBls at

these devices somewhat simpler and less costly.

Combining the control and transfer connections for each device fits naturally in
SYSTEM A and SYSTEM B where the CBI on the main TRM provides the only
path to both processor and primary memory for storage devices. In SYSTEM C this
simplification cannot be effected since the CBIls for priméry memory and the
processor are distinct in this configuration. However, SYSTEM C effectively was
eliminated from consideration earlier because of the cost of interleaving CEDC
transmission for processor-memory transactions. In SYSTEM D, the CBI at the
interface to the 170 bus can act as the secure interface to both processor and
primary memory for these storage devices in support of combined control/transfer
connections. This approach yields single-connection CBIs for secure storage
devices, primary memory and the bus coupler interface to the memory bus. Only
one multi-connection CBI is needed in these designs, the CBI at the bus coupler

interface to the 1/0 bus.

140

An Encrypted Bus Approach

Irrespective of the choice of combined or separate control and data connections,
the above-noted design for SYSTEM D is preferred over one in which the primary
memory CBI is the termination point for the storage device data transfer
connections. The reasoning here is that the primary memory CBI is fairly complex
due to the high transaction rate which it must support. If this CBI had to deal with
aggregate transactions from several storage devices and simple transactions from the
processor, the bus interface would become even more complex. Thus the preferred
design for SYSTEM D involves terminating each storage device data transfer
connection at thec main TRM. Adopting this design, the bus coupler CBI at the [/0
bus interface becomes the slave CBI in aggregate transfers, and thus it contains the
CEDC accumulation register and a pair of bounds registers to restrict access on
aggregate secure write transactions. Note that these registers are associated with
only one transfer at a time so several sets of registers are required to support
multiple, simultancous aggregate transfers.

This is a convenient arrangement since the processor control transactions that
manipulate the bounds registers (to establish the range of transfers) do not actually
go out on the bus and thus need not be encrypted. Under this arrangement,
aggregate transactions are managed at the bus coupler and transformed into simple
secure transactions on the memory bus, thus simplifying the primary memory CBL.
(In cache-equipped systems configured as SYSTEM D, aggregate transfers may
store into or fetch from the cache, so these transactions must be decrypted and
processed at the bus coupler anyway.) Since the cumulative CEDC detects
modification only between the master CBI and the slave CBI, i.e., only on the [/0
bus in this design, it is essential that simple secure transactions are uscd to transport

this data on the memory bus.

Using this design, the transfer of a data aggregate between a secure storage device
and primary memory involves three distinct phases: transfer on the 170 bus using

aggregate secure transactions, buffering in the bus coupler and transfer on the

141

-An Encrypted Bus Approach

memory bus using simple secure transactions. On transfers to memory from the 1/0
bus, a small (two or three word)'bufTer'is:?ustIally provided to account for the
asynchronous operation of the two busses. - If such a buffer were not ‘provided, the
time for a store to memory from a device on the 1/0 bus could double or triple
waiting for the memory bus to bécome available and for dn acknowleédgmeént from
memory. In the context of an aggregate secare write to memory, if this buffer is
expanded by one word, the (non-secure) ACKNOWLEDGE on'the 170 bus can be
issued before the simple secure write 'is com;aleted on the memory bus, ie., the
transactions on the two busses can be overlapped. ' '

On transfers from memory to devrces on the I/O bus dam is usually pre- fctched
from memory into small (one or two word) buffers one per DMA device. If thrs
pre- fetchmg were not provrded the trme for a fetch from memory by a devrce on
the 1/0 bus could double or triple, jUSt as for stores by thesc devrces In the case of
an aggregate secure read the size of these buffers need not be mcreased even
though a simple secure read encounters a two-cycle delay before the authenttctty,
integrity and timeliness of the transmttted data is venﬁed lnstead the prefetch can
begin two cycles earlrer than in a standard system so that the requested word is
available and checked before the aggregate transactron takes place lf the same
prefetch time were employed the data from pnmary memory mtght not be checked
before it was transmitted on the 170 bus and thus the entlre transfer would have to
be aborted if the check on the word falled Earller prefetchmg is readily
accomplished by the bus coupler given the relatlvely low transfer rates of storage
devices on the]/0 bus. To avord pre- fetchmg past the end of the data to be
transferred, one can use the bounds registers provrded for aggregate secure write
transactions to delimit the range of the transfer on aggregate secure read
transactions. '

142

An Encrypted Bus Approach

One final design requirement that arises in ali system configurations is the necd
for CBIs on the general purpose or 170 bus to be able to determine when
transactions are directed toward them. This is a problem here because all addresses
in secure transactions are encrypted and can only be decrypted using the proper
crypto bit stream. (Of course, if the system designer elects not to encrypt addresses
this problem vanishes.) It is conceivable that a CBI attempting to decrypt an
address using the wrong crypto bit stream will yield a value that matches an address
at the CBI. The multi-connection CBI at the bus coupler would be further
complicated if it had to check the address in each transaction to determine the
connection with which it was associated. There are dual problems here: secure
storage device CBls need to know whether they are the rarger of a transaction
whereas, the main TRM CBI (on the 170 or general purposc bus) needs to know the
source of a transaction. Note that the problem is symmetric but not identical for the
main TRM and for storage devices. Based on the data flow patterns encountered in
these systems, if the main TRM is not the source of a transaction it must be the
target, and if a device is the target, then the main TRM must be the source.

[f the arbitration procedure on the 170 or general purpose bus explicitly
identifies the next transmitter (the next source), then the second problem is solved,
i.e., the source of each transaction is identified for the main TRM CBI. Moreover,
using this information, the storage device CBls know they are not the target of a
transaction if the source is not the main TRM. The only remaining problem is
identifying the target of control transactions issued by the TRM. If the addresses in
these control transactions are not encrypted, the target is clearly identified and no
confusion results. In most applications, this will not be regarded as a serious breach
of security, as noted earlier, since only the addresses of control registers are involved
and these provide little traffic analysis information. If the arbitration procedure
does not identify the next transmitter, the CBIs on the 1/0 bus can gencrate this
information and transmit it using some additional bus lines. About two or three

additional bus lines should suffice for this purpose.

143

An Encrypted Bus Approach

3.6 System Integration Issues

The preceding sections dealt with the problems of securing communication
involving the processor, primary memory and secondary and T&A stor'rge devrces
Although these problems are central to the desrgn of computer systuns that achleve
the security requirements outlined in section 3. 2, some addmonal problems must be
be addressed to completc the design. For example there also has been no
discussion of how to mterface non-sccure devrces to the l/O bus S0 that they can
cominunicate with the processor and m the case of DMA devrces with prrmary
memory. System mmalrzanon procedures responses to possrble securrty vrolatrons
and enforcing rcloadmg constralnts assocrated wrlh alchwal storagc are all toprcs
requiring further attention. The remamder of this chapter deals wrth each of these

lOplCS in turn.

Ciig i i

3.6.1 lnterfacrng Non- Secure Devrces on the. VQ &ug

The non-secure devices attached to the: general purpose’or 170 bus fall into two
classes: interrupt deiven and DMA. Fiterrupt diiven devieés interface only with the
processor, generating interrupt transactions and'acfing as the target of read and write
transactions to device control registers. DMA- devices exhibit the same processor
interface requirements and further require a means of transferring data aggregates
to and from primary memory. Secufte and hon-secure: devices must-co-exist on the
general purpose or 170 bus without either ‘being: conflised by the -addresses
transmitted by the other. In solving thése interface problems it is most désirable to
avoid approaches that entail modifying the bus interfaces for non-secure devices.
This is an important consideration since there may be ‘a number of these devices on
the 1/0 bus, and system cost might increase srgmﬁmtly if off-the-shelf versions of
these devices cannot be employed. ’

144

An Encrypted Bus Approach

First consider the problem of transmitting both encrypted and clear addresses on
the general purpose or 1/0 bus. Since the bit pattern that results from encrypting
an address is unpredictable, it is conceivable that some encrypted addresses will
match the bus addresses of non-secure devices and, conversely, that clear addresses
could be decrypied by secure devices to yield spurious bus addresses. In section 3.5,
two solutions were presented for resolving an analogous problem resulting from the
ambiguities presented by encrypted addresses used on different connections. One
solution, the use of extra 170 bus lines to identify the transmitter and destination of -
bus transactions would solve the current problem as well, but this would violate the
goal of not modifying the bus interfaces of non-secure devices. The other solution,
based on using clear addresscs in control transactions and an arbitration scheme that
identifies the transmitter, also requires that bus interfaces (other than the processor)
know not to perform address recognition except when the processor is the

transmitter,

To avoid any modification of non-sccure bus interfaces, the strategy proposed for
bus address assignments in the monolithic TRM design is adopted here. The high
order bit of addresses will be used to distinguish between secure and non-secure
device addresses and this bit will not be encrypted in any operations on the general
purpose or 1/0 bus. This bit partitions the bus address space between secure and
non-secure devices, so neither type of device will be confused and no modifications
to non-secure device bus interfaces are required. Since this address bit merely
identifies which type of device is being addressed, any traffic analysis information
gleaned from examination of this bit would be readily available in any case. Note
that this bus address assignment stratcgy does not interfere with use of either of the
previously mentioned solutions to the encrypted address ambiguity problem as it

exists among securc devices.

145

An Encrypted Bus Approach

~Using this address assignment scheme, interfacing non-secure interrupt driven
devices becomes fairly simple. These devices generate standard interrupt
transactions and the processor controls the devices using standard read and standard
write transactions. The fact that the high order bus ‘address bit distinguishes
between non-secure and secure devices means that the processor implicitly indicates
to its CBI whether or not a transaction should be encrypted. - In the case of stores by
non-secure DMA devices, there is a-need for address filtefifg to restrict aecess to
designated meémory tocations. This is accomplished using phifs 6f bounds registers,
as propesed earlicr for the secure bus-coupler(SBCY in the:monolithic TRM désign.
The processor must establish-the range of memory Tocations 16 'be accessed by non-
secure DMA devices and indicate: the allowed modes of acebss (fetch:ind/or store)
before transfers can”proceed. If ‘an ‘afbitration’ miecharisi® is employed ‘that
identifies the transmitter; ‘the -appropriate - pajr of Bbtindd’ regiter§ s triviafty
selected, otherwise an associative search (based on the address in the tiansaction)

-may be required.

3:6.2 System Initialization

In the preceding sections, secure operation of the computer system has been
described in a'steady-state context. Whén the combﬁter system is powered up or
otherwise-periodically initialized, it'i§ necessaly t6 establish the context for secure
steady-state ‘operation. The purpoSE "of this mi’nahzatlon prooedure is the
establishiment of secure connéctiohs between e mam TRM and the other (slave)
TRMs in the system. The requrrements for sectire connect:on initiation here are the
same as in general purpose commumcatlon envu‘onments, l.e., the authentlcny and
the time-integrity of each connection must be establishéd. The methods for
‘achieving these requirements are somewhat simpler’:ﬁe:re;" due to the fixed
connectivity patterns of the TRMs and due to the fact that there is no mutual

An Encrypted Bus Approach

suspicion among the TRMs. The initialization procedure involves distribution of a
working key by the main TRM followed by a challenge-response protocol to verify

the authenticity and time-integrity of the connection.

Each slave TRM contains three non-volatile control registers for security
purposes: one contains the master key of the TRM, one holds a bit pattern used in
the challenge-response protocol and one records the bit stream 1D pair used by the
TRM in communicating with the main TRM. One volatile register, to hold a
working key, is also included in each slave TRM. The registers containing the
master key and the challenge-response value are both loaded at the time of
manufacture, and the master-key register is never changed. However, the registers
containing the challenge value and the bit stream IDs are modified each time the
TRM is reset (using the bus RESET line). The main TRM contains a collection of
non-volatile registers, including one for its master key, a counter for generating
working keys and a set of registers to hold the master keys and bit stream 1Ds for the
slave TRMs configured in the system. The master keys of slave TRMs are loaded
into the main TRM using a procedure described in section 3.6.4. The main TRM
generates new working keys by incrementing its non-volatile counter and encrypting
(using ECB mode) the result under its master key, generating a distinct,

unpredictable working key each time. System initialization proceeds as follows.

First, the main TRM generates a new working key as described above. Next, for
cach slave TRM in turn, the main TRM raises the RESET linc while asserting the
bus address of the TRM being initialized, clearing all volatile registers in that slave
TRM. The main TRM then enciphers the working key under the slave TRM master
key (using ECB mode) and transmits the result to slave TRM control registers using
two standard write transactions. The slave TRM receives the working key, deciphers
it (using the slave TRM master key) and loads the result into its (volatile) working-

key register. Next, the master TRM uses a standard write to store the assigned bit

147

An Encrypted Bus Approach

stream 1D pair to the slave TRM. The master TRM chooses these 1Ds so that each
slave TRM uses a different pair to communicate with the main TRM. ‘.The»masier
TRM also stores these values (working key and bit stream iDs) into the CBI
registers it associated with the slave TRM being initialized.

Using its master key, the slave encrypts the contents of its challenge-value
register, yielding a new challenge value. The counter(s) used to generate crypto bit
stream are initialized appropriately, i.e., the counter for a single crypto device CBI is
set to /, and if ‘n crypto devices are used, their counters are set to the values / |
through n. The slave TRM then generates a secure intervupt, using the new working
key and the assigned bit stream IDs, indicating that: it is prepared to carry out the
challenge-response protocol. The main TRM responds by reading the challenge-
value register and then writing back the valhe, using simple secure transactions. The
ability of the slave to generate a valid secure interrupt using the new working key
verifies the authenticity and time-integrity of the connection to.the main TRM,
whereas the successful reading and writing of the challenge-value register does the
same for the slave TRM. When this procedure has been carried out for all slave
TRMs, the system is initialized for secure inter-TRM communication.

3.6.3 Response to Potential Security Violations

The CBIs and the TRM operating system detect potential security violations in
two ways: through mismatches between “calculated and received CEDCs and
through timeouts. Each time a violation is-detected at the main TRM, a non-volatile
violation counter is incremented to record the occurrence. This type of threat
monitoring is used to detect attempts by an-attacker ‘to subvert the protection
mechanisms by repeated trials. A threshold is established by the vendor and, if that
threshold is exceeded, the processor will st ’ﬂdWif-(x‘éf&éé:to exectte external
software for the client) until the vendor intervénés. This ‘intervention may involve

148

An Encrypted Bus Approach

an inspection of the system by a representative of the vendor, or it may simply
require nctwork communication so that the vendor is appraised of the repeated
errors. The main TRM may be reset by engaging some form of dialogue with the

vendor, analogous to the system initialization procedure described above.

Violations are detected at the bus master and at the slave, depending on the type
of transaction and the type of violation. The violations may result from transmission
crrors on the bus (accidental or malicious), loss of cryptographic bit stream
synchrony between communicating CBIs or because of a transient or "hard" device
mallunction. A stmple parity check is used to detect non-maticious errors in data,
addresses or interrupt vectors on bus operations (bus lines PARITY0-3), and it is
expected that this code will catch most such errors. 1 a bus operation fuils this non-
secure error detection code test, the operation is retransmitted automatically and the
violation counter is not incremented. (This operation retransmission uses a buffered
value of the operation and should not be confused with the transaction retry
described below.) Only those "errors™ detected by the CEDC or by a timeout are
treated as attempted security violations. The appropriate response to a violation
depends on the type of violation, the type of transaction and whether the slave of

master detects the violation.

First consider CEDC mismatches. In the case of a simple secure read, this type of
violation is detected at the master CBI and the response is to attempt the transaction
again, treating it as a new transaction from the standpoint of the security measures.
Thus new cryptographic bit stream is generated for the retried transaction. In the
case of a simple secure write or a sccure interrupt, the violation is detected at the
slave and the response is to ignore the transaction, allowing the master to timeout
waiting for the ACKNOWLEDGLE. For aggregate secure transfers (stores and
fetches), the DMA storage device determines if the cumulative CEDC check fails,

and the operating system discovers the violation when it fetches the control register

149

An Encrypted Bus Approach

from this device. The operating system, upon detecting this condition, increments

the violation counter and may retry the aggregate transfer.

Next consider the response to timeouts. In the case of a simple secure read, a
timeout occurs at the master CBI when either the data or the CEDC fails to arrive.
The response is to discard any cryptographic: bit stream generated for this
transaction and retry the transaction, treating it as a new transaction. In'the case of a
simple secure write or a securce interrupt, a timeout can occur at either master or "
slave CBI, e.g., while waiting for the CEDC or the ACKNOWLEDGE. ‘if the slave
experiences the timeout, it ignores the transaction and discards any cryptographic
bit stream for the transaction. If no ACKNOWLEDGE is received, the master will
timeout, so all timeouts on these transactions are translated into timeouts at the
master. The master discards the cryptographic bit stream associated with this
transaction and retries it. In the case of aggregate transactions (fetches or stores),
timeouts are handled as above, noting that the cumulative CEDC is not updated on
the retry. o

If the retry fails in any of these cases, it is necessary for the operatmg system to
handle the situation. In the case of szmple secure tmnsactxons the processor is the
master and will detect the problem when the retry fails. The processor readlly
detects failed secure interrupt transactions as well. In-the case of aggregate secure
transactions, the secure storage device will send a secare mterrupt to the processor to
signal the error. Either way the operating system -is-feasily notified of the problem.
The only recourse for the processor is to reset and reinitialize the device
(establishing a new bit stream ID for the CBI) to rectify possible eryptographic bit
stream synchrony problems or to detect an inoperative device (identified by its lack |
of response to the initialization procedure). If this procedure succeeds it may be
possible to recover from the point at which the failure occurred. (An aggregate
transfer would have to be retried in its entirety.) I the procedure fails it is time to

call the vendor.

150

An Encrypted Bus Approach

3.6.4 Distributing TRMs and External Software

TRM distribution arises in two contexts; distribution of external software by
TRM-packaged transfer storage and additions of TRM-packaged devices to systems.
The same hardware distribution procedure is employed in both contexts. The
vendor maintains a database that contains the serial number, master key, and initial
challenge-response value for each TRM he has manufactured. Given the serial
number of a slave TRM to be added to a system and the serial number of the main
TRM for that system, the vendor can use this database to generate a bit string that is
entered into the main TRM of the system in question (via a terminal). This bit
string consists of the initial challenge-response value and the master key for the
slave TRM being sold, both encrypted under the master key of the main TRM
(using PCBC mode). When a client purchases a TRM-packaged device to add to his
system, the local vendor representative contacts the vendor computer that maintains
the database described above, transmits the requisite serial numbers and receives
this bit string in response. In this fashion a main TRM acquires master keys for
slave TRMs. This method does not impose long delays as the factory customizes
TRMs for specific systems nor does it require trust in the local vendor

representative!

Physical transfer storage may not be implemented in the encrypted bus approach
because of the high cost of TRM packaging for demountable storage media.
Instead, external software will most likely be distributed via a communication
network as described in section 2.3.4. However, one can develop mechanisms for
distributing external software via transfer storage media. These mechanisms are not
directly related to the encrypted bus techniques developed in this chapter but rather
are bascd largely on operating system conventions. For transfer storage, there is a
requirement that related files (transfer units) on this media be loaded into the file

systcm on secondary storage together and that the operating system be able to

151

An Encrypted Bus Approach

distinguish between vendor-supplied (external) software and client-written software.
Moreover, since the client may use transfer media as archival storage for external
software, any reloading constraints associated with files in transfer units must be

checked when loading these units into the file system.

The following operating system mechanisms achieve these requirements. Al
TRM-packaged, demountable storage media must contain a header (not accessible
by client 170 operations) that identifies the type ofstoragé on the media (sccondary,
transfer or archival). The operating system checks this header when the media is
mounted, preventing any confusion as to what type of files are contained on the
media. Each transfer unit is recorded as a file consisting of a table of contents and a
list of any non-reloadable files contained in the unit followed by the files that make
up the transfer unit. The operating system loads all of the component files of a
transfer unit into the file system together, deleting any existing copics of these files.
(Existing copies of these files are deleted to ensurc the consistency of the transfer
unit in the file system, i.e., to prevent mixing of files from old and new releases of
external software.) The only exception is that any non-reloadable files in the unit
arc not loaded if they exist or if they have existed previously (as explained in the
next section). These mechanisms are quite similar to those employed in the

encrypted storage approach for securing transfer storage (see section 4.3).

3.6.5 Secure Archival Storage Reloading Constraints

In section 2.1 three classes of files were distinguished with respect to the
constraints placed on reloading these files from secure archival storage into the file
system on secure secondary storage. A client may be free to reload any copy of a file
(unconstrained), he may be allowed to reload only the most recent archived copy of
the file (most-recent-only) or the file may be declared non-reloadable. There also

may be a requirement that reloadable files be grouped into archival units, so that all

152

An Encrypted Bus Approach

of these files arc reloaded together. Archival storage is presumed to be
demountable and, as with transfer storage, it is not clear if demountable media can
be TRM-packaged in an cconomically feasible fashion. Thus the problem of
enforcing reloading constraints may never arise in systems based on the encrypted
bus approach. However, one can outline a method of enforcing these constraints in
the context of such systems. The method proposed here, like the one described
above for transfer storage, is based on operating system conventions for saving and
reloading files from archival storage. These conventions depend on the
maintenance of a table that identifies non-reloadable files and that lists the name
and the time and date of the most recent copy of files archived with that reloading

constraint,

All files on archival storage are represented as archival units using the same type
of format as transfer units, i.e., a table of contents of the files contained in the unit,
the reloading constraint associated with these files and the time and date the unit
was written. (All of the files in an archival unit share the same reloading constraint.)
The operating system provides a mechanism by which external software can direct
(automatically or in response to a client request) one or more files to be saved as an
archival unit along with the reloading constraint for the unit. The operating system
also maintains a directory on each archival storage volume for locating files in
archival units on that volume. A request to reload a file causes all of the files in the
unit to be reloaded, subject to the reloading constraint associated with the unit.
Non-reloadable files are so marked on secondary storage by the operating system

and thus are not subject to archiving.

