MIT/LCS/TR-247

INTERPROCEDURAL DATA FLOW ANALYSIS
IN THE PRESENCE OF POINTERS,
PROCEDURE VARTABLES, AND LABEL VARIABLES

William Edward Weihl

Tius blank page was inserted to preserve pagination.

Interprocedural Data Flow Analysis
in the Presence of

Pointers, Procedure Variables, and Label Variables

William Edward Weihl

© William Edward Weihl

January 18, 1980

The author hereby grants to M.I.T. permission to reproduce and to distribute
copies of this thesiz document. All other rights including copyright are hereby
reserved to the author. M.LT. shall not reproducs or distribute copies of this
work without including the author's copyright notice. -

Massachusetts InsﬁtntcofTochm .
Laboratory for Computer Science

Cambridge Massachusetts 02139

Interprocedural Data Flow Analysis in the Presence of

Pointers, Procedure Variables, and Label Variables

by
William Edward Weihl

Submitted to the Department of Electrical Engineering and
Computer Science on January 18, 1980 in partial fulfillment of
the requiremants for the degress of Master of Science and
Bachelor of Science in Computer Science.

ABSTRACT

The compilation of highly modular programs requires extensive interpro-
cedural analysis in order to produce reasomable object code. Such analysis is
greatly complicated when the source language contains such constructs as pro-
cedure variables and label variables. The possibility of aliasing among variables
in the programs to be analyzed adds further complications,

Procedure variables make it impossible to determine, from a simple scan of
the program, which procedures may be called by each call statement. Label
variables similarly make it impossible to determine which labels may be gone to
by each goto statement. Thus a call graph and a comtrol filow graph cannot be
constructed after a simple scan of the program. This information is needed to
perform intraprocedural data flow analysis.

We suggest an approach to analyzing programs with the features mentioned /
above, and describe an algorithm which can be used to implement it. The ap--
proach involves determining possible values for procedure and label variables
and the possible alias relationships among variables in the program. The prob-
lem of determining possible values for procedure variables is also shown to be
P-space hard. This indicates that the problem is likely to be intractable, and
motivates the search for approximate solutions. The algorithm which we pro-
pose therefore produces information which is safe but not always precise, It
has a running time which is approximately bounded by the product of the
number of alias relationships in the program and the aumber of variables and
constants of pointer, procedure or label type. In certain cases it is as precise as
possible, and in some of these it is also asymptotically as efficient as possible.

Name and Title of Thesis Supervisor:

Stephen A. Ward,
Assoclate Professor of Electrical Engineering and Computer Science

Key Words and Phrases:

optimizing compilers, data flow analysis, procedure variables, alias-
ing of variables, P-space hard

ACKNOWLEDGEMENTS

I would like to thank my parents, family, and friends for their love, support, and
encouragement during the course of this work; without them I would never have survived it. I
~ would also like to thank MIT for providing such a rich environment in which to work and live.
. The Fannie and John Hertz Foundation provided part of the support for this work, and for
that I am very grateful. IBM also deserves thanks for providing me with the opportunity to do
this work under the auspices of the VI-A program. '

A number of individuals deserve special thanks for their help on this thesis. Bill Harrison
suggested the topic and provided much of the necessary guidance. He, Louise Trevillyan, and
Larry Carter deserve thanks for the many helpful suggestions which they made as these
algorithms were being developed. Steve Ward also provided many suggestions on the work.
Jeanne Ferrante, Janet Fabri, Fran Allen, John Guttag, and the others mentioned above also
deserve thanks for their comments on previous drafts of this manuscript which greatly
improved the presentation. Finally, Mark Wegman provided some key insights in analyzing the
time requirements of the algorithm.

0. TABLE OF CONTENTS
page
ADBIACL.ttt et e e e e 2
Acknowledgements ittt e 3
0. Comtents0iiiiiiieiinneernnteissaeeonsesnansseaneensns 4
1. Imtroductionttt neenaasnnnonnansenns 5
2. Related Work ittt ettt e iy 7
3. Proposed Solutiont i e e i e 8
4, Complexity ittt ittt tinee i tan et 11
5. TheMethod ittt iiietiansttaneanaeeainnn 14
SI. No AlasSingttt e e e 14
5.2. Call By Reference0itiiinenuennennonnnenanneansenncs 16
53. Pointer Variables it i 19
5.4, Calls On Procedure Variables iiiurninn.n 26
55 PossibleImprovementsc.ittttianaaa..s . 28
6. The AliasRelation ittt 30
T SUMMATYttt ettt s 34
8. FurtherWork i 35
. ReferenmCesttt ittt e e 38

1. INTRODUCTION

Program optimization in the presence of procedure calls is increasingly important because
of the current emphasis on modularity andabstractioninpromdcsign. Since these design
methodologies imply a heavy use of procedures and procedure calls, it is essential that analysis
techniqnesusedtoeompﬂetheseprognmperfo?mveﬂwhencakmm This is important
for several reasons. Amongtheqemthefam&nprooadwesmofmfﬁdygenemethat
Mmrw&m&m@mdfm&mﬁnnmmmﬂmmwwm&mm
the program, that procedure calls imply some overhead which it might be desirable to avoid,
and that lack of knowledge about a called procedure makes it difficult to determine

information about the procedure which contains the call.

Stgndarddata flow analysis techniques [2, 4, 9] have many problems when applied to
programs containing procedure calls. The reason for this is that a procedure call is essentially
a statement whose effects cannot be determined upon examining only the statement itself.
Rather,thebodyofthéproeedmmustbeemhoduw&ﬂ. Failure to examine the body of
meprowdmmymmdmmmopmm&Mpedemopﬁnﬁuﬁonbem
peﬂotmedhsmannctiomofthepmmwhicheowmprwedmeuns,withveq.
pessimistic assumptions being made about the use of parameters and giobal variables. If the
latter is the case then many valuable optimizations may be lost; for example, the presence of a
procedure call within a loop might prevent code which is invariant inside the loop from being

moved outside it.

These deficiencies have led to the development of a number of methods for
interprocedural data flow analysis [3, 6, 7, 11] which produce summaries of the effects of each
procedure (e.g., an indication of which variables are used, modified, etc.). These summaries

are used when analyzing invoking procedures, avoiding the problems mentioned above.

-6 -

The methods proposed by Barth and Banning have a number of advantages over that
proposed by Allen, including greater speed, fewer passes required over the code, and the
handling of recursion. Rosen’s method, though slower than the others mentioned here, can
produce more precise information. Unfortunately these methods are not sufficiently general to
be used for many languages. Specifically, all of these methods require a call graph. However,
if procedure variables are included in the language, the call graph cannot be obtained through
a simple scan of the text of the program being compiled. Further complications occur when
aliasing[l3]amongvaﬁabluintheprogmmispuaible. This can result from mechanisms
such as pointers and call-by-reference parameter passing. These two mechanisms are the ones
considered in this paper. AsanexamphoftheproﬂmswhichMgmcause,acaﬂona
procedure variable using call-by-reference could have the effect, depending on the value of the
procedure variable at the time of the call, of assigning a procedure value to ome of the
parameters of the call. This fact must be taken into account in constructing the call graph, for
ifprocedureAcontainsacallonprooednrevaﬁublex,thecallgnphmmteoatu'namsfrom

the node for procedure A to the nodes for each procedure which X can have as its value.

Another language feature which complicates the situation is the use of label variables.
Suchafeaturepreventstheoomtmcﬁonofacontrolﬁowgnphmﬁithepoﬁbkvalmofaﬂ
label variables in the program have been determined. Since a control flow graph is required
for standard data flow analysis, it is necessary for some part of the analysis phase of the
compiler to compute this range information for label variables before standard data flow

analysis is performed.

