
MIT/LCS/TR-253

AN INTffiRATED APPROACH 'IO FORMATI'ED

DCUJMENT PRODUCTION

Richard Ilson

This blank page was inserted to presenie pagination.

Cambridge

An Integrated Approach to

Forn1atted Document Production

by

Richard !Ison

l\Iassachusetts Institute of Technology

Laboratory for Computer Science

Massac husctts 02139

This empty page was substih1ted for a
blank page in the original document.

An Integrated Approach to
Formatted Document Production

by

Richard llson

Submittedto the
Depai1ment of Electrical Engineering and Computer Science
on August 8, 1980 in partial fulfillment of the requirements

for the Degree of Master of Science

Abstract

Recent advances in printing technology have reduced the cost of typeset quality
printers. Unf011unately, the production of attractively fixmatted documents re
quires typographic skill and special training on computer-based text processing
systems. In response to this situation, we have developed the Etude text processing
system. The principal characteristics of Etude are that it embodies substantial
typographic expertise, and is based on concepts familiar to untrained users.
Fu11hermore, Etude provides a real-time display facility that allows the results of
editing and formatting operations to be seen immediately. Tlrns, Etude suppo11s the
entire process of producing decorously formatted documents.

Thesis Supervisor: Michael Hammer
Associate Professor of Computer Science

Keywords: Document Processing
Office Automation
Text Editing
Text Formatting

©Massachusetts Institute of Technology 1980

This empty page was substih1ted for a
blank page in the original document.

Table of Contents

Chapter One: The Etude Text Processing System 6

1.1 "Ease of Use" Problems and Etude's Solutions 8
1.2 Software Architecture 11
1.3 An Overview of the Research Tasks 13
1.4 Thesis Organization 18

Chapter Two: Survey of Related Work 19

2.1 Emacs 20
2.1.1 Functionality 20
2.1.2 User Interface 22

2.2 DOC 23
2.3 Wang 24
2.4 Scribe 25
2.5 TEX 31

2.5. l Overview 31
2.5.2 Functionality and Internals 32
2.5.3 User Interface 34

2.6 Atex 34
2.6.1 System Features 34

2.7 Bravo 36
2.8 Conclusions 37

Chapter Three: A Model of the Structure of Documents 39

3.1 The Representation of a Document's Content 43
3.2 The Representation of the Internal Structure of a Document 44
3.3 The Representation of the Outward Appearance of a Document 48

3.3.1 Boxes and Glue 49
3.3.2 The Outward Appearance Hierarchy 52

3.4 Representing Changes to the Document 53

Chapter Four: Formatting Environments 59

4.1 Distances 60

3

4.2 Environment Attribute~ and their Values . . 62
4.3 Fonnat Specifications and Inheritance 65

Chapter Five: Text Formatting and Display 69

5.1 The Dispatcher 71
5.2 The Linewright 72
5.3 ·n1e Display System 85

Chapter Six: Counters 89

6.1 The Representation of Counters 90
6.2 Keeping Counters Up-to-Date 90
6.3 Formatting and Displaying Counters 91

6.3.1 Creating the Value String of a Counter 92
6.3.2 Instantiating the Counter in the Document's Oittward Appear- 95

a nee
6.3.3 Displaying Counters 97

Chapter Seven: Evaluation and Extensions 98

7.1 The Document Representation 98
7.2 Formatting 101
7.3 An lntegrated Office Workstation 103

4

Table of Figures

Figure 3-1: A Box and its Associated Measurements 49
Figure 3-2: A P011iun of' the Content, Internal Stucture, and Outward 54

Appearance or a Typical Document
Figure 5-1: An Example of' Setting Glue in a Line 80

5

This empty page was substih1ted for a
blank page in the original document.

Chapter One

The Elude Text Process.ing System

Recent advances in printing Lechnology have reduced the cost of typeset quality

printers. Unfortunately, the production of attractively formatted documents re

quires typographic skill and special training on. computer-based text processing

systems. In response to this situation, we have devclopco the Etude text processing

system. The principal characteristics of faude are that it embodies substantial

typographic expertise, and is based on concepts fa111iliar to untrained users.

Furthermore, Etude provides a real-time display facility tha:t allows the results of

editing and formatting operations to be seen immediately. Thus, Etude supports the

entire process of producing decorously formatted documents.

An office is made up of persons with a variety of skills, many of whom are

involved in producing documents. Secretaries are responsible for typing and

changing documents according to the wishes of professioitats ii1 the office. Compu

ter-based text processing systems, known as "word processing systems," assist the

secretary in these activities by making it easier to type a doc1.nnent initially, and

change it as necessary. In order to use word processing systems, a secretary must

undergo a training period on the system,, duringi which· tiwe he cannot be fully

productive. The training prQGess m~y be frequently repea~ed. over time, because of

the rapid turnover in the clerical labor market. The profcsajof)al in the office, who is

responsible for the content a{ doc~ments, often <;annot use ~:word processing system

because he cannot inv~t the time to learn the syst~m. The ,problem is compounded

by the fact that professionals, unlike secretaries, would be intermittent users of a text

processing system; a complex system, which requires steady and frequent use to

6

develop the ex pc11ise needed to use it effectively, is not of great value to the office

professional. Today, therefore, professionals rnrely use word processing systems.

Because of an anticipated shortfuU ht the available population of office support staff,

and because of the benefits that derive from direct use of advanced office systems, it

is important that professionals be able to make effective direct use of automated

office tools. By being simple to learn and easy to use, Etudc addresses the needs of

both office professionals and office support personnel.

By supporting the production of typeset quality documents, Etudc goes beyond

being merely an easy to use word processing system. Etude exploits the recent

advances in printing technology, such as "dry" photo-typesetters, and electronic

printers, using either dot matrix, ink jet, or laser technology. Electronic printers are

characterized by their ability to print an unlimited variety of shapes at arbitrary

positrons on a page. The shapes printed are normally text characters in different

type styles and sizes. In this respect, electronic printers are as capable as typesetting

machines. although the output quality-in terms of resolution or sharpness-is

somewhat lower. In addition, the shapes might be as complex as a drawing,

logotype, or picture. Electronic printers are fast; the Xerox 9700 can print two pages

a second. [7}

Although typesetting improves the appearance of a document, the advantage is

more than aesthetic: a typeset document is easier to read and understand. It also

requires less paper than its typewritten counterpart, thus redudng printing, copying,

and· mailing costs. Bemuse electronic printers can print a (low resolution) typeset

page, they share all these advantages of typesetting. Unfortunately, the advantages

offered by these printers are accompanied by some draw~acls; complicated format

ting instructions and aesthetic considerations are required to produce a typeset

quality page. A system that allows a user without typographic skiJls to easil)'

produce decorously formatted documents would hasten the acceptance of electronic

7

printers in offices. Elude, with its emphasis on integrating a text formatting facility

into an easy to use system, directly addresses the issues and problems raised by the

new printer technologies.

1.1 "Ease of Use" Problems and Etude's Solutions

In order to develop a system that is truly easy to use, it is first necessary to

understand and identify the factors that make some text prixessing systems difficult

to use. One problem is the low-level and detailed nature of the interface through

which an operator communicates with the system. In rn~ny s._ystcms, the user must

express himself in great detail, using te1ms that are unnaturnl to him and to his

application. This is particularly pronounced in the ca~ of formatting systems,

which require the user to be an amateur typographer in o~der to produce a typ~t

quality document. The operator must invest a substantial amount of time and effort

to manipulate the format commands of a document; the complexity of the interface

to the formatter raises the cost of producing documents. Also, the average office

worker does not usually possess the judgment and training needed to effectively use

the capabilities provided by electronic printets. Providing these operators with a

low-level command language with which to control such devices is' a prescription for

the production of ugly documents.

Both the editing and fonnatting functions of Etude allow a user to express himself

in terms that .are natural to him and his task. For editing. Etude has an "English

like" command structure, in whic,h famili~r primitives a{e combined to make .
. ' ,l -

commands. A typicA] command has the form:, action /(option110 modifier I object.

An action could be delete or copy; a modifier (;Qµ]p be next .qr a nuniber, like 3; and

an object could be w.ord, line~ or paragraph. Thus. typical commands arc: delete 3

words and copy ncx~j)aragraph. The most comwon primitivesare directly available

8

.• " i' '~-",,

as special keys, and are logkally grouped together.

The typical user or Ftude does no direct formatting of his document, in the sense

or pro\'iding low-level commands to the system selecting type faces, the spacing that

is to be used, margins, and the like. Rather, the user merely identifies and names

the components of the document in terms of the fomil'iar~tructurcs of conventional

office documents. For example, the operator might identify the document on which

he was working as a lcuer. indicating within it the return address, the address, the

salutation, the body, and so on; within the body, he woutd indicate the paragraphs

and any other constituent structures that he needs. Etude utilizes a data base of

fomrntting information to construct fonnattcd documents in keeping with the user's

specifications. Substantial formatting expertise is embedded in this data base, which

can be modified or extended as needed, to conform with the requirements of

individual offices and the people who work in them.

A second major problem is the delayed feedback loop implicit in contemporary

"batch" formatting systems. Jn these systems, the operator inserts formatting

commands in with the text of his document; after he concludes editing this text, he

reprocesses it with a formatting system, and then prints the result. This delay

considerably encumbers the process of constq1cting a document with a desired

appearance. Also of major importance is what we caU the "anxiety factor."

Conventional computer-based systems of many kinds do not give the operator a

feeling of security and control. Often" a long time must elapse before the operator is

sufficiently expert with the system to feel truly comfortable with it. Until then, the

user feels as though he is walking a tightrope while wearing a blindfold. Because of

the often obscure n~ture of the interface with- which he is presented', he cannot fully

anticipate the consequences of the actions that he perlhrtns. This leads to feelings of

tension and uncertainty. Specifically, the user develops a fear of committing an

unrecoverable error, and thereby becomes overly timid and cautious in his dealings

9

with the system.

Etude responds immediately to commands issued by its user. Display-based

word processing systems achieve this goal by showing the user the results of his

commands right away on the screen, making these word processing systems

significantly easier to use than their non-display predecessors. Because Etude

integrates editing and formatting into a single system-unlike word processing

systems-it shows both the content and appearance of a document on its display.

The operator sees and manipulates a fully formatted version of the document, one

that represents a final image of what the document would look like if it was printed.

This includes multiple type foces and sizes, variable leading (inter-line space), a

variety of page layouts, and other capabilities typically associated with typeset

documents. The purpose of providing this interactive. "real-time" formatting

facility is to reduce the feedback loop, so that an operator specifying the appearance

of his document will not have to wait until the output is. produced by a printing

device to detcnnine if its appearance is suitable; he,can see it right on his screen. If

he is in the midst of an operation he does not wish to complete, the cancel key may

be struck. An undo key is provided to enable the operator to rolJ back actions

already completed, whenever an action yields.an undesirable, result. These facilities

provide an operator with a secure feeling. encouraging ex.perimentation and an

incremental learning process.

A third significant problem is that even if a system is easy to use, it is often very

difficult to learn. The learning process is frcq~cn,~y ,n'?Jtincremental: jn order to

perform any significant work, the operator must learn an extensive body of

commands and features. Usually, it is not possible fof the operator to develop a

simplified model of the operation of the system, one which utilizes a smaller set of

features. Instead, a full conceptualization and understanding of the system's

capabilities is required, even to employ just a rudimentary set of commands.

10

Moreover. the transition from novice to experienced user is not a smooth ooe in

most contemporary systems. On one hand. a system that makes extensive use of ..
prompting, menus, and other such devices in order to simplify the use of the system

for new users is likely to be extremely cumbersome for the same user once he has

dcn:lopcd some familiarity with it. On the other hand., it is diflkult for someone to

become an expert on a system that is tailored to experienced users. In short, there is

often a conflict between case oflearning and case of use.

The user interface of the Etude system addresses this. issue. Etude's working

environment allows the user to control lll~ amount of supeDOFt he is given. Help

information and menus are avartablc should the operator need then1; furthermore,

they are optional, so all experienced user is not buhliened with them. The operator

can push the lwlp key after any other key, and· recei~e aR ,~xpfanation of the first

key's function. He may atso touch the help key: whene~er. he· is confused ot

uncertain; Etude then explains'. the current ·sitJAtatioo to•the \18er:. telling him how he

got ittto the situation and what he may do next. W:hen:tbis·e)Qpbmatory material is

displayed on ,the screen, the user's work doosi not disapp_~r complewly. so he will

Rot fear he hns."lost" anything. At any time:. du!opeQter eoa bit·tBelltl to see a list

of the alternaHves available to him at,that time. Uke:llelp; these menus are context"'.

dependent,· showing <;>.nJy currently meaningful ·alternatives, but they lack the

explanatory text that comes with help.

1.2 Software Architecture

A partial implementation of Etude, 1 which .focµsed on exploring some of the
' ';:'. ," ' '

1"Etudc" was chosen as the name for our first iriiplcmenta.tion effort bc'causc it was our practice
exercise in buildi11g a ·rather complex text ~csmfil: SJStemt 1Etudc ti Jift Easy To Uso J:)fiplay
Editor, for those who like acronyms.

11

more difficult implementation issues, was done using the CLU programming

language [11], and forms the basis of the discussions in the remainder of this thesis.

In this section we present a brief description of the software architecture of the

entire Etucle system.

ll1c implementation of the Etude system is divided into two parts: the user

interface and the ediror / formaller /display. ll1e user inlerface is responsible tor

parsing the keystrokes entered by the user, interpreting them, and then invoking the

appropriate internal operations to realize the desired function. Most of the time a

function of the cdilor, which is responsible for making changes to the document, is

invoked. If the user's command does not involve changing the document, the user

i111erface handles the function directly: this is the true for help, menu, and cancel

functions. After the appropriate internal operations have been performed, the user

inlerface updates the session s1a1e, which is a record of what actions have been

performed, mainly for the purpose of implementing help and undo. The formaller,

which reformats the regions in the document that have been changed (and appear

on the screen), is then invoked. Finally, the display system is invoked, and it

updates the screen image to reflect any changes made to the document. In the

remainder of this section, we walk through several simple scenarios.

If the user types a text character, such as "i," when he is not in the midst of

another command, the character is simply inse1ted into the document. The user

interface instructs the editor to insert the character "i" into the document, and then

updates the session state to indicate that the character was inse1ted. Tbe user

interface then invokes the formatter, which reformats at least the line the "i" was

inserted into, and possibly more (if the line "overflowed"). 111en the user interface

asks the display system to update the screen. The display system redisplays at least

the line containing the new "i"; again, more lines may be redisplayed if the insertion

of the "i" causes changes on other lines in the document. After all these operations

12

arc completed, the user interface waits for more keystrokes from the user.

All changes to the document follow this same basic pattern. A more complicated

command, such as delde J lines, requires additional work from the user i111c1face to

parse the command, to invoke more general operations of the editor, and to record

the operation in the session state. Thi..! operations of the formal/er and display

system remain essentially the same, although larger regions of text may need to be

reformatted and redisplayed.

The user inte1face handles a help request by examining the session state, and

constructing a temporary document containing the text of the help information. It

allocates an area on the screen to display the text of the help information, then calls

the fonnauer and display system on this temporary document, which results in the

appearance of the help information on the screen.

1 .3 An Overview of the Research Tasks

f n this section, we present an overview of the work described in detail in the

remainder of this thesis. This overview serves to motivate the remaining chapters,

and gives the reader a context for understanding the work, as each component of the

system is presented individually.

1he focus of the work described in this thesis is the formatting of the text of

documents, and the inte~relationship between the formatting, editing, and display of

a document. The design of the text formatter reflects the principal goal of the

overall Etude system: to have it be simple to learn and easy to use. To achieve this

goal, the formatter accepts high level formatting commands, and is interactive:

1. The user defines the format of his document by specifying the type of
the document (e.g., "report" or "letter") and labeling portions of text
(e.g., "quotation" or "chapter title"), rather than by specifying low-level

13

------ ---- - -- --

typographic commands. The formatter must interpret these specifi
cations. and format the text appropriately.

2. As the user is editing and formatting his document, the Etude system
continually displays a representation of how the document would look if
it was printed. This requires the formatter to perform "incremental
formatting," i.e., to be able to quickly reformat only portions of the
document that both will be displayed on the screen and also need
reformatting.

This thesis presents a solution to the problem of how to build and structure a system

that meets these requirements.

A major problem to be solved in implementing the editor/formatter is defining

the representation of the document. In addition to its content, a document in the

Etude system has two additional aspects: its internal structure and its outward

appearance; each of these aspects, described below, are included in the document

representation.

- The content of the document is a linear sequence of text characters; it is
set by the user as he creates and edits his document

- The hierarchy that represents the internal structure of the document is
built by the user as he creates and edits the document. At the root of the
hierarchy is the document (e.g., report). Contained within are the
document components (e.g., chapter, section, paragraph). At the bottom
of the hierarchy are sentences and words.

-The hierarchy that represents the outward appearance of the document is
built by the text formatter. The root of this hierarchy is the document,
which is divided into pages, then columns. then lines.

Both the internal structure and outward appearance of a document are modeled

by hierarchies. Each aspect forms a strict hierarchy taken by itself, but the two

cannot be combined. For example, a paragraph (internal structure) might be

completely contained within a page (outward appearance); a paragraph might

14

extend over two pages, with neither one containing the other;. or a paragraph could
' ' . .

extend over several pages, so that the paragraph would corhpletely contain a page.

In using Etude, the user builds the internal structure of his document by

identifying all the components, such as chapters, pi)ragra~bs. quotations, numbered

lists, and italicized phrases. Most of the· components of the, document's internal

structure have forrnut spedficatief\-s ass0oiated with them. Each such specification

includes a number of format parameters, suc11 as the type face, leading, and margins,

that are appropriate for the document coml'onent.

However, the format parameters may only partially specify the formatting

enw·ronment or a piece of.text. The formatting envitonrnent is a total specification of

all the typographic parameters in force at any point in the document. For those

format specifications that do not completely specify the formatting environment, the

desired value fur the unspecified parameters is derived from other format specifi

cations. For example, the size of type normally used for a "quotation" is slightly

smaller than the type used for the body of the document; a format specification for

the size of type for a quotation would specif)• the· vafoe relative to the type size of the

containingtext, rather than specifying an absolute ty,;pe size .. Thus, the actual size of

type for a quotation would be derived from other components that contained the

quotation.