The operating system maintains a table on (non-demountable) secondary storage
identifying all non-reloadable files and listing the time and date when the last
archival unit containing each file with the most-recent-only reloading attribute was

written. This table is consulted when a unit with the most-recent-only constraint is

153

An Encrypted Bus Approach

reloaded, when transfer units containing non-reloadable files are loaded or when
external software requests creation of a non-reloadable file. If this table is
destroyed, no files with the most-recent-only reloading constraint can be reloaded
and no non-reloadable file can be created or loaded from transfer units. Thus this
table must be maintained in a highly reliable fashion. Section 4.3.4 describes
techniques for ensuring the robustness of an equivalent table used for the same
purposc in the encrypted storage approach and these techniques are applicable here.

The interested reader is referred to that section for further details.

3.7 Conclusions

The techniques developed in this chapter enable a computer system constructed
from two or more TRM-packaged pieces to protect external software from
disclosure and undetected modification. Several important techniques were
introduced in this chapter. The stream cipher mode employed here is specially
designed to minimize delay and maximize throughput. In particular, this mode
permits multiple crypto devices to be used in parallel to generate crypto bit stream
at very high rates. The shortened DES calculation employed for CEDCs enables
simple secure transactions to proceed at relatively high rates. Use of a distinct crypto
bit stream for each simplex channel supports asynchrony in secure transaction
scenarios. 'This is critical to the elimination of authentication checks at the slave
during simple secure read transactions (enhancing throughput) and it allows control
and data transfer connections to be combined. Finally, aggregate secure transactions
reduce overhead on data transfers between primary memory and TRM-packaged
storage devices by transmitting a cumulative CEDC at the completion of the

transfer, rather than transmitting a CEDC with each transaction.

154

An Encrypted Bus Approach

The only weakness of the designs presented in this chapter arises from the limited
traffic analysis that can be carried out on exposed portions of the bus. The amount
of information that is released in this fashion depends on the choice of
configuration, but it is very small in most cases anyway. In SYSTEM A and
SYSTEM B the mpact of the protection measures on system performance is
negligible and the cost of the required CBIs should be acceptably small. For
systems in which primary memory is independently packaged, the performance
impact of these measures is greater, but this impact can be minimized through
appropriate configuration choices, e.g., a cache-cquipped, dual-bus design. Thus
SYSTEM D is preferred over SYSTEM C since the dual-bus design minimizes the
cost of proposed bus e¢nhancements and yields simplier CBls. However, the
processor and memory CBIls in both systems may be expensive, due largely to the
number of cryptographic devices required.

Demountable media could be developed for these designs, but it is not clear if
such media would be economically feasible to produce, since both the media and its
access hardware must be packaged together. Thus distribution of external software
1s best accomplished through secure communication techniques as described in
section 2.3.4 and demountable secondary or archival storage options may be limited
or non-cxistent. The encrypted bus designs offer greater flexibility than the
monolithic TRM dcsign, but the cost of TRM packaging, including CBIs, may
preclude the configurations that offer the greatest flexibility, e.g., SYSTEM D. The
encrypted bus approach is highly transparent, i.e., there is little or no impact on
most external software and very little software is devoted to managing the protection
mechanisms. By adopting appropriate conventions for assignment of bus addresses,
CBIls can determine if a transaction should be repeated outside the TRM and, if it is

repeated, whether it must be encrypted.

155

- Chapter Four
An Encrypted Sto ragef.Approach

to Protecting Exterga;!spoftwa,re |

This chapter explores in detail an approach to securing external software based on
the use of cryptographic and protocol techniques to' proteéct:data’ stored outside a
TRM (using physically unprotected: media and ‘devices). - In ‘this approach, a
processor and some of the lower levels of the:storape higrarchy are ‘enclosed in a
single: TRM and all data -in higher levels of storage ¢outside of the TRM) are
protected by being encrypted and by the use of appropriate’protocols. This design
approach allows significant use of off-the-shelf equipment sinee¢ the ‘storage and
transmission of ‘encrypted data is generally ‘transpareént to the ‘devices and the
bus(es). Special equipment is required only at the point where data must be -
cryptographically transformed, ie., at the TRM boundary. - These transformations
are effected by a secure storage interface (SS}) that provides encryptton decryptxon

and errar checking services.

The boundary between the TRM and physrcally unprotected stomge occurs at
one of three pomts as lllustrated in Flgures 4-1 and 4-2 ln SYSTEM E only
transfer and archival storage is outsrde the TRM whereas in SYSTEM F secondary
memory 1s also physrcally unprotected and in SYSTEM G and SYSTEM H even
data in prlmary memory is subject to mtruder attack These fourwsxystem
configurations correspond d|rectly to thosc presented at the begmnmg of Chapter 3 '
Here too the organization of the processor and pnmary memory (dual or smgle bus

system, cache or cacheless processor) areé irrelevant in the first two systems (E and

156

An Encrypted Storage Approach

I). In the latter two systems (G and H) the choice of a single or dual bus

arrangement and a cache or cacheless processor is critical.

CPU l
P-MEM T&A* other peripherals
SystemE
CPU s
P-MEM S-MEM* T&A* other peripherals.
System F

Figure 4-1: Two System Configurations Employing a TRM and an SSI

157

An Encrypted Storage Approach

CPU |s

1

fP-MEM" S-MEM* E TRA*® other peripherals

SystemG . .

CPU s

S-MEM*| | T&A*

B Bt A e

SN A N S, AE D ek e
13
b N)
N . - 2
5
- 3
§

ofiiér peripherals

P-MEM® - e

System

4
e - - 3
H kS

H

Figure 4-2: Two More System Configurations Employing a TRM and an SSI

158.

An Encrypted Storage Approach

As in Chapter 3, successive configurations decrease the nuinber of devices
contained within a TRM, increasing flexibility by allowing more options in
equipment sclection and greater opportunity for system change both for growth and
maintenance. Here, since only one TRM is employed, these configurations allow
for even greater flexibility since devices outside the TRM are off-the-shelf. These
designs make practical the use of conventional media for T&A storage and
demountable secondary storage, overcoming a serious limitation of the encrypted
bus designs. Moreover, these designs use fewer TRMs and encryption chips, thus
reducing overall system cost as compared with the encrypted bus approach. These
improvements are not without attendant costs. The encrypted storage approach
requires explicit software control by external software or operating systems to
manage databascs that are pah of the protection mechanisms. These databases
decrease available storage at each level in the hierarchy and require maintenance
activities that involve additional transfers among levels in the storage hierarchies

(resulting in processing delays and decreased bus availability).

4.1 Security Requirements in the Encrypted Storage
Approach '

The two major aspects of protecting external software, preventing release of and
detecting modification of information, translate into several specific requirements in
the context of encrypted storage designs. In this context storage devices and bus
segments outside the TRM are subject to physical attack by an intruder and the
semantics of secure operation are somewhat different from those encountered in the
encrypted bus environment. Thus, instead of defining secure system operation in
terms of individual bus transactions, here system security is defined in terms of
reading and writing of storage units, encrypted collections of data that are
independently protected. This higher level spccification of security requirements
encompasses attacks launched against vulnerable bus segments and storage devices.

159

An Encrypted Storage Approach

Figure 4-3 shows the simple model used to discuss intruder attacks and security
requirements for encrypted storage designs. . This nrodel applies to all four
configurations shown in Figures 4-1 and 4-2. Only two operations, Read and Write,
are included in this model.. These operations transfer storage units across the
boundary between protected storage in the TRM and unprotected storage outside
the TRM. Note that several bus transactions are usually ‘required to effect these
higher level operations, e.g., transfer of a disk:sector between primary and secondary
memory involves control transactions and a number of read or write transactions to
effect a storage unit Read or Write. Each operation involvestwo values: the siorage
unit being transferred and an identifier (ID) that designates the storage unit. (The
size of the storage unit is either implicit or derivable from the representation of the
unit.) Different storage units and corresponding 1Ds are:employed. for each level in

‘the memory hierarchy.

In transfer and archwal storage the units are collectrons of (one or more) logrcally
inter-related files that are distributed or archived and reloaded together (see section
2.1). In this context IDs are often character string file names, perhaps qualified by
the date and time at which the storage unit was created.. In secondaty memory the
storage units are gerterally diSk sectors and the IDs are sector addresses qualiﬁed by
disk identifiers. Files do not fit the definition for storage units at this level in the
memory hierarchy since mdrvrdual sectors may be read or Written and processed
independently of other portions of the file and since non-file data structures, €.g.,
directories and file ‘maps, also must be be protected. In primary memory there are
two choices for storage units, words and cache lines, dependmg on procemor
configuration. Because of the space overhead assocrated ‘with each storage unit for
security purposes (described in the followmg sectlons) cache lines offer the only
practical option for storage units in primary memory. In this context, IDs are

primary memory addresses truncated to reflect the size of cache fines.

An Encryptcd Storage Approach

TRM ~ Physically. Unprotected Storage

identifier
>
Read
storageunit
< ,
identifier
~ >
Write :
storage unit
>
Boundary

Figure 4-3: A Simple Model for Encrypted Storage Operations

Using the model pictured in Figure 4-3, the vulnerabilities and corresponding
security requirements for Read and Write operations are readily stated. In a Write
operation both the storage unit and its ID are transmitted by the TRM across the
boundary. Unless suitable precautions are taken, the data in the storage unit will be
exposed to an intruder. Hence concealment of data in the storage unit, including

hiding of patterns within and across storage units, is an obvious requirement. An

9Notc that a Write to a secondary or T&A storage device is cffected through read bus opcratidns
(directed to primary memory) by that storage device. Thus there is an additional chuircméht that
these read operations be restrictod to appropriate primary memory locations. S o

161

An Encrypted Storage Approach

intruder also can effect information release by engaging in traffic analysis, 1.e., by
examining patterns of access to physically unprotected storage. The 1D associated
with each operation cannot be concealed: it must be available so that devices can
correctly store and feteh the storage units. Therefore some Ievel of traffic analysis 1s
always possible using this approach. As in the encrypted bus approach, the amount
of information available through traffic analysis is configuration- and application-
dependent. In gencral, SYSTEM E provides fewer opportunities for traffic analysis
than SYSTEM F which in turn provides fewer than SYSTEM G or SYSTEM 11
Each of these configurations provides more dctailed traffic analysis information

than the corresponding encrypted-bus configuration,

In a Read operation, an D is transmitted by the TRM across the boundary and
the physically unprotected storage system returns a storage unit. Thus Read
operations release information only through traffic analysis.m The remaining
security requirements for Read operations deal with detecting modification of
information and are simply explicit statements of the assumptions usually associated
with normal system operation. Thus the requirecments associated with a Read are
simply stated: The storage unit returned in response to the Read must be the most
recent unit written by the TRM using the same 1D specified in this Read, and the
unit must not have been modified while outside the TRM. This concise statement
cmbodies the authenticity, integrity and timeliness assumptions implicit in normal

operation.

The timeliness assumption is important since it is the foundation upon which
various application-specific consistency algorithms are constructed, especially at the

primary and sccondary storage levels. If software executing in the TRM could not

lONoto that a Read from a secondary or T&A storage device is actually effected through bus write
operations (directed to primary memory) by that storage device. ‘Thus there is also a requirement to
restrict those write operations to appropriate primary memory locations.

162

An Encrypted Storage Approach

be certain that the disk record or cache line just read was the last one written with
the same ID, secure operation would be impossible! However the timeliness
guarantee is not so well suited to transfer and archival storage. For transfer storage,
the guarantee is not applicable since this storage is, by definition, externally
supplied and not modified by the TRM. (The assumption here is that these storage
units consist of programs and associated static, immutable databases.) Here
consistency is expressed by grouping files into transfer units (see sections 2.1 and
3.6.4). For archival storage, consistency is expressed by grouping files into archival
units and by the reloading constraints associated with files. For archival storage, a
timeliness guarantee is required in some cases (most-recent-only and non-reloadable

files) and may be ignored in others (unconstrained reloading).

This perspective of intruder attacks and corresponding security requirements
views Write operations as subject to attacks that release information (directly or via
traffic analysis) whereas Read operations are subject to traffic analysis and to various
modification attacks. More precisely, modification attacks during Write or Read
operations or while data is held in storage are detected only at the time when the
modified storage units are transferred (by a Read) across the boundary into the
TRM. The model does not distinguish when or where a modification attack occurs,
e.g., on the bus during a Write or Read or in the interim when the data is in storage.
This level of abstraction in discussing attacks and defining requircments is
appropriate since the protection mechanisms developed in this section counter these
attacks independcent of the fashion in which they are effected. In addition to these
requirements for operations on encrypted data, there is the need to restrict access to
locations within the TRM (primary memory and device control registers) by non-
secure DMA devices, a requirement that also arose in the encrypted bus approach.
The next section refines this description of security requirements and presents

techniques selected for meeting these requirements.

163

- An Encrypted Storage Approach

4.2 Basic Techniques for the Encrypted Storage Approach

A combination of cryptographic and protocolltechnioues are employed to achieve
the requirements established i in the preceding sectlon Although these techmques
vary slightly dependmg on system confy, guratton the basnc concepts involved are the
same in cach case. One type of attack, traffic analysts is essenttally identical in both
encrypted bus and encrypted storage envnronments and rs treated in essentlally the
same fashion in both. In both envrronments the only way to counter such attacks Is
through the generatron of suffi c1ent, spunous 170 operatlons to conoeal real trafl' ic
patterns. Such countermeasures are readlly rmplemented but the performance
impact of these countermeasures in most “confis guratlons lS 50 great as to eﬂ'ecttvely
preclude their adoption. Thus the only optlon is to select a conﬁguratlon which
exhibits an acceptable level of susceptibility to-traffic analysis.. - This shortcoming

.with respect to traflic_analysis is. analogous to that presented by the encrypted bus
approach, but here. the:{evel -of traffic-analysis-detail available to an intruder is
greater than .in carresponding encrypted bus configurations, i.e., specific addresses
are visible. This suggests: that -if traffic analysis is viewed as_a serious problem,
encrypted bus systems may be preferred over. comparable encrypted storage
configurations. : : :

The encryption techmques employed for storage pmtectlon must conceal the data
in the storage unit, provxde a means for assocratmg an ID wrth the unit, support
detection of modification of' the unit and d' stmgursh among successive verstons of
the unit. This last pomt is very rmportant and deserves further explanatlon The
IDs assocmted w1th storage units are generally reused refernng to dlﬂ‘erent data
memory Ds, except in the case of wrzte-once medla such as v1deo-d|sks For
archival storage the problem arises if f e names are used as le unless the names
are further qualified in some way, €. g marlted wnth the time and date of archival

164

An Encrypted Storage Approach

unit creation. Most software is written under the (implicit) assumption that no
malevolent entity will attempt to violate system integrity by taking advantage of D
reuse. To avoid this problem, IDs will be augmented, where necessary, with a
version tag (V) to pravide version differentiated [Ds that uniquely identify each

distinct storage unit over time.

In order to fulfill the security requircments set forth in the preceding section, the
following techniques are employed. First, cach storage unit is encrypted using a
cipher method employing an initialization vector formed from the unit’s ID and VT.
Encryption with an appropriate cipher method conceals patterns within a storage
unit. The use of an IV based on the 1D and the VT conceals patterns across unit
boundaries and across versions of a unit. Second, associated with each storage unit
is an error detection code (EDC)11 calculated on the ID and VT as well as the data
in the unit. This EDC detects modification of the data and, because it covers the ID
and VT, it detects attempts to return other than the requested unit, i.e., a unit with
the wrong ID or VT. Finally, a version tag table (VTT), keyed by storage unit D, is
maintained inside the TRM. This table provides a reference point for the timeliness
guarantee by establishing the current VT associated with each storage unit. On each
Read, the IV formed using the 1D and the VT from the version tag table is employed
to decipher the storage unit. If the storage unit is from the wrong location or is not
the most recent one stored at the proper location, the storage unit will be improperly

deciphered and the EDC check will fail,

Using these techniques, Read and Write operations are extended in the following
fashion. On a Write, the VT for the storage unit is fetched from the VTT, updated

and, with the ID, used as an IV in encrypting the unit before storing it outside the

11This EDC may be a conventional error detection code or it may be a cryptographic EDC
(CEDC) or an authenticity/integrity check ficld (AICF) depending on the encryption mode
employed.

165

An Encrypted Storage Approach

TRM. The EDC 1s calculated on the 1D, updated VT and the data, and it is
encrypted and stored along with the unit. The updated VT is stored in the VTT,
completing the operation. On a Read, the VT for the unit is fetched from the VIT
and used with the 1D as an IV for decrypting the unit as it is transferred into the
TRM. The EDC is calculated on the ID, VT and the data as the transfer progresses
and, when the transfer (data and EDC) is complete, the retrieved EDC is compared
to the caleutated EDC. I the EDC comparison succeeds, the storage unit is the one
requested and it is intact, so processing can proceed securely in the TRM. If the
comparison fails, ecither the unit was modified or the wrong unit was returned
(incorrect ID or VT) and the unit is invalid, e.g., it may be viewed as having an

unrecoverable error.,

Just as the simple model of security requirements in section 4.1 does not fully
capture the vagaries of T&A storage, this simple model of secure operation must be
modified slightly to encompass Read operations for encrypted T&A storage. There
is no need for a VIT for transfer units since these units are not created by the TRM
and are not modified by the TRM. Instead, a version differentiated name is
recorded with the transfer unit for use in decryption. Thus a Read of a transfer unit
involves no fetch ofa VIT entry. A VTT is required for archival storage to track the
archival unit containing the most recent copy of each file with the most-recent-only
reloading constraint. A table containing the IDs of all non-reloadable files also must
be maintained. These tables perform the same functions as those described for the
encrypted bus approach designs in sections 3.6.4 and 3.6.5. Since some files may be
reloaded from other than the most recent archival unit copy (unconstrained

rcloading), the version differentiated name is recorded with each archival unit.

Finally, it is necessary to control DMA access to storage locations within the main
TRM in the case of SYSTEM E and SYSTEM F. The individual (write) bus

transactions that implement Read operations must be restricted to appropriate

166

An Encrypted Storage Approach

primary memory locations, otherwise data in primary memory may be destroyed.
This samc problem arises in the encrypted bus approach and in the monolithic-
TRM design in the context of aggregate transfers by non-secure DMA devices and
the same solution is applicd here. The secure storage interface (SSI) must act as a
filter to restrict access to locations within the TRM. This applies not only to
enerypted data transfers but also to accesses by non-secure DMA devices, just as in
the encrypted bus approach. For each memory region that is accessible from
outside the TRM, the SST must be aware of the bounds of the region, whether read
or write (or both) transactions are allowed and whether the transactions involve
encrypted or cleartext data. Furthermore, the SSI must contain intra-TRM bus
traffic, not repeating it onto the bus segment outside the TRM. This restriction is
readily implemented by adopting the convention of assigning bus addresses that use
a bit or two to distinguish between devices inside and outside of the TRM as

described earlier.

The preceding discussion outlines the general techniques employed for securing
encrypted storage at each level, but it does not describe all of the details involved.
For example, it docs not specify particular encryption techniques nor EDC
computation strategics. Reliability measures and recovery strategies have not been
discussed nor have the problems of storing large V1Ts inside small TRMs.
Tradeoffs in performance versus security related to the size of VTs and EDCs also
must be addressed. The following sections deal with these problems, specifying the
details of encrypted storage management for T&A storage, secondary storage and
primary memory. Readers who do not wish to delve into these details should
proceed to section 4.6 (page 208) for a summary of the highlights and the

conclusions of this chapter.

167

An Encrypted Storage Approach

4.3 Techniques for Encrypted Transfer and Archival
Storage

The first issue to be resolved in filling in the details of secure T&A storage
management is the selection of an encryption mode and an EDC calculation
strategy. Transfer of an archival or a transfer unit between T&A storage and
primary memory takes place at the speed of the T&A storage device, so the cipher
mcthod employed need not exhibit especially low delay, i.e., an extra cryptographic
cycle or two on each unit transfer is acceptable. To avoid the need for additional
hardware in the TRM for EDC or CEDC calculation (an EDC chip or an extra
crypto chip) a cipher method with forward error propagation is employed. Since
storage units at this level are relatively large (one or more files) and space is not at a
premium, precise matching of encryption granularity and storage unit length is not a
requirement. These observations suggest that block chaining with
plaintext/ciphertext feedback (PCBC) is an appropriate cipher method for this
application (see section 2.3). A predictable bit pattern embedded in the string at a
known point serves as an authenticity/integrity check field (AICF) protecting all of
the text preceding it. A version differentiated name employed as an IV is implicitly
included in such an AICF.