2. RELATED WORK

Very little v;'ork has been done on the problem of handling procedure variables and
pointers in performing interprocedural data flow analysis. Spillman [13] is the only one who
addresses the problems associated with these language features. However, there are a number
of limiting aspects to Spillman’s work. First, the algorithm requires iteration in the presence of
recursion. This can lead to large time requirements. Second, the algorithm is presented at a
low level, making it difficult both to understand and to verify. Finally, the algorithm as
presented is specific io certain features of PL/1. This, combined with the low level of

presentation, makes it difficult to adapt the algorithm for use in compiling other languages.

Ryder [12] presents an algorithm which determines the call graph for a program with
procedure parameters. The algorithm is designed to be used with Fortran and is meant to be
portable across a wide range of machines. The portability constraint leads to limitations on the
use of in-core storage; these limitations influenced the design of the algorithm. The intent to
use the algorithm for Fortran leads to the assumption that there is no aliasing and no

recursion. These factors all limit the general applicability of the algorithm.

The methods proposed by Allen, Barth, Banning, and Rosen solve the problems associated .
with procedure variables and pointers to varying degrees, usually by placing restrictions on the
use of these features in the programs to be compiled. In the extreme case these features are

not allowed at all.

3. PROPOSED SOLUTION

We propose to deal with the problems intioduced by pointers, procedure variables, and
iabel variables by first computing range information (i.c., lists of possible values) for procedure
variables, thus providing a call graph, and then using oixe of the known methods, such as
Barth’s, for generating summaries. It is necessary to compute aliasing patterns as well as range
information for pointers while computing range information for procedure variables, simply
because procedurevanabiescanacqm values as a result of aliasing with other variables. All
of this information will be computed without taking control flow information into account. It

will subsequently be used to compute range information for Iabel variables and to generate

summaries for procedures, prior to generating a oontrol flow graph.

The context in which this work has been done is that of the Experimental Compiling
System (ECS) project of the Computer Sciences Department at IBM’s Watson RMh
Center. An overview of this project is given in [S]. Briefly, the goal of the project is to build
a general purpose optimizing compiler which, given the appropriate source language definition
and target machine description, can compile programs for that source language into code for
that target machine. Clearly it will not be possible to compile all languages for all machines.
However, it is hoped that it will be possible to compile a large class of languages for a large
class of machines. For this reason the analysis and optimization phases should be formulated

in a manner which is as independent as possible of language and machine.

The ECS compiler attempts to treat primitives of the intermediate language and ‘preyiously
analyzed procedures as uniformly as possible, at least as far as analyzing a program which uses
them. This is accomplished by associating with each primitive and each analyzed procedure a
summary of its effects. Information contained in such a summary includes lists of variables
which are used, modified, and preserved, as well as an indication of the copies which may be
performed when the primitive or procedure is invoked. For example, the summary for a

primitive which moves data from its second argument to its first argument would specify that

-9

the primitive uses and preserves its second argument, modifies its first argument, and performs
a copy of its second argument into its first argument. The information about copies is used in

propagating procedure, label, and pointer values.

This means that in order to analyze a program, we need either the code or a summary for
every procedure which it calls. This might seem to force a compilation order for separately
compiled programs, and to achieve reasonable optimization of the programs, it does. However,
it is desirable to be able to compile programs separately, and to allow this to be done in any
order. This creates two problems in analyzing a procedure. First, the effects of the caller,
such as aliasing of parameters, may be unknown. Second, there may be calls_on proeedﬁres for
which no summary exists. In either case, the worst case must be assumed. In ECS the second
case is treated by creating a summary for the unknown procedure, and ensuring that this
summary specifies all of the possihle effects of the procedure. The first case is somewhat more
complicated;ineffect,theprogramistreatedasiftherewéreauﬂonthebrocedm'ewhich
causes all possible parameter aliasing, including with external variables. If any of the
parametersareprocedurevarhblestheprobhmsmcompoundﬁd. This is because a call on
theparametercouldbeauﬂmaﬁowdmwhkhwpwummpmwr,andme

effects of this procedure are unknown. We omit the details of the handling of such situations.

We assume that we are given a collection of procedures, each of which consists of a set of
instructions. Each instruction consists of an opcode, which indicates a call on either a
primitive, a previously analyzed procedure, a procedure in the collection, or a variable, and a
list of operands, each of which is either a variable or a constant. Expressions are not allowed
as operands; rather, we assume that the computation of expressions has been expanded into

sequences of instructions. Operands are assumed to be passed by reference.

For each opcode which is a primitive or a previously analyzed procedure we assume that

there exists a summary for that opcode. This summary must specify all of the possible copies

-10 -

among parameters and globals which could be caused by a cail'on the opcode. We make no

assumptions about the possible flow of control between instructions in a single procedure.

Given such a collection of procedures, the problem ls to compute sets of possible values
for procedure variables, sets of possible values for label variables, sets of variables which may
be addressable through pointer variables, and sets of possible aliases for all variables. In the
next section we show that this problem is inherently very difficult. In succeeding sections we
present our solution in stages, demonstrating its correctness and evaluating its precision and
time requirements. Following this we discuss briefly some characteristics of the alias

relationships as computed by our method, and then summarize our results,

- 11 -

4. COMPLEXITY

In this section we show that the problem of determining possible values for procedure
variables is P-space hard. We assume some familiarity with the term "P-space hard". A

definition of this term and a discussion of its significance can be found in [1].
In fact, we prove the following theorem, which makes a stronger statement.

Theorem: Determining possible values for procedure parameters for programs in which there .
is no aliasing among variables, no nesting of procedure declarations, and no significant flow of

control, and in which every procedure is formally reachable, is a P-space hard problem.

This theorem is significant for a number of reasons. First, it indicates that it is extremely
unlikely that there is any efficient method for computing possible values for procedure
variables. Second, and perhaps more important, it shows that even when assignment
statements, aliasing, and nesting of procedure declarations are not allowed, it is still unlikely
that an efficient method exists. Furthetmo:_'e, this is still true when there is no significant
control flow in the program being examined, other than that implied by the call mph. These
results lead one to search for solutions to the probbm which are approximate and reasonably
efficient, such as the one presented in this paper. These solutions may not produce exact
information, but they must produce safe information; i.e., information which is conservative in
that the possible values determined should be a superset of the exact possible values. We
make the restriction that all procedures be formally reachable since this is an assumption which

is often made in compilers.

Proof: We make use of a theorem proved by Winklmann [16], in which he shows that
deciding the property of formal reachability in programs without nested procedure declarations
is a P-space hard problem. Formal reachability is defined in terms of a formal execution tree,

which is a tree of calls where the nodes of the tree are pairs consisting of procedures and their

-12 -

environments. (This is not the same as reachability defined in terms of a call graph as it is

usually used in compilers.)

Winkilmann shows this by constructing a program P for a given Turing machine M,
polynomial s, and input w, such that a procedure Q, in P is formally reachable if and only if M,
when started in its initial state with w written on its tape and its head scanning the leftmost
symbol of w, halts without its head ever moving outside the s(n) squares to the right of, and
including, the tape square scanned at the start, where n is the length of w. P satisfies all of the
requirements given in the statement of the theorem except for the restriction that all
procedures be formally reachable, and can be constructed in polynomial time from a

description of the Turing machine M, the input w, and the polynomial s

Deciding whether Q, is formally reachable is therefore u»difﬁcult as deciding whether M
halts in the required manner. Sincetheﬁrstpara_mcteron,hunopoaﬂblc values if Q, is
not formally reachable, and has exactly onc possibic value if Q, is formally reachable, it
follows that determining whether a given procedure parameter has 2 non-empty set of possible
values is a P-space hard problem. This pmbbm can be easily solved given the sét of possible
values for the procedure parameter, so determining sets of peuﬂble values for procedure

parameters must also be P-space hard.

We have not yet proved the theorem, since P does not satisfy the restriction given in the
statement of the theorem that all procedures in P must be formally reachable. However, it is
possible to transform P into a program P' in which all procedures are formally reachable, and
about which we can ask the same kind of question which we asked about P. Furthermore, the
construction of P' from P can be done in time linear in the length of P. Details of this

construction and of the construction of P can be found in the appendix.

