
RECEIVED dY:

...

Producing ExplLlnations and Justifications

of

Expert Consultin~1 Programs

Wi!linm R. Swartout

January 1981

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge Massact1usetts 02139

This empty page was substih1ted for a
blank page in the original document.

Producing Explanations and Justifications
of

Expert Consulting Programs

by

William R. Swartout

This report is a modified version of a thesis submitted
to the Department of Electrical Engineering and Computer

Science on Der:ember 18, 1980 in pJrtial fulfillment of
the requirements for the Degree of Doctor of Philosophy in

Computer Science

3

Traditional methods for explaining programs provide explanations by converting to
English the code of the program or traces of H-ie execution of that code. Wl1ile such
methods can provide adequate explanations of what the program does or did, they
typically cannot provide justifications of the code without resoriing to canned-text
explanations. That is, such systems cannot tell why whnt the system is doing is a
reasonable thing to be doing. The problem is that the knowledge required to provide
these justifications is needed on!y when the program is being written and does not
appear in the code itself. In the XPLAIN system, an automatic programming approach is
used to capture some of the knowledge necessary to provide these justifications.

The XPLAIN system uses an automatic programmer to generate the consulting
program by refinement frorn abstract goals. The automatic pro~1rammer uses a domain
model, consisting of facts about the application domain, and a set of domain principles
which drive the refinement process forward. By keeping around a trace of the execution
of the automatic programmer it is possible to provide justifications of the code using
techniques similar to the traditional methods outlined above. Tl1is paper discusses the
system described above and outlines additional advantages this approach has for
explanation.

l<eywords: Explanation, Automatic Programming, Expert Systems

Thesis Supervisor: Dr. Peter Szolovits

Title: Associate Professor of Computer Science and Electrical Engineering

4

Table of Contents 5

CONTENTS

1. Introduction ... 9

1.1 Digitalis Therapy and the Digitalis Advisor .. 10
1.1.1 Digitalis Sensitivities .. 12
1.1.2 The Digitalis Therapy Advisor Testbed 13

1.2 Kinds of Questions ... 14
1 .3 Previous Approaches to Explanation ... 15
1.4 Providing Justificatkrns .. 19

1 .4. 1 System Overview 19
1.5 A Summary of Major Points .. 25

2. System Building Tools: XLMS and the XLMS Interpreter 27

2.1 XLMS Notation .. 27
2.1.1 XLMS Concepts ... 27
2.1 .2 Attachments ... 29
2.1.3 Sequences ... 31
2.1.4 XLMS Plexus .. 31
2.1 .5 Colon Anaphora ... 31

2.2 The Phrase Generator .. 32
2.2.1 Generator for *R .. 33
2.2.2 Generator for *Measure .. 33
2.2.3 Generator for *I .. 34
2.2.4 Generator for *F .. 34
2.2.5 Generator for *O .. 35
2.2.6 Generator for *Characterization 35

2.3 The XLMS Interpreter ... 36

3. Creating the Performance Program by Refinement .. 40

3.1 Knowledge Sources: the Domain Model and Domain Principles 40
3.1.1 The Domain Model ... 41
3.1.2 Domain Principles .. 43

3.2 The Pattern Matcher ... 45
3.2.1 Specifying a Pattern ... 45

3.3 The Program Writer: How it Works ... 47
3.3.1 Synthesizing the Performance Program 47
3.3.2 Finding a Domain Principle ... 50
3.3.3 The Domain Rationale ... 52
3.3.4 lnstnntiating the Prototype Method 56

6

3.3.5 Refining a S,,IU·join .. i~ ... 62
3.3.6 Completing the Implementation 69

3.4 Future Needs ... 73

4. Assessing Toxicity ... 74

4.1 The Causal Implementation .. 74
4.2 The Empirical Implementation , .. 78

5. Generating Explanations ... 80

5.1 The Phrase Generator Revisited ~ ~ ~ 80
5.1.1 Generator for •c .. 81
5.1.2 Generator for *E , 82
5.1.3 Dealing with Articles ... 84
5.1.4 Viewpoints .. ~ .. ····· 85

5.2 The Answer Generators .. 86
5.2.1 Answering "Why" Questions ... 87
5.2.2 Explanation of Methods .. 93
5.2.3 Prototype Method Explanations 94
5.2.4 Explaining Events ... 96
5.2.5 Non-English Explanation .. 98

6. A Discussion of the Automatic Programming Approach to Explanation 100

6.1 Does Automatic Programming Affect the Performance Program? .. 100
6.2 Is this Approach to Explanation Compatible with Others? 101
6.3 Is Automatic Programming Too Hard? .. 101
6.4 Levels of Language ; ... 102 ·
6.5 Is a Top-down Approach Really NeGessary? 106 ·
6.6 Limitations and Extensions of the XPLAIN Systei;n 107

6.6.1 What.Can the Current lmplemef1tation Do? 107
6.6.2 Improved Answer Generators 108
6.6.3 Telling White Lies ... 110
6.6.4 Telling the User What H~ Wantsto Know 111

6. 7 Conclusions ... 111

7. References ... 113

Table of Figures 7

FIGURES

Fig. 1. Explanation of How the SystenrChecks Hypercalcemia 16
Fig. 2. Code to Check for Increased Digitalis Sensitivity Due to Hypercalcemia .. 16
Fig. 3. Explaining How Thyroid Function Was Checked 17
Fig. 4. Telling Why a Question is Asked ~ 17
Fig. 5. System Overview ... 20
Fig. 6. Refinement Structure .. 21
Fig. 7. Domain Model .. : 22
Fig. 8. An Example of a Domain Principle .. 23
Fig. 9. Instantiation of a Prototype Method .. 24
Fig. 10. A Sampte Interaction Providing Justifications .. 25
Fig. 11. The Kind Hierarchy .. 29
Fig. 12. BNF Grammar for the XLMS Interpreter : 37
Fig. 13. Examptes of CaKs ... 38
Fig. 14. The Domain Model ... 42
Fig. 15. A Domain Principle .. 44
Fig. 16. The Program Writer ... 48
Fig. 17. Domain Prinicple for Anticipattng Drug Toxtcity 51
Fig. 18. Domain Principle for Anticipating Drug Toxicity 53
Fig. 19. A SpUt to be Resolved .. 58
Fig. 20. An Example of a Split-join ... 59
Fig. 21. Resolving a Split By Serialization .. 63
Fig. 22. Method After Sptlt-Join Resolved ; 69
Fig. 23. Principles to Determine If Increased or DecreaseEf COnditions Exist 71
Fig. 24. Principle to Determine If a Condition Exists .. 71
Fig. 25. Principle to Maintain the Dose ' ; .. 72
Fig. 26. Domain Model For Toxicity ; 75
Fig. 27. An Explanation From the Old Digitalis Therapy Advisor 94
Fig. 28. An Exptanation From the Code for Anticipating To~ity 95
Fig. 29. Explanation of a Domain Principle .. 96
Fig. 30. Examples of Event Explanations ... 97
Fig. 31. Describing Events with Arithmetic Expressions 98
Fig. 32. Describing Methods with Arithmetic Expressions 99

8

I would like to thank all those who inade tbts. theail fl)QBlible. and tn
particular, the following:

Peter 51olovits for suggesting this thesis topic and tor being an
exemplary supervisor;

Rµndall Pavis and Robert Fano for their hetpful con1t_,~ on eorly drafts
of this document;

. Bill Martin for introducing me to the area of knowledQ$ bit.$ed application
systems;

Ram~sh Patil for his considerable h~lp in Pf()Qram.wng the
pattern-matcher and tor being:.a very ins.igh&(ul soundinQiboafo fOI: ~;

Bill 1,..ong for hi~ comlllE)nts on automatic programming, W· hia exttRaive
knowledg~ of digitalis therapy;

Dr. Stev~n Pauker for advice on mediaa{"~ 8fld Mjp m making
arra,ngemenl$ at T ult$ ~w Ertgland Mefiiiceteenter;

Harold Goldberger and Ken Church for. •iai, 4flO thought.provoking '
conversationli whHe I w;,is. trying to formulate ~·!MM;

and, finally, li$a 6eftio and my p,wents fQJ OOew'tnoJl't up when t was
glum.

This research was svpported (in part) by the National ln•titutes of Health
Grant No. 1 P01 LM 0337 4-01 from the Nattonal Library of Medicine.

-----------·~-

Introduction 9

1. Introduction

Computers can be inscrutable. Too often, the person who t1·ies to have his bank

correct an error in his account, have a duplicate charge removed from his credit card

statement, or stop the local department store from sending him a bill for zero dollars

every month finds that dealing with a computer and the bureaucracy that surrounds it

can be a mystifying, frustrating, and time-consuming process. In part, these difficulties

have arisen because tho designer of a data processing system is primarily concerned

with processing efficiency. He relies on a staff of computer support personnel to deal

with pr·oblems and questions as they occur. Howc::ver, even in relatively simple areas

such as accounting and billing this approach to system design has not been an

overwhelrning success, and it becomes less appropriate as we become more ambitious

and attempt to use the computer to solve more sophisticated problems.

The area of medical consultant programs 1 provides a case in point. The design

desiderata of a consultant program are quite different frorn tt1ose for an accounting

program. In designing a consultant program, we must consider what sorts of capabilities

we are trying to provide for the physician user. If we consider the interaction between a

physician and a human consultant, we realize that it is not just a simple one-way

exchange where the physician provides data and the consultant provides an answer in

the form of a prescription or dia~~nosis. Ratl1er, there is typically a lively dialog between

the two. The physician may question wl1ether some factor was considered or what effect

a particular finding had on the final outcome. Viewed in this light, we realize that a

computer program which only collects data and provides a final answer will probably not

be found acceptable by most physicians. In addition to providing diagnoses or

prescriptions, a consultant program must be nble to explain what it's doing and justify

why it's doing what it's doing.

1. Some medical consultant programs include: MYCIN-a program that aids physicians with
antimicrobial therapy [Shortliffe76], INTERNIST-a program that makes diagnoses in internal
medicine [Pople77] and PIP-a program that makes diagnoses primarily in the area of renal
disease [Pauker76].

10

If a program can explain its reasoning processes accurateJy, user ac.qaptance
can be more easily obtained since the user can assure himself that the program is doing

reasonable things. An explanatory capability can also servo as a pedagogical aid. A

student or practitioner may use the system and improve his understanding} of the

program's area of expertise by. comparing his own reasoning with that ()f· the system. An
explanation facility may also be abte to elucidate any assumptions and. simplifications

built into the consultant system which may limit its apphcabitity in certam special types of

cases. Finally, as system designers, we have found that an explanatory.capabrnty often

aids us i11 debugging the system.

The next section will describe the Digitalis Therapy Advisor, the program we

have chosen as a testbed for our ideas about expJanati9n, and some aspects of digitalis

therapy which readers without medical backgrounds wiU probf!bly need to understand

the remainder of the thesis. While we have concentrated on the problem of providing

explanations to medical personnel, we do not feel that the need for explanation is limited

to medicine nor do we feel that the techniques we have developed tor explanation and

justification are limited to medical applications. Medical programs provide a good

testbed for the general problem we are attackino, which is to be able to explain a

consulting program to the audience it is intended to serve.

1. 1 Digitalis Therapy and the Digitalis Advisor

The digitalis gtycosides are a group of drugs that were originatly derived from

the foxglove, a common flowering plant. This group tnctudeS digoxin, digltoxin; ouabain,

cedilanid and digitalis leaf. Among these, digoxin Is currently by far the most commonly

used drug. The use of digitalis was first documented by Witttsm Withering in an article

written in 1785. He noticed that the drug caused increased urine flow, and used the drug

to treat abnormal accumulations of fluid, a condition known as dropsy, which is often the

result of a failing heart. Later, it was discovered that this diuretic effect is only secondary

to the principal effect of digitalis, which is to strengthen and stabilize the heartbeat.

In current practice, digitalis is prescribed chiefly to patients who show signs of

congestive heart failure (CHF) and/or conduction dis~utbances of the heart. Congestive

heart failure refers to the inability of the heart to provide the body with an adeqwte.bJood

Digitalis Therapy and the Digitalis Advisor 11

flow. This condition causes fluid to accumulate in the lungs and outer extremities and it

is this aspect that gives rise to the term "congestive". Digitalis is useful in treating this

condition, because it increases the contractility of the heart, making it a more effective

pump .. A conduction disturbance appears as an arrhythmia, which is an unsteady or

abnormally paeed heartbeat. Digitalis tends to slow the conduction of electrical

impulses through the conduction system of the heart, and thus steady certain types of

arrhythmias. Due to the positive effect that digitalis has on the heart, it is one of the most

commonly used drugs in the United States. In 1971, it was fifth on the list of drugs most

frequently prescribed by doctors through pharmacies in the US [Ogilvie72, Doherty73].

There is, however, a darker side to digitalis. Like many other drugs, digitalis can

also be a poison if too much is administered. In the case of digitalis, the ratio between a

dose which will cause a therapeutic effect and one which will cause a toxic reaction is

only about 1 to 2. This "therapeutic window" is particularly small when compared with

other drugs. The window for aspirin, for example, is about 1 to 20. In addition, there are

a number of factors such as weight, electrolyte balance, and history of heart damage {to

name a few) that rnay cause the patient to be more sensitive to digitalis and thus more

likely to develop a toxic reaction. These factors must be taken into account in

prescribing digitalis.

Digitalis toxicity may assume many different forms. It may manifest itself as

blurred or colored vision. Certain gastro-intestinal symptoms such as anorexia {loss of

appetite), nausea or vomiting may appear. More frequently, potentially life-threatening

abnormal heart rhythms indicate digitalis intoxication.

The clinician must be particularly careful in interpreting toxic signs, since they

may have other causes unrelated to digitalis, or in the case of some arrhythmias, they

may be mistaken for a lack of therapeutic effect. Thus, it is possible that a doctor may

give a greater dose of digitalis, mistakenly thinking that the patient is not showing

adequate therapeutic effects, when in fact he should withhold digitalis until the patient's

toxic symptoms disappear.

In the body, digitalis tends to accumulate and dissipate in an exponential

fashion like the charge on a capacitor in an RC circuit [Doherty61, Doherty70,

Doherty73]. Digitalis leaves the body through two routes. Much of the drug is excreted

12

in the urine, and the mst is metabo!ized in the liver. The exact proportions depend on

the prepr:m:ition used, and how well the patient's kidneys are functioning (ren81 function).

/\doctor must consider· these elements in assessing a patient's response to the drug.

Because it is so difficult to predict a priori how much digitalis a patient sl1ould

receive, carcJiologists generally use feedback to determine the correct dose. A certain

amount of digitalis is aiven tu a patient, the therapeutic and/or toxic effects that nppear

are evuluated, and the dose the patient receives is Jdjustcd appropriately. Once it is felt

1hat the patient is receiving the correct amount, the patient is placed on a maintenance

program so that the amount of digitalis he receives each day is equal to the amount lost

through excretion.

Since there are a large number of factors to consider, and the exponential

model is somewhat inconvenient, mnny patients are treated incorrectly. Studies indicate

that as many as twenty µer cent of hospitalized plltients receiving digitalis show toxic

symptoms, and that the mortality rate among these patients may be as high as thirty per

cent [Ogilvie72, Peck73).

1.1 .1 Digitalis Sensitivities

In Chapter 3, we will describe how t11e XPLAIN system synthesizes the portion of

a digitalis advisor that checks and corrects for increased sensitivity to digitalis. In this

section, we will describe in a little more depth what the digitalis sensitivities are, and

what causes them.

In administering digitalis (and many other drugs) a physician must deal with the

possibility t11at his patient may be more sensitive to the drug (for whatever reason) than

the average patient. If a physician knows those factors that make a patient more

sensitive he can reduce the likelihood of overdosing (or underdosing) the patient by

adjusting the dose depending on wl1et11er he observes the sensitizing factors or not.

Over the years, a number of factors have been identified that increase the

Digitalis Sensitivities 13

automaticity of the heart.2 These include: a low level of serum potassium (hypokalemia),

a high level of serum calcium (hypercalcemia), damage to the heart muscle

(cardiomyopathy), and a recent myocardial infarction (among others}. When these exist

in conjunction with digitalis administration, the automaticity can be increased

substantially. We will concentrate on just the first three in the program synthesis

presented in Chapter 3.3

1.1.2 The Digitalis Therapy Advisor Testbed

A few years ago, a Digitalis Therapy Advisor was d~veloped at MIT by Pauker,

Silverman, and Garry [Silverman75, Gorry78]. This program was later revised and given

a preliminary explanatory capability [Swartout77a, Swartout77b]. The limitations of

these explanations (and of those produced by similar techniques) will be discussed in

the next section. This program differed from earlier digitalis advisors [Peck73, Jelliffe70,

Jelliffe72, Sheiner72] in two important respects. First, when formulating dosage

schedules, it anticipated possible toxicity by taking into account the factors that

increased digitalis sensitivity and it reduced the dose when those factors were present.

Second, the program made assessments of the toxic and therapeutic effects which

actually occurred in the patient after receiving digitalis to formulate subsequent dosage

recommendations. This program worked in an interactive fashion. The program would

ask the physician for data about the patient and produce recommendations after that

data was entered. When the dose of digitalis was being adjusted, the physician was

asked to consult with the program again to assess the patient's response. This is the

program we used as a testbed for our work in explanation and justification.

2. In the normal heart, there is a place in the left atrium called the sino-atrial (SA) node, which
sets the pace for the heart. Under the right circumstances, other parts of the heart can take over
the pace-setting function. Sometimes this can be life-saving if, for example, the SA node is
damaged. But at other times it can be life-threatening, since several pace-makers operating
simultaneously tend to increase the likelihood of setting up a dangerous arrhythmia. When we
say that digitalis increases the autornaticity of the heart, we mean that digitalis increases the
tendency of other parts of the heart to take over the pace-setting function from the SA node.
3. The XPLAIN system currently only knows about the first three factors, although it would not be
particularly difficult to expand it to cover the others.

14

1.2 Kinds of Questions

In the spring of 1979, we conducted a series of informal trials in an attempt to

discover what sorts of questions occurred to medical personnel as they ran the Digitalis

Advisor. In this trial, medical students and fellows were asked to run the program and

ask questions (verbally) as they occurred to them. The author attempted to answer these

questions. The interactions were tape recorded and later transcribed.

No formal analysis of the data was attempted, but examination of the transcripts

clid give us a good feeling for the 3orts of questions that a doctor might have while

running a consulting program.

One type. of question asked directly about the methods the program employed:

Subject: "How do you calculate your body store goal? That's a little lower
than I anticipated."

This sort of question could be answered by the expjanation routines of the old Digitalis

Advisor. It can also be answered by the system presented in this thesis.

Another sort of question asks for a justification of what the program is doing:

Subject: (peruses recommendations) "Why do we want to make a temporary
reduction?

Experimenter: "We're anticipating surge,.Y coming up, and surgery, even
non~cardiac surgery can cause increased sensitivity to dlgltalfs, so it wants to
hold digitalis. "

This is exactly the sort of question we are concentrating on in this thesis.

Finally, there are some sorts of questions that came up that thiS thesis does not address.

Most of these seem to Involve contusion about the meaning of term&:

IS THE RENAL FUNCTION STABLE?
THE POSSIBILITIES ARE:

1. STABLE
2. UNSTABLE

ENTER SINGLE VALU£ ====>

Subject: "now this question ... l'm not really sure ... 'renal function stable' does

l<inds of Questions

it mean stable abnormally or ... because ! mean, the patient's is not normal it's
stable at the present time."

Experimenter: "That's what it means"

1.3 Previous Approaches to Explanation

15

A number of different approaches have b8en taken to attempt to provide

programs with an explanatory capability. The major approaches include using 1)

previously prepared text to provide explanations and 2) producing explanations directly

from the computer code and traces of its execution. These approaches will be

discussed below.

Tl1e simplest way to get a computer to answer questions about wliat it is doing is

to figure out what questions will be asl<ed and then store tlie answers to t11ose questions

as English text. The computer can only display the text that has been stored. This is

called canned text, and explanations produced by displaying canned text are called

canned explanations. The sin1plest sorts of canned explanations are error messages

which the computer displays when something goes wrong. For example, a medical

program designed to treat adults might print the following message if someone tried to

use it to treat an infant:

THE PATIENT IS TOO YOUNG TO BE TREATED BY THIS PROGRAM.

It is relatively easy to get a small program to provide English explanations of what it is

doing using this canned text approach. First we write the program. Then we associate

with each part of the program canned English text which explains what that part of the

program is doing. Then when the user wnnts to know what's going on, the computer

merely displays the text associated with what it's doing nt the moment. However, the fact

that the program code and the text strings that explain that code can be changed

independently makes it difficult to guarantee consistency between what the program

does and what it claims to do. Another problem with the canned text approach is that all

questions and answers must be anticipated in advance and the programmer must

provide answers for all the questions that the user might nslc For large systems, that is a

nearly impossible task. Finally, the system has no conceptual model of what it is saying.

16

Fig. 1. Explanation of How the System Checks Hypercalcemia

TO CHECK SENSITIVITY DUE IO CALCIUM I DO THE FOLLOWING STEPS:

1. I DO ONE OF TllE FOLLO\>JING:

1.1 Ir fITHER HIE LEVEL OF SCRUM CALCIUM IS GREATER Tll/\N 10 OR IV4

CALCIUM lS GIVEN THEN I DO lllE fOLLOWING SUl3STEPS:

1 . 1 . 1 I S E1 T 11 E F /\ C TO R 0 F I~ EDU CT ION DU E TO HY P ER CA L C E M IA TO 0 • 7 5 .

1.1.2 I /\DD HYPEl1C/\LCEMIA fO TllE REASONS OF REDUCTION.

1. 2 ornrnvJl SE. I m MOVI llYl1 rnCALCfMIA fl\OM l llE REASONS OF REDUC r ION
AND SET THE. UICl Of\ 01 lll.llUC r ION DUE TO lfYPEl\CALCEMIA TO 1. 00.

Fig. 2. Code to Check for Increased Digitalis Sensitivity Due to Hypercalcernia

[(CH[CK (SENSITIVITY (DUF (TO CALCIUM))))
METllOD: (OR

(If-THEN
(OR

{GfffAHH-TllAN 10. (QUANT/\ SERUM-CALCIUM))
(IV--STATUS CALCIUM GIVEN))

{fffCOME (F/\CfOfl HEDUCTION-HYPERCALCEMIA 0.75)):1,
(BECOME-ALSO

(HE/\SONS l\[[)LJCTION HYPERCALCEMIA)):)
(/\ND:2

(u~m E COME (p [/\SON s REDUCT ION HY PERCALC EM IA)) :
(BECOME (r /\CTOll REDUCT ION-HYPERCALCEMIA 1. 0)): 2)) J

That is, to the computer, one text string looks much lil<e any other, regardless of the

content of tt1at string. Thus, it is difficult to use this approach if we want our system to

provide more advanced sorts of explanations sucl1 as suggesting analogies or if we want

to be able to give explanations at different levels of abstraction.

Another approach to explanation is to produce explanations directly from the

program [Davis7G, Shortliffe76, Swartout77a, Swartout77b, Winograd71]. That is, the

explanation routines exarnine the program which is run by the computer. Then by

performing relatively simple transformations on the code these explanation routines can

produce explanations of how the system does things. For example, the Digitalis Advisor

uses the code shown in Figure 2 to check for increased digitalis sensitivity caused by

4. Intravenous

Previous Approaches to Explanation 77

increased serum calcium. The system can examine the code ane:.l produce an English

explanation of what the code does {shown in Figure 1).

The Digitalis Advisor, like most similar systems, also keeps a trace of the

execution of the code. That is, as the code is executing, the system records what

happens. This trace can then be examined by the explanation routines to tell what the

system did for a particular patient. Figure 3 explains how the system checked for

myxedema. The system also has a limited ability to explain why it is asking the user a

question. Figure 4 shows the system's response wlwn the user wants to know why he is

being asked about serum calciun1.

Fig. 3. Explaining How Thyroid Function Was Checked

I CllF.CKED SENSITIVITY DUE TO TtlYHOIO-FUNCTION BY EXECUTING TllE FOLLOWING
STEPS:

1. I ASKED THE USER THE STAfUS OF MYXEDEMA. THE USER RESPONDED TllAT THE
STATUS OF MYXEDEMA WAS PRESENT.

2. SINCE THE STATUS OF MYXEDEMA WAS PRESENT I DID TllE fOLLO\tJING:

2 .1 I ADDED MYXEDEMA TO T!IE PRESENT /\NO CORRECT AO LE CONDITIONS. THE
PRESENT AND CORRECTABLE CONDifIONS THEN BECAME MYXEDEMA.

