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Abstract 

Ct!ITCllt methods of designing VLSI chips do not insure that the chips will perfonn correctly 
when manufactured. Because the turnaround time on chip fabrication varies from a few weeks to a 
few months. a scheme other than "try it and sec if it works" is needed. Checking of chips by hand 
simulation and visual inspection of checkplots wilt not catch an of the errors: In addition, the 
number of transistors per chip is likely to increase from ten thousand to over a million in the next 
few years. lb is increase in complexity precludes any ·manual verification methods; some better 
method is needed. 

A series of programs that use the actual mask descriptions for input arc described. lbese 
programs perfonn various levels of checks on the masks. yielding files suitable for simulation. Some 
of the checks arc the usual "design rule" checks of looking for minimum line widths and adequate 
spacing between wires. However, there arc many more constraints in VI.SJ ~ircuits than are 
ex pressed by the usual design rules. The programs check these C(mstraints using the mask 
descriptions as input All of the errors mentioned so far can be classified as syntactic errors; in 
addition, certain semantic errors arc detected. The detection ·of semantic errors requires various 
levels of simulation. lbe input to the simulators is derived from the art wort. 
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1. Introduction 

Since this thesis deals with Very Large Scale llltegratecl(VLSI) circuits, a description of the 

basics is in order. A more detailed discu~ion can be found in Mead and Conway.(l] The cin:uits to 

be analyzed arc composed of inten:onnccted lransislors.1 F.ach tmnsistor can be viewed as a switch 

with three components: gate, source, and drain. When the signal on the gate is high, the soun:c and 

drain arc connected together. When the signal on the gate is low, there is no connection between the 

soun:e and the drain. For the purposes of this thesis. the tcnns source and drain arc ii;itcrchangcablc. 

_J_ 

Enhancement Mode nMOS Field Effect Transistor 

The actual cin:uit is specified by a series of masks (or layers). The six masks we will be 

concerned with arc metal, polysilicon, diffusion, contact cut, ion implant. and overglas&. 'The first 

three are conductors and are used for general wiring. However. whenever a polysilicon wire crosses a 

diffusion wire, a transistor is fonned. 

B 
o· 

A p 

c 
c 

Altwcxt 

Transistor with gate A, soun:e R, and dram C 

1n·channcl, metal-oxide-semiconductor (MOS). field-dTcct transislor (FE'O 



- 8 -

The polysiticon wire is the gate and the diffusion on either side fonns the ~urce and drain. Metal 

can run over either polysilicon or diffusion without any connection being made. However, it is 

sometimes useful to connect metal to polysilicon, or metal to diffusion: the contact cut is used in a 

specific way to accomplish this. Jn addition, it is ~blc to connect one erid of a polys.ilicon wire to 

the end of a diffusion wire through the use of a bulling contact. The ion implant layer is used to 

alter the characteristics of transistors. An implanted lmnsistor, also called a depletion mode transistor, 

acts like a resistor. Finally. the overglass layer covers the whole chip with a protective oxide, except 

where connections must be made to the input and output pads. 

One language for specifying integrated circuit masks is the Caltech llltennediate Fonn (CJF). 

While this language can be read and written by humans, it is expected that in most cases it will be 

proc~ solely by computers. CIF supports commands that specify circles. rectangles, and 

polygons in the various layers. In addition, there is a symbol definition facility in which a cQllection 

of geometrical objects to be used repeatedly is placed in a named symbol that can be instantiated 

many times. F.ach instance can be reflected, rotated and translated. 

The artwork for a chip can be created in a varl~y of ways. Some designers use a 

graphics-based system. Such a system lets a designer manipulate Shapes, define symbols, and call 

symbols, showing what the chip looks like at each step on a graphics display. Another approach to 

chip design involves writing a program that creates the artwork for the chip. 'Ibis program is often 

written in a language embedded in a standard programming language, for example LISP. In 

addition to all the usual language eommands, there arc commands lo manipulate geometrical objects; 

connect certain points together with wires of a ccnain type, and so on. A third approach is to design 

the chip on paper and digitize it into the romputer. This method has been and is still very much 

used in industry. It is hoped that the computer can assist in the design of VLSI chips, but so far 
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there is no system that comcsclose"to people's expectations or dreams. 

'Ille overall idea the reader should have about VLSI design is as follows. Currently, chips 

are designed by hand, with computer assistance in keeping track of some of the detail. The designer 

specifics his design in terms of geometrical objects and a certain number of masks. At a higher level 

of abstraction, the designer is working with transistors and their interconnections. At an even higher 

level, he may be thinking about logic gates. shift registers. memory cells, programmed logic arrays, 

and so on. However, he still specifics everything in terms of masks. The design is converted to a 

standard format such as CIF and sent out to be manufactured. At some later point. a chip is 

returned to be tested. It has some small number of inputs and outputs through which the designer 

must interface with the chip. It is not po~ible for him to look at arbitrary signals within his design, 

unless he has provided for this bcfor~hand. Typical chips being manufactured today have 10.000 to 

100,000 transistors. Future chips will have 10 to 100 times the current number of transistors. 

There arc many chances for errors to occur in the design of such a large chip. In addition, 

there are many different types of errors that can occur, any one of which may cause the whole chip to 

fail, po~ibly without the designer having any idea why. Some tools are needed that will help· 

designers debug their chips before they arc manufactured, so that the chips have a better chance of 

working when they arc actually implemented. After aibricf discussion of some types of crror8 that 

can occur in the design of VLSI circuits, the rest of this!thesis will describe some tools that have been 

created and used at MIT to aid in chip design. 

' 
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2. Why VLSI Circuits Might Not Work 

There arc many reasons why a particular design may not work. These range from very low 

level problems, such as two signals shorted together because they were too close to each o~er, to 

high level "bugs" in algorithms. In another dimension, VLSI circuits may fail due to production 

problems or bonding emns. However, the latter eta~ of errors is beyond our concern here. We will 

concern ourselves with errors that can be discovered from the mask descriptions that will be sent for 

. fabrication. Any emns that arc introduced afier that arc someone else's responsibility! 

'The following list of design errors docs not include all posmble em>rs, nor all po~ible error 

categories. Mistakes arc discm·ercd by studying the design proc~ observing errors on actual chips, 
• 

and thinking about various consistency checks that might be violated. Some of these errors are 

specific to a particular process or computer-aided-design system, while others arc universal errors 

that can occur in all designs. 

2.1 Design rules 

There are many low level rules that define various relationships within and between masks. 

These rules differ from one process to another. Mead and Conway have defined a set of design rules 

that arc scalable (within limits) and are based on a unit of length called lambda.1 All their design 

rules arc exp~d in terms oflambda and arc not tied to a particular process. However, the design 

rules arc very conservatavc, and there can be layouts that violate the design rules but still work. 

The folk>wing is a description of the Mead and Conway design rules:· the first set d_cal with 

width and spacing within a specific layer. The width of a diffusion wire cannot be less than two 

1101980, lambda was200-2SOc:eolimicroal. · 
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1ambda and the distance between two diffusion wires cannot be' ~ than three 1ambda. The 

minimum width and spacing· for polysilicon and contact cuts is two 1ambda while the minimum 

width and spacing for metal is three 1ambda. 