The components of the outward appearance hierarchy are assembled automat

ically by the system, based on the fonnat spedfitatiOns associated with the

document class and the inter.nal structllfe components. The .units that are assembled

are called boxes. Representing the outward appearance of a document in terms of

boxes was first done by Knuth in.his text formatter TEX. Knuth describes how he

assembles boxes to produce a formatted document:

The main idea of TEX is to construct what I call boxes. A character of type by itself is
a box, as is a solid black rectangle; and we use such "atoins'; to construct more complex

lS

boxes anatogous to "molecules," by forming horizontal or· \'Crti,al lists of boxes. 'lbe
final pages of text arc boxes made out of lists of boxes made out of list~ of boxes, and so
on down to the indi\'idual characters and black rectangles, which arc not decomposed
further. .. The indhidual hoxcs of a horirnnt<1l 1ist or a vertical list arc separated by a
special kind of elastic mortar that I call "glue." (10]

These concepts are modified and extended for ~he Etude system. For example,

some boxes will need to contain special information so that they may be incremen

tally formatted and redisplayed.

As the user of Etude cteates and edits his document, he modtfics its content and

the internal structure. The representation chosen: for these t~o aspects must provide

operations to insert and delete characters from the content, and to create and

remove components of the int~rnal structure.

As the user changes the document, the display must reflect the changes. The

display system is responsible for keeping the screen's display consistent with the

document as it is being edited. When redispiay is required, the user interface

invokes the formatter on the text that will appear OR the screen, then the newly

form'1tted text is displayed In order for the documeiit to be reformatted and the
,· , '. ' ,'.

screen to be redispJayed immediately after each change,. tQ the document, the

amount of work {computation) dpne for eacq of these op~rati,q>ns must be mini7

mi zed. i: ..

.. · When the document is changed, the nature. of the change ,is "~yzed v.{ith respect

to what portion of the te~t needs refonnattingaud1Qi~.apprt>priate portion of text is

marked wtformatted. For eKample; if a c~r is m.~. into the document. the

line that the. character wa$ ·· inserted in is ·(no tonger · fb1intatted. The formatter

examines the portion Qf text it was a$ked ·t~· fo~--iF~~·~aliy the text that will

appear on the screen--and fonnats only the:~xt:tn the:~ioo,tflat is unformatted.

As the formatting is done, the formatter marks the porti~ns of text that have been

16

changed, to indicate to the display system what text needs to be redisplayed. The

display system then examines the text, and displays all the text that was marked as

changed.

·n1e following list summarizes the capabilities of the fonnatter; all of the

following are attributes of the formatting environment

Left and Right Margins

Line Layout

Justification

Type Face

Leading

Indention

Break

TI1c left and right margins of the text to be formatted.

Specifies how the formatter ,shoukl format iodividual lines. It
muy flush the text against the left or right margin, or center the
text between the margins.'

If justification is on, the formatter produces justified (straight)
margins. If it is off, one margin (usually the right margin) is
ragged.

Specifies the type face the text should appear in.

The inter-line spacing of the Jines oftext

TI1e amount.of space that~ first line of the document compo
nent should be indented. A positive number results in a
paragraph-style indention, while a negative rtumber results in a
hanging indention.

How the first and last lines of the document component should
be handled. The document component may require a line break
both before and after it, only before, only after, or neither.

Above and Below The vertical space preceding the· first line, or following the last
line; of the document~mponent

Numbering A document component, such as a section, may be numbered. If
it is number~. the location and ,Style (for ~xampl~~ arabic or
roman) of the. number are spediiect. (When a numbered docu·
ment component is inserted 'or deleted, all document components
whose numbers are chalJged are au.tQm~lly upcU,lted.)

In order to format a region of text, the· formatting environinent for the text must

17

be derived. The internal structure hierarchy is used to obtain this formatting

environment. This is done by retrieving the format specifications associated with all

the document components that contain the text to be tbrmatted, and using an

inheritance scheme to derive the pa1ticular local formatting environment from this

set of specifications.

1.4 Thesis 0 rganization

rn Chapter 2, we present a survey of existing text processing systems, and describe

how they relate to the Etude system. Chapter 3 presents our model of the structure

of documents, as used by the Etude system. lt addresses the issue or integrating the

content, internal structure, and outward appearance of a document into a single,

easily modifiable structure. Chapter 4 describes the attributes that govern the way

Etude formats a document, and also explains how Etude determines the formatting

environment for a region of text in the document. In Chapter 5, we tell how the text

formatting and display systems work, emphasizing their incremental reformatting

and redisplay capabilities. In Chapter 6 the automatic numbering system of Etude is

described. Lastly, in Chapter 7, we evaluate the implementation of Etude, and

suggest avenues for improvement and extension.

18

Chapter Two

Survey of Re~,~'.ted Work

In this chapter we give an account of several sophisticated text processing systems

in use today. Computer-based text editing and formatting systems have been used

at M.LT. for years, and we describe some of these systems.'·' lt is important to note

that these systems were generally d~signed to be .used by computer professionals,

rather than by office personnel, who will be using Elude. Thus. it is also necessary

to examine commercial text processing systems used in offices ("word processing

systems"). We also look at composing systems used by typographers.

Generally, the designers of advanced text processing systems· have either concen

trated on providing a high degree of functionality irf tbcir ~ystems. or focused on

making their system easy to use. For each system described, we focus on the aspect

of the system-either the user interface or the functionality-that is novel. The

remainder of this chapter contains descriptions of the following systems:

Emacs
Doc
Wang
Scribe
TEX
Atex
Bravo

A display editor with a high degree of functionality.
A display editor with a good user interface.
A commercial word processing system that is easy to learn.
A text formatter that is easy to learn and use.
A text formatter that produces high typographic quality documents.
A commerci1!1 text processing system for typeset documents.
An integrated, interactive display text editor and formatter.

19

2.1 Emacs

Emacs is a real-time editor primarily intended for display terminals. (23) Emacs is

"extensible," which means that users can add new functions to the editor. Unfor

tunately, the language that extensions are written in is not easy to learn, so that only

relatively sophisticated users write extensions. Fortunately, Emacs was developed in

an environment where there are many sophisticated users. and Emacs now contains

a large number of useful functions. Emacs has comman~ that are specifically for

editing of computer programs; these commands; will not be detailed here.

2.1.1 Functionality

Basic cursor positioning commands allow moving the cursor: forward or back

ward over characters, words or lines; to the beginning or, end of lines, sentences,

paragraphs, pages, or the whole document; to dle next or previous screen of text

To insert text, the characters are simply typed in. A "quote character'' allows

insertion of text that might otherwise be. recogniz~ as a ~ommand to Emacs.

Commands that are used frequently are .invoked by typing one or two characters,

preceded by·one of several command keys.

A "region" of text is the set of characters between a "mark" and the current

cursor position. Marks are saved on a stack. Operations involving mai:.ks include:

mark beginning or end of buffer; mark current positiOlil; pop maFk, and optionally,

move cursor there; exchange. cursor and mark; mark wor.d. ,paragraph, or page.

There is no indication on the screen of where the madcs are.

There are commands to delete or kill text "Killed" text is.Saved. and may later

be unkilled (i.e., brought back into the document). Available operations are: delete

forward or backward characters; kill words. lines. ~r region; insert (unkill) the nth

most recent string killed; "kill" region without actually deleting it-used in

20

anticipation of unkilling it later, to copy the text.

Commands are implemented to exchange the pair of characters or words before

the cursor. Also, all the characters in a word or region may be made uppercase or

lowercase, or just the first character of each word m~y be capitaliied.

Emacs uses the idea of an "incremental search," in either the forward or reverse·

directions. As characters are typed in, the accumulated string is searched for, and

the cursor is positioned at the point in the buffer that matches the string typed So

far. One may delete a character in the search stting, and the cursor is repositioned

appropriately. It 1s easy to repeat the search with the same string in either the

forward or reverse directions.

To search and replace strings within the buffer, a general "Query Replace"

function may be invoked; the user would then be asked to confirm each replace

ment The user confirmation may be disabled.

Emacs allows the user to create named buffers; each buffer may contain a

differ-ent document. The commands that operate oo buffers are: list buffers, which

will list the name, document file, and mode (see below) of' an the buffers; append

region to specified buffer; select or create a buffer, given its name; kiU specified

buffer; list all the buffers, and ask if each should be killed.

Emacs supports two windows; while working within a window, any buffer may be

selected. Typeout inside one window will stiay there until the user edits in that

window-thus, information (another buffer's contents or the result of a "help"

request) may be left on the screen while ed,iting in another window. c.ommands in

Emacs that manipulate windows· are: display one window; display two windows;

switch to other window (if both windows are showing, pointer merely moves to

other window-otherwise, the other window is displayed); grow or shrink current

window, changing the number of lines it uses.

21

Associated with each buffer js a mode. One would normally specify "Text Mode"

to edit English text. "Auto Fill Mode" will automatically break lines of text on

input at any desired column ("word wrap"). "Word Abbreviation .Mode" allows the

user to abbreviate text with a single "word," andhave Emacs expand the abbrevia

tion automatically as soon as tJie abbreviation. ha~. been typed in: There are also

modes for editing tables and indented text

Nl.1mcrical arguments may precede·most bf the above commands. The argument

is usually interpreted as a repetition-count

Emacs is integrated with some other systems on the computer. While in Emacs,

one can edit a directory, use a mail subsystem, or access a general information

program.

Although Emacs ~:loes not format text. several Emaq; eommands generate control

sequences various text formatting programs.

2.1.2 User Interface

Emacs can be used from a standard C~T <;ornputer terminal with a standard

keyboard,· although it is more easily used with .a .special keyboard (one with a

"Meta" key. which works like an additional "COntror' k~y): Since all text characters

are self-inserting, Emacs uses the control ikey Md the ~pe (pr meta) key to

distingwish commands kom :text. Thus, the u~r is.reqllil~,tprememb~r and repeat

control .and.escape ~wtaces in order to per;~ pasic .m~~i~•ions.

The less frequently invoked commands' that do rtof have their own short key

sequence, or those that require string ~:rgumentS,: '3.re 'Irf~oked by using the

"minibuffer." Use of the minibuffeiis reqtiested •. ~d.a"Strtalhl/ifidow appears at the

top of the screen. In this window. one may type and edit commands, using the

command's long name. When done, the appropriate escape sequence is typed, and

22

the command is then executed. Any number of commands may be entered in the

minibuffer.

Emacs has a number of self-documentation facilities. One may list afJ commands;

however, this list would probably be too long to be· of rhuch use. Instead, one may

list only a subset of these commands by specifying a string of characters. Only those

commands for whkh a partial match exists win be ti'sted. Fot example, spccifytng

the character string "parngraph" would list. aU tbe commaods ,for manipulating

paragraphs. When more complete inform~tion is d~sired, one may request a full

description of any command.

2.2 DOC

DOC is a text editor developed by V. R. Pratt at M.l.T. (17)

The main difference between DOC and EMACS is the way in which each achieves
coverage of the large range of operations it offers. The EMACS philosophy is to offer a
very large set of one~charactcr commands to cover what is wanted most frequently, with
two-character commands being reserved for less frequently uscif fldlttial. Sid an
approach . . . has the drawback of burdening the user with a large and not particularly
mnemonic vocabulary. In contrast, the DOC pttilbs<>f)hy is to have a small and highly
mnemooic vocabulary, and to achieve its .lal;ge ran~ of oominaed$ l:>y permitting the
basic commands to be. used in combination.

IX>C has a command vocabulary of about 30 commands, each associated with ·an

Engiish word. The· commands are ·'English-Ike'' n0t 0nly1 frOltt the standpoint·of

being mnemonic: tbey are aloo used' 111 1he sam~ way 1Ettgtish words are used.

Specifically. they ~re combined, according to gram111atical ru~ to form phrases.
• • ' < ; • • • ' ! ! ' ; . ' ~ ,• ; 1 ' ' ' ' • • .

The resultant phrase.is.a command to DOC. TI1us, one typ~ in edit actions in the
• . ' l ~ ' \ . i ~ .l • .

same way one would normally "say" th~m; for ~x~pk; "bac~ 3 words," or "erase 2
. ' . .

lines."

----------- ------ --- ---------------------------

There are five classes of commands: nouns, verbs, adjectives, imperatives, and

golfball (motion). The nouns, verbs, and adjectives are used in conjunction with one

another. The nouns (or objects) include: character, word, line, paragraph, file, text

(used to search for a text string), and object (the text th~ cursor was just moved

over). The verbs are: erase, dump (for making a copy of something to be moved

elsewhere), underline, justify, and case-lower/upper (for changing case). The

following adjectives modify the noun they are used with. in any command: any

number (1, 2, 3, etc.), back, right-end-of, and whole.

The imperatives and golfball commands are generally used by themselves. The

imperatives are undo (for undoing the last operation), get (for, getting back what has

been "dumped"), make (a search and replace operation), and visit (for file

manipulations}. The golfball commands allow the user to move the cursor left,

right, up, down, and for retracing the history of the cursor's recent movement

2.3 Wang

The Wang Word Processing System is one of the more successful commercial
.. ·

word processing systems. [22] One of its main advantages is that it is quite easy to

learn to use. It accomplishes this through the use of "menus," which Jist the various

operations the user may perform. Menus are hierarchically structured into ~roups

of related functions. There is a basic menu, which appears when the system starts
'

up. It lets the user create, edit, or print a document, or choose another function.

These other functions include: special print functions, document index, document

filing, telecommunications, and others. Each of these functions have their own

menus associated with them.

In the nrnmal mode of operation, as a character is typed, it replaces the character

at the current cursor position. This differs from the normal operating mode of the

24

computer-based editors, such µs Emacs and Doc~ However, both Emacs and Doc

offer this mode of operation as an option. In the Wang system, one enters "insert

mode" when characters me to be added to the text

When insert mode is selected, the text from the cursor to the end of the screen is

removed from the screen. The operator types the matetial to be inserted (which is

highlighted), then touches "execute." The system then automntically realigns the

rest of the document. With this scheme, all text is effectively inserted at the end ·of

the screen, so no problems with refonnatting the screen on text input are encoun~

tcred.

Whenever the operator initiates an action where the system requires additional

input (text or commands), a highlighted prompt appears in the upper right hand

corner of the screen, notifying the operator what the system expects next. Novice or

occasional users firid this useful, and seasoned operators ·can easily ignore the

prompt

There is a large "cancel" key, far away from the main keyboard, which allows the

operator to cancel a command at any time, and a large "execute" key, which is used

to confinn some commands.

2.4 Scribe

Scribe is a "batch" t~xt formatter, writ~n by Brian Reid at Carnegie-Mellon

University. (18)

The guiding principle that shaped every aspect of the.design of Scribe is that most
people who produce documents don't know or care about the details of the formatting
involved. To this end, those details are detcnnined by infonnati~n in Scribe.'s database
and not by commands from the user ...

The Scribe system was designed to make document production easy for the non-expert,

25

--~------------

and to allow him to make small changes to the formats and Styles without needing to
learn much about how the program works, Scribe is not a programming language.

Scribe docs not have "commands" in the usual sense of the word: ils commands are
not procedural. ..

Scribe was initially designed to fonnat the types of documents produced at a

university, but is not limited to university documents. Scribe takes as input a file of

text, with embedded fhrmat commands, and can produce output for a number of

different devices. Sc1ibc witl do the formatting diffcrently~:for the different devices,

producing the best representation of the "final" ropy thatiit can for any particular

device.

Given that Scribe is not interactive, it does try to be flexible. For example, when

delimiters are called for in a command, it will accept anything a user might imagine

to be a dctimiter; such as brackets, parentheses, or qu()tj< tnarks. The scope of a

command may be specified by the delimiters above, or by "begin command" and

"end command," if more appropriate.

The commands of Scribe may be grouped in a hrerarchical fashion. At the

highest level are those commat1ds that specify the document type and its style.

Currently, Scribe knows about: reports, which have a title' page, numbered chapters,

sections, subsections, and a table of contents; manuals, which are like repmts with

an index; articles, which are like reports witho~t chapters; letters, with or without a

letterhead; posters., a single-page poster or ,announcement; and slides for an

overhead projector, where font and line spacing have been chosen to maximize

readability. Within these classifications, one can request different styles. A
' ·;;

different style manual might use a different set of type fonts, or mig~t have different

margins and line spacing. Note that at this level the user ~oes not specify what font

or line spacing he wants, but just asks for "Manual, Form 2." ,

At a level down from the document type are commands to specify titles, headings,

26

and sections. These commands are in two groups: one for a document without a

table of contents, and another set fur documents with a table of contents. The

heading commands for a document lacking a table of contents Hrc different, because

there is no need for Scribe to give the heading a number or assemble the table of

contents. These commands ai·e: majorhcading, to. get large letters, centefed;

heading, to get medium-sized letters, centered; and subheading, to get normal".size

boldface letters, Oush to the left margin. (11 documenl typtlS.With a.table Of Contents,

Scribe gives the following Sl.>ctioning commiu1ds: chapter, section, subsection, and

paragraph; appendix and appendixscction; unnumbered; andpref~esection.

Scribe can generate page headings and footings. Each is divided in three parts:

left, right, and center. Different headers and footers may be specified for the even

and odd pages. Normally, a commnnd to change the header or footer will take

effect on the following page; this may be changed by requesting the header or footer

of the current page to be changed.

Scribe has commands for generating a title page of a u·niversity report or manual.

These are: titlepage; titlebox, which positions the text in a box that will be

reproduced on the cover of the repo11; copyrightnotice; and researchcredit, for

explaining where one gets one's money.

Down one more level, beneath sectioning commands, are the commands that

alJow one to insert various things in the middle of running text. These "insert"

commands include: quotation, a text quotation (excerpt); verse, which will start a

new line for each line in the verse (and will format appropriately if lines are too

long); example, an example of computer type-in or type-out, which will appear in a

type face that is designed to look like computer output; display, which is like

example, except the normal body type face is used; center, where each line is

centered; verbatim, where characters are copied exactly, without formatting (a

fixed-width font is used); format, like verbatim, except a variable width font is used,

27

and normally the user would use special tabbing and formatting commands

(described later); itemize, which indents paragraphs and places a tick mark before

each; enumerate, which indents paragraphs and numbers them; description, which

places a keyword or phrase flush left, then indents the remaining paragraph;

equation, which is like display, except an equation number is generated and placed

flush right; and theorem, which is like quotation, except .it heads the text with

'Theorem," followed by the theorem number.

Another type of insert is a "figure." Figures have three pa1ts: a f!gure body, a

caption, and a figure number. Figure bodies may be produced in any way. One

may use the standard Scribe insert commands, such as format, verbatim, or example.