4.3.1 Version Differentiated Names and the Archival Unit VTT

The next issuc to be resolved is the form of version differentiated names for T&A
storage and the related topic of a VI'T for archival units. Clients and subsystem
writers often think of T&A storage in terms of the names of the files recorded on the
media. However, transfer and archival units may contain several files grouped to
reflect logical dependencies among them, so individual file names are not always
appropriate as IDs for thesc storage units. Moreover character string file names

must be qualified in some way to distinguish successive archival units of the same

168

An Encrypted Storage Approach

file (or groups of files). To avoid these problems, a unique bit-string identifier (a
UID) is asstgned as a versron differentiated 1D for each transfer or archival unit.
Media used for transfer or archival storage usually contain a catalog that maps file
names to thetr locatmn(s) on the medla and this catalog is easily expanded to
“ provrde a ﬁle name toUiD mappmg, For archival units with the most-recent-only
refoading constraint, a second map s needed an arc/uval VTI‘ that assocnates with a
~ file the UlD of the most recenLamhival unit contammgﬂae ﬁle,; (Non -reloadable

~ files also are included in this table, using a dlstmgmshed UlD to differentiate them)

I R P R R R

- The archlval VTF is maintained onsecondary stofage as aaable of: ﬂke names: and

- UIDs for ﬁles ex‘hnbttntg this reloading constramt o

oo o e b

| 4.3.2 Format of Transter.and Archival Units

Figure 4-4 illustrates a sample fom;at fogr an earten(fed media cataiog (containing
storage unit UIDs) and for transfer and aechlval umts (the two are: quite snmllar)
Note that the media catalog is unencrypted; and is non-standard only in the addmon
- of the UID field to each entry. However each storage ‘unit (transf‘er or archival) i is
_encrypted. The unit begins.with a heatjier describing the unit and the files contained
therein. The exact fields contained in %the header will be system- and media-specific
. but should include.the unit type. (tran%sfer or archival), header and total unit length,
. etc. Typical-file entriesrwwld contam the file name, length, reloading constraint
and other attrtbutes mcluded as anmatd in (re)constructing secondary storage catalog
entries. An AICF i is appended . the header, grovtdtngzgcheck on it, and the files
follow this AICF dtrectly The entire unit, from header through final AICF, is
encrypted asa contmuous blt stnng usmg the PCBC c1pher method noted above In
prmc1ple only thlS final AICF is requrred but, smce the header is used to contml

reloadmg, the header AICF is mcluded to detect errors that mtght resu]t m ﬁle
system damage before the ﬁnal AICF is encountered

169

An Encrypted Storage Approach

Storage Unit
" (encrypted)
~ overall unit description -
Media Catalog e 'f‘iie:name | attributes
(cleartext) - ——t .
¥ FTEEE E
[J i J
media descriptive irformation e —
. : 2o] :f:header A'CF
file name location uiD
file 1
[] ® B SRE e —
[] []] ®
® [o o
.
filen
. ..ovetall unit AICF -

Figure 4-4: Format of Secure T&A Storage Medié o

Although the format of encrypted T&A medla 1s s;mllar for both transfer and
archival purposes, there may be a dlfference in the key used to encnpher the medla.
If transfer units are encnphered usmg the master key assocnated w1th a TRM the
units cannot be recorded until the target TRM is known. Demand recordmg of

170

An Encrypted Storage Approach

transfer units 1s quite feasible for mail-order sales of proprictary software and could
be carried out at local stores using high speed communication facilities to transmit
the units for local recording. (Network-based distribution of external software is
carried out in this approach just as it was described initially in section 2.3.4.)
Alternatively, transfer units can be pre-recorded under randomly selected keys,
which are then enciphered under the master key of the target TRM. This is
essentially the same technique employed in the encrypted bus approach (for
distribution of TRM components) and it requires only low speed communication
between a local store and the vendor. In this approach the encrypted key can be
recorded, at the local store, in a reserved location in the media catalog, making life
somewhat more convenient for the client. The former distribution mcthod is
preferred since it means that the TRM need deal with only a single key for all

encrypted storage, but the latter method can be employed if necessary.

4.3.31/0 Operations on T&A Storage

It is now appropriate to examine the details of Read and Write opcrations on
transfer and archival storage units. Remember that these storage units may consist
of as little as a single file or may be a collection of a number of files. First, consider
operations on transfer units. These units arc Read by TRMs to initially load
external software but TRMs are not allowed to Write these units. (The TRM
operating system controls all encrypted 170 so it is capable of enforcing this
prohibition.) To Read a transfer unit, the media containing the unit is mounted, the
(cleartext) media catalog is scanned to determine the location and UID of the unit of
interest (or of any file contained therein). This UID is loaded as an 1V in an SSI
crypto device in preparation for decrypting the transfer unit. (If transfer units on
the T&A media are encrypted under a key other than the TRM master, then the
encrypted form of this key is retrieved from the media catalog and loaded along
with the UID.)

171

An Encrypted Storage Approach

Next, the unit header is decrypted and transferred to primary memory where it is
checked (using the embedded AICF and the header length constraint) and usecd to
establish entrics in the file system catalog for the files in the unit. Note that transfer
units may serve as archival units for the programs and databases that constitute a
protected subsysten, since the files on these units are non-modifiable, so file system
entries may already exist for some of the file in the unit. If so, these entries are
deleted when encountered in this phase of the unit Read operation, to ensure that
the file system entrics are consistent. However, any non-reloadable files contained
in the transfer unit arc not deleted if encountered. Rather a check is made against
the archival VI'T to ensure that any non-reloadable files in the transfer unit do not
currently exist and have not cxisted previously (and were later destroyed). Non-
reloadable files being loaded for the first time are recorded in the archival VIT to
preclude any violation of this constraint. Each file in the unit is decrypted and
transferred to primary memory and entered into the file system in secondary
storage. When the last file has been transferred, the AICF covering the unit is
checked. If this check succeeds, an OK flag in cach file system entry just loaded is

set to TRUE, indicating that the entire unit has been loaded successfully.

For archival units, both Read and Write operations arc supported. An archival
unit is created (a Write) by a call on the TRM operating system specifying the
collection of files that are collected together to form the unit. External software
invokes this operation on its mutable databases (or on the software itself) either
periodically or when requested by the client. The operation begins with the
mounting of archival media. The (unencrypted) media catalog is transferred to
primary memory and modified to contain an entry for the new archival unit (virgin
media is initialized with a null catalog). The unit header is constructed, gathering
information from file system entries for each member of the unit, encrypted and
transferred to the media. Then each file is encrypted as part of a continuous
cryptographic chain and transferred to the media with an AICF appended to the

end, and the updated media catalog is re-written,
172

An Encrypted Storage Approach

Reloading an archival unit (a Read) is very similar to loading a transfer unit but
the impetus is generally different. Usually the operation is triggered by damage to
data in secondary memory, but it also may result from a program error or a client’s
decision to "roll-back the clock™ with respect to some processing. A request to
reload any file in an archival unit results in reloading all of the files in the unit (to
ensure consistency). When reloading an archival unit, rcloading constraints
assoclated with the files in the unit must be checked. These constraints will be
uniform for all files in the unit, ie., all will cither be most-recent-only or
unconstrained. Only if the unit consists of most-recent-only files does the Read
operation check the UID specified in the media catalog against the UID from the
archival VT'T and require that the two must match. like the Read of a transfer unit,
any files in the archival unit which already exist in the file system are deleted to
ensure consistency. Thus a Read operation on an archival unit is almost identical to

a Read operation performed on a transfer unit.

4.3.4 Robustness of the Archival Storage Protection Measures

If the archival VTT is damaged, files with the most-recent-only reloading
constraint cannot be reloaded (since there is no way to determine which archival
unit contains the most recent copy of the files). This type of damage need not
preclude reloading of files that do not possess this constraint since the archival units
for such files can be examined to determine their (lack of) reloading constraints. To
enhance system robustness, the archival VT'T should itself be archived (as a most-
recent-only file), but this poses a problem. If the archival VI'T is damaged and its
most recent archival copy is reloaded, the entries for most-recent-only files archived
since the archival VIT copy was created are lost, violating the most-recent-only
constraint! To avoid this problem, updates to the archival VTT must be recorded in

a non-reloadable file, the archival VT'T update file, which is erased every time the

173

An Encrypted Storage Approach

archival VI'T is archived,. The UID of the current archival copy of the archival
VT must be maintained in some highly reliable fashion within the TRM, e.g., in

non-volatile memory.

These measures allow recovery from a wide range of secondary storage failures
affecting files and catalogs. Even file system catalogs can be aréhived (with the
most-recent-only attribute) and reloaded to facilitate recovery from failures that
damage these catalogs. In fact, these measures are so effective in promoting system
robustness that they might create an opportunity to violate sccurity provisions
relating to non-reloadable files. A problem would arise if a non-reloadable file
could be created, used and destroyed along with any record of its existence. To
avoid this problem, when a file with the non-reloadable attribute is created, 1ts file
name is recorded in the archival VIT and is marked as a non-reloadable rather than
a most-recent-only file (by using a distinguished value for a UID). Since updates to
the archival VTT arc protected by being recorded in the archival VI'T update file
until the archival VTT is archived, this solves the problem of Jost non-reloadable
files. When a subsystem attempts to create a non-reloadable file (or when a transfer
unit containing a non-reloadable file is loaded), the file name is checked against the
archival VTT to prevent violation of the timeliness guarantee, and an entry is

created only if this is a new non-reloadable file.

This existence of the archival VI'T does not enhance system robustness with
respect to non-reloadable files (If such a file is damaged it is lost.), and it might even
diminish robustness. If both the archival VIT and its update file are lost, no new
non-reloadable files can be created or loaded from transfer storage and no most-
recent-only file can be rcloaded. However the loss of both of these files can be
made very unlikely. The loss of any non-reloadable file is a very serious matter
since it precludes use of the external software that employs the file. This suggests

that non-reloadable files, including the archival VTT update file, should receive

174

An Encrypted Storage Approach

special consideration from the file system. For example, such files can be recorded
at two physical locations in secondary storage and have similarly redundant catalog
entries to reduce the likelihood of their loss. Note that non-reloadable files are
expected to constitute a relatively small fraction of all files, and may not occur at all
in many systems, so these extraordinary robustness measures should not have a

significant impact on the system.

4.3.5 Effects on Performance, Storage Utilization and the Operating

System

Now that the description of protection measures for T&A storage is complete, it is
appropriate 10 consider the effects of these measures on TRM operating system
structure, system performance and storage utilization. The TRM operating system
provides three new (or enhanced) functions: the Read operation for transfer units
and the Read and Write operations for archival units. These operations have been
described in some detail and are fairly simple. The operating system must make
special provisions for creation and management of non-reloadable files, but some of
these provisions would be required even in standard systems. System performance
should not be significantly affected by the proposed measures; operations involving
T&A storage are relatively infrequent, and the cryptographic transformations should
not prove a bottleneck but only add a small delay to DMA transfers involving this
storage. Delays will result from checking the archival VIT during reloading of
most-recent-only files and creation or initial loading of non-reloadable files, but

these are infrequent operations and thus the effect is not severe.

With respect to storage utilization, the protection measures increcase the sizes of
media catalogs and T&A storage units, and require two new files; the archival VIT
and its update file. Catalogs for T&A media grow to accommodate storage unit

UlIDs whereas storage units grow to include reloading constraints and AICFs (and

175

An Encrypted Storage Approach

may require padding for encryption). A 32-bit AICF should provide adequate
protection for these storage units, especially since two sueh fields are contained in
each unit. The UID associated with each unit should be large enough to identify
every archival unit ever. produced by a given TRM and to distinguish every
distribution unit provided for a given TRM. A 32-bit-UID permits a vendor to
provide over 4 billion distribution units to a single TRM and supports archival unit
creation at the rate of one per second for over 120 years. The IV used for
encryptmg/decryptmg storage umts should be a full 64 bits, so the 32-bit UID is
augmented with 32 additional bits. Two of these additional 32 bits are used to
distinguish among UIDs employed for archival, transfer and secondary storage units
whereas the remaining 30 bits aré unique per TRM (ThlS last set of bits may be
viewed as an extension of the TRM master key J) -

The increases in space on T&A medla due to AlCFs and. Ule are negligible
(probably << 1%) since the storage units are files or groups of files. Some secondary
storage space is devoted to the archival VTT and its update file, and the media
containing these tables must be mounted for creation of .non-reloadable files and |
reloading of most-recent-only files. Files with these reloading constraints are not
expected to be the norm, so the archival VIT and its update file will not be too
large. Thus the effects on storage utilization brought about by the measures are not
expected to be significant. The impact on overall system robustness also should be
minimal. The two new types of secondary storage data introduced to support
encrypted archival storage, the archival VIT and its update file, are critical to
system operation. However the archival VTT is archivable and its update file is
expected to be replicated in storage and catalog entnes like other non-reloadable
files. Thus, only if both of these files are destroyed snmultaneously wnll the system
suffer irreparable damage, '

¥76

An Encrypted Storage Approach

4.4 Techniques for Secondary Storage

The protection measures presented in this section follow very closely the basic
concepts presented in section 4.2, In this context, storage unit [Ds are sector
addresses qualified by the ID of the media containing the unit. The VTT, implicitly
indexed by sector address, contains the VT associated with each scctor for every
encrypted secondary storage volume registered with the system. The integrity,
authenticity and timeliness requirements are exactly as stated in section 4.1, with no
exceptions. Thus Read and Write operations (sector transfers) proceed just as
described in section 4.2, Even though performance degradation in storage unit
transfers is more critical at this level than at the T&A level, the same cryptographic
method is employed. Throughput with this method is more than adequate (even
using a single crypto chip) and the added delay is still a negligible fraction (K<< 1%)
of total sector transfer time. A 32-bit AICF is appended to each scctor, increasing

sector size by about .75%.

4.4.1 The VTT Hierarchy

The major problem with this obvious approach is that it is impractical to maintain
a secondary storage VI'T within the TRM boundary. For example, a typical 30M-
byte (unformatted) disk contains about 50,000 512-byte sectors. If each V1T entry
consists of a 32-bit VT (assume the address of the sector being protected is implied
by index of the VT in the VTT), the resulting VI'T occupies 200,000 bytes and this
covers only a single volume! The amount of secondary storage devoted to the
secondary storage V1T is not a concern, but it is generally impractical to maintain
this VT'T inside a TRM. This space problem suggests that the secondary storage
VTT should be hierarchically organized, with only the root maintained within the

TRM. Figure 4-5 illustrates a 4-level hierarchy for the secondary storage VTT.

177

An Encrypted Storage Approach

RVTT MVVTT ‘ WIT SGVTT data

(level 0) l (level 1) l devel2) . (level 3) sectors .
EDC EDC EDC
EDC = EDC
. rs
! ' o L.
L_P * .
o
I .
TRM h6n4demouhfa§lé o o o
registers -~ - volume | - per-registered volume

' Figure 4-5: Hierarchic Or_gani'zétidr:i of 'S‘c;cc);nd;ry_é)g‘ésrag’e VTT
i . / .

In this figure, the arrows indicate which sectors aré covered by VTT entries in a
given level of the VTT hierarchy. Below the root VIT (RVTT) (evel 6) is the
master volume VIT (MVVTT) (level 1) .which cotitains one entry for each
encrypted volume registered with the system. - Each volume tontains a volume VTT
(VVTT) (levet 2) and below it is the'sector group VTT (SGVTT) (level 3). At'each
level of the hierarchy a VTT protects the sectors at the next level with the bottom

178

An Encrypted Storage Approach

level (sector group) VTT protecting data sectors. This recursive structure protects
every sector in secondary storage in the same fashion by using the associated AICF
and the corresponding VT recorded in the preceding level of the hierarchy; hence
there is no difference in the protection afforded a data sector versus a VI'T sector at

any level.

The root VT'T contains the volume 1D and addresses of each sector occupied by
the master volume VIT as well as a VT for each of these sectors, all maintained in
non-volatile storage within the TRM. Each master volume VTT entry contains the
ID of the volume represented, the addresses and VTs for the sectors that make up
the volume VTT and other supporting information. At the volume VT'T and sector
group VT level the addresses of the sectors being protected need not be explicitly
stored along with the VTs, but can be implicitly derivable from the index of the Vs
in the VTTs. Implicit addressing in the volume VTT entries requires the sector
group VTT sectors to be contiguousbr to be dispersed about the volume in some
fixed pattern (to optimize seek time). The sector group VTT always employs
implicit addressing since it is usually trivial to arrange for the sectors covered by
these entries to be contiguous. Throughout this chapter the assumption is made that
the sector group VTT sectors are contiguous in order to reduce the amount of space
devoted to volume VTT entries. (This assumption does not affect the security of the

design.)

This hierarchic structure avoids the need to store the entire VI'T inside the TRM,
but it transforms each reference to secondary storage into a chain of references
through the levels of the hierarchy, as shown in Figure 4-5. Consider a reference to
a sector with [D (fully qualified address) vx, where v is the volume ID, and x is a
sector address. The reference chain begins at the root VI'T with the volume [D and
addresses of the master volume VTIT and the VTs for each master volume VIT

sector. Using this information from the root VIT, the master volume VTT sector

179

An Encrypted Storage Approach

containing the entry for volume vis fetched. (It may be necessary to serially search
this table if volume IDs are sparse or if entries in the master volume VTT are of
variable size.) The VT and the address of the appropriate sector of the volume VIT
is sclected from this master volume VTT entry by examining the target address x.
This volume VT'T sector is fetched and the VT and address of the appropriate sector
of the scector group VTT is sclected in the same fashion. Finally this sector group

VTT sector is fetched and the VT for the target scctor is selected.

Following this chain of references results in at least 4 sector fetches (perhaps
more depending on the master volume VTT organization) as compared to the single
fetch required in a standard system. This sort of problem commonly arises in
hierarchic address translation and it is usually solved by encaching portions of the
translation tables to short circuit the reference chain. In this context encaching
means kecping portions of the master volume VTT, volume VTT and sector group
VTT in primary memory to reduce extra sector fetches. From the master volume
VTT, entries that correspond to currently mow;ied volumes should be cached. Since
the systems of interest are small and master volume VTT entries are small (about 64-
256 bytes depending on the capacity of the volume), these entries (perhaps 2-5)
occupy a negligible percentage (<<1%) of primary memory. At the volume VIT
level the amount of information to be cached depends on the size and number of
mounted volumes and the size of primary memory. For example, small and
medium size volumes, e.g., 4M-byte floppy disks through 30M-byte fixed disks,
have volume VTTs that occupy about 1-4 sectors, so it is probably feasible to cache
the entire volume VTT for such volumes. However, for large volumes, e.g., 300M-
byte demountable disks, the volume VTT is very large, about 36 sectors, making it

likely that only portions of this table will be cached at any point in time.

Proceeding to the bottom of the hierarchy, sector group VTTs will range in size

from about 64 sectors for a small disk to about 500 for a medium size disk and up to

180

An Encrypted Storage Approach

4000 for a large disk. Thus it is usually infeasible to cache the entire sector group
VTT of a volume in primary ’memory. In fact, it is often inappropriate to cache
whole sector group VTT sectors since, in the worst case (if each scctor in primary
memory comes from a location not covered by any other sector group VTT sector in
the cache), there must be one sector group VTT cache entry for each sector in
primary memory. This worst case behavior could result in the sector group VIT
cache occupying 50% of primary memory and thus motivates caching only portions
of sector group VTT scctors, e.g., 8 word pieces instead of full 128-word sectors. In
this fashion only about 8% of primary memory is required to cope with even the
worst case scenario for the sector group VTT cache. Overall, the caches for the
master volume VTT, volume VTT and sector group VTT may occupy about 10% of

primary memory if organized in this fashion.

4.4.2 1/0 Operations on Secondary Storage

Using this VIT hierarchy, Read and Write operations proceed as follows. On a
Read, the volume ID and sector address are combined with the sector VT to form an
IV for decrypting the target sector. When the sector has been decrypted, the AICF
following it is checked against the computed value and the operation is aborted only
if the check fails. On a Write, the VT for the sector is fetched from its cache,
updated and used as above to form an 1V for encrypting the sector and the trailing
AICF. When the Write completes, the VT cache entry is updated and, at some later
time, the VIT in secondary storage is updated. These descriptions apply to
operations on all sectors and the VTT updates propagate up through the hierarchy.
When a volume 1s mouried, the master volume VTT is Read and searched for the
entry for the mounted volume, then this entry is stored in the master volume VIT
cache. If the entire volume VTT of the volume is cached, it is Read, otherwise

sectors (or sub-sector portions) of the volume VTT are Read as needed.

181

An Encrypted Storage Approach

References to data sectors proceed as noted above if there is a hit on the sector
group VI'T cache. A miss on this cache results in flushing a cache entry, if none ére
available, and the appropriate sector group VTT sector is Read, using the volume
VTT cache for the Read of the sector group VTT. If a modified sector group VI'T
cache entry is flushed, it must be written back. This entails a Read of the containing
scetor group VT sector, an update of the sector (which is noted in thc VOLUME
VT cache), and a Write of the sector. A miss on the volume VTT cache is handled
analogously, but will be simpler if volume VTT cache entries arc whole sectors
rather than sub-sector pieces. Periodically, or when requested by the client or
external software, all modified entries in the VTT caches can be flushed, starting at
level 4 and proceeding through an update of the root in the TRM, producing a non-
volatile, consistent version of the VTT hierarchy in secondary storage. Until this
flushing operation takes place, changes to files (in particular, modifications to non-
reloadable files), are not permanently recorded in the VTTs and thus may be

tindetectably undone by an intruder.

