MIT/ICS/TR-240

SAFETY AND OPTIMIZATION TRANSFORMATIONS

FOR DATA FLOW PROGRAMS

Lynn Barbara Montz

Tius blank page was inserted to preserve pagination.

Safety and Optimization Transformations
for Data Flow Programs

by

L.ynn Barbara Montz

January, 1980

Copyright 1980 Massachusetts Institute of 'T'echnology

This rescarch was supported in part by the National Science Foundation undcer rescarch grant
MCS575-04060 AO1 and in part by the Fawrence Livermore Laboratory of the University of California
under contract 8545403.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

| Safety and Optimization Transformations -
for Data Flow Programs

by
Lynn Barbara Montz

Submitted to the Department of Electrical Enginecring and Computer Science
on January 31, 1980 in partial fulfillment of the requircments for
the Degree of Master of Science

ABSTRACT

The data flow concept of computation secks to achieve high performance by allowing
concurrent execution of instructions based on the availability of data. This thesis explores the
translation of a subsct of the high level language VAL to data flow graphs. 'The major problem in
performing this translation for the target machine, the Dennis-Misunas data flow computer, stems from
the restriction that graph cxecution sequences place at most one value on any given arc at any time.
The data/acknowledge arc pair transformation is introduced as a means of implementing this required
operational behavior. Its effect on data flow graph operation is subsequently explored as it relates to
correctness and performance. '

Though the arc transformation cnables graphs to be exccuted without the possibility of
deadlock, the resulting overhead and the potential loss of some concurrency represent significant costs.
Two techniques aimed at minimizing these problems are developed for optimizing transformed graphs.
‘The optimization to eliminate unneeded acknowledge arcs analyzes VAL constructs to identify arc pairs
which may permit removal of their acknowledge arc. 'The optimization to balance token flow specifies a
mcthod of inserting identity opcrators into a graph for the purpose of pipclining input scts, and thereby
increasing graph throughput. Though dcveloped within the context noted, the translation and
optimization issues described should prove applicable to other data flow architectures.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Computer Science and Engineering

Keywords: data flow programming, data flow translation, optimization, asynchronous systems,
Petri nets.

This empty page was substituted for a
blank page in the original document.

ACKNOWLEDGEMENTS

Theodor Herzl said, T7TaR W 'R BN BR | that is, "if you will it, it is no drcan™; and
though this thesis represents the completion of a personal endeavor, its accomplishment is owed in
large part to several individuals to whom [am greatly indcbted.

[wish to thank my thesis advisor, Jack Dennis, for offering me the opportunity to join the
Computation Structures Group of the lLaboratory for Computer Science, and for his subsequent
guidance in the formulation and development of this rescarch., | have gained much from my
association with the members of his group, and am grateful for the very positive and warm working
atmosphcre which they have collectively created.

I would like to thank Clem Icung for providing direction and encouragement during the early
stages of my work, and Dean Brock for his helpful editorial comments and suggestions concerning the
technical content.

I am cspecially grateful to Bill Ackerman for countless invaluable discussions of the problems
and idcas which arose throughout this rescarch. His paticnee was truly remarkable, and his
encouragement and confidence in my abilitics should prove a permanent benefit.

Of course, 1 must express my spcciul‘ thunks to Chris T'erman whose excellent preparation of
the graphs in this thesis scems quite minor in comparison to the sincerity and valuc of his fricndship.

Finally, I am most gratcful to my parents and family, who have always provided me with

support, encouragement, and love,

This empty page was substituted for a
blank page in the original document.

'TABLE OF CONTENTS

1. CHAPTER ONE

1.1 Introduction

2. CHAPTER TWO

3. CHAPTER THREE

3.1 Balancing Token Flow

3.2.4 Obscrvations

4. CHAPTER FOUR

6

6

1.2 Data Flow Graph Operation .1
1.3 Translation of VAI. to 1Data Flow Graphs 9
1.4 Safcty Transformations for Data Flow Graphs ... 12
1.5 Optimizing Transformed 1)ata FIow Graphscvveemensieenssessssssssnensuesessssssess 14
1.6 Structure of ThesSiscc.cceereeercemmeeeceesensnencseenens 15
16

2.1 The S/afety Transformation 16
2.2 The Petri Nct - Data Flow Graph ARalogycoveeccnisreenscnninnienscenersensessesasesness 17
2.2.1 History and Analogy 17
2.2.2 Modeclling Data Flow Graphs with Petri Nets 19
2.3 The Data/Acknowledge Arc Pair Transformation 22
2.3.1 Achicving Safe Data Flow Graph Operation ... 22
2.3.2 Preservation of Livencss . 24
35

35

3.2 Formulating the Optimization 36
3.2.1 Identifying the Source of Bottleneck 36
3.2.2 Preview of a Solution 31
3.2.3 Analyzing Token Flow to Characterize the Solution 38
42

3.3 Full vs. Limited Buffering 43
3.3.1 Achicving Limited Buffering .. 43
3.3.2 Examples of Full vs. Limited Buffering 45
3.3.3 Additional Considerationsccoceceeeceeserererenne 56
57

4.1 Eliminating Unnccded Acknowledge Arcs 57
4.2 Considerations for Acknowledge Arc Removal 58
4.3 Analysis of the Conditional Construct . 60
4.4 Analysis of the lteration Construct 66
66

44.1 Acknowledge Arc Removal

4.4.2 Acknowledge Arc Removal in lterative Programs ... 72

5. CHAPTER FIVE ettt ee s et e ens s s s b 79
S.1 SUITIITIATY oottt ee e ee et ee e e ee s s st ateb et sbestesaereene s eneseesesesenen 79

5.2 Dircctions for Future Research ..ot essnns 81

6. BIBLIOGRAPHY oottt st e see s sbsasibs s sas s ss b sssssas s esaesaenns 83

CHAPTER ONE
1.1 Introduction

The short history of computing as a:scicnee is unique in its unparaltcled rate of technological

growth. In response to this, the demand for greater levels of computing power has risen as rapidly.

v
Lod F3 i

Anticipating the continuation of this trend, rescarch in the arca of parallel computation sceks to achicve
high performance by manipulating programs to exploit the parallclism:inherent in many problcms.
Though this has led to the introduction of "do in parallel” constructs within certain fanguages, the
sequential nature of conventional machine programming has proved to be a barrier to the formulation
of an adequatc and practical approach. The dafa flow-coneept-of computation:uvercomoes this difficulty
by allowing the availability of data to determine the exceution sequence, rather than a scquential
instruction counter: - In-the data flow model, an ‘operation is‘¢xecuted as soor as its required operands
have been computed. "The development of this concept has resulted in the proposal of scveral data flow
machine architectures and associated data flow languages. This thesis addresses certain’ language
translation- problems which atisc in translating the high tevel data flow language, VAL[2] for the
Dennis-Misunas data flow machinef11].

The concept of data flow is best illustrated: by data flow graphs which explicitly show the data
dependencics of operations in-a data flow program. The operators and ares of data flow graphs are
viewed as an abstraction of the instruction cells and operand registers of the data flow machine and as
such, provide a model for describing translation problems. The chapter proceeds with a more detailed
look at the components and operation of data flow graphs, followed by a bricf look- at the high level
data flow language; VAL and its translation into graph form. The major problem, termed safety, which

arises in making the translation will be identified and discussed in ‘section 1.4. While resolving: the

safety issuc is straightforward, the solution introdutes a secondary, more subtle sct of problems to the
graphs. Scction L5 identifics these along with several optimizations of the initial solution aimed at
minimizing such problems, an cxpanded discussion of which forms a major portion of this thesis. The

chapter concludces with a synepsis of the remainder of the thesis.:
1.2 Data Flow Graph Operation

"The basic componenis of directed data flow..graphs. are gperators and arcs-which join the
opcrators. When an operator fires; it absorbs valucs or.okens:fromits input arcs and produecs tkens
on its vutput arcs, ‘T'hese are three upesator types; and corresponding fules defining their operation or
Jieing behavior. the graph in-Figure 1.1 which scpresents the: VAL .condiféanal construct:

fexpthenfelse g |
contains instances of cach type. ‘The exp node is an abbreviation for a VAL cxpression representing the
predicate of the sonditional., thus, it should evaluatcw aboolean-valwe.. -~ -

‘The most generalized operator type s the functiopal operator. represcated in the figure by
nodes f and g ‘Ihese opermtors may perfonn simple drithmeotic - operations such as addition or
multiplication, or more complex functions such as squarc root. The fisiag behavior rule for functional:
opcerators specifics that a token be present on each input arc-for the operator to fire; at which time all
inputs arc absorbed, the appropriate function is.computed and a rcsult token is produccd on cach of the
operator’s output arcs.

~ The ;mg and false contro} gates represented in Figure 1.1 by the T, and F nodes form a socond
operator type. Fach of these operators fcquircs a control and a data input to-fire, and operates
acbotding to the following rule: If the control input matches the gate type, the datainput is transmitted

to the gatc’s sutput arc, otherwisc the input data token is absorbed and o output is produced. Thus, a

Figure 1.1. Data flow graph of the VAL cxpression "if exp then f else &

inl_ in2 in3

T gate (F gate) will transmit its input data token to its output arc if and only if it receives a tryc (false)
input control token.
i

The remaining operator type is the M gate or m_gg_ ggn;rg ga;g whlch has {hrcc inputs; a

control.input, and two data inputs corresponding lo ng and falsg contml mput valucs To fire, an M

LR 1
4

gate rcqunrcs an mput control token and corrcspondmg mput data tokcn wh1ch is thcn transmlttcd to
Lhe gatcs output arc. A value prcscm on the input data arc not sclcctcd lS unaffcctcd by the gate’s
ﬁrmg Appropnately, the M gatc merges two paths in thc graph]‘hus. hgure 1.1 models the
condmonal construct behavior by allowmg an mput tokcn to ﬂow thmugh cnhcr the Tor F gate (based
on the cvaluatlon of exp) to the M gatc which mcrgcs the _Lm_q and false paths to producc a result token -

on the graph output port.

1.3 Translation of VAL to Data Flow Graphs

While daﬁ flow- grabhs CXPOSC CONCUTFCACY inhcrent in a computation by cxplicit
representation of operator dependencices, it is impractical to CXprCSS programs in Vvthis form. Instcad, we
introduce the high level data flow language VAL, acrunym for‘mly;;fe-oricr;icd algorithmic /anguage, and
a translation algorithm mapping VAL pfograms ir"l,t‘ordaia ﬂowl graphs. Developed by Ackerman and
Dennisf2] as a source language for data flow glfaphs, VAL is;an applicagivc lénguage containing
constructs well suited for expressing: parallelism in,ai;régram.:;A;B,NF specif%calion of the syntax of a
subsct of VAL, used in the development of this thesis fo!lows. o ; |

exp ::= id| const | exp. exp| oper(exp) | let idlist = expin exp|

il exp then exp else exp | for idlist = e;@ do iterbody

iterbody ::= exp.|iter exp|let idlist = exp in iterbody]
if exp then uerbo:br else llerbody

- ad | vvprogmmmmg language xdcnuﬂexs

idlist ::= id{, id}

con;l: ::= "programming language constants”

oper:.= ';pn)gr;fr;ming languaéc opcrators"

‘The recursive translation algorithm mapplné VAI cxprcs:ons into mcir data flow graph.
nnplcmcntatnons defined by J. D. Brock|3}, consists of the funcuons T and Tl whlch rcspecuvcly map
VAL cxpressions and itcration bodics into their graph lmplcmcmanons. Both functnons produce graphs
which have an input port for cach free vanable in thc cxpressnon or iteration body bcmg translated.
T[eap] has an output port for cach value returned by the cxprcssmn Tlluerbody] has two sets of
output ports, I and R, uscd respectively to re-iterate or return a set of values, and an output port ifer? to

signal which possibility has occurred. Translations of the conditional and iteration expressions are used

-10-

cxtensively inl this thesis, and are shown in Figurcs 1.2 and 1.3 respectively. -

Functioning of the conditional expression in Figure 1.2 should be clear ‘from the discussion of
Figure 1.1. Evaluation of T[cxpl] should pl:odué;% an ihput control value for all gates in the graph,
allowing tokens to flow through cither the T of F g{tc'sr.;qua;}}li}t_gg@pulatinn of the graph represented
by Tlexpy] or Tlexp;] respectively. The ltcr;moncxpr\csswn of Figj:rc 1.3 is formed by using M gates

to merge the values resulting from evaluation of exp, with the it_bratién, I, outputs of Tllilcrbody]. The

control input port of cach M gate is connccted torithe ifer? output.of Tl[ilerbody], initialized with a

]

falsc token to ensure that selection of the first set of data valugs is from Tlexp]. A st of data values

1 will be iterated as long as successive irer? uuibﬁié a_l"c truc #wd will be rcturned at the first instance of a
falsc iter? output, which reinitializes the M gates. A more detailed explanation of the application of the

translation algorithm to the conditional -and iteration -cxpressions, as well as to the remaining

cxpressions specified in the VAL subsct defined above, can be found in [3]

Figure 1.2. T[if expy then exp, else expy end)

.

51 s

Mexp2) Tlexp3]

-11-

‘Figure 13. Tlfor idlist = expdo iterbody end]

A major concern in gencrating data flow graph implcihcmﬁiions of VAL, expressions is cnsuring
correct modelling of the semantics of cach high level constriict. ‘In fact; the iraﬁswﬁon*algorimm is part
of a two step process giving the opcratmnal scmantics for thc VM subsct [‘hc operanonal semanltcs of |
a data flow program is a formal modelling of the cxecution of the programs data flow graph The
operators composmg data flow graphs arc determinate, mcamng that cvery cm;:}plctc sct of inputs to an
operator (one for cach input port) produces a unique set of outpuls. Patif[25] proved that if the
opcrators of a graph arc determinate, the graph itsclf is determinate. Dcvclqpifng opcrational scmantics
for VAL is possible duc to the dctcrmiqatc naturc of its corrcspondingfdam flow graphs. Thus, a
complete sct of inputs to a data ﬂojy graph will produce a unigue sct of ;)utputfs. making it necessary to
cxamine onl} onc execution séqucﬁéc of a graph to derive the r;sult ofits cx;xution. The graphs in this |
thesis are generated from Brock's translation algorithm and are thercforc assumed to be correct

scmantic representations bascd on the operational semantics developed in [3].

-12-

‘1.4 Safety Transformatiens for Data Flow Graphs.

Though we acccpt the data ﬂuw graphs gcncratcd by thc’translatmn algnrlthm discussed in the
prcrlr)us section as thcorcncally currcct, thcrr arcs are aqsumcd to be mﬁnltc qucucs -- this prernnts
their rcallmuon Whllc it mlght bc possnblc to implement thcr gr'nphs usmg sufﬁcrcntly large finite
buﬂ”crs [hlS solution may not be acccpmble To examine thc problcm cons:dcr the state of the graph
shown in ngrc 14. ‘l‘hc token configuration shown can be reached by assummg rllat the graph occurs
within an itcration construct which ‘rccyclcs the output of the chnstruct. The second sct of mputs shown
could thcrcforc have bccn gcncrated in rcspunse to the ‘output rcsnhmg from the ﬁrst set of mputs
Assummg that thc uutput uf this ﬁlst sct was produccd by propagatmg tokcns thruugh thc fgls_g branch

of thc graph it would bc possnble for thc corrcspundmg T galc mputs (wkcns lahellcd 1) to sull be

present when the second set of tokens arrives, creating the computauon statc shown

5 .

