MIT/ICS/TR-253

AN INTEGRATED APPROACH TO FORMATTED
DOCUMENT PRODUCTION

Richard Ilson

Tius blank page was inserted to preserve pagination.

An Integrated Approach to

Formatted Document Production

by

Richard llson

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

An Integrated Approach to
Formatted Document Production

by
Richard llson

Submitted to the
Department of Electrical Engincering and Computer Science
on August 8, 1980 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

Recent advances in printing technology have reduced the cost of typeset quality
printers. Unfortunately, the production of attractively formatted documents re-
quires typographic skill and special training on computer-based text processing
systems. In response to this situation, we have developed the Etude text processing
system. The principal characteristics of Etude are that it embodies substantial
typographic expertise, and is based on concepts familiar to untrained users.
Furthermore, Etude provides a real-time display facility that allows the results of
editing and formatting operations to be secn immediately. Thus, Etude supports the
entire process of producing decorously formatted documents.

Thesis Supervisor: Michael Hammer
Associate Professor of Computer Science

Keywords: Document Processing
Office Automation
Text Editing
Text Formatting

© Massachusetts Institute of Technology 1980

This empty page was substituted for a
blank page in the original document.

Table of Contents |

Chapter One: The Etude Text Processing System

1.1 “Ease of Use” Problems and Etude’s Solutions
1.2 Software Architecture

1.3 An Overview of the Research Tasks

1.4 Thesis Organization

Chapter Two: Survey of Related Work

2.1 Emacs
2.1.1 Functionality
2.1.2 User Interface
2.2 DOC
2.3 Wang
2.4 Scribe
- 2.5 TEX
2.5.1 Overview
2.5.2 Functionality and Internals
2.5.3 User Interface
2.6 Atex
2.6.1 System Features
2.7 Bravo
2.8 Conclusions

Chapter Three: A Model of the Structure of Documents

3.1 The Representation of a Document’s Content

3.2 The Representation of the Internal Structure of a Document
3.3 The Representation of the Outward Appearance of a Document

3.3.1 Boxes and Glue .
3.3.2 The Outward Appearance Hierarchy
3.4 Representing Changes to the Document

Chapter Four: Formatting Environments

4.1 Distances

11
13
18

19

20
20
22
23
24
25
31
31
32
34
34

36
37

39
43

49
52
53

59

4.2 Environment Attributes and their Values = 62

4.3 Format Specifications and Inheritance 65
Chapter Five: Text Formatting and Display 69
5.1 The Dispatcher v | - 71
5.2 The Linewright 72
5.3 The Display System . 85
Chapter Six: Counters o ‘ 89
6.1 The Representation of Counters ' 9%
6.2 Keeping Counters Up-to-Date : 9%

6.3 Formatting and Displaying Counters ' 91
6.3.1 Creating the Value String of a Counter : 92

6.3.2 Instantiating the Counter in the Document’s QOutward Appear- 95

ance i

6.3.3 Displaying Counters . 97
Chapter Seven: Evaluation and Extensions | | 98
7.1 The Document Representation | 98
7.2 Formatting 101
7.3 An Integrated Office Workstation ’ 103

Table of Figures

Figure 3-1: A Box and its Assoctated Mcasurements

Figure 3-2: A Portion of the Content, Internal Stucture, and Outward
Appcarance of « Typical Document

Iigure 5-1: An Example of Setting Glue in a Line

49
54

80

This empty page was substituted for a
blank page in the original document.

kil Bho Ty

Chapter One

The Etude Text Processing System

Recent advances in printing technology have reduced the cost of typeset quality
printers. Unfortunately, the production of attractively formatted documents re-
quires typographic skill and special training on_computer-based text processing
systems. In response to this situation, we have developed the Etude text processing
system. The priﬁcipal characteristics of Etude are that.it embodies substantial
typographic expertise, and is based on concepts familiar to untrained users.
Furthermore, Etude provides a real-time display facility. tirat allows the results of
editing and formatting operations to be seen immediately. Thus, Etude supports the -

entire process of producing decorously formatted documents.

An office is made up of persons with a variety of skills, many of whom are
involved in producing documents. Secretaries are responsible for typing and
changing documents according to the wishes of proféssfoh&ifs in the office. Compu-
ter-based text processing systems, known as “word processing systems,” assist the
secretary in these activities by making it easier to type a docyment initially, and
change. it as necessary. In order to use word processing systems, a secretary must
undergo a training period on the system, during; which time he cannot be fully
productive. The training process may be frequently repeated over time, because of
the rapid turnover in the clerical labor market. The professional in the office, who is
responsible for the content of documents, often cannot use a word processing system
because he cannot i.nvest the time to learn the system. The problem is compounded
by the fact that professionals, unlike secretaries, would be intermittent users of a text

processing system; a complex system, which requires steady and frequent use to

develop the expertise needed to use it effectively, is not of great value to the office
professional. Today, therefore, professionals rarely use word processing systems.
Because of an anticipated shortfall in the available population of office support staff,
and because of the benefits that derive from direct use of advanced office systems, it
is important that professionals be able to make effective direct use of automated
office tools. By being simple to learn and ecasy to use, Etude addresses the needs of

both office professionals and office support personnel.

By supporting the production of typeset quality documents, Etude goes beyond
being merely an easy to use word processing system. FEtude exploits the recent
advances in printing technology, such as “dry” photo-typesctters, and clectronic
printers, using either dot matrix, ink jet, or laser technology. Electronic printers are
characterized by their ability to print an unlimited vari-éty of shapes at arbitrary
positions on a page. The shapes printed are normally text characters in different
type styles and sizes, In this respect, electronic printers are as capable as typesetting
machines, although the output quality—in terms of resolution or sharpness—is
somewhat lower. In addition, the shapes might be as complex as a drawing,
logotype, or picture. Electronic printers are fast; the Xerox 9700 can print two pages
a second. [7}

Although typesetting improveé the appearance of a document, the advantage is
more than aesthetic: a typeset document is easier to read and understand. It also
requires less paper than its typewritten counterpart, thus reducing printing, copying,
and mailing costs. Because electronic printérs can print a (low resolution) typeset
page, they share all these advaniages of typesetting. Unfortunately, the advantages
offered by these printers are accompanied by some drawbacks; complicated format-
ting instructions and aesthetic considerations are required to produce a typeset
quality page. A system that allows a user without typographic skills to easily

produce decorously formatted documents would hasten the acceptance of electronic

printers in offices. Etude, with its emphasis on integrating a text formatting facility
into an easy to usc system, directly addresses the issues and problems raised by the

new printer technologies.

1.1 “Ease of Use’ Problems and Etude’s Solutions

In order to develop a system that is truly easy to use, it is first necessary to
understand and identify the factors that make some text processing systems difficult
to use. Onc problem is the low-level and detailed nature of the interface through
which an operator communicates with the system. In many systems, the user must
express himself in great detail, using terms that are unnatural to him and to his
application. 'This is particularly pronounced in the case of formatting systems,
which require the user to be ah amateur typographer in arder to produce a typeset
quality document. The operator must invest a substantial amount of time and effort
to manipulate the format commands of a dotumént’; the complexity of the interface
to the formatter raises the cost of producing'docu‘nients.' Also, the average office
worker does not usually possess the judgment and training needed to effectively use
the capabilities provided by electronic printers. Providing these operators with a
low-level command language with which to controt such devices is a prescription for

the production of ugly documents.

Both the editing and formatting functions of Etude allow a user to express himself
in terms that are natural to him and his task. -For editing, Etude has an “English-
like” command structure, in which familiar primitives are combmed to make
commands. A typical command has the form: action / (optional) modlf fer / object,
An actzon could be delete or copy; a modifier could be next or a number, like 3; and
an object could be word, line, or paragraph. Thus, typlcal commands arc: delete 3
words and copy next paragraph. The most common primitives are directly available

as special keys, and arce logically grouped together.

The typical user of Ftude does no direct formatting of his document, in the sense
of providing low-level commands to the system selecting type faces, the spacing that
is to be used, margins, and the like. Rather, the user merely identifies and names
the components of the document in terms o}f the famil"ian;;;lructures of conventional
office documents. For example, the operator might identify the document on which
he was working as a letter, indicating within it the return address, the address, the
salutation, the body, and so on; within the body, he would indicate the paragraphs
and any other constituent structures that he needs. Etude utilizes a data base of
formatting information to construct formatted documents in keeping with the user’s
specifications. Substantial formatting expertise is embedded in this data base, which
can be modified or extended as needed, to conform with the requirements of

individual offices and the people who work in them.

A second major problem is the delayed feedback loop implicit in contemporary
“batch™ formatting systems. In these systen{js; the operator inserts formatting
commands in with the text of his document; aﬁer he conclAudes editing this text, he
reprocesses it with a formatting system, and 'thben prints the result. This delay
considerably encumbers the process of constructing a document with a desired
appearance. Also of major importance is what we céll the “anxiety factor.”
Conventional computer-based systems of many kinds do not give the operator a
feeling of security and control. Often a long time must elapse before the operator is
sufficiently expert with the system to feel truly comfortable with it. Until then, the
user feels as though he is walking a tightrope while wearing a blindfold. Because of
the often obscure nature of the interface with which he is presented, he cannot fully
anticipate the consequences of the actions that he performs. This leads to feclings of
tension and uncertainty. Specifically, the user develops a fear of committing an
unrecoverable error, and thereby becomes overly timid and cautious in his dealings

with the system.-

Etude responds immediately to commands issued by its user. Display-based
word processing systems:achicve this goal by showing the user the results of his
commands right away on the Screen, making these word processing systems
significantly easier to use than their non-display predecessors. Because Ftude
integrates editing and formatting into a sing]é system—unlike word processing
systems—it shows both the content and appearance of a document on its display.
The operator sees and manipulates a fully formatted version of the document, one
that represents a final image of what the document would-look like if it was printed.
This includes multiple type faces and sizes, variable leading (inter-line space), a
variety of. page layouts, and other capabilities typically associated with typeset
documents. The purpose of providing this mteractivé, “real-time” formatting
facility is to reduce the feedback loop, so that an operator épecifying the appearance
of his document will not have to wait until the output is produced by a printing
device to determine if its appearance is suitable; he.can see’it right on his screen. If
he is in the midst of an operation he does not wish to complete, the cancel key may
be struck. An undo key is provided to enable the operator to roll back actions
already completed, whenever an action yields an undesirable result. These facilities
provide an operator with a secure feeling, encouraging experimentation and an

incremental learning process.

A third significant problem is that even if a system is easy to use, it is often very
difficult to learn. The learning process is frequently non-incremental: in order to
perform any significant work, the operator muét learxi an extensive body of
commands and features. Usually, it is not possible for the operator to develop a
simplified model of the operation of the system, one which thilﬁzes a smaller set of
features. Instead, a full conceptualization and understanding of the system’s

capabilities is required, even to employ just a rudimentary set of commands.

10

e e et g

Moreover, the transition from novice to experienced user is not a smooth one in
most contemporary systems. On one hand a systcm that makes extenswe use of
prompting, menus, and other such devices i inor der to snnphfy the use ofthe 5ystem
for new users is likely to be extremely cumbelsomc for lhe same user once he has
developed some familiarity with it, On the othu hand itis dlﬁn.ult for someone to
become an exput on a system that is tailored to exper lencud users. ln short theu, is

often a conflict belwun ease of Ieal ning and ease of use.

The user interface of the Etude system addresses this issue. Etude’s working
environment allows the user to control the amount of support he is given. Help
inforimation and menus are avadablc should the operator need them; furthermore,
they are optional, so an experienced user is not burdened with-them. The operator
can push the help key after any other key, and receive an -explanation of the first
key's function. He may also touch the help key' whenever he is confused of
uncertain; Etude then explains the current situation to-the wser, telling him how he
got into the situation and what he may do next. When:this explanatory material is
displayed on the screen, the user’s work dees. nat disappear completely, so he will
not fear he has "lost” anything. At any time, the opesator can bit menn to see a list
of the alternatives available to him at that time. Like:help, these menus are context-
dependent, showing only currently meaningful - alternatives, but they lack the

explanatory text that comes with help.

1.2 Softwa re Archltectu re

A pamal 1mplemcntatxon of Etude whnch focused on explormg some of the

L Bude” was chosen as the name for our first implementation cffort because it was our practice
exercise in building a rather complex text proccssing; systemi Fiude & an Easy To Use Display
Editor, for thosc who like acronyms.

11

more difficult implementation issues, was done using the CLU programming
language [11], and forms the basis of the discussions in the remainder of this thesis.
In this section we present a brief description of the software architecture of the

entire Etude system.

The implementation of the Etude system is divided into two parts: the user
interface and the editor / formatter / display. The user interface is responsible for
parsing the keystrokes entered by the user, imerpréting them, and then invoking the
appropriate internal operations to realize the desired function. Most of the time a
function of the editor, which is responsible for making changes to the document, is
invoked. If the user’'s command does not involve changing the document, the user
interface handles the function directly: this is the true for help, menu, and cancel
functions. After the appropriate internal operations have been performed, the user
interface updates the session state, which is a record of what actions have been
performed, mainly for the purpose of implementing help and undo. The formatter,
which reformats the regions in the document that have been changed (and appear
on the screen), is then invoked. Finally, the display system is invoked, and it
updates the screen image to reflect any changes made to the document. In the

remainder of this section, we walk through several simple scenarios.

667 9

If the user types a text character, such as “i,” when he is not in the midst of

another command, the character is simply inserted into the document. The user

342
1

interface instructs the editor to insert the character “i” into the document, and then

updates the session state to indicate that the character was inserted. The user

[134 L}
1

interface then invokes the formatter, which reformats at least the line the was
inserted into, and possibly more (if the line “overflowed”). Then the user interface
asks the display system to update the screen. The display system redisplays at least

the line containing the new “i”; again, more lines may be redisplayed if the insertion

of the “i” causes changes on other lines in the document. After all these operations

12

are completed, the user interface waits for more keystrokes from the user.

All changes to the document follow this same basic pattern. A more complicated
command, such as delete 3 lines, requires additional work from the user interface to
parse the command, to invoke more gencral operations of the editor, and to record
the operation in the session state. The operations of the formatter and display
system remain essentially the same, although larger regions of text may need to be

reformatted and redisplayed.

The user interface handles a help request by examining the session state, and
constructing a temporary document containing the text of the help information. 1t
allocates an area on the screen to display the text of the help information, then calls
the formatter and display system on this temporary document, which results in the

appcarance of the help information on the screen.

1.3 An Overview of the Research Tasks

In this section, we present an overview of the work described in detail in the
remainder of this thesis. This overview serves to motivate the remaining chapters,
and gives the reader a context for understanding the work, as each component of the

system is presented individually.

The focus of the work described in this thesis is the formatting of the text of
documents, and the integrelatidnslﬂp between the formatting, editing, and display of
a document. The design of the text formatter reflects the principal goal of the
overall Etude system: to have it be simple to learn and easy to use. To achieve this
goal, the formatter accepts high level formatting commands, and is interactive:

1. The user defines the format of his document by specifying the type of

the document (e.g., “report” or “letter”) and labeling portions of text
(e.g., “quotation” or “chapter title”), rather than by specifying low-level -

13

typographic commands. The formatter must interpret these specifi-
cations, and format the text appropriately.

2. As the user is editing and formatting his document, the Etude system
continually displays a representation of how the document would look if
it was printed. This requires the formatter to perform “incremental
formatting,” i.e., to be able to quickly reformat only portions of the
document that both will be displayed on the screen and also need
reformatting. 4
This thesis presents a solution to the problem of how to build and structure a system

that mecets these requirements.

A major problem to be solved in implementing the editor/formatter is defining
the representation of the document. In addition to its content, a document in the
Etude system has two additional aspects: its internal structure and its outward
appearance; each of these aspects, described below, are included in the document
representation.

- The content of the document is a linear sequence of text characters; it is
set by the user as he creates and edits his document.

- The hierarchy that represents the internal structure of the document is
built by the user as he creates and edits the document. At the root of the
hierarchy is the document (e.g., report). Contained within are the
document components (e.g., chapter, section, paragraph). At the bottom
of the hierarchy are sentences and words.

- The hierarchy that represents the outward appearance of the document is
built by the text formatter. The root of this hicrarchy is the document,
which is divided into pages, then columns, then lines.

Both the internal structure and outward appearance of a document are modeled
by hierarchies. Each aspect forms a strict hierarchy taken by itself, but the two
cannot be combined. For example, a paragraph (internal structure) might be

completely contained within a page (outward appearance); a paragraph might

14

extend over two pages, with neither one comtaining the other; or a paragraph could

extend over several pages, so that the paragraph would completely contain a page.

In wsing Etude, the user builds the internal structure of his document by
identifying all the components, such as cllépmrs,_paragrap_bs, quomtions, numbered
lists, and italicized phrases. Most of the components of the. document’s internal
structure have format specifications associated with them. Each such specification
includes a number of format parameters, such as the type face, leading, and margins,

that arc appropriate for the document component.

However, the format parameters may only partially specify the formatting
environment of a piece of text. The formatting environment is a total specification of
all the typographic parameters in force at any point in the document. For those
format specifications that do not completely specify the formatting environment, the
desired value for the unspecified parameters is derived from other format specifi-
cations, For example, the size of type normally used for a “quotation” is slightly
smaller than the type used for the body of the document; a format specification for
the size of type for a quotation would specify the value refative to the type size of the
containing text, rather than specifying an absolute type size. Thus, the actual size of
type for a quotation would be derived from other components that contained the
quotation. | | o

The components of the outward appearance hierérchy ére assembled‘ automat-
ically by the system, based on the format specifications associated with the
document class and the internal structure componenxs; The units that are assembled
are called boxes. Representing the outward appearance of a document in terms of
boxes was first done by Knuth in his text formatter TEX. Knuth describes how he
assembles boxes to produce a formatted document: |

The main idea of TEX is to construct what [call boxes. A character of type by itself is
a box, as is a solid black rectangle; and we use such “atoms” to construct more complex

15

o SRR TN e

boxes analogous to “molccules,” by forming horizontal or verticat lists of boxes. The
final pages of text arc boxes made out of lists of boxes made out of lists of boxes, and so
on down to the individual characters and black rectangles, which are not decomposed
further. . . The individual boxes of a horizontal list or a vertical list arc scparated by a-
special kind of clastic mortar that 1 call “glue.” [10]

These concepts are modified and extended for the Etude system. For example,
some boxes will need to contain special information so that they may be incremen-

tally formatted and redisplayed.