This VTT hierarchy is organized solely around the physical media without regard
to file system structure, thus demonstrating that these techniques can be employed
independently of such structure. However, it may be advantageous to integrate the
hierarchy with the file system structure. For example, the sector group VIT VTs
can be integrated with the tables used to map sectors of a file to their secondary
storage locations, and the volume VTT can be extended to cover these integrated file
maps/VTTs. The file maps will grow by about 200% (due to the presence of VTs)
but since the cache space devoted to such maps is often on the order of 1.5-2.5% of
primary memory, the cached level 3 VTs will require only 3-5% instead of the 8% of
primary memory noted above. Integrating the sector group VIT and file map
caches takes advantage of the logical locality of reference implicit in file structure.
In this way, whenever a sector can be directly referenced, by virtue of its file map

being in the cache, its VT also is present, improving the sector group VTT cache hit

182

An Encrypted Storage Approach

rate and simplifying the lookup procedure for sector group VI'T entries! The only
drawback to this approach is that the volume VTT becomes larger (about 50%) since
it covers more data (file maps as well as level 3 VTs), and thus the volume VIT

cache grows or its percentage coverage decreases.

4.4.3 Performance, Robustness and Storage Utilization Issues

It is now appropriate to evaluate the impact of these secondary storage protection
measures on robustness, storage utilization and performance. In sccondary storage
five types of sectors are distinguishable with respect to their impact on system
robustness: rcloadable files and catalogs, non-reloadable files (including the archival
VTT update file) and their catalog entries, sector group VTTs, volume VTTs and the
master volume VTT. The first type is present in all systems, the next arises from
encrypted archival storage security measures and the last three support encrypted
secondary storage. Thus the question is how damage to the last three type of sectors
affects the other sector types, in particular how it affects non-reloadable files. A
rcasonable goal 1s to prevent the loss of any single sector from causing an
irrecoverable loss of data, i.e., loss of a non-reloadable file or its catalog entries.
Damage to a sector group VTT sector results in loss of the 128 sectors covered by it.
This may include ordinary files, catalogs and non-rcloadable files. To reduce the
likelihood of losing a non-reloadable file, the replicated non-reloadable file sectors
and catalog entries should be covered by different sector group VTT sectors.
Integration of the level 3 VTs with file maps makes this ecasier because of the

relationship between files and level 3 VT sectors.

Damage to a volume VTT sector results in the loss of 128 sectors of scctor group
VTT, or of file maps and level 3 VTs, and, transitively, of 16,384 file and catalog
sectors. This is a significant loss of information and makes it difficult to guarantee

that the replicated copies of a non-rcloadable file and its catalog entries are not

183

An Encrypted Storage Approach

covered by a single volume VTT sector. Since only a fow sectors (1-64) are devoted
to a volume VTT on cach volume and since 1/0 on these sectors is relatively
infrequent, it is feasible to replicate these sectors on cach volume. A similar
argument applies to the master volume VTT, which is both smaller and more
important in its coverage. This replication requires slightly larger master volume
VTT entries (to contain the addresses of both volume VTTs on ecach volume) and
more non-volatile memory in the TRM (for the dual master volume VTT
addresses), but these are very small increases in storage utilization. These added
precautions yield a sccondary storage system in which no single sector failure can

result in an irrecoverable loss of data.

These protection measures have only a very slight effect on secondary storage
utilization. Together, the space occupied by each scctor group VIT (or its
integrated file map alternative), volume VTT (including backup copy) and the per
sector AICFs amounts to about 2% of a formatted volume. The space devoted to the
master volume VTT and its backup copy should constitute a negligible fraction
(<<1%) of the storage on a permanently mounted volume. The caches for level 3
VTs require about 3-5% of primary memory if the VT's are integrated with file maps.
The percentage of primary memory devoted to the volume VTT cache depends on
the size of memory, the capacity and number of mounted sccondary storage
volumes and the fraction of each volume VTT required in the cache for acceptable
performance. For example, the volume VTTs for two 30M-byte disks occupy about
2% of a 256 K-byte primary memory. Thus a total of about 4-7% of primary memory
may be dedicated to VIT caches. (The master volume VTT cache is a negligible

contributor to this total.)

System performance is affected in several ways by the sccondary storage
protection measures. On each Read of a file or catalog, there is a delay resulting

from the transactions required to control the secure storage interface (SSI), to fetch

184

An Encrypted Storage Approach

the AICF word and to decrypt the last two data words in the sector. Controlling the
SSI involves loading the sector address, volume 1D and VT to form the 1V, zind
loading the primary memory sector frame address and access mode (read or write)
to restrict DMA access. The bus transactions required to control the SSI can be
carried out during the accessing of the secondary storage device before the data
arrives, given the average access time of secondary storage devices. Thus these
transactions do not contribute to dclay, they only increase bus utilization slightly.
Morcover, the decryption of the last two data words can be overlapped with the
fetch of the AICF word so the total delay experienced is the maximum of these two
operations. For unbuffered secondary storage devices, the AICF transfer requires
greater time, but it is only about 3us for a 10 M-bit/second transfer rate, a negligible

(<<1%) increase in total Read time.

If level 3 VTs are not integrated with file maps, misses can occur on the sector
group VTT cache, resulting in significant delays. Such a miss requires locating a
cache entry to flush, updating the secondary storage sector group VI'T scctor if this
cache entry has been modified (this requires a Read and a Write on the relevant
sector group VTT sector) and performing a Read on the sector group VIT sector
containing the required VT. Thus cither 1 or 3 extra secondary storage operations
are required on a miss and this could noticeably degrade performance if the cache
did not achieve a high hit rate. For example, a 90% hit rate might result in a 20%
delay on sccondary storage 170 and a 95% hit rate yields a 10% delay. This strongly
motivates the integration of level 3 VTs and file maps, since such integration
eliminates VT cache misses at this level. (The only way a file can be referenced is if

its' map is in primary memory.)

Employing this intcgration strategy, cache misses at the volume VTT level occur
at the point when file maps are Read. For many small and medium capacity

volumes, the entire volume VTT can be cached, completely avoiding misses at this

185

An Encrypted Storage Approach

level. Even if caching of whole volume VTTs is impractical, the volume VTT cache
should accommodate a very large percentage of the volume VTT, achieving a very
high hit rate and minimizing the delays due to misses. Only in thé case of large
volumes is there likely to be any significant delay due to volume VTT cache misses.
This suggests that very large volumes may best be handled by dividing them into
multiple virtual volumes like the mini-disks employed by VM/370. The time
required to fetch the master volume VTT entry for a volume when it is mounted is
easily absorbed in the manual rﬁountiag process. It is very difficult to cstimate the
performance impact of the additional secondary storage 1/0 required when a VIT
flush operation is undertaken, especially since the frequehéy of such operations is
application- dependent. However it seems- reason‘ablé to assume that such

operations are not so frequent as to significantly affect performance.

In the interest of improved performance and enhanced robustness, some bubble
memory storage can be included within.the TRM. The:entire master volume VTT
and the archival VTT update file can reside .inslthis-smmge, -elimninating the-need for
a-permanently mounted volurve: containing thesé: tables: Moveaver; the complete
volume. VTTs and sector. group VTTs for severaliimounted volimves can beé cachied in
such: storage. . This would .eliminate .secondary -storage’ transfers reldted to VTT
management except when a: volumeisi initially mounted and before it is demounted.
Bubble memery: access: time is- fast enoagh to feich ‘level:3 VTs:from ‘this cache
instead -of :from. -primary- memery (for non-bubble memory secondary storage
devices), : This configuration-option-is in Ao way-essential to!the design presented
above, but the-availability of high denszty 4 M:b:t)ebubblemmmehxps makes ita’
feasible means of enhancing system performance and reliabifity: - ‘ SRR

186

An Encrypted Storage Approach

4.4.4 A Note on the Size of Secondary Storage VTs

Throughout this section the VT's have been described as 32-bit quantities. This
distinguishes about 4.3 billion versions of a sector. For a data or catalog sector, a
maximum rate for write-backs is probably on the order of 1 every 10 ms for a disk
(assuming a transfer rate of about 10M bits/s, an average latency of about 9 ms and
some system overhead). At this rate the VT of a single sector could be exhausted
(wrap around) in about 1.36 years of continuous write-backs of that one sector. This
rate of use is obviously much greater than would be expected in normal operation,
perhaps by an order of magnitude, yet it is difficult to estimate a reasonable write-
back rate. Thus some provision should be made to accommodate the possibility that
a VT will be exhausted in the lifetime of a secondary storage volume. The method
should provide for an orderly transition that allows the data recorded on the volume

to be used as though nothing special had happened.

The proposed method involves two additions to master volume VTT entries and a
new value to be held in non-volatile memory in the TRM. The master volume VIT
additions consist of a field to track the maximum value attained by any (data sector)
VT on the volume and another field to provide a volume UID used only for
cryptographic purposes. The new value held in the TRM is a global counter used to
generate these volume UIDs. The UlDs are used in forming the Vs employed in
cryptographically transforming sectors on the volume, instead of simply using the
logical volume ID described earlier. When a new volume is registered with the
system the global counter noted above is incremented to generate a UID for that
volume. When a threshold is reached on the per-volume, maximum VT value
(indicating that a VT on the volume may soon be exhausted), the global counter is
again incremented and the client is notified that the volume must be copied to a new
volume. This new volume will be assigned the same logical volume 1D used for
addressing, but it will have a different volume UID. (The old volume later can be

recycled into a new volume using this procedure.)

187

An Encrypted Storage Approach

“In copying the old volume to the new volume, each sector is re-encrypted using
the 1V formed from the new volume UlD,}the sector address, and a re-initialiicd
sector VT. The volume UID field in the master volume VTT entry for the new
volume is updated after the copy operation is complete:and has been checked. The
64-bit IV used throughout this chapter is divided into four fields here. Two bits are
used to distinguish among the four storage unit types: transfer. units, archival units,
sectors and _caclle lines (see section 4.3.5). Twenty bits-are devoted to the sector
address (aliowing,llp to 1M sectors on. a single. volume). and 32 bits are devoted to
the sector :v_e,rsion, tag. _'_I‘,hlism leaves 12 bijts for. the yolume LD, supposting aver 2K
volume versions over the rl_i‘fetime of the systchSanelt was, noted, above that it
would take about a year to exhaust the sectar VTs for a single ;-yol,umgeat a maximum
rate, this should prove to be an adequate numberof volume versions!

4.5 Techniques for Encrypted Prima ryf Mvemory S

The protectlon fneasures developed for encrypted pnmary memory are Slmllal' in
many respects to those described i m sectnon 44 for secondary storage The mtegnty,
authentlclty and timeliness constramts for encrypted pnmary mcmory are exactly
those stated in section 4. 1 and unposed at the secondary stomge Ievel In pnmary
memory the storage umts are cache lmes and the IDs are the pnmary memory
addresses of these lines. (It wnll become clear m thns sectlon why mdmdual words
are too small to be treated as storage units at this level.) Usmg the model developedv
in section 4.2, modifications to a stomge unit are effected by a Wnte of the entire
unit. Thus only wnte-back caches are apphcable here smce wnte-through mches
effect modifi canons through pamal updates of cache lmes ;When a storage umt ts
transferred from T&A stomge to secondary storage rt IS transformed from the T&A
representatlon to the secondary storage representatron The transfer or archlval |
storage units is decrypted, its AlCF is checked 1t lS dmded mto sectors and re-

An Encrypted Storage Approach

encrypted with an AICF for each sector, and the relevant secondary storage VIT
entries are updated. The inverse,of this trapsformation;takes place ‘when files are
archived.

Analogous procedures take place when an encrypted sector ’fr'om seeondary
storage is transferred to primary memory and transformed into encrypted cache
lines or vice versa. Configurations suchds 3 ¥STEM H-piovide a'hatural-point, the
bus coupler for performing lthese transformations, . whereas configurations such as
SYSTEM G are unsuitable since they, prgv,rde, ;unmed!aiﬂg apcess (by DMA devices)
to pnmary memory. Adoptmg the former, configuration, there are two secure
storage interfaces (SSIs) in the TRM; one interfacingto the 1/0)bus and the other o
th‘\e‘ memory bus Thel/()bus SSIcontrle Read and Write o_peranonsonT&A and
secondary storage units and restricts access to primary memory by devices on that
bus, whereas the memory bus SSI manages these operatmns for, Qnmary memory.
For reasons of design srmphcrty, all data.in primaty. memory. is engrypted; including
data.stored and,fetched by. non-secure DMA devices under the controt of the 1/0
bus SSL

The VTT for encrypted ptimary memory is imipficitly addressed by TD and it
contains one entry for'each cache line i prittiary niémeéty. Since, in configurations
such as SYSTEM H; there is essentially no storage within’a TRM; a hierarchic VTT
structure and VTT caching may be appropriate hére, fob. “Despite these mrany
similarities to encrypted secondary storage; there are ‘several ‘aspects of encrypted
primary memory that distinguish'it atrd -which watrant spécial ¢onsideration. For
example, storage units (cache lines) are’ so smidll Thaf the space‘devoted to VTs and
AICFs constitutes a significant fraction of the storage ‘at'this level. Special efforts
are required to reduge this overhead .to acceptable levels. Also transfers of cache
lines across the TRM boundary (through zth:e,,rmemory bus SSI) must take place at
very high speeds and,deli\)er_ rhe requested data with minimal additional delay. To

189 .

An Encrypted Storage Approach

meet these stringent performance constraints, special care is required in the selection
of cryptographic techniques for conccalment and detection of modification. The
following sections address these problems in describing encrypted primary memory

techniques in detail.

4.5.1 Downsizing and Storage of EDCs

The EDCs (AICFs) and VTs employed for T&A and secondary storage are 32-bit
fields. (Throughout this section and the next the term EDC will be used generically,
encompassing AICFs and CEDCs as well as conventional EDCs.) The space
devoted to EDCs, VTs and various auxiliary data structures, e.g., T&A storage unit
headers, amount to less than 2% of the space occupied by the storage units being
protected (even less for most T& A units). Cache lines for the systems of interest are
only 16 or 32 bytes long, so 32-bit EDCs and VTs would require primary memory to
grow by 25-50% to accommodate these ficlds! Although the per-bit cost of memory
is declining rapidly, the storage overhead for VTs and EDCs would unacceptably
increase system cost in most cases. This overhead can be reduced only through the
use of smaller fields for the EDC and VT, c.g., cutting these fields in half. (The
alternative of larger cache lines is rejected since the proposed 32-byte cache lines are
already quite large for these small systems.) In the encrypted bus context it was
suggested that a 16-bit EDC might be adequate for most applications and the same
argument can be applied here. With such a small EDC, it is necessary to limit
automatic retries when an error is encountered and to establish an error threshold
which, if reached, causes the system to shut down and requires intervention by the

vendor, as proposed in section 3.6.3.

It may appear that the adoption of a 16-bit (halfword) EDC for cache lines
engenders a drastic response to errors but this response is justifiable. Note that this

EDC does not replace the error detection and correction code usually employed

190

An Encrypted Storage Approach

with solid-state memories, so only errors that evade that code will be dealt with by
this security mechanism. This suggests that errors detected by this security are Iikély _
to be the result of tampering attempts and thus warrant a.severe response. With an
appropriate choice of error threshold it is unlikely that a non-malicious client will
ever encounter this response. Since encrypted primary memory, kike an encrypted
bus, provides only a temporary repository for data, halting and restarting the system
in the event of an error should not result in a significant loss.of data.

Onc othér aspect of EDC management for encrypted p'r:imay'ry mehbry deservés
mention: the location of EDCs, 4The‘mapping of cache lines 'to‘primary rﬁemory
locations is very simple because the length of lines is normzilﬁf an fntegra] power of
two. Any effort to append halfword EDCs to lines would ‘require’either a much
more complex mapping or some form of ;hm:standard primary memory interface,
e.g., one in which the EDCs were implicitly addressed (and do not occupy a portion
of the "normal” primary memory address space). Since one of the motivations for
configuring systems of this sort is the ability to use "off*the-sheH™ primary memory,
this seems like a bad approach. The alternative is to group all the EDCs into a
contiguous table in primary memory and to fetch the appropriate EDC using a
separate bus transaction. This approach generates somewhat more ‘bus traffic and
delays delivery of the EDC, but in a cache-equipped. system the additional bus
traffic is not a major concern and the increased delay is:not important due to-other
timing constraints (see section 4.5.4). Thus EDCs will be collected together in a

table in primary memory.

4.5.2 Downsizing of VTs: The Cryptographic Refresh Pracess

Reducing the size of VTs is a more complex task.- The VT must not be allowed to
wraparound under a single key lest security weaknesses result (see section 2.3). The
VT for a cache line is updated whenever a ‘eachie fiss occurs ‘that results in the

191

An Encrypted Storage Approach

eviction of a modified instance of that line (a dirty miss). The worst case scenario for
VT updates proceeds as follows. A modified cache line is evicted (a dirty miss);
then a clean miss occurs (no write-back) on the line just evicted and, finally, a dirty
miss occurs that evicts the line in question. This series of activities provides the
minimum time between updates to the VT associated with a single cache line. A 32-
bit VT would wraparound in several hours under this worst case scenario and for a
16-bit VT the time to cycle would be less than half a second, based on the operation
timing figures developed in section 4.5.4. Of course this worst casc scenario
generates dirty misses on a single line much more frequently than one would expect
to encounter in practice, but the very short wraparound time for a 16-bit VI poses a

serious problem even for normal operational environments.

To avoid this problem, it is necessary to change the key used to encipher cache
lines, before a VT can wrap around, since no weakness results if the duplicate VTs
arise under different keys. Since there are 238 distinct keys for the DES, there is no
concern over running out of keys based on any practically attainable rate of key
change. Thus one key, the TRM master key, is used to protect secondary storage
units and, in some systems, T&A stdrage units, but a succession of random keys will
be used to protect cache lines. The transition from one cache line key to the next
must be carried out in a fashion that does not disrupt system operation nor degrade
performance. The mechanism developed for this task can be thought of as a

continuous cryptographic refresh of primary memory.

Cryptographic refresh is an activity (independent from the calculations taking
place at the processor) directed by some control logic included in the memory bus
SSI. It uses the crypto chips in this SSI along with some additional registers and a
cache line buffer. Two working keys are identified in this SSI: WKI and WKz'
Before the cryptographic refresh process starts, all cache lines in primary memory

are cncrypted under WK[The process begins with the generation of a (pseudo)

192

An Encrypted Storage Approach

random value for WK 5 A register, which tracks the progress of the process, is set to
the address of the highest numbered cache line in primary memory. The VT for this
line is retrieved from the VTT, the line is fetched from primary memory and
decrypted and its EDC is.fetched, decrypted and diiecked. Assuming no error is
detected, the line is encrypted under the: next working key (using a VT of 1) and
stored in primary memory, the EDC is encrypted and stored, and the VTT is
updated to reflect the reset VT. This process continues through alt of primary
memory until every cache line has been transformed, completing a pass of the
refresh. Then WK issetm»WK and the processbegins again.

 Atany time during thlS process rt is possrble to determme whrch of the two keys
held in the crypto chips should be used to encrpher/decrpher a cache lme by
referring to the register that tracks the progress of the refresh pass. If the requested
cache line is the one currently bemg processed it is already buffered in the SSI (in
the clear), so it is rmmedrately available and the questron of whrch key to use is
avoided. This refresh process operates at the Iowest priority wrth respect to use of
the crypto chips and the memory bus, pre-empted by memory requests from the
processor or from the 170 bus, thus it should not perceptibly affect system
performance. The critical timing requirement for this process is that a refresh pass
must complete before VT. wraparound occurs.. Equation 4-1. expresses -the
relationship between the mean time between cache write-backs (MTBWB) for a
single line, the time required to refresh a cache line (7) and the amount of primary
memory (P), expressed in cache lines, that can be refreshed before a 16-bit VT
wraparound occurs. (The .9 factor arises from the observation that the memory bus
and its SSI are idle, and thus available to the refresh process, about 90% of the time

in systems configured in this fashion.)

P/T<9*26*MTBWB - @)

193

An Encrypted Storage Approach

The refresh of a cache line involves a Read of the line followed by a Write of the
refreshed line, requiring about the same time as a dirty cache miss. In the worst case
VT update scenario, the VT of a single line can be updated in about 1.5 times the
dirty miss time (T = 1.5 * MTBWB) due to the inclusion of the clean miss between
the two dirty misses. At this rate the maximum primary memory size would be a
little over 2.3 Mbytes for 32-byte cache lines. However, as noted earlier, this
especially abusive pattern of memory references is not likely to arise in practice and
larger primary memory configurations can be supported if a mechanism is provided
to prevent wraparound in the case of an attack based on maximum rate VT
updating. To prevent a security breach, the memory bus SSI will refuse to write-
back a cache line if its VT would wrap around (simple overflow detection), halting
the system instead. Hence, in practice, very large primary memory configurations
will be supported comfortably since the MTBWB is likely to be much longer than
the worst case figure projected above. Thus the cryptographic refresh technique
permits the use of small (16-bit) VTs without sacrificing security or degrading

performance.