Polysilicon 
or 

Contact cuts 

Diffusion 

Width and Spacing Design Ru~ 

Next, there arc some rules for making transistors. Remember that a transistor is fonned by 

the crossing of a diffusion wire (minimum width two lambda) with a polysilicon wire (min;.num 

width two 1ambda). lbe minimum distance between a polysilicon wire and a diffusion wire is one 

lambda. When fanning a transistor, both the polysilicon wire and the diffusion wire must overhang 

the gate area by two lambda 

Transistor Design Rules 

When making an ion implanted transistor, the ion implant must overhang the gate area by one and a 

half lambda in all directions. In addition. the ion implant must come no closer than one and a half 

lambda to a non-implanted transistor. 
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l.S 

···--\ -ti i.-
D D 

p T T 

-'I ~ 
l.S 

Ion Implantation Design Rules 

The final scl of design rules is for contact cuts. 1bcrc must be a minimum of one lambda 

overhang of polysilicon. diffusion, or metal around a contact cul. Also, a polysilicon wire must be 

two lambda away from any contact cut in diffusion. Finally, there is a special method of connecting 

polysilicon to diff11sion called a butting contact. The end of the polysilicon wire overlaps the 

diffusion wire by one lambda. A rectangle of metal (four by six) is placed over the whole 

constriction, and a two lambda by four lambda contact cut completes the butting contact 

l 3 
0 t 214 
HI I 
----, -o ·0·-1 I C I - 2 
I ,-3 1---- - 4 

Nonnal CODllCl 

1 3 s 
0 I 2 I" I' I I I I 
------, -o 'EJ1-1 I C I - 2 
I 1-3 
·------ -4 

Contact Cut Design Rules 
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2.2 Pullup ratios 

One of the basic building blocks of integrated circuit design is the inverter. More 

complicated versions of the inv,crter include nand and nor gates. The basic inverter is composed of 

two transistors: a depletion mode pu/lup transistor and an enltanceme11t tn0tle pul/dotim transistor. The 

gate area of each of these transistors has a certain channel length and width. A design rule specifies 

that under certain conditions (sec below) the ratio of the length to the width be four. While small 

deviations from four arc allowed, numbers as far off as two or eight-represent errors. · 

8x2 

Output 

Input 

Basic Inverter (Ratio = 4) 

This putlup/pulldown ratio rule can be extended to naod gates. In this case, the effective 

channel length is the sum of the two individual pu11down channel lengths. In reality, the 

length/width ratio is the same as resistance, and a oand gate contains two resistors in series. 

How.ever, in computing the correct lfltiO for a nor gate, it is as if only one pulldown is there; it is nOt 

the same as two resistors in parallel 
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16U 

A 2x2 A---t 

e---1 2x2 Nor ... 

Nandple 

Simple Gates 

On a simple inverter, the pullup/pulldown ratio should be eight if the pulldown is driven 

through a pass transistor. llterc is a voltage drop in the signal going through the p~ transistor, and 

so the signal will not tum on the pulldown transistor as much as when it was directly driven. 'I.bis is 

compensated for by making the pullup weaker. This can also be generalized to nand and nor gates 

that have inputs that are driven through pm transistors. 

1612 

Elllble 
.l_ Output 

Input~ 2x2 

Inverter Driven through a PcmTransistor(Ratio = 8) 
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2.3 Two threshold drops 

The following equation relates the source voltage V 
5 

to the gate voltage V 
8 

and the drain 

voltage V d: V5 = max(O,min(V d.Vs-Vlh)). lfwe put V dd thmugh a pass transistor with a gate of V dd• 

we wm get V dd-Vth out. However, if we put Vdd-V lh into a pass tmnsistor with a gate of V dd• we get 

V dd-V lh out, not V dd· 2V lh· Consider what happens when there is a pass transistor driving another 

pa.'iS transistor. The output o"r the first pass transistor is V dd-V th· The output of the second transistor 

is V dd·2V th· This voltage is too small to be safely used as the input to anything, and represents a 

design em>r. 

Vdd Vdd Vdd Vdd 

I I 
Vdd-Vth 

Vdd-Vlh 

Vclcl-2Vlb 

&amplcs oflbreshold Drops 

2.4 Races 

A race co11ditio11 occur5 when the output of a particular piece oftogic depcn~s on one of two 

signals reaching a certain place before the other. A typical example is the output of a carry chain 

being gated to some further piece of logic by a clock. There is a race between the carry output and 

the clock transition. The carry output should get there before the clock transition occurs, but the 

speed of both signals might depend on the number of gate delays involved. Usually, races are 

avoided thmugh the use of clocks with periods long enough to assure that all signals have been 

propagated as far as possible. 
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2.5 High level design errors 

The large cla~ of errors that do not relate to the layout. but represent the wrong algorithm 

implemented correctly is referred to as high level desig11 errors. An example of this is .a Pl.A 

automatically programmed from microcode when there is an error in the microcode. It is felt that 

these errors should be caught by high level simulation, but sometimes they sneak through and end 

up in the actual layout 

2.6 Editing errors 

Each chip editor seems to have its own peculiar types of errors that it introduces into the 

design. The following arc some common errors that have been discovered on chips generated at 

MIT and Xerox PARC. 

A graphics editor that makes it easy to lay a rectangle in the currently selected layer, and 

which allows displays at arbitrary scales, can place an unwanted rectangle on the chip. If editing is 

done at a scale which is large in relation to the size of the rectangle, this rectangle may go unnoticed. 

With a graphics editor implemented on a display that does not have a good method for 

displaying the different layers so that they can be distinguished, it is possible for a rectangle to be 

drawn in the wrong layer. 

Once all the subsections (>fa chip have been created, they must be wired together. When 

this interconnect wiring is done using· a graphics editor, one is forced either to use a small scale, 

t11ercby not getting an overall view, or to use a large scale, causing the. current wire to shrink 

drastically. Either way'can lead to errors. Another typical mistake is to wire a trunk of bits from one 

place to another and get the bits reversed. 

In layouts generated by computer programs, there have been various roundoff errors that 
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have generated gaps in wire runs. Once these programs arc debugged, the problem goes away, but it 

still may happen the first time. Most of these errors show up as design rule violations. 
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3. What Artwork Anaylsis Can Do For Us 

The artwork is a very low level representation of the design. It contains no indication of 

how the particular design was created, nor the function of the chip. However, it does contain the 

infonnation necessary to manufacture the chip. In theory, there is enough infonnation contained in 

the artwork to extract the electrical circuit along with its associated parameters such as resistances and 

capacitances. This information will help us check for all the errors listed in the previous chapter. 

It should be noted that the low level of the information can cause probJcms. It is hard to 

relate errors di~overed in the artwork to the higher level entity that generated the particular piece of 

artwork. An error in a replicated section of artwork will be reported many times by the analysis 

program. The computation time necessary to analyze a whole chip may be much larger than that 

necessary to analyze each of its components. 