2. 2 I REMOVED MYXEDEMA FROM THE DEGRADAEllE CONDIT IONS. THE
DEGRADABLE CONDITIONS rnEN BECAME llYPOKAl.EMIA, HYPOXEMIA,
CARDIOMYOP/\THIES-MI, AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

2.3 I SET THE FACTOR OF REDUCTION DUE TO MYXEDEM/\ TO 0.67. THE
FACTOR OF REDUCfION DUE ro MYXEDEMA WAS PREVIOUSLY UNDETERMINED.

2. 4 I ADDED MYXEDEMA TO fl IE REASONS OF REDUCT ION. THE REASONS OF
Rf_OUCT ION THEN ElECAME MYXEDEMA.

Fig. 4. Telling Why a Question is Asked

WHAT IS THE LEVEL OF SERUM CALCIUM?

ENTER NUMERICAL VALUE ====> why? (The user types "why?" indicating that he
questions why he is being asked to supply the value of serum potassium.)

MY TOP GOAL IS TO BEGIN THERAPY. ONE STEP IN DOING THAT IS TO CHECK
SENSITIVITIES. I AM NOW TRYING TO CHECK SENSiTIVITY DUE TO CALCIUM.

18

Since the explanation routines only perform simple transformations on the

program code, the quality of the explanations produced in t11is manner depends to a

great degree on how the system code is written. In particular, the basic structure of the

program is not altered significantly, and the names of variables in the explanation are

basically the same as those in the program. If the explanations are to be

understandable, the expert system must be written so t11at its structure is easily

understood by anyone familiar with its domain of expertise, and the variable and

procedure names used in tile program must represent concepts which are meaningful to

the user.

This method of producing explanations has some advantages. It is relatively

simple. If the right way of structuring the problem can be found, it does not impose too

~1reat a burden on Hie programmer; since tho explanations reflect the code directly,

consistency between explanation and code is assured. Despite these advantages, there

are some serious problems witl1 this technique.

It may be difficult or impossible to structure the program so that the user can

easily understand it. The fact that every operation performed by the computer must be

explicitly spelled out sometimes forces the programmer to program operations which a

pl1ysician would perform without thinking about them. That problem is illustrated in

Figure 3. Steps 2.1, 2.2, and 2.4 are somewhat mystifying. In fact, these steps are

needed by the system so that it can record what sensitivities the patient had that made

him more likely to develop digitalis toxicity. These steps are involved more with record

keeping than with medical reasoning, but they must appear in the code so that the

computer will remember why it made a reduction. Since they appear in the code, they

are described by the explanation routines, although they are more likely to confuse a

physician-user than enlighten him. An additional problem is that it's difficult to get an

overview of what's really going on here. While the system is explicit about record

keeping, it isn't very explicit about the fact that it's going to reduce the dose, though it

hints at a reduction by saying that the "factor of reduction" is being set to 0.67.

An additional problem, and the primary one we will address in this thesis is that

while this way of giving explanations can state what the system does or did, it can't state

why the system did what it did. That is, the system can't give justifications for its actions.

In the explanations given above, the system can't state that it reduces the dose because

Previous Approaches to Explanation 19

increased calcium causes increased automaticity. The information needed to justify the

program is the information that was used by the programmer to write the program, but it

does not have to be incorporated into the program for the program to perform

successfully-just as one can successfully bake a cake without knowing why baking

powder appears in the recipe. Since it is desirable for expert programs to be able to

justify what they do as well as do it successfully, we need to find a way of capturing the

knowledge and decisions that went into writing the program in the first place. The

remainder of this report will describe recent efforts we have made toward achieving that

goal in the context of the Digitalis Tt1erapy Advisor.

1.4 Provicling Justifications

We need a way of capturing the knowledge and decisions that we11t into writing

the program. One way to do this is to give the computer enough knowledge so that it can

write the program itself and remember what it did. The notion of having one program

write another program is not new. It is called automatic programming and has been

researched considembly [Balzer77, Barstow77, Green79, Long77, Manna77]. Using an

automatic programmer to help in producing explanations is a new idea. We will describe

how the system works below.

1.4.1 System Overview

An overview of the system is given in Figure 5. The system has five parts: a

Writer, a Domain Model, a set of Domain Principles, an Enr;list1 Generator, and a

Refinement Structure. The Writer is an automatic programmer. It writes the Digitalis

Advisor. The Domain Model and the Domain Principles contain knowledge about Hie

domain of experiise. Thus, in this case, they contain information about digitalis and

digitalis therapy. They provide the Writer with the knowledge it needs to write the

Digitalis Advisor. The Refinement Structure can be thought of as a trace left behind by

the Writer. It shows how the Writer develops the Digitalis Advisor. When a physician

user runs the Digitalis Advisor, he can ask the system to justify why the program is doing

what it is doing. The Generator gives him an answer by examining the Domain Model,

the Domain Principles, the Refinement Structure, and the step of the Advisor currently

20

being executed. If we wanted to write a new program covering a new medical domain,

we would have to change the Domain Model and tt1e Domain Principles, but we should

not have to change the Wr·iter or the English Generator.

The Refinement Structure is created by the Writer from tt1e top level goal {in this

case Administer Digitalis) as it writes the Digitalis Advisor. The Refinement Structure is a

tree of goals, each being a ref inemcnt of the one above it in the tree (see Figure 6). By

"refining a goal" we mean laking a goal and turning it into more specific subgoals. For

t;xample, if we had the abstract goal of getting from New Yori< to San Francisco, some

refinements (or subgoals) of that gual would be getting to tile air·port, buying a ticket,

flying to San Francisco, and so fortt1. Looking at Figure 6, we see that the top of the tree

is a very abstract goal, in this case, Administer Digitalis. This goal is refined into less

abstrnct steps by the Writer. These more specific steps are steps the system executes to

administer digitalis. For example, one such step is to Anticipate Toxicity, that is, to

anticipate whether the patient may become toxic due to increased digitalis sensitivity.

The writer then refines this more specific goal to a still more specific goal. Eventually,

the level of system primitives is reached. System primitives are operations which are

built-in. Normally they are very basic, simple operations, so the fact that they cannot be

Fig. 5. System Overview

Writer

Domain
Model

Domain
Principles

Generator

Refinement
Structure

Digitalis Advisor

System Overview 21

explained is usually not a problem. Typical primitives include those that perform

arithmetic operations like PLUS and TIMES and those that set varinbles to a pmticular

value. The structures at this primitive level are the Digitalis Advisor, the program that we

wanted the automatic programmer to produce.

The Domain Model is a model of the facts of the dornain. In this case, it is a

model of the causal relationships in digitalis therapy. A simplified portion of the model is

shown in Figure 7. In this model, the boxes are states, and tt1e arrows represent

causality. This model shows some of t11e effects of increased digitalis. It also ~;hows that

hypercalcemia and hypokalemia can cause increased automaticity. In a certain sense,

tt1ese facts correspond to the sorts of facts tt1at a medical student learns in class during

the first two years of medical school. These facts are static. T!rnt is, they have no notion

of process. The model says that increased digitalis can cause a c!1ange to ventricular

fibrillation but it doesn't say w!rnt to do about it. Medical students go to medical school

for an additional two years and acquire these procedures by observing more

Fig. 6. Refinement Structure

Abstract

Specific

System Primitives

22

experienced personn~ a$ they practi<::e medicine on the wards.. The set of ,Domain . .

Prjnciples provides the Writer with this sort of prooedura• knowledge.

Domain Principles tell the Writer how something (such ~ pre~c.ri~ing a drug or.

analyzing symptoms) should be done. They guide it as it refines abstract goals to more

specific ones. A (somewhat simplified) Domain Prlnciple appeacs in Figure e.5 This

particular Prmciple helps lhe writer in anticipating dtgita&is toxi~ty .. u represents the

common sense notion that .if one is considering aaministering a'dr.,ag, and there is some

factor that enhances the deleterious effects of that dntg, then if th.at factor is pr~ ~. ·.

tile patient, less drug should be given. This prineiple has three~ ~Goal, a .Ooma~

Rationale, and a Prototype Method.

The goal tells the Writer what it is that the Principle can help it do. Jn this case,

the Principle can help the Writer in anticipating toxicity. The Qoma1n Rational~ is a

pattern which is matched against the Domain Model to see w~ere it is appropriate to

Fig. 7. Domain Model

Inc reasec:lOigitalis l"noreased Ca Decreasod K

"'

.. 1.1 "' .. ._ ...L. ,,.

Dec re"ted CooducUon lnc.reased Automattcity ;
~ .

.....

Sinus B'radycardia ChanS.·to.v. Fibrillation
.

5. Domain Principles are composed of variables aftd'.-constaota. Variables appear in boldface in
Figure 8. When the writer is matching, a vai;iable ifl a gisttefl\ wUl.Jnatch anything which is of the
same kind as itself. ThUs, the variable finding woukf match mei8ased serum~Ca or decreased K,
since increased serum-Ca and decreased Karebo&hWnQ&otfiadings.

.---,,,.

System Overview 23

achieve the goa!. In the example, the system will look in the Domain Model to match a

finding (e.g. increased Ca) which causes some sort of a dangerous deviation (e.g.

change to ventricular fibrillation) which is also caused by an increased level of the drug.

By looking at the Domain Model, we can see both increased Ca and decreased K will

match as findings, since both can cause a change to ventricular fibrillation.

The Prototype Method is an abstract method which tells the system how to

accomplish the goal. Once the Domain Rationale has been matched, the Prototype

Method is instantiated for each matcl1 of the Domain Rationale (see r=:igure 9). When we

say that we instantiate tile Prototype Method, that means that we create a. new structure

where the variables in the Prototype Method have been replaced by the things they

matched. In this case, two structures would be crel1ted. In Hie first, finding would be

replaced by increased serum Ca and cJrug would be replaced by digitalis. In the second,

finding would be replaced by decreased serum K a.nd drug would again be replaced by

digitalis. Note t11at now, with these new structures, we have changou the single abstract

problem of how to anticipate toxicity into several more specific ones, such as how to

delermine whether increased serum f< exists, how to reduce the dose, and how to

maintain it.

Fig. 8. An Example of a Domain Principle

Goal: Anticipate Drug Toxicity

Domain Rationale:

Finding I increased Drug

Dangerous Deviation

Prototype Method:

If the Finding exists

then: reduce the drug dose

else: maintain the drug dose

-, ---~• -·- - --· - • ,r._,......_,_ •-• •
."),·

24

Fig. 9. Instantiation of 4' Prototype Method

Protoly~ Method;

If the Fioding exist$
then: reduce the drug dose
else: maintain the drug dose

Instantiated Methods

If Increased Serum-Ca exists
then: redUee ~ dfgi\afis dose
··et~~ muintain the digitalis dose

If Decreased Serum-K exists

then: reduce lhe dtgitatis dose
~; maintain tne digitalis dose

After instantiation, the more specific goals of the Prototype Method are placed

in the Refinement Structure as sons of the goal being resolved. If we look at Figure 6, we
can see that the instantiated Prototype Method that checks for decreased serum K has

been placed below the Anticipate Toxicity goal. On.ca they have been placed in the
' ,, ~ i '

Refinement Structure, the newly instantiated goals become goals for the writer to

resolve. For example, after the Writer applied this Domain Principle, it would have to find

ways of determining whether increased calcium· existed in '.:the patient, whether

decreased potassium existed, and ways of reducing and maintaining the dose. The

system continues in this fash}on, refining goals at the bott9m of the structure and

growing the tree down and down until eventually the leYel of system primitives is

reached. At that point, the system is finished, and the goals at the very bottom actually

represent a runnable computer program. The ~yste!ll also has to deal with

transformations of program structure and constraints.Oft the refinement process and the

selection of Domain Principles. We will deal with those aspects in Chapter 3.

Once the refinement process is complete, we have a working expert system. A

sample interaction with the system is given in Figure 10. The explanations were

produced by finding the Domain Principle which caused the step in question to appear in

the program. The domain rationale associated with that principle was then converted to

-~-- ---------

System Overview 25

Fig. 10. A Sample Interaction Providing Justifications

Please enter the \'alue of serum-k: why?

The system is anticipating digitalis toxicity. Dcnc~lse1l sernrn-k causes increase1I automaticity,
which may cause a rhangt· to ventrirnlar fihrillation. Increased digitali<.; also causes increased
automatirity. Thus, if the system ohscncs decreased scrum-k, it reduces the dose of digitalis
due to decreased semm·k.

Please enter the Yalue of serum-k: 3.7

Please enter the \'alue of serum-ca: why?

(Tfle system produces a shortened explanation, reflecting the fact that it has already
explained several of tho causal relationships in the previous c;xplanation. Also, since the
system remembers that it has already told the user about sorum-1<, it suggests the
analogy between the two here.)

The system i<i anticipating digitalis toxicity. Increased sernm·l'a also causes increased
automatil'ity. I hus, (as \\ith decreased scrum· I,) if the system observes increased scrum-ca, it
reduces the dose of digitalis due to increased sernm-ca.

Please enter the value of scrum-ca: 9

English (with pattern variables replaced by the facts in the Domain Model they matched).

That step produced tile first two sentences of the explanation. The last sentence is just

the instantiated version of tt1e Prototype Method of the Domain Principle. These

explanations should be compared with those presented in Figure 4 to appreciate the

improvement that is possible with this approach.

1.5 A Summary of Major Points

First, we have argued that to be acceptable, consultant programs must be able

to explain what they do and why. Second, we have descril)ed the vmious ways that

traditional approaches fail to provide adequate explanations and justifications. Major

failings include: 1) the inability of such approaches to justify what the system is doing

because the knowledge required to produce justifications is not represented within the

26

system, and 2) a lack of di~h1ctipJ1 betw~ s\epS req\Jired jvst .. to . get , the;

computer-based implementation to work, and those that are motivated by the application

domain. Third, we have outlined an approach which captures the krlOwtedge n~ry ·

to improve explanations. This invol.ves vsi~g an autom~~ic pro9r~1nmer to;ger;'~{at!',th~
performance program. Ae the program is genet!amd. · a refiftement structure. ·is created .

which gives the explanation.routines access to dectSibl'fs m8dedortng\heereatidr'1 bf the'·
: i ~- . . . ~ . ' ;

program. The improvement in explanatory capabilities that is achieved is due more to

the availability of this refinement structure than to the use of; rwc>re SQphistfcated English

generation functions, since the explanation routines used in this th~is do not differ
»' ' ' I •. > ' •

greatly from those used in the old Digitalis Advisor.

In the remainder of the thesis: Chapter 2 outlines XLMS and the XLMS

interpreter, the know.ledge bee Joos used to build l'8 syslem •.. ·~ 3 dB.s¢rib:e$ and '

motivates t'he design of the automatic programmer and ttt9ces.fts operi:ttion as 1t eteiD&

the part of the Digitalis Advisor that deats with digitalis sensitivtt~ Chapter 4 de~~
how a quite different part of the Digitalis Advisor, the.cod9itor. ass using. toxicity" l$ '

written. That chapter actuaHy presents two different implementations to show the

flexibility in implementation the XPLAlN system allows. Chapter 5 describes the routines

that actuaHy generate the exptanations, and the .thesis ·conclµde:s with a discussion ?' .
the; interreiatiooships between the automatic p~mer,. ~ ,performance pro.gram,

and explanation.

System Building Tools: XLMS and t11e XLMS Interpreter 27

2. System Building Tools: XLMS and the XLMS Interpreter

2.1 XLMS Notation

The XPLAIN system uses XLMS to manage its knowledge base. XLMS (which

stands for experimental Linguistic Memory System) was developed primarily by William

Martin, Lowell Hawkinson, Peter Szolovits and members of the Clinical Decision Making

and Automatic Programming Groups at MIT. Since it is not necessary to have a

complete understanding of Hie intricacies of XLMS to understand the XPL/\IN system,

this section is intended to elucidate only as much of XUv1S as is rcqL.ired to comprehend

the remainder of tile thesis. For a more complete discussion of the design goals and

implementation of XLMS see [Hawkinson80).

For the purposes of this paper, perhaps the best wny to think of XLMS is that it is

an extension of LISP that allows one to use structured names. In LISP, atoms are used

to name variables and functions. In the XPL_AIN system, variables and procedures are

named by XLMS concepts-the difference is that these concepts can have a

substructure which can be taken apart and examined, while LISP atoms are indivisible.

2.1.1 XLMS Concepts

In XLMS, every concept is composed of an ilk, a tie and a cue and is written as:

[(<ilk>*<tie> <cue>)]

or, to pick an actual example from the XPLAIN system:

[(LEVEL*R DIGITALIS)]

The ilk of a concept is itself a concept. It tells what kind of a concept this is. Thus, the

example concept is a kind of level. The cue of a concept is either a concept or a LISP

atomic symbol (more about symbols later). It indicates what it is that mal<cs this concept

different from others with the same ilk. The example represents the "level of digitalis": a

particular kind of level. Finally, the tie of a concept indicates the relationship between

the ilk and the cue. In this case, the tie is Fl for "role". Role ties are used to indicate

slots in concepts. Thus this concept represents the "level" slot in the concept

28

"digitalis'.'. This is one imPtementatton6 .oftQe•·oo.tion ofelots•,~,$$~ bi
Minsky (Minsky75]. In the XPLAIN system, ties are used by the generator in determining

how to convert a concept to English.

There are severat other ties that are used extensively in the XPLAfN system.

These .are listed in Table ·1 together with e><ampfes of tfteir use.

Concepts may be given labels. The notation is:

Table I. Types of Ties
Tie Name
*f function

•r role-in

*j individual

•o object

species

•measure

•c caH
*d definition

*b begin
•e end

.;

{<label> = <concept>]

Example Use
[(ball•f red)]

English Form
(the) red t>id1

({color•r ball)] (th~eolor:of

(the) ball

[(treat•o patient)] treat(tha)
patient

[dog = doQ
(animal•s "dog")]

[(pvcs•measure
salvos)]

(these ties are discussed with the MtNT interpreter)

(these ties are used to define tinks; SE¥t Qlapter S).

6. · SeefMarUn19J for a more comptete~.

Purpose
moc:lmes

slot-f;Uing

instantiates
individual

verb-object

(see text)

measure

XLMS Concepts 29

English words are defined in XLMS by creating a concept which has a tie of *s or *i and

a cue which is a LISP atomic symbol which is the English word. The ilk of the concept

indicates its kind. Additionally, the concept is usually assigned a label which is the

English word. Thus, we could define collie in the following way:

[collie = (dog*s "collie")]

As was indicated above, concepts in XLMS are organized into a l~ind hierarchy. The root

concept is [surnmum-genus] (see Figure 11) and is pre-defined in XLMS. Like atomic

symbols in LISP, concepts in XLMS are unique.

2.1.2 Attachments

In LISP, it is possible to associate lists and atoms relating to a particular atomic symbol

with that symbol by placing them on that symbol's property list. In XLMS, one can

associate concepts relating to a concept, with that concept, by attaching them. The

XLMS notation is:

Fig. 11. The Kind Hierarchy

This figure only shows a portion of the hierarchy

--------.--- -
.... ~'

30

[<concept> #<attachment-re 1 ~t ioo> <atta-eead-tonceptl> ...
<attac-ed-conceptN>]

or, for example:

[(input•r plus) #e AB]

The attachment·relation specifies how the concept and the attached concept (called the

attachment) are retated. tn the XPLAtN · system, the most frequently used

attachment-relations are #e (exemplar), IJf · {tunetiOn}~ #<t fequlvatence); le

(.::haracterization) and #m (meta.characterizatiOn)t. -. 16 prtmamy, Uaed for;St0t4iftlng in

the XPLAIN system. The example above states that A and B are inputs to plus. llf is

similar to the tie •t and is used to associate descriptors with concepts. For example,
fbal 1 #f red] is a red ball. #q indicates that a concept and the a~tflch~ .c:~~cep\are,

·~'· . ;• - ~ ' I _. i I ~,

equivalent. #c denotes that a concept can be characterized as the attached concept.

For example, (Boston #c metrop.ol is] says tllpL~.:~. tlie charayt~i~ ~a.
metropolis. Note that ~aracterizm9 A as a, i".very ~~~ tq.~g,A .~r Bin the

kind hiei;archy. The differences betw~o the tw~ ~re Ir.QIU<~ effeCt~v ~'(~QI'.'\

the XLMS knowledge base than from their intention. Placing A under.: a loi.Ule .WIJQ
hierarchy creates a permanent structure, whi~ attach~~ G.an be remc;>\led. The

built-in functions of XLMS tend to make it easier to work witt1 t~,l<JP9J1jer8(cl:ly,.than .witt:).

attachments. Typically, primary characterizations are pJaced in the kind hierarchy while

secondary ones are indicated by attachmentiC Im is uSett' ·tc? meta-characterize a
, . r...,, . . ., ~ 't" ; , ! • ' ~ '. , ' "~

concept, that is, to provide information.ab&41t'where •the coneept'comes from or how it
~-"- ,,.,,,,

should be. interpreted. Some-additional at.tath-.nentl Will be 'intioau,ced later when their
• I ' .;. •.. .-~ ,,_»"" +. -"

use is dlSGuased.1

7. It is also possible to specify a reverse attachment. For example, [Boston efc
metropolis] characterizes Boston as a metropolis and says that one of the exemplars of a
metropolis is Boston. · · · · · 0

• · '·' •.

Sequences 31

2.1.3 Sequences

Sequences, which are a lot like LISP lists, provide a means for grouping

concepts together. They are indicated in XLMS notation by a list of concepts separated

by commas:

[<concept-1>. <concept-2>. <concept-3>, <concept-n>]

Sequences are used extensively within the XPLAIN system to represent program

fragments and sets of concepts.

2.1.4 XLMS Plexus

As the reader may have noticed, XUv1S notation is delimited by square brackets.

These brackets identify the concept as a piece of XLMS notation and delimit the scope of

its attachments (if any). The first concept to appear after a left bracket is called tt1e head

of the plexus. If a plexus is contained within some piece of XLMS notJtion, the XLMS

reader makes any attachments or builds any structure indicated by the plexus, and then

replaces tl1at plexus by the head of the plexus.8

2.1.5 Colon Anaphora

Colon anaphora provide a convenient shorthand for specifying the slots of a

concept. If a concept appears in XLMS notation with a colon (or several colons)

immediately following it (as in COLOR:) then the XLMS reader replaces that concept with

a new concept whose ilk is the concept in the notation, whose tie is *r, and whose cue is

the head of the plexus n levels in from the outside, where n is the number of colons in the

notation. Thus, in the plexus:

[B/\LL
[COLOR: #e RED]]

8. Thus [A #e [B #e C]] is equivalent to the two separate notations [A #e 13] and [B #e
CJ. [[A]] is equivalent to [A].

32

COLOR: expands into (COLO!<* 1~ 13/\LL). Uparrows (" t ")which appear in XLMS notation

work like colons, except that the appropriate head is chosen by counting from the inside

out insteacl of from the outside in.

2.2 The Phrase Generator

This section discusses the phrase generator, which is a low level English

generator used by higher level generators. Although this section is very closely related

to the higher level generators presented in Chapter 5, it has been placed here to give the

reader some familiarity with manipulating XLMS concepts.

The pl1rase generntor generates phrases from Xl_MS concepts. For example,

given tl1e XLMS expression:

[((pvcs*f dangerous)*f (induced*o (by*o digitalis)))]

the phrase generator would generate the phrase:

"dangerous pvcs induced by digitalis"

In XLMS, the tie of a concept indicates the relationship between the ilk and cue

of the concept. Thus, *f indicates that the cue is a modifier of the ilk, while *o indicates

ttiat the cue is an object of the ilk, and * r indicates that the ilk is a role in the cue.

Because the tie often determines the English form of a concept, the phrase generator

has been organized around the types of ties.

The phrase generator is actually composed of a number of smaller generators.

Each of these generators is capable of generating English for concepts with a particular

tie. The top level generator first determines whether some other concept should be

substituted for the concept passed to it as an argument. This could occur in several

ways. If the audience is a medical audience and the argument is characterized as some

other concept which is itself meta-characterized as a medica! term, the other concept

will be substituted for the original argument and a phrase will be generated for it. A flag

The Phrase Generator 33

can also be set so that a pattern variable will be replaced by its value. If neither of these

apply, the function determines whether the concept passed to it is an English word. This

is a simple test. A concept corresponds to an English word if either its cue is a symbol or

it is meta-characterized by the concept [use-label-as-name] which indicates that its

label is the English word for the concept. If the concept does not correspond to an

English word, the generator examines the tie of the concept and dispatches to the

appropriate tic-generator for that tie. When a tie-generator is cnlled, it breaks the

concept apart and may invoke the top level generator recursively to generate English

phrases for the parts of the concept.