4.5.3 AVTT Hierarchy and VTT Cache Management

Employing 16-bit VTs, the cache line VIT requires 6.25% of the space devoted to
cache lines, e.g., a IM-byte primary memory needs a 65538-byte VI'T. This VIT
either can be contained wholly within the TRM or it can be hicrarchically organized
and stored in primary memory with only a portion of it cached within the TRM.
Although this choice is analogous to that presented at the level of encrypted
secondary storage, there are some important differences. For example, if the VIT is
TRM-resident, it probably will be stored using primary memory chips since high
spced (cache) memory chips offer only a slight overall performance advantage. But

ifa VT'T cache is employed, the higher speed chips may be required in the TRM to

194

An Encrypted Storage Approach

offset the added delays imposed by the cache lookup procedure. Moreover, the
quantity of primary memory that is attached to a system is often more tightly
bounded than the number of secondary storage volumes that may be registered with
a system, making it feasible to construct a TRM with a VI'T large enough to cover a
likely range of primary memory configurations. Finally, the complexity of the
control logic and the size of the auxiliary storage needed for the management of the
VTT cache also motivate incorporation of the whole VIT in the TRM. To
understand the tradeofls involved, it is necessary to examine the details of managing

a hicrarchic VT'T and its cache versus a TRM-resident VI'T.

The organization and management of a TRM-resident VT is trivial. Storage is
provided so that cach cache line in primary memory has a corresponding 16-bit VT,
indexed implicitly by the cache line address. A lookup of a VT is accomplished in
one access to this table and should require about two cycles: one cycle for memory
access and one cycle for (round-trip) transport within the TRM. A store into the
VTT of an updated VT 1s accomplished similz‘irly and in the same amount of time.
The cryptographic refresh process interacts smoothly with this arrangement. The
disadvantages of this scheme are the increase in TRM size and complexity due to
the inclusion of the memory chips for the VI'T and the constraint placed on main
memory configurations by the size of this VIT. If 64K-bit memory chips are
employed, then a set of 9 (parity included) will support up to a IM-byte primary
memory. If 256K-bit chips are employed then a similar chip set will support up to a

4M-byte primmary memory configuration.

If the VIT is not wholly TRM-resident, a simple, two-level hierarchy will be
employed as part of a VI'T encachement scheme. The bottom level of the hierarchy
consists of the VI'T divided into cache line-sized pieces and the top level (root)
consists of VT's for these VIT lines. The VTT root table is permanently resident in
the TRM along with the VTT cache and'the VTT cache lookup table. This last table

195

An Encrypted Storage Approach

is'used to determine if the VT for a requested cache line is in the VIT cache and, if
so, to locate that VI. Each VT in the VI'T root table covers a cache line of VTs
which in turn covers 16 data cache lines, so the VIT root occupies space equal to
2% of primary memory. The VTT cache contains one line for every line in the data
cache, to accommodate a worst case situation in which each line in the data cache is
covered by a different VT'T cache line, plus a couple of additional entries for reasons
explained later. (Note that entries in the VI'T cache do not correspond directly to
lines in the data cache since one VTT cache entry could cover up to 16 lines in the
data cache.) Entrics in the VTT cache are 32-byte lines, plus a modified bit, an in-use
bit and a reference count for use by the replacement algorithm. This the VTT cache

is roughly the same size as the data cache (about 3% larger).

The VIT chhc lookup table contains one entry for each block of 16 data cache
lines in primary memory, i.¢, the sct of data lines covered by a VI'T line. If the VT
for a data cache line is in the VTT cache, the corresponding lookup table entry
contains the index of the containing VTT cache line, otherwise the entry is marked
as empty. This table is about half the size of the VIT root table since the unit of
coverage s the same and the VTT cache indices are about half the size of VTs. A
likely size for the data cache is 8 Kbytes. Using 32-byte lines, a total of 256 lines fit
in this cache, yielding a cache index size (for VTT cache lookup table entries) of 8
bits and a reference count (for V'I'T cache entries) of 8 bits. Thus, in total, the tables
employed in the VI'T caching scheme amount 1o about .4% of primary memory for
the VTT root table and the VI'T cache lookup table, and about 103% of the data
cache for the VTT cache. For example, a IM-byte primary memory system requires
a total of about 12 Kbytes of additional storage within the TRM to hold the various
tables and the VTT cache, compared to the 64-Kbyte VTT that would migrate into
the TRM if caching were not employed. For a 2-Mbyte system, the figures are
about 16K bytes versus 128 Kbytes.

196

An Encrypted Storage Approach

The VTT cache operates as follows. When a (clean) data cache miss occurs, the
VT for the requested cache line must be retrieved in order to decrypt this line. The
VTT cache lookup table is checked to see if the required VT is present in the VI'T
cache. If the VT is present, the lookup table entry and the low order bits of the
address of the requested cache line are used to index into the VI'T cache. There the
required VT is retrieved and the reference count for that VTT cache line is
incremented. If the data cache miss was dirty (implying a write-back), the same
procedure is followed so that the requested data line can be Read first, then the VT
for the evicted line is retrieved as above, the reference count of the containing VI'T
cache line 1s decremented and the modified bit is set. (The VT for the evicted line is
always present in the VT cache.) If the VT for the requested data line is not present,
a VI'T cache miss occurs, This miss must be processed before the data cache rﬁiss.
Processing of a VIT cache miss is the same as for a data cache miss with the
exception of the replacement mechanism.

The reference count associated with each VI'T cache line reflects the number of
data cache lines covered by it, and the in-use bit indicates if the entry is empty or
occupied. Scanning of the VTT cache to free lines can take place either on a
demand basis (when a VTT cache miss occurs) or as a background activity like
cryptographic refresh. Lines in the VI'T cache with a reference count of zero are
eligible for replacement and, if unmodified, are marked as empty and ready for
immediate reuse. Modified lines with a zero reference count are evicted, updating
the VT entry in the root table, and then marked as empty. The two extra lincs in the
VTT cache noted earlier are included to guarantee the availability of at least one
empty VIT cache line even in the worst case VIT occupancy scenario (since these
lines can have no counterparts in the data cache). One of these lines is used by the
cryptographic refresh process to hold the VI'T line covering data lines currently
being processed. Using this arrangement the refresh process accesses the VIT in the
same way as the data cache. Even the VI'T is refreshed in the usual way, resetting

the root table entries as each line of the VTT is refreshed.

197

An Encrypted Storage Approach

Thus a data cache miss that gencrates a VIT cache miss experiences an added
delay that includes the time it takes to locate a free or freeable VT'T cache entry plus
a Read or a Read and a Write, for a clean or dirty VTT cache miss respectively, This
added delay could easily increase the time required to satisfy a data cache miss by a
factor of 3 or more. Hence differences in performance between a TRM-resident
VTT design and a VTT cache design spring from two sources: the extra lookup
associated with cach data cache miss (to determine if the required VT is in the VIT
cache and to ascertain its location if present) and the added delays resulting from
VTT cache misses. The extra lookup step results in an increase of about 11-27% in
effective memory access on a Read, versus 8-18% for a TRM-resident VTT,
assuming primary memory chips are used for the VIT cache and tables or the
resident VIT. Use of cache memory chips for the VIT cache and tables would
cqualize this difference between the two designs, based on a twofold access time

improvement as a result of using the faster memory chips.

Since the VI'T cache represents a relatively large percentage of the VIT for most
systems (from 50% for a 256K-byte system to 12.5% for a 1IM-byte system), its hit
rate should be very high (on the order of 98% or more) and the added delays on
VTT cache misses should constitute a negligible increase in ¢ffective memory access
time. Thus the TRM-resident VI'T offers design simplicity and good performance
at the expense of a larger TRM, whereas the VIT cache engenders a complex design
and reduced performance but a more compact TRM. Considering the complexity
of the control logic for the VTT cache, it is not clear where above the 128K-byte
primary memory size the breakeven point in TRM size lies between the two designs,
especially if less dense high speed memory chips are used to improve performance
of the VTT cache design. Thus the choice between a TRM-resident or encached
VTT is not clear. The following descriptions of encrypted primary memory 1/0
assume the existence of a TRM-resident VTT to simplify the discussion. However,
the differences that would result if the encached VTT design were adopted are

noted and timing for the encached VTT design are provided in parentheses.
198

An Encrypted Storage Approach

4.5.4 Encryption and EDC Calculation for Cache Lines

The cryptographic methods employed for T&A and secondary storage are not
suitable for encrypted primary memory. In most computer systems the fetch of a
cache line begins with the requested word (doubleword), which may not be the
"first” word of the line, in order to minimize the delay associated with a cache miss.
Any cryptographic method employing chaining imposes an ordering on the
decryption of data and this is incompatible with the mode of cache operation cited
above. Morcover, the minimum S-cycle delay imposed by block mode decryption is
at odds with this low-delay approach to satisfying cache misses. This suggests that
the stream cryptographic method employed in the cncfypted bus approach may be
appropriate here. For encrypted primary memory, the cryptographic bit stream will
be based on the IV formed from the cache line VT and the primary memory
address, rather than on a counter and bit stream ID used in the encrypted bus
approach. (Combined, the VT and address contribute about 36 bits to the 64-bit [V
with the remaining 28 bits supplied by a fixed, per-TRM constant, just as in
secondary and T&A storage.) This choice of IV limits pre-computation lead time
since the bit stream cannot be calculated until the address and VT of the cache line
are known, but the resulting delay is still better than that available through block

modes.

This stream cryptographic method provides no propagation as an aid in detecting
modification, so a scparate EDC must be calculated. In the encrypted bus approach,
a shortened (5 round) DES calculation was performed on the data and its address
and the resulting CEDC was concealed for transmission under strcam encryption,
In the encrypted primary memory context, the doublewords that comprise a cache
linc are processed using the shortened DES calculation to yield four, 64-bit,
preliminary CEDCs. These preliminary CEDCs must be combined to yicld a 16-bit
final CEDC that detects not only modification of individual doublewords but also

199

An Encrypted Storage Approach

positional modification on doubleword boundaries, ie., permutations of the
doublewords in the line. This requirement is met by selecting 16 bits from each
preliminary CEDC, concatenating them in an order based on positions of the
doublewords in the cache line and processing this 64-bit quantity through a
shortened DES. The final CEDC consists of 16 bits sclected from this last
processing step. This CEDC is concealed in the CEDC table in primary memory
under stream encryption using the address of the CEDC and the cache line VT as an

IV,

It is instructive to note why this particular method was chosen to calculate
CEDCs for cache lines. The final CEDC could have been formed by chaining
together the CEDC values from the cache lines, as was done in the aggregate secure
transactions described in section 3.4.1. That method involves one (shortened) crypto
operation per doubleword, four for the cight-word lines used here, and thus one
might expect improved performance since the method proposed here requires five
(shortened) crypto operations. However, on a Read of a cache line, the words in
that line are fetched in an order determined by which word caused the miss. If the
CEDC calculation was based on the chaining method used earlier, the calculation
could not even begin until the first word of the cache line arrived. The CEDC
calculation method adopted here is independent of the order of arrival of the words
in the linc and thus does not encounter delays of this sort. These considerations

guided the choice of CEDC calculation methods.

The preceding descriptions of encryption and CEDC calculation are utilized in
Read and Write operations in the following fashion. First consider a Read
operation, i.c., the response to a cache miss or the first step in the refresh of a cache
line, as depicted in Figure 4-6. The operation begins with transmission of the
address for the doubleword containing the requested data (T1) and the lookup of

the VT associated with the cache line containing that doubleword (Al). In an

200

An Encrypted Storage Approach

address data data data data

Crypto

5 (o) ()

Ny

Figure 4-6: Event Graph for a Read of an Encrypted Cache Line

encached VTT design two lookups take place and, to minimize delay, the operation
proceeds under the assumption that the required VT is in the cache. Ifa VI'T cache
miss occurs (detected after the first lookup), the request to primary memory for the
data line 1s aborted and the VTT miss is processed. The fetching and transfer of the
cache line begins with the doubleword containing the requested data and proceeds
through increasing addresses, modulo the cache line length (A2-A9,1T2-T9).

Cryptographic bit streams for deciphering the cache line are gencrated using the

201

o

NM? o
S

\ '&f;@ (°

conf

An Encrypted Storage Approach

cache line VT and the addresses of the doublewords in the line (C1-C4). These bit
streams are combined (via modulo 2 addition) with the doublewords transferred

from primary memory to effect decryption (X1-X4).

Each decrypted doubleword is delivered to the cache and delivered for the
preliminary CEDC calculations (E1-E4) and the result is-pricessed to yield the. final
CEDC (E5) as descrrbed above. “The stored. CEBC is. retneved using a normal (r)ot
extended) bus transaetlon dlrected at the appropnate CEDC table location
(T10;A10; Tll) The hrt ‘stream for the CEDC is genewted using the VT and the
word address of the CEDC (C*S) and i is combmed wrfﬁ the halfw()rd contarmng the

CEDC (X5). Thrs decrypted quaﬂuty is compared agamst ‘the calculated final
CEDC to verify the authentrerty mtegr‘ty and trmelmess offthe retneved cache line

Figure 4-7 presents the tmﬁngedragram for a Read of an encrypted cache line.
Crypto devices 1-4 calculate the- cryntographie bu stf’*eam -and the prelrmmary
CEDC for the cache doublewords and devrce 5 calculate’s me final CEDC and
generates the bit stréamn to-conceal this CEBC 'lif)e sf.aggem\g of these processmg
steps may be used to reduce srmultaneous demaud on mtemal busses it is
esthetically appealmg and is comrstent with the precedem:e graph 1In this diagram
the fetch of the VTis accorded two cycles but, ifa VTT cache is employed the VT
fetch time would increase to four cycles even on a V'lT cache lut,u The requested
data is available 7 (9) cycles after the operatron begms, the CEDC is available after
14 (16) cycles and the bus is busy for 13 cycles The delay on, data dehvery is 4 (6)
cycles greater than in a standard system or a comparable encrypted bus
conﬁguratron and the CEDC dehvery delay is 9 (11) cycles greater than in such an
encrypted bus desrgn Bus utrlrzatron mcreases by 30% (3 cycles) over 3 comparably

12I‘he parcnthesrzed figures throughout the remainder of thrs sectmn mdlcate the ttmmg for
systems with 2 VTT cache, assumiing a hit on thit ciche: '

202

An Encrypted Storage Approach

(DOUt!iEWORDS) -
A DD DD c
D A AAA o
D TTTT .
R AAAN F
Cache ‘- . M +_
Crypto5 ot
@ || sl
Crypto3 Z
Cryptol — I - .
oo sl 1T | Yol
Bus -
P-Mem1
)P-Memzl |

012345678901234
Figure 4-7: Timing Diagram for a Read of an Encrynted Cache Line

conﬁgured standard system but, since utrlrzatlon is very low m these systems this
mcrease is srgmﬁcant only if it delays the mmatron of another Read Smce the mean
time between misses is expected to be on the order of SO 125 cycles (95 98% hit rate
and average mstructron length of 2. 5 cycles) thls delay probably has a negllgrble

lmpact on system perfonnance

203

An Encrypted Storage Approach

edc
address data data data data . ack ack

Bus

......

Frgure 4 8 Event Graph for a Cache hne Wnte |

Now consrder a Wnte operatron r e, the ev1ctton of a modlﬁed cache line or part
of a cache hne refresh as deptcted in thure 4 8 When a cache mrss results in the
eviction of a modrﬁed hne the ev1cted hne 1s buffered the requested lmc rs Read
and then the Wnte of the ev1cted lme takes place Thrs strategy results in all cache
misses dehvermg the requested data after the same delay even 1f a wrrte back is

204

An Encrypted Storage Approach

required, unless buffer space for evicted lines is exhausted [6]. The operation begins
with the lookup and update of the VT for the evicted cache line (A1). This Vl'is
combined with the doubleword addresses of the line and used to generate
cryptographic bit streams (C1-C5) for concealing the data and the CEDC. The
doublewords (in increasing order) are combined with the bit strcams (X1-X4),
transmitted and stored in the appropriate memory locations (T1-T9, A2-A9) and
acknowledged (T10). The preliminary CEDCs are calculated on these doublewords
(E1-E4) and the results are used to calculate the final CEDC (ES) as described
above. The final CEDC is concealed by combining it with 16-bits from (5, and the
resulting halfword is transmitted and stored in the CEDC table (Tll-TlZ,AlO).13

Figure 4-9 presents the timing diagram for a Write of an encrypted cache line.
The crypto unit utilization is the same as for Read opcrations. This operation
requires 19 (21) cycles to complete and the bus is busy during the last 13 of those
cycles. This operation is 9 (11) cycles longer than a cache line write in a standard
system and 6 (8) longer than in a comparable encrypted bus system. Bus utilization
is 30% greater than for a standard system and about 8% greater than for an
encrypted bus system. (These figures assume the encrypted bus system incorporates
separate bus lines for CEDC transmission, whereas the encrypted storage design
employs a standard system bus) As long as Write operations are adequately
buffered, the added delay should not adversely affect performance. Again, given
the very low bus utilization characteristics of these systems and the large mean time
between misses, the additional bus cycles consumed for these operations should not
significantly affect performance. Since most Write operations result from evictions

triggered by Read operations, Figure 4-10 shows how the two operations mesh when

13'l‘hcrc is a potential problem here in that only the halfword containing the CEDC for the
affected cache line should be modified. 1If the primary memory does not support this form of partial
word modification, then the whole word must be fetched. the relevant halfword modified and the
whole word stored, increasing bus utilization and the cffective cycle time for the Write operation.

205

An Encrypted Storage Approach

(DOUBLEWORDS)

= » = » O

P R I
> - >» O
= O >

?——:no:‘:>‘
*——,xo»

Cache

Cryptos T
Crypto3 7 E

 Crypto2 e
e RN EER

- Crypto1

| A .

Bus

A3 pAB) IAE] Aae) 1 oob]

- PMem?2

¢

L N TR U S P N 1

012345678901234567889

Figure 4-9: Timing Diagram for a Write of an Encrypted Cache Line

combined. Note that the total time for the combined operations is less than the sum
of the independent operations dire tooverfap in procéssing steps.

Cache
Crypto5
Crypto4
Crypto3
-Crypto2
Cryptot

vIT
Bus
P-Mem1

P-Mem2

--An Encrypted Storage Approach

(DOUBLEWORDS) (DOUBLEWORDS)
A ODDDD cDDDD (EDC)
D A A AA "O A A A A A A
D TTTT NTTTT c c
R AAAA FAAAA K K
| L
¢
¢t A e | ojes) b o tesd
Al : Ll
——— .
1 T T . Tt 7T |T
T1| |T2(T3[T4 IT5 |T6 T7 /T8 [T9|10 | |11 [T1{¥2T3,T4 [T5.T6|T7 T8 {7910 }11 1213
A e . N : : 4 A
A2| A4} |A8 1AB BERESET I 5 RS U (R P VU R F VY L 1 110
A3| AS| |A7| |A9 A3 |as| [a7]| |as

01234567890123456789012345867

Figure 4-10: Timing Diagram for a Combined Read-Write Operation

207

An Encrypted Storage Approach

- As in the encrypted bus approach, there is a choice between delivering requested
data immediately or deferring delivery until the CEDC is checked. However, in this
case the CEDC is associated with the entire cache line, not individual words, and
thus cannot be checked until the entire line, and the CEDC, have been transferred
and decrypted. The increase in apparent memory access time associated with
deferred delivery amounts to only 4-9% (for cache hit ratios of 98% and 95%
respectively) for the encrypted bus approach,’ but here it would be anywhere from

20-50%. _Immediate delivery in the.encrypted. storage approach results in an-
effective Memory access time mcrease in the range ef 8-18% (11-27% for a VIT
cache deSIgn usmgm;ﬁfﬁary memory cinps) These ﬁgures strongly motlvate
adoption of the strategy of delivering data inimediately and checking the CEDC on
a delayed basis. Ifa potentialsecurity.violatian.{a CEDC mismatch)is detected oma
fetched cache line, the system halts, the violation counter 1s mcremented and the
system must be re-msmahzed((Because the delay before the CEDC check 1s much
longer here, it would be much harder for~a ptocessor to "back out™ in response to
the violation.) . Th;s is a drastic responseb%tappeas justified as only deliberate

attempts.to violate the protection mechamsms{axe likely to trigger it.

4.6 Conclusions

The techniques developed in this chapter enable a computer system constructed
using a single, TRM and off-the:shelf storage dgvices.qutside that TRM to protect
externally supplied software from disclosure and undetected modification. Several
important concepts were introduced in this chapter to achieve this goal. Two
concepts are fundamental to the protection mechanisms employed at all levels of
storage. The first is the use of version tags (VTs) to form version-differentiated
names for.cryptographically transforming storage units. The second is the use of a
protected version tag table to provide a basis for verifying the timeliness of storage

208

An Encrypted Storage Approach

units on Read operations. For transfer and archival storage, the archival VTT and
its associated update table provide a robust mechanism for enforcing reloading
constraints for most-recent-only and non-retoadable files. The four-level hierarchic
decomposition of the secondary storage VTT and appropriate caching of portions of
this hierarchy makes the use of encrypted secondary storage feasible. Finally,
cryptographic refresh for encrypted primary memory permits the use of small VTs
with cache lincs, significantly reducing the amount of memory devoted to security

overhead.

