ON MEMORY LIMITATIONS IN NATURAL LANGUAGE PROCESSING

by

Kenneth Ward Church

Junc 1980

(c) Massachusetts Institute of Teclmology 1980

This research was supported (in patt) by the National Institutes of Health Grant No. I P41 RR 01096-02 from the Division of Rescarch Resources and by the National Institutes of Health Grant No. 1 P01 I.M 03374-01 from the National Library of Mcdicine.

ON MEMORY LIMITATIONS IN NATURAL LANGUAGE PROCESSING

by
Kenneth Ward Church
submitted in partial fulfillment
of the requirements
for the degree of
Master of Science
in Flectrical Einginecring and Computer Science

Abstract

IBSTRACT

This paper proposes a welcome hypothesis: a computationally simple device is sufficient for processing natural language. Traditionally it has been argued that processing natural language symax requires very powerful machinery. Many engineers have come to this rather grim conclusion; almost all working parsers are actually Turing Machines (TM). For example, Woods specifically designed his Augmented Transition Networks (ATNS) to be Turing Fquivalent. If the problem is really as hard as it appears, then the only solution is to grin and bear it. Our own position is that parsing acceptable sentences is simpler because there are constraints on human performance that drastically reduce the computational requirements (time and space bounds). Although ideal linguistic competence is very complex, this observation may not apply directly to a real processing problem such as parsing. By including performance factors, it is possible to simplify the computation. We will propose two performance limitations. bounded memory and deterministic comtrol, which have been incorporated in a new parser YAP.

Thesis Supervisor: Dr. Peter Solovits

Tiitle: Assistant Professor of Flectrical Pagineering and Computer Science

Keywords: Parsing, Natural Ianguage, Psychological Reality, Finite State, Determinism, Memory 1 imitations, Pciformance, Processing

Acknowledgments

- Peter Szolovits, my advisor, for encouraging ine to study a new field and seeing me through it even when we both felt out of place
- Mitch Marcus for praising my most outlandish ideas (three times each) eren when they conflicted with his own way of thinking
- Hill Martin for believing the problem isn't half as hard as one might think he thinks it is
- Hob Berwick for genuine encouragement and fruitful debate
- Dave Mcl Donald for getting me started (even if we didn't know it at the tine)
- Jon Allen, Joan Bresnan, Jay Keyser, Fa Walker and the Cognitive Center for successfuhy bringing us all together. It is important to have place to formulate ideas and gain apprectithon for alternative approaches. I want to especially thank Jon Allen for devoting his seminar on naturatlanguage to this purpose.
- Joan Bresnan, Ken Halc, Noam Chounsky, Jay Keyser, and the firse yourt tinguistics class for teaching me syntax. I would like to especially thank Joan for her time and her patience.
- Ronald Kaplan (whom I have never met) and Per-Kristian Halvorsen for some brief but instructive conversations via the ARPA network
- Kenneth Wexler, Howard Lasnik and Bob Berwick for some enlightening renwrks regarding the goals of linguistic inquiry
- Vaughan Pratt for an apprcciation of computational complexity
- my fellow students and co-workers: Ramesh Patil, Bill Swartout. Dave Shipman, Brian Smith, Glenn Burke, I.owell Hawkinson, Harold Goldberger. Howard Shermian, and Greg Faust for the kind of advice that you can't get in class. I want to especially thank Ramesh, Dave and biill for keading countless drafts.
- Whe first year linguistics students for their warm friendship

CONTENTS

1. Introduction 9
1.1 The Competence/Performance Dichotomy 10
1.2 The FiS Hypothesis 11
1.2.1 Center-cmbedding 12
1.2.2 Respectively 13
1.2.3 L asnik's Noncorcference Rule 13
1.2.4 Convergence 14
1.3 The Proposed Model: YAP 15
1.4 Closure Strategies 16
1.5 Marcus' Determinism Hypothesis 17
1.6 Frazicr's Principles 19
1.7 Capturing Gencralizations 20
1.8 Limits of This Research 21
1.8.1 Linguistic Coverage 21
1.8.2 Semantics 22
1.8.3 I ength Bias and Lexical Ambiguity 22
2. Closure 24
2.1 On I.eft/Right Biases 24
2.1.1 Kuno's Account 26
2.2 Closure Specifications 27
2.3 Kimball's Farly Closure 28
2.3.1 ^ Counter-Example 29
2.4 Frazier's I ate Closure 30
2.4.1 A Problem: Right Branching 30
2.4.2 Analogics from I.L.(k) and IR(k) Algorithms 31
$2.5 \wedge$ Compromise 33
2.5.1 Predictions 34
2.5.2 Adjuncts 36
2.5.3 Conjuncts 38
2.5.4 Optional ^rguments 39
2.5.5 Noncoreference 40
2.5.6 Root Clauses 40
2.6 Summary 41
3. Constituent Structure Implementation 42
3.1 The Machine State 43
3.2 Production Rules 45
3.3 ^ctions 47
3.4 The Phrase Structure Component 48
3.5 Ordering PS Actions 51
4. Attachment Strategies 54
4.1 Minimal Attachment 55
4.1.1 Sensitivity to Phrase Structure Rules 55
4.1.2 Explanations for Minimal Attachment 56
4.1.3 Left Branching Structures 58
4.2 Garden Paths 58
4.2.1 Scmantic Bias 61
4.2.2 Marcus' Account 62
4.2.3 Rclated Wort 63
4.3 Non-Minimal Attachment 64
4.4 Pscudo-attachment 65
4.5 Summary 71
5. Functional Structure Implementation 72
5.1 Seemingly Unbounded Dependencies 73
5.1.1 Grammatical Roles 74
5.2 Constraint Propagation Solution 75
5.2.1 Representation Issues 78
5.2.2 No Disjunctive Constraints 79
5.2.3 Bind* is an Equivalence Relation 80
5.3 The Bresnan-Kaplan Analysis of There-insertion 82
5.3.1 Structural Constraints 83
5.3.2 I.cxical Constraints 84
5.3.3 Well-Formedness Conditions 84
5.4 Implementation of Functional Structure 85
5.5 An Example 89
6. Iexical Transformations 90
6.1 The Lexical/Transformational Debate 92
6.1.1 The Wanna Argument 93
6.1.2 The Λ way Argument 94
6.2 Raising 94
6.3 ^uxiliaries 95
6.4 It-cxtraposition 97
6.5 Passive 98
6.6 Reanalysis 101
7. I.ocal Structural Transformations 104
7.1 Nux-inversion 105
7.2 Imperative 106
7.3 Differential Diagnosis 107
8. Wh-movement 113
8.1 Island Phenomena 115
8.1.t Wh-islands 115
8.1.2 Ross' Complex NP Constraint 116
8.2 Gap Finding 117
8.3 Evidence for the Last-Resort Model 118
8.3.1 Ambiguity 121
8.3.2 Lexical Marting 121
8.3.3 Length 122
8.4 Summary 123
9. Conjunction 125
9.1 Simplifying Assumptions 125
9.1.1 The Constituent Assumption 125
9.1.2 The Category Assumption 126
9.1.3 The Across-the-forard Convention 126
9.2 Simple Cases 127
9.2.1 Attaching Conjuncts 127
9.2.2 Attention Shift 128
9.2.3 Closing 130
9.2.4 Summary of the Simple Cases 130
9.3 Deletions 131
9.3.1 Right Node Raising 132
9.3.2 Gapping 133
9.4 Summary 134
10. Conclusion 135
10.1 The Traditionat Position 135
10.2 Summary 137
Appendix I. Some Results 140
Appendix II. An Example 145
References 155

FIGURES

Fig. 1. 1 Snapshot 44
Fig. 2. The Attach Action 47
Fig. 3. The Predict Action 48
Fig. 4. The Close Action 49
Fig. 5. PS Attach 51
Fig. 6. PS Predict \& PS Close 52
Fig. 7. ^ Marked Rule to Parse a GP 61
Fig. 8. Pscudo-attachment 67
Fig. 9. Constraint Propagation 76
Fig. 10. Features 78
Fig. 11. PS Attach (revisited) 87
Fig. 12. Disambiguating $+e n /+e d$ 101
Fig. 13. Wh-movement 114
Fig. 14. Attention Shift 128
Fig. 15. Right Node Raising 132
Fig. 16. Gapping 133

I. Introduction

This paper proposes a welcome hypothesis: a computationally simple device' is sufficient for processing natural language. 'Iraditionally it has beet argued that processing naturat language syntix requires very powerful machinery. Many engineers have come to this rather grim comelusion; almost all working parsers are actually Turing Machines (IM). ${ }^{2}$ Forexample, Wuods specifically designed his Augmented Transition Networks ($\Lambda \mathrm{TNs}$) to be Pluring Fquivalent.
(1) "It is well known (cf. [Chomsk j64]) that the strict context-free grammar model is not an adequate mechanism for characteriaing the subtectics of, natural liuguages, When conditions and actions are added to the arss. the model atwains the power of a Turing machine, although the basic operations which it performs are 'hatural' ones for language andysis. Using these conditions and intions, the modet is capuble of perfoming the equivalent of transformational analysis without the need for a separate transformational compracnL" [Woods70] ${ }^{3}$.

If the problem is really as hard as it appears, then the only selution is to grin and bear it. Our own position is that parsing acceptable sentences is simpler because there are constraints on human performance that exclude all the "harder" cases. 1 real parser can take advantage of these perfomance constraines (e.g. limited memory) so that it can be simpler and more efficient tian Woeds' ideal model which is designed to parse the entire competence grammar.

[^0]
1.1 The Competence/Performance Dichotomy

The approach crucially depends on performanes constraints to shrink the search space of possible derivations. Formerly engineers such as Woods attempted to model competence without performance constraints, and not surprisingly, they found they needed inordinate resources to do so. We suggest that a real processor incorporates both competence (grammar) and performance (time and space) constraints. Hence it is possible to build a small efficient processor by exploiting the performance model. This is particularly clear from Chomsky's original description of the performance/competence dichotomy.
(2) "I inguistic theory is concerned primarily with an ideal speaker-lisener, in a completely homogeneous specch-community, who knows its langeage perfectly and is unaffected by such grammatically irrelevant conditions as memory limbations, distractinns, shints of attention and interest, and crrors (random or characteristic) in mpplying his knowledge of the language in actually performance We thus make a fundamental distinction between competence (the speaker-hearer's knowledge of his language) and performance (the actual use of language in concrete situations)." [Chomsk y65, pp 3-4, italics added]

The proposed model is more efficient and more restrictive than Woods’' Λ TN, It is more efficient because it doesn't have the resources to waste and it is more restrictive because it doesn't have the resources to explore as many possibilities. For example, there are some sentences which will require a very long time on an ATN; our model will reject these sentences as unacceplable (not in the performance model) because it doesn't have the time to figure it out. We believe there are two reasons for rejecting sentences; a sentence may be ungrammatical (excluded from competence) or it may be unaccepiable (excluded from performance). ${ }^{4}$ The term acceptable was coined by Chomsky to refer to:
(3) "... utterances that are perfectly natural and immediately comprehensible without paper-andpencil analysis, and in no way bizarre or outlandish ... The more acceptable sentences are those that are more likely to be produced, more easily understood. less.clumsy, and in some sense more natural. The unacceptable sentences one would tend to avoid and replace by more acceptable variants, wherever possible in actual discourse." [Chomsk y65, pp. 10].

[^1]Acceptability is assigned independently from grammaticality; the four logical possibilities are illustrated by (4). ${ }^{5}$
(4) It is raining.
\#'Tom figured that dhat Susan wanted to take the cat out bothered Betsy out.
*They an running.
*\#'Tom and slept the dog.

Chomsky formulated this distinction in order to sepanate ivrelevant precessing constraints (c.g. limited time and space) from the grammaticality questions which he has been studying. Our hypothesis that a simple device can process language, is then, by definition, a hypothesis about the performance model. Acceptability judgments will bear crucially on the matter. ${ }^{6}$

The problem is to design a parser that approximates competence with realistic resources. Unacceptable sentences should be excluded because they require inordinate resuires to process; thgrammatical sentences should be rejected because they violate competence idenizations (or approximations thereof). The design criteria are summarized below:
(5) What are some reasonable performance approximations?
(6) How can they be implemented without sucrificing linguistic generalizations?

1.2 The ES Hypothesis

We will assume a severe processing limitation on available short term memory (SIM), as commonly suggested in the psycholinguistic literature ([Frazier79], [Frazier and Fodor78], [Cowper76], [Bresnan78], [Kimball73, 75], [Chomsky(1]). Tecluically a machine with limited mennory is a finite state machine (FSM) which has very nice computational properties when compared to an ambitrary :VM. Most importantly, a FSM requires less time and space in the worst casc. There are somg other adyantages which we have not explored

[^2]in detail. For example, it is casier to run a FSM in reverse. This may have some important implications if one were attempting to build a single model for both production and generation as suggested in [Kay75]. ${ }^{7}$

When discussing certain performance issues (e.g. center-embedding). ${ }^{8}$ it will be most useful to view the processor as a liSM; on the other hand, competence phenomena (e.g sulyjacency) ${ }^{9}$ suggest a more abstract point of view. Because of a lack of TM resources, the processor cannot literally apply rules of competence; rather, it resorts to more computationally realistic approximations. Whenever a competence idealization calls for inordinate resources, there will be a discrepaney between the competence idegization and its performance realization.

1.2.1 Center-embedding

Chomsky and Bar-Hillel independently showed that (arbitrarily deep) center-embedded structures require unbounded memory [Chomsky59a,b] [Bar-Hillel61] [langendoen75]. As predicted, center-embedding is severely compromised in perforinance; it quickly becomes unacceptable, even at relatively shallow depths.
\#[The man [who the boy [who the students recognized] pointed out] is a friend of mine.]
\# [The rat [the cat [the dog chased] bit] ate the cheese.]

[^3]Λ memory limitation provides a very attractive account of center-embedding phenomena (in the limit). ${ }^{\mathbf{1 0}}$
(9) "This fact [that deeply center-embedded sentences are unacceptable], and this alone, follows from the assumption of finiteness of menory (which no one, surcly, has ever questioned)." [Chomsky61, pp. 127]

1.2.2 Respectively

What other phenomena follow from a memory limitation? Centerembedding is the most striking example, but it is not unique. There have been many refutations of FS competence models; each one illustrates the point: computationally complex structures are unacceptable. Consider the respectively' construction ${ }^{11}$ which is notorious for its crossing dependencies. ${ }^{12}$ As predicted, it too becoines rapidly unacceptable.
(10) John and Jack knew Tim and Mike, respectively.
?John, Jick and Sam knew Tïm, Mike and Rob, respectively.
??John, Jack, Sam, and Tom knew 'lim, Mike, Rob and Bill, respectively.
??? John, Jack, ..., Saın, and 'Jom knew Tim. Mike, ..., Rob and Bill, respectively.

1.2.3 Lasnik's Noncoreference Rule

Lasnik's noncoreference rule [1.asnik76] is another source of evidence. ${ }^{13}$ The rule observes that two noun phrases in a particular structural configuration are noncoreferential.

[^4](11) The Noncoreference Rule: Given two noun phrases $\mathrm{NP}_{1}, \mathrm{NP}_{2}$ in a sentence, if NP_{1} precedes and commands ${ }^{14} N P_{2}$ and $N P_{2}$ is not a pronoun, then $N P_{1}$ and $N P_{2}$ are noncoreferential.

For example, each Johm in (12) must refer to different people, since the first John both precedes and commands the second. This rule has unbounded consequences; it applies even when there are an arbitrary number of clauses between NP_{1} and NP_{2}. Consequently, unbounded memory is required to process the rule; it becomes harder and harder to enforce as more and more names are mentioned. His rule is part of a competence model; in performance, it seems necessary to approximate the rule. As the memory requirements grow, the perfommace model is less and less likely to establish the noncoreferential link. In (12), the corindexed noun phases camot be coreferential. As the depth increases, the noneoreferential judgments become less and less sharp, even though (12)-(14) are all equally ungrammatical. ${ }^{15}$
(12) * \#1) id you hear that John ${ }_{i}$ told the teacher that John ${ }_{i}$ threw the first punch.
(13) *??)id you hear that John told the teacher that Bill said that John n_{i} threw the first punch.
(14) *? Did you hear that John told the teacher that Bill said that Sam thought John $_{j}$ threw the first punch.

Ideal rules of competence do not (and should not) specify real processing limitations (e.g. limited inemory); these are matters of performance. (12)-(14) do not refute I.asnik's rule in any way; they merely point out that its perfomance realization has some important empirical differences from Lasnik's idealization.

1.2.4 Consergence

On the wher hand. there are idcalizations which can be realized in performance withour approximations. For sample, it seems that movement phenomena can cross unbounded distances without degrading aceeptability. Compare this with the center-embedding and respectively examples previously discussed. ${ }^{16}$

[^5](15) There seems to scem ... to be a problem. move-np
(16) What did Bob say that Bill said that ... John liked? movewh

We claim that center-embedding and respectively demand tunbounded resources whereas movement has a bounded cost (even in the worst casc). ${ }^{17}$ We will argue in chapers 5.6 and 8 that a machinc can process unbounded movennent with very limited resources. Movement phenomena (unlike center-embedding) can be implemented in a performance model without approximation. It is a welcome result when performance and competence happen to converge, as in the movement case; there will be no empirical differences between the idealization and its realization. However, there is no logical necessity that performance and competence will ultimately converge in every arca. The FS hypothesis, if correct, would necessitate compromising many competence idcalizations. ${ }^{18}$

1.3 The Proposed Model: YAP

Some psycholinguists believe there is a natural mapping from ideal competence onto a realistic processing model. This hypothesis is intuitively attractive, even though there is no logical reason that it need be the case. ${ }^{19}$ Unfortunately, the psycholinguistic literature does not preciscly describe a mapping which is consistent with our FS hypothesis. ${ }^{20}$ We have implemented a parser (YAP) which behaves like a complex competence model on acceptable cascs, but fails to parse more difficult unacceptable sentences. This performance model looks very similar to the more complex competence machine on acceptable sentences
17. The human processor may we be optimal. The functional argument ohseryes that an optimal processor could process unbounded movement with bounded resources. This should encourage further investigation, but it alone is not sufficienl evidence than the hunain procesor his optimal properties.

We claim movenent will neyer consume more than a bounded coct; the cost, is, independent of the length of the sentence. Sonc novencit sentences may be easier than others. For example, there is considerable experimental evidence suggesting that subject relatives (a) are easier than object relatives (b).
(a) I saw the boy who liked you.
(b) I saw the boy who you liked.

However, we believe the difference between (a) and (b) is independent of their lengths.
18. We have given only three eximples: center-embedding, crusing dependenges and noncoreference although there are many more. Center-mbedding and crosing depondencies were inquaded ta be illustration of stractural limilations; noncoreference is sypical of interpretive rules (such as promeminal binding).
19. Chomsky and Lisnik (persomal conmunication) have cach sugested that the competence nodel might gencrate a now-computabk set. If this were indeed the case it wonta cem unlik cly that there could be a mapping.
 they are incousistent with our FS hypothesis. It is not ctear baw ehart parsers cian acoumt fer the evidence in favor of the FS hypothesis.
even though it "happens" to run in severely limited memory. Since it is a minimal augmentation of existing psychological and linguistic work, it preserves their accomplishonents, and in addition, achieves computational advantages. Chapter 2 will discuss the particular augmentation which allows $\mathrm{Y} \wedge \mathrm{P}$ to conserve memory, and hence reduce complexity to that of a F S machine.
'The basic design of $\mathrm{Y} \wedge \mathrm{P}$ is similar to Marcus' Parsifal [Marcus79], with an additional limitation on memory. His parser, like most stack machine parsers, will occasionally fill the stack with structures it no longer needs, consuming unbounded memory. To adhieve the finite memory limitation, it must be guaranteed that this never happens on acceptable structures. That is, there must be a "forgetting" procedure (like a garbage collector $)^{2 t}$ for cleaning out the stack so that acceptable sentences can be parsed without causing a stack overflow. Fivery thing on the stack should be there for a reason; in Marcus' machine it is possible to have something on the stack which cannot be referenced again. Equipped with its forgetter, YAP runs on a bounded stack even though it is approximating a much more complicated machine (e.g. a PIOA). ${ }^{22}$

1.4 Closure Strategies

The forgetting (closure) notion is crucial to this thesis; it enables $\mathrm{Y} \wedge \mathrm{P}$ to parse unbounded structures with only finite memory. ${ }^{23}$ There are two closure procedures mentioned in the psycholinguistic literature: Kimball's early closure [Kimball73, 75] and Frazier's late closure [Frazier79] [Frazier and Fodor78]. We will argue that Kimball's procedure is too ruthless, closing phrases too soon, whereas Frazicr's procedure is too conservative, wasting memory. Admittedly it is easier to criticize than to offer constructive solutions. Chapter 2 will develop some tests for evaluating solutions, and then propose a compromise which should perform better than either of the two extremes, early closure and late closure, but it will hardly be the final word. The closure purfe is extremely difficult, but also crucial to understanding the seemingly idiosyncratic parsing behavior that people exhibit.

[^6]
1.5 Marcus' Determinism Hypothesis

The memory constraint becomes particularly interesting when it is combined with a control constraint such as Marcus' Determinism Hypousesis [Marcus79]. The Determinism Hypothesis chims that once the processor is committed to a particular path, it is extremely difficult to select an alternative. For example, most readers will misimerpret the underlined portions or 077 -(19) and then have considerable difficulty continuing. For this reasen, these unacceptable sentences are ofien called Garden Bithis (GP). 1 memory limitation alone fails to predict the unacceptability of (17)-(19) because GI's don's center-embed very deeply (and bence there exits a FSM which could parse these GIP sentences). Deterninisn offers an additional constraint on inemory allucation which provides an account for the data. ${ }^{24}$
(17) \# The horse raced past the barn fell.
(18) \# John lifted a humdice pound bass.
(19) \# I told the boy the dog bit Suc would help him.

There have been many other attempts to capture the same intuitive motion. Kimballs Processing Principle [Kimball73], MciDonald's Indelibity Stipulation [MclDonald79], and Frazier's "shunting" notion [Frazier and Fodor78] are typical examples from the psycholinguistic literature. The "shunting" notion assigns a high cost to backing up past a phrase that has been "shunted" from one stage to another.
(20) Indelibility: "Once a linguistic decision has been made, it cannot be retracted -- it has been written with 'indelible ink' ... It requires every choice made during the production process, at whatever level, cannot be changed once it has been made - chotes mitst be mate correctly the first time." [Mc1Donald79, pp. 16]
(21) "Principle Scyen (Processing): When a phrase is closed, it is pustied down into a syntactic (possible semantic) processing stage and cleared ftom sthortterm memory." [Klimbat73 pp. 39]

[^7]Athough the "determinism" notion is widely discussed in the literature, it is extrencly difficult to describe precisely. At first we believed the memory constraint alone would subsume Marcus' hypothesis, thus providing a precise independently motivated account. Since all FSMs have a deterministic realization, ${ }^{25}$ it was originally supposed that the memory limitation guaranteed that the parser is deterministic (or equivalent to one that is). Although the argument is theoretically sound, it is mistaken. ${ }^{26}$ The delerministic realization may have many more states than the corresponding nom-deterministic liSM. These extra states are extremely costly and lack empirical justification. They would enable the machine to parse GPs by delaying the critical decision. ${ }^{27}$ In spirit, Marcus' Determinisin Hypothesis excludes encoding non-determinism by exploding the state space in this way: it assumes that most exploded states are not reachable in performance. This amounts to an exponential reduction in the size of the state space, which is an interesting claim, not subsumed by FS (which only requires the state space to be finite). ${ }^{28}$

The forgetting procedure, which is the subject of chapter 2, will be "deterministic": it will not backup or undo previous decisions. Consequently, the machine will not only reject deeply eenter-embedded sentences but it will also reject sentences such as (22) where the heuristic forgeting procedure makes a mistake (takes a garden path).
(22) \#Harold heard [that John told the teacher [that Bill said that Sam thought that Mike threw the first punch] yesterday].

Marcus' Determinism Hypothesis predicts that some sentences would be garden paths (since the state space camot be exploded), but it atone does not identify which sentences are GPs and which ones are not. He proposes a specific parsing model (Parsifal) to identify garden paths. Parsifal makes a single left to right pass ower the sentence. It has to decide what to do at each point based upon a limited lookahead of three constituents. According to Marcus, eertain sentences require more lookahead to disambiguate aly fithmically, and consequently, Parsifal has to guess what to do. In the garden path case, Parsifal guesses incorrectly.

[^8]The three constituent limit is a very good description; all the garden path sentences shown above would require a four constituent lookahead to disambiguate correctly, (23) illustrates Marcus' account on a typical GP. It would be acceptable if the machine looked ahead another constituent. ${ }^{29}$

The three constituent story is not a complete explanation. Why does Parsifal guess that raced is a main verb and not a participle? The main verb interpretation is apparently the unnarked (preferred) casc. Would it be possible to have a language where the participle reading was the unmarked case?

1.6 Frazier's Principles

Frazier [Frazier79] [Prazier and Fodor78] has attempted to deseribe the unmarked interpretations. She has proposed two principles which are presumably universal. There is an'intuitive finctional motivation for these principles; they appear to require fewer resources (memory and backup) than the atternatives. Frazier has provided considerable experimental cvidence as mpirical verification.
(24) Minimal Attachment: Aftach incoming material into the phrase marker being constructed using the fewest nodes consistent with the well-formedness sules of the language.
(25) Late Closure: When possible, attach incoming material into the clause or phrase currently being parsed.
29. In practice. the lookahend will consist of notin phrases and single words: the mikhine dees not, for example, build prepositional phrases in the lenkahead buffer. Unfortunately this is crucial to Marcus" account of the GP phenomena; Parsifal doxs not analyze sentence (23) as. The horse / / rucedf / 2 past the burn] / $]_{3}$ fell). If it did, then it would be able to disimbiguate the sentence.

There are some other problems with this account. For example, material after the third constituent shouldn't affect the judgments, and yet. the sentences below seem to be more ikecplable than (23).

The horse raced past [3 the barn] fell down.
The horse raced past [3 the barrn] stumbled.
We have no explamation for this data. Nevertheless. Marcus' account is the best description in the literature; we will accept it for the time being despite its problems.

Frazicr's position is basically compatible with Marcus'; her principles define the unmarked actions when there is insufficient leokahead to be certain. Late Closure, which is relevant to the discussion on forgetting, is central to chapter 2; Minimal Attachment is the topic of chapter 4. 'There are some (rare) cases where the principles fail to find a correct parse on the first pass, forcing backup in her non-deterministic framework. These will be interpreted as marked "counter-examples" in out deterministic FS framework. ${ }^{30}$ We will add a few marked rules to cover the exceptions.

1.7 Capturing Generalizations

Having laid out the basic framework (limited memory and determinism), it is worthwhile to gain some breadth. Y $\wedge P$ has encoded a competence model strongly resembling the recent work of Bresinan and Kaplan [Bresnan78], [Bresnan80], [Kaplan and Iresuan80]. They use two represemations: a constituent structure and a functional structure. The former deals with mether/daughter relationships whereas the latter is concerned with grammatical roles (subject, object, etc.) and syntactic features (case tese, person, number, gender, ect.) Chapter 3 discusses the YAP implementation of constituent structure, and Chapter 5; the functional structure.

With the Bresnan-Kaplan representation system, it is relatively straightorward to implement many of their analyses. Chapter 6 presents some typical iexical nukes (raising and passive), thus capturing many of the generalizations which were onee believed to be beyond the capabilities of a FSM.

Y AP also shares many propertics with Parsifal; it is possible to implement Parsifal-style transformations in YAP. Chapter 7 implements auxiliary inversion and imperative using Parsifal's approach. This demonstrates an alternative method to capture the generalizations that were used to "refute" the FS hypothesis.

There are two classes of transformations which have been traditionally problematic for processing: wh-movement and conjunction. Chapters 8 and 9 present the approach taken in YAP. Conjunction is particularly interesting because it has never been implemented in a Marcus style reterministic parser. Both of these constructions pose many difficult problems; only some of these have been solved. However, YAP has produced some exciting initiat results, correctly parsing the following sentences:

[^9](26) Which boys and girls went?
(27) Which boys and which giris went?
(28) Which boys went to the ball and took the jar?
(29) Which boys went to the ball and to the jar?
(30) What boy did liill look at and give a ball to?
(31) Bob gave Isill a ball and John a jar.
(32) Bub saw Bill and Sue Mary.
(33) I want IBill, Bob, and John to be nice.

1.8 Limits of 'This Rescarch

It has not been possible to study all issues relevant to parsing; we have touched on just a few of the many interesting problems. This section will mention some areas for further suldy.
(34) Coverage
(35) Semantic Interaction
(36) I.ength Bias (word count)
(37) Lexical Ambiguity

1.8.1 Linguistic Coverage

'There are many constructions which will not be discussed; Y \mathcal{P} ' is similar to Marcus' Parsifal in coverage. Both parsers handle a range of fairly difficult phenomena, are intended to handle robustly all interactions among these phenomena, though neither parser has extensive coverage. YAP does not parse (38)-(39), for example.
(38) I am taller than Bill.
comparative
(39) The duck is too old to cat.
lough movement
We have nothing to say about the internal structure of noun phrases such as (40). It would have been relatively straightforward to replicate Marcus' approach.
(40) a nice man
a fallen leaf
*a given child
a hundred pound bag
\# a hundred pound bags

1.8.2 Semantics

YAP does very little semantic processing. For example, YAP does not distinguish between animate and inanimate objects; (41) and (42) are equally parsable from YAP's point of view.
(41) I gave Bill a ball.
(42) I gave a ball Bill.

It is somewhat difficult to distinguish semantics and syntax. YAP does check grammatical relations (subject, object, etc.). (43) and (44) are correctly distinguished because go and see take different arguments.
(43) I saw Bill.
(44) *I went Bill.

We have not considered bound anaphora and quantifier scope as illustrated below.
(45) Bill saw himself.
bound anaphora
*Himself was scen.
*Each other were scen.
(46) Bill saw everyone.
quantifier scope
Everyone was seen by Bill.

1.83 hength Bias and I exical Ambiguity

There are at least two other processing variables that seem to be relevant: length and lexical ambiguity. Both of these are extremely difficult problems which have been widely studied elsewhere [Frazier and Fodor78] [Milnc78a,78b,79,80]. (47) provide some evidence that length (i.c. number of words) influences parsing
strategics; ${ }^{31}(48)$ illustrates some problems with lexical ambiguity.
(47) \#the woman the man the girl loved met died.
length
?? Ihe very beautiful young wonnan the man the girl loved met on a cruise ship in Maine died of cholera in 1962.

Joe brought the book for Susan.
Joe brought the book that I had been trying to obtain for Susan.
(48) They were flying planes.
lexical ambiguily
The pupils were snaall.

I love building blocks.
Whatever they are building blocks the view.

All of these issues are extremely important topics for further rescarch.
31. This evidence is from [Frazier and Fodor78]. Much of it is highly comtroversial; there may be allernalive accounts. Nevertheless. even if we cant provide adequate evidence. it is mest plausible that length influences parsing strategics.

2. Closure

YAP is essentially a stack machine parser like Marcus' Parsifat with an additional buund on stack depth. This chapter will deal with the stack allocation problem. There will be a forgetling procedure to remove finished phrases from the stack so the space can be recycled. The procedure will have to decide (heuristically) when a phrase is finished (closed).

2.1 On I.eft/Right Biases

If we are going to count stack depth, we should be very careful that stack depth corresponds to something meaningful. We will assume stack space ought to be correlated with the depth of center-embedding. Fimpirically, both left and right branching are relatively free in comparison with center-embedding as (49)-(51) illustrate. ${ }^{32}$

[^10](49) [I[ITThe man]'s oldest brother]'s best friend]'s sister] ...
(50) \#[The man [who the boy [who the students recogntied] pointed out] is a friend of mine.] center
(51) [The students recognized the boy [who pointed fote ticmint twhe sadfichd of mine.]] right

Although we consider left and right branching structures to be equally casy to parse, there have been psycholinguistic models with a left/right bias. For example, Yngve [Yngve60] suggested that left branching was more difficult than right branching because left branching is extremely difficult for a left-toright top-down parser. ${ }^{33}$ However, the dual argument could have been used to, argue agninst right brauching structures because they would be costly for a left-to-right botym-un parser. Theoretically, neither left nor right branching requires unbounded memory because Chomsky showed that now-centerembedded CF structures (c.g. Ieft and right branching and combinations thercot) could be processed with a finite state machine [Chomsky59a,b]. On the other hand, center-embedding is provably difficult because it requires unbounded memory; it cannot be processed by a RSM. ${ }^{34}$

It is possible that human processing is not optimal in this wayt there might in fact be a left/right bias even though there is no computational motivation. The research strategy taken here will investigate the optimal methods first. Athough computationally optimal procedures are not necessarily the ones people do in fact use, they are likely candidates for further rescarch.

One might argue as Yngve has, that English has a tefthight bias tven though no one has found a computational motivation. Hn fact, it is very difficult to find aeceptable left Uranching clauscs in English. There doesn't seem to be an acceptable left branching pataphrase of (52) in Emblish, as (53) and (54) ithusirate. Yngve's left/right processing bias is certainly not universal to all languages because there are languages (e.g. Japanese) where left branching is just as productive as right branching is in English. Hence phe leftright asymmetry in English is language specific; it does not indicate a bias in the human processing system. ${ }^{35}$

[^11](52) It is interesting that it is indeed true that John likes Mary.
right branching
(53) \#That that John likes Mary is indced true is interesting.
(54) \# John's liking Mary's being indead truc is interesting.

