RECEIVED BY:
P BUIAC

f o
- w

Producing Explanations and Justifications
of

Expert Consulting Programs

William R. Swartout

January 1981

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

Producing Explanations and Justifications
of
Expert Consulting Programs

by

William R. Swartout

This report is a modified version of a thesis submitted
to the Department of Electrical Engineering and Computer
Science on December 18, 1980 in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy in
Computer Science

Traditional methods for explaining programs provide explanations by converting to
English the code of the program or traces of the execution of that code. While such
methods can provide adequate explanations of what the program does or did, they
typically cannot provide justifications of the code without resorting to canned-text
explanations. That is, such systems cannot tell why what the system is doing is a
reasonable thing to be doing. The problem is that the knowledge required to provide
these justifications is needed only when the program is being wrilten and does not
appear in the code itself. In the XPLAIN system, an automatic programming approach is
used to capture some of the knowledge necessary to provide these justifications.

The XPLAIN system uses an automatic programmer to generate the consulting
program by refinement from abstract goals. The automatic programmer uses a domain
model, consisting of facts about the application domain, and a set of domain principles
which drive the refinement process forward. By keeping around a trace of the execution
of the automatic programmer it is possible to provide justifications of the code using
techniques similar to the traditional methods outlined above. This paper discusses the
system described above and outlines additional advantages this approach has for
explanation.

Keywords: Explanation, Automatic Programming, Expert Systems
Thesis Supervisor: Dr. Peter Szolovits

Titie: Associate Professor of Computer Science and Electrical Engineering

Table of Contents

CONTENTS

1, NI OAUCHON e e e r e 9
1.1 Digitalis Therapy and the Digitalis AdViSOrocooiniiiciie e 10
1.1.1 Digitalis Sensitivities ..o 12

1.1.2 The Digitalis Therapy Advisor Testbedccoocevevennenee. 13

1.2 Kinds of QUESHIONS ..ivviiiiiiiii e e 14
1.3 Previous Approaches to Explanationccccooeiiiiiciciiieviine e 15
1.4 Providing Justifications ... 19
1.4.1 System OVEIVIEWoiiiiii e 19

1.5 A Summary of Major POiNtS ..o 25
2. System Building Tools: XLMS and the XLMS Interpreter ..., 27
2.1 XLEMS NOAHON oot r s e e 27
2.1.7 XLMS Concepts i 27

2.1.2 AAChMENTS oo 29

2.1.3 SEQUENCES vuiiiiiiiiiiretier i s et aeeeaaesssareeeranesinersaesnes 31

2.7.4 XLLMS PlEXUS . oiiiiiiciiiece et e ea e 31

2.1.5 Colon Anaphora ... 31

2.2 The Phrase Generator ..o 32
2.2.1 Generator for *R v 33

2.2.2 Generator for *Measurecccoccvveevrvinceciiricee e, 33

2.2.3 Generator for *| v 34

2.2.4 Generalor for *F e 34

2.2.5 Generator for *O ., 35

2.2.6 Generator for *Characterizationccccevviiveiviinnneen, 35

2.3 The XLMS INterpreter .ot 36
3. Creating the Performance Program by Refinementcoceeeiviiiiviiiineceeeeeenn, 40
3.1 Knowledge Sources: the Domain Mode!l and Domain Principles 40
3.1.1 The Domain Modelcocoiiniien s eve e, 41

3.1.2 Domain PrinCiples ..., 43

3.2 The Pattern Matcher ... e, 45
3.2.1 SpecifyingaPatternccccociiveiviiciie e, 45

3.3 The Program Writer: HOw it WOIKS .ot 47
3.3.1 Synthesizing the Performance Programcccceevei. a7

3.3.2 Finding a Domain PrinCiple ..., 50

3.3.3 The Domain Rationalecccoooiiiviiiiennreveviiiees 52

3.3.4 Instantiating the Prototype Method ..., 56

3.3.5 Refining a Sphit-join. .vuii v cnens perenie 62
3.3.6 Completing the Implementatlon 69
3.4 FULUTE NEEAS ...cvncirrrierrrrtnrcrene st erraensse e e sesse s ssesssaba s s snsnsase 73
4, Assessing TOXICItY ..vcvverviceeniiriniiiecevenereenenns TR L 3
4.1 The Causal Implementationcccovcivninivinmenininnneiinen. rereeserennacs 74
4.2 The Empirical Implementationc.ccceveeeiniinienninssenesesnnnnens rereeneene 78
5. Generating EXpIANAtONSccooooueeseesssmmmmssssssmsssssssmsessron S, cerreeniaes e 80
5.1 The Phrase Generator ReViSitedo.e..oume rverseensnsrsesseses 80
5.1.1 Generator for *Cccevuus S S 81
5.1.2 Generator for *Ecccciiierenennn. eerannnes reressesareereeereesen 82
5.1.3 Dealing with ArtiCIES ...ccevveiiiiriiriccccncn s 84
5.1.4 VIewpPOointsccocevrniimncirinsnenmnnecnsenissssnsnonns ereievares 85
5.2 The AnSWEr GEneratorscc.cccueierrvierinieiiessesssessenmrssssssiessssssssnans 86
: 5.2.1 Answering "Why" QUestionscccccernrecsmnmssncnsnniienns 87
5.2.2 Explanation of Methods erbetosarasanertestessearnntaenareraes a3
5.2.3 Prototype Method Explanationsc.ccoccecmreneninissnennnns 94
5.2.4 Explaining Eventscccevcvvnrennnnnes rertrrenarr e e nrraaas 06
5.2.5 Non-English Explanationccecveennnn, 98
6. A Discussion of the Automatic Programming Approach to Explanation 100

6.1 Does Automatic Programming Afféct the Performance Program? .. 100

6.2 Is this Approach to Explanation Compatible with Others? 101
6.3 Is Automatic Programming Too Hard'? sreamrsancpressantsuseonavesnees 101
6.4 Levels of Languageccceeevveriiivsncnsnicnnsensessenenes veerisrareesesassennnannsn 102
6.5 Is a Top-down Approach Really Necessary? vrererersinirenanannas 106
6.6 Limitations and Extensions of the XPLAIN System eresrarsensisne 107
6.6.1 What.Can the Current Implementation Do? 107
6.6.2 Improved Answer Generators veenane beenerasneraseres v 108
6.6.3 Telling White LieSccccerevverirerinrsrinrsiseescnsesssesssenanns 110
6.6.4 Telling the User What He Wants to Knowccoeeeee. 111
6.7 CONCIUSIONS ..ccocvreiveriiiriiivcinnrerirese s ssennssaseaasssnnes aoanbersassssrnanstiaeranaans 111

7. References ... sraestnssnnissssenrensssesaseses 113

Table of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

FIGURES

1. Explanation of How the System'Checks Hypercalcemiacc..cccovvernnen. 16
2. Code to Check for Increased Digitalis Sensitivity Due to Hypercalcemia .. 16
3. Explaining How Thyroid Function Was Checkedccccrmeireveeninveniennnenn 17
4. Telling Why a Question iS-ASKETccivieieiincviieeninees s ressssnessssesiensenee 17
5. SyStEmM OVEIVIEWccociiiiiiiiicicerreerceseeee s sssesssns s vibeee e saneand reereees 20
6. Refinement SIrUCLUTEccciecci it n e s san e e s 21
7. DOMAINMOTEIcoeveeiiiiieiie e e e e srbe e s s aressenae s s ssnnens 22
8. An Example of a Domain Principleccceevennee. O T S PSPPSR 23
9. Instantiation of a Prototype Methodccoveeriieicciiiinrecrrecccrereee s 24
10. A Sample Interaction Providing JuStIficationscccivieeirvververeesivnns. 28
11. The Kind HIErarChyeiciiiimnierinnisnieerinsesssseseesisenasssssesesessesnnes 29
12. BNF Grammar for the XLMS Interpreterco.e...... ettt aenaes 37
13. Examples of Calsccccvvviineecninneiieneienecvienennnens Gevererrerberuenenins eevervenees 38
14, The DOmain Model ... sne s e e ee 42
15. ADOMAIN PrinCIPI@oviiiiiii ettt srsessasarses s raeasesrressssnesees 44
16. The Program Writercccciiivniiiininriiiencinsnnniensenennnis SPUSUNRIY: <
17. Domain Prinicple for Anticipating Drug Tmamty 51
18. Domain Principle for Anticipating Drug Toxncsty 53
10. A SPlitto be RESOIVEAocviiicciririrrcr i e ieeseeb e s sernes e e senes 58
20. An Example of @ SPHE-JOIN et rene e 59
21. Resolving a Split By Serializationccooviimnciiivinnneniiincinneenneenins 63
22. Method After Split-Join RESOIVEcceciivriiinisienniseesissiessesessssesessens 69
23. Principles to Determine If Increased or Decreased Conditions Exist 71
24. Principle to Determine If a Condition Exnsts .. 71
25, Principle to Maintain the Dose eveeraene T A S PSTORRY 4~
26. Domain Model FOr TOXIGIEYccccerririiniineinnnrnninnneerissssseesssnnnaes vireerreieesenas 75
27. An Explanation From the Old Digitalis Therapy Adwsor 94
28. An Explanation From the Code for Anticipating TOXICItYccoveerereenen, 95
29. Explanation of a Domain PrinCiplecceeveevriiiirsnninenieneinnnnnnenesenneinsones 96
30. Examples of Event EXplanationsccccccvceniinnennvsncnnnecneneesessnsssesessannens 97
31. Describing Events with Arithmetic Expressionscccccvcervevvivieeccvenneenn, 98
32

. Describing Methods with Arithmetic Expressionsccevviveenicnnieninnen a9

Acknowledgements

| would like to thank all those who made this. thesia mwbla. and in
particular, the following:

Peter Szolovits for suggesting this thesis topic and er bemg an
exemplary supervisor;

. b .
Randall Davis and Robert Fana for their hatpful comfmms on early drafts
of this document;

. Bxll Martin for introducing me to the area of knowledgs basaé apphcatson
_systems; \

Ramesh Patit for his considerable help in programming the
pattern-matcher and for being.a very lnsghﬁul soundm board for ideas;

_Bill LLong for his commants on automatlc prog{amnmg ang. hta gxiensive -
knowledge of digitalis therapy; : ‘.

Dr. Steven Pauker for advice on medigal: aﬂpeum and heilp in mak‘mg .
arrangsments at Tufts Naw England Medocal Genter;

Harold Goldberger and Ken Church for spiridad: and thought-provoking
conversationsg while | was trying to formulate my.ideas; =

and, finally, Lisa Berlm and my parents for chaering me up when | was
glum.

This research was supported (in part) by the National Institutes of Health
Grant No. 1 P01 LM 03374-01 from the Nationaj Library ot Medicine.

Introduction 9

1. Introduction

Computers can be inscrutable. Too often, the person who tries to have his bank
correct an error in his account, have a duplicate charge removed from his credit card
statement, or stop the local department store from sending him a bill for zero dollars
every month finds that dealing with a computer and the bureaucracy that surrounds it
can be a mystifying, frustrating, and time-consuming process. In part, these difficulties
have arisen because the designer of a data processing system is primarily concerned
with processing efficiency. He relies on a staff of computer support personnel to deal
with problems and questions as they occur. However, even in relatively simple areas
such as accounting and billing this approach to system design has not been an
overwhelming success, and it becomes less appropriate as we become more ambitious

and attempt to use the computer to solve more sophisticated problems.

The area of medical consultant programs’ provides a case in point. The design
desiderata of a consultant program are quite different from those for an accounting
program. In designing a consultant program, we must consider what sorts of capabilities
we are trying to provide for the physician user. If we consider the interaction between a
physician and a human consultant, we realize that it is not just a simple one-way
exchange where the physician provides data and the consultant provides an answer in
the form of a prescription or diagnosis. Rather, there is typically a lively dialog between
the two. The physician may question whether some factor was considered or what effect
a particular finding had on the final outcome. Viewed in this light, we realize that a
computer program which only collects data and provides a final answer will probably not
be found acceptable by most physicians. In addition to providing diagnoses or
prescriptions, a consultant program must be able to explain what it's doing and justify
why it's doing what it's doing.

1. Some medical consultant programs include: MYCIN—a program that aids physicians with
antimicrobial therapy [Shortliffe76], INTERNIST—a program that makes diagnoses in internal
medicine [Pople77] and PIP—a program that makes diagnoses primarily in the arca of renal
disease [Pauker76].

10

If a program can explain its reasoning processes accurately, user acceptance
can be more easily obtained since the user can assure himself that the program is doing
reasonable things. An explanatory capability cdan also serve as a pedagogical aid. A
student or practilioner may use the system and improve his. understanding of the
program’s area of expertise by comparing his own reasening with that of the system. An
explanation facility may also be able to elucidate any assumptions and. simplifications
built into the consultant system which may limit its applicability:in.certain special types of
cases. Finally, as system designers, we have found that an explanatory capability often
aids us in debugging the system, ‘

The next section will describe the Digitalis Therapy Advisor, the program we
have chosen as a tesibed for our ideas about explanation, and some aspects of digitalis
therapy which readers without medical backgrounds will probably need to understand
the remainder of the thesis. While we have concentrated on the problem of providing
explanations to medical personnel, we do not feel that the need for explanation is limited
to medicine nor do we feel that the techniques we have developed for explanation and -
justification are limited to medical applications. Medical programs provide a good
testbed for the ‘general problem we are attacking, which is o be able to explain a
consulting program to the audience it is intended to serve. '

1.1 Digitalis Therapy and the Digitalis Advispr

The digitalis glycosides are a group of drugs that were originally derived from
the foxglove, a common flowering plant. This group includes digoxin, digitoxin, ouabain,
cedilanid and digitalis leaf. Among these, digoxin Is currently by far the most commonly
used drug. The use of digitalis was first documented by Wililam Withering in an article
written in 1785. He noticed that the drug caused increased urine flow, and used the drug
to treat abnormal accumuilations of fluid, a condition known as dropsy, which is often the
result of a failing heart. Later, it was discovered that this diuretic effect is only secondary
to the principal effect of digitalis, which is to strengthen and stabilize the heartbeat.

In current practice, digitalis is prescribed chiefly to patients who show signs of
congestive heart failure (CHF) and/or conduction disturbances' of the heart. Congestive
heart failure refers to the inability of the heart to provide the body with an adequate blood

Digitalis Therapy and the Digitalis Advisor 11

flow. This condition causes fluid to accumulate in the lungs and outer extremities and it
is this aspect that gives rise to the term "congestive". Digitalis is useful in treating this
condition, because it increases the contractility of the heart, making it a more effective
pump. A conduction disturbance appears as an arrhythmia, which is an unsteady or
abnormaily paced heartbeat. Digitalis tends to slow the conduction of electrical
impulses through the conduction system of the heart, and thus steady certain types of
arrhythmias. Due to the positive effect that digitalis has on the heart, it is one of the most
commonly used drugs in the United States. In 1971, it was fifth on the list of drugs most
frequently prescribed by doctors through pharmacies in the US |Ogilvie72, Doherty73].

There is, however, a darker side to digitalis. Like many other drugs, digitalis can
also be a poison if too much is administered. In the case of digitalis, the ratio between a
dose which will cause a therapeutic effect and one which will cause a toxic reaction is
only about 1 to 2. This "therapeutic window" is particularly small when compared with
other drugs. The window for aspirin, for exampile, is about 1 to 20. in addition, there are
a number of factors such as weight, electrolyte balance, and history of heart damage (to
name a few) that may cause the patient to be more sensitive to digitalis and thus more
likely to develop a toxic reaction. These factors must be taken into account in

prescribing digitalis.

Digitalis toxicity may assume many different forms. It may manifest itself as
blurred or colored vision. Certain gastro-intestinal symptoms such as anorexia (loss of
appetite), nausea or vomiting may appear. More frequently, potentially life-threatening
abnormal heart rhythms indicate digitalis intoxication.

The clinician must be particularly careful in interpreting toxic signs, since they
may have other causes unrelated to digitalis, or in the case of some arrhythmias, they
may be mistaken for a lack of therapeutic effect. Thus, it is possible that a doctor may
give a greater dose of digitalis, mistakenly thinking that the patient is not showing
adequate therapeutic effects, when in fact he should withhold digitalis until the patient’'s
toxic symptoms disappear.

in the body, digitalis tends to accumulate and dissipate in an exponential
fashion like the charge on a capacitor in an RC circuit [Doherty61, Doherty70,
Doherty73]. Digitalis leaves the body through two routes. Much of the drug is excreted

12

in the urine, and the rest is metabolized in the liver. The exact proportions depend on
the preparation used, and how well the patient’s kidneys are functioning (renal function).

A doctor must consider these eilements in assessing a patient’s response to the drug.

Because it is so difficult to predict a priori how much digitalis a patient should
receive, cardiologists generally use feedback to determine the correct dose. A certain
amount of digilalis is given to a patient, the therapeutic and/or toxic etfecls that appear
are evaluated, and the dose the patient receives is adjusted appropriately. Once it is felt
that the patient is receiving the correct amount, the patient is placed on a maintenance
program so that the amount of digitalis he receives each day is equal to the amount lost

through excretion.

Since there are a large number of factors to consider, and the exponential
model is somewhat inconvenient, many patients are treated incorrectly. Studies indicate
that as many as twenty per cent of hospitalized patients receiving digitalis show toxic
symptoms, and that the mortality rate among these patients may be as high as thirty per
cent [Ogilvie72, Peck73].

1.1.1 Digitalis Sensitivities

In Chapter 3, we will describe how the XPLAIN system synthesizes the portion of
a digitalis advisor that checks and corrects for increased sensitivity to digitalis. In this
section, we will describe in a little more depth what the digitalis sensitivities are, and

what causes them.

In administering digitalis (and many other drugs) a physician must deal with the
possibility that his patient may be more sensitive to the drug (for whatever reason) than
the average patient. If a physician knows those factors that make a patient more
sensitive he can reduce the likelihood of overdosing (or underdosing) the patient by
adjusting the dose depending on whether he observes the sensitizing factors or not.

Over the years, a number of factors have been identified that increase the

Digitalis Sensitivities 13

automaticity of the heart.2 These include: a low level of serum potassium (hypokalemia),
a high level of serum calcium (hypercalcemia), damage to the heart muscle
(cardiomyopathy), and a recent myocardial infarction (among others). When these exist
in conjunction with digitalis administration, the automaticity can be increased
substantially. We will concentrate on just the first three in the program synthesis
presented in Chapter 3.3

1.1.2 The Digitalis Therapy Advisor Testbed

A few years ago, a Digitalis Therapy Advisor was developed at MIT by Pauker,
Silverman, and Gorry [Silverman75, Gorry78]. This program was later revised and given
a preliminary explanatory capability [Swartout77a, Swartout77b]. The Iirﬁitations of
these explanations (and of those produced by similar techniques) will be discussed in
the next section. This program differed from earlier digitalis advisors [Peck73, Jelliffe70,
Jelliffe72, Sheiner72] in two important respects. First, when formulating dosage
schedules, it anticipated possible toxicity by taking into account the factors that
increased digitalis sensitivity and it reduced the dose when those factors were present.
Second, the program made assessments of the toxic and therapeutic effects which
actually occurred in the patient after receiving digitalis to formulate subsequent dosage
recommendations. This program worked in an interactive fashion. The program would
ask the physician for data about the patient and produce recommendations after that
data was entered. When the dose of digitalis was being adjusted, the physician was
asked to consult with the program again to assess the patient’s response. This is the

program we used as a testbed for our work in explanation and justification.

2. In the normal heart, there is a place in the left atrium called the sino-atrial (SA) node, which
sets the pace for the heart. Under the right circumstances, other parts of the heart can take over
the pace-setting function. Sometimes this can be life-saving if, for example, the SA node is
damaged. But at other times it can be life-threatening, since several pace-makers operating
simultaneously tend to increase the likelihood of setting up a dangerous arrhythmia. When we
say that digitalis increases the automaticity of the heart, we mean that digitalis increases the
tendency of other parts of the heart to take over the pace-setting function from the SA node.

3. The XPLAIN system currently only knows about the first three factors, although it would not be
particularly difficult to expand it to cover the others.

14

1.2 Kinds of Questions

In the spring of 1979, we conducted a series of informal trials in an attempt to
discover what sorts of questions occurred to medical personnél as they ran the Digitalis
Advisor. In this triai, medical students and fellows were asked to run the program and
ask questions (verbally) as they occurred to them. The author attempted to answer these
questions. The interactions were tape recorded and later transcribed. |

No formal analysis of the data was attempted, but examination of the transcripts
did give us a good feeling for the sorts of questions that a doctor might have while
running a consulting program.

One type of question asked directly about the methods the program employed:

Subject: "How do you calculate your body store goal? That's a little lower
than | anticipated.”

This sort of question could be answered by the explanation routines of the old Digitalis
Advisor. It can also be answered by the system presented in this thesis.

Another sort of question asks for a justification of what the program is doing:

Subject: (peruses recommendations) "Why do we want to make a temporary
reduction? : : '

Experimenter: "We're anticipating surgery coming up, and surgery, even
non-cardiac surgery can cause increased sensitivity to dighalis, so it wants to
hold digitalis."” :

This is exactly the sort of question we are concentrating on in this thesis.

Finally, there are some sorts of questions that came up that this thesis does not address.
Most of these seem to involve confusion about the meaning of terms:

IS THE RENAL FUNCTION STABLE?
THE POSSIBILITIES ARE:

1. STABLE

2. UNSTABLE
ENTER SINGLE VALUE =z==)

Subject: "now this question...I'm not really sure...'renal function stable’ does

Kinds of Questions 15

it mean stable abnormally or...because | mean, the patient’s is not normal it's
stable at the present time."

Experimenter: "That’s what it means”

1.3 Previous Approaches to Explanation

A nuimber of different approaches have been taken to atiempt to provide
programs with an explanatory capability. The major approaches include using 1)
previously prepared text to provide explanations and 2) producing explanations directly
from the computer code and traces of its execution. These approaches will be

discussed below.

The simplest way to get a computer to answer questions about what it is doing is
to figure out what questions will be asked and then store the answers to those questions
as English text. The computer can only display the text that has been stored. This is
called canned text, and explanations produced by displaying canned text are called
canned explanations. The simplest sorts of canned explanations are error messages
which the computer displays when something goes wrong. For example, a medical
program designed to treat adults might print the following message if someone tried to

use it to treat an infant:

THE PATIENT IS TOO YOUNG TO BE TREATCD BY THIS PROGRAM.

It is relatively easy to get a small program to provide English explanations of what it is
doing using this canned text approach. First we write the program. Then we associate
with each part of the program canned English text which explains what that part of the
program is doing. Then when the user wants to know what's going on, the computer
merely displays the text associated with what it's doing at the moment. However, the fact
that the program code and the text strings that expiain that code can be changed
independently makes it difficult to guarantee consistency between what the program
does and what it claims to do. Another problem with the canned text approach is that all
guestions and answers must be anticipated in advance and the programmer must
provide answers for all the guestions that the user might ask. For large systems, thatis a

nearly impossible task. Finally, the system has no conceptual model of what it is saying.