2.2.1 Generator for * R

Most of the tie-generators are quite simple. The gonerntor for concepts with ties

of *r (for role) calls the phrase generator- on the ilk of the concept, inserts the word "of"

and calls the phrase generator again on the cue of the concept. Thus [(level*r serum-k)]

is output as "the level of serum-k" .9

2.2.2 Generator for* Measure

The tie of *measure is similar to *r. The difference is that we use this tie when

we wish to express the concept of a certain arnount or measure of something such as "a

cup of sugar" or "a cup of coffee". Note that the phrase "cup of coffee" could refer to a

cup filled with coffee, or to a certain amount of coffee. Concepts with ties of *measure

are intended to represent only the latter meaning. Since we are primarily focusing on the

coffee and not the cup, the ilk of tho concept is coffee: [(coffee* measure cup)]. Note

that the generator for *measure generates the cue before the ill< while the generator for

*r does the reverse.

9. The generator inserts articles (i.e. the, a, an) where appropriate. The mechrrnism for
accomplishing this is described later in the chapter.

-------- ---- - L ,.,...-

: •c

34

2.2.3 Getierufor for •1

Unless the concept is a set, concepts with the tie of •t are converted to ,E,n~lish

by calling the phrase generator on the ilk of the conc&Pt. J,{fnoting tile cua:,of the

concept. If the ilk of the concept is [set), then the concei>t .. iS a ~~' and must be ..

generated a little ditrerently. The oot of concepts A,~. and C.~;r:epr~sented, in XLMS.as
[(s e t * i A. B , c)]. To generate English for the set,. the gener~tor pas~s the cue of the

concept to a function which generates conjunctions by tnaking. calls to generate phrase

on the elements of the sequence [A I BI C] and in8erying commas aPd "and" in the.

appropriate places.

To reduce the verbosity of the English, the generator fOf conjun(;tjonsfaotors

the set where possible. For example, the approach outlined above would turn the

concept:

into:

[(set*i (assessment~r pvcs),
(assessment•r av-block),
(assessment*r big~miny)]

"The assessment of pvrs, the assessment of av-block, and t~ -~~qteot of bigcmmy"

However, the system notes that the elements of the set all have the same ilks and ties of

*r. It factors the set by generating .the ilk of the elements In ptoral form.'tollowed by the

cues of the elements:

"The assessments of lJVCS, av~block, an(I bigemfny"

2.2.4 Generator for *F

The generator for modifiers is a little more complex. Concepts with ties of *fare

concepts which represent the modification of the ilk C)f the coheept by the cue. In

English, modifiers can either appear before or after the n)Qdtffed word. in the current

implementation, if the cue of the concept 'is either a slnglt) 'tvord or an adjective, it is

placed before the ilk.·. OttierWise, the C~e foltowS·tbe·flk.:. ;T~·the:COllCePl·;[~~·t

Generator for •F 35

(severe*f extremely))] is "extremely severe pvcs", while [(block*f (on*o table))] is "the

block on the table". Finally, as a special case, if the cue of the concept is [plural], the ilk

is generated as a plural (e.g. [(book •f plural)] is generated as "books").

2.2.5 Generator for *O

In concepts with ties of *o, the ilk of the concept is something that takes an

object (such as a verb or preposition) and the cue is the object. The generator first

outputs the ilk, then calls the phrase ~ienerator to output the cue. If t'1e ilk of the concept

is a verb, the generator calls a special generator for verbs which constructs a verb with

the appropriate tensed form. Tl1e form of the verb that should be generated is indicated

either by modifying the verb by a *f tie 10 or by the setting of global registers. 11

2.2.6 Generator for *Characterization

Normally, if a concept is characterized by a characterization attachment the

characterization is not mentioned. 12 However, when a pattern is being described, if the

concept being generated is the ilk of a concept with the tie of *characterization, then a

relative clause is generated to describe the characterization. 13 Once the

characterization is described, it is placed on a list of described characterizations and is

not mentioned again. For example, if the system were generating English for the

concept [pvcs] and the following concept existed in the knowledge base:

10. As in [(adjust*f -ed)]
11. Currently, the system can generate the infinitive form, the past and third person singular

present tenses, and the present participle. It would not be difficult to extend this list if the need
arose.
12. Although if the characterization is a more appropriate term to use as would be the case if it

were a medical term and the answer wGs being directed Gt a medical audience the system will
substitute the characterization for the original term.
13. The primary reason for making characterizations into concepts is that it conceptualizes the
relationship between the object and its characterization. This allows us to make attachments to
the relationship itself and so that we could indicate, for example, that H1is particular relationship
should only be described to medical students but not to experienced doctors.

36

[{av-block*characterization
({finding•r {toxicity*f digital is))*f (specific moderately)))]

the system would generate the phrase:

"m'·hlock which is a moderately specific finding of digitalis toxicity."

2.3 The XLMS Interpreter

The XLMS interpreter (also called MINT, for Micro-INTerpreter) was written by

the author to execute the code produced by the Program Writer. It was possible to make
" this interpreter quite simple since the complex and tim~ consuming operations t~at take.

place within the XPLAIN system are performed while the Progra_m Writer is creating the.

program-not while the interpreter is running. As the interpreter executes thE? code of

the Digitalis Advisor, it creates an event structure which is a trace of the execution of the

code. The syntax and semantics of the language will be briefly discussed below.

The BNF grammar for the interpreter is shown in Figure 12. And some examples

of various types of calls are shown in Figure 13; As can be seen from the figures the

interpreter differs froni LISP in that subrouUnes can return multiple vatues-;.;.ID this

regard the language is similar to ALGOL or FORTRAN. However, functional ~ are·

very similar to LISP: they return the value otthe last expression evaluated.

The evaluation of variables and handling of arguments is also similar to (deep

bound} LISP. The system associates values ~th variables by maintaining a list of.

variable/value pairs called an association list. In each pair, the first item is a variable ·
·.

and the second is its value .. To find the value for a particular variable, the system

examines pairs starting from the head of the association list and returns the value

associated with the first pair whose variable is the one sought. H no value is found on the

association list. the system examines the variable to see if a vawe has been attached to it

using the #v (for value) attachment.14 ff no value is found, an unbound variable error

message is displayed.

14. Since a~tachments to concepts are global, .this mechanism aJtows us to give variables global
values.

The XLMS Interpreter

Fig. 12. BNF Grammar for the XLMS Interpreter
<subroutine-call> [(<plan-name>*c <input-output-sequence>)]
<functional-call>::= [(<plan-name>*c <input-specifier>.)]

<subroutine-definition> : := [(<plan-name>*d <input-output-sequence>)
[method: #q <method-specifier>]]

<function-definition> [(<plan-name>*d <input-output-sequence>)
[method: #q <method-specifier>]]

<method-specifier> : := <method-step> I <method-step>,<method-specifier>

<method-step> : := <subroutine-call> I <functional-call>

<plan-name> : := xlms-concept

<input-output-sequence> : := <input-specifier>.<output-specifier>
<input-specifier>,

<input-specifier> ::= <null-seq> I <input-sequence> I <input-item>

<input-sequence> : := [<input-sequencel>] I [<input-item>,]

<input-sequencel> : := <input-item>.<input-sequencel>
<input-item>.<input-item>

<input-item> : := <xlms-variable> I <Functional-call>

<output-specifier> : := <null-seq> I <output-sequence> I <xlms-variable>

<output-sequence> : := [<output-sequencel>] I [<xlms-variable>,]

<output-sequencel> : := <xlms-variable>,<output-sequencel>
<xlms-variable>.<xlms-variable>

<xlms-variable> : := xlms-concept

<null-seq> : := []

37

MINT provides a number of basic primitive operations for constructing and

taking apart XLMS structures, for performing arithmetic operntions, and for controlling

program flow. Most of these functions are typical system primitives-their meanings

should be clear and they will not be discussed. Two potentially confusing operators will

be described here. Other more specialized operators will be discussed when they

become relevant in the remainder of the thesis.

- -~-- - -·---·- ,. .

38

Fig. 13. Examples of Calls ..
[(foo•c A. [B. c. o]) J. - ~ubroutine too with input of A and outputs of S, C and D.

[(fool *c [A, B. C].)] - functional subroutine with inputs A, Band C.

[(f 002 * c [] .)] - functional with no inputs.

[(f 003 * c [A . B] • [])] - subroutine with 2 ini;ruts no outputs - rare

[(foo6*c []. [))] - subroutine with no inputs or 6utputs ~even rarer

[(foo4*c (foo5*c [A,]), B)] - subroutine whose. input is the output of the
functional too5 and whose C>utput is b.

MSETQ is used for setting variables. It is similar to SETO In USP but with two

differences. First, the order of the arguments is reversed since inputs precede outputs in

the MINT interpreter. Second, when a new value is given to a variable, the new value is

pushed onto the front of the ass6ciation list. This amounts to rebindin(;) a va'ttable every

time a new value is given to it. This constrains the programmer's ability to cause

side-effects to variables and tends to encourage a programming style that changes

variables explicitly rather than bY skte effect.

MIF-THEN is used to control program flow. The arguments to MIF-THEN consist

of a two- or three-part sequence. The first element i$ a predicate which is evaluated. If it

returns [true), the second element of the sequence is evaluated. Otherwise, the third

element (if present) is evaluated. Other control operators (such as case and cond

statements} have been defined, and they can be used by the XPLA'tN system, but the

need to employ them has not arisen in the area of . Digitalis Therapy that we have

concentrated on.

When a call is made, the interpreter finds the appropriate plan to execute by

searching up the kind hierarchy starting. from th~ Uk of the call {that is, the plan-name)

until it finds a subroutine-definition or a· function-d_efinition. The interpreter then binds

up the input arguments, executes the plan, and if the.plan is a subroutine, binds up the
J ' • ' '

output arguments. Bindings are pushed on the association Hstwhan the plan is entered

and popped off when it is exited.

The XLMS Interpreter 39

As the interpreter executes programs, it can selectively create a trace of the

execution of that program. Individual plans can be mmked to indicate whether or not

they should be traced, or to indicate that the plans they call should or should not be

traced. A global variable may be set to denote that everything should (or should not) be

traced. To record the execution of a plan, the interpreter creates a new individual

instance of the concept [event]. The call and method used to execute the call are

attached to the event, as well as the value of the system's association list on entrance

and exit. This makes it easy to re-create the vnriable environment under which the plan

was executed. Events also record the value returned by functional calls.

A simple XUvlS method written by tho automatic programmer for determining

wheU1er decreased serum potassium exists appears below: ·

L(((DETERMINE-WHETHER*O (DECREASED*O SERUM-K))*I l)*D [[SERUM-K,J,])
(MUHOD: #Q (MLESS-THAN*C

[[SEfWM-K, (THRESHOLD*R (DECl\EASED*O SEHUM-K))],])]]

This method has one input [serum- k] and no outputs, hence, it is a functional

subroutine. The method hns one step, which is a call to the system primitive
[mless-than]. That function is passed two inputs: [sernrn-kJ and [(tt1restiold*r

(decreased*o serurn-k))]. Since it is the last (and only) call executed in the method,

the value returned by [rnless-than] will be the value returned by the subroutine for

determining whether decreased serum-k exists.

40

3. Creating the Performance Program by Refinement

This chapter describes and motivates the design of the automatic programmer

used by the XPLA!t\l system. The first section of the cl1apter describes the knowledge

sources that the system needs to write the program. Later sections detail how the

programmer itself works anu show how it ref in es the portion of the Digitalis Advisor that

checks for digitalis sensitivities.

The reader should realize that the primmy motivation for this thesis was

explanation, not automatic program1riing. The automatic programmer was only carried

through to the extent required to show the feasibility of our ideas about explanation. 15

However, we feel that several interesting ideas have emerged from the synthesis of

explanation and automatic programming. Most importantly, the use of two distinct

interacting knowledge sources: tile Domain Model and tile Domain Principles.

3.1 Knowledge Sources: the Domain Model and Domain Principles

This section describes the Domain Model and the Domain Principles. As the

name suggests, these components of the system depend on the application domain and

me the parts of the system that would have to be changed if the application area

changed.

The Domain Model represents the characteristics of the domain. In the case of

digitalis therapy, these are the physiological effects of digitalis and other related

substances on the patient. While this information is needed to figure out how to give

digitalis, it is not enough. Another source of knowledge is needed-one. that can outline

the process of drug administration, subject to constraints imposed by the Domain Model.

15. For a more extensive discussion of issues such as the structure of automatic programming
systems, plan selection, constraints and constraint propagation the reader should see
[Barstow77, Barstow80, Balzer77, Green79, Long77, Manna77].

Knowledge Sources: the Domain Model and Domain Principles 41

In the introductory chapter, we mentioned that medical students seem to

experience the same sort of split between knowledge concerned with process and

knowledge that is static. During the first two years of medical school, they learn a

tremendous number of facts about the human body, yet it is hard for them to begin

treating patients. What they lack is an understanding of the process of actually treating

patients. During the last two years of medical school they acquire these processes by

actually participating in the care of patients and by being instructed by senior members

of the hospital staff. In a sense, they acquire a comrnon sense understanding of what is

involved in treating a patient. Domain principles are intended to supply knowledge of

exactly this sort. They are used by the program writer as it creates the performance

program by refinement.

3.1 .1 The Domain Model

The Domain Model is a representation of what the system knows about tt1e

characteristics of its application area. In the version of the system being described here,

the Domain Model is a (primarily causal) representation of the system's knowledge of the

physiological actions of digitalis. Thus, it tells what an increased level of digitalis may be

expected to cause, what factors may increase sensitivity to digitalis, and so forth. In the

remainder of this subsection, the general characteristics of the Domain Model will be

described, illustrated by examples from the domain of digitalis therapy where

appropriate. The reader is cautioned that I do not yet regard the existing primitives of

the Domain Model as a complete set in the sense that they are sufficient to represent any

knowledge, rather the primitives presented here should be regarded as stepping stones

on the way to a larger, more complete system.

Figure 14 is a simplified version of that part of the Domain Model concerned

with factors that may make a patient more sensitive to digitalis. (The figure also appears

in Chapter 1.) In this diagram, arrows represent causality. From this figure we can see

tl1at decreased potassium and increased digitalis both cause increased autornaticity.

While the figure may give some feeling for the sort of information we seek to represent

and how we have represented it, there are a number of subtleties which must be dealt

with but are not indicated in the figure. To understand how these situations are handled,

we must take a closer lool< at H1e actual XLMS notations that are used.

42

The causal relationships in the Domain Model are repr~ted ilS causal links.

In the XPLAIN system, links have the general form;

[((<link-type>•b <source>re <destination>)]

<link-type> indicates the type of the link and <source> and <destination> have their

obvious meanings. Thus, the causal relationship b0tween decreased serum-k and

increased automaticity would be expressed as:

[((causal-link•b (decrensoo•o serum-k))•e (increasect•o automaticity))]

Notice that the causal link above is actually an XLMS concept rather than just a pointer.

The fact that it is a conceptualized link means that we can place attachments on the link,

give it slots, and so forth, just as we can for any other concept and thereby further

describe causal relationships using the same sorts of facilities used for other concepts.

For example, one thing we would like to be able. to deScribe is the way that two

causal links with a common destination interact. We know that increased serum calcium

and decreased serum ~tassium both cause increased automaticlty, and we can easily

represent these in XLMS, but we need a way of expressing the relationships betWeen

Fig. 14. The Domain Model

Increased Digit1,11is Increased Ca Decreased K

... i. ~ • L. w . ..
Decreased Conduction . ·. tncreaattd'.AuiomaUctty

"'" "''"'
Sinus Bradycardia ~b~ee to V~ Fi.briUaUon

The Domain Model 43

these relations. For example, if the two relationsl1ips are causally additive 16 we need a

way of expressing that fact.

In general, in the XPLAIN system, we can express interrelationships between

links by characterizing them as elements of that inter-relationship. For example, we can

express the additivity of the causal links between serum potassium and serum calcium

and increased automaticity in the following way:

[(additive-relation*i 1)
[link-element: c#e ((causal-link*b (decreased*o serum-potassium))*e

(inc 1·eased*o automatic i ty))
((causal-link*b (increased*o serum-calcium))*e

(increased*o automaticity))]]

3.1.2 Domain Principles

The major features of domain principles will be briefly outlined here and detailed more

extensively later when their use in relation to the writer is described. Currently, domain

principles come in two flavors: those tllat refine a single node of the refinement structure

and those that transform the program structure. The first type is depicted in graphical

form in Figure 15. The three major features are outlined here, and described in greater

detail below: 1) A goal, which may contain pattern variables, tells what this principle can

do. The plan finder (described below) matches this goal against the steps in the

refinement structure which are waiting to be refined. 2) A domain rationale, which is

matched against the domain model by the pattern matcher. This is in a sense an

additional specification for the program, telling the writer what cases must be considered

for the given domain model in refining the goal. 3) The prototype method, which is a set

of steps to be instantiated by the system. These are the refinement of the goal, and are

placed under it in the refinement structure. The second type of domain principle is

similar to the fir,st with a few exceptions. This type of dornain principle has no domain

16. If two causal relations have a common destination (such as increased automaticity) and the
causal relations taken together cause more of the destination to occur (or cause it to be more
likely to occur in the case of a state change) than either of the relations by itself, then we say that
these relations are at least causally additive.

44

Fig. 15. A Domain Principle

Goal: (anticipate•o (toxicity•s (drug• r pattern)))

Domain Rationale:

Observable Deviation

Dangerous Deviation

Prototype Method:

If the observable deviation exists
. then: reduce the drug dose
else: maintain the drug dose

I
I
I
I
I
I
I
I
I
I
I
I
I
I

'V

·---------,

Matched
Against

I
I
I
I
I

.1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
j'
I
I
I
I

v

Domain Model

~finement .$4:.ruct1He

rationale. The goal of this principle may make reference to steps waiting to be refined.

The prototype method may contain active el~~~t~17 'which t;ansf~rm t~ ex~tiOO ·
order of the steps to be refined and which may add·~ steps to be:ietined .. In addi.tiOn

17. In the first type of domain principle, the prototype method. was. static. . That is, it was, ·
instantiated by just creating a structure or stf'lJCtWes,wfth ~ vmiables reptaoed by 1heir
value or values. tn the second l'yJ)e, the prototype method mar be • progranHO be .interpreted
which returns the instantiated structure.

Domain Principles 45

to the features above, both forms have constraints associated with thern (described

below) which lirnit their applicability.

3.2 The Pattern Matcher

The pattern matcher in the XPLAIN system was written by Ramesh Patil and the

author. It can find all the structures in the knowledge base that rnatch a pattern

structure. It can also be used to compare a pattern structure with a structure in the

knowledge base to determine whether they match. The specification of various types of

patterns is described below.

3.2.1 Specifying a Pattern

A pattern in XLMS is much like any other structure in the knowledge base. For

example, a pattern that would rnatch a causal-link between two different disease states

might appear as:18

[(pattern*i 1)
[structure: #e [((causal-link*b disease-state:l)*e disease-state:2)]]
[predicate: #e

[(mnot*c (mequal*c [disease-state:l,disease-state:2]) ,)]]]

Pattern 1

There are two variables in Pattern 1: [disease-state:l] and [disease-state:2]. A

concept is a variable if and only if its tie is *r and its cue is a pattern. The ilk of the

concept indicates where matching should start in the knowledge base. With some

exceptions, to be a successful match, a variable must have the sarne attachments and be

tied to the same concepts (recursively). The header of the pattern is the concept

attached by #e to [structure:].

18. The ties * b and * e will be explained in Chapter 5.

46

"omerent instances of variables matching Individuals nre- indicated by placint) a

number after the: as in [disease-state:!] which exf.)ands to [{(disease-stah•Y.·
<pattern>)*i 1)] Any concept which is under [disease-state] wUI match this

variable. For any pattern, only those variables which are tied or attached to the structure

will be matched.

3.2.1.1 Sequences

The pattern matcher wi11 also match sequen-ces of variables or constants. FOr . ,,

example, the pattern:

[(pattern•i 2)
[structure: #e [(predicate:*c [{msum•c,.

[summum-genus: 1, summwn-,genus: 2),) •])]]]

will match all calls to predicates which have the sum of two items as input. The variables

are [predicate:] [su1nmum-genus:1] and flsummum-gen-us:~]. Ou& to a slight

peculiarity in the way sequence matching is im~rlt«f. a~ee cannot be ttte:top·

level item in a pattern.

3.2.1.2 Kleene Operators: Kstar, Kplus and Kor

To match arbitrary repeats of sequence .Eilements or sub-sequences, the KST AR

and KPLUS notations may be used, which stand for Kleene star and Kleene plus,

respectively. For example,

((kstar•i ft>o).]
wifl match all sequences which consiSt solely,·d aero or more FOOs. [.(tstar•,i
(a, b. c])] will match sequences such .as ,[~~b,c .a ,t> .~.a .,ll,,~.] Note tn~t some.subtle .

things can occur if the structures of the patter~ ~ 8(e. changeQ. ~gntty. For

example, [(kstar•i [a,b,c], }] matches [[a,b.c;].(a,b,c],.[~.,b,.c]J not
[a, b, c. a, b. c, a. b, c]. KPLUS is the same as KSTAR but requires at least 1 match for

the match to be successfut

KOR is the way of specifying a disjunction in the pattern. The general form is
[(kor*i [al ternatet ,al ternate2])]. In matching, ·the·metch win sooeeed·if either

alternate1 or alternate2 is found.

Kleene Operators: Kstar, !<plus and Kor 47

3.2.1.3 Prcclicates

After a structure is found that matches the pattern, the pattern matcher invokes

the MINT interpreter to evaluate the predicates associated with the pattern. If all of them

return TRUE, the structure is added to the list of successful bindings. Otherwise, it is

rejected.

3.3 The Program Writer: t-low it Works

In this section we will trace the operation of the Program Writer as it writes the

portion of the digitalis advisor that anticipates digitalis toxicity. To understand the

example progrnrn synthesis to be presented, the reader may wish to review the section

on Digitalis Sensitivities in Ctiapter 1.

3.3.1 Synthesizing the Performance Program

Figure 16 gives an overview flowchart of the Writer. 19 The Writer synthesizes

the performance program by refinement from an abstract, high-level specification. As

tl1e Writer runs, it creates a refinement structure which is a goal tree tracing its

refinement of the program. Consider the synthesis of the code required for adjusting the

dose of digitalis because of possible toxicities. When the system starts this synthesis,

there is just one node in the structure, o. high level description of what the performance

program is to do. For this example, the top level goal is: 20

[(anticipate*o (toxicity*f digitalis))
[input: #e [(dose*r digitalis) #m variable]]
[output: #e [({dose'''r digitalis)*f adjusted)

#t {dose*r digitalis)
tlm variable]]]

19. This figure leaves out a few details that will be discussed later in the chapter.
20. Remember t11at for this example, we are just synthesizing a portion of the digitalis advisor. If
we were synthesizing the entire advisor, the top goal would be [(administcr*o digitalis)], and its
refinement structure would include the goal of anticipating toxicity.

48

Fig. 16. The Program Writer

Yes

Choose Step

to Refine

Find Domaill Principle

Instantiate Plan

__ __,. Create Call to Plan

Add New Step to

Steps-to-Refine·

Remove Step Just

Refined

No

Synthesizing the Performance Program 49

This statement says that the system needs to write a procedure that will anticipate

digitalis tox~lty. The procedure will be supplied with one input, the dose of digitalis

[(dose•r digitalis)], and will produce one output, an adjusted dose of digitalis [((dose•r

digitalis)•f adjusted)). In general, a can may have more than one (or no) inputs or

outputs attached by #e to the input and output roles' of the catt .. The ordering of the

inputs and outputs does not matter to the syStem, because the binding of the input of a

can to the input of a domain principle is done by pattern matching which does not

depend on ordering.21 #mis a meta-characterization. Here, both the dose of digitalis

and the adjusted dose of digitalis are meta-characteriied as variables: (as opposed to·

constants, for instance).

Variable names in a procedure may be chosen according to different criteria.

Sometimes, a programmer chooses a variable name that will indicate what the variable

is. For example, the dose of digitalis is what the [(ctose• r digitalis)} refers to. Sometimes,

however, a variable name is chosen to ~ndtcate the rote that the variable plays within the

procedure, or its characteristics in relation .to the procedure. ·fn the·· goal above, the

adjusted dose of digitalis is stitt a dose of digitalis, the fact it has been adjusted really

relates more to its role within the calling procedure than to anything intrinsic within the

variable itself. The choice of names is significant because the procedure will be

translated into English, and these names will be used in that translation.

We would like to be able to give the·person writtng domain principles the same·

sort of flexibility in choosing variable names that a person writing procedures enjoys.

That is, he should be able to describe a variable basecJ:on Whatitis or based on the role

it plays in the procedure, as we described in the preceding paragraph. Allowing this

flexibility can have a positive effect on the quality of the explanat~ons. But .there is a.

problem. Since a pattern matcher is used to match up arguments, if the arguments are

named by the role they. play within a procedure, then vi.}riables which are sypposed to

match may not if they play different roles in the called and calUng: procedures.

