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ABSTRACf 

'Inc data flow concept of computation seeks to achieve high perfonnance by allowing 
concurrent execution of instructions based on the availability of data. This thesis explores the 
translation of a subset of the high level language VAL to data flow graphs. 'll1c major problem in 
performing this translation for the target machine. the l)cnnis-Misunas data flow computer, stems from 
the restriction that graph execution sequences place at most one value on any given arc at any time. 
'1l1c da1a/ack11owlcdge arc pair 1ransformatio11 is introduced as a means of implementing this required 
operational behavior. lts effect on data flow graph operation is subsequently explored as it relates to 
correctness and performance. 

'lbough the arc transfonnation enables graphs to be executed without the possibility of 
deadlock. the resulting overhead and the potential loss of some concurrency represent significant costs. 
Two techniques aimed al minimizing these problems arc developed for optimizing transformed graphs. 
'll1c optimi1.ation to climi11ate unneeded acknowledge arcs analyzes VAL construct'> to identify arc pairs 
which may permit removal of their acknowledge arc. The optimization to balance token.flow specifics a 
method of inserting identity operators into a graph for the purpose of pipelining input sets, and thereby 
increasing graph throughput. Though developed within the context noted, the translation and 
optimization issues described should prove applicable to other data flow architectures. 

Thesis Supervisor: Jack B. Dennis 

Title: Professor of Computer Science and Engineering 

Keywords: data flow programming, data flow translation, optimization, asynchronous systems, 
Petri nets. 



This empty page was substih1ted for a 
blank page in the original document. 



- 3 -

ACKNOWU:l>GJ<:M J<:NTS· 

Theodor Herzl said, il,lM ,,. l""M ,~rin CM . that is. "if you will it, it is no dream": and 

though this thesis represents U1e completion of a personal endeavor, its accm,nptishment is owed in 

large part to several individuals lo whom I am greatly indebted. 

I wish to thank my thesis advisor. Jack Dennis. for offering me the opportunity to join the 

Computation Structures Group of lhe I ,aboratory for Computer Science, and for his subsequent 

guidance in the formulation and development of this research. I have gained much from my 

association with the members of his group, and am grateful for the very positive and warm working 

aunosphere which they have collectively created. 

I would like lo thank Clem Leung for providing direction and encouragement during the early 

stages of my work. and Dean Brock for his helpful editorial comments and suggestions concerning Ule 

technical content. 

I am especially grateful lo Bill Ackerman for countless invaluahle discussions of the problems 

and ideas which arose throughout this research. His patience was truly remarkable. and his 

encouragement and confidence in my abilities should prove a permanent benefit. 

Of course, I must express my special thanks lo Chris Terman whose excellent preparation of 

the gra13hs in this thesis seems quite minor in comparison to U1e sincerity and value of his friendship. 

Finally, I am most grateful to my parent~ and family, who have always provided me with 

support, encouragement, and love. 



This empty page was substih1ted for a 
blank page in the original document. 



'•4-

TAHU: OF CONTENfS 

l. CHAIYfER ONE ............................................................................................................................... 6 

1.1 Introduction ........................................................................................... ; ......................... 6 
1.2 Data flow Graph Operation .......................................................................................... 7 
1.3 Translation of VAL to Data How Graphs .................................................................... 9 
1.4 Safety Transfom1ations for Data Flow Graphs .......................................................... 12 
1.5 Optimizing Transformed Data Flow Graphs ............................................................. 14 
1.6 Structure of Thesis ........................................................................................................ 15 

2. CHAIYrER ·1wo ............................................................................................................................ 16 
/ 

2.1 The Safety 'fransformation .......................................................................................... 16 
2.2 The Petri Net- Data Flow Graph Analogy ................................................................ 17 

2.2.1 History and Analogy .............................................................................................. 17 
2.2.2 Modelling Data I-low Graphs with Petri Nets .................................................... 19 

2.3 The Data/ Acknowledge Arc Pair Transformation .................................................... 22 
2.3.l Achieving Safe Data flow Graph Operation ...................................................... 22 
2.3.2 Preservation of Liveness ........................................................................................ 24 

3. CHAJYr~:R 'l'HREE ....................................................................................................................... 35 

3.1 Balancing Token Flow .................................................................................................. 35 
3.2 Formulating the Optimization ..................................................................................... 36 

3.2.1 Identifying the Source of Bottleneck ................................................................... 36 
3.2.2 Preview of a Solution ............................................................................................. 37 
3.2.3 Analyzing Token Flow to Characterize the Solution ......................................... 38 
3.2.4 Observations ............................................................ ,.............................................. 42 

3.3 Full vs. Limited Buffering ............................................................................................ 43 
3.3.1 Achieving Limited Buffering ................................................................................ 43 
3.3.2 Examples of Full vs. Limited Buffering ............................................................... 45 
3.3.3 Additional Considerations .................................................................................... 56 

4. C~JAprfER 14,0UR .......................................................................................................................... 57 

4.1 Eliminating Unneeded Acknowledge Arcs ................................................................ 51 
4.2 Considerations for Acknowledge Arc Removal ......................................................... 58 
4.3 Analysis of the Conditional Construct ........................................................................ 60 
4.4 Analysis of the Iteration Construct .............................................................................. 66 

4.4.1 Acknowledge Arc Removal .................................................................................. 66 



- 5 -

4.4.2 Acknowledge Arc Removal in Iterative Programs .............................................. 72 

5. C•IAt>'f'FR FIYE ............................................................................................................................ 79 

5.1 Sun11nary ........................................................................................................................ 79 
5.2 Directions for Future Research ................................................................................... 81 

6. BIBl,IOGRAPflY .......................................................................................................................... 83 



-6-

CllAPTER ONE 

I. I Introduction 

The short history of computing as a :science is unique in its tiilparallelcd rate of tcchnotogical 

growth. In response to this, the demand for greater levels of computing power has risei:i as rapidly. 
:- ~ l>~ 7i ~ ' 

Anticipating the continuation of this trend. research in the area of parallel computation seeks to achieve 

high performance by maniputariqg programs to' exploit the ·paratlclism''inhcrcnt in many problems. 

'lbough this has led to the introduction of "do in parallel" constructs within certain languages, the 

sequential nature of conventional machine programming has l"rHv.ed td be a barrier to the formulation 

of an adequate and practicahtpproach. The dataflowtonct~t'of compltcition oveFComcs this difficulty 

by allowing the availability of data to determine the excrution sequence, rather than a sequential 

instruction counter: . In· the data flow model. an ;operation' is'cx·ccutcit as soor(as ~ts required operands 

have been computed. '1l1c dcvcJopmcntt}fthiscOnccpthas tcs&Jted'.in the pfOpostil of several data floW: 

machine arehitcctures and associated· data Oow languages. 'Ibis thesis addr~ certain language 

tr.mslation problems which arise in translating the high tevel data flow language, VAI!2) for the 

Dcnnis-Misunas data flow macRincfH]. 

'lbe concept of data flow is best illustrated by data flow graphs which explicitly show the data 

dependencies of operations in a data flow program. The operators and <ires of data 'flow ·graphs are 

viewed as an abstraction of the instniction cells and operand registers of the data flow machine and as 

such, provide a model for describing translation problems. The chapter proceeds with a more detaiJed 

look at the components and operation of data flow gmphs, foJJowed by a brief look at the high level 

data flow language, VAL and its translation into graph fonJI; The major problem, termed safety, which 

arises in making the translation will be identified and discussed in :section 1.4. While resolving the 
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safety issue is straightforward, the solution fnuodutes n "S«oncfary, more subtle set of problems to lhc 

graphs. Section l.5 identifies tl)csc along with several optimizations of the initial solution aimed al 

minimizing such problems, an expanded discussion of which fonns a major portion of this thesis. The 

chaptcr.cooc;lutlcs widJ a syno~softhc remainder of the thesis.. 

J.2 Data Flow Gmph Operation 

·nlC basic compo~nlS of directed data j/Qw, igmplu, are ~mlors and arcs which join lhe 

operators.. Wheo an. operator Pres., it absofbs VJtlucs or,Jokef1.thontits input an:s and prudt~ tokens 

oo it.~ t)ulput arcs. 'lbcre arc three tlf)Cfalor t~ .ae(l ~mcling rules defining .their. operation or 

firi11g~ha:vior. ll1e,graph iq·FjgurcJ.l.wWck;f~~,>JA1.,~:ton5truct: 

if exp tlteAfdte g _ 

contains ins&anccs of each type. •tnc exp nooe is 4tll abbo:viation for .a VAL cxprcssioo representing the 

predicate of Jhc 'on<litional:i Thus. ·iUl!lil;>ulcJ ewaf~e1&o a. boc.llean· value. .. ·· · 

'lllC most gc~raliicd .operatp{ type iS:-d1C fuf)(;tioaa}1lJ>Crator. represented in the figure by 

ll(Jdcs f and g. · lbcsc operators may pcrronn simple, $1ithmctic · (JPCrdtittns sueh as addition or 

multiplication, or more complex functions such as square root. The; 4iriot behavior rule fhr functional' 

QPCrnlors specifics that a token be present tm each input arc for I.he opcrawr to fire, al which time all 

mpu'5 arc absorbed, the approprialc function ~.computed and a-rcsuk to ten is producl.'d on .each of the 

operator's output an:s. 

The !r.Y£ and .Gm£ controJ. ~ represented in Figure 1. l by the T, and F nodes funn a second 

operator type. Each of .~ opcralors requires a amtrol and a <lata inputto fire. and operates 

aa:Olding to the following rule: If the control input matches die gate type-., the datvinput is transmitted 

to the gate's output arc, otherwise the input data token is absorbed and DD output is, produced. Thus, a 

-------------------- ------ -
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Figure I.I. Data now grapl1 orthe VAL cxpressietl 'if &JJ...mif• I' 

inl in2 in3 

a 

0 operator 

- d<Qan; 

~ control am 

T gate (F gate) will transmit its input data token to its output arc if and only if it receives a~ <.mJK) 

input control token. 

llle remaining operator type is the M gate, or ~ £Q!llrQI. ~. which has three inputs; a 
_-- ,, ~' '. 

control.input, and two data inputs corresponding lo ~ and ~ control input values. To fire, an M 

gate requires an input control token and corresponding input data token which is then transmitted to 

the gate's output arc. A value present on the input data arc not selected, is unaffected by the gate's 
> :' 

firing. Appropriately, the M gate merges two paths in the graph. 'Thus. Figure 1.1 models the 

conditional construct behavior by allowing an input token to flow through either the Tor F gate, (based 

on the evaluation of exp), to the M gate which merges the llY£ and .fab£ paths to produce a result token 

on the graph output port. 
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1.3 Translation or VAL to Data 'Flow Graplls: 

While data flow graphs expose concurrency inherent in a am1putation by explicit 

representation of operator dependencies, it is impractical to cxpre!;S programs in this fonn. Instead, we 

introduce the high level data flow language V Al .. acronym for l'<llue-orientcd Jlgorithmic language. and 

a translation algorithm mapping VAL programs into d,ta flow graphs. Developed by Ackerman and 

Dcnnis(2} as a source language for data flow graphs. VAi. is~ an applicar;ive language containing 

constructs well suited fbf cxpressint parallelism in a'J>mgram., A llNF spccirication of the syntax of a 

subset of VAL. used in the development of this thesis f~ws. 

exp : : = id I cons/ I exp. ex pf opel( exp) J let id/isl = txp in exp I 
i( exp then exp else exp I for idlist = etp do ilerbody 

q,, 

iterboJJy : : = exp_J iter fXJ1 l let id/isl = exp ia iterbodyJ 
if exp then iterboJy else iterbody 

id:: = "programming language identifiers" 

id/isl::= id{, id} 

const : : = "programming language constants" 

oper : : = "programming language operators" 

The recursive translation algorithm mapping VAL cxpr~ns into their data flow graph 

implementations, defined by J. D. Brock(J), consists of the functions T and T1 which respectively map 
: : 

VAL expressions and iteration bodies into their graph implementations. Both functions produce graphs 

which have an input port for each free variable in the cxprcsmon or iteration body being translated 

Tfexp) has an output port for each value returned by the expression; T1(ilerbody) has two sets of 

output ports, I and R, used respectively to re· iterate or return a set of values, and an output port iter? to 

signal which possibility has occurred. Translations of the conditional and iteration expressions are used 
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extensively in this thesis, and arc shown in Figures 1.2 andLl rcspa.1:ivcly. · 

Functioning of the conditional .exprcssionin Figure 1.2 should be clear from the discussion of 

Figure 1.1. Evaluation of T(c.xp1) should produce an input control value for all gates in the grnph, 

allowing tokens to flow through either the T or F ~tcs, cn<~?Jil1g-~pulation of the graph represented 
:~ \} 

by T(exp2) or T(exp3] respectively. The itc~~tion exp!~"km of Fi$ure 1.3 is fonned by using M gates 
• ... t , 

to merge the values resulting from evaluation of et/I, ~ith l.he it~ratii.>n, I. outputs of T1(iterbody). 'lllc 

control input port of each M gate is conn~ted t(Hhe iter? ot1tput of T1(iterbot~1], initialized with a 
. ~.· . 

false token to ensure that selection of the firSt set.of data v~tluqs 'is ~om Tfexp). /\ set of data values 

. will be iterated as long as successive iter? outputs arc true imcl will be returned at the first instance of a 
. ~~ ~ . . . 

false itcr? output, which reinitializes the M gates. /\ more detailed explanation of the application of the 

translation algorithm to d~ conditional and itcratiqn cxp~ssions. as well as to U1c remaining 

expressions specified in the VAL subset defined above, can ~ found in [Ji 

Figure 1.2. T(if exp1 then C'<fli else exp3 end) 

T(cxpl) 

® ... 

'llexp2] T[cxp3] 

@ ... 
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•·i&urc 1.3. Tfror idlist = exp do ilt>~emll 

' ·ilef?' 