In its favor, an analysis of the artwork is an analysis of what is to be manufactured; There 

are design errors that can show up here that will not exist at higher leyels of the design proce.. If 

such a whole chip check can l;>e perfonncd in an acceptable amount of time, it will be worthwhile. 

The tools listed below perfonn artwork analysis. F.ach is described along with the types of 

errors it can disr;over. 

3.1 Design rule checker 

A design rule checker checks most of the geometrical constraints that arc imposed by the 

particular proc~ 11te ways in which this might be accomplished will be dii1:usscd in the next · 

chapter. Often, the design rule checker is implemented as a geometry e11gi11e driven by commands 

that implement the necessary constraints. It will be seen that the checking of design rules is not as 

straightforward as it might first appear. 
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There is no fonnal language for specifying design rules. While English and pictorial 

descriptions of design rules intuitively make sense, there are many cases that a computer would 

consider errors but the creator of the rules would consider correct. Once the rules have been 

specified. the checking can be very time-consuming if pcrfonned on the whole chip. Even though it 

may be very time-consuming, a check should be done on the whole artwork just before it is sent Qff 

to be manufactured, if time permits. This check may reveal errors that will not show up when design 

rule checking is performed on a module at a time. 

'lllcre arc some design systems that make dcsiga rule violations much harder t!) construct. In 

DAEDALUS (2), the user can specify constraints between pairs of objects. If one object is moved, 

the other object may possibly have to be moved or adjusted so that all of the constraints arc still 

obeyed. If the user specifics enough constraints, it will be difficult to create designs with design rule 

violations. 

In the CABBAGE system [3) the individual cells are specified in a symbolic description 

language ("stick diagram"). The CABBAGE system will convert a stick representation to an actual 

layout, compacting as it goes. The layouts / produced by CABllAGE arc free from design rule 

violations. 

3.2 Node extractor 

Other verification programs need higher level information extracted from the artwork by the 

node extractor. The first piece of information to be extracted is a list of transistors. Each transistor 

contains the names of three nodes: the gate, the source, and the drain. In addition, there is an 

indication of the mode of transistor: enhancement or depiction. While extracting this information, 

there are some syntactic checks that can be pcrfonned. 
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A contact cut that contains no metal represents an error. It may be argued that this type of 

error should be specified in the design rules; neverthele!B. the node extractor wilJ catch it too. At 

some point, the designer may give symbolic names to some of the nodes. Names must be given to 

VDD and GND,1 are usually given to all of the input and output pads, and are sometimes given to 

the more important internal nodes (e.g. the outputs of a Pl.A). Given these names, a syntactic check 

can be made to be sure that no two nodes with different names are shorted together and that all 

nodes with the same name arc really connected together. Sometimes, it is possible to have the design 

system provide a list of signal names, layers, and coordinates, along with the artwork. · 

Further infonnation can be extracted from the artwork. The circuit parameters, including 

node capacitances, resistances, and transistor geometrics, would be useful. It should J>c kept in mind 

that the resulting output is likely to be very large. In addition, some of these parameters arc ditTtcult 

to compute. 

3.3 Static evaluator 

It might seem that the next logical verification step is simulation of the extracted cin:uiL 

However, simulation is very time-consuming and any errors that can be detected before simulation 

can save a lot of time later. Continuing with me compiler analogy of syntactic and semantic errors, 

the Slatic evaluator will look for semantic emirs. 

Typical errors detected by this evaluator include transistors with gates that arc VDD or 

GND, malfonned sliperbutTers, incorrectly used depiction mode transistors, and transistors which if 

turned on would short VDD to GND. In addition, a check is made to ensure that every node can 

1Thc node in the extracted circuit which will be coonccted to V dd ia the actual chip will be referred lo as VDD. The node 
that will be grounded in the act.ual chip will be referred lo as ONO. 
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potentially be pulled up and pulled down. A check is also made to detect two threshold drops. 

3.4 Dynamic evaluator 

At some point. there arc certain errors that can be detected only through simulation. Using 

circuits derived from the artwork, there arc different levels of simulation possible. For checking the 

actual function computed by the chip, a switch-level simulator is needed. · For checking the 

pcrfonnance of small scrtions of the design, a SPICE [4) type circuit simulator would be best Such 

a simulator accepts circuit descriptions that include resistors. capacitors. and transist~rs. and perfonns 

numerical integration to find a solution to the circuit A third simulator may be necessary for 

detection of race conditions and for perfo~ing gross timing estimates. 

There are many simulators in existence~S.6,7, 8,9) Few of them expect to have input 

derived from the actual artwork, and most are based on gates instead of transistors. Often they offer 

facilities for defining large objects such as registers. memory, and Pl.As. Most of these simulators are 

unsuitable, since we need a simulator that can handle the bi~directional nature of pass transistors. 

Fortunately, it is not.too hard to create a simulator that can use the output of the node extractor. 

'lbc design of such a simulator is simplified because of the uniform low level input: 

transistors and nodes -- initially there are no gates, no PLAs, and no registers transistors. Also, there 

is no hierarchical description of the Input. This means that the simulator must Simulate each bit of a 

memory army, each bit of a shift register, and ca:h tenn in a PLA. lb is makes it hard to write a 

simulator that runs fast. Some of the speed problems can be overcome through the use of clever 

algorithms, and some, through the use of fast computers. If switch level simulations of whole chips 

are considered important enough, special purpose hardware can be created. 
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4. Design Rule Checkers 

One of the first verification tools that a chip designer uses is a design rule checker. Having 

designed and laid out a chip according to certain geometrical constraint~ a designer wants a tool that 

will check the work. At first, this might seem like a simple though possibly time-consuming task. 

All one must do is feed the rules into the computer and ask it to look for violations. We shall soon 

sec that it is not that easy. 

The reasoning behind the design rules should be kept in mind when thinking about 

programs that check for violations. One underlying premise is that the various layers, when 

manufactured, may be misaligned by as much as a lambda. This explains the one lambda overlap 

required around contact cuts and the one lambda spacing required between polysilicon and 

diffusion. Diffusion must be spaced greater than polysilicon because the diffusion process is harder 

to control, possibly resulting in wider diffusion Jines than desired. Metal is patterned last, and runs 

on top of all the other layers. Since they have such a rough terrain to follow, metal wires must be 

wide and spaced far from other metal wires. 

One construction that poses problems for the design rule checkers is the butting contact It 

violates many of the design rules but is still considered legal. A butting c6ntact can be viewed as two 

nonnal contacts (one from polysilicon to ~tal, and one from metal to diffusion) placed closer 

together than is otherwise allowed by the design rules. This is a space saving design "trick" that is 

known to work. The design rule cheek.er must make sure that butting contacts obey the butting 

contact design rule and that the rest of the artwork obeys the other design rules. 