2.1.1 Kuno's Account

Why do clauses tend to branch toward the left in Japanese and toward the right in Finglishl? Although there are no known explanations, Kuno [Kuno72] [Kuno74] provides a very attractive functional account of a related phenomenon: [Greenberg63] notiecd that VSO ${ }^{36}$ languages are prepositionat (right branching) and SOV are usually postpositional (feft branching). (Kuno's account does not apply in SVO languages like Finglish. ${ }^{37}$
(55) Universal 3: I.anguages with dominate VSO order are always prepositional.
(56) Universal 4: With overwhelmingly greater than chance frequency, languages with normal SOV order are postpositional. [Greenberg63]

Kuno observed that Greenberg's principles happen to be optimal; if a language violated Greenberg's principles then it would be more prone to center-embedding and consequently more difficult to process. Consider the case of relative clauses. Kuno observed that relative clauses should precede the head noun phrase in SOV languages and follow the head in VSO language in order to avoid center-cmbedding. This is very casy to demonstrate. Fxamples (57) and (58) obey Kune's observation and avoid center-embedding; all violations do in fact center-cmbed as (59) and (60) illustrate. ${ }^{38}$
(57) $\left[\mathrm{S}_{2} \mathrm{O}_{2} \mathrm{~V}_{2}\right.$ that $\mathrm{S}_{1} \mathrm{O}_{1} \mathrm{~V}_{1}$
not center embedded
(58) $\mathrm{V}_{1} \mathrm{~S}_{1} \mathrm{O}_{1}$ [that $\left.\mathrm{V}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right]$
(59) $\mathrm{S}_{1}\left[\right.$ that $\left.\mathrm{S}_{2} \mathrm{O}_{2} \mathrm{~V}_{2}\right] \mathrm{O}_{1} \mathrm{~V}_{1}$ centerembedded
(60) $\mathrm{V}_{1} \mathrm{~S}_{1}\left[\mathrm{~V}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right.$ that $] \mathrm{O}_{1}$
36. $\underline{S} . \underline{Y}$ and \underline{O} stand for subject, verb and object. A VSO language bis the pridonimant word order: verb, subject. object.
37. [Frarier80] generalizes Kuno's argument to apply to SOV language, though her assumplions are somewhat more open to dispute.
38. Reqall that a cemer-embedded clatuse has lexicat materiat on both sides of it. In this casc, the cener-embedded clauses are surrounded by an S and an O.

Furthermore, notice the complementizer that falls between the head noun phrase and the relative clause. 'This also happens to avoid center-embedding. The alternative would bracket the relative clause between the head noun phrase and the complementiyer, foreing eenterembedding. Hence, complementizers will precede relative clauses in VSO languages (universal 3) and follow relative chauses in SOV languages (universal 4). By avoiding center-cmbedding in this way; we have cenverged on sowe of Greenberg's principles. [Kuno74] shows how this reasoning can be applied to some other constructions.

This does not exphin why languages are this way, but it is an atuactive account which should motivate further research to verify Greenberg's empirical observations. Furthermore, Kı未w's argument has no lef/right asymmetry: only center-embedding is considered costly. It seems that center-embedding is universally difficult whereas left/right biases are language specific consequenes of the center-embedding universal.

2.2 Closure Specifications

We will assume the stack depth should be correlated with the depth of center-embedding. It is up to the forgetting procedure to close phrases and remove them from the stack, so only center-embedded phrases will be left on the stack. The procedtire could err in cither of two directions; it could be overly ruthless, cleaning out a node (phrase) which will later turn out to be useful, or it could be overly conservative, allowing its limited memory to be congested with unnecessary information. In either case, the parser will run into trouble, finding the sentence unacceptable. We have defined the two types of errors below. ${ }^{39}$ We will argue that Kimball's Early Closure is premature and Frazier's I ate Closure is ineffective.
(61) Premature Closure: The forgetting procedure prematurely temoves phrases that turn out to be necessary.
(62) Ineffective Closurc: The forgetting procedure does not remove enough phrases, eventually overflowing the limited memory.

[^12]
2.3 Kimball's Farly Closure

The bracketed interpretations of (63)-(65) are unacceptable even theugh they are grammatical. Prosumably, the root matrix ${ }^{40}$ was "closed off" before the final phrase, so that the aternative attuchment was never considered. Kimball is crucially assuming that closure is possible before the daughters themselves have been completely parsed. Imagine that a node corresponds to a collection of poiners to its daughters; it is finished when all of the pointers are connected. This dees not require that the daughters themselves be finished. For example, the nowle I_{s} Joe figured $\left.[?]\right]$ is finished when a pointer is establisted to the node [?] even though the contents of [?] remain to be discovered.
(63) \# Joc figured [that Susan wanted to take the train to New York] out.
(64) \# I met [the boy whom Sam took to the park]'s friend.
(65) \# The girl ${ }_{i}$ applied for the jobs [that was attractive] $]_{i}$.

Closure blocks high attachments in sentences like (63)-(65) by removing the root node from the stack long before the last phrase is parsed. For example, it would close the root clause just before that in (67) and who in (68) because the nodes $\left[_{\text {comp }}\right.$ that] and $[$ comp who] are not immediate constituents of the root. The root clauses would be frozen in the following configurations: [Tom said S - 41 in (67) and (Joc looked NP] in (68). Having closed the root, it shouldn't be possible to reference it again. In particular, nothing else can attach directly to the root. ${ }^{42}$ This model inherently assumes that memory is costly and presumably fairly limited. Otherwise, there wouldn't be a motivation for closing off phrases.
(66) Kimball's Early Closure: Λ phrase is closed as soon as possible, i.c., unless the next node parsed is an immediate constituent of that phrasc. [Kimball73]
(67) I_{s} Tom said
[s- that Bill had taken the cleaning out ... yesterday
(68) I_{s} Joe looked the friend

[^13]I_{5}. who had smashed his now car ... up
'There is a slight problem with Kimball's formulation which will become important when we propose our own proposal. The unless clause should have a second condition to block closure until a phrase has all of its obligatory daughters. For example, taking Kimball's definition literally, $s_{1}\left(\|_{s}\right.$ The boy $s_{2} \ldots$...) should close before who in (69) because who is not an inmediate constituent of s_{1}. This would be a mistake because s_{1} does not yet have a verb phrase. Closure should wait for all the obligatory daughters. For example, an s has two obligatory daughters: a noun phrase and a verb phease: Consoquontly, s_{1} cannot clowe before who because it duesn't have its obligatory verb phrase. ${ }^{43}$
(69) I_{1} The boy $\left[_{2}\right.$ who the teacher always liked best] did something really awful.]

2.3.1 A Counter-Example

Although Kimball's motivation to save stack space is well-founded, the precise formulation makes an incorrect prediction. ${ }^{44}$ If the upper matrix is really closed off then it shouldn't be possible to attach anything to it. Yet (70)-(71) form a minimal pair where the final constituent attachess low in one case, as Kimball would predict, but high in the other, thus providing a counter-example to Kimball's story. Evidently, the root was closed prematurely in (71) bocause it is possible to attach a rotten driver to it:
(70) I called [the guy who smashed my brand new car up].
low allachment
(71) I called [the guly who smashed my brand new ear] a rotten driver.
high attachment
43. A scan take a number of optional adjuncts and conjuncts.
44. We have a melhedulugicall suspicion about any theory which prediets an unexpected asymmery. Kimbalts principles (as stated in [Kimbailli]) have two such asymunetris: his nudel is buht tep-down and right associative. It happens that his predictions are baskally correet for a right branching language like Fuglish. but not for a left branching language such as Japancse [Cowper76. pp. 29-31]. Kimball's principles comflate several phenomena, involving beth clusure and language type. It ought to be passible to dexeribe the chsuite phemenemenon independently of word order. An idgal explanation would not distinguish between left and right, because sopu limguges are left branching and some are right branching. This is really a rather minor poim though: restang the facts in this waty should pose no particular problems.

Kimball would probably not interpret his closure strategy as literally as we have. Unfortunately computer models are brutally literal. Although there is considerable content to Kimball's proposal (closing before memory overflows), the precise formulation has some flaws. We will reformulate the basic notion along with some ideas proposed by Frazier.

2.4 Praziers Iate Closure

Suppose that the upper matrix is not closed off, as Kimball suggested, but rather, temporarily out of view. Imagine that only the lowest matrix is available at any given moment, and that the higher matrices are stacked up. The decision then becomes whether to attach to the current matrix or to close it off, making the next higher matrix available. The strategy attaches as low as possible; it will attach high if all the lower attachments are impossible. Kimballs strategy, on the other hand, prevents higher attachments by closing off the higher matrices as soon as possible. In (70), according to Frazier's late closure, up can attach ${ }^{45}$ to the lower matrix, so it does; whereas in (71), a rothen driver cannot attach low, so the lower matrix is closed off, allowing the next higher attachment. Frazier calls this strategy late closure because lower nodes (matrices) are closed as late as possible, after all the lower attachments have been tried. She contrasts her approach with Kimball's carly closure, where the higher matrices are closed very early, before the lower matrices are done.
(72) Frazier's Iate Closure: When possible, attach incoming material into the clause or phrase currently being parsed.

2.4.1 A Problem: Right Branching

L ate Closure is an improvement because it does not close prematurely like Farly Closure. Unfortunately, it is too conservative, allowing nodes to remain open (not closed) too long, congesting valuable stack space. Our compromise will modify Frazier's strategy enabling higher clauses to be closed earlier under certain marked conditions. As late closure is defined by Frazier, right branching structures such as (73) and (74) are a real problem.

[^14](73) 'This is the dog that chased the cat that ran after the rat that ate the cheose that you tef in the trap that Mary bought at the store that ...
(74) I consider every candidate likely to be considered capable of being considered somewhat less than honest toward the people who ...

The problem is that the machine will eventually fill up with unfinished matrices, unable to close anything because it hasn't reached the bottom right-most clause. Hence it will find these right branching sentences just as unacecptable as center-embedding. Perhaps Kimball's suggestion is premature, but Frazier's is ineffective. The compromise solution will strongly resemble Frazier's late closure strategy except there will be one marked case of carly closure to handle right branching structures.

Our argument is like all complexity arguments; it considers the timiting behavior as the number of clauses increase. Certainly there are numerous other factors which decide borderline cases (3-deep center-embedded clauses for example). We have specifically avoided borderline cases because judgonents are so difficult and variable; the limiting behavior is much sharper. In these limiting cases, though, there can be no doubt that mennory limitations are relevant to parsing strategies. In particular, alternatives cannot explain why there are no acceptable sentences with 20 -decp center embedded clauses. The only reason is that memory is limited; see [Chumsky59a,b], [Bar-Hille161] and [L.angendoen75] for the mathematical arguments.

24.2 Analogics from LI(k) and IUR(k) Algorithms

It would help to abstract the closure problem in terms of formal parsing algorithms. Anoug detenninistic parsing algorithms, $I L(k)$ parsing correspands to the carliess possible closing whereas LR(k) corresponds to
closing at the latest possible moment. ${ }^{46}$ In II.(k), the machine decides to close before any of the daughters have been attached, whereas an I.R(k) parser decides to close after all of the datighters have been attached. Kimball's scheme is not quite as ruthless as I.I.(k); his parser closes after all but the last daughter has been attached. Frazier's scheme is remarkably similar to $1 . R(k)$, where the closure decisions are made at the last possible moment. larly closing sehemes tend to be premature; they cannot parse as many constructions as later closing schemes. In particular, I.I.(k) cannot parse left recursive expressions. Later closing schemes tend to be ineffective, wasting memory. An I.R(k) parser will push all the input onto the stack in the worst case (right branching). ${ }^{47}$ Closing carly reduces the parser's capabilities whereas closing late increases the memory costs. ${ }^{48}$

It might be noted here that Marcus' parser actually behaves very much like an I R (k) parser in this respect, ${ }^{49}$ and hence, like Frazier's scheme. ${ }^{50}$ That is, it pushes the entire right-most branch (from the root to the most recently read word) onto the stack, so that it never prematurely closes a node as an I.I.(k) parser does; on the other hand, it will often waste stack space like an $1 . R(k)$ parser.

[^15]
2.5 \AA Compromise

We have designed YAP to close late by default (like I,R(k). [Frazier79] and [Marcus79]) with one marked exception to alleviate the menory load (in the right branching case) ${ }^{51}$. The marked case of carly closure is described by the \boldsymbol{A}-over A earl' closure principle. It is very much like Kimball's carly closure principle except that it waits for two nodes, hot just onc. For example in (75), our principle would close I_{1} that Bill siid $\left.S_{2}\right]$ just before the that in S_{3} whereas Kimball's scheme would cluse it just before the that in S_{2}.
(75) John said I_{1} that Bill said Γ_{2} that Sams said [${ }_{3}$ that Jack
(76) The Δ-over- Λ carly clusure prixinle: Given two phrases in the sume category (e.g. noun phrase, verb phrase, clause. ctc.) the higher closes when byth are eligible for Kimball clofure. That is, (1) both nodes are in the same category, (2) the next node parsed is not an immediate constituent of either, and (3) the mother ${ }^{52}$ and all obligatory daughters liave been atlached to both nodes.

This principle, which is more aggressive than Frazier late closure, enables the parser to process unbounded right recursion within a bounded stick by constantly closing off. However, it is not nearly as ruthless as Kimball's carly closure, pecause it waits for two nodes which may allewiate the probloms that Frazier observed with Kimball's strategy.

There are some questions about the borderline cases where judgments are extremely variable. Although the Λ-over-A carly closure principle makes very sharp distinctions, borderline cases are often questionable. Sce [Cowper76] for an amazing collection of subtle judgments that confound every proposal yet made. However, we think that the Λ-over- Λ notion is a step in the right direction; it has the desired limiting behavior, ${ }^{53}$ although the borderline cases are not yet understood. Chomsky comes to a similar conclusion:

[^16](77) "Obviously, acceptability will be a matter of degrec, along various dimensions. One could go on to propose various operational tests to specify the notion more preciscly (for example, rapidity, correctness, and uniformity of recall and recognition, normalcy of intonation). For present purposes, it is unnccessary to delimit it more carcfully." [Chomsky65 pp. 10]

We are still experimenting with the $\mathrm{Y} \wedge$ P systen, looking for a more complete solution to the closure purale. ${ }^{54}$

2.5.1 Predictions

Many of Irazier's observations also apply here because YAP closes late by default as in her model (except for the Λ-over- Λ carly clesure principle). As long as Λ-over Λ early chesure doesn't apply, Y ΛP behaves just like Frazier's model. In particular, both Frazier's tate closure and YAP are not premature, unlike Kimball's scheme. Consider the "counter-example" to Kimball's carly closure:
(78) I called the guy [who smashed my car ... up.]
(79) I called the guy [who smashed my car] ... a rotten driver.

Kimball's scheme prematurely closes the root clause just before who which is not an immediate constituent of the root. That is, it prematurely decides the root looks like [I I called NP] regardess of what follows who. As we have previously noted, when a rotten driver is finally reached, Kimball's scheme will be stuck. Frazier's late closure is an improvement because it keeps the root open until a rotten driver is parsed. YAP behaves just like Frazier's model in this case, because the Λ-over- Λ carly closure principle does not apply. Hence, $\mathrm{Y} \wedge \mathrm{P}$ is not premature (at least in this case).

[^17](80) John said [${ }_{1}$ that Biill said $\left[_{2}\right.$ that Sam said I_{3} that ...
$\mathrm{Y} \wedge \mathrm{P}$'s closure is more effective in the right branching case because \AA-over- \wedge early closure will apply. For example, pure late closure will eventually lead to a memory overflow in right branching sentences like (80). Pure late closure will find right branching just as bad as centerecmbedding. On the other hand. YAP's early closure will constantly close nodes carly (before reading the entire sentence). thus preventing a memory overflow. For example. it will close $s ;\left(\mathbb{T}_{1}\right.$ that Bill said S$]$) as som as it attaches the last daughter to s_{2}. In sentences like (80), carly closure removes nodes just as fast as new ones are being formed. In this case, Y^P is cffective (unlike Frazicr's late closure).
(81) John said [1 that Bill called the guy [${ }_{2}$ that Sam said [$]_{3}$ that ... X
(82) \# John said $\left.\right|_{1}$ that Isill called the guy $\left.\right|_{2}$ that Sam said [3 that ...]] X

There are some empirical consequences of closing carly. For example, nothing can attach to a closed node. Hence it should be possible to test the Λ-over-A carly closure principle by noting whether or not nodes closed under the principle actually do block further attachments. For eximple, in (81) once s_{I} is closed it shouldn't be possible attach X to it as in (82). We will illustrate several types of $X \mathrm{~s}$: adjuncts, conjuncts and optional arguments.
(83) John said [1 that Bill called the guy ... yesterday. adjunct
(84) John said I_{1} that Bill called the guy ... and 8aw called the girn. conjunct
(85) John said I_{1} that Bill cafficd the gay ... a ruten driver. optional argument

Closure principles merely state which attachments are possible; they do not specify preferences. There is considerable literature noting that X s tend to attach as low as possible. Λ similar principle will be discussed
in chapter 4. It will be qualified to favor attachments to the lowest possible open node. ${ }^{55}$

There is a second testable prediction: no interpretive rule can apply inte a closed node. That is, linsuistic domains (command, c-command, f-command, etc.) ${ }^{56}$ have gaping holes where phrases have been closod off. These holes are opaque islands to rules of bound anaphora (reflexive and reciprocul), ${ }^{57}$ quantifier scope. ${ }^{58}$ and reference (noncoreference). We will show that the prediction appgars to hold for I asnik's noncoreference rule. We will not discuss other interpretive rules here.

2.5.2 Adjuncts

The underlined phrases in (86) and (87) are called adjuicts. They can gencrally attach to any open node along the right hand cdge, thus accounting for the multiple interpretations. (Admittedly, there is a strong preference for low attichiments.)
55. This will attach to the lower matrix even if the higher atlachment is the only grimamaical pussibility. For exanple. (a) and (b) are marginal because the final phrase tends to allach kow, which is ungrigumatical.
(a) ? I louked the guy who smished my car un.
(b) ?Put the bluck which is on the box on the lebte.

It seems that this is the corret prediction in the unmarked cisse: the acceptability might improve if the parser could be given some helpful hims (punctuation or intonation breaks) to bluck the low attachment. Unfortunately, this account incorrectly predicts that the sentence will become more acceptable if there is a secend argument for the higher matrix as in: \#I looked the guy [who smashed my cur up] up. The second up cannen alluch w the cmoedded clanse, so it should attich to the higher matrix. fulfilling the grammaticality requirements. Unfortunately, the sentence is much worse with the second up. This is a serious problem for the current approach.
56. Interprelive rules. such as Lasnik's Noncoreference rule. apply over limited domains of the parse tree. We have already defined commund: c-command and f-command are slight variations. Command is defined in terms of clauses. c-commamd in terms of constituents. and f-command in ternis of functional structure (chapter 5).
57. reflexive: They hit themselves.
reciprosal: They hit each other.
58. (a) Fveryone in this rexom speaks at least two languages.
(b) At leist two limglages are spoken by everyone in this room.

Sentence (a) hats so-cilled wide interpretation (for ill people there are two languages such that eikh person speaks them); semtence (b) his murrow scope (there are two languages such that everyone speaks them). See [Vaul.chn78].
(86) John said that Bill did it vesterday.

Joln said [that Bill did it yesterday].
John said that Bilif did it yesterday.

low allachment
 high mlachssent

(87) John said that Bill did it 10 get ahead.

John said |that bill did it to get ahead].
John said [that bill did it] to get ahead.
low allachment
high altachment
The interesting claim is that adjuncts cannot attach to closed nodes. For example, yesterday can not attach to s_{I} in sentences like (88) because \AA-over- Λ carly closure would apply first.
(88) John said I_{1} that Bill said that Sam said ... Hhat Jack did it yesterday.

Nthough this scems to be the case, it is yery hard to test the constituency relations with time adverbials like yesieriay. Purposc adjuncts (such as to get ahene) suggest a much sharper test. Notice that (89) alld (90) have different understood subjects, reflecting the alfferent constituenty felations.
(89) John said [that Bill did it (for Bill) to get ahcad].
(90) John said [that Bill did it] (for John) to get ahead.

It is possible to test the constituency relations indirectly using well-k nown facts about subjects. For example, (91)-(92) are unambiguous; the alternative constituency relations (93)-(94) are ungrammatical since they violate binding conditions on reflexives.
(91) They said [that Bill did it to get himself out of hot water].
(92) They said [that Bill ditd iff to get grmselves edt of het water.
(93) *They said [that Bill did it] to get himself out of hot water.
(94) *They said [that Bill did it to get themselves out of hot water].

Now, it should be possibic to test whether a node is closed. The purpose adjunct in sentences (95)-(98) must attach to s_{f}. But this will be unacceptable when s_{f} is elosed as in (98). As usual, the borderline cases (96)-(97) are somewhat marginal.
(95) Did you hear [I_{1} they did it to get themselves out of hot water?
(96) ?Did you hear I_{1} they said that Bill did it to get themselves out of hot water?
(97) ??1 Did you hear I they said that Bill said that Sam did it to get themselves out of hot water?

Abstract

\# Did you hear [1 they said that Bill said that Sam said that Jack did it to get thensselves out of hot

 water?
2.5.3 Conjuncts

There is a similar argument using conjuncts instead of adjuncts, Assuming that closed nodes cannot be conjoined, conjunction should become more and more difficult in (99)-(101), since s, is more and more likely to close carly.
(99) I saw a buy l_{1} who dropped the delicate model airplanef and who picked it up and began to cry.
(100) ?I saw a boy I_{1} who dropped the delicate model airplane I_{2} he had so carefully been making at the schooll] and who picked it up and began to cry.
(101) ??I saw a boy I_{1} who dropped the delicate model airplane ${ }^{2}$ he had so carefilly been making at the sehool [3 where I went I_{4} when I was youngllil and who picked it up and began to cry.

The claim that conjunction is limited to open nodes is also uscful in parsing. Suppose that we had an algorithin for deciding closure. Then we would know exactly which conjunctions are possible because conjunction is permitted between open nodes of the same category. 0 this considerably reduces the combinatoric explosion of possibilities that has made it so troublesome to parse conjunctions. It is an interesting fact that conjunctions, at least their acepptable fatorpfotations, are never mone than a few ways ambiguous, even though non-deterministic parsers (such as $\mathrm{Al} \mathrm{Ns}^{\text {s }}$) can often find quite a number of absurd possibilities.

[^18]
2.5.4 Optional Arguments

There is a third argument supporting early closurc. Unfortunately the data are extrencly controversial ${ }^{61}$ and there may be several alternative accounts for the facts. It would not be disastrous for the 1 -over- Λ early closure principle if the ficts happen to fall the other way. Nevertheless, we will give the argument because it illustrates the approach, even though the evidence is not as clear as it might be.
(102)-(105) test whether s is open or clused. If it is closed, the optional argument a rollen driver cannot attach and hence the sentence should be unacceptable. This accounts for the judgments in the extreme cases; $s \boldsymbol{I}$ open in (102) and hence (102) is acceptable, whereas s, is closed in (105), and hence (105) is unacceptable. As usual, the borderline cases (103)-(104) are marginal. The Λ-over- Λ carly closure principle happens to exclude these marginal cases here; this should not be taken too literally.
(102) Did you hear I_{1} that I called the guy I_{2} who smashed the carl a rotten driver?
(103) ? Did you hear [1 that I called the guy [2 who smashed the car [3 that I bought last year] a rotten driver?
(104) ??Did you hear that I called the guy who smashed the car $\left[_{3}\right.$ that I bought last year I_{4} just after the old one needed a new transmission]] a rotten driver?
(105) \# Did you hear thit I called the guy who strashied the car l_{3} that I bodght last ycar l_{4} just after the old one needed a new transmission is which would bave cost $\$ 100$, a mourw eriwer?

This account crucially depends on the optionality of the argument a rotten driver. If it were obligatory, then it wouldn't be possible to close s, until a second argument to coll is found. And dhenoe early closure would not be an adequate account of the data because it camnotapply to the eacial matix sj; ${ }^{62}$ There is some evidence that a rotten driver is optional; our informants report that (105) is much better without the final phrase. (This judgment is controversial.)
61. Berwick (personal communication) reports different judgments when the crucial examples were spoken. Our own informants were given written lexts. Buh experiakents were informud
62. A very platsible allernative is that call is lexically ambiguous; there is a verb call NP as in / called John and there is another verb call N/' NP as in I called him a name. Assuming that a clatuse can't be cksed until its predicale has been disambiguated, early closure camot apply to the crucial matrix containing the verb call. And lience, the data may not be relevant to the clesure issuc. One could take this argument to an extreme and say thall all verts are lexically ambiguous and cammot be disambiguated until the clatuse is completely parsed, and hence, carly closure would always be blocked. Then it isn't clear how right branching sentences could be parsed. The lexical ambiguity argument is very tricky.
(106) IDid you hear that I called the guy who smashed the car that I bought last year just after the old one needed a new transmission which would have cost $\$ 100$?

2.5.5 Noncoreference

Lasnik's noncoreference rule [lasnik76] is another source of evidence. Previously we showed that noncoreference in sentences like (107)-(109) was less and less likely to apply. In this subsection, we will claim that noncoreferential links cannot be estublished into a closed node. Again, the extreme cases are much sharper than the borderline. Noncoreference is clearly estublished in (107) where the crucial clatuse is open. The judgments become less and less sharp as $s_{\boldsymbol{l}}$ is less and less likely to be open.
(107) *Did you hear I_{1} that John ${ }_{i}$ told the teacher that John ${ }_{i}$ threw the first punch?
(108) ?1)id you hear [that John n_{i} told the teacher \sum_{2} that Biill said that John n_{i} threw the first punch?
(109) Did you hear I_{1} that John ${ }_{i}$ told the teacher $\left[_{2}\right.$ that Bill said I_{3} that Sam thought \mathbb{I}_{4} that John n_{j} threw the first punch?

2.5.6 Root Clauses

The A-over- Λ closure principle (unlike Kimball's account) predicts that root clauses have a special status with respect to closure. The roxt clause will never close because it can't have a mother. In particular, this suggests that it is always possible to conjoin to the root no inatter how many clauses intervene.
(110) I saw a boy who dropped the delicate model arplane he had so carefully been making at the school where I went when I was young and you saw a girl do the same.

Similarly, this predicts that root clauses can always take adjuncts. However, it does not predict that optional arguments can attach to the reot because they are dominated by a verb phrase which does have a mother. Hence, the verb phrase could close early, blocking optional arguments from attaching.
(111) \# Joc [vpp figured [that Susan wanted to take the train to New York] ... out.

2.6 Summary

In conclusion, we have argued that a memory limitation reduces the overall time and space requirements (by fiat); the competence model alone cannot achieve such tighe buypds. Alphough it is very difficult to discover the exact memory allocation procedure, it seems that the closure phenomenpn offers an interesting set of evidence. There are basically two extpene closure mophgs in the literature Kinubills carly closure and Frazier's late closure. We have argued for a compromise pusition, the A-over-A carly closure principle, which shares many advances of both previous proposals withut spme of the attendanf disudvantages, Our principle is not without its own problems; the borderline cases are extremely difficult. It seems that there is considcrable work to be done.

3. Constituent Structure Implementation

Y Λ P's scarches for a mapping from a string of words to a set of grammatical relations (subject, object, etc.) In the Bresnan-Kaplan system [Kaplan and Bresnan80], the resulting grammatical relations form a functional structure (fstructure). There is anf metmediate representation cilled the constiluent struclure (estructure) which captures structural relations (mother, daughter, sistet, etc). The system has an algorithmic procedure for building the fstructure from the estrueture. 'Ihe ehapter 5 wif describe how YAl' does this; this chapter is mainly concerned with building the estructure in the first place.

The estructure has similar counterparts in most other linguistic representations. For example, transformational grammar starts with a set of CF base rules and then applies a number of transformations. Similarly, A'Ns start with recursive transition networks (R'TNs) which are CF equivalent and then add a number of augmentations. Bresuan's cstructure is a CF description. The mapping from the estructure to the fstructure is analogous to transformations in 'TG and augmentations in AT'Ns.

There are interesting differences between all these systems; we have adopted the Bresnan-Kaplan framework because it seems casier (to us) to map it into a practical FS deterministic parser. Fiven if TG, ATNs, and the Bresnan-Kaplan framework are all notational variants of one another (which is unlikely), the Bresnan-Kaplan framework might be more useful for our purposes since it is not obvious how to encode the other models into a FSS detenninistic parser. ${ }^{63}$

[^19](112) I am a boy.

This chapter will discuss how Y \mathcal{P} builds the estructure. The problem is to map a sentence like (112) into a structure like (113). The estructure is a trec ${ }^{64}$ of phrases (nodes). Phrases are delimited by square brackets ($\left.{ }^{1}\right)^{65}$ labeled with a category (part of speech). A category has two parts: a major categorial feature (n, v, a, p) ${ }^{66}$ and a "bar" level. YАP uses a three-bar system; there are nouns (n), noun phrases ($n p$) and $n p$ bars (np-). Similarly there are verbs (v). verb phrases (vp), and participial phrases (vp-). ${ }^{67}$ In all, YAP has 4 major categorical features which have three bar levels, forming 12 categories. 'There are 6 other categories: s , s^{-}, det, comp, conj and punct. ${ }^{68}$

3.1 The Machine State

YAP has four components taken almost directly from Marcus' Parsifal:

YAP
(114) the input stream
(115) the upper buffer
(116) the lower buffer
(117) a deterministic FS control device

Parsifal

the input stream
the stack
the lookahcad buffer
a grammar of production rites

A snapshot of the machine is shown in figure 1 . The string " $==\mathrm{WAI} \mathrm{J}==\mathrm{F}$ is printed between the upper and lower buffers. Buffer cells are filled with nodes (parsed phrases) which are printed in square brackets ([]). ${ }^{69}$ Both buffers grow in toward the WALL as the machine parses toward the center (the WAIL) from both directions (both top-down from the root and bottom-up from the input). The upper buffer contains mothers which are building down to the WALI. and the lower buffer contains daughters building up

[^20]Hig. 1. A Snapshot
sentence: I am a boy.
input pointer: boy.

to the WAL.L.. Nodes (parsed phrases, i.e. nonterminals) enter and exit near the WAI.L in stack fashion (via push and pop operations). 'That is, upl and downl are the "top" of their respective buffers (stacks). New words (terminals) enter the lower buffer from the "bottom" (down3).

YAP is deterministic and FS for reasons discussed previousty. The control device (117) is defined to be deterninistic. That is, from any machine state there is exactly one applicable gramınar rule; backup is absolutely excluded. The FS limitation has been implemented in Y'AP by truncating the buffers to, a fixed length and limiting the size of a buffer cell. The bounds on the two buffers have not yet been defined. The first three cells of each buffer are referenced so frequently that it is convenient to name them upl, up2, ..., down 3 as in figure 1. In fact, the buffers may be longer. 'Ihe complexity arguments suggest that they should be limited, but it is not clear what the limits should be. ${ }^{\text {Netting the exact limits (constants) would }}$ require considerable psychological experimentation. The length of the upper buffer measures the maximum allowable depth of center embedding. The lower buffer measures the degree of lookahcad. ${ }^{71}$

[^21]There are some interesting issues associated with fixing the size of nodes. In Parsifal, a node is literally a pointer to a subtree (parsed phrase). $\Lambda \mathrm{Y} \wedge \mathrm{P}$ node is an abstraction of the releyjent features, not the entire tree itself. ${ }^{72}$ It is important to bound the size of a node in order to prevent encoding unboumded inemory into the nodes. ${ }^{73}$ This guarantecs that any predicate can be tested in a fixed amount of time. Parsifal stores subtrees in the stack cells; it could take an arbitrary amount of time to search a subtree for some property (such as the value of a trace.) ${ }^{74}$ Similarly, the formal system outined in [Kaplan and Bresian80] permits two unbounded nodes to be unified which also requires unbounded time. ${ }^{75}$ Although this is a theoretical point, it does bring up some very difficult questions regarding abstraction (inheritance). Which features does a mother inherit from its daughters and which features are opaque to further inquiry? 'This question will be studied in chapter 5 .

3.2 Production Rules

Only one more component is needed before the machinc can run. We have to specify a procedure for determining which actions to apply next. We will begin by describing a very general technique. The next few sections will present some more specific techniques which should cover the mest common umarked cases. The more general techniques will be used only in very marked exceptional situations. We introduce them first because it is relatively easy $t \boldsymbol{s}$ see that they are sufficiently powerful: however, they are so powerful that it is very difficult to combine them effectively into a good structured program (grammar).

The general technique is to use a set of production rules (like Parsifal's grammar rules) which uniquely determine the actions to perform. That is, the first applicable production rule is selected. We are strongly depending on Marcus' Determinism Hypothesis: the rules cannot backup or sprout new processes like a non-deterministic machine. A sample rule might be:

[^22]（118）（dcfrule attach－subj
（pattern $(=\mathrm{s})(=\mathrm{np}-=\mathrm{vp})$ ）
（action（attach）））

This rule would say，if there is an s（sentence）node just above the wall（upl）and there is an n p－followed by a יp just below the wall（in downl and down2），then attach the $n p$（downl）to the s（upl）．It is very similar to a Cl＇rule of the form：${ }^{76}$
（119）s $>\mathrm{lnp}-\mathrm{vp} . .$.

The pattern has a limited window；it can only reference the first three cells in cach buffer and features immediately attached to them．（120）lists the syntax for a pattern．＇There are six predicates ＜upl＞，．．．，〈down3＞associated with upl，．．．．down3，respectively．${ }^{77}$ If the predicates and the lisp expression ${ }^{78}$ return truc，then the pattern＂matches＂．${ }^{79}$
（120）（pattern
（＜up3＞＜up2＞＜up1＞）
（〈downl＞〈down2＞＜down3＞）
〈lisp expression＞））

76．CF rewrite rules are often viewed as top－down（generative）．This asymnetry is purely a matter of convention；they could have been formulated in a bottom－up fashion．Our representation is neutral with respect to top－duwn and boltom－up．
77．If the pattern contains less than three predicates．the specified predicates apply to the cells closest to the WAL．L．For example．（118）applies to upl．downl and down2 because upl is the closest to the WALL from the upper buffer，and． down1 \＆down2 are the closest from the lower buffer．
78．This lisp expression must be side－effect－free（cannot change the stite of the niachine in any way）．It is also constrained to the firse three cells in each buffer ind their immediate dexcondints（by convention）．
79．Although it is useful to think of the pallern matching is a finear sharch．They are meluatly hiverted（hashed）on＜upl＞ and 〈downl＞．In practice，approximately seven patterns are lessed before finding a mallh．The lest／match ratio had been 4：I before certein rules were added．Theoretically it should be pussible to dopuch belter；the lest／matth ratio slould be 2：1 or better．

The matching procudure deserves much more attention．This may the the proper place to incorporate lexical expectation and extrenely suble preference data，which are oflen taken as evidence for a backup mechanism．Since lookallead is analogous to backup，it ought to be possible to encode these facts in a lookihead framewort．

3.3 Actions

The grammar rules (the deterministic FS control device) modify the machine state through a number of actions. This section will discuss three primitive actions: attach, predict and close. These basic operations appcar in most parsers in one way or another. In gn ATN the enomosponding operations treverse an are, push to a new network, and pop from a network. In fiacleys algurithn Warley 70$\}$ the correspionding operations are scan, predict and completc. Basicilly, any tree traversal algorithm will havethrec corrosponding operations:
(121) move across from one sister to the next (122) move down from a mother to the first daughter (123) move up from the fast daughter to the nother
(attach, traverse arc, scan)
(predict, push)
(close, pop, complete)

These actions are implemented in terms of buffer operations. Recill that both buffers are building toward the WAIL: the upper buffer holds mothers looking top-down for daughers (on the other side of the WAILI) whercas the lower buffer holds dinughters looking bottom-up for hothers. (ltie grass is always grener on the other side of the WAIL., so to speak.) ${ }^{80}$ When a daughter and a mother fintilly flitd each ofther (attach), the daughter is popped from the lower buffer because it is no longer kooking for a mother. It is then pushed onto the upper buffer, to enable it to find some of its own daughters. ${ }^{81} \Lambda \mathrm{~s}$ we will sec, upl will inherit certain features (e.g. person, number, gender, ...), from downl to reflect the attachment, Finally, the mother and

Fig. 2. The Attack Action

Attach pops downl from the lower buffer and pushes it into the upper buffer.
sentence: I am a boy.
input pointer: boy.

before	after
[s]	[s 1]
$=-$ WALL $==$	[np. I]
[np- I]	$==$ WALL $= \pm$
[vam]	[vam] at
$\left[\mathrm{dct}^{\text {a }}\right.$]	$\ \operatorname{det}^{\text {a }}$

[^23]daughter are linked together in the output structure. This link is also available to the printer, and hence, upl prints differently after the attachment. For example in figure 2 , upl is printed as $\left[_{\delta}\right.$] before the attachment because it dominates no words, but afterwards, it is printed as $I_{S} I$ because it dominates the word I.