The encrypted storage approach offers a number of advantages over the
encrypted bus approach, especially in configurations such as SYSTEM E and
SYSTEM F. Only with the adoption of encrypted storage techniques does secure
T&A storage and demountable secondary storage become really practical. Off-the-
shelfl, demountable magnetic media are supported dircctly in this approach for these
levels of storage. The only special requirement for these media arises in the
secondary storage context where sector size n’1ust be increased slightly. However,
most media arc readily formatted to accommodate the larger scctor size, so this is
not a problem in most cases. The storage overhead for EDCs and VTs is small for
both T&A and secondary storage, so this penalty should be quite acceptable.
Management of the archival VTT is simple and should not perceptibly affect
performance. The secondary storage V1T hierarchy requires more sophisticated
management but still should not degrade system performance noticeably if primary

memory is expanded to accommodate the VI'T caches.

These security measures for T&A and secondary storage provide reduced cost
and increased flexibility with only minor storage and performance overhead
compared to comparable encrypted bus measures. The only significant potential
drawback associated with these encrypted storage techniques is the loss of

transparency, i.e., these techniques do require significant partictpation by the TRM

209

An Encrypted Storage Approach

operating system. However, this disadvantage seems small compared to - the
advantages offered by this approach. At the encrypted primary memory level the
storage overhead and performance degradation are more severe and the complexity
of the TRM increases significantly. The cost-of SYSTEM H in the encrypted
primary memory approach may be comparable to -that of SYSTEM D in the
encrypted bus design due to this storage overhead and increased complexity, so the
choice in this case is not so clear. Of course, SYSTEM H does offer greater
flexibility in primary memory configuration and maintenance, but the comparison
between the two configurations is complex. Pe_rhapgda more impgrtant question is
whether either SYSTEM D or SYSTEM F is preferable to SYSTEM H.

A major motivation for the adeption of SYSFEM H over SYSTEM F is the
reduced: size. and cost, and presumably increased reliability, of the TRM in the
former system. Of course there are other reasons for employing encrypted primary
memory, -e.g,, increased flexibility in configuring and maintaining primary memory;
but these are secondary in many. applications. . However, moving primary memory
out.of the TRM requires_the addition of another S8t involving! five crypto chips and
control logic to support cryptographic refresh. - It requires storage within'the TRM
either for the whole encrypted primary memory -VTT or for the VIT cache and:
auxiliary-tables and not inconsiderable controf logic to manage the cache. Finally,
this configuration. requires the inclusion of a_data:cache and control logic which
might not otherwise be required to achieve acceptable performance. -

Since the crypto chips are very 'léirgé cdmpéréd t'd'mémbry chips'and the control
logic chips also take up considerable space,:the TRM space savings: achieved by
removing primary memory must be carefully anglyzed. ‘For many applications very
large primary memories are not required and the ability to extend primary memory
while retaining the same processor is not critical. For these applications a TRM
configured with internal primary memory: and encrypted secondary storage may be

210

An Encrypted Storage Approach

preferable as the TRM would not be any larger and would probably be more
reliable thar a TRM for an encrypted primar.y memory configuration as described
in scction 4.5, The amount of primary memory that can be accommodated in the
void left by the security hardware and data cache depends on the level of integration
employed for the control logic and crypto chips and the density of primary memory
chips. Using 256-Kbit primary memory chips and custom VLSI for the control logic
and crypto chips, one could probably fit 256-512 Kbytes of primary memory in this

void.

Finally, onc can imaginc hybrid designs employing a combination of the
encrypted bus and encrypted storage approaches. Due to the difficuly of TRM-
packaging of demountable media, T&A and secondary storage arc probably better
implemented using encrypted storage techniques. Yet, once might wish to conceal
addresses on processor-gencrated references to primary memory (to minimize traffic
analysis) and that is available only through the use of encrypted bus techniques.
Thus, one might design a dual bus system in which primary memory is TRM-
packaged and cncrypted bus techniques arc employed to protect traffic on the
memory bus while encrypted storage techniques are used to protect data in
secondary and T&A storage devices on the [/0 bus. However, the cost of providing
separate, TRM-packaged primary memory (as in SYSTEM D) is probably even
greater than providing encrypted primary memory (as in SYSTEM H), since about
twice as many crypto chips are required in the hybrid system. Thus, as in the
preceding analysis, it is probably more feasible to incorporate primary memory into

the main TRM (as in SYSTEM I) to achieve the required protection.

211

Chapter Five
Multi-Vendor Systems and

Client Security Requirements

Chapters 3 and 4 developed several designs that meet the security requirements
of the vendors of external software, i.e., encapsulation of external software to protect
it from attacks resulting in the release or undetected modification of information.
These designs assume that all external software exccuting on the TRM-packaged
computer was supplied by a single vendor, i.e., the designs do not address the
problem of multi-vendor computer systems. Moreover, these designs do not address
the security requirements of the clients of external software, i.c., confinement of
external software to prevent disclosure of client-supplied information to the
"outside world" and to control access of external software to computer resoutces not
devoted exclusively to the vendor of that software. These two problems can be
unified by viewing the client as a vendor possessing certain extra privileges, e.g.,
control over access to shared system resources. This chapter explores the problem
of designing systems that support client security requirements and external software
supplicd by multiple vendors. It examines two approaches to solving this problem:
use of third-party supplied TRMs equipped with secure operating systems and
multi-TRM systems,

212

Multi-Vendor Systems and Client Security Requirements

5.1 Confining External Software

Since the computer systems of interest are under the direct physical control of the
clients, leakage of client-supplied information outside of the client-controlled
environment takes place only through communication with the outside world. The
primary channel for such leakage is the communication network interface. Other
channels may exist as well, e.g., hardcopy output circulated outside the client
environment and maintenance by external vendor personnel, but these are dealt
with by procedural rather than technical security controls. Some personal and smalil
business computers will not have a network interface, effectively eliminating this
lcakage problem. However, distributed systems and many personal and small
business computers will have network interfaces and the problem of lcakage will

arise.

The level of difficulty associated with preventing lecakage of client-supplied
information depends on the configuration of the computer system and what use
external software makes of network communication facilities. In order to restrict
access by external software to a network, the client must have direct control over the
network interface. If a client’s only means of controlling this interface is through a
processor and/or software provided by an wuntrusted vendor, e.g., the vendor
supplying software that is to be confined, then confinement cannot be achieved.
However, a client exercising direct control over this interface can prevent or at least
minimize leakage of his data in many circumstances. 1f external software does not
use the network as part of its normal operation, then clicnt-controlled security
mechanisms can prevent the software from accessing the network at all. 1f external
software uses the network only in a very restricted fashion, then security controls

can mediate access 1o the network to prevent or severely restrict leakage.

213

Mult-Vendor Systems and Client Security Requirements

5.1.1 Preventing Information Leakage in Simple Applications

Consider, for example, external software that establishes a connection to a service
that provides current stock quotations or other information based on a tightly
constrained query set. This type of external software can be confined reasonably
well since the flow of information is essentially one-way (from the service to the
external software). Despite the one-way nature of this sort of communication,
external software might try to leak information by signalling over coveri channels,
e.g., manipulation of connection flow control parameters, since network. protocols
do involve some reverse flow of information even for one-way data transmission.
The rate at which information can.be leaked in this fashmczm be made arbitrarily
low if the communication protocol is not implemented by external software but
rather is under client control. A connection-oriented data transport protocol (see
section 2.3.4) supphed and contmlled by the client would be an appropnate
interface for much external software and would pronde the cllent wnh control over

many covert channels (for smtably constramed network usage)

Even the task of external software re-authorization, ie, notifying the software
that the client has paid the "rent"” and thus the software should continue to operate,
can be tightly constrained so as to minimize leakage potential (thus achieving a high
degree of confinement). Simple r&authodzaﬁon procedures do net require any.
transmission of data from the external software to the vendor. The software can
maintain a counter of the number of times it is invoked and: another counter that
tracks re-authorization notices. Depending on: the duration of the: rental period and
the nature of the subsystem, a limit is established: as the maximum number of
invocations allowed before re-at:ﬂw;ixation.“ The:vendor, upon receipt of periodic

14lf a clock with battery backup could be included in the main TRM, rcauthorization could be
based on time (c.g., months) rather than on the number of times external softwarc was invoked by the
client.

214

Multi-Vendor Systems and Client Security Requirements

paymeﬂL issues a re-authorization notice (incorporating an encrypted form of the
re-authorization counter) to the client, who forwards it to the external software. The
subsystem verifies the re-authorization notice, resets the invocation counter and
increments the re-authorization counter. More elaborate re-authorization
procedures might involve transmission of usage statistics by the external software,
e.g., for billing purposes. The integrity, authenticity and timeliness of these statistics
can be ensured by covering them and the re-authorization couhter with a CEDC.
This procedure minimizes leakage_ potential and thus should prove acceptable to

clients.

5.1.2 Preventing Leakage in Distributed Applications

Security measures of this sort are sufﬁcieptfbr many of the proprietary software
applications that use network facilities. However, in the context of distributed
systems, one may encounter external software that engages in substantiéil, complex
two-way communication among copies of itself implementing distributed
applications at the nodes in the system. Automated mediation of this sort of
communication to prevent leakage of client data is not feasible, both because of the
complexity of the message exchanges and because the transmitted data may be
~encrypted by the external software copies to meet the security requirements of
subsystem vendors. In the simplest case, clients may: wish to confine external
software to preclude leakage of information outside of the distributed system user
community. This is readily accomplished since clients can superimpose their own
inter-node communication security measures (using keys available only to members
of the user community), on top of any communication security measures employed

by external software.

However, as indicated above, if clients require a more sophisticated sort of

confinement of external software, problems may arise. Consider, for example,

215

Multi-Vendor Systems and Client Seeurity Requirements

external software managing a distributed (but not rep!ieated)'database containing
information supplied by various members of the distributed system user
community. Each client may place constraints on how information supplied by him
is made available to other clients, e.g., data private to-each client may be maintained
at his node and database access controls will allow him to restrict access to this data.
Fither the client can rely on the external software to enforce these controls or he can
attempt to mediate inter-node communication invelving the database management
subsystem. In this situation automatic mediation is difficult at best and is
impossible if external software uses encryption to conceal inter-node
communication. Even if inter-node communication is not cryptographicélly
concealed by the external software, eg.. the software employs cryptographic
methods only for authenncnty and mtegnty checks, strict mednatton of mter—node
communication would require duphcatmg the operanm of the database subsystem
Yet such duphcatum by the client i s in direct conflict thh the acqmsmon of external

software!

'Fhis problem worsens if clients must rely on a distributed subsystem to enforce
access control policies for data dispersed throughout the system, e.g., fully replicated
distributed databases containing sensitive client data. In this case, communication
among copies of the subsystem may be encrypted by the subsystem (to conceal the
client data transmitted between the copies), thus. denying the client: any opportunity
of monitoring to prevent or even detect leakage! Clients might be able to trust
external software to enforce an advertised access control policy if they, or a trusted
third party, could inspect the source code and establish .its correspondence to the
executable subsystem installed at each node. Client inspection of propri¢tary
software is not likely to be acceptable to vendors, but in the distributed system
context, such mspectlon may be viable when extemal software is supplied by
members of the user comm unity. In the latter case, dnsclosure of the software within

the user commumty is not a major concern but protectnon of the data managed by -

216

Multi-Vendor Systems and Client Security Requirements

the sdftware must be ensured. What is required, however, is some means of
establishing correspondence between the inspected and installed subsystem copies
without compromising subsystem integrity and while providing for secure
communication among subsystem copies. These requirements can be met using

procedures described in the next section.

5.1.3 Controlling Access to Shared Resources

The other aspect of confinement is controlling access of cxternal software to
computer system resources not exclusively devoted to-the vendor of that software,
This security requirement is applicable only in computer systems which support
secure execution of software from multiple independent vendors, possibly including
the client himself. (In a single-vendor system all facilities are available exclusively
for the use of software provided by that vendor and any sort of confinement beyond
disconnection of the system from the network is meaningless.) Resources to which
access may be controlled include portions of the storage hierarchy, the terminal and
other 170 devices, e.g., the network interface. The guideline here is the principle of
least privilege employed in secure system design, i.e., a subsystem should have access

only to those resources required to carry out its designated function [29].

Access restriction of external software is important for several reasons. For
example, access controls applied to external software often simplify the information
leakage aspect of confinement since software can disclose only that information to
which it has access. External software that has no access to sensitive client
information poses no léakage threat and thus does not require the sort of network
access mediation accorded external software that does have access to such
information. If the latter software docs not use the network and the former does,
the leakage problem is significantly simplified. When secondary storage is shared,

for example, software of one vendor must be prevented from damaging software of

217

Mutlti-Vendor Systems and Client Security Requirements

another vendor (or of the client) and the quantity of storage consumed by external
software should be controlled. With respect to-the terminat; the client must be able
to select and identify the software with which he is communicating in order to
prevent confusion that could result in violations of client access controls.: Finally,
control of access to the network interface, as noted above, is the fundamental means
by which the information leakage problem is managed. Thus, controlling access of
external software to shared system resources really encompasses all aspects of

confinement,

5.2 Computer Systems Supplied by a Thrrd-Party

One way to accommodate software supphed by multiple vendors in a single
computer system is to use one of the desxgns presented in Chapter Jord4in
conjunction with a secure operating system, wnth all secunty relevant hardware and
software supphed by a trusted third party. The secure operatmg system performs
two functions: it protects extemal software from attacks by other software (the
security mechanisms of Chapters 3 and 4 protect agamst physxcal attacks) and it
confines software to control information leakag_e. In single-vendor systems, the level
of security required of the operating system depentls to a ‘éreat e;ttent on the nature
of the application software provided by the vendor. For exammple, extérnal software
implementing financial applications or games require less sophisticated protection
mechanisms than external software controlling execution of client-written code on
the vendor-supplied processor. In multi-vendor systems, the operating system must
withstand programmed attacks mounted by vendor or client software in order to
provide encapsulation and confinement of external software. Thus the level of
operating system security required in multi-vendor comptters is relatively high.

218

Multi-Vendor Systems and Client Security Requirements

521 Options for Software-Enforced Encapsulation

In the extreme case, the operating system for a multi-vendor computer might
provide a fine-grained protection domain structure that supports mutually suspicious
subsystems while providing an invocation mechanism essentially equivalent to
normal procedure calls (see [29]). Although several operating systems and machine
architectures that implement this form of sophisticated protection have been
described in the literature, few have been constructed and none are commercially
available at this time. This type of operating system and its associated hardware
support facilities are generally quite complex, in contrast to the simplicity that tends
to characterize the computer systems of interest. Although it is conceivable that
such sophisticated hardware and software could be provided in small, multi-vendor
systems, it may not be necessary. For many applications, it is not critical that
invocation of external software be as flexible and as fast as normal procedure
invocation. For example, compilers, editors, games or f{inancial application
packages are not invoked with very high frequency; they execute for some time
before completion and are unlikely to make extensive use of other subsystems.
Thus a facility that supports mutually suspicious subsystems but provides a
somewhat less convenient interface than normal procedure invocation might be

appropriate in many circumstances.

A secure virtual machine monitor (VMM) [13] is much simpler to construct than a
fully general protection domain system, yet it can provide the necessary
encapsulation and confinement, albeit with less convenient invocation of external
software. A multi-vendor system can be implemented by using a VMM in which
each vendor is represented by a separate virtual machine implementing a very
simple environment for external software development and operation. The VMM
maps the system resources used by the virtual machines into physical resources. For

example, the VMM partitions physical memory among virtual machines and may

219

Muilti-Vendor Systems and Client Security Requirements

mép a selected portion of virtual mechine memory to provide data transmission
between the virtual machine and the VMM, Secondary storage may be provided by
partitioning physical disks into mixi-disks that are private to.virtual machines (as in
VM/370). The VMM intercepts 1/Q instructions and, translates them so that .
accesses to a‘m‘ini-di,sk_arle: directed to- the appropriate.segion of .a rea] disk.
Invocation of external software can. be. effected. through iater-virtual machine
communication. The VMM can provide coammunication;amoag virtual machines-in_
a variety of ways, e.g.. by simulating network copnections between: the virtual

machines.

To a great extent, encapsulatton and conﬁnement of extemal soﬂware are
client, interactinig with the VMM directty via his terminal, can act as'a sort of limited
system administrator as well as the owner of a virtual miachine. Thi§ ‘pfbvidos'h‘iln
with the tools necessary to coftrol access to s‘hared system resources e.g., storage
and 170 deévices, but he is not granted the abihty t0 examiné unencrypted data
internal to vendor virtual machiries. The VMM desigi makes it especially easy for
the client to control secondary and T&A st"otage' ‘usage and ‘access to peﬁphemis,
since all physical devices are available to the virtual machines only through the
explicit mediation of the VMM. For example, the VMM may interprei and
translate control transactions involving :DMA -devices and other. peripberals as a
matter of course, and access control- checking .is readily incorporated into these
activities. This design even allows the client to. supply. sofRware. for. automatic
mediation of network access in a fashion that is. transparent 10 thc vepdor virtual
machines, since the VMM mediates such access anyway..

The third-party design requires clients anid vendors to trust the supp‘lierio'f
security relevant hardware (TRMs) and software tb“pfnvide‘ a product that meets the
security requirements of both parties. It is likely that both parties will want to

220

Multi-Vendor Systems and Client Security Requirements

inspeét the software to satisfy themselves that it properly implements the
encapsulation and confinement security po]iéies described above. The simpliéity
and relatively small size of a VMM makes it more amenable to visual inspection and
automatic verification, and that makes its acceptance by clients and vendors more
likely. (The assumption here is that the third party will accept disclosure of the
VMM design and code as a necessary part of his business.) Similarly, the hardware
design and the TRMs must be available for examination. Assuming that these
criteria can be met to the satisfaction of both parties, the major remaining question
is how to distribute external software to these computers in a fashion that meets the

security requirements of both clients and vendors.

5.2.2 Distributing External Software in the Third-Party Design

The simplest solution to the problem of distributing external software is to make
the third-party supplier the distributor as well. Vendors could provide the third-
party supplier with their software and he could securely distribute it to clients,
possibly acting as a collection agent for the vendors as well. The distribution could
be carried out using any of the methods described previously using conventional
ciphers, e.g., encrypted transfer storage or secure down-line loading. This requires a
high level of trust on the part of the vendors since their software is directly available
to the third party, and the clients may be wary of this close relationship between
vendors and the presumably impartial third party. Instead, an approach based on
the use of public-key ciphers (PKCs) for external software distribution may prove
more acceptable to clients and vendors. Using public-key ciphers, it is possible to
eliminate the TRM supplier from the distribution procedure, so that only the

vendor and the TRM-based computer have access to external software.

221

Multi-Vendor Systems and Client Sccurity Requirements

The public-key cipher distribution procedure operates in the following fashion.
The third-party supplier provides a public-key cipher facility in a secure portion of
each TRM-packaged computer system. This facility implements public-key cipher
transformations and generates a PKC key pair for use in the secure software
distribution procedure. After the computer is purchased, this key pair generation is
carried out in the presence of the client and some independent agent that serves as a
registrar of public keys for these third-party computers. (The third-party supplier
might serve this function and additional witnesses may be present.) The client and
the registrar both supply random inputs to the TRM for key generation, providing
unbiased key selection, then they initiate the process. When the key pair is
generated, the secret key is held in (erasable) non-volatile storage, never to be
known outside the TRM, and the public key is output by the TRM. This public-key
is recorded by the registrar, cstablishing the correspondence between it, the TRM-
based computer and the client.

To distribute external software to this computer, a vendor checks with the
registrar to establish the association between the public key and the computer in
question. Using this public key, the vendor encrypts a (secret) conventional cipher
key and an identifier, generated by the vendor, for use in secure down-line loading
or for encrypted storage distribution. Once this initial contact has occurred, a
vendor can identify himself to the third-party supplied computer in subsequent
distribution procedures by using the same secret conventional key and identifier.
The client interacts with the computer to establish his own subsystems in a more
direct fashion based on his direct physical control of the system, e.g., through
console interaction. Since the secret key of the PKC pair is known only to the
TRM-based VMM, only the vendor and the TRM have access to software
distributed in this fashion. Of course, this procedure is meaningful only if TRM-
packaged system components are permanently sealed at the factory, i.e., not subject

to subsequent invasive maintenance procedures. This strongly suggests the use of

222

Multi-Vendor Systems and Client Sccurity Requirements

an enci‘ypted-storage design, e.g., SYSTEM G or SYSTEM H from Chapter 4, to

minimize the number of TRM-packaged components.

This software distribution procedure based on public-key ciphers meets the needs
of vendors of proprietary software for many applications. In distributed systems
employing this procedure, members of the user community can act as vendors to
exchange software in a fashion that protects the lender. However, this procedure
does not address the special problem of distributed software that must be trusted to
implement access control policies, e.g., the distributed, replicated database
subsystem described above. If such subsystems are provided as proprietary software
by a vendor, it is unlikely that inspection of the subsystem source code by the clients
will be acceptable, so at best an independent party might be brought in to certify the
correciness of such subsystems. If this certification procedure is acceptable to both
clients and vendors, the subsystems can be distributed using the procedure
described above. A vendor would associate a secret key with the subsystem copies
destined for a given distributed system, providing them with a basis for secure inter-
node communication. (The subsystem copies are identified to one another by the
hardware UID associated with each computer.) [If mode nodes are added to the
distributed system, the vendor can supply additional copies of the subsystem with

the same key.