Other ways are: blankspace, which will leave a blank space ofa specified size (Scribe

understands various units of length); pictltre, which wilt put a picture in the

document if there is an image picture file; fullpagefigure, for a figure that requires

an entire page; and blankpage, to generute a page with .no text, only the header and

footer.

Scribe provides several ways to get text or numbers formatted into columns. For

simple formats and smal~ tables, it is suggested that one use the verbatim command

(which will output exactly what was typed in, in a fixed wldth font). Using

verbatim, one would format "by. hand." For more complex formatting, Scribe has a

tab stop mechanism. Commands include: tabclear,,to clear all tabs; tabs, to set tabs

at specified horizontal positions; .41bdivide, .7Nhkh wiltdivide the formatting area

into a particular number of columns; and tht!,~man4 "\",which tabs to the next

tab stop. Other capabilities are: overprintiT\g; a "r~um Jllilrker," to mark a

horizontal position on a page; and the ability to center or flush right text with

respect to tabs stops or the tight margin.

Lastly, on this level, are commands to control wprd. line, and page breaks. Scribe

will break lines between words, at blanks. One may make a blank significant, so that

28

Scribe \Viii not break at that blank, by using a command. Another command will

make all blanks in a delimited region significant. There is a command to allow

Scribe to break where it normally would not, and to force a tine break at a particular
(

place. Scribe does not do automatic hyphenation, nor can it ask the user to

hyphenate a word whrn it would be desirable.

If Scribe is processing an insett when a page fills up, it wiU just break the insert,

and continue it on the following page. To prevent this, one may specify "float"

when defining the start of an insert. ln th1s case, if the insert would not fit_ on the ,

current page, the text will continue without interruption, and the insert will appear

at the top of the next page. To require that a new page be star~cd if an insert doesn't

fit on the current page, "group" may be specified at the beginning of the insert.

Inside a grouped insert, a "hinge" command wiH aHow the insert to be broken at

that point.

At the lowest level are the commands to change fonts, get special characters, and

generally change the "style" of_a document. In a preface to this section Reid states:

"Although Scribe's basic approach to document production is to provide its users

with a large menu of document types and discourage them from tinkering with

details, we recognize that the urge to tinker is incurable."

Within the current font, there arc commands for: italics; underline non-blank

characters; underline alt characters; underline alpha-numerics, but no punctuation

or spaces; boldface; roman (the normal type face); typewriter font; super- and sub

scripting; small capitals; greek characters; overbar; and bold italics. If one wants a

different font (meaning a set of 1-0 to 15 type faces and sizes), the "font" command is

used.

The "style" command changes the setting of certain of Scribe's internal param

eters. The database entry for each document t)'pe provides values for all these

29

----------- ------ --~-------

parameters; thus, the style command would be used to override some of these

\'.~dues. rrne style parameters are: indentation. to set the amount of indention of the

first line of a paragraph; spacing, to set inter-line spacing; spread, to cootrol the

spacing between paragraphs; justification, either on or o(T; leftmargin, rightmargin,

topmargin, and bottommargin, to set margin sizes; piiperlength and pupcrwidth;

and footnotes, to control the way footnotes are numbered.

Scribe does automatic bookkeeping of cross references of various kinds. Scribe

lets the user creat~ a label to mark .a point in the text. _TI1e section num_ber of the

place may be referenced with the "ref' command, while the page number may be

referenced with the "pagcref' command. The "tagf' command lets one reference

numbers of things Scribe has automatically numbered. For example, one may tag

an entry in an "enumerated" list, or a figure number. The "ref' command could

then be used to reference the list or figure number.

The "footnote" command will automatically generate. a footnote number and
• • ' : ' , ?

place the footnote at the bottom of the pqge.2 The "in4~x" command will place a

word in the index that Scribe wi11 generate automatically.

Sclibe has sophisticated facilities for dealing with bibliographies and citations.

"A bibliography is a labeled list of books, articles, papers, and the like. A citation is

a marker in the text that refers to an entry in the bibliography ·The Scribe

bibliography facility does three things: 1) Selects from a database the bibliographic

entries that are actually cited; 2) Formats them int;o a bibliography and assigns a

number or label to each; and 3) causes the corrcct. n,w;nbe~ to be placed in the

citations in the text." Scribe will format both :the bi~liogr~phy and citations in the

2Reid states: "In providing such a simple footnote mechanism, we feel a responsibility to advise
you to use it sparingly. Footnotes seriously interfere with the readability of a paragraph, and their
excessive use will distract the reader 'rather than help him." Even in a relatively constrained
formatting system, Reid recognizes there arc still ways people can produce "bad" documents.

30

"proper" way, given the name of the journal.

Scribe has facilities to nid production of large documents.· The targc·document

facility includes:

An include command, that lets you compose a large document from any number of

separate files. each one of which is of managcttble size.

!\ part command that let-; you process a component file independently of the whole
document, yet still have page numbers, section numbers. chapter numbers, and cross
references come out right.

!\ use command Lo request that Scribe u~ some private or custom edition of its

database.

An outline of your document, automatically generated by Scribe in a separate. file,
showing the sectioning su·ucturc of your document and its cross-reference points, to help
you manage it~ organization.

/\ word counter and vocabulary analyzer.

Also, one may use the "value" command to access internal strings. For example,

one may access the date (in a choice of styles), month, year, weekday, time, name of

the manuscript, and title ofthe current section.

2.5 TEX

2.5.1 <nerview

Knuth's documentation on his system for technical text, "TEX," explains both

the typographic and programming ismles related to text fonnatting. (IOJ Although a

major feature of the system is its ability tO hartdle the fortt1atting of mathematical

text, it contains a complete discussion of its nonnal text formatting procedure.

Unlike other fofmatters, TEX's objective is to produce documents "whose typo

graphic quality is comparable to that of the world's finest printers." Note that TEX

31

is not an integrated document production system; its input is a prepared file

containing text, formulas, and appropriate formatting commands.

TEX handles the extended character set of a typical type font (for example,

opening and closing quote marks, different types of dashes and spaces). It also

automatically recognizes places to insert ligatures and do kerning, advanced typo

graphic features not found in most other computer text formatting systems. TEX

automatically positions many different types of accent marks correctly over (or

under) characters.

TEX commands are part of the text file, preceded by an "escape character." The

system has commands to specify type fonts and sizes. One may "group" commands,
. '

so that, for example a font could be changed for just a phrase within a group,

without affecting the font specification outside the group. Groups may be nested

arbitrarily deep; this allows rather complex formatting instructions to be built up.

TEX allows definitions (macros) with arguments to be declared, so that frequently

used control seq ucnces may b~ .referred to easily.

2.5.2 Functionality and Internals

TEX makes up pages by pasting together boxes with glue. Boxes are rectangular

objects with three associated measurements: height, width, anq d,epth. These are

measured with respect to a base line, and~ reference poitJI at the left of the base line.

A single character of a font is a (simple} box. While forming lines, TEX will

normally line up the base lines of the boxes; however, it' can move the reference

points up or down to do super· or subscripting. There are also black boxes,

completely filled with ink, for making horizontal or vertical ru1es. Everything on a

page is made up of these boxes. pasted together.

To paste these boxes together, TEX uses glue. Glue has three attributes: its

32

natural spat:e, its abilit) to strclch, and its ability to shrink. When making larger

hoxes, such as lines or imges. TEX will shrink or strctcb each piece of glue in

proportion to its stated shrinkability or stretchability. After punctuation, the

stretchability of the glue increases (and the shrinkability decreases). to allow for

more space after punctuation. By making the strctcbability of the glue at one or

both ends of a line "infinite," TEX can produce lines that are nush left, flush light,

or centered.

One of the novel features of TEX is the _way it breaks paragraphs into lines. TEX

waits until it reaches the end of a paragraph, and then determines the best way to

break the paragraph into lines. Knuth claims that this approach to the problem

"requires only a liltle more computation than the traditional methods, and leads to

significantly fewer cases when words need lo be hyphenated." TEX combines this

paragraph breakup scheme with an extremely cautious approach to hyphenation.

One can specify that TEX should "try harder" if the initial result is unsatisfactory;

also, one can indicate that it is undesirable to break in a particular place. Knuth

details his paragraph breakup and hyphenation algorithms in the TEX manual.

TEX groups things into pages in much the same way as it makes up paragraphs,

except for the lookahead feature. Each page break is made once and for all when

the .. best" place is found. Again, Knuth details his page breakup algorithm,

including: calculation of inter-line glue, inserting illustrations, and final page

makeup {for example, appending page numbers).

In addition to features previously mentioned, TEX has facilities to: insert

"leaders" (either horizontal or vertical); set, increment. and insert.counters; set up

hanging indents; process "conditional text"; set up an "output" routine, specifying

what the final page format should be.

33

2.5.3 User Interface

As currently implemented, TEX is a computer program running on a general

purpose time-shared system. Although one may input directly to the system,

generally one passes to TEX a file containing text interspersed with fonnatting

commands.

A user may tailor TEX to his desire by redefining recognized qmtrol characters

and by adding macro definitions. The basic format contains mostly definitions of

mathematical functions, but there are some general ft1nctions defined that allow a

user to do most of the basic formatting functions.

TEX accepts dimension specifications using various units of measure, .including

points, picas, inches, and metric units. Thus, both novices and experienced printers

alike may feel comfortable using TEX.

2.6 Atex

The Atex system is a complete video terminal-qriented compo~ition and editing

system. [21) The system comes in two varieties: a commercial version and a

newspaper vers10n. This section will ,briefly list novel or interesting aspects of the

commercial system.

2.6.1'System Featur~s

Atex's video terminal is just an extension of the host computer. Specifically, the
' . ·, ! ~),~~;;

screen image is taken directly from the main memory. qf the host The screen
' . . : . '. ~ ~ ;

displays 25 lines of 80 characters. There are normally 22 lines of text, with 3 lines of

job header. The user may move his cursor between th~ t~o a~eas, 'and the system

will remember the previous cursor position in the other area.

34

Characters may be displayed normal or bold, with reverse video and/or under

lined. Characters are stored using a full sixteen bit word, so that the display mode

information is part of the character. "Format files" define the typogmphic

appearance of a job. Each type face defined in the format file would probably be

displayed in a difforent display mode. Thus, there are no type fac~ change

commands imbeddcd in lhe text, and one can change the type face associated with

any particular display mode by just changing the definition in the format file.

TI1e terminal keyboard has a lot of keys: a main keyboard (a duplicate of t~e IBM

sclcctric keyboard with "a beautiful typing touch"); cursor control keys; a bank of

editing keys; a bank for typesetting commands; a bank for the various display

modes and system commands; and a row of buffer keys.

All operations on the system can be performed interactively, up until the final

outputting to a CRT or phototypesetter. Batch processing is also supported.

The Atex system supports basic display editing functions. You may "define" a

text element, then "act" on it. You may "save" the defined text, and that text is then

associated with one of the sixteen buffer keys.·

Atex uses a total dictionary approach for hyphenation. Each word to be

hyphenated is looked up in a 110,000 word dictionary. Any word not in the

dictionary is hyphenated by an algorithm, and is also flagged as such.

Formatting features include: specification of minimum, maximum, and optimwn

interword spacing; a hyphenation-justification program that is output device

independent; kerning, ligatures, and accents are supported; a program is available

for arranging tabular display on the screen; some mathematics formatting

capability; a page-makeup program.

3S

-- - ---------~·. -----

• r:'1 "''
"' .. i5'·<

2.7 Bravo

Bravo is an interactive editor and formatter designed by Rutter Lampson and

Charles Simonyi at Xerox's Palo Alto Research Center. (24] ft runs on an Alto

computer system with a high-resolution CRT divided into a number of areas: a

major area where the text is displayed and edited; : a line containing the editor

"slate" (last text inserted, deleted, searched for); an area cont<lining the most recent

commands; and a small area at the left of the scree1rscroUing through the document.

As text is entered by the operator, it ~1ppears on the screen in the correct font.

Bravo can light-justify text as it is typed in. As the line fills up, the inter-word

spacing is decreased, until no more words can fit on the line. The word that

overflowed the line is moved to the next line and the inter-word spacing is expanded

to fill the line.

Etude makes use of a "mouse" to edit text. A mouse is small object with three

buttons attached to the keyboard by a thin wire (its tai~). As the user moves the

mouse in any direction on the desk, a cursor on the screen follows the motion. To

edit the text, the appropriate prntion of text is delimited. To refer to a character, the

mouse is moved so the cursor is positioned on the character, and a button on the

mouse is pushed. [fa word is to be delimited, another button is pushed. Jf an area

of text is to be defined, the mouse is moved to the final character of the area, while

another button is depressed.

Bravo has two modes: insert and alter. In insert·mode, characters appear on the

screen at the cursor position as they are typed. In,~}ter. mode, each ~lphabetic key

specifies a particular editing (o,r formatting) operation. There is an "undo"

operation, which reverses the effects of the most recent operation. Multiple

windows into the same document or different documents are supported by Bravo.

Formatting commands are specified in a manner similar to the editing commands.

36

The area of text that is to h~~ve a special format is defined, and the formatting

info1mation, such as type face, centering, leading, or margins, is entered. ll1c text

then appears on the screen in the new format

When one has finished editing and formatting the document, it is sent to the

appropriate hardcopy device. Un fortunately. what you see is not what you get;

because of the limited resolution of the Alto display, Bravo does not usually display

the columns of text as they it will look when output. In particular, the line breaks

displayed will differ from those on a printed copy of document. There is a

"hardcopy" mode which does show individual columns of text exactly as they will

appear when printed. This is useful for checking that lines have been broken at

appropriate points.

Bravo lacks some imp011ant features. It does not support interactive or automatic

hyphenation. It will support multi-column documents, and paginate a document

either automatically or interactively. However, it is difficult to define a complex

page layout. And, it will not display a complete page on the screen. Thus, the user

is required to print the document (or use a special page display program) in order to

see how the page will look. For these reasons, Bravo is not significantly easier to use

than the non-interactive fmmatters previously described.

2.8 Conclusions

In all the systems surveyed, those features.·that are appropriate for an office text

processing system were isolated and integrated into Etude's design.

The Wang system demonstrates that menus and system prompts make a system

easy to learn. These facilities, when properly designed, do not encumber an

experienced user: a proficient Wang operator will ignore the prompts and quickly

37

step through the menus when he knows exactty'\\'l:lut he is doing.

The "11f1Lural J:mguagc" approach to text.epiting,.~imilar to DOC's, .is a straight

forward, natural way to achieve a large coverage of editing commands, while

requiring little memorization on the user's part.

Scribe's approach to document formatting is particularly appropriate for the

office. environment. It allows users to specify formats in fi.uniliar terrns, and it

automatically docs a variety of normally tedious bookkeeping tasks.

Emacs shows that a highly functional editor assists the editing process for

experienced users. Many of Emacs's fd1tures help a ·person in· the computer

program writing process. Advanced editing features appropriate for office docu

ments, such as a table formatting and editing system. would be an analogous

features appropriate for the Etude system.

The TEX system proves a computer formatting program is capable of producing

typographically beautiful documents. Its underlying document representation and

associated fonnatting algorithms are simple, practical, and elegant. With suitable

enhancement, much ofTEX's internals can be used in the Etude system.

The Atex system is a successful commercial text processing system. It provides a

good text editing facility, and· produces typeset output. ft has many of the features

required of a "polished" commercial system.

Bravo was the first system to provide an interactive environment for both editing
- ~ j

and formatting doc;uments. With Bravo, th~re. are no formatting commands

interspersed with the text. Rather, the system. shows. ,the results of the formatting

commands by displaying formatted text on the screen ..

38

Chapter Three

A Model of the Structure of Documents

This chapter is devoted to presenting Etudc's model of documents. We first

examine how existing text processing systems model documents, and explain why

these simpler models are not sufficient to serve as the model for documents

manipulated by the Etude system. From this analysis we will a~emble a model of

the structure of documents; the model will include the ~spccts of documents that are

relevant to the editing and foimatting functions of Etude. After the model is

defined, we will describe an implementation of the UlQdel that will be useq to

represent all documents in the Etude system.

There are currently two kinds of text pr~essin,g systems in popular use: text

editors and textformallers. People use text editors to create •md modify the content

of documents, and they use text formatt~rs to comPQse the outward appearance of

documents. The text editors and text formatte~ mentioned in the following

discussion have been described in Chapter 2.

A typical text editor, such as Emacs or the Wang system, has a model of a

document that includes only the document's content-. the sequence of text charac

ters. The model does has information about the outward appearance of the

document as it appears on the screen of the text editor; for example, the displayed

text is broken into lines. The outward appearance as modeled by the text editor

(and visible on the. screen), however, bears no relationship to how the document

would look if typeset. (There may be fonnatting commands intennixed with the

content, but text editor can only treat them as ordinary text) The text editor's

model, therefore, includes no direct information about the document's ultimate

39

outward appearance.

A text formatter, such as Scribe or TEX, has a more elaborate model of a

document. Its model includes information about the outwprd appearance of a

document There is information about how the document. ,is broken into pages, and

where every· character of text is located on each page. The text formatter builds its

model from the text editor's model by interpreting the formatting commands

included in the content. The translation required to create a formatted document is

time consuming, and is generally done infrequently, in a "batch mode.'~ Once the

model is created, it cannot be directly modified, because· N6 provisions are made to

allow the user to edit the text formatter's m0dcl directfy. ff the user wishes to

change something, he must use the text editor to make the thange; and then invoke

the text fo1matter, which builds a new model.

The Etude system differs from convcntio11al text pr~e~sing systems qccause it

operates on both the content and the outward appearapce of a. document at the same

time. Its model of a document, therefore, must include both these aspects of a

document. '"The typical text editor's model is inadequate' for the Etude system

because it inCiudes no information aboutthe dodntiertt•s outward appearance.· The

text formatter's model does include information about both the content and

outward appearance of the document, but is also inadequate because it is not

directly modifiable; a lengthy process is requiredtb update the model whenever any

change to the document is required.

The Bravo text editing and formatting systepi does represent the content and

outward appearance of a document in a single strµcture that is directly. i:µodifiable .
. , , r; . , .• . ,

Etude, however, operates on an additional aspect of a document other than the

content and outward appearance; this aspect is ignored by most text processing

systems, including Bravo. We call this aspect the internal structure.

40

TI1c internal structure is the organization and classification of the ideas and

in formation contained in a document. Jn a report, the way the report is broken

down into chapters and sections is part of its internal structure. The internal

structure also includes other identifiable componeflts of a ·document, Suen as

quotations (excerpts). numbered lists, and italicized phra~es. The internal structure

even indudes simple, commonplace compone11ts. such as paragraphs, sentences, artd

words.