Figure 1.4. Unsafe token configuration rcsulﬁng from infinite qucue arcs

R S

inl in2 in3

13-

" While an implementation of graph arcs as-iffers of somc-constant sizc (greater :than ene)
could accommodatc this configuration, the dcsngn of a number of data ﬂow archltccturcs, mcludmg that
of the l)cnms Mmmas dam ﬂow machme cannot support [hlS Thc corrcspondcncc of graph arcs to
oulchlnc registers in such designs makes it nmcmw lo consndcr only ﬂtme cxccutlon scquenccs which
place at mosi one token on any gwen arc at any ume ln"thc Dcnms-Mrsunas da(a ﬂow machme the
conscqucnccs of placmg t;\orc than one tokcn on on arc or corrcspondmgly, ;:orr‘lputmg a successive
rcg;stcr valuc bcforc it can bc storcd arc poss1blc nondctcﬁmmsm and dcad!ock asa rcsult of \;alucs
qucucmg up in its dlsmbunon nctwork and blockmg other va!ucs from rcachmg their dcsunanons[24].

lp TraTe

Mcctmg the onc- tokcn opcrauonal rcqulrcmcnt involves prcvcntmg “data flow opcrators from

1 Vs e

producmg new tokcns until their output arcs are empty This bchavnor is achlcvcd by deﬁmng the
following ﬁrmg rule for all graph opcrators

Operator Firing Rule: An operator is cnabled to fire when all of its nceded inputs are
present and all of its output arcs are cmpty

W TR R n L teeaie

Application of this rulc prevents thc hgure] 4 slatc from occumng.

While the operator firing rule defines lhc dcsared qstoken behavior, the problem of
implementation remains. By pcrformmg g uansfo@on which mlaces cach arc of a data flow graph
by an appropriatc data/acknowlcdgc arc pmr (d/a, amyatfrﬂw guph 's infinitc queucs are replaced by
buffers of capacity onc, and the opcratorﬁnng rule is cxpljcn]y bmlt into the graph. This is illustrated
in Figure 1.5, which shows the transformcd condllwga] construct of Figure 1.4. The transformation
creates arc pairs which hold cither ao;aa;or ackﬁoh*iodge token, where the lator indicates that its
corresponding data arc is cmpty. With the addmon of acknowlcdge arcs and tokens, firing rules revert

to their original specifications which dcpcnd only ‘on e pi‘éscncc of tokens on input, including

acknowledge, arcs: The opcrator firing rule requirement that output arcs be cmpty is ensured by the

-14-

Figure L5, Transformed Figure 1.4

@ data token
Q ack. token
——> ack.arc

cnabling condition that acknowlcdgc inputs be present.

The keyword used in describing this transformation is safety, where the underlying idea and

cilE EETR A SIS 5 U I o

the terminology is rooted in Petri net theory. Chaptcr 2 discusses the analogy between data flow graphs
and Petri nets, and the influence of Petri net theory on the safety transformation. Included in the same
chapter is a more detailed description of the transformation, and a consideration: of #ts effeet on:the -

correctness of graphs.
1.5 Optimizing Transformed Data Flow Graphs -

While the transformation of data arcs to d/a arc pairs cnables the implementation of data flow
graphs, it is imperative to qucstion the cost of the acknowledging scheme and dctcrmine the
- incfficiencies, if any, that are introduced. In fact, there is much to say concerning these issues., Aside

from the obvious overhead involved in incorporating acknowledge arcs and tokens, the constraints

-15-

which they imposc on graph-operation may causc bottlenecks. In response to this, ‘we have developed
optimization techniques which focus on decreasing ovcrhcad‘ and incrcgsjng graph throughput. The
optimization to eliminate unnceded acknowledge ares is aimcq »atdccrcasing overhead, thereby reducing
the cost of the transformation scheme. An analysis of data ﬂow graphs of VAL constructs indicates that
the cffect of certain acknowledge arcs arc rcalizod.by mcgraphs @nupl structure, making the arcs
unnccessary. On the other hand, increasing thfbu’ghput. the"'goai of the é;)timbation to balance token
JSlow, is accomplished by introducing additional,idén(ily actofﬁnm the graph and consequcntly creating
more d/a arc pairs. ¢ - " \ “ | -

Note that though %he term "optimization” may txkc ona vancty of mcanings, our usc of the
word is confined to the d/a arc pair transformation dcscnbed above: Both optimizations consider the
number of acknowledges uscd-in data flow graph transi'ﬁ"t’ions. We do not consider program dependent

optimizations which might typtcally involve modnﬁcanon of a graphs structure, ie, rcmoval of

unnccessary data arcs or opera[ors This lauer form of opummnon is analogous to standard

- A J,!

opnmuatlon tcchmqucs for convcntnonal scqucntlal programs and though nnt yet fully cxplored. .

should prove rcadlly adaptable to data ﬂow
1.6 Structure of Thesis -

Having cstablished a foundation, we procced to consider the main tasks idcnnf;md. Chapaer 2
cxpands on the safety transformation introduced in -socsion 1.4; and: disousscs velatcd: rélovaneithaety.
Chapters 3 and 4 respectively contain a development of the opnmmﬂons to balancc token ﬂow and
climinate unnccdcd acknowlcdge arcs. Conclusnons arc prcscn(cd in chaplcr S along wnth sugg&sted

4

areas for future research.

-16 -

' CHAPTER TWQ
2.1 The Safety Tranéformation |

The aim of the data/acknowledge arc- pair transformation of data flow programs is to
implement the operator firing behavior, defined in chapter 1, and restated here: -

Operator Firing Rulc An operator is cnablcd té fire when all of its nccdcd mputs are

present and all of its output arcs are empty. o o ‘

This rule reflects the correspondence of data flow: graph arcs to machine. registers, which requires that
the occurrence of more than one token on any arc be prevented: ~Restricting:data flow graph behavior
in this manner is' necessary (o cnsure deltcmﬁnatc‘.and.deadlmk:.ﬁte execution for the architecture
assumed. The analogy between the data flow graph characteristics of detcrminacy and deadlock and:
the Petri net theory propertics of safefy and liveness suggests the usc of Petri nct theorctical results ¢o
formulate and verify the d/a arc pair transforrnauon In fact, the strategy mkcn in devclopmg the safety
transformation is w extract rclcvam Petri.net conccpts ant mdeﬁacﬂm for data ﬂaw guphs.

This chapter procceds with-a closer Jook at the data flow-graph ~Potri act:analogy, particularly
focusing on the possibility of modclling the former: with the fater. Sectien 2.3 cxpands on:the safety -
transformation and its effect in guarantceing dcterminate (safe) and deadlock free (live) operation.
While shewing the cexistence of the former is straightforward;: a sigaificant:question concerns 'whether

or not the restrictions imposcd to cnisure safety affect iveness. . - .« ..

-17-

2.2 The Petri Net - Data Flow Graph Asalogy ~
2.2.1 History and Analogy

‘The major contribution of Petri sets is to aid in understanding systems. A closer fouk at the
componcnts of Petri ncts scems an cssential first step. - As shown in the Figure 2.1 example, a Petti net
isa graph composcd of transitions and places with an mmal markmg dctemnmng the number of lokens

-{pieces of data) rcsndmg on cach place. Thc transitions Wﬁneesmmsponé ﬁcsi)t;éuvcly to- data flow
graph opcratorsiand arcs.. A token must reside on each-input place to & transition for € 1o'be enabled for
firing, where firing the transition causes a token-on cach: input place 16 be'removed, andvon.e to appear
on-each output placc. Figurcs2.1(a) and (b) respectively show the Petriznet token:con figuration before
and aficr firing transition t1.- The operation of a Petri net is safeif it behaves:aceording to the following
definition:

‘A I)cl'mitﬁi Fora rﬁ#rkiné >M. a PctriJnet is safe :if for ;v.err.yv lﬁa;ﬁing M’ that caﬁ be |
rcachied by a scquence of firings from:M; thor:is:at:mest onc teken onh-any place.
This is preciscly the behavior that we would like data flow . graphs: to satisfy.- Note that the Figure 2.1
graph is, in fact, not safe since the scquence of transition firings: t1: 44; thwill place two tokens on place -
P.

We bricfly survey the cvolution of Petri nets:to- introducc th¢ thcoretical results that could
prove applicable to data flow. Petri nets were initially presented by Beani in 1962 iﬁﬂamﬁ modified by
Holt in 1968 [15]. Extensive study of safety and liveness for Petri nets of the marked graph and state
machine varictics has been done by Holt and Commoncr [16). Each of these classes form a particular

subsct of free choice Petri nets. This work has been extended by Michel Hack [14] to include free

choice Petri nets. Hack introduces production schemas, similar to data flow graphs, and asserts that

-18-

Figure 2.1. Petri net token configuration before and after transition t1 firing

<

— transition
O place

® token

H

t3

(b)

te

cvcfy production schema can be rc_prcs&;mcd by a free choice Pétri net. A majm result known as the
livencss-an;i-safcncss thcorem statcs ci’rcumrstanccs under whlch a | frq? ‘chqiccr net display§ these
propertics. We cxplore the possibilit& of using such a result in producit)g dctcrminatg and deadlock
frcrc’data flow érqphs. Guarantecing safety for ffcc choice Pcktri nets inlvolves ¢nsuring that every place
is part éf some diréctcd cycle containing onc token. This fact s‘hould.p:rove useful in detcrminipg ifa
data flow graph is safc, or in xﬁodifying it to be safe: We scpk a modélling of data flow graphs by free

choice Petri nets which allows us to concludc that a data flow graph is safg and live if its corresponding

-19-

Petri nét is safe.
2.2.2 Modelling Data Flow Graphs with Petri Nets.

The data flow graph firing bchaviot requircment that no arc ever hol(j morc than one token,
forces us to focus on the correspondence of ?tlata t;ow graph‘"'am to Pctrl.nct olaccs. Were the
correspondence of places to arcs 1-1, showing the Petri ‘nct madel places sat"e{avould prove the data flow
graph arcs "safc”. Unfortunately, this is not always the case as is seen in moticlling data flow graph
control structures.

Consider the graph of the conditional construct in Figure 2.2. Evaluation of the predicate
results in cnabling cither the T, of F gate whlch rcspccti_vcly determmeswhethé thc input data value x
will be processed by f7 or f2. A free choice Pctn net model ol’ mi;m flow grabh must cnable a token
to .proccede down onc of two paths to reflect thc;two'btmrches of thc conditioxtal-aud must merge the
paths. A possible model is shown in Figurc 2.3. Places and transitions comspondmg to particular arcs -
and operators in the data flow graph arc so designated. In comparing the decision structurcs of the
Petri net model and data flow graph, note that place aa’ in F“xgure 2.3 represents two arcs in the data
- flow graph. Although thc mapping between placcs and arcs is clearly not 1- 1, the Petri net decision
structurc prcscntcd is cssential for allowmg a token to take one of two paths Unfortunatcly, this makes
it more difficult to determine how propcmcs of pIace aa correspond to thosc of arcsa and x. |

A sngmﬁcant difference in the actual control structurc is the absence of specxﬁc placcs and
transitions in the model to reprcscnt the data flow graph prcdlcatc and |ts output control arcs. threas
the decision concerning which branch of the condmonal construct w:ll be executed is umquely

detcrmmed by the output of the prcdlcatc thc Petri net is mndelenmmsnc, provsdmg a model for all

possxblc decisions: Though each token arriving at place ax’ wxll caus¢ only onc path of the Petri net to

Figure 2.2. Conditional construct data flow. graph’

) decision structure
l'

b »
f1 2
c c

I .
1 _ F| merge structure

-21-

become active, both-paths arc potential candidates. ‘This situation oniphasizes the use of Pctri nets as
- general models for specific systems - in this case, data flow graphs [22]). To remedy the modelling
problems of the Figure 2.3 Petri net, a more spcciﬁc modcl shou(ﬁ ’ii’hFigurc 2.4 is built which attempts
to localize the nondeterminisim in an added poniqn of ihe Pﬂn ‘nfpg‘mcanl to represent the predicate
and control arcs of the data flow graph.} 'Ijlé;!xha’vjorioﬁﬂyc F"lgurc 2.4 transitions modclling the data
flow graph T and F gates is conscqucntly!dciénninistic,is;ncc firing is now dictated by the-portion of the

net labelled “predicate evaluation”. A’ _@ch on pféé;é";a' will c;nablc cither the T or F transition,
S e) HI :

Figure 2.4. Petri net model of Figure 2.2

thereby determining its path.

‘Though this Petri net mud'clling of the conditional construct more accurately captures the data
flow graph bchavior, the portion of the net representing the T’ and F gates violates the structure
defining the free choice subsct of Petri nets: If a transition following a particular place is firable at.a
marking M, then all transitions following that placc are firable at M. - Informally, the definition of a frec
choice Petri net states that cvery arc from a place: must be either the unique output of the place or
unique input to a transition. Thus, the configuration involving-place aa’ and.the T and F transitions in
Figurc 2.4 violates the free choice property. Since free choice nets form the largest subsct of Petri nets
for which a developed theory of liveness and safety exists, there is no advantage to pursuing. this
modelling route. For this recason we change dircctions;. attempting to- accomplish -our goals more

directly by extracting the relevant concepts of Petri net theory and redefining them for data flow.
2.3 The Data/Acknowledge Arc Pair Tra‘nsl'orm:aﬁm
2.3.1 Achieving Safe Data Flow Graph Operation

Since the Petri net propertics of safcty and Iivcnéss reflect the behavior we want data flow
~ graphs to display, we attempt to redcfine these terms for data flow via the correspondence of arcs and

i

operators to places and transitions.

Definition.. For an initial configuration of tokens, a data flow graph is safe if cvery
configuration of tokens that can be recached from the initial configuration-contains at
most onc token on any individual arc. -

Definition. An initialized dawa flow graph is Jive if a complete sct of inputs will
cventually cause a complete sct o_f values to appcear on the output arcs of the graph.