A major concern in generating data How graph imJJlciitcritatwns ofVALcxprCssions is ensuring 

correct modelling of the semantics of each high lcvetc0nstriict. In raiCt: me translation algorithm is part 

of a two step process giving the operational semantics for the VAL subset: The operational semantics of 

a data How program is a fonnal modelling of the execution of the program's data flow graph. The 

operators composing data flow graphs arc de1em1i11ate, meaning that every COl.Jlplcte set of inputs lo an 

'operator (one for each input pon) produces a unique set uf outpu'~ Patf1(2S] proved that if the 

operators of a graph arc determinate, the graph itself is determinate. Developing operational semantics 

for VAL is possible due to the determinate nature of its corresponding data flow graphs. 1bus, a 

complete set of inputs to a data flow graph will produce a unique set of outputs, making it neccs,,ary to 

examine only one execution sequence of a graph to derive the res1,1lt oNts execution. lbe graphs in this 

thesis are generated from Brock's translation algorithm and are therefore assumed lo be correct 

semantic representations based on the operational semantics developed in [3]. 
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1.4 Safely TransforDJatioas for· Data Flow-Graphs. 

Though we accept the data flow graphs generated by the translation algorithm discussed in the 

previous section as theoretically correct. their arcs arc assumed to be infinite queues -- this prevents 
' 

their rcali1ation. While it might be possible to implement the graphs using sufficiently large finite 

buffers, this solution may not be acceptable. To examine the problem, consider the state of the graph 

shown in Figure 1.4. ·me token configuration shown can be reached by assuming that the graph occurs 

within an iteration construct which recycles the output of the construct lllc second set of inputs shown 

could therefore have been generated in response to the output resulting from the first set of inputs. 

Assuming that the output of this first set was produced by propagating tokens through the .fitlK branch 

of the graph, it would be possible for the corresponding T gate inputs (tokens labelled 1) to stilt be 
. ; f'_ ; 

present when the second set of tokens arrives, creating the computation state shown. 

L , 

Figure 1.4. Unsarc token configuration rt."Sulting from inf mite queue arcs 

in2 inl 

• 
J 

out 
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While an implementation of graph <Jrcs as·wffcmofisomc,CDllSlant silc:(greatcr'than one) 

could accommodate. this Clmfiguration, the design of a number of data flow architectures, includ_ing that 

of the Dcnnis-Misunas data flow· machine. cannot support this: The correspondence of graph arcs to 

machine registers in such designs makes it necessary to consider only those execution sequences which 
.',_,J 

place at most one tolce11 on a11y given arc at any time. In the Dcnnis-Misunas data flow machine, the 

consequences of placing more than one token on an arc or corrcsptmdingly, computing a successive 

register value before it can be stored, arc possible nondeterminism, and deadlock as a result of values 

queueing up in its distribution network and blocking other values from reaching their dcstinations(24t 
! {_; - ·"'· ,,, 

·' 

Meeting the one-token operational requirement involves preventing data flow operators from 

producing new tokens until their output arcs arc empty. This behavior is achieved by defining the 

following firing rule for all graph operators: 
''. .' 

Opcr.ator Firin&. R~~= 1\11 QJ>Cr~t9r is enab~d tQ ti~ _when all of its.needed inputs are 
present and all of its output arcs are empty. 

Application of this rule prevents the Figure 1.4 state from occurring. 

While the operator tiring rult defines ihe desircd-1itoken behavior, the problem of 
~- '~ 

. \ 
implementation remains. By pcrfonning i} transfo~on which1rpljlces each arc of a data flow graph 

. . . / ......_.,-··' 

by an appropriate data/acknowledge arc P,air (d/~,.arepair);tJicAll!h's infinite queues arc replaced by 
. l . : ' 

buffers of capacity one, and the operat~.firi"8 rulc._is,cxptjcidy built into the graph. This is illustrated 

in figure 1.5, which shows the transfomted condilioaal construct of Figure 1.4. 'lbe transformation 

creates arc pairs which hold either a t/aJa or ackfloko/edge token, where the later indicates that its 
~ ... - , '- ./ . 

corresponding data arc is empty. With the oodition c,>f" acknowled8e arcs and tokens, firing rules revert . - \_. .~· ; 

to their original specifications which dcpcrid?onJ~"on·~ presence of tokens on input, including 

acknowledge, arcs: The operator firing rule requirement that output arcs be empty is ensured by the 



Figure 1.5. Transfonncd Figure 1.4. 

I 
I 
I 
I 
I 
I 
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io2 inJ 

enabling condition that acknowledge inputs be present 

• data token 
0 ack. token 

~-,··;~·· --- act.arc 

The keyword used in describing this transfonnation is safely, where the underlying idea and 

the tcnninology is rooted in Petri net theory. Chapter 2 discusses the analogy between data flow graphs 

and Petri nets. and the influence of Petri net theory on the safely transfon11a1io11. Included in the same 

chapter is a more detailed description of the transfonnation, and a consideratfon:Of Is effi.'et· onithe 

correctness of graphs. 

1.5 Optimizing Tra11Slofnted Data Flow· Graphs • · 

While the transformation of data arcs to d/a arc pairs enables the implementation of data flow 

graphs, it is imperative to question the cost of the acknowledging scheme and determine the 

· inefficiencies, if any, that arc introduced. In fact, there is much to say concerning these issues. Aside 

from the obvious overhead involved in incorporating acknowledge arcs and tokens, the constraints 
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which they impose on graph operation may cause bottlenecks. In response to this, ·we ·fTave developed 

optimi1.ation techniques which focus on decrea!ing overhcacj' and incrc;,sing graph throughput The 
' -i. 0 

-<· 

optimi1.ation to eliminate u1111eeded (}(.'k11owledge arcs is aimed at decreasing cwerhead, thereby reducing 

the cost of the transfonnation scheme. An analysis of data flow graphs of V Al, constructs indicates that 

the effect of certain acknowledge arcs arc realized by ~,giaph'.s ••~I structure. making the arcs 

unnecessary. On the other hand, increasing thr0ughput, the goal of the ~timi7.ation to bala11ce token 

flow, is accomplished by introducing additional,identity actors lhto the graph and consequently creating 
{ 

more d/a arc pairs. 

Note that though th•ncnn "optimi1.ation" friay -~on a varie11;of meanings. our use of the 
- • ! . ~ • -~ - --

' : . ~ 

word is confined to the d/a arc pair transformation d~rit>ed above: Roth optimi7.ations consider the 

number of acknowledges used in data flow graph translations. We do not consider program dependent 

optimi1.ations which might typically involve modification of a graph's structure, i.e., removal of 
H ; ; • • 

unnecessary data arcs or operators. This latter fonn of optimiz.ation is analogous to standard 
' . _) 

optimi7.ation techniques for conventional sequential programs and, though not yet fully explored. 

should prove readily adaptable to data flow. 

1.6 Skuehlre of Thesis 

·.{ 

Having established a foundation, we proceed to consider the main tasks identified. Chapter 2 

Chapters 3 and 4 respectively contain a development of the optimii.ations to balance token flow, and 
.- . '• ~ . 

eliminate unneeded acknowledge arcs. Conclusions arc presented in chapter 5 along with suggested 

areas for future rcscareh. 
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CHAPTER .TWO 

2.1 The Safety Transformation 

The aim of the· data/acknowledge ari: pair transfoimation of data Row programs is to 

implement the operator firing behavior, defined in chapter 1, and rcstatedftc.re: 

Operator Firing Ruic: An operator is enabled to tire when all of its needed inputs are 
present and all of its Clt1lput arcs a~ empty. 

This rule reflects the correspondence of data t1ow graph arcs tt> machine registers,, which requires that 

the occurrence of more than one token on any arc be prevcf1tcd: 'llestricting~datdlow graph behavior 

in this manner is· necessary to ensure dctcmHnatc. and .dcadl<Etdme execution for the architecture 

assumed. 'n1e analogy bctwcca the data tlow graph charactcristics.of·determinocy·and dcadlocl and 

the Petri net theory properties of safety and liveness suggests the use of Petri net theoretical results'*>; 

formulate and verify the d/a arc pair transformation. In fact, the strategy taken in developing the safety 

transformation is to extract relevant Petri net-oont:cptsaod~rodefi~1hem fordata flow -graphs. ·· 

Thisc-:bapt4r proceeds with·ack>scr Jook at the data tlow'VclfJh, ... Pctfi u«anafogy, particularly 

focusing on the possibility of modelling the fonner•wifh the lalcli~,Beaion 2-l cXpanm on,thc safety · 

transformation and its effect in guaranteeing determinate (safe) and deadlock free (live) operation.· 

While soowiJl8 the existence of dtc furmer is stmigh&forward;. a&pif~:questioo 00ncems 'whether 

or not the restrictioas imposed to-ensure safety affecUivenea , · 
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2.2 The Petri Net • Data Flow Grafh A . ...._, · 

2.2.1 History and Analogy · 

The major contrihution of Petri JK?ts: is to aid in undcrManding S)'StelllSi. A cklser toot at the 

components of Petri nets 'SCClllS an essential first step. · AnhoWll in die'. t?igtare 2.1 example, a J>etri net 

is a graph composed of 1ra11si1io11s and places with an initial marki11g dctennining the number of tokens 
-' ~ . : -

·(pieces of data) residing on each place. The transitions:~eor.rQ!ifJORCI ~vely to data flow 

graph opcratofliand ~ ... A wken 1DUSt reside on each ·.input placie.· to a tl'alllition for ii ttfbe enallld ror 

firing..wbcre.firi11g the transition causes a·tokcnon cach,iqputipJaccto btrromovod, and one to appear 

deiaition: 

Definition. For a marking M, a Petri net is sqfe if for every marking M' that can be 
rcadtecl hy a scquenoo of firings fmm;M,. thcll:!islSt'mest one reka:en·any flace. · 

graph is. in fm:t. not safe since the sequence af tr.inlition firi"IS! tl: '4;'.ltrwiH· plaCc two tokens 011 place · 

P. 

We briefly survey· the evolution of Petri llelS ''° iatmducc ilM? thcorctical rcsulrs that could 

prove applicable to data How. Petri nets wcre-initiallyJJl'esentH tty·fari ia-·J962f16fandmodified by 

Holt in 1968 (15). Extensive study of safety and Jive~ for Petri nets of the marked graph and Slate 

machine varieties has been done by Holt and Commoner (16). F.ach of these classes fonn a particular 

subset of free choice Petri nets. This work has been extended by Michel Hack (14) to include free 

choice Petri nets. Hack introduces production schemas. similar to data flow graphs, and asserts that 
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Figure 2.1. Petri net token configuration before and after tr.1nsition ti firing 

tl 

t3 p 

t2 

(a) transition 

0 place 

tl • token 

t3 p 

t2 

(b) 

·,,, 

every production schema can be represented by a free choice Petri net A major result known as the 

liveness-and-safeness theorem states circumstances under which a free choice net displays these 
' '• " 

properties. We explore the possibility of using such a result in producing determinate and deadlock 

free data flow graphs. Guaranteeing safety for free choice Petri nets involves ensuring that every place 

is part of some directed cycle containing one token. This fact should prove useful in determining if a 

data flow graph is safe, or in modifying it to be safe: We seek a modelling of data flow graphs by free 

choice Petri nets which allows us to conclude that a data flow graph is. safe a_nd live if its corresponding 
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Petri net is safe. 

2.2.2 Modelling Data Flow Graphs with Petri Nets. 

The data flow graph firing behavior requirement that no an: ever hold more than one token, 
'• 

forces us to focus on the correspondence of data flow graph arcs to Petri net places. Were the 
' 

correspondence of places to arcs 1-1, showing the Petri net mWcl pla£cs .safe'_ would prove the data flow 

graph arcs "safe". Unfortunately, this is not always the case~ as is seen in modelling data flow graph 

control structures. 

Consider the graph of the conditional construct in Figure 2.2. Evaluation of the predicate 

results in enabling either the T, or F gate which respectively detefmiftes-wheth8' the input data value ll 
- . ' 

will be processed by fl or p. A free choice Petri net 1J1tld.el of this..dala flow graph must enable a token 

to procede down one oflwo paths to reflect the two b{anches or-the conditional and must merge the 

paths. A posmble model is shown in Figure 2.3. Places and tntnsitions eorrcspundjng to particular an:s · 

and operators in the data flow graph arc so designated. In comparing the dcciSion structures of the 

Petri net model and data flow graph, note that place aa • in Figure 2.3 represents two arcs in the data 

Dow graph. AfthOugh the mapping between ptaccs and arcs is clearly not 1-1, the Petri net decision 

structure presented is essential for allowing a token to take one of two paths. Unfortunately, this makes 
. ' . . 

it more ditr.Cult to determine how properties of placeaa' correspond to those of arcs a and a'. 
. -- . . 

A significant difference in the actual control structure is the absence of specific places and 

transitions in the model to represent the data flow graph predicate and its output control arcs. Whereas 

i· 

the decision concerning which branch of the conditional construct wm be executed is uniquely 

determinCd by the output of the prcdkate, the Petri net is 110ndetenninis1ic, providing a model for all 

~ible decisions: Though each token arriving at place aa' will cause only one path of the Petri net to 



- 20-

Figure 2.2. Conditional construct 4-.1ta Ao1np-apla' 
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become active, both· paths arc potential candidates. 'Ibis >Sitthlfion ont~ the use of Petri nets as 

general models for specific systems - in this~. data flow graphs (22). To remedy the modelling 

problems of the Vigure 2.3 Petri net, a more specific model showJf fu.-Figurc 2.4 is built which attempts 

to localize the nondeterminism in an added ponion of the Petri n;:t meant to represent the predicate 
. - • ' ~ t 

and contml arcs of the data flow graph. Thc.,,bcbavior of'd?c Figure 2.4 transitions modelling the data 

flow graph T and F gates is conscquentJy deterministic.~ firing is now dictated by the ponion of the 
: ;>: i 

net labelled "predicate evaluation". ~,~ken on pf~-·~· will qnablc either the Tor ·F transition, 
·l , . 

Y1&11re 2.4. Petri net model of ....... re 2.2 
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thereby determining its path. 