5.2.3 Distributing User-Written External Software in Distributed

Systems

If the subsystem is supplied by a member of the distributed system user
community, the problem is somewhat different. The assumptions here are that the
members of the user community will co-operate in this process and there is no
requirement to conceal the subsystem code, but the users are largely autonomous

and thus harbor some degreec of mutual suspicion. Thus perspective clients

223

Mutti-Vendor Systems and Client Security Requiremetm

(members of the user community) may inspect the code to verify that it implements
an advertised security policy. However, the user/vendor who wrote the subsystem
cannot dlrectly distribute the subsystem smce he cannot be allowed to know a secret
key embedded in the subsystem copies for secure mter-node commumcatlon. ThlS
problem can be solved by using a third- party computer wrth appropnate soﬁware as
an installation server for the dlstrrbuted system. Thls computer isa shared resource
of the distributed system user commumty and is operaxed by them co-operatwely
The mstallatron server acts as a surrogate for user-vendors in carrying out the
subsystem distribution process in a fashron that meets the secunty requrrements of
the user community. Readers not mterested m the detaxls of how thrs process is
implemented should skip to section 5.3 (page 226) for a drscussron of the other
approach to realrzrng multi-vendor computer systems.

Figure 51 illustrates the flow of messages in this procedure, using an éxample
distributed system composed of 4 user nodes (#-D) and an installation server node
(E). The subsystem creator, in this:example, user node D, initiates the procedure by
transmitting a copy of the subsystem source code to the installation server node (step
). This transmission is secured using the secret key of the ﬁﬁrd—party computer
along with an EDC or AICF to ensure authenticity and integrity. The installation
server records this subsystem, assigning it a UID, and compiles the -subsystem,
producing the executable object module version. Included in the object module is a
secret key, generated by the server, which the subsystem cgpies can use 10
communieate securely with one another. The server distributes a copy.oithe source
- and object module versions of the subsystem to each user node (s&ep 2) the source
code is provided for the inspection and approval of the user and the object module
is made available for immediate installation and aetlvatron of the subsystem
(Distribution of the subsystem can be restricted to a subset of the user community
by informing the installation server of thls subset at the time the subsystem is
delivered by its writer.)

24

Multi-Vendor Systems and Client Security Requirements

Node A o | Node B
2 2
Node E
2 2 1
Node C | | Node D

Figure 5-1: Secure Installation of a User-Written, Distributed Subsystem

Each transmitted copy of the source and object modules is transformed under the
secret key of the installation server to ensure authenticity, th‘:en under the public key
of the target user node for secrecy, and an EDC is included for integrity checking.
In order to effect these transformations, the installation server ‘must‘be provided (in
a reliable fashion) with the public keys of all the user nodes The public key of the’

‘installation server must be made available to the. user nodes to allow verification of
this transmission. (If a user node is provided -with.a public key that does not
correspond to the installation server, the security of the procedure is not violated,
but the node in question will not be able to decipher and load subsystems!) Each

user node VMM, upon receipt, transformation and verification of this transmission,

225

Multi-Vendor Systems and Client Security Requirements

makes available the subsystem source code for user inspection. If, after examining
the source code, a usér approves it, he authorizes his node VMM to install (and thus
activate) the subsystem Users not wishing to pdmmpatc m the subsystem merely
instruct the node VMM no to install the subsystem. -

This procedure guarantees that the installed subsystem copies are identical, that
they have been approved by the users (clients) on whose computers the copies are
executing, that they can communicate secure‘ty with one another and that the
subsystem writer cannot circumvent this procedure, i.e., he is bound by the
advertised access control policy embedded in the subsystem! This is a'simple
procedure and, although it requires the users to exercise some care in operation of
the installation subsystem, the procedure meets the stmgent secu‘rity requirements
established for dlstnbuted systems composed of autonomousiy managed nodes:!?
Moreover, the installation procedure can be effected mcrementally, ie., members of
the distributed system can participate in the installation and use of subsystems at
their convenience. The introduction of a new node into the distributed system
requires registering the node with the installation servér, i.é.‘, establishing the
correspondence between the node UID and its public key, before sisbsystem copies
can be installed at the new node. (This simple task requires supervision by-the users
to ensure that the proper public key is installed.)

5.3 Multi-TRM Computer Systems

Although the third-party computer approach meets the security requirements
established for multi-vendor systems, it does require the vendors and ¢lients to trust
the third-party supplier. Moreover, it may require the: supplier to disclose his

15'l"rojah Horse programs could still be a problem here, but at feast the user can cxamine the
source code (perhaps using program verification tools) in an attempt to locate any Trojan Horses.

2%

Mulu-Vendor Systems and Client Security Requirements

hardware and software designs and make his system available for inspection in order
to satisfy the concerns of the vendors and clients. The problems related to trusting a
third-party supplier can be avoided if each vendor supplies his own security relevant
hardware and software. This vendor-supplied hardwarc and software can be
organized into a computer system that operates much like a distributed system in
microcosm. Each vendor is represented by his own TRM (acting as a node) and the
chent controls interactions ambng these nodes and access to shared system
resources. In this fashion each vendor is responsible for meeting his own security
requirements through the hardware and software encapsulation mechanisms he
provides, and the client confines the external software through the use of hardware
and software that is completely controlled by him. This approach retains the
simplicity of single-vendor systems yet provides the functionality of multi-vendor

systems as achieved in the third-party VMM design.

5.3.1 Configuration Options for the Multi-TRM approach

The primary drawback associated with this approach is the cost of providing
duplicate TRM-packaged hardware, one system per vendor. However, if the cost of
these systems can be made sufficiently small relative to the anticipated revenues
from sales or rental of proprietary software, this approach may be economically
feasible and acceptable to both vendors and clients. The need to minimize costs
strongly suggests the use of encrypted storage designs since they involve only one
TRM and can share storage outside the TRM. The TRM designs of SYSTEM G
and SYSTEM H are the most promising candidates as they yield the smallest, least
expensive TRMs and offer the greatest opportunity for storage sharing. Using
either design, the (vendor-supplied) TRMs share secondary and T&A storage and
[70 devices (terminal, net interface, etc.) under client control. Using the design of

SYSTEM G, primary memory is shared only as a medium for parameter

227

Muiti-Vendor Systems and Client Security Requircments

S g 1

P-MEM | |s-MEM*| | TaA* | otherperipherals.

-System1

Figure 5-2: A Single Bus Multi-TRM System Configuration
transmission between processors, i.e., physiéa-ﬁy .u‘nprOtééied pﬁmaﬁ ':memo'r‘y is
provided primarily for use by the cliehi-"sﬁpplied pmo&ssor Vsincer &ch TRM
contains built-in primary memory. A multi-TRM system based on the design of
SYSTEM H could share all primary memory among all the processors (client and
vendor). Figures 5-2, 5-3 and 5-4 show three multi-TRM system configurations.

228

Multi-Vendor Systems and Client Security Requirements

cPy f—

P-MEM

ACBC

CPU

S-MEM*| { T&A* | . other peripherals

P-MEM

System J

Figure 5-3: A Dual Bus Multi-TRM System Configuration

The first two configurations, SYSTEM I and SYSTEM J, illustrate TRMs with
built-in primary memory connected to single and dual bus syste’ms, whereas the
third configuration, SYSTEM K, shows TRMs sharing bfimafy memory with the

client processor in a dual bus system. All three configurations require essentially the

29

Multi-Vendor Systems and Chient Security Requirements

ACBC
p— M

P-MEM*

System K

S-MEM*| {: T?A.f_,_

other peripherals

Figure 5-4: Another Dual Bus Multi-TRM System Configuration.

same access control mechanisms to enforce confinement of external software.

(Remember, encapsulation is p_rov'idcdﬂ by _‘ the TRM-packagmg and; chcrypt‘gd}

storage security mechanisms described in ‘Chapter 4, both of which are vendor-

230

Multi-Vendor Systems and Client Security Requirements

supp]iéd). The access control requirements here are generally the same as in the
VMM design and the mechanisms used to achieve them may be quite similar; only
the implementation of the mechanisms is different here. In order to maximize the
use of off-the-shelf system components, e.g., disks and 1/0 devices, an access control
bus coupler (ACBC) is employed to connect TRM bus(ses) to the main system
bus(ses). The alternatives, enforcing access control at the bus interface to each
shared resource or at each TRM-bus interface, would require additional specialized
hardware. Moreover, access control hardware may introduce some delay in bus
transactions and the ACBC design imposes this delay only on accesses to shared

resources by TRMs, i.e., it need not affect performance of the client processor.

An ACBC is the dual of a secure bus coupler (SBC), i.c., the ACBC protects client
equipment from attacks by vendor TRMs in much the same fashion that an SBC
protects TRM-packaged vendor equipment from client attacks. An ACBC filters
traffic on the bus(ses) connecting shared resources and the client-supplied processor,
so transactions local to those components are not repeated on the TRM bus(ses).
The ACBC also controls TRM access to primary memory, secondary and T&A
storage devices and various I/0 devices, e.g., the terminal and the network interface,
as directed by the client. To properly enforce access control, each TRM must be
rcliably identified to the ACBC and confinement requires that transactions
involving one TRM must not be passively or actively wiretapped by other TRMs,
One cannot simply connect multiple TRMs to a single, conventional bus since such
a bus does not preclude passive and active wiretapping attacks by other TRMs on
that bus. Thus each TRM has its own short bus segment(s) connecting it to the
ACBC(s) to prevent these attacks by other TRMs.

Since access control details for some devices may be quite complex, the ACBC
can be simplified by off-loading some tasks onto the client processor, i.e., letting the

client processor assume the more complex functions provided by a VMM. To

231

Multi-Vendor Systems and Client Security Requirements

facilitate communication with the client processar/ VMM, the ACBC can map a
portion of the address space of each TRM into -a distinet -region of the shared
primary memory (even if the TRMs are configured with built-in primary memory).
Secondary storage may be divided among the TRMs and -the client by adopting the
mini-disk concept described earlier. The client processor: can’ ‘maintain the
allocation information needed to simulate the mini~disks and it can load registers in
the ACBC to reflect this emulation when a TRM sequests mounting of a mini-disk.
The client processor can translate requests and joad appropriate registers in ‘the
ACBC to achieve the desired acoess control-policy. - In this fishion the ACBC design
is kept simple and its checking of addrem in bus tragsactions-can ‘be accomplished
quickly, yet a wnde range of complex access control ﬁjmtl(ms can be provnded. Thls
same techmque can be apphed to the medmuon of network oommummom If
there is no need to momtor the access of a ngen TRM to the network the ACBC
can be cﬁrected to allow unllmlted acces and 1f dose momtomg 1s called for the»
ACBC can reqmre the TRM to forward messagcs thmugh the chent proomor}
where they can be mspected and appropnately ooastramed. "

Aocesstoothersharedfmumes.e,g., the terminal and other local IO devices is
generally provided on an all-or-nothing basis and is easily cmﬁn&edby registers in
the ACBC. To control access: to-shased primary memory, Some forin: of mapping
must be applied to TRM memory references. Ome or two: pairs of ‘base and bounds
registers can be provided in the ACBC for-each active TRM::to provide mapping
and access control. (In SYSTEM K there are two ACBCs, one comnected 0 the
main system 1/0 bus and the other {0 the memory bus cospler, and acoess control
responsibilities are divided among them .accordingly.) : Fﬂle‘ﬁ@um other
than primary memory, the delay unposed by an ACBC dlou!d not s:gmﬁcaatiy
degrade system performance due to the mhen:nt de%ay in aocessmg those FESOUFCES.
In SYSTEM I and SYSTEM J the TRMs use shared pnmary memory only for
inter-TRM communication and for service xequests to the chent pmceswr so the

delay imposed by the ACBC should not seriously affect performance.
’ 232

Multi-Vendor Systems and Client Security Requirements

In a configuration such as SYSTEM K, the delay introduced by this mapping
could become a problem. Moreover, the encrypted storage TRM design employed
in that configuration requires cryptographic refresh of primary memory by one of
the TRM SSIs. The cryptographic refresh process generates an enormous amount
of bus traffic, which precludes single bus configurations for cither the TRM or the
main system. Even using a dual bus configuration for both the TRMs and the main
system, 1t may be impractical to carry out the cryptographic refresh for more than
one TRM simultaneously. Moreover, the refresh may effectively preclude any
significant activities by the client processor due to the demands on primary memory
bandwidth. Thus, in SYSTEM K, a TRM probably cannot execute software in a
"background"” mode while the client processor performs other processing. Even if a
separate, shared primary memory were established solely for the use of TRMs,
software in two TRMs probably could not interact for the same reason. This

severely limits the utility of systems configured in this fashion.

The cost analysis discussion presented at the end of Chapter 4 suggested that one
could provide 64-256 Kbytes of primary memory in the TRM (using 64 and 256-
Kbit memory chips respectively) for less than the cost of hardware needed to
support encrypted primary memory, Thus economic considerations also may argue
for adoption of private memory TRMs in applications where primary memory size
restrictions are not a problem. Private memory TRMs require only one ACBC, as
opposed to the two in SYSTEM K, reducing system cost and further maximizing the
use of off-the-shelf components. Since the single ACBC in these systems only
controls access to peripherals and the shared primary memory used for inter-TRM
and client processor communication, it need not exhibit extremely low delay,
making it simpler and cheaper to construct. Moreover, primary memory size
limitations in these TRMs may be ameliorated by use of low access time secondary
storage, e.g., bubble memories, as paging/swapping devices. Thus, even though

TRMs using encrypted primary memory offer greater growth potential since the

233

Multi-Vendor Systems and Client Security Requirements

shared primary memory is readily expanded, TRMs with built-in primary memory
may prove more appropriate for multi-TRM systems, '

5.3.2 A Hybrid Scheme for Dlstnbuted Systems

The multi-TRM de:;ign seems especxally well smted t.o use. w:th proprietary
software since it avoids problems of . trust that arise. m the third-party supplier
approach. However, in the context of distributed systems, ;,extemal, software written
by members of the user community probably cannot;aké, ad\gantage of the multi-
TRM scheme in its pure form. First of all, it is impractical to provide at each user
node a separate TRM for the external software supplied by each other user.
Moreover, this scheme would not provide a basis for a distributed subsystem that
includes its writer as a client! Rather, me_multij'lfRM approach can be used in
conjunction with the third-party app:oach in the following fashion. Each user node
can employ a multi-TRM configuration in which one of the TRMs is provided by a
third-party supplier and is devoted to execution of subsystems wnttcn by members
of the user community. The installation server techhiqﬁé‘déééﬁﬁed in the preceding
section is employed for distribution of these subsystems." In this fashion the
advantages of multi-TRM designs are’ available to the users but the special
functionality required for secure - d:stnbutlon and opemnon of user-wntten
subsystems is retained. ‘ B ' '

5.4 Conclusions

This chapter explored the problem of cenﬁnmg external soﬁware (to meet the
client security requirement of preventing’ 1eakage of chent mformation) and the
related problem of supporting external soﬁware from muﬁtple vendors ina smgle ‘
computer system In developmg protect:on mechanisms to solve these problems,

234

Multi-Vendor Systems and Client Security Requirements

several important concepts and techniques were introduced. The two problems
noted above can be unified by viewing the client as a vendor with some extra
privileges that allow him to control access to shared computer system resources.
Controlling access to shared resources is a major part of confining external software
since network access provides the primary means of leaking client information. Two
approaches to implementing multi-vendor computer systems were developed: use
of a third party to supply a TRM and controlling software and use of multi-TRM

computer systems.

The third-party supplier approach requires no new hardware technology; it is
applicable to all of the designs developed in Chapters 3 and 4, but it does require
both clients and vendors to trust third-party suppliers. A virtual machine monitor
(VMM) can be used to encapsulate external software provided by various vendors
(and the client) and to provide the client with a means of controlling access to
system resources. The performance degradation resulting from use of a VMM
should be acceptable in most application environments. A protocol based on
public-key ciphers can be employed so that the third-party supplier does not have
access to the external software distributed to the systems he supplies. This protocol
can be enhanced so that users can acts as vendors of their own subsystems in the

distributed system context.

The multi-TRM approach to confining external software supplied by one or more
vendors essentially realizes a VMM design using scparate processors (and, perhaps,
private primary memories) for each vendor and the client. This approach minimizes
the need for trusted third parties at the expense of some additional hardware: one or
two access control bus couplers (ACBCs). The ACBCs filter bus transactions
between the busses for the vendor TRMs and the bus(ses) of the client’s processor.
To keep the ACBCs simple, access control policy decisions are made by the client’s

processor, which loads appropriate registers in the ACBC(s) to enforce these

235

Multi-Vendor Systems and Client Security Requirements

decisions. If the cost of the TRM-packaged components is suitably smai, this
approach may prove more acéeptab%e to clients and: vendors, because of the
increased autonomy provided. Performance degradation associated - with
configurations implementing this design also should be acceptable for most
applications. Moreover, such performance degradation can be restricted largely to
vendor softhire; it should not appreciably - affect’ cliént' programs, due to the
existence of a separate client processor and- the positioning of access control

hardware in the system configuration.

Chapter Six

Conclusions and Topics for Further Research

This thesis has developed and analyzed protection mechanisms for encapsulating
and confining externally supplied software in personal and small business
computers and certain types of distributed systems. This chapter summarizes the
results of this thesis, reviewing the key concepts and techniques developed herein,
evaluates the encrypted bus and encrypted storage approaches with respect to the
criteria established in Chapter 1 and discusses the applicability and limitations of
these approaches. The chapter concludes by suggesting some topics for further

research.

6.1 Review

Chapter 1 established vendor and client security requirements associated with
external software. These requirements are derived from those developed for
protected subsystems in centralized computers and thus are more stringent than
those that one might propose if only proprietary software were to be protected, as
indicated in the review of related work. For example, other authors have not
addressed the problem of detecting modification of external software (including
sensitive databases constructed by the software during execution) or the problem of
confining such software. The data integrity guarantee supports features such as
sophisticated billing and revocation procedures for proprictary programs and is
essential for many distributed system applications (see Chapter 5). These extensive,
stringent security requirements yield protection mechanism designs that set this

thesis apart from previous work.

237

Conclusions and Topics for Further Research

" In Chapter 2 the concept of tamper-resistant modules (TRMs) was explored in
detail. The TRM concept is important since it embodies all of the physical
protection charactenstncs that are a function of the level of security required in a
particular environment. In this fashion none of the other protection mechanisms
developed throughout the thesis need deal with physical protection issues. The
monolithic-TRM design introduced in Chapter 2'illustrated some of the limitations
of TRM packaging, motivating the use of crypwgmphlc ‘techniques to overcome
these deficiencies. This design also served to introduce’ the secure bus coupler
(SBC) in its role as a-filter of transactions at the bus interface to the main TRM. The
basic features of the SBC appear later in the cryptographic bus interface (CBF) and -
the secure storage interface (SS1) on the main TRM. - . '

The encrypted bus approach developed in Chapter 3 mtroduces several tmpartant :
techniques in treatment of bus communication between TRMs as a special problem
in communication security. The stream cipher mode developed in that chapter has
been carefully designed to minimize delay and maximize thmugirput. In particular,
this mode permits multlple crypto devices to be used in parallel to generate crypto
bit stream at very hlgh rates.” The shoﬂened DES calculaﬂon employed for CEDCs
enables simple secure transactions to proceed at rclatlve!y hxgh ratm Use of a
distinct crypto bit stream for each szmplex channel suppons asynchrony in secure
transaction scenarios. This is critical to the ehmmauon of authenttcatton checks at
the slave during s:mple secure read transactions (enhancmg throughput) and 1t
allows control and data transfer connectlons to be oombmed F“maﬂy, aggregate
secure transactions reduce overhead on data transfers between pnmary memosy and
TRM-packaged storage devices by transmnttmg a cumulanve CEDC at the
completion of the transfer, rather than transmitting a CEDC w:th each transaction.

Chapter 4 employs cryptographic techniques in a fashion quite different from
Chapter 3, and the encrypted storage. approach introduces several important

238

Conclusions and Topics for Further Research

concepts and techniques. Version tags (VTs) are employed to form version-
differentiated names for cryptographically transforming storage units, and a
protected version tag table (VTT) provides a basis for verifying the timeliness of
storage units fetched by Read operations. For transfer and archival storage, the
archival VTT and its associated update table provide a robust mechanism for
enforcing reloading constraints for most-recent-only and non-reloadable files. The
four-level hierarchic decomposition of the secondary storage VI'T and appropriate
caching of portions of this hierarchy make the use of encrypted secondary storage
feasible. Finally, cryptographic refresh for encrypted primary memory permits the
use of small VTs with cache lines, significantly reducing the amount of memory

devoted security overhead.

Although Chapter 5 is short in comparison to Chapters 3 and 4, it includes several
important designs (at a high level). The problems of confining external software
and supporting such software from multiple vendors in a single computer system are
unified by viewing the client as a vendor with some extra privileges in a multi-
vendor system. The use of a TRM-based system running a third-party supplied
virtual machine monitor (VMM) achieves the necessary confinement and
encapsulation while minimizing the amount of trusted software. The public-key
cipher protocol used in distributing external software to these computers (and in
installing secure distributed subsystems) is critical to the client acceptance of the
third-party approach. The multi-TRM system approach avoids the need for trusted
third parties and, if economically feasible, it is probably the preferred approach.
Both approaches allow the user to mediate access to the network interface, the

primary means by which information can be "leaked" outside the computer.

