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The compilation of h'l&hly modular ~ reciu1rell extensive interpro­
cedural anal7sla in order ,to produce reuimable object cocle. Such aulys1s 1s 
greatly com.pllcated wb.ea the .source ~ coatatu such c:onstructa as pro­
cedure variables and label var1a.'bles. The JJOHftdJttT of a1ias1na ~ variables 
in the program.s to be anaJ:pecl a4da further coaplicaUou. 

Procedure variables make it im.poaible to d.etermJJa.e. from a simple scan or 
the program. which procedues :mq be called by each call statement. Label 
variables stmtlar]T :maJte it imposslble to dateraiJle which labels m.q be gone to 
by each &<>to statameat. Thus a call &ra,ph llD4 a coatl'Ol flow' graph cannot be 
constructed after a 8bQ1e scan of t1ut-pq1rma. TIUa 1aformattoa 1s needed to 
perform. intraprocedural data flow ~ 

We suggest an approach to analyzblg programs with the features mentioned I 
above. and describe an al,gorithm. wh1ch. caa be Wll8d. to bap\emeDt it. The ap­
proach involves cleterm1DJq :poulble Yalw for proc:ed.me and label variables 
and the poaibla alias reJaUonahips aDlOQ& varla'ble8 ta the program. The prob­
lem at deterJlliDiD& poalble values for Pft)C811.ure vm1al>J.e8 ts aim ab.own to be 
P-space hard. This 1D.4icatea that the problem 1s WEa1,y to be tatractable, and-- -
motivates the search for appro.ztmate dudona. The algor1thm which we pro­
pose therefore produces inform.atioa wh1ch ts safe but not alwa,)"8 prac:lse. It 
has a nrnntng time which is QPl"Old.mately boua4e4 by the product or the 
number or alias relat1onsh1ps in the prqpam and the JlUJllber or variables and 
constants or pointer. procedure or label VJie. In certa1D. cams it 1s as precise as 
possible, and in some of these it is alao aqmptot1cally as eftlcient as possible. 
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1. INTRODUCDON 

Program optimization in the pre&ence of procedure calls is increasingly important because 

of the current emphasis on modularity and abstraction in propam design. Since these design 

methodologies imply a heavy ue of procedures ancl procedure calla. it is essential that analysis 

techniques used to compile these propam1 perform well when calls are wied. This is important 

for several reasons. Amon& tbete ue the facts tbat proceduns are often fairly general. so that 

better code can be produced for them glvea the con&emaal information implied by their use in 

the program, that procedure calls imply IOllle overllead which it might be desirable to avoid, 

and that lack of knowleclp about a called procedure mates it difficult to determine 

information about the procedure which coatainl the caJl 

Standard data flow analysis techniques (2, 4, 9) have maay problems when applied to 

programs containing procedure calls. Tbe reason for this ii dW a procedure call ii essentially 

a statement whole effects cannot be determined v.pon on•ining only the statement itself. 

Rather, the body of the procedure must be e:umjned as well. failure to eumine the body of 

the procedure may result either in no optimizatioa being performed, or in opdmization being 

pedonned in small sectioa of the proaram wllicll contaia ao procedure calls, with very 

pessimistic aaumptiou being made about the w of panmeton aild atobal variables. H the 

latter is the cue tllen many valuable optimir.atiom ._, be lollt; for eumple, the presence of a 

procedure call within a loop miaht prevent code wlaicll ii inffriant iDlide the loop from being 

moved outside iL 

These deficiencies have led to the development of a number of methods for 

interprocedural data flow' analysis (3, 6, 7, 11) which prod1JCC summaries of the effects of each 

procedure (e.g., an indication of which variables are Wied. modified, ~.). These summaries 

are used when analyzing invoking procedures, avoidina the problems mentioned above. 
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The methods proposed by Barth and Banning have a number of advantages over that 

proposed by Allen, including greater speed, fewer passes required over the code, and the 

handling of recursion. Rosen's method, though slower than the others mentioned here, can 

produce more precise information. Unfortunately these methods are not sufficiently general to 

be used for many languages. SpecUically, all of theae methods require a call graph. However, 

if procedure variables are included in the language, the call graph cannot be obtained through 

a simple scan of the text of the program being compiled. Furtller complications occur when 

aliasing [ 13] among variables in the program is poaible. This can result from mechanisms 

such as pointers and call-by-reference parameter passing. Tlleae two mechanisms are the ones 

considered in this paper. As an example of the problems which aliMing can cause, a call on a 

procedure variable using call-by-reference could have the effect, depending on the value of the 

procedure variable at the time of the call, of assigning a procedure value to one of the 

parameters of the call. This fact must be taken into account in COD&tructing the call graph, for 

if procedure A contains a call on procedure variable X, the call graph must contain arcs from 

the node for procedure A to the nodes for each procedure which X can have as its value. 

Another language feature which complicates the situation ii the 111e of label variables. 

Such a feature prevents the comtruction of a control flow graph uatJl the possible values of all 

label variables in the program bave been determiaeci. Since a control ftow p-apb. is required 

for standard data flow analysis, it is necessary for some part of the aaalysis phase of the 

compiler to c.ompute this ranae information for label variables before standard data flow 

analysis is performed. 
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2. RELATED won 

Very little work bas been. done ~n the problem of handling procedure variables and 

pointers in performing interprocedural data flow analysis. Spillman (13) is the only one who 

addresses the problems associated with these language features. However, there are a number 

of limiting aspects to Spillman;s work. First, the algorithm requires iteration in the presence of 

recursion. This can lead to large time requirements. Second, the algorithm is presented at a 

low level, making it difficult both to undentand and to verify. Finally, the algorithm as 

presented is specific to certain features of PL/ 1. This, combined with the low level of 

presentation, makes it difficult to adapt the algorithm for use in compiHng other languages. 

Ryder [ 12) presents an algorithm which determines the call graph for a program with 

procedure parameters. The algorithm is designed to be used with Fortran and is meant to be 

portable across a wide range of machines. The portability constraint leads to limitations on the 

use of in-core storage; these limitations influenced the design of the algorithm. The intent to 

use the algorithm for Fortran leads to the assumption that there is no aliasing and no 

recursion. These factors all limit the general applicability of the al&<>rlthm. 

The methods proposed by Allen, Barth, Banning, and Rosen BOl.ve the problems associated. 

with procedure variables and pointers to varying degrees, usually by placing restrictions on the 

use of these features in the programs to be compiled. In the extreme cue these features are 

not allowed at all. 
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3. PROPOSED SOLUTION 

We propose to deal with the problems introduced by pointers, procedure variables, and 

label variables by first computiq range information (Le., lists of pouible values) for procedure 

variables, thus providing a call graph, and then usina one of the known methods, such as 

Barth's, for generatiq summaries. It is necessary to contpllte aliMiag patterns ill well as range 

information for pointen while computing range information for procedure variables, simply 

because procedure variables can acquire values as a malt of eljesigl witll other variables. All 

of this information will be computed without taking coatrol flow information into account. It 

will subsequently be med to compute range infonaatioll for label variables and to generate 

summaries for procedures, prior to generatiq a control flow graph. 

The context in which this wort bas been done is that of tile Experimental Compiling 

System (ECS) project of the Computer SciellCOI Dopanmeat at IBM's WatlOD Research 

Center. An overview of this project is given in [5]. Briefly, the aoal of the project is to build 

a general purpose optimizing compiler which, given the appropriate IOllrCe Ianauaae definition 

and target machine description, can compile prolf'Ulll for that IOBICe Janauage into code for 

that target machine. Clearly it will not be pouible to compile all llUlpaaea for all macbinu. 