As the user of Etude creates and edits his document, he modifies its content and
the internal structure. The representation chosen for. these two aspects must provrde
operations to insert and delete characters from the content and to create and

remove components of the internal structure

As the user changes the document, the display must reﬂcctthe changes. The
display system is responsible for keeping the screen’s display consistent with the
document as it is being edited. When redisplay is required, the user interface
invokes the formatter on the text that will appear on the screen, then the newly
formatted text is displayed. In order for the document to be reformatted and the
screen to be redisplayed immediately after each change to: the document, the
amount of work (computation) done for each of these operanens must be mini-.
mized. RN

. When the document is changed, the nature of the change is analyzed with respect
to what portion of the text needs reformatting, and the appro;)nate portion df text is
marked unformatted. -‘For example, if a charaeter is inserted.into the document, the
line that the character was inserted in lS no longEr fm'matted The formatter
examines the poruen of text it was asked to fcrmat—ggnerally the text that will
appear on the screen—and formats only the text:in the:region that is unformatted.
As the formatting is done, the formatter marks the ,portiqns ;of text that have been

16

changed, to indicate to the display system what text needs to be redisplayed. The

display system then examines the text, and displays all the text that was marked as

changed.

The following

list summarizes the capabilities of the formatter; all of the

following are attributes of the formatting enviroament.

Left and Right Mafgins

Line Layout

Justification

Type Face
Leading
Indention

Break

Above and Below

Numbering

The left and right margins of the text to be formatted.

Specifies how the formatter should format individual lines. 1t
may flush the text against the left or right margin, or center the
text between the margins.

If justification is on, the formatter produces justified (straight)
margins. If it is off, one margin (usually the right margin) is
ragged.

Specifies the type face the text should appear in.
The inter-line spacing of the lines of text.

The amount of space that the first line of the document compo-
nent should be indented. A positive number results in a
paragraph-style indention, while a negative number results in a
hanging indention,

How the first and last lines of the document component should
be handled. The document component may require a line break
both before and after it, only before, only after, or neither.

The vertical space preceding the first line, or followmg the last
line; of the document component. ~ o

A document component, such as a section, may be numbered. If
it is numbered, the location and style (for example, arabic or
roman) of the number are specified. (When a numbered docu-
ment component is inserted‘or deleted, all document components
whose numbers are changed are automatically updated.)

In order to format a region of text, the’fonﬁatting environment for the text must

17

be derived. The internal structure hierarchy is used to obtain this formatting ‘
environment. This is done by retrieving the format specifications associated with all
the document components that contain the text to be formatted, and using an
inheritance scheme to derive the particular local formatting environment from this

set of specifications.

1.4 Thesis Organization

In Chapter 2, we present a survey of existing text processing systems, and describe
how they relate to the Etude system. Chapter 3 presents our model of the structure
of documents, as used by the Ftude system. It addresses the issue of integrating the
content, internal structure, and outward appearance of a document into a single,
easily modifiable structure. Chapter 4 describes the attributes that govern the way
Etude formats a document, and also explains how Etude determines the formatting
environment for a region of text in the document. In Chapter 5, we tell how the text
formatting and display systems work, emphasizing thcif incremental reformatting
and redisplay capabilities. In Chapter 6 the automatic numbering system of Etude is
described. Lastly, in} wChapter 7, we evaluate the implementation of Etude, and

suggest avenues for improvement and extension.

18

Chapter Two

Survey of Related Work

In this chapter we give an account of several sophisticated text processing systems
in use today. Computer-based text editing and formatting systems have been used
at M.LT. for years, and we describe some of these S'ystem‘sf;’/lt is 'irhpoftant' to note
that these systems were generally designed to be used by computer professionals,
rather than by office personnel, who will be using Etude. Thus, it is also necessary
to examine commercial text processing systems used in. offices (“word processing

systems™). We also look at composing systems used by typographers.

Generally, the designers of advanced text processing systems have either concen-
trated on providing a high degree of functionality in’ their Systems, or focused on
making their system easy to use. For each system described, we focus on the aspect
of the system—either the user interface or th¢ functionality—that is novel. The
remainder of this chapter contains descriptions of the following systems:

Emacs A display editor with a high degree of functidnality. v

Doc A display editor with a good user interface.

Wang A commercial word processing system that is easy to learn.

Scribe A text formatter that is easy to learn and use.

TEX A text formatter that produces high typographic quality documents.
Atex A commercial text processing system for typeset documents.

Bravo An integrated, interactive display text editor and formatter.

19

2.1 Emacs

Emacs is a real-time editor primarily intended for display terminals. [23] Emacs is
“extensible,” which means that users can add' new functions to the editor. Unfor-
tunately, the language that extensions are written in is not easy to learn, so that only
relatively sophisticated users write extensions. Fortunately, Emacs was developed in
an environment where there are many sophisticated users, and Emacs now contains
a large number of useful functions. Emacs has commands that are specifically for

editing of computer programs; these commands,will not be detailed here.

2.1.1 Functionality

Basic cursor positioning commands allow moving the cursor: forward or back-
ward over characters, words or lines; to the heginning or end of lines, sentences,

paragraphs, pages, or the whole document; to the next or previous screen of text.

To insert text, the characters are simply typed in. A “quote character” allows
insertion of text that might otherwise be: recognized as a command to Emacs.
Commands that are used frequently are invoked by typing one or two characters,

preceded by:one of several command keys.

A “region” of text is the set of characters between a “mark” and the current
cursor position. Marks are saved on a stack. Operations. involving masks include:
mark beginning or end of buffer; mark current position; pop mark, and optionally.
move cursor there; exchange cursor and mark; mark word, paragraph, or page.
There is no indication on the screen of where the marks are.

There are commands to delete or kill text. “Killed” text is saved, and may later
be unkilled (i.e., brought back into the document). Available operations are: delete
forward or backward characters; kill words, lines, or region; insert (unkill) the nth

most recent string killed; “kill” region without actually deleting it—used in

20

anticipation of unkilling it later, to copy the text.

Commands are implemented to exchange the pair of characters or words before
the cursor. Also, all the characters in a word or region may be made upperease or

lowercase, or just the first character of each word may be capitalized.

Fmacs uscs the idea of an “incremental search,” in either the forward or reverse
directions. As characters are typed in, the accumulated string is scarched for, and
the cursor is positioned at the point in the buffer that matches the string typed $0
far. One may delete a character in the search string, and the cursor is repositioned
appropriately. It is easy to repeat the search with the same string in either the

forward or reverse directions.

To search and replace strings within the buffer, a general “Query Replace”
function may be invoked; the user would then be asked to confirm each replace-

ment. The user confirmation may be disabled.

Emacs allows the user to create named buffers; eich buffer may contain a
different document. The commands that operate on buffers are: list buffers, which
will list the hame, document file, and mode (sce below) of all the buffers; append
region to specified buffer; select or create a buffer, given its name; kill specified
buffer; list all the buffers, and ask if each should be killed.

Emacs supports two windows; while working within a window, any buffer may be
selected. Typeout inside one window will stay there until the user edits in that
window—thus, information (another buffer’s contents or the resuit of a “help”
request) may be left on the screen while editing in another window. Commands in
Emacs that manipulate windows are: display one window; display two windows;
switch to other window (if both windows are showing, pointer merely moves to
other window—otherwise, the other window is displayed); grow or shrink current

window, changing the number of lines it uses.

21

U e

Associated with each buffer is a mode. One would normally specify “Text Mode™
to edit English text. “Auto Fill Mode” will automatically break lines of text on
input at any desired column (“w}ord wrap™). “Word Abbrev@ation Mode™ allows the
user to abbreviate text with a single “word,” and have Emacs expand the abbrevia-
tion automatically as soon as the abbreviation. has been typed in, There are also

modes for editing tables and indented text.

Numerical arguments may precede-most of the above commands. The argument

is usually interpreted as a repetition-count.

Emacs is integrated with some other systems on the computer. While in Emacs,
one can edit a directory, use a mail subsystem, or access a general information

program,

Although Emacs does not format text, several Emacs commands generate control

sequences various text formatting programs.

2.1.2 User Interface

Emacs can be used from a standard CRT computer ;enningl with a standard
keyboard, although it is more easily used with a special keyboard (one with a
“Meta” key, which works like an additional “Control” key). Since all text characters
are self-inserting, Emacs uses the control :key and the escape (or meta) key to
distinguish commands from text. Thus, the user is.required to remember and repeat
control and escape se'que‘ncesja order to perform basic manipulations.

The less frequently invoked commands that do ot have their own short key
sequence, or those that require St'ring"g'rvgument‘s’,j"ﬁré' Inivoked by using the
“minibuffer.” Use of the minibuffer is requested, and a smali window appears at the
top of the screen. In this window, one may type and edit commands, using the

command’s long name. When done, the appropriate escape sequence isvtyped,' and

773

the command is then executed. Any number of commands. may be eniered in the

minibuffer.

Emacs has a number of self-documentation fucilities. One may list all commands;
however, this list would probably be 0o long to be of much use. Instead, one may
list only a subset of these commands by specifying a string of characters. Only those
commands for which a partial match exists will be fisted. For example, specifying
the character string “paragraph” would list all the commands for manipulating
paragraphs. When more complete information is desired, one may request a full -

description of any command.

2.2D0C
DOC is a text editor developed by V. R. Pratt'at M.I.T. [17]

The main difference between DOC and EMACS is the way in which each achieves
coverage of the large range of operations it offers. The EMACS philosophy is to offer a
very large set of one-character commands to cover what is wanted most frequently, with
two-character commands being reserved for less frequently uscd ficllitics. Such an
approach . . . has the drawback of burdening the user with a large and not particularly
mnemonic vocabulary. In contiast, the DOC philosophy is to have a smal and highly
mncmonic vocabulary, and to achicve its large range of commands by permitting the
basic commands to be used in combination,

DOC has a command vocabulary of about 30 commands, each associated with an
English word. The commands are “Faglish-like” not enly from the standpoint of
being mnemonic: they are also used:-in-the same way English words are used..
Specifically, they are combined, acpqding togrammat:calrules, to fo;m‘ phrases.

.....

The resultant phrase is a command to DOC. Thus, one types in edit actions in the

yyyyy

same way one would normally “say” them; for example, _“baclg 3 WOrds,” or “erase 2

lines.”

AL i

There are five classes of commands: nouns, verbs, adjectives, imperatives, and ‘
golfball (motion). The nouns, verbs, and adjectives are used in conjunction with one
another. The nouns (or objects) include: character, word, line, paragraph, file, text
(used to secarch for a text string), and object (the text the cursor was just moved
over). The verbs are: crase, dump (for making a copy of something to be moved
clsewhere), underline, justify, and case-lower/upper (for changing case). The
following adjectives modify the noun they are used with. in any command: any

number (1, 2, 3, etc.), back, right-end-of, and whole.

The imperatives and golfball commands are generally used by themselves. The
imperatives are undo (for undoing the last operation), get (for getting back what has
been “dumped”), make (a search and replace operation), and visit (for file
manipulations). The golfball commands allow the user to move the cursor left,

right, up, down, and for retracing the history of the cursor’s recent movement.

2.3 Wang

The Wang Word Processing System is one of the more successful commercial
word processing systems. [22] One of its main advantagé; is that it is quite easy to
learn to use. It accomplishes this through the use of “menus,” which list the various
operations the user may perform. Menus are hierarchically structured into groups
of related functions. There is a basic menu, which appears when the system starts
up. It lets the user create, edit, or print a document,: or choose another function.
These other functions include: special print functions, document index, document
filing, telecommunications, and others. Each of these functions have their own

menus associated with them.

In the normal mode of operation, as a character is typed, it replaces the character

at the current cursor position. This differs from the normal operating mode of the

24

computer-based editors, such as Emacs and Doc, However, both Emacs and Doc
offer this mode of operation as an option. In the Wang system, one enters “insert

mode™ when characters are to be added to the text.

When insert mode is selected, the text from the cursor to the end of the screen is
removed from the screen. The operator types the material to be inscrted (which is
highlighted), then touches “execute.” The system then automatically realigns the
rest of the document. With this scheme, all text is effectively inserted at the end of
the screen, so no problems with reformatting the scréen on text input are encoun-

tered.

Whenever the operator initiates an action where the system requires additional
input (text or commands), a highlighted prompt appears in the upper right hand
corner of the screen, notifying the operator what the system expects next. Novice or
occasional users find this useful, and seasoned operators can easily ignore the

prompt.

There is a large “cancel” key, far away from the main keyboard, which allows the
operator to cancel a command at any time, and a large “execute” key, which is used

to confirm some commands.

2.4 Scribe

Scribe is a “batch” text formatter, written by Brian Reid at Carnegie-Mellon
University. [18] - |
The guiding principle that shaped every aspect of the. design of Scribe is that most
people who produce documents don’t know or carc about the details of the formatting

involved. To this end, those details are determined by information in Scribe's database
and not by commands from the user. ..

The Scribe system was designed to make document production easy for the non-expert,

25

and to allow him to make small changes to the formats and styles without neceding to
learn much about how the program works, Scribe is not a programming language.

Scribe does not have “commands” in the usual sense of the word: its commands are
not procedural. . .

Scribe was initially designed to format the types of documents produced at a
university, but is not limited to university documents. Scribe takes as input a file of
text, with embedded format commands, and can produce output for a number of
different devices. Scribe will do the formatting differently:for the diffcrent devices,
producing the best representation of the “final” copy that'it can for any particular

device.

Given that Scribe is not interactive, it does try to be flexible. For example, when
delimiters are called for in a command, it will- accept anything a user might imagine
to be-a delimiter, such as brackets, parentheses, or quote narks. The scope of a
command may be specified by the delimiters above, or by “begin command™ and

“end command,” if more appropriate.

The commands of Scribe rﬁay be grouped in a hierarchical fashion. At the
highest level are those commands that specify the document type and its style.
Currently, Scribe knows about: reports; which have a title page, numbered chapters,
sections, subsections, and a table of contents; manuals, which are like reports with
an index; articles, which are like reports withoigt c'h'apters;,letters, with or without a
Ictterhead; posters, a single-page poster or 4,announccment’; and slidesn for ah
overhead projector, where font and line spacing have been chosen to maximize
readability. Within these classifications, one can request dll‘ferent styles. A
dlfferent style manual might use a dlffc.rent set of type fonts, or mlg,ht have dlfTerent
margins and line spacing. Note that at this level the user does not specify what font

or line spacing he wants, but just asks for “Manual, Form 2.” .

At a level down from the document type are commands to specify titles, headings,

26

and scctions. These commands are in two groups: one for a document without a ‘
table of contents, and another set for documents with a table of contents. The
heading commands for a document lacking a tablé of contents are different, because
there is no need for Scribe to give the heading a number or assemble the table of
contents. These commands are: majorheading, to get large letters, centered,
heading, to get medium-sized letters, centered; and subheading, to get normal-size
boldface letters, flush to the left margin. In document types. with a table of contents,
Scribe gives the following sectioning commands: chapter, section, subsection, and

paragraph; appendix and appendixscction; unnumbered; and prefacesection.

Scribe can gencrate page headings and footings. Each is divided in three parts:
left, right, and center. Different headers and footers may be specified for the even
and odd pages. Normally, a command to change the header or footer will take
effect on the following page; this may be changed by requesting the header or footer

of the current page to be changed.

Scribe has commands for generating a title page of a university report or manual.
These are: titlepage; titlebox, which positions the text in a box that will be
reproduced on the cover of the report; copyrightnotice; and researchcredit, for

explaining where one gets one’s money.

Down one more level, beneath sectioning commands, are the commands that
allow one to insert various things in the middle of running text. These “insert”
commands include: quotation, a text quotatiovn (e;)‘{'cerpt)'; verse, which will start a
new line for each linc in the verse (and will format appropriately if lrines‘ are too
long); example, an example of computer type-in or type-out, which will appear in a
type face that is designed to look like confputer output; display, which is like
example, except the normal body type face is Uééd; center, where each line is
centered; verbatim, where characters are copied exactly, without formatting (a

fixed-width font is used); format, like verbatim, except a variable width font is used,

27

e EER L

and normally the user would use special tabbing and formatting commands
(described later); itemize, which indents paragraphs and places a tick mark before
each; cnumerate, which indents paragraphs and numbers them; description, which
places a keyword or phrase flush left, then indents the remaining paragraph;
equation, which is like display, except an cquation number is generated and placed
flush right; and theorem, which is like quotation, except it heads. the text with

“Theorem,” followed by the theorem number.

Another type of insert is a “figure.” Figures have three parts: a figure body, a
caption, and a figure number. Figure bodies may be produced in any way. One
may use the standard Scribe insert commands, such as format, verbatim, or example.
Other ways are: blankspace, which will leave a blank spacé of a sbéciﬁed size (Scribe
understands various units of length); picture, which will put a picturc in the
document if there is an image picture file; fullpageﬁgure,. for a figure that requires
an entire page; and blankpage, to generate a page with no text, only the header and
footer.