The basic idea in constructing P*' is to introduce calls to every procedure in P, but to do

so in such a way that it is still possible to talk about the formal execution of P' simulating the

-13 -

execution of the Turing machine M on input w. Since it will then be the case that Q, is always
called at least once, the question which we will ask about P' is whether the first parameter to
Q, has more than one possible value. 'I'hiswillbetmeifandonlﬁifQ,iscalledmorethan
once, which will be true if and only if M, when executed on input w, halts in the prescribed
manner. Therefore, answering this question is P-space hard, and since this question can be

easily answered given sets of possible values for procedure parameters, the theorem follows.

-14 -

5. THE METHOD

As stated earlier, we will present the method in stages. We begin with the simplest case, a
single procedure with no aliasing, and gradually allow more complexity in the program being
analyzed until we have included reference parameters, pointers, and calls on procedure

variables.
5.1. NO ALIASING

We will first consider propagating values within a single procedure. Given that there is a
summary for every instruction in the procedure, create a relation named PVAL and initialize it
to all pairs (A,B) such that B is copied into A. B may be an constant or a variable; A must be
a variable. A pair (X,A) in PVAL means that X has possible value A. i’VALrangesoverthe
variables in the program for which we wish to determine values and over the values which we
are interested in propagating. We determine which copies are Me by examining the
instructions in the procedure. For each instruction, consider each copy in the summary for the
opcode of the instruction. If one of the clements of the copy is a formal parameter of the
opcode, substitute the corresponding operand of the instruction. The resulting copy gives a
pair which should be placed in PVAL. To propagate values, replace PVAL by its transitive
closure PVAL*. For variableXandconstantA,therwdﬁngrehtiongivesanmwertothe

question of whether A is a possible value of X.

We claim that propagating values in this manner, for this limited case, is both correct and
as precise as possible. To show that it is correct, suppose that a variable X has value A at
some point during the execution of the program. For X to have value A, the execution of the
program must include a finite sequence of assignments X, , := X, with X, being A and X,
being X. If this is the case, then each of these asgsignments must appear as a copy in the

summary of some instruction in the program. Therefore each appears as a pair in the initial

-15 -

PVAL relation. From this it follows that the transitive closure of PVAL must include the pair

(X,A). Therefore the informatioﬁ computed is correct.

To show that it is as precise as possible, suppose that there is a pair (X,A) in the
transitive closure of PVAL. There must exist a finite sequence of pairs (X, ,,X,) in the initial
PVAL relation, with X, being A and X being X. Each of these pairs corresponds to a copy
specified by the summary for some instruction in the procedure. Since we are making no
assumptions about the possible flow of control between instructions in the program, any
sequence of instructions must be considered possible. In particular, the sequence of
instructions which corresponds to the given sequence of copies must be considered possible.
This means that, ignoring control flow mformatnon, X my have A as value. Therefore the

information computed is precise.

The complexity of this algorithm is bounded by the complexity of computing the
non-reflexive transitive closure of an nxn hoolun matrix, ﬁm n being the total number of
variables and values involved in the propagation. Under the assumptions made up to this
pom,misisasympmﬁuuymebmmuealgoﬁ@mfmmmmmmomamn. We
can show this by demonstrating that computing this information is of the same complexity as |

computing the transitive closure of a matrix.

We consider a single procedure and assume that we have no control flow information. If
P(n) is the time to propagate values for a program containing »n variables and constants, and
T(n) is the time to compute the transitive closure of an nXﬁ matrix, we must show that there
exists a constant ¢ such that TYn) < cP(n). Suppose that we have an nxn boolean matrix M
and we wish to compute its transitive closure. We first create variables X, and constants A,,
for 1 < i £ n. For each X, we create an instruction whose summary indicates a copy to X
from A, For each 1 in the matrix, say at position (i,j), we create an instruction whose
summary indicates a copy to X, from X;. These instructions constitute the procedure for which

we wish to propagate values. We claim that X; has possible value A if and only if there is a 1

- 16 -

in position (i,j) in the transitive closure of M. This implies that T(n) < P(2n). Since P(n) is
bounded by the time to compute transitive closure, and this is Of®), we can assume that

P(2n) < 8P(n). From this we conclude that TTn} £ 8P(n).

Now consider the situation in which the program to be analyzed consists of multiple
procedures, and in which instructions may be calls on primitives, previously analyzed
procedures, or procedures in the given collection. Operands to primitives and previously
analyzed procedures are passed by reference while operands to procedures in the collection are
passed by value. Propagating values in this situation is almost identical to propagating values
in the case of a single procedure. The only difference is that we must account for the
transmission of values from actual parameters to foﬁnal parameters. This can be done in
initializing the relation PVAL. For each call on a procedure P in the collection, where P is \
declared with formal parameters X,, and the call has corresponding operands Y,, add the pairs
(X,,Y;)) to PVAL. For each other instruction initialize PVAL as before. Then form the
transitive closure PVAL*. We claim that, as in the case of a single procedure, this computes
correct and completely precise information, and does so asymptotically as quickly as possible.

The proof is quite similar to the previous proof; we omit the details.
5.2. CALL BY REFERENCE

We now wish to allow parameters to procedures in the collection to be passed by
reference. This means that when a value Y 'is copied into a variable X, there is an implied
copy of Y into each alias of X. There are now two different effects to consider. The first is
the modification of a variable by assignment to it. The second is the association of a formal
parameter with an actual parameter by a call to the procedure which owns the formal. To
keep track of this information, we create two relations called MODVAL and AFFECT. A pair
(X,A) in MODVAL means that X is assigned value A. A pair (X,A) in AFFECT means that
X may be aliased to A and to every other variable which may be aliased to A. However, it

can be the case that there is some variable which may be aliased to X but not to A. The

-17 -

characterization of parameter aliasing with AFFECT was first suggésted by Barth [7].
MODVAL is initialized to all copies which are specified in the summaries of instructions in the
program. AFFECT is initialized to all formal-actual parameter pairs which result from calls to
procedures in the collectioq. Assume for the moment that constints are never used as actual
parameters for calls to prmdﬁu in the oollecnon We will relax this restriction in the final
version of the algorithm and will explain the reason for it at that time. Barth shows that the
ALIAS relation, which indicates the possible aliasing relationships among variables, may be

computed by the expression AFFECT* < (AFFECT*)".

We claim that the following computation results in PVAL specifying correct possible

values:
PVAL := (AFFECT v ((AFFECT*)' cMODVAL))*,

where R* denotes the reflexive transitive closure of the relation R, R” denotes the transpose of
R, and R* denotes the non-reflexive transitive closure of R. We first note a theorem by Barth
(7], which states that a modification of a variable can affect any actual parameters, including
the variable itself, which correspond to the variable, as well as any formal parameters which
correspond to any of those actuals. Observe that if the varisbie is not a formal parameter then
the set of corresponding actuals will include only the variable itself. Furthermore, a
modification of a variable can affect only these variables. Barth also shows that AFFECT*

gives, for each formal parameter, all of the possible corresponding actuals.

Now suppose that variable X can have possible value A at some point in the execution of
the program. There must be a sequence of calls and assignments which resulted in the
assignment of A to X. For each call in the sequence which matches formal Y with actual Z,
the pair (Y,Z) is in AFFECT and therefore in PVAL. For each assignment of Z to Y in the
sequence, the pair (Y,Z) is in MODVAL and therefore in PVAL. Furthermore, if W is aliased

to Y, there exists a U such that W AFFECT* U and Y AFFECT* U, as shown by Barth.