However, it is hoped tbat it will be possible to compile a laqe clus of lallguages for a large 

class of machines. For this reason the analysis and optimizatioa ...... should be f or:mulatecl 

in a manner which is as independent as pollible of laquap aacl macNM. 

The ECS compiler attempts to treat primitives of the intonBediate language and pre~ously 

analyzed procedures as uniformly as possible, at least as far u aaalyziDs a program. which uses 

them. This is accomplished by aslociating with each primitive and each analyzed procedure a 

summary of its effects. Information contained in such a summary includes lists of variables 

which are used, modified, and preserved, as well as an indication of the copies which may be 

performed when the primitive or procedure is invoked. For example, the summary for a 

primitive which moves data from its second argument to its fint argument would specify that 
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the primitive uses and preserves its second argument, modifies its first argument, and performs 

a copy of its second argument into its first argument. The information about copies is used in 

propagating procedure, label; and pointer values. 

This means that in order to analyze a program, we need either the code or a summary for 

every procedure which it calls. This might seem to force a compilation order for separately 

compiled programs, and to achieve reasonable optimization of the programa, it does. However, 

it is desirable to be able to compile programs separately. and to allow this to be done in any 

order. This creates two problems in analyzing a procedure. First, the effects of the caller, 

such as aliasing of parameters, may be unknown. ~ there may be calls on procedures for 

which no summary exists. In either case, the wont case must be US1Ull0d. In ECS the second 

case is treated by creating a summary for the unknown procedare, and ensuring that this 

summary specifies all of the possible effects of the procedure. The f"mt case is somewhat more 

coDJ.plicated; in effect, the program is treated as if there were a call on the procedure which 

causes all possible parameter aliasing, including with enernal variables. If any of the 

parameters are procedure variables the problems are compounded. This is because a call on 

the parameter could be a call to a procedure which was pul9d as an actual parameter. and the 

effects of this procedure are unknown. We omit the details of the hancfling of such situations. 

We assume that we are given a collection of procedures, each of which consists of a set of 

instructions. Each instruction consists of an opcode, which indicates a call on either a 

primitive, a previously analyzed procedure, a procedure in the coUection, or a variable, and a 

list of operands, each of which is either a variable or a constant. · B%pressions are not allowed 

as operands; rather, we assume that the computation of exproasiom has been expanded into 

sequences of instructions. Operands are assumed to be passed by reference. 

For each opcode which is a primitive or a previously analyzed procedure we assume that 

there exists a summary for that opcode. This summary must specify all of the possible copies 
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among parameters and globals which could be caused by a call on the opcode. We make no 

assumptions about the pouible flow of control between instructions in a sinsJe procedure. 

Given such a collection of procedures, the problem is to compute sets of possible values 

for procedure variables, sets of possible values for label variables, sets of variables which may 

be addressable through pointer variables, and sets of possible ali8les for all. variables. In the 

next section we show that this problem is inherently very difrtealt. In succeeding sections we 

present our solution in stages, demomtrating its correctaess and evaJuting its precision and 

time requirements. Following this we discua briefly IOllle dlaracteriatics of the alias 

relationships u computed by our metlaod, and then swmnarize our results. 
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4. COMPLEXITY 

In this section we show that the problem of determining possible values for procedure 

variables is P-space hard. We assume some familiarity with the term "P-space hard". A 

definition of this term and a diacussion of its sipif"icance can be found in (1). 

In fact, we prove the following theorem, which mates a stronger statement. 

Theorem: Determining possible values for procedure parameten for programs in which there 

is no aliasing among variables, no nesting of procedure c:leclarationa, and no aipificant now of 

control, and in which every procedure is formally reachable, is a P-apace bard problem. 

This theorem is sigaif"mt for a number of reuom. First, it indiartes that it is extremely 

unlikely that there is any efficient method for computing poaible values for procedure 

variables. Second, and perhaps more important, it mows that even when assignment 

statements, atiasiq, and nestinl of procedure declaratiom are not allowed, it is lliU unlikely 

that an efficient method e:Dsts. Furthermore, this is still true when there is no signirlcant 

control now in the program being enmiilod, other than that implied by the call graph. These 

results lead one to search for solutions to the problem which are approEm.ate and reasonably 

efficient, such as the one presented in this paper. These solutions may not produce exact 

information, but they must ptoduce safe information; i.e., information which is conservative in 

that the possible values determined should be a superset of the exact possible values. We 

make the restriction that all procedures be formally teachable since this is an assumption which 

is often made in compilers. 

Proof: We make use of a theorem proved by Winklmann (16), in which he shows that 

deciding the property of form.al reachability in programs without nested procedure declarations 

is a P-space hard problem. Formal reachability is defined in terms of a formal execution tree, 

which is a tree of calls where the nodes of the tree are pairs consisting of procedures and their 
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environments. (This is not the same as reachability defined in terms of a call graph as it is 

usually used in compilers.) 

Winklmann shows this by constructing a program. P for a given Turing machine M, 

polynomials, and input w, such that a procedure Q1 in Pis formally reachable if and only if M, 

when started in its initial state with w written on its tape and its head scalining the leftmost 

symbol of w, halts without its bead ever moving outside the l(n) squares to the right of, and 

including, the tape square scanned at the start, where n is the length of w. P satisfies all of the 

requirements given in the statement of the theorem except for the restriction that all 

procedures be formally reachable, and can be comtructed in polynomial time from a 

description of the Turing machine M, the input w, and the polynomial a. 

Deciding whether Q1 is formally reachable is therefore u difficult u decidiq whether M 

halts in the required manner. Since the rmt parameter of Q, hu DO possible values if Q, is 

not formally reachable, and has exactly one possible value if Q, ia formally reachable, it 

follows that determining whether a given procedure parameter bu a non-empty set of possible 

values is a P-space hard problem. This problem can be euily IOhed pven the set of possible 

values for the procedure parameter, so detenniniaa seu of pouible values for procedure 

parameters must also be P-space bard. 

We have not yet proved the theorem, since P does not aatiafy the restriction given in the 

statement of the theorem that all procedures in P must be formally reacluable. However, it is 

possible to transform P into a program P ' in which all procecluru are formally reachable, and 

about which we can ask the same kind of question wbicll we asked about P. Furthermore, the 

construction of P' from P can be done in time linear in the length of P. Details of this 

construction and of the construction of P can be found in the appendix. 

The basic idea in constructing P ' is to introduce calls to every procedure in P, but to do 

so in such a way that it is still possible to talk about the formal execution of P ' simulating the 
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execution of the Turing machine Mon input w. Since it will then be the case that Q, is always 

called at least once, the question which we will uk about P ' is whether the first parameter to 

Q, has more than one possible value. This will be true if and only if Q, is called more than 

once, which will be true if and only if M, when executed on input w, halts in the prescribed 

manner. Therefore, aaswering this question is P-space hard, and since this question can be 

easily answered given sets of poaible values for procedure parameters, the theorem follows. 
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5. THE ME1110D 

As stated earlier, we will present the method in stqes. We begin with the simplest case, a 

single procedure with no aUalina, and gradul1y allow more comple:dty in the program being 

analyzed until we have included reference parameten, pointen, and calls on procedure 

variables. 