There seem to be two basic approaches to design rule checking. 'Ille first, which was 

researched for this thesis, is called the raster scan method and takes as input a bitmap representation 

of the artwork. The second approach, referred to as the rectangle method, deals with the artwork as a 
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series of rectangles and perfonn5 operations on these rectangles. . lbe latter method is the most 

commonly used one in perfonning design ruie checks. A discusmon of the raster scan algorithm for 

perfonning design rules checks comes next, followed by a brief discussion of the way a typical 

rectangle melhod works. 

4.1 Raster scan method 

The raster scan algorithm is based on the Cl$Umption that design rules can be checked 

loca11y, and that an examination of a small area of the chip is sufficient to check the design in that 

small area. A small window is passed over the chip, and if all design rules are obeyed in the small 

window, then the overall chip also obeys all the design rules. 'lbc problem of checking design rules 

overnll is therefore reduced to the problem of checking design rules in a small aiea. 

AS&lme that the anwork can be represented on a lambda grid with each pixe/1 containing a 

bit for each layer. 'Ille small window is four lambda square, the smallest size it can be to check that 

metal lines are at least three lambda wide. The window is moved over the bitmap, such that every 

pixel appears in every position of the window. This can be accomplished by buffering three scan 

lines2 plus four pixels in memory, and reading the bitmap in raster scan order. At each position, the 

four-by-four square is checked for legality. 

1 A tenn meaning "picture element". borrowed from computer graphics. We will use this to represent the smallest square unit 
of resolution. 
2Really, portions of four scan lines arc bu fTered. The space used is equivalent to three whole scan lines. 
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lambda .., r- ..l 
Jx x x x lambda 

Three scan lines buffered ~ 
x x x x T 

x x x x 
Jx x x x 

t 
Fourpilels 

Buffer Three Scan I .ines and Four Pixels 

·n1e problem has now been reduced to design rule checking of four-by-four squares. The 

reader should pause and consider the problem: ariving at an acceptable solution required a great 

deal of effon. 

The desig11 mies break down naturally into three types of checks: single:laycr width and 

spacing checks, transistor checks, and contact cut checks. The width and spacing checks will be 

considered first. The sub-problem Lo be solved is finding an algorithm that, given a three-by-three 

box consisting of zeros and ones, can check to deterininc whether any possible larger view containing 

that box is legal; i.e., whether the ones meet the constraint of being at least two wide. Since the total 

number of three-by-three boxes is only 29 = 512 (including rotations and reflections}, they could be 

enumerated by hand. lhis would not help us solve the four-by-four case, however. The algorithm 

finally used will not find all the design rule violations, just those that arc critical; Le. those wires 

through which current might actually flow. 

For an error to occur, at least a single "I" must be alone. In some three-by-three box, this 

"l" will be in the center. Scanning around this center "I", an a/1emati01r(A) of zeros and 'ones will 

be found. If the perimeter contained "10010101", then there would be three "I" to "O" alternations 

and three "O" to "1" alternations, or six alternations total. Jf A= 0, then the perimeter must be either 
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an zeros or an ones, either of which is acceptable. If A= 2, the box will look like a group of ones 

poking in from the outside to the center, which is fine. Four or more alternations will look like a 

fuse, where a wire enters from outside the box, goes through the center (which is one wide) and exits 

out another side. 'lltis last case is an error. 

0 1 0 0 0 0 0 I 0 
l 0 1 0 1 0 0 0 

1 0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 

0 0 0 0 I 0 0 0 1 0 l I l 

0 0 0 0 0 0 0 0 0 0 1 0 I 

Legal Legal Legal Error Error 

Center =0 A=O A=2 A=4 A=6 

Examples of the Width of Two Checking Algorithm 

With this algorithm, a bitmap that is 512 bits long can be created that indicates which 

thrcc-by~threc squares are legal and which are not. This will allow width checks on pulysilicon and 

diffusion. Since a spacing check on polysilicon is the same as a width check on white space, a 

spacing check can also be performed on polysilicon. 

'llte above algorithm uses three-by-three boxes to perform a minimum width of IM'J tesl 

Using four-by-four boxes, the same method can perform a minimum width of three test, given that 

the width of two test has already been passed. At some point after the minimum width of two test 

has been p~d four ones will appear in the center of a four-by-four box. When such a box is 

found, the alternation rules explained previously arc used to check whether the width of three test 

has been pa~. A four-by-four box that does not have four ones in the center automatically passes. 

because it does not give any additional information for the width of three test. 

Given the minimum width of two test and minimum width of three test, we can perform the 



following design rule checks: 

1) width2(polysilicon) · 

2) width2(not polysiticon) 

3) width2( diffusion) 

4) width3( diffusion) 

5) width2(not diffusion) 

6) width2( metal) 

7) width3(metal) 

8) width2( not metal) 

9) widthJ(not metal) 

10) width2(contact cuts) 

11) width2( not contact cuts) 

- 26-

I* poly width •I 

/*poly spacing*/ 

I* diffusion width •I 

/*diffusion spacing*/ 

I* metal width */ 

I* metal spacing *I 

I* contact cut width*/ 

I* contact cut spacing*/ 

The next set of checks to be performed arc those involving contact cuts. Contact cuts are to 

be used in very constrained ways. Ignoring the butting contact for a moment, the only contact cuts 

the author has ever seen have been either 2x2 or 2x4 in size. Using a four-by-four window, there is 

no way to constrain the contact cuts to be either 2x2 or 2x4. They can only be constrained to a size 

of 2xn where 11> 1.1 The easiest way to enforce this 2xn constraint is to create a bitmap for contact cut 

width checking and change step #IO above to use this new bitmap. If the center of the four-by-four 

window contains contact cut, then the whole window must contain metal. Also, in that case the 

whole window must contain polysilicon and no diffusion, or diffusion and no polysilicon. 

1While there is no design rule for the maximum size of contact cuts, large ones arc considered bad. 
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or 

I> D 0 I) 

I) D D D 

ll D I) D 

0 D 0 D 

Simple Contact Cut Rule 

f> f> l> f> 
I> f> I> f> 
f> f> i> f> 
f> f> f> i> 

p p p p 
p p p p 
p p p p 
p p p p 

When butting contacts arc considered. there arc a few more cases to handle. 'lbere arc three 

views of a butting contact that have· a contact cut in the center. A check is made to be sure that the 

current view is one of the three legal views. 

D D D T D D T p D T p p 

D D () T D D T p D T p p 

D D () T I> D T p D T p p 

D D D T D D T p D T p p 

· Butting Contact Extenstions to the Ruic (T = P and D) 

Another factor that must be taken into account is a two·widc diffusion that designers often extend 

under the polysilicon in pu11up resistors. 