21. Note that this contrasts with the MINT interpreter where the ordering of input and output ·
arguments is important since the btnding of arguments isbase<fon.position. The program writer
converts the more general, but slower, pattern matched form to the faster ·positionaJ form of
argument passing as it writes the performance program·.'

50

The #t attachment is catted. the ty(Xt. attactuneflt; and was intr«klced to

address this problem. The fact that ((aose•r Clligitalt&)J·citl .attached -·by the type;

attachment to [((dose•r digita«s)*f adjustec.Ulitldfcateeu.tthe1adjusted dose.of digitalis:,

is still really just a dose of digitalis. AUhou91'l theciaot that jt.~usteti m.ay be U$dtaUfl

reasoning about the higher leve~ prruJedure~· the.cait~ PfOCedure reed only WOt;ry ~t

the fact that it deals with a dose of .digitalis. This.infoJmation $.'\tSed by the pattern.

matcher as it attempts to find a suitable: domain pr~ tor accomplishing. the goat.

That is, the pattern matcher performs matchead>aeefii cm tne.)ntri(IS.ic natur~ of ''°8: ·

variable, rather than the role it pla~. within e .. pr~e. , 1.f tflere• wer~ fl~, ~,.,

attachment on [((dose•r digital is)•f adjus1!edy.), then for a~ul:.matebdhe

output of the domain principle would be have to be some sort of adjusted dose of

cligitatis, but with ihe type attachment it onty ha8 to·t>et0mest>rtof;do$e of dtgitaffs.

The system maintains a tist of the leave$· of. the· :mfinement structure -Oafted · .

•steps-to-refine•. The entrieS, tn thjs liat are .eithef, ~.·f!lf· progr:.am fragments whiQh

rnusf be. transformed (called tran.slQrmatioTJs). Whto ~em atwta, just the top~vet ..

call. is on the list, and the sy$tem. hal1$ wnen ·the listOcMl<>tn•-1J>lY,.. ,, .

When the system starts, an entry is seleq~ .frollJ .. •$.tep~-to-refine• to b,e .

refined. Selection is dcme as follows: :lf}tip~e ar~ ~D,~.~~n~fOJ:~tion$ on the list, th~,firsl ..

one is selected. If there are no transformations, !he entry foffowing the one selected on

the previoµs iteration is seiected.22 Tr.flfl&formatioft& ar•·.,.tedbefore othel· entries

because their refinement may COAStfaift the . ..,,. *' ~ thft,Qther, entries maw; btl
refined. The syslem now has to find adomain PC'ioeipl#Ho:bek>·l refine the em.y.

3.3.2 Finding a Domain Principle

As was mentioned above, the header ot·alfbmain t>rtncfple is a concept wtrich

contains pattern variablesandwhtch indfcateS'wtn1f·trre~in PffnciPfe c~n'C:to. rnthiS
example, the Writer needs to find a domain prineJpte whose header matches the goal of

22. This is a very simpte scheme for aeleetion. of· course, tf;we,hact bldaal with backup (whidt
we don't, but see diseusaloo at fle end of. Uais•£h...-.rl •. ,,_. -~ afgoritRl·wowHt ,
clearly be desirable to keep the system effici•: , . - ,i:, • ,, • - .. , i ,

Finding a Domain Principle 51

anticipating digitalis toxicity.

The system finds those domain principles that match in the following way: First,

the system examines the concepts under the node [(prototype-method [* r)}]. 23 For each

of these concepts, if the call is under the cue of the concept in the kind hierarchy, 24 and

no other more specific concept25 can be found, the pattern matcher is used to determine

whether the domain principle matches the call. If the match succeeds, the pattern

matcher returns a list of bindings showing how the pattern variables in the domain

principle were bound to the literals within the call, and how Lhe inputs and outputs of the

call were bound to the inputs and outputs of the domain principle. The domain principle

that matches in this case appears in graphical form in Figure 17 and the XLMS

Fig. 17. Domain Prinicple for Anticipating Drug Toxicity

Goal: Anticipate Drug Toxicity

Domain Rationale:

Deviation I increased Drug

Dangerous Deviation

Prototype Method:

If the Deviation exists

then: reduce the drug dose

else: maintain the drug dose

23. Since all domain principles must have a prototype-method role, the goal (or header) of all of
them will appear as the cue of some concept under this node.
24. Actually, the test referred to here cannot be done with the simple underp primitive of XLMS.
Since the domain princip!e header will contain pattern variables, the cl1eck must be done by
breaking apart each concept into its ilk, tie and cue, and performing the test recursively on the
parts. When a pattern variable is encountered in the header, the test is modified to see whether
the part of the call being tested is under the ilk of the pattern variable.
25. That is, one which is deeper in the kind hierarchy.

52

representation of the same principle appear in Figure 18. The Individual parts of the

domain principle will be discussed in the following paragraphs.

The matcher matches just !he header and the inputs and outputs against the

catl:26

[(anticipate*o (toxicity*f {drug*r lpv)))

[lnputt #e [(dose•r (drug*r lpv)) #m va~iable])
[outputt #e [((dose*r {drug*r lpv))*f

(adjustec.:i.for (get-811-matches•c aspectl,)))
#m variable
#t (dose*r {drug•r lpv))]]]

After the match succeeds, the pattern variable (drug•r !pv) wilt be bound to digitalis, and

the input and output variables will be bound to the corresponding variables in the catl.

Note that the output variable has a type attachment. As was explained earlier, when a

variable in a call or domain principle has a type attachrmmt, the attachment is the object

that is matched, rather than the variable itself .. If the match of the type attachment

succeeds, then it is bound to the thing it matched, and the actual variables are also

bound.

Even if the match is successful, there may be additional constraints that must be

satisfied before the principle can be accepted as applicable to this situation. This
' ,.:!.

principle illustrates one type, the domain rationale, others will be discussed later.

3.3.3 The Doinain Rationale

The domain rationale is a pattern which is matched against the domain model.

It serves two purposes. First, it is a constraint on the acc~p~ability c;>f_ the domajn

principle, because if no matches are found, the domain prif!Ci~e is rejected. Second, it

can also be thought of as a further speciflcattoa QI the performance program. We wiH.,
I

discuss the latter point tn more detail later in this Section.

26. Concepts with cues of ! pv are pattern variables. Thus, [(drug• r rpv)] is a pattern
variable which will match anything which is a kind of drug, just tffte[(drug•r pattern)]

The Domain Rationale

Fig. 18. Domain Principle for Anticipating Drug Toxicity
(GOAL)

[(anticipate*o (toxicity*f (drug*r !pv)))
[inputt #e [(dose*r (drug*r !pv)) #m variable]]
[outputt #e [((dose*r (drug*r !pv))*f

(adjusted*for (get-all-matches*c aspectl,)))
#m variable
#t (dose*r (drug*r !pv))]]

(DOMAIN-RA TIO NALE)
[domain-rationalet #q

[(pattern*i 100)

53

[structuret #e [chainl = ((causal-chain*b deviationl)*e deviation2)]]
[deviationl = (deviationtl*o [aspectl = aspectttl]} kc finding]
[deviation2 = deviationr2 #f dangerous]
[chainO = ((causal-chain*b (increased*o (drug*r !pv)))*e deviation2)]
[predicatet #e (mand*c

]]]

[(mnot*c (pat-equal*c
[deviationl,

(mquote*c (increased*o (drug*r !pv)),)J,),),
(new-match*c deviationl,),
((determine-whether*o

((additive*f causally)*f least))*c
(form-set* c [c lia i 11 l , ch a in 0] ,) ,)

J')

(PROTOTYPE-METHOD)

[prototype-method: #q [(if-then*c [(determine-whether*o
(value*c deviationl,))],

[((reduce*o (dose*r (drug*r !pv)))*due-to
(value*c deviationl,))

[inputt #e [(dose*r (drug*r !pv))
#m variable]]

[outputt #e [((dose*r (drug*r !pv))*f
(adjusted* for

]] '

(value*c deviationl,)))
#m variable
#t (dose*r (drug*r !pv))]

[(maintain*o (dose*r (drug*r !pv)))
[inputt #e (dose*r (drug*r !pv))]
[outputt tie [((dose*r (drug*r !pv))*f

(adjusted* for
(value*c deviationl,)))

#t (dose*r (drug*r !pv))]]
#m computer-viewpoint]

)]]]
Pattern variables are denoted either in the manner described above, or by having cues of
!pv.

54

The domain rationale of this domain principle appears below:

[domain-rationalet #q
[(pattern*i 100)
[structuret #e [chainl = ((causal-chain*b deviationl)*e deviation2)]]
[deviationl = (deviation1l*o [aspectl = aspectttl]) #c finding]
[deviation2 = deviationt2 #f dangerous]
[chainO = ((causal-chain*b (increased*o (drug*r !pv)))*e deviation2)]
[predicatet #e (mand*c

]]]

[(mnot*c (pat-equal*c
[cJeviationl,

(mquote*c (increased*o (drug*r !pv)),)],),),
(new-match*c deviationl,),
((determine-whether*o

((additive*f causally)*f least))*c
(forrn-set*c [chainl,chainOJ,),)

J ,)

As was described above, patterns have several parts. The structure of this pattern is a

causal chain, [ct1ainl], leading from a deviation, [deviationl], which can be

characterized as a finding to another deviation, [deviation 2], which is dangerous. In

addition, [deviation2] is also involved in another chain, [chainO]. [chainO] requires

that anything that matches deviation2 has to be caused by an increased level of the drug

(in this case digitalis, of course). Put more simply, this pattern is looking for a finding

which causes something dangerous where that something dangerous is also caused by

an increased level of digitalis.

To place further restrictions on the match that would be difficult to express

within the structure, this pattern has three predicates (embedded within an and} that

must evaluate to true for a particular match to succeed. 27 The first predicate specifies

that [deviation 1] cannot be the increased drug level. We cannot allow that match

because we are looking for other factors which increase the danger of giving the drug.

The second predicate, new-match, fails if the current value of its argument

[deviationl] is the same as the value it had on a previous match. This requirement

ensures that for each successful match, the value of [deviation 1] will be different from

its value in all other successful matches. This predicate is necessary because a

27. [mand], [mnot] and [mquote] are MINT primitives which perform similar functions to their
LISP counterparts.

The Domain Rationale 55

particular deviation may cause more than one dangerous deviation. For ttie purposes of

this principle it is sufficient that it cause one dangerous deviation. The third predicate

requires that the causal effects of the increased drug level and [deviation 1] must be at

least causally additive. This predicate checks to see whether the causal links in
[chainl] and [chainOJ are at least additive28 at the node where the two chains merge

together.

The notion of the domain rationale as a partial program specification is

something that seems to be unique to the XPLAIN system. Generally, in other automatic

programming systems, the specifications for the program are very closely tied to the

eventual form of the program, and must be specified before the implementation of the

program begins. Here, the specifications for the program are not supplied explicitly in

advance by tl1e user of the automatic programming system, but the specifications are

derived by matching the domain rationale against tl1e domain model as the refinement of

the program progresses.

Taking this approach permits considerably more flexibility and generality. The

creator of the domain model only has to worry about trying to encode the knowledge of

the domain. He does not have to worry about how that knowledge will be used in the

creation of a program (as he might if he were trying to create program specifications).

New information can be added to this model and incorporated into a new version of the

performance program by re-running the automntic programmer. A particular piece of

knowledge might be used for several purposes (or not at all}. For example, information

about the effects of increased digitalis levels is used by the system both in anticipating

toxicity and in assessing toxic and therapeutic reactions.

In some ways this is reminiscent of rule-based systems-one adds more

knowledge by adding more rules, and the rule interpreter puts them together to solve

some particular problem. But there are some key differences. In most rule-based

systems, the rule interpreter is fixed. In the XPLAIN system, the interpretation of the

knowledge in the domain model depends on the domain principles which are not fixed

but can easily be changed. This makes it easy to experiment with different

28. Effects which are synergistic would be considered to be more than additive.

56

interpretations of the same knowledge (see. Chapter 4). ActpitionaUy, if we include

special-purpose domain principles together with ge11eral-purpos.e ones the system can

easily bring to bear what amount to special-purpose interpreters to handle special

situations. These features would be more difficult to implement within the framework of

most rule-based systems.29

The domain rationale is one of the mechanisms used in the XPLAIN system for

tying the independent domain model into the spectfication of the performance program.

Yet, the domain rationales themselves can be qLJite general, and are really independent

of the particular domain model. The. domain prinQiple:usec:t by the system for anticipating

digitalis toxicity could be used with different domain models to aocompflsh the same task

for a number of other drugs.

Returning to the problem of anticipating digitalis toxicity, when this domain
. -

rationale is matched against the digitalis domain model, there are three matches. Not

surprisingly, these turn out to be the three sensitivities that were described above,

namely, increased serum calcium, decreased serum potaSSium, and car-Oiomyopathy.

When the pattern matcher returns the matches, it binds up not only the pattern variables,

but it returns the entire structure that matched as wett. Thus, it is easy to determine that

decreased serum potassium matched because it causes increased automaticity which -

may in turn cause a change of the ventricular mythm to ventricular fibrillation. Once ·afl

the matches have been obtained, the system .is ready to instantiate the prototype

method.

3.3.4 Instantiating the Prototype Method

The process of instantiating the prototype method is relatively simple: the

system constructs a copy of the prototype method in the plan with the variables replaced

by their values. This new structure is called the instantiated method. There are some

29. Davis [Davis76] introduced the notion of meta-n.~les, which bear some similarity to domain
principles. However, meta-rules were used only for ordering and pruning the application of lower
level rules within the context of a standard rule interpreter. Domain prindples can control
interpretation to a much greater degree.

Instantiating the Prototype Method 57

special functions which are recognized by the instantiator. These functions are run by

the instantiator using the MINT interpreter, and the concepts returned by the functions

are placed in the instantiated method.

[value] is one such function. It takes one argument which is a variable and

returns the value of that variable. This function is not needed by the instantiator (since

variables appearing in the prototype method are automatically evaluated) but it is needed

to prevent parts of the prototype method from being confused with the structure of the

domain rationalepattern.30 Another function is the [get-all-matches] function. This

function has a pattern variable in the domain rationale as an input argurnent, and

constructs an ordered set consisting of all the concepts that matched the variable.31

Other functions will be discussed as they appear in ott1er dornC1in principles.

So far, things seem pretty simple. But what if the domain rationale matches

several structures? How should the prototype method be instantiated then? If several

matches have been found, then there are several situations where the prototype method

is the appropriate thing to do, but these various actions must bo integrated into a whole.

(See Figure 19.)

In the case under consideration, increased serum calcium, decreased

potassium and cardiomyopathy are all situations where the dose of digitalis should be

reduced from the standard dose. Yet the prototype method does not tell what should be

done if a patient has both increased calcium and ca~diomyopathy. The correct thing to

do depends on the domain knowledge again. If the inter-relationship between increased

calcium and cardiomyopathy is such that both of them together make the patient even

more sensitive than either one of them by itself, then the appropriate thing to do is to

make a bigger reduction when both of them are observed. On the other hand, it could be

30. This could occur if a pattern variable in a domain rationale pattern were placed in the
prototype method without being an argument to the [value] function. The pattern matcher
wllen checking the ilks and cues of the pattern variable against some candidate concept would
find that the pattern variable was used as the ilk or cue of some concept in the pattern variable,
and would require that the candidate have the same ilk or cue. That usually results in the
rejection of otherwise correct matches. There is a similar notation in Conniver.
31. Sets in llw XPLAIN system have the form [(set* i a, b. c)]. The elements of the set are
ordered by the XUv1S beforep relation. This simplifies comparisons of sets.

58

Fig. 19. A Split to. be Resolved

If: Increased Serum Ca
then: Reduce Dose
else: Maintain Dose

0

Note: To keep the figure simple, only 2 sensitivities are shown

., ·.-·

. .

If: Decreased Serum K
then: R.ffuc1t1>ose
els~: Maint~io Qp.•e

that the sensitivities aren't additive or that a redi.Jction for~ 19kes care of any of the

others that may exist. In that case, a different stiff of :program structure ts required. The

system needs some representation for 1he current state $0 tttat it ean reasrin aboot what

sort of program structure might be appropriate~

For each of the matches of the demaih t:ationa,e, 'the svstem instamiates the

prototype method. It then places each of these instantiatitDntl :into_.a larger .atruotwe

called a split-join. The split-join is placed in the refinement structure and domain

principles are used to transform it into executable program structure. A split-join Is a

concept whose ilk is split-join and whose cue i~ ~ ~ut:}.nc~ witJl. as many elements~ . .

there were matches. The elements of ,thg seGJtiOOCe-are tnemsetwas sequences ottwo
elements, where the first element is the instanti~tidn of the protbtyµ~ method and the

. ' ! . '" , ' ' . f ~

second element is the corresponding structure tbf.ltmatched,thedomain-ratiqnale. The

split-join for the example appears in Figure 20. If only one match is found for the domain
- '

rationale, or if there is.no domain rationale at all in the domain principle, the system iust

Instantiating the Prototype Method

instantiates the prototype method and does not make up a split join.

Fig. 20. An Example of a Split-join

[(SPLIT-JOIN*O
[(MIF-rHEN*C

(DETERMINE-WHETHER*O CARDIOMYOPATHY),
L(((I< EDUCE *0 (DOSI:' R DIG IT ALIS)) *DUE-TO CAl~lJ [QMYOPA TllY) *I 1)
[HJPUH #E (DOSE*R DIGITALIS)]
[0 u T p u Tt # E ((0 0 s l * I< lJ I G lT A LI s) * r (I\ DJ u s TE D * ro R (c 0 N D IT ION * R

(MUSCLf*F HE/\flT))))]],
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 1)
[INPUTt #E (DOSf*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR (CONDITION*R

(MUSCLE*F HEART))))]]),
(((CAUSAL-CHAIN*B CARDIOMYOPATHY)*E (CHANGE*O (TO*O V-FIB)))*I

cr,1rn IOMYOPA lHY, (I NCR l:ASED*O AUTOMATIC ITY) ,
(CHANGE*O (TO*O \/-FIB)))],

[(MIF-THEN*C
(DETERMINE-\aJllETHER*O (DECREASED*O SERUM-K)),
[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (DECREASED*O SERUM-K))*I

1)
[INPUTt #E (DOSE*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR SERUM-K))JJ,

[((M/\INTAIN*O (DOSE*R DIGITALIS))*I 2)
[INPUTt #E (DOSE*R DIGITALIS)]
fOUTPUTt #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR SERUM-K))JJ),

(((CAUSAL-CHAIN*C (DECREASED*O SERUM-K))*E
(CHANGE*O (TO*O V-FIB)))*I

(DECREASED*O SERUM-K), (INCREASED*O AUTOMATICITY),
(CHANGE*O (TO*O V-FIB)))],

[(MIF-THEN*C
(DETERMINE-\IJHETHfR*O (INCREASED*O SERUM-CA)),

59

[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (INCRfASED*O SERUM-CA))*I
1)

[INPUTt #E (DOSE*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F (AOJUSTED*FOR SERUM-CA))]],

[((MAINTAIN*O (DOSE*R DIGITALIS))*! 3)
[INPUTt #[(DOSE*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F (AOJUSTED*FOR SERUM-CA))]]),

(((CAUSAL-CHAIN*B (INCREASED*O SERUM-CA)}*E
(CHMJGE*O (TO*O V-FIB)))*I

(INCREASED*O SERUM-CA}, (INCREASED*O AUTOM/\TICITY),
(CHANGE*O (TO*O V-FIB)))])]

60

3.3.4.1 Cleaning Up Some Details

Once the prototype method has been instantiated, there are still some details to

be done. A procedure head must be defined, the steps of the instnntiated method must

be linked to it, a corresponding call must be created and transformed into something that

can be executed by the interpreter, and those steps of the instantiated method thnt

require further refinement must be identified and placed in the refinement structure.

To define ttie procedure head, the head of the domain principle is instantiated

and a new instance is made of that c Jncept. In the current case, it is:

[((anticipate*o (toxicity*f digitalis))*i 1)]

Next, the inputs and outputs associated with the domain principle are instnntiated and

collected into a input-output sequence which can be interpreted by the MINT interpreter.

Using this input-output sequence together with the instantiated head of the domain

principle, a procedure definition is created:

[(((anticipate*o (toxicity*f digitalis}}*i l)*d
[(dose*r digitalis),],
[((dose*r digitalis)*f

(adjusted*for
(set*i

(condition*r (muscle*f heart)}, serum-k, serum-ca))},])]

A [method] slot is created for the procedure definition, and the already instantiated steps

of the procedure are attached to it.

A call is then created to correspond to the procedure. This is done by placing

the variables in the original call (the one that was pattern-matched) into an input-output

sequence so that the variables in this sequence match the ones in the input-output

sequence of the procedure. A new call is then created whose ilk is the ilk of the

procedure definition and whose cue is the input-output sequence:

[(((anticipate*o (toxicity*f digitalis}}*i l)*c
[(dose*r digitalis),]. [((dose*r digitalis)*f adjusted),])]

Naturally, (as this example illustrates) the variables in the call and procedure definition

that correspond to one another are not necessarily identical, representing the fact that

they may play different roles in their respective procedures. This newly created call is

Cleaning Up Some Details 61

then attached (by [# d]) to the old call that was in the steps to be refined.32

Finally, it is necessary to find those steps in the instantiated steps which need to

be refined further. The system does this by examining the instantiated steps and their

inputs. Each of these concepts can be either a variable, a call to a system primitive, a

function or subroutine call which needs to be further refined, or a constant. Variables

are easy to identify because they are meta-characterized as variables. 33 Variables do not

have to be further refined so the system essentially ignores thern at this point. System

primitives are functions which do not have to be refined because they have alrendy been

written by someone else. The calls to system primitives hnve ties of [*c], and they are

identified by those ties. Constants are also identified by being meta-characterized as

such. Constants can either have a value or be unbound. Concepts with values are

ignored. If an unbound constant is encountered, the writer asks the system builder34 to

supply a value for the constant. The writer then gives the constant the supplied value.

Everything else is assumed to be a step which needs to be further refined, and is placed

in the list of steps to be refined. Finally, the system removes the step that was just

refined from the list of steps to be refined.

So where are we now? The system has just refined the goal of anticipating

toxicity and has produced a split-join and a number of other goals which must be further

refined. Although the list of steps to be refined is longer than it was when we started, we

have made progress toward writing the performance program, and we're ready to begin

the process of refining again by choosing a new goal and refining it.

32. When executing the program, the MINT interpreter looks to see if a step it is about to execute
has a [# d] attachment. If so, it traverses the attachment and executes the attached step instead.
33. That is, the concept [variable] is attached to all variables using the [II m] attachment.
34. That is, the person running the writer program.

62

3.3.5 Refining a Split-join

The system chooses to refine toe spl1t-join next. The split-join is chosen

because .it is a transformation, that is, it will r:e$Ult in, a trans.formation of theJ~r,egram

structure. It is necessary to refine transformaliens. first because they may i~

constraints on the way other steps wiU be refined. ReoaU that.the reason the spliHQin

was created in the first place was that there .. Were $everal matciles · for the domain

rationale which resulted in several instantiations,of the prototype methoo which have.to

be integrated into a unified whole. The split-join js an intermediate representation of. the

"urious instantiations which the system uses in reasoning. about hoW:. to put things

together. The goal of the domain principle that matches appears ~s:

[(split-join*o (kplus*t
[kps =

(if-then*c [(determine-whether*o
((deviation*r !pv)*o (aspect*R !pv)))],

(adjusH "!' (adjust•R lpv)
[redi = inputt #e [((level*r !pv)*I 1)

· #m variable]]
[redo = outputt

#e [((level*r !pv)*I 2)
#m variable]]],

[adjust~ = ((adjust •r lpv)* i 2)
[inputt #e ({level*r lpv)*i 1)]
[0-utputt fte f(level•r tpv)•i 2)]]

)], .

(causal-chain•r lpv)),)]

Even though the pattern match succeeds, there are some constraints

associated with this domain principle which must be satisfied before the domain

principle can be used to tran$form the program structure. This domain principle will

produce an executable piece of code by serializing the parts of the split join (see Figure

21). That is, the checks for increased serum catcium, decreased serum potassium, and

cardiomyopathy will be performed in turn and the outputs for the first reduction will be

connected to the second, and so forth. Thus, if multiple sensitivities exist, multiple

reductions will be performed. The constraints check whet~er_ this serialization is a

reasonable sort of resolution. There are two general types of constraints: domain
. . ' . ' .,:, .

constraints and refinement con$traints.