Though this Petri nel modelling Qf the condiliooal construct mor~ accurately captures the data 

flow graph bcbavit>r. the portion of the net representing the T and F gates violates the structure 

defining the free choice subset of Petri nets: lf a transition folk>wing a particular place is firablc at a 

marking M, then all transitions following that place arc firabJc _.t M. Informally. the definition of a (Ne 

choice Petri net states that every arc from a place:~. be either -the unique output (>f the place pr 

unique input to a transition. Thus,~ configuration involvin8'Placc aa' 1,md the T and. F transitions in 

Figure 2.4 violates the free choice property. Sine~ free choice nets thflll. the. )argQSt St,Jbsct of Petri nets 

for which a developed theory of liveness and safqty exists. there is no advantage to pufS.Ujng ,this 

modelling mute. For this reason we change directions.. attcmptiflg to accomplisl)'our goals more 

directly by extracting the rclcvant concepts of Petri net theory and rcdcfitting them for delta ftQW. 

2.3 The Data/ Acknowledge Arc Pair Transformation 

2.3.1 Achieving Safe Data Flow Graph Operation 

Since the Petri net properties of $(lfcty and liveness reflect the behavior we want data flow 

graphs to display, we attempt to redefine these terms for data flow via the correspnndence of arcs and 

operators lo places and transitions. 

Dcrmit.ion. ... For an initial configuration of token~ a data flow graph is safe if every 
configuration of tokens that can be reached from 1hc initial contigurntioJloontains at 
most one token on any individual arc. 

Definition. An initialized data flow graph is /i'ff if a complete set of inputs will 
eventually cause a complete set of values to appear on the output arcs of the graph. 

To ensure safe operation in Petri nets, ·every transition in the net must be part of a one-token directed 

cycle. Adapting this for data flow is accomplished by introducing initialized data/acknowledge arc pairs 
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(d/a arc pairs) and ensuring that every arc in a data flow graph is part of such· a.pair. 

'Ille mechanics of the ~nsfhnnation itlustmted in f'igure 1.S in volvcs r~placing each full data 

·with ·an arc pair composed of an ~pty dafa arc and A.ill· aclmowltdgc arc, Akemativcly. ·Brock's T 

algorithm can be modified to produce graplts with d/a are 'pairs.· rather than infinite ,queue ares. We 

distinguish the two by tflming such an· atgorkhtn,T~a· as OfJpt)IJC4•to l'U). ·Tiw Fi@ure 2.5 graph 

scgincftt 'labelled; "pre~firing state" . tcprcsenrs1 ·the' transf~ of the graph ~nt ·to iU left. 

Having defined this transfmmation we must ~crify M in fact intc.unptishcs its intended function -

to ensure the safety and liveness of dara flow graphS. 

: An initially transfonncd·gmph •;s, patet'ttialty saft;;sfnce ~ nf its arc·pairs holds only one 

the Figure 2.5 graph segment. OPI is the only enabled opcrat~r since it is the only operator which has 
~·· ~ ."'f'- I !If~;, '<,;o'C.1. _;- -·~·~; 

frigure 2.S. 0/ A arc pair tnmsformatioa 

pre-firing 
state 

post-firina 
1tate 

< .-,,.,.. ·data a: 
__ ...., act.BJC 

• data token 
. 0 ach:.-m 
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tokens present on each of its input arcs. Firing OPI produces the post~firing state shown. The firing 

action results in the absorption of a token from each CJf-OPt 's input arus and the production of a token 

on each of its output.arcs. Cmwcqucntty, OPi js disabled; and om bccotncHhe onfy cnablcdtlpCrator. 

More importantly, OPh:annot be Jccnabled until it receives 'both a data. and' an acknowledge tnput. 

where the appearance of lhe later is dependent on flfiRg,0P2: · Firing OP2 wil1 absorb. its inpurdata 

token and .produce c.tn acknowledge tdkcn, input to OP.l. · q'hus_ OPrs output data arc tJRJst be empty 

for it to fire a successive time, producing a new data output·. This· rea~. shuws the firing behavior 

dictated by lhe data/acknowledge arc pair transfoimati<m is-safe.; :. 

2.3.2 Preservation of Liveness 

VerifyingJivcncssofdata How gmphs under the·dta·arcpair.·transfonnation is more difficult 

Due to its determinate nature, a result obtained from .a T cl/a ghlph wiff <tnatch ·mat of. its corresponding 

T 00 graph: Any T dta graph tiringscqucnce isa tegaUfl!fng.soqucnoehltJte T 00 -graph. The question 

to. address is ther~fore, wbc&hcr the firin.s. rule constraint caMbfi; some T d/a graph to dcadtoct that 

would not have done so in itsT 00 version. 

TI1e intuitive feeling that T 00 graphs and their corresponding T dla graphs produce the same 
• j I, 

results is established via the theorem stated below. Its· PfOOf consists ofa- struc\lttal• induction on the 

size of data flow graph expressions. By asserting an induction hyprothcsili fur expre~ subgraphs, we 

show that the liveness property holds for T d/a graphs composed of acyclic interconnections of exp 
. . ' ; ~ " 

subgraphs, or graphs whose top level is a conditional or iteration expression. 

In analyzing the T d/a iteration expression, we have to make some assumption about the 

behavior of its iterbody operator which represents an iteration subgraph. Recall that the T1 translation 

function produces iterative graphs which have one set of input ports and two sets of output ports 
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through which values can be !tcr~d or r-0tumcd. as well as a c-00trw lilUtJJut port to signal which of the 

. two occurs. 'Jbc behavior of the ports of an iterative subpaph within a woll-fonned live T 00 graph can 

of'R data values for a ft>tat ,.,>fa data ouf.l)utc·scts. .l'o pm.enocs.dior·a!Tv1 gsaph containina an 

ite,rbody ~Of, we must, first .sbow that the pon bc~ior ef"T11/i iterative iSUbgraphs ·is;tbe ;same as 

that.displayed by T 00 · iWative sub&faphs. :[his Wilbatlow.,us.te·assume .the; desired itefbody.port 

behavior, an essential step in proving the ex~ liw.. I•. 

Proving the correct port behavior for T d/a iterative subgraphs consi~ of a subproof ~~rri~g 
~:i~;,;-..::- ~- ~. ~:·,' ' . ~·-

within the larger inductive proof. Since the iteration expression contains the only instance of an 

shown for graphs which are well-fom1ed. where this tcnn is ddiaicctas!,Plbn:i•' 

'. 

Definition. A well-fonned data t1ow graph is derived from a syntactically correct VAL 
proaram QSiag •,T-Qb .tfanalalion.aipitbm. _ . 

Theorem: A wclHonned live data t1ow graph will remain live under the d/a arc pair 
transfonnation. 

Stated in operational terms: 
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Any T d/a graph corresponding to a wcll-fonned live T 00 graph, ·when presented with n 

complete input sets wiH either: 

Proof: 

(I) have produced n complete output sets and absorbed n acknowledge sets on its 
output d/a arc pairs, and emitted n aclmowledge sets on ie))fnpttt d/a arc pairs. or · 

(2) contain some enabled operator. 

Basis: A data flow graph consisting of a single functional operator will remain live under the d/a arc 

pair transformation. 

An initialized functional operator is shown in Figure 2.6. On receipt of a complete input set, 

the operator will be enabled and when fired, will produce an output token absorbing the acknowledge 

token on its output arc pair, and emit acknowledge tokens on its input arc pairs. Since the operator's 
• ~ r: " 

output arc pair is the graph output arc pair, within finite time the outp~t token_ will be absorbed and a 

corresponding acknowledge token supplied reinitializing the graph. If an nth set of inputs has been 

presented to the operator and an nth output has not appeared, then the acknowledge arcs of the input 

arc pairs must have seen their nth acknowledges, n-1 of which were produced by firing operator f lbis 

implies tl!at the state of th~-~utput d/a arc pair is one of t:h_c follo_wiog: The data arc has its n- lst data 

l'igurc 2.6. Initialized data now graph of a functional operator 
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value and the acknowle4ge arc is empty but bas seen .n-1 acknowledge tokens; the data arc is empty and 

the acknowledge a{'C is holding its nth acknowledge token. Jn the first cai;e.,within fmile time the n-lst 

data value will be absorbed and an nth acknowledge token produced recnabling the operator. In the 

second case the operator,~ eoabi~ 

Induction Hyoothcsjs: In response to an nth complete input set. an exp operator (expr~ion subgraph) 

will either: 

,; 

(I) have produced an nth complete output set and absorbed an nth acknowledge set 
on its output d/a arc pairs, and emiucd an nth acknow1cdge set on its inputd/a 
arc pairs, or 

(2) contain some enabled operator. 

Acyclic /11tercom1ection of exp operators 

Assume that the Figure 2.7 graph has been presented with an nth set of inputs and that it has 

not produced an nth output set We will show that the graph must contain an enabled operator. 

Suppose. the graph has produced j output sets where j<n, and the output arc pairs have had 

their jth data values absorbed, and arc holding their j +1st acknowledge tokens. 'fllis implies that UJ?. 

must have seen at least j input sets. Three ~ibilitics arise. 

Jcigurc 2. 7. Acyclic intcn:omK.'Ctioa of expression su........_ 

t d/a aic pairs 
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Suppose exp2 has not yet seen its j +1st input set Thoo by dlc·induction hypothesis.' since 

exp1 has seen its nth input set and oitlY emitted j output sets where j<n. exp1 .contains an enabled 

operator. 

Suppose exp2 has seen part of it-; j +1st input set Then by the induction hypothesis since exp1 

has seen its nth input set and not yet emitted a complete j+ htoutputsct where j + 1 ~ n, exp1 contains 

an enabled operator. 

Suppose exp2 has seen its j-lt 1st input set Then si~ exp2 has its j+ 1st set of input 
\,~ 

acknowledges available, it has not produced a j+ lst output set· mid. by the i~duction hypothesis 
' ' 

contains some enabled operator. 
;, 

Conditional Expression 

The conditional expression is shown.in Figure 2.8. In its T00 form, when presented with n 

inputs, exp1 will produce n boolean outpUtS; k tDK where O<t·~n and•n-t ~. In response to this, 

the M:gates will ·SCC .a total o£n data input sets -. k on their true data input arcs and n•k on their false 

arcs. ··These arc merged .to prudu« ·the graph outputs accordtng tu the. n M gate control inputs •k ·.tBK: 

rl-k ~which corrCSP.ond to d1c M:gat:c data inputS. 

·An important consequence of the d/a tiring restriction is that once a rontrol input value is 

presented to the M gate, a successive control input cannot appear on t.hat. oontrohrc;(bctween er and 

the M gate)· uatil the M gate tires to absorb the previous vakJc and emit an aclcnowlc4gc tDken. 11le 

implication of this is that a is prevented from firing a successi~t'time to rCCRabtc w gates in the-graph 

before. the output set corrcspon(ling to the previous control· value has been produced. This in turn 

implies that only one input ser will be within the branches of the conditional expression at any time. 
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a;ipre 2.8. ('~ditional consuuctcltiHaflow .... 

ml in2 a.J 

• 
® -· 

L . 

i ' .,, ... -· - f , 

Assume the .graph haM''CCCived an ndt ~t of U... . Asslund fi.trdm, that tto ·operator is 

· .enabblwithin1xpt· .8y.the·inductlooh1pothme1rp1 ~11Pcpft>dulcdaandwutputseL Thedia 

. are pair between a and the M. gate can he in one o( two;~ Eitbetthe alCpair; is holding Its a·ist 

control value, or it is holding an nth acknowJcdac\f,Oken~ .... tne»k aK·pair is b'olding its n'-lst 

conuol value; Dy the funclit>ning of the graph daaribed above, this• implie& that the n-lstdnput set is 

being processctl .. ·Since the gr•h hau1!Ceived ·its nth inpUt seto· this :implies that dlc;T and F 81fCS· IDU$l 

.have ~an n-lstsctofadmowlcdacs by firing in respun!IC·to.dleir;n .. l•~sct of.inputs. We an 

assume as a result, that either. eXl'i or e.l'I'] .becamcsaial»led.' ByJthe·indudion .hypolhcsis,· within finite 

time we will sec the n-lst output set on the appropriate exp oulpUt data an:s and· an nth .set .of 

acknowledges. on the exp input arc pain. This action icnables .dle M> ptes; :Whidl When Ba: will 

produce an n- lst set of graph outputs and emit acknowledge tokens along its data and control input 

arcs. At this point, the an: pair between a and the M gate is in its second possible state-- holding its nth 
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acknowledge. Note that if a is fired. which is now possible. the graph .wiH ~ in.&hc statcJt was in when 

the arc pair between a and the M gate held its n-lst control value. Since within finite time the n-lst set 

of graph outputs will be absorbed and each graph olifput.will hold an nth acknowledge, we can repeat 
. ,. 

the above reasoning to show that an nth set ofgi"<'1ph. output.;; is;eroouced 
·' 

Iterative Expression 

·~ 'i 
. I 

We assen the fo1lowing concemilfl the pQrt hObaVior of the iterbody operator: When 

presented with an nth complete set of inputs..·the ~h reprcscn~ by iterbody will either produce 

' : "1 .· i 

n iter? control values -- k !n!£ and n-k fub£:"a!Kf t:ttrespo11dlpgly, k ~ts of I data values and n-k sets of 
-. . ., 

R data values or: will contain some enabled operator. 

The iterative data flow graph is shownjn Figure 2.9~ We can mC1kC the followin.& observations 

concerning the functioning of the graph in.ilS T d/a fonn.· Note !hat ftri111 c:op,y. operator L causes each 

oflhe M gates lo be presented with. the next con.vol jnput · TI1e,inJplicatipn of UJjs is·tworold:. Oper.wr 

l. cannot fire until every M gate has fired. 'absorbing i~·J)~iws otn~trol. iflpyt ·a~ emitting 

·acknowlcdg,c tokens: the number of input sets processed by .~h M gate i$1cithcr ~qualto, or .QnC less 

·than the number of control inputs that have ~· presentC<l to ~, ~J&JltC· The opcJatiQn Qf an 

ilcr.ativc graph is sucb that a set of input values will be ile{ated • ,~ to . .trJt£ 1'er? outputs .unlit 

iterbody produces a false iter? output which signals return of the v~ ,Vje COJJ6idcr·tbese,*wo stages 

of T d/a graph behavior -- iterating values and returning values, separately. Since the synchronizing 

affect of copy operator L prevents any interesting overlapping of graph input sets, it suffices to show 
> ~ • .. l 

that when presented with one complete input set the graph wiJI produce an output set without 

deadlocking. We begin with the return case. 
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J, ,R 

·:iJnbody must see a complete ~·of inputs for the·M Sates to'bc mnida1i1..cd. The1ta&Cid· bchaYior of 

iterative pat.I\ argument which ft>ltows. 