To ensure safe operation in Petri nets, every transition in the net must be part of a onc-token directed

cycle. Adapting this for data flow is accomplished by introducing initialized data/acknowledge arc pairs

-23-

(d/a afc pairs) and cnsuring that cvery arc in a data flow graph is part of such-a:pair.
"The mechanics of the transformation ilustrated in Figure 2.5 involves replacing cach full data
-arc with an arc pair composcd of a full data ar¢ and cmpry acknowlodge arc; and cach empty data arc
~with-an arc pair composcd of an empty data arc and full acknowledge arc. Alternatively, Brock’s T
algorithm can be modified to produce graphs with d/a arc ‘pairs. rather than infinitc.queut arcs. We
distinguish the two by tenming such an algorithm T, 28 opposcdito Tog, “The Figure 2.5 graph
scgment ‘labelled, “pre-firing state™ ‘represents: the transformation - of the graph scgment 10 s left.
‘Having dcfined this transformation we must verify that; in fact: it accomplishes its intended function -
to casure the safety and liveness of data flow graphs.
= An initially transformed graph is poteatially safe since -cach of its arc pairs holds only one
token. What.must be shown is the preservation of this-preperty sndor firing. Tn the pre-firing state of

the Figure 2.5 graph segment, OP1 is the only cnabled operator since it is the only operator which has
Commsstepa T oHet] L e de a0 e a1

Figure 2.5. /A arc pair transformation

——> uxk.arc
® datatoken
+ Q ack.token

tokens present on cach of its input arcs. Firing OP1 produces the post-firing state shown. The firing
action results in the absorption of a token from each oPOP1's input arcs and the production of a token
on cach of its output arcs. Conscquently, OP1 is disabled; and OP2 becomes the only enabled operator.
More importantly, OP1:cannat be feenabled until it receives'both a data, and: an acknowledge input,
where the appearance of the later is dependent on firing: QP2:: -Firing OP2 will absorb its input'data
token and producce an acknowledge token, input to OPL.- Thus, OP¥'s output data arc must be empty
for it to fire a successive time, producing a new data output: - This reasoning, shows the firing behavior

dictated by the data/acknowledge arc pair transformation ig safe. .
2.3.2 Preservation of Liveness

Verifying livencss of data flow graphs under the d/a arc pair transformation is more difficult.
Due to its determinate nature, a result obtained from aTd' 74 Staph witkmatch that of its corresponding
Too graph: Any T, graph firing sequence is a legal firing sequence i the T o graph. The question
to address is therefore, whether the firing rule constraint caus’“cs;somer /a 8raph to deadlock that
would not have done so in its T 5, version.

The intuitive fcclmg that Too graphs and thcnr corrcspondmg Td/ a graphs producc the same
results is cstabhshcd via thc theorem stalcd bclow l(s proof consists of a su'ucwral induction on the
size of data flow graph cxpressions. By asserting an induction hypothesis for expression subgraphs, we
show that the liveness property holds for Td /a graphs composed of acyclic mtcrconncctmns of exp
subgraphs, or graphs whose top lcvcl is a conditional or itcration expfcssxon |

In analyzing the Td/a itcration expression, we have to make some assumption about the
behavior of its iterbody operator which represents an iteration subgraph. Recall ﬂmt ;thc Tl translation

function produces iterative graphs which have one sct of input ports and two scts of output ports

!hrodgh which values can be itcrated or returned, as well: a8 a contrel gastput port to signal which of the

.two occurs. The behavior of the ports of an itcrative subgraph within a well-formed live T o) graph can
be characterized as follows: .\ When' prosented with n sctsiof inputs, the: subgraph: will proeduce n ifer?
control values-- k frue (0<k <) and n+k false: and corrcspondingly, & scts of |'data values and:n-k sots
of R data values for a total of n data output.sets. To prove livencss for-a' Ty, graph contdining an
iterbody opetater, we must first show: that the port behavior of Ty /. iterative subgraphs is the same as
that displayed by Ty iterative subgraphs. ‘Lhis will-allow: us te-assume the' desired. iterbody port
behavior, an cssential step in proving thé expressionfive. . - .. .- .

Proving the correct port behavior for Td /a itcrative subgraphs consnsts ofa subproof occumng
within the larger inductive proof. Sincc the iteration cxpmon,;o;t;anr;s che only instance o;' an
iterbody operator, the subproof should naturally appedr. just.pfior.to :praving the Ty, . itcrative
expression live., However, 40-stem aogfusion only 8 statement: of the assumed 'irerbody operator port
behavior -will be-made: 'An: outline-of the subproof follows: tho-inductive proof.. Finally, inherent in
this discussion is the: assumption that the-cquivalenec:of TF oz -and Mng‘z‘fﬂa'graph&h)bcing
shown for graphs which'ar‘e well-formed, where this term is dcﬁnedasgollomm :

Definition. A welI ﬁmned data ﬂow graphzls dcnvcd from a syﬁ&tMly correct VAL

program using the Ty translation algorithm. - - -+ .

We proceed with the livencss theorem.

'l‘heorem A well-formed live data ﬂow graph wnll remain hve under the d/a arc palr
transformation. : R ;

Statcd in operational terms:

-26-

Any T,,. graph corresponding to a well-formed live T, graph, when presented with n
complcte input scts will either:
(1) have produced n complete output sets and absorbed n acknowledge sets on its
output d/a arc pairs, and emitted n acknowledge scts on #€ input d/a arc pairs, or
(2) contain some cnabled operator.

Proof?

Basis: A data flow graph consisting of a single functional operator wi“ remain live under the d/a arc
pair transfomtétion. : | . " L

An initialized functional operator-is shown in Figurc 2.6. rOnf reccipt of a complete input set,
the operator will be enabled and when fired, will produce an o;nput token ébsorbing.;he acknowledge
tokcn on its output arc pair, and emit acknowlcdgc tokens on xts l;xpuf arcbpalrs Smcc the operators
output arc pair is thc éraph outr;ut arc pair, wnthlﬁ if xl;te time the output tokcn wm bc absorbed and a
currcspondmg acknowlcdgc token supphcd rcmltlahvnng‘the graph. If an nth scl of mputs has been
presented to the opcrator and an nth output has not appcarcd thcn' thc acknowlcdgc)arcs of the mput:
arc pailrs must have scc.n their nth acknowledgcs n- l of Wthh were produccd by ﬁnng opcrator f 'l‘hls

B N

implics that the state of the output d/a arc pair is onc of the followmg The data arc has its n-1st data .

Figure 2.6. Initialized data flow graph of a functional operator

Iy

value and the acknawledge arc.is cmpty but has seen n-1 acknowledge tokens; the data arc is empty and
the acknowledge arc is holding its nth acknowledge token. In the first case. within finite time the n-1st
data valuc will be absorbed and an nth acknowledge token produced reenabling the operator. In the

second casc the opcratorls enabled.

Induction Hypothesis: In response to an nth complete input sct, an exp operator (expression subgraph)
will either:
(1) have produced an nth complete output sct and absorbed an nth acknowledge set
on its output d/a arc pairs, and cmitted an nth acknowledge set on its input«d/a
arc pairs, or
) contain sorﬁc enabled opcrator
Acyclic Interconnection of exp operators
Assume that the Flgure 27 graph has bccn prcscntcd wnh an nth sct of mputs and that it has
net produced an nth outpu{ scl. Wc wﬂl show that the graph must contain an cnabled operator.
Suppose the graph has pmduccd j outpul scts wherc 1<n and the output arc palrs have had
their jth data valucs absorbcd, and arc holdmg thcu j+1$(acknowk:dge tokens. l‘hls implics that expz

must have seen at least j mput sets. ’l‘hrcc pOSSIbllltK.‘S arise. |

Figure 2.7. Acyclic interconncction of expression subgraphs

-28-

Supbusc expy has not yet scen its j+ Ist input set. Thea by theinduction” hypothesis, since
exp| has scen its nth input sct and only cmitted j output scts where iKn, exp) contains an cnabled
operator.

Suppose exp; has scen part of :ts j+1stinput set. 'Then by the induction hypothesis since expy

e

an cnabled operator.
Suppose exp, has scen its j+ Ist input set. 'Then sing¢ expy has its j+1st set of input
acknowledges available, it has not produced a j+ Ist output set: and by the irjxduction‘ hypothesis

contains some cnabled operator.

Conditional Expression
The conditional expression is shown . in Figu;"c 28. Inits Ty form, when presented with n
inputs, exp) will produce. n boolean outputs; k true where 0<k<n and-n-k falsc. In response to this,
~the M:gates will sce a total of n data input sets - k- on their truc data input arcs and n-k on their false
.aics. - These are merged to produce the geaph outputs according to the. n M gate control inputs ¢k true;
-k false) which correspond to the M:gate data inputs.

.- An-important consequence of the d/a firing restriction is that once -a control input value is
presented to the M gate, a successive control input cannot appear.on that control .arc {bctween a and
the M gate) uatil the M gate fircs to absorb the previous value and emit an acknowlcdge token. The
implication of this is that a is-prevented from firing a successive time to reenable:any gates in the graph
before the output sct corresponding to the previous control: value has been produced. 'Fhis in tumn

implies that only onc input set will be within the branches of the conditional expression at any time.

-29-

Figure 28, Conditional construct detaflow graph
inl in2 _ . m3

g [N TR ICT NN [MUy W,

Assume -the -graph has reetived an nth set:of inputs. - Assamd further, that no-operator is
- .cnabled within expj. By the-induetion hypothesis exp) must have produccd an nth-output sct. The d/a
. arc-pair between a and the M. gate ean be in one of two:states. Either the arc pairis holding its n-1st
control value, or it is holding an nth acknowlcdge token. - Assume.the arc pair is holding its n-Ist
control valuc. Ry the functioning of the: graph described above; this:implies that the n-Ist:input set is
-being processed. . Since the graph has received its nth input set,tlns implics that the:T and F gates must
~have cmitted an n-1st sct of acknowicdges by firing in‘ responsc to.théir:n-1st'sct of inputs. We cin
assume a5 a rosult, that either exp, or expy becomes enabled.’ By the induetion hypothesis, within finite
time. we will sec the n-1st output sct on the appropriate exp output data arcs and an nth set of
acknowledges on the exp input arc paiss. - This action: ;enables the M: gates 'which when fired - will
produce an n-1st set of graph outputs and emit acknowledge tokens along its data and control input

arcs. At this point, the arc pair between a and the M gate is in its second possible state-- holding its nth

acknowledge. Note that if a is fired, which is now possible, the graph will b in:the state it was in when
. the arc pair between a and the M gatc held its n-]st control value. Since within finitc time the n-1st set
of graph outputs will be absorbed and cach gmph oulput wnll hold an nth acknowledge, we can repeat

the above reasoning to show that an nth sct of gmph outputs tszroduced.

lterative Expression

'1;;1

‘We assert the following conccmug the port behavmr of the iterbody operator: When-
presented with an nth complete set of i inputs, thc suhgraph rcprcscnted by iterbody will cither produce
n iter? control values -- k true and n-k false; 'and tmcsmndipgly k sets of I data valucs and n-k sets of

R data valucs or; will contain some cnabled opcrator.

- The iterative data flow graph is ,sh_ownjn Figure 2.9. We can make the following observations
concerning the functioning of the graph in.its T/, form.-Note that firing copy operatos 1. causes each
of the M gates to be presented with. the next control input. The implication of this is twofold: Operator
L cannot fire until cvery M gate has fired; absorbing its- previeus .control input -and emitting

-acknowlcdge tokens; the number of input scts processed by cach M gate is:cither equal to, or one less
‘than the number of control inputs that have been: presented to cach, M:gate. The operation of an
iterative graph is such that a sct of input values will:be itceated awspanse to tue iter? outputs until
iterbody produces a false iter? output which signals return of the values. ‘We coasider these two stages
of Td/a graph bchavior -- itcrating values and rcturning valucs, scparatcly. Since the synchmnizing
affect of copy opcrator L provcuts any mtercstmg ovcrlappmg of graph lnput sets, it sufﬁccs to show
that when prcscntcd w1th one complcte lnput set th‘cx-kgraph wm produce an output set thhout

decadlocking. We bcgm with the return case.

-31-

Figure 29. Iterative data ow graph

Assume: iter? produccs:a false vatic. By the first implication above; 1.-cannot present the M
-gates with this value until cach has fired to acknowledge L and producc a-data input (o iferbody. Thus
-iterbody must see a complete set of inputs for the M gates to'be reiaitislized. The stated behavior of
iterbody - dictates that -within finitc time a completc set of ‘roamn valucs - will- be produced in
correspondonce with the false irer?. Thus if the M gates are réinitialized; a sot of outputs is guaransteed
without the pussibility of deadlocking. The possible waysof a:deadlock occurving are considercd in the

iterative path argument which follows.

We proceed to show that a deadlock does not occur within the itcrativc path of thc gtaph by
assummg the opposnte and rcachmg a contradlction supportmg the conclusnon that an cnablcd opcrator
cxists wnthm the graph Assume that therc exists some wcll formcd llve itcrative data ﬂow graph which

deadlocks under the d/a arc pair transformation. To see how thc dcadlock OCCUrs we apply the same

sequence of cumputation steps to a T graph and its corresponding T4, graph, until we reach a state
where there cxists some operator which is-enabled:in' the: T graph and not ¢nabled in the Ty/a
graph. The causc of deadlock must be that an operator in the Ty, graph-has its inputs available, but
cannot firc duc to the presence of a token on its output arc. 'We attempt:to locate this operator, which

must be an M gate:or a gate within iterbody. We proceed to comrsider cach dase.

Assume merge opcrator Mo is in such a statc and that it has lts j[h sct of ltcranon mputs
o H ﬁ R
available. The tokcn on its output arc, labcllcd g, must be used in pmducmg thc 1 ltcratlvc input value _
of some othcr M gatc say Ml Since the Td /a graph is dcadlocked onc of two sntuatxons must exist:
(1) The path taken by token q through iferbody to the I-input of gate Mi is blocked

(cvcry arc is full).

(2) Token q is input to some opcrator whlch Iacks some mput and thcrcfore 1s not
enabled. : : : :

Assume (1). Recall from our preliminary discussion of iteétative graph operation, that if token q
was produced as a result of e j-1st input set, it will be used to preduce the'jth T input of some M gate
which, according to the assumiption, is blocked. Thus, the-toketi eurreritly residing on ¢ [inpit o
that M gate must be part of the j-1st input set or some st previous to the j-Ist set. ‘This implics that the
M gate has not yet fired j-1 times. ' But from eur knowledge ofiterative graph operdtion; this is not
possible since firing copy operator L to present cach M gate with a' jth control input réquired the prior
firing of each M gate a j-Ist time scnding j-lst ackn()wlcdgcs to L --a contradiction.

Assume (2) Smcc fmng L a jlh time is only possxblc If cach M gdtc has ﬁrcd i 1 Umcs it must ‘
be that a complctc set of mputs to rlerbody ‘IS avmlablc contradlctmg the assumptlon that some input is

not present.

Assume the disabled operator occurs as a result of iterbody and that its eutput arc is an I cutput
arc. If the disabled operator has a jth sct of inputs availablc, then they will be used-to produce the
j+1st Linput of some M gate. The token on its output agc, must therefore be a:jth.} input of that M-
gaic. By the twofold implhtim.s@w.,ang,~mch:ﬂw the disabled-opcrator has.its jth mputs
available implics that every M gate was preseated with a jth control input and has fired cither j-or j-1
times. - Thus the M gate which has its jth 1 input available, must have fired j'l times. If we can show

- that thls M gatc is cnabled, thcn within ﬁmte time it wﬂ} firc, scndmg an acknowlcdgc o thc blocked
opcrator Conscqucntly in f' mtc tlmc thcre wﬂl bc an cnablcd operator wuhm nerbody |

Wc lmow mat the M gate has its mputs avmlablc 0 nt can only bc d|sablcd if its output arc is -
full. Assuming this situation; the token on its output arc. must be-from the j-lsz inpm sct and: will be
used to. produce the jth input of some other M gate But then we know that wnthm ﬁmtc Ume the
opcrator to whlch thts tokcn is mput will ﬁrc smce by the twofold lmphcauon cvcry M yc has fired
j-1 tmes: This simultancously. cnsurcs. that the operator has its inputs available and has an cmpty
output arc. The acknowledge: necessary to enable the M gate will-be:sent .as:a result of firing the
operator. ‘Thus, within finitc time, the M gate and subscquently the blocked operator in iterbody will-be

It follows that if the Toq graph is well-formed and live, the corresposding Ty, graph is

well-formed and live. Q.E.D.