239

Conclusions and Topics for Further Research

6.2 Comparative Evaluation of the Encrypted Bus and
Encrypted Storage Approaches

The primary goal of this thesis has been the design of mechanisms to protect
externally supplied software in smali computers Chapter 1 established several
criteria for evaluating mechanisms proposed to achieve thls goal decentralrzatlon
effectiveness, generality, ﬂexlblhty, low equxpment cost, mlmmal performance
impact and transparency. “The protectron mechamsms developed in Chapters 3 and
4 achieve this goal in different ways and meet these cntena with varymg degrees of
success. Both encrypted bus and encrypted storage des:gns are decentrallzed
approaches to the external software protection problem ’l‘hese designs employ
small computers installed at user sites and do not require any central" computers in
executing the external application software. The only time a central system might
be involved is in the distribution of external software or for: pemdrc accountmg of
rented/leased proprietary software.

With respect to preventing unintended exposure of inforrnatiom the techniques
developed in the thesis are fairly effective, i.e., if TRMs perfonn as speciﬁed then
only cryptanalysis or traffic analysis wrll yleld mformatron about the data bemg
protected. If a suitably strong cipher is employed then only trafﬁc analysrs remains.
Neither the encrypted bus nor encrypted storage approach provrdes complete
protection against traffic analysis, but one can lxmrt opportumtles for trafflc analysrs
by selecting configurations that package most of the security relevant parts of the
system in a single TRM. Encrypted bus des:gns provrde grwter protectron agamst
traffic analysis than corresponding encrypted stomge desrgns s:nce addresses in bus
transactions are concealed in the former but not in the latter. For most applrcatlons,_
however, traffic analysis will not be viewed as a serious threat, especially at the level
of T&A and secondary storage transfers. With respect to detecting malicious
modification of information, the mechanisms proposed in Cbaptexs 3 and 4 are

240

Conclusions and Topics for Further Research

quite effective. An attacker has only a very small probability of circumventing these
mechanisms without being detected (depending on the size of the

EDC/CEDC/AICF employed).

The designs proposed in this thesis exhibit a fair degree of generality and
flexibility. The protection mechanisms meet the security requirements for a wide
variety of applications. Although these mechanisms have been described in the
context of small computers based on a simple architecture, the general techniques
developed here are applicable to a wide range of system architectures,
configurations and equipment speeds. This is especially truc of the encrypted
storage designs for secondary and T&A storage as they are independent of most
configuration and architectural details. Encrypted storage designs also offer
substantial flexibility in equipment seclection since they employ off-the-shelf
equipment almost exclusively. Some flexibility is lost in encrypted bus designs due
to possible limitations imposed by TRM packaging of non-volatile (and

demountable) storage media.

Encrypted storage designs involve only one TRM and one or two SSIs whereas
encrypted bus designs involve several TRMs and CBls in most configurations. Even
though encrypted storage designs waste a certain percentage of storage (that devoted
to VTTs), this overhead is not likely to offset the added TRM packaging costs
encountered by comparable encrypted bus designs. This is almost certainly true for
systems in which secondary and T&A storage are not contained in the main TRM
and is probably true when primary memory is also outside the main TRM. (This
assumes TRM packaging analogous to the packaging employed for commercial
cryptographic equipment.) With respect to performance, both designs introduce
only a negligible delay in DMA transfers involving secondary or T&A storage not
contained within the main TRM. The encrypted bus designs do hold an edge over

encrypted storage designs in systems where primary memory is outside the main

241

Conclusions and Topics for Further Research:

TRM. (The expected increase in effective average primary access time is 0-9% for
the former versus 9-18% for the latter.)

The encrypted bus approach also exhibits greater transparency than the
encrypted storage approach. Aside from initialization: procedures and ‘tecovery
from some errors, most of the protection- mechanisms are managed exclusively by
the CBIs in the encrypted bus designs. - In encrypted storage designs, the TRM
operating system must manage VT Ts for secondary and T&A storage, thus aﬁbrd’mg
diminished transparency. For both approaches, applications must distinguish
between files that must-be protected versus thase which:may be stored unprotected;
and the reloading constraints associated with: protected . files: must be explicitly
indicated. However, these file characterisﬁcsnre obvious at the time:the application
is written and are easily specified as part of an @pefatmg system file creation
operation. . ‘ gl ' R

Thus, in comparing the two approaches to protectmg extemal software the
encrypted bus approach offers some advantages with respect o transparency,
performance and susceptibility to traffic anaiys:s.wherwsﬂ;e encrypted storage
approach provides greater generality, flexibility and reduced cost. : Within a specific
approach, system configusation choices offer a tradeoff of flexibility versus
susceptibility to traffic analysis. Although the selection of a system design depends
on requirements specific to an application environment; oné can make some general
observations. In both approaches, the cost of providing primary memory outside
the main TRM is probably too high considering the slight gainin flexibility afforded
by such configurations. When primary memory is.contained in the main TRM,
there is little performance difference between the two approaches. “For most
applications, the preferred configuration is probably an-encrypted storage system
with secondary and T&A starage outside the TRM: The cost, flexibility and
generality advantages of this configuration probably outweigh the traffic analysis

242

Conclusions and Topics for Further Research

susceptibility and the reduced transparency afforded by this configuration. This

configuration is also well suited to multi-vendor, multi-TRM designs.

6.3 Applicability and Limitations

The protection mechanisms developed in this thesis have been designed for the
express purpose of meeting vendor and client security requircments associated with
external software in the context of personal and small business computers and
certain distributed systems. The characteristics of these computer systems were
established in Chapter 2. One can ask whether the protection mechanisms
developed in this thesis are especially sensitive to the assumptions embodied in the
system model and whether these protection mechanisms are relevant to other

applications. The answers to these questions are no and yes, respectively.,

The protection mechanisms developed in Chapters 3 and 4 are applicable to
computer systems that do not precisely match the system model. For example, in
the encrypted bus approach, the system word size and the number of bus lines
ecmployed do not critically influence the protection mechanism designs. Such
differences are accommodated by changes in the amount of cryptographic bit stream
generated by CBIs, but this does not significantly influence the designs, only some
implementation parameters. Variations in the relative timing of the system
components, including the cryptographic devices, do not seriously affect these
designs although they may require minor changes, e.g. more or fewer crypto devices
may be required. Substantial differences in the structure of bus transactions may
require some re-engineering, but the design principles developed in Chapter 3

should still be relevant.

Most of the encrypted storage designs are even less influenced by changes in

system characteristics such as word size or device timing, and these designs are

243

Conclusions and Topics for Further. Research

generally insensitive to details of bus operation. For secondary storage, the most
critical parameter is the sector size. - Changes in this parameter influence the
percentage of space devoted to VTTs and EDCs but, unless the sector size changes
drastically, the impact on design features such as the VIT should be neghglble
Only in the case of encrypted primary merfrdry conl’@uratsons are word' size, "cache
operation and timing details critical. parameters. . Hege ;again, modifications to
accommodate changes in these parameters:should be possible within the context of
the design principles elucidated in the chapter. Moreover, since there is only one |
TRM in these designs, the impact of changes in the protection mechanism details
influences few components. The botiom line here isthat the most promising. design,
SYSTEM F, is relatively insensitive to most. systemcharac}cnsﬂcs, In fact, since the
transfer rate of many current T&A. and mnda(y storage dewcw is less than 10
Mbits/s and the Fairchild DES chip set is capable of over 13.Mbits/s throughput,
computer systems based on the SYSTEM F desxgn could be constructed w1th

current technology'

Finally, the protection mechanisms, developed here caabe employed for several.
purposes other than those described in. Chapier 1..; For example, one might use
cusity at sites, ; These measyres cannot
prevent destryction of information stored in & eomputer but: they can prevent
disclosure and undetected modlﬁcwon of that, information. . Thus, one might
purchase a TRM-packaged computer to oaunt&: these fthreats in environments
where controlling physical access to the com ute facilities. is difficult or expensive
to achieve. Some distributed systems employ 3 e server that provides basic file
storage facilities that users can access from. ioeal -nades... The encrypted storage
e by the user
nodes to protect mformatnon stored at these ﬁie servers. Even some of dle
specialized cryptographlc techniques developed m Chapter 3 may be apphcable to
future communications systems that ‘exhibit very hngh throughput and very low

these mechanisms to re-enforce physical s

approach mechanisms for secondary and T&A storage can be ap e

244

Conclusions and Topics for Further Research

delay and which deal in very small messages. The imaginative reader may discover

even more applications for these protection mechanisms.

6.4 Topics for Further Research

Several topics discussed in this thesis merit further investigation. First, the
engineering of TRM packaging should be explored in depth. Details of this
packaging will vary depending on the level of protection required, i.c., based on the
anticipated threat environment, and there are a number of problems lurking in this
area. The technology employed in existing devices such as commercial
cryptographic equipment is probably appropriate for some threat environments, but
both more and less elaborate packaging must be developed. An intriguing problem
1s the engineering of TRM packaging for a VLSI implementation of a processor,
primary mcmory and SSI in an encrypted storage design for low to moderate
security environments. Very low cost TRM packaging of this equipment might be
possible if it were reduced to a just a few silicon wafers combined in a single
package. (One might store keys in charge-coupled devices and rely on the inability
of an attacker to disassemble the package without losing the charge on the CCD.)
At the other extreme, in very high security applications, TRM packaging may have
to include devices that destroy the TRM, and perhaps the would-be attacker, if
tampering is detected. This type of packaging is probably unacceptable to the
Consumer Products Safety Commission for home personal computers, but it may be

appropriate in some military applications.

Additional work also is required in providing detailed designs for the hardware
that implements the protection mechanisms developed in the thesis. For example,
the functions of secure bus couplers (SBCs), cryptographic bus interfaces (CBls),

secure storage interfaces (SSIs) and access control bus couplers (ACBCs) were

245

Conclusions and Topics for Further Research

described, but additional engineering design is required before a TRM-based
system can be constructed using these devices. In large part these details are a
function of bus characteristics, so a specific bus design must first be adopted, but
other engineering questions must be resolved as well. For example desngn details of
bus couplers with integrated CBIs or SSls and the ACBC must be examiined wnh
respect to buffering requirements and interaction of the control Jogic associated with
each bus attached to the coupler. Similar design refinements are required for
version tag table (VT[‘) managem_ent at secondary and :primary storage levels. - For
example, the secondary storage VTT hierarchy should-be tailored to the file system.

For multi-vendor computer systems there are éeVeral:'ﬁfob]eins that require
additional research. If a secure virtual machme momtor (VMM) is used to 1so|ate
software from different vendors and the user then addltlonal rmearch is needed in
the area of provably secure VMM design. Specnﬁcatxons of momtor calls, mcludmg
those employed in inter-VM commumcauon must be developed if the secure VMM
approach is adopted. These calls must be standardlzed so that vendom can produce |
software for execution in this virtual machine environment. If multl-vendor
computer systems are constructed using mulﬁple TR.Ms, Vendors are relatively
unconstrained in their choice of processor and memory' design. However, similar
standardization requirements arise with respect to communication between TRMs
and the user processor operating system since that OS performs many VMM -like
functions for the TRMs. Moreover, if the ACBC d&xgn is t0 be kept snmple, it is
probably necessary for TRMs to employ some standard bus mterface Thus, if
multi-vendor systems are to become a reality, some standardlzanon is requued for
both the VMM .and multi-TRM designs.

Finally, if the protection mechanisms developed mthnsthesns are applied to
computer systems that differ radically from those dencnbed “herein, additional
research will be required to work out the implementation details for these systems.

246

Conclustons and Topics for Further Research

Similarly, adaptation of the protection mechanisms to applications such as the
protection of mformation stored at distributed system file servers will require

further investigation.

247

Appendix

Expansions of Acronyms Used in the Thesis

The following table provides expansions for acronyms used extensively in this

thesis.
ACBC access control bus coupler
AICF authenticity/integrity check ﬁeld
CBC ciphertext block chaining
CBI cryptographic bus interface
CC conventional cipher
CEDC cryptographic error detection code
CFB cipher feedback
DES Data Encryption Standard
ECB electronic code book
EDC error detection code
v initialization vector
PCBC plaintext-ciphertext block chaining
PKC public-key cipher
SBC secure bus coupler
SSI secure storage interface

248

T&A

TRM

uib

VMM

VT

VITT

transfer and archival
tamper-resistant module
unique identifier

virtual machine monitor
version tag

version tag table

249

References

1. Best, R. Microprocessor for Executing Enciphered Programs. U.S. Patent
4,168,396. Issued September 18, 1979,

2. Bhandarkar, D. and Juliussen, J . Sem:iconductor Technology: Trends and
Implications. Computer Architecture News 7, 1 (August 1978), 4-14;

3. Branstad, D.K. Privacy and protectxon in operating systems. Computer 6, 1
(January 1973), 43-46.

4. Campbell, C. Design and Specification of Cryptographic Capabilities.
Computer Security and the Data Encryption Standard, National Bureau of
Standards, 1978, pp. 54-66. NBS Special Publication 500-27.

5. Casey, L. and N. Shelness. A Domain Structure for Distributed Computer
Systems. Proceedings Sixth Symposium on Operating Systems Principles, ACM,
November, 1977, pp. 101-108. .

6. Clark, D., Lampson, B. and Pier, K. The Memory System of a High-
Performance Personal Computer. Xerox PARC, Palo Alto, CA.

7. d'Oliveira, C.R. An Analysis of Computer Decentralizatio;L Technical Memo
MIT/LCS/TM-90, M.L.T. Laboratory for Computer Science, October, 1977.

8. DeMillo, R., Lipton, R. and McNeil, L. Proprietary Software Protection.
Foundations of Secure Computation, 1978, pp. 115-129.

9. pdpll Peripherals Handbook. Digital Equipment Corporation, 1976.
10. VAX 11/780 Hardware Handbook. Digital Equipment Corporation, 1978.

11. Elmquist, K. et al.. Standard Specification for S-100 Bus lnterface Devices.
Computer 12,7 (July 1979), 28-52.

12. Ehrsam, W.F.. S.M. Matyas, C.H. Meyer and W.L. Tuchman. A cryptographic
key management scheme for implementing the Data Encryption Standard. 7/BM
Systems Journal 17, 2 (1978), 106-125.

References

13. Gold, B. et al.. A Security Retrofit of VM/370. Proceedings of the 1979
National Computer Conference, Vol. 48, AFIPS, 1979, pp. 335-344.

14. Hinden, H. Encryption chips sort themselves out. Electronics 53, 11 (June
1980), 96-97.

15. Kelly, P. Public Packet Switched Data Networks, International Plans and
Standards. Proceedings of the IEEE 66, 11 (November 1978), 1539-1549.

16. Kent, S.T. Encryption-Based Protection Protocols for Interactive
User/Computer Communication. Proceedings Fifth Data Communications
Symposium, IEEE, September, 1977, pp. 5-7 - 5-13.

17. Kent, S.T. A Comparison of Some Aspects of Public-Key and Conventional
Cryptosystems. 1CC'79 Conference Record, IEEE, June, 1979, pp. 4.3.1-4.3.5.

18. Keys, R. and Clemens, E. Security Architecture Using Encryption. Approaches
to Privacy and Security in Computer Systems: Proceedings of a Conference Held at
the National Bureau of Standards, National Burcau of Standards, September, 1974,
pp. 37-41. Available as NBS Speciul Publication 404.

19. Lampson, B.W. A Note on the Confinement Problem. CACM 19, 5 (May
1976), 251-265.

20. Lindsay. B. and V. Gligor. Migration and Authentication of Protected Objects.
Rescarch Report RJ-2298, IBM, August, 1978.

21. Miller, R. et al.. Legal Protection of Computer Software: An Industrial Survey.
Harbridge House, Inc., November, 1977. Available through NTIA as PB-283 415.

22. MC68000 16-Bit Microprocessor User’s Manual (Preliminary Edition).
Motorola Semiconductor Products Inc., 1979.

23. --. Data Encryption Standard. Federal Information Processing Standards
Publication 46, National Bureau of Standards, January, 1977.

24. Osborne, A. How About Low-Cost Application Software? The Answer Lies in
Books. Digest of Papers COMPCON Spring 78, IEEE, 1978, pp. 46.

25. Pouzin, L. and Zimmermann, H. A Tutorial on Protocols. Proceedings of the
[EEE 60, 11 (November 1978), 1346-1370.

251

References

26. Rivest, R.L., A. Shamir and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. CACM 21, 2(February:1978), 120-126.

27. Rivest, R., Adleman, L. and Dertouzous, M. On Databanks and Privacy-
Homomorphisms. Foundations of Secure Computation, 1978, pp. 169-177.

28. Rivest, R.L. performance of a prototype RSA aigomhm implementation.
personal communication.

29. Saltzer, J.H. and M.D. Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE 63, 9 (September 1975), 1278-1308.

30. Schroeder, M. and Saltzer, J. A hardware architecture for ifnplementing
protection rings. CACM 15, 3 (March 1972), 157-170.

31. Schroeder, M.D. Cooperation of Mutually Suspicious Subsystems in a Computer
Utility. Ph.D. Th., Massachusetts Institute of Technology, Scptember 1972 Also
available as MAC TR-104.

32. Shannon, C. Communication Theory of Secrecy Systems. Bell System
Technical Journal 28, 4 (October 1949), 656-715.

33. Svobodova, L., Liskov, B. and Clark, D. Distributed Computer Systems:
Structure and Semantics. Technical Report MIT/LCS/TR- 215 M.LT. Laboratory
for Computer Science, March, 1979. :

252

Biographical Note

Stephen Thomas Kent was born in New Orleans, Louisiana, on January 25, 1951.
He graduated from Ridgewood Preparatory School, Metairie, Louisiana, in 1969.
He was class valedictorian, editor of the school newspaper and president of the Beta
Club.

From 1969 through 1973 he attended Loyola University of New Orleans as a
National Merit Scholar. As a freshman he was a recipient of an Alpha Sigma Nu
honor key and was clected to Dobro Slovo, Pi Mu Epsilon and Delta Epsilon Sigma
honor socicties, serving as president of the last two in his senior year. Mr. Kent
carned a B.S. degree summa cum laude, majoring in mathematics, and received the
Rev. P.A. Roy Memorial Award. He was also awarded the Gold Medal for
Research by the New Orleans branch of the Scientific Research Society of America
for his contributions to the development of software for physical chemistry research
applications.

In 1973 and 1974 Mr. Kent attended graduate school at Tulane University, studying
mathematics, before becoming a graduate student in computer science at the
Massachusetts Institute of Technology from 1974 through 1980. From September
1973 through June 1976 he was supported as a National Science Foundation
Graduate Fellow. In June 1976 he was awarded the S.M. degree from the
Department of Electrical Enginecring and Computer Science and the Electrical
Enginecr degree in February 1977. His S.M. and E.E. thesis was entitled
"Encryption-Based Protection Protocols for Secure User-Computer Communication
over Physically Unsecure Channels.”

From September 1977 through August 1980 Mr. Kent served as a research assistant
in the Computer Systems Research Group of the M.I.T. Laboratory for Computer
Science. In the summer of 1976 he worked for the Rand Corporation in Santa
Monica, California, as a consultant on communication sccurity matters. In the
summers of 1977 and 1978 he worked for Bolt Beranck and Newman Inc.
performing research in the area of security in computer communication networks,
Since 1977 Mr. Kent has lectured in the United States and Europe on the topic of
security for computer communication networks for The George Washington
University, M.LT., the University of Southern California and several private firms.

253

Mr. Kent is a member of the Association for Computing Machinery and its special
interest groups on Operating Systems and Communications. He is alse a member of
the Sigma Xi scientific honorary society.

In September 1980 Mr. Kent became a member of the technical staff at Bolt
Beranck and Newman Inc. He is married to Rachel Baribault Kent.

254

CS-TR Scanning Project |
Document Control Form Date: ¥ /0% /S5

Report# LcS-TR- 95§

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
"B Laboratory for Computer Science (LCS)

Document Type:

X Technical Report MR) [Technical Memo (TM)
O Other:

Document Information Number of pages: L5%(2.59- I maces)
“ Notto include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
[0 Single-sided or O Single-sided or
/kf Double-sided ¥ Double-sided
Print type:

O Typewriter [J OmsetPress [LaserPrint
Dmmkumm O oter:

Check each if included with document:

O DpoD Form O Funding Agent Form [J cover Page
O spine XPrinters Notes [0 Photo negatives
O Other:
Page Data:
Blank Pagesey sage wmbes:

Photographs/Tonal Material pypege sumben:

Other (note description/page number).
Description : Page Number

Imase ma®2 (1-a59) u vt vy 1TIE PacL & QY

(355 25%) JenncortRY] fB.MWRg Wl 5, TRGT TS

Scanning Agent Slgnoff / Ty
Date Received: I_il 95 Date Scanned: ¥ ©5¥/95 Date Retumned: i _?_ ASE

Scanning Agent Signature: W {}l\/ 4 szl Rev 9484 DSALCS Document Control Form catrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects

Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the MLI.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