- 18 -

The pair (U,Z) is therefore in PVAL, since we know that U (AFFECT?*)' cMODVAL Z. The
pair (W,U) is also in PVAL, since each pair in AFFECT is in PVAL. Since PVAL is closed,
the pair (W,Z) must be in PVAL. Therefore, each pair corresponding to the values
transmitted by each action in the execution sequence of the program is in PVAL. This implies
that each pair corresponding to the values transmittéd by the sequence as a whole must be in
PVAL. In particular, the pair (X,A) is in PVAL. Therefore the information computed is
correct. Since the complexity of boolean matrix multiplication is the same as that of transitive
closure, the complexity of this algorithm is, like the previous versions of the algorithm,
bounded by the time to compute the transitive closure of an nxn matrix. Furthermore, since
this algorithm computes the same information for a single procedure as the previous algorithm,
it can be argued that this algorithm is asyﬁptotically the fm possible algorithm for

computing the information which it produces.

This algorithm does not compute completely precise mformatxon The imprecision stems
fromtheuseofAFFECTtochuacterizepanmetefaﬁuing,and‘udbcumdbyBarthin[ﬂ.
As a simple example of the imprecision, consider the skeleton program in figure 1. In this
example, A should be assigned Q by the first call on P, and B should be assigned R by the
second call on P. However, the method determines that both A and B have possible values Q
and R. This results from the fact that, based on the aslligmnent of T to S, we propagate all
values of T to S and then to all actual parameters for S. The basic reason for this is that

separate calls on a procedure are not treated separately.

procedwre P(S,T); ... S:=T; ... ;
procedure Q;

procedure R;

procedure variable A,B;
P(A,Q);

P(B,R);

Figure 1

-19 -

5.3. POINTER VARIABLES

We now introduce pointer variables into the programs being analyzed. We do so in two
steps, first considering a single procedure and then allowing multiple procedures with
parameters passed by reference. As mentioned earlier, it is necessary to augment the summary
information kept for primitives and previously analyzed procedures to give some information
about indirect accesses through variables. To simplify the summaries no information will be
kept about the number of levels of indirection involved in accessing storage through a pointer,
e.g., in accessing an element of a list. Instead, a distinction is made only between a direct
access of a variable and an access of storage via some positive number of indirections on a

variable.

The summaries must now distinguish between four types of copies. Letting P and Q
denote variables and *P and *Q denote storage accessible through the variables, these four

types are as follows:

1) P:=Q

2) P:=*Q
3) *P:=Q
.4) *P := *Q

Two other types of copies are also allowed. These involve the assignment of the address of a
variable to another variable or to storage accessible through another variable. These are as

follows:

5) P := addr(Q)
6) *P := addr(Q)

We will utilize the relations AFFECT and MODVAL. Previously these relations dealt with the

variables and values which were interesting in terms of propagating values. To handle pointers

-20 -

and the transmission of values via assignments to storage accessible through pointers, we
introduce dummy "variables" for each pointer variable. For a pointer variable P this dummy
variable is meant to represent the storage accessible through P and will be denoted by *P. To
propagate aliasing information correctly based on the assignment of the address of a variable
to another variable, we introduce dummy literals for cach variable whose address is copied.
For a variable Q whose address is copied (cases 5 and 6 above), this literal will be denoted by

AQ and represents the address of Q.

Figure 2 describes the initialization of AFFECT and MODVAL for each type of copy. If
one element of a copy, say X, is not a pointer variable, then all pairs involving *X should be
ignored. To give some intuition about the reasons for initializing the relations in this manner,
consider the simple assignment P := Q. If P and Q are pointer variables, this has two effects.

First, it results in P (and any alias of P) acquiring the value contained in Q. It also causes any

1) P:=Q
Add the pair (P,Q) to MODVAL.
Add the pair (*P,*Q) to AFFECT.

2) P:= *Q
Add the pair (P,*Q) to MODVAL.
Add the pair (*P,*Q) to AFFECT.

3) *P:=Q
Add the pair (*P,Q) to MODVAL.
Add the pair (*P,*Q) to AFFECT.

4) *P:= *Q
Add the pair (*P,*Q) to MODVAL.
Add the pair (*P,*Q) to AFFECT.

5) P = addr(Q)
Add the pair (P,AQ) to MODVAL.
Add the pair (*P,Q) to AFFECT.
Add the pair (*P,*Q) to AFFECT.
6) *P := addr(Q)
Add the pair (*P,AQ) to MODVAL.

Add the pair (*P,Q) to AFFECT.
Add the pair (*P,*Q) to AFFECT.

Figure 2

-21-

storage accessible through Q to be accessible through P, from which it follows that every alias

of *Q is an alias of *P.

There are many similarities between the effects which occur due to parameter aliasing and
those occuring due to the use of pointers. If there are several assignments to a i)ointer P, say
from Q and R, then *P is aliased to both *Q and °*R, but *Q @d *R are not necessarily
aliased. On the other hand, if P is assigned to several pointers, say Q and R, thgn *Q and *R
are both aliased to *P and, since Q and R may be asmgned the same value, *Q and *R are
aliased to each other. These two situations are veﬁ similar to two situations which can occur
with reference paraméters, the first being when two different actual panméters are passed to
the same formal parameter, and the sccbnd being when a single actual is passed to two
formals. ‘ In fact, parameter aliasing behaves much like pointer aliasing, something which makes
more sense when we consider the fact that a call binds the formal parameters to the locations
occupied by the corresponding actual parameters for the duration of the call. In effect, for
formal X and actual Y, there is an assigament of the form addr(X) := addr(Y). Taking
addr(X) to be av;riable, so that the storage accessible through it is simply X, we see that the
initialization for such a copy is exactly that used in initializing »the relations for a call using

call-by-reference; i.c., add the pair (X,Y) to AFFECT.

However, the algorithm which we used to propagate values.for reference parameters is not
sufficiently general to handle pointers. Although the effects are very similar in the two cases,
there is one crucial difference. We mentioned that the binding of a formal parameter to an
actual parameter is in effect an assignment of the address of the actua.l to the address of the
formal. Considering these two addresses to be variables, this almost models the situation
which occurs with pointers. The difference with pointers is that the variables which contain
addresses can be aliased as well, aﬂ 50 assignments‘to a pointer variable must be l;ropagated
to all of the aliases of the variable. This includes assignments of the address of a variable

(cases 5 and 6). Furthermore, for any variable which is assigned the address of another

.| Initialize AFFECT and MODVAL as indicated above.

-22-

variable, it is necessary to ensure that the appropriate allasmg is computed between the second

variable and the storage accessible through the first variable.

The method which we choose to solve‘ this problem is to iterate. For each modification to
a variable which we discover, we will add the aliasing relationships implied by that
modification and then iterate to see if this produces any more modifications. This produces
the algorithm in figure 3. The function ind returns the object which denotes storage accessible
via one level of indirection on X. If X is of the form AY, Y is returned. If X is of the form Y
and Y is a pointer variable, *Y is returned; if Y is not a pointer variable then the pair should

be ignored. Finally, if X is of the form *Y, *Y itself is returned.

For each modification X := Y, this explicitly propagates the implied aliasing information
to all Z such that X AFFECT* Z. The propagation to other aliases of X, e.g., to those Z such

that Z AFFECT* X, is already dome by virtue of the fact that whenever we have

Z AFFECT* X we also have *Z AFFECT* *X. Adding (*X,*Y) to AFFECT and then

recomputing the closure of AFFECT will give *Z AFFECT* *Y, as desired.

The key to demonstrating the conm of this algorithm lies in the definition of
AFFECT. Remember that a pair (X,Y) in AFFECT means that efery alias of Y is also an
alias of X. Now suppose that variable X has value A at some point in the execution of the
program. There must be a sequence of assignments which results in the assignment of A to X.