Refining a Split-join 63

Fig. 21. Resolving a Split By Serialization

~
If: Increased Se rum Ca
then: Reduce Dose
else: Maintain Dose

~

--- _____ > If: Dec reascd Serum K
then: Reduce Dose
else: Maintain Dose

v \

Note: To keep the figure simple, only 2 sensitivities are shown

Domain constraints are tests to see wtiether a domain principle is applicable

given the characteristics of the domain. In this principle, there nre three domain

constraints. These constraints are attached to the domain-constraint slot of the domain

principle:

[domain-constraintt c#e [((independent*f causally)*c
(get-all*c ((deviation*R !pv)*o

(aspect*R !pv)),),)]
[((deterrnine-whether*o

((additive*f causally)*f at-least))*c
(g e t - a l 1 * c (c a u s a 1 - c Im i n * r ! p v) ,) ,)]

[(moqual*c [(set*r !pv),
(get-all*c [(aspect*R !pv)],)
] ')]]

The first constraint checks tt1at all the deviations (e.g. increased serum

calcium, decreased serum potassium and cardiomyopathy) are causally independent in

the sense that none of them causes the other. This is done by examining the domain

model to see if there is a causal chain leading from any of the deviations to any other.

Get-rut is a funcbon which returns all the matctleS for a sectuence: pattern variable.35

The second constraint checks to see whether the effects of the causal chains

are. additive. That is, before we are willing ta make multiple reductions for muttipte

sensitivities, we must be sure that the occurrence of two deviations is worse than just

one by ttseH. Two ctilatns are taken to be addiUve if they have a common terminus and if

at the point where they join, the links leading into the iotnmg nod\1Y are noted as being in

an addi-tive relationship.

To understand the third constraint, we first-have to describe the method-input

and method-output rotes in the split-join domain principle. When the system instantiated

the prototype method . ior anticipating digitalis toxicit~. nooa of, the prototype method

fragments had output variables which corresponded to the output variable for the

method as a whole. The output for the method as a whote was=

[((dose•r digitalis)*f
(adjusted-•for

(set•i
(condition•r (muscle*f heart)), serum-k, serum-ca)))]

But, as can be seen •n Figure 20, the outputs from the progf'am fragments are doses

individually adjusted tor serum-k. serum-ca, and the condition of: ·the heart muscle. As

part of the process of integrating these tragments into a ~ate. the. split-join .also has to

indicate what should be the output variable fer the methoQ;. . As· of now, the Q\ltput

variable for the method is never set by any of t,he fragments. In the split-join domain

principle, the method-input and method-output are matched against the input and output

for the recently defined method for anticipating digitalis toxicity. The third constraint is

placed here to ensure that the aspects that an~ being checked are the same ones that

the dose claims to be adjusted for.

He.finement constraints are the other type of constraints used in this domain

principle. Like domain constraints, refinement constraints determine whether or not a

particular domain principte is applicable, but if it is found to be applicable, they also

35. See the section on the pattern matcher for a discussion ol. matching sequences and
sequence pattern variables. (Section 3.2)

Refining a Split-join .65

constrain the way in which further refjnements may be made.

In this particular case. we are resolving, t.he split~join by serialiiing the

reductions. Whether or not this is a valid way to proceed depends in part on how the

reductions themselves are refined. If the reductfons are to be ~ormed by subtracting

some quantity from the dose, then there is some possibility that the dose will eventually

become negative. That, of course, 'doef3n 't make sense. So the principle tor resolving

the split-join would have to insert a step at the end which would check for a negative

dose and do whatever was proper. On the other hand, . if the dose is reduced by

mum plying the origiital dose by some constant less than, 'One to produce a new dose,

then the dose can never become negative, and no, check .i& required. If we are going to

resolve the split-join now, we need a way of cons\r$i11ing the.resolution of the steps that

pert arm the reduction. The reHnement com~traint for ,fhis prinqiple is:

[refinement-constraintt c#e [(for-each*i 1)
[constrained-callt #e.adjustl]
[predicatet #e

(mor•e
[(look-for-c-attachment•c

[found-plan,
,Cmquote•c identity-operator.)],),

(1 oo·k-'for-c-attachment•c
[fouftd-plan. ,

(mquote•c
mul't ipl feat i ve-opera tor,)].)

] .) J]
[{for-each*i 2)
(constrained-call~ #e adjOst2]
[predicatet #e

{mor•c
[(look-for-c-attachment•c

[found-plan,
(•qµQt,~c jdentlty-i:Gpt!rator,)],),

{look-for-c-attachment•c
[found-plan,

(mquote•c
multiplicative-operator,)],)

),)]Jl

To check this constraint, the system tries to find principles for refining the three

instances of (adjust1J and [adjust2] (which are the cans t6 reduce and maintain the dose

respectively) so that the principle is characterized as being either · a
multiplicative-operator or an identity-operator. If a principle is found for each of the

calls, the refinement constraint is satisfied.

''"'

!As t~ pnndptes are 'dtirrd, 1tte ~st.,, ~~\Nm by ~mg ~
with the apJ)ropriale entry in the list of steps-to-be-refined. Each enlry ·tn the Hst cl
st~~fo-be-~ff'ne:d 1s ltsert a list ·With the Mtrowmg ~at:

(< ste:p-to- refine> <doma i n-,pr inc i pl e> <ref ifr&ment-b i1td i'R'gs>
!

<domain-lllatclles> . (colrstraint-1 ist>)

0rify me <~fo-reftrie> entry is 'l'equire<!I. ™'~.pr~> is~ c:ltomafR.

·~WM& sfrdUld ~used ~6 refirle tne <'Slet>·t'e~>. 'ttve ~JWemenl~
·cWe ~~'made by the 'patternJmatcher wwen tt.e step :awd ~main p~ifJte wer,e

ref'«¥eci. fhfe (cfOmail'Frnatehes) are tfle -~ fWe ~ !f<1lJNd fGf Ule

ifd~Ji<!f~ 'ol 'fHe ttomam prindipre (# i "as-~. ~. ~ ~dflStr'.aim~riSI> is a

:nS't iot iretfrteriten't constramts imposed l:>y Higher ·~Jesle4 ~atn f)r'-incif:Jfes '.apoo the

seteefion dt this <d0Wtmn-'prfr1cif)te> for reflrfing the ·~Jfo..11BTme->. ~ ~en:t·ry in 'th&

c.-on·straint liSt has this ·strudture:

(<step- impos i n.g-ean st'rai'nt>
«pri nc ip 1 e-impos i ng-constra int> . <cons'tra int>)

fn d~~ning fhe writer, it was decided to retain :the step and principle imposing

the constraint lo 'allow the system 1oiex1ticate itself from blind 'retinement paths, bUt the

system realty 'does l"iOt get into pr'edicaments Of this sort il'l 'refining the digitalis advisor.

Accordingly, '.ffle ltnJ'.jlementatidl'l 'Of a '"backup" capability has nC!Jt been completed. The

ad<:tttion 'dfsoch :a capabiltty wHI 'be diSCu5sed 'in 1he·coootusftJA. ofthis chapter.

lhe 'prototype methotl 'df •the ;principle f<>r ai'ltieipatfng drtf g toxicity was a

terii~lafe. rt cdritainect no active e~ments. The t>rdtofype method 'k>r the split-Join is

different because It contains eJements which must be ·1n:ter;>reted, ·and which actively

transform the 'split-join into an executable program. Tl'!e 'l~tiator recognizes ;th_ese

special forms. -~hen evaluated by the MINT interpreter, thffy:retlirn a conOOJ'.)t that the

Instantiating the Prototype Method of a Split-Join 67

instantiator puts in their place. 36 The various types of active elements are described

below:

[(create-sequence* c [<from-number>, <to-number>, <index>, <concept-to-instantiate>],)]

This is an iterative function which creates a sequence of instantiations of the

<concept-to-instantiate>. Starting from <from-number>, the value of the <index> is

incremented on each iteration until the <to-number> is reached. The value of the (index>

may be examined while tl1e <concept-to-instantiate> is bein~J instantiated.

[(get-all* c <sequence-pattern-variable>,)]

This function returns a set of all the matches of <sequence-pattern-variable> where

<sequence-pattern-variable> is n pattern variable embedded within a kstar or kplus.37

[(get-all-matches* c <domain-rationale-variable>,)]

This function returns a set of all the values that a <domain-rationale-variable> had in all

the successful matches of the domain rationale.

[(pappend-element-to-seq uence * c [<sequence>, <element>],)]

This function appends <element> to the end of <sequence> creating a new sequence.

One use for it is when the resolution of a split-join requires that some additional step be

inserted.

[(index *c [<sequence-pattern-variable>,<n>],)]

This function selects the nth match of a <sequence-pattern-variable> embedded in a

kstar or kplus.

36. This distinction is similar to that between simple pattern replacement and computed patterns
in macro expansion.
37. See section on matcher (Section 3.2).

[(make-set•c: [<i>,(j>,<sequence-pattern-variabJe>],)]

This function returns a set of the <i> through <j>-th matches of

<sequence-pattern-variable>.

[(pit-then •c <pr~dicate>, <concept -to-instantiate1>, <concept-to-instantiate2>)]

If <predicate> evaluates to [true] then the first concept is instantiated otherwise the

second.

[(pcase•c [<pred1>, <con1>], [<prect2>, <con2>], ... , [<predN>, <conN>])]

The predicates of each pair are evaluated in turn until one returns [true]. The concept of

that pair is then instantiated.

The prototype method of this particular split-join uses the create~sequence

function to create a new method sequence which i& a serialized version. of the original

split-join as shown in Figure 22.

Generally, an attempt has been made to,;minimize the use of prototype methods

with active elements because they are much harder to exP,fa!n. The reason . for this

seems to be that one is forced to talk about .two kinds of activities: the activity of

constructing the method, and the activity that the method is intended to perform.

·•

Completing tlie Implementation

Fig. 22. Method After Split-Join Resolved

[(MIF-THEN*C
(DETERMINE -:WHE HIER*O CARD IOMYOPATHY),
[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO CARDIOMYOPAfHY)*I 2)

[INPUTt #E (DOSE*R DIGITALIS)]
[OUTPUT #E ((DOSE*R DIGITALIS)*F

(ADJUSTED*fOR (CONDITION*R (MUSCLE*F HEART))))]],
[((MAINTAIN*O (DOSE*R DIGITALIS))*! 4)

[INPUTt #E (DOSE*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F

(ADJUSTED*FOR (CONOITION*R (MUSCLE*F HEART))))]]),
(MIF-THEN*C

(DETERMINE -WllE f llE R*O (DIC REASED*O SERUM-K)),
[(((REOUCE*O (DOSE*R DIGITALIS))*DUE-TO (DECREASED*O SERUM-K}}*I 2)

[INPUTt #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (CONDITION*R (MUSCLE*F HEART))))]

[OUTPUTt #E ((DOSE*R DIGITALIS}*F

69

(ADJUSTED*FOR (SET*I (CONDilION*R (MUSCLE*F HEART)), SERUM-K)))J],
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 5)

[INPUTt #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (CONDITION*R (MUSCLE*F HEART))))]

[OUTPlJft #E ((DOSE*R OlGITALIS)*F
(ADJUSTED*FOR (SET*I (CONDITION*R (MUSCLE*F HEART)), SERUM-K)))JJ),

(MIF-THEN*C
(DETE RMI NE-WHE TllER*O (I NC REASED*O SERUM-CA)),
[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (INCREASED*O SERUM-CA))*! 2)

[INPUTt #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (SET*l (CONOITION*R (MUSCLE*F HEART)), SERUM-K)))]

[OUTPUTt #E ((DOSE*R DIGITALIS}*F
(ADJUSTED* FOR

(SET*I (CONDITION*R (MUSCLE*F HEART)),
SERUM-K, SERUM-CA)))]],

[{(MAINTAIN*O (DOSE*R DIGITALIS))*I 6)
[INPUTt #E ((DOSE*R DIGITALIS)*F

(ADJUSTED*FOR (SET*I (CONDITION*R (MUSCLE*F HEART)), SERUM-K)))]
[OUTPUTt #E ((DOSE*R DIGITALIS}*F

(ADJUSTED* FOR
(SET*I (CONDITION*R (MUSCLE*F HEART)),

SERUM-K, SERUM-CA)))]])]

3.3.6 Completing the Implementation

Several steps remain to be refined. The reduce steps for the various factors

must be refined, as well as the steps which determine whether a factor exists or not, and

those which just maintain the dose. The reduce steps are all refined using the same

domain principle:

70

[[((redtice*o ((dose*R !pv)*I l))*due·to {{devi-atio.n~R !pv)•I 1))
#c multiplicative-operator]

[inputt #e [doserl =
(dose•f (before*o (adjusting*for ((deviation•R !pv)*I 1))))

#t {(<.tose*R !pv)*I 2) Im variable]]
{outputt #e (doser2 =

(dose*f (after•o {adjusting•far ((deviation•R !pv)*I 1))))
#t {{dose*R lpv)*I 3} #m variable]]

[prototype-methodt '
llq [(msetq•c [(mproduct•c (doserl,((constant•f reduction)•for

((deviation*R !pv)*I 1})],),doser2])]]]

Although all are refined by the same domain principle, each of the refinements . is

dHferent and results in a different method. This Hs because the reason for the reduction
\J . . . ,

((deviation•H !pv}*I 1) is part of the call. The difference between the methods is tn the

reduction constant that is used. Each method has its own, b:lUQred for the particular

sensitivity .. As the system instantiates the prototype method for each reductk>n, it uses

the reason tor the reduction to create a unique reduction factor a.nd. asks the user for the

value of the factor. That is, when the system instantiates the temptate:

((constant*f reduction)*for ((deviation*R lpv)•l 1))

the pattern variable ((deviat4on"R tpv)*I 1) is bound by the pattern matcher to the

particular reason for this reduction (i.e. increa&!Jd,calcium, deCreased potassium, etc.).
Since the newly created constant (i.e. [((consttmt*f reduetion)*'f {increasect•o

' serum-ca))]) is unbound, the person running the \¥filer sy,&ttm'\ is asked to enter a value

for it. The constant can atso be pre-specified in ,t~ knowted~ base, in which case no

question will be asked.

The refinement of the steps to determine Yllhether the various conditions such

as increased calcium, decreased potassium, and cardiOmyopathy exist proceeds in an

uneventful fashion. Unlike the reduction steps however, a different domain principle is

used to refine each of the steps. The first two conditions are refined by similar

principJes: the first one checks whether some aspect (here calcium} has exceeded a

threshold supplied by the user of the Writer prog.r€1Jll~ ~.j~e ih'tseqqnd checks whether
:· ~ < ·: ~ ' • : > : '.;' ".'-: • ' ' • f ; ; :. . ' ,

the asr : (here potassium) has fallen below a threshold. The selection of which

principle ',0 employ is based Qn whether "increased" or "decreased" appears in the call.

Completing the Implementation

Fig. 23. Principles to Determine If Increased or Decreased Conditions Exist
[(determine-whether*o (decreased*o (aspect*r !pv)))
[inputt #e (aspect*R !pv)]
[prototype-me thodt q#q

[(mless-than*c [[(aspect*R !pv) #m variable],
[(threshold*r (decreased*o (aspect*r !pv)))

#m constant]],)]]]

[(determine-whether*o (increased*o (aspect*R !pv)))
[inputt #e (aspect*R !pv)]
[prototype-methodt q#q

[(mgreater-than*c [[(aspect*R !pv) #m variable],
[(threshold*r (increased*o (aspect*R !pv)))

#m co n s tan t]] ,)]]]

77

The problem of determining whett1er cardiomyopathy exists or not is a little

different, because there is no level that can be measured to determine whetl1er the state

exists. Thus, the system uses a method which yields a progrnm that just asks the user

whether or not cardiomyopathy is present. The system doesn't select this principle when

trying to determine whether a state of increased calcium or decreased potassium exists

because the system always picks the most specific principle tl1at it can find. For those

steps, the other principles are more specific because they appear lower in the kind

hierarchy of XLMS.

One additional interesting thing occurs in refining these steps. The reader may

have noted that the calls that appeared earlier in the chapter to deterrr1ine whether these

various conditions existed never had any inputs. Yet the domain principles require

inputs. When matching, tt1e pattern matcher does not require that all the inputs in the

principle be supplied by the call (although it does require that all the inputs supplied by

the call have some matching input argument in the principle). Tl1e system determines

the missing input by placing a call to the ask-user function when it creates a MINT-level

Fig. 24. Principle to Determine If a Condition Exists
[(determine-whether*o (deviation*r !pv))
[inputt #e [(status*r (deviation*r !pv)) #m variable]]
[prototype-methodt q#q

[(mequal*c [(status*r (deviation*r !pv)),
(mquote*c present,)],)]]]

72

version of the pattern-matched call. fhat is, the pattern matched call:

(DE TE RM I NE-WHE THE R*O (I NCREASED*O SERUM-CA))

becomes:

[(((DETERMINE-WHET11rn 1 0 (INClffASU1*0 SERUM-CA))*! l)*C
[[(ASK-USER*C L(MQUOTE*C [SERUM-CA,]).J).].])]

To refine the step that maintains the dose, we just need a domain principle that

will set its output to its input. The s1rnple principle shown in Figure 25 suffices. Notice

thnt this principle and the call don't make any mention of the reason for maintaining the

dose. It makes sense to talk about 1·educing the dose due to something or otl1er, but it

makes less sense to give a reason for rnaintaining the dose. That seems to be because

rnaintainin~J the dose is the norrnal case. hence in a ceriain sense, the mnintain step

could be thought of as a no-op. 38 Since there is no need to distinguish the methods

based on tile reason for maintaining the dose, all three calls could use the same method.

To allow this to take place, the method for finding a domain principle to employ is

actually a little different than what we have described so far. Before the system searches

for a domain principle that matches the step it's trying to refine, the system looks to see if

a method has already been refined which would work. This is fairly simple to do. The

system looks for the definition of a method which is inferior (in the kind hierarchy) to the

call.39 The system then checks to see whether the principle used to refine the found

method could also be used to refine the current call. This is done through the usual

mechanisms of pattern-matching and constraint checking as described above. If the

Fig. 25. Principle to Maintain the Dose
[[(maintain*o ((dose*r !pv)*i 1)) #c identity-operator]
[inputt lie [dosem2 = {(dose*r !pv)*i 2) #m va1'iable]]
[outputt #e [dosem3 = ({dose*r !pv)*i 3) #m variable]]
[prototype-methodt

#q [(n1setq*c dosem2,dosem3)]]]

38. And in fact, the explanrrtion routines don't mention it for exactly that reason.
39. Or to the ilk of the call if tile call is an individual.

Completing the Implementation 73

principle is suitable, the system does not instantiate it, but rather it creates a MINT-level

call to the found method and links that to the call that was to be refined. The call to be

refined is then removed from the list of steps to refine. In addition to saving some time

and space by preventing tl1e system from performing needless refinements, this scheme

also allows the system to refine recursive clomain principles. 40

3.4 Future Needs

This section has outlined the automatic programmer used by the XPLAIN

system. This programmer has proved to be adequate to synthesize major portions of the

Digitalis Advisor, and to demo11strate that the use of an automatic programmer can

significantly enhance the explanntory capnbilities of n system. However, while it has

shown that the approach is feasible, tile automatic prourarrnner itself is not complete.

Currently, the programm writer has no backup (or fix-up) capability. If it could not find a

suitable domain principle to refine a step, the current version of the writer would be

stuck. It seems that some sort of dependency-directed backtracking [Doyle79,

Stallman76] which treated defined procedures in a manner analogous to tho way

assertions are treated in Doyle's Truth Maintenance System might be a reasonable way

to attack this problem. Another lack in the current system is that it cannot fix plans

which are nearly correct [Sussman75]. For example, there are times when it may be

necessary to modify methods which have already been refined based on somet11ing

which comes up in the refinement of a deeper node. At least one such instance does

come up in the Digitalis Advisor, where it is discovered that it is necessary to determine

whether the patient is experiencing nausea, anorexia, or blurred vision (possible toxic

signs) before giving any digitalis so that a baseline comparison will be possible. Tl1e

need for the baseline information (which must be gatherecl during the initial session}

doesn't become clear until toxicity is being evaluated (which occurs during the feedback

session).

40. However, the need for recursive principles never came up in this domain.

74

4. Aseeuing Toxicity . ·. , I:,·. , ,,

Whenever the dQ~ of digitalis i~ befqg ~jumedr it• ~ry t~~Jlit~rthe,,

~t cioseJy to see)Ntl~t efiect (it anY} the .. <:~,ie ~vilMI ,,oo ~ J>AU~fl~· .Ja tffll,.
original Digitalis Advisor, there ~e.tw0;$8ts.Qfc:~for~~*"'~~;~fiM~t

One set was concerned with the harmful toxic effects of digitalis, while the other dealt

with the beneficial or therapeutic effects. Each set of routines produced an assessment

of the degree to which the patient was showing toxic and th.,.apeutic effects. Based on .
.. :bi··:.·~,,,··=~.J. I , ~-·•

these assessments, the system recommended corrective actions if they were

apPropriat~. .

i • ~ ' • ~ t ' . . . ' .

This chapter describes how the portion of the Digitalis Advisor that assesses ,

toxicity was implemented using the XPLAJN ~ystem .. 'Actuatiy,utwo imple~entations are

described, .the fifst is based more on ,causa1it);;' whi~ the: ~pod· i~''more·'·errip.irical.
• • · . , · · , , · ~ 1 :'·~ ._/··: :.', ; ~~ '. L'" '.,.i , . ,.J ·· ~ ·.:;"~: :'·I·.,,, .. : •

Interestingly, the domain model used in the previous chapter only required, a few
'. : . '· ' . " ~ 1 , 'f '.• , , . ~, ·}., ' '. I ~ . :) • '

additions to be used for assessing toxicity. · ·
' . ' ! ;

The. safue 0vera1I ptan was used· iri the two i~HOns descri~ ttere~
The user'is ast<ed whether' the vartous toxic ertee~ ttlljfdJOttafliHTiay ·ca0$e have been·,
obServed in 'the' Patient .. The' assessments dft~ ~WittgS aretheri'CQ,M~ed i

into' an bVeratr • assessment of toxicitY:'; 'rhe;~~t 1'i· a: ;humber'tepresentlrig'. the'.

degree of t<>Xrcity and the individuat · asSesametllil' are·~, together; :using
nutnericat techniques; · The two implemeittatlone 'dtftEJi In · ~ ~ the combfriatfon ,

functions work, anct'they differ in what gets cdmbtneclivtttrWhat~ :. · ,

TJ:le first implementatipn (whic~ we ul~i.tnately ~ltldt .w~ act~a!_ly t~~ more ,
" ' •' I ' \ ' •,' '} ' '. I ., : ' ' ._ ~ ,> ,: l ! • ~· ' ' ' .·, ' • .'

ambitious of the two. In this implementation, we wanted the causality network .of~~'.

domain model to help dictate what should be COf!lbined with what and how they should

be combined. The domain model used by both imptementations appears in Figure 20.•1

41. TNs figure (betng graphical) leaves out a few important detaits which wiH be supplied later
on. . .; ~ . '

The Causal Implementation 75

Fig. 26. Domain Model For Toxicity

Increased Digitalis Increased Ca Decreased K

Decreased Conduction Increased Automaticity

AV Dissociation * A \I Block (Wenkcbach) Bigeminy

~
PAT with 8101.k

Sinus Bradycardia

Non- Paroxysmal AV Block (2nd Degree} Double Tach * I
Junctional Tach

•
I Salvos of PVCs

*Findings of Toxicity Ventricular Tach

Note that this domain model is just an augmented version of the one used in the previous

chapter.

In this implementation, the idea was to have the system recursively descend the

causal paths which emerge from increased digitalis and produce code which would ask

for the findings and then combine these findings at the next higher level in the domain

model. For example, the assessments of those things caused by increased automaticity

such as pvcs, bigerniny, and so forth would be combined together to form an assessment

of increased automaticity. Increased automaticity and decreased conduction would then

be combined to produce an overall assessment of digitalis toxicity.

The top level method, the one to assess~--· of.~-- tmi~: hae:Jhe .

foUow~ng domain rationale:

[doma i;n- rat ion al et #q
[(pattertt•i !00)

[structt;tNt• fe [(t c link*b (;nc reased~o (drug•r tpv):))•-e ttev i at i on6))] .
[deviations = deviationtl]
[preoica.t.et fie {m<>,t*c .· .· "

[(look-for-f-attachment•c
£ Cfecv i at i on6, (mqi.iote~c dang~:)] 1) .

(&x J.&"*c '
l(pattero*i 2Ql)

[structuret ,_.. i

((Ct,1,JS' l -Chfl.50.*.ti ('l.~llJ~*Q ~Vitt iOlfC~ l)*e ..
[deviationt! 11.f daf!98-ro~s])aJr)j,tJ· ·

]] . . :· .