Scribe provides several ways to get text or numbers formatted into columns, For
simple formats and small tables, it is suggested that one 'usé ‘the verbatim command
(which will output exactly what was typed in, in a fixed width font). = Using
verbatim, one would format “by. hand" For more complex formatting, Scribe has a
tab stop mechanism. Commands include: tabclear, 10 clear all tabs; tabs, to set tabs
at specified horizontal positions; tabdivide, which will divide the formatting area
into a particular number of columns; and thé command “\”, which tabs to the next
tab stop. Other capabilities are: overprinting; a “return marker,” to mark a
horizontal position on a page; and the ability to center or flush right text with

respect to tabs stops or the right margin.

Lastly, on this level, are commands to control word, line, and page breaks. Scribe

will break lines between words, at blanks. One may make a blank significant, so that

28

Scribe will not break at that blank, by using a command. Another command will
make all blanks in a delimited region significant. There is a command to allow
Scribe to break where it normally 'would not, and to force a line break at a particp_lar
place. Scribe does not do automatic hyphenation, nor can it ask the user to

hyphenate a word when it would be desirable.

If Scribe is processing an insert when a page fills up, it will just break the insert,
and continue it on the following page. To prevent this, one may specify “float”
when defining the start of an insert. In th‘is case, if the insert would not fit on the
current page, the text will continue witliout interruption, and the insert will appear
at the top of the next page. To require that a new page be started if an insert doesn’t
fit on the current page, “group” may be specified at the beginning of the insert.
Inside a grouped insert, a *hinge” command will allow the insert to be broken at

that point.

At the lowest level are the commands to change fonts, get special characters, and
generally change the “style” of a document. 1n a preface to this section Reid states:
“Although Scribe’s basic approach to document production is to provide its users
with a large menu of document types and discourage them from tinkering with

details, we recognize that the urge to tinker is incurable.”

Within the current font, there are commands for: italics; underline non-biank
characters; underline all characters; underline alpha-numerics, but no punctuation
or spaces; boldface; roman (the normal type face); typewriter font; super- and sub-
scripting; small capitals; greek characters; overbar; and bold italics. If one wants a
different font (meaning a set of 10 to 15 type faces and sizes), the “font” command is

used.

The “style” command changes the setting of certain of Scribe’s internal param-

eters, The database entry for each document type provides values for all these

29

parameters; thus, the style command would be used to override some of these ‘
values. The style parameters are: indentation, to set the amount of indention of the
first line of a paragraph; spacing, to sct inter-line spacing; spread, to coatrol (he
spacing between paragraphs; justification, either on or o_ff; lefimargin, rightmargin,
topmargin, and botlommargin, to set margin sizcs; pabcrlength and pi_xperwidth;

and footnotes, to control the way footnotes are numbered.

Scribe does automatic bookkeeping of cross references of various kinds. Scribe
lets the user creatg a label to mark a point in the text. The section number of the
place may be referenced with the “ref” command, while the page number may be
refercnced with the “pageref” command. The “tag” command lets one reference
numbers of things Scribe has automatically numbered. For example, cA>nve may tag
an entry in an “enumerated” list, or a figure number. The “ref’ command could

then be used to reference the list or figure number.

The “footnote”™ command will automatically generate a footnote number and
place the footnote at the bottom of the pqgg.z The “index” command will place a

word in the index that Scribe will generate automatically.

Scribe has sophisticated facilities for decaling with bibliographies and citations.
A bibliography is a labeled list of books, articles, papers, and the like. A citation is
a marker in the text that refers to an entry in the bibliography. . . . - The Scribe
bibliography facility does three things: 1) Selects from a database the bibliographic
entries that are actually cited; 2) Formats them into a bibliography and assigns a
number or label to each; and 3) causes the correct. numbers to be placed in the
citations in the text.” Scribe will format both the bi:l;)li_ggr;aphy; and citations in the

2Rcid states: “In providing such a simple footnote mechanism, we feel a responsibility to advise
you to usc it sparingly. Footnotes scriously interfere with the rcadability of a paragraph, and their
excessive use will distract the rcader rather than help him.” Even in a rclatively constrained
formatting system, Reid recognizes there arc still ways people can produce “bad” documents,

30

“proper’ way, given the name of the journal,

Scribe has facilities to aid production of large documents.- The large-document
facility includes:
An include command, thdt lets you compose a largc document from any numbcr of
separate files, cach one of which is of manageable size.

A part command that k:t\' you process a component file independently of the whole
document, yet still have page numbers, section numbers, chapter numbers, and cross
references come out right. '

A use command o request that Scribe use some private or custom cdition of its
database.

An outline of your document, automatically generated by Scribe in a separate file,
showing the scctioning structure of your document and its cross- rcfcrcncc points, to help
you manage its organization.

A word counter and vocabulary analyzer.

Also, one may use the “value” command to access internal strings. For example,
onc may access the date (in a choice of styles), month, year, weekday, time, name of

the manuscript, and title of the current section.

2.5TEX

2.5.1 Overview

Knuth's documentation on his system for technical text, “TEX,” explains both
the typographic and programming issues related to text formatting. [10] Although a
major feature of the system is its ability to haridle the formatting of mathematical
text, it contains a complete discussion of its normal text formatting procedure.
Unlike other formatters, TEX’s objective is to produce documents “whose typo-
graphic quality is comparable to that of the world’s finest printers.” Note that TEX

31

is not an integrated document production system; its input is a prepared file

containing text, formulas, and appropriate formatting commands.

TEX handles the extended character set of a typical type fpnt (for example,
opening and closing quoté marks, different types of dashes ahd‘spaces). It also
automatically recognizes places to insert ligatures and do vk;_crning, advanced typo-
graphic features not found in most other computer text formattihg systems. TEX
automatically positions many different types of accent marks correctly over (or

under) characters.

TEX commands are bart of the text file, preceded by an “escape character.” The
system has commands to specify type fonts and sizes. One ‘may ‘;grOle” commands,
so that, for example a font cbuld be changed for j_ﬁst a phi‘ase within a grdup,
without affecting the font specification outsidé the groub. Groups may be nested
arbitrarily deep; this allows rather complexn fo_rmz}tting ih_st‘ninctions to be built up.
TEX allows definitions (macfos) with arguments to be .declared, so that frequently

used control sequences may be referred to easily.

2.5.2 Functionality and Internals

TEX makes up pages by pasting tpgether poxes with glue. Boxes are rectangular
objects with three associated measurements: height, wiclth, anq depth. These are
measured with respect to a base line, and a rqférerzce point at the left of the base line.
A single character .of a font is a (simple) box. While fonning lines, TEX will
normally line up the base lines of the boxes; however, it' ¢an move the reference
points up or down to do super- or subscripting. There are also black boxes,
completely filled with ink, for making horizontal or vertical rules. Everything on a

page is made up of these boxes, pasted together.

To paste these boxes together, TEX uses glue. Glue has three attributes: its

32

natural space, its ability to strerch, and its ability to shrink. When making lasger '
boxes, such as lines or pages, TEX will shrink or stretch each picce of glue in
proportion to its stated shrinkability or stretchability. ~ After punctuation, the
stretchability of the glue increases (and the shrinkabitity decreases), to allow for
more space after punéumtion. By making the stretchability of the glue at one or
both ends of a line “infinite,” TEX can produce lines that are flush left, flush right,

or centered.

One of the novel features of TEX is the way it breaks paragraphs into lines. TEX
waits until it reaches the end of a paragraph, and then determines the best way to
break the paragraph into lines. Knuth claims that this approach to the problem
“requircs only a little more computation than the traditional methods, and leads to
significantly fewer cases when words need to be hyphenated.” TEX combines this
paragraph breakup scheme with an extrémely cautious approach to hyphenation.
Onc can specify that TEX should “try harder” if the initial result is unsatisfactory;
also, one can indicate that it is undesirable to break in a particular place. Knuth

details his paragraph breakup and hyphenation algorithms in the TEX manual.

TEX groups things into pages in much the same way as it makes up paragraphs,
except for the lookahead feature. Each page bréak is made once and for all when
the “best” place is found. Again, Knuth details his page breakup algorithm,
i‘ncluding: calculation of inter-line glue, ihserting iltustrations, and final page

makeup (for example, appending page numbers).

In addition to features previously mentioned, TEX has facilities to: insert
“leaders” (either horizontal or vertical); set, increment, and insert counters; set up
hanging indents; process “conditional text”; set up an “output” routine, specifying
what the final page format should be.

2.5.3 User interface

As currently implemented, TEX is a computer program running on a general
purpose time-shared system. Although onc may input directly to the system,
generally one passes to TEX a file containing text interspersed with formatting

commands.

A user may tailor TEX to his desire by redefining recognized control characters
and by adding macro definitions. The basic format contains mostly definitions of
mathematical functions, but there are some general functions defined that allow a

user to do most of the basic formatting functions.

TEX accepts dimension specifications using various units of measure, including
points, picas, inches, and metric units. Thus, both novices and experienced printers

alike may feel comfortable using TEX.

2.6 Atex

The Atex system is a complete video terminal-oriented composition and editing
system. [21] The system comes in two varieties: a commercial version and a
_newspapet version. This section will 'b'rie'ﬂy list novel or interesting aspects of the

commercial system.

2.6. 1‘Szystem Features

Atex’ s video termmal is just an extensnon of the host computer Spec1ﬁcally, the
screen 1mage is taken directly from the mam memory of the host The screen
displays 25 lines of 80 characters. There are normally 22]mes of text W1th 3 lmes of
| job header. The user may move his cursor between the two areas, and the system

will remember the previous cursor position in the other area,

34

Characters may be displayed normal or bold, with reverse video and/or under-
lined. Charucters are stored using a full sixteen bit word, so that the display mode
information is part of the character. “Format files” define the -typographic
appearance of a job. Each type face deﬁncd in the format file would probably be
displayed in a different display mode. Thus, there are no type face change
commands imbedded in the text, and one can change the type face associated with

any particular display mode by just changing the definition in the format file.

The terminal keyboard has a lot of keys: a main keyboard (a duplicate of the IBM
sclectric keyboard with “a beautiful typing touch™); cursor control keys; a bank of
editing keys; a bank for typesetting commands; a bank for the various display

modes and system commands; and a row of buffer keys.

All operations on the system can be performed interactively, up until the final
outputting to a CRT or phototypesetter. Batch processing is also supported.

The Atex system supports basic display editing functions, You may “define” a
text element, then “act” on it. You may “save” the defined text, and that text is then

associated with one of the sixteen buffer keys. -

Atex uses a total dictionary approach}v for hyphenation. Each word to be
hyphenated is looked up in a 110,000 word dictionary. Any word not in the

dictionary is hyphenated by an algorithm, and is also flagged as such.

Formatting features include: specification of minimum, maximum, and optimum
interword spacing; a hyphenation-justification program that is output device
independent; kerning, ligatures, and accents ’are supported; a program is available
for arranging tabular display on the | screen; éome .'mé_lthematics fonnatting

capability; a page-makeup program.

35

2.7 Bravo

Bravo is an interactive editor and formgtter designed by Butler Lampson and
Charles Simonyi at Xerox’s Palo Alto Research Center. [24] It runs on an Alto
computer system with a high-resolution CRT divided into a number of areas: a
major area where the text is displayed and edited; ‘a line containing the editor
“state” (last text inscrted, dcleted, searched for); an area containing the most recent

commands; and a small arca at the left of the screensscrolling through the document.

As text is entercd by the operator, it appears on the screen in the correct font.
Bravo can right-justify text as it is typed in. As thc‘ li.ne' fills up, the inter-word
spacing is decreased, uniil no more words can fit on the line. The word that
overflowed the line is moved to the next line and the inter-word spacing is expanded

to fill the line.

Etude makes use of a “mouse” to edit text. A mouse is small object with three
buttons attached to the keyboard by a thin wire ’(its tail). As the usef moves the
mouse in any direction on the desk, a cursor on the screen follows_the motion.. To
edit the text, the appropriate portion of text is delfmited, To refer t'oia character, the
mouse is moved so the cursor is positioned on the charactér, and a button on the
mouse is pushed. [fa word is to be delimited, another button is pushed. If an area
of text is to be defined, the mouse is moved to the final character of the area, while

another button is depressed.

Bravo has two modes: insert and alter. In insert-mode, characters appear on the
screen at the cursor position as-they are typed. In alier, mode, each alphabetic key
specifies a particular editing (or formatting) operation. There is an “undo”
operation, which feverses the effects of the most recent 'opervation.f Multiple

windows into the same document or different documents are supported by Bravo.

Formatting commands are specified in a manner similar to the cditing commands.

36

The area of text that is to have a special format is defined, and the formatting
information, such as type face, centering, leading, or margins, is entered. The text

then appears on the screen in the new format.

When one has finished editing and formatling the document, it is sent to the
appropriate hardcopy device. Unfortunately, what you see is not what you get,
because of the limited resolution of the Alto display, Bravo does not usually display
the columns of text as they it will look when output. In particular, the line breaks
displayed will differ from those on a printed copy of document. There is a
“hardcopy” mode which does show individual columns of text exactly as they will
appear when printed. This is useful for checking that lines have been broken at

appropriate points,

Bravo lacks some important features. It does not support interactive or automatic
hyphenation. It will support multi-column documents, and paginate a document
either alltomatiéally or interactively. However, it is difﬁculi to define a complex
page layout. And, it will not display a complete page on the screen. Thus, the user
is required to print the document (or use a speEial page display program) in order to
sce how the page will look. For these reasons, Bravo is not signiﬁéantly easier (o use

than the non-interactive formatters previously described.

2.8 Conclusions

In all the systems surveyed, those features that are appropriate for an office text

processing system were isolated and integrated into Etude’s design.

The Wang system demonstrates that menus and system prompts make a system
easy to learn. These facilities, when properly designed, do not encumber an

experienced user: a proficient Wang operator will igﬁore the prompts and quickly

step through the menus when he knows exactly*what he is doing.

The “natural language™ approach to texf editing, similar to DOC’s, is a straight-
forward, natural way to achicve a large coverage of editing commands, while

requiring little memorization on the user’s part.

Scribe’s approach to document formatting is particularly appropriate for the
office. environment. It allows users to specify formats in fumiliar terms, and it

automatically does a varicty of normally tedious bookkeeping tasks.

Fmacs shows that a highly functional cditor assists the editing process for
experienced users. Many of Emacs’$ features help a person in the computer
program writing process. Advanced editing features appropriate for office docu-
ments, such as a table formatting and editing system, would be an analogous

features appropriate for the Etude system.

The TEX system proves a computer formatting program is capable of producing
typographically beautiful documents. Its underlying document representation and
associated formatting algorithms are simple, practical, and elegant. With suitable

enhancement, much of TEX’s internals can be used in the Etude system.

The Atex system is a successful commercial text processing system. It provides a
good text editing facility, and produces typeset oufput. It has many of the features

required of a “polished” commercial system,

Bravo was the first system to provide an interqct;iye envirqnment for both editing
and formatting documents. With Bravo, th;:re are no formatting commands
interspersed with the text. Rather, the system shows the results of the formatting
commands by displaying formatted text on the screen.

38

Chapter Three

A Model of the Structu re of Documents

~ This chapter is devoted to presenting Etude’'s model of documents. We first
examine how existing text processing systems model documents, and explain why
these simpler models are not sufficient to serve as the model for documents
manipulated by the Etude system. From this analysis we will assemble a model of
the structurc of deétlnlents; the model will include thé z;épc_cts of documents that are
relevant to the editing and formatting functions of Etude. After the model is
defined, we will describe an implementation of the maodel that will be used to

represent all documents in the Etude system,

There are currently two kinds of text p;oge,ssing systems in popular use: text
editors and text formatiers. People use text editors to create and modify tvhevcontent
of documents, and they use text formatters to compase the outward appearance of
documents. The text editors and text formatters mentioned in the following

discussion have been described in Chapter 2.

A typical text editor, such as Emacs or the Wang system, has a model of a
document that includes only the document’s content—the sequence of text chérac-
ters. The model does has information about the outward appéarance of the
document as it appears on the screen of the text editor; for example, the displayed
text is broken into lines. The outward appearance as modeled by the text editdr
(and visible on the. screen), however, bears no relationship to how the document
would look if typéset. (There may be formatting commands intermixed with the
content, but text editor can only treat them as ordinary text.) The text editor’s

model, therefore, includes no direct information about the document’s ultimate

39

gt Rt

outward appearance.

A text formatter, such as Scribe or TEX, has a more elaborate model of a
document. Its model includes information about the outward appearance of a
document. There is information about how the document is broken into pages, and
where every character of text is located on each page. The text formatter builds its
model from the text editor’'s model by interpreting the formatting commands
included in the content. The translation required to create a formatted document is
time consuming, and is generally done infrequently, in a “batch mode.” Once the
model is created, it cannot be directly modified, becausé¢ tio provisions are made to
allow the user to edit the text formatter’s model directly. ' If the user wishes to
change something, he must use the text editor to make the "'c‘hzin’ge; and then invoke

the text formatter, which builds a new model.

The Etude system differs from conventional text progessing systems because it
operates on both the content and theoutwam appearance of a document at the same
time. Its model of a document, therefore, must include both these aspects of a
document. ‘The typical text editor's model is inadequate for the Ftude system
because it includes no information about the documerit’s outward appearance.’ The
text formatter’s model does include information about both the content and
outward appearance of the document, but is afso inadequate because it is not
directly modifiable; a lengthy process is required to update the model whenever any

change to the document is required.

The Bravo text editin-g and formatting system does represent the content and
outward appearance of a document in a sipglé structure that is directly modifiable.
Etude, however, }operates on an additionél aspect of a }document other than the
content and outward appearance; this aspect is ignored by most text processing

systems, including Bravo. We call this aspect the internal structure.