D l> T P 

D D T P 

I> D T T 

I> D T T 

D 

D 

D 

D 

D 

D 
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I> 

T 

T 

T 

T 

p 

T 

T 
p 

D T P P 

D T P P 

D T T T 

D T T T 

More Rutting Contact Extensions to the Rule 

D T P P 

D T T T 

0 T T T 

D T P P 

Another contact cut design rule indicates that a contact cut to diffusion must be at least two 
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lambda from a transistor. ·111is is checked .by looking for both polysilicon and contact cul present in 

the window. When that is found. a new spacing check of width two is pcrfonncd on the new layer 
. . 

created fmm the union of the polysjlicon and contact cut layers. All of thC$C contact cut design rules 

arc summari7.ed here: 

10') spccial_width2(contact cuts) I* contact cut width (2xn) * / 

12) if (center is contact cut) contact() I* check special contact cut cases *I 

13) if (cont•JCt cuts and polysilicon) width2(not (contact cut or polysilicon)) 
I* check distance from transistor *I 

ll1e last set of checks is for transistors. Polysilicon must overlap diffusion by two lambda. 

In addition, diffusion must overlap polysilicon by two lambda. Catching all of the cases in one 

check is difficult. Consider the following case. A vertical, two wide diffusion wire is present. To its 

left is a horizontal, two wide polysi1icon wire whose right end is one lambda away from the diffusion 

wire. There is no design rule error here because the minimum spacing between polysilicon and 

diffusion is one lambda. If the polysilicon wire is moved one lambda to the right, a spacing error 

occurs. If it is moved another lambda to the right, a transistor error occurs. Another one lambda 

move to the right results in another transistor error. Yet another one lambda move to the right 

causes the wire to poke out the other side by only one lambda and this is also an error. One final 

move one laqibda to the right gives a legal transistor. All these cases must be detected. 
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p Error 
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Examples of Transistor Errors 

lhe one lambda overlap can be detected by subtracting the diffusion layer from the 

polysilicon layer and looking for an object which is one wide. The same check can be used for 

diffusion extending past polysilicon. 

The polysilicon to diffusion spacing can be checked by looking at a two-by-two box. Since 

the number of legal two-by-two boxes is small. the list of all ~ble boxes was generated by hand. 

This check handles the case where polysilicon and diffusion touch but do not cross. · 
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fPPI loDl fTTj Middle of solid area 
~-~ lL.!J 

!:;] Inside bend in P or Dwire 

[;:] OuL~idc bend in P or D wire 

~ Straight scclion of P or D wire 

loDl Fdgc of transistor b:_:ci 

comer of transistor 

nutting contacts 

llcnds in transistors 

Legal Two-by-Two Views of Transistors (W = White) 

The other two cases can be checked by looking at a two-by-three box in which the lower left 

and lower center cells contain both polysilicon and diffusion. The legal combinations of the rest of 

the clements have been detennined experimentally and entered by hand. To summarize the 

transistor checks: 

14) width l(polysilicon-diffusion) 

15) widthl(diffusion-polysilicon) 

16) pdspacc(polysilicon,diffusion) 
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17) tchcck(polysilicon,diffusion) 

Scaning at one lambda per pixel will not allow the checker to verify that ion i_mplantation 

extends one and a half lambda beyond transistors. However, it will allow the checker to look for at 

least a one lambda overlap. If the center of a three-by-three square contains T and I, then a check is 

made to be sure that the whole three-by-three square contains T. A design rule states Lilat iQn 

implantation must be one and a half lambda away from a non-implanted transistor. Using the same 

scheme, if the center of a three-by-three square contains T and no I, then the whole three-by-three 

square should contain no l. 

18) chccki(polysilicon.diffusion,ion) 

All the above checks pcrfonned at once will detenninc if a four-by-four window obeys the 

design rules. Even if the function that perfonns these checks is slow, a caching scheme can be used 

to speed up the program. 

Though the raster scan design rule checking algorithm works. there arc some problems with 

it. No checks with the ion implantation mask are currendy made. Since all rectangles arc rounded 

to the nearest lambda coordinate and since the ion implantation mast is usually o_n a half lambda 

boundary, some careful. thought is necessary to fit it into this scheme. Rounding everything to 

lambda boundaries can cause other problems. Some designers make use of the half lambda grid to 

avoid spacing errors. The design rule checker might report spacing errors when these designs are 

rounded to a lambda grid. Minimum width diagonal rectangles will contain width enurs when 

placed on a lambda grid. Trying to avoid these problems by moving to a half lambda grid docs not 

work, for two· reasons. First, the design rule check would take four times as long. Second, the 

window would be seven-by-seven and the current algorithms for looking at four-by-four windows 

and detecting errors do not scale \.IP• A new algori~m would be needed. 
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Spacing errors arc often reported when in fact none exist. This situation can occur when a 

wire goes right, up a lambda, and left. At the bend, there is a one lambda square of white space. It 

looks like there arc two wires too close together, though they arc really both part of the same wire. 
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Spacing Error that Should Not be Reported . 

These situations arc examined more closely by another part of the program. so that only the real 

spacing errors are reported. This part of the pmgram needs knowledge of the connectivity (i.e.. 

contact cuts). Currently it docs a ponds and islapds check on the current layer using a six-by-six 

window. lbis removes most of the spurious error reports. Perhaps the node finder described in the 

next chapter should be run before the design rule checker. 

It shout~ be noted that all knowledge of the design rules is embedded in the actual code of 

the program and in pre-generated bit tables. The design rules themselves arc not input directly into 

the checker. 'lbe rules were interpreted by the author, not by a pmgram, to produce the nCCC&ry 

checks. When the design rules change, the programs will require modification. It is even pomble 

that some future design rules cannot be checked with a four-by-four window. 

llle advantages of this method arc its speed, its ability to check entire chips, and its c,tbility to 

report only legitimate errors. In addition, this checker could posmbly be implemented as a VLSI 

chip itself, allowing the checking to be very fast. 
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4.2 Rectangle method 

The rectangle method can best be described as a geometry engine that works on a set of 

rectangles and accepts commands like union, expand.1 width, and so on. The design rules are 

exp~ in tenns of these commands. To avoid spurious error reports, all the intersecting and 

abulting rectangles of a single layer must be combined together into a polygon. /\ width check is 

then performed on this polygon, and spacing checks arc performed between polygons. A typical 

way to perfonn spacing checks is to enlarge each polygon by half of the minimum spacing and then 

look for intersecting polygons. 

Care must be taken in implementing the various opcmtions of the geometry engine. lbe 

simple approach for finding intersecting rectangles is to compare each rectangle to all the others. 

This results in 0(112) performance. Speed impmvcmcnt41 can be realiied by either sorting or 

partitioning the input. The expand operation can be tricky to implement, since it may cause a simple 

polygon to acquire an interior area that did not exist previousl~. 

D 

Original Expand 1 Expud2 Expand) 

'lbe f.xpanding Polygon Problem 

'lbc research performed for this thesis did not include the development of a rectangle-based 

1Expand will enlarge a rectangle (or polygon) by a specified amount in all directions. This is useful in checking minimum 
spacing. 
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design rule checker. Most of the existing design rule checkers use the rectangle approach, and the 

reader is referred to them for more infonnation: McCaw [10), Wilcox [11]. Rosenberg and Benbassat 

[12), Lindsay and Preas [13], and Seiler [14]. 