We proceed to show that a deadlock docs not occur within the iterative path of the graph by 

assuming the opposite and reaching a contradiction. supporting the conclusion that an enabled operator 

exists within the graph. Assume that there exists some wctl-fonncd live iterative data ftow graph which 

deadlocks under the d/a arc pair transformation. To see how the deadlock occurs we apply the same 
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sequence of computation steps to a T 00 graph and its corresponding T d/a :graph; until we reach a state 

where there exist.i; some operator whi~h is,enablcd in the, T00 graph and not cnablM in the T d/a 

graph. lbc cause of deadlock must be that an operator in the T d/a grapfrhas its inputs available, but 

cannot fire due to the presence of a token on its outp\tt arc. ·We attempt-to ltX:atti-'this't)pcrator, whith 

must be an M gatc:-0r a gate within ~rlWt/J•. ·we pmccetf m·coirsider each case. , .· 

Assume merge operator Mo is in such a state, and that it has its jth set of iteration inputs 
':1!.' ; . 

available. The token on its output arc. labelled q, must be used in producing the I iterative input value . . 

of some other M gate, say l\1i. Since the T d/a graph is deadlocked, one of t~.o situati.ons must exist: 
> " ' ~ ' 

(l )' lllc path taken by token q through ilerliody to the I "input of gate Mi is blocted 
(every arc is full). 

(2) Token q is input to some operator which lacks some input and therefore is not 
enabled · . 

Assume ( 1). Recall ffom our preliminary diseussion of iterative graph operation, lhat if token ci 

was produced as a result of me j-lst input9Ct, it will bensedio pmduce'the·jth f input of some Mgate 

which, according to the assumption, is blocked. Thus, the" token t"Urreritly ~mg utt die t inpttt tO 

that M gate must be part of the j-lst input set or some set previous to the j-lst set. 'l'his implies th'at the··· 

M gate has not yet fired j-1 times. But from our knowledge of itcrati¥c gtilph opcratiori, this is not 

possible since firing copy operator I, to present each M gate with a jth control iflput rcttLnred th~ prior 

firing of each M gate aj-lst time sendingj-lst acknowledges to L -- a contradiction. 

Assume (2). Since firing L a jth time is only possible if each M gate has fired j-1 times, it must 
:'(~; : - '! 

be that a complete set of inputs to iterbody is available contradicting the assumption that some input is 

not present 
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Assum.c the disablc4 operator occurs as a rcsu- ()f iterbody and that its output an: is an I outpul 
. . ' 

arc. If the disabled l>pcr41tor ha.s a jth set of .V.puts a.ailablc. ~ they will be used to produce. the 

j + I st I •nput of some M gate. The token on its ou•put •· must tllcrcfote be a!jth, I input or that M 

gate. By the twofold implicat~~ ~cd ,above, the, •uhat *' disablcclq>cratnt· has..Jls jth inpu1s 

available implies that every M gate "''5 prescn~4 wtth ajth control. input and has fin:d ddlcrjor j-l 

times. Thus the M gate which has its jth I input available, must have fired j-1 times. If we can show 
• ' ~-.· 1 

that this M gate is enabled. then within finite time it wiH fire, sending an admowledge to the blocked 
':. ! ! ; ,_ .,; . - - ' , ' 

operator. Consequently, in finite time there will be an enabled operator within iterbody. 
-. ~ . 

We know that the M gate has its inputs available, so it can tmly be disabled if its output arc is 

used to produce the jth input of some other M gate. But then we know that within finite time the 
I. , ,' _, f ·,.; . ~.} t-r . ~: • ~ 

operator to which. this token is input will fire since by the. twofold implication, eveey M pte has fired 

j-1 times: This silJluJtaneQUSJy. cnsur(lS, that the opcratw has. its . iapu11. cwailaltle and has aa empty 

It follows that. if me Too graph is well-formed and Jive~ the corresponding T "• graph i$ 

well-formed an4 Jive. Q.E.D. 

The subproofconceming port behavior for iterative subgraphs is also inductive in that it must 

.. 
assume a behavior for iterative operators within subgraphs and then prove the behavior for the top 

level structures defining iterative subgraphs. The behavior to be shown has been stated above at the 

start of the section of the proof dealing with the iterative expression. 
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The simplest iterative structures, exp and iter exp, arc shown in Figure 2.10. Since the iterative 

subgraph proof is within the inductive. proof above, the induction hypothesis concerning exp subgraphs 

is v.11id. As a consequence, proving that the Figure 2.10 graphs satisfy the stated behavior is trivial. 

Establishing this fact for the conditional iteration body, if exp then iteration1 else iteralion2• is tedious 

and will not be presented. 

Having developed the data/acknowledge arc pair transformation and shown T 00 and T d/a 

grnphs equivalent. the task of detcnnining the quality of this solution remains. Major concerns to 

investigate focus on cost and efficiency. Chapters 3 and 4 address these issues and present 

optimizations of the solution subsequently developed. Example graphs in the remainder of this thesis 

arc assumed to have been produced by algorithm T d/a· 'lncrcforc, though not explicitly shown, all 

arcs represent d/a arc pairs unless otherwise stated. 

Figure 2.10. 

iter? Ii itcr? Ri 

(a) exp (b) itcr exp 

---- ----------------,-------
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CllAPT.ER THREE 

3.1 Balancing Token Flow 

The optimization to balance token flow -discussed in thi~ .chitl)ter addresses certain 

inefficiencies introduced by the acknowledging scheme presented in chapter 2. Though the d/a arc 

. ~ . . . 
pair transfonnation prevents the occurrence of more than one token on an arc at any time. the firing 

restrictions it imposes arc severe, and may significantly curtail concurrency. Specifically, the 

requirement that an operator receive acknowledge signals on each of it'i output ports before refiring. 

unnecessarily delays computation of successive input.sets. While ensuring the safe operation of the 

graph is essential, it is possible to identify which output arcs arc potential bottlenecks, and modify each 

so that it can be safoly implemented as a fixed size buffer. The purpose of this change is to effectively 

enable arcs to hold more than one token, thereby eliminating bottlenecks by allowing computation of 

successive sets of inputs to "pipeline" through the graph. Safe implementation of these buffers involves 

.. ·,i,-

thc use of identity operators which, when inserted along an arc, act as place holders. Identifying arcs 

within a graph that may cause bottlenecks. and dctennining the extent to which they should be 

buffered arc prerequisites to their modification. While the former of these tasks is straightforward. 

deciding on a buffering strategy is subject to a number of considerations including graph configuration. 

and cost of buffering. 

A simple example is presented in section .J.2 which clearly illustrates the problem addressed in 

this chapter, and serves to motivate the subsequent optimization. ThiSc,discussion is formalized in an 

algorithm which produces optimized graphs. The. section concludes by pointing out certain subtleties 

of graph operation and factors not accounted for in fonnulating the proposed solution. In response to 

this. section 3.3 introduces a modified version of the section 3.2 algotithm, along with several 
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_,. 
comparative studies of graphs in their limited and futly 'buffered configurations. 

3.2 Formulating the Optimi1J1tion 

3.2.1 ldentlfyingtlleSource of Bottleaect · · 

The goal of the optimization to balance token flow through a graph is to increase throughput 
. . 

·'. 

by modifying a graph to allow for maximum pipelining. The bottleneck problem. and therefore 

application of the optimization, arises in acyclic segments of a data flow graph. /\ clear illustration of 

the problem is shown in Figure 3.1. the graph translation of the VAi. cxp~n: 
.. 

if f = 1 then fl •fl 

F"1pre 3.1. Buffering for a conditional expreuioa 
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The interesting and pmblematic i~ ~rise w,~n ,C<)~riag the consequence of presenting 

tl1e graph with multiple input sets. ~opcfulty, processing of a.sccond;sct of inputs can begin :before 

.. ou~puts of the previous set appear, with the Qptimum S,it~ ~pg one in which sets -0f .inputs 

pipcHnc tlmmgh the graph, .Unfortu.n~tcly, the control struct~·ef:lhe &raph dtctates .that the overlap 

in processing of successive sets of inputs be minimal: Onl~:~ set.of 'Values may be within the 

branches of tlle outer conditional at any time. Referring to Figure 3.1, we sec tllat in order for a second 
' ... ,. \ :; 

set of values to enter the branches of tlle c-0nditionat, both a and p must tire a second time presenting 

tlle sets of T and F gates witll new control inputs. However, « canner fire a second time until tlle M 

gale to which it also sends· a control input has tired to emit an ackoowlcdgc. Thli&. the d/a arc 

connecting a and the M gate (marked in liigure ,J, J by; ~lush~},, prevents ~ts of values from pipelining 

, through tlle .g,raph. crealing a bottlenc:;ck whose scvc1ity depends . <>n . lhe depth of the computation 

perfonned w~thin the branctics of the condilipnal. · ·. 

Eliminating this undc5irablc behavior s0 that suceessivc sets of values may pipeline tllrough tlle 

: ... : ~' ,, ' , • . i~ ·_ . . - •' -"!. 

graph involves finding a method of enabling node a sooner, consequently allowing tllc slashed arc to 

hold more tllan one token. The ideal situation would be on~ in which tllc arc could hold as many 

tokens as tllc number of sets of valuts that could be pipclinc(i Ui~gh the graph: 

3.2.2 Preview of a Solution 

Introducing identity operators into tllc graph provides a means of realizing tlle desired 

behavior. Specifically, inserting identity operators along tllc slasl}cd arc (Figure 1J) would break it into 

d/a arc pair segments, allowing node a to fire several times bCforc forcing tlle M gate to fire. Using this 

technique on Figure 3.1 to attain maximum pipelinillg is accomplish,ed by replacing the slashed arc 

witll tlle arc segment shown to its immediate left. ·As a consequence of tllis change, tlle state shown in 
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Figure 3.2 in which three sets of totcns arc pipelining d'trough the gtaph, can be rcCJChcd. fine token 

sets have been numbered· :tt~ntingly for darity.) .''fhUS:'thc iritnXltittion of identity nodes has 

eliminated tho >lx>ttf cncck;; Generafizing· this: optimi?.ation it&flniqiuf requires a determination ; of the 

analyze· how tokens flow through the 3Japh. 

3.2.3 Analyzing Token Flow to Characterize the Solution 

Though. the data ffow· ·compmer 'operates· ·asynchronotisfy' arid data' flow programs 

nonseql.ICfttially. :we can modt1'optimum wken··ftowi:~ lf\C·:graph''bf ~ming a ·Sorilewhit 

synchRJiwusbchaYior. TD<do-dtis. We an~1yLc1he f\rklgS~ttiin the gtaph mlerrns:ofthnc units where 

durifts any ·given: unit of time all onah1ed actors· must fire· and rirtldtace a icsltlt: ·'Ibis asmmpti~n 

attempts lo approximate optimum behavior by prcvc~lfi'cnaMect actdf'trbm r~aining enabted 

.. -ICUrt 3.2. Token conf1pr.ation allowed lty hutrerin& scheme 
' .· . .· . . ..... ,,,. '.:!.· ,,, 
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and thereby slowing up processing for any length of omo.·; ;Rtmltin~ that our aim is .. to pipeline 

computation throug~ graph. we wish to <lcvclop a mcthod·t>f modifying, the graph so that under this 

"synchronous behavior" asslimption it displays maximum pipelining· aftd 00nscquent1y, best 

throughput 

Referring back to Figure 3.1, •c note that every input set to the graph' results in the production 

of a token on the control (slashed) arc. and tokens that will either be processed by fl or fl. WhiJe under 

the synchronous behavior assumption the tokens being processed by these functional operators can 

move one step through the graph during every time unit, the control token on the slashed arc cannot, 

and must remain stationary until its corresponding tokens propagate through the graph to enable the M 

gate. As previously seen. the inability of the control arc to a<."Cept a second token prevents any tokens in 

a successive input set from being pipelined. The dependency between the control arc and the branches 
',« 

of the conditional. and the consequent need to equalize their buffering capacities to attain maximum 

pipelining has been recognized by the addition of identity nodes shown in Figure 3.2. An algorithm to 
-, . ,: 

equalize buffering along graph paths must be able to identify dependencies within a graph and pipeline 

their paths. lltis can be accomplished by an arc numbering scheme which compares and equa1izes 

buffering capacities of dependent paths, recognized by identifying functional operators or gates which 
' . 

join two or more paths. An illustration of the algorithm which performs this optimiz.ation follows its 

presentation. 
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AJgorithlB to Maxinaile Pipdinin&-:- I 

Staning from .'*'1 graph input, descend throu&h the graph. MSign.iag consecutive 
numbers to arcs joining successive sets of operators until a multi-input operator is 

· • ~mcountercd. · CompaJe ~~re numticJS on Uloinputam of d9e operator and: 

(a) if equal, continue the arc numbering process 

{b) if:not equal. balance the arcs byJnserting identity operawrs intQ 
the k>wer numbered arcs. Renumber the modified an.:s and 
continue !he ,.ronwnbcrina PRQil.. 

Note that if the operator is an M gate. the comparison and balancing described above must involve all 

three input arcs, using the highest numbered an: as the goal. 

The result of applying this algorithm to the graph translation of the following program segment 

is shown in Figure 3.3: 

if f= I then ifs= 1 then x*(y+ l) else x•(y-1) end else x•y end 
,·:I :i~ 

For reference purposes. the added identity nodes have been numbered. The seven numbers shown at 

the extreme left of the graph result from the an: numbering process, and apply respectively to 

appropriate arcs moving horizontally across the graph. Nodes 11 and 12 have been added in response to 

the imbalances which occur when comparing an: numbers on the input arcs to the multiplication 

operators. 13 through 15 arc added in response to the comparison of the input arcs to the inner M gate. 

Note that, as specified in the algorithm, an: number comparisons involve all three M .gate input an:s. 

Finally, operators 16 through 115 arc introduced as a result of comparing input arcs to the outer M 

gate. 