5.1. NO AUASING 

We will first consider propagating values within a siaale procedure. Given that there is a 

summary for every instruction in the procedure, create a relation named PV AL and initiaU:ie it 

to all pairs (A,B) such that Bis copied into A. B may be an conataat or a variable; A must be 

a variable. A pair (X,A) in PV AL means that X has pollible value A. PV AL ranges over the 

variables in the program for which we wiab to determine valuea aad over the values which we 

are interested in propagating. We determine whidl copies are poaible by esamining the 

instructions in the procedure. For each instruction, COlllider each copy in the SWDllW')' for the 

opcode of the instruction. U one of the elemeats of the copy ii a formal parameter of the 

opcode, substitute the corresponding operand of the instnlction. The· resulting copy gives a 

pair which should be placed in PV AL. To propapte valuel, replace PV AL by its transitive 

closure PV AL+. For variable X and conatant A, the resulting relation gives an answer to the 

question of whether A is a possible value of X. 

We claim that propagating values in this manner, for this limited case, is both correct and 

as precise as possible. To show that it. is correct, suppose that a variable X has value A at 

some point during the execution of the program. For X to have value A, the execution of the 

program must include a finite sequence of assignments "i+t : = JCi, with Xo being A and Xn 

being X. If this is the case, then each of these aMipmeuts must appear as a copy in the 

summary of some instruction in the program. Therefore each appean as a pair in the initial 
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PV AL relation. From this it follows that the transitive closure of PV AL must include the pair 

(X,A). Therefore the information computed is correct. 

To show that it is as precise as possible, suppose that there iS a pair (X,A) in the 

transitive closure of PV AL. There must exist a finite sequence of pairs <X.+ 1 ,X.) in the initial 

PV AL relation, with Xo being A and X. being X. Each of theae pairs corresponds to a copy 

specified by the summary for some instruction in the procedure. Since we are making no 

assumptions about the poasible flow of control between instru.ctiona in the program, any 

sequence of instructions must be considered pouible. In particular, the sequence of 

instructions which corresponds to the given sequence of copies must be considered possible. 

This means that, ignoring control now information, X may have ·A as vallie. Therefore the 

information computed is precise. 

The complexity of this algorithm is bounded by the complexity of computing the 

non-reflexive transitive closure of an n xn boolean mauu, with n being the total number of 

variables and values involved in the propagation. Under the UIUIDplioDs made up to this 

point, this is asymptotically the best poaible algorithm for computing tbill information. We 

can show this by demomtrating that computing tld8 information is of the same complexity as 

computing the transitive closure of a matrix. 

We consider a single procedure and assume that we have no control now information. H 

P(n) is the time to propagate values for a program cont•inin& n variables and constants, and 

T(n) is the time to compute the transitive closure of an nxn matrix, we must show that there 

exists a constant c such that T(n) :s; cP(n). Suppose that we have an nxn boolean matrix M 

and we wish to compute its transitive closure. We first create variables X. and constants Ai. 

for 1 s i s n. For each X. we create an instruction whose summary indicates a copy to X; 

from Ai· For each 1 in the matrix, say at position (i,j), we create an instruction whose 

summary indicates a copy to X. from X1• These instructions constitute the procedure for which 

we wish to propagate values. We claim that X. has possible value A,· if and only if there is a 1 
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in position (i,j) in the transitive closure ·of M. This implies that T(n) s P(2n). Since P(n) is 

bounded by the time to compute transitive closure, and this is O(n3
), we call assume that 

P(2n) s BP(n). From this we conclude that 1fn) :S BP(n). 

Now consider the situation in which the program to be analyzed consists of multiple 

procedures, and in which instructions may be calls on primitives, previously analyzed 

procedures, or procedures in the given collection. Operands to primitives and previously 

analyzed procedures are passed by reference while operands to procedures in the collection are. 

passed by value. Propagating values in this situation is almost identical to propagating values 

in the case of a single procedure. The only differeace is that we must account for the 

transmission of values from actual paramoten to formal parameten. This can be done in 

ini~g the relation PV AL. For each call on a procedure P in the collection. where P is 

declared with formal parameten X.. and the call has corresponding operands Y1, add the pairs 

<X..Y1) to PVAI::.. For each other instruction initialize PVAL u before. Then form the 

transitive closure PVAL+. We claim that, as in the case of a single~. this computes 

correct and completely precise information. and does so ~ as quietly as possible. 

The proof is quite similar to the previous proof; we omit the details. 

5.2. CAIL BY RD'EllENCE 

We now wish to allow parameters to procedures in the collection to be passed by 

reference. This means that when a value Y is copied into a variable X, there is an implied 

copy of Y into each alias of X. There are now two different effects to consider. The first is 

the modification of a variable by assignment to it. The second is the association of a formal 

parameter with an actual parameter by a call to the procedure which owns the formal. To 

keep track of this information, we create two relations called MODVAL and AFFECT. A pair 

(X,A) in MODV AL means that X is assigned value A. A pair (X,A) in AFFECT means that 

X may be aliased to A and to every other variable which may be aliased to A. However, it 

can be the case that there is some variable which may be aliased to X but not to A. The 
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characterization of parameter aliasing with AFFECT was first suggested by Barth (7). 

MODV AL is initialized to all copies which are specified in the sUlllDW'ies of instructions in the 

program. AFFECT is initialized to all formal-actual parameter pairs which result from calls. to 

procedures in the collection. Assume for the moment that comtants are never used as actual 

parameters for calls to procedures in the collection. We will relax this restriction in the final 

version of the algorithm and will explain the reason for it at that time. Barth shows that the 

ALIAS relation, which indicates the possible aUuing relatioasbips among variables, may be 

computed by the expression AFFECT* o (AFFECT•) T. 

We claim that the following computation results in PVAL specifying correct possible 

values: 

PV AL : = (AFFECT v ((AFFECT*) T 0 MODV AL))+' 

where R • denotes the reflexive transitive closure of the relation R, RT denotes the transpose of 

R, and R + ~notes the non-reflexive transitive cloawe of R. We first aote a theorem by Barth 

(7), which states that a modification of a variable can affect any actual parameters, including 

the variable itself, which correspond to the variable, as well as any formal parameters which 

correspond to any of those actuals. 01*ne that if the variable is not a formal parameter then 

the set of corresponding actuals will include only the variable itaelf. Furthermore, a 

modification of a variable can affect only thete variables. Barth also lhows that AFFECT* 

gives, for each formal parameter, all of the possible corresponding actuals. 

Now suppose that variable X can have possible value A at some point in the execution of 

the program. There must be a sequence of calls and assignments which resulted in the 

assignment of A to X. For each call in the sequence which matches. formal Y with actual Z, 

the pair (Y,Z) is in AFFECT and therefore in PVAL. For each usipment of Z to Yin the 

sequence, the pair (Y,Z) is in MODVAL and therefore in PVAL. Furthermore, if Wis aliased 

to Y, there exists a U such that W AFFECT* U and Y AFFECT* U, as sb()wn by Barth. 
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The pair (U,Z) is therefore in PVAL, since we tnow that U (AFFECT*)YoMODVAL Z. The 

pair (W,U) is also in PVAL, since each pair in AFFECT is in PVAL. Since PVAL is closed, 

the pair (W ,Z) must be in PV AL. Therefore, each pair corresponding to the values 

transmitted by each action in the execution sequence of the program is in PV AL. This implies 

that each pair corresponding to the values transmitted by the sequence as a whole must be in 

PV AL. In particular, the pair (X,A) is in PV AL. Therefore the information computed is 

correct. Since the complexity of boolean matrix multiplication is the same as that of transitive 

closure, the complexity of this algorithm is, lite the previous venions of the algorithm, 

bounded by the time to compute the transitive closure of an 11 xn matrix. Furthermore, since 

this algorithm computes the same information for a siDlle procedure as the previous algorithm, 

it can be argued that this algorithm is asymptoticaDy the fastest poaible algorithm for 

computing the information which it produces. 