The subproof conccmmg port behavior for ltcratwe subgraphs is also mductwc in that it must
assume a behavior for ltcratlvc opcrators wnlhm subgmphs and thcn prove the behavior for the top
level structures defining itcrative subgraphs. The bchavnor to bc shown has becn stated above at the

start of the section of the proof dcaling with the itcrative expression.

The simplest iterative structures, exp and iter exp, arc shown in Figure 2.10. Since the iterative
subgraph proof is within. the inductive proof above, the induction hypothesis concerning exp subgraphs
is valid. As a consequence, proving that the Figurce 2.10 graphs satisfy. the stated behavior is trivial.
Establishing this fact for the conditional iteration body, if exp then iterationy else iteration,, is tedious
and will not be presented.

Having dcvc;,lopcd the data/acknowledge arc pair transformation and shown Too and Td /a
graphs cquivalent, the task of dctermining the quality of this solution remains. Major concerns to
investigate focus on cost and cfficiency. Chapters 3 and 4 address these issucs and present
optimizati‘ons of the solution subscequently developed. Example graphs in the remainder of this thesis
arc assumed to have been produced by algorithm Td /a: ‘Therefore, though not explicitly shown, all

arcs represent d/a arc pairs unless otherwise stated.

Figure 2.10.

I |

@9 Tlexpl false C'l]cxp])
| b

iter? Ii iter? Ri

(a) exp (b) iter exp

This empty page was substituted for a
blank page in the original document.

-35-

CHAPTER THREE
- 3.1 Balancing Token Flow

The optimization to balance token flow -discussed -in this chapter: addresses certain
incfficiencies introduced by the acknowledging scheme presented in chapter 2. Though the d/a arc
'pfnir transformation prcvcnfs the occurrenccjof mbfc than onc token onan aff:;lt any ﬁme, the firing
rcétrictions it impbscs aré sévcré. and may sféniﬁcantly curta;l comﬁr}cnéy. vSpcciﬁcally, the
requircment that an opcrator reccive acknoWledgc signals on cach of its out[i;t: ports l;éf{)rc fcﬁﬁng,
unnccessarily delays computati‘on of successive ihput sets thfIc ensuring ﬂ\c s,zn.fé-;)p;:f:.xtion Vo‘f thc
graph is essential, it is possible to identify which umpm arcs arc potential bottlenecks, and modify each
so that it can be safely implemented as a fixed size buffer. The purpose of this change is to cffectively
cnable arcs to hold more than one token, thercby climinating bottlenccks by allowing computation of

successive sets of inputs to "pipclinc” through the graph. Safc i‘mpicmcnltation of these buffers involves

ETS FRE

the use of identity operators which, when inscrted alor;g 'a;r;alrc,‘é’c[as place hol(icrs. 'ldcntifyihg arcs
within a graph that may causc bottlcnccks, and determining the extent to which they should be
buffered arc prerequisites to xhéir modification. While the former of thesc tasks is straightforward,
deciding on a buffering strategy is subject to a number of éonsidcrat.ions; including graph configuration.
- and cost of buffering.

| A simple cxample is prcscmcci in scction 3.2 ‘which clearly illuslfatcs the problcm addressed in
this chapter, and serves to motivate the subsequent 4§p6‘;1-1izati()n. This, discussion is formalized in an
algorithm which produces optimized graphs. The scction concludes by "pointi'ng out ccrtain subtletics
of graph operation and factors not accountcdxfor in formulating the praposed solution. In response to

this, section 3.3 introduces a modified version of the section 3.2 algotithm, along with several

compafativc studics of graphs in their limited and ful!y bufféred configurations.
3.2 Formulating the Optimization
3.2.1 Identifying the Source of Bottleneck -

| Thc géal of thc optlmuatlon to balance tokcn ﬂow -&nrough a graph IS to mcrcasc lhroughﬁut
by modlfymg a gmph to allow for maximum plpchmng. Thc bomcneck problcm and therefore
apphcauon of the optlmuatmn arises in acychc scgmcnts of a data flow graph A clcar mustranon of
the problcm is shown in F‘lgurc 31, thc graph translatmn of thc VAL cxpresmon

Jf—llhcnﬂebeﬂ

Figure 3.1. Buffcring for a conditional expression

-37-

'l‘hé interesting and. problematic issucs arisc when considering the consequence of presenting
_the graph with multiple input sets. Hopefully, processing of a.seeond sct of inputs can begin before
- outputs of the previous set. appear, with the. optimum situation being ont in which sets of .inputs
pipcline through the graph. Unfortunately, the control structurc of the graph dictates that the overlap
in processing of successive scts of inputs be minimal: Only.one set.of values may be within the -
branches of the outer conditional at any time. Rcfcrrmg to F:gure 3.1, we sce that in order for a second
sct of values to enter the branches of the condm(mal both a and B n(lust?ﬂjrc a sc.cond time presenting
thc scts of T and F gates with new control inputs. However, a cannet fire a sccond time until the M
gate to which it also sends-a control input has fired to emit an ackpowledge. ‘Thus, the d/a arc
connecting a and the M gate(marked in Eigu,rc; 3,1 by slashes), prevents scts of values from pipelining
{through the graph, creating a bottlencck whase severity depends on-the depth: of the:computation
performed within the branches of the conditional. - -

Eliminating this undcsirable behavior so that successive sets of values may pipeline through the
graph involves finding a method of cnabling node a sooncr’conscqucntly éiiBWiiig thc slasﬁéd arc t(;
hold morc than one token. The ldcal situation would be onc in which the arc could hold as many

tokens as the number of sets of valuf‘cs !hdt could be plpclmcd through the graph
3.2.2 Preview of a Solution

Introducing identity opcrators into the graph prévnd;s a mcans of rcalmng the desired
behavior. Specifically, inscrting |dcnuty operators along the slashcd arc (Figure 3.1) would break it into
d/a arc pair scgments, allowing nodc a to fire scveral tlmeg pcfore forcing the M gate to fire. Using this
technique on Figure 3.1 to attain maximum pipelining is aocomplisbgd by replacing the slashed arc

with the arc scgment shown to its immediate left. “As a consequence of this change, the state shown in

Figurc 3.2 in which three sets of tokens are pipelining through the graph can be recached. (The token
sets have been numbered: accordingly for elarity.) ‘Thus'thc imtroduetion of identity nodes has
climinated the: bottlencck: Generalizing: this optimization ‘technigire’ fequires a determiination ‘'of the
ideal number and location of buffers to be inserted. 'To respond to siuch consideratiofis, we attempt to

analyze how tokens flow through the graph.
323 Analyzing Token Flow to Charac(grize the Solution -

Though - the -data: flow " computer - operates: asynchronously’ arid ‘data flow programs
nonsequesitially; ‘we can model optimum token flow through the ‘graph by assuming a ‘Somewhat
synchronous behavior. * To: do this, we analyzc the firings ‘within the graph in-terms of time units where
duriag any given unit of time all enabled actors must firc and produce a result. “This assumption

attempts to approximate optimum behavior by proventing ail' cnabled ‘actor from rémaining enabled

Figure 3.2. Token configuration allowed by buffering scheme

02

-39-

and thercby | slowing up processing for any length of time. ‘Roealling: that our: sim is.to pipcline
computation throughsﬂae graph, we wish to dcvclop amethod of modtf”ymg the graph S0 that under this
"synchronous behavior” aasumptson it displays maximum pfpehmng and coanucntly. best
throughput. “r
Referring back to hgurc 3.1, we note that cvcry mput sct to the graph*rcsults in the production
of a token on the control (slashcd) arc, and tokens that will either be proccsscd by f7 or f2. While under
the synchronous behavior assumption the tokens being proccsscd by these functional opcrators can
move one stcp through the graph during evcry time unit, thc control tokcn on‘ the slashed arc cannot,
and must- remain statlonary untll its corrcspondmg tokcns prop1gatc through thc graph to cnable the M
gate. | As prewously scen, the mablhty of thc control arc to acccpt a sccond token prevcnts any tokens in
a successive input set from bcmg plpclmcd. Thc dcpcndency bctwccn the control arc and thc branches
of the condmonal and thc conscqucnt nccd to cqnahzc thc1r buffenng .capacntllcs to attam maximum
plpclmmg has bccn rccogm/cd by the addmon of 1dcnuty nodcs shown in hgurc 3 2 An algonthm to
cquahze buffcnng along graph paths must be ablc to ldcntlfy dcpcndcncws wnthm a graph and plpelme
thcnr paths. This can be accomphshcd by an arc numbcnng schcme whlch comparcs and equahzes
buffcnng capacitics of dopcndcnt paths rccogm/cd by |dent|fy|ng functnonal opcratms or gates which
join two or more paths An lllustrauon rof the algonthm Wthh porforms thls optlmuauon follows its

prcsentatnon

Algorithm to Maximize Pipelining - 1
Starting from cach graph input; descend through. the gmnhﬁassignm consccutive
numbcrs to arcs joining successive sets of operators until a multi-input opcrator is
-encountered.- Compare the arc numbers on the input arcs of the aperator and:
(a) if equal, continuc the arc.-numbcering process
(b) if not equal, balance the arcs by inserting idcntity operators into
the lower numbered arcs. Renumber the modlﬁcd arcs and
continue the arc numbcring process. : T ~
~ Note that lf the opcrator is an M gate, the comparison and balancing described above must involve all
three mput arcs, usmg thc hnghcst numbered arc as the goal | |
The result of applymg lhlS algonthm to the graph translauon of(hc followmg program segment
lsshnwanlgure33 o I
lf f-l then if s=1 then x‘(y+ 1) clsc x“(y 1) end else x‘y end
For rcfcrcncc purposes, thc addcd ldcnmy nodes have bcen numbcred l'hc seven numbcrs shown at
the cxtrcmc Icft of the graph rcsult fmm the arc numbcnng process, and apply rcspectxvely to
appropnatc arcs movmg hun/omally across the graph Nodcs Il and 12 havc bccn addcd in responsc to
the lmbalanccs whlch occur whcn companng arc numbcrs on thc mput arcs to thc muluphcatmn
operators. 13 through IS arc addcd in rcsponsc to the companson of thc mput arcs to thc mner M gate.
Notc that, as spccnﬁcd in the algon(hm, arc numbcr compansons mvolvc all thrce M gate mput arcs.
Finally, opcrators 16 through 115 arc introduced as a result of comparing input arcs to the outer M
gate.
Onc essential question to ask is whether or not the addition of identity operators changes the
functionality of a data flow graph. This can bc answered by recognizing that the essence of the change

resulting from the application of Algorithm I is to replace some of the one-token arcs of a graph with

- queues of a given finite length. Since successive identity operators along the arc are separated by d/a

-4] -

Figure 3.3. Example of maximal pipelining

arc pdll‘S the graph remains dctcrmlmsnc and since an ldcnmy actor mercly passcs its mput to its
output arc, the functionality of the graph is unaffected Thcse observatmns ensurc the functlonal

cquivalcncc of an optimizcd graph.

-42-

324 AObscrvations

In dcvclopmg this cxample therc are scveral interesting obscrvatmns to: makc concerning the
.optimization and the spcctﬁcd algorithm. As statcd above, the optimiration is accomphshed by first
identifying and then plpchmng dcpendent paths in the graph. Whlic.depcndenmcs detected at
functional opcrators and T and F gates can be handled as chcnbcd thosc resulting from M gates hold
some hidden constdcrattuns Recall from: the algorithm that M gate cmnpnnsons ‘must involve the two
data arcs and the comrol arc. I‘hc algonthm modtﬁcs ‘the graph to achlcve maxnmum pipelining by
equalizing buffcnng capacmes of the paths through the graph to thcv gtmtrol arc and two data arcs.
However, while the M gate signaIsA the dependency ef t:ach btf‘anch of the cénditional operating in
conjunction with the ;t:ontr,ol arc, the branches themsclves are independent, Thus, while cach branch
must pipcline with th_e control path, they need not ncet:é;arily pipclim% with cxh other. If the two
conditional paths arc of diffcrent lengths, the ‘buffering choices avaﬂahle arc to:c(;ualizc the control
path with cither the shuﬁct or the longer condttional branch, or to equalize all three. The latter of
these, implemented by the aﬁgorithm gbovc. achieves best throughput but has %thc disadvantage of
causing the inscrtion of additiohzit’ identity operators in the shorter comtitional branch. Thus,
maximum pipclining may be achicv;d at the cxpense of including a number of unncccssary idcntity
operations. The othcr two chotccs recogmm the mdcpcndcncc of thc two«condltlunal paths and avoid
€XCCSS buffcnng, but posslbly at the cost of rcduccd throughput.

o A factor not yet consndercd which interacts with this plpehmng choute is the tokcn dlstnbutlon
cffect on the graph of a particular succession of input sets. In Figure 3.3 cach mput set can take any of
three paths corresponding to thc three possible states of fand s. This makes it unlikely that any one of

the three paths will be filled with tokens, more likely that the control arc to the inner M gate will be

filled and certain that a continuing succession of input sets will fill the control arc to the outer M gate,

-43 -

If we consider a pattern of input sets such that no one of the theee paths is taken twice in a row, identity
nodes 11 and 12 would be unnccessary and could.be removed without decreasing the throughput. In
fact, many of the identity nodes could be removed with no effect. Certainly, the frequency with which
graph paths arc taken is an important factor in choosing a buffering strategy. - An illustration of this
point will be scen in the examples in section 3.3.2.

In identifying some tradeoffs and options to consider-ip maximally pipelining data flow graphs,
it has become unclear whether or not this approach is always optimak.. Perhaps the advantages:of a less
pipelined graph are worth a decrease in throughput. Seme key issucs influcncing such a decision might
include cost of identity operations, processor utilixauq/nz, token flow:patterns and. width and depth of
program. ‘Though complete consideration of these would require kagwledge. of the machine and

particular application, we attempt to illustrate the type of analysis that might be qséful and necessary in

making the choice. -
3.3 Full vs. Limited Buffering
3.3.1 Achieving Limited Buffering

Having qwstioncd thihcr ‘ful'ly baléﬁcing a g‘raph> is;lwéys'ncqtj:»c;ss:aryho'r optimél, we proceed
by comparing sévcral graphs in both their]imitcd and fully buf:fc}cci; vcm:ms to ﬁhcbvcr‘ﬂme tradcoff
issues. A discussion of lkimitcici buffcrihg mcludmg ﬁdw it carfl‘ bc achlevcd ia;nd tb!wl-l‘at éx‘tént T?i/a
grhphs dispiay in is a nccessary prchmmary -‘ . - |

The difference between full and limited buffering in a data flow graph is scen in the time delay
between successive firings of its operators. In a fully buffered graph, assuming synchronous behavior,

the time delay between repcated firings of any particular operator should be one unit: An operator

which fires at time one should receive acknowledges from its successive operators during time unit two,

rccnabling it to fire during time unit three. In a graph displaying limited B’uffcring, the delay between
an operator’s firing and recciving appropriate acknewlédge signals may be scveral time units, thereby
slowing repeated firings of the particular operator as wel as‘all successive operators.