Assume that for the ith assignment in the sequence, all of the possible aliasing which can result

repeat
M := (AFFECT*)"«sMODVAL
for each (X,Y) m M
Add (ind(X),ind(Y)) to AFFECT
Add (ind*(X),ind*(Y)) to AFFECT
until there is no change in AFFECT
PVAL := (AFFECT v ((AFFECT*)'-MODVAL))*

Figure 3

-23 -

from previous assignments is embodied in AFFECT. We will show that the same is true for
the aliasing which results from the ith assignment. The proof of the correctness of the

computation of PVAL is then identical to the proof used for reference parameters.

We first note that for each possible assignment which appears in the program, AFFECT is
initialized such that if an assignment is the first in the sequence, the aliasing computed from
AFFECT is correct after considem that assignment. The ith assignment in' the sequence,
however, could assign a value not just to the explicit target of the assignment, but also to any
aliases of that target. Assuming that AFFECT contains at least the aliasing information
resulting from the previous i-] assignments, and that the target of the ith assignment is W, the
computation of M finds all possible modifications of those Y such.that w A‘FFECT‘VY. The
aliasing implied by these modifications is then entered into AFFECT. We must show that
fonping the closure of AFFECT computes all aliasing which could result from the ith
assignment. SincemealiasannyorwhichthmexiatsaYmchthatW AFFECT* Y
and Z AFFECT* Y, we must show that the pairs entered in AFFECT by the loop over the
pairs in M cause the aliasing for each such Z to be correct. We have shown that this is true
for each Y such that W AFFECT‘ Y. Since, as may be easily verified, *Z AFFECT* *Y is
true if Z AFFECT* Y is true, the aliasing which was entered for Y is transferred to Z when
the closure of AFFECT is recomputed. This means that the almsmg is correct after
consideringtheithassignmcnt,fmmwhichwecandedwthatthgﬂiaxingisoonectafter
considering the sequence of assignments. Therefore the computation of PVAL is correct, and

s0 A is determined as a possible value for X.

We claim‘that this algorithm is precise as well as correct, given the assumption that no
‘information about control flow is available. Observe that a pair (X,Y) in AFFECT means that
every alias of Y, as computed by the expression AFFECT* > (AFFECT?®*)", is also an alias of

X. Now observe that this is actually the case for every pair which is placed into AFFECT

-24 -

because of a modification. From this it follows that the aliasing is precise, which implies that

the computation of PVAL produces precise information.

The reason why the aliasing information computed is precise for pointers but not for
reference parameters is that the call structure of the program contains information about the -
relative lifetimes of the alias relationships for pnrameters Unless control flow information is
considered, no such information is available for aliasing due to pointers within a single

procedure.

Allowing multiple procedures in the collection with parameters passed by reference
requires a change only in the initialization of AFFECT. No change in the propagation
.algorithm itself is required. For each call with ‘opcnnds Y, to a proco&ure with formal
parameters X;, the pairs (X,,Y,) and (*X,*Y,) should be added to AFFECT. The initialization
for all other statements is as above. We omit the details of the proof of correctness for this
version of the algorithm. The algorithm has the same imprecision as it did for programs with

reference parameters and without pointers.

Initialize AFFECT and MODVAL as indicated above.
AFFECT := AFFECT*
NEWA := AFFECT
do while NEWA = ¢
M := NEWATeMODVAL
NEWA := ¢
foreach (X,Y)ima M
Add (ind(X),ind(Y)) to NEWA
Add (ind*(X),ind*(Y)) to NEWA
Remove those pairs from NEWA that are already in AFFECT.
Add each pair in NEWA to AFFECT and reform the closure of AFFECT.
Let NEWA be all those pairs which were added to AFFECT by the previous statement.
end
PVAL := (AFFECT v ((AFFECT*)"eMODVAL))*

Figure 4

_25.

Before discussing the time requirements of this algorithm, we make an observation about
the algorithm itself. This is that it is not necessary to recompute the transitive closure of
AFFECT each time through the loop, nor is it necessary to consider the effects on M of a pair
in AFFECT whose effects have already been considered. In other words, we can propagate
the effects of modifications incrementally. This leads to the equivalent version of the
algorithm given in figure 4. In this algorithm, we keep track of all recently discovered aliasing
relationships and determine any modifications implied by these relationships. We then
compute the aliasing relationships implied by these modifications, and continue this process

until no new aliasing is discovered.

Let n be the size of the domain of the relations. Let ¢ be the total number of pairs in
AFFECT* when the algorithm finishes. The initial closure of AFFECT can be done in time
‘T(n). The computation of the contribution of a single pair in NEWA to M can be done in time
n. Every pair in AFFECT appears in NEWA at this point in the program at most once.
Therefore the total time spent in the computation of M for all iterations of the outermost loop
is at most ne. The loop over the elements of M can be done as M is computed, and so the
total time spent in this loop is at most ne. TheﬁmespentdeleﬁhgthonpairsinNEWAwhich
are already in AFFECT is proportional to the number of such pairs. There are at most 2ne
such pairs for all iterations of the outermost loop, since the total number of pairs placed in M
for all iterations of the outermost loop is at most ne. Finally, the forming of the closure of
AFFECT cén be done in time at most n for each pair which is added to AFFECT, whether it
is in NEWA or is added in forming the closure after adding a pair in NEWA. There are at
most e such pairs, so the total time spent forming the closure of AFFECT for new pairs is at
most ne. The computation of PVAL can be done in time O{T{n)). The total time for the

algorithm as a whole is therefore O(T{n)+ne).

-26 -

5.4. CALLS ON PROCEDURE VARIABLES

The final step is to consider propagating values through calls on procedure variables. The
basic problem with a call on a procedure variable is that at the time the call is encountered in
scanning the program, the possible values Afor the variable, and hence the actual procedures
which might be called by the statement, are unknown. Therefore it is not possible to
immediately associate the actual parameters of the call with the formal parameters of the
procedure bemg called. To avoid rescanning the program several times, we need a mechanism
to keep track of the actual parameters of calls on procedures variables. When a value is
determined for a procedure variable, we can then associate the actual parameters of the calls

on the variable with the formal parameters of the value.

The meghanism which we choose to accomplish this is to create, for each procedure
variable, dummy formal parameters. For a given procedure variable X which is called with m
actual parameters, we create m dummy formal parameters XF,, for 1<i<m. We also create
dummy variables *XF, for each dummy formal parameter, representing the storage accessible
through the dummy formal. The number of dummy formal parameters which need to be
created can be determined by an initial scan of the program which keeps track of the number
of actual parameters passed to each procedure variable. If the source language requires
complete type specifications of procedure variables, i.e., that the types of the parameters be
specified as well, then the number of dummy formal parameters which are needed for each
procedure variable can be determined from the declaration of the variable. Also, entries *XF,
only need to be created for those parameter positions which have pointer types. Having
created dummy formal parameters for each procedure variabie, the initialization required for a
call on a procedure variable is exactly that for a call on a procedure in the collection. If the
call has actual parameters Y, and is to procedure variable X with dummy formal parameters

XF,, the pairs (XF,Y,) and (*XF,,*Y,) should be added to AFFECT.

-27-

Initialize AFFECT and MODVAL as indicated above.
repeat
M := (AFFECT*)"°sMODVAL
for each (X,)Y)ma M
Add (ind(X),ind(Y)) to AFFECT
Add (ind*(X),ind*(Y)) to AFFECT
PVAL := (AFFECT v ((AFFECT*)"'°MODVAL))*
for each parameter position i '
P := FPARM," cPVAL' - FPARM,
for each (X,Y) m P
Add (X,Y) to AFFECT
Add (ind(X),ind(Y)) to AFFECT
until there is no change in AFFECT
PVAL := (AFFECT v ((AFFECT*)' - MODVAL))*

Figure 5

If we consider a procedure variable X to be a procedure with formal-parameters XF,
which contains a single statement, that statement being a call on the current value of X with
actual parameters XF,, it should be clear that each time a value A is determined for X we
should associate the formal parameters of A with the dummy formal parameters of X as
formal-actual pairs. One way in which this can be done, as suggested by Kenneth Walter [14],
is to create relations FPARM,, one for each parameter position. A pair (X)Y) in FPARM,
. means that X has ith formal parameter Y. For each procedure A in the collection with formal
parameters Y,, the pair (A,Y,) is placed in FPARM, for each parameter position i. For each
procedure variable X with dummy formal parameters XF, the pair (X,XF,) is placed in
FPARM,; for each parameter position i. Now snppose that A is determined as a possible value
for X. IinistheithformalpuameterofA,andAi:apossiblevahekorX, and X has ith
formal parameter XF,, then the pairs (Y, XF,) and (*Y,,*XF,) should be added to AFFECT.
The expression FPARM," cPVALTcFPARM, computes the pair (Y,,XF,).b This leads to the
algorithm in figure 5. This algorithm, like the one developed for pointers, can be transformed

into an equivalent algorithm which propagates information incrementally. A similar time

-28 -

bound can also be derived for it. Its correctness should be fairly clear given the correctness of

the algorithm for programs without calls on procedure variables, and we omit the proof.