- 35 -

5. Node Extractor 

This chapter discusses the program that has come to be known as the node extractor. It 

extracts infonnation about all the transistors along with their connectivity from the mask 

descriptions. In the process, certain types of errors arc detected. First, a basic description of how the 

node extractor works is presented. Following that is a discussion of some of the extensions that have 

been implemented. 

5.1 Basic algorithm 

The node extractor has two tasks to perform. First, it must follow the connectil'ity of the 

wires. Second, it must find transistors. 1bc original input fonnat consists of a hierarchical set of 

symbols. Each symbol may contain both basic rectangles and calls to other symbols. A clever 

program might be able to extract the circuit description from the lowest level symbol (i.e. a symbol 

that contains only boxes}, and using that, build up the whole circuit, following the symbol-calling 

hierarchy and extracting each symbol only once. Since CJF places no restrictions on the 

combination of symbols and boxes, a program of this type would have many strange cases to 

consider. lbe chip designer may run wires over a symbol. 1bese wires might cause new transistors 

to be created or certain nodes to be connected together (e.g. as in PLA programming). This 

approach seemed too hard to implement, even though it would potentially nm very fast. 

If the CIF symbol hierarchy is not used, it seems worthwhile to fully instantiate the chip, 

creating a file of rectangles. 'Ille connectivity can be followed by finding all the rectangles of a given 

layer that either abut or intersect. A transistor is funned whenever a polysilicon rectangle intersects a 

diffusion rectangle. Though it sounds like this method should work, there arc many problems. 

Finding intersecting rectangles is a time-consuming task. Finding all the diffusion rectangles that 
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intersect and calling them a node is not really correct, since a diffusion node becomes two nodes 

whenever the original is crossed by polysilicon. 'Ille polysilicon rectangle could have been made up 

of many smaller polysilicon rectangles. In general, the whole chip could have been made up of one 

lambda square rectangles. 'Tl1is means that the rectangle method could not rely on the designer 

having specified everything with "nice" rectangles, but must assume the worst possible case. The 

general solution seems to require the merging into polygons of all rectangles that intersect or abut. 

Therefore, algorithms now deal with the unions <ind intersections of polygons. This method seemed 

too complicated, so a simpler, but possibly slower method was sought. 

Since the design rules were expressed in lambda, and since the designers with whom I 

worked designed in tenns of lambda, a bitmap-based approach seemed feasible. In such a scheme, 

the whole chip would be represented as a big bitmap with each clement representing one square 

lambda of the chip. The term bitmap is a little misleading since each "bit" really contains one bit for 

each layer; pixel-map might be a better term. While it might be impractical to store the whole 

bitmap anywhere at one time, there might be algorithms that can process it in raster scan order, 

buffering only a few scan lines in memory at any one time. Raster scan order is left to right, top to 

bottom. 

Before moving on to some algorithms that deal with bitmap images, there arc a few words to 

be said in their favor. Once the rectangle f,ormat has been converted into a bitmap, information 

about which rectangle created what bit has been lost. 'J11is is good because it has the effect of 

merging intersecting and abutting rectangles together with little effort. All subsequent algorithms 

arc insulated from geometrical "features" such as arbitrary polygons, round flashes, and so on. 

These have to be dealt with only in one place. The disadvantage of moving to a bitmap version of 

the chip is that the run time of any algorithms will probably be proportional to the area of the chip. 
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The basic algorithm for following connected regions in a bitmap image comes from the 

classic ponds and islands problem which is defined as follows. Given a two dimensio_nal array of 

zeros and ones. where the zeros represent water and the ones land. write a program that counts the 

number of land m~ and prints out the area of each one. Asmime that land must connect 

horizontally and vertically but not diagonally. 

0 0 0 0 0 0 0 0 0 A nswcr for this example: 

0 1 1 I 0 0 1 0 4 land masses 

0 ] 0 0 0 0 l 0 Areas are I, 6, 8, and 20 

0 0 [!] 0 I I 0 

0 0 0 0 I 0 0 0 

0 1 1 l I I 0 0 

0 0 0 0 0 0 0 0 OMO 1 I l 0 

0 I I I I 0 I l 0 0 

0 0 0 .· 0 0 -0 0 0 0 \'.; 

ClaB<: Ponds and Islands Problem 

A common solution uses a procedure that places a footprint on the current piece of land and calls 

itself recursively for each of the four surrounding squares. returning when the current square is water 

or contains a footprint. The main driving program 9;anS the whole array, calling the footprint 

procedure for each piece of land that has not yet been walked on. lbis solution is simple to program 

and easy to understand. For our pt;trposcs it is not suitable, since it randomly ace~ the bibnap 

array. This would result in many page faults when following a node like the metal layer that makes 

up V dd· It would also require the whole bitmap to be part of the program's virtual add~ space 

(>224 pixels for large chips). 
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5.2 Ponds and islands 

While I was thinking about the ponds and islands problem, the following algorithm came to 

mind. The data can be processed in raster scan order, with one scan line buffered in memory.1 At 

each point, access is needed to three bits of information: the current bit, the bit to the left, and the 

bit above. 

0 0 0 0 0 0 0 0 0 0 

0 1 1 l 0 0 l 1 0 0 

0 I 0 0 0 0 0 1 l 0 

One scan line buffered ~ 

0 1 0 I ol 1 1 l l 0 

0 1 0 0 oJ 1 0 0 0 0 

~:up 
[!:[!] ~ Current 

0 1 l 1 1 l 0 1 l 0 t Left 
0 0 0 0 0 0 0 0 1 0 

0 I 0 0 l 0 1 1 l 0 

0 1 l I 1 0 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 

Buffer One Scan Line; Look Up and Left 

Since there arc three bits of information, there arc eight cases to consider. Four of them can be 

handled at once. (1-4} If the current bit is water, there is nothing to do. (5} If the current bit is land 

and the other bits are water, then the upper left comer of a new piece of land has been found. This 

information is remembered in an array. as big as the scan line, and the new piece of land is assigned a 

unique number. (6) If the current bit is land and the bit to the left is land, and the bit above is 

water, then this is the top of a horiwntal strip and the number is the same as the number to the left. 

(7) When the top is land and the left is water, then this is the left edge of a vertical strip and the 

number is the same as the number above. (8) The interesting situations occur when all th~ bits are 

1Rcally, portions of two scan lines arc buffered. The total space used is equivalent to that of a single scan line. 
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land. (Sa) If the number above is the same as the number to the left, then that must be the number 

for the current bit. (Sb) If the numbers arc different, the lower right inside corner of some shape has 

been found, and two pieces of land which previously seemed distinct arc found to be part of the 

same mass. 

1 2 2 

3 
Gffi 2 

4 x 
x x 
x x x x x x x 

x 
x x x x x 
x x x x x x 

An Example of Case (Sb), 2 and 4 Must be Merged Together 

Some bookkeeping is needed to update the counts of one land mass number with those of the other 

land mass. 
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No action required 

Assign unique number 

Current number = left number 

Current number = top number 

Current number = Meqc:(left.top) 

Basic Raster-Scan Ponds and Islands Algorithm 

The same algorithm that works with land and water will also work with polysilicon, 

diffusion, and metal. For the purposes of following wires and tinding transistors, four derived layers 

will be used. Metal (M) and polysilicon (P) correspond to the mask layers by the same name. In the 

node extractor, diffusion (D) wi11 be the diffusion mask minus the polysilicon mask and transistors 

('I) will be the diffusion mask intersected with the polysilicon mast. 