16

Fig. 1. Explanation of How the System Checks Hypercalcemia

TO CHECK SENSITIVITY DUE 1O CALCIUM T DO THE FOLLOWING STEPS:
1. 1 DO ONE OF THE FOLLOWING:

1.1 IF EITHER THE LEVEL OF SERUM CALCIUM IS GREATER THAN 10 OR Iv*4
CALCIUM 1S GIVEN THEN I DO THE FOLLOWING SUBSTEPS:

1.1.1 T SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 0.75.
1.1.2 T ADD HYPERCALCEMIA TO THE REASONS OF REDUCTION.

1.2 OTHERWISE. T RIMOVE HYPERCALCEMIA FROM THE REASONS OF REDUCTION
AND SET THE FACTOR OF RELDUCTION DUE TO HYPERCALCEMIA TO 1.00.

Fig. 2. Code to Check for Increased Digitalis Sensitivity Due to Hypercalcemia

[(CHECK (SENSITIVITY (DUF (TO CALCIUM))))
METHOD: (OR
(IF-THEN
(OR
(GREATER-THAN 10. (QUANTA SERUM-CALCIUM))
(TV-STATUS CALCIUM GIVEN))
(BECOME (FACTOR REDUCTION-HYPERCALCEMIA 0.75)):1,
(BECOME -ALSO
(REASONS REDUCTION HYPERCALCEMIA)):)
(AND: 2
(UNBECOME (REASONS REDUCTION HYPERCALCEMIA)):
(BECOME (TACTOR REDUCTION-HYPERCALCEMIA 1.0)):2))]

That is, to the computer, one text string looks much like any other, regardless of the
content of that string. Thus, it is difficult to use this approach if we want our system to
provide more advanced sorts of explanations such as suggesting analogies or if we want

to be able to give explanations at different levels of abstraction.

Another approach to explanation is to produce explanations directly from the
program [Davis76, Shortliffe76, Swartout77a, Swartout77b, Winograd71]. That is, the
explanation routines examine the program which is run by the computer. Then by
performing relatively simple transformations on the code these explanation routines can
produce explanations of how the system does things. For example, the Digitalis Advisor
uses the code shown in Figure 2 to check for increased digitalis sensitivity caused by

4. Intravenous

Previous Approaches to Explanation 17

increased serum calcium. The system can examine the code and produce an English

explanation of what the code does (shown in Figure 1).

The Digitalis Advisor, like most similar systems, also keeps a trace of the
execution of the code. That is, as the code is executing, the system records what
happens. This trace can then be examined by the explanation routines to tell what the
system did for a particular patient. Figure 3 explains how the system checked for
myxedema. The system also has a limited ability to explain why it is asking the user a
question. Figure 4 shows the system’s response when the user wants to know why he is

being asked about serum calciun.

Fig. 3. Explaining How Thyroid Function Was Checked

I CHECKED SENSITIVITY DUE 70 THYROID-FUNCTION BY EXECUTING THE FOLLOWING
STEPS:

1. 1 ASKED THE USER THE STATUS OF MYXEDEMA. THE USER RESPONDED THAT THE
STATUS OF MYXEDEMA WAS PRESENT.

2. SINCE THE STATUS OF MYXEDEMA WAS PRESENT T DID THE FOLLOWING:

2.1 1 ADDED MYXEDEMA TO THE PRESENT AMD CORRECTABLE CONDITIONS. THE
PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA.

2.2 1T REMOVED MYXEDEMA FROM THE DEGRADABLE CONDITIONS. THE
DEGRADABLE CONDITIONS THEN BECAME HYPOKALEMIA, HYPOXEMIA,
CARDIOMYOPATHIES-MI, AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

2.3 1T SET THE FACTOR OF REDUCTION DUE TO MYXEDEMA TO 0.67. THE
FACTOR OF REDUCTION DUE TO MYXEDEMA WAS PREVIOUSLY UNDETERMINED.

2.4 1 ADDED MYXEDEMA TO THE REASONS OF REDUCTION. THE REASONS OF
REBUCTION THEN BECAME MYXEDEMA.

Fig. 4. Telling Why a Question is Asked

WHAT IS THE LEVEL OF SERUM CALCIUM?

ENTER NUMERICAL VALUE ====> why? (The usertypes "why?" indicating that he
questions why he is being asked to supply the value of serum potassium.)

MY TOP GOAL IS TO BEGIN THERAPY. ONE STEP IN DOING THAT IS TO CHECK
SENSITIVITIES. I AM NOW TRYING TO CHECK SENSLTIVITY DUE TO CALCIUM,

18

Since the explanation routines only perform simple transformations on the
program code, the quality of the explanations produced in this manner depends to a
great degree on how the system code is written. in particular, the basic structure of the
program is not altered significantly, and the names of variables in the explanation are
basically the same as those in the program. If the explanations are to be
understandable, the expert system must be written so that its structure is easily
understood by anyone familiar with its domain of expertise, and the variable and
procedure names used in the program must represent concepts which are meaningful to

the user.

This method of producing explanations has some advantages. It is relatively
simple. If the right way of structuring the problem can be tound, it does not impose too
great a burden on the programmer; since the explanations reflect the code directly,
consistency between explanation and code is assured. Despite these advantages, there

are some serious problems with this technique.

It may be difficult or impossible to structure the program so that the user can
easily understand it. The fact that every operation performed by the computer must be
explicitly spelled out sometimes forces the programmer to program operations which a
physician would perform without thinking about them. That problem is illustrated in
Figure 3. Steps 2.1, 2.2, and 2.4 are somewhat mystifying. In fact, these steps are
needed by the system so that it can record what sensitivities the patient had that made
him more likely to develop digitalis toxicity. These steps are involved more with record
keeping than with medical reasoning, but they must appear in the code so that the
computer will remember why it made a reduction. Since they appear in the code, they
are described by the explanation routines, although they are more likely to confuse a
physician-user than enlighten him. An additional problem is that it's difficult to get an
overview of what's really going on here. While the system is explicit about record
keeping, it isn’t very explicit about the fact that it's going to reduce the dose, though it
hints at a reduction by saying that the "factor of reduction" is being set to 0.67.

An additional problem, and the primary one we will address in this thesis is that

while this way of giving explanations can state what the system does or did, it can’t state
why the system did what it did. That is, the system can't give justifications for its actions.

In the explanations given above, the system can’t state that it reduces the dose because

Previous Approaches to Explanation 19

increased calcium causes increased automaticity. The information needed to justify the
program is the information that was used by the programmer to write the program, but it
does not have to be incorporated into the program for the program to perform
successfully—just as one can successfully bake a cake without knowing why baking
powder appears in the recipe. Since it is desirable for expert programs to be able to
justify what they do as well as do it successfully, we need to find a way of capturing the
knowledge and decisions that went into writing the program in the first place. The
remainder of this report will describe recent efforts we have made toward achieving that

goal in the context of the Digitalis Therapy Advisor.

1.4 Providing Justifications

We need a way of capturing the knowledge and decisions that went into writing
the program. One way {0 do this is to give the computer enough knowledge so that it can
write the program itself and remember what it did. The notion of having one program
write another program is not new. It is called automatic programming and has been
researched considerably [Balzer77, Barstow77, Green79, Long77, Manna77]. Using an
automatic programmer to help in producing explanations is a new idea. We will describe

how the system works below.

1.4.1 System Overview

An overview of the system is given in Figure 5. The system has five parts: a
Writer, a Domain Model, a set of Domain Principles, an English Generator, and a
Refinement Structure. The Writer is an automatic programmer. It writes the Digitalis
Advisor. The Domain Model and the Domain Principles contain knowledge about the
domain of expertise. Thus, in this case, they contain information about digitalis and
digitalis therapy. They provide the Writer with the knowledge it needs to write the
Digitalis Advisor. The Refinement Structure can be thought of as a trace left behind by
the Writer. It shows how the Writer develops the Digitalis Advisor. When a physician
user runs the Digitalis Advisor, he can ask the system to justify why the program is doing
what it is doing. The Generator gives him an answer by examining the Domain Model,

the Domain Principles, the Refinement Structure, and the step of the Advisor currently

20

being executed. If we wanted to wrile a new program covering a new medical domain,
we would have to change the Domain Model and the Domain Principles, but we should

not have to change the Writer or the English Generator.

The Refinement Structure is created by the Writer from the top level goal (in this
case Administer Digitalis) as it writes the Digitalis Advisor. The Refinement Structure is a
tree of goals, each being a refinement of the one above it in the tree (see Figure 6). By
"refining a goal" we mean laking a goal and turning it into more specific subgoals. For
example, if we had the abstract goal of getting trom New York to San fFrancisco, some
refinements (or subgoals) of that goal would be getting to the airport, buying a ticket,
flying to San Francisco, and so forth. Looking at Figure 6, we see that the top of the tree
is a very abstract goal, in this case, Administer Digitalis. This goal is refined into less
abstract steps by the Writer. These more specific steps are steps the system executes to
administer digitalis. For example, one such step is to Anticipate Toxicity, that is, to
anlicipate whether the patient may become toxic due to increased digitalis sensitivity.
The writer then refines this more specific goal to a still more specific goal. Eventually,
tne level of system primitives is reached. System primitives are operations which are

built-in. Normally they are very basic, simple operations, so the fact that they cannot be

Fig. 5. System QOverview

Refinement
Structure
Writer >
Domain Domain Digitalis Advisor
Model Principles i

English

Generator

System Overview 21

explained is usually not a problem. Typical primitives include those that perform
arithmetic operations like PLUS and TIMES and those that set variables to a particular
value. The structures at this primitive level are the Digitalis Advisor, the program that we

wanted the automatic programmer to produce.

The Domain Model is a model of the facts of the domain. In this case, it is a
model of the causal relationships in digitalis therapy. A simplified portion of the model is
shown in Figure 7. In this medel, the boxes are states, and the arrows represent
causality. This model shows some of the effects of increased digitalis. It also shows that
hypercaicemia and hypokalemia can cause increased automaticity. In a certain sense,
these facts correspond to the sorts of facts that a medical student learns in class during
the first two years of medical school. These facts are static. That is, they have no notion
of process. The model says that increased digitalis can cause a change to ventricular
fibrillation but it doesn't say what to do about it. Medical students go to medical school

for an additional two years and acquire these procedures by observing more

Fig. 6. Refinement Structure

Abstract " Administer Digitalis
If Decreased Serum K
then reduce dose
else maintain dose
"4
Specific

System Primitives

22

experienced personnel-as they practice medicine on the wards,. The set of Domain.
Principles provides the Writer with this sort of procedurat knowledge. .

Domain Principles tell the Writer how something (such as pregcriping a‘drug or
analyzing symptoms) should be done. They guide it as it refines ébstract goa|s to more .
specific ones. A (somewhat simplified) Domain Principle appears in Figure 85 This
particular Principle helps the writer in anticipating digitalis toxicity. it represents the
common sense hotion that if one is considering administering-a-dryg, and there is some .
factor that enhances the deleterious effects of that drug, then.if that factor is preseat in .
the patient, less drug should be given. This pringiple has three pafts. a Goal, a Domain
Rationale, and a Prototype Method.

The goal tells the Writer what it is that the Pnncsple can help |t do In this case, ,
the PnnCIp!e can help the Writer in annmpatmg toxicity. The Domain Ratnonale is a
pattern which is matched against the Domain Model to see where it is. appropnate to_

Fig. 7. bomain Model

Increased Digitalis ' Inesegased Ca ;Dec reaseod K
Decreased Conduction i Increased Automaticity
Sinus Bradycardia | Change ta V. Fibrillation

5. Domain Principles are composed of variables and-constants. Variables appear in boldface in
Figure 8. When the writer is matching, a variable in a gattem will match anything which is of the
same kind as itself. Thus, the variable finding would'match increased serum-Ca or decreased K,
since increased serum-Ca and decreased K are both kinds of findings.

System Overview 23

achieve the goal. In the example, the system will look in the Domain Model to match a
finding (e.g. increased Ca) which causes some sort of a dangerous deviation (e.g.
change to ventricular fibrillation) which is also caused by an increased level of the drug.
By looking at the Domain Model, we can see both increased Ca and decreased K will

match as findings, since both can cause a change to ventricular fibrillation.

The Prototype Method is an abstract method which tells the system how to
accomplish the goal. Once the Domain Rationale has been matched, the Prototype
Method is instantiated for each match of the Domain Rationale (see FFigure 9). When we
say that we instantiate the Prototype Method, that means that we create a new structure
where the variables in the Prototype Method have been replaced by the things they
matched. in this case, two structures would be created. In the first, finding would be
replaced by increased serum Ca and drug would be replaced by digitalis. In the second,
finding would be replaced by decreased serum K and drug would again be replaced by
digitalis. Ncte that now, with these new structures, we have changed the single abstract
problem of how to anticipate toxicity into several more specific ones, such as how to
delermine whether increased serum K exists, how to reduce the dose, and how to

maintain it.

Fig. 8. An Example of a Domain Principle

Goal: Anticipate Drug Toxicity

Domain Rationale:

Finding increased Drug

1

Dangerous Deviation

Prototype Method:
If the Finding exists
then: reduce the drug dose
else: maintain the drug dose

24

Fig. 9. Instantiation of 3 Prototype Method

Prototype Method: v L \
it the Finding exists
then: reduce the drug dose
else: maintain the ~ drug dose

Instantiated Methods
If Increased Serum-Ca exists
> then: reduce the digitalis dose
“glsé: maintain the digitalis dose

If Decreased Sarum-K exists
> then: reduce the digitalis dose
elge: maintain the digitalis dose

After iastantiation, the more speuflc goals of the Prototype Method are placed
in the Refinement Structure as sons of the goal being resolved. If we look at Flgure 6, we
can see that the instantiated Prototype Method that checks for decreased serum K has
been placed below the Anticipate Toxicity goal. Once they have been placed in the
Refinement Structure, the newly instantiated goals become goals for the writer to
resolve. For example, after the Writer applied this Domain Principle, it would have to find
ways of determining whether increased calcium- existed in the patient, whether
decreased potassium existed, and ways of reducing and maintaining the dose. The
system continues in this fashion, refining goals at the bottom of the structure and
growing the tree down and down until eventuélly the level of system primitives is
reached. At that point, the system is finished, and the goals at the very bottom actually
represent a runnable computer program. The gystem also has to deal with
transformations of program structure and oonstramtsm the refinement process and the

selection of Domain Principles. We will deal with those aspects in Chapter 3.

Once the refinement process is complete, we have a working expert system. A
sample interaction with the system is given in Figure 10. The explanations were
produced by finding the Domain Principle which caused the step in question to appear in
the program. The domain rationale associated with that principle was then converted to

System QOverview 25

Fig. 10. A Sample Interaction Providing Justifications
Please enter the value of serum-k: why?

The system is anticipating digitalis toxicity. Decreased serum-k causes increased automaticity,
which may cause a change to ventricular fibrillation. Increased digitalis also causes increased
automaticity. Thus, if the system observes decreased serum-k, it reduces the dose of digitalis
duce to decreased serum-k.

Please enter the value of serum-k: 3.7

Please enter the value of serum-ca: why?

(The system produces a shortened explanation, reflecting the fact that it has already
explained several of the causal relationships in the previous explanation. Also, since the
system remembers that it has already told the user about serum-K, it suggests the
analogy between the two here.)

The system is anticipating digitalis toxicity. Increased serum-ca also causes increased
automaticity. Thus, (as with decreased serum-k) if the system observes increased serum-ca, it

reduces the dose of digitalis due to increased serum-ca.

Please enter the value of serum-ca: 9

English (with pattern variables replaced by the facts in the Domain Model they matched).
That step produced the first two sentences of the explanation. The last sentence is just
the instantiated version of the Prototype Method of the Domain Principle. These
explanations should be compared with those presented in Figure 4 to appreciate the

improvement that is possible with this approach.

1.5 A Summary of Major Points

First, we have argued that to be acceptable, consultant programs must be able
to explain what they do and why. Second, we have described the various ways that
traditional approaches fail to provide adequate explanations and justifications. Major
failings include: 1) the inability of such approaches to justify what the system is doing
because the knowledge required to produce justifications is not represented within the

WL

26

system, and 2) a lack of distinction. between sieps required just to get the .
computer-based implementation to work, and those that are motivated by the application
domain. Third, we have outlined an approach which captures the knowledge necessary -
to improve explanations. This involves using an. automat:c programmer to generate the 7
performance program. As the program is generated, a refinement structure is created ;
which gives the explanation routines access to declsions made’ during 1he creatnm oﬂhe“~
program. The improvement in explanatory capabilities that is achteved is due ‘more to
the availability of this refinement structure than to the use of nsore sophisticated English
generation functions, since the explanation routines used in this thesis do not differ
greatly from those used in the old Digitalis Advisor, . .

In the remainder of the thesis: Chapter 2 outlines XLMS and the XLMS
interpreter, the knowledge base tools used to build the system. Chapter 3 describes. an :
motivates the design of the automatic pmgrammer and traces ﬁs operaﬁon ‘as it cremes ’
the part of the Digitalis Advisor that deats with mgatahs sensmwtie& Chapter 4 describes
how a quite different part of the Digitalis Advisor, the code:lor. assessing toxicity, i8
written. That chapter actually presents two different implementations to show the
fiexibility in implementation the XPLAIN system allows. Chapter 5 describes the routines
that actually generate the explanations, and the thesis cencmdas with a doscuss:on of 4
the mterrelatnonshrps between the automatnc programm the performance program,
and explanation. ..

System Building Tools: XLMS and the XLMS Interpreter 27

2. System Building Tools: XLMS and the XLMS Interpreter
2.1 XLMS Notation

The XPLAIN system uses XLMS to manage its knowledge base. XLMS (which
stands for eXperimental Linguistic Memory System) was developed primarily by William
Martin, Lowell Hawkinson, Peter Szolovits and members of the Clinical Decision Making
and Automatic Programming Groups at MIT. Since it is not necessary to have a
complete understanding of the intricacies of XLMS to understand the XPLAIN system,
this section is intended to elucidate only as much of XLMS as is required to comprehend
the remainder of the thesis. For a more complete discussion of the design goals and

implementation of XLMS see [Hawkinson80].

For the purposes of this paper, perhaps the best way to think of XLMS is that it is
an extension of LISP that allows one to use structured names. In LISP, atoms are used
to name variables and functions. In the XPLAIN system, variables and procedures are
named by XLMS concepts—the difference is that these concepts can have a
substructure which can be taken apart and examined, while LISP atoms are indivisible.

2.1.1 XLMS Concepts
In XLMS, every concept is composed of an ilk, a tie and a cue and is written as:

[(<ilk>*<tie> <cue>)]

or, to pick an actual example from the XPLAIN system:

[(LEVEL*R DIGITALIS)]

The itk of a concept is itself a concept. It tells what kind of a concept this is. Thus, the
example concept is a kind of level. The cue of a concept is either a concept or a LISP
atomic symbol (more about symbois later). It indicates what it is that makes this concept
different from others with the same ilk. The example represents the "level of digitalis": a
particular kind of level. Finally, the tie of a concept indicates the relationship between
the ilk and the cue. In this case, the tie is R for "role". Role ties are used to indicate

slots in concepts. Thus this concept represents the "level" siot in the concept

28

"digitalis”. This is one ingplementation®.of the notion of siots and.irames as described by,
Minsky [Minsky75]. In the XPLAIN system, ties are used by the generator in determmmg

how to convert a concept to English.

There are several other ties that are used axtensively in the XPLAIN system

These are listed in Table | together with exampiles of their use.

Concepts may be given labels. The notation is:

3

[<1abel> = <{concept)>]

Table l. Types of Ties

Tie Name Example Use English Form
*f function [(bali*f red)] (the) red ball
*r role-in {(color*r ball)] (the) color of

(the) ball
*i individual [(bal1*i 1)] ball
*o object [(treat®*o patient)] treat({the)

 patient
*s species [dog = , dog
(animal*s "dog")]
*measure {(pvcs'meaéure : sa!vosof
salvos)] pvcs

*c call (these ties are discussed with the MINT interpreter)
*d definition ' I '
*b begin (these ties are used to define links; see Chapter §)
*e end '

6. See {Martin79] for a more complete discussion.

' Purpose
modifies

slot-filling
instantiates
individual

verb-object

(see text)

" measure

XLMS Concepts 29

English words are defined in XLLMS by creating a concept which has a tie of *s or *i and
a cue which is a LISP atomic symbol which is the English word. The ilk of the concept
indicates its kind. Additionally, the concept is usually assigned a label which is the

English word. Thus, we could define collie in the following way:

fcollie = (dog*s "collie")]

As was indicated above, concepts in XLMS are organized into a kind hierarchy. The root
concept is [summum-genus] (see Figure 11) and is pre-defined in XLMS. Like atomic
symbols in LISP, concepts in XLMS are unique.

2.1.2 Attachments

In LISP, it is possible to associate lists and atoms relating to a particular atomic symbol
with that symbol by placing them on that symbol's property list. In XLMS, one can
associate concepts relating to a concept, with that concept, by attaching them. The
XLMS notation is:

Fig. 11. The Kind Hierarchy

‘ Interpreter-concept

T A
G G

This figure only shows a portion of the hierarchy

(O

Y
<,

é

Administer
Digitalis

30

[<concept> #<attachment-relation> <attached-conceptl>..
(attached conceptu)]

or, for exampie:

[(input*r plus) #e A B]

The attachment-relation specifies how the concept and the attached concept (called the
altachment) are related. In the XPLAIN system, the most frequently used
attachment-relations are #e (exemplar), #F {function), #q (equivalence), #c
(characterization) and #m (meta-characterizationih #e Is primarity. used fbrfs*leta‘fiuing" in
the XPLAIN system. The example above states that A and B are inputs to plus. #f is

similar to the tie *f and is used to associate descriptors with concepts. For example,
[ball #f red]is ared ball. #q indicates that a concept and the attgched concepg are{

equivalent. #c denotes that a concept can be characterized as the aitached concept
For.example, [Bosten #c metropolis] says that Bosion can be characlerized as a
metropolis. Note that characterizing A as B.is.vary similar to placing, A under B in the
kind hierarchy. The differences batween the two.stem more from: the effect they have.on.
the XLMS knowledge base than from their intention. Placing A under B in.the kind .
hierarchy creates a permanent structure, while attachments can be removed. The
built-in functions of XLMS tend to make it easier to work with thel kmd hgerarchy than w&th,
attachments. Typically, primary characterizations are placed in the kmd hierarchy while
secondary ones are indicated by attachments. #m is used to meta- characterize a
concept, that is, to provide information. abaut where the concegt comes from or how it
should be interpreted. Some-additional attachmenh wﬂl be mt{gduced later when their
use is discussed.”

7. It is also possible to specify a reverse at{achment For example, [Boston e#c
metropolis] characterizes Boston as a metropolis and says that one of the exemplars of a

metropolis is Boston.

Sequences 31

2.1.3 Sequences

Sequences, which are a lot like LISP lists, provide a means for grouping
concepts together. They are indicated in XILMS notation by a list of concepts separated

by commas:

[<concept-1>, <concept-2>, <{concept-3>, <concept-nd>]

Sequences are used extensively within the XPLAIN system to represent program

fragments and sets of concepts.