One ~ntial question to ask is whether or not the addition of identity operators changes the 

functionality of a data flow graph. This can be answered by recognizing that the ~nee of the change 

resulting from the application of Algorithm I is to replace some of the one-token arcs of a graph with 

queues of a given finite length. Since successive identity operators along the an: are separated by d/a 
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Figure 3.3. Example of maximal pipelining 

s x y 

i--

7--

arc pairs, the graph remains detenninistic; and since an identity actor merely passes its input to its 

output arc, the functionality of the graph is unaffected. These observations ensure the functional 

equivalence of an optimized graph. 
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3.2.4 Observations 

In developing, lhis example, there are several interesting obscrv.ations to make concerning the 

optimization and lhe specified algorithm. As stated above. the optimir.ation is accomplished by first 

identifying and then pipelining dependent paths in the: graph. While. dependencies detected at 

functional operators and T. and F gates can be handled as <fscribcd, thQSC resulting from M gates hold 

some hidden considerations. Recall from the algorithm that M gate c~risons'must involve the two 

. . . 
data arcs and the control arc. The algori~m modifies ·the graph to ac~ieve maximum pipelining by 

equalizing buffering capacities of the paths through dle graph- to the -rontrol arc· and two data an:s. 

However, while the M gate signals the dependency of eocb branch(of the conditional operating in 

conjunction with the contr:ol arc, the branches thcmsclvcS are independent, Th~. while each branch 
; - . J 

. . 

must pipeline with the control path, they need not DC£CSsarily pipclind with each other. If the two 

conditional paths a~ ;of (lifferent lengths. the 'buffering .cboiceg av..uable arc to equalize the control 

path with either the shorter or the longer conditional branch, or to equalize all three. lbe latter of 

these, implemented by lhc aigorithm above, achieves best throughput but has !the disadvantage of 
' -

causing the insertion of additional identity operators in the shorter conditional branch. Thus. 

maximum pipelining may be achieved at the expense of including a number of unnecessary identity 

operations. lbe other two choices recognize the independence of the two conditional paths and avoid 
. ~ l . 

excess buffering, but possibly at the cost of reduced throughput 
', ,< 

A factor not yet considered which interacts with this pipelining choice is the token distribution 

effect on the graph of a particular succession of input sets. In Figure 3.3 each input set can take any of 

three paths corresponding to the three p<&ible states off ands. lbis makes it unlikely that any one of 

the three paths will be filled with tokens, more likely that the control an: to the inner M gate wiJI be 

·filJcd and certain that a continuing succession of input sets will filJ the control arc to the outer M gate. 
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If we consider a pattern of input sets such that no one of the three paths is taken twice in a row, identity 

nodes 11 and 12 would be unneccssar~ and could be removed without decreasing the throughput In 

fact, many of the identity nodes could be removed with nodfC(;L Corta,nly, the frequency with which 

graph paths arc taken is an .important factor in choosing a bµtTcring strategy~ An illustration of this 

point will be seen in the examples in section 3.3.2. 

In identifying some tradcoffs and options to considcr·io maximally pipelining d.4ita flow graphs, 

it has become unclear whether or not this '}l>pr~h is alway~ op~h· P.erhaps the advantages of a ·I~ 

pipelined graph ~re.worth a decrease in through.p1,1t Smnc key issues influencing such a decision might 

include cost.of identity operations.. processor utilil.ation,, iukicn.f1o~;paUenlS and, width. and depth of 

program. Though complete consideration of ttwsc wotJJd.rc<1uirc. kiwwlei;lge.of the machine and 

particular application, we attempt to illustrate the ty~ of analysis that 11ugl1tbe useful and necessary in 

m.aki.ng the choice. 

3.3 Full vs. Limited Buffering 

3.3.1 Achieving L~ted Qµlferi~ 

Having questioned whether fully balancing a graph is always necessary or optimal, we proceed 

by comparing several graphs in both their limited and fully buffered versions to uncover the tradcoff 

issues. A discuss.ion of limited buffering including how it can be ~hieved and to what extent T d/a 

graphs display it is a necessary preliminary. 

The difference between full and limited buffering in a data flow graph is seen in the time delay 

between successive firings of its operators. In a fully buffered graph, assuming synchronous behavior, 

the time delay between repeated firings of any particular operator should be one unit: An operator 

which fires at time one should receive acknowledges from its successive operators during time unit two, 
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rccnabling it to fire during time unit three. In a graph dispfaying limited buffering. the delay between 

an operator's firing and m::ci¥ffl$ appropriate octneWkdge'Signatsmay be scvera1 time units. thereby 

slbwing repealed firings of the particular operator as Wen as 'aft succcssivct>perators. 

Presently. the T dla; translfltion algorithm produces data How gfaphs in which every data an: is 

paired with an acknowledge arc. We could however, 'have considered an· algorithm which caused 

actnowlcdge ares to span nvo data art:!i'by baring Cach actrioYlfedgc- ·att lint -attctiiate rather than 

successive operators. The conscqttertcc of stiCh. a. sdlcmc Would be a delay in the Sending of 

actnowledgc signals and fK!nce, a graph .diSplayhiB ~ 1mffcri~ Wlri1c section· 3.J.2 diStusses an 

DIOdification to· the present ·traftistatkm algOrithm. The necessity fOt" sOCh an action Is ·atso unjustified· 

was modified to achieve full pipelining via Algorithm I. A slight revision of this algorithm win alfow'os 

to produce data flow graphs which display limited buffering to some prcd<:,~ne~ deg.rec. For c1ample .. 
"('.: i ··: .. } ~' ! '· -r • ~ ! < ~· ~ ; : ·: : 

it is pos.tjble to specify that the delay in sending aclmowkdge signals be no greater than two time units. 

The algorithm shown below produces graphs meeting this ~B~l ·1ftri~Ute p'Urpose of 

Algorithm I was to equalize buffering of dependent paths within a graph, the modification to the 
. " . ' ; ' . / . ·,) 

algorithm ensures that dependent path lengths arc within a specified bound. Dy allowing a graph to be 

easily reconfigured to display different degrees of pipelining, the algorithm provides a feasible and 
"''".' ,· .. '•!i.;: -

practical control method of studying varying levels of buffering in a graph. The modified algorithm is 

presented below as Algorithm II: 
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Algorithm to Urn it Pipelining·· II 

Starting ·from each graph input, descend through the 'graph assigning·consccutive 
numbers to arcs joining successive sets of operators until a multi-input operator is 
encountered. C-0mparc the arc numbers on lhc input :arcS' of the opcrattW and: 

(a) if the difference is less than or equal to 2, continUc the arc 
numbering process 

(b) if the difference is greater than 2. insert identity operators into 
the lower numbered arcs to reduce the differanee to 2. 
Renumber the modified arcs and continue the arc numbering 
procei& 

An application of Algorithm JI appears in section 3.3.2 where it is applied to the Figure 3.3 
.,,. 

graph. We arc now prepared to proceed with several graph comparisons of full and limited buffering. 

3.3 .. 2 Examples of Full \IS. ~1aite«t·Bu1Jering 

This section presents two data flow graphs. in both their fully and partially buffered versions; 

The first example achieves limited pipelining by relinking acknowledge arcs between alternate actors as 

described in section 3.3.1 above, while the second example is modified for limited pipelining via 

Algorithm II. Our aim in each case is lo compare the functioning of each example's graph 

configurations with respect to throughput, acknowledgement overhead, and overall concurrency. 'lbe 

following assumptions arc made concerning the graphs' operation: . 

(1) Graph firings occur according to the "synchronous behavior" pattern described in 
section 3.2.3 

(2) All graphs arc produced by T d/a with data/acknowledge arc pairs used 

throughout 
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We begin with a simple example in an effort to ~blislt some analysis guidelines. The 

program segDJem '51iown in..Fig~r~ 3~ is a Ct>mpOSition Qf binarv ~ which, if produced-by T d/a• 

sholJld display full pipelining. Thus. there is no need co apply either algorithm to this program 

segment. Rather. study int this. graph ·in -limited pipelined' foon will cequire. :its rcseructuring so that 

act now ledge arcs link alternate operators. 'Ilic tlow of tokens through the graph for multiple input sets 
·;,. 

- -

can be followed using Table1l. (f.orcmwenience, the opmateB.in the'8f&ph::lrave been numbered.) 

The initial state of the graph, given in Table J.l at time O. shows inputs (IN} available to OPI and OP2. 

and acknowledges (A) present on all other arc pairs. Progressing through the table along the time axis, 
. ; . ; ~ . ' ;' ~ ! -.... ': . ' .;. t 

we see that at time 1, OPI and OP2 fire and acknowledge (FIA), making inputs available to OP3, and 

producing acknowledges on their input arc pairs. During time unit 2, OP3 fires sending a result token 

to OP4, which consequently becomes enabled, anc.t.al tl'ti&:l;c,IMms t1t-<>Rl ai\d ~· Atctbe Sabie 

time, a new set of inputs can appear on the input arcs to OPI and OP2 so that they become rccnabled. 
.· •, 

In time unit 3, OPI, OP2 and OP4 fire, -sending appropriate data and aclmowlcdge tokens which enable 

OP3 and OPS. These then fire in time unit 4, enabling OP4 as weU as OPI and OP2 which, as in time 

unit 2, concurrently receive a new set of inputs. This lime unit is significant since during it, the output 
. "1 

resulting from the first input set is produced. Following through the next few time units show~1hat due 

to the acknowledging scheme, the best throughput pcmible for -a fully pipelined graph is an output 

every ~ time unit: Outputs resulting from the second and third input sets appear in time units 6 

and 8 respectively. 

An examination of the table shows that once the "pipe is full", (time unit 3), the operator 

firings of the graph can be grouped into two alternating sets, and consequently, the graph's operation is 

characterized by two alternating states. SETI consists of OPl, OP2 and OP4 firings, or those of the first 

and third levels of the graph shown in Figure 3.4. SETI consists of OP3 and OPS firings which 
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Figure 3.4. Maximum pipelining in a siQ1ple data Ooai...,.. 

level I--

level 2 -----

level 3 -----'------

level 4 ----------

Table 3.1. Flow ortokens for Figure 3.4 

operators 
OPS A 

·OP4 A 
OP3 A 
OP2 IN 
OPI IN 

0 

A 
A 
IN 

FIA 
FIA 

1 2 

IN inputs present 

3 4 I 5 I 6 I 7 
, __ 1.,... .. _1 

set 1 set 2 
state state 

FI A fire and acknowledge 

~ da~an:: 
; ...;.;,..._ · act. an:: 

C# constant generator 
Alf ' cK:tnriwtCdge · · · 
IN# input 

8 time 

A acknowle9gcs present on input and output an:: pairs 

compose the second and fourth levels of the graph. Using the fact that alternating levels of the graph 

fire concurrently, we sec that the minimum number of concurrent operations (assuming a full pipe) is 
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the number of lcvc1s divided by 2. The maximtHR mmtbtt is round bycempuffR8 the sum of the width 

of each firablc level for each of the two sctc; to dctcnnioo-1hc_ lalgcr. .for the fignre 3.4 graph~ SETI 

and SET2 consist of three ·~d two concurrent operations rcspcc¥Y· Tftis information should' prove 

useful in analyzlng-proccsSor uljlizatioQ. 

Having.gathered these statistics. we proceed by considcrift& Fig..re 3.5 which shows the same 

. graph, but in itc; limited pipelined configuration . .Specifically. ac~~Wkdge arcs link alternate rather 

lhan successive actors. Comparisons to the f,'igurc 3.4 grar)ncatl.bc made byana}y7jng lbe information 

contained jn Table 3.2. which follows the flow oftokeDB"<hrough this graph. The initial configuration 

of the graph. specified in Table 3.2 at time o. shmvs inputs present on OPI and OP2 input arcs, and 
. ., 

actm>wledgcs available to OPJ and OPS. During time unit one. OPI and OP2 fire to enable OP3. 

Note however. mat the OPI and OP2 input arcs arc nm acknowledged at this time as they were in the 

Figure 3.4 configuration. Aclmowlcdgcmcnt of OPI and OP2 is now dependent on OP3·s firing which 

occurs during time unit 2, delaying the arrival of a new set of inputs until time tmit 3. Firing of OP4 

which also occurs during time J enables OPS wltieh -ai1t fire' to produce an output at tirne:4 •. Again. 

rccnabling of OP3 has been delayed to this tiroc ueit. 4, whe&it rcccives atl.actoowled&c &om OPS and 

inputs as a result of OPI and-OP2 firing. Time unit 4 iS significant· i1nhat an' output is produced. 

However. following lbc opcratioo of the graph fur three input 1Cts shows that lhe delay in. 

acknowledging operators has reduced the throughput to an output every tbint time unit The second 

and third input sets prodi.tce outputs in time units 7 and IO respectively. 

Analyzing the operation of lbe graph using TabJe 3.2 •. we r-cc tllatthe acknowfcdging scheme 

allows every third level in the graph to fire concurrently. thereby partiooning the graph into three 

interleaving sets of operators. Referring to Figure 3.5. leveJs 1 and 4 fire together. as would leveJs 2 and 

5, and levels 3 and 6, were the graph to be extended. Corresponding respectively to these three groups 
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Figure 3.5. Limitt.'CI pipelining in a simple data Oow &raJll:t 

.. 
I 
I 

' level I- ' 
' ' ' 

level2 --- ' ' 

level 3 ------

I 
I 

' ' ' ' ' 
level 4 ---------

Tahlc 3.2. l•'low or tokens for Figure 3.5 

' , __ 

output 1 ; ' output 2 

-t~ - - - - i 
A A IN 1IF1lAJ1 I 

opcratorS 
OP5 
OP4 
OP3 
OP2 
OPl 

IN FI I IN 1 
IN 11™ 
F 1. .. , ·IN' 

A IN FIA - I IN I FIA1 I IN FIA 
IN F !N ,I Fl ;f ., 1 0IN·L F . 
IN F IN 1 Fl I IN 1 F 

0 1 2 3 4 5 6 I 7 8 
I_ rl_. _t_ ..... J 
stafe state state 

1 2 3 

IN atl inputs avaUable 
FIA fitc and actn~wledge 

A acknowlepges available 
F fire 

outp'utl 

i 
IN IF1A 
F .. 