Presontly, the T/ translation algorithm produces data flow graphs in which cvery data arc is
paired with an acknowledge arc. We could however, ‘have considered an algorithm which caused
acknowlcdge ares to span two data ‘arcS'by having cach acknowledge arc link altérnate rather than
successive operators. ‘The consequence of such a scheme would be d delay in the sending of
acknowledge signals and hence, a-graph displaying Hmited bufforing. While scction 3.3.2 discusses an
example data flow graph so configured; this approach is: undesfrable since it requilres a“significant
modification to the prescat translation-algorithm. - The niecessity for-such an action is also unjustified
smcemmost cﬂesg‘Td/a graphs alréady ‘display Hmited buffering, ‘as'did the Figure 3:3 graph which
was modificd to achieve full pipclining via Algorithm 1. A slight revision of this alguritlﬁh‘wm alfow us
it is possible to specify that the dclay in scnding acknowledge s:gnals be no greater than two time units.
The algorithm shown below produces graphs mecting this #cquireiont - ‘Whilc-thic ‘purpose of
Algonthm I was to cqualuc buﬂ‘cnng of dcpcndcm paths w:thm a graph thc modlﬁcatmn to the
algonthm ensurcs that dcpcndcm path lcngths arc wnhm a SpOClﬁcd bound By allowmg a graph to be
casily reconfigured to display different degrees of plpchmng. the alggnthmrgr_ovxvc‘l‘c‘:sv /a‘fcaSIb!e and
praétical conirol method of studying varying levels of buffcnng magraph Thc m}odnﬁcd glgorimm is

presented below as Algorithm I1:

-45-

Algorithm to Limit Pipelining - 11

Starting from cach graph isput, descend through the graph- assigning: consecutive
numbers to arcs joining successive scts of operators until a multi-input operator is
cncountered. Compare the arc numbers on the inputiarcs uf the operator and:

(a) if the difference is less than or equal to 2, continue the arc
numbcring process

(b) if the difference is greater than 2, insert identity opcrators into
the lower numbered arcs to reducc the difference to 2.
Renumber the modified arcs and contmue the arc numbcrmg
process. .

An application of Algorithm Il appcars in scctmn 3 3 2 wherc it is apphcd to-the Figure 3.3

graph We arc now prcparcd to proceed with sevcral graph comparrsons uf full and limited buffcnng
3.3.2 Examples of Full vs. Limited Buffering

| This scction prcscnts two data flow graphs in borh their fully and pamally buffered versions,
The first cxamplc achicves hmrtcd plpclmmg by rclmkmg acknowlcdge arcs bctwccn alternate actors as
described in section 3.3.1 ab()ve, while the sccond cxamplc is modlﬁed for llmltcd pipelining via
Alg.orithmr I1. 0ur aim in cach casc is to comparc lhc functioning of cach cxamplc s graph
confi gurauons with respect to throughput acknowledgement (»r/erhcad and ovcrall concurrency. The
follohmg assumptions arc made concerning the graphs opcrrmorl: .’

(1) Graph firings occur according to the "synchronous bchavior” pattern described in
scction 3.2.3

(2) All graphs arce produced by Ty, with data/acknowlcdgc arc pairs used
throughout.

We begin with a simple example in an cffort to cstablish ‘'somc analysis guidclines. The
program seg.men&slwwn in.Figure J4 isa cumposntmn of hmaryapm which, if prudaxccdty Td/a’
should display full ptpchnmg. Thus, thcrc is no neced: to apply cnhcr aigonthm to this.program
scgment. Rather, studying this graph -in limitced pipelined: form will aeqmm its restructuring so that
acknowledge arcs link alternate opcramrs. The flow uf tokcns thmugh the graph for muIUplc input sets
can be followcd usmg 'l'able th (For comcmenm chn opnmm tn tlmgmph J\avc been numbered.)
The initial state of the graph givenin T able 3 1 at time 0 shows mpuls (IN) avathblc to OP1 and OP2,
and acknowlcdges (A) present on all other arc pans Progre&smg through the table along the time axis,
we sce that at time l 0}’1 and OP2 fire and acknowlcdge (F/A) makmg mputs avatlablc to OP3 and
producmg acknowlcdgcs on thclr mput arc pans Dunng time unit 2 OP3 ﬁres scndmg a result token
to OP4, which conscquently becomes cnablcd and.ackndilcdpe wokens 1:OP1 and QP2 At:the same
timce, a new set of inputs can appear on the input arcs to OP1 and OP2) that they become rccnabled.
In txmc unit 3, OPl or2 and OP4 ﬁrc scndmg appmpnatc data and acknowk:dgc tokcns Whlch enable
0P3 and OPS. Thcsc then fire in umc unit 4 cnablmg 0P4 as wcll as OPl and 0P2 whtch as in time
unit 2, concurrcntly receive a new set of mputs Thts time unit is s:gmﬁcant since dunng lt, the output
resuiting from thc first input sct is produccd Fnlhtt;lng thmugh the next fcw umc units showsthat due
to the acknowlcdgmg schemc the best throughput powblc fora fully plpehncd graph is an output
cvery second time unit: Outputs resultmg fmm thc sccond and thu'd mput scts appear in time units 6
and 8 respectively.:

An examination of the table shows that once the " ptpe is ﬁ:ll" (ume unit 3) the operator
firings of the graph can be gmupcd into two altcmatmg sets, and conscqucntly, thc graph s operation is

characterized by two altcrnating states. SET1 consists of OP1, OP2 and OP4 firings, or those of the first

and third levels of the graph shown in Figure 3.4. SET2 consists of OP3 and OPS5 firings which

-47-

Figure 3.4. Maximum pipelining in a simple data flow graph

1 IN1 - A2 IN2 :
‘ ’ , —> dataan:

~=2"ack. arc

N\ C# constant gencrator
level 1 @ A# " acknowledge - '
IN# input
level 2
level 3
level 4

Table 3.1. Flow of tokens for Figure 3.4
outiut 1 ou»t‘ ut 2 ‘ouulut‘ 3
operators - = =¥

OPS| A A A IN-'IN'-'IN- —

OP4l A A IN F/A IN! P/A INFE/A -
OP3| A IN F/A IN F/A' IN'F/A! A A < set 2
- OP2| IN F/A IN F/A IN'F/Ab A A A e
OP1| IN F/A IN F/A IN:F/A: A: A A <+ setl

0 1 2 3 4's5161 7 8 time
sctlwset2 { |
state statz

IN inputs present
F/A firc and acknowledge
A acknowledgces present on input and output arc pairs

compose the second and fourth levels of the graph. Using the fact that alternating levels of the graph

fire concurrently, we sce that the minimum number of concurrent operations (assuming a full pipe) is

the numbm" of levels divided by 2. "The maximuam number is found by confputing the sum of the width
of cach firable level for cach of the two sets to dctcnninerﬂxc hngcr. “For the Flgurc 3.4 graph, SET1
and SET2 consist of three and two concurrent opcmuuns rcspcctivcly l’hls information should prove
uscful in analyungproccssur uullzauon
Having gathcred these Statistics, we procced by considering Flgure35 which shows the same
~graph, but in its limjted pipclined configuration. —,St;eciflca!ly, ackgnwledge arcs link alternate rather
than successive actors. Comparisons to the Figure 3.4 graﬂ\eafi)‘bc made by analyzing the information
contained in Table 3.2, which follows the ﬂov; of Ttokcnf—&;l;duéh this graph. The initial configuration
of the graph, specificd in Table 3.2 at time 0, shows inputs present on OP1 and OP2 input arcs, and
acknowledges available to OP3 and OPS. During time unit one, OP1 and OP? fire to cnablke OP3.
Notec however, that the OPI and OP2 input arcs are not acknowledged at this time as they were in the
Figurc 3.4 configuration. Acknowlcdgement of OP1 and OP? is now dgpcndcnt on OP3's ﬁring which
occurs during time unit 2, delaying thc arrival of a new set of A inputs' until time unit 3. Firing of OP4
which also occurs dunng time 3 cnd)lcs OPS which can ﬁrc to produce an output at tme 4. Again,
reenabling of OP3 has been delaycd to this time umt, 4. whcnn receives aﬁmkmwlcdgc from: OPS and
.. inputs as a result of orl1 and-OP2 firing,- I‘ime unit 4 is mgmﬁcant m”that an output B pmduced.
Howcver, following the opceration of the graph for thrce mput scts shows that the delay in.
acknowlcdging operators has rcduccd the throughput fo an output every third time unit: The sccond
and third input sets produce outputs in time units 7 and 10 respectively.
Analyzing the operation of the graph using Table 3.2,' we see that dle acknowlcdging scheme
allows cvery third level in the graph to fire concurrently, thereby partitioning the graph into three
mtcrlcavmg sets of operators. Rcfcmng to Figure 3.5, levels | and 4 firc together, as would levels 2 and

5 and levels 3 and 6, werc the graph to be extcndcd Corrcspondmg respectively to these three groups

-49..

Figure 3.5. Limited pipelining in a simple data flow. graph .

fevel 1 —"\\

level 2

level 3

level 4

‘Table 3.2. Flow of tokens I'or Flgurc 35

output 1 “output2 output3
OPs| A A IN '-' 'lN '- IN
OP4| — IN F | ! F! R
OP3] A IN F/A - ! lN'F/A' 'IN F/A A
“OP2{ IN F N R VNL R
OPl| IN F m:F'L :IN:F
0 1 2 3'a4altsltegls 8 9 10 tme

SN PP

state state state
1 2 3

IN all inputs available
F/A fife and acknowledge
A acknowledges avaﬂable
F~ fir :

- AR sen A Tav e o
I AR R G B

arc three states, shown in Table 32 Were the graph to be presented with continuous sets of inputs, its
opcration would rotate among these three states. For this graph, the number of concurrent operations
per state beginning with state 1 are: three, one, and one, (determined by computing the sun;‘of the

width of each firable level for cach of the states.) Using the "concyrrent operations per state™ statistic

shows that the Figure 3.4 graph alternates betwéen processing three and two opcrations while the
Figure 3.5 graph processes three operations every (hrrd* timc unit‘and only onc during cach of the
intcrmediate two time units. The lower variance in thc nurnbbr ofcoﬂ,currcnt opcréﬁon’s per state in
the Figure 34 graph suggests that it will be more cffielcm\wth Jcspcct to processor utilization.
Conscquently, the enly main advantage of the hmltcd plpcﬁned configuration is a rcduction in- the
overhead associated with acknowledge srgnals. ’

A second morc'involvcd rmd-m:brg CDmplc.te :.c;amp}e, applics this ,ana}!ysig to tl}c Figure 3.3
graph, which appcars inits fully pipclincd éébérrﬁguration. Note that unlike the previous cxample, which

translates directly into its fully buffered state under Td/a the production of the Flgure 3 3 graph

H u%,
Pynagi e

required the application, of Algnmhm I The most sngmﬁcam bomt to notc is thc nced to msert 15
identity operators to atta?n full plpclmmg. Thls rcprcsems apﬁmxrmatcly a 50% i increase m lhe Aumber
of operators in the graph maiing tb cost of rdcntlty sperators vs the bencﬁt of mcrcascd ﬂwoughput
and concurrency an cxtremcly 1mportam lssw ‘to considci for an a(:tual dtta ﬂbw mzichmc and
application. | ; | ! “ ‘ , v

Table 3.5 presents a summary of thr: tokcn ﬂmvthroughthc fully ;pipclined graph (Figure 3.3),
assuming the control token produced by the prridicatc tcst invr)lving f is true. For cach time unit, the
level of operators firing rather than the particular opcrators wi’ﬁbequi:;iﬁr;d whcrc the assignment of

levels to operators is indicated in Figure 3.6. The total ;iumﬁerbfopcmm(s fo; cach level as well as

given. Thus, referring to Table 3.3, the' second line stawc that during tlme unit 1, the first levcl of
operators fired, all four of which werc graph operations. During time ‘unit 2, the second level of
operatoss fired, one of which was an 1dcnnty operator and ﬁ\'ré;tigra'ph operators. From the prevnous

example, we know that successive sefs of inputs will step through the graph with altcrnate levels firing

-51-

Figure 3.6. Fully pipelined data flow graph

TaMe 33. Token flow through Figure 36
. . total ia
time firing level ‘ . oporations © |- _identity/graph
0 inputs available e :
1 ‘ 1 ' 4 0/4 < odd levels
2 2 6 145 | <=1 . even levels
3 3 4 173]
4 4 6 >4 Sal
5 5 4 3/1]
6 6 3 2/1 S
7 7 2 171 e
8 8 1 0/1 —

concuﬁcntly to producc an output cvery sg_gn_d. time unit. =In terms of ‘the: tablce this behavior
corresponds to the alternate firing of even and odd levels, where for cach of these firing states, the total
number of operations and their makeup are:
oDD 14 op_gra:io;g - Sidentity and 9 graph
EVEN 16 operations -- 5 idcmi_ty‘ and 11 graph
The Table 3.3 summary is only valid for two of the three possible féws states; 4ue- Lrue and truc-false.
A scparate analysis is neccsarx for the case w:crc f s m #
As in the previous example we w:sh to- compare thesc stansucs with an analys;s of the
functioning of the graph in hmued buffered form ‘The appriwnatc(gmph shown in hgure 37is
-obtained by applying Algorithm 11 rather than Algorithm 1 to;:‘thfe jT‘,a graph translanon of the
expression: | { |
iff=1 m ifs=1thea x‘(y+l)chex‘(y -1).end else x*y end
The most striking contrast between the fully buffered graph (Figure 3.3) and this partially buffered
version is the large reduction in mscrtc& ldcnuty__;opcmtors from 15 to 7: ‘What remains to be explored
is whether the cost of this reduction is an Mbanying decrease in performance (sce also [27D. To
determine this, we examine several token ﬂow analyses for the hgurc 3 7 graph dcnvcd by cons:dcnng '

different successions of input sets. The first example pcrfonns thc ana!ysns for four sets of inputs whlch
all follow the same computation path; truc-trye. The mmon of tokens through lhp graph can be
follo\ycd via Table 3.4. The numbers in cach box in the tablc represent ithe speciﬂcoperawls which fire
di:ring‘ﬁat'ﬁme umt (given by the horizontal axis), as a result of tokens from the appropriate input set
(given by the vertical axis), where the operators have been numbcrcd asshown in F igure 338. Referring
to this graph, Table 3.4 shows that, (assuming input sct 1 is initially avaiable), during the first time unit

actors 1, 2, 3, and 4 will fire cnabling actors 5 through 10 Svhich will fire during the sccond time unit.

-53-

Figure 3.7. Example of limited piptlining . - .

s X y

The second input sct becomes present (P) during the sccond time unit so that opcrators 1 through 4
may fire in responsc to this second set during the third time unit along with opcrators 11 through 14
which fire-in response to the first set. In this manner, the progress of the: four sets of inputs through the
graph can be followed. The time units during which the corresponding outputs appear have been
noted in Table 3.4 along the top horizontal axis. This information reveals the expected - decrease in-

throughput which may or may not be acceptable depending on the application. .

Figure 3.8. Numbered Figure 3.7 graph to be used in conjunction with Fublés 3.4 and 35 -
O '0 9 0.
® @ ®

D | b | @'@
6) ® @
21 Wy @

~— 26)

fC\

-)

As:‘mentioned carlier, the probability of a succession of input scts taking the same computation
path is small. Therefore, a second analysis for. this partially: pipelined graph appcars in Table 3.5
assuming input sots 1 through 4 take the computation paths truc-true, tuc-false, false and trug-true
respectively. The table reveals that for this pattorn of input sets the limited buffering scheme has po
cffect on the throughput, which remains optimal at an output produced: every second time unit. This

cxample confirms the point previously made concerning the significance of a sequence of input sets, A

-55.