This algorithm does not compute completely precise information. The imprecision stems 

from the use of AFFECT to characterize parameter aUu\ng, and is dilcusaed by Barth in [7]. 

As a simple example of the imprecision, consider the skeleton program in figure 1. In this 

example, A should be assigned Q by the fint call on P, and B should be assigned R by the 

second call on P. However, the method determines that both A and B have possible values Q 

and R. This results from the fact that, based on the assipment of T to S, we propagate all 

values of T to S and then to all actual parameters for S. The basic reason for this is that 

separate calls on a procedure are not treated separately. 

procedme P(S,T); ... S:=T; ... ; 
procethlre Q; 
procedare R; 
procedare TIU'iallle A,B; 
P(A,Q); 
P(B,R); 

Figure 1 
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S.3. POINTER VARIABLES 

We now introduce pointer variables into the programs being analyzed. We do so in two 

steps, first considering a single procedure and then allowing multiple procedures with 

parameters passed by reference. As mentioned earlier, it is necessary to augment the summary 

information kept for primitives and previously analyzed procedures to give ·some information 

about indirect accesses through variables. To simplify the munmaries no information will be 

kept about the number of levels of indirection involved in acceaina awrage through a pointer, 

e.g., in accessing an element of a list. lnsteadt a distindion is made only between a direct 

access of a variable and an access of storage via some potitive number of indirections on a 

variable. 

The summaries must now distinguish between four types of copies. Letting P and Q 

denote variables and •p and •o denote storage accellible tbroqb the variables, these four 

types are as follows: 

1) p := Q 

2) p := •Q 

3) •p := Q 

4) •p := •o 

Two other types of copies are also allowed. These involve the aaignment of the address of a 

variable to another variable or to storage acce11811Me throulh another variable. These are as 

follows: 

5) p : = addr(Q) 

6) •p : = addr(Q) 

We will utilize the relations AFFECT and MODV AL. Previously these relations dealt with the 

variables and values which were interesting in terms of propagating values. To handle pointers 
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and the transmission of values via assignments to storage accessible through pointers, we 

introduce dummy "variables" for each pointer variable. For a pointer variable P this dummy 

variable is 8',C8nt to represent the storage accessible through P and will be denoted by •P. To 

propagate aliasing information correctly based on the auignment of the address of a variable 

to another variable, we introduce dummy literals for each variable whose address_ is copied. 

For a variable Q whose address is copied (cases S and 6 above), this literal will be denoted by 

AQ and represents the address of Q. 

Figure 2 describes the initialization of AFFECT aad MODVAL for each type of copy. H 

one element of a copy, say X, is not a pointer variable, then all pain involving •x should be 

ignored. To give some intuition about the reuou for initializina the relations in this manner, 

consider the simple assignment P : = Q. H P and Q are pointer variablea, this hu two effects. 

First, it results in P (and any alias of P) acquiring tbe value contained in Q. It al&o causes any 

1) p := Q 
Add the pair (P ,Q) to MODV AL. 
Add die pair (•P,•Q) to AFFBCT. 

2> P := •o 
Add tile pair (P;•Q) to MODV AL. 
Add tbe pair (•P,•Q) to AFFBCT. 

3) •p := Q 
Add the pair (•P ,Q) to MODV AL. 
Add the pair (•P,-0) to AFFECT. 

4) •p := •o 
Add the pair (•P,•Q) to MODVAL. 
Add the pair (•P, •Q) to AFFECT. 

5) p := addr(Q) 
Add the pair (P ,AQ) to MODV AL. 
Add the pair (•P,Q) to AFFECT. 
Add the pair (•P,•Q) to AFFECT. 

6) •p := addr(Q) 
Add the pair (•P,AQ) to MODVAL. 
Add the pair (•P,Q) to AFFECT. 
Add the pair (•P,•Q) to AFFECT. 

Figure 2 
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storage accessible through Q to be accessible through P, from which it follows that every alias 

of •o is an alias of •P. 

There are many similarities between the effects which occur due to parameter aliasing and 

those occuring due to the use of pointers. If there are several assignments to a pointer P, say 

from Q and R, then •p is aliased to both •Q and •R, but •Q and •R are not necessarily 

aliased. On the other hand, if Pis assigned to several pointers, say Q and R, then •Q and •R 

are both aliased to •p and, since Q and R may be assigned the same value, •Q and •R are 

aliased to each other. These two situations are very similar to two situations which can occur 

with reference parameters, the first being when two different actual parameters are passed to 

the same formal parameter, and the second being when a single actual is passed to two 

formals.\ In fact, parameter aliasing behaves much· lib' pointer aliMiag1 IOliledliq which miles 

more sense when we comider the fact that a c:a11 ··bia41 tile fonmd parametea to the locations 

~ied by the correspondiaa actual· parameten for die duration of the call. In effect, for 

formal X and actual Y, there is u a!llfgntent of tile -fenn· addr(X) := addr(Y). Tatiag 

addr(X) to be a variable, so that the stOrqe accellible. thiough 1t is simply X, we see that the 

initialization for such a copy is euctly that used in initiali7jag the relations for a call using 

call-by-reference; i.e., add the pair (X,Y) to AFFECT. 

However, the algorithm which we used tO propagate values.for reference parameters is not 

sufficiently general to handle pointers. Although tile. effects are very similar in the two cases, 

there is one crucial difference. We mentioned that the ·binding of a formal parameter to an 

actual parameter is in effeot an aSlripmant of die :address of the actual to the address of the 

formal. Considering these two addresses to be variables, this almost models the situation 

which occurs with pointers. The difference with pointers is that the variables which contain 

addresses can be aliased as well, and so assignments to a pointer variable must be propagated 

to all of the aliases of the variable. This in,cludes assignments of the address of a variable 

(cases 5 and 6). Furthermore, for any variable which is assigned the address of another 



- 22 -

variable, it is necessary to ensure that the appropriate aliasing is computed between the second 

variable and the storage acceaible through the first variable. 

The method which we choose to solve this problem is to iterate. For each modification to 

a variable which we discover, we will add the aliasing relationships implied by that 

modification and then iterate to see if this produces any more modif"teations. This produces 

the algorithm in fJ.gure 3. The function ind returns the object which denotes storage accessible 

via one level of indirection on X. If X is of the form A Y, Y is returned. If X is of the form Y 

and Y is a pointer variable, •y is returned; if Y is not a pointer variable then the pair should 

be ignored. Finally, if Xis of the form •Y, •y itself is returned. 

For each modification X : = Y, this explicitly propagates the implied aliasing information 

to all Z such that X AFFECT• Z. The propagation to other aJia8es of X, e.g., to those Z such 

that Z AFFECT• X, is already done by virtue of the fact that whenever we have 

Z AFFECT• X we also have •z AFFECT• •x. Adding (•X, •Y) to AFFECT and then 

recomputing the closure of AFFECT will pve •z APPECT• •y, u desired. 

The key to demonstrating the correctness of this algorithm lies in the definition of 

AFFECT. Remember that a pair (X, Y) in AFFECT means tlaat every alias of Y is also an 

alias of X. Now suppose that variable X bas value A at some point in the execution of the 

program. There must be a sequence of asaignmeata which renlts in the assignment of A to X. 

Assume that for the ith aasipment in the sequence, all of the polSl"ble aliasing which can result 

Initialize AFFECT and MODV AL as indicated above . 
...,eat 

M : = (AFFECT•y o MODV AL 
for each (X,Y) Ill M 

Add (ind(X),ind(Y)) to AFFECT 
Add (ind2(X),ind2(Y)) to AFFECT 

antil there is no change in AFFECT 
PV AL : = (AFFECT v ((AFFECT*Y o MODV AL))+ 

Figure 3 
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from previous assignments is embodied in AFFECT. We will show that the same is true for 

the aliasing which results from the ith assignment. The proof of the correctness of the 

computation of PV AL is then identical to the proof used for reference parameters. 