A 

9 10 time 

arc three states, shown in Table .3.2. Were the graph to¥ presented with continuous sets of inputs, its 

operation would rotate among these three states. For this graph! the number of concurrent o~rations 

per state beginning with state 1 are: three, one, and one, (delCflllined byc~mpµpog the su~ of the 

width of each firable level for each of the states.) U,sing tile "concyrrent operations p~r state" staUstic 
" , : ' . . ' .. - ~ ' 
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shows that the Figure 3.4 graph alternates between proccssina three and· twu epcrations while the 

Figure 3.5 graph processes three opcratiofts every third titnc unit and only one during each of the 
. ·. 

intermediate two time units.. The lower variauce in the number of;c~rrcnt operations per state in 

the Figure 3.4 graph suggests that it wm be mo1' e~f~with ~t .~ prQCFSSOJ" utilization. 
1 ·-~ ~ ' ... 

Consequently, the only main advantage ot lhe limited, pipc(ined configuration is a reduction in· the 
' 

overhead associated with actnowledsc signals. 

A second more involved and· ~re ~pl~ example, applies this analysis, to the Figure 3.3 
' ' -• - - - -- • 'r 

graph, which appears in its flll1y pipelined #nfiguration. Note that unlike the previous example, which 
" 

translates directly into it.~ folly buffered state under T d/a• the production of the Figure 3.3 graph 
!J·~'>J'~; i ~c-~ ;;:. ~-~., , 

required the applicaliol).Of Algorithm I. )be most sign~~.point to note is the need to insert JS 
• .. -. " - -<-- • - • ~ ~' 

identity operators to auatn full pipelining. Thisrcprcscnts ~rollimately a S0% increase inlhe-Adlber 
;• ' 1' t· '~\\ r. 

of operators in the graph, mating tllti cost of idcritity 8jjerators vs. ·1he be'dcfit of increased thtoughput 
'-. 

and concurrency an extremely important\ isSue !to' consider r&>an actual dita flow machine and 
1 r .; 

;!'.: 

appflCatioo. 

Table 33 presents a summary of the tl>tcn'ffow through the fully pipelined graph (Figure 3.3). 
·: . ' i . :-· ; ; :.; 

assuming the control token produced by the prCdicatc test involving r is lnl£. For each time unit, the 

-~~ ·~-. ', . ·'"j_' ·.. ~>1! 

level of operators firing rather than the particular opera~ ~ffl. ~ ~~. where the mgnmcnt of 

~·~ ;s::,~,f·;- 1·._~:~.:.-1.;.): .... ~· ! 

Jevcts to operators is indicated in Figure 3.6. 1be total ininmcr bf"~ f~ each level as well as 

their breakdown in terrnsofinsmcd kte-nttty ~rafors as-opposea1cfgraph operators (aUothel'S) is aJsO 

given. lbus, referring to Table 3.3, the ~na tine states:'that 'cturing ·tfu}e unit l, the first level of 

operatorS ·fired, an four of which were graph oj)crations. During~ time 'unit 2, the second level of 

operators fired, one of whiCh was an identity opcrafuf and five~: 8raPh 0peratorS. Prom the previous 

exampk. we tnow1hat·sua:esmve sets of inputs ~ii~ through the gniph. with alternate levels tiring 
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TaWc 3.3. Token flow through Fipre 3.6 

time 

0 
l 
2 
3 
4 
5 
6 
7 
8 

tiring level 

inputs available 
1 
2 
3 
4 
5 
6 
7 
8 

total 
. opcnlioas . 

4 
6 
4 
6 
4 
3 
2 
1 

identity/graph. 

0/4 
115 
1/3 
214 
3/1 
211 
1/1 
0/1 

odd levels 
. even leveli 



- S2 ~ 

concurrently to produce an output every ~ time unit , In tcnns of 'lhcnablc this behaviar 

corresponds to the alternate firing of even and odd levels. where thr each of these tiring states, the total 

number of operations and their makeup are: 

QllD 14 operations -- S identity and 9 graph 

filEi 16 operations -- S identity and 11 graph 

'Ille Tabfe 3.3 summary is only valid for two of the three possibfe /and.is states;-m-~ a.nd ~-fl)s. 

A separate analysis is ncc~rx for the case wJ1crc r is fal& ·· - ~ 
.. ! 

As in the previous u~pfe, we'·..Visb to~cOinparc th'5c ~ics with an anaiysis of the 
.. 

functioning of the graph in limited bufTcredfonn. 1'he qrGl>fiat.c~ shown iR- Figure 3.7 is 

. . ~ 

, obtained by applying Algori~n, JI rather tfaa1t Algorithm I to(~~; T ti/a graph translation of the 

ciprcsmon: 

'"·· 

/ 
The most striking contrast between the fully butTerc<fgraph (Figyrc 3.3) and this partially buffered 

version is the large reduction in inserted identity,.opcrators from IS to 7: What remain& to be explored 

is whether the cost of this reduction is an aa::omf,anying decrease in· perfonnance (sec also [27)}. To 

dctcnninc this. we examine several token flow analyses for the l-lgure 3. 7 graph, derived by considering 

different successions of input sets. The first cxampfe pcrfonns the analysis for four sets of inputs which 

all follow the same computation path; klDK· The ~n of rotcns ttrroUgh th~ graph can be 

followed via Table 3.4. The numbers in each box in the table represent~ sPcdflc operators which fire 

dtrring that ·time unit (given by the horizontal axis), as a l'CSult of tokcnti from the appropriate input set 

(given by the vertical axis), where the operators have been numbered asshown in Figure 3.8. Referring 

to this graph, Table 3.4 shows that, (aBlming input set 1 is initially avalable). during the first time unit 

actors 1, 2, 3, and 4 will fire enabling actors 5 through 10 which will fi'e during the second time unit. 



Figure 3.7. Example of linllte4'piptlinia&. 

s x 

- 5}-

The !CCOnd input set becomes present (P) during the second time wtit so that operators 1 through 4 

may fire in response to this second set during the third. time unit aloq with operators 11 through 14 

which fire.in r.csponse to the first set In this manner, the progress of the; four sets ef inputs through the 

graph can be followed. ·Ille time units during which the corresponding outputs appear have been 

noted in Table 3.4 along the top horiwntal axis. This infoonation reveals. ate expected· decrease in 

throughput which may or may not be acceptable depending on the application .. 
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As mentioned earlier,. lhc probability of a succession of input sets laking tho sa~ computation 

path i5. sma1t. lbcrcforc. a second ·analysis for this partjallJ' pipelineGl:trat>b appcan in Table 3.S 

~ming input 5Qfs 1 through 4 take the computation pil1hs ~to&·~~. fM '3ftd·.tlB11:.G 

respectively. The table reveals that for this pattern of input selStlle iiMitcd,buffcring sthcme'has JlQ 

effect on the· throuBbPut, which remains opcimal at an outpuC pmduccd< every aeeond litne ·unil This 

example confinns the point previously made COllCCl'lring the sisnificance «'a mquence of input-. A 
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p 

26 27 

time 1 2 3 . 4 7 '8 

I QU ti 

' 
27 IN4 7 

12 26 27 

21,26 27 

J Ji ~ '~ . , ' ) ' 

time 9 10 16 

Table 3.4. Token flow of four input sets through Figure 3.8 for cQmputatioo path !0!£-tm.c. 
_ ,;.-1.--:, ,": ·~- ; .• -.r: · .• n: · 

IN4 l. 2, 3, 5, 6, 7, 

. i6.iS 

time 1 2 3 4 ;~ ' : ~' 7 
"!' 

.8 

out ut OU ut OU ut 

IN4 7,12, 13, 16,17,18 11,22 15,24 21,26 27 

21 27 
,1 ,' 

' 

26 ·17 ~ ; :~ 

9 10 11 12 13 14 15 16 

Table 3.5. Token flow of four input sets through f<'igure 3.8 for computation paths ~-trill:. tm~:fals. 
false, true-!.rll£. 

------ --



- S6-

further analysis of input sets for this data flow graph may rc~J that. in fact. it is rarely nccCSYry or 

best to transform thc;graph inlo ~Hy bulfcrod fonn. 

.U.3 Additioeaal ConsWeratiOm · · 
<-' • ~ - • ~ \ 

- -. • <- • 
;:.. ,. ' ;;. 

Once an actual data ftow mainc is ~vailable~~-a. Stud}'-i.>f ihe . tJftdCt•fT of tJlrOOgbput for 
. ' ,~ ~ . 

number of inserted idc!ttity opcGtfors 'Shoold provile insight into lhc--~ to tak~: concerning 
~ _! ~' ~ -·~ - -~ 

: ' ': . ( - ' ( ,,, ~- ;: . ~- ~- :" . . :·, ~ 1 < 

optimi1.ation. Perhaps lllis. hdbtmation'in ~iO.n wi~ parti=._,_ ~~~ion will indiglte other 
- !~ . t. ,.. 

. ~ - ,:. - .-· - - -. 

within a graph. For rhC conditiotal consuuct this point al>P$rs to bc;the cootml an: to~ M gate. -

Mt>difications-of Algorithm .~similar to the one'-which Ptt>duced Mgorithdt II. could also ~weighed 

more realistically~ ah~~~e ~,' · 

A final poijir lo note in the consideration of dtis buffering opa*1u.ation •rategy is' the type of 
' : - ;, • ' -~ • • - ~- • r • ' - • " • • 

- j : J 

construct for whidr.itk:.appropriate. The ;examples above· which_ mvd.Yc condiUooal coUScsvcts and 
~ . ·~ 

gancrat compositions of ~~-tUm 0..t• ~ faiffy;~tatl¥C!t llf~_1Ypq of grapls Aw which 
• ..' . < . ~ • -- ": 't i . ~ ~ 

~ ~: -. ' ~ -.~,. ~·-~: .. ' ' 

. this optimization is applicable. In fa-t. this op"'1~"~ 1is ;.,...., i~riate for an 

iterative pr~ whose function is to ~ify and rccyclC a single let of inPuts at a time -·· a process 

-. which docs not in¥olve tJipclining (however, subgraphs willllin ~ ~~:be~. f-« such. 

constructs. a different optimii.ation technique must ht de\'clof}ed. This iltcfriativc ~· ~ aims 

to minimize the number .of acknm,,tedgcs in a graph by eliminating ~ wbith are ~. is the 
• -- - - "•--!-" ·-· -·- • 

topic of the next chapter. 
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CldAPTER FOUR 

4.1 Eliminating u._needed Acknowledge Arcs 

·mis chapter explores an optimi1.ation technique for removing unnecessary acknowledge arcs 

in a data flow graph. ll1tmgh the unifonn substitution of data/acknowledge arc pairs for data arcs 
·;:. 

yields a correct implementation of a data flow graph, the acknowledging scheme is costly. 1lle 

overhead of processing acknowledge packets is felt in the routing networks and instruction cells of the 

data flow computer which must respectively handle the resulting increase in traffic and bookkeeping. 

'Illus, there is value in questioning whether or not all acknowledge arcs arc needed. White it is easy to 

find example data flow graphs containing arcs for which an acknowledge is unnecessary, methodical 

identification of such instances is extremely difficult due to an often context.dependent decision: 'Ille 

graph configuration and particular construct under consideration arc key factors in detcnnining 

acknowledge arc removal. In response to this fact, the strategy to eliminate unneeded acknowledge arcs 

focuses on individual VAL constructs. attempting to identify candidate d/a arc pairs and provide a 

corresponding set of rules specifying conditions. Recursive application of the resulting set of rules to a 

data flow graph derived from a VAL program can then be used to test each candidate arc pair for 

removal of its acknowledge arc. 

The following section considers the possibility of using Petri net theory to govern acknowledge 

arc removal, and subsequently discloses certain data flow graph operational characteristics important to 

the optimization process. Sections 4.3 and 4.4 develop acknowledge arc removal rules for the VAL 

conditional and iteration constructs respectively. 'Ille later section includes several example graphs 

illustrating applications of the rules fonnulatcd for the iteration construct 
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4.2 Considerations for Acknowledge Arc AellKwal 

The concern in removing acknowledgcn11cs·:aac... a·du.a loW graph is wMthcr the'safe 

operation which the arcs ensure is maintained. Though we attempt once again to use Petri net theory as 

a guide, this strategy is discouraged not only as a consequence of the chapter 2 discus.~ion, but as a 

result of examining T and F gate operators which display a fundamentally different behavior than that 
·;•. ,-

oftransilions. A look at the operation of these gates and their effect on token ftow shows the difficulty 

in using Petri Net theory. and motivates the fonnulation of new requirements for safe removal of 

acknowledge arcs in data ftow graphs. 

The role of the transition in Petri net theory is analogous lO that of the fuoctiooal data flow 

operator: Firing a transition moves tokens on input places to output places of the transition. 'Jbe T 

and Fgate function which allows a computation to proceed in one of two ways. is accomplished by the 

Petri net configuration shown· in Figure 2.3 and repeated below in Figure 4.1. 1bc essential difference 

in the operation of this Petri net is that once one of its T. or F transitions fires to place the input token 

on a particular path, the transition controlling entrance to the alternate path is no longer enabled. In a 

conditional data flow graph. when the gates corresponding to the control input fire. the opposite gates 

remain enabled and must fire to absorb their inputs as is shown in Fagurc 4.2. 

Herc the ~umption is that the control input to the Figure 4.2 gates was 1111!:. allowing a token 

to t1ow through the T gate to enable operator fl. The data ftow graph behavior will allow an output to 

be produced at the M gate independent of whether or not the input presented to the F gate has been 

absorbed. This phenomenon docs not oa:ur in the Figure 4.1 Petri net since an input token is switched 

down one of the two paths leaving no extra tokens behind The significance of this difference becomes 

clear when considering the ~ibility of iterative graph configurations. lfwe focus on the input arcs to 

. the F gate, and view the Figure 4.2 graph as the body of an iteration construct which recycles its output 
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Figure 4. 1. Petri net modd of the conditional construct 

merge 

Figure 4.2. Conditional construct data flow graph 

x 

f3 
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token, ensuring conflict-free operation requires thattheillpooemUa.thc,F·~ bed/a an: pairs." 