The machine proceeds in a middle out fishion away fiom tre WABM. First, it tries to attach downl to upl as we have just seen. If that fails, it starts a new mode between upl and downl. This is the predict operation. For example, suppose that YAP finishes parting the sthbeet in flgure 2 by sone yet unspecificd means, leaving the machine state ready for the predict action as in figure 3 . Upl contains a clause ($\left[_{s} 1\right]$) looking for a $v p$ daughter and downl contains a verb $[v a m]$ looking for a $v p$ mother, The predict action starts a $v p$ node between upl and downl to bridge the gap. The machine can now continuc by attaching upl to downl just as it did in figure 2.

YAP will continue predicting and attaching until it reaches the state spocified in figure 4. At this point, upl is complete. The machine will close upl by pupping it from the upper buffer, thus renoving it from memory. It cannot take on any more daughters

3.4 The Phrase Structure Component

Marcus' minetine has a number of production rules like (121) to decide which actions to perform. It would be possible to write a complete grammar in this form. If we did so; YAP woutd look very much like his machine. The problem with writing a grammar in production rules is that the performance and the competence

Fig. 3. The Predict Action

Predict will start a new node between upl and downl.

sentence: I am a boy.

input pointer: .

before	aftcr
$\left[_{S} I\right]$	$\left.I_{S} I\right]$
$==$ WALLL $==$	$==$ WALLI $==$
I_{V} am $]$	$\left.I_{v p}\right]$
$\left.I_{d e t} a\right]$	I_{V} am $]$
I_{n} boy $]$	$I_{\text {det }}$ a]
	I_{n} boy $]$

Fig. 4. The Close Action

Close pops the upper buffer, thus removing upl from memory. Nothing more can attach to this np.
sentence: I am a boy.
input pointer:

```
before
[s I am a boy]
[vp am a boy]
[np. \({ }^{\text {a boy] }}\)
\(==\) WALI \(==\)
[punct \({ }^{\text {. }}\)
```


after

[s I am a boyl
Ivp am a boyl
$==$ WAl.L. $=$
$l_{\text {punct }}$ I
components tend to become tangled; it is very difficult to write a good structured program (grammar) with such elementary building blocks. [Swartoui78], [Shipman78] and [Marcus79, chapter 4] have observed that there are phrase structure (PS) rules hidden inside Marcus' grammar. Shipman then wrote a PS machine which used phrase structure rules to decide when to activate rules. 82 It would be desirable if we could add phrase structure rules to $\mathrm{Y} \wedge \mathrm{P}^{\mathrm{s}}$ s) that it could select the next action in an orderly way. The phrase structure componcat should cover mostinormal unmarked cases; production rules are reserved for marked exceptions. Λ typical YAP phrase structure rule is as follows (omitting details):
(124) (def-ps-rule finite-s s
(csubj obl (s-np-))
(chead obl (vp)))
This ps-rule is similar to the two CF rules: ${ }^{83}$
82. Marcus has a notion of active rulcs. For technicen radens, wo have uxt incomponated this idea explicitly in YAP. The

83. Technically, it is closer tos the following CF noles, Howiver, the inontertionts (csubj, chead, ...) are always non-branching.
s-> csubj chead
csubj $->$ s-
csubj -> np'
chead -> vp
(125) $s->n p-v p$
(126) s-> s- vp

In Einglish the rule says that a finite ${ }^{\beta 4}$ has two obligatory daughters; the first is the surface subject (csubj) and the second is the head (chead). The first can be either an s - or $n p$-, and the second, a $v p$. This rule could have been written as a large number of marked production rules; the ps rules are more perspicuous. For example, a single ps-rule replaces ten of Marcus' rules for parsing auxiliarics. ${ }^{85}$ Sec [Shipman78] for a transtation procedure from ps-rules to Marcus' production rules.

There is a PS pointer associated with each node to indicate what the node is "looking for". ^ PS pointer is written in dotted rule notation where the dot (.) marks which terms have been parsed (see figure 5). The PS pointer is automatically advanced when a daughter is atlached as in the figure. ${ }^{86}$

Y $A P$ will use the PS rules to select the next action. When there are no applicable marked rules, the interpreter tries to apply the PS rules. There are three possible PS actions: ps-attach, ps-predict, and ps-close. In YAP they are implemented as follows. ${ }^{87}$
(127) ps-attach: If downl can attach to upl, then do so.
(figure 5)
(128) ps-predict: If the category of upl's next daughter can be determined, then predict a node of that category.
(figure 6 top)
(129) ps-closc: If upl can be closed, then do so.
(figure 6 bottom)

[^24]Fig. 5. PS Attach
sentence: I am a boy.
input pointer: boy.
$\left[\begin{array}{l}\text {] finite-s }->. \text { csubj chead }\end{array}\right.$
$==$ WALI. $==$
$I_{n p}$ - $]$ normal-x $->$ cword.
$[\mathrm{V} a \mathrm{~m}]$ normal- $\mathrm{x}>$ cword.
$I_{d c t}$ a] norinal-x \rightarrow cword.
Because downl is a possible csubj for upl's finite-s, the default PS-attach rule will attich downl to upl, leaving the machine in the following state. Notice that the phe pointer assuciated with the s node is automatically advanced.

$\left[{ }_{5} 1\right]$	finite-s -> csubj . chead
$\mathrm{lnp-}^{\text {I }}$]	normal-x -> cword
= W	
$\left[_{V} \mathrm{am}\right]$	normal-x -> cword.
$I_{\text {det }}{ }^{\text {a }}$	normal-x $->$ cword .

All these rules are depended upon the ps pointors; the conditionals (eat atuach, cat predict, and can close) are functions of the ps pointers. These rules are the defaults which can be over-ruled in the marked case by a production rule. By introducing these ps rules we have greatly reduced the number of marked productions rules. The current grammar has 12 ps-rules and 69 production rules. In practice, the ps-rules and production rules are executed about equally ofen. The PS rules were designed, to strongly resamble Bresnan-Kaplan's constituent structure component just as the production rutes rcacenble Marcus' grimmar.

3.5 Ordering P'S Actions

(130) attach
(131) predict
(132) close

The ps rules have an unmarked order (130)-(132) whieh can be owernied by a marked production rule. In the unmarked case, first try to attach downl to upl If that doesn't work out, then try to predict. Finally, try closing up. Empirically, this order seems to require a minimum number of marked rules. It favors attaching early (low) and closing late. Late closure was discussed in chapter 2; early attachment is the subject of

Fig. 6. PS Predict \& PS Close
PS Predict
sentence: I am a boy.
input pointer: .
I_{S} I]
finitc-s -> csubj . chead
$==$ WALL $==$
$[\mathrm{y}$ am] normal-x $->$ cword.
[det ${ }^{\text {a }] ~ n o r m a l-x ~}->$ cword.
I_{n} boy] normal-x $->$ cword .
Since the category upl's next daughter is unique (it must be a $v p$), the PS-predict rule will start a $v p$ node in downl, as illustrated below.
$\left.I_{S} I\right] \quad$ finite-s $->$ csubj . chead
$==$ WALI $==$
$\left[_{\mathrm{vp}}\right]$ normal-vp -> . chead (cobj) (excomp)
[vam] normal-x -> cword.
$\left[{ }_{\text {det }}\right.$ a] normal-x $->$ cword.
[n boy] normal-x-> cword.

PS Close

sentence: I an a boy.
input pointer:

[S I ama a boy]	finite-s -> csubj chead.
[vp am a boy]	normal-up -> chead (cobj) . (cxcomp)
[np- ${ }^{\text {a boy] }}$	normal-np- $->$ (cspec) chead .
$==\text { WALL }=$ [punct.]	normal-x $->$ cword .

Since upl can close, the PS close oreration would pop it from the upper buffer, thus removing it from memory, so no further attachments can be considered.

[SI 1 am a boy]	finite-s -> csubj chead.
$\left[_{\mathrm{vp}}\right.$ am a boy]	normal-vp -> chead (cobj) . (excomp)
$==$ WALL $==$	
[punct ${ }^{\text {] }}$	normal-x $->$ cword .

chapter 4. The rule ordering would attach X as low as possible in structures like (133) because ps-attach precedes ps-close. (134)-(136) illustrate this for adjuncts, conjuncts and optional arguments, respectively. The next chapter will compare this approuch with alternativos in the liternture
(133) John called the guy who called the girl who called ... X
(134) John called the guy who called the girl who called ... yesterday. adjunct

Jhn called the guy who called the girl who cilled ... to make \{hinself, herself\} feel better.
(135) John called the guy who called the girl who called ... and said "hello".
corjunct
(136) John called the guy who called the girl who called ... a rotten driver.
optional arguments John called the guy who called the girl who called ... up.

4. Attachnıent Strategies

What types of information should drive the autachment process? thafe are four basic strategies in the literature: ${ }^{88}$

(137) Structural Bias
(138) Lexical Expectation/Arc-Ordering
(139) L.cngth Bias
(140) Scmantic Bias

[Kimball73, 75], [Frazier and Fodor78], [Marcus79], YAP

Although there are valid arguments for each of these positions, we will concentrate on the structural biases in this chapter. Y $\triangle P$ can encode the other biases using marked rules. ${ }^{86}$ The structural bias is provided (in the unmarked case) by the proposed rule ordering (attach, predict, and then close). It appears very similar results are produced by Frazier's two principles: minimal atlachment and late closure. This idea was inspired by [Wanner79 pp. 12] which relates Frazier's principles to certain Λ^{\prime} IN actions (traverse arc, push and pop) which are similar to our three primitive actions (attach, predict and close.)

Abstract

88. Few papers fit the categories perfectly. For example, we have listed the Sausage Machine in two places because it has some structural components (minimal altachment and late closure) and some lenglh biases (Preliminary Phrise Packager). Similarly, we could have listed the arc-ordering papers under several headings because arc-ordering can encude many types of biascs. as [Wamner79] quite correctly notes. 89. We have very litue to sily about length biases. Fraziers machine has a front end called the Preliminary Phrase Puckager (PPP) which segments the input stream into mamageable chunks that are "sluunted off" to the next higher stage (SSS). The PPP hats severely linited memory (about six words) and it has litic or no ability to communicate with the SSS except to "shum" segmented phrases which it will (alnosi) never sec again. This nuxlel nuakes the interesting prediction that preliminary scegmentation is subject to length biases.

There are a few problems with this propusal. First off, it is not clear how to build a PPP. Purely bottom-up segmentation is extremely difficult in general. unless one is will to form all possible segments (which is probably not Frazier's intemt.) Secondly, although the length biases are certainly real at some level. Frazier's suggestion that they play a major role in passing is extremety controversial. For example. [Wanner79] observes that the length factor does not appear to aller the preferred interpretation in the following sentences.

Tom siid that Bill hadd taken it out yesterday.
Tom siid that Bill had taken it jesterday.
Tom said that Bill toxok it yesterday.
Tom suid that Bill died yesterday.
We will accept Wanner's criticisms of the PPP and his alternative proposill (ordering the actions: attach, predict and then (chuse). The interested reader should investigate his paper for more discussion of the PPP and how it relates to his proposal.
(141) Minimal Attachment: Attach incoming material into the phrase marker being constructed using the fewest nodes consistent with the well-formedness rules of the language.
(142) Late Closure: When possible, attach incoming material into the clause or phrase currently being parsed. [Frazier79 pp. 76]
(143) Minimal attachment $=$ attach before predict
(144) \mid ate closure $=$ close after predicting and attaching

If the two analogies, (143) and (144), are correct, then the proposed unnarked ordering of ps rules is a valid implementation of Frazier's principles. Her principles were designed to capture a large number of performance phenomena, from a psycholugical point of view. We will address their feasibility from a practical engincering point of view.

4.1 Minimal Attachment

Minimal attachment prefers (146) and (149) because they have fewer brackets (nodes). 90
(145) The horse raced past the barn (fell).
(Frauicr79 pp. 27])
(146) $+\left[_{S} I_{n p}\right.$ The horse $\left.]\right]_{v p}$ raced past the barn]] ... fell
(147) $-I_{S} I_{n p}\left[\begin{array}{ll}n p \\ \text { The horse }]\end{array} I_{S} I_{v p}\right.$ raced past the barn]] $\left[_{v p}\right.$ fell]
(148) Tom heard the latest gossip about the new neighbors (waco't trup). (Similar w [Frazier79 pp. 155])
(149) + 'lom heard [the latest gossip about the new neighborsy
(150) - Tom heard [the latest gossip about the new neighbors] wasn't truc].

4.1.1 Sensitivity to Phrase Structure Rules

There is a technical problem with this formulation; minimal atuchinent is extremely sensitive to slight modifications in phrase structure ruts; it would be more robur if it counted limiting growth (like a complexity argument), not individual nodes. It is not clear, for example, that her counting argument can be used to distinguish the folkowing [Fraxicr79 pp. 24].

[^25](151) Sam hit [the giri] [with a book]
high attachment
(152) Sam hit [the girl with a book]
low altachment

The first has one fewer node using her phrase structure rules; they have the same number in our analysis. These borderline cases are notoriously difficult: human judgments tend to be unreliable and indecisive. For example, [Waks and 'loner76] have found that certain ambiguous structures have little or no bias; both possibilities are about equally probable. This fact is not captured by neest altacliment strategies which draw very sharp distinctions. Certainly, both Frazier's minimal attachment and our ordering criteria are guilty of this criticism. I.ater in this chapter, we will discuss a marked rule (pseudo-attachment) to cover the ambiguous case.
(153) $l_{n \mathrm{p}}$ the girll l_{pp} with a book] \quad Frazier's analysis high
(154) $\left[_{n p} I_{n p} \text { the giril }\right]_{p p}$ with a book]] low
(155) $\left[_{\mathrm{np}}-\left[_{\mathrm{np}}\right.\right.$ the girl|] $\left[_{\mathrm{pp}}\right.$ - with a book] YAP's analysis high
(156) $\left[_{n p}-\left[_{n p}\right.\right.$ the girl] $\left[_{p p}\right.$ - with a book $]$ low

4.1.2 Explanations for Minimal Attachment

Intuitively, the principle appears to conserve computational resoures, although the argument has not been completely formalized. [Wanner79] argucs that it is generally more efficient to attach before predicting because predictions postulate an additional node which presumably involves a ecrtán additional cost. Hence it is generally cheaper to order attach before predict. This ordering happens to be consistent (more or less) with Frazier's minimal attachment strategy.

It is very difficult to formalize this argument. Although it is generally cheaper to attach before predicting, attiching first isn't always cheakper. 'For example, there are structurally ambiguous sentences such as (151)-(152) where attaching first is no more efficient. Even if there were n discrepancies between the ordering criteria and Frazier's principles, it isn't clear which explains which. Docs the ordering criteria explain the minimal attachment principle or the other way around? Nevertheless, there is an interesting correlation. Despite its problems, we will accept Wanner's account as an implementation of minimal attachment (and leave the explanation question unresolved).
[Fodor and Frazier80] suggest another explanation. Suppose the parser builds "several" paths in parallel. The first one to finish "dominates subsequent processing". This provides a nice motivation of minimal attachment; presumably the most minimal path would finish the "race" first since it constructed the fewest number of nodes. Similarly, they could account for the ambigurous case as "a double finish" (although Frazier happens to argue that this particular case is unambiguous (Frazier79 pp: 143]).

Ouc has to be carefint with the paraliel processing account. If it is taken tow literally (each derivation has its own processor), it would trivialize the attempts to limit backup/lawailicad (by substituting hardware for backup/lookalicad). There ought to be a mechanism for bounding parallelism just as there is a mechanism for bounding lookahead in Marcus-style parsers. (In some sense, backup, lookahead and parallelism are all very similar.) Fodor and Frazier's account would be much more satisfying if they also discussed the limitations of the parallelism.

It has been very difficult to find a deep explanation for the principle because it is heuristic (in our framework). There are several cases where the phinciple can be overridden. For exanople, there are the ambiguous cases just mentioned. Also, it has been argued that sembunic and pragmatic biases can influence the judgments. Furthermore, there appear to be some empirical cemstructions where the most minimal attachunent is excluded (by competence constraints) permitting a less minimal attachment. These (rare) cases constitute yet another class of exceptions, at least in our framework. ${ }^{91}$ It is a heuristic to be applied when there are no reliable clues (semantics, pragmatics, or grammatical constraints). Minimal attachment is not like center-embedding, for example, which is universally unacceptable. Center-embedding can be explained by the FS hypothesis; we are not likely to find a similar explanation for minimal attachment. It is a "least effort" heuristic (in linguistic terminology, it is a "markedness" principle). Heuristics are generally more difficult to explain than universals like center-embedding.

[^26]
4.1.3 left Branching Structures

There are some cases where the heuristic is crucial. For example, extreme non-minimal attachment (predicting before attaching) fails on a left branching structure such as (157), where it would predict infinitely many noun phrases. ${ }^{92}$ Although the most extreme non-minimal position is theoretically inadequate, there are many compromise positions which may suffice. For example, a parser could make a few predictions before attaching, thus creating slightly non-minimal structures without the theoreticia inadequacics. There is no explanation for the mos/ minimal strategy.
(157) np -> np's n
(L58) John's father's ... brother's friend

4.2 Garden Paths

left branching is an extreme case; Frazier's experiments were inore concerned with the well-known garden path (GP) phenomena such as (159) (162). These are called GP senteaces because the reader is led down the garden path so to speak. It would appear that the performance model has optimized the process of recognizing the vast majority of sentences which do not contain garden paths so that these GP sentences are no longer acceptable.
(159) \# The horse raced past the barn fell.
(160) \# The ship floated on the water sank.
(161) \# John lifted a hundred pound bags.
(162) \# I told the boy the dog bit Sue would help him.

[^27]The GP interpretations result from attaching at the critical point instead of predicting. For example, the machine will prefer to attach in (163), thus taking the first fatal step down the garden path. The grammatical (but unlikely) interpretation requires predicting a clause node instcad of attaching.
(163) [s I told the boy the dog bit]
[s the dog bit]
[vp ${ }^{\text {bit] }}$
$==$ WALI $==$
[np-Suc]
[${ }_{\mathrm{V}}$ would]
[V help]
The "non-minimal" interpretation can be forced in the presence of positive evidence. ${ }^{93}$ For example, (165) is acceptable because there is sufficient positive informatian (an unambiguous +en morphological feature) to predict a reduced relative clause9, when the machine is in stute (166). On the other hand, sentence (164) does not have the same reliable evidence for a reduced relative, and bratie thore is insufficient motivation to predict the additional node. ${ }^{95}$ Since the $v p$ can't attach to ${ }_{n p}$ - the horsel without the reduced relative node, and the reduced relative nede can't be prediched, the machine wifl pestose, the only ps-action left. In this

[^28](a) the horse who was taken past the barn
(b) the horse laken past the barn

This constrietion has also been calfet whiz detetion (short for who ts dektion). Instead of deleting, YAP base generales the constraction direetly as felkws: Lip. the horse $I_{v p}$. tiken past the burnl. It this analjsis, predicting the rolative clause amounts to preticting the pp - hode:
95. If YAP leoked sufficiently far aliead, it would find sufficient evidence for the reduced reletive. We are assuming that one getierally doessn't luok that far ahead.
case, closing is the first fatal step down the garden path. ${ }^{96}$
(164) \# The horse raced past the barn fell.
(165) The horse taken past the barn fell.
(166) [s The horse]
[np- The horse]
$==$ WALIL $==$
$I_{\text {vp }}{ }^{\text {taken past the barn] }}$
$\left[_{V}\right.$ fell]
[punct ${ }^{\text {] }}$
It would be possible to parse garden paths if one looked sufficiently far ahead. Figure 7 illustrates a very marked rule to do so. We assume that most people do not look so far ahead because they have not seen enough evidence to justify the effort. Perhaps, psyeholinguists, with their unustal background, have acquired a rule like the "horse-racing" ruioin figure 7.97

These garden paths should be distinguished from center-cmbedding because we believe no one (not even the best psycholinguist) can learn to parse deeply center-embedded sentences in real time. Although it would be possible to add a marked rule to parse garden paths, the machine is fundamentally incapabie of parsing
96. Frazier's account differs slightly because she uses alternative phrase structure rules.
$\mathrm{np}->\mathrm{np} \mathrm{vp}$ (Frazier)
$I_{n p 1} I_{n p 2}$ the horsce I_{vp} raced past the barnll
np- $->$ np vp-(YAP)
$I_{n p}-I_{n p}$ the horsel $\left[_{v p}-I_{v p}\right.$ raced past the barn $\left.I I\right]$
We have alltributed the problem to predicting the reduced relative node (y p-): in her framework. the problem is to predict the $n p /$. The accounts are very similir (neduluto the phrise structure rules). In both cases, the makhine fails to predict the reduced relative because there is insufficient evidence.
97. Similiarty, it is possible to write marked production rules in YAP which violate well-known grammaticall constraints such as Russ Complex Noun Phrase Constraint (CNIC). Allugugh nest purmal pexpke have extreme difficuly parsing viotations of CNPC, there are some experienced linguists who cannol trust their own intuitions becense they can parse certain violations with relative ealise. Since there are some people (e.g. experienced linguists) who can parse certain violations, a parser should also have this capability although it may require some very highly marked rules. This position is somewhat different from [Marcus79], where it is assumed that the parser should be incapable of violating certain grammaticall constraints.

Fig. 7. A Marked Rule to Parse a GP

If YAP had a rule like the ad hoc "horse-racing" rule below, it could parse, The horse raced past the barn fell. Of course. there is no evidence that such a rule exists. (This rule also has quite a number of other problems which will not be discussed.)
sentence: "The horse raced past the barn fell."
input pointer:
[s The horse]
[np-'The horse]
$==$ WALIL $==$
[vp raced past the barn]
[v fell]
${ }^{\text {punct }}$]
(defrule horse-racing
(pattern (=s = np-) $(=\mathbf{v p}=\mathrm{v})$)
(action (predict 'vp-) (attach)))
arbitrarily deep center-embedding. The allowable depth is determined by the limited memory ${ }^{98}$

4.2.1 Semantic Bias

There is some additional evidence distinguishing the GP case from the centerembedding case. Unlike the center-embedding case, it is possible to reverse the judgments with priming (167) or strong semantic clucs [Crain and Coker78] [Crain79] (168)-(173). Non-minimal attachments are gencrally pussible if there is sufficient positive evidence (linguistic training, priming, or semantic clues) to exclude the more minimal interpretations. ${ }^{99}$

[^29](167) There were two horses being raced, one out in the field and the other past the barn. The horse raced past the barn fell.

priming

(168) The tenant delivered junk mail threw it in the trash.
semantic bias (169) \#The postman delivered junk mail threw it in the trash.
(170) The cheater furnished the answers passed the test.
(171) \#'The genius furnished the answers passed the test.
(172) The performer sent the flowers was thrilled.
(173) \# The florist sent the flowers was thrilled.

4.2.2 Marcus' Account

This account differs slightly from [Marcus79], where it would be very difficult to state a rule which correctly resolves garden paths, and consequently, his machine will guess which path to take when it cannot correctly resolve the ambiguity. In the garden path case, the machine will take the wrong path. The semantic priming can be explained in the model as reversing the heuristics. Accordingly, we would predict that (174) should be out since the priming has reversed the two paths. The prediction is probably correct.
(174) ? \# There were two horses being raced, one out in the field and the other past the barn. The horse raced past the barn.

It is more difficult for Marcus to explain why trained psycholinguists can parse garden paths. Unlike the priming case, the psycholinguist is aware of both paths. If the disambiguating rule cannot be stated, then how is it that psycholinguists seem to parse both of them cerrectly? It is possible that learning psycholinguistics increases the lookahead buffer, and hence, they can parse certain GPs even though most normal people cannot. However, we have adopted another account. Instead of saying that the GP cannot be resolved by a marked rule, we take the much weaker position that there must be positive evidence to justify the rule. Marcus' position is more restrictive than our own, and hence more theoretically attractive. Unfortunately, in YAP, it was found necessary to enlarge the class of definable rules, and hence, we had to abandon Marcus' position that the "horse-racing" rule (figure 7) cannot be stated, in favor of the weaker position that such a rule is highly marked.

4.2.3 Related Work

This account is somewhat similar to [Bever70f where there was a parsing strategy (175) to account for some of the same empirical facts. We have two shight objections wimp his strategye (a) it is not as general as Fraxier's fermulation, and (b) it conflates performance and competcnec.
(175) Strategy B: The first N..V.(N)., clause (isolated by Strategy A [which segments clauses]) is the main clause unless the verb is marked as subordinate.

Frazier's minimal attachment also overlaps with [Chomsky and lasnik77] where some of the same phenomena are described in terms of filters. Fraziers account involves performance whereas filters presumably encode competence. Chomsky and Lasnik say that (176) is ungrammatical: Frazier's principle would imply that it is also unacceptable.
(176) * \#'The girl saw you is here.

It is very tempting to suggest an explanation. A functionalist might argue that it is ungrammatical because it is unacceptable. ${ }^{100}$ It is equally mistaken to deduce that unacceptability follows from ungrammaticality. A mere overlap between performance and competence does not constitute an explanation (in either direction). ${ }^{101}$ On the other hand, the overlap is probably worth studying in more detail. For example, one might look for an explanation in terms of evolution as in [Bever and I angendoen71]. It is unlikely to be pure chance.

[^30]Similarly YAP, which encodes minimal attachment, does not explain minimal attachment or any facts which follow from that (e.g. certain GP phenomenal but merely prevides a description. We agree with Frazier's intuition that minimal attachment is a conscquence of limitod wesources. Eyen if the connection between minimal attachment and limited resources could be proven, we would not have an explanation. It would remain to be seen why people adopt the proposed strategy in favor of some inferior one. Is minimal attachment learned or is it innate as Frazier suggesss? Thesc are extremely hard questions; we have only attempted to model (describe) the facts. 'This work should not be interpreted as an explanation.

4.3 Non-Minimal Attachment

There are a few exceptional cases where the default order (attach, predict, and then close) would produce incorrect results. These exceptional cases should also) be a problem for Frazier's principles (which she solves with a backup mechanism.) In our framework, there will be a few marked rules to cover the following exceptions:
(177) carly closure (chapter 2)
(178) transformations (chapters 6-9)
(179) non-minimal attachment
(180) pscudo-attachment

Sentences (181)-(186) show that non-minimal attachment is occasionally appropriate. The first sentence in each group is more minimal than the others. It would appear that the parser should not blindly attach without looking ahead at the next constituent for one of these exceptional cases.
(181) I know [the boy].

I know [[the boy] went home].
null complementizer
(182) John saw Tom and [Mary].

John saw Tom and HMary) saw Sue]:
conjunction
(183) I told the boy [that].

I twld the boy [that] story].
I told the boy [that] you liked the story].

YAP has marked rulcs to cover each of these cases. The last group are disambiguated by the that-diag, a marked rule to distinguished the various senses of that. ${ }^{102}$ The first two pain ate disimbiguated by a marked rule which predicts an s when there is a node looking top-down for an s and there is an subject-tense pattern in the lower buffer. For example, an s would be predicted in (184).
(184) [I]
lip $_{\text {knew] }} \quad$ know-1-> head. $\{$ obj, scomp $\}$
$==$ WALI $==$
[np- the boy]
[V went]
[n home]

All of these examples appear to be counter-cxamples to Frazier's'minimat atachment which are casily solved though a bounded kokahead/backup/parallel nechapism. Where are some more difficift examples (involving lexical preferences) which appear to support thefarcuptering hypothesis. Sentences (185)-(186) are a typical minimal pair illustrating the difference between see and know, which cannot be distinguished in purely structural terms. Although we have not implemented a solution, we see no reason why these facts favor backup over lookahead (or parallelism). ${ }^{103}$
(185) I saw I_{s} the horse raced past the barn].
(186) I knew $I_{n p}$ the horse raced past the barn].

4.4 Pseudo-attachinent

There are structurally ambiguous sentences, violating any well ordered set of principies; these should be recognized as ambiguous (or perhaps, vague). These presenca problientior both Fraxiers principles and our ordering heuristic. Y^P detects the ambiguity with a marked rule. Frazier's two principles seem to conflict in this case. In the sentences below, minimal attachment would attach the pp high and late closure would seem to attach it low.

[^31](187) Sam hit the girl with a book.
(188) Sam hit [the gird] with a book.
high attachment
(189) Sam hit:[the girl with a book]
low altachment
'There are several possible ways to deal with this apparent conflict.
(190) Define one of the two principles to avoid the problem.
(191) Cope with the possibility of conflict.
(192) $\Lambda \mathrm{dd}$ an additional rule to cover the conflicting cases.

> (Frazier's solution) ${ }^{104}$
> (the "double finish" account)
> (YAP's approach)

Y $\wedge P$ has a marked rule to pseudo-attach (attach both ways) ${ }^{106}$ when it sees both alternatives and decides that it cannot decide which is correct. 'This approich is completely consistent with Marcus' determinism hypothesis. YAP makes a singte leat to right pass overe the input strecim without backup. Once it pseudo-attaches, it will not retract the decision at a later date In ©his waty. Marcus' determinism hypothesis allows ambiguity, even though a deterministic PDA excludes ambiguity, The following sentences illustrate pseudo-attachment: ${ }^{107}$
(193) Put the block in the box on the table.
(194) He carried nothing to indicate that he was one of the group.
(195) We sighted the man with the binoculars.
(196) We never fought a bull with real courage.
(197) He hit the man with the stick.
(198) He seemed nice to her.

The estructure representation of these sentences in not a tree but rather a directed acyclic graph (IO^G). ${ }^{108}$ For example, $\left[_{p p-}\right.$ to her] in (198) woudd have two mothers: the participial phrase Ivp secmed..$]$ and the adjectival phrase app $_{\text {ap }}$ nice ...]. The multiple mothers should be interpreted as exclusive possibilities. This is a

[^32]convenient way to represent certain common structural ambiguities that occur in natural language. The cstructure of (198) would have the following representation:

where $\mathbf{P P}_{\mathrm{i}}=\left[\mathrm{pp}^{-}\right.$to her $]$

There are three interesting cases of pseudo-attachment illustrated by (200)-(202). In all three cases, downl can attach to either upl or up2. (See figure 8.) In (200), up2 optionally selects another daughter, whereas in (201) and (202), up2 obligatorily requires another daughter. In (201) unlike (202), there is another constituent, so pscudo-attachment is possible. There is a marked rule which considers the Uree possibilities.
(200) He $\left[_{\text {up2 }}\right.$ seems $\int_{\text {up1 }}$ nice $\int_{\text {downl }}$ to her ...
(201) $]_{\text {up2 }}$ Put $I_{\text {upl }}$ the block $\left[_{\text {downl }}\right.$ in the box on the table ... (202) $I_{\text {up2 }}$ Put $\Gamma_{\text {upl }}$ the block $I_{\text {down }}$ in the box.
pseudo-attach pscudo-attach dou't pseudo-allach

Pseudo-attachment is not limited to just prepositional phitases; thi YAP implementation generalizes the technique to work for any kind of xp - ($\mathrm{pp}-$ ap-, or $\mathrm{yp}-$), not just pp . Consider the following examples:

Fig. 8. I'seudo-attachment

sentence: He seems nice to her.
input pointer:
[s he seems nice]
[${ }_{\text {vp }}$ seems nice]
$\left[{ }^{\text {ap }}{ }^{\text {nice] }}\right.$
$==$ WALL $==$
$l_{\mathrm{pp}}{ }^{\text {to her] }}$
[pp to her]
[punct.]
The marked pseudo-attachment rulc attaches downl to both upl andtup2. YAP knows that it cannot disambiguate between the two pessibilities.
(203) Put the block $I_{p p-}$ in the box on the table.
(204) I considered every candidate $\left[_{\text {ap }}\right.$. likely to win.
(205) He carried nothing $\left[_{v p-}\right.$ to indicate that he was one of the group.

YAP uses a very similar technique to process certain well-known cases of ambiguous wh-movement ${ }^{109}$ such as (206). These will be discussed when we consider wh-movement in chapter 8. (206) has two interpretations: (207) and (208). Both of these are represented within a single structure (209) where the trace NP_{j} has two mothers.
(206) Who(m) do you want to sec?
(207) Who(m) $)_{i}$ do you want to see t_{i} ?
(208) Who(ni) $)_{i}$ do you want t_{i} to sec?
(209) Who do you want NP^{-}to see NP_{-}?
where $\mathrm{NP}_{\mathrm{i}}=[\mathrm{Ip}$ - $]$
The pscudo-attachment technique follows a popular philosophy in artificial intelligence called delayed binding. The basic idea is to avoid making arbitrary decisions until there is enough information. This approach can be contrasted with an arc ordering technique (such as [Kaplan72]). In Kaplan's scheme, the possible decisions are ordered so the most plausible decisions are made first. In a delayed binding scheme, the system tries to avoid discriminating between possibilities as long as possible. In some cases, the system may never really distinguish between certain possibilities. ${ }^{110}$

[^33]There are limitations to the particular implementation of delayed binding in YAP. It may be impossible to encode all grammatical ambiguous interpretations. We claim that pseydo-attachment can work for acceptable interpretations; the other grammatical interpretations are unacceptable. Unfortunately, it is very hard to test this claim.