The internal structure is the organization and classification of the ideas and
information contained in a document. In a report, the way the report is broken
down into chapters and sections is part of its internal structure. The internal
structure afso includes other identifiable componeﬁts of a document, such as
quotations (cxcerpts), numbered lists, and italicized phrases. The internal structure
even includes simple, commonplace components, sich as paragraphs, sentences, and

words.

The Etude system uses the internal structure of a document to determine its
outward uppeva'ramce.3 In a typeset document, chaplers are usually distinguished by
starting a new page and using a larger type size for the chapter title. Quotations
have extra space left around them, and a slightly smaller type size is used.
Paragraphs have extra space left above and below them, and might have their first
line indented. In this view, even sentenees and words, scen as components of a
document’s internal structure, influence the outward zipp‘e’arance: some white space

is left between words, and a little mote space is left between sentences.

Typesetters have known for centuries that if a document’s internal structure is
clearly conveyed to the reader by its outward appearance, the document is easier to
read and understand than if its outward appearance docs not reflect its internal
structure. When the outward appearance reflects the document’s internal structure,
the reader is given easily recognizable visual keys of the organization and kind of
information in a document. Imagine reading a book with no noticeable breaks
between chapters; with quotations that were run together with the regular text; with
paragraphs that ran into one another, making it unclear where one ended and

another began. The author of such a book (if he was a good writer) would know the

3 he Scribe system [18] was the first system to recognize and use the internal structure of a
document in the formatting process.

41

internal structure underlying his book, but unless the book’s printer makes the \
reader aware of that structure by providing the appropriate visual keys, trying to

read that book would be a nightmare.

The outward appearance of a well formatted document, therefore, is intimately |
tied to the information conveyed in the document. Different kinds of documents
exist for different purposes, and convey different kinds of information. A letter is a
printed message from a person or organization addressed to another person or
organization. A (thesis is a dissertation embodying ihe results of original research
written by a candidate for an academic degree. A wedding invitation is a formal
requcst for a person to be present at a marriage ceremony. Not only is the outward
appearance of cach of these documents different, but the internal structure is also

dependent on the type of document.

A document’s internal structure is partially determined by the document type.
Each of the documents listed above has a different set of document components that
make up its internal structure. A thesis, for example, has a title page, acknowl-
edgements, a table of contents, a list of figures, a number of chapters and sections
and appendixes, and a list of references. None of these components would appear

in a wedding invitation.

A document’s outward appearance is mainly determined by the document type
and its particular internal stucture. Let us sec how a letter’s outward appearance is
detcrmined. A typical letter has a return address (or letterhead), a date, a recipient’s
address, a salutation, a body, a closing, and possibly some additional notations.
Moreover, the body of a letter would itself have components, usually a set of
paragraphs. Each ‘component of a letter, and the letter itself, has an associated
outward appearance. In a typical business letter,.the return address appears in the
upper right corner of the first page, and the date appears under the return address.
Each paragraph in the body might be justified, with the first line indented, and with

42

sotne white space inserted between paragraphs.

The Ftude system uses the internal structure of a document to compose the
document’s outward appearance. Ftude’s model of a document, therefore, must
iitclude information about the internal structure of the document, in addition to its

content and outward appearance.

Now that the three aspects of a document relevant to the Etude system have been
identified, a physical represen’taktion of this model, which will be manipulated by
Etude, must be devised. The represeﬂtati"on chosen will, of course, contain
information about the content, intemalvstructure, and outward appearance of a
document. In addition, the representation of each of these three aspects must be
easily modifiable, because the 'content and iﬁtemal structure is changed during the

editing process, and the outward appearance also changes as a consequence.

3.1 The Representation of a Document’s Content

The content of a document consists of a sequence of characters. The entire
sequence of characters is stored in a doubly-linked list structure, calted the rext
chain. A text chain is a continuqus, linear structure; there are no loops or breaks
allowed in it. Each individual element of the text chain is called a link. A link
contains a character, a pointer to the next element, and a pointer to the previous

clement,

With this representation one can easily get me one character to another, forward
or backward, by following the approptiate pointer in the link. Characters may be
inserted into the text chain by creating a link with the desired character in it, setting
the previous and next pointers to the finks before atrd after the insertion point, and
sctting the pointers of those links to point to the new link. To delete a character, the

8

last step is reversed; the pointers of the links surrounding the link to be deleted are
changed so that they point to one another, and the link to bedelctcd is efTectively
removed from the chain. Each of these operations—moving forward and backward
by characters, and inserting and deleting characters—are operations needed for

editing the content of a document.

The representations of both the internal structure and outward appearance of a
document, introduced in the following two scctions, are woven over the content of
the document. In order to maintain the relationship thweCn these structures and
the content of the document, we allow other objects to be #iserted into the text
chain. Thus, the text chain has links that do not,té!ltﬂiv'?iﬁi!‘%ﬂe"& but contain

objects that relate to the internal structure or-outward appearance of the document.

3.2 The Representation of the Internal Structu re of a Docu-
ment

- From an analysis of the internal str ucture of numerous kmds of documents, we
have seen that the mternal str ucture of most documents may be modeled as a
hierarchy. For examplc in a typical document the characters are gloupcd into
words, the words are grouped into sentences, and the sentences are grouped into
paragraphs. In a sectioned document, the paragraphs are then groupcd together

into sections, and the sectrons into chapters.

~ The components of the internal structure of a document, except for words and
sentences (whose represcntatron 1s dlscussed below) are rcpresented in a hrerar-
chical tree structure. Each component is representcd by an ObjCCt callcd a hlto

(pronounced “hill- -toe’). Ahlto has the followmg mformatron assocrated with 1t

4Origina]ly an acronym for “High Level Typographic Object.”

4

- The hierarchical tree structure is implemented by each hito having a
single owner hlto and an array of owned hitos (children). The root hito is
the only hito that has no owner; it contains all the characters in the
document, | ‘ :

- Fach hlto is of a specific class, which identifies the kind of component of
the internal structure. Typical hito classes are “report,” “chapter,”
“quotation,” and “paragraph.”

- The hierarchical hito structure is related to the content of the document:
each hlto contains a region of text characters. Each hlto is related to the
content of the document by having a begim Afto matker link and an end
hito marker link in the text chain. The begin hlto marker link is
immediately before the first character contained in the hito, and the end
hlto marker link is immediately after the last character contained in the
hito. Thus, the characters contained in:-any hito are accessibie by using
the begin and end hito marker links to get to the text chain. The hito
structure is accessible from the text chain because each hlio marker link,
either a begin or end, has a pointer to its associated hito,

From any link in the text chain, the lowest hlto containing that linlt may be found
by searching backwards through the text chain (towards the beginning) until a hito
marker link is found. If it is a begin hito marker link, then the associated hito is the
lowest hlto containing that link. [it is an end hito marker link, then the owner of
the associated hlto is the lowest containing hlto. All hitos containing the link may be
found by searching up through the hito hierarchy, after the lowest containing hlto is

found.

Just as the user, while creating and edmng his document, changes the content by
msertmg and deleting characters he also changes the internal structure creating
new hltos, and deletmg existing ones. As he is typmg a document for example, he
mlght be creating new “chapter and “sectton” hitos. If he decides that he has

started a new section unnecessarlly, he needs to delete the “section” hlto.

More complicated operations, such as moving a paragraph from one point in the

45

document to another, require the insertion and deletion operations on both the
content and}internal structure. To move a paragraph, the characters contained
within the paragraph hlto would be deleted, along with the paragraph hlito itself.
Then the characters just deleted would be inserted at the new location, and a new
paragraph hlto< would be created around them and inserted into the hlto structure.
This would, of course, be a simple “move paragraph™ operation as far as the user

was concerned; he would not be aware of the details of the implementation.

The implementation of those operations that perform hito insertions and dele-
tions is described below. The strict hierarchy of hitos is maintained through all

insertions and deletions of hltos.

The fbllowing sequence of operations is performed to create a new hlta of a
particular class in the document. The hito is created around two links in thc text
chain; the pair of links delimit the characters contained wit;h{i;nv the hito. (Actually,
the two links need not be distinct, so that a hito may be created around a single
link.)

1. The links are checked against the existing hlto structure to make sure
that the creation of a new hlto around those links would result in a valid
hlto structure; this insures the hierarchical structure is maintained. In
particular, a new hlto must be completely contamed within an existing
hlto; the new hlto cannot cfoss the boundaries of an exlstmg hlto.

2. A new hlto is created, and its class is set.

3. The new hlto is inserted into the existing hierarchy. The new hito’s
owner is set to the hito immediately containing both links, and the new
hlto is added to the owner’s array of children, All the hltos in the array
of owned hltos of the new hlto’s owner are checked to determine if any
are now children of the new hlto; thase that are, are removed from the
owner’s array of children, placed in the new hito’s array of children, and
their owner fields arc updated to point to the new hlto.

4. A begin hlto marker link is inserted in the text chain before the first link

46

to be contained within the new hlto, and an end hlto marker link is
inserted after the last link contained within the hlto Both these links
point back to the new hito. .

Any hito except the root hito may be deleted. To delete a hito, the last two steps
of the insertion operation are undone: the hlto marker links are deleted from the
text chain and the hlto structure is updated. Fhe hito, removed from both the text

and and the hlto structure, is no longer in the document

As mentioned carlier in this chapter, words and sentences are not represented
with hltos, although they are conceptually ~'part of the internal structure of a

document. There are two reasons for this:

- In a typical document, there are many words and sentences, while there
are far fewer paragraphs, sections, and chapters. Words and sentences
span only a few characters, while other companents may contain a great
deal of text. The representation of frequently occurring components
should be compact for the sake of efficiency. Using the hito structure,
with its associated overhead, would be wasteful for words and sentences.

- Much of the reason for keeping an explicit model of the internal
structure of a document is for its use in compgsing the outward
appearance of the document. All the companents of the hlto structure,
in fact, have a specification of how that component should look (this is
fully explamed in Chapter 4). Words’ and sentences, ‘however, only
affect the outward appearance by havmg exira space leﬁ around them;
the more flexible appearance specification associated with hitos is
unnecessary for them.

For these reasons, an alternative representation was chosen for words and
sentences. They are not represented with hltos, but are implicitly iadicated in the
text chain. In the text chain, there are links that demarcate words and sentences.

‘These links contain either an ml.er- wend glue or dnter-sentence g&ﬂe (Glue is a kind
of object that is like a character, but,ha_s some special pmpert;es, ‘These propemes
are discussed in Section 3.3.1; the reader may think of glue a‘s)a blank space for

47

s RTINS 1300k .

now.)

To find the word containing a character, the text chain is scarched backward and
forward for inter-word or inter-sentence glue (inter-sentence glue also indicates a
word boundary); the characters betwcen these two pieces of glue are the containing
word. Similarly, a sentence is found by searching backward and forward for inter-

sentence glue.

3.3 The Representatron of l;he Qutward Appearance of a
Document

The outward appearance of a document is also modeled as a hicrarchy. The
model used in the Etude system is similar to the one used by TEX, a text formatter
(see Section 2.5). Extensive use of TEX has shown that a hierarchical model of the

outward appearance is adequate torepresent the appearance of all documents.

In a simple document, characters are grouped together to form lines. The lines,
in turn, are grouped to form columns, and columns are grouped into pages. A
hierarchical structure may even be used to model the appcarance of complicated

document components, such as mathematical formulas; this is done by TEX.

The outward appearance hierarchy is built over the content of the document, like
the internal structure hterarchy Unlike the content or mternal structure, however
the outward appearance is not built by the user Instead it is burlt automatically by
the Etude system. Thus in this chapter the outward appearance is dtscussed only as
a static structure; how this structure is built and mod1 fied is’ dtscussed m Chapter 5,
when we describe how the Etude system composes the outward appear ance. The
clements that the outward appea1 ance htcrarchy are constructed out of boxes and

glue, are discussed next.

3.3.1 Boxes and Glue

A box is the fundamental unit out of which the outward appearance of a
document is built. Boxes are grouped together to form larger boxes, which are in
turn grouped to form still larger boxes. A box . is a two-dimcensional object with
rectangular shape. Boxes have a reference point, and three associated measure-

ments, diagrammed below: [10f

Figure 3-1: A Box and its Associated Measurements

When boxes are joined together to form larger boxes, they are either joined
horizontally or vertically. If they are joined horizontally, they are all aligned on
their reference pointé and the resulting box is called a line. The reference point of
the line is the reference point of thé first (left-most) box in thé line. The height and
depth of the line are the maximum height and depth of the component boxes. The
width of the line is the sum of the widths of the component boxes.

A character is the simplest kind of box. Its reference point cotresponds to the

49

base line of the character. The base line of a character is an imaginary line at the top
of the descender of a character with a descender (for example, “g” or “p”), or the
bottom of a character if it has no descender (for example, “a” or “b”). In
typesetting, when characters are combined to form a ling, they are generally aligned
on their base lines. ' When constructing ‘a fine of characters, the basc lines of the
characters will be aligned properly, because the component boxes (characters) are all

aligned on their reference points.

If boxes are joined vertically, they are also aligned on the reference points of the
individual boxes, and the resulting box is called a column. The reference point of
the column is the reference point of Ithe last (Io;,vest) box in the column. The width
of the column is the width of the largest component box. For example, the typical
column of text is a box constructed of lines. A line's refereace point is normally at
the left edge of the line, because the reference point of a line is the reference point
of the first character. Thus, lines that are joined togcther to form a column are

aligned on their left edges.

In addition to the three kin.ds of boxes already mentioned there is another kind
of box, called glue; glue is inserted mto a box when extra space is needed between
the component boxes. The dctails of the four different kmds of boxcs——characters

~ glue, lines, and columns—are explained in the next few paragraphs.

A character has two components: its identity and the fd}it to which it belongs.
The identity simply indicates the letter of the alphabet that the character represents.
A font contains all the characters of the alphabet in a parﬁCU‘lar type face and size.
Associated with any font is a set of values for the height (distance above the base
line), depth (distance below the base line), and width of each character in the font.
This table of values is consulted whenever the box dimensions for-any character are
neceded.

50

Glue is a kind of box used to represent blank space between the other kind of ‘
boxes on a page. In a kine, glue has width but no height or depth; while in a column
it has height but no width, The class of a picce of ghue is analogous 10 a character’s
identity: it specifies the kind of glue. For example, the two classes of ghue nosmally
found in a line are’ inter-word glue and inter-sentence glue, and the glue normally
found in a column is iner-line glue. (Inter-word glue and inter-sentence glue are
also used to demarcate words and sentences in the text chain, as discussed i the
previous section. Inter-sentence glue usually has a slightly larger width than inter-
word glue.) Also like a character, a picce of glue has a font to which it belongs. (In
addition, glue may also have a mandatory line ,break attribute, which signals the text

formatter to break the line after the piece of gﬁle.)

Glue has three attributes: a natural space, a streich, and a shrink. A glue’s class,
corbined with its font, detcrmines its partieular values of natural space, stretch, and
shrink. The natural space is the normal width of the blank space in a line for a given
font, or the normal height of the blank space in a column. The stretch and shrink
components determine how nwuch the normal blank space may be expanded or
contracted if it is necessary to increase or ctecyeasé the blank space in order to, for

cxample, justify a line of text,

Each piece of glue in a line or column box is assigned a specific width (in a line)
or height (in a column) when the outward appearance is built by the Ftude system
(see Chapter 5). Assigning a specific measure to each piece of glue in a line or

column is called serting the glue; this process is"descrirbe,d in Section 5.2,

A line has a measure called its natural width, which is the sum of all the widths of
the characters in the line and the notural spaces of all the pieces of glue in the line.
H each piece of glue in the line is set to its natural space, then the width of the line s
equal to its natural width. Glue in a line is set to its natural space when the line is
not justified. If the line is to be justified, the width of the line may be different from

51

BTV L ¢

its natural width, so the right edge of the line is lined up with the right margin. To
do this, the width of each piece of glue in the line may be enlarged or contracted
when the glue is set, and the line’s actual width may no longer equal its natural
width.

A line also has a shift amount, which is used to: position cach line horizontally
within its containing column. A line in-a colitmn may not have its left edge on the
left edge of the column; its left edge may be somewhere to the right of the column’s
left edge. This happens, for example, when the first line of a paragraph is indented.
The shift amount of the line is a measure that spcclﬁes the amount the line is to be

shifted horizontally within the column.

3.3.2 The Outward Appearance Hierarchy

In a document, each character is a member of a single line and each line is a
member of a single column. The columns are organized into pages, but this is done
by a separate subsystem and is beyqnd the scope of this thesis. (For a brief
description of how this is done and its relationship with the work described in this
thesis, see Chapter 4.) This section describes the representation of lines and

columns in a document.

All the characters in the document are contained in the text chain. The characters
are grouped into lines with line marker lmks, Wthh are mserted mto the text chain.
A line marker link indicates the start of a new lme of text Each line marker link has
a line associated with it, and vice vérsa; theline includes all the characters between
its line markeérlink and the next line marker link in the text chain,

The line containing any character in the document may be found by movmg
backward from that character through the text cham unttl a lme marker link is

encountered. The line containing that character is thc line assocnated with that line

52

marker link.

Just as the characters in a document are stored in a chain and gcouped into hnes,
the lines in a document are also stored in a chain and gtoup»ed into columns. The
chain containing the lines in a document is called the line chain. The line chain m_ay
contain pieees of glue, in addition to lines. The class of g}ue»fm{ndin the line chain
is inter-line glue, these pieces of glue are used for leaving ¢xtra space between lines
when necessary, such as the extra space between the last line of a paragraph and the
first linc of the next paragraph.

The line chain is broken into columns by column marker links in the line chain.
Each column marker link s:gmﬁes the start of a new column: it has a co!umn |
associated with it, and vice versa. The lines contained in a column are all those lmes
between the column’s column marker link and- the next column marker link in the

line chain.