Since the possibility of a similar conflict is absent fn>Rl the Petri net modelling of the data flow 

graph. the difference in operation of the two renders Petri nets insutTteicnt as a guide for acknowledge 

arc removal in data flow graphs. As a result, dle applicability of Petri net theory to the p~ of 

identifying candidate arc pairs is limited. Instead. the .,-atcgy followed examines the various VAL 

constructs to develop rules specifying conditions for actpowlcdge- an:: removal for each candidate an: 

pair identified in a construct 

An implication of this conditional construct behavior is that the acknowledge arcs of the input 

arc pairs to a Tor F gate cannot be removed si_nce the p~~ of a token on an acknowledge an:: is the 

only way to guarantee the absence of a token up a corresponding data an:: A T or F gate. output an: 

gives no indication of the state of the gate's input an:s since firing may or may not produce an output 

token. An illustration of additional problems resulting from T and F gate behavior in combination· with 
- _, ::; r-·.· , : ,, ~~-·. ~~- -~· 

the ~ibility of nesting conditionals appears in the next section. 

4.3 Analysis of the Conditional Comtruct 

. To illustrate the analysis needed for finding removable ~knoViledgc an::s we consider the data 

flow graph translation of a general conditiOllaf cQnstruct.-Shown in'Figurc 4.3. We begin by focusing on 
- . ~~~ 

the slashed arc pair connecting a and the M gate. Rccall1hat the behavior of this arc pair is such that it 

cannot accept a second token until the M gate fires to ~ the prcrious control token, and send an 

acknowledge token to a. lb is guarantees that a second set of tokens eannot be within the branches of 

the conditional until processing of the prcceding-tlct MS completed. While overcoming the restricting 

behavior of this an:: pair was the aim of the chapter 3 optimil.ation designed to balance token flow in the 

graph, it is an advantage to the process of removing acknowledge an::s as is seen by following an input 
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1-'igure 4.J. T(jf exp then fl else fl) 

set through the graph. Each inpur~t (proc~cd by either fl of ft>; places a ~en on the control input 

arc of the M gate and a data token on each of the arcs labeled either a and b, or·"C and d, depending on 

whether the control token is 1!Y£ or ~- Assuming lbftt fl 'F1fl ~-wctt-f~rmed, an output should 

appear on arc g (assuming the control token is ~'f within fi~ite imie:"~ith no possibility of a second 

token appearing on arc g, or of any token ap~aring on ~n; h until the M gate fires. This event 

simultaneously processes the token on arc g and sends an acknowl~dge token to a, consequent to which 

a successive input set may enter a branch of the conditional. The token flow behavior guarantees that 

the acknowledge arc of arc pair g can be safely re~ed. as can that of an: pair h (by an analogous 

argument). 
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One might be tempted to remove the ackoowlcdge arcs from •pain a. b, c, and d t1ndertlte 

assumption that once a ,set of tokens has entered a branch of lhe conditiona1, the tokens must be used 

by the appropriate function to pmduce lhc corrcspondH!g output. How,ncr, a consideration of the 
' " 

Figure 4.4 data flow grciph will show that removal of acknowledge arcs A>r these art pairs is dependent 

on lhc subgraphs represented by fl .OOP. 

Hgurc 4.4. Unsafe token fOllf1g11ntion multin& from _~al of ~·s 1eknow~ arc 

a 

j 
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·me Figure 4.4 graph is a translation of the following VAL program segment: 

if f == l then ifs= 1 then x *(y + l) else x end else x *y c.114 

Consider a set of tokens flowing through the graph which causes the outer predicate, f = 1, to evaluate 

to ~ and that of the inner conditional construct, s = l. to evaluate:«> ~. The tokens on inputs s. x, 

and y should appear on arcs a. b, and c. and eventually become the data and control input tokens to the 

inner conditional construct's T and F gates. Since the inner conditional's control token is ~. the 

computation proceeds through its false branch. The important point to note is that continuation of the 

computation. only requires the tokens whkh appeared on arcs a and b. The token on arc c need not 

propagate through the graph, and may in fact still be on arc c when the outer M gate fires to produce an 

output and an acknowledge token, allowing the processing of a successive set of values to begin. Were 

a set of inputc; to flow through the gr~h in this manner, removal of e's acbiowlcdgc arc would make it 

possible to reach the unsafe token configuration shown. in Figure 4.4. (rhc tokens arc nwnbcred to 

indicate the input set to which they belong). This behavior is a consc~uencc of T and F gate 

functioning, the foundation of the conditional construct structure. 

Understanding the analysis is aided by Figure 4.5 which gencraUzes the Figure 4.4 graph to 

expose the subgraph stmcture. The Figure 4.4 example shows that the necessity of acknowledge arcs 

for d/a arc pairs a through c is dependent on whether or not their values arc guaranteed to be used in 

producing the outputs of the appropriate subgraph (fl or j2 of Figur~ 4.5). E.xamining subgraphs fl 

and fl, which respectively represent the inner conditional construct and multiplication operator of 

Figure 4.4, reveals that tokens arriving on arcs a, b, d, and e 1Jllli{ be used to produce their 

corresponding output, while the need of a token arriving on arc c is dependent on the out.come of the 

inner decision operator. Therefore. e's acknowledge arc must remain but those of arc pairs a, b, d, and 

c can be removed. 
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1111s analysis; specific to the 'COllditionah:onstrucl. resulS ·m ·dcsignatink an input ate pairs to 

the fl;or p subgraphs subject to mJe Cl, shO\th in'Figllrt 4.6, tUr'tictennining aetnowlcdge arc 

removal. While the rule serves ltl identify: and state cunditidns- undcr\~·f\iCh certain an:s within the 

conditional construct may not need actnmvledgcs, it giYCS" ii<J'rrtc'l\'1H<f for· t®inf the conditions. This 

requires a recursive lnOt at the constnicts eumposing su~hS fl afld p, the strategy just used in 

analyzing arc pairs a through e in the Figure 4.4 example. ' It is ·intctestlng to note that the analysis can 

be applied at the 50t!f'CC level by first recognizing that subgraph fl' was a conditional conStruct., and then 

rating thc intcrseetion of variabtcs appearing in its" then and clse.cclauses. Variables found in the 

intersection arc guaranteed to be used· in producing the output Of the construel Therefore, arcs in the 

data ftow graph corresponding-to these variables should· not require acknowledges. 

Finalty, we loot at the onfy arc in the conditional construct of Figure 3.3 not yet analyzed-- the 

control (slashed) arc connecting a and the M gate. While the elimination of acknowledge arcs within 

our example conditional construct has been largely dependent on the existence of this controlling arc 
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Figure 4.6. Acknowk'Clgc arc remotal ntk.'S for the collditiorud comtrud 
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Cl: The acknowledge arc of an input arc pair lo subgraph fl or fl may be removed if 
any token arriving on the arc must be used in producing the output of 'the 
subgraph. 

C2: 'Ille acknowledge arc of the control arc connecting a and the M gate can be 
removed if the acltwwledge arcs ef the outpul arc pain; ohhe .M gate has been 
removed. 

pair's acknowledge, its presence enables the acknowledge of-an inner conditional construct's control arc 

to be removed. The argument to justify this is the same as that used to explain the removal of arc g's 

acknowledge. Consequently, in the general conditional construct the control arc between a and the M 
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gate is marked a'i candidate fur ackoowlcdgc.ao:·mrJOval, and is,mfbjccuo rule C2 shown in F'1gurc-t.6. 

This completes the analysi~.ncccs.'iary for pcrfonning the oplimi1.atio,n to remove unneeded 

' 
aclcnowlcdge arcs within the etmditional construct As a sec~ example. we discuss the iteration 

construct for which this optimi1.atkl~ is particularly appropriate. : : 

4.4 Analysis of the Iteration co..-uet 

4..4.J Acknowledge Arc Remit-' 

The fact that the optimbatiQD presented in chapt~_Ji$:spccific to acyclic segments of a data 

flow graph, emphasizes the significance of analyt.ing ~"iteration construct for t)nnccded acknowledge 
• -,c. . ~·~ 

arcs. Figure 4.7 shows-the data flow graph framtari.1r OftfiC VAL iteration expression: 
~/ 

for id/isl = exp,io iterbody 11111 

The function of this construct'is. lb eralwlte exp and then pcrA'lib iterbudy, which outputs an iter? 
' " ' . . ' " --~:. 

control value and a set of data values on ~ther its I (iteration) 91',Jt (return) output arcs, depending 

respectively on whether the iter? output value iS 11JK or falg. Succmive evaluations of iterbody are 

made until a falK iter? value is produced. at which time evaluation of the construct with a new set of 

lbc function of the iler? arc is to provide the control value to the group of M gates which 

present SUGCcssive sets dfinpulUe the itcraliQn body. Tbe··arcismitidmchritlla.filgcontrol value to 
t ~: .• 

ensure proper selection of the first set of data values. Assuming that the iter? value is dependent on at 

least some of the M gate inputs, a number of them must tire before a second iler? :value is produced 

Thisncces.wily implies.the firing of copy operator "L" in Fi&Ure4"7. to·present ~ ¥.gatcswi&h iur? 

control inputs needed to enable them -- conscquendy ensufiill that·$e ltnrt-output aRi of iterlJody must 

. be empty tOr a sua:essivc ittr? value to be produced. As a result, the: aclnowlcd&e a of 1his..-c pair 



-67-

Figure 4.7. Ackno\\lcdgc arr rcmol'~I rult.'S for the intcr.ation Ci8RStruct 
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Tl: The adcnowledge arc for an arc pair between operator L and the sequence of M 
gates can be removed if its data value must be used in producing the it er? value . 

• ·~: , -i . , - . : t - . ,, '.'' • . : - ! ' ' . 

T2: The acknowledge arc of an I (iteration) arc pair can be removed if either 
(lJ The iteration body carinot emit a value on that output arc until it has 

absorbed the. corresponding input value on the corfCSPOnding input arc. 
i,; 

(2) The iler? value depends on the corresponding input arc. 
'· l - ,,- ' 

T3: The acknowledge arc of a vi arc pair can be: re1nov~ if the arc pair. is not input to 

a T, or F gate, and the iler?output value of it~rbody.depcnds on the vi arc value. 
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(between ilerbody and L) can be rcmeved. ,\ 

No such guarantee can be made for the atts between copy operator L and the M gates, since 

the iter? value need not be a function of~ M gate· input 'Ibis implies the possibility of producing a 

second it er? value before every instance of the prcyious lier? value ~ppcaring on the an.: pairs between L 

and the M gates has been absorbed. Shoul<f:L JiR:, URC(!iditional lremoval of the acknowledge an.:s of 
' -.... -

these an.: pairs could cau~ a conflict Conscqucn •• ack_!Jow~ge ~n.:s of these an.: pairs arc marked as 

conditionally removable subject to rule Tl, spccif~d ~low' flattre 4.7: M gates whose data value 

. -- ' .' ·,l : "-.~' 

inputs arc used in producing the iter? contrb1'vtifoc'lftust fire·(~ing the current iler? value, their 
~ . - ~,./ '. : 

control input) before a successive iter?valuc.is/prod,uced •• ~consequendy. need no acknowledgean:s. 

Examining the form of the iteration construct's iterbody is a necessary preliminary to 

determining acknowledge an.: ~\'al u the remaining an.: .paiis. in the iterative graph. Since the 

function of the construct is to iterate or reutm a set of values based un some boolean function. iterbody 

must contain a conditional. The BNF specjtication of VAL confirms' Chis via the production: 

iterbody : : = if exp then iterbody1 else iterlxxlJli eM 

figure 4.8 shows the da~ Oow graph translatjon Qf ~i.$ conditiOQal,Jtefaliun body. Gi:aph -inputs are . ' . . . ' . - , 

respectively presented .to the subgrttph rcprcknting either iterbod}·1 or iteibod;2 via T, or F gates, as a 

result of evaluating exp. The selected subgraph wiU p~uce a Set qf ~tp~ ~ clt\lcr its I (iteration) or. 
' .. . .. . . 

. R (return} output ports according to its iter1output value:~ fur·, ou~u,ts; ·~for R outputs. 'The 

iter? output values of the iteration body SubgraphS, along with thC.ootput of the predicate subgraph. 
. . 

exp, arc the inputs to the re gate which controfs the graph ~tput ports. 'The le gate has three outputs: 

A graph _it er?, and an I control value and R control value which provide control inputs to two sets of M 

gates respectively merging the I and R data outputs of the iteration body subgraphs to produce graph 

outputs. A more detailed specification of the IC gate is given in Table 4.1. Functioning of the 

~--- - ----------
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Figure 4.8. T1(ir exp tht.'Riterbadyl else iterlKx/'2 endl 

T[exp) 

® 

iter? · · R 

Table 4.1. Functioning of!he IC gate. 

predicate T 11 ilerationjJ T1(i1era1io112) graph I R 

control iler? jfil1 iler? control control 

true true true true 
true false false true 
false ~ true false 
false false false false 
error false error 

conditional iteration body is seen through several examples pr.csentcd in section 4.4.2. 

By replacing iterbody in the Figure 4.7 graph of dle itqr.ation. construct with the Figure 4,8 

conditional iteration body to produce Figure 4.9, the I output arcs of the iteration construct can be 

analyzed for acknowledge arc removal. 
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t!:=:===============::::!J Ii 

. . '· ~iterbody) - - ~--- - .... - -. ·, 

® 

Recall thar a set of output values should appear on the I arcs for each ~ ittr? value produced. 

The acknowledge arc of a particular I output an: may be removed if either of two conditions is satisfie;d. . ~ 

The first is the·case in which production of the output value is dependent on the corresponding input 

value~ appearance of a new value implies absorption of the previous-value. At first glance this would 

·seem to occur always. In fact, it is posmble to produce a second eutput on some I arc without using the 

previous value, as is seen in the example in section 4.4.2. The second condition under which an I 

acknowledge arc can be removed is dependence of the iter?value on the cbrresponding I input 
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To understand this we took at the. IC gate m Plgure lt.9,' "Ofte bf whose outpiit arcs is iier?. 