2.1.4 XLMS Plexus

As the reader may have noticed, XLMS notation is delimited by square brackets.
These brackets identify the concept as a piece of XLMS notation and delimit the scope of
its attachments (if any). The first concept to appear alter a left bracket is called the head
of the plexus. If a plexus is contained within some piece of XLMS notation, the XLMS
reader makes any attachments or builds any structure indicated by the plexus, and then

replaces that plexus by the head of the plexus.®

2.1.5 Colon Anaphora

Colon anaphora provide a convenient shorthand for specifying the slots of a
concept. If a concept appears in XLMS notation with a colon (or several colons)
immediately following it (as in COLOR:) then the XLMS reader replaces that concept with
a new concept whose ilk is the concept in the notation, whose tie is *r, and whose cue is
the head of the plexus n levels in from the outside, where n is the number of colons in the

notation. Thus, in the plexus:

[BALL
[COLOR: #e RED]]

8. Thus [A #e [B #e C]] is equivalent to the two separate notations [A #e B] and [B #e
C]. [[A]]isequivalentto [A].

32

COLOR: expands into (COLOR*R BALL). Uparrows ("t") which appear in XLMS notation
work like colons, except that the appropriate head is chosen by counting from the inside

out instead of from the outside in.

2.2 The Phrase Generator

This section discusses the phrase generator, which is a low level English
generator used by higher level generators. Although this section is very closely related
to the higher level generators presented in Chapter 5, it has been placed here to give the

reader some familiarity with manipulating XLMS concepts.

The phrase generator generates phrases from XI_LMS concepts. For example,

given the XLMS expression:

[((pves*f dangerous)*f (induced*o (by*o digitalis)))]

the phrase generator would generate the phrase:

"dangcerous pves induced by digitalis”

In XLMS, the tie of a concept indicates the relationship between the ilk and cue
of the concept. Thus, *f indicates that the cue is a modifier of the ilk, while *o indicates
that the cue is an object of the ilk, and *r indicates that the ilk is a role in the cue.
Because the tie often determines the English form of a concept, the phrase generator
has been organized around the types of ties.

The phrase generator is actually composed of a number of smaller generators.
Each of these generators is capable of generating English for concepts with a particular
tie. The top level generator first determines whether some other concept should be
substituted for the concept passed to it as an argument. This could occur in several
ways. If the audience is a medical audience and the argument is characterized as some
other concept which is itself meta-characterized as a medical term, the other concept

will be substituted for the original argument and a phrase will be generated for it. A flag

The Phrase Generator 33

can also be set so that a pattern variable will be replaced by its value. If neither of these
apply, the function determines whether the concept passed to it is an English word. This
is a simple test. A concept corresponds to an English word if either its cue is a symbol or
it is meta-characterized by the concept [use-1abel-as-name] which indicates that its
label is the English word for the concept. If the concept does not correspond to an
English word, the generator examines the tie of the concept and dispatches to the
appropriate tie-generator for that tie. When a tie-generator is called, it breaks the
concept apart and may invoke the top level generator recursively to generate English

phrases for the parts of the concept.

2.2.1 Generator for *R

Most of the tie-generators are quite simple. The generator for concepts with ties
of *r (tor role) calls the phrase generator on the ilk of the concept, inserts the word "of"
and calls the phrase generator again on the cue of the concept. Thus [(level*r serum-k)]

is output as "the level of serum-k".%

2.2.2 Generator for *Measure

The tie of *measure is similar to *r. The difference is that we use this tie when
we wish to express the concept of a certain amount or measure of something such as "a

cup of sugar” or "a cup of coffee". Note that the phrase "cup of coffee"” could refer to a
cup filled with coffee, or to a certain amount of coffee. Concepts with ties of *measure

are intended to represent only the latter meaning. Since we are primarily focusing on the
coffee and not the cup, the ilk of the concept is coffee: [(coffee*measure cup)]. Note
that the generator for *measure generates the cue before the ilk while the generator for

*r does the reverse.

9. The generator inserts articles (i.e. the, a, an) where appropriate. The mechanism for
accomplishing this is described later in the chapter.

34
2.2.3 Genetrator for *I

Unless the concept is a set, concepts with the tie of *i are converted to English
by calling the phrase generator on the ilk of the concept, ignoring the cug. of the
concept. If the itk of the concept is [set], then the concept is a sef, and must be

generated a little differently. The set of concepts A, B, and C is represented in XLMS as
[(set*i A,B,C)]. To generate English for the set, the generator passes the cue of the

concept to a function which generates conjunctnons by making_ calls to generate phrase
on the elements of the sequence [A,B,C] and |n$ertmg commas ard "and" in the'
appropriate places.

To reduce the verbosity of the English, the generator for vConjun,c;tions. factors
the set where possible. For example, the approach outlined above would turn the
concept: ‘

[(set*i (assessment*r pvcs),
(assessment*r av-block),
(assessment*r bigeminy)]

into:
"The assessment of pvcs, the assessment of av-lnlotk,‘and the agsessment of bigeminy”

However, the system notes that the elements of the set all have the same ulks and ties of
*r. It factors the set by generating the ilk of the elements in ptural form fo"owed by the
cues of the elements:

"The assessments of pvcs, av-block, anid bigenitny”

2.2.4 Generator for *F

The generator for modifiers is a little more complex. Concepts with ties of *f are
toncepts which represent the modification of the ifk of the concept by the cue. In
- English, modifiers can either appear before or after the modified word. in the current
|mplementatlon if the cue of the concept is euther a smgte word or an ad}ectwe, it is
placed before the ilk. Othérwise, the ¢ue follows He-fik. *Ttwa, the concept [{pves't

Generator for *F 35

(severe*f extremely))] is "extremely severe pvcs”, while [(block*f (on*o table))] is "the
block on the table". Finally, as a special case, if the cue of the concept is [plural], the ilk

is generated as a plural (e.g. [(book*f plural)] is generated as "books").

2.2.5 Generator for *O

In concepts with ties of *0, the ilk of the concept is something that takes an
object (such as a verb or preposition) and the cue is the object. The generator first
outputs the ilk, then calls the phrase generator to output the cue. | the ilk of the concept
is a verb, the generator calls a special generator for verbs which constructs a verb with
the appropriate tensed form. The form of the verb that should be generated is indicated

either by modifying the verb by a *f tie'™ or by the setting of global registers.'’

2.2.6 Generator for *Characterization

Normally, if a concept is characterized by a characterization attachment the
characterization is not mentioned.'?> However, when a pattern is being described, if the
concept being generated is the ilk of a concept with the tie of *characterization, then a
relative clause is generated to describe the characterization.”® Once the
characterization is described, it is placed on a list of described characterizations and is
not mentioned again. For example, if the system were generating English for the

concept [pvcs] and the following concept existed in the knowledge base:

10. Asin [(adjust*f -ed)]

11. Currently, the system can generate the infinitive form, the past and third person singular
present tenses, and the present pasticiple. It would not be difficult to extend this list if the need
arose.

12. Although if the characterization is a more appropriate term to use as would be the case if it
were a medical term and the answer was being directed at a medical audience the system will
substitute the characterization for the original term.

13. The primary reason for making characterizations into concepts is that it conceptualizes the
relationship between the object and its characterization. This allows us to make attachments to
the relationship itself and so that we could indicate, for example, that this particular relationship
should only be described to medical students but not to experienced doctors.

36

[(av-block*characterization ‘

((finding*r (toxicity*f dvgnahs))‘f (specific moder‘ately)))]
the system would generate the phrase R
"av-block which is a modecrately speuﬁc finding of dlglt'\hs toxicity.”

2.3 The XLMS interpreter

The XLMS interpreter (also called MINT for Micro- INTerpreter) was written byv
the author to execute the code produced by the Program Wnter It was possible to make,
this interpreter quite simple since the complex and tlme consummg operations that take ,_
place within the XPLAIN system are performed whlte the Program Wnter is creatmg the‘, ! v
program—not while the interpreter is runmng As the interpreter executes the code of‘” |
the Digitalis Advisor, it creates an event structure which is a trace of the execution of the
code. The syntax and semantics of the language will be briefly discussed below.

The BNF grammar for the interpreter is shown in Figure 12. And some examples
of various types of calls are shown in Figure 13 As can be seen from the figures the
interpreter differs from LISP in that subroutines can return multiple values—in this
regard the language-is similar to ALGOL or FORTRAN. However, functional calls ane:
very similar to LISP: they return the value of the last expresstoh evaluated. :

, The evaluation of variables and handling of arguments is also similar to (deep
bound) LISP. The system associates values ‘w_é.th variables by maintaining a list of -
variable/value pairs called an association hsr in each pair, the first item is a variable -
and the second is its value. To find the value for a particular variable, the system
examines pairs starting from the head of the association fist and returns the value
associated with the first pair whose variable is the one sought. If no value is found on the

- association list, the system examines the variable to see if a value has been attached to it
using the #v (for value) attachment.™ If no value is found, an unbound variable error
" message is displayed. ' |

14 Smce attachments to concepts are global, thls mechanism allows us to gwe vanables global

.. values.

The XLMS Interpreter 37

Fig. 12. BNF Grammar for the XLMS Interpreter

{subroutine-call> ::= [(<plan-name>*c¢ <input-output-sequence>)]
<functional-call> ::= [(<plan-name>*c <input-specifier>,)]
{subroutine-definition> ::= [(<plan-name>*d <input-output-sequence>)

[method: #g <method-specifier>]]

<function-definition> ::= [(<plan-name>*d <input-output-sequence>)
[method: #qg <method-specifier>]]

{method-specifier> ::= <method~stép> | <method-step>,<{method-specifier>
<method-step> ::= <{subroutine-cali> | <{functional-call>

{plan-name> ::= xlms-concept

{input-output-sequence> ::= <{input-specifier>,<output-specifier> |

{input-specifier>,

<input-specifier> ::= <null-seq> | <input-sequence> | <input-item>
{input-sequence> ::= [<input-sequencel>] | [<input-item>,]
<input-sequencel> ::= <input-item>,<{input-sequencel> |

{input-item>,input-item>

input-item> ::= <xIms-variable> | <functional-call>

{output-specifier> ::= <(null-seq> | <output-sequence> | <xlms-variable>
Coutput-sequence> ::= [<output-sequencel>] | [<{xIms-variable>,]
<output-sequencel> ::= <xIms-variable>,<output-sequencel> |

{xIms-variable>,{xIms-variable>
{xIms-variable> ::= xIms-concept

<null-seq> ::= []

MINT provides a number of basic primitive operations for constructing and
taking apart XLMS structures, for performing arithmetic operations, and for controlling
program flow. Most of these functions are typical system primitives—their meanings
should be clear and they will not be discussed. Two potentially confusing operators will
be described here. Other more specialized operators will be discussed when they

become relevant in the remainder of the thesis.

38

Fig. 13. Examples of Calls
[{foo*c A,[8,C,D])] — subroutine foo with input oannd outputs of B, Cand D.

[(fool*c [A,B,C],)] — functional subroutine with inputs A, B and C.
[(foo2*c [],)j — functional with no inputs.

[(foo3*c [A ,B71.[1)] — subroutine with 2 inputs no outputs — rare
[(foo6*c [].[])] — subroutine with no inputs or Gutputs — even rarer

[(food*c (foo5*c [A,]).B)] — subroutine whose input ls'the .oulput of the
functional foo5 and whose output is b.

MSETQ is used for setting variables. It is similar to SETQ in LISP but with two
differences. First, the order of the arguments is reversed since inputs precede outputs in
the MINT interpreter. Second, when a new value is given to a variable, the new value is
pushed onto the front of the association list. This amounts to rebinding a variable every
time a new value is given to it. This eonstrains the brogrammer’s ability to cause
side-effects to variables and tends to enct)urai;:;e a programming style that changes
variables explicitly rather than by side éffect. '

MIF-THEN is used to control program flow The arguments to MIF-THEN consist
of a two- or three-part sequence. The first element is a predicate which is evaluated. I it
returns [true], the second element of the sequence is evaluated Otherwise, the third
element (if present) is evaluated. Other control operators (Such as case and cond
statements) have been defined, and they can be used by the XPLAIN system, but the
need to employ them has not arisen in the area of Digitalis Therapy that we have
concentrated on.

When a call is made, the interpreter finds the appropriate plan to execute by
searching up the kind hierarchy startmg from the llk of the call (that is, the plan name)
; “until it finds a subroutme-defmition or a functlon defmition The mterpreter then bmds
up the input arguments, executes the plan and lf the plan is a subroutme, bmds up the
" output arguments. Bindings are pushed on the assomation hat when the plan is entered
- and popped off when it is exited.

The XLMS Interpreter 39

As the interpreter executes programs, it can selectively create a trace of the
execution of that program. Individual plans can be marked to indicate whether or not
they should be traced, or to indicate that the plans they call should or should not be
traced. A global variable may be set to denote that everything should (or should not) be
traced. To record the executicn of a plan, the interpreter creates a new individual
instance of the concept [event]. The call and method used to execute the call are
attached to the event, as well as the value of the system’s association list on entrance
and exit. This makes it easy to re-create the variable environment under which the plan

was executed. Events also record the value returned by functional calls.

A simple XLMS method written by the automatic programmer for determining

whether decreased serum potassium exists appears below:

[(((DETERMINE-WHETHER*O (DECRCASED*C SERUM-K))*I 1)*D [[SERUM-K,T,7)
[METHOD: #Q (MLESS-THAN*®C
[[SERUM-K, (THRESHOLD*R (DECREASFD*O SERUM-K))T1.1)1]
This method has one input [serum-k] and no outputs, hence, it is a functional

subroutine. The method has one step, which is a call to the system primitive
[mless-than]. That function is passed two inputs: [serum-k] and [(threshold*r
(decreased*o serum-k))]. Since it is the last (and only) call executed in the method,

the value returned by [mless-than] will be the value returned by the subroutine for

determining whether decreased serum-k exists.

40

3. Creating the Performance Program by Refinement

This chapter describes and motivates the design of the automatic programmer
used by the XPLAIN system. The first section of the chapter describes the knowledge
sources that the system needs to write the program. Later sections detail how the
programmer itself works and show how it refines the portion of the Digitalis Advisor that

checks for digitalis sensitivities.

The reader should realize that the primary motivation for this thesis was
explanation, not automatic programining. The automatic programmer was only carried
through to the extent required to show the feasibility of our ideas about exp!anation.15
However, we feel that several interesling ideas have emerged from the synthesis of
explanation and automatic programming. Most importantly, the use of two distinct

interacting knowledge sources: the Domain Model and the Domain Principles.

3.1 Knowledge Sources: the Domain Model and Domain Principles

This section describes the Domain Model and the Domain Principles. As the
name suggests, these components of the system depend on the application domain and
are the parts of the system that would have to be changed if the application area

changed.

The Domain Model represents the characteristics of the domain. In the case of
digitalis therapy, these are the physiological effects of digitalis and other related
substances on the patient. While this information is needed to figure out how to give
digitalis, it is not enough. Another source of knowledge is needed—one. that can outline

the process of drug administration, subject to constraints imposed by the Domain Model.

15. For a more extensive discussion of issues such as the structure of automatic programming
systems, plan selection, constraints and constraint propagation the reader should see
[Barstow77, Barstow80, Balzer77, Green79, Long77, Manna77].

Knowledge Sources: the Domain Model and Domain Principles 41

In the introductory chapter, we mentioned that medical students seem to
experience the same sort of split between knowledge concerned with process and
knowledge that is static. During the first two years of medical school, they learn a
tremendous number of facts about the human body, yet it is hard for them to begin
treating patients. What they lack is an understanding of the process of actually treating
patients. During the last two years of medical school they acquire these processes by
actually participating in the care of patients and by being instructed by senior members
of the hospital staff. In a sense, they acquire a common sense understanding of what is
involved in treating a patient. Domain principles are intended to supply knowledge of
exactly this sort. They are used by the program writer as it creates the performance

program by refinement.

3.1.1 The Domain Model

The Domain Model is a representation of what the system knows about the
characteristics of its application area. In the version of the system being described here,
the Domain Model is a (primarily causal) representation of the system’s knowledge of the
physiclogical actions of digitalis. Thus, it tells what an increased level of digitalis may be
expected to cause, what factors may increase sensitivity to digitalis, and so forth. In the
remainder of this subsecticn, the general characteristics of the Domain Medel will be
described, illustrated by examples from the domain of digitalis therapy where
appropriate. The reader is cautioned that | do not yet regard the existing primitives of
the Domain Model as a complete set in the sense that they are sufficient to represent any
knowledge, rather the primitives presented here should be regarded as stepping stones

on the way to a larger, more complete system.

Figure 14 is a simplified version of that part of the Domain Model concerned
with factors that may make a patient more sensitive to digitalis. (The figure also appears
in Chapter 1.} In this diagram, arrows represent causality. From this figure we can see
that decreased potassium and increased digitalis both cause increased automaticity.
While the figure may give some feeling for the sort of information we seek to represent
and how we have represented it, there are a number of subtleties which must be dealt
with but are not indicated in the figure. To understand how these situations are handled,

we must take a closer look at the actual XLMS notations that are used.

42

The causal relationships in the Domain Model are represented as causal links.
In the XPLAIN system, links have the general form: :

[{(<link-type>*b <sourced)*e <destination>)]

dlink-type> indicate$ the type of the link and <source> and <destination> have their
obvious meanings. Thus, the causal relatronshrp between decreased serum k and
increased automaticity would be expressed as: ’ - '

[{(causal-link*b (decreased*o serum-k))‘e (increased‘o'aulomaiicity))]

Notice that the causal link above is actually an XLMS concept rather than just a pointer.
The fact that it is a conceptualized link means that we can place attachments on the link,

give it slots, and so forth, just as we can for any other concept and thereby further
describe causal relationships using the same sorts of facilities used for other concepts ’

For example, one thing we would like to be able to describe is the way that two
causal links with a common destination interact. We know that increased serum calciUm |
and decreased serum potassium both cause mcreased automatrcity and we can easily
represent these in XLMS, but we need a way of expressmg the relatronshaps between

Fig. 14. The Domain Model

4

Increased Digitalis

i} |

Decreased Conduction : - increased -Automaticity

D T

Sinus Bradycardia ~ Change to V. Fibrillation

Increased Ca Decreased K

The Domain Mode! 43

these relations. For example, if the two relationships are causally additive'® we need a

way of expressing that fact.

In general, in the XPLAIN system, we can express interrelationships between
links by characterizing them as elements of that inter-relationship. For example, we can
express the additivity of the causal links between serum potassium and serum calcium

and increased automaticity in the following way:

[(additive-relation*i 1)
[1ink-element: c#e ((causal-link*b (decreased*o serum-potassium))*e
{(increased*o automaticity))
({causal-1ink*b (increased*o serum-calcium})*e
{increased*o automaticity)}]]

3.1.2 Domain Principles

The major features of domain principles will be briefly outlined here and detailed more
extensively later when their use in relation to the writer is described. Currently, domain
principles come in two flavors: those that refine a single node of the refinement structure
and those that transform the program structure. The first type is depicted in graphical
form in Figure 15. The three major features are outlined here, and described in greater
detail below: 1) A goal, which may contain pattern variables, tells what this principle can
do. The plan finder (described below) matches this goal against the sleps in the
refinement structure which are waiting to be refined. 2) A domain rationale, which is
matched against the domain model by the pattern matcher. This is in a sense an
additional specification for the program, telling the writer what cases must be considered
for the given domain model in refining the goal. 3) The prototype method, which is a set
of steps to be instantiated by the system. These are the refinement of the goal, and are
placed under it in the refinement structure. The second type of domain principle is
similar to the first with a few exceptions. This type of domain principle has no domain

16. If two causal relations have a common destination (such as increased automaticity) and the
causal relations taken together cause more of the destination to occur (or cause it to be more
likely to occur in the case of a state change) than either of the relations by itself, then we say that
these relations are at least causally additive.

44

Fig. 15. A Domain Principle

Against

if the observable deviation exists
.then: reduce the drug dose
else: maintain the drug dose

Goal: (anticipate*o (toxicity*s (drug*r pattern))) -~-~-------~- K
1
i
Domain Rationale: i
1
'
|
Observable Deviation Increased Drug V-
1
!
|
L !
1
; . X
Dangerous Deviation :
I
I
I
Matched i
Prototype Method: |
I
i
I
|
l
1
v

€ e

Dorﬁain’ Model

Retinement Structuse

rationale. The goal of this principle may make reference to steps wamng to be refmed
The prototype method may contain active elememts17 whrch transform the execution '
order of the steps to be refined and which may add new steps to be refrned in addihon

17. In the first type of domain principle, the prototype method was static. . That is, it was:
instantiated by just creating a structure or structures. with the:-patiern variables replaced by their

value or values. In the second type, the prototype meuwd maybeaprogmﬁebemm ’
which returns the instantiated structure

Domain Principles 45

to the features above, both forms have constraints associated with them (described

below) which limit their applicability.

3.2 The Pattern Matcher

The pattern matcher in the XPLAIN system was written by Ramesh Patil and the
author. 1t can find all the structures in the knowledge base that match a pattern
structure. It can also be used to compare a patiern structure with a structure in the
knowledge base to determine whether they match. The specification of various types of
patterns is described below.

3.2.1 Specifying a Pattern

A pattern in XLMS is much like any other structure in the knowledge base. For
example, a pattern that would match a causal-link between two different disease states
might appear as:'®
[(pattern*i 1)

[structure: #e [((causal-link*b disease-state:1)*e disease-state:2)]]

[predicate: #e
[(mnot*c (mequal*c [disease-state:1,disease-state:2])},)1]1]

Pattern 1

There are two variables in Pattern 1: [disease-state:1] and [disease-state:2]. A
concept is a variable if and only if its tie is *r and its cue is a pattern. The ilk of the
concept indicates where matching should start in the knowledge base. With some
exceptions, to be a successful match, a variable must have the same attachments and be
tied to the same concepts (recursively). The header of the pattern is the concept
attached by #eto [structure:].

18. The ties *b and *e will be explained in Chapter 5.

46

Different instances of variables matching individuals are indicated by placing a-
number after the : as in [disease-state:1] which expands to [{{disease-state*r
<pattern>)*i 1)] Any concept which is under [disease-state] will match this
variable. For any pattern, only those variables which are tied or attached to the structure
will be matched. '

3.2.1.1 Sequences

The pattern matcher will also match sequentes of vanables or constants. For -
example, the pattern: . : .

[(pattern*i 2) ‘
[structure: #e [{(predicate:*c [(msum*c
[summum—genus:1,51:mmwnf;gen,us:2],),])]]] 3 ’
will match all calls to predicates which have the sum of two items as input. The variables
are [predicate:] [summum-genus:1] and [summum-genus:2]. Due to a slight
peculiarity in the way sequence matching is implémented, a saquence cannet be the top:
level item in a pattern. ¢

3.2.1.2 Kleene Operators: Kstar, Kplus and Kor

To match arbitrary repeats of sequence}'ellements or sub-sequences, the KSTAR
and KPLUS notations may be used, which stand for Kleene star and Kleene plus,
respectwely For example,

[(kstar*i foo),]
will match all sequences which consist solely. of zero or more FQOs. [(kstar*i
[a,b,c])] will match sequences such as [a«b,c,a,b,¢,a.b,e] Note that some subtle .
things can occur if the structures of the pattern sequences are changed slightly. For
example, [(kstar*i [a,b.c],)] matches [[a,b,c]:[a,b.c],[a,b,c]] not
fa,b,c.a,b,c,a,b,c]. KPLUS is the same as KSTAR but requires at least 1 match for
the match to be successful.