We mentioned earlier that actual parameters to calls on procedures in the collection or on
procedure variables should be restricted to be variables and not constants. The reason for this
was to avoid unnecessarily complicating the discussion of aliasing, since constants are passed
by value under call-by-reference. The solution to this is to initialize PVAL with /all pairs
(X,A) such that there is a call to.a procedure (or procedure variable) with formal parameter X
and corresponding actual parameter A. No entry is made in AFFECT for such pairs. The

computation of
PVAL := (AFFECT v ((AFFECT*)" oFMODqV.AL))+
is then changed to
PVAL := (PVAL v AFFECT v ((AFFECT*)"csMODVAL))*.

In this way constant actual parameters are propagated but no values may be attributed to them

due to modification of the corresponding formals.
5.5. POSSIBLE IMPROVEMENTS

The assumption that no information is available about the number of levels of indirection
involved in an access through a poihter is often overly restrictive. In a less general context,
type information may be available for pointers, and it may be possible to determine the
number of levels of indirection involved in a given access. For lists of arbitrary length and for
similar structures, it may be reasonable to make no assumptions about the number of levels of
indirection. In other cases, it may be desirable to consider *P to be the storage directly
accessible through P, **P to be the storage directly accessible through *P, and so on. In many
~ cases this can give significantly better information, albeit at somewhat greater cost. This

would lead to an approach which is similar to that found in [10]. This can be done to a

-29 -

limited extent with list structures, simply by considering the first few elements of the list
separately and treating the rest of the list (beyond the first few elements) as one block of

storage.

The other major assumption made here, that no information about control flow is
available, is also overly conservative. Rather than considering ‘the possible control flow to be
the complete graph with the individual instructions as nodes, some control flow information
can be used easily in the contexi of this algorithm. The set of instructions can be partitioned
into a set of sequences, where each sequence is a single-entry, single-exit sequence of
instructions. This is similar to, but not the same as, the notion of basic blocks as used in more
classical data flow analysis. The difference is that the sequences must be broken at all labels,

branches, and calls on procedure variables or unanalyzed procedures.

The net effect of each sequence can then be computed using the control flow within the
sequence. The set of sequences can be taken as the set of "instructions" in analyzing the
collection of procedures. For programs with few branches or calls, the resulting information is

likely to be much more precise than is obtained when all control flow information is ignored.

-30 -

6. THE ALIAS RELATION

The ALIAS relation, as mentioned earlier, can be computed by the expression
(AFFECT*) o (AFFECT?®*)" [7].

This relaﬁon’ gives an answer to the question "Is it possible at some point in the program for
variable A to be aliased with variable B?" The obvious ways to store this relation, e.g., as a
boolean matrix, or as a list for each variable of the variables to which it might be aliased, take
space which is roughly proportional to the square of the number of variables. In many
situations, howéver, it is the case that there are sets of variables which are equivalent under
this relation. We define equivalence of two variablt-;s to mean that they may be aliased to each
other and that the sets of variables to which they may be aliased are icienﬁcal. Each such class
could potentially be stored in space linearly proportional to the number of variables in it,
rather than to the square of that number. The amount of storage required fof the ALIAS
relation is then c? rather than v>, where c is the number of classes (which may be of unit size)
and v is the number of variables. This is especially’nsefnl in ECS because of the large number

of temporaries which are generated for constructs such as array indexing, and which fall into

fairly large classes of equivalent variables.

We prove the following theorem, which gives a necessary and sufficient condition for two

variables to be equivalent as defined above.

Theorem: Given the relation AFFECT, consider it as a graph and find its maximal strongly
connected components. Replace each such component with a new node identified with the
component. This leaves a directed acyclic graph (DAG). Define a sink in the DAG to be a
node which has no edges coming out of it. A node X in the original graph is a sink if the node
identified with the strongly connected component containing X is a sink in the DAG. We say

that node A reaches node B if there is a path, possibly of length zero, in the graph from A to

-31-

B. Two nodes in the original graph are equivalent if and only if they reach the same set of

sinks [8].

Proof: We will consider AFFECT and ALIAS as graphs, derived in the obvious way from the
relations previously discussed, and will give the proof in terms of nodes and edges of these
graphs. AFFECT is a directed graph, while ALIAS may be considered as an-.undirectedAgraph,
since the ALIAS relation is symmetric. This is easily seen from the definition of ALIAS.
When we speak of an edge in ALIAS, we henceforth mean an undirected edge. Also, when we
speak of a node X reaching a node Y, v;e mean that there is a path frém X to Y in AFFECT,

unless stated otherwise. A path is defined as a possibly empty séquenee of edges.

We note that there is an edge between node X and node Y in ALIAS if and only if there
exists a node Z such that X reaches Z and Y reaches Z. This follows immediately from the

definition of ALIAS in terms of AFFECT. Two nodes X and Y are equivalent if and only if

the following three conditions hold: there is an edge between X and Y in ALIAS; for each -

edge between X and some node Z in ALIAS there is an edge between Y and Z; for each edge
between Y and some node Z in ALIAS there is an edge between X and Z. In other words,
two nodes are equivalent if and only if they alias each other and the sets of nodes which they

alias are identical.

Lemma: X ALIAS Y is true if and only if there exists a sink Z such that X reaches Z and Y

reaches Z.

Proof of Lemma: From the definition of ALIAS, it is clear that X ALIAS Y is true if and
only if there exists a node W such that X reaches W and Y reaches W. Therefore, if there
exists a sink Z such that X reaches Z and Y reaches Z, it follows that X ALIAS Y is true. We
now show that such a Z exists if X ALIAS Y is true. Let W be such that X reaches W and Y
reaches W. Consider the DAG derived from AFFECT in the statement of the theorem. Let U

be the node in the DAG which is identified with the strongly connected component containing

-32-

W. U must reach some sink V in the DAG. Let Z be a node in the strongly connected
component identified with V. Since U reaches V in the DAG, it follows that W reaches Z.
This means that X reaches Z and Y reaches Z. V is a sink, implying that Z is a sink, and so Z

is the desired node.

We now prove the theorem, first showing that if X and Y reach the same set of sinks they
are equivalent, and then showing that if they reach different sets of sinks, they are not

equivalent.

Suppose that X and Y reach the same set of sinks. Since this set is necessarily
non-empty, they are aliased to each other. Suppose that X ALIAS W is true. Let Z be a sink
such that X reaches Z and W reaches Z, as in the lemma. Since X reaches Z, it follows by
hypothesis that Y also reaches Z. From the lemma, it follows that Y ALIAS W must be true.
Similarly, if Y ALIAS W is true it follows that X ALIAS W is true. Therefore X and Y are

equivalent.