It appears that pseudo-attachment cannot represent all CF interpretixions because the device does not have CF generative capacity. One could view pseudo-atuchment as annotating one of the athechments (the canonical attachment) with several alternatives. The weak generative capacity will be the same as the canonical structure; pseudo-attachment does not affect the weak generative capacity, only une strong capacity. ${ }^{111}$ Assuming that $\mathrm{Y} \wedge \mathrm{P}$ is equivalent to a deterninistic $\mathrm{Pi} \cap \wedge,{ }^{112}$ it has the weak generative capacity of a deterministic language (i.c. I.R(k)). Since I.R(k) languages do not include all CF languages, there are some CF languages which cannot be described using psoudoratachment. 13 . We claim that acceptable sentences can be described with pscudo-attachment. ${ }^{14}$

Pscudo-attachments should not be undone at a later date. There are certain problematic cases where the simple scheme described above will run into trouble. There are several possible replies. Some of the interpretations are probably unacecptabte. Perhaps the rest could be processed with inore lookahead. There are some problems with pscudo-attachment; nevertheless it is an interesting alternative to purcly non-deterministic stratcgies.

[^34](210) Put the block in the box on the table P]* into the basket.
(211) I consider every candidate likely to seem XP-* comupt. ${ }^{\text {Its }}$

Sentences (210)-(211) illustrate a problem with pscudo-auachment: the final constituent, which is arbitrarily far from the decision point, selects the higher attachment as in (212)-(213). But without the final underlined constituent. the examples are highly ambigwous as (214)-(215) illustrate. The problen is that $Y \wedge P$ has to look at the final constituent before it can determine whether or not to pseudoratuch. The final constituent might be arbitrarily far away.
(212) Put [the block in the box on the table PP^{*} [into the basket].
unambiguous
(213) I consider [every candidate likely to seem XP*] corrupt.
(214) Put [the block] [in the box on the table PP部].
highly' ambiguous
Put [the block in the box on the table] PP*.
(215) I consider [every candidate] [likely to seem XP**.

I consider [every candidate likely to seem XP*].
We will make a simplifying assumption that the intermediate phrases all attach the same ways. Only the first and last few phrases in a sequence (XP*) can be pscudo-attached; it is assumed that the intermediate phrases all attach the same way. Consequently, the pseudo-attachment decision depends on just a few phrases (downl and down3 of (216)), not on an unbounded number.
(216) [s put the block]
[vp- put the block]
[np- the block]
$==$ WALL $==$

[^35]Certainly there are numerous grammatical interpretations which cannot be described by this mechanism. For example, there are an unbounded number of grammatical interpretations; this mechanism only considers a bounded number: ${ }^{116}$
(217) I put [the block pp*] pp
(218) I put [the block pp $\left.{ }_{1}\right] \mathrm{pp}^{*}$
(219) I put [the block] pp*

We claim that the others are unacceptable (in the absence of positive evidence such as semantic bias). There could be marked rules to consider semantic or pragmatic clues.

4.5 Summary

The cstructure implementation has been outlined. Unless there is an applicable marked rule, the interpreter runs the phrase structure rules in an unmarked order. 'The unmarked order was chosen to be compatible with Frazier's two principles: late closure and minimal attachınent. We have diesussed seweral classes of marked exceptions (220)-(223). The description would be more attractive if the role of these marked exceptions could be minimized. This is an area for future rescarch.
(220) early closure (the Λ-over- Λ closure principle)
(221) transformations
(222) non-minimal attachment
(223) pscudo-attachment

In the next chapter we will show how fstructure can be butit fiom estructure without violating memory and backup limitations.
116. There would be one other interpretation if put didn't subeategorize fur an obligatory second object: I stiw I the block pp*?.

5. Functional Structure Implementation

The previous clapter sketched out YAP's basic machinery for constructing the constituent structure (cstructure), based solely upon category ($\mathrm{n}, \mathrm{v}, \mathrm{np}, \mathrm{vp}, \mathrm{s}, \ldots$) information. The cstructure is an intermediate representation toward obtaining the predicate/argument relations (fstructure). Computing the fstructure involves a number of syntactic features (properties). It is casy to find minimal pairs such as (224)-(229) illustrating the necessity of certain syntactic features.
(224) That ball is round.

number

(225) That balls are round is a fact.
(226) Have we caten?
case
(227) Have us caten!
(228) Have the boys take the exam!
lense (229) Have the boys taken the exam?

Each node (phrase) has a number of syntactic features (eg. person, number, gender, case, tense and mood) and a number of grammatical roles (eg. subject, object, etc.) This chapter will outline a procedure for assigning features and roles. The problem is interesting because feature dependencies can cross seemingly unbounded distances. Nevertheless YAP has a procedure for manipulating features that doesn't violate the scvere resource limitations (memory and backup). The feature manipulation problem is similar the inheritance problem [Fahlman77] [Martin79, 80], which is known to be very hard. Fortunately, the Bresnan-Kaplan linguistic theory provides us with just the necessary simplifyiag constraints.

Many parsers compile the feature information into the parts of speech (category), conflating constituent information ($\mathrm{n}, \mathrm{v}, \ldots$) with functional information. Perhaps the most extreme example is the Harvard Predictive Analyzer (HPA) [Kuno66] which used about 180 parts of speech to distinguish everything from number to subcategorization frames. We accept the proposal that the two structures should be independent. ${ }^{117}$ In addition to her linguistic motivations, there are some computational advantages for dividing the problem in this way. It is often useful to delay certain decisions as long as possible. The HPA,

[^36]with its 180 parts of specch, couldn't separate the distinctions which require inmediate resolution from the ones that should be delayed. Consequently, it found many more ambiguitics than most people consider. For example, the IIP Λ finds threc interpretations of (230) where most people netice only two, if that many. Sume of these distinctions should be delayed (perhaps indefinitely). The multiple interpretations of flying planes are far more striking than the possible senses of are.
(230) 'They are flying planes.
(231) They $\operatorname{arc}_{a u x}{ }_{{ }_{v p}}$ flying planes]
(232) They are copula $I_{n p}$ flying planes]
(233) They arc copula $I_{v p}$ flying planes]

YAP, as opposed to HPA, carrics along multiple functional possibilitics until there is some reliable information to resolve the various alternatives. In this way. YAP can manipulate feature dependencies over unbounded distances without violating Marcus' Determinism hypothesis.

5.1 Seemingly Unbounded Dependencies

We will illustrate a typical "unbounded" dependency in the featuros between two nodes and then skow how the dependency can be captured with only finite memory. The method is in fact fairly general since it is based on the Bresnan-Kaplan linguistic theory.
(234) There is a problem.
(235) There are problems.
(236) *There are a problem.
(237) *There is problems.

There-inscrtion sentences such as (234)-(237) have two dependencies:
(238) subject-verb ${ }^{118}$ agreement
(239) there agrees with its object
118. Grimmallical poless (subject. object, predicate, etc.) will be undefined for the tinc being. The intuitive notions should suffice for the current discussion.

These dependencies can cross an uribounded amount of material as the following sentences illustrate:
(240) There seems likely to seem likely to seem likely .. to be a problem.
(241) There seem likely to seem likely to secm likely. . w be problems.
(242) *There secm likely to seem likely to secm likely ... to be a problem.
(243) *There seems likely to seem likely to seem likely ... to be problems.

In these raising ${ }^{119}$ sentences, each embedded phrase takes an understoxod subject. The dependencies can now be stated locally, although they have unbounded consequences. That is, the highest subject agrecs with the tensed verb and the most deeply embedded subject agrees with the object. Furthermore, all the understwod subjects are related, so they inherit each other's constraints. Much of this clapter is concerned with the inheritance mechanism.
(244) There ${ }_{2}$ seems x_{4} likely x_{6} to seem ... x_{n} to be a problem.

We will use a variable x as a place marker to represent the understood subjects. Now the two dependencies are local; there ${ }_{2}$ agrecs with seems and x_{n} agrecs with a problem. Since the subjects are related, the procedure has unbounded consequences. Nevertheless the procedure does not require inordinate resources.

5.1.1 Grammatical Roles

The notion of subject is crucial to this formulation. The Bresnan-Kaplan analyses use a number of grammatical roles including subject. object, obj2 (second object), xcomp (adjectival, uerbal, or prepusitional complement), scomp (sentential complement) and predicate. Grammatical roles are assigned by structural and lexical constraints. For now, we will give an example to illustrate the intuitive notions:

(245) subj	$\underline{1}$ saw a boy.
(246) obj	I saw a boy.
(247) obj2	I gave a boy \mathbf{a} ball
(248) xcomp	He seemed likely to be nice.
	He secmed to be nice.
	I gave a ball $\underline{0}$ a boy.

[^37]| (249) scomp | It seemed that he was nice. |
| :--- | :--- |
| (250) pred | I saw it. ${ }^{120}$ |

'These are all slots in the fstructure. Grammatical relations are extremely useful for describing many linguistic phenomena (sce [Bresnan80]). ${ }^{121}$

5.2 Constraint Propagation Solation

This feature manipulation prucedure can be viewed as a constraint propagation problem [Mc^llester80] [Mackworth77] [Waltz75]. The problem is to propagate the agreement dependencies through the fstructure (a graph of grammatical roles). (See figure 9). Initially, all possible values are assigned; the number values are \{singular, plural\}. ${ }^{122}$ Extrancous values are first weeded away by the lexicon and then by agreement constraints. In this way, multiple possibilities are carried along until there is sufficient information to disambiguate. YAP does not randomly try alternatives (non-deterministic); heuristic guessing is avoided whenever possible.

Figure 9 shows an fstructure after lexical specifications but before the constraint propagation. For example, the lexicon specifies that a problem is singular (\{singular\}) and there is either singular or plural (\{singular, plural\}). After propagating the two agreement constraints, x_{2}, x_{4} and x_{6} will all be singular (their number propertics will be \{singular\}). The sentence, There seem tikeff to be problems, has a similar fstructure except x_{2}, x_{4}, x_{6} and x_{7} are plural instcad of singular.
120. In the Bresnam-Kaplan framework, pred is a feature, not a grammatical role. We have placed it here because it is defined over a large set unlike the other features such as persent nemiber and gender.
121. Chomsky (personal communication) has eriticized grammatical relatious as an inadequate explanatory theory.
 derive grammatical relations themselves. Chennsky argues than deriving grammatical relations from structural motions is
 Neverilecess. explamatory adequiky is somewhat orthogonal to processing issues; for our purposes "mere" descriptive adequacy is sufficient. (Deiscriplive idequacy is no simple task.)
122. We are assuming that fealtures are defined over small sels of possible values. There are some theorelical difficulties associated with propagating grammatical roles since they have potentially untounded ranges. The actual implementation has a special symbol (*undefined*) for the universail set of grammatical roles.

Fig. 9. Constraint Propagation
There seems likely to be a problem.
There $_{2}$ seems $_{1} x_{4}$ likely $_{3} x_{6}$ to be $_{5}$ a problem 7 .
The fstructure graph (before propagating the agreement constraints) is given below (omitting certain details). 'The two agreenent constraints are subject-verb agreement (x_{2} with x_{1}) and there-insertion (x_{6} with x_{7}). The constraints are sulficient to uniquely determine the number features (\{singular)).
$x_{1} \quad$ pred: seems
tns: \{pres\}
subj: x_{2}
xcomp: x_{3}
x_{2} form: there
num: \{singular, plurai\} \quad \{singular\}
$x_{3} \quad$ pred: likely
subj: x_{4}
xcomp: x_{5}
$x_{4} \quad$ is-bound to: x_{2}
num: $\{$ singular, plural\} $\{$ \{ingular\}
$\mathrm{x}_{5} \quad$ pred: there-be
subj: x_{6}
obj: x_{7}
$x_{6} \quad$ is-bound-to: x_{4}
num: $\{$ singular, plural\} \quad \{singular $\}$
$\mathrm{x}_{7} \quad$ pred: a-problem
num: \{singular\}
\{singular\}

The two constraints are subject-verb agreement and there-insertion. In this framework, subject-verb
agrecment is enforced by intersecting the agreenent features of a tensed node with its subject. ${ }^{123}$ In figure 9 , the number features of the tense node x_{1} are intersected with its subject x_{2}, making x_{2} 's number \{singular\}. Similarly, therc-insertion constrains x_{6} to agree with x_{7}. making x_{6} 's nurbber featurc $\{$ singular\}. By is-bound-to edges, the agreenent constrints propagate all the way through die: graph, making all the number features \{singular\}.

If the constraints were inconsistent, some slot would have no pessible values, and the sentence should be ruled out. For example, the ungrammatical sentences. *There secm likely to be a problem and *There seems likely to be problems, are bad because their fstructures have no pussible values (i.e. \{\}) for the number slots; one agreement constraint weeds out the value singular and the other removes plural. The ungraminatical sentences are functionally inconsistent.

If the constraints underdetermine the solution, some slots will have several possible values, and the sentence is considered vague (or perhaps ambiguous). ${ }^{124}$ The number features in (251) and (252) are all \{singular, plural\} indicating a number ambiguity. In (251) there may be one or more "decr"; in (252), there is an ambiguity between the inner and the outer interpretation. ${ }^{125}$ Sentence (253) has underdetermined tense (\{pres, past\}) since put is lexically ambiguous. The underdetermined cases illustrate that the evaluator can be so lazy it may never get around to making a decision.
(251) The decr might be nice.
(252) The family might be nice.
(253) I put it down.

[^38]
5.2.1 Representation Issues

Feciture values are represented in bit vectors ${ }^{126}$ so that each set (i.c. \{singular, plural\}) requires a constant amount of memory (independent of iss size.) That is, He set \{singular\} and the set \{singular, plural\} require the same amount of memory. Unlike most non-deterministic systems, the ambiguity does not consume additional resources (time or space); the number feature requires exactly one bit vector in any case. These representation issues can have a fairly important impact on the overall performance of the systen; it is often worthwhile to take advantage of the particular parallel construction of the machine at hand in order to avoid potentially expensive non-deterministic searching.

The features in figure 10 have been implenented. ${ }^{127}$ Fach possible walue is represented by a single bit; $1=$ possible, $0=$ impossible. For example, if the gen and dat bits are set, then the case is either genitive or dative (\{gen, dat \}). In this representation, it is particularly casy to merge nodes, we simply intersect the two

Fig. 10. Features

feature	possible values
case	gen dat nom acc
gender	m nf
pnc	sl s 2 s 3 pl p 2 p 3
def	+-
pro	+-
tns	tnsless pres past +ing +en
mood	decl wh-q yes-no-q imperative exclamation subjunctive

[^39]bit vectors. ${ }^{128}$ We are crucially depending on the fact that features range over a small finite set of possibilities.

5.2.2 No Disjunctive Constraints

There is a crucial linguistic assumption that enables the constraint propagation technique to work: there are no disiunctive constraints. It would not be possible to enforce a rule for example that required the first daughter to agree with either the second or third daughter. Disjunctive dependencies are known to be computationally difficult because they involve postulating several possible worlds which may have to be considered non-deterministically: fortunately they don't often appear in natural language syntax. ${ }^{129}$
128. Person and number have been combined ($p a c=$ person/number code) because there are oflen disjunctive constraints between the two. For example, the noun block cam lake any perser value and amy number value, but the values are not independent (it cannot be $\mathbf{s J}=$ third person singular). This encooling trick is taken from Parsifal. Kaplan (personal communication) mentioned that his ATN panser used the sume trikk. ©One conta argue that Ins and phe are somewhat analugous: there are some words which have either ms features or pac features. but not both. For eximple, the lexically' ambiguous word blocks is cither pres or $s 3$, but not boht. This idea has not been implemented.)
129. Martin (personal communication) knows of only one syntaktic constriction which suggesis disjunctive dependencies. The partitive noun phane kind of dogs pught be cither siugular or plural It seems 10 inherit its fuatures from one of the other of its parts (but not necessarily both).

What kind of dogs are those?
What kind of dogs is the most popular?
Perhaps kind is not \{singular\}, but rather it is vague (\{singular, plural\}) between the inner and oulter plural. The following pairs illustrate similar ambiguities.

The bellows are coming apart.
The bellows is being repaired.
The committec are fighting among thenselves.
The commitlee is fighting the regulation.
This approach avoids disjunctive constraints, which arc computationally probtematic. Instead of postulating an arbitrary number of possible worlds, there is only one pussible world which encurles the ambiguity (i.c. \{singular, plural\}). The sy'stem will not hypothesize which possibility is correct until there is sufficient information to be sure. In truly anibiguous sentences, the distinction will never be made.

The deer might have done it.
The fish shouldn't have.
This is consistent with the wait and see approach. (The set of possibilities (i.e. \{singular, plural|) are slored in bit vectors: the information associated with a set it independent of the number of pessibilities.)

Kiplian (personal commomication) has suggested that lexical ambiguity and lexical redundancy rules are a yery serious source of disjunctive constraints. His point is well taken. though progress is begin nade. Robert Milne is currently working on the lexical ambiguity prublen [Milne78a, 78b, 79, 80]. We will discuss our own solution to optional transformations (and lexical redundancy) in chapters 6-7.

5.2.3 Bind* is an Fquivalence Relation

There is another useful simplifying assumption: the is-bound 10 relation ${ }^{1020}$ forms naturat equivatence classes. ${ }^{131} \mathrm{We}$ will replace the relation with its reflexive, symmetric, transitive closure: bind ${ }^{*}$. In figure 10 , the cinbedded subjects are all bound to one another forming a single equivalence class (under bind*). Fquivalence classes can be represented very efficiently: instead of storing each element individually, it is possible to store then collectively as a class. ofen saving considerable memory. The equivalence relation representation contains far less information than an arbitrary relation. This is very important for YAP, since there may be a bounded number of classes, even though there are an unlouinded number of elements.

The equivalence property is a stipulation. We cannot currently explain why it fits the empirical data as wett as it does. The theory would be more autractive if this assumption did wot haye to be stipulated. 132 It may be possible to explain it in terms of other indepefidently motivated assunntions. Nevertheless. it seems to be consistent with the facts and it emables a computationat optimizational33

YAP docs not assign features to nodes individually but rather wo squivalence classes collectivelv. All the co-indexed subjects in figure 10 would share a single bag of features. ${ }^{134}$ That is, x_{2}, x_{4} and x_{6} in figure 10 are represented collectively in the optimized fstructure (256) under x_{2}. In many parsers (including Marcus' Parsifal), each embedded subject would be represented individually. ${ }^{135}$

[^40](254) There seems likely to be a problem.
(255) Therc $_{2}$ secms $_{1} \mathrm{x}_{4}$ likely $_{3} \mathrm{x}_{6}$ to be $_{5}$ a problem ${ }_{7}$.
(256) $x_{1} \quad$ pred: seems
tns: $\{p \mathrm{ccs}\}$
subj: x_{2}
xcomp: x_{3}
x_{2}, x_{4}, x_{6} form: there
num: \{singular, plural\}
$x_{3} \quad$ pred: likely
subj: x_{4}
xcomp: x_{5}
$x_{5} \quad$ pred: there-be
subj: x_{6}
obj: x_{7}
${ }^{x_{7}} \quad$ pred: a-problem
num: \{singular\}

Co-indexing is a unification procedure. Whenever two nodes are co-indexed, their features are inerged (intersected) and placed in shared memory. Updating one node's features would affect the other because their features are being shared. In this way, an unbounded number of nodos could be affected with a single update, since they might all be sharing the same features. This is how the "unbounded" dependency in (254) can be realized with only limited working memory.

Although the dependency is "unbounded" in cstructure, it is bounded in fstructure, which uses the more efficient equivalence class representation. A grammatical role (i.e. subject) refers to an entire class (with potentially unbounded membership) such as $\left\{x_{2}, x_{4}, x_{6}\right\}$, not to an individual member. Consequently, it is possible for YAP' to enforce these agreement constraints very efficiently in the fstructure since they mention only a bounded number of classes (grammatical roles). ${ }^{136}$
136. In the Bresnam-Kaplan frantework, agreement dependencies are not allowed to reference more than four grammatical roles in a single rule.

Another attractive computational property of equivalence relations is enerociativity, they can be constructed in any order. x_{2} could be unified with x_{4} and then with x_{6} or the othef waty arond. The fstructure winl turn out the sallne whether constraints are propagated cyclically ${ }^{137}$ (bottom to top), inverse cyclically (top to bottom). or inside out. The results are invariant with the order of application. Invariance is very convenient; a parser can then enforce constraints in the mest natural order (left to right).

Invariance does not follow from most definitions of movement hecause a lexical object cannot be moved until it has reached the source of the movement. Consequently it makes a difference whether movenents are computed cyclically or not. Perhaps movement should be redefined whe associative. ${ }^{138}$ Similarly, the ATN SIENIDR operation (which manipulates feature registers) is non-assuciative. This wo cornld be redefined. Actually, part of the motivation for defining the Bresnan-Kaplan merge operator was to rid the asymmetry of the $\Lambda^{\prime} \mathrm{I}^{\prime} \mathrm{N}$ SI:NI)R [Kaplan (personal communication)].

5.3 The Bresuan-Kaplan Analysis of There-insertion

We will compare our analysis with the Bresnan-Kaplan analysis; YAP wasdosigned so that it could casily incorporate many of their ideas. Consequently, we were able to borruwimany analyses, such as the formulation of there-insertion, saving us considerable time and energy. We are not interested in reinventing, all of linguistics; this thesis is mainly concerned with processing constraints.

The problem is to build a firtucture from the estructure. The conistriates on the fistructare come from the cstructure (e.g. the subject is the first $n p$ under tense) and the lextion. Λ typher stricturail deperidency relates a noun phrase in "subject position" (immediately dominated by a tensed elatsef with the frtricture slot: frubj. Similarly, there are lexical constraints indicating, for example, that problem is \{singular\}, problems is \{plural\} and deer is \{singular, plural\}. (257)-(258) link cstructure positions with grammatical roles; the remaining functional slots will be filled in by the lexicon.
137. [Freidin78] has observed that eyclicity is derivable from independently motivated assumptions. In this framework, the cyclic order generates the simice results ats any oher order. We could interpret Fruiden's results to say that order is irrelevant: the facts that were once explained using ordering censtraints are covered under nore general binding conditions.
138. A movement could for example leave a sink behind to swallow up the lexical phrase when it finally does arrive.
 indexing schence [Kuster78].)

5.3.1 Structural Constraints

$$
\begin{aligned}
& \text { (257) up:s -> dl:np d2:vp } \\
& \mathrm{dl}=\operatorname{subj}(u p) \\
& \mathrm{d} 2=\mathrm{up} \\
& \text { (258) up:vp -> dl:v (d2;np) (d3:xp- })^{139} \\
& \mathrm{dl}=\mathrm{up} \\
& \mathrm{~d} 2=\mathrm{obj}(\mathrm{up}) \\
& \mathrm{d} 3=\text { xcomp(up) }
\end{aligned}
$$

Fxamples (257)-(258) are a slightly modified form of Bresnan-Kaplan's notation. It has been changed to more closely resemble YAP's notation and to be casier to type. ${ }^{140}$ Both (257) and (258) show a phrase structure rule followed by a number of constraint equations. For example, (257) gives an expausion for s; it has two daughters, the first is an $n p$ and the second is a $y p$. There are two constraint equations below the ps rule which fill in functional slots by a unification (co-index) operation. For example, the first equation, $d l=$ subj(up), defines the $n p$ under s to be the subject. ${ }^{141}$ by unifying the first daughter (an $n p$) with the subj slot of $u p$ (an s). Λ fter the two nodes have been unified, they share the same memory so that further constraints on either node will affect the other. Hence the unification operator is the bind* cquivalonce nclation; the chasses are represented collectively in shared memory.

The second constraint equation $d 2=u p$ unifies the head of a phrase with its mother. This follows from x-bar theory [Jackendoff77] [Chomsky70] where phrases are defined as a projection of a head. For example, a noun pbrase, such as the the boy, is a projection of its head poun boy Sinilarly an, sis a projection of its head, a up. Again, from x-bar theory, it follows that all features percelate up from the head. For example, the noun phrase the boy is singular because its head is singular. Similarly, $l_{5} l_{\text {saw }}$ himp pas past tense because its head $v p$ has past tense. Functionally, one cannot distinguish a mother from its head, and consequently, they are
139. The pseudo-calegory xp-stands for one of the following: ap-yp- or pp-
140. YAP uses more mnemonic names: names like $d f$. d2. .. dn are rephaced with csubj, cobj, cxcomp. The letter c indicales a cstructurall relation, as upposied to an f for a functionat role. Where we have used un and d, Bresininn and Kliplan woutd use up arruws and down arrows. rexpectively. Also. insead of filumbeting the datughers as we have, she writes the constraint equalions undericath the ipproprable daugher. Certan'ichetram tquations can be intatstood as the unmarked case. so they need not be restated for each ps rule. See [Kaptin and Bresmizoty:
141. Techniciliy, the subject is the fistucture of the np under s, not the np teself. The sibject does not inderde the csinucture of the $n p$ (category and surfice danghters).
represented as a single unified node in fstructure.

5.3.2 Iexical Constraints

The remaining constraints come from the lexicon. A lexical entry looks very similar to a phrase structure rule. It defines a functional frame (instead of a constituent frame) with constraint equations between slots. We have used the dumuny variables $a l, \ldots$, an instead of $d I, \ldots, d n$ to distinglish finmetiotial arguments from constituent daughters. The following lexical entries are relevant to the example at hand: ${ }^{142}$
(259) scem -> al:\{vp-, ap- $\}^{143}$
$a l=x c o m p(u p)$
$\operatorname{subj}(u p)=\operatorname{subj}(a l)$
(260) likely -> al:vp-
al = xcomp(up)
$\operatorname{subj}(u p)=\operatorname{subj}(a l)$
(261) there-be -> al:np-

```
\(a l=o b j(u p)\)
nump(sobj(up)) \(=\) num(al)
form(subj(up)) \(=\) there
```


5.3.3 Well-Formedness Conditions

The functional structure is completely constrained by the constratim coutians in the ps tules and the lexical entrics. ${ }^{144}$ The functional structure must meet three wellthormetnesd conditions: completencss, cohoitnee and consistency. Each lexical entry deffines of functional frathe whete.
142. We will not discuss the internal strucpure of noun phrases at this line. For now, we will use the ad hou predicate appoblem ta represent the sinclire of nap a problem].
143. Technically. kexical prodicules are not alluwed to deference, dhe csrycure (cathory, and surface daughters). The
 (a pp-complement) and a ncoup (a ap- complemán4)
144. Subject-verb ayrecmeni was nof described. There is a lexienl entry for cach form of the verb: gach asserting a different constraint cquation on the subject. For eximple, seems would haypan nule like; num $(\sup)(u p))=\{$ singular $\}$.
(262) each slot must be filled (completeness)
(263) and only those slots may be filled (coherence)
(264) and multiple assignments to aparticular slot must be consistent

Sentences failing to mect thesc conditions are ungrammatical as (265)(267) illustrate.
(265) *There is.
incomplete
(266) *It seems John to be a nice guy.
incoherent
(267) * There are a problem.
inconsistent
[Kaplan and Bresnan80] give an algorithm for instantiating lexical entries; we will not review it here since they were not concerned with the same resource limitations.

5.4 Implementation of Functional Structure

Examples (268) and (269) illustrate a typical phrase structure rule and a typical lexieal predicate. ${ }^{145}$
(268) YAP's Notation
(def-ps-rule finite-s s
(csubj obl (s-np-)
(action (incrge down (get-fsubj up))))
(chead obl (vp)
(action (merge down up)))
(def-pred scem-1 scem
(fxcomp obl (vp-ap-)
(action (subj-cuntrol up down))))

Bresnam-Kaplan-like Notation
$\mathrm{s}->\mathrm{dl}:\{\mathrm{s}-, \mathrm{np}-\} \mathrm{d} 2: \mathrm{vp} \quad$ ps rule
$\mathrm{dl}=\operatorname{subj}(u p)$
$\mathrm{d} 2=\mathrm{up}$
scem $->$ al:\{vp-, ap-\} lexical predicate
$\mathrm{al}=\mathrm{xcomp}(u p)$
subj(up) $=$ subj(al)

YAP's ps-rules and lexical predicates share similar syntax, (269) and (270). Both of them are CF rules with Bresnan-Kaplan constraint equations encoded into the nonterminals (i.c. 〈term>). Λ 〈term> is defined as (271) below.
145. By convention, all functional slot names will begin with an f, whereas all constituent stot names will being with a c.

(269) (def-pred 〈predicate name> <stem> <term>*)	B.	predicate rule
(270) (def-ps-rule <ps-rule name> <catcgory> <tcrm>*)	2 m	ps rule
(271) (<role><Ol3 .igatory, OPTional, or STAk $>$ <po	*s) (action (lisp $^{\text {codec }}$))) Jenn

Recill that YAP's altuch operstion autamatically idvances the "dot" in a pa-rule pointer past a nonterminal. In addition to updating the ps-rule, advancing the "dot" also invokes the constraints associated with the nonterminal. That is, when YAP attaches a daughter to a mother, the daughter is given the <role> in the mother's frame, and sceondly, the 〈action> field is evalutated with up and chown bound to the mother and daughter, respectively. ${ }^{146}$ For example, when YAP attaches downl to upl in (272), downI becomes the csubj of upl because the "dot" passew the csubj'teme. futhermore, tiownt beromos the fuety of upl bocause the action field specify that down (bound to downl) be merged: with up foounditu up1).
before olluching:
fsubj: empty
csubj: enipty
$==$ WALLL $==$
[np. I]
[vam]
[det ${ }^{\text {det }}$
(273) $[5$
finite-s $->$ csubj . chead
after allaching
fsubj: [np- I]
csubj: [np- 1]
[np-I]
$==$ WALIL $==$
[vam]
[det ${ }^{\text {det }]}$
146. The action fiek could comtain an arbitrary LISP expression to be evaluated during an attachment, although by convention, the action lields merely update functional roles and syntactic feaures immediadely connected to nodes in the buffers. It is not allowed to violate the FS hypothesis. (It would be an improvenent ω eliminate the acfion slot by classifying to possible uctions)

The fstructure parallels the cstructure in many ways. Just as we associated a ps pointer with every node, we will associate a predicate pointer with every predicate. When a daughter is attiched to a predicate, the predicate pointer is advanced very much like the ps pointer is advanced. Advancing the pointer over a term invokes the relevant constraint equations. For example, ataching a fxcomp to seems, as in figure 11, invokes subject-control. That is, the daughter's understoxd subject is its mother's subject.

Fig. 11. ISS Attach (revisited)
sentence: John secms to have left. input pointer:
[s John seems] finite-s $->$ csubj chead.
seem-1-> . fxcomp
fsubj: $I_{\mathrm{np}}-\mathbf{f o h n}$
[vp seems] normal-vp -> chead . (cobj) (cxcomp)
seem-1-> . fxcomp
fsubj: [np- John]
$==$ W $\Lambda L L==$
$\left[{ }_{v p}\right.$. 0 have left] normal-vp- $->$ ccomp chead.
have-l-> fxcomp .
fsubj: emply
[punct ${ }^{\text {] }}$ normal-x $->$ cword .
^fter attaching, upl's ps and pred pointers will advance invoking the constraint equations: down/ becomes up/'s cxcomp and fxcomp, and down/'s fsubj is controlled by upl.
[s John seems] finite-s $->$ csubj chead .
seem-1-> fxcomp.
fsubj: [np- John]
[$\mathrm{vp}^{\text {secms }}$]
normal-vp -> chead (cobj) (cxcomp) .
seem- $1->$ fxcomp.
\{subj: [np. Jaha]
fxcomp: [yp- to have left]
cxcomp: Iv to have lett
[vp- whave left] normal-vp:-> ccump chead,
have-1-> fxcomp.
fsubj: [np. John]
from subject control
$==$ WALL $==$
lpunct \cdot normal-x $->$ cword.