KOR is the way of specifying a disjunction in the pattern. The general form is
[(kor*i [alternatel,alternate2])]. In matching, the match will suceeed-if either

alternate1 or alternate? is found.

Kieene Operators: Kstar, Kplus and Kor 47

3.2.1.3 Predicates

After a structure is found that matches the pattern, the pattern matcher invokes
the MINT interpreter to evaluate the predicates associated with the pattern. If all of them
return TRUE, the structure is added to the list of successful bindings. Otherwise, it is

rejected.

3.3 The Program Writer: How it Works

In this section we will trace the operation of the Program Writer as it writes the
portion of the digitalis advisor that anticipates digitalis toxicity. To understand the
example program synthesis to be presented, the reader may wish to review the section

on Digitalis Sensitivities in Chapter 1.

3.3.1 Synthesizing the Performance Program

Figure 16 gives an overview flowchart of the Writer.'® The Writer synthesizes
the performance program by refinement from an abstract, high-level specification. As
the Writer runs, it creates a refinement structure which is a goal tree tracing its
refinement of the program. Consider the synthesis of the code required for adjusting the
dose of digitalis because of possible toxicities. When the system starts this synthesis,
there is just one node in the structure, a high level description of what the performance

program is to do. For this example, the top level goal is:%°

[(anticipate*o (toxicity*f digitalis))
[input: #e [(dose*r digitalis) #m variable]]
[output: #e [({(dose*r digitalis)*f adjusted)
#t (dose*r digitalis)
#m variable]]]

19. This figure leaves out a few details that will be discussed later in the chapter.

20. Remember that for this example, we are just synthesizing a portion of the digitalis advisor. If
we were synthesizing the entire advisor, the top goal would be [(administer*o digitalis)], and its
refinement structure would include the goal of anticipating toxicity.

48

Fig. 16. The Program Writer

Choose Step

to Refine

Already
Created a Method for.
this Step?

Find Domain Principle k.—_ :

Meets Constraints?

Yes

Instantiate Plan

——% Create CalltoPlan |

Add New Step to
Steps-to-Refine
Remove Step Just
Refined

BERE R T E S . 0 2L i v e

Synthesizing the Performance Program 49

This statement says that the system needs to write a procedure that will anticipate
digitalis toxicity. The procedure will be supplied with one input, the dose of digitalis
[(dose*r digitalis)], and will produce one output, an adjusted dose of digitalis [((dose*r
digitalis)*f adjusted)]. In general, a call may have more tha'n"one’(or no) inputs or
outputs attached by #e to the input and output roles of the call. The ordering of the
inputs and outputs does not matter to the system, because the binding of the inputof a
call to the input of a domain principle is done by pattern matChing which does not
depend on ordering.?' #m is a meta-characterization. Here, both the dose of digitalis
“and the adjusted dose of digitalis are meta-characterized as variables (as opposed to-
constants, for instance). '

Variable names in a procedure may be chosen according to different criteria. -
Sometimes, a programmer chooses a variable name that will indicate what the variable
is. For example, the dose of digitalis is what the [(dose*r digitalis)]} refers to. Sometimes,
however, a variable name is chosen to indicate the role that the variable plays within the
procedure, or its characteristics in relation to the procedure. ‘In the goal above, the
adjusted dose of digitalis is still a dose of digitalis, the fact it has been adjusted really -
relates more to its role within the calling procedure than to anything intrinsic within the
variable itself. The choice of names is significant because the proceduré will be
translated into English, and these names will be used in that translation.

We would like to be able to give the person writing domain principles the same:

sort of flexibility in.choosing variable names ‘that a person writing procedures enjoys.
That is, he should be able to describe a varlable based on what it is or based on the role
it plays in the procedure, as we described in the preceding paragraph. Allowing this
flexibility can have a positive effect on the quality of the explanations. Bkut \there‘is_a‘;} ‘
problem. Since a pattern matcher is used to match up arguments, if the arguments are
named by the role they play within a procedure, then variables which are sypposed to
match may not if they play different roles in the called and calling procedures.

21. Note that this contrasts with the MINT interpreter where the ordering of input and output - .
arguments is important since the binding of arguments is based on. position. The program writer.
converts the more general, but slower, pattern matched form to- me faster posmonal form »of‘; '
argument passing as it writes the performance program. : AR o

50

The #t attachment is called the type attachment, and was introduced 1o
address this problem. The fact that [(dose*r digitalis)} is.)attachedxby\ the type:
attachment to [{((dose*r digitalis)*f adjusted)] indicates that the:adjusted dose. of digitalis:
is still really just a dose of digitalis. Although thefact that it.igadjusted may be usefulin
reasoning about the higher level procedure, the.calied procedure need only worry about
the fact that it deals with a dose of digitalis. This.information is-used by the patiern .
matcher as it attempls to find a suitable domain principle for accomplishing the goal.
That is, the péitern matcher performs maiches based on the.intrinsic nature of the..
variable, rather than the role it plays within a progedwe. f there were no.type
attachment on [((dose*r digitalis)*f adjusted})], then for a sugceasful match; the
output of the domain principle would be have to be some sort of adjusted dose of
digitalis, but with the type attachment it only has to'be some sort: of dose-of digitalis.

- The system maintains a list of the Igaves of the rafinement structure calted .
*steps-to-refine”. The entries in this list are eithar. calls or program fragments which.
must be transformed (called transformations). When the:system staris, just the toplevel.
callig on the list, and the system halts when the list becomea.empty. -

When the system starts an entry is selectsd from steps to retme‘ to be
refined. Selection is done as follows: If there are any, transformgtcons on the list, the, ﬂrst‘
one is selected. If there are no transformatlons. the entry following the one selected on
the previous iteration is selected.?? Tnanafonnaﬁoas are selected before other. entries
because their refinement may- constrain the wey i whioh the. other entries may be
refined. The system now has {o find a domain principie.to-help # refine the entry.

3.3.2 Finding a Domain Principle

As was mentioned above, the header of & domain principle is a concept which
contains pattern variables and which indicates what the domain principle can do. ‘In this
example, the Writer needs to find a domain principle whose header matches the goal of

22. Thisis a veryA simpie scheme for selection, of: m A we had tndaal with.backup (whieb :
we don't, but see diacussion at the end of. umchuurj ammmamnd dgormmwould ;
clearly be desirable to keep the system efficient.: :

Finding a Domain Principle 51

anticipating digitalis toxicity.

The system finds those domain principles that match in the following way: First,
the system examines the concepts under the node [(prototype-method [*r])].2® For each
of these concepts, if the call is under the cue of the concept in the kind hierarchy,?* and
no other more specific concept® can be found, the pattern matcher is used to determine
whether the domain principle matches the call. If the match succeeds, the pattern
matcher returns a list of bindings showing how the pattern variables in the domain
principle were bound to the literals within the call, and how the inputs and outputs of the
call were bound to the inputs and outputs of the domain principle. The domain principle

that matches in this case appears in graphical form in Figure 17 and the XLMS

Fig. 17. Domain Prinicple for Anticipating Drug Toxicity

Goal: Anticipate Drug Toxicity

Domain Rationale:

Deviation increased Drug

||

Dangerous Deviation

Prototype Method:
If the Deviation exists
then: reduce the drug dose
else: maintainthe drug dose

23. Since all domain principles must have a prototype-method role, the goal (or header) of ali of
them will appear as the cue of some concept under this node.

24. Actually, the test reterred to here cannot be done with the simple underp primitive of XLMS.
Since the domain princip'e header will contain pattern variables, the check must be done by
breaking apart each concept into its ilk, tie and cue, and performing the test recursively on the
parts. When a pattern variable is encountered in the header, the test is modified to see whether
the part of the call being tested is under the ilk of the pattern variable.

25. Thatis, one which is deeper in the kind hierarchy.

52

representation of the same principle appear in Figure 18. The individual parts of the -
domain principle will be discussed in the following paragraphs.

The matcher matches just the header and the inputs and outputs against the
call:®

[(anticipate*o (toxicity*f (drug*r !pv)))

{inputt #e [(dose*r (drug*r !pv)) #m variable]]}
[outputr #e [((dose*r (drug*r !pv))*f . '
(adjusteu*for (get-all-matches*c aspectl,)))
#m variable
#t (dose*r (drug*r !pv))]]]
After the match succeeds, the pattern variable (drug r Ipv) will be bound to digitalis, and
the input and output variables will be bound to the correspondmg variables in the call.
Note that the output variable has a type attachment. As was explained earlier, when a
variable in a call or domain principle has a type attachment, the attachment is the object
that is matched, rather than the variable itself., If the match of the type attachment
succeeds, then it is bound to the thing it matched, and the actual variables are also

bound.

Even if the match is successful, there may be additional constraints that must be
satisfied before the principle can be 'accepted as ;aiig‘)‘ﬁcable to this situation. This
principle illustrates one type, the domain rationate, others will be discussed later.

3.3.3 The Domain Rationale

The domain rationale is a pattern which is matched against the domain model.

It serves two purposes. First, it is a constraint on the acceptability of the domain
| principle, because if no matches are found, the domam principle is rejected. Second, it
can also be thought of as a further Speelﬁcatm of the peffafmance pfogram We wm(\
discuss the latter point in more detail later in this section ‘ ' ‘

26. Concepts with cues of !pv are pattern variables. Thus, [(drug®r- fpv)] is a pattern
variable which will match anything which is a kind of drug, just like [(drug*r pattern)]

The Domain Rationale 53

Fig. 18. Domain Principle for Anticipating Drug Toxicity
(GOAL)
[(anticipate*o (toxicity*f (drug*r !pv)))
[inputt #e [(dose*r (drug*r !pv)) #m variable]]
foutputt #e [((dose*r (drug*r !pv))*f
(adjusted*for (get-all-matches*c aspectl,)))
#m variable
#t (dose*r (drug*r !pv))]]

(DOMAIN-RATIONALE)

[domain-rationalet #q
[(pattern*i 100)
[structurer #e [chainl = ((causal-chain*b deviationl)*e deviation2)]]
[deviationl = (deviationtl*o [aspectl = aspectttl]) #c finding]
[deviation2 = deviationt2 #f dangerous]
[chain0 = ((causal-chain*b (increased*o (drug*r fpv)))*e deviation2)]
[predicater #e (mand*c
[(mnot*c (pat-equal*c
[deviationl,
(mquote*c (increased*o (drug*r Ipv)),)].).).
(new-match*c deviationl,),
((determine-whether*o
((additive*T causally)*f least))*c
(form-set*c [chainl,chain0],),)
1.)
111

(PROTOTYPE-METHOD) .
[prototype-method: #q [(if-then*c [(determine-whether*o
(value*c deviationl,))],
[{((reduce*o (dose*r (drug*r !pv)))*due-to
(value*c deviationl,))
[inputr #e [(dose*r (drug*r !pv))
#m variable]]
[outputt #e [((dose*r (drug*r !pv))*f
(adjusted*for
(value*c deviationl,}))
#m variable
#t (dose*r (drug*r !pv))]
11,

[(maintain*o (dose*r (drug*r !pv)))
[inputt ffe (dose*r (drug*r lpv))]
[outputt #e [((dose*r (drug*r !pv))*f

{adjusted*for
(value*c deviationl,)))
#t (dose*r (drug*r !pv))1}]
#m computer-viewpoint]
111

Pattern variables are denoted either in the manner described above, or by having cues of
pv.

54

The domain rationale of this domain principle appears below:

[domain-rationalet #q
[(pattern*i 100)
[structuret #e [chainl = ({causal-chain*b deviationl)*e deviation2)]]
[deviationl = (deviationtl*o [aspectl = aspectttl]) #c finding]
[deviation2 = deviationt2 #f dangerous]
[chain0 = ((causal-chain*b (increased*o (drug*r !pv)))*e deviation2)]
[predicater #e (mand*c
' [(mhot*c (pat-equal*c
[deviationl,
(mguote*c (increased*o (drug*r !pv)).)1}1.),).
(new-match*c deviationl,),
({determine-whether*o
((additive*f causally)*f least))*c
(form-set*c [chainl,chain0],),)
1.)
11]

As was described above, patterns have several parts. The structure of this pattern is a
causal chain, [chainl], leading from a deviation, [deviationl], which can be
characterized as a finding to another deviation, [deviation2], which is dangerous. In
addition, [deviation2]is also involved in another chain, [chain0]. [chain0] requires
that anything that matches deviation2 has to be caused by an increased level of the drug
(in this case digitalis, of course). Put more simply, this pattern is looking for a finding
which causes something dangerous where that something dangerous is also caused by

an increased level of digitalis.

To place further restrictions on the match that would be difficult to express
within the structure, this pattern has three predicates (embedded within an and) that
must evaluate to true for a particular match to succeed.?’ The first predicate specifies
that [deviationl] cannot be the increased drug level. We cannot allow that match
because we are looking for other factors which increase the danger of giving the drug.

The second predicate, new-match, fails if the current value of its argument
[deviation1] is the same as the value it had on a previous match. This requirement

ensures that for each successful match, the value of [deviation1] will be different from
its value in all other successful matches. This predicate is necessary because a

27. [mand], [mnot] and [mquote] are MINT primitives which perform similar functions to their
LISP counterparts.

The Domain Rationale 55

particular deviation may cause more than one dangerous deviation. For the purposes of
this principle it is sufficient that it cause one dangerous deviation. The third predicate
requires that the causal effects of the increased drug level and [deviationl] must be at

least causally additive. This predicate checks to see whether the causal links in
[chainl] and [chain0] are at least additive®® at the node where the two chains merge

together.

The notion of the domain rationale as a partial program specification is
something that seems to be unique to the XPLAIN system. Generally, in other automatic
programming systems, the specifications for the program are very closely tied to the
eventual form of the program, and must be specified before the implementation of the
program begins. Here, the specifications for the program are not supplied explicitly in
advance by the user of the automatic programming system, but the specifications are
derived by matching the domain rationaie against the domain model as the refinement of

the program progresses.

Taking this approach permits considerably more flexibility and generality. The
creator of the domain model only has to worry about trying to encode the knowledge of
the domain. He does not have to worry about how that knowledge will be used in the
creation of a program (as he might if he were trying to create program specifications).
New information can be added to this model and incorporated into a new version of the
performance program by re-running the automatic programmer. A particular piece of
knowledge might be used for several purposes {or not at all). For example, information
about the effects of increased digitalis levels is used by the system both in anticipating

toxicity and in assessing toxic and therapeutic reactions.

In some ways this is reminiscent of rule-based systems—one adds more
knowledge by adding more rules, and the rule interpreter puts them together to solve
some particular problem. But there are some key differences. In most rule-based
systems, the rule interpreter is fixed. In the XPLAIN system, the interpretation of the
knowledge in the domain model depends on the domain principles which are not fixed

but can easily be changed. This makes it easy to experiment with different

28. Effects which are synergistic would be considered to be more than additive.

56

interpretations of the same knowledge (see Chapter 4).. Additionally, if we include
special-purpose domain principles together with general-purpose ones the system can -
easily bring to bear what amount to special-purpose interpreters to handle special
situations. These features would be more difficult to implement within the framework of.
raost rule-based systems.?® '

The domain rationale is one of the mechanisms used in the XPLAIN system for
tying the independent domain model into the spe_cificaﬁon of the performance program.
Yet, the domain rationales themselves can be quite general, and are really independent
of the particular domain model. The domain pringiple used by the systera for anticipating
digitalis toxicity could be used with different domain models to accomplish the same task
for a number of other drugs.

Returning to the problem of anticipating digitalis toxicity, when this domain
rationale is matched against the digitalis domait}i model, there are three matche& Not
surprisingly, these turn out to be the three seositivities that were described above,
namely, increased serum calcium, decreased serum potassium, and cardiomyopathy.
When the pattern matcher returns the matches, it binds up not only the pattern variables,
but it returns the entire structure that matched as well. Thus; it is easy to determine that
decreased serum potassium matched because it causes increased automaticity which .
may in turn cause a change of the ventricular rhwthm to ventricular fibrillation. Once all
the matches have been obtained, the system .is ready to.instantiate the prototype
method.

3.3.4 Instantiating the Prototype Method

The process of instantiating the prototype method is relatnvely snmple the
system constructs a copy of the prototype method m the plan with the variables replaced
by their values. This new structure is ca!led the mstannated method There are some

29. Davis [Davis76] introduced the notion of meta-rules, which bear some similarity to domain
principles. However, meta-rules were used only for ordering and pruning the application of lower
level rules within the context of a standard rule interpreter. Domain principles can control
interpretation to a much greater degree. . . ‘

Instantiating the Prototype Method 57

special functions which are recognized by the instantiator. These functions are run by
the instantiator using the MINT interpreter, and the concepts returned by the functions
are placed in the instantiated method.

[value] is one such function. It takes one argument which is a variable and
returns the value of that variable. This function is not needed by the instantiator (since
variables appearing in the prototype method are automatically evaluated) but it is needed
to prevent parts of the prototype method from being confused with the structure of the
domain rationale pattern.®® Another function is the [get-all-matches] function. This
function has a pattern variable in the domain rationale as an input argurnent, and
constructs an ordered set consisting of all the concepts that matched the variable.®'

Other functions will be discussed as they appear in other domain principles.

So far, things seem pretty simple. But what if the domain rationale matches
several structures? How should the prototype method be instantiated then? If several
matches have been found, then there are several situations where the prototype method
is the appropriate thing to do, but these various actions must be integrated into a whole.
(See Figure 19.)

In the case under consideration, increased serum calcium, decreased
potassium and cardiomyopathy are all situations where the dose of digitalis should be
reduced from the standard dose. Yet the prototype method does not teil what should be
done if a patient has both increased calcium and cagdiomyopathy. The correct thing to
do depends on the domain knowledge again. If the inter-relationship between increased
calcium and cardiomyopathy is such that both of them together make the patient even
more sensitive than either one of them by itself, then the appropriate thing to do is to
make a bigger reduction when both of them are observed. On the other hand, it could be

30. This could occur if a pattern variable in a domain rationale pattern were placed in the
prototype method without being an argument to the [value] function. The pattern matcher
when checking the ilks and cues of the pattern variable against some candidate concept would
find that the pattern variable was used as the ilk or cue of some concept in the pattern variable,
and would require that the candidate have the same ilk or cue. That usually resuits in the
rejection of otherwise correct matches. There is a similar notation in Conniver.

31. Sets in the XPLAIN system have the form [{set*i a,b,c)]. The elements of the set are
ordered by the XLLMS beforep relation. This simplifies comparisons of sets.

58

Fig. 19. A Split to. be Resolved

If: increased Serum Ca " 1f: Decreased Serum K
then: Reduce Dose thén: Reduce Dose
else: Maintain Dase _ - else: Maintain Dp,ee

Note: To keep the figure simple, only 2 sensitivities are shown

that the sensitivities aren't additive or that a reduction for one takes care of any of the
others that may exist. In that case, a different soft of program structure is required. The
system needs some representation for the curreﬁt?state s0 that it can reason about what
sort of program structure might be appropriate. -

For each of the matches of the domain rationale, the system instantiates the
prototype method. It then places each of these. instantiations into a larger structure
called a split-join. The split-join is placed in the refinement structure and domain
principles are used to transform it into executable program structure A split-j 1om is a
concept whose ilk is split- -join and whose cue rs a seguence wrth as many elements as
there were matches. The elements. of :this seauenee are: ﬂ'mmseiuw sequences. of two
elements, where the frrst element |s the lnstantratlon of the prototype méthod and the
second element is the correspondmg structure that matched the domain-rationale. The
split-join for the example appears in Figure 20. if only one match is found for the Vdomam'
rationale, or if there is .no domain rationale ai eil in the domaih principle, the system iuét

Instantiating the Prototype Method

instantiates the prototype method and does not make up a split join.

Fig. 20. An Example of a Split-join

[(SPLIT-JOIN*O
[(MLF-THEN*C
(DETERMINE -WHETHER*O CARDIOMYOPATHY),
[(((REDUCE*0 (DOSE*R DIGITALIS))*DUE-TO CARDIOMYOPATHY)*I 1)
[INPUT® #E (DOSE*R DIGITALIS)]
[OUTPUT* #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR (CONDITION*R
(MUSCLE*F HEART))))1],
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 1)
[INPUTT #E (DOSE*R DIGITALIS)]
[OUTPUT® #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR (CONDITION*R
(MUSCLE*F HEARY))))]1),
(((CAUSAL-CHAIN*B CARDIOMYOPATHY)*E (CHANGE*O (TO*0 V-FIB)))*I
CARDIOMYOPATHY, (INCREASED*0 AUTOMATICITY),
(CHANGE*O (TO*0 V-FIB)))],
[(MIF-THEN*C
(DETERMINE-WHETHER*Q (DECREASED*0 SERUM-K)),
[(((REDUCE*0 (DOSE*R DIGITALIS))*DUE-TO (DECREASED*0 SERUM-K))*I
1)
[INPUT® #E (DOSE*R DIGITALIS)]
[OUTPUT* #t ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR SERUM-K))]].
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 2)
[INPUT+ #E (DOSE*R DIGITALIS)]
[OUTPUT* HE ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR SERUM-K))]]).
(((CAUSAL-CHAIN*E (DECREASED*0 SERUM-K))*E
(CHANGE*O (TO*Q V-FIB)))*I
(DFCREASED*0 SERUM-K), (INCREASED*0 AUTOMATICITY),
(CHANGE*0 (T0*0 V-FIB)))].
[(MIF-THEN*C
(DETERMINE -WHETHER*O (INCRCASED*0 SERUM-CA)),
[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (INCREASED*0 SERUM-CA))*I
1)
[INPUT® #E (DOSE*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR SERUM-CA))]],
[((MAINTAIN*O (DOSE*R DIGITALIS))*1 3)
[INPUTt #E (DOSE*R DIGITALIS)]
[OUTPUTt #E ((DOSE*R DIGITALIS)*F (ADJUSTED*FOR SERUM-CA))]]).
(((CAUSAL-CHAIN*B (INCREASED*0 SERUM-CA))*E
(CHANGE*O (T0*0 V-FIB)))*I
(INCREASED*0 SERUM-CA), (INCREASED*0 AUTOMATICITY),
(CHANGE*0 (TO*0 V-FIB)))])]

60

3.3.4.1 Cleaning Up Some Details

Once the prototype method has been instantiated, there are still some details to
be done. A procedure head must be defined, the steps of the instantiated method must
be linked to it, a corresponding call must be created and transformed into something that
can be executed by the interpreter, and those steps of the instantiated method that

require further refinement must be identified and placed in the refinement structure.

To define the procedure head, the head of the domain principle is instantiated

and a new instance is made of that concept. In the current case, it is:

[((anticipate*o (toxicity*f digitalis))}*i 1)]

Next, the inputs and outputs associated with the domain principle are instantiated and
collected into a input-output sequence which can be interpreted by the MINT interpreter.
Using this input-output sequence together with the instantiated head of the domain

principle, a procedure definition is created:

[(((anticipate*o (toxicity*f digitalis))*i 1)*d
[(dose*r digitalis),],
[((dose*r digitalis)*f
(adjusted*for
(set*i
(condition*r {(muscle*f heart)), serum-k, serum-ca))),])]
A [method] slot is created for the procedure definition, and the already instantiated steps

of the procedure are attached to it.