We first note that for each possible auignment which appears in the program, AFFECT is 

initialized such that if an assignment is the fint in the 1equenco, the aliasing computed from 

AFFECT is correct after considering that assignment. The ith usignment in- the sequence, 

however, could assign a value not just to the explicit target of the assignment, but also to any 

aliases of that target. Assuming that AFFECT coutains at least the aliasing Information 

resulting from the previous i-1 assignments, and that the target of the ith assignment is W, the 

computation of M finds all pouible modifications of thOle Y such that W AFFECT• Y. The 

aliasing implied by these modifications is then entered into AFFECT. We must show that 

forming the closure of AFFECT computes all aliasing which could re81llt from the ith 

assignment. Since W may alias any Z for which there e:Dsts a Y such that W AFFECT• Y 

and Z AFFECT• Y, we must show that the pairs entered in AFFECT by the loop over the 

pairs in M cause the aliumg for each such Z to be correct. We have shown that this is true 

for each Y such that W AFFECT• Y. Since, as may be easily verif"ied. •z AFFECT• •y is 

true if Z AFFECT• Y is true, the aliasing which WU entered for Y is transf orred to Z when 

the closure of AFFECT is recomputed. This means that the aliasing is correct after 

considering the ith assignment, from which we can deduce that the aliasing is correct after 

considering the sequence of assignments. Therefore the computation of PV AL is correct, and 

so A is determined as a possible value for X. 

We claim that this algorithm is precise as well as correct, given the assumption that no 

information about control flow is available. Observe that a pair (X,Y) in AFFECT means that 

every alias of Y, as computed by the expression AFFECT• o (AFFECT•) T, is also an alias of 

X. Now observe that this is actually the case for every pair which is placed into AFFECT 
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because of a modification. From this it follows that the aliasing is precise, which implies that 

the computation of PV AL produces precise information. 

The reason why the aliasing information computed is precise for pointers but not for 

reference parameters is that the call structure of the program contains information about the 

relative lifetimes of the alias relationships for pariuneters. Unless control fl9w inf onnation is 

considered, no such information is available for aliuing due to pointers within a siJllle 

procedure. 

Allowina multiple procedures in the collection with parameters passed by reference 

requires a· change only in the initialization of AFFECT. No chaage in the propagation 

algorithm itseH is required. For eaell call with operands Y1 to a procedure with formal 

parameters X.. the pairs <X.,Y1) and (•~.•Y,) shoulcl be added to AFFECT. The initialization 

fo~ all other statemeats is as above. We omit the details of the proof of correctness for this 

version of the algorithm. The algorithm bu the same imprecision as it dicl for programs with 

reference parameters and witlloat pointers. 

Initialize AFFECT aad MODV AL as iDdicated above. 

AFFECT : = AFFEcr+ 
NEWA : = AFFECT 
llowllleNEWA1t4-

M := NBWAT•MODVAL 

NBWA := 4-
for adt (X,Y) la M 

Add (ind(X),ind(Y)) to NBWA 
Add (ind2(X),ind2(Y)) to NEWA 

Remove thoae pairs from NEWA that are already in AFFECT. 
Add each pair in NBWA to AFFECT and reform the c1onre of AFFECT. 
Let NEW A be all those pairs which were added to AFFECT by the previous statement. 

end 

PVAL :=(AFFECT v ((AFFECT•)T•MODVAL))+ 

Figure 4 
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Before discussing the time requirements of this algorithm, we make an observation about 

the algorithm itself. This is that it is not necessary to recompute the transitive closure of 

AFFECT each time through the loop, nor is it necessary to consider the effects on M of a pair 

in AFFECT whose effects have already been considered. In other words, we can propagate 

the effects of modifications incrementally. This leads to the equivalent version of the 

algorithm given in figure 4. In this algorithm, we keep track of all recently discovered aliasing 

relationships and determine any modifications implied by these relationships. We then 

compute the aliasing relationships implied by these modifications, and continue this process 

until no new aliasing is discovered. 

Let n be the size of the domain of the relations. Let e be the total number of pairs in 

AFFECT* when the algorithm finishes. The initial closure of AFFECT can be done in time 

T(n). The computation of the contribution of a single pair in NEW A to M can be done in time 

n. Every pair in AFFECT appears in NEW A at this point in the program at most once. 

Therefore the total time spent in the computation of M for all iterations of the outermost loop 

is at most ne. The loop over the elements of M can be done as M is computed, and so the 

total time spent in this loop is at most ne. The time spent deleting those pairs in NEW A which 

are already in AFFECT is proportional to the number of such pairs. There are at most 2ne 

such pairs for all iterations of the outermost loop, since the total number of pairs placed in M 

for all iterations of the outermost loop is at most ne. Finally, the forming of the closure of 

AFFECT can be done in time at most n for each pair which is added to AFFECT, whether it 

is in NEW A or is added in forming the closure after adding a pair in NEW A. There are at 

most e such pairs, so the total time spent forming the closure of AFFECT for new pairs is at 

most ne. The computation of PV AL can be done in time O(T(n)). The total time for the 

algorithm as a whole is therefore O(T(n)+ne). 
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5.4. CALLS ON PROCEDURE VARIABLES 

The final step is to consider propagating values through calls on procedure variables. The 

basic problem with a call on a procedure variable is that at the time the call is encountered in 

scanning the program, the possible values for the variable, and hence the actual procedures 

which might be called by the statement, are unknown. Thoref ore it ii not possible to 

immediately associate the actual parameters of the call with the formal parameters of the 

procedure being called. To avoid rescanning the prosram several times, we need a mechanism 

to keep track of the actual parameters of calll on procedures variables. When a value is 

determined for a procedure variable, we can then UIOCiate the actual parameten of the calls 

on the variable with the formal parameters of the value. 

The mechanism which we choose to accompliah this is to create, for each ·procedure 

variable, dummy formal parameters. For a given procedure variable X which is called with m 

actual parameters, we create m dummy formal parameters XF1, for l~i~m. We also create 

dummy variables •XF1 for each dummy formal parameter, repreaeating the storage accessible 

through the dummy formal. The number of dummy formal parameters which need to be 

created can be determined by an initial scan of the P101f81D which keeps track of the number 

of actual parameters passed to each procedure variable. H the 10urce language requires 

complete type specifications of procedure variables, i.e., that the types of the parameters be 

specified as well, then the number of dummy formal parameters which are needed for each 

procedure variable can be determined from the declaration of the variable. Also, entries •XF1 

only need to be created for those parameter positions which have pointer types. Having 

created dummy formal parameters for each procedure variable, the initialization required for a 

call on a procedure variable is exactly that for a call on a procedure in the collection. If the 

call has actual parameters Y1 and is to procedure variable X with dummy formal parameters 

XF1, the pairs (XF1,Y1) and (•XFi, •Y1) should be added to AFFECT. 