For another example, there-insertion constraints are enforced when the fobj is attached, using the following lexical entry for the verb to be. When Y \wedge. attaches the fobj, it checks the fsubj; if it is the form there, YAP enforces number agreement, by merging the num feature of the subject and object ${ }^{147}$ This rule can have unbounded consequences since the fsubj can be passed down though an arbitrary number of raising verbals (like seem and likely).
(274) (def-pred be-1 be
(fobj obl (np-)
(action (if ${ }^{148}\left(={ }^{*}\right.$ there (get-fsubj up)) (mergef (get-fsubj up) down num)))) $)$
Bresnan-Kaplan's completeness, coherence, and consistency conditions are implemented using the predicate pointers. Completeness is a condition on closing: a node cannot close until all of its obligatory roles have been attached. Coherence is a condition on attaching; a daughter cannot atach unless it is an argument of its mother (or controlled by an argument of its mother). ${ }^{149}$ Consivemey is a condition on unification; inconsistent slots cannot be unified.
147. Note the difference between the mergef and merge functions. The fitmer merges a particular feature (say num) whereas the latter merges all features. An equation like up $=$ down merges diffeuturawhereas only the num feature is merged by an equation like num(up) = num(down).
148. The lisp macro ifis a sinple conditional: it evaluates its second agennent if the first argument returns true.
149. Argument is a linguistic notion which distinguishes positions sefecting lextuat ilenls (John. Mary, the fuble. ...) from
 lexical items which appear in that position are not arguments of seem, but nor tof the xcomp. For example, in (b) John is an argument of nice, not seem.
(i) There seems to be a problem.
(b) John seems to be a nice guy.
5.5 An Example
'The cstructure and fstructure for (275) are listed betow. This example is very similar to Appendix 2 which traces the derivation more carefully.
(275) The boy was likely to sit?
(276) CSUBJ: [(NP-) the boy] cstructure

CHEAD): [(NP) the boy]
CSPEC: [(IDET) the]
CHI:AD: [(N) boy]
CIII:AI): [(VP) was likely to sit]
CHEAD: [(V) was]
CXCOMP: [(\wedge P-) likely to sit]
CHEAD: [(AP) likely to sit]
CHEAD): [(Λ) likely]
CXCOMP: [(VP-) to sit]
CCOMP: [(COMP) to]
CHEAD: [(VP) sit]
CHEAD: [(V) sit]
(277) FSUBIB: [(NP-) the boy]
fstructure
FSPF:C: [(I)FI') the]
FXCOMP: [($\Lambda P-$) likely to sit]
FSUIB]: [(NP-) the boy]
FSPEC: [(DEI) the]
FXCOMP: [(VP-) to sit]
FSUBJ: [(NP-) the boy]
FSPEC: [(DET) the]

6. Lexical Transformations

The traditional arguments for complex medels (e.g. Vorand ATNS) suggest that simpler mechanisms (like Y AP) cannot capture the full range of linguistic gencralizations. This chapter will address thisteriticism. ${ }^{150}$
(278) "It is well known (cf. [Chomsky64]) that the strict context-free grammar modef is not an adequate mechanism for characterizing the subtleties of natural languages. Many of the qupditions; which. must be satisfied by well-formed Einglish sentences require some degref of gereoment between different parts of the sentence which may or may not be adjacent (indeed whifh (may be separated by a theoretically unbounded number of intervening words). Context-sensijikg grammars could take care of the weak generation of many of these constructions, but only hth hergest of tusing the linguistic significance of the 'phrase structure' assigned by the graminar (of, [Posta/64]). Morcover, the unaided context-free grammar model is unable ω s show, the systomatic relationship that exists between a declarative sentence and its corresponding quegion form, batween an active sentence and its passive, etc."
theo ?
There has always been some controversy over these arguments; currenuy Gazdar [Gazdar79a,b,c] leads the opposition. The confusion stems from two very different interpretations of complexity.
(279) linguistic complexity: the size of the grammar itself
(280) compociational complexity: the time and space bounds for an ideal processor

In general, there is a trade-off between the two types of complexity; the sire of a program (finguistic complexity) is typically inversely related to the power of the interpreter (computationat comptexity). Woods has adopted Chomsky's view that (279) should be optimized at the expense of (280). 151 Gazdars position is

[^41]just the reverse. ${ }^{152}$ Bresnan and Kaplan claim that it is possible to optmize both (to have your cake and eat it, so to speak). YAP was designed along these lines. It has very minimal computational complexity without sicrificing linguistic generalizations. This chapter will show how YAP captures many linguistic generalizations, greatly simplifying the grammar. ${ }^{153}$ Chapters 6-9 discuss the following topics which are often used to "refutc" a position like Gazdar's.
(281) I.exical Transformations
(282) I.ucal Structural Transformations
(283) Wh-nrovement
(284) Conjunction
(passive, raising, there-inserion, ...)
(aux-inversion, deletions, ...)
(wh-questions, relative clauses, ...)
(vp detetion, gapping, clipses, ...)
'Ihis chapter will consider the following four constructions: other lexical rules are very similar.
(285) raising
(286) it-cxttaposition
(287) passive
(288) rcanalysis

There is considerable controversy over these rules; we have adopted the lexicalist position which "compiles" the effect of these rules into the lexicon. That is, there are different lexical entries for see and seen; see is a transitive verb whereas seen is intransitive. Chumsky advucates a transformational position where passive and raising are subcases of move-np. Marcus has encoded Chomsky's analysis in a deterministic framework. This chapter will discuss a formulation of Bresian-Kaplan lexical rules in YAP's framework.
152. It is widely believed that CF rules are inherently inadequate (in principle) to describe the facts. Gazdar (and others) give very good evidence to the contrary. It is theoretically pussible to describe both aktive and patsive sentences with iwo different CF rules. Smilarly, it is pussible to describe yeson questions with yet another set of CF rules. Since there are only a finite number of transformations and only a finite number of base CF rules. one could apply all the transformations to the basc. forming a large inclegant (but finite) sel of CF rules which describe the fixcts. Gatilaris derivation could be viewed as a constructive "proof" that gramular has only CF (computational) complexity. (There are some apparently CS constructions to be considered: "respectively" in Finglish, wh-movement in Swedish. subject-verb agreement in Dutch verbs. and Pusital's Mohawk puzzle.)
153. Gardar's system has meatrules to axhieve the sime gorils. though his sulution tends to mulliply the number of grammar ruks by a rather substantial constant. Unfortunately, all known general CF parsing algorithons consume time proporionad to the size of the grammar, and hence Gandar's solation wifleme dawn parsing tinc by a rather substantial constant.

6.1 The Lexical/Transformational Debate

The last chapter demonstrated a lexical formulation of there-insertion (coupled with raising). The understood subjects were related to each other in the fstructure by lexical constraint equations. Chomsky would achieve a similar result by representing the understood subjects as traces (empty noun phrases) in the estructure. Instead of using lexical constraint cquations to bind the traces, he uses a syntactic transformation called move-np.

The differences between these two positions are very subte. We will review one argument for each side to illustrate the flavor of the debate. Neither of these arguments is definitive; there is a large literature of replies and counter-replics. The arguments should demonstrate that competence issucs (lexical versus transformational) are orthogonal to performance. The state of performance models is not sufficiently sophisticated to distinguish subtle competence issues. It is doubtful whether performance models can ever distinguish certain matters of competence. ${ }^{154}$ Both the lexical and transformational positions are internally consistent (for the most part) and equally parsable (Marcus used a transformational approach). We chose the lexical position for its very attractive representation of features (described in the last chapter). Although it may be possible to devise a similar scheme in a transformational framework, the lexical representation was available when YAP was being designed. The debate has concentrated on two points:
(289) Do move-np rules (passive, there-insertion, raising, ctc.) leave a trace?

John was seen. John $_{\mathrm{i}}$ was seen t_{i}.
(290) Do infinitives take lexical subjects?
I believe $I_{n p-}$ Johnl $I_{v p}$ - to be a nice guy] I believe [S John to be a nice guy]
154. An extreme functionalist position might suggest that all competence issues are ultimately specified by processing considerations. This seems most unlikely.

The following two arguments debate point (289).

6.1.1 The Wanna Argament

The Wanna argument [Bresnan78] demonstrates that there-insertion "must" be a lexical rule since it does not leave a trace (an cmply noun phrase in cstructure). In English, certain verbats (c.g. mint, going) cin optionatly contract with the word 10 as in (291) and (292).
(291) I want to go home.

I wanna go home.
(292) I'm going to go home.

I'm gonna go home.

Want $+t o$ cannot contract over a trace. Hence contraction is blocked in (293) by the tracc of wh-movement, but permitted in (294) where the trace dues not intervene.
(293) Who do you want t_{i} to see Bill?
*Who do you wanna sec Bill?
(294) Who ${\text { Wo you want to sce } t_{i} \text { ? }}_{\text {? }}$ don

Who do you wanna see t_{i} ?
'The question is: does move-np leave a trace? Is there-insertion a lexical rule as in (295) or a transformation as in (296)? If there-insertion leaves a trace, then contraction should be blocked as in wh-movement. But contraction is permitted, so there-insertion "cannot" leave a trace.
(295) There is going to be a movic about us.
lexical
(296) There ${ }_{i}$ is going 4_{i} to be a movie about us.
trausformational
(297) 'There's gonna be a movic about us.

6.1.2 The Away Argument

[Williams80] argucs that the durative particle away occurs only with intransitive verbs as demonstrated by (298)-(301).
(298) The dial is spinning away.
(299) *John is spinning the dial away. (wrong meaning)
(300) Johno is hitting away at Bill.
(301) *John is hitting Bill away.

He then observes that away can occur with lexically derived intransitives (where there is no trace), but not with syntactically derived intransitives (where there is a trace).
(302) John is cating away. (303) *Who is Bitl hitting t_{i} away.
lexically derived
symacically derived

If passive is a lexical rule, then it should allow away by analogy with (302); if it is syntactic (leaving a trace), it should block away as in (303). In fact, away cannot occur with passives, so move-pp "must" leave a trace.
(304) ${ }^{*}$ Bill $_{i}$ was being hit t_{i} away by Fred.

Neither position is conclusive. Having adopted the lexicalist position, we should show how .inguistic generalizations can be encoded within the lexicalist framework. Furthermore, the encoding is subject to the processing fimitations (finite stafe and determinism).

6.2 Raising

The last chapter illustrated a lexical analysis of raising; we will summacite the analysis here. There are two types of raising rutes: caising-to-subject (305) and raising-to-obicef (306). It both eates, there is a rasing verbal in the higher matrix (c.g. seem, promise. likely, persuade) which determines the type of raising. In the seem case (raising-to-subject), the embedded subject is bound to the higher subject: in the persuade case (raising-to-object), the embedded subject is bound tw the higher gbiect. Bresnan-Kaplan constraint equations elegantly capture both cases. ${ }^{155}$

[^42](305) $\operatorname{subj}(u p)=\operatorname{subj}(x \operatorname{comp}(u p))$
raising-to-subject

John seems to be a nice guy.
John promised Mike to be a nice guy.
Jolin is likely to be a nice guy.
Jolin struck Mike as likely to be a nice guy.
(306) obj(up) $=\operatorname{subj}(x c o m p(u p))$
mising-to-object

John persuaded Mike to be a nice guy.
John forced Mike to be a nife.guy.
John convinced Mike to be a nice guy.

6.3 Auxiliaries

YAP analyzes auxiliaries as raising-to-subject verbs; they all select a verbal fxcomp and subject control. Unlike raising verbs, auxiliaries select participial ins ${ }^{156}$ fcatures whereas raising verbale generally select infinitival Ins features.
(307) I was $\mathrm{I}_{\mathrm{xcomp}}$ going].
auxiliaries
I will xcomp $^{\text {gol }}$
I have $I_{\text {xcomp }}$ sone].
(308) I seem $\left[_{x c o m p}\right.$ to gol. raising

Modals (can, may, will, ...) and do select Insless complements, have takes + en, and be assigns either + ing or $+e n .{ }^{157}$ For example, the predicate for be would look something like:
156. The ins feature takes either tense or participle values (since the two have complementary disuributions) The pessible values are: pres, pist. Insless. + en and + ing.
157. Many analyses separate the two forms of be into an active and a passive entry. Our formulation is more comsistent with the wait and see philosuphy. We chaim there is only ene copula be which selects an xcomp narked with either active
 not by the copula.
(309) aux-be -> al:vp-

$$
\begin{aligned}
& \text { al = xcomp(up) } \\
& \text { tns(al) }=\{+ \text { ing, }+ \text { en }\} \\
& \text { subj(al) }=\text { subj(up) }
\end{aligned}
$$

Auxiliaries can nest freely to form sentences like the following:
(310) I would have been taken.
(311) I would have been taking the ball.

There are a few constraints which limit the possibilitics. Nedals and do that no participial forms (in their auxiliary senses) ${ }^{158}$ so they must appear in positions requiriys present or past inflection. In other words, they must be directly dominated by a tensed clause because that is the only tensed position. For example, (312) is ungrammatical because will does not have a insless form whinit would normally be required after would. (\$13) is out for similar reasons.
(312) II would will have .. (313) *l would do have ...

Even with these constraints, the raising analysis seriously over-gencrates. One could fix this problepi ping a small sct of motivated features as in [^kamajian79]. Curria!ly, YAP will accept senteces like (314). It is possible that these should be excluded on semantic or priematic grounds like (315) which are syatactically
158. Certain modals are easily mistaken with main verb forms, whi. it have very different morphology and distributions.

[^43]It isn't ckar howa parser can distingush the two forms. YAP husspane numted riltes to disambiguate a few dates Lexical ambiguity is a very hard problem.
well-formed, though semantically questionable. ${ }^{159}$
(314) *I have been having been having ...
*I have had had ...
(315) ?lt seemed to seem to seem ... ?It is likely to be likely ...

Fxecpt for this problem, the raising analysis is extremely simple and efficient. Sec [Λ kımajian79] for a critical review of these proposals and some alternatives.

6.4 It extraposition

The raising analysis has a number of manifestations; it has played a crucial role in there-insertion and auxiliarics. It also turns out to be impertant in it-extraposition, illustrated by (316)-(318) below.
(316) It was believed that I would go.
(317) It was promised that I would go.
(318) It seemed likely that I would go.

It-extraposition is similar to there-insertion; both cases illustrate a dependency between a subject and a deeply embedded constituent. In there-insertion, the "dummy" form there depends upon a deeply embedded noun phrase such as a problem; in it-extraposition, the "dummy" it depends upon a deeply embedded clause.
159. We could suggest some more filters to exclude some of the additional cases. For example. Have doesn't take +ing in its auxiliary form.

I have taken it.
*I wis having taken it.
A second condition blocks two adjacent verbs with + ing inflection.

$$
\begin{aligned}
& \text { *[... +ing +ing ...] } \\
& * \mid \text { am being being ... }
\end{aligned}
$$

These filters are merely descriptive: a true theory would explain these facts.
(319) There seened likely to seem likely ... to be a problem.
(320) It seemed likely to seem likely ... that I would ge.

YAP uses a similar mechanism in both cases: just as there are lexical entrics which check their fsubj slot for the form there, there are lexical entries which check for it. Since subjotes can be raised arbitrairily : Far, it-extraposition can have unbounded consequences. ${ }^{160}$
(321) (def-pred be-1 be
(fobj obl (np-)
(action (if ($=$ * there (get-fsubj up)) (mergef (get-fsubj up) down num)))))
(322) (def-pred likely-1 likely
(fscomp abl (s -)

The form it in (323) is co-indexed with the scomp (sentential complenent) to distinguish it from the pronominal il in (324). The two interpretations have different semantice?
(323) It seemed that we were nice.
(meaningless il)
(324) It scomed to be nice.
(pronominalit)

Similar comments apply to there; (325)-(326) demonstrate the different semantics of there.
(325) There was a problem.
(326) I went there.
(meaningless there)
(pronomial there)

6.5 Passive

Our passive analysis depends on the formulation of auxiliarics as raising verbs. Passive participles do not stipulate the auxiliary. It happens that to be is the only auxiliary that can take a passive participle. This is

[^44]purely accidental; passive participles are found in many other constructions without the verb to be ${ }^{162}$ The verb to be is identical in both (327) and (328); the difference is restricted to the participial phrases seeing me and seen.
(327) Jolin was secing me.
(328) John was scen.

There are two lexical entries, one for seeing (329) and one for seen (330), which are related by a lexical redundancy rule to capture the passive generalization.
(329) active-sec -> al:np-a2:np-

$$
\begin{aligned}
& a l=\operatorname{subj}(u p) \\
& a 2=o b j(u p)
\end{aligned}
$$

(330) passive-sec $->$ al:np-
al $=\operatorname{subj}(u p)$
$\operatorname{tns}(u p)=+e n$

In the Bresnan-Kaplan framework, all lexical entries are "tried" non-deterministically; structures meeting the functional well-formedness conditions (coherence, completeness, and consistency) are considered valid interpretations. 'This is a perfectly reasonable competence model; however, it may have two problems as a model of performance:
(331) very large lexicon
(332) non-dcterminism
162. Here are three constructions involving passive participles:
at tallen leaf
He seemed persuided to leave.
I siw a horse tiaken past the barn.
There is a considerable literalure discussing passive generalizations; our formulation is consistent with the lexical amalyses, allhough many of the details have sut been implemented.

YAP uses a virrual lexicon to alleviate problem (331). Instead of storing all the lexical entrics literally in a huge array, YAP stores only the core entries; other entrics are generated upon demand. Viewing the lexicon as a black box, it shouldn't be possible to distinguish the real entries from the virtual ones. The virtual lexicon is very analogous to virtual inemory systems which page address lucations into real memory upon demand. These schemes take advantage of a space/time trade-off. ${ }^{163}$

Determinism is more difficult to arrange. How can YAP decide which lexical entry to use? The lexical ambiguity problen is extrencly difficult. In this case, there are somne fairly good heuristics. The unmarked case is triggered by a + en morphological feature, though there are several marked rules to disambiguate some of the more difficult cases. These rules may seem ad hoc, but they do have the be stated in one way or another. Perhaps we will find an explanation someday; for now, we will nake do with a descriptive theory.
(333) John was scen.
(334) John has seen Bill.
(335) The horse raced past the barn. The horse raced past the barin fell.

There are two exceptional cases: the perfect construction (333) and the $+e n /+e d$ morphological ambiguity. The perfect construction blocks the passive rule from applying to its complement. This fact is stated in the lexical entry for have. The morphological problem in (335) is disambiguated by the unification procedure. The two senses of raced ($\{+\mathrm{en}$, past\}) are merged (intersected) with the two senses of a tensed clause (\{pres, past $\}$) producing a unique result (sec figure 12).

YAP has a production rule to generate a passive predicate pointer when it is needed. It looks something like the following, although a number of details have been omitted for clarity. ${ }^{164}$

[^45]Fig. 12. Disambiguating $+\mathrm{en} /+\mathrm{ed}$ sentence: The horse raced past the ...

Is the horse] tns: \{pres, past\}
$==$ WAILL $==$
$\left.\mathrm{f}_{\mathrm{vp}} \mathrm{raced}\right] \quad$ tns: $\{$ past, +en$\}$
(p ${ }^{\text {past }}$]
$I_{\text {det }}$ the]
There is a constraint equation which unifies a clause with its head (the vp). When the head is atteched the constraint equation is evaluated, disambiguating the ths features. The two senses of raced ($\{+\mathrm{en}$, past $\}$) are merged (intersected) with the two senses of upl (\{pres, past\}) producing a unique result.
[s the horse raced]
tns: $\{$ past $\}$
I ${ }_{\mathrm{vp}}$ raced]
tns: $\{$ past \}
$==$ WALL $==$
[p past]
Let the]
(336) (defrule passive trans
(pattern () ($=+\mathrm{en}$))
(action (passivizc-pred downl)))
The function passivize-pred transforms downl's active predicate pointer into a passive one. (It simply replaces the fsubj slot with the fobj slot.) ${ }^{165}$ This should have the same external appearance as though there were passive predicates stored in the lexicon. It is merely a space/time trade-off.

6.6 Reanalysis

In general, prepositional ubjects do not passivize. For example:
165. Unfortunately, this dues require copying the predicate pointer.
(337) *The ball was gone to.
*The river was seen at.
*The boy was taken the ball from.

However, there are some marked cases where passive is possible. To account for these facts, it has been proposed that certain verb-particle combinations (c.g. arrive al and look al) can reanalyze into a single wert complex. The reanalyyed form (338) can passivize, unlike (339), because the solution is a verbal object whereas the station is prepusitional object.
(338) They $\left[_{\mathrm{V}}\right.$ arrived at $] \mathrm{Inp}$ - the solution].

The solution was arrived at.
(339) They arrived $\left[{ }_{p p}\right.$ - at the station].
*The station was arrived at.

Since YAP is not capable of distinguishing the semantic difference between the solution and the sfation it camnot distinguish (338) from (339). When syntactic clues are sufficient as in (340)-(341), YAP correctly performs the reanalysis.
(340) I looked at the picture.

The picture was looked at.
(341) I went to the ball.
*The ball was gone to.
The difference between look and go is stated in the lexicon; look reanalyzes with at, but go does not reanalyze with $t 0$. The lexical entry for look at is listed below. Notice that it takes a direct object, not a prepositional object.
(342) (def-pred look-at-1 look
(fsubj obl (np-))
(fcasc obl (p)
(fobj obl (np-)))

We have seen how a number of lexical rules (raising, it-extraposition, there-insertion, auxiliary formation, passive, and reanalysis) are formulated in $\mathrm{Y} \wedge \mathrm{P}$. This shows that many of the generalizations can be captured by a relatively simple device.

7. Local Structural Transformations

The last chapter demonstrated several rules which operate on predicate pointers (fstructure). This chapter will discuss structural transformations which operate on constituent structure (estructure). There are some important differenecs between lexical and structural rules.
(343) L.exical rules are local in fstructure; structural rules are local in estructure.
(344) Structural rules have no lexically marked exceptions.
(345) I exical rules are structure preserving. ${ }^{166}$

By these criteria (which are admittedly very pro-lexicalist), it is very hard to find suitable candidates for a structural rule. (343) is not very discriminating; as we have seen, it is generally possible to state many rules in cither the fstructure or the estructure. (344) is very pro-lexicalist, since almost every linguistic generalization has an exception. Only (345) establishes a class of structural rules; some rules (c.g. root transformations) are not structure preserving. ${ }^{167}$ 'This section will analyze two root transformations: aux-inversion and imperative.

The structure preserving property [Emonds76] is analogous to side-cffect ${ }^{168}$ free (applicative) programming; both moves attempt to establish an invariant representation which remains intact after an arbitrary number of transformations (function calls). Linguists have found the invariance notion to be uscful for describing grammar; computer scientists have discovered invariance important in program verification. It is generally agreed in both fields that structure preserving (applicative) formulations are desirable.

[^46]
7.1 Aux-inyersion

Perhaps the best example of a structural transformation is the so-called aux-inversion rule which has applied to (346)-(350). ${ }^{169}$
(346) Have 1 taken the ball?
(347) Which balls have I taken?
(348) Never have I taken so many balls!
(349) Under no circumstances am 1 pernitted to release these documents.
(350) Nowhere could he find an alpaca carpet.

Y AP's aux-inversion rule undoes the inversion by switching the buffer cells containing the auxiliary and the subject noun phrase, thus capturing the linguistic generalization without increasing the computational complexity (memory is still severely bounded). The aux-inversion rule inverts downl and down2 as illustrated in (351). It also labels upl with the mood feature \{wh-q, yes-no-q\} to distinguish the sentence from its declarative form. ${ }^{170}$
(351) sentence: Have I taken the ball?
input pointer: the ball?

Λ simple form of the aux-inversion rule is shown below. ${ }^{171}$

[^47](352) (defrule aux-inversion trans
$$
(\text { pattern }(=\text { root })(=\text { aux verb }=n p-)(\text { crole-can-advance? upl 'csubj }))
$$
(action (invert) (setfeat upl (yes-no-q wh-q) mood))
^ux-inversion is possible when upl contains a root clause ${ }^{172}$ looking for a subject, and the lower buffer holds the inverted auxiliary/np- pattern. ${ }^{173}$ This rule was tiken almost directly from Marcus' Parsifal.

7.2 Imperative

Imperative is a deletion rule which applies to root clauses. ${ }^{174}$ The parser shinply testures the deleted elements and finishes the sentence as if nothing had been missing. Given a sentence like (353). YAP will insert the words you will into the lower buffer, undoing the imperative transformation. YAP will finish the sentence as if it had been parsing (354). As in aux-inversion, the transformation adds a moxd feature to distinguishes, the transformed sentence (353) from the untransformed sentence (354), The rule is given as (356) below: ${ }^{175}$
172. The highest clause is a root clause. There are some other instances of nout phenomena which YAP does not currently handle. For example, I said. "what ure ne going to do?"
173. The following verbs icli as auxiliaries in English: be. hare. do, can, will. may, shull. muim, and pertapr a few others. There is another marked rule (described in the next section) which blocks aux-inversion when do and have (in American Finglish) are being used in their mainverb senses as below:

Have the boys take the exams! (mainverb)
Who had the buys take the exams?
Do it!
Who did it?
Have the boys taken the exams? (auxverb)
Whit have the boys taken?
Did it bother you?
Who does it bother?

It is an unexplained fict that be and the British use of have invert (even in the nainverb sense).
174. [Kaplan and Bresnam80] give a lexical analysis of imperative.
175. This rule was also taken from Marcus Parsifal. There is one difference: his rule drops the word you into the buffer, not the words yoir will. YAP will pance (a) like (b); Parsifial will parse ilfithe(b).
(a) Be good!
(b) You will be good!
(c) *You be good! (wrong meaning)

YAP drops the will to absorb the tense constraint on root clauses; noot clauses are tensed. except for imperatives which have no overt tense marker.
(353) Take the ball!
(354) You will take the ball!

(356) (defrule imperative trans
(pattern $(=s)(=v)$ (and ($=$ tnsless ${ }^{176}$ downl) (crole-can-advance? upl 'csubj))) (action (sctfeat upl imperative mood) (drop-words you will)))

7.3 Differential Diagnosis

It happens that both aux-inversion and imperative have very similar patterns. In examples fike (357)-(359), there is some difficulty deciding which transformation shbuld apply. Some cases, such as (359), are grammatically ambiguous, and hence, it is nut possible to disambiguate using just the rules of grammar (competence). ${ }^{177}$
(357) Have the boys take the ball!
(358) Have the boys taken the ball?
(359) Have the cggs fried ...

imperative

inversion
ambiguous?

A non-deterministic system could "try" both rules, accepting all analyses that happen to work out. A deterministic system is posed with a difficult problem; both transformations (aux-inversion and imperative) cause side effects which cannot be undonc. A deterministic machine has to make the right decision the first time; there will be no recovering if it selects the wrong transformation. This section will discuss procedures
176. The predicate $=$ Insless tests for null inflection.
177. The ambiguity maly not be realized in performance. Marcus claims there is a strong preference for inversion in the unmarked case, though the marked interpretation can be forced by semamic and pragmatic biases.
for deciding which transformation should apply.
Marcus believes this problem results from a lexical ambiguity between the two senses of have. ${ }^{178}$ The auxiliary have undergoes inversion as in (360) unlike the main verb have (in American Einglish). Hence, if we could distinguish the two forms of have, we could decide which transformation should apply. Marcus invokes a marked rule (360). called Have-diag, to disambiguate differentially ${ }^{179}$ between the two senses of have. (360) pattern:

```
downl: \(I_{V}\) have]
down2: [np- 〈any>]
```


If down3 is tusless or down2 is plural (first or second person).
marked exception
unmarked default

Otherwise, run aux-inversion next.

The default path (inversion) is taken, unless there is marked evidence to the contrary. Marcus claims that the marked information must appear in the next threc constiduen/s. He has some empicical evidence indicating that many people cannot disambiguate (361)-(362) because there is no disambiguating information within the specified lookahead. In (363)-(364), the defult interpretation(ipversion) is blocked locally by the urderlined words, and hence, (363)-(364) receive the exceptional interpretation (imperative).

[^48](361) [${ }_{1}$ Have $]_{2}$ the packages $]\left[_{3}\right.$ delivered $]$ tomorrow.
unmarked
(362) \int_{1} Have $\left[_{2}\right.$ the soldiers $\left[_{3}\right.$ given $]$ their medals by their sweethearts.
(363) Have them delivered tomorrow.
marked
(364) Have the soldiers take their sweethearts to the dance.

This approach works in a large number of cases. Like other marked rules, it suggests three important questions:
(365) How are diagnostics restricted?
(366) Is there any empirical support for this approach?
(367) How many diagnostics will be needed?

Marcus' lookahead buffer addresses question (365). The three constituent limit is consistent with the empirical evidence mentioned above (361)-(364) and the garden path phenomena. ${ }^{181}$ Although Marcus' approach has these desirable characteristics, there is some concern that a complete grammar would require too many diagnostics. Diagnostics are used when there is a lexical ambiguity that would lead to multiple cstructures. The number of diagnostics becomes troublesome when they compare two or more transformations at a time, and hence, there may be a combinatoric number of diagnostics. It is quite reasonable to place conditions on a transformation one at a time; the problem comes when multiple transformations must be compared differentially. It is possible that differential diagnosis may require an inordinate number of rules. We will reformulate Marcus' Have-diag as follows: ${ }^{182}$
(368) Aux-inversion is blocked when any of the following conditions cannot be met:
competence
downl has pres or past inflection
down 1 can take down 2 as subj (agree in person, number, gender and case)
downl can take down3 as xcomp (agree in inflection)
(369) Imperative is blocked when aux-inversion can apply.
performance

[^49]Our formulation has three advantages over Marcus':
(370) Clear separation of competence and performance
(371) Covers a wider range of cases
(372) Fewer differential rules

It is important to separate competence and performance; performance filters such as (369) are generally more idiusyncratic than statements of competence (368). Perfornance phenomena are often subject to semantic and pragmatic biases, garden path behavior and variation from one informgnt to another. For example, (369) is subject to a certain amount of individual variation as Marcus has observed; it is unlikely that (368) can be overruled in the same way.

Our statement is more general than Marcus; His rule only applies to have; our formulation covers all auxiliaries, including did and was as illustrated in (373)-(376).

(373) Who did it?	no inversion
(374) Who did it bother?	inversion
(375) Who was it?	no inversion
(376) Who was if bothering?	inversion

Thirdly, our formulation requires fewer differential diagnostics w disambiguate between several transformations. 'These rules are particularly costly because the number of necessary rules grows very quickly with the number of transformations. We have factored the agreement constraints from the differemial diagnostics. Modularity is a welcome step.

It would be desirable to completely eliminate differential diagnostics, rules that mention multiple transformations. We will propose an alternative formulation that achieves many of the same results without the undesirable cost associated with mentioning multiple transformations in a single rule. 'Traditionally, transformational grammarians imposed ordering constraints to bleck one rule when another can apply. Marcus' scheme is less restrictive than the traditional ordering constraint: he imposes a partial order instead of
the more standard total order. ${ }^{183}$

Unfortunately, ordering relations are very diflicult to formulate, as standard transformational grammarians have discovered. There always seems to be an ordering paradox. An alternative formulation expresses the ordering relation in terms of features. ${ }^{184}$ Suppose that imperative requires more preciscly determined features than aux-inversion; it cannot trigger while the ths features (for example) are underdetermined. Aux-inversion is less restrictive; it will trigger as long as the $t m$ features are compatible, whether or not the other possibilities have been excluded. 'This will assure that aux-inversion takes precedence, without explicitly mentioning both rules in the same diagnostic.

The ordering mechanism is illustrated in (377)-(378). $=$? 1 ms tests for a pres or past feature, disregarding the other ins features; =- Insless tests for an uniquely determined msless feature. A word like have, which is both pres and msless (\{pres, tnsless\}), passes the aux-inversion pattern (377), but fails the imperative pattern, and consequently, aux-inversion will be given first crack. If it should be explicitly blocked (by an agreement constraint), then imperative will be given a chance. ${ }^{185}$
(377) (defrule aux-inversion trans
(pattern $(=$ root $)(=$? $\mathrm{tns}=\mathrm{np}-$....) $)$
(action ...))
(378) (defrule imperative trans
(pattern $(=$ root $)(=$ tnsless $=\mathrm{np}-) . .$.
(action ...))

In this way, $Y \wedge P$ achicves the effects of differential diagnoses without the associated disadvantages. There is a natural separation of perfomance and competence. The competence idealizations specify agreement constraints; the realistic performance model qualifies them with "ordering" relations. We have proposed a statement of the "ordering" relations which may be more robust than conventional formulations. Nevertheless, the rule ordering problem would completely evaporate if $Y \wedge P$ had lexical (side-effect frec)
183. A blat order is transitive, reflexive, and antisymmetric; every chement is ordered with respect to every other. Matrus used a partial ordering scheme (priorities). A partial ordering scheme is not antisjmmetric; two elements may have the same priority (unordered).
184. This idea is only partiatly imphemented in the current version, which still contains some differential diagnostics.
185. The mes feature is disambiguated when inversion is blocked.
formulations of these transformations. Side-cffects should be avoided whenever possible, especially in a deterministic framework.

This chapter has outlined an approach for capturing heal structural transformations, taken from Marcus' Parsifal. YAP undocs the transformations by manipulatine the lookahead buffer. We have discussed two structural transformations and their interactions: Since it is possible to implement all of Marcus' trasformations in this framework, a simple device is adequate for captaring many linguistic generalizations.

8. Wh-movement

A number of long distance transformations are categorized under wh-movement including: wh-questions, embedded questions, relative clauses and topicalization. ${ }^{186}$
(379) Who $_{i}$ did you see x_{i} ?
(380) I wonder who you saw x_{i} ?
(381) I saw a boy who ${ }_{i}$ you know x_{i}.
(382) The ball ${ }_{i}$, Bill took x_{i}.
wh-question
emberded question
relative clause
topicalization

These constructions are particularly interesting because the trace $\left(\mathrm{x}_{\mathrm{i}}\right)$ can be arbitrarily far from the operator (who $_{\mathrm{i}}$).
(383) $\mathrm{Who}_{\mathrm{i}}$ did Bob say that Bill said that ... Mike said I saw x_{i} ?
(384) I wonder who ${ }_{i}$ Bob said that Bill said that ... Mike said I saw x_{i} ?
(385) I saw a boy who Bob said that Bill said that ... Mike said I saw x_{i} ?
(386) 'The ball ${ }_{i}$, Bob said that Bill said that ... Mike said I saw ${ }_{i}$?

Wh-movement illustrates yet another dependency across seemingly unbounded distances. Like there-insertion, the solution is to find a representation (fstructure) where the dependencies are local. Y 1 P has another grammatical role (fwh) to hold the wh-clement. ${ }^{\text {87 }}$
(387) There e_{i} seems x_{i} likely x_{i} to seem x_{i} likely \ldots
(388) Who did Bob say that x_{i} Bill said that $x_{i} \ldots$ move-np \quad move-wh

There are understood fwh elements in (388) just as there are understood fsubjelements in (387). The binding relation forms equivalence classes in both cases. The equivalence property is very convenient for computational reasons discussed in chapter 5. All the co-indexed elements are represented collectively as a single node, not once for each individual member. Consequently, wh-movement is bounded in fstructure, even though it appears to have unbounded consequences (see figure 13).
186. Many people object to the topicalization construction.
187. Our fwh role is like Bresnial-Kaplan's super-down register. Chemsky's comp node. Marcus* wh-comp feature, Woods hold cell. Although these mechanisms are sinilar to one another, they do have slightly different propertics. For example. YAP's fiwh role is passed from phrase to phrase whereas the other mectumisms pass the etenent from clause to clause. In this respect. YAP's approach is more like [Koster78] and [Gazdar79a.b.c] which treat all nodes equally; there are no special bounding properties associated with clause nodes.

Fig. 13. Wh-movement
Who ${ }_{1}$ did Bob say that x_{1} Bill said ...
$\mathrm{x}_{1} \quad$ pred: who
$x_{2} \quad$ pred: do
fwh: x_{1}
tns: \{past\}
fsubj: x_{3}
fxcomp: x_{4}
$x_{3} \quad$ pred: Bob
$x_{4} \quad$ pred: say
fwh: x_{1}
tns: $\{$ tnsless $\}$
fsubj: x_{3}
fscomp: x_{5}
$x_{5} \quad$ pred: say
fwh: x_{1}
tns: $\{$ past $\}$
fsubj: x_{6}
$x_{6} \quad$ pred: Bill

There are some differences between move-np and move-wh; move-np uses lexical (predicate) rules to bind the intermediate subjects whereas move-wh uses structural (ps) rules to bind the intermediate fwh slots. Compare (389) and (390); ${ }^{188}$ Move-wh is a structural rule because it is constrained by phrase structure rules such as (390), whereas move-np is lexical because it is constrained by predicate rules as in (389).
188. It is possible to represent thesc rules much nore efficiently using a markedness theory. For example, the head is unified with its mother (by x-bar theory) unless explicilly marked otherwise.
(389) scem-l $->$ cxcomp:\{ap-, vp-\}
cxcomp $=$ fxcomp(up)
fsubj(up) $=$ fsubj(fxcomp(up))
movenp
(390) vp -> chead:v (cobj:np-) (cxcomp:xp-)
chead $=u p$
cobj $=$ fobj(up)
cxcomp $=$ fxcomp(up)
fwh(up) $=$ fwh(fxcomp(up)) movewh

8.1 Island Phenomena

Wh-elements cannot be extracted from just any phrase; there are certain "islands" which are opaque to wh-movement. Islands are be explained in terms of consistency and coherence in the Bresnan-Kaplan framework. Some extractions are blocked because the finh slot is already filled (inconsistent) and some are blocked because there isn't a slot to fill (incoherent).