The basic algorithm for following connectivity given a raster scan version of the masks can 

be thought of as a ponds and islands search on four layers at once. The electrical properties of 

contact cuts can be added by checking to see if the current cell contains P, M, and C. If it does, 

merge the number of the polysilicon layer with the number of the metal layer. If not, check the 

current cell for 0, M, and C. and merge the number of the metal layer with the number of the 

diffusion layer if this is· the case. A simple design rule check can be performed at this time if desired. 

If the current cell contains M and C but no P or D then it represents an unnecessary use of the 

contact cut and should probably be Hagged as an error. 
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5.3 Oh where, oh where, can my transistor be? 

While all the above has been neccs.5ary, it docs not find transistors. However. it docs give us 

a good data base upon which to base a transistor detection algorithm. The following information is 

available in the interior of a transistor: the node number of the T layer, tl)c node number of the P 

layer, and the ion implantation bit. However, edges of the transistor layer actually contain the useful 

infonnation, namely the node numbers of the diffusions. At the center of the transistor. there is no 

diffusion. and hence no diffusion node numbers. 

'lbe node extractor finds pieces of transistors and writes them into a file. '.lllesc pieces will 

be processed funhcr by another program. A piece of a transistor consists of the node numbers for T, 

P, and D. along with a bit for ion implantation. During the ponds and islands proc~ng. the 

transistor tinder looks for one of four cases: (1) current cell is transistor and left is diffusion, (2) 

current cc)] is diffusion and left is transistor. (3) current cell is transistor and up is diffusion, or (4) 

current cc)] is diffusion and up is transistor. For each match (and there may be more than one), a 

transistor record is generated. 

D ;:: diffusion minus polysilicoa 

i: ;:: diffusion and polysilir.oa 

Basic Transistor Finding Algorithm 

After the node tinder has finished, some further proc~ng is needed on the transistor pieces 

to tum them into transistors. Since some of the node numbers may have changed from the time the 

transistor piece was written out until the time the node finder finishes running. all the node numbers 

in the transistor pieces must be updated to reflect the final node numbers. The pieces are then 
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sorted by their transistor node numbers. bringing aU the pieces of a particular transistor together. 

Reading through the sorted file, all the information on one transistor is gathered, making sure that 

the polysilicon numbers arc the same for each record, and a list of diffusion numbers is created. If 

there is only one diffusion number, then a degenerate transistor (i.e. a MOS capacitor) has been 

found; these arc currently ignored. Most of these arc caused by the one lambda overlap of 

polysilicon and diffusion found in butting contacts. If there arc two diffusion numbers, then a 

nonnal tmnsistor has been found, and it is written out to the circuit file. If there arc three or more 

. different diffusion numbers as.i;ociated with one transistor. then an unusual transistor has been 

found. While these transistors arc theoretically posmble, I have not yet found one on an actual chip. 

These unusual transistors can either be flagged as errors or converted to some number of nonnal 

transistors. 

1 2 

3 4 

&ample of an Unusual Transistor 

While this scheme for finding transistors might seem too simple at first. it has worked on 
. . 

many designs, including some constructed with the intent of confusing it Even butting contacts and 

butting contacts in the middle of depiction mode pultups do not cause confusion. 
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5.4 Further processing 

'Ibere is an opportunity here for some further checking. Assuming that the designer has symbolic 

names for some of his nodes. the program can make sure that two different symbols do not have the 

same node number. If there is a provision for the designer to pass symbolic names through the CIF 

language and if he gives symbolic names to many signals (including the same name at many different 

locations). then this check will catch shorts. /\ similar check for the same name having two different 

node numbers will catch open connections. 

The program that writes the final transistor tile keeps track of some information for each 

node number. It knows whether that node number has been used as the gate of a transistor, and 

whether the node number has been used as the source or drain of a transistor. After all the 

transistors have been processed, a check can be made for mate1ial that is not connected to any 

transistors. nodes that arc defined but not referenced, and nodes that arc referenced but not defined. 

A node that is not connected to any transistors indicates a piece of material on the chip that 

is not connected to anything. These pieces occur for many reasons, the most common of which is 

caused by the designer's name or Jogo.1 Extraneous pieces of material on the chip can also come 

from the use of library cells that have unused bu~s. Some graphics editors make it easy to 

accidentally drop small pieces of material in the chip. Some designers USC certain layers for 

alignment marks. The node finder will detect all these cases. 

A node that is referenced but not defined is a node that has only the gates of transistors 

connected to it. Tiiis must represent an error, since such a node will be floating in the manufactured 

1Thcse logos cause problems in all pha'ICS of artwork analysis. However, it is probably best Lo include Lhcm, just to check for 
the case when a misplaced logo interferes wilh Lhe rest of Lhe circuit 
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chip. Input nodes will not be reported as. "referenced but not defined" because the standard input 

pad has a transistor with gate and source connected to ground1 and drain as the input. lbis 

transistor protects the rest of the chip from static induced .overvoltage. 

When the transistor file is created, there are some single transistor checks that arc pcrfonned. 

Any transistor with a gate of VDD or OND is flagged a'i a possible error. In addition, any transistor 

which, if turned on. would connect VDD and GND together, is flagged. . 

5.5 Extensions 

For further checking and simulation. it will be useful to gather some additional information 

during node extraction. lbc extraction of any complicated infonnation may significantly degrade 

the pcrfom1ancc of the node extractor. The approach taken was to extmct some simple parameters 

about each node, and sec what could be derived that information. For each of the layers on which 

the ponds and islands search is performed, three numbers are extracted: the length of the left edge, 

the length of the top edge, and the area. 

_li] lncnmcat left couat al M 
~ 

_fMJ Increment top count of M [!li] 

_liJ lncrcmentara of M [!li] 

Simple Parameter Extraction Algorithm 

lny this point in the procci.."ling. :he dC'ligncr hti received cha:ltplot.'1 of his chip that have each node labeled. He has told the 
node extractor the numbers of VDI> and GND. 
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Area= 15 

Example Using the Simple Parameter Extraction Algorithm 

From this information, we can derive the capacitance of each node, and the /e11g1lv'wid1h ratio of 

each transistor. The capacitance of a node is one of the factors that influences the overall speed of 

the chip. The length/width ratio of a transistor will allow certain ratio checks to be performed by 

the static evaluator. 

The capacitance of a node depends on its area and, in the case of diffusion, its perimeter 

(side-wall capacitance). Most of the capacitance will be between a node and the substrate. Although 

when metal crosses over polysilicon there is a small capacitor created between the metal and the 

polysilicon, those cases will be ignored. All capacitance will be asm.imcd to exist. from the node to the 

substrate. lllis ~mption breaks down when the designer SJ?CCifically constructs a bootstrap 

capacitorby placing polysilicon over diffusion.. 