The Etude system uses lhe internal slruc~ure of a document to dctcnnine its

outward appearnnce.3 In a typeset document, chapters are usually distinguished by

starting a new page and using a larger type size for the chapter title. Quotations

have extra space left around them. and a slightly smaHer type size is used.

Paragraphs have extra space fcft above nnd below them, and might have their first

line indented. Jn this view, even sentent'es and words, seen as components of a

document's internal stntcture, influence the outward appearance: some white sp·ace

is left between words, and a little mote space is left between sentences.

Typesetters have known for centuries that if a document's internal structure is

clearly conveyed t? the reader by its outward appearance, the document is easier to

read and understand than if its outward appearance docs not reflect its internal

structure. When the outward appearance retlects the document's internal structure,

the reader is given easily recognizable visual keys of the organization and kind of

in formation in a document. Imagine reading a book with no noticeable breaks

between chapters; with quotations that were nm together with the regular text; with

paragraphs that ran into one another, making it unclear where one ended and

another began. The author of such a book (if he was a good writer) would know the

3Thc Scribe system (1'8) was the ti'rst system to recognize and use the internal structure of a
document in the formatting process.

41

~-----------·------·----

internal structure underlying his book, but unkss the book's printer makes the

reader aware of that structure by providing the appropriate visual keys, trying to

read that book would be a nightmare.

The outward appearance of a well formatted document, therefore, is intimately

tied to the information conveyed in the document. Different kinds of documents

exist for different purposes, and convey different kinds of in formation. A feller is a

printed message from a person or organization addressed to another person or

organization. A thesis is a dissertation embodying the results of original research

written by a candidate for an academic degree. A wedding invitation is a· formal

request for a person to be present at a marriage ceremony. Not only is the outward

appearance of each of these documents different, but the internal structure is also

dependent on the type of document.

A document's internal structure is paitially determined by the document type.

Each of the documents listed above has a different set of document components that

make up its internal structure. A thesis,· for example, ·has a title page, acknowl

edgements, a table of contents, a list of figures.a num,ber ofchapters and sections

and appendixes, and a list of references. None .of these components would appear

in a wedding invitation.

A document's outward appearance is mainly determined by the document type

and its particular internal stucture. Let us sec how a letter's outward appearance is

determined. A typical letter has a return address (or letterhead), a date, a recipient's

address, a salutation, a body, a closing, and possibly some additional notations.

Moreover, the body of a letter would itself have components, usually a set of

paragraphs. Each ·component of a letter, and the Jetter itself, has an associated

outward appearance. Jn a typical business letter,; the return ~ddress appears in the

upper right corner of the first page, and the date appears under the return address.

Each paragraph in the body might be justified, with the first line indented, and with

42

sotnc white space inserted bctw.ecn patagmphs.

The Etude system uses the internal structure of a document to compose the

document's outward appearance. Etude's model of a document, therefore, must

include Htfotmation about the internal strucHtre oft~ document, in addition to its

content and outward appearance.

Now that the three aspects of a document relevant to the Elude system have been

ickntified, a physical representation of this inodcl, which will be manipulntcd by

E:tude, must be devised. The representation chosen will, of course, contain

in formation about the content, internal structure, and outward appearance of a

document. In addition, the representation of each of these three aspects must be

easily modifiable, because the content and ihtemal structure is changed during the

editing process, and the outward appearance also changes as a consequence.

3.1 The Representation of a Doct.unent'a Content

The content of a document consists of a sequence of characters. The entire

sequence of characters ~ srored in a doubly-linked list structure, called the text

chain. A text chain is a continuous, linear structure; there are no loops or breaks

allowed in it. Each individual element of the text (;hain is called a link. A link

contains a character, a pointer to the next element, and a pointer to the previous

element

With this reptesentation one can easily get frotn one cllaracter to another, rorwam
or backward, by fottowing the appropriate pointer in tbe link. Characters may be

insert~ into the text chnin by treating a link with the desired diameter in. it, setting

the previous ,and next pointers to the links before ~ .aft-er the insertion point, and

scttill'g the p-Olnters of those links to point to the oo'W lint. T-0 delete a ·character, the

last step is reversed; the pointers of the links surrounding the link to be deleted are

changed so that they point to one another, and the link to be deleted is effectively

removed from the chain. Each of these operations-moving forwurd and bm;:kward

by characters, and inserting and deleting characters-are operations needed for

editing the content of a document

The representations of both the internal structure and outward appearance of a

document, introduced in the following two sections, are woven over the content of

the document Jn order to maintain the relationsh.ip between these structures and

the content of the document, we allow othc'r·· objects to be rn·serted into the text

chain. Thus, the text chain has links that do not conJµip diarkctcrs, but contain
< • " ' ! .

objects that relate to the internal structure or' outward appearance of the document.

3.2 The Representation of the Internal Structure of a Docu

ment

From an analysis of the internal structure of numerous kinds of documents, we

have seen that the internal structure of most documents may be modeled as a
' \ i l ~:· ' .

hierarchy. For example, in a typical· document, the characters are grouped into

words, the words are grouped into sentences, and the sentences are grouped into
1.i ! ' ' ' ,: • ·,.

paragraphs. In a sectioned document, the paragraphs are then grouped together

into sections, and the sections into chapters.

The components of the internal structure of a document, except for words and

sentences (whose representation is discussed below), are represented in a hierar-
; . : ' tt • ' i /

chical tree structure. Each component is representeclby an object called fl h/to4
.. ; . .

(pronounced "hill-toe"). A hlto has the following information associated with it:
~ : ,; '

40riginally an acronym for "High Level Typographic Object"

44

-- -----~~~--·----

-111e hietarchical tree structure is 1mptenH .. ~lted by each Mto having a
single owner hlto ahd an array of owned hltos (children). ll1c roof hlto is
the onfy htto that has no owner; it co11tains ~11 the characters in the
document.

- Each hlto is of a specific class, which identifies the kind of component of
the internal structure. Typical hlto classes are "report,'' "chapter,"
"quotation," and "paragraph."

- The hierarchical hlto structure is related to the cont€nt of the document:
each hlto contains a region of text characters. Each hlto is related to the
content of the document by having a ~g11r hffo market fink and an end
hllo matker link in d1e text cllain. Thi! begin htto marker link is
immediately before the first character contained in the hlto, and the end
h1to rnatkcr link is immediately after the last character contained in the
hlto. l11l1s, the characters contained in any t1lto ttre acccsgbfe by using
the begin and end hlto marker Jinks to get to the text chain. The hlto
structure is accessible from the text chain because each hlto marker link,
either a begin or end, has a pointer to its associated hlto.

From any tink in the text chain, the lowest hlto containing that link may be found

by searching backwards through the text chain (towards ·the beginning) until a hlto

marker link is found. If it is a begin hlto marker link, then the associated hlto is the

lowest hlto containing that link. lf it is an end hlto marker link, then the owner of

the associated hlto is the lowest containing hlto. All hltos containing the link may be

found by searching up through the hlto hierarchy, after the lowest containing hlto is

found.

Just as the user, while creating and editing his document, changes the content by

inserting and deleting characters, he also changes the internal structure, creating . .

new hltos, and deleting existing ones. As he is typing a document, for example, he

might be creating hew "chapter'; and "secti~n'' hltos. Ifhe decides that he has

started a new section unnecessarily, he needs to delete the .. section" hlto.

More complicated operations, such as moving a paragraph from one point in the

45

document to another, require. the inse1tion and deletion operations on both the

content and internal structure. To move a paragraph, the characters contained

within the paragraph hlto would be deleted, along with the paragraph hlto itself.

Then the characters just deleted would be inserted at the new location, and a new

paragraph hlto would be created around them and inse1ted into the hlto structure.

This would, of course, be a simple "move paragraph" operation as far as the user

was concerned; he would not be aware of the details of the implementation.

The implementation of those operations that perfonn hlto inse1tions and dele

tions is described below. The strict hierarchy of hltos is maintained through all

insertions and deletions of hltos.

The following sequence of operations is performed to create a new hlt-O of a

particular class in the document. The hlto is created around two links in the text

chain; the pair of links delimit the characters contained within the hlto. (Actually,

the two links need not be distinct, so that a hlto may be created around a single

link.)

1. The links are checked against the existing hlto structure to make sure
that the creation of a new hlto around those links would result in a valid
hlto structure; this insures the hierarchical structure is maintained. In
particular, a new hlto must be completely contained within an existing
hlto; the new hlto cannot cross the boundafie~ of an existing hlto.

2. A new hlto is created, and its class is set.

3. The new hlto is iHserted into the existing hierarchy. The new hlto's
owner is set to the hJto immediately containing both links. and the new
hlto is added to the owner's array of children .. All the hltos in the array

: . . ' ,,· . ! F i '

of owned hltos of the new hlto's owner arc· checked to determine if any
are now children Gfthe newhlto; th0se thntate, are1removed from,the
owner's array of children, placed in the new hlto's array of children, and
their owner fields are updated to point to.the new hlto.

4. A begin hlto marker link is inserted in the text chain before the first link

46

to be contained within the new hlto. an9 ~n end .nlto marker link is
inserted after the last link contained within the hlto. Both these links
point back to the new hlto.

Any hlto except the root hlto may be deleted. To delete a hlto, the last two steps

of the insertion operation are undone: the hlto marker links are deleted from the

text chain and the hlto structure is updated. 'The hlto, removed from both the text

and and the hlto structure. is no longer in the document.

As mentioned earlier in this chapter, words and sentences are not represented

with hltos, although they are conceptually part of t;he internal structure of a

document. There are two reasons for this:

- In a typical document, there are many words and sentences, while there
ave far fewer paragmphs, sections, and chapters. Words and sentences
span only a few characters, while othef COfTIPQUents ~y contain a great
deal of text. The representation of frequently occurring components
should be compact for the sake ofeffidency. Using the hlto strncture,
with itsassodatcd overhead, would be wasteful iOr wQrd~ a,nd sentences.

~Much of the reason for keeping an explicit model of the internal
s.tructure of a document is for its u~ in compqsin~ the outward
appearance or the document. All the components of the hlto structure,
in fact, have a specification of how· that component should look (this is
fully explained in Chapter 4). Words· atid sentences, however, only
affect the outward appearance by havin.& exl{a space l~ft around them;
the more flexible appearance specification associated with hltos is
unnecessary for them.

For these reason~ an alternative representation was choseµ: for words and

sentences. They are not represented with h:ltos; ·but are implicitly indicated in the

text chain. In the text chaint there are links' that demarcate words and sentences. . . .•. . ' ' ., ' ' ; ' ' .' ~ . .

·These liaks contain either an m1.e,..word glue or ln~stltfelf,Ce gitll. (Glue is a kind

of object that is like a character, but has some special properOes. These properties
. ' '\" " ·:)

are discussed in Section 3.3.1; the reader may think of glue as a blank space for

47

now.)

To lind the word containing a character, the text chain is searched backward and

forward for inter·word or inter-sentence glue (inter-sentence glue also indicates a

word boundary); the characters between these two pieces of glue are the containing

word. Similarly, a sentence is found by searching backward m\d forward for inter·

sentence glue.

3.3 The Representatio.n of the Outward Appearance of a
Document

The outward appearance of a document is also modeled as a hierarchy. 1he

model used in the Etude system is SlmiJar to the one used by TEX, a text formatter
' . . ~

(see Section 2.5). Exteµsive use of TEX hassl~ow~;thafa .. hfornrchical model of the
~ •-:::

outward appearance is adequate tcrrepresentthe appearance of all documents.

In a simple document, characters are grouped together to form lines. TI1e lines,

in turn, are grouped to form columns, and columns are grouped into pages. A

hierarchical structure may even be used to model the appearance of complicated

document components, such as mathematical formulas; this is done by TEX.

The outward appearance hierarchy is built over the content of the document, like

the internal structure hierarchy. Unlike the contenf or in'ternai structure, however,

the outward appearance is not buHt by the usei.' l1istcad, it i~ :btiilt automatically by
' . . . ~ ; ; ' ' ' . ! : ,j

the Etude system. Tirns, in this chapter the outward appearance 1s discussed only as
'

a static structure; how.this structure is built and iriodified is'di~cusscd in Chapter 5, .
when we describe how the Etude system composes the outward appearance. the

l

clements that the outward appearance' hierarchy are constnicted out of, boxes and

glue, are discussed next.

48

3.3.1 Boxes and Glue

A box is the fundamental unit out of which the outward appearance, of a

ckx:umenl is built Boxes are grouped togeth\.'1'. ~ k>&m larger boxe~ which are in

turn grouped to form stm larger boxes. A box is a two-dimensional object wttb

rectangufar shape. Boxes have a refereoce point, nnd three associated measuie·

mcnts. diagrammed below: (lOJ

t
IWftMa ,...._-i:; ... -.. _ ... _--t r

...__ ___,· f'th ..

........ -+

Figure 3· I: A Box and its Associated Measurements

When boxes are joined together to fonn larger boxes, they are either joined

horizontally or vertically. If they are joined horizontally, they are all aligned on

their reference points ana the resulting box iS called a line. The reference point of .
the line is the reference point of the first (left-most) box in the line. The height and

depth of the line are the maximum height and depth of the component boxes. The

width of the line is the sum of the widths of the component boxes.

A character is the simplest kind of box. Its reference point corresponds to the

49

base line of the charncter. The base line of a character ;is an imaginary Ii ne at the top

of the descender of a character with a descender (for example, "g" or "p"), or the

bottom of a character if it has no descender, (for example, "a" or "b"). In

typesetting, when characters are combined to form a line, they are generaHy aligned

on their base lines. When constructing ·a line of, characters, the base lines of the

characters will be aligned properly, because the component boxes (chnracters) arc all

aligned on their reference points.

If boxes are joined ve1tically, they are also aligned on the reference points of the

individual boxes, and the resulting box is called a column. The reference point of

the column is the reference point of the last (lowest) box in the column. The width

of the column is the width of the largest component box. For example, the typical

column of text is a box constructed of Jines. A line's reference point is normally at

the left edge of the line, because the reference point of aline is the: reference point

of the first character. Thus, lines that are joined t-ogcther to form a coh.1mn are

aligned on their left edges.

In addition to the three kinds of boxes already mentioned, there is another kind

of box, called glue; glue is inserted into a box when extra space is needed between
1 ~ . '

the component boxes. The details of the four different kinds of boxes-characters,

· glue, lines, and columns-are explained in the next few paragraphs.

A character has two components: its identity and the font to which it belongs.

The identity simply ·indicates the letter of the alphabet that the character represents.

A font contains all the characters of the alphabet in a particular type face and size.

Associated with any font is a set of values for the height (distan<:e :above the base

line), depth (distm1ce. below the base line), and width of each character in·the font.

This table of values is consulted whenever the box dimensions for -any ch4racrer are

needed.

50

T

Glue is a kind of box used to represent hbuak. spucc between lhe other kind of

boxes on a page. tn a line, gk1e !bas widLh but no twight or depth~ while in a columa

it has height but no width:. 11le class of a piece of glue is anak>gous to a chmoc~r's

identity: it spedfics th~ kind of glue. For ex~nple, the two ctmses of glut! .OOfmaliy:

found in a tine are imer·tt'fJFJ glue alld i1utr-sen1me~ glue; and the gkie oonnal\y

found in a column is inter-line glue. (truer-word ghre af}d inter~scnteoce glue are

also used to demarcate words and sentences in the iext chain, as discussed in the

previous section. Inter-sentence glue usually has a slightly larger width than inter

word glue.) Also tike a character, a piece of glue has a font to which it belongs. (In

addhion, glue may also have a mandatory line break attribute, which signats the text

formatter to break the line after the piece of glue.)

Glue has three attributes: a nalural space. a slretch,, and a shrink. A glue's clos.i,

combined witb its font, determines its purticuJnr \!alues of naturnl space, stretch, and

shrink. The natur~I space is the nomN!l width oflhe blank space in a line tor a given

font, or the normal height of the blank space in a column. The stretch and shrink

components determine how much the normal blank space may be expanded or

contracted if it is necessary to increase or decrease the blank space in order to, for
' . '

example, justify a line of text.

Each piece of glue in a line or column box. is assiped a specific width (in a line)

or height (in a column) when the outward appearance is built by the Etude system

(see Chapter 5). Assigning a specific measure to eµch piece of glue in a line or

column is called selling the glue; this process is. described in Section 5.2.

A tine has a m~re called its naluml widlh, whi:Cb is thersum of an the widths of

the characters in the line and the natwal spaces of all the pieces of glue in the line.

If eoch p ioce of glue in the line is set to its naturaJ space~ then the width of the line 8

equal to its natural width. Glue in a line is set to its natural space when the line is

not justified. If the line is to be justified, the width of the line may be different from

51

its natural width, so the right edge of the line is lined up with the right margin. To

do this, the width of each piece of glue in the line may be enlarged or contracted

when the glue is set, and the line's actual width may no longer equal its natural

width.

A line also has a shift amount, which is used to· position each line horizontally

within its containing column. A line in n column may not have its left edge on the

left edge of the column; its left cdge·may be somewhere to the right of the column's

le fl edge. This happens, for example, when the first line ofa puragruph is· indented.

The shift amount of the line is a measure that specifies the amount the line is to be

shifted horizontally within the column.

3.3.2 The Outward Appearance Hierarchy

In a document, each character is· a member of a single tine and each line is a

member of a single column. rlbe col~1mns are org~nizc'-1 in:to p.ages, but.this is done

by a separate subsystem and is bcyqnd the. SCOJ?~ :tlf tpis thesis. (For a brief

description of how this is qone and its relationship w,i.th tl)c w~rk described in this

thesis, see Chapter 4.) This section describes the repr~n~atiqn .of lines and

columns in a document.

All the characters in the document are contained in the text chain. The characters

are grouped into lines with line marker links, which are in~erted into the text chain.
. ' (,. . . '· . ! ,• ~ -_ ~ ' -- ~; ' ' -,, f ·-

A line marker link indicqtes the start of a new line of text. Each line marker link has

a line associated with it, and vice versa; the·lin.e iacludeii atl the charactcrs·between

its line marker link and the next tine marker tiftt in the text cha.in.

The line containing any character in the. document may be_ found by moving

backward from that character through the text chai~ until-~ line marker link is

encountered. The Jine containing that character is the line aswciated with that line

52

marker link.