A call is then created to correspond to the procedure. This is done by placing
the variables in the original call (the one that was pattern-matched) into an input-output
sequence so that the variables in this sequence match the ones in the input-output
sequence of the procedure. A new call is then created whose ik is the ilk of the

procedure definition and whose cue is the input-output sequence:
[({(anticipate*o (toxicity*f digitalis))*i 1)*c
[(dose*r digitalis),], [((dose*r digitalis)*f adjusted),])]

Naturally, (as this example illustrates) the variables in the call and procedure definition
that correspond to one another are not necessarily identical, representing the fact that
they may play different roles in their respective procedures. This newly created call is

Cleaning Up Some Details 61

then attached (by [# d]) to the old call that was in the steps to be refined.%?

Finally, it is necessary to find those steps in the instantiated steps which need to
be refined further. The system does this by examining the instantiated steps and their
inputs. Each of these concepts can be either a variable, a call to a system primitive, a
function or subroutine call which needs to be further refined, or a constant. Variables
are easy to identify because they are meta-characterized as variables.®® Variables do not
have to be further refined so the system essentially ignores them at this point. System
primitives are functions which do not have to be refined because they have already been
written by someone else. The calls to system primitives have ties of [*c], and they are
identified by those ties. Constants are also identified by being meta-characterized as
such. Constants can either have a value or be unbound. Concepts with values are
ignored. If an unbound constant is encountered, the writer asks the system builder®* to
suppty a value for the constant. The writer then gives the constant the supplied value.
Everything else is assumed to be a step which needs to be further refined, and is placed
in the list of steps to be refined. Finally, the system removes the step that was just
refined from the list of steps to be refined.

So where are we now? The system has just refined the goal of anticipating
toxicity and has produced a split-join and a number of other goals which must be further
refined. Although the list of steps to be refined is longer than it was when we started, we
have made progress toward writing the performance program, and we're ready to begin
the process of refining again by choosing a new goal and refining it.

32. When executing the program, the MINT interpreter looks to see if a step it is about to execute
has a [# d] attachment. [f so, it traverses the attachment and executes the attached step instead.
33. Thatis, the concept [variable] is attached to all variables using the { # m] attachment.

34. That s, the person running the writer program.

62
3.3.5 Refining a Split-join

The system chooses to refine the sdit-join next. The split-join is chosen
because it is a transformation, that is, it will residi in.a transformation of the program
structure. It is necessary to refine transformations. first because they may impose
constraints on the way other steps will be refined. Regall that the reason the split-join
was created in the first place was that there. ;we{eqseveral -malches for. the domain
rationale which resulted in several instantiations.of the prototype methed which have to
be integrated into a unified whole. The split-join js an intermediate representation of the
various instantiations which the system uses in reasoning about how: to put things
together. The goal of the domain principle that matches appears as:

[(split-join*o (kplus*t
[kps = .
(if-then*c [(determrne whether*o
((deviation*r !pv)*o (aspect*R 'pv)))]
[adjustl = (adjust*R lpv)-
[redi = inputt #e [((level*r 'pv)*I 1)
. #m variabte]]
[redo = output?t » :
#e [((level*r !pv)*I 2)
#m variable]]],
[adjust2 = ((adjust*r lpv)*i 2)
[inputt #e ((level*r !pv)*i 1)]
[outputt #e ((Tevel®*r lpv)*i 2)]]

(causal-chain*r !pv)j.)]

Even though the pattern match suéceeds, there are sbme constraints
associated with this domain principie which must be satisfied before the domain
principle can be used to transform the program structure. This domain principle will
produce an executable piece of code by serializihg.the parts of the split join (see Figure
21). That is, the checks for increased serum cagi:ium, decreased serum potassium, and
cardiomyopathy will be performed in turn and the outputs for the first reduction will be
connected to the second, and so forth. Thus, if multiple sensitivities exist, muitiple
reductions will be performed. The constraints check whether this serialization is a

reasonable sort of resolution. There are two general types. of constramts domaln
constraints and refinement constramts

Refining a Split-join 63

Fig. 21. Resolving a Split By Serialization

If: increased Serum Ca
then: Reduce Dose
else: Maintain Dose

L/

- If: Decreased Serum K
T =) | then: Reduce Dose
else: Maintain Dose

Note: To keep the figure simple, only 2 sensitivities are shown

Domain constraints are tests to see whether a domain principle is applicable
given the characteristics of the domain. In this principle, there are three domain
constraints. These constraints are attached to the domain-constraint slot of the domain
principle:

[domain-constraintt c#e [((independent*f causally)*c
(get-all*c ((deviation*R !pv)*o

(aspect*R 1ipv)),),)]
[((determine-whether*o
((additive*f causally)*f at-least))*c
(get-all*c {(causal-chain*r Ipv),),)]
[(mequal*c [(set*r !pv),
{get-ali*c [(aspect*R lpv)].)
1.)11

The first constraint checks that all the deviations (e.g. increased serum
calcium, decreased serum potassium and cardiomyopathy) are causally independent in
the sense that none of them causes the other. This is done by examining the domain

model to see if there is a causal chain leading from any of the deviations to any other.

64

Get-all is a function which returns all the matches for a sequence pattern variable.®

The second constraint checks to see whether the effects of the causal chains
are additive. That is, before we are willing ta make multiple reductions for muitiple
sensitivities, we must be sure that the occurrence of two deviations is worse than just
one by itself. Two chains are taken to be additive if they have a common terminus and if
at the point where they }oin, the links leading into the joining nod‘!aare noted as being in
an additive relatiohship. '

To understand the third constraint, we first-have to describe the method-input
and method-output roles in the split-join domain principle. When the system instantiated
the prototype method for anticipating digitalis toxicity, none of the prototype method
fragments. had output variables which corresponded to the output variable for the
method as a whole. The output for the method as a whole was:

[((dose*r digitalis)*f
(adjusted*for
(set*i v
(condition*r (muscle*f heart)), serum-k, serum-ca)))]

But, as can be seen in Figure 20, the outputs -from the program ifragments are doses
individually adjusted for serum-k, serum-ca, and the condition of the heart muscle. As
part of the process of integrating these fragments into a whole, the split-join alsQ-has to
incdicate what should be the output variable fér the method. As of now, the output
variahle for the method is never set by any of the fragments. In the split-join domain.
principle, the method-input and method-output are matched against the input and output
for the recently defined method for anticipating c_}igit‘aﬁs toxicity. The third constraint is
placed here to ensure that thé aspects that are being checked are the same ones that
the dose claims to be adjusted for. ‘

Refinement constraints are the other type of constraints used in this domain
principle. Like domain constraints, refinament constraints determine whether or not a
particular domain principle is applicable, but if it is found to be applicable, they also

35. See the section on the pattern matcher for a discussion of matching sequences and
sequence pattern variables. (Section 3.2)

Refining a Split-join 65

. constrain the way in which further refinements may be made.

In this particular case, we are resolving. the split-join Ly serializing the
reductions. Whether or not this is a valid way to proceed depends in part on how the
reductions themselves are refined. If the reductions are to be performed by subtracting
some quantity from the dose, then there is some\:bossibiﬁty that the dose will eventually
become negative. That, of course, 'doesn’t make sense. 50 the principle for resolving.
the split-join would have to insert a step at the end which would check for a negative
dose and do whatever was proper. On the other hand, .if the dose is reduced by
multiplying the original dose by some. constant less than one to produce a new dose,
then the dose can never become negative, and no.check is required. If we are going to
resolve the split-join now, we need a way of constraining the resolution of the steps that
perform the reduction. The refinement constraint for this principle is:

[refinement-constraintt c#e [(for-each*i 1)
[constrained-callt #e ‘adjusti]
[predicatet #e ‘
(mor*c : ;
[(look-for-c-attachment®*c
[found-plan,
(mquote*c identity-operator,)].),
(1ook ~for-c-attachment*c
[feund-plan,..
(mquote*c
' muttiplicative-operator,)],)
1.)1] . :

[(for-each*i 2)
[constrained-callt #e adjust2]
[predicatet #e
(mor*c
[(look-for-c-attachment®c
[found-plan,
(mquote*c identity-operator,)],),
(1ook -for-c-attachment*c
[found-plan,
(mquote*c
multiplicative-operator,)])
111 '

To check this cbnstraint the system tries to find brinciples for refining the three
instances of [adjust1] and [adjust2] (whlch are the calls to reduce and maintain the dose
respectlvely) so that the principle is charactenzed ‘as being either “a
multiplicative-operator or an identity-operator. If a principle is found for each of the
calls, the refinement constraint is satisfied.

A the principles are foumnd, e systerm rewembers them by associating e
with the appropriate entry in the list of steps-to-be-refired. Each entry in t‘he list of
steps-to-be-réfined is itself afist wi’(h ﬂ’téfoﬂomﬁng Yormat:

(<step-to—r“ef)'ne> <doma1n-:p‘-r1nc1p.1e> <ref1‘n‘ement—biﬂﬂi?ﬁ'gs->
{domain-matches> . <constraint-listd)

Onlly the <Step-to-réfine> entry is required. The domainipridipte> is the domain
privieiphe Witich shiould be used 1o refine the (tep-torefined. The Gefinement-bindingsd
are fhié bivdings made by the pattérn-matcher whien the stép and doiain principle were
refited. The <domain-matchesd> are the mbiches e system Townd Tor the
diemath-ratiomale of thie domain principle (if %t Was one). Finaly, e Cconstraint-iist> is a
tist ‘of refinement ‘coristraints imposed by higher Jevel domain prirciples wpon the
sefection of this <domain-principled Tor refining the ‘teptosrefiimed. An ‘entry in the
canstraint list has this structure:

(<step-imposing-constraintd
<principle-imposing-constraint> . <{constraintd)

In designing the writer, it was decided to retain the step and principle imposing
the constraint to allow the system tosextricate itself from blind refinement paths, but the
system really does ot get into predicaments of this sort-in refining the digitalis advisor.
Accordingly, the implementation ‘6f a "backep” capability has not been completed. The
addition ‘of sach-a capability will be discussed ‘in the coriclusion of this chapter.

3.8.5.1 ‘instantisting the Prototype Method of a Split-Join

The prototype method ‘of the -principle for anticipating drig toxicity was a
teriplate. It eontained no active eléments. The prototype méthod for the split-join is
different because it contains elements which must be interpreted, and which actively
transform the ‘split-jolh into an ‘executable program. ‘Fhéi[hétaﬁtiétbr~recognizes :these:
‘special forms. When evaluated by the MINT interpréter, they ‘teturn a concept that the

Instantiating the Prototype Method of a Split-Join 67

instantiator puts in their place.®® The various types of active elements are described

below:

[(create-sequence*c [<from-number>, <to-numberd, <index>, {concept-to-instantiate>],)]

This is an iterative function which creates a sequence of instantiations of the
{concept-to-instantiate>. Starting from <from-number>, the value of the <index> is
incremented on each iteration until the <to-number> is reached. The value of the <index>

may be examined while the <concept-to-instantiate> is being instantiated.

[(get-ali*c <sequence-pattern-variable>,)]

This function returns a set of all the matches of {sequence-pattern-variable> where
{sequence-pattern-variable> is a pattern variable embedded within a kstar or kplus.37

[(get-all-matches*c <domain-rationale-variable>,)]

This function returns a set of all the values that a <domain-rationale-variable> had in all

the successful matches of the domain rationale.

[(pappend-element-to-sequence*c [<sequence>,{element>],)]

This function appends <element> to the end of <{sequence> creating a new sequence.
One use for it is when the resolution of a split-join requires that some additional step be
inserted.

[(index*c [<sequence-pattern-variable><n>],)]

This function selects the nth match of a <sequence-pattern-variable> embedded in a

kstar or kplus.

36. This distinction is similar to that between simple pattern replacement and computed patterns
in macro expansion.
37. See section on matcher (Section 3.2).

68

{{make-sat*c [<i>,£j>,<{sequence-pattern-variable>],)]

This function returns a set of the <> through <p-th matches of
{sequence-pattern-variable>.

[(pif-then*c <predicate>, <concept-to-instantiate1>, <c-oncept-to-instantiateZ))]

If <predicate> evaluates to [true] then the first concept is instantiated otherwise the
second. - |

[{pcase*c [<pred1>, <con1>], [<pred2>, <conD}], ..., [<predN>, <conN>})]

The predicates of each pair are evaluated in turn until one returns [true]. The concept of
that pair is then instantiated. '

The prototype method of this particular split-join uses the create-sequence
function to create a new method sequence which ig a serialized version of the original
split-join as shown in Figure 22.

Generally, an attempt has been made to'minimize the use of prototype methods
with active elements because they are much harder to explam The reason for this
~seems to be that one is forced to talk about two kinds of activities: the activity of
constructing the method, and the activity that the method is mtended to perform.

Completing the Implementation 69

Fig. 22. Method After Split-Jdoin Resolved

[(MIF-THEN*C
(DETERMINE =WHETHER*O CARDIOMYOPATHY),
[(((REDUCE*0 (DOSE*R DIGITALIS))*DUE-TO CARDIOMYOPATHY)*I 2)
[INPUTt #E (DOSE*R DIGITALIS)]
[OUTPUT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (CONDITION*R (MUSCLE*F HEART))))1].
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 4)
[INPUTt #F (DOSE*R DIGITALIS)]
[OUTPUTT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (CONDITION*R (MUSCLE*F HEART))))11).
(MIF - THEN*C
(DETERMINE-WHETHER*0 (DI CREASED*0 SERUM-K)),
[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (DECREASED*0 SERUM-K))*I 2)
[INPUTt #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (CONDITION*R (MUSCLE*F HEART))))]
[OUTPUTT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (SET*1 (CONDITION*R (MUSCLE*F HEART)), SERUM-K)))1].
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 5)
[INPUT® #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (CONDITION*R (MUSCLE*F HEART))))]
[OUTPUTT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (SET*I (CONDITION*R (MUSCLE*F HEART)), SERUM-K)))]1),
(MIF-THEN*C
(DETERMINE-WHETHER*0 (INCREASED*0 SCRUM-CA)),
[(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (INCREASED*O SERUM-CA))*I 2)
[INPUTT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (SET*1 (CONDITION*R (MUSCLE*F HEART)), SERUM-K)))]
[OUTPUTT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR
(SET*I (CONDITION*R (MUSCLE*F HEART)),
SERUM-K, SERUM-CAY))]].
[((MAINTAIN*O (DOSE*R DIGITALIS))*I 6)
[INPUTT #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR (SET*I (CONDITION*R (MUSCLE*F HEART)), SERUM-K)))]
[OUTPUT+ #E ((DOSE*R DIGITALIS)*F
(ADJUSTED*FOR
(SET*I (CONDITION*R (MUSCLE*F HEART)),
SERUM-K, SERUM-CA)))I])]

3.3.6 Completing the Implementation

Several steps remain to be refined. The reduce steps for the various factors
must be refined, as well as the steps which determine whether a factor exists or not, and

those which just maintain the dose. The reduce steps are all refined using the same

domain principle:

70

[{{({reduce*o {(dose*R lpv)*I 1))*due=to {{deviation®*R !pv)*I 1))
#c multiplicative-operator]
[inputt #e [doserl =
{dose*f (before o (adjusting*for ({(deviation*R !pv)*I 1))))
#t ((dose*R lpv)*I 2) #m variable]]
{outputt #e [doser2 =
(dose*f (after*o {adjusting*for. ((dev1atzon'R tpv)*l 1))))
#t ((dose*R lpv)*I 3) #m variable]] .
[prototype-methodt
#q [(msetq*c [(mproduct*c [doserl, ((constanx'f reduction)*for
((deviation*R !pv)*I 1))],),doser2])]]]
Although all are refined by the same domain principle, each of the refinements is
different and results in a different method. This i8 because the reason for the reduction
({deviation*R Ipv)*l 1) is part of the call. The difference between the methods is in the
reduction constant that is used. Each method has its own, tailored for the particular
sensitivity. As the system instantiates the pmtotype method tor each reduct&on it uses
the reason for the reduction to create a unique reductmn factor and asks the user for the

value of the factor. That is, when the system mstanhgtes the template:
((cohstant*f reduction)*for ({deviation*R !pﬁ)*l 1))

the pattern variable ((deviation*R lpv)*! 1) is bound by the pattern matcher to the
particular reason for this reduction (i.e. increased calcium, decreased potassium, etc.).
Since the newly created constant (i.e. [{{constant®f reduction)*f “(increased*o
serum-ca))]) is unbound, the person running thewnter EyStem is asked to enter a value
for it. The constant can also be pre-specified in the knowiedge base, in which case no
question will be asked. ‘

The refinement of the steps to determine whether the various conditions such
as increased calcium, decreased potassium, and cardidmyopathy exist proceeds in an
uneventful fashion. Unlike the reduction steps however, a differeht domain principle is |
used to refine each of the steps. The first two oondmcns are refined by similar
principles: the first one checks whether some aspect (here calc:um) has exceeded a
threshold supplied by the user of the Writer program, whﬂe the secqnd checks whether‘
the as|: : (here potassium) has fallen below a thresho%d The selection of which
principlc . employ is based on whether "increased" or "decrsased” appears in the call.

Completing the Implementation 71

Fig. 23. Principles to Determine If Increased or Decreased Conditions Exist

[(determine-whether*o (decreased*o (aspect*r !pv)))
[inputt #e (aspect*R !pv)]
[prototype-methodt qg#q
[(mless-than*c [[{aspect*R Ipv) #m variable]},
[(threshold*r (decreased*o (aspect*r !pv)))
#m constant]],)11]

[(determine-whether*o (increased*o (aspect*R !pv)))
[inputr #e (aspect*R !pv)]
[prototype-methodr q#q
[{mgreater-than*c [[(aspect*R !pv) #m variable]l,
[(threshold*r (increased*o (aspect*R !pv)))
#m constant]],)]11]

The problem of determining whether cardiomyopathy exists or not is a little
different, because there is no level that can be measured to determine whether the state
exists. Thus, the system uses a method which yields a program that just asks the user
whether or not cardiomyopathy is present. The system doesn’t select this principle when
trying to determine whether a state of increased calcium or decreased potassium exists
because the system always picks the most specific principle that it can find. For those
steps, the other principles are more specific because they appear lower in the kind
hierarchy of XLMS.

One additional interesting thing occurs in refining these steps. The reader may
have noted that the calls that appeared earlier in the chapter to determine whether these
various conditions existed never had any inputs. Yet the domain principles require
inputs. When matching, the pattern matcher does not require that all the inputs in the
principle be supplied by the call (although it does require that all the inputs supplied by
the call have some matching input argument in the principle). The system determines
the missing input by placing a call to the ask-user function when it creates a MINT-level

Fig. 24. Principle to Determine If a Condition Exists

[{determine-whether*o (deviation®*r !pv))
[inputt #e [(status*r (deviation*r !pv)) #m variable]]
[prototype-methodt q#gq
[(mequal#*c [(status*r (deviation*r !pv)),
{mquote*c present,)],)]]1]

72

version of the pattern-matched call. That is, the pattern matched call:

(DETERMINE-WHETHER*O (INCREASED*Q SERUM-CA))

becomes:

[(((DETERMINE-WHETHER*O (INCRCASED*0 SERUM-CA))*I 1)*C
[[(ASK-USER*C [(MQUOTE*C [SERUM-CA.1).1).1.1)1

To refine the step that maintains the dose, we just need a domain principle that
will set its output to its input. The simple principle shown in Figure 25 suffices. Notice
that this principle and the call don't make any mention of the reason for maintaining the
dose. It makes sense to talk about reducing the dose due to something or other, but it
makes less sense to give a reason for maintaining the dose. That seems o be because
rnaintaining the dose is the normal case, hence in a certain sense, the maintain step
could be thought of as a no-op.®® Since there is no need to distinguish the methods
based on the reason for maintaining the dose, all three calls could use the same method.
To allow this to take place, the method for finding a domain principle to employ is
actually a little different than what we have described so far. Before the system searches
for a domain principle that matches the step it's trying to refine, the system looks to see if
a method has already been refined which would work. This is fairly simple to do. The
system looks for the definition of a method which is inferior (in the kind hierarchy) to the
call.®® The system then checks to see whether the principle used to refine the found
method could also be used to refine the current call. This is done through the usual
mechanisms of pattern-matching and constraint checking as described above. |f the

Fig. 25. Principle to Maintain the Dose
[[(maintain*o ((dose*r !pv)*i 1)) #c identity-operator]
[inputt #e [dosem2 = ((dose*r !pv)*i 2) #m variable]]
[outputr #e [dosem3 = ((dose*r !pv)*i 3) #m variable]]
[prototype-method?

#q [(msetg*c dosem2,dosem3)]]]

38. And in fact, the explanation routines don’t mention it for exactly that reason.
39. Orto the ilk of the call if the call is an individual.

Completing the Implementation 73

principle is suitable, the system does not instantiate it, but rather it creates a MINT-level
call to the found method and links that to the call that was to be refined. The call to be
refined is then removed from the list of steps to refine. In addition to saving some time
and space by preventing the system from performing needless refinements, this scheme

also allows the system o refine recursive domain principles.*®

3.4 Future Needs

This section has outlined the automatic programmer used by the XPLAIN
system. This programmer has proved to be adequate to synthesize major portions of the
Digitalis Advisor, and to demonstrate that the use of an automatic programmer can
significanily enhance the explanatory capabilities of a system. However, while it has
shown that the approach is feasible, the automatic programmer itself is not complete.
Currently, the programm writer has no backup (or fix-up) capability. If it could not find a
sluitable domain principle to refine a step, the current version of the writer would be
stuck. It seems that some sort of dependency-directed backtracking [Doyle79,
Stallman76] which treated defined procedures in a manner analogous to the way
assertions are treated in Doyle’s Truth Maintenance System might be a reasonable way
to attack this problem. Another lack in the current system is that it cannot fix plans
which are nearly correct [Sussman75]. For example, there are times when it may be
necessary to modify methods which have already been refined based on something
which comes up in the refinement of a deeper node. At least one such instance does
come up in the Digitalis Advisor, where it is discovered that it is necessary to determine
whether the patient is experiencing nausea, anorexia, or blurred vision (possible toxic
signs) before giving any digitalis so that a baseline comparison will be possible. The
need for the baseline information (which must be gathered during the initial session)
doesn’t become clear until toxicity is being evaluated (which occurs during the feedback
session).