8.1.1 Wh-islands

In general, there can only be one extraction from a phrase because the fwh slot only has room for one valuc; multiple values will be inconsistent. Hence the following sentences are ungrammatical because there are inconsistent fwh elements associated with the bracketed expressions. ${ }^{189}$
(391) * $\mathrm{Who}_{\mathrm{i}}$ does John wonder [where Bill saw tip?
(392) *What did you ask me [where you could buy t_{i} ?
(393) *What did [who sce t_{i}]?
(394) *I wonder what ${ }_{i}$ [who bought t_{i} ?
(395) *What docs Jolnn wonder [where to put t_{i}]?
(396) * Where ${ }_{i}$ does John wonder [wha: to put t_{i} ?
(397) *What ${ }_{i}$ docs John wonder [to put t_{i} where]?
(398) * Where $_{i}$ does John wonder [to put what t_{i} ?

[^50]There are some wh-islands which allow extraction. We have no explanation for this fact; YAP cannot currently parse wh-island violations. This is a very marked phenomenon whet might be eovered by a marked rule. ${ }^{190}$
(399) ?What does John know how to do?
(400) ?What did Joln ask how to cook?
(401) ?Here are the books that I don't know what to do with?
(402) ? j just read a book which I can't figure out why anyone would write.
(403) ? l like the girl that you wonder what John sees in.
(404) ?I found the book that John couldn't remember what the title of was.

8.1.2 Ross' Complex NP Constraint

[Russ67] observed that extraction is generally blocked by $n p$ - brackets as in (405)-(407), (This is an over simplification.)
(405) * Who $_{j}$ do you know $I_{n p}$ - the man that married $\mathrm{t}_{\mathbf{i}}$?
(406) *Who ${ }_{\mathrm{i}}$ did you hear npp^{-}a rumor that john betrayed t_{i} ?
(407) *Who ${ }_{\mathrm{i}}$ did you find $\mathrm{Inp}_{\mathrm{np}}$ a copy of a photograph of t ?

Y \wedge P expresses these facts in the $n p-\mathrm{ps}$-rute. Most ps-rules pass the fwh etement though constraint equations. For example, the νp ps-rule has a constraint equation to pass the finh element into its xcomp: fiwh $(u p)=f$ fwh(x comp $(u p)$). There is no such rule associated with $n p$. Hence, an attempt to move an fwh clement over an $n p$-bracket will be incoherent. This accounts for the minimal contrast between (408)-(410) and the examples above.
(408) Who do you know that John marricd?
(409) Who did you hear that John betrayed?
(410) Who did you find?

[^51]There are some more difficult cases. For example, if extraction is blocked by up-, then why is (411) grammatical? Y \wedge P has a marked rule to cover this case. These picture noun phrases are still problematic for linguistic analysis. The answer appears to involve the specificity of the $n p$ -
(411) Who did you see $\left[_{n p-}\right.$ a picture of t)? (412) *Who did you see [np- John's picture of ty?

An account has been provided for both types of islands. We do not claim that these facts follow from YAP's design. Our position is much weaker; we merely claim that these facts are compatible with the design. Many linguists are currently working on a more explanatory theory.

8.2 Gap Finding

The really liard problen with wh-movement is finding the "gap" where the wh-clement originated. This is not particularly difficult for a non-deterministic competence theory, but it is (probably) impossible for a deterministic processing model. YAP has made some simplifying approximations to the competence idealization which may be valid in a realistic performance model. In an ideal non-deterministic framework, there could be a phrase structure rule like:
(413) up:gap-np--> dl:t
$\mathrm{fwh}(u p)=\mathrm{dl}$
Unfortunately, it is very difficult to formulate this rule in a deterministic framework. YAP approximates the ideal competence by looking for a gap after the other default ps actions have failed. Find-gap is a new default-ps action which is applied after the other actions as in (414).
(414) attach
predict
close
find-gap

This heuristic favors the latest possible gap. It corresponds to Fodor's Last-Resort Model of Gan Finding [Fodor78]. As she correctly observes, there are some problems with this model. Like other marked exceptions (see chapter 3), there are some marked rules to handle the problematic cascs. Before suggesting some modifications to save the last-resort model, it would be useful to consider some alternatives. Fodor proposed three models of gap finding (415)-(417) and ultimately settled on the third alternative.
(415) First-Resort ([Marcus79])
(416) Last-Resort (YAP)
(417) Lexical Expectation/Are-Ordering ([Kaplan72] [Fodor78])

The first-resort and last-resort models can be implemented by the default ps actions. The first-resort model orders find-gap first whereas the last-resort model orders it lagt.

(418) Eirst-Resont	Last-Rcsont
find-gap	attach
attach	predict
predict	close
close	find-gap

The first-resort and last-resort models do not exclude lexically marked, cases; they merely suggest an unmarked default. In some sense, the arc-ordering strategy denics structural correlations; it explicitly lists the preferences for each verb and hence it would be optimal just in case the various structurad possibilities were randomly ${ }^{191}$ distributed throughout the lexicon ${ }^{192}$. We belicve there is a strong bias in favor of (416), although it may be overruled by lexical marking in certain cases. Let us consider some evidence: ${ }^{193}$

8.3 Evidence for the Iast-Resort Model

(419) I gave the boy who you wanted to give the books to three books.

Sentence (419) is unacceptable. ${ }^{194}$ Grammatically speaking, it is extremely ambiguous; there are no less than four possible gaps as shown in (420).
191. A set is rundom when the shortest description explicilly lists each of its nembers,
192. Arc-ordering is often formulated within a depth first (DFS) control structure. The DFS is in fact imposing a structural construint; it encourages low attichment. In Marcus non-deterministic framework, these structural corretations hive to be stated ctsewhere. The defait ps-actions scein to be a reabonadte place.
193. Possible gans are slown in pimentheses. Plus (+) and minus (- Jindiane retulive paxcessing diffecully. The more acceptable of the pair are marked with a plus.
194. Of the 40 test sentences in [Marctis79. Appendix D], this is the only one thet YAP cannol parse. (Some infomants find the last gap acceplible as in: I guve the boy /who you manted to , ywe the books 10 If 'hree books This scrutcgy is not incompatible with the Last-Resort Mcxlel, although it would require a slight mudification.)
(420) \# I gave the boy who you wanted (t) to give (t) the books (t) to (t) three books.

Why is it so difficult to find to find the gaps? The last-resort model prefers to attach lexical material over gap finding and hence it misses all the gaps. This unacceptable sentence is very supportive of the last-resort model but rather damaging to the first-resort model which can easily (?!) find the first gap. The examples don't need to be so extreme. We have already seen a garden path sentence (421) also favoring the last-resort model. (422) shows that these GPs are fairly productive.
(421) \# I told the boy the dog bit Sue would help him.
(422) ??l called the guy who the car was smashed up by a rotten driver.

Corollary (423) ${ }^{195}$ immediately follows from the last-resort model: np gaps are extrencly marked ${ }^{19}$ in positions immediately before lexical noun phrases. 'The reason should be obvious; the last-resort model prefers attaching the lexical noun phrase over creating the gap, unless there is positive evidence (i.e. semantic clues) to overrale the default. This corollary accounts for the badnoss of 421) and (422). Two of the possible gaps in (420) are also excluded under this corollary to the last-resort strategy.
(423) The Trace-NP Corollary: In the unmarked case, \#[.. t_{i} NP ...]. where t_{i} is bound to a noun phrase.

This corollary correctly predicts preferences in double object constructions. The lexical noun phrase is generally interpreted as the first object unless there is positive evidence to the contrary. Even then, the marked interpretation is generally less acceptable. ${ }^{197}$
(424) + What did I give the boy t?

+ Who did I give the book to t?
- Who did I give the book?
(425) + What did you call a drunken sailor t?
- Who did I call t a rotten driver?

[^52](426) + What do I consider John t?

- Who do I consider ta fool?
(427) + What did I tell the boy t?
+ Who did I tell the story to t?
- Who did I tell the story?

The last-resort strategy is consistent with the Trace-X Eiller (428) which is similar to constraint (429). ${ }^{198}$, The constraint predicts that a trace of category X cannot appear just before lexical material of category \mathbf{X}. Sentences (424)-(427) are consistent with this generalization of the Trace-Np Corollary. Unfortunately, there is little evidence in English to justify the move away from the Irace-NP Corollary. (Ihe crucial evidence comes from French.)
(428) The trace-X Filter: In the unmarked case, \#[.. $\left.t_{i} X \ldots\right]$ where t_{j} is a trace of category X.
(429) The XX Extraction Constrain: If at some point in its derivation a sentence contains a sequence of two constituents of the same formal type, either of which cutide be moved or deleted by a transformation, the transformation may not apply to the first constituent in the sequence. [Hankamer73].

Although the last-resort strategy has many of the right characteristics, there are also many problems which require marked rules. We will consider the following three probloms here: ${ }^{199}$
(430) Ambiguity
(431) I.exical Marking
(432) Length

[^53]
8.3.1 Ambiguity

There are some ambiguous sentences which strongly resemble the pscudo-attachment case. In the pseudo-auachment case, there is a lexical xp- with two possible mothers. Pseudo-gap is exactly analogous except the $x p$ - is a trace.
(433) Put the block in the box on the table.
pseudo-attachment
(434) Who do you want (t) to cat (t)?
pseudo-gap
(435) The duck is too old (t) to eat (t).
(436) Who did Mary promise (t) that she would marry (t)?
(437) To whom did Father say (t) that he was planning to write (t)?
(438) Where did he say (t he was going (t)?
(439) When did he say (t) he was going (t ?

Only (434) has been implemented, though the others shouldn't be much more difficult. Pseudo-gaps have many of the same problems as pseudo-attachment. It is (probably) impossible to find all the gaps in sentences like (440). YAP settles for the first and last possible gaps as in (441), in the absence of disambiguating information.
(440) Who do you want (t) to want (t) ... (t) to want (t) to eat (t)?
(441) Who do you want (t) to want ... to want to eat (t)?

8.3.2 Lexical Marking

The unmarked case can be overruled by the lexicon as in (443). These cases have not been implemented.
(442) + Who did the teacher walk to the cafeteria with?

- Who did the teacher walk to tie cafeteria?
(443) - Which book did the teacher read to the children from?
lexically marked
+Which book did the teacher read to the children?

Even though read and walk have the same subcategorization features (they both select an optional object and a verbal complement), they have different preferences as illustrated by (442) and (443). This evidence is often taken to support the are-ordering position. Although we accept fexicalty marked preferences, there are other imptications associated with that pusition which are incompatible with the framework presented here; in particular, arc-ordering is crucially non-deterministic. 200

8.3.3 tength

Notice that judgments are less and less sharp as the second object increases in length. This is completely unexplained by our account. There are other length phenomena (such as heavy np shift) which are more widely accepted. We seem to be missing a generalization. However it isn't clear how to capture the leagth phenomena. [Frazier and Fodor78] used a front end filter (PPP) which divided chucks into roughly six words. Although this is an interesting proposal, it isn't clear how it could be implemented.
200. [Rich75] gives a critical review of the arc-ordering pusition. In his opinion:

Linguistic Phenomenon	Cumpulitional Mechanism	Asscssment
Center-embedding	single-place HOLD list	wrong
Preferred readings of Ambiguous Sentences	ordered trying of alternatives (arcs)	inadequate
GP sentences	back-tracking	somewhat right
Perceived Complexity' Differences	HOLD list cosling arc counting	inconclusive

His arguments are very convincing. One could view YAP as a DFS which only backs up after it takes a very scrious GP. (We haven"t implemented a GP recovery procedure yet. but backup would be the casiest way to do so.) A sentence is unacceptable just in case it catuses YAP (as moslified) to backup. This is a precise definition. The problem with the arc-ordering position is that backup describes both crashingly unaceeptable GPs and extremely subtle preferences of ambiguous sentences. The shatpness is not related to any measure of backup that has been proposed. We suggest that subtie preferences have a very different explanation from GPs.
(444) \# Who did you call tit?
??? Who did you call that?
?? Who did you call t a rotten driver?
?Who did you call the worst driver that you ever ...

8.4 Summary

We have discussed four cases of wh-movement: wh-questions, embedded questions, relative clauses, and topicalization. Movement constructions suggest some interesting topics in both competence and performance.
(445) Competence: locality principles \& island phenomena
(446) Performance: gap finding

We have shown that "unbounded" movement phenomena are local using an appropriate representation, such as Bresnan-Kaplan's fstructure. ${ }^{201}$ Locality is extremely convenient for processing because it enables YAP to apply movement rules without approximation. If the rules were truly non-local they would require unbounded memory and hence we should expect to discover empirical discrepancies from the competence idealization. However, since the idealization is local, there need not be any empirical discrepancies.

The locality issues are extremely complex; we have only addressed a few cases. Much of the linguistic discussion deals with islands which are opaque to wh-movement. These islands should have a natural formulation in our representation (fstructure or move-alpha*). We have given an account (more or less) for two types of islands: wh-islands and Ross' Complex NP Constraint. This is still an active area of linguistic inquiry.

[^54]The most difficult problem is finding the gap. We have argued for a last-resort model. It is consistent with some garden path data and Hankamer's XX Extraction Constraint, although it does have some problems. The most scrious problem is lexical marking. It was suggested that marked rules could apply in the crucial cases, although the proposal has not been implemented. There also appear to be some length effects, which are also unexplained. We outlined a partial solution to the pseudo-gap phenomena.

Despite these problems, we have implemented a simple device which captures many of the wh-movement phenomena. This result ${ }^{202}$ considerably weakens the traditional view that processors must be Turing Equivalent. The next chapter will illustrate a "simple" mechanism for parsing many conjunction phenomena, which were also believed to require inordinate resources.
202. Many other rescarchers have designed "simple" devices to capture wh-movenent. See [Marcus79] and [Gazdar79a,b.c] for two examples.

9. Conjunction

Conjunction has been one of the most difficult constructions to parse beenuse there seem to be so many possible alternatives. Conjunction is a very good test of the FS hypothesis. How can we approximate the ideal competenee model so that a FS processor can parsc confunction? Weve made some impressive initial progress, although there is still substandat wotk to be done.

9.1 Simplifying Assumptions

Many parsers have found conjunction difficult because they consider too many possibilities. It is extremely important to consider as few alternatives as possible. We will impose seteral very strict limitations on conjunction in order to limit the scope of the problem. All of these restrictions are controversial.

9.1.1 The Constituent Assumption

(447) Δ ssumption: Conjunction applies to constituents, not to arpitrary fragments.
(448) The scene [of the movic] and [of the play] was in Chicago.

Which [boys] and [girls] went?
[Which boys] and [which girls] went?
Which boys [went to the ball] and [took the jar]?
Although (447) is generally accepted, there have been some objections. Sentences like (449)-(450) have been used to argue that conjuncts may not always be constituents. We will argue that despite appearances both (451) and (452) are constituents.
(449) John [drove through] and [completely demolished] a plate glass window.
(450) Mary [expressed costs in dellaral and [weights in pounds].
[Woods73]
[Martin80]
(451) [${ }_{v p}$ drove through [np-I]
(452) $\left[\right.$ vp $\left.{ }_{v}\right]$ weights in pounds]
'The constituent assumption is very convenient for pröcessing, as we will see.

9.1.2 The Category Assumption

(453) Assumption: Fach conjunct has the same catesory.

This assumption is also fairly standard, though there have been arguments to the contrary. [Martin80] provides the following "counter-example". (455) is his anilysis; (456) is our own.
(454) We expect difficulties now and in the future.
(455) We expect difficulties [$l_{n p}$ - now] and $\left[_{p p-}\right.$ in the future]. Marlin (456) We expect difficultics $\left[_{p p-}\right.$ now] and $\left[_{p p}\right.$ in the future]. \quad YAP

In this case, it seems reasonable to call now a prepositional phrase. This is a small cost to pay to save the catcgory assumption.

9.1.3 The Λ Aeross-the-Board Convention

(457) \ssumption: Each conjunct has the same number of wh-gaps. Furthermore, the gaps have the same category. ${ }^{203}$

The last three assumptions can be summarized in Gazdar-Notation ${ }^{204}$ as (458). ${ }^{205}$ (The comparative construction illustrates the need for some more categories (\mathbf{q}, qp and qp) to represent quantifiers. Comparatives have not been implemented.)
(458) Δ ssumption: Fach conjunct has the same Gazdar-Notation.

(460) *The man who $I_{s / n p-}$ Mary loves] and $\left[_{S}\right.$ Sally hates George]computed my tax. The man who $\left[_{\mathrm{s} / \mathrm{np}} \text { - Mary loves }\right]_{\text {and }}\left[\mathrm{I}_{\mathrm{s} / \mathrm{np}} \text { - Sally hates }\right]_{\text {computed my tax. }}$.
(461) The kennel which $I_{s / n p-}$ Mary made] and $\left[_{s / n p-}\right.$. Fido slecps in] has been stolen. The kennel in which $\mathrm{I}_{\mathrm{s} / \mathrm{pp}-}$ Mary keeps drugs and $\mathrm{I}_{\mathrm{s} / \mathrm{pp}}$ - Fido slecps] has been stolen.

[^55]*The keanel (in) which $\underline{I}_{5 / \mathrm{mp}}$ Mary madel and $\left.\right|_{\mathrm{s} / \mathrm{pp}}$ Fido decps $\$$ has been stolen.
 John saw more horses than [/qp- Bill saw cowslor [8/ap Pote talked to cats.
*John saw more horses than $\mathrm{I}_{\mathrm{s} / \mathrm{qp}}$ Bill saw cows $]$ or $\left[_{\mathrm{s} / \mathrm{np}}\right.$. Petc talked to].

9.2 Simple Cases

In the simple case, the conjuncts happen to be in upl and down2 as below.
(463) Bob and Bill saw it.

```
(464) [s Bob]
    \(\mathrm{Inp}_{\mathrm{n}}\) Bob] first conjunct
    \(==\) WALL \(==\)
    [conj and]
    \(I_{\text {np }}\) Bitit
    [v saw]
```

Conjunction is possible in (464) because downl is a conjunction and upl and down 2 are constituents of the same category with matching gaps. There is a marked rule which looks for this pattern.

9.2.1 Attaching Conjuncts

Attaching conjuncts is different from other types of attaohment; there is a special slot in estructure nodes for conjuncts.
(465) np- -> np- conj np- standard
(466) $\left[_{s}\left[\begin{array}{l}n p- \\ {\left[_{n p}\right.}\end{array}\right.\right.$ Bob] and $\left.[n p-B i l l]\right] \ldots$
(467) np- -> chead:np cxcomp:\{vp-\} cxcomp:\{s-\} cconjuncts:np- YAP
(468) $I_{s} I_{n p}$ Bob and $I_{n p}$. B Bill $]$...

Using the standard approach, YAP couldn't attach Bob to the roen because there mighe be a coufunction node in between. Consequently, attechment wouldn't be possible until the rigly cdge has been read. But this would prevent carly clustre (A-over-A closure principle) because mas node could be attached until all of its descendants have been completed. This is very unfortunate. YAP's approach avoids this problem because
there are no nodes between the first conjunct Bob and the woot, and hence, attechment is possible before conjunction is considered. 206

(469) [s liob and Bill]
[np- Bill]
$==$ WALL $==$
[v saw]
[np-it]
[punct !
The sentence will now be parsed as if $\left[_{\text {np }}\right.$ Bill ${ }^{\text {is }}$ the subject. ${ }^{207}$

9.2.2 Attention Shift

The approach just outlined works on (470), but fails on (471) where minimal attachment is misleading.

Fig. 14. Attention Shift

sentence: I saw Bob and Bill saw me.
input pointer: me.

before

[s [saw Bob]
[vp saw Bob]
[np- ${ }^{\text {Bob] }}$
$==$ W $\wedge L L==$
[conj and]
[np- Bill]
[v saw]

after

[s I saw Bob]
[vp saw Bob]
[np-Bob]
[conj ${ }^{\text {and] }}$
$==$ WALL $==$
Inp- Bill]
[${ }_{v}$ saw]
206. Yet another alternative would use the standard phrase structure rules. It would allach the first conjunct as if there were going to be a conjumtion, The secomd conjunce would thon be Chomphy Adjojued when it is diseuvered. (This may be a notational variant of the current implementation.)

 the number value in this case. There is a more attractive solution to be found.
(470) I saw Bob and Bill.
(471) I saw Bob and Bill saw me.

The solution is to shift the attention ${ }^{208}$ of the machine past the and building Bill saw me bottom up. Then the machine will return its attention back to the conjunction and finish the sentence as if $[\mathbf{S}$ Bill saw me] came prepackaged as a single unit.

YAP shifts its attention by moving downl into the upper buffer as in figure 14. Attention return is just the inverse; Y $\wedge P$ moves upl back into the lower buffer. ${ }^{209}$ The technique is very general; it allows bottom-up chunks to appear prepackaged. Attention shifting is heavily used to parse noun phrases.

There are some important issues concerning the order of attention shift and return in the default ps rules. Return is last. It isn't clear where shift should be; Marcus ordered it first, ${ }^{210}$ we've ordered it much later. The issues are not well understood; we're not prepared to make a coherent argument. ${ }^{211}$

```
(472) Y\P
attach
predict
attention shift
close
find gap
attention return
```

Marcus' Parsifal
attention shift
find gap
attach
predict
close
attention return

[^56]
9.2.3 Closing

After attention shifting to parse I_{s} Bill saw mel, the machine state is (473) (left side). The machine will then close upl repeatedly until conjunction is possible.
(473) before

after closing once

after closing twios

Conjunction applies just as it did in the simple case, I saw Bob and Bill. Down2 fills the cconjuncts slot of upl, leaving the machine in (474). The rest of the sentence parses just like the simple sentence, Bill saw me.
(474) I_{S}]

$$
==W A L L==
$$

[np- Bill]
[${ }_{v}$ saw]

9.2.4 Summary of the Simple Cases

I.ct us summarize the simple conjunction rule. First, the machine attention shifts for the non-minimal attachment case (476). In the non-minimal case, YAP will predict an s just before Bill saw me. Then YAP will return attention to the and.
(475) I saw Bob and Bill.
(476) I saw Bob and Bill saw me.

Secondly, Y^P tries to attach conjuncts, if pessible. Upl and down2 have to be constituents and should match in category and gaps. Finally, if that doesn't work, YAP will close upl.
(477) Attention shift
(478) Attach-conjuncts
(479) Close
'This approach has some problems. It finds only the lowest attachment, not the full range of ambiguous possibilities. Y Y P should pscudo-attach conjuncts in ambiguous cases such as (480). It should be possible to implement pseudo-attachment in these cases, but the details have not been worked out.
(480) Bill told Bub [that Mike told Ilarry] and [Sam told Jack].

There are more difficult cases where pseudo-attachment is not a likely solution. It is not clear how (482) and (483) could be represented in a single structure. Fiven worse, Y $\wedge P$ prefers the unlikely interpretation (483) because Bill lefl builds a clause bottom-up.
(481) I know Bob and Bill left.
(482) I know [Bob and Bill] left
(483) [l know Bob] and [Bill left]
'The general approach has been very effective although there are many problems to be solved.

9.3 Deletions

It is possible for one of the conjuncts to contain a deleted element. In the gapping case, the verb in the second conjunct is deleted; in right node raising, an object in the first conjunct is missing.
(484) Bob saw Bill and Sue Mary.
gapping
(485) Bob looked at and Bill took the jar.
right node raising

Both of these constructions appear to violate the constituent assumption. With a deletion analysis, though, it is possible to save the constituent assumption. As we have suggested, (484)(485) will be analyzed as: ${ }^{212}$
212. Right node raising is usually analyzed as:
[Bob looked at t_{i}] and [Bill look t_{i}] [the jar] $]_{j}$
Our analysis is simpler to implentent. Although this akne isn't a valid reason to prefer one analysis over another, there is sufficient controversy over right node raising that it didn't seem worth the effort to implement it precisely.
(486) [Bob saw Bill] and $\left[\begin{array}{c}\text { Sue }[V \\ V\end{array}\right]$ Mary $]$
(487) [Bob looked at [np- ${ }^{-1]}$ and [Bill took the jar]

9.3.1 Right Node Raising

$Y^{\prime} \Lambda P$ has a marked rule to parse right node raising. When there is a conjunction (e.g. and) in downl and upl can't close, then $Y \wedge P$ assumes right node raising. The analysis crucially depends on the constituent assumption; if a conjunct is not a complete constituent, then by assumption the rest must have been deleted. Having detected the deletion, YAP undoes the transformation, inserting an empty noun phrase back into the buffer as in figure 15.

The analysis has some problems; it does not bind the empty noun phrase to an object in the second conjunct. YAP would erroncously accept ill-formed sentences such as (488). There is some controversy over the appropriate binding mechanism; it isn't clear if it is movement as in [Gazdar79c] or anaphoric. ${ }^{213}$

Fig. 15. Right Node Raising
sentence: Bob looked at and Bill took the jar

before	after
[s Bob looked at]	[s Bob looked at]
[vp looked at]	[vp looked at]
$==\mathrm{W}$ 人I. $\mathrm{L}==$	$=$ = W $\ 1 . L==$
[conj ${ }^{\text {and] }}$	[np-]
[np- ${ }^{\text {Bill] }}$	[conj ${ }^{\text {and }}$]
[v took]	[np- ${ }^{\text {Bill] }}$
	[v took]

213. It is generatly agreed that the subject of drink is amaphorically bound in the following cases.

Drinking gin can be fun.
It doesn 1 require a glass to drink gin.
Having drunk gill all day, I was completely wasted.
There are several important differences between amaphoric control and movement. This paper though will not discuss bound anaphora.
(488) *I took and you went.

Optional arguments illustrate another problem. Y 1 P will detect only obligatory elements which have been deleted; optional clements are alsosubject to deletion. YAP will not deteet an object of ate in (489).
(489) I ate $\left(\left[n p^{-}\right]\right)$and you drank everything they brought.

9.3.2 Gapping

"Gapping" is the case where the second conjunct's verb has been deleted. (490) is a simple example.
(490) [Bob saw [Bill] and $\left[_{s}\right.$ Sue $[v]$ Mary $]$

YAP parses these by undoing the transformation. When the lower buffer contains a conjunction followed by two noun phrases, YAP inserts an empty verb into the buffer. To exclude interpretutions such as (492), YAP merges the predicates from both conjuncts. Sce figure 16.

Fig. 16. Gapping

sentence: Bob saw Bill and Sue Mary.
[s Bob saw Bill]
before transformation
$==\mathrm{W} \Lambda L \mathrm{~L}==$
$\left[_{\text {conj }}\right.$ and]
[np: Suc]
[np- Mary]
[S Bob saw Bill]
after transformation
$==$ WALL $=$
[conj and]
[np-Suc]
$\lceil\mathrm{V}$ 〕 sec-1-> fsubj:np- fobj:np-
[np- Mary]
(491) Bob persuaded Bill to leave and Suc Mary. (492) *Bob persuaded Bill to leave and (Bob persuaded) Sue Mary.

The implementation is not as gencral as it should be: the verb can be deleted in many other contexts. YAP can find a deleted verb in any projection of v (in $\mathbf{v p}, \mathrm{vp}-\mathrm{s}$ and s -). For example, YAP correctly parses (493). Unfortunately, it finds only the lowest possible inteppetation; it whll hut discover (494) unless there is some positive reason (i.e. semantics) to reject (493). The gapping pattern crucially depends on two noun phrases; it will not detect gapping when the second object is an xcomp as in (495)-(497). Aside from the ambiguity problem, these problems shouldn't be too difficult to correct. The simple cases of gapping were implemented to show plausibility within our restrieted framework.
(493) Bob [gave Bill a ball] and I_{vp} Sam a jar].
(494) [Bob gave Bill a ball] and I_{s} Sam a jar.]
(495) Bob persuaded Bill wo leave and Sam I $\mathrm{Ivp}^{\text {to stayl. }}$
(496) I expressed costs in dollars and weights $_{\mathrm{pp}}$ - in poundrb.
(497) I considered Bill likely to win and Sam [ap- likely to lose].

9.4 Summary

In summary, we have presented a simple approach to parse many conjunction constructions including some cases of right node raising and gapping. Although there are many problems to be solved, these anadyses indicate that it is plausible for a FS deterministic processor to parse conjunction. This discussion responds to the traditional arguments that a FS processor cannot in principle capture the conjunction generalizations.

We have previously suggested that closure actually simplifies conjunction. YAP uses closure to find the first conjunct: it will continuously close off upl until the first conjunct is in upl. Furthermore, closure assures that all possible conjuncts will be in the upper buffer; this makes it much casier to pseudo-attach conjuncts since it is casy to find all the possibilitics. ${ }^{214}$

[^57]
10. Conclusion

We have hypothesized that a computationally simple device is sufficient for processing natural language. By incorporating two processing constraints. FS and Marcus' Determinism, it was possible to construct a parser which approximates many competence idealizations. YAP was designed to fail preciscly where the idealizations require unrealistic resources. YAP's success, as far as it goes, provides some evidence for the hypothesis.

10.1 The Iraditional Position

Traditionally there have been many arguments for coimputationally complex models of natural language. Much of the early literature, though, does not refute our hypothesis, but merely cast doubt on its feasibility. ^dmittedly, it is casier to find descriptions using more powerful (complex) techniques, but is it necessary to use more powerful techniques? The traditional arguments are extremely negative; if the problem is really as hard as they suggest, then the only solution is to grin and bear it. It is easy to show how hard a problem might be, but it is a real accomplishment to find a simple elegant solution.

Chomsky's early arguments are rightly cautious; they do not exclude the possibility of a FS processor. He criticizes contemporary FS approaches as inelegant, and then proposes a computationally complex alternative as more revealing. Over the years, however, his position has been misinterpreted as a complete refutation of FS approaches. It is merely a feasibility argument. To a certain extent he is correct. [Chomsky56, pp. 113] "the grammar of English is materially simplified if phrase structure description is limited to a kernel of simple sentences from which all other sentences are constructed by repeated transformations; and that this view of linguistic structure gives a certain insight into the use and understanding of language." Hence, competence idealizations should use powerful devices. However, this does nol say that tanguage should be processed by exacily the same machinery.

This is a very common situation in engineering. Engineers develop ideal models to gain friitful insights, they do not expect their model to perfectly replicate the real wortd. They will use the theory as far as it goes, and then joke about "Murphy's Law". Idealizations are very useffit, but they can't be taken too seriously; they simply don't work in all cases. Physical machines do now bolzwe ideally.
[Chomsky56] provides a "counter-example" to FS models. It generates arbitrary center-embedding and hence it is beyond the generative capacity of a FSM. Since his counter-examples are grammatical (part of the ideal competence model of language), this proves that a FSM cannot process competence. ${ }^{215}$ However, it is well-known that arbitrarily deep center-embedding is universally unacecptable, and hence, Chomsky's arguments do not apply to performance. We have no reason to exclude the possibility of a FS parser.

He correctly suggests that a parser should encode a simple and "revealing" grummar. It is not clear how this can be accomplished with a simple device. YAP introduces a number of approximations (i.c. bounded stack, finite lookahead, ...) in order to approximate an elegant (though complex) competence grammar with reasonable resources. Chomsky has questioned this move for two reasons: ${ }^{216}$
215. "Turning now to English, we find that there are infinite sets of sentences that have dependency sets with more than any fixed number of ternis. For example. let $S_{1} . S_{2} \ldots$ be declarative sentences. Then the following are all English semtences:
(13) (i) If S_{1}, then S_{2}.
(ii) Fither S_{3}, or S_{4}.
(iii) The man who said that S_{5}. is arriving today.

These sentences have dependencies between if-'then', eeither"or", "man- is'. But we can choose S_{1}, S_{3}, S_{5} which nppear belween the interdependent words, as (13i), (13ii), or (13iii) thenselves" [Chomsky56.pp. 115]
216. "Although we have found that no finite-state Markov process [YAP] that produces sentences from left to right can serve as an Finglish grammar [competence], we might inquire into the possibility of constrikting a sequence of such devices that in some nontrivial waty, come closer and cluser to matching the output of a satisfiktory English grammar. Suppose, for example. What for fixed n we construct a finite-state grammar in the following manner: one state of the grammar is assexiated with each sequence of English words of length n [ordered by statistical frequency] ... as n increases, the output of such gramniars will cone to took more and nure like Englisha... This fici has occasionally led to the suggestion that a theory of linguistic structure might be fashioned on such a model ...

Whatever the obher imerests of statistical appruximation in this sense may be, it is clear that it can shed no light on the problems of gramiar. There is no general rekition between the fequency of a string. (or is component parts) and its grammaticalness ... there is no significant correlation between order of approximation and grammaticalness. If we order the strings of a given length in terms of order of approximations to Finglish, we shall find both grammatical and ungrammatical strings scattered throughout the list. from top to botton. Hence the notion of statistical approximation appears to be irrelevant to grammar." [Chomsk y56 pp. 116]
(498) Are the approximations revealing?
(499) What are reasonable approximations?

We have attempted to respond to both points. First, they are revealing because they suggest a number of crucial differences between competence and performance. For example, I asnik's Noncoreference Rule is an impractical idealization; a more realistic approximation (using the Λ-over- Λ carly closure principle) predicts certain coreferential possibilities which may actually reflect the real empirical facts more accurately than I asnik's idealization. We have discussed many other constructions which are similar in this respect, such as: center-embedding, crossed dependencies and garden paths.

Chomsky's second criticism is also well-taken; it is very difficult to find independently motivated approximations. He rightly criticizes a statistical approach for missing the relevant generalizations. In this work, we have attempted to motivate effective approximations without sacrificing linguistic significance. Y $A P$ captures many linguistic generalizations such as: raising, passive, there-insertion (chapter 6), inversion, imperative (chapter 7), wh-movement (chapter 8), and conjunction (chapter 9). ${ }^{217}$ These generalizations are basically orthogonal to the two processing approximations: FS and determinism. Hence, the approach taken here inay be a reasonable compromise between processing complexity and linguistic elegance.

10.2 Summary

We have been most concerned with two performance constraints: FS and determinism. Both of these constraints reduce the computational power, which is always a welcome step in computer science. The question is whether the machine retains enough nower to parse language. We have demonstrated, by implementing YAP, that it is sufficient to parse certain difficult constructions. Furthermore we have defended a number of simplifying assumptions as more accurate descriptions of the empirical facts. Chapters 1 through 4 discussed some evidence involving center-embedding, crossing dependencies and noncoreference. These constructions are provably complex (in competence), and as predicted, they do not behave ideally, even at severely shallow depths. This is suggestive evidence in favor of our simplifying assumptions. It appears that all examples of complex behavior are universally unacceptable.