Now suppose that X and Y are equivalent. Furthermore, suppose that there exists a sink
Z which one of them, say X, reaches, and which the other one, say Y, does not reach. From
the lemma, it follows that X ALIAS Z is true, since a sink reaches itself. Furthermore, there
is no W such that Y teaghes W and Z reaches W, since Z reaches only itself, being a gink, and
Y does not reach Z. Therefore Y ALIAS Z is not true. This gives a contradiction, since we
have found a node Z such that X ALIAS Z is true and Y ALIAS Z is not true, implying that

X and Y are not equivalent. This completes the proof of the theorem.

This theorem leads naturally to a reasonably efficient method for computing the sets of
equivalent variables. These sets can then be used for storing the ALIAS relation. Strongly
connected components can be computed in time O(max(n,e)), where n is the number of nodes
in AFFECT and e is the number of edges [1]. Deciding which nodes are sinks can be done by

first forming the reflexive tramsitive closure of AFFECT, and then checking each strongly

-33 -

connected component to see if there is an edge from any node in the component to a node in
another component. If there is no such edge then the component, and each node in it, is a

<

sink.

A technique described by Wegman and Carter [15] can then be used to partition the
nodes into classes based on the sets of sinks which they reach. This technique involves
hashing the sinks which a given node reaches, exclusive-oring the results of the hash together
to.get a new representation of the set. Having found the new representation of the set of
sinks reached by each node, the nodes can be partitioned very quickly based on the equality of
these representations by using a hash table. For those nodes whose sets of sinks have the
same such representation, the actual sets should be compared. This is because the

representation is guaranteed to be unique only within a specified probability [15].

-134 -
7. SUMMARY

We have suggested an approach to interprocedural data flow analysis for programs which
use pointers, label variables, and procedure variables. The major obstacle to such analysis is
determining the call graph, the control flow graph, and the alias relationships in the program.
We have presented an algorithm for determining these program characteristics; given this
information, there are algorithms in the literature [3,6,7,11] for completing the analysis of the

programs.

Subject to the basic assumption that information about control flow is not available, the
algorithm presehted here is precise for programs containing simple assignments and multiple
procedures, with parameters passed by value. Assuming that information abéut the number of
levels of indirection involved in accessing storage through a pointer is not available, the
algorithm is also precise for programs containing pointer variables, as long as the program
consists of a single procedure. The algorithm is in fact precise for programs containing
multiple procedures and pointer variables as long as pointers are not passed as parameters, and
parameters are passed by Qalue. When pointers may be passed as paraméters, -of parameters
are passed by reference, the information produced by the algorithm is no longer as precise as
possible. Similarly, when the program may contain calh to procedure variables the information

produced lacks some precision.

In certain cases we have shown that the algorithm is asymptotically as efficient as
possible. We have also shown that the problem of determining possible values for procedure
variables is P-space hard. This fact makes it mﬁkely that a method exists which is both
Aprecise and reasonably efficient. We have also discussed some characteristics of the aliasing
information which is produced, and have shown how these characteristics can be used to store

the information more efficiently.

-135-

8. FURTHER WORK

Although the complexity results obtained here and in [16] suggest that the problem of
precisely determining possible values for procedure variables is intractable, it is quite possible
that the programs used to obtain these results are pathological. It may be that procedure
variables are normally used in such a way that the problem addressed here Becomes tractable.
It would be interesting to characterize such patterns of use. This could be done for languages
in which procedure variables are explicitly used, as well as for languages where their use is
implicit (e.g., languages with type parameters, in which the type can be viewed as a set ‘of
operations). The question of whether the problem (as stated in section 4) is actually in

P-space is also open.

The complexity of the algorithm presented here is also not completely determined. In
some cases the complexity of the algorithm is equivalent to that of forming the tranmsitive
closure of a matrix, but in other cases only an upper bound has been shown. It would be

useful to determine whether these upper bounds are tight.

One assumption which is made throughout this work is that the summaries for procedures
contain information about the asgignments which might be performed by an invocation of the
procedure. For primitives this information must be supplied as part of the definition of the
semantics of the primitive. For user procedures, however, it is necessary to compute this
information. The work up to this point on summary generation has concentrated on computing
summary information about pr;adicate (e.g., is variable X used). Information about
assignments takes the form of a relation (e.g., is X assigned Y), and this seems to imply an
order of magnitude increase in complexity over computing predicate information. This might
not be the case, however, and it would be interesting to investigate the problem of computing

summary information of this form, given the control flow graph and the call graph.

- 36 -

Another areariwhich merits investigation involves the question of summary generation for
separately compiled procedures. In an environment in which a library exists in which to store
summary information for procedures, it is possible to compute a summary for a procedure A
when it is compiled, and then to use that summary later when complhng another procedure B
which calls A. However, in some cases a procedure A may be compiled before summaries are
available for all procedures C which it calls. To compute a summary for suchla procedure A, it
is necessary to represent the fact that the information about the procedures C which it calls is
incomplete. The same situation occurs with a procedure which calls one of its parameters, that
parameter being of type procedure. If the procedure is being compiled separately from its
caller or callers, it is impossible to determine the possible values for the parameter. On the

other hand, these values may be casily determinable when compiling the caller.

It might seem that it is possible to assume the worst possible effects for calls on
procedures C without summaries, but if globllr variables are allowed it becomes impossible to
express this worst case in closed form. The situation might also arise that by the time that the
caller B is compiled, summaries have been computed for some of the procedures C which were
previously not available. In this case better information could be obtained for B if the
information in these summaries could be used as well. To accomplish this, the summary for A
must contain an indication of which procedures C it calls that did not have summaries at the

time the summary was produced.

This information about called procedures must be represented in such a way that it is
 possible, given a summary for A that indicates a call on C, and given a summary for C, to
compute a new summary for the A which includes the effects stated in the summary for C. If
control flow information is used in generating summaries, representing information about calls
becomes more complicated. Not only must the calls be listed, but some indication of how to

compose the effects of the listed calls with the known effects of the procedure must be given.

- 37 -

It is desirable to do so in such a way that both generating summaries and using them at a point

of call are reasonably efficient.

-38 -

9. REFERENCES

1.

10.
11.
12.
13.
14.

15.

16.

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

Aho, A.V. and Ullman, J.D. Principles of Compiler Design, Addison-Wesley, 1977.

Allen, F.E. Interprocedural Data Flow Analysis. Proceedings IFIP Congress 74, North
Holland Publishing Company, Amsterdam, 398-402.

Allen, F.E. and Cocke, J. AProgramDataFlowAnalyﬂsProeedure CACM 19, 3
(March 1976), 137-147.

Allen, F.E,, et. al. The Experimental Compiling Systems Project. I/BM Research Report
RC6718, T.J. Watson Research Center, Yorktown Heights, N.Y. September 1977.

Banning, J.P. A Method for Determining the Side Effects of Procedure Calls. Ph.D.
Thesis, Stanford University. Report No. 213, Stanford Linear Accelerator Center
(August 1978).

Barth, J. Interprocedural Data Flow Analysis Based on Traasitive Closure. Univ. of
California at Berkeley, Computer Science Dept., Tech. Rep. UCB-CS~76-44 September
1976.

Carter, J.L. Private Communication.

Graham, S.L. and Wegman, M. A Fast and Usually Linear Algorithm for Global Flow
Analysis. JACM 23, 1 (January 1976), 172-202.

Low, J.R. Data Flow Analysis for Records and Pointers to Records Umv of
Rochester, Computer Science Dept., TR35, May 1979.

Rosen, B.K. Data Flow Analysis for Procedural Languaps. JACM 26, 2 (April 1979),
322-344.

Ryder, B.G. Constructing the Call Graph of a Program. IEEE Transactions on Software
Engineering SE-5, 3 (May 1979), 216-226.

Spillman, T.C. Exposing Side-Effects in a PL/1 Optimizing Compiler. Proceedings IFIP
Conference 1971, North Holland Publishing Company, Amaterdam, 376-381.

Walter, K.G. Recursion Analysis for Compiler Optimization. CACM 19, 9 (September
1976), 514-516.