40. However, the need for recursive principles never came up in this domain.

74

4. Assessmg Toxtcrty

. Wheneuer the dasage of drgrtahs is being admsted, it ig necessary. tememtor tba
patient closely to sea what effect (if any) the change ia having .on the patient. . In the..
original Digitalis Advisor, there were two sets of routings for assessing ibe drug’s effects;
One set was corncerned with the harmful toxic effects of digitalis, while the other dealt |
with the beneficial or therapeutic effects. Each set of routines produced an assessment
of the degree to which the patient was showing toxic and therapeutic effects Based on

¥

these assessments, the system recommended corrective actions if they were
appropriate. . | |

Thrs chapter describes how the portron of the Dtgrtalrs Advrsor that assesses :,-
toxrcrty was rmptemented usmg the XPLAtN system Actualty, two rmplementatrons are
descnbed the frrst is based more on causalrty, whtte the second rs more emprrlcal
Interestmgly, the domam model used in the prevrous chapter only requrred a few
addmons to be used for assessmg toxrcrty e “

g

" The same overall plan was used in the two implementations deer:nbed here.
The user'is asked whether the various toxic eﬂect’s that di@tﬁtd ‘hay cause have beén
observed in the patient. The assessments of thess individuafmi‘dmgs are then combined
into an overall assessment of toxicity:' ' 'The'’ ient s a ‘number’ representrng the'
degree of toxicity and the individual’ asseésméntk are cdmbmed tcgether ‘using
numericat techntques “The two implementatiéns ‘differ in the” way ‘the combrﬁaﬁan”
functions work, andtheydmerin whatgefscmmnadwthm - » '

HEP,

4.1 The Causal Implementation

The hrst lmplementatron (whrch we uttrmately rqactedl was actuatly the more‘)
ambitious of the two. In this rmplementahon, we wanted the causaﬁty network of the
domain model to help dictate what should be combined with what and how they should
be combined. The domain model used by both implementations appears in Figure 28.4'

41. This figure (being graphical) leaves out a few important detaits which will be eupptied later

The Causal Implementation

Fig. 26. Domain Model For Toxicity

Increased Digitalis

Increased Ca

Decreased K

N.

|

Decreased Conduction

Increased Automaticity

*

AV Dissociation —_—

| AV Block (Wenkebach) | _|Bigeminy”

PAT with Block , ;
—{ Sinus Bradycardia

*

PVCs

Non-Paroxysmal -

* ——1 AV Block (2nd Degree) —

*

Double Tach ’

Junctional Tach

*Findings of Toxicity

Salvos of PVCs *

e

Ventricular Tach

Note that this domain model is just an augmented version of the one used in the previous

chapter.

In this implementation, the idea was to have the system recursively descend the
causal paths which emerge from increased digitalis and produce code which would ask
for the findings and then combine these findings at the next higher level in the domain
model. For example, the assessments of those things caused by increased automaticity
such as pvcs, bigeminy, and so forth would be combined together to form an assessment

of increased automaticity. Increased automaticity and decreased conduction would then

be combined to produce an overall assessment of digitalis toxicity.

The top level method, the one to assess fimsiings of digitalis taxicity: has:the .
following domain rationale:

[domain-rationalet #q
[(pattern*i 200) I '
[structurer #e [({clink*b (1nérease¢‘e (drug*r tpv)))‘a dev1atton6)]]
[deviation6 = deviationtl] :
[predicatet #e (mor*c -
[(Took-for-f- -attachment®c ‘
fdeviationG, (mqu&te‘c éangorous)]),
(exists*c .
[(pattern*i 201)
[structuretr #¢. :
((causal- cham*b {value*c Qen tions,)')*e
[devtattontt #f dangeroqs])%};i])]

?

1]

This pattern finds those devrattons which are “directly causeqt by :ncreased d:gctahs

which are themselves dangazous or may Cause. sosmﬁmgdanggrws to occur The
exists predicete returns Wue if a match can-be feund-for its pattern afgumqez:ttw The
look-for-f-attachment laoks to see whether its second argument is attaehed to-its firat -

by #f. The p;otot§pe methad just sets up calls to assess the matches for [deviation6]:

[prototype-methodt #q ’
[(assess*o ((value*c deviationb,)*f (induced*o (by*o (drug'r tpv)))))
[outputt #e [(assessment*r ((value*c deviation6,)*f
(induced®o (by*o
(drug®*r ltpv}}))) #m variable]]]]

As was the case when anticipating toxicity, there may be several matches for the
domain rattonate, and if there are, the system creates a spht ;pm The system resolves
the split-join by serializing the various assessments and then addmg an addmonal step at

the end to combine the assessments together.

Havmg moved one step down the causal tmks, there are three poss&bmtnes for
each Qt the deviations. Flrst the deviation may be a tmdmg. in wmch case the system
can ask the user dlrectty whether it extsts or not Second tbe dev&atson may not bea |
tmdmg, but it may cause another devtatton to occur ln that case the system should
check the other dewatton Fmalty it may be that tha dewatnon to be assessed is nenther a

42. Note the causal-link rather than causal-chain.

The Causal Implementation 77

finding nor does it cause any other deviations. In that case, the system looks for warning
signals—things which lead to the dangerous deviation. For example, for the purposes of
a computer system, ventricular fibrillation cannot be considered a finding*® nor does it
cause anything of interest to the program. It is extremely dangerous, however. There
are some warning signs which indicate that there is danger of entering ventricular
fibrillation.** To assess the danger of ventricular fibrillation the system assesses these

warning signs.*®

To deal with the three situations outlined above, the system has three domain
principles. Each principle has the same goal, but the predicates and the domain
rationales associated with them make the system select the correct plan. The method
used in the first case, when the deviation is a finding, is to just ask the user.*® In the
second case, the system just recurses down the causal links another step and assesses
~ the deviations there. The actions taken in the third case have already been described.

The only problem that remains is to find a way of combining the various
assessments together. We planned to use two different types of combination functions
here. For combining the assessments of deviations which were directly caused by the
same higher level deviation, we planned to use a function which would return the
maximum (or worst) assessment. Our reasoning was that a doctor would feel that it was
appropriate to reduce the dose if any of the dangerous things that can result from
digitalis administration occurred. Taking the maximum reflects this reasoning better
than using, say, a weighted-sum. However, when combining the assessments of

43. While ventricular fibrillation is observable using an EKG, no doctor is ever likely to enter it as
a finding on a computer terminal. When the heart is fibrillaling, it ceases to pump blood, and the
patient with untreated ventricular fibrillation will die in less than five minutes. Thus, if a doctor
observes ventricular fibrillation, his responsibility is to attempt to de-fibrillate the patient, NOT to
enter findings on a computer terminal.

44. For example, premature ventricular contractions (PVCs) are usually not particularly
dangerous to the patient. However, an increased number of PVCs in conjunction with digitalis
administration is dangerous in the sense that it indicates that level of digitalis in the patient is
reaching the point where a dangerous arrhythmia may occur.

45. The warning signs are required to be findings.

46. A more sophisticated method could be used here which would attempt to determine the
correct answer using the other two methods if the user responded that he didn't know the answer.
(This approach would be very similar to that used in MYCIN)

g

78

warnings signs, we felt that.a weighted-sum was the appropriate thing to use, since.it. .
reflects fo some degree the process of combining gvidence.*’. Unfortunately, this part of
the system was only parially implemented, since we deciiad to.adopt the smpirical
approach before this one was completed.

4.2 The Empirical implementation

When we outlined our design for the causal impiemeﬁtaiion to Dr. Pauker, the
cardiologist we consult with, he was uncomibrtaﬁié with it, f’eeiing that'it did not capture
the reasoning he performed in trying to assess tOxicﬂy Ina patient He felt that when
assessing’ digitalis toxucnty he looked for signs in thrée generai classes: highiy speciﬂc’ ,
signs of digsiaiis toxicity, moderately specific sugns, and sugné 'with' low spec:f’city (aiso'
called non-specific signs).*® The original Digitalis Advisor followed this strategy and
weighted the various findings according to their tyﬁetopmauce an’ assessinent of
digitaiis toxicity To implement this algorithm usmg the XPLAIN system the only
changes that had to be made in the domain modei were to mdicate (by charactenzation
ties) the specificity of the fmdlngs The domain pnm:ipies requ:red more extenswe:
modification. This should not be at all surpnsmg smce we aren’t changing the medicai;
knowledge, we are changing our interpretation of that knowiedge ’

For this implementation, the top level method to assess digitalis toxicity just sets
up the calls to assess the highly specific - s:gns moderatély specffic signs and
non-specific signs and to then combine them together. The three different asséssment
steps are all refined by the same domain principle because that principle has the degree
of specmc:ity as a variable in its goal ‘ , v

[(assess®o ((findings®r (toxicity*f (drug'r ipv)))*f (spcciﬁc‘n ipv)))]

The domain rationale looks for all findings wiuch are causod by mcremd dngitaiis and

47. Of course, a number of pther plans (such as cenaim:y factors Lsmnliﬁe]ﬁ}) ¢ouid: have been
used .as well. This automatic. programming approach: lends: itself well.te experimentation with
different methodologies because the use of domain: WMM user 1o mﬂke cbanqm a!»
a higher conceptual level.

48. Viewed from a probabilistic perspective, we wouid sy that: the pfabwiiity of: digitaka tO)ﬂCity
waukd be high given tha.observation of a highly specific sign, mm&h@obwv&ﬁmda
moderately specific sign and low given the observation of & non.specific sign. o

The Empirical Imnplementation 79

have the degree of specificity specified in the call:

[domain-rationalet #q
[dr3 = (pattern*i 300)
[structuret #e ((causal- chatn*b (increased®*o (drug*R 'pv)))*e
[dev2 = deviationtt])] _
[(devZ‘charactertzatton
((finding*r (toxicity*f (dru‘g"R "'pv)))*f (specific*R !pv)))]11]

The prototype method then sets up calls to assess these various tmdmgs For most of
the findings, the system just asks the user whether the fmdmg is present or not. The
code to do this is meta-characterized as havmg a computer vrewpornt because it is too
low Ievel to be of mterest to doctors Thus, this code rs not normally explamed to
doctors.*® The only exceptron is PVCs. PVCs are premature ventncular contractrons
The system has special knowledge concermng how to assess them A computer

generated explanatron of how that routine works appears m the next chapter

49, Although the system can be mstructed to explain it rt an explanatron is desrred Vrewpomts »
are more thoroughly described in the next chapter.

PPN L A [SR

80

5. Generating Explanations = . T U S T T

This chapter describes the operation of the routines that generate Euglish text.
automahc programmer made lt possxble to achleve qurte hrgh qualrty Englrsh output with
a simple generator. The generator should really be wewed more as.an engmaerlng effort
that attempts to produce acceptable Engllsh rather than as a generatron system thatv
encodes deep Imgurstrc prmcrples The mam thrust ot thls thests has been to mvestlgate:
ways ot representrng the knowledge necessary to 1ust|fy expert consultmg systems Adw
gener ator is necessary to demonstrate the capabrlttres of the approach bemg espoused
here but the generator itself has not been the focus of the research 50 The generator is :
really composed of two types of generators at two levels The low level phrase ..
generator, “which has already been partrally descnbw in Chapter 2 constructs phrases "
directly from the XLMS representatlon Hrgher level answer generators set up thev
appropriate environments and call the lower level generators in an appropriate order to
produce answers to specific questions. The reader may wish to review the section in
Chapter 2 on the phrase generator before continuing.

5.1 The Phrase Generator Revisited

The tie generators described in Chapter 2 are general purpose in the sense that
they are not oriented toward a particular application domain. The generators described
here are more domain specific in that they are oriented to the problem of explaining
program structures (although they are not oriented to the domain of digitalis therapy at
all). In addition to the generators, some of the additional facilities of the phrase
generator are described at the end of this section.

50. See [Mannéo, McDonald&O]

Generator for *C 81

5.1.1 Generator for *C

*C is the attachment used to indicate a call in the syntax of the XLMS
interpreter. The ilk is the name of the called procedure and the cue is a sequence of
input/output arguments. If the call is not a special form (such as [mif-then], [msetq],
etc.) the system just generates the English form of the call preceded by "the system". If
"the system” has already been established as a referent the pronoun "it" is used

instead. For example, the call:

[(((assess*o (toxicity*f dicitalis))*i 1)*c
[1, [(assessment*r (toxicity*f digitalis)),])]

is cutput as:

"T'he system assesses digitalis toxicity"

If the ilk is [if-then], English for the predicate is generated preceded by "if"
and followed by the action to be taken if the predicate evaluates to true and the action
taken (if any) if it is false. Thus, the concept:

[(MIF-THEN*C
(DETERMINE-WHETHER*O (DECREASED*0 SERUM-K)),
(((REDUCE*O (DOSE*R DIGITALIS))*DUE-TO (DECREASED*0 SERUM-K))*I 2),
((MAINTAIN*Q (DOSE*R DIGITALIS))*I 5))]

Generates the phrase:

"If the system determines that decreased scrum-k exists, it reduces the dose of digitalis due to
decreased serum-k.">’

Other special forms such as [mless-than], [mquote], and so forth are handled
in a similar straightforward manner. [msetq] is also handled in the obvious way unless

the input is a mathematical function. In that case a special routine is invoked which is

51. This example also illustrates the suppression of computer details. The [maintain] step, which
appears in the XLMS code, does not appear in the generated English text. That is because the
step has been meta-characterized with the flag [computer-viewpoint]. This feature will be
described in greater detail later.

82

described in section 5.2.5.

5.1.2 Generator for *E

The *e tie is used with the *b tie to represent links and chains of various types.®?

The form of a link is:
[((causal-Tink*b cardiomyopathy)*e (increased*o automaticity))]

This says that cardiomyopathy causes increased automaticity (review chapter 2 for a
more extensive discussion of the representation.) Chains are a representation for a

series of links—a path from one object to another:

[((causal-chain*b cardiomyopathy)*e
(change*o (to*o (fibrillation*f ventricular))))]

This concept indicates a causal chain from cardiomyopathy to a change (of the
ventricular rhythm) to ventricular fibrillation. By design, concepts with ties of *e always
have ilks that are concepts with ties of *b, and concepts with *b ties are not used in
isolation, so a generator for *b is not really needed: the generator for *e can take care of

the whole affair.

If the concept to be generated is a link, the system generates a phrase for the
head of the link, followed by a phrase generated from the type of the link (the ilk of the ilk
of the concept) followed by the tail of the link (which is the cue of the concept). For
example, the link (not the chain) given above generates the phrase "Cardiomyopathy
causes increased automaticity.”

In the current version of the system, chains occur only in the patterns of domain
rationales. That is not to say that we would envision limiting them to that use, but only
that that is the only use we found for them in the application area. Since chains are
found in patterns, there are two situations that arise in converting them to English.

52. As it turns out, in the current version of the system, all chains are causal chains because
other types of chains were not needed to get a working system. While it would not be difficult to
program the generator to work with other types of chains, the current generator only handles
causal chains.

Generator for *E 83

Either we wish to describe the pattern as a pattern, or we wish to describe the sequence
of links that the pattern matched. Chains which are to be described as patterns look
much like links, and they are described using a similar process to the one described for
links. If we wish to describe the sequence of links that matched the pattern, the situation

is a little more complicated.

When the system finds a match for a chain, it creates a new concept. The ilk of
this concept is a copy of the pattern chain with the head and tail replaced by the
concepts that form the head and tail of the found chain. The cue of this concept is a
sequence of concepts which are on the path from the start of the chain to its end. For
example, when the system is looking for a path from increased digitalis to a moderately
specific finding of toxicity, it creates the following concept when it finds such a path

between increased digitalis and increased pvcs:

[(((CAUSAL-CHAIN*B (INCREASED*0 DIGITALIS))*E (INCREASED*0 PVCS))*I
(INCREASED*0 DIGITALIS),
(INCREASED*0 AUTOMATICITY), (INCREASED*O PVCS))]

The pattern matcher binds this concept to the pattern chain as its value. The generator
describes the path by constructing sentences detailing the chain link by link. iIf there are

just two items in the path the generator produces:

A causes B.

If there are 3 items, it adds a relative clause:

A causes B, which causes C.

If there are more than three, it breaks things up into sentences:
A causes B, which causes C. C causes D.

The system locates the actual links that link the items together. Thus, if one of the links

indicates possibility rather than definite causality, it is possible to say so:
A may cause B.

In addition, the system keeps around a list of the link relationships that have been

84

described. if a link is being-described which causes the samg thing as another recent!y
described link, the system inserts "also":

Acauses_B. CalsoxtaﬂsesB.

This list of described relationships also allows the system to stop describing a path if it
has already explained the remainder of it. The sample session in the introductory
chapter gives a further illustration of these features.

5.1.3 Dealing with Articles

The generator is designed to insert articles where it is appropriate to'do so. in
general, it can be quite complex to decide whether or not to use an article and whether
the definite or indefinite article is appropriate. A relatively simple heuristic states that
objects which are mass-nouns do not take articles while those that are not do.
Unfortunately, one can easily think of numerous violations of this rule. Fortunatasly, this
rule has been adequate for explaining program structures of the Digitalis Advisor.

When a word is defined in the knowledge base, a ﬂag is placed on it if an article
should be used with the word. If no flag us found on the concept bemg generated the
system examines concepts above to see if they are flagged. Thus, lower level concepts
inherit the flag from higher concepts, however, inheritance occurs only up to the level of
a concept with a tie of *s. If no flag is found or-an over-riding fag is found, the system
does not insert an article.®

The described solution still has a problem. If the concept [block] is flagged to
indicate that an article should be Inserted, the system wifl ganerate the phrase "the red
the block™ when asked to generate a phrase for the concept [(hlock'f red)] This
occurs because the system inserts an article because it inherits the flag from [block]
when generating a phrase for [(block*f red)] then. it insarts another article when
generating a phrase for [block]. To get around this prablem, there are actually two top

53. The inheritance is limited because this appears to reduce the number of ekplicit over-rides
that must be inserted in the knowledge base.

Dealing with Articles 85

level phrase generators used by the system. One of them checks whether an object is
flagged and inserts an article if it is, and the other does not. By having the generators for
the various ties make calls to the appropriate top level generator, it is possible to avoid
the problem of inserting articles in inappropriate places. For example, by having the
generator for *f call the phrase generator which does not insert articles when it
generates a phrase for the ilk of a concept with a *f tie, the problem described above is

avoided.

The problem of deciding whether to use the definite or indefinite article has
been addressed by examining those situations where each is appropriate. So far, it
seems to be appropriate to use the indefinite article only when describing patterns. In ail
other cases, the definite article is called for. While a more sophisticated system might
require a greater number of distinctions, this solution has proved adequate for our

needs.

5.1.4 Viewpoints

The reader may recall that one problem with previous explanation systems was the
problem of computer artifacts. Computer artifacts are parts of the program which
appear mainly because we are implementing an algorithm on a computer. If these steps
are described to physicians, they are likely to be uninteresting and potentially confusing.
The introductory chapter gave some examples of these computer artifacts. In the
XPLAIN system, steps in prototype methods can be meta-characterized by certain
viewpoints.®* When a prototype method is instantiated, the instantiated steps will share
these viewpoints. As the XPLAIN system is generating an explanation for a step it
compares the viewpoint(s) of the step (if any) against a list of viewpoints which should
be filtered out and another list of viewpoints which should be included. If one of the
step’s viewpoints appears on the include list, that step is included in the English
explanation. If not, and one of the viewpoints appears on the exclude list, the step is
excluded from the explanation. |f the step has no viewpoint, it is included in the

explanation. This approach allows us to separate those steps that are appropriate for a

54. This can occur either during the refinement of a step from a higher goal, or during a
transformational refinement.

86

| }particular. audience from those that are not. Of course, the exclude and include lists may
be changed to reflect a changing understanding of the user's viewpoint.

Whnle this is a smple solution from the standpomt of generahon |t is a feasuble
one because we are employing an automatic programmer in the domam pnncsples, |
bring together and define for the system to use, oomputer ;mpiementatlon knowledge?
and medical reasoning knowledge. A domain pnnmple is thus the appropnate piace to _'
indicate what viewpoint show be taken on the knowiedge that it is composed of. By :
placing a viewpaint on a step in a prototype method, we cause all the. mstant_iatio'ns of
lhat step {and there are usually several) to share@;t.ha@t viewpoint. . If we were to try to.do
the same thing at the level of the perfarmance program (without an automatic
programmer) we would have to annotate each individual step—we couid not capture as
high a level of abstraction.

This result is consistent with the observation we made in Chapter 1, where we
stated that improvements in the quality of the explanations generated resulted more from
the use of an automatic programmer than from increases in the sophistication ‘of the’
generation routines. It should be pointed out, however, that while this solution allows the
system to customize its explanations based on a particular viewpoint or set of
viewpoints, the problem of deciding which weWpomt to present fo a pamcular user
remains open and is beyond the scopeof this thesis. ' ‘

5.2 The Answer Generalorg

This section will describe the higher level answer generators. When the user
asks for an explanation these generators find mmmm be exzplamed and
set up the appropriate environment for explaining them. ' o

Answering "Why" Questions 87

5.2.1 Answering "Why" Questions

One of our chief goals in this research was to have the XPLAIN system explain
why the performance program was doing what it was doing. In producing answers to
such questions, the system makes use of the knowledge in the Domain Model and the
Domain Principles as well as traces left behind by the automatic programmer resulting
form its creation of the performance program. Some of the capabilities of the system
were illustrated in the introductory chapter when the performance program was
anticipating digitalis toxicity. Additional capabilities are illustrated below from those
portions of the advisor that anticipate toxicity and assess toxicity.>®

Is the paticnt showing signs of cardiomyopathy? (yes or no): why?

The system is anticipating digitalis toxicity. Cardiomyopathy causes increased
automaticity, which may cituse a change to ventricular fibrillation. Increased
digitalis also canses increased automaticity. Thus, if the system determines that
cardiomyopathy exists, it reduces the dose of digitalis due to cardiomyopathy.

This explanation is similar to those in Chapter 1.
The remaining explanations are produced while assessing toxicity.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): why?

The system is assessing-the highly specific findings of digitalis toxicity. Increased
digitalis may cause paroxysmal atrial tachycardia with block which is a highly
specific finding of digitalis toxicity.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): overview

The system repeats the question, but the user wants an overview. This is
produced by describing the method for assessing highly specific findings
which was mentioned in the previous explanation.

To assess the highly specific findings of digitalis toxicity:

55. These examples all show the user questioning the system by entering a "why?" or
"overview" when it requests an input. It is also possible to obtain a justification of a particular
event by calling the LISP function JUSTIFY with the event as an argument.

88

1. The system assesses paroxysmal atrial tachycardia with block.

2. It assesses double tachycardia.

J. It assesses av-dissociation.

4. It combines the assessments of paroxysmal atrial tachycardia with
block, double tachycardia and av-dissociation.

This produces the assessment of the highly specific findings of
digitalis toxicity, which is used when the system combines the
assessments ol the highly specific findings of digitalis toxicity,
the moderately specific findings of digitalis toxicity and the
non-specific findings of digitalis toxicity.

To avoid leaving the user hanging, the system describes how the output of the
method will be used in a higher context. This is done whenever the output of
the method is something which is not likely to be familiar to the user. Thus, if
the output of a method were a drug dose. no additional explanation would be
generated (at least for a medical audience) because the user would be
presumed to be familiar with the notion of a drug dose.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): why?

Still curious, the user asks "why?' again. This causes the system to give an
explanation of the procedure that calls the procedure for assessing the highly
specitic findings. This explanation is much shorter, because the domain
principle used to refine the higher level procedure had no domain rationale.”®

The system is assessing digitalis toxicity. One step in doing that is to assess the
highly specific findings of digitalis toxicity.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): overview

This time the description is offcred at the level of the higher procedure.