Finally, the columns are themselves members of a chain, the column chain. The
column chain, however, is only used for ordering the columns within the document,
and is not used to represent the layout of columns on a page. As mentioned at the
beginning of this subsection, the 1epresentauon of the iayout of pages is beyond the

scope of this thesis.

3.4 Representing Changes to the Documeht

In previous sections, we have discussed how the content, internal structure, and
outward appearance of a document are represented. We have noted that the user
continually changes the content and internal structure, and we have shown how the
representations of these two aspects are updated We have not yet dlSCUSSCd how
the outward appearance is composed nor have shown how the outward appearance

53

This figure shows the text chain, line chain, and hito hierarchy in a portion of a
typical document. The links in the text chain are shown as little squares. They
contain either characters, glue (empty squares), hito markers (hm), or line markers
(Im). The line chain, at the left, contains lines (line) and a column marker (cm).
The entire text shown is contained in a paragmph hlto and the w01d the is in
an “italic™ hlto. :

hito hiearchy

paragraph

line chain

E‘—‘

o PO W TT[S] Fe[T[Re] Mthnef)',fvf

italic

3

fr

e {F To[7] a[T1] Tgfolola] [mleln] m?‘b

agd

w[c[o]m[e] [t]o] Tt[n[e] Ta[TTa] To[] TTIA[e[i]r]-

text chain

Figure 3-2: A Portion of the Content, lntemal Stucture
and Outward Appearance of a T‘Srplcul Docﬂment ’

54

is printed or displayed—these operations are detailed in Chapter 5.

In Chapter 1, however, we noted that the Etude system gives the user immediate
fecdback on the display of any changes he makes to thc commt or mtumat structure
of his document. This cability requires the Etude system to be able to pecform

incremental formatting and incremental redisplay. Incremental formatting is the

ability to forma appearance of—only thosc portions
of the document that have been changed. Similarly, incremental redisplay is the
ability to redisplay only those portions of lthé“c}qument that appear on the screen

and have been changed.

In order to do incremental formatting and redisplay of the document as it is
edited, the document must maintain mdlcattons of the ch‘mges that have been made
to it. If this is done, the systems that format'md chsplay the document can interpret
these indications, and fo;mat and display @nly the ctganged portions. Fhus we must
make provisions in the 1epresentat10n of the document to indicate where changes to |

the document have been made

How do we indicate what portions of the‘ dééument have been altered? A section
that has been altered will need to be reformatted, then rodisplayed. (Only those
sections that appear on the screen require reformatting.) But before we can
 reformat the text, we must first find—in an efficient manner—those sections that

ﬁave been altered.

We might leave the -indication of the change directly in the content of the
document (in the text chain); this would require a search through all the text that |
appears on the screen. We could not quickly ﬁnd the altered sectlons if we had to
search through all the tﬁXt, character by character This suggests that a hierarchical
representation of altered sections is desirable. With a hierarchical representation,

we can quickly “zoom in” on those sections that have been changed, and ignore

55

large portions of text that have not been altered.

Rather than creating a new hierarchical structure to be used to represent altered
sections, we should. examine the existing hierarchical structures to see if these are
adequate for the purpose. We could indicate altered sections of the document by
leaving marks in the internal structure hier\archy'or'in the outward appearance
hierarchy of the document. In fact, both methods were tried in different implemen-

tations of Etude.

[f we use the internal structure hierarchy, which is represented with the hito
structure, then whenever a change is made in the text of “a hlto, that hlto—and all
hltos containing it—are marked as altered. A typical document is mainly composed
of paragraph hltos at lowest .level; thus, if a small change is made, an en»tire
paragraph would be marked as changed. The entire paragraph would need to be
reformatted and redisplayed. Our goal, however, is to reformat and redisplay as
little as necessary, and in most cases we could do better ﬁlan reformatting and

redisplaying an entire paragrapl‘l.S

Instead, the outward appearance hicrarchy is used to keep track of the changes
made to the document. When a change is made to the document, the lines in the
changed section are marked as changed, and the columns containing those lincs are
also marked as changed. With this scheme, the smallést unit of text that is
reformatted and redisplayed is one line. Although this is not ideal—we might wish

to redisplay only a single character—it is adequate for our purposes.

We have only discussed in a vague sense. what it mcans for a section of the

document to be “changed.” We have said that such a section, if it appears on the

5111c actual implementation had an indication of where the changed section began in the hito. We
thercfore did not need to reformat and redisplay an entire hlto, but only the “rest of” the hlto, after
the point where the change began. However, this is stifl too large a'section of text.

56

screen, needs to be reformatted and redisplayed. Just marking a section of the ‘
document as “changed” is not adequate. to fully represent the dynamics of
formatting and display. For ummpk a section of the document that has not been
changcd may still need to be reformatted. Tlus happens when a charactel is deleted
from a line; the previous line has not been changed, but it still may need to be
reformatted, because deleting the character may allow a word at the beginning of

that line to move up to the end of the previous line.

Thus, there are actually two kinds of marking done on the document:
unformatted marking and changed marking. Sections of the document that are
potentially unformatted as a result of an c.dmng operanon are malked unformatted,
this is an indication to the text formatter that it must examine that section and
reformat it, if necessary. Sections of the document that have actually been altered
are marked changed; this is an indication to the. redispla_y subsystem that these

sections need to be redisplayed on the screen.

If a character is inserted or deleted from the text chain, then the line containing
that character is marked .as both changed and unformatted. As just mentioned,
however, the previous line may need to be formatted, because some insertions of
deletions cause a word to move to the preﬁous line. This only happens if the
insertion or deletioh occurs before the ﬁrst‘piece of glue in the line. (More
precisely, it only may happen if the insertion or deletion occurs before the first
character in the line at which the text fonnattef may break‘ the vli‘ne, and this can only
happen at a piece of glue.) Thus, if ‘fhé insertion 6r delétion occurs before the first
piece of glue in the line, the previous line is also marked as unformatted (notevif'is

not marked changed).

If a hlto is inserted or deleted from the hito hierarchy, then all the lines that have
characters contained in the hlto are marked as changed or unformatied, and the line

before the first line is marked as unformatted.

37

This marking propogates upward through the otitward appearance hierarchy.
When a line is marked unformatted or changed, the column containing it is also

marked unformatted or changed.

The text formatter formats a section of the document by formatting all the lines in
that section that are marked unformatied. In doing the formatting, it may unformat
and change additional lines of the document, and these lings are marked appro-
priately. When the formatter finishes formatting all the Ivines in the scetion, it marks
those lines as formatted. The redisplay system, in ordct' tyov keep the screen up-to-
date, would then redisplay all the lines that werc marked chm‘z‘géd,‘and then mark

them as unchanged. These procedures are described in detail in Chaptér 5.

58

| ChapterFeur

Formatting EhvirOnme_m:S

The text formatter of the Etude system composes the outwalcl appearance of the
system'’s documuns Etude’s formatter uses a data basz of fon mats f0| dctcrmmmg
how each component in the mtunal structure of a document should be formatted
It derives the formatting information from both the data base nhlch contzuns a set
of pre-defined formats for each class of hlto and the arrangement of hltos in the

internal structure hlerarchy

The data base contains a format specification for each class of hlto known by
Etude. The format specification includes a number of format atiributes, and a value
specification for each attribute. For example, “type face” is an attribute that might
have the value specification “italic,” and “right margin” is an attribute that might

have the value specification “1.5 inches.”

Usually, the attributes and value specifications only partially specify the format-
ting environment of a piece of text. The formatting environment is a total
specification of all the typographic attributes and values in force at any point in the
document. For those format specifications that do not completely specify the
formatting environment, the desired value for the unspecified parameters may be
derived from other format specifications. For example, a “center” hito might be.a
document component that would center the text contained in it. We would want the
text centered within the margins of the document, whatever they happened to be.
The format specification associated with the “center” hito would not specify the
margins the text should be centered between; rather, the margins would be derived

from the margins of the document type. Thus, the desired margins for the centered

59

text would be inherited from previous specifications.

The scope of formatting dealt with in this thesis is the formatting of the text of a
document into columns, without regard to the placement of the text on pages. The
page makeup subsystem in Etude [20] is re's}g‘on"sible for defining the layout of a
page. It “superﬁses” the text formatter by éonsu’;ainihgme width of the lines that
the text formatter composes. In traditional typesetting systems, the same separation
of the two processes occurs: the text is formatte}d 'i’nto gznlleys (of the appropriate
width), and these galleys are cut and pasted together, usually manually, to form
‘complete pages. In Etude, the “galleys” produced by the text formatter are cut and
pasted together automatically by the pﬁge'makéﬁp* subsystém‘f |

A general description of the attributes in the env1ronmcnt for text formatting was
given in Scction 1.3. Before providing more details about these dtmbutt,S and thelr
allowable values, we first must look at the way measurements may be spemﬁed in
Ftude.

4.1 Distances

All measures in Etude are expressed in dtstances Dlstances provide a uniform
mechanism for expressing absolute, enwronment dependent and device-dependent

measurements.

Absolute An absolute distance specifies a meastirement in terms of ab-
solute units. The system: recognizes: any: of the following common
unils for specifying absolute distances, ‘

-inches -
- centimeters

- millimeters

- points (a unit of 1/72 inch used by printers)
- picas (a unit of 176 inch used by printers)

Environment-Dependent : : :
An cnvironment-dependent distance specifies a mcasurement
whose absolute value depends on the formatting environment in
which the distance is evaluated. These are:

- characters

- lines

The “character” unit is the width of a typical character in the
current font, which is determined by the environment. Similarly,
the “line” unit is the height plus the depth of a typical line in the
current font (which is the same as the height plus the depth of a
typical character). ' S |

Device-Dependent - :

' A device-dependent distance is expressed in units that are depen-
dent on the resolution of the device that the document will be
printed or displayed on. Because devices may have different
horizontal and vertical resolutions, there are two device-depen-
dent distances:

- horizontal units
- vertical units

Distances are used for two purposes: for the specification of measurements, and
for the evaluation of measurements. Distances are usually specified in absolute or
envimnment-dependent.tcrms, and evaluated in dévice_:-dapeﬂdent terms, This
allows the format designer, who creates the data base of formats, to specify
measurements, either absolute or relative, independent of any particular printing or
display device. The formatter, which is composing the outward appearance
structure for a particular output device, needs to (evaluavte these measurements in

units specific to the output device. For example, a “quotation” might be defined to

61

e e — e e - T - e

leave 0.5 inches of space above and below it in the text; the distance would be
defined in absolute terms, in inches. The text formatter would evaluate that
distance specification in device-dependent terms; to do this, it needs to know how

many vertical units that distance is on the intended output device,

4.2 Environment Attributes and their Values

The environment attributes, and values implemented, were chosen to provide a

reasonably complete coverage of the requirements for formatting text into galleys.

As mentioned, the page makeup subsystem constrains the size (width) of each
line formatted. Within the given size, the environment specifies a leff margin and a
right margin for the text, and an indention for the first line of the environment. The
left margin and right margin attributes determine the prevailing margins of the

environment. The values of each of these three attributes are distances.

Two attributes, fill and justify, determine how the text is broken and positioned

within a line. Fill may take one of four possible values:

Fill Instructs the formatter to include as many words as will fit on the
line it is formatting. This is the nor mal value for formatting plain
text.

Nofill The formatter looks for pieces of glue: having mandatory line

bregk attribute, and breaks the line there, If no mandatory line
break glue is found, the line is broken when it has become full.
The text on the line is placed against the prevailing teft margin.

Center The same as nofill, except the text in the line is centered between
the prevailing margins, mther than being placed against the left
margin, ‘

FlushRight The same as nofill, except the text in the line is placed against the

prevailing right margin.

62

Justify is a boolean value; it may either be on or off. If off, the glue in the line is set ‘
to its natural space. 1fon, and if the fi/l attribute has the value fill; then the glue in
the line is set so the right edge of the line touches the prevailing right margin, (If

the fill attribute has another value, justification is not done.)

The type face attribute specifies the type face in the environment. The value of
this attribute may be roman, bold, or italic. These were the only three type faces
available, due to the limitations of the display :tcrmina]luséd in the current
implementation. I more type faces were available, additional values for this

attribute would be accepted to allow selection of these additional faces.

The leading attribute, which takes a distance for a value, determines the spacing
between lines in the text, in terms of the distance between the base lities of

stccessive fines,

The break attribute determines whether a new line is begun on entering or
leaving the environment. The possible values are: before, which makes the initial
text in the environment begin a new line; affer, which makes the finaf text in the
environment end a line; around, which does both & break before and a break after;

and off, which does neither a break before nor a break after.

Two attributes, above and below, are used for inserting extra white space between
lines of different environments. Above specifies the amount of extra white space to
be inserted before the environment, while below specifies the amount of extra white
space to be inserted after the environment; both take diStances as values. An above
specification is ignored if the environment doesn’t “break before”; similarly, betow
is ignored: if the environment doesn’t “break after.” Of course, if the environment

“breaks around,” both above and below specifications are valid.

The remaining environment attributes all deal with numbering. 1f the numbered

attribute, which takes a boolean value, is on, the hlto associated with the envi-

63

ronment is assigned a number, and this number is kept up-to-datc automatically by
the system. For example, “chapter” hltos are usually numbered; the system assigns
a number to each chapter hlto, and updates these numbers when chapters are
inserted or deleted from the document. The details of the numbering scheme are
described in Chapter 6. A brief description of the other cnvironment attnbutes

pertaining to numbering follows.

If a hlto is numbered, Etude automatically prints th‘e number in the style and
location specificd by the following two envuonment attrlbutes The counter slyle
attribute allows the specification of a template, Wthh determmes the way the
number appears in the document. The value of the counter style attribute is a
string, but the string is interpreted in a special way. - The hito’s number may be
printed as-an arabic ordinal, .an alphabetic letter, a roman number, spelled out in
words, or not printed at all. Any text may be printed alohg with the number. The
counter location attribute specifies where the counter appears in the text. Two
values for the counter location have been 'tmﬂemented:f flush left, which prints the
counter against the prevailing left margin; and left: flush right, which prints the
counter flush right against the prevailing left margin. .

A hlto number may reference another hito number when printing. For example,
this section is numbered as section “4.2.” In producing that number, t_hé section
referertces the number of the chaptef that contuirts it. -Such a reference, in this case
the “4" referring to the chapter number may be specnﬁed by the counter style
attribute. If this is done, the within attnbute, which. t&kes a strmg as a value,
spemﬁes the hlto class w1thm which the hlto is to be numbered For example the
environment for section, to get the above, numbermg, has * chapter as the value of
the within attribute,

4.3 Format Specifications and inheritance

In order to begin formatting at any point in thev document, the text formatter
must be able to determine the format em:ronmcnt at the point. There is a fosmat
emnonment associated with each hlto in the document The format envnronment

for-the pomt is the format environment of the hito comannng the pomt

The format environment of a hlto is derived from the class of the hito, and all
hltos above it in the hierarchy. The format data base contains format specifications
for all the classes of hltos found in the document. Tyhesve' format specifications are

used to derive the format environment of a hlto.

To determine the format environment for a hite, we assume we have the format
environment of its owner. The format specification associated with the hlto tells us
how to change the format environment of the owmer to get the format environment
of the hito. For exampie, the format specification of the “italic™ hlto, used to change
the type face of a region of text, wowld telt us to change the value of the type face
attribute of the owner’s environment, and assign it a vaiuea of italic, the other
attributes of the format environment would be ieﬁ unchanged.

A format specification differs from a format environment in two ways.

1. A format specification contains value specifications, rather than values,
for each attribute in the specification.. ‘Depending on the particular
attribute, a value specification for that attribute may contain a new value
for the attribute, or may contain a way to derive the new value from
containing environments. For example, the value specification for the
right margin attribute might be “+1 inch”; indicating that the right
margin for the new environment should be increased by one inch. The
“4+1 inch” value specification is fiot a ‘value forzthe right margin; the
actual value depends on the value of the right margin of the format
environment of the containing hlto.

2. A format specification need not contain a complete set of value specifi-
cations for all environment attributes. There might be no value

65

specification for the right margin attribute in a format specification; the
right margin would not change in the new environment derived from
that specification. An “italic” hlto, used for changing only the typc face
of a region of text, would normally lme no valuc specnﬁcahon for the
right margin attribute.

Format specifications are stored in the data base of formats, which contains a set

of format specifications for all classes of hltos ‘l‘(‘,nown to the system. Each format

specification for a particular class of hito consists of a set of attribute / value

specification pairs. The attributes are the same attributes detailed in the previous

section. ‘A value specification for many of the attributes is simply a new value for

the attribute. For those attributes that take distances as valucs, however, a value

specification is a distance, with an'optional sign. _"I‘h’e}in’terprg:tation of the value

specifications, particularly those with distances (s'igned or unsigned) is described

below.

Left Margin and Right Margin

Leading

If the value specification is a signed distance, then it is inter-
preted relative to the value of the margin of the owner's envi-
ronment. If the wvalue specification is unsigned, then it is
interpreted as a positive offset from the margins. specified by the
document type (the root hlto). If either or both of these
attributes do not appear in-the environment specification, then
the values of the prevailing margins are used.

If the value specification is a signed distance, then it is inter-
preted relative to the value of the leading specified by the
document type. If it the value specification is an unsigned
distance, then that distance is the new value. If this attribute is
not in the value specification, then" the leadmg value of the
owner’s environment is used. :

Filt, Justification, Type Face, Counter Style, Counter Location

The value specifications of, any. of these attributes, when they
appear in an environment specification, are used dircctly as the
new values for the attributes. For those that do not appear in the
environment specification, the value in the owner’s environment

66

is used.