This pattern finds those deviations which are ·afrecUy·· cauSecj by (increased digUalis42
' ~ - • ··--~""""''. ; • ~·-·· ~~h ••• .., .. , -··-···'.,

which are themeetves dan~ous or ~ catJ~:~~n~r"-1s t() ~C,~f. Th'
ex is ts predteete returns true if a mate+t··e8ft1>& fotlnd ·tor Its pattetn ·acgµme~. Jhe·
look-for ... f-attachment tocks to see whether its second argument is~hedk>itsJirat ·
by #f. The prQto~ype ~thod ,iust sets up calls to assess the matches for [dev iat ion6 J:

[prototype-method+ #q
[(Hsess*o {tvalue•e deviation6,)*f (induced*o (by•o (drug•r lpv)))))
[outputt #e [(assessment•r ((value•c devi-ation8,)*f

(induced*o (by*o
(drug•r l~v})))) Im variable]]]]

As was. the case when anticipating toxici~y, there may b,ie ~veral matches for the.

domain rationate, and if there are, the system creates a split-jpin. The SYStem resolves ..
. .~~ j..-, ' ·. · I'. · 1·'..'. '. ·1-' ,~' .. _'>~:- ;·-' ~f·.:~ ; ~ 1.

the split-join by serializing the various assessments and then adding an additional step at
•(·-,;.

the end to combine the assessments together.

Having moved one step down the causal links, there are three PQSsibitities for

each of the deviations. First, the deviation may, be··a fi~~g. tn'wh;~n case the ytem.
• ~ '' ' ' ; '. ; • .'-;: • ' ' : : • ;) ' ; • • I-~ ' : : '. '. ~ • '•; ;

can ask the user directly whether it exists or not. Second, the de~iat~n may not be a
. . - '· _.·1: .. ~,. '",·' ~--:_:-~·-,':;··-~.·~:· " __ '

finding, but it may cause another deviation to occur. ln that case, the system should
' . , ' · . :, _i, .. : ·•).:_", -~ - ; . --~: ;;·_;:·:r: . -_,,: ,f•Y;:'!>'i.--~ .:,· ,,

1
;. -"

check the other deviation. FinaHy, it may be that the deviation to be. 8$.sesSed is neither a
~ ' . , ~ ? ' -· ·, \) •'I .! ; • ' ~ . : ; ,- ' ~ ·, f ' ,· ' •

42. Note the causal-link rather than causal-chain.

The Causal Implementation 77

finding nor does it cause any other deviations. In that case, the system looks for warning

signals-things which lead to the dangerous deviation. For example, for the purposes of

a computer system, ventricular fibrillation cannot be considered a finding43 nor does it

cause anything of interest to the program. It is extremely dangerous, however. There

are some warning signs which indicate that there is danger of entering ventricular

fibrillation.44 To assess the danger of ventricular fibrillation the system assesses these

warning signs.45

To deal with the three situations outlined above, the system has three domain

principles. Each principle has the same goal, but the predicates and the domain

rationales associated with them make the system select the correct plan. The method

used in the first case, when the deviation is a finding, is to· just ask the user.46 In the

second case, the system just recurses down the causal links another step and assesses

tile deviations there. The acti<?nS taken in the third case have already been described.

The only problem that remains is to find a way of combining the various

assessments together. We planned to use two different types of combination functions

here. For combining the assessments of deviations which were directly caused by the

same higher level deviation, we planned to use a function which would return the

maximum (or worst) assessment. Our reasoning was that a doctor would feel that it was

appropriate to reduce the dose if any of the dangerous things that can result from

digitalis administration occurred. Taking the maximum reflects this reasoning better

than using, say, a weighted-sum. However, when combining the assessments of

43. While ventricular fibrillation is observable using an EKG, no doctor is ever likely to enter it as
a finding on a computer terminal. When the heart is fibrillating, it ceases to pump blood, and the
patient with untreated ventricular fibrillation will die in less than five minutes. Thus, if a doctor
observes ventricular fibrillation, his responsibility is to attempt to de-fibrillate the patient, NOT to
enter findings on a computer terminal.
44. For example, premature ventricular contractions (PVCs) are usually not particularly
dangerous to the patient. However, an increased number of PVCs in conjunction with digitalis
administration is dangerous in the sense that it indicates that level of digitalis in the patient is
reaching the point where a dangerous arrhythmia may occur.
45. The warning signs are required to be findings.
46. A more sophisticated method could be used here which would attempt to determine the
correct answer using the other two methods if the user responded that he didn't know the answer.
(This approach would be very similar to that used in MYCIN)

~- ---'--· ... ----- --.. ~~~ .. ·-·

78

warnings signs, we f(Jlt that.a weighted-sum wa~ the~ thing to. ~.•in°".it, .
reHects to some degree. the process of combininQ~. 47

- ~fl~l&Jw. this ~~P'­

tne s.ystem was orny partiatly implemented, since. w.e aoo~ to 8(jQpt the ~

approach before this one was completed.

4.2 The Emptrical Implementation

When we outlined our design for the causal implementation to Dr. Pauker, the

cardiologist we consult with, he was uncomf()rt~l& ~h it, ·reel\ng thafit did not capture

the reasoning he performed in trying to assess toxicity tn a ~tertt. He fe1t that when

assessing; digitaHs toxicity he looked tor signs in tfir~ ·general· 'btaSses: hlgt\ty 9Pectric
signs of digitafis toxicity, moderately speclfic sigris~ arid sign~\~ith. low specificity (atso

carted non-specific signs).48 The original Diglt~lis Advisor;'fbttowed this strategy and
weighted the various findings according to their ty~ t6 ·~tbefuce an· asse~ln&nt of

digitalis toxicity. To implement this algorithm using th.fit XPLAIN system, the only
. ' ~ . --r~ ! . : . ~ : . , , . ,

changes that had to be made in the· domain model were to indi~te (by characterization . . . ' ' ' . : •., s ~.:"'/ ' .. ~ '-.l . ; . .it,,. ~ ,. c •

ties) the specificity of the findings. The domain principles reqljired more ext~nsive
• - ' •. - "1 : • ' ' .• ' • ' • t ~ ' ~ . ; '. : : \ ! -.. • . : ' ~ ' { :

modification. This should not be at all surprising since we aren't changing the medical
• :.~ • J .'

4

~-"' q·:_.; ,.. . . < • f - ,'.

knowledge, we are changing our interpretation of that knowledge.
. . . \ . ' ' . . ' ...

For this implementation, the top level rnethOd to asses! digltalis toxicity Just sets
up the calls to · assess ·the highly spedffc Sign~. mriderately sJ)ecrtic' ''a1&ns , iind
non-specific signs and to then combine them t~thet. the 'fh'tee diffetertt 89SesslllMt
steps are all refined by the same domain principle because that principle has the degree

of specificity as a variabte in its ·goat:

[(assess•o ((f indin:gs•r (tox icity•f (drug•r tpv-))) .. f (sp•c 1f ic*R tpv)))]

The domain rationale looks for au finding& wklicil are ~-bv-iflQreased digitafis·and

47. Qf course, a number of.other plans (sU.ch as c .. ifl&y .lactOF5'~1iffeloD e.ould have be8fl
used as wen. Thi& auJQmMc. pr<agrammtno ~ ""*,itseff ..at,,c~utMperimet\tltii#l·With.
different methodologies because the use of domaiff,~~--..._ k> .,-. changes at
a higher conceptual level. ,_.
48. Viewed from a pr~ijstic pef8pec;ti~ •. we woulf;it • that:thft"PtGbabilttv.of•digitalie toxicity
WQUld.be bigt\ g;~ ~'obaeMlt~-QI amgttty epectflc~ _...~the ob~ da
moderately specific sign and low given •observat"- el a ~...,tf;$ titft.

The Empirical Implementation

have the degree of specificity specified in the call: ''

[domain,..rat 1ona1 et #q
(dr3 = {pattern*i 300) . . .

[structuret #e ((causal-chain*b (increased*o (drug*R !pv}))*e
[dev2 • deviation1't])]

[(dev2*characterization
((tinding•r (toxictty•f (drug•R lpv)))*f (specific*R lpv)))]]]

79

The prototype method then sets up calls to assess these various findings. For most of

the findings, the system just asks the user whether the finding is present or not. The
\f

code to do this is meta-characterized as having a computer-viewpoint because it is too
: ' ' ;,·,

low level to be of interest to doctors. Thus, this code ls not normally explained to

doctors.49 The only exception is PVCs. PVCs are premature ventricular contractions.

The system has special knowledge concerning how to assess them. A computer

generated explanation of how that routine works appears in the next chapter.

49. Although the system can be instructed to explain it if an explanation is desired. Viewpoints
are more thoroughly described in the next chapter. , , ' !I

80

5. Generating Explanations

This chapter describes the operation of the routines tt"W ~~@W ,f;;qgJ~;Jexl

from XLMS repr~ntati~s. By. d~i9n, th~. kpowle(i~. s~~~~~ ,~ ,;~~ifid:· by the
automatic programmer made 4t possible to achieve quite high quality English outi>ut with

a simple ~nerator. The generqtor shpuld rea,,y.bp v~ ~ aS~.~PQi-ng effort

that attempts to produce acceptable English rather than as a generation system that
' ' ·: . f ; , • ,; = ' . - , ,. • .~ - '· i'" , t : .. - . , ; , ; - ·. , i ; ·r· , " -• -~ ,

encodes deep linguistic principles. The main thrust of this thesis has been to investigate

ways of representing the knowledge necessary. t~ justify ~x~· ~~suiting ~ygte~s. A

generator i~ necessary to demonstrate the capabilitieS of ·~ approaCh belng espoo~ .
here, but.the generator itself has not been the foe~ ~f th~ ~~;~ti.50 The generafor is·

- , _, . . , ~- . . ' j r i ,_ . ~ , , ~ .

realty composed of two types of generators at two levels. The low level phrase

generator, which has atready been partially described in ChBpt~ 2, conSt~cts phrases··
, t '':'1-" ,I .

directly from the XLMS representation. .Higher level answer generators·. $et ~P the

appropriate environments and call the lower level generators in an appropriate order to

produce answers to specific questions. The reader may wish to review the section in

Chapter 2 on the phrase generator before continujng.

5.1 The Phrase Generator Revisited

The tie generators described in Chapter 2 are general purpose in the sense that

they are not oriented toward a particular application domain. The generators described

here are more domain specific in that they are oriented to the problem of explaining

program structures (although they are not oriented to the doma;o of digita1is therapy at

all). In addition to the generators, some of the additional faciHties of the phrase

generator are described at the end of this section.

50. See [MannSo, McDonakJOO)

Generator for •c 81

5.1.1 Generator for * C

*C is the attachment used to indicate a call in the syntax of the XLMS

interpreter. The ilk is the name of the called procedure and the cue is a sequence of

input/output arguments. If the call is not a special form {such as [mif-then], [msetq],

etc.) the system just generates tl1e English forrn of the call preceded by "the system". If

"the system" has already been established as a referent the pronoun "it" is used

instead. For example, the call:

[(((assess*o (toxicity*f di~italis))*i l)*c
[], [(assessment*r (toxicity*f digitalis)),])]

is output as:

"The system assesses digitalis toxicity"

If the ilk is [if-then], English for the predicate is generated preceded by "if"

and followed by the action to be taken if the predicate evaluates to true and the action

taken (if any) if it is false. Thus, the concept:

[(MIF-THEN*C
(DETERMINE-WHETHER*O (DECREASED*O SERUM-K)),
(((REDUCE*O (DOSE*R DIGifALIS))*DUE-TO (DECREASED*O SERUM-K))*I 2),
((MAINTAIN*O (DOSE*R DIGITALlS))*I 5))]

Generates the phrase:

"If the system determines that decreased scrum·k exists, it reduces the dose of digitalis due to
decreased serum-k."51

Other special forms such as [rnless-than], [rnquote], and so forth are handled

in a similar straightforward mnnner. [rnsetq] is also handled in the obvious way unless

the input is a mathematical function. In that case a special routine is invoked which is

51. This example also illustrates the suppression of computer details. The [maintain] step, which
appears in the XLMS code, does not appear in the generated English text. That is because the
step has been meta-characterized with the flag [computer-viewpoint]. This feature will be
described in greater detail later.

82

described in section 5.2.5.

5.1.2 Generator for *E

The *e tie is used with the * b tie to represent links and chains of various types.52

The form of a link is:

[((causal-link*b cardiomyopathy)*e (increased*o automaticity))]

This says that cardiornyopathy causes increased automaticity (review chapter 2 for a

more extensive discussion of the representation.) Chains are a representation for a

series of links-a path frorn one object to another:

[((causal-chain*b cardiomyopathy)*e

(change*o (to•o (fibrillation*f ventricular))))]

This concept indicates a causal chain from cardiornyopathy to a change (of the

ventricular rhythm} to ventricular fibrillation. By design, concepts with ties of *e always

have ilks that are concepts with ties of *b, and concepts with *b ties are not used in

isolation, so a generator for *b is not really needed: the generator for *e can take care of

the whole affair.

If the concept to be generated is a link, the system generates a phrase for the

head of the link, followed by a phrase generated from the type of the link (the ilk of the ilk

of the concept) followed by the tail of the link (which is the cue of the concept). For

example, the link (not the chain) given above generates the pl1rase "Cardiomyopathy

causes increased automaticity."

In the current version of the system, chains occur only in the patterns of domain

rationales. That is not to say that we would envision limiting them to that use, but only

that that is the only use we found for them in the application area. Since chains are

found in patterns, there are two situations that arise in converting them to English.

52. As it turns out, in the current version of the system, all chains are causal chains because
other types of chains were not needed to get a working system. While it would not be difficult to
program the generator to work with other types of chains, the current generator only handles
causal chains.

Generator for *E 83

Either we wish to describe the pattern as a pattern, or we wish to describe the sequence

of links that the pattern matched. Chains which are to be described as patterns look

much like links, and they are described using a similar process to the one described for

links. If we wish to describe the sequence of links that matched the pattern, the situation

is a little more complicated.

When the system finds a match for a chain, it creates a new concept. The ilk of

this concept is a copy of the pattern chain with the head and tail replaced by the

concepts that form the head and tail of the found chain. The cue of this concept is a

sequence of concepts which are on the path from the start of the chain to its end. For

example, when t11e system is looking for a path from increased digitalis to a moderately

specific finding of toxicity, it creates the following concept° when it finds such a path

between increased digitalis and increased pvcs:

[(((CAUSAL-CflAIN*B (INCREASED*O DIGITALIS))*E (INCREASEo~o PVCS)}*I
(INCREASFD*O DIGITALIS),
(INCREASED*O AUTOMATICITY), (INCREASED*O PVCS))]

The pattern matcher binds this concept to the pattern chain as its value. The generator

describes the path by constructing sentences detailing the chain link by link. If there are

just two items in the path the generator produces:

A causes B.

If there are 3 items, it adds a relative clause:

A causes B, which causes C.

If there are more than three, it breaks things up into sentences:

A causes B, which causes C. C causes D.

The system locates the actual links that link the items together. Thus, if one of the links

indicates possibility rather than definite causality, it is possible to say so:

A may cause B.

In addition, the system keeps around a list of the link relationships that have been

84

described. 1f a Mk is being ·descAbed which causes the same thing as ·another teeentfy

described "'*· the system iftserts "atso "~

A cat1SCS B. C also causes B.

This list of described relationships also allows the system to stop describing a path if it

has already explained the remainder of it. The sample. "8Sion Jn the introductory

chapter gives a further illustration of these features.

5.1.3 Dealing with Articles

The generator iS de$1Qned to insert articles where it is appropriate to· do so. tn
general, it can be quite complex to decide whether or not to use an artfcie and whether

tile definite or indefinite article is appropriate. A relatively simple heuristic states that

objects which are mass-nouns do not take articles white those that are not do.

Unfortunately, one can easily think of numerous viotations of tnte rule. Fortunately, this

rule has been adequate for explaining program structures of th•Digitalis Advisor.

When a word is defined in the knowledg.e base, a flag is placed on it if an article
, .· '

should be used with the word. If no flag is found on the concept being generated, the

system examines concepts above to see if they are flagged. Thus, lower level concepts

inherit the flag from higher concepts, however, inheritance occurs only up to the level of

a concept with a tie of •s. If no flag is found or:a; over..f'iding nag ~s found, the system

does not insert an article. 53

The described solution still has a problem. ff the concept (block] is flagged to

indicate that an article shoutd be Inserted, the !Ystem wtff generate the phrase .,he red

the block" when asked to generate a phrase for the cc:>neept [(bloc~•f red)]. This

occurs because the system inserts an article because it inherits the flag from (block]

when generating a phrase for ((Lllo.c.k•f red)] tf,\enJt i~ another article when

generating a phrase for (bl o.ck]. To get around~ pr~ .tt'leAl are actually two top

53. The inheritance is limited because this appears to reduce the number of explicit over-rides
that must be i.nsert~ in the kn9wtedge base.

Dealing with Articles 85

level phrase generators used by the system. One of them checks whether an object is

flagged and inserts an article if it is, and the other does not. By having the generators for

the various ties make calls to the appropriate top level generator, it is possible to avoid

the problem of inserting articles in inappropriate places. For example, by having the

generator for *f call the phrase generator which does not insert articles when it

generates a phrase for the ilk of a concept with a *f tie, the problem described above is

avoided.

The problem of deciding whether to use the definite or indefinite article has

been addressed by examining those situations where each is apµropriate. So far, it

seems to be appropriate to use the indefinite article only when describing patterns. In all

other cases, the definite article is called for. While a more sophisticated system might

require a greater number of distinctions, this solution has proved adequate for our

needs.

5.1.4 Viewpoints

The reader may recall that one problem with previous explanation systems was the

problem of computer artifacts. Computer artifacts are parts of the program which

appear mainly because we are implementing an algorithm on a computer. If these steps

are described to physicians, they are likely to be uninteresting and potentially confusing.

The introductory chapter gave some examples of these computer artifacts. In the

XPLAIN system, steps in prototype methods can be meta-characterized by certain

viewpoints. 54 When a prototype method is instantiated, the instantiated steps will share

these viewpoints. As the XPLAIN system is generating an explanation for a step it

compares the viewpoint(s} of the step (if any} against a list of viewpoints which should

be filtered out and anott1er list of viewpoints which should be included. If one of the

step's viewpoints appears on the include list, that step is included in the English

explanation. If not, and one of the viewpoints appears on the exclude list, the step is

excluded from the explanation. If the step has no viewpoint, it is included in the

explanation. This approach allows us to separate those steps that are appropriate for a

54. This can occur either during the refinement of a step from a higher goal, or during a
transformational refinement.

86

particular audience from those th.at are not. Of course. the exclupe and inctu~e Ii~ may

be (;hanged to rellect a changing understanding of tbe user's ¥iewpoint.

,,
While this is a simple solution from the standpoint of generation_, it is a feasible

"
one because we are empJoying an automatic programmer. In the domain principles, we
bring together and define for the system to use, computer implementation knowledge · . - '

and medical reasoning knowledge. A domain principle is thus the appropriate place to

indicate what viewpoint show be taken on the knowledge that it is composed of. By

placing a viewpoint on a step in a prototype method, we cause ,all . th~. instantiations of

that step (and .there are usuaUy several) to share,\tnat '(iewpoint. lf we were to b)t. to dQ

the same thing at the level of the performance. program (witttout an automapc

programmer) we would have to annotate each individval ~we coujd not capture as .
high a level of abstraction.

This result is consistent with the observation we made in Chapter 1, where we

stated that improvements in the quality of the explanations generated resulted more from

the use of an automatic programmer than from increases in the sophistication •of the'

generation routines. It should be pointed out, however, that while th1s solution allows the

system to customize its exptanations based on a particular viewpotnt or set of

viewpoints, the problem of' deciding which vieWpoint to present to a particular user

remains open and is beyond the scope of this th8Sis. ··

5.2 The Answer Generators

This section wiU describe the higher te~t answer generator9. When the user

asks for an explanation these generators find: ttte things wtUcr4 ~ be ex.plained ,and

set up the appropriate environment for eJ<plarniftg'fhem.. ·

Answering "Why" Questions 87

5.2.1 Answering "Why" Questions

One of our chief goals in this research was to have the XPLAIN system explain

why the performance program was doing what it was doing. In producing answers to

such questions, the system makes use of the knowledge in the Domain Model and the

Domain Principles as well as traces left behind by the automatic programmer resulting

form its creation of the performance program. Some of the capabilities of the system

were illustrated in the introductory chapter when the pert ormance program was

anticipating digitalis toxicity. Additional capabilities are illustrated below from those

portions of the advisor that anticipate toxicity and assess toxicity.55

Is the patient showing signs of canliomyo1rnthy? (yes or no): why?

The system is anticiflating digitalis toxicity. Canliomyo1>at hy causes increased
automaticity. which may cause a change to ventricular fibrillation. Increased
digitalis also cat1ses increased automaticity. Thus, if the system determines that
cardiomyopathy exists, it reduces the dose of digitalis due to cardiomyo1mthy.

This explanation is similar to those in Chapter 1.

The remaining explanations are produced while assessing toxicity.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): why?

The system is assessing·the highly s11ecific findings of digitalis toxicity. Increased
digitalis may cause 1>~1roxysmal atrial tachycardia with block which is a highly
specific finding of digitalis toxicity.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): overview

The system repeats the question, but the user wants an overview. This is
produced by describing the method for assessing highly specific findings
which was mentioned in tf1e previous explanation.

To assess the highly specific findings of digitalis toxicity:

55. These examples all show the user questioning the system by entering a "why?" or
"overview" when it requests an input. It is also possible to obtain a justification of a particular
event by calling the LISP function JUSTIFY with the event as an argument.

88

I. lhe system asses-.cs 1>aroxysmal atrial tachycardia with block.
2. It assesses double tachycardia.
1 It assesses av-dissociation.
4. It combines the as1.,essmcnts of paroxysmal atrial tachycardia with
hlock, double tacl1)ctrdia and :n-dissociation.

This produces the as<iessmenf of the highly specific findings of
digitalis toxicity, \\hid1 is used \\hen the system combines the
a<,scssments ol the hii~hly spel'ifir findings or digitalis toxicity,
the 11uHkr;1tely '-P!'l'ifir fil1dings of digitalis toxicity and the
non-specific finding" of digitalis toxicity.

To avoid leaving the user hanging, the system describes how the output of the
method will be used tn a higher context. This is done whenever the output of
the method is something which is not likely to be familiar to the user. Thus, if
tile output of a method were a clrug dose. no additional explanation would be
generated (at least for a medical aucfience) because the user would be
presurned to be familiar with the notion of a drug dose.

Is the patient sho\\ing signs of paroxysmal :itrial tachycardia with block? (yes or
no): why?

Still curious, the user asks "why?" again. This causes the system to give an
explanation of the procedure tflat calls the procedure for assessing the highly
specific findings. This explanation is much shorter. because the domain
principle used to refine tho higher level procedure had no domain rationale. 56

The system is assessing digitalis toxicity. One step in doing that is to assess the
highly specific findings of digitalis toxicity.

Is the patient showing signs of p:iroxysmal atrial tachycardia with block? (yes or
no): overview

This time the description is offered at the level of the higher procedure.

To assess digitalis toxicity:
I. The system assesses the highly specific findings of digitalis
tox icily.

2. It assesses the moderately specific findings of digitalis toxicity.
3. It assesses the non-specific findin~'.S of digitalis toxicity.
4. It combines the asst'>smcnh of tlw highly specific findings of
digitalis toxicity, the moderately specific findings of digitalis
toxicity and the non·spccific findings of digitalis toxicity.

56. This is explained in more detail later in this section.

Answering "Why" Questions

This produces the assessment of digitalis toxicity, which is used
when the system adjusts the dose of digitalis.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): no
ls the patient showing signs of douhlc tachycardia'! (yes or no): no
Is the patient showing signs of a\·dissociation? (yes or no): no
Please enter the number of pvcs: why?

The system is assessing the moderately specific findings of digitalis toxicity.
Increased digitalis causes increas.ed automatidty. lncreasl'll automaticity may cause
increased pvcs which is a moderately s1>ecific finding of digitalis toxicity.

Please enter the number of pvcs: overview

To assess the moderately specific findings of digitalis toxicity:
I. The system assesses increased pvcs.
2. It assesses bigeminy.
3. It assesses salvos of pvcs.
4. It assesses second-degree av-block.
5. It assesses Wenkebach av-block.
6. It combines the assessments of increased pvcs, bigeminy, salvos of
pvcs, second-degree av-block and Wenkebach av-block.

Please enter the numher of pvcs: 3
Is the patient showing signs of bigeminy? (yes or no): no
Is the patient showing signs of sahos of pvcs? (yes or no): yes

89

When a "why" question is entered, control passes to the routine that produces

justifications. This routine determines at what level the description should be given,

states what's going on in general, describes tile domain rationale (if any) used in refining

the step being described, and finally describes the step.