Wegman, M.N,, and Carter, J.L. New Classes and Applications of Hash Functions.
Proceedings 20th Annual Symposium on Foundations of Computer Science (October
1979), 175-182.

Winkilmann, K.A. A Theoretical Study of Some Aspects of Parameter Passing in
ALGOLG60 and in Similar Programming Languages. Ph.D. Thesis, Purdue University
(August 1977).

-39 -

APPENDIX

In this appendix we prove the theorem stated in section 4. We first restate the theorem,
and then sketch the construction used by Winkimann [16] to prove that deciding formal

reachability is P-space hard. This construction is then modified to prove the theorem.

Theorem: Determining possible values for procedure parameters for programs in which there
is no aliasing among variables, no nesting of procedure declarations, and no significant flow of

control, and in which every procedure is formally reachable, is a P-space hard problem.

Proof: Winkimann has shown that deciding the property of formal reachability in programs
without nested procedure declarations is a P-space hard probiem. Formal reachability is
defined m terms of a formal execution tree, which is a tree of calls where the nodes of the tree
are pairs consisting of procedures and their environments. A procedure is said to be formally

reachable if it is called somewhere in the formal execution tree.

To sh<'>w that deciding formal reachability is P-space hard, we reduce the polynonial-space
bounded halting problem for deterministic Turing machines to the problem of deciding formal
reachability. In other words, given an mstance of the polynomial-space bounded halting
problem for Turing machines, we show how to transform this problem into a problem of
formal reachability, such that the answer to the latter problem is the same as the answer to the

former problem. Furthermore, the reduction can be done in polynomial time.

The polynomial-space bounded halting problem is the problem of deciding, for any given
deterministic Turing machine M, polynomial s, and input w, whether M, if started in state g,
with w written on its tape and its head scanning the leftmost symbol of w, halts without its
head ever moving outside the s(n) tape squares to the right of, and including, the tape square
scanned at the start, where » is the length of the string w. It is easy to show that the
polynomial-space bounded halting problem is P-space hard. Given M, s, and w, Winklmann

constructs a program P with a procedure HALT such that the answer to the polynomial-space

- 40 -

bounded halting problem for M, s, and w is yes if and only if the procedure HALT is formally

. reachable in P.

As mentioned in section 4, P contains a procedure Q, which is formally reachable if and
only if the answer to the polynomial-space bounded halting problem is yes. Q, contains a
single call to the procedure HALT. Winklmann uses this part of the construction to simplify
the problem of transforming this problem about formal reachability into other problems, such
as questions about formal parameter correctness. In fact, the procedure HALT is unnecessary

for our results, and we omit it from the construction.

Let M = (K.g045.2.8). K is the set of states of M, g, is the initial state, g, is the final
state, = = {A,,..,A_} is the tape alphabet (with A, taken to be the blank character), and 3 is
the transition function for M. 48 is defined from (K—{g})xZ to KxZxD, where
D = {STAY,LEFT,RIGHT}. For each statc and character, 8 specifies the actions to be taken

by the Turing machine when in that state and scanning that character, the actions being the
nextstatetoenter,thechlmctertobewrittenondwt&pe,andthcdirectiqntomovethe
head. Letsbeapolynomialspaceboundandletwbeanon—embtystthginthchngnageover

the alphabet Z—{A;}. Let n be the length of w. Winkimann’s construction of P is as follows:

begin

co-éntThereisoneprocedurerdeclamdforeachnon-ﬁmlstatzqkinK.Bkisan
abbreviation explained below. end of comment;

procedure Q,(t,,....t.);
begin t(t,,....t,.,),1,8,) end of Q,;

comment For the final state g, of M there is a procedure Q,. end of comment;

procedure Q(t;,....t,),1);
begin end of g,;

-41 -

comment For each A in X there is a procedure A, end of comment;

procedure A(t,,....t, . ,,move,char, nextq,,...,move, char,nextq,);
begin move,(chart,,....t_ ., . ,nextq;) end of A;;

comment There are five procedures whose declarations only depend on s(n). end of
comment; '

procedure LEFI‘(tl,...,t,(n) +phRextq);
begin nextq(t,,), ,t;,---sty,)) ead of LEFT;

procedure STAY(t,,....t ., ;,nEXtq);
begim nextq(t,,....t,,,,,) end of STAY;

procedure RIGHT(t,,...,t,m +1-0eXta);
begin nextq(t,,....t, ., s,t;) end of RIGHT;

procedure END__ OF __ TAPE(t,,....t,,,, ,),move, char, nextq,,...,
~move_,char_ nextq_);
begin end of END__OF__ TAPE;

comment The main program contains one procedure .mtement. Assuming that
w= AyA,..A, and that s(n)2n the statement is as follows, where there are
s(n)—n A;’s after the first n parameters to Q,. If sfn)<n then the parameters to
Q, consist of the procedures corresponding to the first s(n) characters of w
followed by END__OF_TAPE. end of comment; '

Qy(AAp..ApA,,....A END__OF__TAPE)

ead Of P

In the program P, 8, stands for
Quis Aps Myys oo Qus Aps My
with the Q,s, A, s, and M, s defined by

(ij,A”pMkj) = § (quj) .

Winkimann shows that the execution of this program P simulates the execution of M on w

in a reasonably natural manner. In particular, he shows that the configuration of the Turing

-42 -

machine M being in state q, with the string B,B,...B,...B,, on the tape and the head reading

the ith symbol in the string is represented in the execution of P by a call of the form
Q,(B,,....B,,,END__OF__TAPEB,,....B, ,).

Again, n is the length of w, and the B, are symbols from the tape alphabet Z. A proof of this

fact may be found in [16].

As stated in section 4, the procedure Q, is formally reachable if and only if the answer to
the polynomial-space bounded halting problem for M, s, and w is >that M does halt in the
specified manner. From this it follows that the first parameter of Q, has exactly one possible
value if M halts as specified and has exactly zero possible values if M does not halt as
specified. This almost proves the theorem, since P satisfies all of the restrictions given in the

statement of the theorem except that every procedure be formally reachable.

In order to make every procedure formally reachable, we must introduce calls to each
procedure in P. Since this must be done without disturbing any claims we wish to make about

the simulation of M by P, we first introduce a declaration of a dummy procedure as follows:

procedure DUMMY(L,,....t, ., , ;,move, char nextq,,...,move,, char, ,nextq,,);
begin end of DUMMY; ,

We then introduce the following calls into the main program:

comment For each procedure Q, there is a call of the following form, with s(n)+1
parameters. end of comment;

Q,(DUMMY,....DUMMY);

comment For each procedure A, there is a call of the following form, with DUMMY for
each of the first s(n) parameters followed by m repetitions of the triple
STAY,DUMMY,Q,. There is a similar call to END__OF__TAPE. end of
comment;

A/(DUMMY,...,.DUMMY,STAY,DUMMY,Q,,....STAY,DUMMY,Q,);

END__OF_ TAPE(DUMMY,...,.DUMMY,STAY,DUMMY,Q,,...,STAY,DUMMY,Q,);

comment The calls to STAY, LEFT, and RIGHT have DUMMY for each of the first
s(n)+ 1 parameters followed by Q,. end of comment;

-43 -

LEFT(DUMMY,...,.DUMMY,Q,);
STAY(DUMMY,....DUMMY,Q,);

RIGHT(DUMMY,...,.DUMMY,Q,);

Let P' be the program obtained by modifying P as described above. We claim without proof
that every procedure in P' is formally reachable; this, along with the fact thét P' satisfies all
of the restrictions given in the statement of the theorem, may be easily verified. Furthermore,
the first parameter to Q; has exactly one possible value (which happens to be DUMMY) if and
only if M does not halt as specified, and has exactly two possible values if and only if M does
halt as specified. From this it follows that determining the number of possible values for a
procedure variable is P-space hard. Since determining possible values is at least as hard as

determining the number of possible values, the theorem follows.