[^58]There are many difficult issucs dealing with a particular implementation of the approximations. Chapter 2 discussed several closure proposals. We finally settled on a compromise (the A-over-A carly closure principle) which has some of the right limiting properties (w.r.t. premature/ineffective), but may have some problems in certain borderline cases (three deep center-embedded sentences). The limiting cases are far more important; the field may not have progressed sufficiently far to make the subtle distinctions necessary for the borderline cascs.

Chapter 4 dealt with atlachment strategies. We advocated a default mode of operation (attach, predict, and then close) which covers most cases although there are many exeeptions. The exceptions fall into four classes: carly closure (chapter 2), non-minimal attachment (chapter 4). pseudo-attachment (chapter 4) and transformations (chapters 6-9).

Pscudo-attachment illustrates the delayed binding approach which is a recurrent theme in this work. The idea is to avoid making decisions which may have to be taken back at a later time. 'This is particularly crucial in a deterministic framework which prevents the system from reverting previous commitments. In the pseudo-attachment case, the system can decide that it cannot decide how to atuach, and hence it attaches both ways.

The delayed binding approach is also central to feature manipulation (chapter 5). An alternative approach would try each feature value combination non-deterministically until it found a combination which doesn't violate any agreement constraints. This can be very time consuming. YAP's approach is a constraint propagation technique; it applies the constraints themselves to the fistructurc. The difference between the two approaches becomes apparent when the constraints underdetermine the final outcome, such as (500)-(501). YAP makes a single deterministic pass; it is no harder to search an underdetermined fstructure than any other. A non-deterministic parser, on the other hand, has to scarch the ftructure once for each combination of values; the underdetermined case requires much more time because there are more combinations of values.
(500) 1 put it down.
(501) The deer left.
underdetermined tense
undendetermined number

The lexicalist position is very compatible with a delayed binding approach. Although it is possible to write a deterministic transformational grammar (as Marcus did), we have found the lexicalist position more sympathetic with the notion of cosstraints, which is crucial in our formulation of delayed binding. For example, both approaches have a mechanism for "raising" understood sabjects as in (502); Bresnan and

Kaplan use the constraint cquation, subj(up) $=\operatorname{subj}(x c o m p(u p))$, where Chomsky uses the transformation move-np. Bresnan-Kaplan's constraint equations fall rather naturally into a constraint propagation framework; it might require some ingenuity to reformulate Chomsky's movement as a constraint. Although it is probably possible to reformulate movement in this way, Bresnan-Kaplan's formulation requires little modification to fit into a constraint propagation framework.
(502) John n_{i} scems x_{i} to be a nice guy.

In summary, we have proposed that a deterministic FS parser is sufficient to parse natural language without sacrificing linguistic generalizations. To justify this claim, we have designed yet another parser (YAP) which encodes many of Bresnan-Kaplan's analyses in a deterministic FS framework. Although there are many unsolved problems (i.c. lexical ambiguity, syntactic/semantic interaction,...), we have demonstrated plausibility for the underlying design which incorporates both performance (FS and determinism) and competence (Bresnan-Kaplan's lexical framework).

Appendix I - Some Results

Sentences (503)-(536) were taken from ^ppendix D [Marcus79]. These examples illustrate passive, raising, there-insertion, some lexical ambiguity (hal, meel and schedule), aux-inversion, imperative and wh-movement. YAP can parse all of them except (534) which is unacceplable. Chapter 8 discusses this sentence in more detail.
(503) I told that boy that boys should do it.
(504) The jar secms tw be broken.
(505) There seems to be a jar broken.
(506) I wanted John to do it.
(507) I want to do it.
(508) I persuaded John to do it. object rasing
(509) There seems to have been a meeting scheduled for Friday.
(510) Schedule a meeting for Friday.
(511) Is there a meeting scheduled for Friday?
(512) \wedge mecting seems to have been scheduled for Friday.
(513) I told the boy that i saw Sue.
(514) I told Suc you would schedule the meeting.
(515) I told the girl that you would schedule the meeting.
(516) The boy who wanted to meet you scheduled the meeting.
wh-movemient
(517) The boy who you met scheduled the meeting.
(518) Who did John see?
(519) Who broke the jar?
(520) What did Bob give to Suc?
(521) Who did Bob give the book?
(522) Who did Bob give the book to?
(523) I promised John to do it.
(524) Who did you say that Bill told?
(525) You promised to give the book to John.
(526) Who did you promise to give the book to?
(527) Who did you promisc to schedule the meeting?
(528) Who did you say scheduled the meeting?
(529) Who did you persuade to do it?
(530) What did you give Suc yesterday?
(531) Who did you ask to schedule the meeting?
(532) Who do you want to give a book to tomorrow?
(533) Who did you want to give a book to Sue?
(534) \# I gave the boy who you wanted to give the books to the books?
(535) Who did you promise to give the book to tomorrow?
(536) Who did you promise to give the book to Sue tomorrow?

Y \wedge P can also parse the following conjunction sentences. These sentences were selected to illustrate YAP's abilities, both positive and negative. Many of these sentences may be unacceptable and/or ungrammatical for reasons which YAP does not consider. For example, YAP does no pragmatic analysis; (540) is syntactically well-formed even though it may sound somewhat odd. Similarly, (541) is probably ungrammatical because the trace has conflicting case: it receives objective case from the first conjunct and oblique case from the second. It would be simple enough to change the granmar accordingly. Finally, (542) demonstrates a real problem with YAP's formulation of right node raising; YAP does not require the missing noun phrase to "match" with the right most noun phrase in the second conjunct. Although there are some problems with YAP's formulation of conjunction, it demonstrates some real progress.
(537) Which boys and girls went?
(538) Which boys and which girls went?
(539) Which boys went to the ball and took the jar?
(540) Which boys went to the ball and into it?
(541) What boy did bill look at and give a ball to?
(542) Bob looked at and gave a ball to the boy.
(543) Bob gave Bill a ball and John a jar.
(544) Bob saw Bill and Sue Mary.
(545) I want Bill, Bob, and John to be nice.

The following sentences were taken from a homework problem given by Ken Hale last fall. The first set are all grammatical; the second violate island conditions and, hence are ungrammatical. YAP can parse all the grammatical ones and none of the ungrammatical ones. Sce the discussion of island phenomena in chapter 8.
(546) Who should I ask where I can get a copy of Aspects?
(547) What is it expected that Max will work on next?
(548) What do you expect that Max will work on next?
(549) What is Max expected to work on next?
(550) What do you expect Max to work on next?
(551) Who is expected to work on case-marking next?
(552) Who saw what?
(553) I wonder who bought what.
(554) John wonders where to put what.
(555) John wonders what to put where.
(556) What does John want to put where?
(557) Where does John want to put what?
(558) Who did you find a photograph of?
(559) It is belicved John has wôn the clection.
(560) John is believed to have won the election.
(561) *Who docs John wonder where Bill saw?
(562) *What did you ask me where you could buy?
(563) *What is expected that Max will work on next?
(564) *What is expected Max t work on next?
(565) *What did who see?
(566) * 1 wonder what who bought?
(567) *What does John wonder where to put?
(568) *Where does John wonder what to put?
(569) *What does John wonder to put where?
(570) *Where docs John wonder to put what?
(571) *Who do you know the man that married?
(572) *Who did you hear a rumor that John betrayed?
(573) *Who did you find a copy of a photograph of!
(574) *John is believed has won the election.
(575) *John scems won the election.

The following illustrate some other gencralizations:
(576) It seems likely that John would be sitting.
it-extraposition
(577) There seems to be a table in the kitchen.
there-insertion
(578) That I might take a ball scems likely.
sentential subjects
(579) For me to take a ball seems nice.
(580) To take a ball seems nice.
(581) I wonder what to do.
(582) I wonder what he should do.
(583) I wonder what should have been done.
(584) The ball, he took.
topicalization
We have said very little regarding lexical ambiguity, although there are a few marked rules to cover some simple cases. There is one rule to distinguish an auxiliary from a main verb and another to separate the various uses of that (a complementizer, a relative pronoun, a normal pronoun, and a determiner). The first rule was discussed in chapter 7. Neither rule is particularly elegant; Milne is working on more auractive solutions to the lexical ambiguity problem.
(585) Have the boys take the ball!
auxiliary diagnostic
(586) Have the boys taken the ball?
(587) Which boys were the girls taking to the ball?
(588) Which boys have the girls take the jars?
(589) Which boys have the girls taken to the ball?
(590) I know a man that was nice.
that diagnostic
(591) I know that was nice.
(592) I know that that was nice.
(593) I know that boys are nice.
(594) I know that boy is nice.
(595) I know that he is nice.
(596) That he is nice is a fact.
(597) That that boy is nice is a fact.
(598) That that is nice is a fact.
(599) Who do you believe that was?
(600) Who do you belicve that that was?
(601) Did you believe that?
(602) Did you believe that was him?
(603) Did you believe that that was him?
(604) Did you believe he did that?

We discussed pscudo-attachment bricfly in chapter 4 and pscudo-gaps in chapter 8. (605), (606) and (608) illustrate the phenomena; (607) and (609) are near misses (they have only one attachment/gap).
(605) He scems nice to her.
(606) Put the box on the table in the kitchen.
(607) Put the box on the table.
pseudo-altachment
near miss
(608) Which boys does he want to see?
pseudo-gaps
(609) Which boys dues he want to take?
near miss

We have been very concerned with stack allocation. (610)-(612) illustrate some borderline center-embedded sentences. ${ }^{218}$ YAP docs require one less stack cell for (610) than the others, alutough the reason is very complex. We don't have enough confidence in the details to trace though the entire explanation. The generalization seems to be that a complement is less acceptable in the most deeply embedded clause [Cowper76 pp. 71]. YAP finds decply embedded complements more difficult because it is hard to distinguish them from relative clauses without storing the entire sentence on the stack.
(610) The possibility that the man who I hired is incompetent worries me.
(611) \#'The man who the possibility that students are dangerous frightens is nice.
(612) \# The man who the possibility that I am dangerous frightens is nice.

YAP can also parse the following right branching sentences. (616) is somewhat problematic because the two that's are disambiguated in the wrong order. Hence $I_{\text {pp- }}$ of I is attached to rumor. These diagnostics are not well understood.
(613) It might seem likely that it would seem likely that he is nice.
(614) IDid you hear a rumor that there was a possibility that he might say that I am nice?
(615) Did you hear a rumor that there was a possibility that he might tell me?
(616) Did you hear a rumor that there was a possibility that he might tell me of?
(617) Did you hear a rumor that there was a possibility that he might tell me of it?
(618) Did you hear a rumor that it would seem likely that he is nice?
(619) Did you hear a rumor that John wondered who said that I am nice?
218. The first two are taken from [Cowper76].

Appendix II - An Example

This appendix shows the derivation of (620). The final output (the cstructure and the fstructure) are given as (621) and (622) bclow. ${ }^{219}$
(620) Was the boy likely to sit?
(621) CSUBJ: [(NP-) the boy]
cstructure
CIIEAI): [(NP) the boy]
CSPEC: [(IJET) the]
CHEAD: [(N) boy]
CHEAD: [(VP) was likcly to sit]
CHEAD: [(V) was]
CXCOMP: [(AP-) likcly to sit]
CHEAD: [(AP) likely to sit]
CHEAD: [(A) likely]
CXCOMP: [(VP-) to sit]
CCOMP: [(COMP) to]
CHEAD: [(VP) sit]
CHEAD: [(V) sit]
(622) FSUBJ: [(NP-) the boy]
fstructure
FSPEC: [(DET) the]
FXCOMP: [(AP-) likely to sit]
FSUBJ: [(NP-) the boy]
FSPEC: [(DET) the]
FXCOMP: [(VP-) to sit]
FSUBJ: [(NP-) the boy]
FSPEC: [(DET) the]
sentence: was the boy likely to sit?
initial state
219. This source was produced by a slightly older version of YAP. Nevertheless, it should still be highly informative.
input pointer: LIKELY 'TO SIT?
[(S)]
$==$ WALL $L=$
[(V) was]
[(DETI) the]
[N) boy]
Y^P will undo the inversion, but first it has to parse $I_{n p}$ - the boy] to trigger the marked inversion rule. This is accomplished by the rule: APPI.Y-IDFI-AUI.T-A'TTIENIION-SHIFI. No rule of higher priority can apply because upl is looking for a subject, not a verb.
input pointer: TO SIT ?
[(S)]
[(V) was]
$==$ WAILL $=$
[(DET) the]
[(N) boy]
[(A) likely]

The determiner in downl triggers a marked rule to predict a noun phrasc: CREATE-NP-1.
input pointer: TO S「T?
[(S)]
[(V) was]
$=$ = WALL $==$
[(NP)]
[(DET) the]
[(N) boy]
[(Λ) likcly]

The $N P$ is attention shifted to allow $I_{\text {det }}$ the] and I_{n} boy] to attach. The next three snap-shots show the attention shift and two attachments.
input pointer: TO SIT ?
[(S)]
[(V) was]
[(NP)]
$==$ WALL $==$
[(I)ET') the]
[(N) boy]
[(A) likely]
About to run: Λ PPI.Y-DEFAUITI-PS-ATTACHMENT
input pointer: SIT?
[(S)]
[(V) was]
[(NP) the]
$==$ WALL $==$
[N) boy]
[(Λ) likely]
[(COMP) to]
About to run: APPLY-DEFAULT-PS-ATTIACHMENT
input pointer:?
[(S)]
[(V) was]
[(NP) the boy]
$==$ WALL $==$
[(Λ) likely]
[(COMP) to]
[(V) sit]

Now [np the boy] has all of its children, but it doesn't have a mother yet. It will be returned to the lower buffer, so it can find its mother. (Slightly contrary to the discussion in chapter 3, ps-close does an attention return if upl isn't ready to close. In this case, upl can't close because it doesn't have a mother.

About to run: APPLY-DEFAULT-PS-CLOSURE
[(S)]
[(V) was]
$==$ WALLL $==$
[(NP) the boy]
[(\wedge) likely]
[(COMP) to]
The NP in downl triggers a marked rule (CREATE-NP-1) ${ }^{220}$ to predict an np-, which is immediately attention shifted, leaving the machine in the following state. Then ps-attach and ps-close apply producing the next two snap-shots.

[(S)]

[(V) was]
[(NP-)]
$==$ WALL $==$
[(NP) the boy]
[(A) likely]
[(COMP) to]
About to run: APPI.Y-DEFAULTT-PS-ATTACHMENT
[(S)]
[(V) was]
[(NP-) the boy]
$==$ WALL $==$
[(A) likely]
[(COMP) to]
[(V) sit]
About to run: APPL.Y-DIEPAUL'I'PS-CI.OSURE
220. The rule CREATE-NP-I predicts an $n p-$ whercas the rule CREATE-NP-I predicts an $n p$.

There is nothing left to do but attention-return, hoping to trigger some other rule. In this case, it will enable auxiliary inversion. (It should have predicted an ap-first. This indicates a slight problem.)

```
[(S)]
[(V) was]
==WALL}=
```

[(NP-) the boy]
[(Λ) likely]
[(COMP) to]
About to run: APPLY-DEFAULT'PS-CLOSURE

[(S)]

$==$ WALL $==$
[(V) was]
[(NP-) the boy]
[(Λ) likely]
About to run: AUX-INVERSION

Now, ps-attach can apply.
[(S)]
$==$ WALL $==$
[(NP-) the boy]
[(V) likely]
[(A$) \mathrm{to}]$
About to run: APPLY-DFFAULT-PS-ATTACHMENT

Notice that [np- the boy] was automatically closed, removed from the buffer, after it was attached. In this older version, the closure procedure was very much like Kimball's scheme. The current scheme would not close this carly; it would leave the np - in upl and then ps-close would apply.
[(S) the boy]
$==$ WAlL $==$
[V) was]
[(Λ) likcly]
[(COMP) to]
About to run: PRED)-IIEFAULTT

This rule selects the appropriate predicate for downl from the kexicon.
[(S) the boy]

$$
==\text { WALL }==
$$

[(V) was]
[(Λ) likely]
[(COMP) to]
About to run: ATTACH-FSUBJ

There is a slight problem checking functional constraints with elements to the teft of the head (such as subject). Consequently, they are checked by a marked rule (A1TACH-FSUBJ) which fires when upl has a predicate and a subject. (We are currently exploring more elegant alternatives.)
[(S) the boy]
$==$ WALL $==$
[(V) was]
[(1) likely]
[(COMP) to]
About to run: CREATE-VP-1

There is a marked rule to build verb phrases bottom-up. (It is probably unnecessary.) With a more symmetric default predict rule, it should be possible to climinate most of the marked prediction rules (CREATE-...).
[(S) the boy]
[(VP)]
$==$ WALL $==$
[(V) was]
[(Λ) likely]
[(COMP) to]
About to run: APPI.Y-IDEFAULT'-PS-ATTACHMENT

YAP finishes the parse using the same techniques.
[(S) the boy was]
[(VP) was]
$==$ WALL $==$
[(Λ) likely]
[(COMP) to]
[(V) sit]
About to run: CREATE-XCOMP-1
[(S) the boy was]
[(AP-)]
$==$ WALL $==$
[(Λ) likely]
[(COMP) to]
[(V) sit]
About to run: PRED-DEFAULT
[(S) the boy was]
[(AP-)]
$==\mathrm{WALL}==$
[(Λ) likely]
[(COMP) to]
[(V) sit]
About to run: AT「ACH-FSUBJ
[(S) the boy was]
[($\wedge P-)]$
$==$ WALL $==$
[(Λ) likely]
[(COMP) to]
[(V) sit]
About to run: CREATE-AP-1

Notice that the $a p$ - will close when the $a p$ is attached in the next snapshot.
[(S) the boy was]
[(AP)]
$==$ WALL $==$
[(A) likely]
[(COMP) to]
[(V) sit]
About to run: APPL,Y-DEFAULT-PS-ATTACHMENT
[(S) the boy was likely]
[(\wedge P) likely]
$==$ WALL $==$
[(COMP) to]
[(V) sit]
[(PUNCI') ?]
About to rum: CRIEへ'TE-INF-VCOMP
[(S) the boy was likely]
[(VP-)]
$=$ =WAIL $==$
[(COMP) to]
[(V) sit]
[(PUNCT) ?]
About to run: APPLY-DEFAULT-PS-ATTACHMENT
[(S) the boy was likely to]
[(VP-) to]
$==$ WALLL $==$
[(V) sit]
[(PUNCT) ?]
About to run: PREID-DEFAULT
[(S) the boy was likely to]
[(VP-) to]
$==\mathrm{W} \Lambda \mathrm{L} . \mathrm{L}==$
[(V) sit]
[(PUNCI') ?]
About to run: ATTACH-FSUBJ
[(S) the boy was likely to]
[(VP-) to]
$==$ WALL $==$
[(V) sit]
[(PUNCT) ?]
About to run: CREATE-VP-1
[(S) the boy was likely to]
[(VP)]
$==\mathrm{W} \wedge \mathrm{LL}==$
[(V) sit]
[(PUNCI) ?]
^bout to run: APPLY-DEFAULT-PS-ATTACHMENT
[(S) the boy was likely to sit]
$==$ WALL $==$
[(PUNCT) ?]

References

1. Ades, Anthony E. and Steedman, Mark, On Word-Order, unpublished paper, Dept of Psychology, University of Warwick, U.K., 1979.
2. Aho, Alfred V. \& Ullman, Jeffrey D., The Theory of Parsing. Translation, and Compiling, Prentice-Hall, Inc., 1972.
3. Aho \& Ullman, Principles of Compiler Design, Addison-Wesley Publishing Company, 1977.
4. Akamajian and Heny, An Introduction to the Principles of Transformational Syntax, MIT Press, 1975.
5. Akamajian, Stecle and Wasow, The Category AUX in Universal Grammar, Linguistic Inquiry, 10:1, 1979.
6. Anderson, S. and Kiparsky (eds), A Festschrift for Morris Halle, Holl, Rinchart, and Winston, New York, 1973.
7. Arbib, Michael A., Theories of Abstract Automata, Prentice-Hall, Inc., 1969.
8. Bar-Hillel, Y. and Shamir, E., Finite State Languages: Formal Representation and Adequacy Problems, Bull. Res. Council of Isracl, 8F, 242-256, 1960.
9. Bar-Hillel, Y., Perles, M., and Shamir, E.., On Formal Properties of Simple Phrase Structure Grammars, reprinted in Readings in Mathematical Psychology, 1961.
10. Berwick, Robert., Learning Structural Descriptions of Grammar Rules from Examples, IJCAI79. vol. 1, 1979.
11. Berwick, R., Computational Analogues of Constraints on Grammars, ACL Conference Proceedings, 1980a.
12. Berwick, R., Learning Structural Descriptions of Grammar Rules from Examples, MIT, AI-TR 578, 1980b.
13. Bever, Thomas G., The Cognitive Basis for Linguistic Structures, J. R. Hayes (ed.), Cognition and the Development of Language, 1970.
14. Bever, 'T. and Langendoen, T., A Dynamic Model of the Evolution of Language, LI 2:433-463, 1971.
15. Bever, Thomas G., The Psychology of Language and Structuralist Investigations of Nativism, in Harmon (ed), 1974.
16. Bresnan, Joan, A Realistic Transformational Grammar, in Halle, Bresnan and Miller (eds), 1978.
17. Bresnan, Joan, A Theory of Grammatical Representation, class notes, MIT, 1979.
18. Bresnan, Joan, Polyadicily: Part I of a Theory of Iexical Rules and and Representations, unpublished paper, MIT, 1980.
19. Chomsky, Noam, Three Afodels for the Description of Ianguage. I.R.E. Transactions on Information Theory, vol. IT-2, Proceedings of the Symposium on Information Theory, 1956.
20. Chomsky, N., Syntactic Siructures, Mouton \& Co., 1957.
21. Chomsky, N.. On Certain Fonnal Properties of Grammars, Information and Control, vol 2, pp. 137-167, 1959a.
22. Chomsky, N., A Note on Phrase Struclure Graminars, Information and Control, vol 2, pp. 393-395, 1959b.
23. Chomsky, N., Formal Properties of Grammars, in R. D. Luce, R. R. Bush, and E. Galanter, eds., pp. 323-418, 1963.
24. Chomsky, N., On the Notion "Rule of Graminar", (1961), reprinted in Fodor and Katz (eds.), pp 119-136, 1964.
25. Chomsky, N., A Trausformational Approach to Syntax, in Fodor and Katz, (eds.), 1964.
26. Chomsky, N., Some Aspects of the Theory of Syntax, MIT Press, Cambridge, MA., 1965.
27. Chomsky, N., Remarks on Nominalization, in Jacobs and Rosenbaum (eds), 1970.
28. Chomsky, N., Conditions on Transformations, in Anderson and Kiparsky (eds), 1973.
29. Chomsky, N. and l asnik, H., Fihers and Control, I.inguistic Inquiry, 8:3, 1977.
30. Chomsky, N., On Binding, Linguistic Inquiry, 1980.
31. Cowper, Elizabcth A., Constraints on Sentence Complexity: A Model for Syntactic Processing, PhD 'Thesis, Brown University, 1976.
32. Crain, Stephen, and Coker, Pamela L., A Semantic Constraint on Syntactic Parsing, presented at the Linguistic Society of America Annual Meeting. University of California, Irvine, 1978.
33. Crain, Stephen, Remarks on the Theory of Performance, unpublished paper, 1979.
34. Davis, Randall, Interactive Transfer of Expertise: Acquisition of New Inference Rules, IJCAI, 1977.
35. DeRemer, F., Simple L.R(k) grammars, Communications of the ACM, Volume 14, pp. 453-460, 1971.
36. Doylc, Jon, Tiuth Maintenance Systems for Problem Solving, AI-TR-419, MI'I, 1978.
37. Earley, Jay, An Efficient Context-Free Parsing Algorithm, Unpublished Ph.D Thesis, CMU, 1968.
38. Earley, J., An Efficient Context-Free Parsing Algorithm, Communications of the ACM, Volume 13, Number 2, February, 1970.
39. Emonds, Joscph E., A Transformation Approach to English Syntax, Academic Press, Inc., 1976.
40. Fahlman, Scott E., A System for Representing and Using Real-World Knowledge, AI-TR-450, MIT, 1977.
41. Fodor, Janct D., Parsing Strategies and Constraints on Transfornations, Linguistic Inquiry, 9:3, 1978
42. Fodor, J. and Frazier, L., Is the Human Sentence Processing Mechanism an ATN?, unpublished paper, University of Connecticut, 1980.
43. Fodor, Jerry and Katz, Jerold (eds), The Sıructure of Language Englewood CLiffs, New Jersey, Prentice-Hall, 1964.
44. Frazicr, Lyn \& Fodor, Janct D., The Sausage Machine: A New Two-Stage Parsing Model, Cognition, 6, 291-325, 1978.
45. Frazier, I.yn, On Comprehending Sentences: Syntactic Parsing Strategies, PhD Thesis, University of Massachusctts, Indiana University I inguistics Club, 1979.
46. Frazier, L., Parsing and Constraints on Word Order, in Lowenstamm (cd), 1980.
47. Freidin, Robert, Cyclicity and the Theory of Grammar, I.inguistic Inquiry, 9:4, 1978.
48. Gardar, Gerald, Constituent Structures, unpublished paper, School of Social Sciences, University of Sussex, 1979a.
49. Gazdar. G., English as a Context-Free Ianguage, unpublished paper, School of Social Sciences, University of Sussex, 1979b.
50. Gazdar, G., Unbounded Dependencies and Coordinate Structure, unpublished paper, School of Social Sciences, University of Sussex, 1979c.
51. Greenberg. J. H., Some Universals of Grammar with Particular Reference to the Order of Meaningful Elements, In J. H. Greenberg (ed), Universals of Language, MIT Press, 1963.
52. Grcibach, S. A., Formal Languages: Origins and Directions, 1ERE, CH1471-2/79/0000-0066, 1979.
53. Grishman, R., Implememation of the String Parser, in Rustin, R. (ed), 1973.
54. Halle, Bresnan, and Miller (cds.), Linguistic Theory and Psychological Reality, MIT Press, 1978.
55. Hankamer, J., Unacceptable Ambiguity, Linguistic Inquiry 4, pp. 17-68, 1973.
56. Harmon, Gilbert (ed), On Noam Chomsky: Critical Essays, Anchor Press, Doubleday, 1974.
57. Hewitt, Carl, Description and Theoretical Analysis (using Schemata) of PLANNER: A Language for Proving Theorems and Manipulating Models in a Robot, Phl) thesis, AI-TR-258, MIT, 1972.
58. Huybregts, M., Overlapping Dependencies in Dutch, Instituut A.W. de Groot, 1976.
59. Jackendoff, Ray, X-Bar Syntax: A Study of Phrase Structure, Linguistic Inquiry Monograph 'Two, 1977.
60. Jacobs, R. and Rosenbaum, P. (eds), Readings in English Transformational Grammar, Ginn. Waltham, MA., 1970.
61. Kaplan, R., Augmented Transition Networks as Psychological Mlodels of Sentence Comprehension, Artificial Intelligence, 3, 77-100, 1972.
62. Kaplan, R., Transient Processing Load in Relative Clauses, unpublished doctoral dissertation, Harvard University, 1975.
63. Kaplan, R., Computational Resources and Iinguistic Theory, revised version of paper presented as the Sccond Theoretical Issues in Natural Language Processing Conference, Urbana, 1978a.
64. Kaplan, R. and Bresnan, J., A Formal System for Grammatical Representation, unpublished paper, MIT, 1978b.
65. Kay, Martin, Syntactic Processing and Functional Sentence Perspective, TINI AP-1, 1975.
66. Kimball, John, Seven Principles of Surface Siructure Parsing in Natural Language, Cognition 2:1, pp 15-47, 1973.
67. Kimball, J., Predictive Analysis and Over-the-Top Parsing, in Syntax and Symantics IV, Kimball editor, 1975.
68. Koster, Jan, Locality Principles in Syntax, Foris Publications Dordrecht, 1978.
69. Knuth, D. E., On the Translation of Languages from Left to Right, in Information and Control, vol. 8, 1965.
70. Kuno, Susumu, and Octtinger, A. G., Multiple Path Syntactic Analyzer, in Information Processing. North-Holland Publishing Co., Amsterdam, 1963.
71. Kuno, Susumu, The Predictive Analyzer and a Path Elimination Technique, Chapter 6 in Readings in Automatic Language Processing, 1966.
72. Kuno, S., Natural Explanation for Some Syntactic Universals, Mathematical Linguistics and Automatic Translation, Report NSF-28, The Aiken Computation Laboratory, Harvard University, 1972.
73. Kuno, S., Constraints on Imternal Clauses and Sentential Subjects, Linguistic Inquiry, Vol. 4, No. 3, pp. 363-385., 1973.
74. Kuno, S., The Position of Relative Clauses and Conjunctions, Linguistic Inquiry, 1974.
75. Langendoen, T., Finite-State Parsing of Phrase-Structure Languages and the Status of Readjustment Rules in Grammar, Linguistic Inquiry Volume VI Number 4, Fall 1975.
76. Lasnik, H., Remarks on Co-Reference, Linguistic Analysis, Volume 2, Number 1, 1976.
77. Lowenstamm, Jean (ed), Universily of Massachusetts Occasional Papers in Linguistics, vol 5, 1980.
78. Luce. R. D., R. R. Bush, and E. Galanter, eds., Handbook of Mathematical Psychology, Volume II, John Wilcy and Sons, New York, 1963.
79. Mackworth, Alan K., Consistency in Nelworks of Relations, AI Journal, Fcbruary 1977.
80. Marcus, Mitchell, 1 Theory of Syntactic Recognition for Natural Ianguage, Ph.D Thesis, MIT Press, 1979.
81. Martin, William Λ., Descriptions and the Specialization of Concepts, in Artificial Intelligence: An MIT Perspective, MI'T Press, Winston and Brown (eds), 1979.
82. Martin, W., class notes, MIT, 1979 and 1980.
83. McAllester, David A., The Use of Equality in Dectuction and Knowledge Representation, MII', AI-TR-S50, 1980.
84. MclDonald, David D., Steps Toward a Psycholinguistic Model of Language Production, AI Merno S00, 1979.
85. McIDonald, D., Natural Language Production as a Process of Decision-Making Under Constraints, Ph.D. Thesis, MIT, 1980.
86. Milne, Robert W., Handling Lexical Ambiguily in a Deterministic Parsing Environment, unpublished B.Sc. Thesis, MIT, 1978a.
87. Milne, R., The Fringe of Lexical Ambiguity, unpublished paper, MIT, 1978 b .
88. Milne, R., Using Determinism to Predict Garden Paths, AISB 80 Conference, 1979.
89. Milne, R., A Framework for Deterninistic Parsing Using Syntax and Semantics, DAI Working Paper 64, I)epartment of Artificial Intelligence, University of Edinburgh, 1980.
90. Pcters, S., and Ritchie, i.., On the Generative Power of Transformational Grammars, Information Sciences 6: 49-83, 1973.
91. Pctrick, Stanlcy R., A Recognition Procedure for Transformational Grammars, Unpublished Ph.D. Thesis, MIT, 1965.
92. Postal, Paul M., Limitations of Phrase Structure Grammars, in Fodor \& Katz, eds., 1964.
93. Postal, P., On Raising, MIT Press, 1974.
94. Pratt, V. R., A Linguistics Oriented Programming Ianguage IJCAI-3, 1973.
95. Pratt, V., Lingol - A Progress Repor, IJCAI-4, 1975.
96. Pratt, V., The Competence/Perfornance Dichotomy in Programming, 4th ACM Symposium on Principles of Programming Languages, Los Angeles, January 1977.
97. Rich, Charles, On the Psychological Reality of Augmented Transition Network Models of Sentence Comprehension, unpublished paper, MIT, 1975.
98. Ross, J. R., Constraints on Variables in Syntax, unpublished Doctoral dissertation, MIT, 1967.
99. Rustin, Randall (ed), Natural Ianguage Processing, Algorithmics Press, Ncw York, 1973.
100. Ruzzo, Walter L.., General Context-Free Language Recognition, unpublished PhD Thesis, University of California, Berkeley, 1978.
101. Shipman, D., Some Ideas For Collapsing the Marcus' Parser, unpublished term project for J. Allen, MIT, 1978.
102. Shipman, D. and Marcus, M., Towards Minimal Data Structures for Deterministic Parsing, IJCAI79, 1979.
103. Stecle, Guy I.., Rabbit: A Compiler for Scheme (A study in Compiler Optimization), AI-TR-474, MIT, 1978.
104. Swartout, William, R., A Digitalis Therapy Advisor with Explanations, MIT/LCS/TR-176, 1977.
105. Swartout, W., A Comparison of PARSIFAL with Augmented Transition Networks, AI Memo 462, MIT, March, 1978.
106. Ullman, Jeffrcy, Pushdown Automata with Bounded Backtrack, System Development Corporation, TM-738/022/00, 1965.
107. Valient, L., General context free recognition in Less Than Cubic Time, J. Computer and System Sciences 10, pp. 308-315, 1975.
108. VanLehn, Kurt A., Deternining the Scope of English Quantifiers, Al-TR-483, MIT, 1978.
109. Wales, Roger and Toncr, Hugh, Intonation and Ambiguity, in Cooper and Walker, 1976.
110. Waltr, D., Understanding Line Drawings of Scenes with Shadows in Winston (ed), 1975.
111. Wanner, E. and Maratsos, M., An ATN Approach to Comprehension, in Halle, Bresnan and Miller (eds.), 1978.
112. Wanner, E., The ATN and the Sausage Machine: Which One is Balowey?, unpublished paper, Sussex University, 1979.
113. Williams, Fdwin, Passive, unpublished paper, University of Massachusctus, Amherst, 1980.
114. Winograd, T., Procedures as a Representation for Dala in a Computer Program for Understanding Natural Language, Project MAC-IR 84, MIT, 1971.
115. Winston, Patrick H. (ed), The Psychology of Computer Vision, McGraw-Hill Book Company, New York, 1975.
116. Winston, Patrick H. and Brown, Richard H. (eds), Arlificial Intelligence: An M/TT Perspective, MITT Press, 1979.
117. Woods, William, Transition Network Gramnars for Natural Language Analysis, Communications of the ACM, Volume 13, Number 10, October, 1970.
118. Woods, W., An Experimental Parsing System for Transition Network Grammars, in Rustin (cd), 1973.
119. Woods, W., Some Methodological Issues in Natural Language Understanding Research, TINLAP-1, 1975.
120. Yngve, V. H. A Model and an Hypothesis for Language Structure, Proceedings of the American Philosophical Society 104, pp. 444-466, 1969.