Initialize AFFECT and MODV AL as indicated above. 

repeat 
M : = (AFFECT•)T o MODV AL 

for eadl (X,Y) m M 
Add (ind(X),ind(Y)) to AFFECT 

Add (ind2(X),incf(Y)) to AFFECT 

PVAL :=(AFFECT v ((AFFBCT•)ToMODVAL))+ 

for each parameter position i 
P := FPARM.ToPVALToFPARM. 

for Mela (X,Y) la P 

Add (X, Y) to AFFECT 

Add (ind(X),ind(Y)) to AFFECT 

untR there is no chaqe in AFFECT 
PV AL : = (AFFECT v ((AFFECT•)T o MODV AL))+ 

Figure S 
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If we consider a procedure variable X to be a procedure with formal· parameters XF1 

which contains a single statement, that statemeat bein& a call on die CUl'l'ent value of X with 

actual parameters XF1, it should be clear that each time a value A is determined for X we 

should associate the form.al parameters of A with the dummy formal parameters of X as 

formal-actual pairs. One way in whicb this can be clone, u ... ....,_. by Kenneth Walter (14), 

is to create relations FP AR.Mi. one for each par&m.eter positioL A pair (X, Y) in FP ARM1 

means that X has ith formal parameter Y. For each proceclure A in the collection with formal 

parameters Y1, the pair (A,Y1) is placed in FP~ for each parameter position i. For each 

procedure variable X with dummy form.al parameters XF1, tile pair (X,XF1) is placed in 

FP ARM1 for each parameter position ;. Now suppose that A is determined as a possible value 
. 

for X. If Y1 is the ith formal parameter of A, and A is a possible value for X, and X has ith 

algorithm in figure S. This algorithm, like the one developed for pointers, can be transformed 

into an equivalent algorithm which propagates information incrementally. A similar time 
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bound can also be derived for it. Its correctness should be fairly clear given the correctness of 

the algorithm for programs without calls on procedure variables, and we omit the proof. 

We mentioned earlier that actual parameters to calls on procedures in the collection or on 

procedure variables should be restricted to be variables and not constants. The reason for this 

was to avoid unnecessarily complicating the discussion of aliasing, since constants are p8ssed 

by value under call-by-reference. The solution to this is to initialize PV AL with all pairs 

(X,A) such that there is a call to a procedure (or procedure variable) with formal parameter X 

and corresponding actual parameter A. No entry is made in AFFECT for such pairs. The 

computation of 

PV AL : = (AFFECT v ((AFFBCT*)Y o MODV AL))+ 

is then changed to 

PVAL := (PVAL v AFFECT v ((AFFBCT•)YoMODVAL))+. 

In this way constant actual parameters are propagated but no values may be attributed to them 

due to modification of the corresponding formals. 

5.5. POSSIBLE IMPROVEMENTS 

The assumption that no information is available about the number of levels of indirection 

involved in an access through a pointer is often overly restrictive. In a less general context, 

type information may be available for pointers, and it may be possible to determine the 

number of levels of indirection involved in a given access. For lists of arbitrary length and for 

similar structures, it may be reasonable to make no assumptions about the number of levels of 

indirection. In other cases, it may be desirable to consider •p to be the storage directly 

accessible through P, .. p to be the storage directly accessible through •p, and so on. In many 

cases this can give significantly better information, albeit at somewhat greater cost. This 

would lead to an approach which is similar to that found in [10). This can be done to a 
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limited extent with list structures, simply by considering the first few elements of the list 

separately and treating the rest of the list (beyond the first few elements) as one block of 

storage. 

The other major assumption made here, that no information about control flow is 

available, is also overly conservative. Rather than considering the possible control flow to be 

the complete graph with the individual instructions as nodes, some control flow information 

can be used easily in the context of this algorithm. The set of instructions can be partitioned 

into a set of sequences, where each sequence is a single-entry, single-exit sequence of 

instructions. This is similar to, but not the same as, the notion of basic blocks as used in more 

classical data flow analysis. The difference is that the sequences must be broken at all labels, 

branches, and calls on procedure variables or u.nanalyzed procedures. 

The net effect of each sequence can then be computed using the control now within the 

sequence. The set of sequences can be taken as the set of "instructions" in analyzing the 

collection of procedures. For programs with few branches or calls, the resulting information is 

likely to be much more precise than is obtained when all control now information is ignored. 
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6. THE ALIAS RELATION 

The ALIAS relation, as mentioned earlier, can be computed by the expression 

This relation gives an answer to the question "h it possible at some point in the program for 

variable A to be aliased with variable B?" The obvious ways to store this relation, e.g., as a 

boolean matrix, or as a list for each variable of the variables to which it might be aliased, take 

space which is roughly proportional to the square of the number of variables. In qiany 

situations, however, it is the case that there are sets of variable& which are equivalent under 

this relation. We define equivalence of two variables to mean that they may be aliased to each 

other and that the sets of variables to which they may be aliased are identical. Each such class 

could potentially be stored in space linearly proportional to the number of variables in it, 

rather than to the square of that number. The amount of storage required for the ALIAS 

relation is then C'- rather than v2, where c is the number of claslJes (which may be of unit size) 

and v is the number of variables. This is especially uaeful in ECS became of the large number 

of temporaries which are generated for CODStructl IDCh as array indeDD.g, and which fall into 

fairly large clu8es of equivalent variables. 

We prove the following theorem, which gives a necesaary and sutricient condition for two 

variables to be equivalent as dermed above. 

Theorem: Given the relation AFFECT, consider it as a graph and fmd its maximal strongly 

connected components. Replace each such component with a new node identified with the 

component. This leaves a directed acyclic graph (DAG). Define a sink in the DAG to be a 

node which has no edges coming out of it. A node X in the original graph is a sink if the node 

identified with the strongly connected component containing Xis a sink in the DAG. We say 

that node A reaches node B if there is a path, possibly of length zero, in the graph from A to 
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B. Two nodes in the original graph are equivalent if and only if they reach the same set of 

sinks (8). 

Proof: We will consider AFFECT and ALIAS as graphs, derived in the obvious way from the 

relations previously discussed, and will give the proof in terms of nodes and edges of these 

graphs. AFFECT is a directed graph, while ALIAS may be considered as an .undirected graph, 

since the ALIAS relation is symmetric. This is easily seen from the definition of ALIAS. 

When we speak of an edge in ALIAS, we henceforth mean an undirected edge. Also, when we 

speak of a node X reaching a node Y, we mean that there is a path from X to Y in AFFECT, 

unless stated otherwise. A path is defined as a possibly empty sequence of edges. 

We note that there is an edge between node X and node Yin ALIAS if and only if there 

exists a node Z such that X reaches Z and Y reaches Z. This follows immediately from the 

definition of ALIAS in terms of AFFECT. Two nodes X and Y are equivalent if and only if 

the following three conditions hold: there is an edge between X and Y in ALIAS; for each ' 

edge between X and some node Z in ALIAS there is an edge between Y and Z; for each edge 

between Y and some node Z in ALIAS there is an edge between X and Z. In other words, 

two nodes are equivalent if and only if they alias each otber and the· sets of nodes which they 

alias are identical. 

Lemma: X ALIAS Y is true if and only if there exists a sink Z such that X reaches Zand Y 

reaches Z. 

Proof of Lemma: From the definition of ALIAS, it is clear that X ALIAS Y is true if and 

only if there exists a node W such that X reaches W and Y reaches W. Therefore, if there 

exists a sink Z such that X reaches Zand Y reaches Z, it follows that X ALIAS Y is true. We 

now show that such a Z exists if X ALIAS Y is true. Let W be such that X reaches W and Y 

reaches W. Consider the DAG derived from AFFECT in the statement of the theorem. Let U 

be the node in the DAG which is identified with the strongly eonnected component containing 
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W. U must reach some sink V in the DAG. Let Z be a node in the strongly connected 

component identified with V. Since U reaches Vin the DAG, it follows that W reaches Z. 

This means that X reaches Z and Y reaches Z. V is a sink, implying that Z is a sink, and so Z 

is the desired node. 