To assess digitalis toxicity:
1. The system assesses the highly specific findings of digitalis
toxicity.
2. 1t assesses the moderately specific findings of digitalis toxicity.
3. It assesses the non-specific findings of digitalis toxicity.
4. it combines the assessments of the highly specifie findings of
digitalis toxicity, the moderately specific findings of digitalis
toxicity and the non-specific findings of digitalis toxicity.

56. Thisis explained in more detail later in this section.

Answering "Why" Questions 89

This produces the assessment of digitalis toxicity, which is used
when the system adjusts the dose of digitalis.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or
no): no

Is the patient showing signs of double tachycardia? (yes or no): no

Is the patient showing signs of av-dissociation? (yes or no): no

Pleasc enter the number of pves: why?

The system is assessing the moderately specific findings of digitalis toxicity.
Increased digitalis causes increased automaticity. Increased automaticity may cause
increased pves which is a moderately specific finding of digitalis toxicity.

Please enter the number of pyves: overview

To assess the moderately specific findings of digitalis toxicity:
1. The system assesses increased pyes.
2. It assesses bigeminy.
3. it assesses salvos of pves.
4. It assesses second-degree av-biock.
5. It assesses Wenkebach av-block.
6. It combines the assessnients of increased pves, bigeminy, salvos of
pves, second-degree av-block and Wenkehach av-block.

Picase enter the number of pves: 3
Is the patient showing signs of bigeminy? (yes or no): no
Is the patient showing signs of salvos of pves? (yes or no): yes

When a "why" question is entered, control passes to the routine that produces
justifications. This routine determines at what level the description should be given,
states what's going on in general, describes the domain rationale (if any) used in refining

the step being described, and finally describes the step.

90

5.2.1.1 Choosing the Level of Description

The system uses the viewpoint attachments to determine where to start the
explanation. The control stack of the MINT interpreter is available to the explanation
modules. The justification routine goes up the stack looking for the first procedure
which is not meta-characterized as an excluded viewpoint and which has no procedure
meta-characterized as an excluded viewpoint above it. If that procedure happens to be a
system primitive®” with a system primitive above it, then the system keeps going up the
stack until it finds a procedure which does not have a system primitive above it. For
example, in the sample session above, when the second question is asked, the control

stack is:

[((ASSESS*0 (TOXICITY*F DIGITALIS))*I 1)]

[((ASSESS*0 ((FINDINGS*R (TOXICITY#F DIGITALIS))*F
(SPECIFIC*F HIGHLY)))*I 2)]

[((ASSESS*0 PAT-WITH-BLOCK)*I 3)]

[(MIF-THEN*C
(MEQUAL*C [[(ASK-USER*C [(MQUOTE*C [(STATUS*R PAT-WITH-BLOCK),]).]),
(MOUOTE*C [PRESENT.])]. 1),
(MSETQ*C 1, (ASSFSSMENT*R PAT-WITH-BLOCK)),
(MSETQ*C A-ABS, (ASSESSMENT*R PAT-WITH-BLOCK)))
#M COMPUTER-VIEWPOINT]

[(MEQUAL*C [[(ASK-USER*C [(MQUOTE*C [(STATUS*R PAT-WITH-BLOCK),1).1),
(MQUOTE*C [PRESENT,1)].1)]

[(ASK-USER*C [(MQUOTE*C [(STATUS*R PAT-WITH-BLOCK),]),1)]

In this case, the [mif-then] has been meta-characterized as having a computer-viewpoint.
Therefore, the system will start giving its explanation at the next level up, at the

procedure that assesses PAT with block. This will be referred to as the current

description level. In contrast, if the exclude Ilist had not contained
[computer-viewpoint] explanation would have begun at a lower level, producing the
following explanation:

Is the patient showing signs of paroxysmal atrial tachycardia with hlock? (yes or

no): why?

The system is assessing paroxysmal atrial tachycardia with block. If the status of
paroxysmal atrial tachycardia with block is equal to present, the assessment of

57. System primitives include: [mif-then], [msetq], [mless-than], etc.

Choosing the Leve! of Description 91

paroxysmal atrial tachycardia with block is set to the assessment level for present
findings (1), otherwisc the assessment of paroxysmal atrial tachycardia with block is
sct to the assessment level for absent findings (0).

And, in answer to the question about pvcs, the following would have been produced:

Please enter the number of pves: why?

The system is assessing increased pves. I the number of pves is greater than the
haseline number of pves (5), the assessment of increased pves is set to the assessment
level for present findings (1), otherwise the assessment of incrcased pves is set to the
assessment level for absent findings (0).

This is the sort of information a person maintaining the advisor might wish to know, but

that a medical audience would probably not want to see.

5.2.1.2 Stating What’s Going On in General

To give the user an overview of what the system is trying to accomplish, the
system finds the next procedure above the current description level in the control stack.
This will be called the higher level procedure. It then generates a phrase using the name

of the procedure to describe what’s going on:

The system is assessing the highly specific findings of digitalis toxicity.

5.2.1.3 Explaining the Domain Rationale

If the higher level procedure was refined using a domain principle which had a
domain rationale, then the procedure at the current description level must be the result
of one of the matches of the domain rationale. The system finds the domain rationale
and the particular match of it that resulted in the procedure at the current description
level. Flags are set to indicate to the tie-generators that they should replace
occurrences of pattern variables with the objects they matched. After this environment
has been set up, the complete pattern is found and converted to English using the
tie-generators. For example, the domain principle that refined the procedure to assess

highly specific toxic findings contained the following domain rationale:

92

[domaip-rationaler #g - Co
[dr3 = {pattern*i 300) .
[structurer #e ((causal- chatn*b (mcreased"o (drug‘R !pv)))'e
[devz deviationtt])]
[(dev2*characterization
((finding®r (toxicity*f (drug*R tpv)})*f (specific*R !pv}))]1]1]
When the appropriate environment was set up. the tie-generators produced this

description for the pattern:

Increased digitalis may cause paroxysmal ntﬂtﬂ tachyéardia wit‘h blocl. wlnch is a
highly specific finding of digitalis toxicity. i

5.2.1.4 Finishing Up the Explanation

Finally, the system uses the tie-generators to produce a description of the step
at the current level of description. So in answer tq the ttrst questron the systent pnnts

Thus, if the system determines that cardlomyopathy ex:sts, it reduces the dose of
digitalis due to carrhomyopathy .
The system then re- rterates its ongmal questron If the user asks "why”" agam the
system moves the current descnptron level up to the tevel of the hrgher Ievel procedure

and repeats the explanatron process.

The reader may have noticed that the system did not generate a similar
sentence in answer to the second questron That is, the system did not produce the
sentence: ‘ !

"Thus, the system assesses paroxystal atria] tachycardta with block.”

as the last sentence of its answer to the second questron The reason is that such a
sentence would have been redundant The user already knows that the system ns
assessmg paroxysmal atrial tachycardia wnth btock because he has jUSt been asked af‘
questron about it. Following the general pnnciple thet the user should not be toldv
somethmg he already knows, the system de!etes thrs part of the explanatnon if the step ‘
abOut to be descnbed is a type of assessing step and the ob}ect of that step is the same |
as the thmg the user has been asked about. ”

Explanation of Methods 93

5.2.2 Explanation of Methods

Given the system we’ve described so far, it's relatively easy to get it to generate
descriptions of methods by translating them directly into English. There are only a few
subtleties. A function is needed to number the steps of the method sequence and pass
them to the phrase generator. The system must also distinguish between functional
subroutines, where a single value is passed back as the value of the subroutine, and
conventional subroutines, with input and output arguments. The latter case may be
handled quite simply, but in the former case some special things must be done.

We have to recognize that a functional subroutine is treated much like a
"read-only" variable in programming. Reflecting that fact, when the system is describing
one of the exiting steps®® from a functional subroutine, it converts the name of the
method to a noun and describes it as a variable which is set to the result of evaluating
the exiting step. If the method being described is a kind of [determine-whether], the
system re-arranges things a bit to improve readability. For example, one of the methods

writien by the automatic programmer is;

[(((DFETERMINE-WHETHER*Q (DECREASED*Q SERUM-K))*I 1)*D [[SERUM-K,],1)
[METHOD: #Q (MLESS-THAN*C

[[SERUM-K, (THRESHOLD*R (DECREASED*0 SERUM-K))1,1)1]
The system generates the following description of that method:

If serum-k is less than the threshold of decreased serum-k (3.4), the system
determines that decreased serum-k exists.

The explanations given by the "overview" command in the previous section
were produced by passing the current higher level procedure to the function that
describes methods. However, as we pointed out in the introduction, this particular style
of explanation has some limitations. In the next section, we present a different way of
explaining methods which provides a richer sort of abstraction which can not be done in
explanations produced directly from the code.

58. Note that there may be several exits from a functional subroutine.

94

5.2.3 Prototype Method Explanations

In the original version of the Digitalis Advisor, when we wanted to give a more
abstract view of what was going on, we just described a higher level procedure
[Swartout77a, Swartout77b]. In this regard, we were following the principles of
structured programming. While this approach was often reasonable, there were times
when it was considerably less than illuminating. The general method for anticipating
digitalis toxicity was called "Check Sensitivities" in the old version of the Digitalis
Advisor. An explanation of it appears in Figure 27. While this explanation does tell the
user what sensitivities are being checked,®® it does not say what will be done if
sensitivities are discovered nor does it say why the system considers these particular
factors to be sensitivities. Finally, it is much too redundant and verbose. The first
cbjection can be dealt with by removing the calls to lower procedures and substituting
the code of those procedures in-line. This results in the somewhat improved explanation
produced by XPLAIN when it is asked to describe the method for anticipating digitalis
toxicity (see Figure 28). However, while this explanation shows what the system does, it

Fig. 27. An Explanation From the Old Digitalis Therapy Advisor

(describe-method [(check sensitivities)])

O CHECK SENSITIVITIES I DO THE FOLLOWING STEPS:
I CHECK SENSITIVITY DUL TGO CALCIUM.

CHECK SENSITIVITY DUE TO POTASSIUM,

CHECK SENSITIVITY DUE TO CARDIOMYOPATHY-MI,
CHECK SENSITIVITY DUE TO HYPOXEMIA.

CHECK SENSITIVITY DUE TO THYROID-FUNCTION.

CHECK SENSITIVITY DUE TO ADVANCED AGE.

T
1
2
3.
4.
5
6
7 COMPUTE THE FACTOR OF ALTERATION.

et b e =

59. The reader may notice that there were more sensitivities checked in the original version of
the program than in the current version. We now feel that some of these, such as thyroid function
and advanced age, should not be treated as sensitivities per se because they tend to have an
effect on reducing renal function and hence slowing excretion, rather than on increasing
sensitivity to digitalis. The other sensitivities would be easy to add by including the appropriate
causal links in the domain model.

Prototype Method Explanations 95

doesn’t say why things like increased calcium, cardiomyopathy and decreased
potassium are sensitivities, and if anything, it's even more verbose than the original

explanation.

The reason we can't get the sorts of explanations we want by producing
explanations directly form the code is that much of the sort of reasoning we want to
explain has been "compiled out.” Thus, we are forced into explaining at a level that is
either too abstract or too specific. The intermediate reasoning which we would like to
explain was done by a human programmer in the case of the old Digitalis Advisor.
However, because this performance program was produced by an automatic
programmer, we have a handle on that reasoning. For example, if we were to explain the
domain principle that produced the code for anticipating digitalis toxicity rather then the
code itself we would get the explanation that appears in Figure 29. This explanation is
produced by first describing the domain rationale with the refinement pattern variables
replaced by what they matched, but with the domain pattern variables®' described as
themselves rather than as what they matched. Thus while the system says "increased
digitalis" rather than "increased drug”, it also says "finding" rather than "increased
serum-K". The next part of the explanation is produced by describing the prototype

Fig. 28. An Explanation From the Code for Anticipating Toxicity

(describe-method [((ANTICIPATE*O (TOXICITY *F DIGITALIS)*I 1)])

To anticipate digitalis toxicity:
1. 1 the system determines that cardiomyopathy exists, it reduces
the dose of digitalis due to cardiomyopathy.
2. If the system determines that decreased serum-k exists, it reduces
the dose of digitalis duc to decreased serum-k.
3. I the system determines that increased serum-ca exists, it
reduces the dose of digitalis due to increased serum-ca.

60. Those are the variables in the head of the domain principle that were bound during plan
finding by the automatic program writer.
61. The pattern variables that are matched against the domain model.

96

Fig. 29. Explanation of a Domain Principle

(describe-proto-method [(anticipate*o (toxicity*f digitalis))])
The system considers those cases where a finding causes a dangerous deviation and increased
digitalis also causes the dangerous deviation. I the system determines that the finding exists, it

reduces the dose of digitalis due to the finding.

The findings considered are increased calcium, decreased potassium and cardiomyopathy,

method. Finally, the set of values is given for the domain variable used in the prototype
method. Thus, the use of an automatic programmer not only allows us to justify the
performance program, but it also allows us to give better descriptions of methods by

making available intermediate levels of abstraction which were not previously available.

5.2.4 Explaining Events

The MINT interpreter can be set up to leave behind atrace of its execution. Asit
executes a procedure, it creates an event object (see Chapter 2). This event object
records the call and method used, the variable environments on entrance and exit, and
the value returned if the procedure is a functional subroutine. These events can be
examined by the system after execution is completed to produce an explanation of what

the system did for a particular patient.

Once we have the mechanisms in place to explain methods, it turns out to be
quite easy to explain events. Basically, it's done by having the system examine the event
to be explained, generate a heading sentence using the call of the event, and then
generate phrases for the immediate subevents of the event.®? The major changes that
have to be made are that a flag has to be set so that verbs are generated in the past
tense, and the generator for [if-then] has to be modified to indicate the choice taken.

62. As when explaining methods, the subevents are filtered by their viewpoints.

L R AR BN

Explaining Events 97

This is done by first having the generator check that there was an action taken by the
[if-then]® and then having it generate English for the predicate and the action taken.4
Finally, the system generates a phrase indicating:the final o’u@put values: of the routine.
Some examples are presented in Figure 30. :

Fig. 30. Examples of Event Explanations

"How did the system anticipate digitalis toxicity?"
(describe-event [(event*i "e0002")])
To anticipate digitalis toxicity:

1. The system determined that cardiomyopathy did not exist.

2. The system determined that decreased scrum-k did not exist.

3. Since the system determined that increased serum-ca existed, the
system reduced the dose of digitalis due to increﬁsw serum-ca.

The adjusted dose of dlgitahs was set to 0 20

“How did the system determine that serum-ca was increased?”
(describe-event [(event*i "e0016")])

Since serum-ca (13) was’ greater than the threshold of increased scrum-ca (lt) the system
determined that increased scrum-ca existed.

63. For example, the [if-then] would not have taken:an action # its: predicate evaluated to false
and there was no "else" clause in the fil-then], or il the ackion:taken was.of :x viewpoint that was
filtered out. If no action was taken, or the action taken is filtered out, the system |ust generates
Engtish for the predicate (for example, see.steps 1 and:2.in.Figure Q) . ;
64. If the action taken is the "else” clause, then the system inverts the logvc of the predicate
when converting it to English. :

525 Non-Engush Expianatkm

Although it mnght not be clear from this ehaqter 1 feel that there are manyz
situations in which English is not the only or best way o give mw(planatson There.are
many situations where explanations are much more effective_when English text is
- supplemented with figures, charts, drawings and so forth.

A case in point is explainiﬁg mathematical formulas. Mathematical formulas
expressed in English are not only verbose; they are ambiguous as well [Swartout77a].
As a small step in moving toward a larger investigation of non- Ehglish explanations, the
XPLAIN system describes arithmetic expressions usmg mathemgttcal notatlon Th|s |s
- done by choosing shortened variable names for the vanables and convemng the preflx
“MINT form for arithmetic expressions to an infix form thCh is pnnted Flgures 31 and 32

show some examples. ' ‘ ' B

Fig. 31. Describing Events with Arithmetic Expressions

G e e

"How did you reduce the dose for increased serum-ca?"

(describe-event [{event*i "e0019")])

The dose,after adjusting for increased serum-ca was set gceonhng to the
~ foliowing formila; A -

D2=DI1C

where:
C = the reduction constant for increased serum-ca (0.8)
D1 = thedose beforc adjusting for increased serum-c5(0.25)
DZ = thc m aher adimting for imcreasid samm ﬂm

The dose ol‘ dig,ltahs adjusted for the condltion af the hm Mde sEruM ahd semm m, =
mtoozo. R

Non-English Explanation

Fig. 32. Describing Meéthods with Arithmetic Expregsions

"How does the system combine the assessments of highly specific,
moderately specific, and non-specitic tindings of tox#city?"

(describe-method
‘[((COMBINE*O
(SET*I
(ASSESSMENT*R
((FINDINGS*R (TOXICITY *F DIGITALIS))*F (SPECIFIC*F HIGHLY))),
(ASSESSMENT *R-((FINDINGS*R (TOXICITY *F DIGITALIS))*F
(SPECIFIC*F MODERATELY))),

(ASSESSMENT*R

((FINDINGS*R (TOXICITY"F DIGITALIS))‘F NON- SPECIFIC))))‘I

2)])

The combined assessment of the highly specific fi ndmgs of du,ltalls toxicity, the moderately
specific ﬁndmg,s of digitalis toxicity and the non-speclfic ﬁndmgs of du,lt.llis toxmty is set '
according to the following formula: '

C=FIAl + F2A2 + F3A3

where:

Al = the assessment of the highly specific findings of digitalis
toxicity

A2 = the assessment of the moderately speclﬁc fi udmgs of dlglta]is
toxicity: :

A3 = the assessment of the non- speclfw findings of d:gatalls»toxlcl,ty

C = the combined assessment of the highly specific f‘mdmgs of digitalis
toxicity, the moderately specific findings of iﬁgimfs foxicity ‘
and the non-sgeeific findings of digitalis toxicity. -

= the weighting factor of the highly specific ﬁndings of dlgltalis

toxmty 4)

F2 = the weighting factor of the moderately specific findings of -

- digitalis toxicity (2)

F3 = the welghtmg factor of the non- spccnfic ﬁndmgs of digxtalls
toxicity (1). ‘

100

6. A Discussion of the Automatic Programming Appraach to
Explanation

This chapter addresses. ssveral mues »M»havee~¥6ccurred~ to ,m& while.
implementing the system. Most of these deal with the mterrelatronshnps between the‘

automatic programmer, the performance program, and the exp&anatiorts mat can be
produced. S

6.1 Does Automatic Pr‘ogranfm'ing Anec‘rmé;vqumaﬁcawbgram

We attempted to get the XPLAIN system to wrrte ptooedures 1hat captured the
intent of the corresponding sections of the original Digitalis Advisor as much as possibie.
However, there were situations where we decided to adopt different strategles Usually

I

this occurred because the attempt go ﬁnd doma‘n gnnciples ! ;}generéte the program
forced us to Iook more closely at the methods we were MQ.;mooomscm wa,

discovered that the original program was flawed or inconsistent.

For example, in the original Digitalis Advisor, myxedema® was considered as
one of the digitalis sensitivities (like: incraased calchim or decreased: mﬁim) “An
creating the domain model and domam pnncaple to antrcupate thtcuty in the névv‘ éystem.
we realized that a problem ex |sted because myxedema was not causally addrtw;e wﬁh the
other sensitivities and hence wouid no! meet aﬂ‘fh@ MW&M naauimd by
the domain principles in refmmg the, program (%e ier e he pEobl

chapier _3) resolve the. problem,
we dug deeper into the medical literature and cﬁw it mmmmamhow not
really be considered a sensitivity at aflt’ I fact; mVxeBeMa ‘réiites’ the excrEtron‘ of
digitalis through the kidneys and.hence.tends o, male.dighali mummate,m thebedy
rather than making the patrent more sensitive to dtgltelss Thus, tﬁd hbdropm My to
handle myxedema is not as a sensmvufy. but rather as a factor whlch deUiﬁs the
excretion rate in the pharmacokinetic model.

65. Myxedema is a disease caused by decreased thyroid function. Signs of the disease include
dry skin, swellings around the lips and nose, mental deterioration, and a subnormal basal
metabolic rate.

R TINEY

Does Automatic Programming Affect the Performance Program? : 101

One of the advantages of the automatic prdgramrﬁtng approach is that it forces
the user to think harder about the performance program and its implementation. Just as
the implementation of any theory on a computer forces one to work' out the details and
think about the consistency of the thedry, workifig out the implementation of the:
implementation carries the. process one step fiinther and forces one‘to think that much
harder about the entire undertaking.

6.2 Is this Approach to Explanation Compatible with Others?

The approach to explanation espoused in this thesis is compatible with other
approaches such as using canned text or producing ‘explanations by transfating the
program code (see Chapter 1). It shoukd be regarded: as an extension of these earlier
approaches rather than:a replacement for them. “This isimportant because there iniay be
times when it is not feasible to get an automati¢ programmer to produce the code. The
XPLAIN system allows the tser to hand code parts of the system'and ¢an generate the
remainder automatically. Those parts of the system that are hand-coded can be
translated to English jUSt hke the parts that are automatlcally generated The current
|mplementat|on of the XPLAIN system does not support canned -text explanatlons'
(mainly because they haven t been needed) but could easrly be modlfled todoso.

6.3 Is Automatic Programming Too Hard?

One possible objection to the whale approach to _yexpl_‘anation advocated in this .
thesis is that it is just too hard to get an automatic programmer to write the performance
program. When | first began this research, I‘thou,g‘__t\)_t that was the case. The original plan
for producing better explanations was to createfet;uctures:detaitilng the development of .
the performance program, but these structures would be created by hand rather than
automatically. It was feared that automatrc programmxng,wasuust too hard. However, as
the research progressed, it became clear that if we had suffrclently powerful
representations available so that it could be said that in some sense explanations were
being produced from an understanding of the program, then actually writing the proeram
in the first place wouldn't be all that much more difficult. | suspect this is true in general.
It seems that the primary difficulty in both explanation and automatic programming is a

102

knowledge representation problem, and that the kinds of knowledge to be represented in
both cases are similar so that a solution to one case makes the other much easier.
Furthermore, if this conjecture is correct, it implies that we are not likely to find easier
approaches to explanation than the one presented here (if we require that our
explanations be based on an understanding of the program as opposed to, say,

canned-text.)

6.4 lLevels of Language

Computer science has developed a variety of different types of languages for
describing algorithms. At the lowest level, there is machine language. As we move to
more abstract languages we encounter assembly languages, high level languages, very
high level languages, and finally automatic programmers. At each level, various features
are introduced which make it easier to use the same piece of code in different places.
Often, these same features make it easier to understand and explain the code too.

Even at machine language level, most computers have a special instruction or
set of instructions to facilitate writing subroutines. Subroutines are a very powerful idea
because they allow the same piece of code to be used in several parts of a program.
From the standpoint of explanation, subroutines are powerful for two reasons. First, if a
subroutine is called several times, the fact that the same code is being used is very
clearly indicated. (It might not be so clear if the code for the subroutine was inserted
everywhere in place of the call.) This means that the code for the subroutine only needs
to be understood once. More importantly from the explanation standpoint, subroutines
can be used to partition a task into easy to understand pieces. Furthermore, these
picces can themselves be broken down into still more specific subroutines so that a
hierarchy of subroutines is formed. This, of course, is one of the main thrusts behind
structured programming [Dahl72] and for explanation it is important because it allows us
to suppress the details of a calculation within a lower level subroutine. However, to
really take advantage of this procedural hierarchy, we need to be able to give them

names.