N4 - , o T e a3 g s, 80,
r} 10
IN3 P | b23|3S0 e | 13
™2 1,23, 5 6.7, [1LIZ 1315184 (0o | “1c0g |
P 14 8910 |14 |20 | 11227] 1624
16,1

INY 1,2,3,]5,6,7, 111,12,13} 15,
mlemP R U iaigpg w2 | | %6 | @
tme 1t 2 3. 4 8 6 7

| ,,ou{ut SN S QD?W;:,_

. . L~E,~:;.;_~ zm

- _au?ut_L
Nl 12 121817 2102 | 24 | 26 | 27
N2 2126 | 27 | e

Pl
sl
tme 9 10 M 12 .13 .14 . 15 16

Table 3.4. Token flow of four input sets through Figure 3.8 for ggnﬁp;y{a»tiqp path ml_g-g_rgg ,

. (RERRRES ERRPT FE o\;tﬂut

IN4 P | 123567

_& N S RN - . IR ST o BRE B r»:w;: i M.
I¥3 P :v 2! 3' 5: 6’ 7, 11’28 29

137 11,23, 15, 67 [1L12.3/ES 1849 To0a | 164
of P 14 910 | 14 " 126 1723 | 1625
INJ§ 1,2, 3, 5a6v§» ‘lilz'lﬁ lﬁsvﬁ% AR 240) 26 nvx i
ouuﬁt ou?ut ou?ut
ING| A2, 13, 16L718) 1122 | 1524 | 2126 | 27
B a0 | s | o P
IN ‘
N2 | 2m

Y

9 10 11 12 13 14 15 16

Table 3.5. Token flow of four input sets through Figure 3.8 for computation paths truc-true, true-false,
falsc, true-true. '

further ‘analysis of iqpu; sets for this data flow graph may reveal that, in fact, it is rarely necessary or
best to transform the graph into Auly buffered form.
333 Additional Considerations ~ .

Once an actual datav flow maéhiné s ava&hbk‘astudy“pfthelradcoﬂ of lhmngbput for
number of mscrtcd mnmy opcmims should pruvu!c ms;ght mto thc ﬂirccnoll to take concermng
optimization. Perhaps bes mfornmtidn in mbmﬁlon wnm pam;:u-h: appﬁcauon will mdlate other
optimization pnmbmne; “for msmce conccmmnng cm mr mﬂyﬁémm*soum of, bmﬂeneck
within a graph. For thc condmonal constmct thts pomt appmrs 0 bc the comml arc to the M gate.

Maedifications-of Algorithm 1'similar to the onc‘which prbduced ﬁlgonthm’ 11 could also’ be weighed

more realistically asahemaaveappmwha. o

A final poinno mte m thc comadcrauon of thls buffermg optmnmtmn sratcgy isi the type of
- construct for wlndr unappmpm ‘Ihc cxamplcs above wlmh mmlye condmonal qonstmcts and
general composmons of opcra}om mm eut 0 be fatﬁyrrépresenuﬁvqﬂ mc"typq of gmph fer which
.this optnmlzatwn is appllcable In t'act. this op.qnzamn mh‘ls mlfy anappmpﬂae for an
ncratwc process whose function is to modlfy and rccyc!c a single ‘sct of i mpms at-a time ~ 2 process
- which docs not invelve pipclining (howcvcr, subgraphs wmm may beapnpebncd). For such.
constructs, a different optimization technique must be devcloped. Tlns altcmatnvc strat;:gy wlmh aims
- ta minimize the number of acknowlcdgcs ina graph by ghmmﬁt;pg thoie v!hlth a}r_eﬁmeocssqry, is the

topic of the next chapter.

-57-

CHAPTER FOUR
4.1 Eliminating Unnceded Acknowledge Arcs -

This chapter cxplorcs an npnmuanon tcchmquc for removing unncccssary acknowlcdgc arcs
in a data flow graph, Thuugh the umf‘onn subsmunon of data/acknnwlcdgc arc palrs for dnié arcs
yields a correct 1mpl§mcntat10n of; a data ﬂ()w graph the dcknonlcdélng scheme is costly. 'l‘he
overhead of processing ackn()wlcdgc packcts is felt in thc routmg nctworks ;\nd mstmcnon cells of the
data flow computcr which must rcspcctn/cly handle the resulung increase m trnf‘f' ic and bnol;kenplng
Thus, there is valuc in guestioning whether or not all acknowlcdgc arcs arc nccded Whlle it is casy to
nnd examplc data flow granhs nonnllnlng arcs for nhlch an af!:knon/lcxdgc is unncccssaly,' methodical
ldcnnﬁcatlon of such lnsmnncs is cxtrcmc]y difficult duc tn an (;ﬂcn C()nt(;);t dcpcndent decision: The
graph cnnﬁguratmn and parucular construct ‘under consxdcratlnn are kcybfactors ln detcrmmmg
deﬂOWlCdge arc removal. In response to thls fact, the snatcgy fo chmmatcb unncccicd nnknowlcdge arcs
focuscs on |nd|v1dual VAL constructs, attc;mptlng to |dcnufy candldate d/n arc pzurs and provnde a
cnrrcspondmg sct of rules spcc1fymg condmons Rccurswc appllnatlon ;)r !thc rcsulung sct of rules to a

.’data flow graph derived from a VAL program can then be uscd to test each candldate arc pair f(;r
removal of its acknowledge arc | o - o

The following scction considers thc p()ssinility' of using Pctri net thcory to govem acknowledge
arc rcmonal and subsequently discloscs certain data ﬂow graph opcratlonal charactcnsucs |mponnnt to
the optimization process. Scctions 4.3 and 44 dcvclop acknowlcdge arc rcmoval rules for the VAL

conditional and iteration constructs respectively. The later section mcludes scveral example graphs

illustrating applications of the rulcs formulated for the itcration construct.

4.2 Considerations for Acknowledge Arc Removal -

The cr)nccrn in removing acknowledge “arcs from. a:data flow graph is- whether the safe
opcration which the arcs ensure is maintained. Though we attempt once again to usc Petri nct theory as
a gmde this strategy is dlscouraged not only as a mnsequenccof thc chaptcr 2 dtscussmn but as a
result of exammmg T and F gatc opcrators whlch drsplay a fundamentally dlffcnent behavror than that
of trammons A look at the operatton of these gates and thclr el'fect on token ﬂow shows the drfﬁculty '
in using l’ctn Net theory and motlvatcs the fonnulatton of new ‘rcqmremcnts for safe removal of
acknowledgearcsmdataﬂowgraphs. | C _- S |
- : The role of the transxtlon in Petn net theory is analogous to that of thc mm_ngl data flow
operator ang a transmon moves tokcns on mput places to output places of the transition. l‘he T
and F g.ate functlon whtch allows a computatmn to proceed in one of two ways, is accomphshed by the
chtn nct conﬁguratron shown in l-rgurc 23 and repeated bclow in F gure 4 1. 'l‘hc essennal drtference
in the opcratron of this Petn nct is. that once onc of its T or F transitions fircs to place the input token
‘on a partrcular path the transrtwn controlhng cntranceto the altemate path isno longer enablcd. ln a
condruonal data ﬂow graph when the gates conespondmg to the control mput firc, the opposrte gates
remain enabled and must fire to absorb their i mputs asis shown in Figure 4.2

Here the assumptlon is that the control input to the Figure 42 g.ates was ng allowmg a token
to flow through the T gate to enable operator ﬂ Thc data ﬂow graph bchavror wrll allow an output to
be produced at the M gatc mdcpcndent of whcther or not thc mput presented to the F gate has been
absorbed. This phenomcnon docs not occur in the Fgure 4 1 Pctn net since an rnput token is swntched
down one of the two paths lcavmg no cxtra tokens bchlnd. The srgnlﬁcancc of this dtffcrcnce beoomes

clear when considering the possnblhty of itcrative graph conﬁguratrons. lf we focus on the input arcs to

.the F gate, and view the Figure 4.2 graph as the body of an iteration construct which recycles its output

-59 -

Figure 4.1. Petri net model of the conditional construct

Figure 4.2. Conditional construct data flow graph

4 -w-

token, ensuring conflict-free operation requires that the-input-arcs o the-Fgate be d/a arc pairs.

Since the possibility of a similar conflict is absent from the Petri net modelling of the data flow
graph, the difference in operation of the two rcndcrs Petri nets insufficient as a guide for acknowledge
arc removal in data flow graphs. As a result, the applicability of Petri net theory to the process of
identifying candidate arc pairs is limited. lnstcad, the strategy followed cxamines the various VAL
constructs to develop rules specifying conditions for xkéowlcdge arc removal for eéch candidate arc
pair identified in a construct.

An implication of this conditional cuhsttuct behavior is that the acknowledge arcs of the input
arc pairs to a T or F gate cannot be removed since the prepcncc of a token on an acknowlcdge arc is the
only way to guarantcc the absence of a tokeﬁ op a corresponding data arc: A T or F.bgatc. output arc
gives no indication of the state of the gate’s input arcs since firing may or may not produce an output
token. An illustraiion of ad&iﬁonal probicmé resulting from Tand Fgate gcﬁh;ﬁor in combination with

the possibility of nesting conditionals appears in the next sccnon
4.3 Analysis of the Conditional Construct

. To illustrate the analysis nceded for finding remo_yablc ac,knoﬁlédgc arcs we consider the data
flow graph translation of a gencral conditionafcons{trq_r‘t!ct,sﬁ(‘)ﬁnﬁin?}';ié\;m 4.3. Wc begin by focusing on
the slashed arc pair connecting a and the M gétc. Rc‘call"d‘wa(thc behavior of this arc pair is such that it
cannot accept a sccond token until the M gat_eﬁrcs to process the previous control token, and send an
acknowledge token to a. This guaranteces that a sccond set of tokens cannot be within the branches of
the conditional until processing of the preceding set ha‘s*\completcd. While overcéming the restricting
behavior of this arc pair was the aim of the chapter 3 optimization designed to balance token flow in the

graph, it is an advantage to the process of rcmoving:acknowlcdgc arcs as is secn by following an input

-61-

Figure 4.3. TJif exp then /7 else £2)

— - e
T \
X

sct through the graph. Each input’set (procc:?cd by cither f7 of j?) places a*tb%k‘cn on the control input

iy

arc of the M gatc and a déta token on cach of thc arcs labeled ¢ither a and b, orc and d, depending on
whether the control token lS true or falsc. /\Ssurﬁing that f :;ndf} %m'wcjkfémcd, an output should
appear on arc g (assuming the control token is @gf):wilhin ﬁm{c time’évlth no possibility of a second
token appearing on arc g, or of any token appicaring on ar¢. h Lnniil the M gate ﬁrcs " This event
simultancously processes the token on arc g and sénds an acknt;wicdgé token to a, conscequent to which
a successive input set may enter a branch of the conditional. Tﬁé ttokcn flow Bchavior guarantees that
the acknowledge arc of arc pair g can be safcly removed, as can that of arc pair h (by an analogous

argument).

-62-

~ One might be tempted to remove the acknowledge arcs from ase pairs a, b, ¢, and d under the
assumption that on,cé a set of tokens has cntered a branch of the conditional, the tokens must be used -
by the appropriate function to producc the corrcspondkgg mﬁpul. Hosyc\f:ér‘ a consideration of the
Figurc 4.4 data flow graph will show that r'cmo-vé;tl'vof acknolwlcdtgc arcs for thcsc arc pairs is dependent

on the subgraphs represented by /7 and £2.

Figure 44. Unsafe token configuration resulting from remeval of ¢'s acknowledge arc

-63-

The I"igurc 4.4 graph is a translation of the following VAL program segment:
if f=1 then if s=1 then x*(y +1) clse x end cise x*y cnd

Consider a sct of tokens ﬂoWing through the graph' which causes the outer pr;:dicatc, f=1, to cvaluate
to truc and that of the inner cundiﬁnnal construct, s=1, to cvalua;t"c:tx) false. The tokens on inputs s, x,
and y should appcar on arcs a, b, and ¢, and cvcntuaﬁy become th;ckda(a and éontrol input tokens to the
inner conditional construct’s 'I' and F gates. Since the inner conditional’s control token is false, the
computation proceeds through its false branch. The important point to note is that continuation of the
computation, only requires the tokens which appcaréd on arcs a and b. The token on arc ¢ nced not
| propagatc through the graph, and may in fact still be on arc ¢ whén the outer M gatc fires to produce an
output and an acknow!cdgc token, allowing the processing of a succcssjvé sct of valucs to begin. Were
a sct of inputs to flow through the graph in this manncr, removal of ¢'s acknowledge arc would make it
possible to reach the unsafe token configuration shown in Figure 4.4. (The tokens are numbcered to
indicate the input sct to which they belong). This behavior is a consequence of T and .F gate
functioning, the foundation of the conditional construct structure.

Understanding the analysis is aided by Figure 4.5 which gencralizes the Figure 4.4 graph to
expose the subgraph structure. The Figurce 4.4 cxample shows that the nccessity of acknowledge arcs
for d/a arc pairs a through c is dependent on whether or not their values arc guarantced to be used in
producing the dutputs of the appropriatc subgraph (/7 or £2 of Figure 4.5). ‘Fxamining subgraphs fI
and f2, which respectively represent the inner conditional construct and -multiplication operator of
Figurc 4.4, reveals that tokens arriving on arcs a, b, d, and e myst be used to produce their
corresponding output, whilc the need of a token arriving on arc ¢ is dependent on the outcome of the
inner decision operator. Therefore, ¢’s acknowledge arc must remain but those of arc pairs a, b, d, and

¢ can be removed.

Figure 4.5. Generalized version of Figure 4.4 data flow graph -

- " This analysis,-specific to' the conditional constrict, resulls in ‘dcsignating all input arc pairs to
the T or 12 subgraphs subjoct to rulé C1, shown in* Figiire 4.6, for determining acknowledge arc
removal. While the rule serves to identify, and state conditions under ‘which certain arcs within the
conditional construct may not need acknowledges, it gives 1o icthiod for testing the conditions. “This
requires a recursive look at the constructs composing subgfaphs /7 and jﬂ,'thé'stratc'gy just used in
analyzing arc paifs a through ¢ in the Figurc 4.4 cxaniple. It is intcfesting to note that the analysis can
be applicd at the source level by first recognizing that subgraph /1 was a conditional construct, and then
taking the intersection of variables appearing in its then and else clauses. Variables found in the
intcrsection are guarantced to be used i producing the output of the CML' Thercfore, arcs in the
data flow graph corresponding to these yariablcs should not require acknowledges.

Finally, we look at the only arc in the conditional construct of Figure 3.3 not yct analyzed -- the
control (slashed) arc connecting a and the M gate. While the climination of acknowledge arcs within

- our cxample conditional construct has been largely dependent on the existence of this controlling arc

-65-

Figure 4.6. Acknowlcdge arc removal rules for the conditional construct

Tlexp]

g.h unconditional
46 Cl

07]

C1: The acknowledge arc of an input arc pair to subgraph f7 or f2 may be rcrhoved if
any token arriving on the arc must be used in producing the output of ‘the
subgraph.