Indent If this attribute appears in an environment specification, then the
associated value specification, whether a sigped or wnsigned
distance, is used as the new value. I the attribute does not
appear, then a value of 0 is used. o

Break - If this attribute appears in an environment specification, then the
associated value is used as the new value. [f the attribute does
not appear, a vatue of offis used. ' o

Above and Below If either of these attributes appear in an environment specifi-
cation, then the associated value, whether a signed or unsigned
distance, is used as the new value. - If either attribute does not
appear, a value of 0is used.

Numbered If this attribute appears and its value is on, then numbering is
turned on in that environment. If it does not appear, then its
value is off. o :

Within If this attribute appears, then the hito class name in its value

specification is used.

In orderrt(‘) find the format environme‘nt‘fcr any point of the document, all the
hitos containing that point are first determined. Beginning at the root hito, this list
is traversed, and format environments are sixccessively geperated for each hlto.
When this is done for the last hito—the hito that immediately contains the point in

the document—we have the format environment for the point in the document,

This method of generating environments is called an inherilance scheme because
only a partial specification of the format egﬁiromnent is required for each hlto,
Many of the parameters‘ that are not Speciﬁéd at all inherit their values from the
environments of hltos higher in the hierarchy. - In addition, values for some
attributes may only be specified relativély; in this case values from containing hltos
are also inherited Before the actual value for that format environment’s attribute is

determined.

67

Now that we have shown how the formatting environment for any point in the
document may be determined, we proceed to explain, in the next chapter, how the
text formatter works. The text formatter constructs the outward appearance of the

document based on the format environments derived from the hlto hicrarchy.

68

‘Chapter Five

Text Formatting and Display

As the user cdits his document, the Ftude system continually displays a formatted
version of the document. After cach editing operation performed by the user, Etude
must reformat the document before it can be correctly displayed on the screen. The
text formatter in Etude, described in this chapter, is responsible for reformatting the
document. As mentioned throughout this thesis, the text formatter in Etude does as
little formatting as is necessary to keep what the user sees on his screen correct; this
is called incremental formatting. The display system in Ftude, also described in this
chapter, is responsible for maintaining an image on the screen of the outward
appearance of the document. It also does as little redisplay as possible as the

outward appearance changes; this is called incremenial redisplay.

The Etude text formatter builds the structure that represents the outward
appearance of the document. It does not disturb the content or the internal
structure of the document. Two modules are involved in text formatting: the
dispatcher and the linewright.6 The dispatcher sequences through the lines of the
document, invokes the linewright on those lines that may require formatting, and
adds white space (glue) between lines as appropriate; the linewright sequences
through the text chain and constructs lines based on the formatting environment
(derived from the document’s internal (hlto) structure). The linewright and the

dispatcher can be invoked on any portion of a document, and will reformat the text

6Just as a “shipwright” builds and repairs ships, the “lincwright” builds and repairs lines. The
dispatcher module has been superseded by the columnwright, which, in addition to doing all the
dispatcher does, builds and repairs columns in the same way the linewright constructs lines.

69

in that part of the document.

Most existing text formatters operate on an entire document at a time. In fact,

they do not operate on a single document, but rather two representations of a

To use Scribe, you prepare a manuscript file using a text editor, You process this
manuscript file through Scribe to generate a document file, which you then print on some
convenient printing machine to get paper copy. [18)

In Scribe, the manuscript file contains the content and internal structure of the
document, while the document file contains a representation of the outward

appcarance.

If a change is made to the manuscript: file, the entire file must be run through
Scribe for the change to be appear in the document file.” This requirement is

inherent in the nature of existing formatters for the following reasons:

1. Editing is done using a completely independent text cditing system.
Because the editing and formatting activities are not integrated, the text
formatter cannot determine what portion of text was altered.

2, There is no easy way to determine the formatting environment for the
portion of text that has changed. Formatting commands at the begin-
ning of the manuscript file may affect the formatting done at the end of
the file. Thus, the only way to do derive the formatting environment at
any point in the document would be to go through the entire manuscript
file and accumulate all the formatting commands untll that point is
reached.

3, There is no formal connection between the manusciipt and the docu-
ment files. Even if the formatter could determine the place in the
manuscript file that had been changed, and determine thq'formatting

7Scribe does have facilities that allow partitioning a large manuscript into a sct of smaller
manuscript files, cach of which may be processed independently.

70

environment for that portion of text, there would be no simple way to
update the corresponding document file.

The document representation of Etude is specifically designed to support incre-
mental formatting. The capabilities that existing text formatters lack are found in
Etude's document representation.

1. There is no division between the document representation on which
editing is done and the one that represents the formatied docwunent; in

Ftude they are the same. The editing primitives in Etude automatically
mark the portions of the doctunent that require reformatting,

2. The formatting environment at any point in the document can quickly
be determined by using the hlto structure. All that is required is to
search back through the text until the first hito marker is encountered
(see section 3.2); this is normally no more thas a paragraph of text. The
hltos higher in the hierarchy that contain that point are easily found by
walking up the tree structure, and the inheritance mechanism can then
be used to efficiently produce the formatting environment for that point.

3. Because of the single representation of the document employed by
Etude, any changes in the document resulting from: refomrattmg are
reflected in the document wrthout any additional work. -

The following two sections describe in detail the operation of the dispatcher and
the linewright. | | - |

5.1 The Dispatcher

The dispatcher is responsible for composing formatted galleys of text. It is
invoked with a pair of line links in the line chain of the document, and it formats the
text bounded by those two lines into a galley. Tﬁé"’pait' of lines on which the
dispatcher is invoked would normally be the boundaries of the text that appears on

the screen, which is all the text that need be formatted. The pair of lines mighg also

71

be the first and last lines of the document, which would result in the entire ‘
document being formatted into galleys; this would be done before the document

was to printed.

The dispatcher sequences through the line chain, starting from ‘the line link:on
which it was invoked. It checks each line it encounters to see if it is formatted; if it
isn’t, it invokes the linewright on that line.: The linewright (described in the
following section) formats the line and returns to the dispatcher. Note that the
linewright may have unformatted succeeding lines in the document, but these will
be formatted as the dispatcher sequences through the line chain. The linewright
never unfolmats a line that preceeds the line it was callLd to fonnat Thus, when the
dlSpatChel if finished, all the text between:-the pair of line. lmks it-was called with is

formatted.

In addition to calling the linewright on unformatted lines, the dispatcher also
examines the desired space above and dcsired space'bellov{;rvalues’ for every pair of
adjacent fines, if one or both of the lines were unformatted. After both lines are
formatted, it compares the desired space below the first line withy!the desired space
above the second line, and records the larger of the two valués. It then checks the
links between the two line links to see if a piece of.inter-Jing glue of the right size is
there. It either updates the size of the glue, insertsa new piecexof glue, or deletes the

existing glue, as necessary.

5.2 The Linewright

The characters in the text chain of an htude documcnt are grouped into lines.
Each time the document is edited, this groupmg may become incorrect. For
example,if characters are inserted into or fd‘ele:teé from’the text chain; the existing
line breaks in the text chain may. not be correct; some ,liggs,:.ma_y be,'t(;)é) short.or too

2

long. Also, if a hlto in inserted into or deleted from the internal structure, the
margins might change, and the existing line breaks: might again be wrong.

The basic function of the linewright is to examine the text chain of the document
and determine, based on the formatting environment and the width of the column
containing the text, how it should be broken: into lines. As it scans through the text
chain, it also performs some additional functions. . The linewtight is invoked on an
unformatted linc by the dispatcher, and does the following: | |

- It determines the formatting env1fonment for the line and the w:dth of
the column containing the line.

- It sequences through the text chain fiom the start of the lme and
appropriately sets the type face of each chardcter. :

- As it sequences through the text chain, it determines where the line
should break, and inserts a line. marker link at this location (if one is not
there already) to indicate the end of the line,

- It sets the glue and the shift amount in the line, based on the formatting
environment. |

- It sets the leading for the line. -

- Tt leaves an indication of the desired space above and below the line.
This is extra space over the normal leading (g.g., the extra space between
paragraph). (There are two slots in each line for these values. When the
linewright is done, the dispatcher examines these valaes and inserts the
required space).

- It inserts into the hne information necessary to create a counter, when
necessary (see Chapter 6).

-1t marks the line _]llSt formatted as formatted
- If it has changed the. locanosn of the end. of the lme, then it marks the

line as changed. In changmg the location of the end of the line, it has
also chariged the contents of the next line of the document; therefore, it -

13

marks the next line as changed and unformatied.

The remainder of this section is devoted to describing in detail how the linewright

performs the tasks mentioned above.

The linewright is invoked upon an existing {unformatted) line of the document
by the dispatcher, The linewright first determines the formatting environment at
the beginning of the line. | In addition, the linewright also gets the width of the
column containing the line; this measure constrains the width of the line (see
Chapter 4). |

The links in the text chain are then examined individually, from the first link in
the line (the link after the line marker link), sequencing forward through the text
chain. As it examines each link, it maintains and updates various statistics about the
line. These statistics include the line’s natural width,'stretch, shrink, height, and

depth.

The desired line width is the size that the linewright attempts to make the line.
The desired line width is initially set to the width of the column containing the line,
less the sum of the left and right margins. The line is considered to be full when the
sum of the natural width and the shrini(of the accumulated links equals or exceeds
the desired line width, | |

A decision is made to break the line if certain conditions are met at the time a link
is examined. For example, the line is broken if a character is encountered and the

line is full, or if a hlto marker link that calls for a line break is encountered..

Determining exactly where and when to break a line is not straightforward; in

most instances when the linewright encounters a link that forces it to break the line,

the linewright actually breaks the line at a different link, which may be before or

after the link just encountered. The two common situations where this occurs are:

74

- When the linewright decides to break the line because the line is full, it
must back up and break at the last inter-word glue.

- If there are several end hito marker links in a row, each requiring a line
break after it, the linewright should break only after the last one.
Similarly, if there are several begin hito marker links in a row requiring
a line break before, the linewright should break only before the first.

Several strategies were tried for determ'ini‘ng the exact point to break a line. The
simplest and most successful strategy involves rémembcr?ng and classilying break
points in the line as the linewright scans through the text é:hain. The break point is
the link thzit the linewright, as it scans through the text chain, has determined to be

the best-place to break the line so far.

There are four break point classes, they are, in order from lowest to highest: none,
when no pl.ac¢ to break the line has yet been seen; possible,'whcn the linewright has
encountered a link where it's possible to break the line (normally when the first
character has been encountered); desirable, when the linewright has encountered an
piece of glue (either inter-word or inter-line) at which it may break the line; and
necessary, when a link that requires a line break has been encountered (such as an

end hito marker, whose corresponding hlto requires a break after).

Each kind of link in the text chain has one of the above break point classes
associated with it. As the linewright scans through the text chain, it compares the
break point class of each link it-encounters with the break ‘point class of the line so
far. If the link is in the same or higher break point class, then the link is
remembered as the new break point, and the line’s break point class is updated. In
remembering a break point, the linewright not oniy remembers the link, but also
records the natural width, stretch, 'shrink, height, and depth of the line at that point.

There are five different kinds of links that the linewright acts on when it

encounters them in the text chain: characters, glue, begin hito markers, end hito

15

markers, and linc markers. The actions that the linewright performs on encoun-

tering cach of these links are detailed below.
Character

1. If the line is fill, then the linewright ends its scan and
breaks the line at the line’s break point. [f it is not
Sull, then the line's break point class is checked and
possibly updated: o

- [f the line’s break point clads is necessary, then
the linewright ends its scaiv-and breaks the line
at the line’s break point.

- If the line’s break point class is desirable, then
the line’s break point and associated class are
left unchanged. S

- If the linc’s break point class is possible or none,
then the character is taken to be the new break
point of the line. The new break point class of
the line is possible. '

2. The type face of the character is set appropriately.

3. The width of the character is added to the natural
width of the line. If the character’s height or depth is
larger than the line's, then the corresponding measure
of the line is increased.

Glue

1. if the line is fiu/l, then the linewright ends its scan and
breaks the line at the line’s break point. [f it is not
Sull, then the line’s break point class is checked and
possibly updated:

- If the line's break point class is necessary, then
the linewright ends its scan and breaks the line
at the line’s break point. '

76

Begin Hlto Marker

- If the line’s break point class is desirable, possi-
ble, or none, then the piece of glue is taken to be”
the new break point of the line. The new break
point class of the line is desirable, unless the
glue has the mandatory line break attribute, in
which case the new break point class is
necessary.

. The type face of the piece of glue is set appropriately.

This is necessary because the inter-word glue and
inter-sentence glue of different type faces may have
different natural space, stretch, and shrink values.

3. The glue’s natural space is added to the natural width

of the line. If justification is on, the glue’s stretch and
shrink is also added to the stretch and shrink of the
line.

. The new format environment is computed using the

inheritance scheme, which uses the old format envi-
ronment and the new hlto's class.

. One of the follbwing actions is taken, depending on
_ the conditions:

- If the new format environment is break around
or break before and the break point class is
none, then the desired line width measure is
updated; the calculation is similar to the orig-
inal one to determine the desired line width
(the width of the column containing the line,
less the sum of the left and right margins),
except that the new format environment’s in-
dention is also subtracted from the containing
column’s width. The indention value is taken
into account here because indention takes effect
on the first line of the new environment. The
desired space above the line, which is the value

71

End Hlto Marker

Line Marker

of the format environment's above attribute, is
rccorded if larger than any above value encoun-
tered in the line so far. The break point class
remains none. (The linewright also places a
pointer to the hlto in the line; this pointer is
used by Etude’s numbering system see Section
6.3.2.)

- If the new format environment is break around
or break before and-the break point class isn’t
none, then the linewright ends its scan and
breaks the line at the link before the begin hlto
marker.

-If the new format environment isn't break
around or break before, then the desired line
width measure is updated; the calculation is, as
above, the width of the column containing the
line, less the sum of the left and right margins,
less the indention. The desired space above the
line, which is the value of the format envi-
ronment’s above attribute, is - recorded if larger
than any above value encountered in the line so
far. The break point class remains unchanged.

1. If the new format environment is break around or
break after, then the lines’ break point is set to the
end hito marker link, and the line’s break point class
is set to necessary. The desired space below the line,
which is the value of the format environment’s below

- attribute, is recorded if larger thai'‘any below value
encountered in the line so far. (If the new format
environment is not break around or break after, only
the folowing step is done.)

2. The new format environment is computed.

The line marker link is added to a list of line marker links that

78

have been encountered in the line, The disposition of this list is
described below.,

At this point, when the linewright has ended its scan, it has determined exactly
where the line should end; the last link included in the line is the break point. The
linewright must now do the following thingS:

1. It must set the glue in the line. If the line is to be justified, then the glue
in the line must be expanded or contracted so the right end of the line

extends to the left margin, (If no justification is done, each picce of glue
is simply set to its natural space.)

2. It must position the line horizontally in the column. It might position
the line against the left margin, against the right margin, or centered
between the two margins; it also may indent the lme right or left away
from the left margin.

3. It must set the height and depth of the line so that it is leaded (vertical
line-to-line spacing) properly.

4. If the format environment requires extra space above or below the line,
it must leave an indication of this in the line (it is the dispatcher’s
responsibility to actually insert this extra space in the line chain).

S. It must insert a line marker link after the last link in the line, and remove
any old line marker links that should no longer be in the text chain.

Each of these operations is detailed in the remainder of this section.

How the linewright sets the glue in the line depends on whether it is trying to
justify the line. If justification is off in the formatting environment, then all the glue
in the line is set to its natural space. If justification is on, then the glue is set so that
the width of the line equals the desired line width; this insures that when the left
cdge of the line is placed against the left margin (plus any indention), the right edge
of the line will align exactly with the right margin. Actually, the linewright does not
justify the line if the break point class is necessary, which means the linewright

79

broke the line before it was full. This occurs, for example, on the last line of a
paragraph, which is normally not justified, because the glue on such a line might

have to be stretched a ridiculously large amount,

When a line is to be justified, the glue in it is set so the actual width of the line
equals the desired line width, First, the natural width of the line is compared to the
desired line width to determine whether the glue in the line should be stretched
(expanded) or shrunk (contracted). When sctting the glue in a line that needs to be
longer than its natural width, the extra space is distributed throughout all the pieces
of glue in the line. It is actually distributed proportional to the amount of stretch of
each glue; a piece of glue with a larger stretch gets more of the extra space than a
piece of glue with a smaller stretch. Similarly, when the line needs to be shrunk,

cach piece of glue is shrunk proportional to its shrink.

Consider the following example of a line with four boxes separated by three

 pieces of glue: [10]

dth3 -
width § width

width 6 width 8

O w

< ~—— width §2 : —-r

Figure 5-1: An Example of S ettmg Glue in a Line

80

The first piece of glue has 9 units of natural space, 3 units of stretch, and -1 unit
of shrink; the next onc has 9 units of natural space, 6 units of stretch, and -2 units of

shrink; the last one has 12 units of space, 0 units of stretch, and 0 units of shrink.

The natural width of the line is 52 units, the sum of the natural space of all the
glue and the width of all the characters. If we needed to make a line of 58 units, the
difference between the natural width and the desired width would be 6 units; this is
how much the glue would have to stretch. The stretch of the line is 9 units, the sum

of the stretches of each glue in the line; the line's shrink is -3 units.

Let glue.natural, glue.stretch, glue.shrink, line.naturq!, linestretch, and line.shrink
be the natural space, stretch, and shrink of a piece of glue and the natural width,
stretch, and shrink of the entire line. Let Jine.desiréd be the desired width of the
line. Let glue.width be the actual width of a piece of glue after it is set in a line.
Then each picce of glue is set according to the formuta:

glue.width = glue.natural
+ (((line.desired - line.natural) * glue.stretch) / line.stretch)
In words, the total amount all the glue in the line must stretch is distributed over

gach piece of glue, in proportion to its stretch component.