Just as the characters in a document are stored in a chain and grouped into fines,

the lines in a document are also stored in a chain and grouped into columns. The

chain containing the lines in a document is called the line chain. The line chain may

contain pieces of glue. in addition to lines. The cl~ of glue round in the line chain

is ill/er-line glue; these pieces of glue.are used for leaviQ& eMrn spoce between lines

when neces.sary. such as the extra spac;e bt.1w~n -~'le I~ lit)e of~ paragraph and the

first line of the next paragraph.

The line chain is broken into columns by column marker links in the line chain.

Each column marker link signifies the start of a new a;Jumn; it has a column

associated with it, and vice versa. The lines contained in a column are all those lines

between the column's column marker unk aad·tlte next rotumn marker link in the

line chain.

Finally, the columns are themselves members of a chain, the column chain. The

column chain, however, is only-used for orderingthe eolull'lns within the document.

and is not t1sed to represent the layout of rolttmns on a page. As mentioned at the

beginning of this subsectioo, the representation of the layout of pages is beyond the

scope of this thesis.

3.4 Representing Changes to the Document

In previous sections, we have discussed how the content, internal structure. and

outward appearance of a document are represenied. W:e have nOO:d that the user

continually changes the content and internal structure, and we have shown how the
' ... '

representations of these two aspects are updated. We have not yet discussed how
' .

the outward appearance is composed, nor have shown how the. outward appearance

53

~ • l- ---

This figure shows the text chain, line chain, and hlto hierarchy in a portion of a
typical document. The links in the text chain arc shown as little squares. 111ey
contain either characters, glue (empty squares), hlto markers (hm), or line markers
(Im). The line chain, at Lhe left, contains Jines (line) and a column marker (cm).
The entire text shown is contained in a "paragraph" hlto, and the word "the " is in
an "italic" hlto.

hlto hiearchy

paragraph

Unechain

•
•
•

italic

0 Q d,

t 0 t h e

text chain

Figure 3·2: A Portion of the Content, Internal Stucture,
and Outward Appearance of a :'fypieal Dod.1ment

54

• •

is printed or displayed-:-thcsc QPerations are detatle~ in (llapt~f 5.

In Chapter 1. howe\ler. we noted that the Etvde system gives the user immediure

feedback on the display of any changes he makes to 'the content or internal structure

of his document. This cability requires the Etude system to be abte to perfot&ll

increme111a/ formafling and incremental redisplay. Incremental fonnatting is the

ability to format-i.e., reconstruct the outward appearance of- only those portions

of the document that have been changed. Similarly, incremental redisplay is the

ability to redisplay only those portions of the document that appear on the screen
.';~. "' : ·• : ··~ ·''. '

and have been changed.

In order to do incremental formatting and redisplay of the document as it is

edited, the document must maimain indicatio~ of the changes that have been made
'

to it. If this is done, the systems that formattnnd djsplay the document can interpret

these indications, and fo;rii,at and display 9~ly the ~~anged portions. 'fhus, we must

make provisions in the representation of the. ~ocumel\t to indicate where changes to

the document have been made.

How do we indicate what portions of the document have been altered? A section

that has been altered will need to be refor~-~~ {hen ~Jsplay~d. (Only those .

sections that appear on·· the screen requU:.e refortTiatt!n,JJ.) . But before we can

reformat the tex~ we must first find-in an efficient manner-those sections that :
• ' • < • - ..

have been altered.

We might leave the ·indication of the change directly in the content of the ·

document {in the text chain); this would require a search through all the text that

appears on the screen. We could not quickly find the altered sections if we had to

search through all the text, character by charac~t Th~ suggests that a hierarchical

representation of altered sections is desirable. With a hierarchical representation,

we can quickly "zoom in" on those sections that have been changed. and ignore

SS

large portions of text that have not been altered.

Rather than creating a new hierarchical structure to be used to represent altered

sections, we should. examine the existing hierarchical structures to see if these are

adequate for the purpose. We could indicate altered sections of the document by

leaving marks in the internal structure hierarchy or in the outward appearance

hierarchy of the document. Jn fact, both methods were tried in different im))femen

tations of Etude.

rr we use the internal structure hierarchy, which is represented with the hlto

structure, then whenever a change is made in the text of a hlto, that hltO--and all

hltos containing it-are marked as altered. A typical document is mainly composed

of paragraph hltos at lowest level; thus, if a smt1l1 change is made, an entire

paragraph would be marked as changed. The entire paragraph would need to be

reformatted and redisplayed. Our goal, however, is to reformat and redisplay as

little as necessary, and in most cases we could do better than reformatting and

redisplaying an entire paragrap~.5

Instead, the outward appearance hierarchy is used to keep track of the changes

made to the document. When a change is made to the document, the lines in the

changed section are marked as changed, and the columns containing those lines are

also marked as changed. With this scheme, the smafiest irnit of text that is

reformatted and redisplayed is one line. Although this is· not ideal-we might wish

to redisplay only a single character-it is adequate foi; our purposes.

We have only discussed in a vague sense what it means for a section of the

document to be "changed." We have said that such a section, if it appears on the

5111e actual implementation had an indication of where the changed section began .in the hlto. We
therefore did not need to refonnat and redisplay an entire hlto, but only the "rest of' the hlto, after
the point where the change began. However, this is stitltoo large a section oftext.

56

,...----------~--~---- ·-- --,- ----~--

screen, needs to be reformatted and redisplayed. Just marking a section of the

document as "changed" is not adequate to Fully represent the dynamics of

formatting and display. For example, a section or the document that hus not been

changed may still need to be reformatted. This happens when a character is deleted

from a line; the previous line has not been changed, but it still may need to be

reformatted, because deleting the character m"y allow a word at the beginning of

that line to move up to the end or the previous line.

Thus, there are actually two kinds of marking done on the document:
' ~ J

wiformalled marking and changed marking. Sections of the document that are

potentially unformatted as a result of an editing operation are marked wiformalted;

this is an indication to the text formatter that it must e~amine that section and

reformat it, if necessary. Sections of the document that have actually been altered

are marked changed; this is an indication to the. redisplay subsystem that these

sections need to be redisplayed on the screen.

If a character is inserted or deleted from the text chain, then the line containing

that character is marked .as both changed and unfom1atted. As just mentioned,

however, the previous line may need to be formatted, because some insertions or

deletions cause a word to move to the previous line. This only happens if the

insertion or deletion occurs before the first piece of glue in the line. (More

precisely, it only may happen if the insertion or deletion occurs before the ·first

character in the line at which the text formatter may break the line, and this can only

happen at a piece of glue.) Thus, if the insertion or deletion occurs before the first

piece of glue in the line, the previous line is also marked as unformatted (note· it'"is

not marked changed).

If a hlto is inserted or deleted from the hlto hierarchy, then au the lines that have

characters contained in the hlto are marked as changedor unformaueJ, and the line

before the first line is marked as unforma11ed.

57

<#

This marking propagates upward through the oi1tward appearance hierarchy.

When a line is marked unformaued or changed, the column containing it is also

marked u11forma11ed or changed.

The text formatter formats a section of the document by formatling all the lines in

that section that arc marked wiformaued. In doing the formatting, it may unformat

and change additional lines of the document, and these lines are marked appro

priately. When the formatter finishes formatting all the lines in the section, it marks

those lines as fonnatled. The redisplay system, in order to keep the screen up-to

date, would then redisplay all the lines that were marked changec/, and then mark

them as unchanged. These procedures arc described in detail in Chapter 5.

58

Chapte·r Four

Formatting Environmepts

The text formatter of the Etude system composes the outward appearance of the
:1

system's documents. Etude's formatter uses a da~a b~sc of formats for determining

how each component in the internal structure of a document should be formatted.

Jt derives the formatting infonnation from both the. d~ta base, which contains a set
, I, . ; · • · I '.

of pre-defined formats for each class of hlto, and the arrangement of hltos in the
' }:

internal structure hierarchy.

The data base contains a format specification for each class of hlto known by

Etude. The format specification includes a number of format auributes, and a value

speciflca1ion for each attribute. For example, "type face" is an attribute that might

have the value specification "italic," and "right margin" is an attribute that might

have the value specification "1.5 inches."

Usually, the attributes and value specifications only partially specify the format

ting environment of a piece of text. The formatting environment is a total

specification of all the typographic attributes and values in force at any point in the

document For those format specifications that do not completely specify the

formatting environment, the desired value for the unspecified parameters may be

derived from other format specifications. For example, a ·~center" hlto might be a

document component that would center the text contained in it. We would want the

text centered within the margins of the document, whatever they happened to be.

l11e format specification associated with the "center" hlto would not specify the

margins the text should be centered between; rather, the margins would be deri'Ved

from the margins of the document type. Thus, the desired margins for the centered

59

text would be inherited from previous specifications.

The scope of formatting dealt with in this thesis is the formatting of the text of a

document into columns, without regard to the placement of the text on pages. The

page makeup subsystem in Etude [20) is responsiQle for defining the layout of a
. ,. ' . '

page. It "supervises" the text formatter by1 constraining the width of the lines that

the text formatter composes. In traditional typesetting systems, the same separation

of the two processes occurs: the text is formatted into galleys (of the appropriate

width), and these galleys are cut and pasted together, usually manually, to form

complete pages. In Etude, the "galleys" produced by.the text formatter arc cut and

pasted together automatically by the page makeup: subsyst~m.' . .

· A general description of the attributes in the environrrte~t for text formatting was
! '· l·

given in Section 1.3. Before providing more details about these attributes and their
' .

allowable values, we first must look at ,the way ·meµsure~w~ts may be specified in

Etude.

4.1 Distances

All measures in Elude are expressed in distances. Distances provide a uniform
ri;} '.·

mechanism for expressing absolute, environment-dependent, and device-dependent

measurements.·

Absolute An absolute distance specifies'' a measurement in terms of ab
sotute unit'S. The system recopizesr att)'i o£ the folldwing, common
units for, spedfyi~ubsolu.t~ dis~nc~ •

.. imthes

- centimeters

- millimeters

60

- points.(a unit of 1172 inch used by printers)

·picas (a unit of 1/6 inch used by printers)

Environment· Dependent
An environment-dependent d~stance specifies a measurement
whose absolute rnlue depends on the formatting environment in
which the distance is evaluated. These are:

- characters

- lines

The "character" unit is the width of a typical character in the
current font. which is detenrii~d by the ~nvironment. Similarly,
the ''line" unit is the height plus the depth of a typical line in the
current font (which is the same as the height plus th,e depth of a
typical churacter).

Device-Dependent ·
A device-dependent distance is expressed in units that are depen
dent on the resolution of the device that the document will be
printed or displayed on. Because devices may have different
horizontal and vertical resolutions, there are two device-depen
dent distances:

- horizontal units

- vertical units

Distances are used for two purposes: for the specification of measurements. and

for the evaluation of measurements. Dis~ces are uswilly specified in absolute or

envi.ronmentwdependent terms .. and evaluated in device.~dependent terms. This

allows the format designer, who creates the data base of formats, to specify

measurements, either absolute or relative, independeotof 4fty particular printing or

display device. The formatter, which is composing the outward appearance
~ ' . : ; '

structure for a particular output device, needs to evaluate these measurements in

units specific to the output device. For example, a ~.,quotation" might be defined to

61

. I;'

leave 0.5 inches of space above and below it in the text; the distance would be

defined in absolute terms, in inches. The text formatter would evaluate that

distance specification in device-dependent tenns; to do th;s, it needs to know how

many vertical units that distance is on the intended output device.

4.2 Environment Attributes and their Values

The environment attributes, and values impJementcd, were chosen to provide a

reasonably complete coverage of the requirements for formatting text into galleys.

As mentioned, the page makeup subsystem constrains.the size (width) of each

line formatted. Within the given size, the environment specifies a left margin and a

right margin for the text, and an indention for the first line of the environment. The

lefl margin and right margin attributes determine the prevailing margins of the

environment. The values of each of these three attributes are distances.

Two attributes, fill and justify, determine how the text is broken and positioned

within a line. Fill may take one of four po~ble values:

Fill

No fill

Center

Flush Right

Instructs the formatter to include as many words aS will fit on the
line it is formatting. This is the normal value for formatting plain
text

The formatter looks for pieces of glue· having mandatory line
breakattributc •. and breaks th~,line.there, If no mandatory line
bi·eak glue is found, the line is broken when it has become run.
The text on the line is placed againsnhe'prcvailing teft margin.

The same as nofiJI, except the text in the line is centered between
the prevailing margins, rather tlmn being placed against the left
margm.

The same as nofill, except the text in the line is placed against the
prevailing right margin.

62

.Justify is a boolean value; it muy either be 011 or off If off, the glue in the line is set

to its natural space. l f rn1 1 and if the fill attribute hns the value 11.11; then the glue in

the line is set so the right edge of the line Wt1ches the prevailing right margin. (If

the fill nttri bute has another value, justi Ii cation is not done.)

The type face attribute specifics the type face in the environment. The value of

this attribute may be roman, bold, or ilalic. These were the only three type faces

available, due to the limitations of the display terminal used in the curretlt

implementation. If more type faces were available, additional values for this

attribute would be accepted to allow selection of these additionol faces.

The leading attribute, which takes a distance for a value, determines the spacing

between Jines in the text, in terms a(the distance between the base lines of

successive fines.

The break attribute determines whether a new line is begun on entering or

leaving the environment. The possible values are: before, which makes the initial

text rn the environment begirt a new line; after, which makes the final text in the

environment end a line; around, which does both a break before and a break. after;

and off, wbkh does neither a break before nor a b-r• aftet.

Two attributes, above and below, are used for inserting extra white space between

lines of diff~rcnt €nvironments1· Above specifies the amount of extra white space to

be inserted berore the environment, while belt>w spedf~s the amount of extra white

space to be inserted after the environment; both take distances as values. An above

specification is ignored if the environment doesn't "break before"; similarly, below

is ignored. if the environment d~n't "break after." Of c:ottrse, if the environment

"breaks around," both above and below specifications are valid~

The remaining environment attributes all deal with num~ring. If the numbered

attribute, which takes a boolean value, is, on, the hlto associated with the envi-

63

- - -------- - -- ---------------

ronment is assigned a number .. and this number is kept,Llp·to-datc automatically by

the system. For example, "chapter" hltos are usually numbered: the system assigns

a number to each chapter hlto, and updates these numbers when chapters are

inse1ted or deleted from the document. The details of the numbering scheme are ·

described in Chapter 6. A brief description of the other environment attributes

pertaining to numbering follows.

lf a hlto is numbered, Etude automatically prints Lhe number in the style and

location specified by the following two environment attributes. The counter style

attribute allows the specification of a template, which det~rmines the way the

number appears in the document. The value of the counter style attribute is a

string, but the string is interpreted in a special way. The hlto~s number may be

printed as·an arabic ordinal, .an aiphabetic letter, a roman number, speUcd out in

words, or not printed at aU. Any text may be printed along with the number. The

counter location attribute specifies where the counter appears in the text Two

values for the counter location have been implemented:·j711sJz 1efl, which prints the

counter against. the prewailing left margin; and left :flush rig/ii, which prints the

counter flush right against the prevailing left margin. .

A hlto number may reference another hlto number when printing. For example,

this section is numbered as section "4.2." In propp~in.g that: n
1
umber,, the section

references the number of the chapter that contains it. Such a .reference, in this case

the "4" referring to the chapter number, may be speci~ed 'by the counter style

attribute. If this is done, the within attribut¢,. which; •#S· a string QS a value,

specifies the hlto class within which the hlto is to be· numbered. For example, the

environment for section, to get the above:nul'tlhe;i~ has "chap~er" as the value of

the within attribute.

64

. '' ~; .

In order to begin formatting at any point in the document, the text formatter

must be able to determine the format environment at the point. There is a format

environment associated with each hlto in the document. The format environment

forthe point is the format environment of the hlto containing the point.

The format environment of a hlto is derived from the class of the hlto, and all

hltos above it in the hierarchy. The format data ·base contains format specifications

for all the classes of hltos found in the document. These format specifications are

used to derive the format environment of a hlto.

To determine the format envi:r.onmeat f@r a h:ltG. we ~ume we have the fonnat

environment of its ow.ner. The furmat:specificati0n associated with the hlto .telts :us

how to .change the fonnat ;environment of the OWlller-.to EJCt the format environment

of the hito. For exam pie, the format specification of the ••italic" hlto, used to change

the type face of a region of ~t, wmt-id tell us to dtange the value of the type face

attribute of the owner's environment, and. assign it a value of itralic; the ·other

attributes of the fonnat environment would be1eftunchaaged

A fonnat specijioolion di tTers from a fomrat environment m two ways:

1. A format specification contains value speciflcationS, rather than values,
for each attribute in the specification~· Depending on: 'the particular
attribute, a value specification for th~t a.tiribu~ may contai.n a new value
for the attribt1te, or may contain a way to derive· the new value from
containing environments. For exafl'lfMe, ·the vatue specification for the
right margin attribute might be "+ 1 inch"; indiClltJng that the right
margin for the new environment should be increased by one inch. The
"+ 1 inch" value specificatiort is not' a 'value forftbe right margin; the
actual value depends on the value of the tight margin of the format
environment of the containing hlto.

2. A format specification need not contain a complete set of value specifi
cations for all environment attributes. There might be no value

65

specification for the right margin attribute in a format spcci lication; the
right margin would not change in the new environment derived from
that specification. An "italic" hlto, used for changing only the type face
of a region of text, would normally have no value specification for the
right margin attribute. ··

Format specifications are stored in the data base of formats, which contains a set

of format specifications for all classes of hltos known to th~ system. Each format

specification for a particular class of hlto consists of a set of altribllle / value

specif1ea1ion pairs. The attributes arc the same attributes detailed in the previous

section. A value specification for many of the attributes is simply a new value for

the allribute. For those attributes that take distances as values, however, a value

specification is a distance, with an optional sigh. The interpretation of the value

specifications, particularly those with distances (signed or unsigned) is described

below.

Left Margin and Right Margin

Leading

Jf the value specification is a signed distance, then it is inter
preted relative to the value of the m~trgin of the owner's envi
ronment. If the · vnlue specification is unsigned, then it is
interpreted as a positive offset from the margins specified by the
document type (the root hlto). If either or both of these
attributes do not appear in the en:vironment specification, then
the values of the prevailing margins are used

If the value specification is a signed distance, then it is inter
preted relative to the value of the leading specified by the
document type. If . it the value specification is an unsigned
distance, then that distance is the new value. If this attribute is
not in the value spedfientiorl, then, the: leading value of the
owner's environment is used.