90

5.2.1.1 Choosing the Level of Description

The system uses the viewpoint attachments to determine wt1ere to start the

explanation. The control stack of the MINT interpreter is available to the explanation

modules. The justification routine goes up the stack looking for the first procedure

which is not meta-characterized as an excluded viewpoint and which has no procedure

meta-characterized as an excluded viewpoint above it. If that procedure happens to be a

system prirnitive57 with a system primitive above it, then the system keeps going up the

stack until it finds a procedure which does not have a system primitive above it. For

example, in the sample session above, wt1en the second question is asked, the control

stack is:

[((ASSESS*O (TOXICITY*F DIGITALIS))*I 1)]

[((ASSESS*O ((FINDINGS*R (TOXICITY*F DIGITALIS))*F

r((ASSESS*O PAT-WITll-BLOCK)*I 3)]

[(MH-TllCN*C

(SPECIFIC*F HIGHLY)))*I 2)]

(MEQUAL*C [r(ASK-USER*C [(MQUOTE*C [(STATUS*R PAT-WITH-BLOCK),]),]),
(MQUOTE*C [PRESE~T.])J,J),

(MSETQ*C 1, (ASSESSMENf*R PAT-WITH-BLOCK)),
(MSETQ*C A-ABS, (ASSFSSMENT*R PAT-WITH-BLOCK)))

#M COMPUTER-VIEWPOINT]

[(MEQUAL*C [[(ASK-USER*C [(MQUOTE*C [(STATUS*R PAT-WITH-BLOCK),]),]),
(MQUOTE*C [PRESENT,])],])]

[(ASK-USER*C [(MQUOTE*C [(STATUS*R PAT-WITH-BLOCK),]),])]

In this case, the [rnif-then] h<ls been meta-characterized as having a computer-viewpoint.

Therefore, the system will start giving its explanation at the next level up, at the

procedure that assesses PAT with block. This will be referred to as the current

description love!. In contrast, if the exclude list had not contained

[computer-viewpoint] explanation would have begun at a lower level, producing the

following explanation:

Is the patient showing sii~ns of paroxysmal atrial tachycardia with block? (yes or
no): why?

The system is assessing paroxysmal atrial tachycardia with block. If the status of
paroxysmal atrial tachycardia with block is equal to present, the assessment of

57. System primitives include: [mif-then], [msetq], [mless-than], etc.

Choosing the Level of Description

paroxysmal atrial tachycardia with hlock is set to the assessment level for present
findings (I), otherwise the assessment of paroxysmal atrial tachycardia \\ith block is
set to the assessment level for absent findings (0).

And, in answer to the question about pvcs, the following would have been produced:

Please enter the number of pvcs: why?

The system is assessing increased pvcs. If the numher of pvcs is greater than the
baseline number of 11vcs (5), the assessment of increased pvcs is set to the assessment
level for present findings (I), othern ise the assessment of increased pvcs is set to the
assessment level for absent findings (0).

91

This is the sort of information a person maintaining the advisor might wish to know, but

that a medical audience would probably not want to see.

5.2.1.2 Stating What's Going On in 9eneral

To give the user an overview of what the system is trying to accomplish, the

system finds the next procedure above the current description level in the control stack.

This will be called the higher level procedure. It then generates a phrase using the name

of the procedure to describe what's going on:

The system is assessing the highly specific findings of digitalis toxicity.

5.2.1.3 Explaining the Domain Rationale

If the higher level procedure was refined using a domain principle which had a

domain rationale, then the procedure at the current description level must be the result

of one of the matches of the domain rationale. The system finds the domain rationale

and the particular match of it that resulted in the procedure at the current description

level. Flags are set to indicate to the tie-generntors that they should replace

occurrences of pattern variables with the objects they matched. After this environment

has been set up, the complete pattern is found and converted to English using the

tie-generators. For example, the domain principle that refined the procedure to assess

highly specific toxic findings contained the following domain rationale:

92

[domain-rationalet ·#ct,· .
[dr3 = .< patter'.n~·i 300) . ,

[structuret #e { {causal -cha1n*b (jn~r,4,Sit~;*o (drug*R tpv)l)*e
[dev2 = deviationtt])]

((dev2*characterization
((f;nding•r { tox icity*f (drug*R tl)v'Ht•f (sp-eC'if ic•R !p'V')))]]]

When the appropriate environment was set µp, the ~ie-Qtmer~tors . prqd1:1cec;i this
" - ; - _. >i.

description for the pattern:

lncreasctl diglfaHs may ca'use paroxysmalattl~l tac~jca"'1I ""' :tilock whicb is a.
highly specific findfng of digitalls tc»dcky. · · · · · · ! ~ · · · · · ·

5.2.1.4 Finishing Up the Explanation

Finally, the system uses the tie-generators to produce a description of the step

at the current level of description. So in an~~W:\~ m1~~t c;w~t!pp ~~~!$~~~"\prints: .

Thus, if the system determines that cardiomyopathy e~ists, it reduces the dose of
digitalis due to cardiomyopatby. . , . . , ,

The system then re-iterates its original question. If the user asks "why?" again, the
. ' • ' • • . , . 1: • • - t ' ; ;' : . ") ' ' . ' .. :- :· ~'

system moves the current description level up to the level Qf the higher level procedure
' ' . ' ' ',' ' -. ', . ~ -'

and repeats the explanation process.

The reader may have noticed that tile sy~tem. did not generate a similar
. . • ; ~~ I •: ;. • ~ ' •·. " - _,_ * ' • : • '

sentence in answer to the second question·. That is, the sYstem did not produce the

sentence:
''

"Thus, the system assesses paroxyshlal attfaltathycaftlla witlfbloCt.'•
as the last sentence of its answer to the second question. The reason is that such a

sentence would have been redundant. The ,~~· Olready krl~ws that the system is
,_ ~ - '

asse$sing paroxysmal atrial tachycardia with bk>ck, because hct ·has ;ust been asked a·

question about it. Following the gener~I principle that the. user should not b0 'told
. . \ '

something he already knows, the system delete8 this part of the explanation if the step
'.~·',?'~~~:.·.''.' ' c ' t ~ .: , ' - Jt, - ' ._I} : . •< .• (.:~ ·' • · '. :

ab<>wt to be described is a type of assessing step and the object of that step is the same

aS f~,thing the user has been asked about.
~ - • 1 •• • '·-.~ i~,

Explanation of Methods 93

5.2.2 Explanation of Methods

Given the system we've described so far, it's relatively easy to get it to generate

descriptions of methods by translating them directly into English. There are only a few

subtleties. A function is needed to number the steps of the method sequence and pass

them to the phrase generator. The system must also distinguish between functional

subroutines, where a single value is passed bu.ck as the value of the subroutine, and

conventional subroutines, with input and output arguments. The latter case may be

handled quite simply, but in the former case some special things must be done.

We have to recognize tha.t a functional subroutine is treated rnuch like a

"read-only" variable in progrnrnming. Reflecting that fact, when the system is describing

one of the exiting steps58 from a functional subroutine, it converts the name of the

method to a noun and describes it as a variable which is set to the result of evaluating

the exiting step. If the method being described is a kind of [determine-whether], the

system re-arranges things a bit to improve readability. For example, one of the methods

written by the automatic programmer is:

[(((DETERMINE-WHETHER*O (DECREASED*O SERLJM-K))*I 1)*0 [[SERLJM-K,J,J)
[METHOD: #Q (MLESS-THAN*C

[[SERLJM-K, (THRESHOLD*R (DECREASED*O SERUM-K))J,J)JJ

The system generates the following description of that method:

If serum-k is less than the threshold of decreased serum·k (3.4), the system
de1crmincs that decreased serum-k exists.

The explanations given by the "overview" command in the previous section

were produced by passing the current higher level procedure to the function that

describes methods. However, as we pointed out in the introduction, this particular style

of explanation has some limitations. In the next section, we present a different way of

explaining methods which provides a richer sort of abstraction which can not be done in

explanations produced directly from the code.

58. Note that there may be several exits from a functional subroutine.

94

5.2.3 Prototype Method Explanations

In the original version of tl1e Digitalis Advisor, when we wanted to give a more

abstract view of what was going on, we just described a higher level procedure

[Swartout77a, Swartout77b]. In this regard, we were following the principles of

structured programming. While this approach was often reasonable, there were times

when it was considerably less than illuminating. The general metl1od for anticipating

digitalis toxicity was called "Check Sensitivities" in the old version of the Digitalis

Advisor. An explo.nation of it appears in Figure 27. While this explanation does tell tile

Lser what sensitivities are being checked, 59 it does not say what will be done if

sensitivities are discovered nor does it say why the system considers these particular

factors to be sensitivities. Finally, it is much too redundant ·and verbose. The first

objection can be dealt with by removing the calls to lower procedures and substituting

the code of those procedures in-line. This results in the somewhat improved explanation

produced by XPLAIN when it is asked to describe the method for anticipating digitalis

toxicity (see Figure 28). However, while this explanation shows what the system does, it

Fig. 27. An Explanation From the Old Digitalis Therapy Advisor

(describe-method [(check sensitivities)]}

TO CHECK SENSITIVITIES I DO THE FOLLOWING STEPS:
1. I CHECK SENSITIVITY DUE TO CALCIUM.
2. I CHECK SENS I flVITY DUE TO POTASSIUM.
3. I CllECK SENSITIVITY DUE TO CARDIOMYOPATHY-MI.
4. I CHECK SENSITIVITY DUE TO HYPOXEMIA.
5. I CHECK SENSITIVITY DUE TO THYROID-FUNCTION.
6. I CHECK SENSITIVITY DUE TO ADVANCED AGE.
7. I COMPUTE THE FACTOR OF ALTERATION.

59. The reader may notice that there were more sensitivities checked in the original version of
the program than in the current version. We now feel that some of these, such as thyroid function
and advanced age, should not be treated as sensitivities per se because they tend to have an
effect on reducing renal function and hence slowing excretion, rather than on increasing
sensitivity to digitalis. The other sensitivities would be easy to add by including the appropriate
causal links in the domain model.

Prototype Metl1od Explanations 95

doesn't say why things like increased calcium, cardiomyopathy and decreased

potassium are sensitivities, and if anything, it's even more verbose than the original

explanation.

The reason we can't get the sorts of explanations we want by producing

explanations directly form the code is that much of the sort of reasoning we want to

explain has been "compiled out." Thus, we are forced into explaining at a level that is

either too abstract or too specific. The intermediate reasoning which we would like to

explain was done by a 11Uman programmer in the case of the o!d Digitalis Advisor.

However, because this performance progrnm was produced by an automatic

programmer, we have a handle on that reasoning. For example, if we were to explain the

domain principle that produced the code for anticipating digitalis toxicity rnther then the

code itself we would get the explo.nation that appears in Figure 29. This explanation is

produced by first describing the domain rationale with the refinement pattern variables 60

replaced by wt1at they matched, but with the domain pattern variables61 described as

themselves rather than as what they matched. Thus while the system says "increased

digitalis" rather than "increased drug", it also says "finding" rather than "increased

serum-K". The next pari of the explanation is produced by describing the prototype

Fig. 28. An Explanation From the Code for Anticipating Toxicity

(describe-mett1od [((ANTICIPATE*O (TOXICITY*F DIGITALIS))*l 1}])

To anticipate digitalis toxicity:
I. If the system determines that cardiomyopathy exists, it reduces
the dose or digitalis due to cardiomyopathy.

2. lf tk- system determines that decreased scrum·k exists, it reduces
the dose of digitalis due to decreased serum·k.

3. If the system determines that increased scrum-ca exists, it
reduces the dose of digitalis due to increased serum-ca.

60. Those are the variables in the head of the domain principle that were bound during plan
finding by the automatic program writer.
61. The pattern variables that are matched against the domain model.

96

Fig. 29. Explanation of a Domain Principle

(describe-proto-method [(anticipate*o (toxicity*f digitalis)}])

The S)stem consider"> those cases" here a finding causes a dangerous deviation and increased
digitalis also causes the dangerous deYiation. If the S)'Slem determines that the finding exists, it
reduces the dose of digitalis due to the finding.

The findings considered arc increased calcium, decreased potassium and cardiomyopathy.

method. Finally, the set of values is given for the domain variable used in the prototype

method. Thus, the use of an automatic programmer not only allows us to justify the

performance program, but it also allows us to give better descriptions of methods by

making available intermediate levels of abstraction which were not previously available.

5.2.4 Explaining Events

The MINT interpreter can be set up to leave behind a trace of its execution. As it

executes a procedure, it creates an event object (see Chapter 2). This event object

records the call and method used, the variable environments on entrance and exit, and

the value returned if the procedure is a functional subroutine. These events can be

examined by the system after execution is completed to produce an explanation of what

the system did for a particular patient.

Once we have the mechanisms in place to explain methods, it turns out to be

quite easy to explain events. Basically, it's done by having the system examine the event

to be explained, generate a heading sentence using the call of the event, and then

generate phrases for the immediate subevents of the event.62 The major changes that

have to be made are that a flag has to be set so that verbs are generated in the past

tense, and the generator for [if-then] has to be modified to indicate the choice taken.

62. As when explaining methods, the subevents are filtered by their viewpoints.

Explaining Events 97

This is done by first having the generator check that -~·was an action taken.by the

[if-then]63 and then having it generate English for the predicate and the action taken.64

Rnatly, the system generates a phrase indtcatrng:the final outputvatuesof the routine.

Some examples are presented ln :Figure :J:>.

Fig. 30. Examples of Event Explanations

"How did the system anticipate digitalis toxicity?"

(describe-event [{event*i "e0002 ")]}

To anticipate digitalis toxicity:
1. The system determined that cardiomyopathy did not exist.
2. The system determined that decreased scrum·k did not exist.
3. Since the system determined that increased serum·ca existed, the
system reduced the dose of d1g1taUs due to tnctcllml $eftltn·CL

The adjusted dose of digitalis was set to 0.20.

"How did the system determine thatserum-ca was increased?"

(describe-event [{event*i "e0016")J)

Since serum·ca (13) was' greater than the tllrcsholc1 of·mcre'ascd serum-ca (It) the sys(t?m
determined that increased scrum·ca existed. · · · · ·

63. For example, the [if-then] woutd ·fl<>t have taken an actioa ifjts;predicale'eVatuated to false
and there was no "else" clause in .tt~lif·tben),.or il;tbe_..n1:titken..w•;oha11iewpomt thal\'tas
filtered out. If no action was taken, or the action taken is filtered out, the system just generates
En~ ~Of, the_;pr&Qjpatft {k>f ,e~mple, SHrStepS, ~ ~acjfl,fritwtt .. -acwi '. ·
64. If the action taken is the "else" clause, then the system inverts the logic of the·,predicatf3
when converting it to English.

·"'"·"'·: '·.

98'

Although it migh;t not be clear. from this chaQtttr. l feet tbat·there-are lll§nJ . ' . - ,'

situations in which English is not the only or bes1'.~~•i~.W!l~~fJ.tiQn •.. Jr.~.QJ:e,

many situations where explanations are much more effective when English text is

supplemented with figures, charts, drawings and so forth.

A case in point is explaining mathematical formulas. Mathematical formulas

expressed in English are not only verbose; they are ambiguous as well (Swartout77a].

As a small step in moving toward a 1.1rger investi!18tiGn. ~f non-En~lish e)(planati<?"s• the

XPLAIN system describes arithmetic expres~on~ ,~~i~~J'1~m:~rJ1ic,a1 ~otation. ,}hiS,, is

done by choosing shortened variable names for the variable~ and converting the prefix

MINT form for arithmetic expressions to an infix form which is printed. Figures 31 and 32

show some examples.

Fig. 31. Describing Events with Arithmetic Expressions
;.'ii: • '

•).,, ', ~ 1 '

. "How did you reduce the dose for increased serum-ca?"

{describe-event [(event•i "e0019")])

-~ dos~,afte~ ~djustini for increased serum·ca WI$ ~t ~~~rdinc,~o tile
following formula: . . • . ,

D2 =DIC

where:
C :;:: Ute reduction constant for increased serum·ca (0.8)
D1 = thc.dose fMtfol'C: adjuBting for increased smlfll•ta..,.15,
01 = thc*'5e.aldl'~adj\lsttqfbr tlicreasbd§ftUind fl.• , ·

'

The dose of digitalis adjusted for tlle condition ef:tlie btmt. lliufcle; sNUllH-_. serum•ca ·Wil
·IM to·0.201 ··,

_.,' ..

Non-English Explanation

Fig. 32. Describing Methods with. Arithmetic Expr.S&tons

"How does the system combine the assessments of highly specific,
moderately specific, and non-specific findings ofto~ity?"

(describe-method
(((COMB1NE•O

(SET*I
(ASSESSMENT*R

((FINDINGS*R (TOXICITY*F DIGITALIS))*F (SPECIFIC*F HIGHLY))),
(ASSESSMENT *H ·((flNPINGS*H (TQXJGITY* F OIA~TAl,.JS))*f

(SPECIFIC*F MODERATELY))),
(ASSESSMENT*R

((FINOINGS*R (TOXICITY*F DIGITALIS})*F NON-SPECIFIC))))*!
2)])

The combined assessment of the highly specific findip&s ofdigit~l~ toxicity, the moderately
specific findings of digitalis toxicity and the non-spedfic'findings of digitalis toxicity is set
?CConling to tlie following fonnula:

C =Fl Al + F2 A2 + F3 A3

where:
A I = the assessment or the highly specific ~,of dixitalis

toxicity·
A2 = the assessment of the moderatefy specific findings otdigitlllis

toxicity ..
AJ = the assessment of the uoo~specifu.:.findings~ ~igita.lisrt~xicity
C = the combined asses~mcnt of the highly specific fwlings of d6'ftalis

toxtcity, the nlOdcrately specrftc flmlingS' oNftgtM& toildty · :
and tire non·~ findings of digitalis tnicitf.

Fl = the wci~bting fa,:tor or the higblJ specific fimUn.g~ .or digitalis
toxicity (4) ·

F2 ·= the weighting factor of die moderately specifk fiMtngs· Of ·
digitalisfpl!iciq (2)

F3 = the weighting factor of the non-specific findi,.gs of digitalis
toxicity (1). · ·

99

:--_c_c;;:c=,-,-;--~_:.--,-:-_ -----:-.. _.-.=~-~-rij_f?i;:,1-:::"F:;:,1..---y -~-;,-:-- .,,. ;. ·-·-·"-···--~ -
~-.', t)':~ !''<'.: <, ~ +.:' - '., ~ ~ ;-., •- ;_.,.,,,-,.,,._,-_""

100

6. A Discussion of·.:the·Automatic;~fCHB~·Ap;J>roatll l.e
Explanation

This chapter addresses_ several issues: that ha¥e< "®cvrred to ,me,-- wtlffe_,

implementing the system. Most of these deal with the interrelationships betwefl.n the
- - •ii, ·:. ', -, ·" '

automatic programmer, the performance program, and the expfanatioJ\$ -\bat ~ be
• .l, \', 1'' ,

produced.

- i -

G.1 Does Automatic Programming Affectth~/P¥fonnattc•'Ptogram'? ·
"'': 11 . ~' : '. . i ..

We attempted to get the XPl,AlN systarq to "'*~-Qro~~ Jt}atcaptl.lred the
- '. , • . . ,, •• '! "'"'

intent of the corresponding sections of the original Digitalis Advisor as much as po5"bte·
However, there were situations where we decided to adopt different strategies. UsuaJly

this occurred because the attem :t \o tlfid domt.ri' ·~1~~ io.'~'et6te ~ 1J?[~am
• : 1 .. , "' .- '·i = _·· • P.~.-. · :: · · ·)-~-;~."! ·1,~J11:.J-~ ---~1.,·:·"'·H} '1 _.,_.n· ;,t-, ~_.~,5, -,, ~

forced us to look more closely at the methods we were~liodini1181l<t-OC.Qll$i~.:WEt

discovered that the original program was flawed or inconsist~t~

For example, in the original Digitalis Advisor, myxedema65 was considerQd;'3

one of the digitalis sensitivities (tlke: lnCN.-. ,~ o'1<:t8et9BMCH>0taasiUm). ; itn

creating the domain model arid qomain priociplet,() ~t~i~~e tqxieitY. inJh~ n~t~is~e.f}"I,
- : - < ~ •• :''; .···:- "V.fl" ,-~ ·~~~i'j-~,.,::~~ '.h;r'i '. 1

' _ti!t t~"'·~"''--'~·(,, -~"J ,... -·'

we realized that a problem existed becau~ myx~ema was not causally additit.4e,Willl the

other sensitivities and hence wotJld not meet;Mr~hlihwfft\etWettf tiori§tt'fttttts ~red by
; -. ·.<_. .• '_. ·-. -~ ~'.< #~<;,,; .. ~ ·;J) '!.:y ~f.; :·iff?l 1

•• ~'t,.r:· ~~, .. ~···"~t-\'l(Y'> 'JHJ :~ , :

the domain principles in refini~ tf\ei Ji>rOQf'i~!f•ti~1~.~~ ";T:,9.,J~~Vft~!thf!if'1Q~em.
we dug deeper into the medical literature 8nd ~:.1._'~1-shoCalilt not

. . .. · ··· ~; .~--:: -~ . -i;.;,_ .. r. .·ii '}1,.,~,:, _ _,., -· At-~ ~ .:
really be considered a sehSiti9fty' at all!' In· facf; ~a r«fd~ th' ex<:rtftlqrl Of

~:5< ~· .~ ~,); / .~-~ ~'-

digitalis through the kidneys Wld:~·--~'~~~lit~'*1·~

rather than making the patient more sensitive to.digitalis. Thus, t~ ~~'ii/e.y to

handle myxedema is not as' a''~nSitivtty; t>u{~raffiei;;8s'1' ~act~r .,;tl}~W1?~9d.lJ~ t~
":f ,. '"· ·~ ;,. ·'' ; .•' ,~.

excretion rate in the pharmacokinetic model.

65. Myxedema is a disease caused by decreased thyroid function. Signs of the disease include
dry skin, swellings around the lips and nose, mental deterioration, and a subnormal basal
metabolic rate.

Does Automatic Programming Affect the Performance Program? 101

Orie of the advantages of the automatic ptijgranlfritng approach is that it forces

the user to think harder about the performance ~ram arid 'its implementation. Just flS ,

the implementation of any theory 'on a computer tortes· o~ to work 0ut 'the details and

think about the consistency of the thebry, WC>r1dng out the implementation of th'e

implementation carries the process ·one step ftirther 8nd forces one' to think that much ·

harder about the entire undertaking.

6.2 Is this Approach to Explanation Compatible with Others?

The approach to explanation espou~ ftt tH~ ·thesis is compaUble with other

approaches such as using canned text or· prOdUting 'e)(pftlnations by transrating the
program code (see Chapter 1). It should be:regardett·as an extension of tnese ear11er
approaches rather than: a rep1acement'for'thetln. l'fn~\fsrf111partant t>ecause:ther&hlay be

times when it is not feasible to get' an aut()matlc pr()grammet to ptoduce the cocte. The

XPLAIN system altows the user to hand cede paW!H>f the $YStem·and ean ·generate the
remainder automatically. Those parts of the system that are hand-coded can be

translated to English just like the parts that are a~fomatically generated. The current

implementation of the XPLAIN system does. not 'stipp0rt' can~~ed-text explanations

(mainly because they haven't been needed) but c~ufd ~~sily be modified to do so.

6.3 la Automatic Programming Too Hard?

One possible objection to the whale appq~ach(.t~.~~ation advocatec;:J .ir;t t~is.

thesis is that it is just too hard to get an automatic.programmer to,write the perfonuance
• - ' ·,~ _! ' '

program. When I first began this research. I tno4QbHh~.YfAA,theca~e~ The original plan.
r'I;· • •.. ' - ..._. ',,

for producing better explanations was to cr~te ~,.,ctµ,r~.s,de~~ili.ng toe qevelopment ot.
the performance program, ,but these stru~~u~s ,\VPMl~t be cr~,ateci by hand rather thfW

; ·. ·,_.· ,, ,._ . ' ,,, • . ''"'<

automatically. It was teare,d that automatic pr99r~~rw:1in,g 1't'a~u~t too .hard .. Howev~r, as

the research progressed, it became cle~r th,at if Wf;} h~d suffiGiently powerful
. : . \ J > ·' • ~

representations available so that it could be said that in some sense explanations were
~ . '.

being produced from an understanding of the program, then actually writing the program

in the first place wouldn't be all that much more difficult. I suspect this is true in general.

It seems that the primary difficulty in both explanation and automatic programming is a

102

knowledge representation problem, and that the kinds of knowledge to be represented in

both cases are similar so that a solution to one case makes the other much easier.