In practice, each piece of glue in a line is set individually. After a piece of glue is
set, it is considered to be of a fixed width in the remaining calculations. In
particular, its stretch and shrink components are ignored, and its actual width
(rather than its natufal space) is used in caleulating the mw;ﬁl width of the line.
Thus, the following calculations to update t:hey line’s natural width and stretch values
are performed before the next picce of glue is set: |

line.natural = line.natural + glue.width — glue.natural
line.stretch = line.stretch — glue.stretch

The glue is set piece by piece, from left to right in the liﬁe. The width of the first

81

piece of glue would be set to:

=9+ (((58 -52) * 3) /9) units
= 11 units

The next piece of glue would be set to:
=9+ (((58 - 54) * 6) / 6) units
= 13 units
Since the last piece of glue has no stretch, its width would be set to its natural
space, 12 units. The result of the glue setting operation is a line with a width of 58

units,

On the other hand, if the desired width of the}lihe was 51 units, then we would
have to shrink the glue in the line. In the case where the desired width of a line is
less than its natural width, the following formula is used to set cach piece of glue:

glue.width = glue.natural
+ (((line.desired - line.natural) * glue.shrink) / line.shrink)

After each piece of glue is set, the line’s natural width and_shrink are updated in
the following way:

line.natural = line.natural + glue.width - glue.natural

line.shrink = line.shrink - glue.shrink

Using these formulas, we see that the first piece of glue is set to:

=9+ (((51-52)*-1)/-3)
= 9 units

And the next piece of glue is set to:

=9+ ({((51-52)*-2)/-2)
= 8 units

The last piece of glue, because it has no shrink, is just set to its natural space.

82

After the glue setting, the line’s width is 51 units,

After the glue in the line is set, the lezxding—jtbe normal. space between lines—of
the line is set. The linewright leads the line by adjusling the height and depth of the
line. If the lcading attribute in the format environment of the line is larger than the
height and depth of the line just created, thenAt:he I_inc_wﬁght enlargeS vthe line’s

height and depth to equal the leading value.8

After the leading of the line is set, the lingwright then positions the line
horizontally within the column by sctting the shift. amount in the line. The
linewright sets the shift amount to position the line with respect to the left boundary
of the contqining column. It elther sets the line flush left against the left margm
flush right against the right margin, or centered between the two margins, depend-
ing on the format environment. lf the f i attnbute in the rengmng format
environment has a value of either fill or nofill, then the shift amount is set to the
value of the left margin, plus the indention value, ;f ,_tyhe Imens the first line of a new
environment. If the fill attribute has a value of flushright, then the shift amount is
set to the desired line width less the line’s actial width; this places the line flush
against the right margin. If the fill attribute is has a value of center, then the shift
amount is set to halfthe desired line width less the line’s actual width, which centers

the line between the left and right margins,

The linewright need only insert the desired space above and below the line into
the line (there are two slots in a line for this). The dispatcher takes care of inserting

the extra space in the line chain,

xl'his lcading strategy is not quite correct. In particular, it can fail when type fonts of two different
sizes appear on two successive lines. In these cases, pairs of adjacent lines must be examined and the
distance between the base lines of these two lines should be set to equal the leading; this would been
done by the dispatcher. ‘The strategy described caused no probiems, becausc all the fonts used in the
current version of FEtude arc of the same size.

83

Finally, the linewright must insert a line marker fink iato the text chain (and a
corresponding line link in the line chain) to indicate the end of the line. Before the
linewright inserts a line marker lihk into the text chztin; it che’cks to sce if there is
already one at the desired location; if there is a line marker link at the desiréd
location, it need not insert one. If the linewright does insert a line marker link, it has
changed the contents of some lines in doing so, ahd must mark the ép;)l'opl'iate lines

as changed. The details of this procedure are given below.

1. If there is a line marker link after the end of the linc already, then the
linewright does not insert a line marker link into the text chain. In this
case, the linewright has not changed. the contents of the line just
formatted (probably; see step 3 below). Also, the linewright has not
changed where the next line starts, 'so -its contemts have not been
changed. Thus, the linewright need not mark either the current or the
next line changed.

2. If there is no line marker link after the end of the line, then the
linewright must insert one there (and a corresponding line link in the
line chain). In doing so, it changes both the ending location of the line
just formatted, and the starting location of the next line. To indicate this
in the document, the I’mewnght marks the line it Just formatted as
changed, and marks the ‘next line—the line starting at the new line
marker link—as changed and unformatied. (Because the starting pomt of
the next line has changed it must be refmmatted)

3. When a new line marker]mk lm been mscm:d into the text chain, if
necessary, any old line marker links that are between the start and end of
the line must be removed from' the text chhin. As‘mentioned in the
description of the linewright's actions as it scans the text chain, the
linewright keeps a list of line marker links it'has encountered. If there
are any line marker links in the list, the lmewnght now removes each of
them of them from the text chain, and also removes their corresponding
line links from the line chain! If it removes af ofd tine marker link from
the line just formatted, the linewright marks.that line as changed..

At this point, the linewright's job is co'rhﬁletcz Tt marks the Tine it just completed
as formatted and returns to the dispatcher.

34

5.3 The Display System

As the user edits his document, the Etude system continually displays a formatted
versibn of the document. After each cditing operation performed by the user, Etude
formats the portion of the document that will be displayed on the screen. Etude
then updates the screen to reflect any changes ihat have been made to the

document,

In this section the general concepts behind the Etude display system are
described. Only those aspects that relate o the ih;eractign of display with editing
and fo:matting are discussed; this includes the re’displ‘ziy of changed lineé, and the
block move screen opération. The impl;:m,entaﬁon of these oj;;)erations is only
described briefly, because the display system is not a major focus of this thesis.
Other aspects of the display system—such as displaying on different devices,
positioning “windows” on the screen, and - positioning the document within a

window—are not discussed here. For a complete discussion, see [19].

The display system translates the internal rgprescntétion of the document into an
image on a display terminal. Analogous to the text forimtting, operation, the goal of
the display system is to minimize the amount of teXt"ﬁl‘é‘t must be redisplayed after
each operation on the document.. J uSt as thye 6bjééﬁ?e of incremental formatting is
to quickly format the minimum amount of text each time the document is changed,
the display system does incremental redisplay to updAate,.th}é aisplay efficiently.

Any line of text may have been marked changed by an editi‘hg‘opc’ration, or by
the text formatter. Such a marking indicates that the contents of the line have
changed since it was last displayed, (See Section,3{4 and pr_e’_vi‘ous sections in this
chapter for additional information on the changed attribute of a line.) If a line is
changed (and it appears on ;he screen), it must be completely redisplayed.

Those lines that are not marked changed do not need to be redisplayed. Such

85

lines, however, may have moved to a different location on the screen. For example,
if the user deletes a line of text in the document, then no lines below the deleted line
are marked as changed. Nevertheless, all the lines below the deleted line necd to be
moved up on the screen. Thus, lines that are not marked as changed must still be

examined to sce if they have moved.

If a line or group of lines have not changed, but have moved on the screen, the
display system uses the block move operation, rather than redisplaying the lines.
The block move operation ‘is an operation performed by the display terminal that
moves text from one location on the screen to another. It is faster to use the block

move operation than to send the text to the display terminal, in most cases.

The following paragraphs déscribe the implementation of incremental redisplay.
First, we describe Ftude’s model of the contents (the image) of the screen. We then
describe the process by which the screen, and Etude’s model of the screen, is

updated.

Etude maintains a model of the contents of the screen in terms of columns of the
document that are displayed. Each column of text that is displayed on the screen is

associated with a column picture,

A column picture contains information about the area of the screen in which it
was last displayed. This information is used to.implement the incremental redisplay
and block move operation. The information is organized into a table of screen
records, each associated with a line in the column, A screen record contains a
pointer to a line, and the area of the screen in which.the line was displayed. Because
the information in column pictures is organized on a line-by-line basis, if any part of
a line changes, the whole line must be redisplayed. Similarly, a block move always

involves complete lines.

To update the screen after a change has been made to the document, Etude

-

36

invokes the column picture print routine on each column picture. The column ‘
picture print routine first checks to see if a block move within the column is
possible. The routine looks through all the lines for a block of consecutive lines that
are not changed, but are at a different position on the screen. (If more than one

block is found, the block containing the most lines is chosen for the block move.)

The column print routine then instructs the display to perform the block move. It
gives the display the area of the block to move (which it computes from the column
picture's table), and the new location to. which the block should be moved. The

display itself takes care of all the details of moving the “bits” on the screen.

If a block move was done, the column picture print routine updates the column
picture’s table to reflect the new situation on the screen. Each of the old screen
records falls into one of three categories:

Unchanged A screen record that was completely contained within an un-
changed area of the screen is not changed.

Moved A screen record that was in the moved block simply has its area
of the screen updated to the new vatue.

Changed The other screen records (those that are replaced by the moved
block) are removed from the table.

The last step in displaying a column picture involves displaying all the appro-
priate lines. A line is displayed only if it is marked changed or has moved on the
screen. In order to display a line, the area on the screen that will be occupied by the
line is first cleared, and then th¢ text of the line is displayed (shifted horizontally by
the shift amount of the line). Like the block move operation, the display handles the
details of putting characters on the screen; the column picture print routine only
gives the display the focation of the first character in the fine, followed by the
sequence of characters in line. Glue is displayed by sending the amount of space to

leave blank.

87

After a line is displayed, a new screen record is created for the line and put into
the column picture's table. The line that was redisplayed is marked as unchanged, to
indicate that it appears correctly on the screen. Screen records foi- lines that were
not redisplayed (because they were neither changed nor moved) are simply left
unchanged. If an old screen record points to a line that is no longer in the
document—the line may have have been dcleted from the document—then the

screen record i1s removed from the table.

At this point, the display has been updated to reflect any changes in the outward
appearance of the document, and Etude is ready to pi'ocesé another command from

the user.

38

Chapter Six

COunthrs

Etude can automatically number components of the internal structure of a
document (hltos), such as chapters, sections, and outlines. A hlto is numbered when
the numbered attribute in its associated format envnronment is on. The hlto is
assigned a counter, and the value of the countcr is kept up- to-date automaucally by
the system. Hitos that are numbered are assigned numbers sequentnally (w1thm
their owner hlto). For example, all the sections (a numbered hlto) within a chapter
(the owner hlto), all the chapters in a document, or all the items in an outline, are

numbered sequentially, starting with number “one.”

If a hlto is numbered, Etude automatically generates and prints the number in the
style and location specified by the following environment attributes. The counter
style attribute allows the speciﬁcation of a template, which determines the way the
counter appears in the document. The hlto’s counter may be printed as an arabic
ordinal numeral, an alphabetic letter, a' roman numeral, spelled out in words, or not
printed at all. In addition, any text may be printed around the numeral. A hito may
be numbered within another hito, so that the counter of a containing hlto tay be
included when the counter is printed; for example, the numbers printed for the
sections in this thesis include the number of the containing chapter. The counter
location attribute specifies where the counter appears in the line of text. It may
appear flush left against the left margin, followed by the text of the line, the way the
sections in this thesis'are number. Or it may appear to the left of the left margin, as

the list on page 84 is numbered.

The following sections describe the implementation of the automatic numbering

89

system of Etude. The representation of counters is described, followed by a ‘

discussion of how counters are kept up-to-date, and how they are printed.

6.1 The Representation of Counters

Automatic numbering is implemented with objects called counters. Each hlto

that is numbered has an associated counter. A counter has several components:

Value An integer that is the value of the counter.

Template | A sting that specifies the counter style (the outward appearance
of the counter). :

Value String The actual text of the counter, derived from the value and the
template.

Countee The object being counted Iti is a hlto in all cases, in the current
discussion.,

Formatted and Changed flags
These are analogous to the formatied and changed flags associated
with lines. They indicate whether the line the counter prints on
needs to be.formatted or redisplayed Berause-of changes-to the
counter.

6.2 Keeping Counters Up-ta-Date

Whenever the hlto structure is changed, that ¢hange mdy affect the existing
counter structure, The operations that insert and déléte hltos from the hito
hierarchy autdmat’itfally invoke a procedure to update” all the counters that are
affected. The algorithm for updating the counter structure is conservative; it will
generally update more counters than are necessary, but itisa snmple algonthm and

works without problems in comphc'lted situdtions.

Whenever a hlto is inserted or deleted, the insiantiate counter procedure is called
on the owner of the hlto that was. just changed. Only hitos contained within the
owner of the hlto just changed could have their counters affected. The instantiate
counter procedure sequences through each child of the hito with Which it was

invoked and updates the counter associated withi each child.

In order to update the counter associated with each child hito, the insiantiate
counter procedure first gets the formatting environment for the hito. 1f the
numbered attribute is on, then it assigns the correct value to.the counter. The first
child hlto of a particuhr class is ass:gned the value "1," 1he second child hito of that
class is assigned the value “2,” and so on, for all the chtid hltﬂs

After the counter associated with each of the child hitos is up'dated the instantiate

counter pmcedme is called recursively on that child hito, so all of its child hitos are
updated. In this way, all the hltos that are potentlal]y affected by a change to the

hlto structure have their counters updated.

6.3 Formatting and Displaying Céunters

Counters are associated with hltos, and are numbered with respect to the hltos’
positions in the internal structuré of the document. In order for them to appear
when the document is displayed or printed, they must ‘be instantiated into the
outward appearance of the document. All components of the putward appearance
of the document disc‘uss'eglkso far have also béqn,cgmpohéﬁ;s of the content of the
document. Counters are different: although they «a?ré part of the outward app_ear;

ance, they are not part of the content of the docdmc;}_t, The user does not type in the

text of the counter, nor can he edit it directly (he would be able to change the way
the counter appears by modifying the format specification of the hlto in the format

data base). Because counters are not part of the text of a document, they are not

91

represented as elements of the text chain; they are represented in a special way as

part of the outward appearance, as described in Section 6.3.2.

There are three steps to making counters appear on the display. First, the value
| string of the counter—derived from the counter’s value and its template—is created.
Second, the value string is instantiated into the outward appearance of the
document in the appropriate position. Third, the display system redisplays the
counter’s value string whenever necessary, obeying the rules of incremental redis-

play. The following three subsections describe how these tasks are realized.

6.3.1 Creating the Value String of a Counter

The vatue string of a counter is the text of the outward appearance of the counter.
It is constructed from the counter’s value and its template, whenever either is
changed. The counter's value is just an integer; the counter’s template is a string

that is interpreted in a special way.

The value string is constructed from the counter’s template and value according
to the following rule. Any characters in the template that are not part of the set of
specially interpreted character sequences (listed below) are copied directly into the
value string. If any of the following character sequences appears in the template,
then the value of the counter is converted to the corresponding textual representa-

tion of the value.

@1 Arabic cardinal numbers (1, 2, 3, ...).

@1 Roman numerals in capital letters (I I, I, IV,).
@ Roman numerals in lowercasc letters (i, ii, iii, iv, ...).
@A Capital alphabetic letters (A, B, C, ..., AA, AB, ...).
@a Lowercase alphabetic letters (a, b, c, ..., aa, ab, ...).

92

@O The name, with the first letter capitalized (One, Two, Three, ...).

@o The narhe in Towerease (one, two, three, ...).

The value string for cournters can depend on the position of the counter’s
associated hito in the hlto hierarchy. An “outline,” for example, has different
numibering styles for the “items” contained within, depending on the nesting level
of the “item.” The first level of “itefrs” may be numbered with capital roman
numerals, the second level with capital letters; the third level with arabic numerals,
and so on. Ftude allows specification of such a numbering scheme in a template.
Before we can explain how to do this in Etude, we need to exblain how a counter’s

level of nesting is determined. First, we define a counter’s parent.

A counter has a parent if the class of the hlto containing the counter’s associated
hito matches the value of the within attribute of the counter’s associated hlto, and
the containing hito is numbered. If the counter has a parent, then the parent is the

containing hlto’s counter.

The template for a counter might be divided. in several sub-templates. This is
used when the style a counter prints in depends on the its level of nesting; for
example, the top level “items” in an outline are nurnbered with roman numbers,
items contained within the top level items are,humbered with capital letters, items
within these are numbered with arabic numerals, and so on. Each of these styles is
specified with a sub-template. If a counter has no parent (first-level nesting), then
Etude uses the first sub-template to compose the value string. If a counter has a
parent, but no “grandparent” (second-level n'ésting), then Ftude uses the second
sub-template. A template may contain an arbitrary number of sub-templates to
support any numbér of nesting levels of counters. (If the counter is nested deeper
than the number of sub-templates in its template, then the-sub-templates are cycled

through again. Thus, if d is the nesting level of a counter, and # is the number of

923

sub-templates in the counter’s template, then the ith sub-template is used, where i
= d mod n.) The following character sequence séparates sub-templates within a

template.

@, Separates templates for different nesting levels of counters.

A counter may use the value string of a parent counter as part of its value string.
For example, this subsection is numbered “6.3.1.” The subsection counter uses the
value of the conminihg section; the séction, in turn, uses the value of the containing”
chapter. A particular character sequence in a counter’s template is used to insert the

value string of its parent counter in the counter’s value string.

5

When a counter’s value is referenced as the parent of another counter, we may
want it to print differently than when it'prin’ts its value directly. For example, this
chapter’s number is.printed in the form “Chapter Six”; that is, the text “Chapter ”
followed by the chapter number, spefled out. The sections in this chapter, however,
are printed as “6.1” and “6.2"; the chapter number is referenced by the section
number, but is printed as an arabic numeral. Etude allows the specification of two
templates for each counter; one for when the counter is printed directly, and the
other for when the counter is refercnced as the parent of another counter. The
following character sequences in a counter’s template are used for'print'mg parent

counters as part of a counter’s value string.

@# Insert value of parent counter.

@ Separates the template for a counter printed directly from the
template for a counter printed as parent. The characters to the
left of the @} are the template for when the counter is printed
directly; the characters to the right of the @] are for when the
counter is referenced as a parent. If there is no @| in the
template, then the single template is used for both situations,

@:x Insert character x if there is a parent counter.