Fill, Justification, 'f.ype Face, Counter Style, Corrnter Location
The value specifications of, µny. of these attribut~. when . they
appear in an environment specification, are used directly as the
new values for the attributes. For those that do not appear in the
environment specification, the value in the owner's environment

66

Indent

Break

is used

tf this attrtbutc appears in an envrronment specification, then the
associated value specification, whether a signed or unsigned
distance, is used as the new value. ff the attribute does not
appear, then a value of 0 is used.

If this aur•b••te appears in cm environrnent ~cification, then the
associated value is used as the new value. If the attribute does
not appear, a value of off'is used.

Above and Below lf either of these attributes appear in an environment specifi
cation, then the associated value, whether a signed or uHStgned
distance, is used as the new value. If either attribute does not
appear, a value of 0 is used.

Numbered

Within

ff this attribute appears and its va]ue is on, then numbering is
turned on in that environment. If it does not appear, then its
value is off.

If this attribute appears, then the hlto class name in its value
specification is used.

Jn order to find the format environment for Ul1Y. point of the document, all the

hltos containing that point are first determined. Beginning at the root hlto, this list

is traversed, and format environments are successively generated for each hlto.

When this is done for the last hlto-the hlto that immediately contains the point in

the document-we have the format environment for the point in the document.

This method of generating environments is called an inheritance scheme because

only a partial specification of the format environment is required for each hlto.

Many of the parameters that are not ~pecified at all inherit their values from the

environments of hltos higher in the hierarchy .. In addition, values for some

attributes may only be specified relatively; in this.case,values from containing hltos

are also inherited t:>efore the actual value for that format environment's attribute is

determined.

67

Now that we have shown how the formatting environment for any point in the

ducumcnt may be clctcrmined, we proceed to explain, in the next chapter, how the

text formatter works. The text formatter constructs the outward appearance of the

document based on the format environments derived from the hlto hierarchy.

68

Chapter Five

Text Form,atting .and: Display

As the user edits his document, the Etude system continually displays a formatted

version of the document. After each editing operation pcrfonned by the user. Etude

must reformat the document before it can be correctly displayed on the screen. The

text formatter in Etude, described in this chapter. is responsible for reformatting the

document. As mentioned throughout this thesis. the text formatter in Etude does as

little formatting as is necessary to keep what the user sees on his screen correct; this

is ca11ed incremental formatting. The display system in Etude. also described in this

chapter, is responsible for maintaining an image on the screen of the outward

appearance of the document. It also does as little redisplay as possible as the

outward appearance changes; this is called incremental re~isplay.

The Etude text formatter builds the structure that represents the outward

appearance of the document. It does not disturb the content or the internal

structure of the document. Two modules are involved in text formatting: the

dispatcher and the linewright.6 The dispatcher sequences through the lines of the

document, invokes the linewright on those lines that may require formatting. and

adds white space (glue) between lines as appropriate; the linewright sequences

through the text chain and constructs lines based on the formatting environment

(derived from the document's internal (hlto) structure). The linewright and the

dispatcher can be invoked on any. portion of a document, and will reformat the text

6Just as a "shipwright" builds and repairs ships, the "linewright" builds and repairs lines. The
dispatcher module has been superseded by the columnwright, which, in addition to doing all the
dispatcher docs, builds and repairs columns in the same way the linewright constructs lines.

69

in that pmt of the document. .

Most existing text formatters operate on an entire document at a time. rn fact,

they do not operate on a single document, but rather two representations of a

document. The Scribe text formatter is typical of this!

To use Scribe, you prepare a manuscript file using a text editor. You process this
manuscript file Uuough Scribe to generate a document file; which you then print on some
convenient printing machine to get paper copy. (18)

In Scribe, the manuscript file contains the content and internal structure of the

document, while the document file contains a reprcsentatio~ of the outward

appearance.

If a change is made to the manuscript. file, the entire file must be run through

Scribe for the change to be appear in the document file.7 This requirement is

inherent in the nature of existing formatters for the following reasons:

1. Editing is done using a cqmpletely independent text editing system.
Because the editing and fonnatting activitjes a,re not jl)t~grated, the text
formatter cannot determine what portion oftext was altered

2. 111ere is no easy way to determine the fonnattit1g environment for the
portion of text that has changed. Formatting commands at the begin
ning of the manuscript file may affect the formatting done at the end of
the file. Thus, the only way to do derive the formatting envjronment at
any point in the document would be to go through the entire manuscript
file and accumulate all the formatting commands until that point is
reached. ' ·

3. There is no formal connection between the manuscript and the docu
ment files. Even if the, formatter ~Id dete,nnine the place in the
manuscript file that had been changed, and determine the, formatting

'7Scribe docs have facilities that allow partitioning a large manuscript into a set of smaller
manuscript files, each of which may be processed independently.

70

environment foi: that portion of text. there would ~e 00 sm1ple way ro
update the corresponding document me.

The document representation of Elude is spedfic"Uy designed to support incre

mental formatting. The capabilities that existing text formaucrs. lack arc found in

Etude 's document representation.

1. l11ere is no division h€tween the docttment representation on which
editing is done and the one that f\!prescnts, the formauoo document; m
Etude they are the same. The editing primitives in Etude automatically
mark the '(l'>Orlions of the docw»ent that. requ~e rei>rmattiag,

2. TI1e formatting environment at any point in the document can quickly
be determined by using the hlto structure. All that is required is to
search back through the text until the first htto marker is encountered
(see section 31); this is normally oo more thaaa paragraph of text. The
hltos higher in the hierarchy that contain that point ar~ easily found by
walking up the tree structure, m1d the inheritnnce mechatlism can then
be used to efficiciltly produce the formatting trwittJnment ibr that point.

3. Because of the single representation of the cfocmnent employed by
Etutle, any changes in the document resulting frdni·. tefcmnatting are
retlectcd in the document without any additioltal' wark. ·

The foflowing two sections describe in detail the Of'eration or the dispatcher and

the linewright.

5.1 The Dispatcher

The dispatcher is responsible for composing formatted galleys of text. It is

invoked with a pair of line links in the tine chain of the docuI*nt~ and it fomats the

text bounded by those two lines into a galley. The pair of tines on which the

dispatcher is invoked would nonnally be the boundaries of the text that appears on

the screen, which is all the text that need be formatted. The pqjr of lines might al~

71

be the first and last lines of the document, which would resLtlt in the entire

document being formatted into galleys: this would be done before the document

was to printed.

The dispatcher sequences through the line 'Chain, starting from the line link.on

which it was invoked. Jt checks each 11ne it encounters to see if it:,is formatted; if it

isn't, it invokes the Hnewright on that line.· The linewright {described in the

following section) formats the line and rettirns to the diSpawher. Note that the

linewright may have unformatted succeeding lines ,ju the docuu1cnt, but these will

be formatted as the dispatcher sequences through the t.ine chain. The Hnewright

never unformats a line that preceeds the line it was called to format. Tlrns, when the
j ' ,· -; •j

dispatcher if finished, all the text between tile pair ·Of line inks ~twas called with is

fotmatted.

In addition to calling the linewright on unformatted lines, the dispatcher also
•,

examines the desired space above and desired space below values for every pair of

adjacent tines, if one or both of the lines were unformrittci:t · After both lines are

formatted, it compares the desired space below the first line with the desired space

above the second line, and records the Jarger of the·two values. It then checks the

links between the two line links to see if a piece of inter-Ji~ glue of the rig\lt size is

there. Jt either updates the size of the glue.· inserts ;a new piece:.e>fgrue, or deletes the

existing glue, as ne~essary.
·;,

5.2 The Li new right

The characters ii) the text chain of an Etude document are grouped into lines.
(: . l ~ . < ,,

Each time the document is edited, this grouping may become incorrect. For

example, ·if characters are inserted intb or deleted fromlthe t~t chain; the existing

line breaks.in the text chain may not be correct; same li~es may~ too short.or too

72

long. Also. if u hito in inserted into or deleted from the internal str:ucture. the

margins might change, and the existing line brc•·mig.ht agatn be wrong.

·n1e basic function of the lincwright is to examine the text chain of the document

afld determine, based on the formatting environment and. lhe width of the column

containing the t~xt, how it should be broken- into lines. As it scans through the text

d1ain. it also performs some additional functions., The linewtight is iJtvoked on an

unformatted line by the dispatcher, and does the IOtlowtng:

- Jt determines the formatting envitonment for the fine and the width of
the column containing the line.

- ft sequences through the text chain from the start of the line and
appropriately sets the type face ofeach dumtcter~

- As it sequences through the text chain, it determines where the line
should break, and inserts a line. marker link at this location (if one is not
there already) to indicate the end of the line.

- It sets the glue and the shift amount in the li~. based on the formatting
environment.

- Jt sets the leading for th~ line.

- It leaves an indication of tne desired space above and below the line.
This is extra space over the normal leadµig.(e;g. •. the extra space between
paragraph). (There are two slots in each lirte for these values. When the
linewright is done, the dispatcher examines these values and insertS the
required space).

- It inserts into the line information necessary to create a.counter, when
necessary (see Chapter 6). '

- It marks the line just formatted as formatted.

- If it has changed the. location of tbe cnfJ: of the line~ .then it marks. the
line as changed. In changing the location of the end of the line, it has
also changed the contents of the next line of tlit docinfient; thetefore. it

71

marks the next line as changed and unformaued.

The remainder of this section is devoted to describing in detail how the Ii new right

performs the tasks mentioned above.

The linewright is invoked upon an existing {unformatted) line of the document

by the dispatcher. The linewright first determines the formatting environment at

the beginning of the line. ln addition, the linewright also gets the width of the

column containing the line; this measure constrains the width of the line (see

Chapter4).

The links in the text chain are then examined.individually,. from the first link in

the line (the link after the line marker link), sequencing forward through the text

chain. As it examines each link, it maintains and updates various statistics about the

line. These statistics include the line's natural width, stretch, shrink, height, and

depth.

The desired line width is the size that the linewright attempts to make the line.

The desired line width is initially set to the width of the column containing the line,

less the sum of the left and right margins. The line is considereq .to be fu/f when the

sum of the natural width and the shrink of the accumulated links equals or exceeds

the desired line width.

A decision is made to break the line if ce1tain conditions are met at the time a link

is examined. For example, the line is broken if a character is encountered and the

line is full, or if a hlto marker link that calls for a line break is encountered.

Determining exactly where and when to break a line is not straightforward; in

most instances when the linewright encounters a lint that forces it to break the line,

the linewright actually breaks the line at a different link. which may be before or

after the Jink just encountered. The two common situations where this occ~rs are:

74

- When the linewright decides to break the line because the line is full, it
must back up and break at the last inter-word glue.

- If there arc several end hlto marker links in a row, each requiring a line
break after it, the linewright should break only after the Inst one.
Similarly, if there me several begin hlto marker links in a row requiring
a line break before, the linewright should breakoft.Jy before the first

Several strategies were tried for determining the exact point to break a line. The

simplest and most successful strategy involves remembering and classifying break
j

poinls in the line as the linewright scans through the text chain. 111e break point is

the link that the linewright, as it scans through the text chain, has determined to be

the best place to break the line so far.

There me four break point classes; they are, in order from lowest to highest: none,

when no place to break the line has yet been seen; possible, when the linewright has

encountered a link where it's possible to break the line (normally when the first

character has been encountered); desirable, when the linewright has encountered an

piece of glue (either inter-word or inter-line) at which it may break the line; and

necessary, when a link that requires a line break has been encountered (such as an

end hlto marker, whose corresponding hlto requires a break after).

Each kind of link in the text chain has one of the above break point classes

associated with it. As the linewright scans through the text chain, it compares the

break point class of each link it·encounters with the ·break point class of the line so

far. If the link is in the same or higher break point class, then the link is

remembered as the new break point, and the line's break point class is updated. In

remembering a break point, the linewright not only remembers the link, but also

records the natural width. stretch, shrink, height, and depth of the line at that point

There are five different kinds of links that the Jinewright acts on when it

encounters them in the text chain: characters, glue, begin hlto markers, end hlto

15

markers, and line markers. The actions that the linewright performs on encoun

tering each of these links are detailed below.

Character

Glue

1. 1 f the line is full, then the linewright ends its scan and
breaks the line at the line's break point. If it is not
full, then the line's break point class is checked and
possibly updated: '

- If the line's break potnt da&c; is nccess01y, then
the linewright endS its scat\, ·and breaks the line
at the line's break point.

- If the line's break point class is desirable, then
the line's break point and associated class are
left unchanged.

- If the line's break point class is possible or none,
then the character is taken to be the new break
point of the line. The new break point class of
the line is possible.

2. The type face of the character is set appropriately.

3. The width of the character. is added to the natural
width of the line. If the character's height or depth is
larger than the line's,.then the corresponding measure
of the line is increased.

1. if the line is full, then the lincwright ends its scan and
breaks the line at the line's break point. [f it is not
full, then the line's break point class is checked and
possibly updated:

- If the line's break point class is necessary, then
the linewright ends its scan and breaks the line
at the line's break point.

76

Begin Hlto Marker

j, ...- ·~ -

- If the line's break point cluss is desirable, possi
ble, or none. then the piece of glue is taken to be·
lhe new break point of the line. The new break
point class of the line is desirable, unless the
glue has the mandatory line break attribute, in
which case the new break point class is
necessary.

2. The type face of lhe piece of glue i~ set appropriately.
This is necessary because the inter-word glue and
inter-sentence glue of different type faces may have
different natural space, stretch, and shrink values.

3. The glue's natural space is added to the natural width
of the line. If justification is on, the glue's stretch and
shrink is also added to the stretch and shrink of the
line.

1. The new format environment is computed using the
inheritance scheme, which uses the oJd fonnat envi
ronment and the new hlto's class.

2. One of the following actions is taken, depending on
. the conditions~

- If the new format environment is break around
J

or break before and ·the break point class is
none, then the desired line width measure is
updated; the calculation is similar to the orig
inal one to determine the desired line width
(the width of the column containing the line,
less the sum of the left and right margins),
except that the new format environment's in
dention is also subtract~d from the containing
column's width. The indention value is taken
into account here because indention takes effect
on the first Jine of the new environment. The
desired space above the line, which is the value

77

End Hlto Marker

Line Marker

or the format environment's abo.ve attribute, is
recorded if larger than any above value encoun
tered in the line so far. The break point class
remains none. (The. lin~wri.ght also places a
pointer to the hlto in the line; this pointer is
used by Etude's numbering system; see Section
6.3.2.)

- tr the new format environment is break around
or break before and the break point class isn't
none, then the linewright ends its scan and
breaks the line at the,Jink before the begin hlto
marker.

- If the new format environment isn't break
around or bteak before, then the desired line
width measure is updated; the calculation is, as
above, the width of the column containing the
line, less the sum of the left and right margins,
less the indention. The desited space above the
line, which is the value of the format envi
ronment's above attribute,, is: recorded if larger
than any above value encountered in the line so
far. 1l1e break,point class remains unchanged.

1. If the new format environment is break around or
break after, then the lines' break. P~,int ,i~ set to the
end hlto marker link, and the line's break point class
is set to necessary. The desired space, below the line,
which is the value of the forrilat environment's below
attribute, is recorded if larger thttiti any below value
encountered in th~. line so far. ~If the ,new format
environment is not break around or break after, only
the fot1owing step is done.)

2. 111e new format environment is computed.

TI1e line marker link is added to a list of line marker links that

78

have been encountered in the tine. The disposition of this list is
described below.

At this point, when the linewright has ended its scan, it has determined exactly

where the line should end; the last link included in the line is the break point. The

linewright must now do the following things:

1. It must set the glue in the line. If the line is to be justified, then the glue
in the line must be expanded or contracted so the right end of the line
extends to the lcfl murgin. (If no justification is done, each piece of glue
is simply set to its natural space.)

2. It must position the line horizontally in the column. 1t might position
the line against the left margin, against the right margin, or centered
between the two margins; it also may indent the line right or left away
from the left margin.

3. It must set the height and depth of the line so that it is leaded (verticat
line-to-line spacing) properly.

4. If the format environment requires extra space above or below the line,
it must leave an indication of this in the line (it is the dispatcher's
responsibility to actually insert this extm space in the line chain).

5. It must insert a line marker link after the last link in the line, and remove
any old line marker links that should no longer be in the text chain.

Each of these operations is detailed in the remainder of this section.

How the linewright sets the glue in the line depends on whether it is trying to

justify the line. If justification is off in the fotmatting environment, then all the glue

in the line is set to its natural space. If justification is on, then the glue is set so that

the width of the line equals the desired line width; this insures that when the left·

edge of the line is placed against the left margin (plus any indention), the right edge

of the line will align exactly with the right margin. Actually. the linewright does not

justify the line if the break point class is necessary, which means the linewright

79

,. ::

broke the line before it was full. l11is occurs1 for example, on the last line of a

paragraph, which is normally not justified, because the glue on such ~ line might

have to be stretched a ridiculously large amount.

When a line is to be justified, the glue in it is set so the actual width of the line

equals the desired line width, First, the natural width of the line is compared to the

desired line width to determine whether the glue in the line should be stretched

(expanded) or shrunk (contracted). When scttiflg t)l(q1,lue in a line that needs to be

longer than its natural width, the extra space is dist.ributcq throughout allth~ pieces

of glue in the line. It is actually distributed proportional to the amount of stretch of

each glue; a piece of glue with a larger stretch gets more of the extra space than a

piece of glue with a smaller stretch. Similarly, when the line needs to be shrunk,

each piece of glue is shrunk proportional to its shrink.

Consider the following example of a line with four qoxes separated by three

pieces of glue: [10]

widthS
......... 3 .

.... -------w1c1~n--------•

Figure 5· 1: An Example of Setting Gluc in a Line

80

TI1e first piece of glue has 9 units of natural space, 3 units of stretch, and -1 unit

of shrink; the next one has 9 units ofnaturai spac-e, 6 units of stretch, and-2 units of

shrink; the last one has 12 units of space, 0 units of stretch, and 0 units of shrink.

Tl1c naturnl width of the line is 52 units, the sum of the natural space of att the

glue and the width of all the characters. If we needed to make a tine of 58 units, the

difTerence between the natural width and the desired width would be 6 units; this is

how much the glue would have to stretch. The strctd1 of the tine is 9 units, the sum

of the stretches of each glue in the line; the line's shtfok is -3 units.

Let g/ue.11a1ura/, glue.stretch, glue.shrink, line.natural, line.stretch, and line.shrink

be the natural space, stretch, and shrink of a piece of glue and the natural width,

stretch, and shrink of the entire line. Let line.desired be ,the desired width of the

line. Let glue. width be the actual width of a piece of glue after it is set in a line.