We now prove the theorem, first showing that if X and Y reach the sam~ set of sinks they 

are equivalent, and then showing that if they reach different sets of sinks, they are not 

equivalent. 

Suppose that X and Y reach the same set of sinks. Since this set is necessarily 

non-empty, they are aliased to each other. Supporie that X ALIAS Wis true. Let Z be a sink 

such that X reaches Z and W reaches Z, as in the lemma. Since X reaches Z, it follows by 

hypothesis that Y also reaches Z. From the lemma, it follows that Y ALIAS W must be true. 

Similarly, if Y ALIAS W is true it follows that X ALIAS W is true. Therefore X and Y are 

equivalent. 

Now suppose that X and Y are equivalent. Furthermore, suppose that there exists a sink 

Z which one of them, say X, reaches, and which the other one, say Y, does not reach. From 

the lemma, it follows that X ALIAS Z is true, since a sink reaches itself. Furthermore, there 

is no W such that Y reaches W and Z reaches W, since Z reaches only itself, being a sink, and 

Y does not reach Z. Therefore Y ALIAS Z is not true. This gives a contradiction, since we 

have found a node Z such that X ALIAS Z is true and Y ALIAS Z is not true, implying that 

X and Y are not equivalent. This completes the proof of the theorem. 

This theorem leads naturally to a reasonably efficient method for computing the sets of 

equivalent variables. These sets can then be used for storing the ALIAS relation. Strongly 

connected components can be computed in time O(max(n,e)), where n is the number of nodes 

in AFFECT and e is the number of edges (1]. Deciding which nodes are sinks can be done by 

first forming the reflexive transitive closure of AFFECT, and then checking each strongly 
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connected component to see if there is an edge from any node in the component to a node in 

another component. H there is no such edge then the component, and each node in it, is a 

sink. 

A technique described by Wegman and Carter (15) can then be used to partition the 

nodes into classes based on the sets of sinks which they reach. This technique involves 

hashing the sinks which a given node reaches, exclusi¥e-oring the results of the hash together 

to get a new representation of the set. Having f ouncl the new representation of the set of 

sinks reached by each node, the nodes can be partitioned very quickly based on the equality of 

these representations by using a hash table. For those nodes whose sets of sinks have the 

same such representation, the actual sets should be compared. This is because the 

representation is guaranteed to be unique only within a specified probability (15). 
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7.SUMMARY 

We have suggested an approach to interprocedural data flow analysis for programs which 

use pointers, label variables, and procedure variables. The major obstacle to such analysis is 

determining the call graph, the control flow graph, and the alias relationships in the program. 

We have presented an algorithm for determining these program charactel,istics; given this 

information, there are algorithms in the literature (3,6,7,11) for completing the analysis of the 

programs. 

Subject to the basic assumption that information about control flow is not available, the 

algorithm presented here is precise for programs containing simple assignments and multiple 

procedures, with parameters passed by value. Assuming that information about the number of 

levels of indirection involved in accessing storage through a pointer is not available, the 

algorithm is also precise for programs containing pointer variables, as long as the program 

consists of a single procedure. The algorithm is in fact precise for programs containing 

multiple procedures and pointer variables as long as pointers are not passed as parameters, and 

parameters are passed by value. When pointers may be passed as parameters, or parameters 

are passed by reference, the information produced by the algorithm. is no lonpr as precise as 

possible. Similarly, when the program may contain calla to procedure variables the information 

produced lacks some precision. 

In certain cases we have shown that the algorithm is asymptotically as eff"J.cient as 

possible. We have also shown that the problem of determining possible values for procedure 

variables is P-space hard. This fact mates it unlikely that a method exists which is both 

precise and reasonably efficient. We have also discusaed some characteristics of the aliasing 

information which is produced, and have shown how these characteristics can be used to store 

the information more efficiently. 
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8. FURTIIER WORK 

Although the complexity results obtained here and in (16) suggest that the problem of 

precisely determining possible values for procedure variables is intractable, it is quite possible 

that the programs used to obtain these results are pathological. It may be that procedure 

variables are normally used in such a way that the problem addressed here becomes tractable. 

It would be interesting to characterize such patterns of use. This could be done for languages 

in which procedure variables are explicitly used, as well as for languages where their use is 

implicit (e.g., languages with type parameters, in which the type can be viewed as a set of 

operations). The question of whether the problem (as stated in section 4) is actually in 

P-space is also open. 

The complexity of the algorithm presented here is also not completely determined. In 

some cases the complexity of the algorithm is equivalent to tbat of forming the transitive 

closure of a matrix, but in other cues only an upper bound has been shown. It would be 

useful to determine whether these upper bounds are tight. 

One assumption which is made throughout this wort is that the summaries for procedures 

containtinformation about the usignments which might be performed by an invocation of the 

procedure. For primitives this information must be supplied u part of the definition of the 

semantics of the primitive. For uer procedures, however, it is necessary to compute this 

information. The work up to this point on summary generation bas concentrated on computing 

summary information about predicates (e.g., is variable X used). Information about 

assignments takes the form of a relation (e.g., is X usiped Y), and this seems to imply an 

order of magnitude increase in complexity over computing predicate information. This might 

not be the case, however, and it would be interesting to investigate the problem of computing 

summary information of this form, given the control now graph and the call graph. 
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Another area which merits investigation involves the question of summary generation for 

separately compiled procedures. In an enviromnent in which a library exists in which to store 

summary information for procedures, it is possible to compute a summary for a procedure A 

when it is compiled, and then to use that summary later when compiling another procedure B 

which calls A. However, in some cases a procedure A may be compiled before summaries are 

available for all procedures C which it calls. To compute a summary for such a procedure A, it 

is necessary to represent the fact that the information about the procedures C which it calls is 

incomplete. The same situation occurs with a procedure which calls one of its parameters, that 

parameter being of type procedure. H the procedure is being compiled separately from its 

caller or callers, it is impossible to determine the poaible values for the parameter. On the 

other hand, these values may be easily determinable when compiling the caller. 

It might seem that it is possible to assume the wont possible effects for calls on 

procedures C without summaries, but if global variables are allowed it becomes impossible to 

express this worst case in closed form. The situation might also arise that by the time that the 

caller B is compiled, summaries have been computed for IODle of the procedures C which were 

previously not available. In this case better iaf ormation could be obtained for B if the 

information in these summaries could be med as well. To accomplish this, the summary for A 

must contain an indication of which procedures C it calls that did not have summaries at the 

time the summary was produced. 

This information about called procedures must be represented in such a way that it is 

possible, given a summary for A that indicates a call on C, and given a summary for C, to 

compute a new summary for the A which includel the effects stated in the summary for C. H 

control flow information is used in generating summaries, representing information about calls 

becomes more complicated. Not only must the calls be listed, but some indication of how to 

compose the effects of the listed calls with the known effects of the procedure must be given. 
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It is desirable to do so in such a way that both generating summaries and using them at a point 

of call are reasonably efficient. 
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APPENDIX 

In this appendix we prove the theorem stated in section 4. We first restate the theorem, 

and then sketch the construction used by Winklmann [16] to prove that deciding formal 

reachability is P-space hard. This construction is then modified to prove the theorem. 

Theorem: Determining possible values for procedure parameten for programs in which there 

is no aliasing among variables, no nesting of pr<K".Cdure declarations, and no sipificant flow of 

control, and in which every procedure is formally reachable, is a P-space hard problem. 

Proof: WinkJmann has shown that deciding the property of formal reachability in programs 

without nested procedure declarations is a P-space hard· problem. Formal reachability is 

defined in terms of a formal execution tree, which is a tree of calls where the nodes of the tree 

are pairs consisting of procedmes and their environments. A procedure is said to be formally 

reachable if it is called somewhere in the formal execution tree. 