[^0]: 1. Throughout this work. the complexity notion will be used in its computational sense as a measure of time and space resources required by an optimal pexessor. The term will not be used in the linguistic sense (i.e. the size of the grammar itself. In general. one call trade one off for the other, which keads to considerable confision. The size of a program (linguistic complexity) is typicilly inversily related to the power of the interpreter (eomputational complexity). This point is discussed more thoroughly in chapter 6.
 2. It is important to distinguish ixmputurionad camplexity (ime and spiace bought) from computational class (finite stite FS. comext free CF. context sensibive ($\$$. luring machine TM). A grammar that describes a large chiss is generally more

 is an oper problem.) That is. FS grammars can be parsed in linear tine, whereas CF grammars probably require more time in the worst cass.
 3. In fairness to the ATN and Transfomational ${ }^{〔}$.... 7ar, it shoukd be noted that there have been efforts to reduce the gencrative capacity. For example, Kielian (permonal communicodion), [Woxds73] and [Pelers and Ritchic73] discuss. varions restrictions to assure decitabifity. Unfortunately, this meve is net sufficient to guaramtec efficient (e.g. polynomial time) processing: parsing decidable grammars may be effective, but it is hardly efficient.
[^1]: 4. This position slould be distinguished from Kaplan's hypothesis (personal conmunication) that the processing grammar is identical to the competenee grammar. We suggest that there are some extra-grammatical fikiors (e.g. memory limitations) which distinguish the two.
[^2]: 5. These exampkes are taken from [Kiubball73]. A hash nark (\#) is used to indicate unacceplability: ant asterisk (*) is used in the trintitional fishiow to denote ungrammaticality.
 6. Just as Chonsky idealized grammadieality from ther unexphaned irrolevant factors, it will be useful to idealize acceptahtity. In this work. we are nustimterested in lime and space behuvior in the limit as sentences grow: we will not address borderline cases where judenvents lend to be extremely variable. This move is ofen tiken in coluplexity arguments which study limiting growth, hut ignore constants (burderline cases).
[^3]: 7. Trivially all physical machines are FSMs. The FS hypothesis is interesting. though. because the memory limitation is x) severe (i.e. Iwo or three clanses) that th is a cructial issuc in minty practical siluations. Similar comments can be made athuut modern compuicrs. Mast cugineers wonld numgel a typigal large computer system as a TM. However, it would be hand to think of a computer as a TM if it had only I bit of memory. How much nemory does it take before a FSNr is best modeled as a TM? The allswer maly depend on the curretil price of enemory. What once seemed unreasonable, may not beso unrealistic today.
 8. A centerembedded semence comtains an embedded clause surfounded by lexical material from the higher clause: $\left.\left[I_{s} \times{ }_{s} \ldots\right]_{y}\right]$ where both x and y comean lexical material.
 9. Subjacency is a formal linguistic notion which constriins the fipplicibility uf a transformation. (Informally, subjacency is a lexality principle: all transformations must be loxal to a single eyclic axde (eng clase) or to two adjacem cyelic nodes.) We offer subjacency as an eximple of a conpetence idealization. In generab. diough. it is extremely diffeull tuprove that a particular phenomenon is necessirily a matter of competence: We have no proof that subjacency is a competence universal, and similarly, we have no provf that centerembedding is a pruesseng universal. Our assessments are most plausible, though conceivably, they might be incorrect.
[^4]: 10. A complexity argument of this sort does not distinguish between a depit of three or a depth of four. It would require considerable psychologicat experimentation to discover tie preeise limiations. This account predicis that all centerembedded structures ceventually become unaceeptable althengh it is pussible that certain constructions become unaceeptible more rapidly than others. For example. [Cowper70] has found some differences between relative clauses and complement chatses.
 11. [Bir-Hilleki] argied that respectively proves the compelence mexdel is not CF. It has been widely suggested that respectively is really a semantic issue which shouldn't concern ssintax. Althentgh this point is well taken. there are mumerous anakgous constructions (Ducch verhs [Husbregis76]. Swedish wh-movement. and Mohawk [Postalot]) which pose the sume problem. If all of these arguments are mistiken and grammar is in fate only CF. then it is even easier to defend the FS Hyputhesis. (Only centerembedking would have to be extuded.)
 12. Crossing dependencies are beyond CF complexity. The proof uses the pumping lemma. [Huybregis76]
 13. It can be argeted that this rule is not a symactic rule and hence it is irredevant to the FS hypothesis. Actually. we believe that the FS hypothesis is more generalt; it applies at all kevels of linguistic processing, not just the syntactic component.
[^5]: 14. Intumally. a phatise pmecedes phases to its right. For example. x precedes y in: ... x... y ... A phrases commands
 (Avcussion.

 in be what wed mane verbs to illustrate the recursive nature of these consiructions. They would be more

[^6]: 21. The "embage collection" amagy is not completely accurate. Garbage collectors return stomge to the system when it is knom that t cannot be referenced again: closure procedures return storage when is it suspected that it will not be werenced agan.
 2) A push down atomaton (PDA) is a formalization of umbounded stack machines.
 23. Beanded memory was the original motivation for closure. Some chosure formbations are heuristic; they close a phanc before it is known that the phase in question cannot be referenced again. Theoretically, though. clusure need not be hemistic: it is possible fier a FSM to parse non-center-embedded CF structures withour hewristics. We have opted for a heuristic fermulation which appears to more practical (as we will argue in the next section).
[^7]: 24. There are other possible acceunts which may be very similar to Mareus anceunt. For example, Gils are often related to backup in non-deterministic frameworks. However, it is not ctour hew santh im accuunt ean distinguish backup on a GP from backup on ath acceptable sentence. One solution pakes a bothat on baxkup to enable the parser to backup on the acceptable sentences but not on GPs. In some sense: this is wey similar to Marcust approakil: he provides a buand on lookahlad (anallogous to bounded backup) which distinguishes GPs fan acceptable sentences.
[^8]: 25. A mon-deteminink FSM with n states is equivalent to another deterministic FSM with 2^{n} states.
 26. : an imeluad to Kon Wexker for pointing this out.
 27. Ihe wploded wates conede dicjunctioe allematives (ats observed in [Swatomb7]). Intuitively. GPs suggest that it Bth prosible todelay the critical decision: the mathine has lo decide which way to proced.
 28. Mamas hyphtesis is necessarily vague because there is mo clear way to distingush an exploded state from a prinaine tate wathe refernce barticular machine (grammar). The definition becomes more precise when state

[^9]: 30. She is crucially assuming a non-deterministic framework where the processor can backup past certain errors. In our framework, we need some exceptional rules to prevent the processor from taking the wring path in the first place.
[^10]: 32. This position is somewhat different from the "hold hypothesis" [Kaplan75] which accounts for center-embedded relative clauses but no other types of center-embedding. We believe that all furms of center-embedding become rapidly unaiceeptable even at shallow depiss. For example. the folluwing sentences from [Rich75] are unaceeptable even though there are no center-mbedded relative clatises. We accept Rich's argument that the "hold hypothesis" fails to account for all of the center-mbedding ficts.
 (a) \# I think [claiming [voting Republican] is immorall] is silly.
 (b) \# I think claiming [the deg [that bit the burglar] is scarcd) is silly.

 Notice that both left and right branching have many "bunched up" brackets. Langendoen (personal communication) has ubserved that "bunched up" brackets are redundant, and hence they can be deleted without luss of information. In a sense, the FSM mamipulates the resitling representation.

 Alternatively. one might view the brackels as corresponding to stack instructions. An open bracket ($)$ is amalogous to "pusti" and close () is amilogrous to "pop". Delcting brackets corresponds to optimizing stack operations (e.g. tail recursion [Seele78]). Just as "bunched up" brackets suggest a redundancy, a scquence of "pop" instructions in the logical thow of a program indicaltes wasted stakk space.

 One cam view chasurc as deleting brackels. like tail recursion, to optimize stakk usige. In left and right branching, it is possible wdetete the "bunched up" brackets, and henee. bound the maximmons stakk depth. This fails to bound memory requirements in centerembedded cases where there are no "bunched up" brackets" to detete. Chomsky"s proof
 unbounded mienory (there is in way to convert a strictly CF graminaif 'mo a FS graminar). On the oller hand, it is possible to optimize non-center-enibedded structures bectuse they ard FS equivatent.

[^11]: 33. For example, left branching is infinity diffient (impossible) for an 1.1 (k) parser. It also caused the Harvard Syntactic Analyzer (HPA) [Kunc(6)] considerable problems.
 34. There have been argumints for a teffyright mysumetry based on the asscimption that human processing is paline (Iefi-(o-right). Chemsky's 1959 proof shows that these arguments are invalid.
 35. We know of no langlages whith have both teft and right bremething cuanses. This generalization is unexplained if it is indeed universal.
[^12]: 39. These definitions happen to have a functional flavor. We use the functional maion "makhine" interchangeably with the algebraic notion "grammar". Our definitions should not be taken literally; we do not mean fo imply that there is a forgetting procedure in the brain just bequase it might be convenient. We are merely suggesting thit a forgelting procedure is a useful metaphor for modeling the compuation that lakes place.
[^13]: 40. A matrix is rumghly equivalent to a phrase or a clatuse. A matrix is a frame with slots for a mother and several danghers. The rono matrix is the highest clanse.
 41. We use all x-bar [Jackendoff77] notation. s ($(x$ bar) dominales s in embedded clatuses ($s->$ comp s). It is also importam to notice that the s^{*} in [Tom said S^{-}] is not completely finished; it is pussible to attach material to the embedded s - but not to the clesed root.
 42. Kimball's clusure is premature in these examples since it is possible to interpret yesterduy attaching high as in: Tom suid [that Bill had laken the cleaning out] yesterday.
[^14]: 45. Deciding whether a node can or cammot attach is a difficult question which must be addressed. YAP uses the functional structure [Kaplan and Bresnan80] and the phrase structure rules. For now we will have lo appeal to the readers induitions.
[^15]: 46. Recall that both II (k) and I.R(k) parse CF grammars on a deterministic stack machine (I)PDA). I.I (k) is purely lop-down: the machine decides which production wexpand (push onto the stack) given the mother and the next k input sumbols. The stack is popped when the next imput symbol matches the lop of the stack. This discomers the left-most derivation (for ambiguous grammars). IR(k) is the dual: the machine decides which production to reduce (pop off the stack) given the next k input symbols and the previous state. Input symbols are pashed onto the stack when there are no productions to reduce. $1 . R(k)$ finds the right-most derivation. I.L. (k) is a predictive parser becanse it predicts expansions top-down: I R(k) is a shifi-reduce parser because it decides wheher to shift (push an input symbol) or to reduce (pop a production off the stack).

 II (k) are optimall for purcly right branching structures: the stack grows infinitely on left branching structures (doesn't halt), and linearly with the deph for center embedding. but is bounded on right branching. I R(k) parsing is the dual: it is optimat for parely left branching structures where the stack depth is bounded. On center and right branching, the stack depth grows lincarly. $11(k)$ is not as general as I. $R(k)$. but it is nore space efficiont when it works. In our terms. I.I (k) parsers suffer from promature chosure whereas I R(k) parsers may require more memory (ineffective closure).
 47. If memery is chat then I R(k) is very atractive. Curently several computer programming languages are parsed woth I R(k) lechnigucs beatuse the menory demands are tokrable. We are assuming that homan short term memory limitations ate far too severe for such extratagances.
 48. [Kimball75] makes a similar pume. He offers iwo compromise poims between $\operatorname{l|}(\mathrm{k})$ and $I R(k)$ and shows that the correspondme latenages are all properly nested. (Both compromises appear to be premature: the arguments are not very interesting.)
 49. Marcus himself has argacd this poin on many occasions (personal communication).
 50. Mareus had not been thinking about the closure issote. Nevertheless, his work forms an interesting data point among the posible choure strategies.

[^16]: 51. Farly closure is very similar to a compiler optimization called will accursion which conkerts right recursive expressions into ilerative oncs. thus uplimizing sinck usage. Cuphiters wuld purfarmephtinizations only' when they can prove that the structure is right recursive: the A-over-A clusure prigiple is somewhat heuristic bacause the structure may tury out to be center-embedded.
 52. A node cant chase until it knows who ils nurher is. This is imporpand beausc id is poxsible in YAP wo build nodes bottom-ip. They might have , the their daughters, but not their nuther, Secondly. we assund the root ducsn't have a mother and hence it cannon cluse. This will have some important inplicaluens as we will sec.
 53. Notice that an A-over-A-over-A prineiple would wis have the sume limiting behavior. In general, if there are n calcgorics. an A-oyer-A pribeipte would linit the stack (depth to 2 n (in the rinhe branching cilse) whereas an A-over-A-ever-A principle would limiat the dipth to 3 n. The difference (between 2 and,3) is a comstamt which cannot be distinguished by a complexity argument of this sorl. It is an.crupiricill question which ispreferable.
[^17]: 54. The A-over-A closure principle is an incremental forgetling procedure. One could imagine another type of forgeting procedure which waited until the system man stort un spate and oint then it would swirch the stack for "garbage". (In some sense. Fraziers PPP avoids "shunting" untif it is ninhirg stwot on spaec. Hence the PPP is effectire though the SSS is now stuck with the problem.) In this framework: the forgeting procedure ath as a background process which "interrups" the parser whenever space runs short. This interrupt approach is quite platustie thuge it poses a few problems. First. like a IISP garbage collector which alko wats untit the computer is out of CONS space, it is not (quasi-real-time (bounded amennt of time between reading any two input symbeds). This is a particularly undesirable property of LISP for real-time applications (like airfine guidance systemis) betause the airplane night crash during a garbage collection. Secondly, imterrupt driven systems are extremely difficult to debug and verify because it is very difficult to replicate the same sitiantion twice. Consequenty, it would appear quite diffieult to model real psychookgical ditat within in interrupt framework. Thirdly, the interrupt mechanism is yet another device which mist be slipulated. The incremental approath avoids all of these technical problems.
[^18]: 59. Some open nodes may not permit conjunction becaluse they are stacked up and hence out of view until the lower possibilities fail. The preference for the lowest open mode will be diseussed in chapter 4.
 60. There are some grammaticality constraints on conjunction which further restrict the pussibilities which become important to chapter 9.
[^19]: 63. There have been many articles relating ATNs to processing stratcgies [Kaplan72] [Wanner and Maratsor78] [Bresnan78]. All of these require noore reschurees (nemory and bickup) than we are willing to allocate. Their approach appears to be very difficult: although there was greal hupe in the carly pipers. it is very difficult to make further progress. McDonald (pensomal commmication) has pointed sut that traditimal ATNs are anakgons to PIANNFR [IIewitt72]; boll replace knowledge with brute force atematic baskup. More reeent AI prublem solving languages (e.g. TMS [Duyle78]) replace motions like atuennatic backup with dependency dirceted backup. We see the sime trend in language processing (e.g. GSP [K:plan75]) tixnugh there are many detaiks we be solved. We have avoided many of these difficult problems by stipulating FS and Deleminism. It secms that the Bresnan-Kaplan framework is nore compatible with these stipulations thatn nore general frameworks (which pernit non-deterministic side-effects), theregh it would be difficult to formalize this intuition.
[^20]: 64. This condition will be weakened to encode structural ambiguity (pseudorattichment).
 65. These are often called phras' murkers (or P-murkers) in the linguistic literature.
 66. $n=$ noun; $v=$ verb; a = adjective; $p=$ prepusition
 67. The "bar" system was first introduced in [Chomsky70] to describe certain generalities between noun phrases and clauses (i.c. John's huving crilicized the book and John has criticized the boski. Scu [Jiakenckeff7] for a nore current reference. The term projection refers to the next higher bar level. For exampte, $n p$ - is a projection of $n p$ and $n p$ is a projection of n. The third bar level is the maxinul projection:(in VAB). There tewotheen propusatis for five bur systems.) (88. $\mathrm{s}=$ sentence; se is a projection of s : det $=$ duterminer: comp $=$ exaplomentiver (for. that. ...); comj $=$ conjunction; punct $=$ punctuation. These calsegories den't til the baf patern wery well.
 68. Printing is a very expensive tuak:: it reguires searching the fringe of the parsed suberes to find the individual words. The parser itself is not permilled to undertake such expensive tashsinTeshmivally the priater is not part of the machine.
[^21]: 70. The bound on carch buffer is a paranuer which can be adjusted at runtime.
 71. Chomsky (person:il communieatien) paints out that bunadod keokathend might be equivatent to seme sort of bounded bicktracking. In which casc. the lower buffer could be theiugh of as meetsitring the degree of brektracking.
 similiar to bounded bracktrickiag and loonded kookunkend)
[^22]: 72. Actually the tree structure is maintained for the printer's convenience: the parser itself deses not book beyond a single level of are structure. The parser is a FS trainsducer which inputs words tmd edetputs tree structure. Thuse structural links, which are maintinited for the printer, should be viewed is part of tie couput, ive the intemal state.
 of accomplisting this undesirable comseqnence.
 73. Traces are a formal linguisike object which will he discussed in chapter 8. Pisifital atfows traces to be bound to other traces and hence it may require unhounded time to ietrieve a vallue from a kong chain of traces.
 74. This propery provides considerable computational power. That system is cupabte of parsing CS languages of the form: $a^{n} b^{n} c^{n}$ [Kaplan (personal smmnunicalion)].
[^23]: 80. In GSP terminology [Kaplian75], the upper buffer holds producersand the kwer buffer holds consumers.
 81. Dallghters call be attached before they themselves are complete. This is crucial for carly chosure.
[^24]: 84. A finite clause is tensed, as opposed to an infinitive or participial phrase.
 finite: $\quad \mathrm{I}$ ambor.
 infinite: To be a boy is tough.
 participial: Being it bor, I know how he must feel.
 Raded peist the barn the trowse fall like geling even.
 85. Auxiliary verbs are "helping" verbe suth as: be. huve will can do ...
 86. Parentheses () denote optienul terms, brikete II denote exclusive diginnction, and * is the Klecne star for arbitrary repetition. Brackets have very restrictive distribution since they are difficult to express within the determinisn framework.
 87. ps-predict has a tup-down asymmetry which is very unfortunate. To compensite for this deficiency, there are quite a number of production rules to predict bottom-up. The grammar would be much simpler if the ps-predict rule were more symmetric.
[^25]: 90. It is useful to further distinguish the acceptable/unicceptable continuum. The plus symbol (+) is used to indicate a more acceplable sentence; minus (-) indicates a less acceptable one.
[^26]: 91. Actually Fratier (personal communication) disputes this poine Since her makhine is non-deterministic, these "exceptional" cases are less probkmatic: her machine simp' takes the nust minimal path first and then backs up, when it eneormters a dead end. Hence it will eventuatl) find the maxt miniatal grammatichinterpretaion. In our deterministic framework, we have marked riles to kook ahead for the problematic ciacss. In cither franework, though, these exceptional cases pose a difficulty for all explanation because it is not dear low whe can comstrain the backip/loxikahead mechanism.
[^27]: 92. Some parsing models in the literature astually have this problem. For example. the I.I (k) algorithm, which predicts before attaching. will infinitely predict on left branching structures. Also. the Harvard Predictive Analyzer (IIPA) [Kunucre] ran into difficulties because il predicted first. They invented the shaper heurisic to prevent the machine from predicting nore terminals than there were input symbots. Needeas to suy. it is pexsible to do nuch betler by atleching sooner as in Farley's Algorithm [Farley70). A well-formet substring (WFSS) tadte [Kuno and Oellinger63] would also solve the problem, thengh it requires untounded space. (It could be argued that the WFSS provides the necessary bottom-up information by constraining the search space as it docs.)
[^28]: 93. In our formulation the possitive information will be in the limited lookahead buffer: in Fraziers model, it will be discovered by the limited backup mechanism.
 94. The terminolugy, reduced relative, comes from an old deletion analysis which derived (b) from (a) by deleting who was.
[^29]: 98. It is pussible to add sounc marked rules which would occasionady allow an extra level of embedding. Correspondingly, it is possible that a person conld learn to recrgnize an extra level of embedding in many situations. For example. certain experienced psycholinguists have memorined certith 3-deep comstricions such as: \#The womun the man the girl loved met died. However, it is impossible to add cmengh narked nukes to allow arbitrarily deep center-embedding.
 99. There is one qualification: the non-minimal attachments are limited to open nodes. Hence semantic biases cannot influence the attachment decisions once a node hits been ckosed. For example, in structures like: [1 said $\left[_{1}\right.$ jou said he said ...X.... X cannot attach to s_{1} once it is closed, under any semantic context. (Some semantic contexts might block s_{1} from closing, and hence indirectly influence atlakhnent decisions.)
[^30]: 100. A functionalist argues that a phenomenon P is the way it is because P is a necessitry by-product of computing some
 thecause certain ill-formed sentences cannol be parsed. This pusition is taken in [Ades79].
 101. Chomsky and lassuik specifically warn us aboul certain tempting allthough incorrect functional "explanations." According to [Chomsky and Lassikik7 pp. 437]. Similar conclusions are conventional in altempls ar functionul explanations for properties of physical organs. for example. Thus ne can no doubt account for propentries ldy the heabi by considering the
 this function filled. (Most reasomable functional explanations are at the level of evolution. Fven if functionadism does not provide ant explanation, it is oftel useful as a motivating force. It may suggest where to concentrate the investigation. Allhough we are not advocating an extreme finctional position, it can be a profitable approuch.)
[^31]: 102. Martin (persunal communication) has informed us that certain sensess of that were more uniform in older forms of Fnglish. It is quite possible that we are missing a generali ",tion in the varions lexical fumns of that.
 103. In a parallel model, one could imagine that mustall lexiey entries; would whe kager to fetch from menory, and hence, an unusual sense woykd lose the "race". In a hookahead sysiom, it is pussuble to state the marked rukes so they will trigger very rarcly (only in the marked case).
[^32]: 104. Frazier [Frazier79 pp.143] argues that het late closure principle does not apply here because the girl with a book is a single pickige. As stie defines late closure, it works on packages which are roughly six words long.
 105. Suppose that the parser consisted of several parallel processes which were all competing against eakh other. The first process to tinish would be the "winner" and its output would be taken as the preferred interpretation. When two processes finish at the same lime, the sentence might be considered ambiguous/vague.
 106. This ider was first stiggested by Mitch Marcus. It is simitar to Sager ind Grishman's notion of permanent predictable ambiguities. [Gishman73]
 107. Many of these sentences are from [Wales and Toner76]
 108. A DAG is a genefal graph (of nedes and refations) whe a condition excluding circular loops. Alternatively, a DAG is a gencralization of tree where daughters may have multiple mothers.
[^33]: 109. Wh-movement refers to a class of constructions including relative clauses and wh-questions. These constructions relate a wh-word with a gap which is represented by a t (for trace). Traces are represented in YAP as phrases which dominate no words.
 relative clatuse: I siw a boy who you know $\mathrm{t}_{\mathbf{i}}$.
 wh-question: Who ${ }_{i}$ did you sec t_{i} ?
 This will be discussed in more detail in chapter 8.
 they are asked questions regarding quamifier scope. The subjects will often admit they hadit considered the scope issue.
[^34]: 111. The weak gencrative capacity is the set of sentences generated by a particular grammar. The strong capacity is the set of derivations. In general, the strong capacity is much larger since an ambiguous sentence correspemds to several elements in the strong generative capacity, but only one in the weak generative capacity. (Since the class of the machine (FS, CF. CS. TM) is tied to the weak generative capacity, psendorattichment can be implemented without moving to a higher computational cliss.)
 112. It is comjectured that YAP would be a deterministic PDA if the staxk bound were removed.
 113. For eximple, there is no $I R(k)$ grammar for an inherently umbiguous language.
 114. This assumes that akeeptable sentences form an I.R(k) language. Even stronger, this result should follow from Marcus" Determinism Hypothesis and not from our FS hypothesis. (It trivially follows from the FS hypothesis since all FS languages are also I.R(k).) Oherwise, it isn't clear how ambiguons parses conid be found short of exphoding the state space ats suggested in chapter I when Marcus' Hypothesis wass first memtioned. "In oher words, we are assuming that acceptable sentences (even with arbitrary center-embedding) are still weakly cquivalent to an $\operatorname{LR}(\mathbf{k})$ language.
[^35]: 115. This example was suggested by Joan Bresnan.
[^36]: 117. The independence property is central to the Bresnan-Kaplan framework though it has appeared in carlier models. including ATNs.
[^37]: 119. Raising is a particular linguistic construction which has received considerable attention in the linguistic literature (see [Pustal74] for a long list of references).
[^38]: 123. Actually, tensed verbs donit have number feitures themselves. but ruther assign number features to their subjects. For example. seems assigns singular features to its subjecti. allhough it is not singular itself. This point is important in examples like That they seem to be nike ts a fued where the enthedded eliuse is wingulari eweh theigh its tuain verb (seem) assigns plural feateres to its subject (they).
 124. All ATN modef call distinguish between trageress and unibiguity bethuse it hes two mecharisms: underconstraned values (vague) and non-delerministic assignments (ambiguth). In our frimewenk; we don't have the second nechanism and hence we cannot (currentiy) distinguent the two catses.s
 125. Collections can be viewed se mary individal entities (intier), and thence plind, or they can be viewed as a single conglonneritte (outer), and hence singstar.
[^39]: 126. A bit vector is an array of binary vatiables, It is very similar to standard sel of binary valued features. We have chosen this representation for efficiency reasons: it requires minimum space and certain operations (store. fetch and merge) can be done in parallel becatuse liISP has opperations for parforning lowical operations in parallel on a single machine word (32 or 36 bits depending on the particular hardware).
 127. Cattegory (s, n, v, \ldots) is not implenented in this way because catcgory features are not percolated through the fstructure like the others. For example, athhough there is goxd eyidenee thal a moun phrase inherits a number value from its determiner (this boy, these boys), it is much harder to argue that it inherits a category value. Catcgory is defined to be part of the cstructure.
[^40]: 130. Our use of is-bound-to is very similar to transformational movements in Chomengy's framework. When we bind two pusitions, he would move a constituent from one position to the other.
 131. This property is implicilly :assumed in [Kaplan and Bresnan80]
 132. There are some very interesting theortical issics here. The Bresinin- K aplan framework stipulates that binding is an
 evidence to decide the matter. (Convincing evidence is very hard to cone bs.) On the one hand the equivalence relation is an additional stipulation and hence it is undesirable. But on the other hand, ite equivalence relation requires less infermation to represent (haill a more gencral relation) and hence it is to be preferred. There is a cernain advantmge in having a more restrictive ueory. It is une clear whether it is theoretically nore desirable to have fewer stiphtations or a more restrictive represcmitation.
 13y. Athough a processing argument alone is not adequate julstifeation for adopiing the propksed assumption (movement is equivalemt to hind*), it should be sufficient motivation to stady the propexil in greater detail.
 133. Chomsky (personal comminikation) has proposed thal case might he tsigned to cinh index (i.c. each equivalence chas), not to individual noun phrases. It is áfict that crifindexed nfun phrias receive case exacily once.
 134. This is inefficien in boll space and time. In Parsifit, for example. it can take unpounded tine to trace the binding pointers bivk to the lexical subject.
[^41]: 150. The following yuotation is taken from [Woods70]. He is trying to justify augmenting his ATN nrodel. An un-augmented ATN (a Recursive Tramsition Network RTN) has CF complexity.
 151. Chomsky (personal communizations) has said on namy uccasions that weak generative capacity (computational complexity) is completely irreleviant to the study of grammar. However, weak constriints cill be used to limit the space of powsible grammars. For example, if language (weak) is ictiailly FS, then no strictly CF grammar (strong) can correetly describe the facts.
[^42]: 155. The term ruising conses from the old analysis where transformations literally raised the embedded subject up to the higher mattrix. See [Postal74] for a defense of the traditional analysis.
[^43]: I should con you for that:
 I had the boys take the exam.
 1 diditit.

[^44]: 160. Note that it-extraposition merges every fealture asscociated with the subject whereas there-inserfion only merges the num feature. Hence, it-extrapusition uses the merge function whereas there-insertion uses the mergef function.
 161. Execpl for have, all other auxiliarics buck + en pathitiples. (they mege soinh ouher ms feature with their ficomp.) For sume unexplained reason, have blecks passive interpretation of its fxcomp.
[^45]: 163. Page faults (gencrating lexical entries on the fly) become less and less probable as nore and more hexical entries are added to the core lexicon. It may be more efficient to inchude redundant information in the lexicon which is frequently accessed, thus reducing the chance of a page faut. In other words, it may be worthwhile to sacrifice some linguistic complexity to achieve improved computational complexity.
 164. For example, there has to be a mechanism to prevent the nule from re-applying arbitrarily often to the same predicate. There is an uninteresting lisp expression in the pattern to axcomplish this.
[^46]: 166. [Fmonds76] pustulates that transfurmations divide into two cattegories: Seructure-Preserving Transformations and Reot Transformations. The former introduce or substitute a constitucnt $($ C into a position in a phrase narker held by a node ($:$ ruen transformations move, copy and insert a comstituent in root clauses.
 167. Acturally the cass is not so clear: there may be ways to reformulate these transformations to be structure preserving. For example. [Kaplan and Bressam 80] prescht a strocture preserving andysis of imperative.
 168. A program is siid to callse sideeffects if it modifies dita structures in a non-inverible fashion. In generall, it is possithe to avoid side-effects: there is a school of computer scientists who advocate completely side-effect free programming. This position is somewhat analgous to the lexicalist schowl of linguists who advocate side-effect free analyses.
[^47]: 169. Only yes-no and wh-questions have been implemented: the other cases shouldnit be too much nore difficult.
 170. This dewsint work in the prepused adverbial caise. Never hewe / seen so many balls! Bob Berwick (personal communications) has sugeested that the inverted forms share a common I.F (bogical form) interpretation which distinguishes them from declarative semtences.
 171. The last lerm of the pallern could be an arbitrary lisp predicale which must be true in order for the rule to match. In practice. the predicates tend to test features of nodes in the buffer. In this casc. the predicate crole-can-adiunce? is testing if upl is looking for a subject. Some details have been suppressed for clarity. For example, there are some agreement constraints which will be discussed hater in this chapter.
[^48]: 178. The netin verb sense of have inverts nore freety in British English.

 American: Do you have a match?
 British: Have you a match?
 179. The term differentiou diagnosis was derived from medical upplications. It is belitived that dxectors have precompited rules to differemtiate between medical conditions which have similer symptoms but require, very different diagnoses [Davis77] refers to these rules is metarrules because they reason about rules. This is a very powerful technique, though potentially expensive.
 180. Actually, this rule has a slight flaw: it fails to distinguish Have I euten? from Have me eaien!. This suggesss that case features (ill addition to person/mumber) should be used to disambiguate. Neither. YAP nor Parsifal usc reflexive features to disimbiguate. For eximple, compare:

 Have goursalf complecely taken advantage of, for all I carc!
 Have 道 completely taken advanlige of every chance?

[^49]: 181. Like other performance limitations, the buffer length is subject to a certain amonnt of individual variation.
 182. We accept Marcus" assumption that no rule can access beyond down3, although additionally, we allow rules to access upl, up2 and up3. This is a performance limitation on bickup/lookahead. It seems to be subject to the same idiosyncratic behavior that plagte other performance constraints (e.g. individual variation).
[^50]: 189. These examples were given in Ken Hales 1979 fall class at MIT.
[^51]: 190. These sentences were given in a recent talk by George Hart at MIT. Sume informants find these sentences perfectly acceptable while others (including the author) find them extremely-narginal.
[^52]: 195. The corollary has been stated as a processing filter quite analogous to the competence fitters of [Chomsky and Lasnik77]. Filters are a convenient method of describing the facts. but they are probably inadequate as explanations. In this casc, we cannot explain why last-resort seems to be the unmarked case.
 196. There are at least three productive "counter-examples" to the corollary where the filter is inoperative. We will turn to these cises soon.
 197. The marked interpretation is excluded from certain dialects.
[^53]: 198. Hankamer proposed that the XX Extraction Constraint belongs in competence. Since it can be violated (in the marked case), we prefer to place it in performance. [Fodor78] also views the constraint as a processing matter.
 199. It has been suggested that cleft sentences like. What I wanted thul for I nobody could undersiand, form another class of marked exceptions to the performance filter.
[^54]: 201. It also is possible to represent movement locally in Chomskys framework, using equivalence classes. We have previonsly sogested that Bresnam-Kaplans merge operator $(=)$ is an equavalence relation. All the nodes which have been merged logether (co-indexed) form a single equivalence class (index). which is represented as a single node in fstructure. For example, in the raising catse (move-np) all the understood subjects are co-indexed into a single node in fstructure. Similarly co-indexed traces in comp ($/$ wh in YAP) are also a single node in fstructure.

 Using the same basic approad. we could represem motement locally in Chomsks's system. I.et move-alpha be a relation between two phrases, and let move-apha* be the transitive, symmetric and reflexive closure of move-alpha. Move-apha* is smilar to Bresnan-Kaplan's merge ($=$) operator: it too defines cquivalence classes corresponding to the index. The chaim that movement is local in fstructure corresponds to a daim that movement is local on indexes (equivalence classes under moveralpha*).

[^55]: 203. It seems that the gaps have to be identical in every respect, not just categury. That is, they have the same reference, person, number, gender, calse, inflection, etc.
 204. In Gadar-Notation, X / Y refers to a node of category X containing a gap of category Y.
 205. These examples are taken from [Gazdar79c]. Tough movement and comparative are not currently implemented.
[^56]: 208. The terminology is laken from [Marcus79] who used a similar technique to parse noun phrases.
 209. There are two registers asseciated with eich node (as-stalus and as-relurn-status) which prevent infinite attention shifts and returns. The details aren't very interesting.
 210. Marcus atlention shift mechanisin was conditional on calcgury lype Parsifal would attention shift for noun phrases. but not for verb phrases or prepositional phrases. Our mechanism applies to all categories.
 211. The ordering of actions in Marcus Parsifal is partly defined by the infepretef (attention ahifl and return) and party implicit in the grammar (atlach, predict, close and find gap). The implicit order may be incorrect; it is our own interpretation of his grammar.
[^57]: 214. YAP does not currently pseudorattach conjuncts, although it was designed with this in mind.
[^58]: 217. One could rightly criticie these transformations as mere stipulations. A truly revealing theory would explain the facts. We have described (stipulated) many of Bresnan-Kaplan's analyses as they are. When decper explanations are found, it may' be worthwhile to redesign YAP.