C2: The aéknowlédgc arc of the control arc coﬁnccting a and thc M gate can be
removed if the acknowledge arcs of the -output arc pairs of the M gate has been
removed.

pair’s acknowledgc, its presence enables the acknowledge of an inner conditional construct’s control arc
to be removed. The argument to justify this is the same: as that-used to explain the removal of arc g’s

acknowledge. Conscquently, in the general conditional construct the control arc between a and the M

gate is marked as candidate for acknowlcdge arc-removal, and issubject te rulc C2 shown in Figurc 4.6
This completes the analysis .necessary for performing thc optimization to rcmove unnceded
acknowledge arcs within the condmonal construct. As a second examplic, wc discuss the itcration

construct for which this opummmon !s particularly appropnate
-4.4 Analysis of the Iteration Construet
4.4.1 Acknowledge Arc Removal

The fact that the optimizgﬁ%)ﬁ ”prescn!ed in chap(c; 3t;specnﬁc to acy:clic segments of a data
flow graph, cmptmucs the significance of amﬂymng thé ‘iterat)on construct for annccdcd acknowledge
ares. Figure 4.7 shows the data flow graph trans?a(m of me VAL itcration expression:

for idlist = expdo :lerbodyud
The function of this constmce sm emluate exp and then pcrfaﬁh iterbody, which outputs an iter?
comrol valuc and a sct of data valucs onéithcr its I (itcration) er- l (return) output arcs, depending
respectively on whether the iter? outputkvaluc is trye or falsc. Suocesswe cvaluations of iterbody are
made unul a fa]x iter? valuc is produccd at whtch time cvaluanon of thc construct w:th a new sct of
mputsczm begm ‘ | | o

The function of the iter? arc is to prowde thc control value to thc group of M gam which
present Successive sets ofmpsm te the xtcrat:qn body The arcis- mmdmed with am contml value to
ensure proper sclection of the first set of data values. Assuming that the iter? value is dcpcndcnt on at
least some of the M gate inputs, a number of them must fire before a second iter? value. is produced.
This nccessarily implics.the firing of copy operator "L" in Figure 4.7, to:-present the M-gates with ifer?
control inputs necded to enable them ~- consequently ensuring that the -iter? output asc of iterbody must

.be empty for a successive ier? value to be produced. As a result, the acknowledge are of this.arc pair

-67-

Figure 4.7. Acknowledge arc removal rules for the interation censtruct

TI:

T2:

T3:

Arc Removal'ule
iter? uncondmonal
G : SN ¢ 3 A
v N

The acknowledge arc for an arc pair between ()péraiér 1. and the sequence of M
gates can be removed if its data value must be used in producing the iter? value,

The acknowledge arc of an [(iteration) arc pair can be removed if either
(1) The iteration body cannot emit a ‘valuc on that output arc until it has
absorbed the corresponding input value on the corresponding input arc.

(2) The iter? value dcpgnds on ;hc corrcsponding ingut arc.

The acknowledge arc of a v; arc pair can be removed if the arc pair is not mput to
aT, or F gate, and the ner? output value of uerbody dcpcnds on the v; arc value.

(bctwcén iterbody and 1.) can be remeved.

No such guarantee can bc madec for the apgcs between copy operator L and the M gatcs. since
the iter? value need not be a function of gvery M élalc:input. This implics the possibility of producing a
sccond iter? value before every instance of the prcvlous uer’ \alu‘c”z}ppcanng on the arc pairs between L
and the M gatcs has been absorbed. Shoul¢ L ﬁre uncondmonal ;rcmoval of the acknowledge arcs of
these arc pairs could cause a conflict. Conscqucndy acknowlcﬂzc arcs of these arc pairs are marked as
conditionally removable subject to rule Tl, Vspcaﬁgd l_:clow Flgu_;e 4.7: M gates whose data value
inputs arc used in producing the iter? contmlwmc 'fhixst ﬁrﬁabsprbmg the current iter? value, their
control input) before a successive iter? valud i&produccd my&consexjuently need no acknowledge arcs.

Examining thc form of the itcration th; m;terbod) iS a neccssary prcliminary to
determining acknowledge arc rcmoval ﬁr the rcmaining arc pairs in the itcrative graph. Since the
function of the construct is to |tcratc or remm a set of values bascd .on some boolean function, iterbody
must contain a conditional. The BNF specgﬁcatmn of VAL conﬁnns_‘,;ms via the production:

iterbody ::= if exp then iterbody, clse iterbody, end

Figure 4.8 shows the data Q‘_"?" graph transiation of thl§ conditional iteration body. Graph -inputs are
respectively presented to the subgraph mﬁrégénling éitﬁcr iterbody) or ité;hxi}z via T, or F gates, as a
result of cvaluating exp. The sclected subgraph will produce a sot of outputs at either its 1 (iteration) or.
R (return) output por(s according to its ifer? output value: tnue forl outputs falsc for R outputs. The
ifer? output values of the itcration body subgraphs, along with the output of the predicate subgraph,
exp, arc the :i‘h;;uts:.to the IC gatc whi,ch‘comrofé'm‘c graph output pons. ThelC gate has three outputs:
A graph iter?, and an 1 control valué and R control value which provide control inputs to two scts of M

gates respectively merging the I and R data outputs of the iteration body subgraphs to produce graph

outputs. A more detailed specification of the IC gate is given in Table 4.1. Functioning of the

-69 -

Figure 4.8. Tllif exp then iterbady) else iterbody, ond]

Tlexp] E)
e b

2

ST

Ifiterbody1]}

Table 4.1. Functioning of the IC gate.

predicate Tliterationi} T literation,] ~graph I R
control iter? iter? iter? control control
true true -- true true -

true false - false - true
false - true tue false -

false - false false - false

error - - ' false - - error

conditional iteration body is secn through scveral cxamples presented in section 4.4.2.
By replacing iterbody in the Figure 4.7 graph of the itcration copstruct with the Figure 4,8
conditional iteration body to produce Figure 4.9, the.I output arcs of the iteration construct can be

analyzed for acknowledge arc removal.

Figure 4.9. Iterative data flow graph containing ierbod) subgraphi of Kigure 48

e 1\ =

Recall ;hat a sct of output valucs should appear on the I arcs for cach true ifer? value produced.
The acknowledge arc of a particular I output arc may be removed ilfeﬁhcr of two cpnditions is sausﬁed.
The first is the-case in which production of the output valuc is depcndent on the corresponding input
valuc; appearance of a ncw valuc Amphesabsorptnm of the previous value. At first glance this would
seem to occur always. In fact, it is possible to produce a sccond eutput on some I 'arc without using the
previous value, as is seen in the example in scction 4.4.2. The second condition under which an I

acknowledge arc can be removed is dependence of the iter? vatue on the corresponding I input.

-71-

To understand this we look at the IC gdté in Figure 49 one-of whose ‘outpitt arcs is iter?.
Firing the IC gatc will produce valucs on two of its three ()ulput arcs; the .ifer? arc and cither the
itcration or return control arcs whlch rcspcctlvcly prowdc comml mput v.xlucs for M gatcs connected to
the graph I and R output ports. Ul’ltl] the IC gate ﬁrcs thcse M gatcs wﬂl not be cnabled. A set of
valucs appcaring on the graph | output ports therefore’ rcquims the prior IC g':tc firing to produce the
M gate control values, as well as an iter? value. It is clear that if Lh‘isvi’ler? valuc is dependent on a
particular 1 arc input valuc, that I arc must be cmpd for if to récé:ivc a sucécséive itcration value.
Conscqucﬁtly, acknowlcdge arcs of I aré palrs satlsfylng [hlS ner’ dcpendcncc arc not necded. The two
condmons under which thc acknowlcdgc arc of an I arc pan' can be removc;d are summarized in rule
[‘2 of I-lgure 4, 7 |

To complete analysis of the iteration constn;ct we d‘lslcuss the input arc palrs to the iteration
body labgllcd vie inv Figurc 4.7. Testing for acknowledge arc rcmova] must be donc individually for
C%\Ch vi acco.rding to ch 'following guidcfincs-. If the alﬁ paif isinputto a T; or F gate, thc acknowledge
arc mustvrcmai‘n: This followsrfromrlhe discussion of T and F gétc Bchévior. If the aﬁ pair is input to a
functional opcralor or M gate, the acknmﬁcdge arc c‘;n be rcmuvcd lf thc uer? output of the iterbody is
dcpcndcnt on the v; arc value. Thc vj arc pairs arc outputs of a.sct of M galcs controllcd by the graph
iter? valuc. In order to remove the acknowledge arc of a particular Vi arc pair, it is not sufficicnt that.
the v; ;laluc be needed in computing a sucécssive itcrat;lvc value ih ;csponsc to a truc iter? output. The
vi valuc must also havc been used bcfore a new input value rcsu]tmg from a _(_lg iter? value appears.

This is cnsured if uer? dcpcnds on thc vi valuc. Rule T3 shown in F |gurc 4 7 states the acknowledge arc

removal rule for the v; arc pairs.

44.2 [Acknonledge Arc Removal in-lterative Programs .. -

To apply thc acknowledge arc rcmoval mlcs dcvclopcd in the pmvums section, we bcgm with
the snmplc but famlllar factorial algomhm expmsscd as thc foﬂowmg VAl program
foriy=11d0 |

Hilnthoaiterit Ly icheyend &
end

The datn flow graph rcpmscnmuan of ﬂus program is shown in Flsurc 4€ 10. Thc graph is composed of
an iteration construct whosc :lerbod} isa samphﬁed form of the condmonal ltcranon expressaon shown
in anure 4 8. The mmplnﬁcau(m oceurs since only thc tben chusc o;' ﬂ;e o(;ndmonal ncrauon body wﬂl
 actually iteate values. Though both branches have the ability 1o iterate and roturn vahm, the tail

Al

recursive structure of the algomhm causes valncs to be itcrated thmugh one branch and retumed

thmughthcomer

‘ If a sctof rules cxastcd for each VAL cOnstmct. dctermmmg whtch acknowledgc arcs to remove

for the [ag_mm[data ﬂow gfaph would begm mth amlysts of thc mner condmonal ucratton body
However since we have only dcvcloped mies for (hc condmonal and ltcr;uon constmcts, we mus
keave thc condmonal iteration body as is, and procecd t0 thcwrroundmg ltcmuon construct. |
Clearly, thc acknowledgc arc bctwccn thc lC gate and opemtor L can bc rcmoved. Rule T1
govcmstheampanrsbctwccn LandtheMgatcs. Ihcnandndatavaluesmustbeuscdmprodumng
the uer’ control valuc; thercforc only the acknowlcdgc arcs of thc arc pan's betwecn L and the M gates
controlhng thciandn data valucs may be nemovcd ll 12, and l3 (wcmnon) arc paus sausfy the first
condition of rule T2; a successive value cannot bc produccd on thc l output arc unul the con'espondmg
input value on the corrcsponding input arc has been absorbed. 'I'hus, none of ﬂme needs an
acknowledge arc. Finally, we cxamine the v; arc pairs, which in the Figurc 4.10 graph represent all six

-arc pairs cmanating from the three M gates controlling the i, y and a data values. According to rule T3,

-13 -

Figure 4.10. Data flow graph of the factorial algorithm:
i y n

-

only the two arc pairs input to the predicate of .the conditional iteration body can have their
acknowledgce arcs removed. The other four are input to F and F gates, making their. acknowledge arcs
essential. The results of this analysis arc shown in Figure 4.11 where each arc requiring an acknowledge
arc has been marked with a &oublc bar ||;. ﬂmsc not markc;i are ;ls;ﬁmcd to bc singlé data arcs.

While the M data flow graph shown in: Figure 4,1&13 produced by the T algorithm, the
simplified form of the conditional itcration body is signi-ﬁ;c:;'ulit.in ;hat thé M gates which merge iteration
and rcturn values of the c‘oﬁstruct,‘ though pfcscnt, sen(re -n'o funétioﬁ. The tcmpt;ltion is to optimize the
graph by removing these M gates as well as the. IC gate 1 and R control .outputs. Though possible, rule
T2 must be reevaluated as a difect consequenec of this action singe the analysis used to formulate rule

T2 relies on the standard form of the conditienal itération body shown in Figure 4.8. Spccifically, the

-74 -

Figure 4.11. Optimized factorial data flow graph -

reasoning behind.casc (2) of rule: 12 is dependent on the prosenceof theband R M gates. We state rule

T2 and procoed to roexamine cach of itscases.

T2: The acknowledge arc of an | arc pair can be removed if either:
(1) ‘The iteration body cannot cmit a value on that output arc
until it has abserbed the corresponding nput value oa the
corresponding input arc. ‘

(2) The iter? valuc depends on the corresponding input arc.

Condition (1) of this rule still applies; since it: describes the sitiration in which ecach successive
itcration value is a function of its previous value. Clearly,-only one value can appcar on an arc which

-satisfics this condition at any time. Removing the M gates dees not:affect this case. ‘To recvaluate case

-75-

(2) of rulc 'l‘2, we focus on the data flow graph shown in Figure 4.12, the represcntation of the VAL

program:
fori,y=114do
ifi <nthenitery+1,i+2eclseyend
end
This graph, similar in structure to the factorial graph, displays the same M gatc phenomenon, but is

significant in its rcassignment of iteration variables. Each of these two variables is a.f,um:tion.of the

other: ltcration variable i is a function of y, and iteration variable y is a function-of i.

Figure 4.12.. Example data flow program

-76-

*Itcration arcs of the factorial data flow graph satisfied case (1) of rule T2 - dependence of a
successive valuc on.its previous value, allowing their acknowledge arcs to be removed. Case (1) does
not apply to the 11 and 12 arc pmrs m the graph in F'gurc 4. 12 duc torthe "crossover” reassignment of
itcration variables. However, their acknowlcdgc arcs can bc rcmo;/cd since casc (2) of rule T2 is
satisficd: Production of the irer? value depends.on both { and y. Variable i is needed 1o compute the IC
gate control input, and variablc y generates the gatc’s fryc data imput. -

The structure of the Figure 4:12 data flow graph‘cnables us to examinc whether case (2)-of rule.
T2 correctly determines acknowledge arc removal if the graph is optimized by removing its1 and RM
gates and IC output control arcs (portion of the graph shown in the dashed box). Consider the state of
the graph shown in Figure 4.13, the optimized version of the Figire 4.12 graph.

| It is now possible for a sequence of opcrator firings to ﬁé'ce a "é'ué:ccssive‘v“aﬁi“éfbrli IZ; rcsultﬁi’g;

in the unsafec state shown in Figure 4.14. Even though ﬁle IC gatc is dependent on the y value, the
production of succ<;s§ive ‘iterétion vall;es is no longer "&Qpéiidc;n,twp;n“ the_prior firing of the IC gate.
Thus, the i value can Mtc through the graph to pr_odycé"'aMive y value before the previous y
value has been absorbegl. We sce that as a result rof optimiiiné mcmm grqph form. the case (2)
condition is no longer adcquatc for eﬁsurin? safc removal bfitérétiOﬁj‘ét%:knowlcdge arcs. |

One approach to this prébl‘cin. is to specify this type of graph optimization as illegal. Such a
restriction favoré the an] of kcﬁtim aeknowlcégearcs over the removal of unncfceésaﬁry operators.
At the same time, it cnables uniform application .of thé present acknowledge arc fcﬁroval rule.. A
sccond approach involves rcdeﬁmns rule T2 for optimized gl’aphs whosé M gatcs have been
climinated. Removal of T acknowledge arcs bocomes dcpendcm on the prcdlcate value rather than the
iter? value. The functioning of the graph dictates that data used in producmg I or R values must come

through the T or F gates controlled by the graph predicate. This ensures that M gates controlling

Figure 4.13. Modificd data flow program from Figure 4.12

e? 1 {2 |B

variables-used in computing the predicate must fire before new iteration vahacs can be produced. Fhe
modified version of rule T2, case €2) reflcets:thisanalysis ‘by specifying that-an iteratien acknowledge

arc may be removed if its corresponding input arc must be used in producing the predicatc:value.