111en each piece of glue is set ac~ording to the formula:

glue. width = glue.natural
+ (((line.desired- line.natural) * g/ue.strelch) I line.slretch)

In words, the total amount all the glue in the line must stretch is distributed over

each piece of glue, in propo1tion to its stretch component

In practice, each piece of glue in a line is set individuatly. After a piece of glue is

set, it is considered to be of a fixed width in the remaining calculations. In

particular, its stretch and shrink components are ignored, and -its actual width

(rather than its natural space) is used in calculating the natural width of the line.

1lms, the following calculations to update the tine's natural width and stretch values

are perfo1med before the next piece of glue is set:

line.natural =· line.natural + glue. width - glue.na/ural

line.stretch = line.stretch - glue.stretch

The glue is set piece by piece, from left to right in the line. The width of the first

81

piece of glue would be set to: .

= 9 + (((58 - 52) * 3) I 9) units
= 11 units

The next piece of glue would be set to:

= 9 + (((58 - 54) * 6) I 6) units
= 13 units

Since the last piece of glue has no stretch, its width would be set to its natural

space, 12 units. The result of the glue setting operation is a line with a width of 58

units.
....
'•

On the other hand, if the desired width of the line was 51 units, then we would
'·

have to shrink the glue in the line. In the case where the desired width of a line is

less than its natural width, the followi_ng formula is u_sed to set each piece of glue:

glue. width = glue.natural
+ (((line.desired- line.natural) *glue.shrink) I line.shrink)

After each piece of glue is set, the line's natural width and shrink are updated in

the following way:

line.natural = line.natural + glue. width - glue.natural

line.shrink = line.shrink - glue.shrink

Using these fonnulas, we see that the first piece of glue is set to:

= 9 + (((51- 52) • -1) /-3)
= 9 units ·

And the next piece of glue is set to:

= 9 + (((51- 52) * -2) I -2)
= 8 units

The last piece of glue, because it has no shrink, is just set to its natural space.

82

After the glue setting, the line's width is 51 units.

After the glue in the line is set, the leading-.the normal.space between lines-of

the line is set. The Ii new right leads the line by adjusting the height and depth of the

line. If the leading attribute in the format environmel)t of the tine is larger than the

height and depth of the line just created, then the lincwright enlarges the line's

height and depth to equal the leading value.8

After the leading of the line is set, the lincwright thel) positions the line

horizontally within tJ1c column by scttil\g the shift amount in the line. The

linewright sets the shift amount to position the line with respect to the left boundary

of the containing column. It either sets the line flush left: against the left margin,

flush right against the right margin, or centered between the two margins, depend

ing on the format environment. If the fill att~ibute in the reigning format

environment has a value of either fill or nofill then the shift amount is set to the

value of the left margin, plus the indention valJ.te, if the line is the first tine of a new

environment. If the fill attribu.te has a value of flushrighl, then the shift amount is

set to the desired line width Jess the line's actttal width; thls places the tine flush

against the right margin. If the fill attribute is has a value of center, then the shift

amount is set to half the desired line width less the line"s actual width, which centers

the line between the left and right margins.

The linewright need only insert the desired spa<:e above aad be.low the line into

the line (there are two slots in a line for this). The dispatcher ~kes care ofinserting

the extra space in the line chain.

8.Ibis leading strategy i~ not quite correct. In particular, it can fail when type fonts of two different
sizes appear on two successive lines. In these cases, pairs of adjacent lines must be exarnincd and the
distance between the base lines of these two lines should be set to equal the leading; this would been
done by the dispatcher. 'l'hc strategy described caused il<J pmbkmS, bccilu5c an the fonts used in the
current version of Etudc arc or the same size.

83

---------~~~----- ~--------

Finally, the linewright must insert a line marker :link i1~to the text chain (and a

corresponding line link in the line chain) to indicate the end of the line. Before the

linewright inserts a line marker link into the text chain, it checks to see if there is

already one at the desired location; if there is a line marker link at the desired

location, it need not inse1t one. If the linewright does i.nsert a line marker link, it has

changed the contents of some lines in doing so, and must mark the appropriate lines

as changed. The details of this procedure are given below.

1. If there is a line marker link after the end of the line already, then the
linewright does not insert a line marker linki,irito the text chain. In this
case, the linewright lla'i not chµp.ged; Jhe , qonti;nts of the line just
formatted (probably; see step 3 below).· Als0, the Jincwright has not
changed where the next llne stnrts, so ·its cdtttents have not been
changed. Thus, the linewright need not '19fk cil8er the current or the
next line changed.

2. lf there is no line marker link after the end of the .line, . then the
linewright must insert one there (and a corresponding line link in the
line chain). In doing so, it changes both the e11dfog location of the line
just formatted, ~nd the stprting location of the nextline. To indicate this
in the document, the linewright marks! the tirie· it just fonnatted as
changed, and marks, the 'next line-the ,line starting at. the new line
marker link-a~ .chanced, and unformaaed . . (Bccaus~ tbe starting point of
the next line has changed, it inust be refmmatted.) · · '

3. When a new line marker Jink has qeen insc1tW.. ip~p .• µie text chain. if
necessary, any old line marker links that are between the stait and end of
the tfrte must be removed· from' the text chttht· AS"mentioned in the
description of the linewright's actions as it scans the text chain, the
linewright keeps a list of line marker links 'if ih'as eACOuntered. If there
are any line ma.-k~ liq ks in the list~ .t~ linewrigbt nQ\V removes each of
them of them from the text chain, and also removes their corresponding
line links frdf11 the ffne' chain: lf'it removes bri'rjrtftitlemarker link from
the line just fonnatted. the llnewrightmarks th"tlif\t! 'AS: c)Klnged.,

At this point, the linewright's job is complete. It foar'Ks the line 'it just completed

as formatted and returns to the dispatcher.

84

5.3 The Display System

As the user edits his document, the Etude system continually displays a formatted

version of the document. After each editing operation performed by the user, Etude

formats the portion of the document that will be displayed on the screen. Etude

then updates the screen to reflect any changes that have been made to the

document.

ln this section the general concepts behind the Etude display system are

described. Only those aspects that relate to the interactipn of display with editing

and fotmatting are discussed; this includes th,e redisplay of changed lines, and the

block move screen operation. The implementation of these operations is only

described briefly, because the display system is·not a· major focus of this thesis.

Other aspects of the display system-such as displaying ·on different devices,

positioning "windows" on the screen, and positioning the document within a

window-are not discussed here. For a complete diSCLtssion, see [19].

The display system translates the internal r~prescntation of the document into an

image on a display terminal. Analogous to the text formatting operation, the goal of

the display system is to minimize the amountof text t1rafnu1stbe redisplayed after

each operation on the document.. Just as the objective of incremental formauing is

to quickly format the minimum amount of text each time the document is changed,

the display system does incremental redisplay w update the display efficiently.

Any line of text may have been marked changed by an editin~ operation, or by

the text fonnatter. Such a marking indicates that the contents of the line have

changed since it was last displayed. (See Section 3.4 and previous sections in this

chapter for additional infom1ation on the chaRged attribute ·of a line.) If a line is

changed (and it appears on the screen), it must be completely redisplayed.

Those lines that are not marked changed do oot need to be redisplayed. Such

85

lines, however, may have moved to a di ffercnt location on the screen. For example,

if the user deletes a line of text in the document, then no lines below the deleted line

are marked as changed. Nevcrlheless, atl the lines below the deleted line need to be

moved up on the screen. Thus, lines that are not marked as changed must still be

examined to see if they have moved.

If a line or group of lines have not changed, but have moved on the screen, the

display system uses the block move operation, rather than redisplaying the lines.

The block move operation is an operation performed by the display terminal that

moves text from one location on the screen to another. It is faster to use the block

move operation than to send the text to the display te,minal, in most cases.

The following paragraphs describe the implementation of incremental redisplay.

First, we describe Etude's modet of the contents (the image) of the screen. We then

describe the process by which the screen. and Etude's model of the screen, is

updated.

Etude maintains a model of the contents of tht! screen in terms of columns of the

document that are displayed. Each column of text that is displayed on the screen is

associated with a column picture.

A column picture contains information about tlle area of the screen in which it

was last displayed. This information is used to .impJement,t.he incremental redisplay

and block move operation. The infom1ation is organized :into a table of screen

records, each associated with a line in the column. A scree;ll record contains a

pointer to a line. and the area of the screen in which-the lj~ was displayed; Because

the information in column pictures is organized on a line·by-Jine basis. if any part of

a line changes, the whole line must be redisplayed. Similarly, a block move always

involves complete lines.

To update the screen after a change has been made to the document, Etude

86

invokes the column picture print routine on each column picture. rn1e column

picture print routine first checks to see if a block move withiu the column is

possible. The routine looks through all the lines fora block of consecutive lines that

are not changed, but are at a di ff crent ppsition on the screen. (If more than one

block is found, the block containing the most lines js d~osen for the block move.)

The column print routine then instructs the display to perform the block move. It

gives the display the area of the block to move (which it computes from the column

picture's table), and the new location to. which the block should be moved. The

display itself takes care of alt the details of moving the "bits" on the screen.

If a block move was done, the column picture print routine updates the column

picture's table to reflect the new situation on the screen. Each of the old screen

records falls into one of three categories:

Unchanged

Moved

Changed

A screen record that was completely contained within an un
changed area of the screen is not changed.

A screen record that was in the moved block simply has its area
of the screen updated to the new vatue.

111e other screen recoi·ds (those that are replaced by the moved
block) are removed from the table.

The last step in displaying a column picture involves displaying all the appro

priate lines. A tine is displayed only if it is mark.ed changed or has moved on the

screen. In order to disp1ay a line, the area on the screen that will be occupied by the

line is first cleared, and then the text of the line is displayed (shifted horizontally by

the shift amount of the line). Like the block move operation, the display handles the

details of putting c;haracters on the screen; the column picture print routine only

gives the display the location of the first character in· the line, followed by the

sequence of characters in line. Glue is displayed by sending the amount of space to

leave blank.

87

After a line is displayed, a n_ew screen record is created for the line and put into

the column picture's table. The line that was redisplayed is marked as unchanged, to

indicate that it appears correctly on the screen. Screen records foi· lines that were

not redisplayed (because they were neither changed nor moved) arc simply left

unchanged. lf an old screen record points to a line that is no longer in the

document-the line may have have been deleted from the document-then the

screen record is removed from the table.

At lhis point, the display has been updated to reflect any changes in the outward

appearance of the document, and Etude is ready to process another command from

the user.

88

Chapter Six

Etude can automatically number components of the internal structure of a

document (hltos), such as chapters, sections, ~nld outlines. A htto is numbered when

the numbered attribute in its associated fomrnt environment is on. The hlto is

assigned a counter, and the value of the counter is ~ept up-to-date automatically by

the system. Hltos that are numbered are assigned numbers sequentia1ly (within

their owner hlto). For example, all the sections (a numbered hlto) within a chapter

(the owner hlto), all the chapters in a document, or all the items in an outline, are

numbered sequentially, starting with number "one."

If a hJto is numbered, Etude automatically generates and prints the number in the

style and location specified by the following environment attributes. The counter

style attribute allows the specification of a template, which determines the way the

counter appears in the document. TI1e hlto's counter may be printed as an arabic

ordinal numeral, an alphabetic letter, a roman numeral, spelled out in words, or not

printed at aJI. In addition, any text may be printed around the numeral. A hlto may

be numbered wilhin another hlto, so that the counter of a containing hlto may be

included when the. counter is printed; for example, the numbers printed for the

sections in this thesis include the number of the containing chapter. The counter

location attribute specifies wheFe the counter appears in the line of text. It may

appear flush left against the left margin, followed by the text of the line, the way the

sections in this thesis·are number. Or it may appear to the left of the left margin, as

the list on page 84 is numbered.

The following sections describe the implementation of the automatic numbering

89

system of Etude. The representation of counters is described, foltowed by a

discussion of how counters are kept up-to-date, and how they are printed.

6.1 The Representation of Counters

Automatic numbering is implemented with objects cal.led C<JUnlers. Each hlto

that is numbered has an associated counter. A counter .has several cpmpo~en~:

Value

Template

Value String

Countee

An integer that is the value' of the cCJunter. ·

A sting that specifies the counter style (the outward appearance
of the counter).

The. actual text of the counter, derived from the value and the
template.

The object being counted. It is a hlto in all cases in the current
discussion.

Formalted and Changed flags
These are analogous to theformalled ahd changed nags associated
with Jines. They indicate whether the line the counter prints on
needs to ~ff orm~~d. or re(jjsp)~~ ~~~use.,Qf £h~ge5'."to t~e
counter. ··

6.2 Keepjng Counters Up-to-Date

Whenever the hlto structure is changed, that thange may affect the existing

counter structure. The operations that insert and delete· hltos from ·the hlto

hieran:hy automatically invoke a procedure to· update- a1f the counters that are

affected. The algorithm }tor updating the counter stmcttfre is conservative; it ·wm
generally· update more counters than are necessa..Y. hut it is a simple atgorithm, and

works without problems in complicated situations. ·

90

---- -----·- ·- - - - - -~ ---~-

Whenever a hlto is inserted or delete~ the insla1Uial£ _cowuer procedure is C'dlled
• ·;, ' '·" •I

on the owner of the hlto that wasjust chaQged. qnfy hlto~ contah1ed within the

owner of the hlto just changed could have their counters affected. TI1e ins1an1iale

counter procedure sequences thrm1gh each child of the hlto with which it was

invoked and updates the counter associated w'itli OOdl child.

Jn order to update the counter associated with each chif<I hlto, the i11s1nntiate

coun1er procedure fif'St gets the fonnatting en'Vironmetttt fOr the htto. If the

numbered attribute is on~ then it assigns the c;orrect valu~ ta. the counter. The first

child hlto of a particular cl~ss is assigned the value "l," the second child hlto of that
1; • ,, t

class is assigned the value "2," and so on, for all the child.hltos.

After the counter associated with each of the child hltos ~s updated, the instantiate

counter procedure is called recursively on that child hlto, so all of ils child hltos are

updated. In this way, al1 the hltos that are potentially ~tTected by a change to the
' ..

hlto structure have their counters updated.

6.3 Formatting and Displaying Counters

Counters are associated with hltos, and are numbered with respect to the hltos'

positions in the internal structure of the document In order for them to appear

when the document is displayed or printed, they must '1'e ihstantiated into the

outward appearance of the document. All component$ of the outward appearance

of the document discusseQ so far have also been com.ponents of the content of the
' -· ;

document. Counters are different: although Qley are part of the outward appear-
~·

ance, they ~re not part of the content of the document. The user does not type in the

text of the counter, nor can he edil it dire~t}y (Ile woulQ .Qe able to change the way
:, '

the counter appears by modifying the fo1mat,specifiq.tio1;1.of the hlto in the format

data base). Because counters are not part of the text of a document, they are not

91

represented as elements of the text chain; they arc represented in a special way as

part of the outward appearance, as described in Section 6.3.2.

There are three steps to making counters appear on the display. First, the value

string of the counter-derived from the counter's value and its template-is created.

Second, the value string is instantiated into the outward appearance of the

document in the appropriate position. Third, the display system redisplays the

counter's value string whenever necessary, obeying the rules of incremental redis

play. The following three subsections describe how these tasks are realized.

6.3.1 Creating the Value String of a Counter

The value siring of a counter is the text of the outward appearance of the counter.

It is constructed from the counter's value and its template, whenever either is

changed. lhe counter's value is just an integer; the counter's template is a string

that is interpreted in a special way.

TI1e value string is constructed from the counter's template and value according

to the following rule. Any characters in the template that are not part of the set of

specially interpreted character sequences (listed below) are copied directly into the

value string. If any of the following character sequences appears in the template,

then the value of the counter is converted to the corresponding textual representa

tion of the value.

@l

@I

@i

@A

@a

Arabic cardinal numbers (1, 2, 3, ...).

Roman numerals in capital letters (I, II, III, IV, ...).

Roman numerals in lowercase letters (i, ii, iii, iv, ...).

Capital alphabetic letters (A, B, C, .•. ,AA, AB, ...).

Lowercase alphabetic letters (a, b, c, ... , aa, ab~ ...).

92

@0

@o

The name, with the first letter capitaltzed (One, Twoj Three, ...).

The narne in towercase (one, twd, three,; ..).

The value string for counters can depend on the position of the counter's

associated hlto in the hlto hierarchy. An "outline," for exmnplej has different

nun1bering styles for the "items" contained within, dtpending on the nesting level

of the "item." The first level of "ltetns" may be 11utnbered with capital roman

numerals, the second level with capital letters; the third level with nrabic numerals,

and so on. Etude allows specifictltion of st1ch a numberitig scheme in a template;

Before we can explain how to do this in Etude, we need to explain how a counter's

level of nesting is determined. First, we deVne a counter's pa~ent.

A counter has a parent if the class of the hlto containing the counter's associated

hlto matches the value of the within attribute of the ,counter's associated hlto, and

the containing hlto is numbered. If the counter has a paren1, then the parent is the

containing hlto's counter.

The template for a counter might be divided in several sub-templates. This is

used when the style a counter prints in depends on the its level of nesting; for

example, the top level "items" in an outline are numbered with roman numbers,

items contained within the top level items are numbered with capital letters, items

within these are numbered with arabic numerals, and so on. Each of these styles is

specified with a sub-template. If a counter has no parent {first-level nesting), then

Etude uses the first sub-template to compose the value string. If a counter has a

parent, but no "grandparent" (second-level nesting), then Etude uses the second

sub-template. A template may contain an arbitrary number of sub-templates to

support any number of nesting levels of counters. (If the counter is nested deeper

than the number of sub-templates in its template, then the.sub-templates are cycled

through again. Thus, if dis the nesting level of a colut:ter, and n is the number of

93

sub-templates in the counter's.template, then the ith sub-template is used, where i

= d mod n.) 111e following chnracter sequence separates sub-templates within a

template.

@. Separates templates for different nesting levels of counters.

A counter may use the value string of a parent counter as pa1t of its value string.

For example, this subsection is numbered "6.3.1." The subsection counter uses the

value of the containing section; the section, in turn, uses the value of the containing

chapter. A particular character sequence in a counter's template is used to insert the

value string of its parent counter in the counter's value string.

When a counter's value is referenced as the parent of another counter, we may

want it to print differently than when it prints its value directly. For example, this

chapter's number is printed in the form "Chapter Six"; that is, the text "Chapter"

followed-by the chapter number, spelled out. The-sections in this chapter, however,

are printed as "6.1" and "6.2"; the chapter number is referenced by the section

number, but is printed as an arnbic numeral. Etude allows the specification of two

templates for each counter; one for when the counter is printed directly, and the

other for when the counter is referenced as. the parent of another counter. The

following character sequences in .a counter's template are used for printing parent

counters as part of a counter's value string.