Firing the IC gate wilt produce values on two of its three output arcs; the iter? arc and either the 

iteration or return control arcs which respectively provide control input values for M gates connected to 

the graph I and R output ports. Until the IC gate fires, these M gates will not be enabled. A set of 

values appearing on the graph I output ports therefore' requires. ttlc 'prior JC gate firing to produce the 

M gate control values, as welt as an iter? value. It is clear that if this iter? value is dependent on a 

particular I arc input value, that I arc must be empty .for it to receive a successive iteration value. 

Consequently, acknowledge arcs of I arc pairs satisfying this iter? dependence arc not needed. The two 

conditions under which the acknowledge arc of an I arc pair can be removed arc summarized in rule 

T2, offigure4.7. 

To complete analysis of the iteration construct we discuss the input arc pairs to the iteration 

body labelled vi, in Figure 4.7. Testing for acknowledge arc removal must be done individually for 

each vi according to the following guidelines~ If the arc pair is input to a T, or F gate, the acknowledge 
,, . 

arc must remain: 'lllis follows from the discussion ofT and F gate behavior. If the arc pair is input to a 

functional operator or M gate, the acknowledge arc can be removed if the iler? output of the iterbody is 

dependent on the vi a~ value. The vi arc pairs arc outputs of a set of M gates controlled by the graph 

iter? value. In order to remove the acknowledge arc of a particular vi arc pair, it is not sutlkicnt that 

the vi value be needed in computing a successive iterative value in response to a lil!£ iter? output The 

vi value must also have been used before a new input value resulting from a~ iter? value appears. 

'lllis is ensured if iter? depends on the vi value. Rule T3 shown in Figure 4.7 states the acknowledge arc 

removal rule for the vi arc pairs. 
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4.4.2 . Acknowledge Arec Remor.tl ia~beratit.e ~ 

To apply (he acknowledge an: removal rules developed in the previous section. we begin with 

lhc simple but familiar fdctorial algorilhm expressed as the Wllowing VAL program: 

bi.y = 1.1 .. 
. iH~ntltoa-itai+l.y•it11e1.t. 

. - " ', . - . ~~ .. :L f: -

The data now graph representation of this program is shown in Figure 4.10. The graph is composed of 

an iteration construct whose iterbody is a simplified fonn of thc conditional iteration exp~n shown 

in figure 4.8. The simplification occuBsincc only the tllea clause.oflhe conditional iteration body will 
... 

~- . ' -· ' ~ ' ' i ' { : 

actually iterate values. 'fbough both branches have thc ability lO iterate and return values, the tall 

recursive structure of the algorithm causes values to be iterated through one branch and returned .. 
through thc other. 

; ~ . ',· . 
If a set.of rules existed for each VAL cOnstruct, determining which acknowledge arcs lO remove 

• - ' I:: 

for the factorial data flow graph would begin with analysis of the inner conditional iteration body. 

However. since we have only developed rules· for the conditional and iteration constructs, we must 

leave the conditional iteration body asis. and proceed to the-surrounding iteration construct 

aearly. the acknowledge arc between thc IC gate and operator l can be removed. Rule TI 

governs the arc pairs between L and thc M gates. The i and n data values must be used in producing 
I t-~ c• 

the iler? control value; therefore, only the acknowledge arcs of thc arc pairs between L and the M gateS 

controlling the i and n data values may be removed. II. 12, and 13 (iteration) arc pairs satisfy the first 

condition of rule T2; a successive value cannot be produced on the I output arc until the corresponding 

input value on the corresponding input arc has been absorbed. Thus, none of these needs an 

acknowledge arc. Finally. we examine the vi arc pairs. which io the Figure 4.10 graph represent an six 

.arc pairs emanating from the three M gates controlling the ~ y and n data values. According to rule TI. 
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~·igurc 4.10. Data no"· graph of the factorial algorithm· . 

y n 

L 

y 

only the two arc pairs inp•t to· the pr~dicate of. the cooditioflal *ration body can have their 

acknowledge arcs removed. The other four arc input to 'f andF gates;makingthoiracknow1edge arcs 

essential. llle results of this analysis arc shown in Figure 4.11 where each arc requiring an acknowledge 

arc has been marked with a double bar. II; those not marked arc assumed to be single data arcs. 

While the factorial data flow graph sl:K>wn U\1 ffipfe 4.lh produced by the T algorithm. the 
#,. 

simplified form of the conditional iteration body is significant in that the M gates which merge iteration 

and return values of the construct, though present, serve no function. The temptation is to optimize the 

graph by removing these M ga(es as well as the. IC gate I ami R co.ntml :outputs. Though ~ible, rule 

T2 must be reevaluated as a direct :eoosequencc of this ac.tioruince the analysis used to formulate rule 

T2 r~ies on the standard fonn of the coD<lititlaal ~rati-On body shown in Figure 4.8. Spccifacally,~the 
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Figure 4.11. Optimi1.etl factorial data flow paph · 
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T2: The acknowledge art of an I art pair can be removed if either: 

(1) 'Ille iteration body cannot emit a value on that output arc 
until it haB-abst>Rlcdi thc'~I iAl*f talue on the 
corresponding input an:. 

(2) The iter? value depends on the corresponding input arc. 

R 

Condition (I) of this rule Slill applies. since it describes the situation in which each successive 

iteration value is a function of its previous value; Ocady, onlf one··~ can appear on an arc which 
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(2) of rule T2, we focus on the data flow graph shown in Figure 4.12, tlle representation of the VAL 

program: 

for i, y = 1, 1 dQ 
if i < n then itcr y + 1, i + 2 else y end 

end 

'Ibis graph, similar in strocture to the factorial. graph, displays the ~e M gate phenomenon, but is 

significant in its reassignment of iteration variables. Each of these two variables is a function of the 

other: Iteration variable i is a function of y, an<Hteration variable y is a function of i. 

Fig~rc 4.12.. Example data Dow proCf8'1 

y n 

L 

iter? 

y 
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Iteration arcs of the factorja] data flow graph satisficct case (I) mrule Tl - dependence of a 

successive value on its previous value, allowing their acknowledge arcs to be removed. Case (I) does 

not apply to the 11 and 12 arc pairs in the graph in Figure 4.I 2:duc to-the "crossover" reassignment of 

iteration variables. However, their acknowledge arcs can be removed stnce case (2) of rule T2 is 

satmicd: Production of'thc ;,er? value dependS-0n both I aadJ. Variable i· ii-IMJCded toi c:-0mpute the: IC 

gate control input, and variable :fgcneratcs the gate's ,m data :input·· 

lbe structure df ~ F.g\Jre 4J2 data·flow graphlcnablcs·us to examine whether case (2)-of rule 

T2 correctly determines acknowledge arc removal if the graph is optimized by removing its I and R M 

gates and IC output control arcs (ponion of the graph shown in the dashed box). Consider the state of 

the graph shown in Figure 4.13, the optimized version of the Figure 4.n grapb. 
p;• v.•;. ..... ·: . . . ' - ,' : 

It is now possible for a sequence of operator tirings to pfaC€'a !ucccssive varuc ori IZ resulting 

in the unsafe state shown in Figure 4.14. Even though lhe IC gate is dependent on they value, the 

production of successive iteration values is no longer dcpcild~l'!l.P.D ~-prior tiring pf the IC gate. 

Thus. the i value can ptopagatc through t:t\c graph to.produce a-Successive y value bcfprc ~c previous y 
' • -.. > • 

value has been absorbed. We sec that as a result of optimili,ng the-~ ~ph form; the case (2) 

condition is no kmser adequate for ellsuri~ safe removal ofitcratiot ac\nowlcdge arcs. 

One approach to this probtcin. is to specify this type of graph optimimtion as illegal Such a 

restriction favors the removal of iteration admow._arcs over the removal of unn~ry operators. 

At the same time, it cnabl<;s uniform application of the pc~pt acknowledge arc removal rule. A 

second approach involves rcdefiniAg rule T2 roi- optimized graptts wh~ M gates have been 
. . - . 

eliminated. Removal of I acknow1cdge an:s 1>ecomcs dcpenaent on the prcd~e value ·rather than the 

iter? value. The functioning of the graph dictates- that data used in producing I or R values must come 

through the T or F gates controlled by the graph predicate. This ensures that M gates controlling 



- 77 -

Figure 4.13. I\ 1odilicd data flow program from Figure 4.12 

y n 

L 

itu? 11 12 
R 

y 

variables used in computing thcpr<?dicate must firebcf0rc new itcration;Vaklcscan be .produced. The 

modified version of rule 'f2, case (2},retledS'this•anaJysis·by spcdfyiftg :thM ·anAterati0n acknowledge 

arc may be removed if its corrcspt>nding mputan; must ~;usewtifi'prodqcing'thc prcdicatc;.yaJUe. 

TI: The acknowledge arc of an I an; pair can be removed if 
. ";;'~ 

(1) The iteration body cannot emit a value on that output arc 
until it ·has absomed·w·oorrespdndmg intmt valuc:on· the 
corresponding input an;. 

(2) the predicate output value depends on the corresponding 
input are: 



Figure 4.14. Unsafe token conf11uratioa for fllure.c.13 
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'Ibis analysis of the fad«jal~ cmphasiaes fhe ~ and problems which quietly 
' ' 

surface in considering rather basic examples. 'Ille acknowledge an: removal rules, while adequate for 

graph configurations derived by straightforwardly applying the T algorithm. could require significant 

expansion to be Qfllnpatibly lJ5ed; with other opU_miu--. :.A .-,. of ;tDOrc complex graphs or of 

those requiring this optimization in conjunction with other optimizations would be useful in 

determining the general applicability of these rules, and is designa(ed as• area of interest for future 

research. 
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CHAPTER FIVE 

5.1 Summary 

The aim of this thesis has been to address problems which arise in·tmnslating a high level 

language for a machine ardtitccture designed fur parallel processing. While the high level language is 

nearly indistinguishable from source languages ;for standard sequential 'processors. the data driven 

execution of its instructions requires a radically. difkrcnt form of translation. This study-of data flow 

1ro11sla1io11 uses the :high level language· VAL· and the· Denn~-MiSunas. architcature. While standard 

methods of data flow pfOC()SSing do not yet exist, the model uscd·rcfkctsJhc tiypc oftranslation issues to 

be tackled in the realm of data flow. lbc problems unveiled and solutions prqJ<>Sed are illustrated 

using data flow graphS,!'·Which resutt«ffbm app1ying,·ttm 1·T· tranilatit'm'.algoridtm·to VAL programs. 

lbough these data flow graphs closcty correspond tD the mechiRe lan$l)agC representation of VAL 

programs, their level of abstraction and explicit reprcscntiOQ 'of data dcpcndendes make them a 

generally acceptedmodcl of ~ta flow. 

crutpter 2 focuses on· the ·tlring beha\lior.1of data flow graph operators which must ensure a 

maximum capadty of ene value per arc as dk?tatcd by ·ttfei ·Dcnnis-Misunas architctture. While 

restrictions of other data flow architcctur.cs may be less severe, the need wptacc some finite limit on arc 

capacity is common to most. 11le transformation of .a.U within data flow graphs to data/actoowledge 

arc pairs ts introduced as a means of implementing the desired operator behavior. A formal argument 

establishes that tbc safe operation resulting from the tFansformacion is guaranteed; ~nd that the liveness , 

and functionality of the graph-is not altered. The use of datal.aclndwlcdge arc,pairs does however have 

a profound effect on operator tiring sequences withiri a given graph. and therefore on its throughput. 

The remainder of the thesis explores the consequences of incorporating d/a arc pairs and suggests 
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methods of modifying the transformation algorithm to _,,rote graph pcrfonnance. 

Though safe operation. is achieved by preventing any given operator from tiring until 

appropriate acknowledges are received, the delayed tiring of an operator may cause a subsequent and 

unncccssary ~· to1opcratms dependent on its outpUL :l'hi&-f)henomcnon ~is b? subject of chapter 3. 

occurrances. th<? number of acknowledae Bn:S·atfl· be miftilfti1.ecL, n.il ii accempJishcd by analyzing &M 

data flow graph implementation of each VAt construct to find a pails tMl may :be S11bjcct to 

to identify the major factors cootribufiat m the choice of eptimizat.ioos. . These imucs ~·in 
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5.2 Directions for Future Research 

Three areas of research arc riatura1 extensions of the work presented. The first focuses on 

further development of the chapter 4 optimization. The work presented analyzed the VAL conditional 

and iteration constructs to dctcm1inc the circumstances under which certain arc pairs could safely 

function without an acknowledge arc. A more extensive study of data flow graphs containing these 

constructs wou1d be uscfu1 in determining the completeness of the rules presented. Certain graph 

configurations may rcvea1 additiona1 cases to test for in removing acknow1cdgc arcs, thus 1cading to an 

extension of the proposed rules. A more straightforward task involves application of the chapter 4 

ana1ysis to the remaining VAL constructs. TI1is work is required for the development of a recursive 

algorithm which could perform acknowledge arc removal for the data flow graph representation of a 

program. 

A second avenue of research centers on perfomlance evaluation of data flow graphs. As data 

flow computer prototypes become available, the type of performance ana1ysis shown in chapter 3 

shou1d produce more accurate data. Statistical studies can be made of token flow patterns for various 

graph configurations, and corresponding optimization schemes. lnfomlation gathered should 

determine when or whether the benefits of an optimized graph outweigh the cost incurred. A study of 

different configurations of a single data flow graph should provide valuable data on optimization 

tradcoffs. This would contribute invaluable infomlation toward fomlulating an a1gorithm integrating 

the optimi.zations of chapters 3 and 4. 

Finally, the research can be extended to include more traditional optimi.zation techniques. 

This would initially require a dctcmlination of which of these optimization strategics arc applicable 

and adaptable to data flow. While redefining optimizations such as strength reduction seems possible 

and fairly straightforward, the adaptation of other traditional optimi.zations to a parallel processing 
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context may require a different set of considerations. A datafktvHer'Sion of'Chcsc optimizations could 

depend on the development of certain tools. such as a categorization of equivalent graph 

configurations. A comprehensive examination of the application and meaning of such traditional 

optimiz.acions in data flow remains. The potential in fo11owing this route, and of further developing 

optimiz.ations particular to data flow computation is just beginning to be tapped. The extensive history 

of sequential programming optimiz.ation techniques will no doubt have its counterpart in the world of 

data flow. 

--- ----
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