Furthermore, if this conjecture is correct, it implies that we are not likely to find easier

approaches to explanation than the one presented here (if we require that our

explanations be based on an understanding of the program as opposed to, say,

canned-text.}

o.4 Levels of Language

Computer science has developed a variety of different types of languages for

describing algorithms. At the lowest level, there is machine language. As we move to

more abstract languages we encounter assembly languages, high level languages, very

high level languages, and finally nutomatic programmers. At each level, various features

are introduced which make it easier to use tile same piece of code in different places.

Oftcr:i, these same features make it easier to understand and explain ttie code too.

Even at machine language level, most computers have a special instruction or

set of instructions to facilitate writing subroutines. Subroutines are a very powerful idea

because they allow the same piece of code to be used in several parts of a program.

From the standpoint of explanation, subroutines are powerful for two reasons. First, if a

subroutine is called several times, the fact that the same code is being used is very

clearly indicated. (It might not be so clear if the code for the subroutine was inserted

everywhere in place of the call.) This means that the code for the subroutine only needs

to be understood once. More importantly from the explanation standpoint, subroutines

can be used to partition a task into easy to understand pieces. Furthermore, these

pieces can themselves be broken down into still more specific subroutines so that a

hierarchy of subroutines is formed. This, of course, is one of the main thrusts behind

structured programming [Dahl72] and for explanation it is important because it allows us

to suppress the details of a calculation within a lower level subroutine. However, to

really take advantage of this procedural hierarchy, we need to be able to give them

names.

Levels of Language 103

Assembly language allows us to give names to subroutines, data objects and

labels.66 From an explanatory viewpoint, this is valuable because it allows us to give

program objects names which relate their role in the program to their role in the

application domain of the program. This feature is often misused however, and one

frequently finds programs where a variable that has been used in one way is later used in

another way so that its name, which was given to reflect its earlier use, conflicts with its

later use. This is often done in a mis-guided effori to save memory, and is symptomatic

of the problems that result from trying to optimize code and describe an algorithm at the

same time.

Macro packages are typically thought of as extending assembly languages. For

the purposes of this discussion, however, they tend to sully tile waters a bit because it is

possible (in theory, at least) to build arbitrarily high level languages using a macro

package since most of them can perform powerful trnnsforrnations on program

structures. Typically, however, macros are used so that an operation which is done

repeatedly (possibly with slight variations) only has to be coded once. In that respect,

they are similar to subroutines. However, unlike subroutines, macros are usually not

organized into hierarchies so that the output of a macro expansion contains other

macros to be expanded. Usually the results of macro expansion are not intended to be

examined by the programmer (unless, of course, he is debugging the macro expansion

itself).

Higher level languages such as LISP, PL/1, Algol, and so forth provide

additional features. These languages provide a set of more natural operators67 and data

types 68 that free the user from concerns about implementation details such as register

allocation, saving and restoring state when calling subroutines, implementation of

strings and arrays, and so forth. One of the most important features of these languages

is that they allow the user to input expressions while lower level languages only

permitted him to input sequences of instructions. By moving to higher level operators

and removing some implementation details, these languages make it easier to explain

66. Although the labeling allowed by typical assembly languages is often very restrictive.
67. i.e. arithmetic operators, logical operators, string operators, etc.
68. i.e. arrays, lists, strings

104

programs written in them because the operators are closer to the saris of operations

people are familiar with and irrelevant details of the implementation are suppressed.

Explanation packages have been developed which work with languages at this level

[Roberts79].

Very high level languages attempt to provide still higher level and more natural

operators and control structures but usually within the context of a limited domain. For

examrle, tt1e Business Definition Language (BDL) developed by Hammer, Howe and

Wladawsl'Y [Harnmer74] is intended to make it possible for a 11on-programmer
'

businessman to define business a~plication programs, such as order handling and

invoicing, with only minimal (if any) training. To achieve such a goal, the language must

clearly have operators, data types, and control structures which are familiar to

businessmen. If the goal is realized, it should be relatively easy to explain such

programs, nnd some efforts have been made in that direction [Mikelsons75]. The main

weakness of this approach seems to be its domain dependence. While the approach

itself is general, the languages are domain-oriented. The knowledge that a particular

language has about a particular domain is compiled into the language itself and would

make it quite difficult to extend the language or apply it to other domains.

Some other very high level languages achieve a somewhat broader range of

applicability by dealing with a broader domain. SETL [Schwartz74], for example, allows

the user to specify various operations on sets which the language tl1en implements by

choosing an appropriate implementation from several possible ones. While its

application may be a broader, SETL is primarily limited to sets, just as BDL is limited to

business programs.

One of the main approaches to automatic programming has been what might be

called the transformational approach. In this approach, various transformations are

repeatedly applied to an initial input-output specification or algorithmic sketch until an

executable program is produced. Superficially, these transformations are somewhat

analogous to macros, however, unlike macros, the structures produced by these

transformations and the transformations themselves are intended to mimic those of

human programmers and hence to be meaningful to programmers.

Levels of Language 105

One of the transformational approaches is based on theorem proving

[Manna77]. The automatic programmer is provided with the input-output specifications

of the desired program, which are written in mathematical notation. The input-output

specifications are usually not given in terms of the primitive operators of the target

language (the language the desired program is to be written in). The automatic

programmer also has available a set of equivalence-preserving transformations. Some

of these transformations will e;ontain primitive operators. The transformations are

applied to the input-output specifications, Cising certain rules, until an executable

program is produced. The transformations themselves contain relatively little

algorithmic information, so the system "discovers" the algorithm as it writes a program

meeting the specifications. While the discovery aspect is appealing from an explanatory

point of view, the fact that programs are essentially derived from basic principles each

time makes the synthesis of any but the simplest programs extremely time-consuming.

Additionally, since the transformations are at such a low level, the program produced

may not be well-structured.

The refinement approach [Barstow??, Balzer77, Green79, Long77, Rich79]

rests on the assumption that the abilities of human programmers come more from their

knowledge of a large number of plan templates which can be customized for a particular

application than from their use of general purpose deductive rules. These plans are

used as the transformations in such systems. Since the plans are usually organized into

a hierarchy based on their specificity, the resulting programs tend to be well-structured.

Also, since the transformations are from abstract to specific, a directionality is imposed

on the search for an executable program, improving the efficiency of the automatic

programmer. From an explanatory standpoint, this approach allows explanations to be

offered at different levels of abstraction which should be meaningful to the user, and it

can improve the structure of the program, but at the expense of not being able to explain

everything down to basic principles.

Recently, Barstow [Barstow80] has suggested a hybrid approach. Tl1e system

would basically be a refinement system, but a theorem prover would be used to prove

that constraints associated with particular transformations held in a particular situation,

thus indicating the applicability of the transformation. If there were an explanatory

facility associated with this system, it would have the characteristics of the refinement

106

systems with the additional capability to explain in detail why a particular transformation

was chosen.

The XPLAIN system uses a refinement-type automatic programmer. The major

difference between it and other programmers lies in the Domain Model and the Domain

Rationale. The Domain Rationale is essentially an additional program specification that

is not stated at the outset. It allows us to cleanly represent the fact that some additional

program specifications may be needed if certain refinement paths are taken but they may

not be needed in othei-s. From an explanatory viewpoint, it is valuable because it allows

LS to make the domain principles more abstract and more independent of the application

domain, and the domain rationale represents the criteria under which phenomena in the

domain model must be considered in the refinement of a particular step.

It is easy to get an automatic programmer to leave behind a trace of its

reasoning in creating a program. Structured programming is also designed in part to aid

human programmers in capturing the process of creating a program. The difference is

that in structured programming much of the reasoning remains in the head of the

programmer. In the introductory cl1apter, we showed how this can adversely affect the

quality of explanations. In structured programming, one kind of procedural abstraction

is available. The name of a procedure is supposed to be a summary of the actions it

performs. In the automatic programmer used in the XPLAIN system, this sort of

abstraction is available, but another sort of abstraction, based on the domain principles,

is also available (and is described in Chapter 5). Since the domain principles may be

used repeatedly to produce different procedures, the XPLAIN system can capture

abstractions that go across procedure boundaries. These sorts of abstractions, together

with the refinement structure left behind by the program writer, contribute substantially

to the explanations the system can produce.

6.5 Is a Top-down Approach Really Necessary?

The XPLAIN system can produce good justifications in part because it has

access to the refinement structure produced by the automatic programmer in a

top-down fashion. A natural question to ask is whether a bottom-up approach might not

work equally well. In other words, one could envision a system that analyzed an existing

Is a Top-down Approach Really Necessary? 107

program structure into higher principles, and explained it at that level. This system

would need to employ knowledge structures much like the domain principles and

domain model, but they would be used in reverse to parse the existing performance

program into a parse tree {which would correspond to XPLAIN's refinement structure). 69

This approach is enticing: it seems that if it can be made to work in general then any

program can be explained whether or not it was written with explanation in mind. While

such an approach might be attractive in principle, I feel there are several obstacles that

make its implementation difficult. First, as was pointed out earlier, the process of writing

a program is a process that distills "how-to-do" something out of a much larger body of

knowledge. Given that, the analyzer will not be able to explain a program without

knowledge structures similar to the domain principles and domain model used by

XPLAIN, and furthermore, these structures will have to be similar in both size and scope

to those used by XPLAIN. While XPLAIN works deductively this recognizer would have

to work by induction and the possibility of ambiguity would exist. In the XPLAIN system,

the major intellectual effort involved figuring out what the domain principles and domain

model were and how they should be represented. Once they existed, it was relatively

easy to get the program wr-iter to use them to write the performance program. Since

both require similar knowledge structures, and once they exist it's easy to synthesize the

performance program, the top-down approach would appear to have the edge.

6.6 Limitations and Extensions of the XPLAIN System

While the expl8nations presented in this paper provide an indication of the

power of the automatic programming approach to explanation, they do not exhaust its

possibilities. The current system can be extended in several areas:

6.6.1 What Can the Current Implementation Do?

The current domain model and domain principles contain enough knowledge to

generate all the examples within this document. They can also produce additional

examples, although these are quite similar to those that appear here. There are three

69. see also [Clancey79) for a discussion of this approach

108

things that would have to be done to complete the implementation of the Digitalis

Advisor. First, it would be necessary to implement routines to assess therapeutic

improvement. These should not be too difficult because they can be very similar to the

routines that assess toxicity. Second, it would be necessary to develop domain

principles to adjust the dose based on the therapeutic and toxic assessments. Third, it

would be necessary to implement various utility functions for gathering data and the

pharmacokinetic model of digitalis excretion. These would probably be implemented in

LISP, as they were in the old digitalis advisor. While there would be a fair amount of

programming involved, I do not foresee any major conceptual hurdles. Once this

implementation was completed, the domain principles of that program could be used

with different domain models to develop similar consulting programs (i.e. programs tl1at

offered advice about drug therapy). I think that from the standpoint of programs of this

type the implementation of the Writer and the generation routines is complete (or nearly

so). That is, I would not expect to t1ave to make major modifications to them to complete

the implementation of the digitalis advisor.

6.6.2 Improved Answer Generators

Additional answer generators could be employed to provide the user with: 1)

improved access to the domc:iin model so that the domain model itself could be explained

as well as its use in the development of the program; 2) improved explication of the

decisions made by the automatic programmer; 3) an ability to assess the significance of

the program's recommendations.

1) Currently, the explanation routines make use of the domain model to ju'stify a piece of

program structure. It would be nice (particularly in a teaching environment) to have

answer generators which focused on the domain model so that a user could enhance his

understanding of the domain. In addition, it would not be particularly difficult to

cross-reference the domain model with the refinement structure to indicate where the

domain knowledge was used in the program. This would allow the system to answer

questions such as, "How does the system take increased calcium into account?" The

answer would be produced by finding those places in the system where the concept

Improved Answer Generators 109

increased calcium was used70 and then displaying the appropriate pieces of code.

2. The current system has no ability to explain domain or refinement constraints. In part,

this is because the implementation of the XPLAIN system has concentrated on offering

explanations to medical users and it was felt that the constraints have more of a

computer than medical viewpoint. But that is not entirely correct. Recall that when the

system was refining tlie split-join associated with anticipating toxicity it was necessary to

assure that all the factors involved were at least causally additive. Whether or not the

factors are additive is a question that clearly involves medical knowledge, and it is

something which should be explainable to a medical audience in terms of its medical

significance.

3. The system should also be able to explain the advice of the performance program in

terms of its medical significance. For example, the advisor migt1t conclude that no

digitalis should be given for 3 hours and then 0.25 mg should be administered. If the

advice was given at 11 pm, the patient would have to be awakened at two in the morning

if the attending physician wished to follow the program's recommendation to the letter.

However, since digitalis has a relatively long half-life, the precise timing of doses (within

a few hours) is not thought to be terribly important. In this case, the inconvenience and

discomfort involved in waking the patient would probably dictate that the patient receive

the drug at an earlier time. While we could program the system so that it does not give

drugs during sleeping hours, it seems that that approach might eventually result in a

program which knew substantially more about hospital procedure than about digitalis

therapy. A better approach might be one wl1ere the system could indicate to the user the

importance of its recommendations. For example, in this case, the system could mention

that a variation of a few hours in drug administration would not be significant.

70. For example, increased calcium could be a match for a pattern variable used in a domain
rationale or as an argument to a domain constraint.

110

6.6.3 Telling White Lies

Currently, the system can describe what it does and why at various levels of

abstraction by describing the methods it uses, the refinement structure, the domain

principles and the domain model. While it can leave out details based on viewpoint or by

using a higher abstraction, it does not deliberately distort its explanations. Yet

sometimes human teachers do exactly that to make their explanations easier to

understand. The XPLAIN system could easily be modified to tell these "white lies" by

linking alternate refinements (the white lies) to the existing refinement structure along

with the differences between them and the refinement structure actually used by the

program. In this way the system could offer the user the (presumably easier to

understand) inexact explanation first, and then use the difference links to explain how

things really work.

But where do these white lies come from? Sometimes a teacl1er may create

them from scratch, but often they are just earlier versions of what was thought at the time

to be the complete, final version of the theory, program or whatever. For example, the

old Digitalis Advisor used to adjust the dose for sensitivities using a simple threshold

model: if the level of serum potassium {say) was below a certain tt1reshold, the dose was

reduced by a fixed percentage. The current version of the Digitalis Advisor71 makes a

sliding reduction depending on how depressed the serum potassium is. The threshold

model is more understancJable, but the sliding reduction is more accurate. Rather than

throwing away old versions of the performance program, it might be interesting if the

program writer kept them around and noted the differences between the refinement of

the old program and the new and where these differences arose {i.e. new principle,

different domain model, etc.). The explanation routines could then use the old program

fragments as a source for white lies72 and after the old version was understood, the

difference links could be used to indicate how things really worked. Additionally,

71. Not the version written by the XPLAIN system, but a LISP-based, medically more advanced
version (which cannot justify itself) which was developed by Bill Long in parallel with the XPLAIN
system.
72. Of course, the system would have to be careful. Sometimes new program fragments would
result from a better understanding which resulted in a simpler and more accurate program. In
that case, referring to the old program would gain nothing.

Telling White Lies 111

recording the changes between versions would allow the system to offer effective

explanations about those changes to a user who hadn't used the system for a while. To

continue the example above, suppose a user who had last used the performance

program when it made reductions by a threshold used the new version with sliding

reductions. If his patient were only sligl1tly hypokalemic, he might wonder why the

reduction for decreased potassium was much smaller than before. The system can

justify the difference only if it has access to the differences between the two versions and

the reasons for those differences.

6.6.4 Telling the User What He Wants to Know

While the current system has a limited ability to tailor the explanation to tt1e

interests of the user and to model what has been explained to him, the quality of the

explanations could be substantially improved if the results of other research efforts could

b.e integrated with the XPLAIN system. These include: 1) l1aving the system model what

it believes the user knows [Genesereth79], 2) developing tutorial strategies giving the

system a more global view of its interaction with the user and allowing it to take part in

directing it [Cnrr77, Clancey79], 3) on the opposite end of the scale, improving the low

level English generators so they are more firmly grounded on linguistic principles

[McDonaldBO, Mann80] and 4) improving the system's understanding of its own

explanatory capabilities and the user's question so that it can reformulate the user's

request into what it can deliver [Mark80].

6. 7 Conclusions

I feel that the major contribution of this research is that it brings together

automatic programming and program explanation. The use of an automatic programmer

to generate the performance program and keep around a trace of decisions made during

the refinement of that program makes it possible to justify the consulting system in a

more flexible and more powerful way thnn other existing methodologies. This approach

also allows the system to employ abstractions not otherwise available. Finally, from the

standpoint of automatic programming, I feel that the notions of a domain model and

domain rationale have interesting implications it terms of program specification, because

112

the specification of the performance program is interlaced with its refinement.

References 113

7. References

[Barstow??]
Barstow, D .. "A Knowledge-eased System for AutQplatic Program Construction,"
Proceedings of the Fifth International Conference on AftificialJntelligence, 1977

[Barstow80]
Barstow, D., "The Roles. of Knowledge and Deduction In. Algorithm Creation," Yale
University, Department of Computer Science, Research· RePQrt # 178, April 1980

[Balzer??]
Balzer, R., Goldman, N., Wile, D., "Informality in Program Specifications," Proceedings
of the Fifth International Conference on Artificial lnteHigence, 1977

[Carr??]
Carr, B., "Overlays: a Theory of Modelling for Computer Aided Instruction," MIT Al
Laboratory Memo 406, February 1977.

[Clancey79}
Clancey, W.J., "Transfer of Rule-based Expertise Through a Tutorial Diak>gue",
Stant ord University, Department of Computer Science, ST AN-CS-79-769. 1979

[Dahl72] Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured ,programming, Academic
Press, 1972

[Davis76]
Davis, R., "Applications of Meta Level Knowledge to the Coostruction, Maintenance and
Use of Large Knowledge Bases," PhD thesis, Stanford At1ificiaJ Intelligence Laboratory
Memo 283(1976).

[Doherty61]
Doherty J.E., Perkins W.H., Mitchell G.K., "Tritiated digoxin studies in human subjects,"
Arch. Intern. Med. 108:531-539, 1961

[Doherty70]
Doherty J.E., Flanigan W.J. et al, "Tritiated Digoxin XIV, Enterohepatic circulation,
absorption and excretion in human volunteers," Circulation 42:867-873, 1970

[Doherty73]
Doherty J.E., "Digitalis Glycosides: Pharmacokinetics and their Clinical Implications,"
Ann. Intern. Med. 79:229-238, 1973.

114

[Doyle79]
Doyle,J., "A Truth Maintenance System," Artificial Intelligence Volume 12 (231-272) 1979

[Genesereth79] . ' , :~ · ·

Geneser!;!th, M.A., "The Role of Plans in Automateci"Consuttation," Proceedings of the
Sixth International Conference on Artificial Intelligence·, 1979 ,

[Gorry78]
Gorry, G. A., Silverman, H., and Pauker, S. G., Capturing Clinical Expertise: A Computer
Program that Cons;ders Clinical Responses to Digitalis, Amertean Journal of' M~dlclne·
64:452-460, (March 1978).

[Green79]
Green, C.C., Gabriel, R.P., Kant, E., Kedzierski, B.I., McCune, B.P., PhUHps, J.V., Tappel,
S.T., Westfold, S.J., "Results in Knowledge Based Program Synthesis," Proceedings of
the Sixth International Joint Conference on Artificial Intelligence, 1979

[Hammer74]
Hammer, M.M., Howe, W.G., Wladawsky, I., "An Interactive Business Definition System,"
Proceedings of a Symposium of Very High Level Languages, SIGPLAN Notices Volume
9, Number 4, April 197 4

[Hawkinson80]
Hawkinson, L.B., "XLMS: A Linguistic Memory System;" MIT Lahoiatory for Computer
Science TM-173, 1980

[Jelliffe70]
Jelliffe R.W., Buell J., Kalaba R. et al, "A

1
1Computer ProQram for Digitalis Dosage

Regimens," Math. Biosci. 9:179-193, 1970

[Jelliffe72]
Jelliffe R.W., Buell J, Kalaba R, "Reduction of digitalis toxicity by computer-assisted
glycoside dosage regimens," Ann. Intern. Med. 77:891 ~906, 1972

[Long77]
Long, W.J., "A Program Writer," MIT Laboratory for Computer Science, TR-187, 1977

[Mann80]
Mann, W.C., Moore, J.A. 1 "Computer as Author-Results and Prospects," USC
Information Sciences Institute ISl/RR-79-82, 1980

References 115

[Manna77] Manna, Z., Waldinger, R., "The Automatic Synthesis of Systems of Recursive
Programs, 11 Proceedings of the Fifth lntematf~mil eoHteren6e on Artificia1 1nteHigence,
1m1 · · ·

[Mark80]
Mark, W., "Rule-Based Inference in Large Knowledge Bases," Proceedings of the First
Annual National Conference on Artificial lntelTJgei.c"e',, 1980 · · · ·

[Martin79]
Martin, W.A., "Roles, Co-Descriptors and the Formal flepresentation of Quantified
English Expressions," MIT Lab<>ratory for Computer ~ience: TM-139, September 1979

[McDonald80]
McDonald, D.D., "Natural Language Production as a Process of Decision-making Under
Constraints," MIT PhD Thesis, 1980

[Mikeisons75]
Mikelsons, M., "Computer Assisted Application Description, 11 Second ACM Symposium
on Principles of PrQgramming Langua_g~~, 1975

-· '. ' ' ' •;:' -

[Minsky75]
Minsky, M., "A Framework for Representing Knowledge, 11 in The Psychology of
Computer Vision, P.H. Winston (ed), McGraw-Hill, 1975

, " ; ' " ~ .
. • 1 < ,' I

[Ogilvie72)
Ogilvie A.I., Reudy, J., "An Educational Program in Digitalis Therapy," Journal of the
American Medic'at Association, 222:50-55, 1972· ·

[Peck73)
Peck C.C., Sheiner L.B. et al: "Computer-assisted Digoxin Therapy," New England
Journal of Medicine 289:441-446, 1973.

[Pauker76]
Pauker, S.G., Gorry, G.A., Kassirer, J.P., and Schwartz, W.B., "Toward the Simulation of
Clinical Cognition: Taking a Present Illness by Computer," The American Journal Of
Medicine 00:961-995(June1976); - '

[Pople77]
Pople, H.E. Jr., "The Formation of Composite Hypotheses in Diagnostic Problem Solv~~
an Exercise in Synthetic 'Reasoning," ·ProoetWmge'· of'1ihe•'f1fth ·international Joint
Conference on Artfficiaf tntetflgence (1917).

116

[Rich79J
Rich, c., Shrobe, H., Waters, A., "Overview. of \he Progrwnm~r's , Apprentl~. ~
Proceedings of the Sixth International Joint Conference on Artificial intelligence, AuW,.st
1979

[Roberts79]
Roberts, B., "Building English Explanatirn:is from Function Descriptions," MIT ,Al
Laboratory Working Paper 185. 1979

[Schwartz74)
Schwartz, J., ••Automatic and Semiautomatic Optimization of SETL," Pro_(:ee<Jings qt a ..
Symposium of Very High Level Lang·1ages, SIGP~AN,Notices Volume 9; Number 4, April ·
1974

[Sheiner72)
Sheiner L.B., Rosenberg B., Melman K., "Modelfing of Individual Pharrnacokinetics for
Computer-aided Drug Dosage," Computers and Biomedical Research 5:441-.459, 197?

[Shortliffe76] , , . _ . _
Shortliffe, E.H., Computer Based Medical Con·s'ultations: MYCIN, Elsevier North
Holland Inc. (1976)

[Silverman75) . . .
Silverman, H., "A Digitalis Therapy Advisor," MlT Project MAC ffi-143, 1975

[Stallman76] , ,:
Stallman, R.M.,Sussman, G.J., "Forward ·~ .a® . ~pe(ld~nCY.·c:lir~ted
backtracking in a system for computer-aided circuit analysis. MtT Al Laboratory Memo
380, 1976.

[Sussman75]
Sussman, G.J., A Computer Model of Skill Acquisition, American Elsevier Publishing Co.
1975

[Swartout77a]
Swartout, W.R., "A Digitalis Therapy Advisor with ExplenetjoQa/ MIT l.4boratory for
Computer Science TR-176, February 1977

[SwartOr,Jt77b)
Swartout, W;R,, "A Digit~lis Therapy Advisor with fi:J~n$." PrJwesdlngs of •h•
Fifth International Joint Conference on Artilicial~IJ.,,~gusl 1911

References 117

[Winograd71]
Winograd, T., "A Computer Program for Understanding Natural Language," MIT
Artificial Intelligence Laboratory TR-17, 1971