@#

@I

@:x

@;x

Insert value of parent counter.

Separates the template for a: counter printed directly from the
template for a counter printed as parent. The characters to the
left of the @t are the template ·for when the counter is printed
directly; the characters to the right of tbe @I are for when the
counter is referenced as a parent. If there is no @I in the
template, then the single template is used for both situations.

Insert character x if there is a parent counter.

Insert the character x if there is no parent counter.

94

The templates for the counters associated with toe c~pters. anq. sections in this

thesis are presented in the fQllowi.ng table. These t.emplqt~, wo1:11d. be specified .as

the value of the counter style attribute for the "chapter" and "section" hltos.

Also, the value of the counter style attribute for an "outline·~ hlto is given. The

"outline" hlto is not numbered itself, but it does have a value for its counter style

attribute. This value is inherited by the "item" hltos contained within the "outline,"

which are numbered, and the counter slyle value becomes the template for these

"items."

Hlto

Chapter
Section
Outline

Counter's Template

Chapter @O@l@l
@#@:,@l
@I. @,@A. @,@l. @,@a. @,@i.

6.3.2 l·nstantiating the Counter in the Docwnent's Outwa1d Appear·

ance

The text of counters is instantiated in the outward appearance of the document

during the text forlnatting process. By the time the text fOmiatter is invoked on the

document, the text of the counter has already been created, because it is updated

whenever the value of the counter changes. The text of the counter is in the value

string of the counter; what remains to be done is to instantiate the counter's vahte

string in the correct position in the doCUIJlc~nt's·out~nd appearance.

The text fonnatter always places the value string of a counter on the first line of

text of the associated hJto of the counter. · It can put tll~ value string in either of two

locations on the line, as specified by the vatue of1he coume1 location attribute of the

counter.

When the linewright. encounters a begin. hlto marker :whose associated hlto

95.

requires a requires a line break before the hlto (the hlto's break attribute has a value

of either before or around), it places a pointer to that hlto in the line (see Section

5.2). Each line has a slot for the lincwright to put these hltos in. Since only hltos

that require a line break before them can be numbered, any hlto that has a counter

can be found in the line on which the counter will print. ·nie document display

system will check for these hltos in the lines it is displaying, and display the counter

associated with each hlto, if any.

ll1e linewright also positions the counter within the line. It does this by setting a

value in the line for the counter shift amounl. The counter shift amount is analogous

to the regular shift amount of the line. The regular shift amount determines how

much the text of the line is shifted from the left margin of the column in which it is

printed; the counter shift amount determines how much the value string of the

counter is shifted from the left margin.

If the value of the counter location attribute is flush left, then the text of the

counter is placed at the beginning of the line, flush left" against the prevailing left

margin. The regular text of the line is positioned after the text of the counter. In

order to get this effect, the linewright sets the counter shift amount to the value of

the left margin of the prevailing format environment, and increases the regular shift

amount by the width of the counter's value string. With these settings of the shift

amounts, the counter's value string is printed at the left margin, followed by the text

of the line.

[f the value of the counter location attribute is right flush left, then the text of the

counter is placed flush right against (and to the lefi oO the left margin. TI1e

linewright sets the counter shift anwunt to the value of the left margin less the width

of the counter's value string; the regular shift amount is not affected. With these

settings of the shift amounts, the counter's value string is printed to the left of the

left margin, and the right end of the value string falls on the left margin; the text of

96

the line begins at the left margin.

6.3.3 Displaying Counters

The value strings of counters are displayed whenever the line they are on is

redisplayed. This subsection outlines the modifications to the display system, as

discussed in chapter 5.3.

A line is considered to be unformalled not only if it has been marked unfor

matted, but also if the counter on the line-if any-is marked unformatted. Similar,

a line is considered to be changed whenever it, or the counter on the line-if any-is

marked changed. And whenever a line is marked formalled or unchanged, any

counter on the line is markedformaued or unchanged. Therefore, the formatter will

reformat and the display system will redisplay any lines whose counter has changed,

even if the text of the line has not changed.

In order to redisplay a line, the redisplay system first checks to see if there is a

counter on the line. If there is, it first displays the counter, shifted horizontally by

the counter shift amount of the line. Then the text of the line is displayed as before.

97

Chapter Seven'

Evaluation and Exten!sions

In this final chapter we evaluate some of the design and implementation decisions

of the pieces of the Etude system discussed in this thesis. 'Where appropriate, we

suggest better ways to realize certain capabilities. We conclude with a discussion of

possible extensions to the existing system. which lead. into a discussion of an

integrated office workstation.

7 .1 The Document Representation

Etude models three aspects of a document: its content, its internal structure, and

its outward appearanc'e; this model has worked quite well for realizing the functions

of Etude. In the current version of Etude, the content is represented with a link

structure of character and glue links, the internal structure is represented with hltos.

and the outward appearance is represented by a (limited) hierarchical boxes and

glue structure, also represented with links.

The main problem with the representation of the contcn~ is storage inefficiency.

The link structure simply uses too much space for storjng ea,ch,character. This li,mits

the size of documents that can be manipulated by Etude .. lt also adversely affects

the speed of Etude, making it difficult to realize the "immediate feedback" so

impmtant in making Etude easy to use. The htto strudure employed in Etude,

which represents the document's internal structure, is basitally adequate as it exists.

The current box structure in Etude is only a partial implementation of a full,

consistent, hierarchical box structure, similar to what is used by the TEX

98

system. (10] Addilionally, we have found that even TEX's general model does not

adequately address important page layout issues.

Instead of using the link structure to represent the content of a document, we

could use an array structure. Arrays are more efficient for storing characters than

links. because arrays do not have the overhead of previous and next pointers that

links have. It is more difficult to insert and delete characters from an array

structure, so the implementation oftl1e editing operat~ons.w0ttld be more complex.

The existing version of Etude does not support a general hierarchical structure of

outward appearance components: tines can contain only characters (and glue), while

columns can contain only lines (and glue). Both Jines and columns, however, are

boxes, and should be able to be components of other lines and columns. The TEX

system has this capability, and uses it to represent the appearance of complex

mathematical formulas.

Representing the content of a document could be com~ined with representing its

outward appearance, both using the same array structure. If we store the compo

nents of a line or a column in an array, and allo~ the components of the array to be

characters, glue, lines, and columns, then we have a general hierarchical structure.

Note that we would not need a separate structure to represent the content of the

document; the characters making up the content could be obtained from the line

arrays. Although it would be more difficult to ·~walk through" this hierarchical

array structure to determine the· content, such a representation both saves storage

space and is completely general.

A new type of box, tentatively dubbed a page box, could be implemented for . .

laying out pages. There are situations where horizontal and vertical lists of box~

(Jines and columns) are not natural constructs for page layout. A page box would

allow arbitrary positioning of component boxes within a larger box. For example, a

99

page in a document might have several columns of text, several cutouts for pictures,

and a running header. A page box would allow these component boxes-columns

(for the text), lines (for the header), and glue (for the cutouts}-to be directly

positioned on the page, either absolutely or relative to other boxes. Although a

structure with the same appearance could be build out of a general hierarchy of line

and column boxes, it would be more cumbersome to do so, and much harder to

manipulate if the page layout was altered. Although page boxes would mainly be

used for page layout, they would also be primitive boxes, and would be able to be

placed anywhere in the hierarchical box sl11t1cture. If a page box was a good

representation for a complicated piece of a mathematical fonnula or table, then it
''

could also be used for them.

The line and column arrays must be able. to have arbitrary objects inserted as

components. We have this already to a limited extent in Etude's text chain, which

allows hlto marker:links (and other kinds of links) to be included in the chain; line

and column arrays would also allow this. For example, a ·useful object to inse1t in a

document would be a cross-reference marker., Lik.e the Scribe system. Etude would

insert the· reference into the document and keep ·it up-to-date automatically. A

current date marker would instrl.1ct Etude to insert the current date into the

document (possibly offering a selection of styles).

An important feature lacking in Etude is the ability to simulate the appearance of

a document formaued for one device on another device. The original design of Etude

, says that we should be able to "preview" ori the screen how the document would

look if printed. A device-independent document representation would provide this

capability. With such a representation, any device driver routine would be able to

interpret the document representation and print or display it, within the limitations

inherenfin the device. We have this to a limited extent in Etude, where a character

in italics prints underlined on a display that doesn~t have an italic type face. The

100

main problem in the existing implementation of Etudc is th"t the the document is

formatted for a device of a particulur resolution, an.{} thus cannot b<: printed on a

device with a different resolution.

In a reimplementation of Etude, the document would be formatted for a

pa1ticular device-the intended output device-and a simulation could be printed

on another device-normally the display screen. This requires that:

- For each type face available on the output device, there will be a
corresponding type face for each simulation device that approximates
the appearance (the size and shape) of the type face of the outputdevice.
If an Etude document was normally printed on a particular electronic
printer, we would have to create a type face for Etude's display for each
type face available on the electronic printer. (fh·is would be a difficult
and time-consuming task because the simulation device-the display
would normally have a lower resolution -than the output device.)

- Glue would not be set by assigning it a· particular, device-dependent
value, as is currently done. Rather, the formatter would ispecify the total
amount the glue in the line (or colum11) needs to shrink or streµ;h. lt
would be the responsibility of the device driver routine to calculate a
particular size value for each piece of glue. (This· scheme would also
reduce the storage requirements for glue. because a glue's size would not
need to be stored for each individual piec~ of glue,)

With these changes we would be able to display a good approximation of the

document's true appearance.

7.2 Formatting

We have evaluated and described improvements to the representation of the

document; now we evaluate the formatting capabilities of Etude. TI1e implemen

tation of Etude generally meets the goal of providing most typographic capabilities

for formatting galleys of text. Two basic capal?ilities are missing, though: the ability

101

-------~--- ·-----~----

to produce super- and sub-scripts, and the ability to use ~ype faces of several sizes.

The formatter cannot produce super- and sub~scripts because the document

representation is not able to represent such a construct; once they could be

represented (see the discussion above), the formatter could produce them. The

formatter was built to handle multiple sizes of type, bµt this.capnbility could not be

tested because none of our display devices cou.ld display different sizes of type.9

The formatter could be improved in the way it brc~ks paragraphs into lines, and a

hyphenation facility could be incorporated into the system. The TEX formatting

system is sophisticated in these respects:

When the end of a paragraph is encountered, TEX determines the "best" way to break

it into lines. In this respect, TEX gives better results than most other typesetting systems
[including Etude], which produce each separate line of output before beginning the next,

because the final wnrds of a 1'EX paragraph can influen~ how the lines at the beginning
are broken. :~·l:iX's new approach to this problem ..•... requires only a. litclc more

computation than the traditimrnl methods, and leads to significantly fewer cases in which
words need to be hyphenated. ·

TEX's approach to paragraph breaking and hyphenation could be incorporated into

the Etude system; the only potential problem is that we may nofbe able to satisfy
' Etude's requirement of real-time formatting wiih it, because it may require too

much computation.

The Etude formatter should be extended to haqdl$;! the layout of ~omplete pages;

we sketch here how this would be done. For[1lattjng may b~ broken down into two
' J . ; ' ,~ " I

activities, text composition and pagination. Composition is the process of setting the

text of a document into galleys of type. Pagination is the art of page makeup, of

arranging the columns of text and. other,00¢t1111nUx:>tn{.bnoots.1a1ch as mustrations

9 Actually, we were able to test this capability of the fonnatter to a limited extent, and it did work.
The only problem was that lines were sometimes not leadcdcbrr~tly, as citplaincd in Section 5.2.

102

and fofios, into finished pages, Pagination, as· used here, subsumes and integrates

three aspects of the overafl document production process that have traditionally

been handled as separate activities:

Pagination

Makeup

Copy fitting

The selection of page breaks, and the selection of folio style,
placement and value for each page.

The arrangement of composed type into pages, and the insertion
of folios, running heads, and inserts in accordance with a design
er's tayout specifications.

Determining the amount of space required to set a given amount
of text. and the adjustments involved in making the text fit the
space it is to be p1inted within.

The basic design problems to be handled indude: design of an appropriate

internal representation for a fully formatted document; design of a layout specifi

cation language to guide the system as it paginates a document; and the design of a

set of algorithms to manipulate the internal document representation in order to

achieve copyfit within the layout specification.

Other extensions associated with the fonnatting capabilities of Etude include:

conversational formatting. in which the system prompts the operator to provide the

components of the document being constructed; and an interactive analogic

subsystem for creating or changing fonnat definitions, with which the user could

modify the format data base not by editing its text, but by indicating through

examples the kinds of fonnat structures desired.

7 .3 An tnteg rated Office Workstation

A number of other document production facilities may also be integrated with

Etude. These include an Etude extension f~r generating business graphics, such as

tables and bar graphs. As in Etude, the, operator would describe the desired

103

structure in high-Jevel terms, providing a minimal amount <of information; the

system wouJd then display a proposed candidate, which the operator will be able to

modify. Other tools include a document analysis system, including a spelJing

checker and a syntax/punctuation/style checker; both of these would be integrated

with the document processing system and would be available interactively. A

reference and bibliography system could interface with an on-line bibliographical

data base, providing an on-line search capability for this data base and a mechanism

for automatic generation of appropriate references.

An integrated office workstation is more than just a collection of office tools. It

must provide consistent user interfaces to the tools, uniform data structures

underlying them, ready context switching among them, and a suppmting infra

structure. We believe that there will be different versions of such a workstation for

different classes of office personnel, such as clerical workers, professional, and

managers. We also believe that a small set of fundamental capabilities form the

underpinning of aJl the facilities to be provided in these various contexts. These

include a text processing system (such as Etude}, an office data base management

system, an image handling system, and a communications mechanism. Out of this

collection of tooJs can be built virtualJy any office application system. We will first

have to identify the functions and facilities that these basic components should

provide, and then design the common base of software that will underlie all of them.

For example, an office data base system differs in a number of important ways from

more conventional data base managers. It must be able to cope with multiple modes

of data, including text, graphics, and images. lt must deal with non-uniformly

structured data, and must support very easy entry and retrieval of data. We view the

office data base system as a universal filing system for all the documents and

infonnation bases used in the office, as well as a gateway into corporate data base

systems. A variety of generic and specific office applications would be built on top

of these basic building blocks. Among these would be an electronic mail system, a

104

forms handling system, a calendar manager, and a personnel tracker.

105

[l]

[2]

[3]

[4]

[5]

[6]

References

Anderson, Tim.
ETUDE Architecture.
Working Paper WP~022, Massachusetts Institute of Technology Laboratory

for Computer Science, Office Automation Group, June, 1980.

Canning, Richard G.
Word Processing: Part 1.
EDP Analyzer 15(2), February, 1977.

Canning, Richard G.
Word Processing: Part 2.
EDP Analyzer 15(3), March, 1977.

Good, Michael.
Notes on the Etude User Inte1jace Structure.
Working Paper WP-016, Massachusetts Institute of Technology Laboratory

for Computer Science, Office Automation Group, October, 1979.

Good, Michael.
A Programmer's Guide to Etude.
Memo OAM-014, Massachusetts Institute of Technology Laboratory for

Computer Science, Office Automation Group, April, 1980.

Good, Michael.
Etude and the Folklore of User Interface Design.
Memo OAM-018, Massachusetts Institute of Technology Laboratory for

Computer Science, Office Automation Group, July, 1980.

106

[7}

[81

[9)

[10)

(11)

[12)

[13]

Goodstein, David.
Output Alternatives.
Datamalion 26(2):122-130, February, 1980.

llson, Richard.
An Interactive Editor and Formatter.
Working Paper WP-004. Massachu~tts lnstitute.QfTechn.ology Lltlx>1atory

for Computer Science, Oflkc Automat~ Group,J,une, 19-79.

!Ison, Richard.
Recent research in text processing.
Words 9(1):32-34; 52-54, June-July. 1980.

Knuth, Donald E.
TEX and Al ETA FONT: New Directions in TypeseHing.
American Mathematical Society and Digital~. 1919.

Liskov, Barbara, et al.
CLU Reference Manual.
Technical Report 225, Massachusetts Institute of Technology Labor~tory for

Computer Science, October, 1979 ..

Niamir, Bahram.
The Configuration of the Nu Terminal.
Working Paper WP-009, Massachusettslnstitttte of Technology Laboratory

for Computer Science, Office AutDtnation Group, July, .1919.

Niamir, Bahram.
The Editor System Display .Device.
Memo OAM-009, Massachusetts Institute of Technology Laboratory for

Computer Science, Otlke Automation Group, Awu~ 1979.

107

[14)

[15)

[16)

[17)

[18)

[19)

[20]

I
i

i

Niamir, Bahram.
A Virtual Terminal Interface for Text Processing Applications.
Memo OAM-011, Massachusetts lnstitute of Technology Laboratory for

Computer Science. Office Automation Group, December, 1979.

Office Automation Grot1p.
Annual Progress Report.
Memo OAM-007, Massachusetts Institute of Technology Laboratory for

Computer Science, Office Automation Group, June, 1979.

Office Automation Group.
Annual Progress Report.
Memo OAM-017, Massachusetts Institute of Technology Laboratory for

Computer Science, Office Automation Group, June, 1980.

Pratt, V. R.
DOC Manual.
Massachusetts Institute of Technology, 1979.

Reid, Brian K. and Janet H. Walker.
Scribe Introductory User's Manual
Second edition, 1979.

Rosenstein, Larry.
The ETUDE Redisplay Implementation.

''-:

Working Paper WP-02t Massachusetts Institute of Technology Laboratory
for Computer·Science, Office Automation Group, April, 1980.

Schoichet, Sandor.
Page Makeup in Etude.
Working Paper WP-020, Massachusetts Institute of Technology Laboratory

for Computer Science, Office Automation Group, April, 1980.

108

[21]

[22]

[23]

[24]

Seybold, Jonathan.
Atcx-Pmt I: The Atex-8000 as a Commercial System.
The Seybold Report 6(5), November, 1976.

Seybold, Patricia B.
Wang's lOA, 20 & 30 Word Processing Systems.
The Seybold Report 011 Word Processing 1(1), February, 1978.

Stallnwn, Richard M.
Emacs: !he Fxtcndible, Customizable, Self Documenting, Display Editor.
Technical Report 519, Massachusetts Institute of Technology Artificial Intel-

ligence Laboratory, August, 1979.

Alto User's lfandbook.
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA,

94304, 1979.

109