T2: The acknowledge arc of an I arc pair can be removed if

(1) The itcration body cannot emit a value on that output arc
until it ‘has absorbed the:cotresponding input valic:on the
corrcspondmg mput arc,

(2) the predicate output value depcnds on the correspondmg
nput arc: '

Figure 4.14. Unsafe token configuration for Fipure 4.13 -

Using this rule, the acknewledge arc of iteratign arc paix I2 can 8ot be removed since computation of
the predicate valuc docsmet involve y, the variable controlied by itscorresponding input arc.

This analysis of the factorial #lgotithm cmphasizes the aptions.and problems which quickly
surface in considering rather basic cxamples. The acknowledgc arc rcmoval rules, whllc adequate for
graph conﬁguranons derived by straughtforwardly applymg thc l’ algonthm could rcqulrc significant
cxpansion to be nampaubly usedw\vnh 'othcr- opamﬂam»ﬁswdy ef smore complex graphs or of
those requiring this optimization in conjunctmn wnh othcr optmmmons would be useful in
determining the general apphcablmy of these rules, and is desagnaied as -aa area of interest for future

research,

CHAPTER FIVE
5.1 Summary

The aim of this thesis has been to address problems which arise in-translating a high- level
language for a machinc architecture designed for paralicl processing. While the high level language is
nearly indistinguishable from source languages. for standard scquential-processors, the data driven
execution of its instructions requires a radically. different form of translation. This study . of data flow
translation uses the high level language VAL and the Dennis-Misunas architctture. While standard
methods of data flow processing do not yet exist, the model used refiects the typc of translation: issues to
be tackled in the realm of data flow. The problems unveiled and solutions proposed: are illustrated
using data flow graphs;-which result from applying the-F translation: algorithm to' VAL programs.
Though these data flow graphs closely correspond to.the machine tanguagc ;representation of VAL
programs, their lovel of abstraction and explicit ‘represcation’of data dependencies make them a
gencerally accepted model of data flow.

Chapter 2 focuscs on-the firing behavior-of data flow graph operators which must ensure a
‘maximum capacity of one value per arc as dictated by the ‘Dennis-Misunas architecture. While
restrictions of other data flow architcctures may be less scvere, the need to place some finite limit on ar¢
capacity is common to most. The transformation of ar¢s within data flow graphs to data/acknowledge
arc pairs is introduced as a micans of implenicnting the desired operatar behavier.: A formal argument
cstablishes that the safe operation resulting from the transformation. is guarantecd, and that the liveness
and functionality of thc graph-is not altered. The usc of data/acknowledge arc pairs does however have
a profound cffcct on operator firing sequences within a given graph, and thercfore on its throughput.

The remainder of the thesis explores the consequences of incorporating d/a arc pairs and suggests -

mcthods of modifying the transformation algerithm to improic graph performance.
Though safe operation is achicved by pchcming any given operator from firing until
appropriate acknowledges are reccived, the delayed firing of an operator may cause a subscquent and
unnceessary delay. to:operators dependent on its output. “This phenomenon is the subjoct of chapter 3.
The algorithm developed e this chapter climinates petential bottlenecks within a graph by buffering
ares with identity operaturs:so-that alt paths through the graph- arc aa .cqual. length. Analyses of
performance show that this approach maximizes: througliput, -but at:a potcatially kigh cost in:terms of
identity opcrations. While performance statistics: indicate -that: this - latter sttategy: 'is promising, the
cheice of an optimum buficring sclieme is complicated by the number of interacting factors. -

‘A ‘sccond approach: for: optimizing a transformed:data flow graph, which aims te decrease
_everhcad by climinating: unnceded ‘acknbwiedge -arcs; isdiscussed in chapter 4. -By identifying
situations: in- which particular arcs do not depend .on an acknewledgemcnt to prevent multiple token
occurrances, the number of acknowledge arcs can be minimized.. This is accomplished by analyzing the
data flow graph implementation of cach VAL construct to find are pairs that may -be subject to
acknowlcdge: arc removal; and specifying rules which enable thase situations w0 be rocegaized. The
chapter oondudcs:_ with scveral examples iltustrating: this optismization. <While the technigues . of
balancing token flow and removing unnecessary acknowledge ancs have been developed independently,
the optimum . configuration for any given data flow: gmphls reached: by application of both
optimizatians. The absenca of specific information: about hardwage: (e g operator execution times, ¢tc.),
prevents the develepment of an algorithm combining the: two at this time;-however, an attempt is made
to identify the major factors contributing to the choicc of eptimizations. - Thesc issucs dcveloped in
chapters 3 and 4 should provc applicable to translation and optimization problems arising in other data

-81-

5.2 Directions for Fature Research

Three arcas of rescarch arc natural cxtcnsions of the work prcmn&d. The first focﬁscs on
further development of the chapter 4 optimization. <Thc wc;rll(vvlﬁrcscntcd anai'y_zed the VAL conditional
and ‘ileratian constructs to detcrmine the circumstaﬁces undcr which ;cmin arc pairs could safely
_ function without an acknowlcdgc arc. A more extensive study of data ﬂow graphs contammg these
constructs would be useful in dctcrmmmg the completeness of the rulcs prescntcd Certam graph
configurations may reveal additional cases to test for in removing acknowledge arcs, thus Iead;ng to an
extension of the proposed rules. A more straightforward task involves application of the chapter 4
analysis to the remaining VAL constructs. This work is required for the development of a recursive
algorithm which could perform acknowledge arc removal for the data flow graph representation of a
program.

A second avenue of research centers on performance evaluation of data flow graphs. As data
flow computer prototypes become available, the type of performance analysis shown in chapter 3
should produce more accurate data. Statistical studies can be made of token flow patterns for various
graph configurations, and corresponding optimization schemes. Information gathered should
detcrmine when or whether the bencfits of an optimized graph outweigh the cost incurred. A study of
different configurations of a single daté flow graph should provide valuable data on optimization
tradcoffs. This would contribute invaluable information toward formulating an algorithm integrating
the optimizationé of chapters 3 and 4.

Finally, the rescarch can be cxtended to include more traditional optimization techniques.
This would initially require a determination of which of these optimization strategies are applicable
and adaptable to data flow. While redefining optimizatiqns such as strength reduction scems possible

and fairly straightforward, the adaptation of other traditional optimizations to a parallel processing

context may require a different set of considerations. A data flew :version of these optimizations could
depend on the development of certain tools, such as a catcgorization of cquivalent graph
conﬁgufations. A comﬁrchcnsive cxaminatidn of the application and mcanihg of such traditional
optimizations in data flow rcmai»ns ic potcnual in fullowmg thls route, and of furthcr dcvelopmg
opumwauons particular to data flow computauon is just bcgmnmg to be tappcd Thc extensive hlstory
of scqucnual programming opnmwatnon tcchmqucs w:ll no doubt have its countcrpart in the world of

data flow.

8

2l

31

[4]

oN

[6}

m

[8]

9]

{10

[

-83-

BIBLIOGRAPHY

Ackerman, W. B., "Interconnections of Determinate Systems”, Computation Structurcs Group
(Notce 31), Laboratory for Computer Scicnce, MIT, Cambridge, Massachusetts, July 1977.

Ackerman, W. B., and J.B.Dennis, VAL -- A Value-Oriented - Algorithmic Language:
Preliminary Reference Manual, Laboratory for Computcr Scmncc (I‘ R-218), MIT, Cambridge,
Massachusctts, June 1979.-

Brock, J: D., Operational Semantics of a Data Flow Language, Laboratory for Cumputcr Science
(I'M-120), MIT, Cambridge, Massachusetts, December 1978. '

Brock, J. D, and L.B.Montz, “Translation ‘and Optimization of Data Flow Programs”,
Proceedings of the 1979 International Conference on: Parallel Proeessing (O:N.Garcia, Ed.),
August 1979, 46-54. Also, Computation Structures Group (Mcmo 181), Iaboratory for
Computer Science, MH Cambndgc Massachusetts.

Chamberlin, D. I) "'I‘he *Single-Assignment’ Approach to Parallel Processing”, AFIPS
Conference l’roceedmgs 39, 1971 Fall Jom! CmnputerConférence Nm«cmber 1971, 263»‘269 ’

Commoner, F., "l)cadlocks in Pctn Nets", Research Report of Applied Dala Reseamh Inc,,
Lakeside Office Park, Wakeficld, Mass., June 1972.

TN

Commoner,F., ‘S.Even, A.W.Holt,. and A.Privcli,;- "Marked - Direct Graphs”,

Journal of (’ ompuler and S’yslem Sciences 5, October 1975 511~523

Dcnnmg P J "On Lhc Dctcrmmacy of Schemata" Record. af Ihe I’ro;eet MAC Conference on
Concurrent .Syslem and I’arallel C ompulatwn. ACM, Ncw York 1970, 143- 147

Dennis, J. B "First Version of a [)ata Flow Pmceduee Languagc" ngrammmg Symposium:
Proceedings, Collogue sur la Programmation (B.Robinet, Ed.), Lecture Notes in Computer
Science 19, 1974, 362-376. Also, Laberatory for. Computcr Selence ('lM 615 MIT, Cambndge

' Massachusetts.

Dennis, J. B., "A Language Design for Structured Concusrency”,. Design and Implementation of
Programming languages: -Proceedings of a DoD Sponsored' Workshop (J. H. Williams and
D. A. Fisher, Eds.), Lecture Notes in Computer Science 54, October 1976. Also, Computation
Structures: Group (Note 28-1),° l;abofawry for. -Computer Science, - MIT, - Cambridge,
Massachusetts. ' g .o Tl e

Dennis, 1. B., and 'D. P. Misunas, "A Preliminary Architeécture for a-Basic Data-Flow Processor”,
The Second Annual Symposium on Computer Architecture: Conference Proceedings,
January 1975, 126-132. Also, Computation Structures Group (Mcmo 102), Laboratory for
Computer Science, MIT, Cambridge, Massachusetts.

(12]

{13

[14}
(15}
16}

Y|

(18]
(19]

120}

pi}

22

23}

Dennis, J. B., D. P. Misunas, and C: K. C.Leng, "A:Highly Paralicl Processor Using a Data
Flow Machinc Language”, Computation Structurcs Group (Mcmo 134-1), Laboratory for
Computer Science, MIT, Cambridge, Mssachusctts. June 1979. To appear in IEEE

”TmmamsarCamiax SELIY

Dennis, J. B and K.-S. chg "An Abstract Implcmcntnuon for Concurrcnt Computatwn with
Streams”, Proceedings of the : 1979 - International Conférence: on. Parallel - Processing
(O.N.Garcia, Fd.); August 1979, 3545 Also;: Computation: - Smam Gmup (Memo 180),
Laboratory for Computer Science, MIT, Cambridge, Massachuse@tse? . 1.t

Hack, M., Analysis: of Production Schemdia by Petei- Nels; ubanwry Far Computer Sc:eme
(TR-94), MIT, Cambridge, Mﬁachmﬁebmwim R

- Holt, A. W., Final Report of the Informations System. Theory Project, Technical Report

RADS- I'R-68-305‘ Rome Air uesdopnwmﬁeamf mm Eome Blse New York. 1968.

Holt,/\ w., and F Commoner "Evems m& @mz. Raead qf ﬂze Pmpcl MAC

C onference on Concurrem S, ysmns and Pamllel (‘mnmlalwa, ACM New York, 1970 3-52

e

" defie L. M, and L. Mosts, T ToueFlow Solotivas of L.aplace's: Equation”, Computation

Structures Group (Note37), laborawry ﬁ)r (‘ompueer Scnence M!T Cambndae.

Karp. R. M.. and R. E. Miller, Pmpem ofa Modcl fm"m'cm‘mm Determinacy,

- Termination, Qeueing™, SIAH}oumal d Applwﬂwaimmﬂcﬂovm 1866. HBD-I&L

i :_r‘r,l.\ x’ ERE 3¥)

Kessels, J. L. W, "Parallel Progralmmng Concep(s in a Dcﬁuitional Language SIGPLAN
Nm& Uﬂ&m% [E7TE Rt PR S it L .
o - .

Kosinski, P R., A Data FIow Progmnmmg Languagc, IBM T J Watson Rcscarch Center (RC

,;(4264),YorkmnﬂcmmNowYmmm S I e S LA 4

>«Kosmsh.P R, "A Dam Mmﬁwmﬁmmng Pmceadmg:af

ACM SIGPLAN-SIGOPS Interface Meetings, SIGPLAN Notices 8, % Scptember:1973); 89-94.

‘Leung, C. K.C., Formal Properties of Welk-Formid: Basid Blow :Schenas; Laben(ory for

(:mpumrsmncc(mm Mmm Mmlmwi e

Leung, C K C, D.P.ans.A.Neezmd;MJ. B.sDcm& “Aﬁonmr&mulmfamhty
for Packet Communication Architecture®, The Third Annual Symposiwm:-on . Cempuler
Architecture, Computer Architecture News 4, 4(January 1979), 58-63. Also, Computation

~ Structureés Group. (luk:mnb4124kla, J;ai:qcnsnc;f<ﬁht <Zawn||unﬁ|? ﬂka!aiac‘, llli‘ ilamni:ruilsg

- Massachusctts.

[24]

[25]

[26]

27

[28]

[29]

-85-

Misunas, D. P., "Deadlock Avoidance in Data-Flow Architecture”, Proceedings of the Third
Milwaukee Symposium on Automatic Computation and Control, April 1975. Also, Computation
Structures Group (Memo 116), Laboratory for Computer Science, MIT, Cambridge,
Massachusetts. S

Patil, S. S., "Closurc Propertics of Interconnections of Determinate Systems”, Record of the
Project M AC Conference on Concurrent Systems and Parallel Computation, 1970, 107-116.

-Petri, C. A., Communication with Automata, Supplement 1 to Technical Report

RADC-TR-65-377, Vol. 1, Griffiss Air Force Base, New York 1966. [Originally published in
German: Kommunikation mit Automaten, University of Bonn, 1962.]

Ramchandani, C., Analysis of Asynchronous Concurrent Systems by Petri Nets, Laboratory for
Computer Science (TR-120), MIT, Cambridge, Massachusetts, February 1974.

Tesler, L. G., and H. J. Enca, "A lLanguage Design for Concurrent Processes”, Proceedings of the
AFIPS Conference 32, 1968, 403-408.

Weng, K.-S., Stream-Oriented Computation in Recursive Data Flow Schemas, Laboratory for
Computer Scicnce (TM-68), MIT, Cambridge, Massachusctts, October 1975.