To show that deciding formal reachability is P-space hard, we reduce the polynonial-space 

bounded halting problem for deterministic Turing machines to the problem of deciding formal 

reachability. In other words, given an instance of the polynomial-space bounded halting 

problem for Turing machines, we show how to transform this problem into a problem of 

formal reachability, such that the answer to the latter problem is the same as the answer to the 

former problem. Furthermore, the reduction can be done in polynomial time. 

The polynomial-space bounded halting problem is the problem of deciding, for any given 

deterministic Turing machine M, polynomial s, and input w, whether M, if started in state q0 

with w written on its tape and its bead scanning the leftmost symbol of w, halts without its 

head ever moving outside the a(n) tape squares to the right of, and including, the tape square 

scanned at the start, where n is the length of the string w. It is easy to show that the 

polynomial-space bounded halting problem is P-space bard. Given M, s, and w, Winklmann 

constructs a program P with a procedure HALT such that the answer to the polynomial-space 
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bounded halting problem for M, s, and w is yes if and only if the procedure HALT is formally 

reachable in P. 

As mentioned in !ICCtion 4, P contains a procedure Or which is formally reachable if and 

only if the answer to the polynomial-space bounded halting problem is yes. 0 1 contains a 

single call to the procedure HALT. Winklmann uses this part of the construction to simplify 

the problem of transforming this problem about formal reachability into other problems, such 

as questions a~ut formal parameter correctness. In fact, the procedure HALT is unnecessary 

for our results, and we omit it from the construction. 

Let M ""' (K,q0,q1,l:,8). K is the set of states of M, q0 is the initial state, q1 is the final 

state, l: • {A1, ••• ,A._} is the tape alphabet (with A 1 taken to be the blank character), and 8 is 

the transition function for M. 8 is def"mec:l from (K-{q1})xl: to Kxl:xD, where 

D • {STAY,LEFT,RIGHJ'}. For each state and character, 8 specif"aes the actions to be taken 

by the Turing machine when in that state and sc.enning that chancter, the actions being the 

next state to enter, the character to be written on the tape, uacl the direction to move the 

head. Let a be a polynomial space bound and let w be a non.empty strina in the language over 

the alphabet l:-{A1}. Let 11 be the leqth of w. Wint""en's construction of Pis as follows: 

-
eat There is one procedure Qt declared for each non-final state ft in K. 8t is an 

abbreviation explained below. end of e 1 111t; 

• 
• 
• 

procedllre Ot(t1, .• .,ta<•>+1>; 
lllepa t1(ti, .•. ,t9(a)+t•&t) m of Ot; 

• 
• 
• 

cownt For the final state q1 of M there is a procedure Q 1• end of co-eat; 

procedure 0 1( t1 , .. .,t-<•>+ 1); 
hep.end of qr; 



comment For each A1 in l: there is a procedure A1 • 

• 
• 
• 

procethlre A1( '2····•1-<a>+ 1,move1,char 1,nextq.,. .. ,move.,ehar • .nextq..); 
beain move1(char1,tz, ... ,t.<•>+t•nextq1) ead of A1; 

• 
• 
• 
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commeat There are five procedures whose declarations only depend on s(n). end of 

procedBre LEFf(t1, ••• ,tl(a)+t•nextq); 

lteaia nextq(tll(a)+t•t1, ••• ,tl(•» ead of LEFT; 

procedme STA Y(t1,. •• ,tm(a>+t,nextq); 

lteaia nextq(t1, ••• ,tl(a)+t> eml of STAY; 

proce4llre RIGHT(t1, ••• ,tl(a)+t•nextq); 

lteain nextq(tz, ... ,tl(n)+t•li) ellli of RIGHT; 

proceme END_ OF_ T APE(tz, ... ,tl(a>+o,move1,char1,nextq1, ••• , 

move.,char.,nextq.); 

beala m of END_OF_TAPE; 

comaeat The main program contains one procedure statement. Assmping that 
w • ~1A,i ... AJa and that s(•)~n die state81Qt is aa fo.llows, where there are 
s(n)-n A1's after the fint n parameters to O.· If lfn)<n then the parameters to 
Q0 consist of the procedures corresponding to the first s(n) characters of w 
followed by END_OF_T APE. end of cu eat; 

Q0(A11,A12, •• .,AJa,A1,. •• .Ai,END _ OF_TAPE) 

ellllofP 

In the program P, ak stands for 

with the Qkj's, ~·s, and Mk.J's defined by 

Winklmann shows that the execution of this program P simulates the execution of M on w 

in a reasonably natural manner. In particular, he shows that the coil.figuration of the Turing 
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machine M being in state qk with the string B1B2 ••• B1 ••• Ba<a.> on the tape and the bead reading 

the ith symbol in the string is represented in the execution of P by a call of the form 

Qk(B1, ••• ,Ba<a.>•END_OF _TAPE,B1, ••• ,,B1_ 1). 

Again, n is the length of w, and the Bi are symbols from the tape alphabet :I. A proof of this 

fact may be found in [16). 

As stated in section 4, the procedure Or is formally reachable if and only if the answer to 

the polynomial-space bounded halting problem for M, a, and w is that M does halt in the 

specified manner. From this it follows that the fll'St parameter of O, bas exactly one possible 

value if M halts as specified and bas exactly zero possible values if M does not halt as 

specified. This almost proves the theorem, since P satisfies all of the restrictions given in the 

statement of the theorem except that every procedure be formally reachable. 

In order to make every procedure formally reachable, we must introduce calls to each 

procedure in P. Since this must be done without disturbing any claims we wish to make about 

the simulation of M by P, we first introduce a .declaration of a dummy procedure as follows: 

procetlure DUMMY(ti •... ,tl(a)+t,move1,char1,nextq1, ••• ,move.,char.,nextq..); 
Hp. ellll of DUMMY; 

We then introduce the following calls into the main proaram: 

comment For each procedure Ok there is a call of the following form, with s(n)+ 1 
parameters. end of ea •t; 

Qk(DUMMY, ... ,DUMMY); 

l"O"'"'eat For each procedure AJ there is a call of the following form, with DUMMY for 
each of the first &(n) parameters followed by "' repetitions of the triple 
ST A Y ,DUMMY ,Q0• There is a similar call to END_ OF_T APE. end of 
commeat; 

Ai(DUMMY, ... ,DUMMY,STAY,DUMMY,Q0, ... ,STAY ,DUMMY,Q0); 

END_OF_TAPE(DUMMY, ... ,DUMMY,STAY,DUMMY,Oo •... ,sTAY,DUMMY,Qo); 

comment The calls to STAY, LEFT, and RIOIIT have DUMMY for each of the first 
s(n)+ 1 parameters followed by Q0• end of comment; 
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LEFT(DUMMY, ... ,DUMMY,Q0); 

STAY(DUMMY, ... ,DUMMY,Q0); 

RIGHT(DUMMY, ... ,DUMMY,Q0 ); 

Let P' be the program obtained by modifying Pas described above.· We claim without proof 

that every procedure in P' is formally reachable; this, along with the fact that P' satisfies all 

of the restrictions given in the statement of the theorem, may be easily verified. Furthermore, 

the first parameter to Or has exactly one possible value (which happens to be DUMMY) if and 

only if M does not halt as specified, and has exactly two possible values if and only if M does 

halt as specified. From this it follows that determining the number of possible values for a 

procedure variable is P-space hard. Since determining possible values is at least as hard as 

determining the number of possible values, the theorem follows. 