Levels of Language 103

Assembly language allows us to give names to subroutines, data objects and
labels.’® From an explanatory viewpoint, this is valuable because it allows us to give
program objects names which relate their role in the program to their role in the
application domain of the program. This feature is often misused however, and one
frequently finds programs where a variable that has been used in one way is later used in
another way so that its name, which was given to reflect its earlier use, conflicts with its
later use. This is often done in a mis-guided effort to save memory, and is symptomatic
of the problems that result from trying to optimize code and describe an algorithm at the

same time.

Macro packages are typically thought of as extending assembly languages. For
the purposes of this discussion, however, they tend to sully the waters a bit because it is
possible (in theory, at least) to build arbitrarily high level languages using a macro
package since most of them can perform powerful transformations on program
structures. Typically, however, macros are used so that an operation which is done
repeatedly (possibly with slight variations) only has to be coded once. In that respect,
they are similar to subroutines. However, unlike subroutines, macros are usually not
organized into hierarchies so that the output of a macro expansion contains other
macros to be expanded. Usually the results of macro expansion are not intended to be
examined by the programmer (unless, of course, he is debugging the macro expansion
itself).

Higher level languages such as LISP, PL/1, Algol, and so forth provide
additional features. These languages provide a set of more natural operators®” and data
types 8 that free the user from concerns about implementation details such as register
allocation, saving and restoring state when calling subroutines, implementation of
strings and arrays, and so forth. One of the most important features of these languages
is that they allow the user to input expressions while lower level languages only
permitted him to input sequences of instructions. By moving to higher level operators

and removing some implementation details, these languages make it easier to explain

66. Although the labeling allowed by typical assembly languages is often very restrictive.
67. i.e. arithmetic operators, logical operators, string operators, etc.
68. i.e. arrays, lists, strings

104

programs written in them because the operators are closer to the sorts of operations
people are familiar with and irrelevant details of the implementation are suppressed.
Explanation packages have been developed which work with languages at this level
[Roberts79].

Very high level languages attempt to provide still higher level and more natural
operators and control structures but usually within the conlext of a limited domain. For
example, the Business Definition Language (BDL) developed by Hammer, Howe and
Wiladawsky [Hammer74] is intended to make it possible for a non-programmer
businessman to define business application programs, such as order handling and
invoicing, with only minimal (if any) training. To achieve such a goal, the language must
clearly have operators, data types, and control structures which are familiar to
businessmen. If the goal is realized, it should be relatively easy to explain such
programs, and some efforts have been made in that direction [Mikelsons75]. The main
weakness of this approach seems to be its domain dependence. While the approach
itself is general, the languages are domain-oriented. The knowledge that a particular
language has about a particular domain is compiled into the language itself and would
make it quite difficult to extend the language or apply it to other domains.

Some other very high level languages achieve a somewhat broader range of
applicability by dealing with a broader domain. SETL [Schwartz74], for example, allows
the user to specify various operations on sets which the language then implements by
choosing an appropriate implementation from several possible ones. While its
application may be a broader, SETL is primarily limited to sets, just as BDL is limited to

business programs.

One of the main approaches to automatic programming has been what might be
called the transformational approach. In this approach, various transformations are
repeatedly applied to an initial input-output specification or algorithmic sketch until an
executable program is produced. Superficially, these transformations are somewhat
analogous to macros, however, unlike macros, the structures produced by these
transformations and the transformations themselves are intended to mimic those of

human programmers and hence to be meaningful to programmers.

Levels of Language 105

One of the transformational approaches is based on theorem proving
[Manna77]. The automatic programmer is provided with the input-output specifications
of the desired program, which are written in mathematical notation. The input-output
specifications are usually not given in terms of the primitive operators of the target
language (the language the desired program is to be written in). The automatic
programmer also has availabie a set of equivalence-preserving transformations. Some
of these transformations will contain primitive operators. The transformations are
applied to the input-output specifications, using certain rules, until an executable
program is produced. The transformations themselves contain relatively little
algorithmic information, so the system "discovers" the algorithm as it writes a program
meeting the specifications. While the discovery aspect is appealing from an explanatory
point of view, the fact that programs are essentially derived from basic principles each
time makes the synthesis of any but the simplest programs extremely time-consuming.
Additionally, since the transtormations are at such a low level, the program produced

may not be well-structured.

The refinement approach [Barstow77, Balzer77, Green79, Long77, Rich79]
rests on the assumption that the abilities of human programmers come more from their
knowledge of a large number of pian templates which can be customized for a particular
application than from their use of general purpose deductive rules. These plans are
used as the transformations in such systems. Since the plans are usually organized into
a hierarchy based on their specificity, the resulting programs tend to be well-structured.
Also, since the transformations are from abstract to specific, a directionality is imposed
on the search for an executable program, improving the efficiency of the automatic
programmer. From an explanatory standpoint, this approach allows explanations to be
offered at different levels of abstraction which should be meaningful to the user, and it
can improve the structure of the program, but at the expense of not being able to explain
everything down to basic principles.

Recently, Barstow [Barstow80] has suggested a hybrid approach. The system
would basically be a refinement system, but a theorem prover would be used to prove
that constraints associated with particular transformations held in a particular situation,
thus indicating the applicability of the transformation. If there were an explanatory

facility associated with this system, it would have the characteristics of the refinement

106

systems with the additional capability to explain in detail why a particular transformation

was chosen.

The XPLAIN system uses a refinement-type automatic programmer. The major
difference between it and other programmers lies in the Domain Model and the Domain
Rationale. The Domain Rationale is essentially an additional program specification that
is not stated at the outset. It allows us to cleanly represent the fact that some additional
program specifications may be needed if certain refinement paths are taken but they may
not be needed in others. From an explanatory viewpoint, it is valuable because it allows
LS to make the domain principles more abstract and more independent of the application
domain, and the domain rationale represents the criteria under which phenomena in the

domain model must he considered in the refinement of a particular step.

It is easy to get an automatic programmer to lcave behind a trace of its
reasoning in creating a program. Structured programming is also designed in part to aid
human programmers in capturing the process of creating a program. The difference is
that in structured programming much of the reasoning remains in the head of the
programmer. [n the introductory chapter, we showed how this can adversely affect the
quality of explanations. In structured programming, one kind of procedural abstraction
is available. The name of a procedure is supposed to be a summary of the actions it
performs. In the automatic programmer used in the XPLAIN system, this sort of
abstraction is available, but another sort of abstraction, based on the domain principles,
is also available (and is described in Chapter 5). Since the domain principles may be
used repeatedly to produce different procedures, the XPLAIN system can capture
abstractions that go across procedure boundaries. These sorts of abstractions, together
with the refinement structure feft behind by the program writer, contribute substantially

to the explanations the system can produce.

6.5 Is a Top-down Approach Really Necessary?

The XPLAIN system can produce good justifications in part because it has
access to the refinement structure produced by the automatic programmer in a
top-down fashion. A natural question to ask is whether a bottom-up approach might not

work equally well. In other words, one could envision a system that analyzed an existing

Is a Top-down Approach Really Necessary? 107

program structure into higher principles, and explained it at that level. This system
would need to employ knowledge structures much like the domain principles and
domain model, but they would be used in reverse to parse the existing performance
program into a parse tree (which would correspond to XPLAIN's refinement structure). 8
This approach is enticing: it seems that if it can be made to work in general then any
program can be explained whether or not it was written with explanation in mind. While
such an approach might be attractive in principle, | feel there are several obstacles that
make its implementation difficult. First, as was pointed out earlier, the process of writing
a program is a process that distills "how-to-do" something out of a much larger body of
knowledge. Given that, the analyzer will not be able to explain a program without
knowledge structures similar to the domain principles and domain model used by
XPLAIN, and furthermore, these structures will have to be simifar in both size and scope
to those used by XPLAIN. While XPLAIN works deductively this recognizer would have
to work by induction and the possibility of ambiguity would exist. In the XPLAIN system,
the major intellectual effort involved figuring out what the domain principles and domain
mode! were and how they should be represented. Once they existed, it was relatively
easy to get the program writer to use them to write the performance program. Since
both require similar knowledge structures, and once they exist it's easy to synthesize the
performance program, the top-down approach would appear to have the edge.

6.6 Limitations and Extensions of the XPLAIN System

While the explanations presented in this paper provide an indication of the
power of the automatic programming approach to explanation, they do not exhaust its
possibilities. The current system can be extended in several areas:

6.6.1 What Can the Current Implementation Do?

The current domain model and domain principles contain enough knowledge to
generate all the examples within this document. They can also produce additional
examples, although these are quite similar to those that appear here. There are three

69. see also [Clancey79] for a discussion of this approach

108

things that would have to be dons to complete the implementation of the Digitalis
Advisor. First, it would be necessary to implement routines to assess therapeutic
improvement. These should not be too difficult because they can be very similar to the
routines that assess toxicity. Second, it would be necessary to develop domain
principles to adjust the dose based on the therapeutic and toxic assessments. Third, it
would be necessary to implement various utility functions for gathering data and the
pharmacokinetic model of digitalis excretion. These would probably be implemented in
LISP, as they were in the old digitalis advisor. While there would be a fair amount of
programming involved, | do not foresee any major conceptual hurdles. Once this
implementation was completed, the domain principles of that program could be used
with different domain models to develop similar consulting programs (i.e. programs that
offered advice about drug therapy). | think that from the standpoint of programs of this
type the implementation of the Writer and the generation routines is complete (or nearly
s0). Thatis, I would not expect to have to make major modifications to them to complete
the implementation of the digitalis advisor.

6.6.2 Improved Answer Generators

Additional answer generators could be employed to provide the user with: 1)
improved access to the domain model so that the domain mode! itself could be explained
as well as its use in the development of the program; 2) improved explication of the
decisions made by the automatic programmer; 3) an ability to assess the significance of

the program’s recommendations.

1) Currently, the explanation routines make use of the domain model to justify a piece ofv
program structure. It would be nice (particularly in a teaching environment) to have
answer generators which focused on the domain model so that a user couid enhance his
understanding of the domain. In addition, it would not be particularly difficult to
cross-reference the domain model with the refinement structure to indicate where the
domain knowledge was used in the program. This would allow the system to answer
questions such as, "How does the system take increased calcium into account?” The

answer would be produced by finding those places in the system where the concept

Improved Answer Generators 109

increased calcium was used’® and then displaying the appropriate pieces of code.

2. The current system has no ability to explain domain or refinement constraints. In part,
this is because the implementation of the XPLAIN system has concentrated on offering
explanations to medical users and it was felt that the constraints have more of a
computer than medical viewpoint. But that is not entirely correct. Recall that when the
system was refining the split-join associated with anticipating toxicity it was necessary to
assure that all the factors involved were at least causally additive. Whether or not the
factors are additive is a question that clearly involves medical knowledge, and it is
something which should be explainable to a medical audience in terms of its medical

significance.

3. The system should aiso be able to explain the advice of the performance program in
terms of its medical significance. For example, the advisor might conclude that no
digitalis should be given for 3 hours and then 0.25 mg should be administered. If the
advice was given at 11pm, the patient would have to be awakened at two in the morning
if the altending physician wished to follow the prograrn’s recommendation to the letter.
However, since digitalis has a relatively long half-life, the precise timing of doses (within
a few hours) is not thought to be terribly important. in this case, the inconvenience and
discomfort involved in waking the patient would probably dictate that the patient receive
the drug at an earlier time. While we could program the system so that it does not give
drugs during sleeping hours, it seems that that approach might eventually result in a
program which knew substantially more about hospital procedure than about digitalis
therapy. A better approach might be one where the system could indicate to the user the
importance of its recommendations. For example, in this case, the system could mention

that a variation of a few hours in drug administration would not be significant.

70. For example, increased calcium could be a match for a pattern variable used in a domain
rationale or as an argument to a domain constraint.

110

6.6.3 Telling White Lies

Currently, the system can describe what it does and why at various levels of
abstraction by describing the methods it uses, the refinement structure, the domain
principles and the domain model. While it can leave out details based on viewpoint or by
using a higher abstraction, it does not deliberately distort its explanations. Yet
sometimes human teachers do exactly that to make their explanations easier to
understand. The XPLAIN system could easily be modified to tell these "white lies" by
linking alternate refinements (the white lies) to the existing refinement structure along
with the differences between them and the refinement structure actually used by the
program. In this way the system could offer the user the (presumably easier to
understand) inexact explanation first, and then use the difference links to explain how

things really work.

But where do these white lies come from? Sometimes a teacher may create
them from scralch, but often they are just earlier versions of what was thought at the time
to be the complete, final version of the theory, program or whatever. For example, the
old Digitalis Advisor used to adjust the dose for sensitivities using a simple threshold
model: if the level of serum potassium (say) was below a certain threshold, the dose was
reduced by a fixed percentage. The current version of the Digitalis Advisor”' makes a
sliding reduction depending on how depressed the serum potassium is. The threshold
model is more understandable, but the sliding reduction is more accurate. Rather than
throwing away old versions of the performance program, it might be interesting if the
program writer kept them around and noted the differences between the refinement of
the old program and the new and where these differences arose (i.e. new principle,
different domain model, etc.). The explanation routines could then use the old program
fragments as a source for white lies’® and after the old version was understood, the
difference links could be used to indicate how things really worked. Additionally,

71. Not the version written by the XPLAIN system, but a LISP-based, medically more advanced
version (which cannot justity itself) which was developed by Bill Long in parallel with the XPLAIN
system.

72. Of course, the system would have to be careful. Sometimes new program fragments would
result from a better understanding which resulted in a simpler and more accurate program. In
that case, referring to the old program would gain nothing.

Telling White Lies 111

recording the changes between versions would allow the system to offer effective
explanations about those changes to a user who hadn’'t used the system for a while. To
continue the example above, suppose a user who had last used the performance
program when it made reductions by a threshold used the new version with sliding
reductions. |f his patient were only slightly hypokalemic, he might wonder why the
reduction for decreased potassium was much smaller than before. The system can
justify the difference only if it has access to the differences between the two versions and

the reasons for those differences.

6.6.4 Telling the User What He Wants to Know

While the current system has a limited ability to tailor the explanation to the
interests of the user and to model what has been explained to him, the quality of the
explanations could be substantially improved if the results of other research efforts could
be integrated with the XPLAIN system. These include: 1) having the system model what
it believes the user knows [Genesereth79], 2) developing tutorial strategies giving the
system a more global view of its interaction with the user and allowing it to take part in
directing it [Carr77, Clancey79], 3) on the cpposite end of the scale, improving the low
level English generators so they are more firmly grounded on linguistic principles
[McDonald80, Mann80] and 4) improving the system’s understanding of its own
explanatory capabilities and the user’s question so that it can reformulate the user’s

request into what it can deliver [Mark80].

6.7 Conclusions

| feel that the major contribution of this research is that it brings together
automatic programming and program explanation. The use of an automatic programmer
to generate the performance program and keep around a trace of decisions made during
the refinement of that program makes it possible to justify the consulting system in a
more flexible and more powerful way than other existing methodologies. This approach
also allows the system to employ abstractions not otherwise available. Finally, from the
standpoint of automatic programming, | feel that the notions of a domain model and
domain rationale have interesting implications it terms of program specification, because

112

the specification of the performance program is interlaced with its refinement.

References 113

7. References

[Barstow77] v
Barstow, D., "A Knowledge-Based System for Automatic Program Construction,"
Proceedings of the Fifth International Conference on Artificial Intelligence, 1977

[Barstow80]
Barstow, D., "The Roles of Knowledge and Deduction In. Algorithm Creation,” Yale
University, Department of Computer Science, Research Repart # 178, April 1980

[Balzer77] : :
Balzer, R., Goldman, N., Wile, D., "Informality in Program Specifications," Proceedings
of the Fifth International Conference on Artificial intelligence, 1977

[Carr77] : » o : :
Carr, B., "Overlays: a Theory of Modelling for Computer Aided Instruction,"” MIT Al
Laboratory Memo 406, February 1977.

[Clancey79} o
Clancey, W.J., "Transfer of Rule-based Expertise Through a Tutorial Dialogue”,
Stanford University, Department of Computer Science, STAN-CS-79-769. 1979

[Dahi72] Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming, Academic
Press, 1972

[Davis76]

Davis, R., "Applications of Meta Level Knowledge to the Construction, Maintenance and
Use of Large Knowledge Bases," PhD thesis, Stanford Artificial Intelligence Laboratory:
Memo 283(1976).

[Doherty61]
Doherty J.E., Perkins W.H., Mitchell G.K., "Tritiated digoxin studies in human subjects,"
Arch. Intern. Med. 108:531-539, 1961

[Doherty70] : B
Doherty J.E., Flanigan W.J. et al, "Tritiated Digoxin XV, Enterohepatic circulation,
absorption and excretion in human volunteers," Circulation 42:867-873, 1970

[Doherty73] » , f
Doherty J.E., "Digitalis Glycosides: Pharmacokinetics and their Clinical Implications,”
Ann. Intern. Med. 79:229-238, 1973.

114

[Doyle79])
Doyile,J., "A Truth Maintenance System " Artiticial Intelligence Volume 12 (231 272) 1979

[Genesereth79] S
Genesereth, M.R., “The Role of Plans in Automated Consuttation v Proceedings of the
Sixth International Conference on Artificial Intelligence, 1979

[Gorry78]

Gorry, G. A,, Silverman, H., and Pauker, 8. G., Capturing Clinical Expertise: A Computer-
Program that Considers Clinical Responses to Digitalis, American Journal of Medicine
64:452-460, (March 1978).

[Green79]

Green, C.C., Gabriel, R.P., Kant, E., Kedznerskl B.1., MeCune, B.P., Phillips, J.V., Tappel,
S.T., Westfold, S.J., "Resuits in Knowledge Based Program Synthesis," Proceedmgs of
the SIXth Iinternational Joint Conference on Arhflcual lntelhgence, 1979

[Hammer74] - :
Hammer, M.M., Howe, W.G., Wiadawsky, I., "An Interactive Business Definition System,"
Proceedings of a Symposium of Very High Level Languages, SIGPLAN Notices Volume'

9, Number 4, Apﬂl 1974

[Hawkinson80]
Hawkinson, L.B.; "XLMS: A Linguistic Memory System,"” MIT Laboratory for Oomputer
Science TM-173, 1980 '

[Jelliffe70]
Jelliffe R.W., Buell J., Kalaba R. et al, "A Computer Program for Digitalis Dosage:
Regimens," Math. Biosci. 3:178-193, 1970 .

[Jelliffe72]
Jelliffe R.W., Buell J, Kalaba R, "Reduction of digitalis toxicity by computer-assisted‘}
glycoside dosage regimens,” Ann. Intern. Med. 77:881-906, 1972

[Long77]
Long, W.J., "A Program Writer," MIT Laboratory for Computer Seience, TR-187, 1977

[Mann80] \ : ‘
Mann, W.C., Moore, J.A,, "Computer as Author—Results and Prospects,” USC
Information Sciences Institute ISI/RR-79-82, 1980

R L e B

References 115

[Manna77] Manna, Z., Waldinger, R., "The Automatic Synthesrs of Systems of Recursive
Programs," Proceedmgs of the Fifth lntemational Cdnference on Artmcra1 1nteﬂrgence,)
1977

[Mark8o0]
- Mark, W., "Rule-Based Inference in Large Knowledge Bases," Proceedmgs ol the First
Annual National Conference on Artificial Intelﬂgence, 1980 ‘

[Martin79]
Martin, W.A., "Roles, Co-Descriptors and the Formal Representation of Quantified
English Expressions,” MIT Laboratory for ComputerSc'i_encé TM139, September 1979

[McDonald80]
McDonald, D.D., "Natural Language Production as a Process of Decision-making Under
Constraints," MIT PhD Thesrs, 1980

[Mikelsons75]
Mikelsons, M., "Computer Assisted Application Description," Second ACM Symposium
on Principles of Programming Languages, 1975

[Minsky75]
Minsky, M., "A Framework for Representing Knowledge,"” in The Psychology of
Computer Vision, P.H. Wmston (ed) McGraw Hl" 1975

[Ogilvie72]
Ogilvie R.l.,, Reudy, J., "An Educational Program ln Drgrtahs Therapy," Journal of tha
Amencan Meo‘lca)‘Assoc:anan 222'50 55 1972

[Peck73]
Peck C.C., Sheiner L.B. et al: "Computer-assisted Digoxin Therapy," New England
Journal of Medicine 289:441-446, 1973.

[Pauker76]

Pauker, S.G., Gorry, G.A., Kassirer, J.P., and Schwartz, W.B., "Toward the Simulation of
Clinical Cognition: Taking a Present lliness by Computer " The Amencan Journal of
Medicine 60:961-995 (June 1876). \ : DA

[Pople77]

Pople, H.E. Jr., "The Formation of Composite Hypotheses in Diagnostic Problem Solving:
an Exercise in Synthetic ‘Reasoning,” Proseédings of ihe ﬁﬁh International Joint
Conference on Artificiat Inteftigence (1977). o

116

[Rich79] . :

Rich, C., Shrobe, H., Waters, R., ”Ovemew of the Programmer S Apprentlce. .
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, August
1979

Roberts, B., "Building English- Explanations from Function Descriptions,” MIT Al
Laboratory Working Paper 185. 1979

[Schwartz74] ,
Schwartz, J., "Automatic and Semiautomatic Optumzatlon of SETL " Proceedmgs of a .
Symposium of Very High Level Langiages, SIGPLAN ‘Notices Volume 9, Number 4, Apnl '

1974

[Sheiner72]
Sheiner L.B., Rosenberg B., Melmon K., "Modelhng of individual Pharmacokmetlcs for
Computer-aided Drug Dosage," Computers and Biomedical Research 5:441-459, 1 9,7_‘2; .

[Shortliffe76]
Shortliffe, E.H., Computer Based Medlcal Consultatlons- MYCIN Elsevier North
Holland Inc. (1976)

[Silverman75]
Silverman, H., "A Digitalis Therapy Advisor,"” MlT PrO}ect MAC TR- 143 1975

[Staliman76] ‘ '
Stallman, R.M.,Sussman, G.J., “Forward mamng and dependency du'ected
backtracking in a system for computer-aided circuit analysis. MIT Al Laboratory Memo
380, 1976.

[Sussman75] '
Sussman, G.J., A Computer Model of Skill Acqu:smon Ameﬂcan Elsevier Pubhshmg Co
1975 R

[Swartout77a} ‘ . ; o o
Swartout, W.R., "A Digitalis Therapy Advisor with Explanations,” MIT Laboratory for
Computer Science TR-176, February 1977

[Swartout77b] ’ A e
Swartout, W.R., "A Digitalis Therapy Advisor with Explanations,” Proceedings of the
Fifth International Joint Conference on Artilicial intelligence, Migust 1977 :

References 117

[Winograd71]
Winograd, T., "A Computer Program for Understanding Natural Language,” MIT
Artificial Intelligence Laboratory TR-17, 1971