@:x Insert the character x if there is no parent counter.

%4

The templates for the counters associated with the chapters and sections in this
thesis are presented in the following table. These templates would be specified -as

the value of the counter style attribute for the “cha‘pter"' and “section” hltos.

Also, the value of the counter style attribute for an “outline™ hito is given. The
“outline™ hlto is not numbered itself, but it does have a value for its counter style
attribute. This value is inherited by the “item” hitos contained within the “outline,”

which are numbered, and the counter style value becomes the template for these

“items.” |
Hito Counter’s Témplate
Chapter Chapter @O@l@l

Outline @l @.@A. Q@1 Q@2 @@i.

6.3.2 Instantiating the Counter in the Dacument’s Outward Appear-

ance

The text of counters is instantiated in the outward appearance of the document
during the text forimatting process. By the time the text formatter is invoked on the
document, the text of the counter has already been created, because it is updated
whenever the value of the counter changes. The text of the counter is in the value
string of the counter; what remains to be done is o instantiaté the counter’s value

string in the correct position in the document’s-outward appearance. -

The text formatter always places the value string of a counter on the first line of
text of the associated hlto of the counter. It can put the value siring in either of two
locations on the line, as specified by the value of the counter location attribute of the

counter,

When the linewright. encounters a begin hito marker whase associated hito

95

requires a requires a line break before the hlto (the hlto’s break attribute has a value ‘
of either before or around), it places a pointer to that hlto in the line (see Section
5.2). Each line has a slot for the linewright to put these hltos in. Sinc_e only hltos
that require a line break before them can be numbered, any hlto that has a counter
can be found in the line on which the counter will print. The document display
system will check for these hltos in the lines it is displaying, and display the counter

associated with cach hito, if any.

The linewright also positions the counter within the line. It does this by sctting a
value in the line for the counter shift amount. The counter shift amount is analogous
to the regular shift amount of the line. The regular s/u'fl amount determines how
much the text of the line is shifted from the left margin of the column in which it is
printed; the counter shifi amount determines how much the value string of the

counter is shifted from the left margin.

If the value of the counter location attribute is flush lef, then the text of the
counter is placed at the beginning of the line, flush left against the prevailing left
margin. The regular text of the line is positioned after the text of the counter. In
order to get this cffect, the linewright sets the counter shift amount to the value of
the left margin of the prevailing format environment, and increases the regular shifi
amount by the width of the counter’s value string. With these settings of the shift
amounts, the counter’s value string is printed at the left margin, followed by the text

of the line,

If the value of the counter location attribute is right flush lefi, then the text of the
counter is placed flush right againSt (and to the left of) the left margin. The
linewright sets the counter shift amount to the value of the left margin less the width
of the counter’s value string; the regular shift amount is not affected. With these
settings of the shift amounts, the counter’s value string is printed to the left of the

left margin, and the right end of the value string falls on the left margin; the text of

96

the line begins at the left margin,

6.3.3 Displaying Counters

The value strings of counters are displayed whenever the line they are on is
redisplayed. This subsection outlines the modifications to the display system, as

discussed in chapter 5.3.

A line is considered to be wnformatted not only if it has been marked unfor-
matted, but also if the counter on the line—if any—is marked unformatted. Similar,
a line is considered to be changed whenever it, or the counter on the line—if any—is
marked changed. And whenever a line is marked formatted or unchanged, any
counter on the line is marked formatted or unchanged. Therefore, the formatter will
reformat and the display system will redisplay any lines whose counter has changed,

even if the text of the line has not changed.

In order to redisplay a line, the redisplay system first checks to see if there is a
counter on the line. If there is, it first displays the counter, shifted horizontally by

the counter shift amount of the line. Then the text of the line is displayed as before.

97

 Chapter Seven

Evaluation and Extensions

In this final chapter we evaluate some of the design and implementation decisions
of the pieces of the Etude system discussed in this thesis. ‘Where appropriate, we
suggest better ways to realize certain capabilities. We conclude with a discussion of
possible extensions to the existing system, which lead into a dis,cussion. of an

integrated office workstation.

7.1 The Document Representation

Etude models three aspects of a document: its content, its internal structure, and
its outward appearance; this model has worked quite well for realizing the functions
of Etude. In the current version of Etude, the content is ‘rep.i'esented with a link
structure of character and glue links, the internal structure is represented with hltos,
and the outward appearance is represented by a (iimi;ed) hierarchical boxes and

glue structure, also represented with links.

The main problem with the representation of the content is storage inefficiency.
The link structure simply uses too much space for storing each character. This limits
the size of documents that can be manipulated by Ftude. It also adversely affects
the speed of Etude, making it difficult to realize the “immediate feedback™ so
important in making Ftude easy to use. The hlto structure employed in Etﬁde,
which represents the document's internal structure, is basically adequate as it exists.
The current box structure in Ftude is only a partial implementation of a full,

consistent, hierarchical box structure, similar to what is used by the TEX

98

system. [10} Additionally, wc have found that even TEX's general model does not \

adequately address important page layout issues.

Instead of using the link structure to represent the content of a document, we
could use an array structure. Arrays are more efficient for storing characters than
links, because arrays do not have the overhead of previous and next pointers that
links have. It is more difficult to insert and delete characters from an array

structure, so the implementation of the editing operations.would be more complex.

The existing version of Ftude does not support a general hierarchical structure of
outward appearance components: lines can contain only characters (and glue), while
columns can contain only lines (and glue). Both lines and columns, however, are
boxes, and should be able to be components of other lines and columns. The TEX
system has this capability, and uses it to represent the appearance of complex

mathematical formulas.

Representing the content of a document could be combined with representing its
outward appearance, both using the same array structure. If we store the compo-
nents of a line or a C:OhImr_l in an array, and allow the components of the array to be
characters, glue, lines, and columns, then we have a general hierarchical structure.
Note that we would not need a separate structure fo represent the content of the
document; the characters making up the content could be obtained from the line
arrays. Although it would be more difficult to “walk through™ this hierarchical
array structure to determine the content, such a representation both saves storage

space and is completely general.

A new type of box, tentatively dubbed a page box, could be implemented for
laying out pages. There are situations where horizontal and vertical lists of boxes
(lines and columns) are not natural constructs fo; page layout. A page box would

allow arbitrary positioning of component boxes within a larger box. For example, a

9

page in a document might have several columns of text, several cutouts for pictures,
and a running header. A page box would allow these component boxes-—columns
(for the text), lines (for the header), and glue (for the cutouts)—to be directly
positioned on the page, either absolutely or relative to other boxes. Although a
structure with the same appearance could be build out of a general hierarchly of line
and column boxes, it would be more cumbersome to do so, and much harder to
manipulate if the page layout was altered. Although page boxes woLlld mainly be
used for page layout, they would also be primitive boxes, and would be ablé to be
placed anywhere in the hierarchical box strsucture.‘ If a page box was a good
representation for a complicated piece of a mathematical fprmula or table, then it

could also be used for them.

The line and column arrays must be able to have arbitrary.objects inserted as
components. We have this already to a limited extent in .Etude",s text chain, which
allowsfhlté marker-links (and other kinds of links) to Be included'in the chain; line
and column arrays would also allow this. For example, a ‘useful object to insert in a
document would be a cross-reference marker, Like the Scribe system, Etude would
insert the reference into the document and keep ‘it up-to-date automatically. A
current date marker would instruct Etude to insert the current date into the

document (possibly offering a selection of styles).

An important feature lacking in Etude is the ability to simulate the appearance of
a document formatted for one device on another device. The original design of FEtude
.says that we should be able to “preview” on the screen how the document would
look if printed. A device-independent document representation would provide this
éapability. With such a representatioh, any device driver routine would be able to
interpret the document representation and print or display it, within the limitations
inherent in the device. We have this to a limited extenit in Ftude, where a character

in italics prints underlined on a display that doesn’t have an italic type face. The

100

main problem in the existing implementation of Etude is that the the document is
formatted for a device of a particular resolution, and thus cannot be printed on a

device with a different resolution.

In a reimplementation of Etude, the docilment would be formatted for a
particular device—the intended output device—and a simulation could be printed

on another device—normally the display screen. This requires that;

- For each type face available on the output device, there will be a
corresponding type face for each simulation device that approximates
the appearance (the size and shape) of the type face of the output device.
If an Etude document was normally printed on a particular electronic
printer, we would have to create a type face for Etude’s display for each
type face available on the electronic printer. (This would be a difficult
and time-consuming task because the simulation device—the display—
would normally have a lower resolution than the output device.)

- Glue would not be set by assigning it a particular, device-dependent
value, as is currently done. Rather, the formatter would specify the total
amount the glue in the line (or column). needs to shrink or stretch. It
would be the responsibility of the device driver routine to calculate a
particular size value for each piece of glue. (This scheme would also
reduce the storage requirements for ghie, because a glue's size would not
need to be stored for each individual piece of glue.)

With these changes we would be able to display a good approximation of the

document’s true appearance.

7.2 Formatting

We have evaluated and described improvements to the representation of the
document; now we evaluate the formatt.ing ‘capabvilities of Etude. The implemen-
tation of Et.ude generally meets the goal of providing hos,t typogfaphic capabiliti&s
for formatting galleys of text. Two basic capapilitie_s are missing, though: the ability

101

~ to produce super- and sub-scripts, and the ability to use type faces of several sizes.
The formatter cannot produce super- and -sub-scripts because .the document
representation is not able to represent such a caonstruct; once they could be
represented (see the discussion above), the formatter could produce them. The
formatter was built to handle multiple sizes of _type,‘but this‘czlpzvxbility could not be

tested because none of our display devices could display different sizes of type.?

The formatter could be improved in the way it breaks paragraphs into lines, and a
hyphenation facility could be incorporated into the system. The TEX formatting
system is sophisticated in these respects:

When the end of a paragraph is encountered, TEX determines the “best” way to break
it into lines. In this respect, TEX gives beuer results than most other typesetting systems
[including Etude], which produce cach scparatce line of output before beginning the next,
because the final words of a TEX paragraph can influcnce how the lines at the beginning
arc broken. TEX’s ncw approach to_this problem requires only.a litde more

computation than the traditional methods, and lcads to sngmﬁcantly fewer cases in which
words nced to be hyphcnatcd

TEX’s approach to paragraph breaking and hyphenation could be incorporated into
the Etude system; the only potential problem is that we may not be able to satisfy
Etude’s requirement of real-time formatting with it, becauise ‘it may require too

much computation.

The Etude formatter should be extended to handle the layout of complete pages;
we sketch here how this would be done. Formatgqg may be broken down into two
activities, text composition and pagination. Composition is the process of setting the
text of a document into galleys of type. Pagination is the art of page makeup, of
arranging the columns of text and other do¢ament components, suich as itlustrations

9Actually, we were able to test this capablhty of the formatter toa llmltcd cxtent, and it did work.
The only problem was that lincs were sometimes not leaded corréctly; as explained in Section 5.2,

102

and fofios, into finished pages. Pagination, as used here, subsumes and integrates
three aspects of the overall document production process that have traditionally
been handled as separate activities;

Pagination The selection of page breaks, and the selection of folio style,
placcment and value for each page. '

Makeup The arrangement of composed type into pages, and the insertion
of folios, running heads, and inserts vin accordance with a design-
er’s layout specifications. '

Copyfitting Determining the amount of 'space required to set a given amount
of text, and the adjustments involved in making the text fit the
space it is to be printed within. :

The basic design problems to be handled include: dcsign of an appropriate
internal representation for a fully formatted document; design of a layout specifi-
cation language to guide the system as it paginates a document; and the design of a
set of algorithms to manipulate the internal document representation in order to

achieve copyfit within the layout specification.

Other extensions associated with the formatting capabilities of Etude include:
conversational formatting, in which the systém prompts the operator to providt: the
components of the document being constructed; and an interactive analogic
subsystem for creating or changiﬁg format definitions, with which the user could
modify the format data base not by editing its text, but by indicating through

examples the kinds of format structures desired.

7.3 An Integrated Office Workstation

A number of other document productiori facilities may also be integrated with
Ftude. These include an Ftude extension for generating business graphics, such as

tables and bar graphs. As in Etude, the, operator would describe the desired

103

structure in high-level terms, providing a minimal amount of information; the
system would then display a proposed candidate, which the operator will be able to
modify. Other tools include a document analysis system, including a spelling
checker and a syntax/punctuation/style checker; both of these would be integrated
with the document processing system and would be available interactively. A
reference and bibliography system could interface with an on-line bibliographical
data base, providing an on-line search capability for this data base and a mechanism

for automatic generation of appropriate references.

An integrated office workstation is more than just a collection of office tools. It
must provide consistent user interfaces to the tools, uniform data structures
underlying them, ready context switching among them, and a supporting infra-
structure. We believe that there will be different versions of such a workstation for
different classes of office personnel, such as clerical workers, professional, and |
managers. We also believe that a small set of fundamental capabilities form the
underpinning of all the facilities to be provided in these various contexts. These
include a text processing system (such as Etude), an office data base management
system, an image handling system, and a communications mechanism. Out of this
collection of tools can be built virtually any office application system. We will first
have to identify the functions and facilities that these basic components should
provide, and then design the common base of software that will underlie all of them.
For example, an office data base system differs in a number of important ways from
more conventional data base managers. It must be able to cope with multiple modes
of data, including text, graphics, and images. It must deal with non-uniformly
structured data, and must support very easy entry and retrieval of data. We view the
office data base system as a universal filing system for all the documents and
information bases used in the office, as well as a gateway into corporate data base
systems. A variety of generic and specific office applications would be built on top

of these basic building blocks. Among these would be an electronic mail system, a

104

forms handling system, a calendar manager, and a personnel tracker.

105

[1]

[2]

B3]

[4]

[3]

[6]

References

Anderson, Tim.

ETUDE Architecture.

Working Paper WP-022, Massachusetts Institute of Technology Laboratory
for Computer Science, Office Automation Group, June, 1980.

Canning, Richard G.
Word Processing: Part 1.
EDP Analyzer 15(2), February, 1977.

Canning, Richard G.
Word Processing: Part 2.
EDP Analyzer 15(3), March, 1977.

Good, Michael.

Notes on the Etude User Interface Structure.

Working Paper WP-016, Massachusetts Institute of Techno]ogy Laboratory
for Computer Science, Office Automation Group, October, 1979.

Good, Michael.

A Programmer’s Guide to Etude.

Memo OAM-014, Massachusetts Institute of Technology Laboratory for
Computer Science, Office Automation Group, April, 1980.

Good, Michael.

Etude and the Folklore of User Interface Design.

Memo OAM-018, Massachusetts Institute of Technology Laboratory for
Computer Science, Office Automation Group, July, 1980.

106

71

[81

9

[10]

[11]

[12]

[13]

e T T T R e e mem - el T T L T T Lo inad

T

Goodstein, David.
Output Alternatives.
Datamation 26(2):122-130, February, 1980.

IIson, Richard.
An Interactive Editor and Formatter.

-~ Working Paper WP-004, Mmswchusmtsl Institute. of Technok)gy Lab@ratory

for Computer Science, Office Automation Group, .lwe 1979.

lIson, Richard.
Recent rescarch in text processing. ‘
Words %(1).32-34; 52-54, June-July, 1980.

Knuth, Donald E. ' v
TEX and METAFONT: New Directions in Typesetting,
American Mathematical Socicty and Digital Press, 1979.

Liskov, Barbara, et al.

CLU Reference Manual.

Technical Report 225, Massachusetts Ixastxtme of Technology Laboratory for
Computer Science, October, 1979,

Niamir, Bahram.

The Configuration of the Nu Terminal.

Working Paper WP-009, Massachusetts lnsmute of Technology Laboratory
for Computer Science, Office Automation Group, July, 1979.

Niamir, Bahram.

The Editor System Display Device.

Memo OAM-009, Massachusetts Institute of Technoiogy Laboratory for
Computer Science, Office Automation Group, August, 1979,

107

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Niamir, Bahram,

A Virtual Terminal Tnterface for Text Processmg Applications.

Memo OAM-011, Massachusetts Institute of Technology Laboratory for
Computer Science, Office Automation Group, December, 1979.

Office Automation Group.

Annual Progress Report. ’

Memo OAM-007, Massachusetts Institute of I"echnology Laboratory for
Computer Science, Office Automation Group, June, 1979.

Office Automation Group.

Annual Progress Report.

Memo OAM-017, Massachusetts [nstitute of Technology Laboratory for
Computer Science, Office Automation Group, June, 1980.

Pratt, V. R.
DOC Manual.
Massachusetts Institute of Technology, 1979.

Reid, Brian K. and Janet H. Walker.
Scribe Introductory User’s Manual.
Second edition, 1979.

Rosenstein, Larry.

The ETUDE Redisplay Implementation.

Working Paper WP-021, Massachusetts Institute of Technology Laboratory
for Computer Science, Office Automation Group, April, 1980.

Schoichet, Sandor.

Page Makeup in Etude.

Working Paper WP-020, Massachusetts Institute of Technology Laboratory
for Computer Science, Office Automation Group, April, 1980.

108

[21]

[23]

[24]

Seybold, Jonathan.
Atex—Part I The Atex-8000 as a Commercial System,
The Seybold Report 6(5), November, 1976.

Scybold, Patricia B.
Wang’'s 10A, 20 & 30 Word Processing Systems.
The Seybold Report on Word Processing 1(1), February, 1978.

Stallman, Richard M.
Emacs: The I xtendible, Customizable, Self-Documenting, Display Editor.

Technical Report 519, Massachusetts Institute of Technology Artificial Intel-

ligence Laboratory, August, 1979.

Alto User’s Handbook. -
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA,
94304, 1979.

109