While there is insufficient infonnation extracted to compute the length/width ratio of an 

arbitrarily shaped transistor, must transistors fall into one of three classes which can be computed 

from our simple numbers. The gate area of most transistors is rectangular and therefore can be 

calculated exactly and easily. If the top (T) times the left ( ( .) is equal to the area (A), then the gate 

area must be rectangular, since this formula only holds for rectangles. 

If the gate area is not rectangular, the resistance can be estimated. To know which way the 

current Hows through the transistor, two orientation bits (OB's) must be added to the transistor 

record. One bit indicates a vertical tra11sistor(le., diffusion was found above or below the gate area) 
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and the other bit a horizontal lransislor (i.e., diffusion was found to the left or right of the gate area). 

If both bits arc set, the transistor has bends in it (as in the output pads). Usually, these transisto~ are 

two lambda wide. The length can be guessed as the area divided by two, minus one for each bend. 

Since the number of bends is unknown, only one is assumed. The equation is Length = A/2-1, 
. . 

Width = 2. There is really not enough info1mation for obtaining exact length/width ratios, so some 

other method would be required if exact numbers were needed. For now. the above approach seems 

to work. 

The last case to consider is that of a non-rectangular transistor with only one of the two 

orientation bits set. Experience indicates that these usually occur in depiction mode pultups with 

butting contacts. Herc, the gate area is two wide at the top, changing to six wide at the bottom. If 

the gate area is two wide at one end and the general shape has one change of width over its length, 

we can calculate the resistance from our top, left, and area information. 'Inc equation is Length = 

(L*W-A)/(W-2), Width= 2. 

x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 

81.2 

L=8 
T=2 

A=l6 

OB=lO 

x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x·x 

7x2 

L=8 
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x x x 
x x x 
x x 
x x 
x x 
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10x2 

L::::6 
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08=11 

x x x 
x x x 

Transistors whose Resistances arc Calculated Correctly 

~J 
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' 
Currently, no attempt is made to extract the resistances of the various nodes. cmis 

information would be useful but is hard to obtain, as mentioned before. cme length/width ratios of 

the transistors will be used by the static evaluator described in the following chapter. 

5.6 The output format 

No attempt has been made to create a network defi11itio11 language suitable for all the 

different levels of description and simulation. Instead, a simple fonnat with four different types of 

records is used. There is a separate record type for each of the following: enhancement mode 

transistors, depiction mode transistors, input nodes, and node dimension records. Both types of 

transistor records contain the names of the gate, source, drain, channel length, channel width, and 

coordinates on the check plot of the transistor. The input records contain the names of the nodes 

that arc inputs, for later use by the static evaluator. The node dimension records contain the area 

and perimeter information for each layer of each node, for later use by the simulator. lnere is no 

declaration entry in the output file for each node. Instead, the names of all the nodes can be derived 

from the transistorinfonnation. 

The node extractor should be able to produce output suitable for input to the SPICE 

simulator, if needed, since all necessary infonnation is extracted·. If bootstrapping is used, the node 

extractor would have to be changed to detect capacitance between nodes (as opposed to capacitance 

from a node to the substrate). 
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6. Static Evaluator 

The development of the node extractor allowed easy conversion from artwork to a circuit 

description. The obvious next step seemed to be simulation. rn the process of simulating various 

designs, it became clear that there were some errors detected by simulation, which could have been 

detected earlier by a program that analyzed the circuit. Such a program would perfonn a static 

analysis of the circuit, looking for anomalous configurations of transistors. In addition, there are 

various em>rs which switch level simulation docs not detect. but for which the static evaluator could 

check. 

An analogy to compilers can be drawn here. 'lbe errors that the design rule checker finds 

arc like the errors detected by the syntax phase of the compiler. Errors detected by the static 

evaluator arc similar to errors detected by the semantic phase of a good compiler. ~nally, errors 

discovered during simulation correspond to errors discovered during execution or interpretation of a 

program. A compiler might warn the user that his program contains v_ariables which are set but not 

used, or used before given ~value. It might also warn the user that there arc statements in the 

program that can never be reached. Similarly, the static evaluator will find parts of the circuit which 

depend on nodes that can never be given a value, and it wiU locate nodes whiCh can never.be turned 

on (or oft). 

The static evaluator takes., as its input. the list of transistors and input nodes output by the 

node extractor. F.ach transistor is identified by the node numbers of the gate. source, and drain, 

along with its length/width ratio. In addition, there arc asMJmcd to be two distinguished nodes: 

VDD and GND. No assumption is made about ckJCking. 1be identification of input nodes is 

necessary to distinguish them from undefined nodes. An input node is asmJmcd to be potentially 

pulled up or pulled down (grounded). 
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6.1 Reading in the network . 

As each enhancement mode transistor is read, it is added to the program's data base of 

transistors. Certain checks arc made immediately, based solely on the information contained in that 

transistor. A diagnostic is generated if the gate of the transistor is either VDD or GND. A 

diagnostic is also generated if any of the gate, source, or drain nodes arc the same. 

Gatc=VDD Gate=GND Gate=Dlain Gate= Source Source= Dlain 

.Illegal Enhancement Mode Transistors 

Depiction mode transistors arc handled in a slightly more complicated way. A depiction 

mode transistor is typically used as a pullup resistor, in which case the drain is connected to VDD and 

the source and gate arc connected together. Sometimes depiction mode transistors are used as 

superbuffers, in which case the drain is still connected to VDD, but the source and gate arc not 

connected together. lbc final use of a depletion mode transistor is as a "yellow transistor". one in 

which the designer wants the polysilicon and diffusion wires. to c~ but without creating a 

transistor. If it is implanted (usually indicated as a yellow layer). a depiction mode transistor is 

created. That transistor is like a resistor, in which the two wires cross each other at the expense of 

some speed. Tbc clactSic use of yellow transistors occurs in multiplexors. A yellow transistor can be 

detected because neither the source nor the drain arc VDD. something that is never true for a 

depiction mode transistor used as a pullup resistor. 
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Types of Depletion Mode Transistors 

When a depiction mode transistor is read, a check is made to sec if the gate is the same as 

either the source or the drain. If so, the other node must be VDD; otherwise a diagnostic is 

generated. This detects unpowcrcd pullup resistors. If this transistor is a yellow transistor, it is 

converted into an enhancement mode transistor with a gate of VDD. At this point. a check is made 

to detect whether both the source and drain arc VDD. All non-yellow transistors arc entered on a 

list of pullup resistors. 

When an input node is read, it is marked as being possibly pulled up, and possibly pulled 

down. This completes the initial processing of the cireuit 

6.2 Depletion mode transistor checks 

Once yellow transistors have been converted, there are only three ways in which depletion 

mode tr.insistors are used: nom~I pullup, inverting supcrbuffer, and. non-inverting supcrbuffer. 

While there is no rule that says these are the only uses of depiction mode transistors. these three are 

the only ones which have been encountered in practice by the author.1 As other uses are found, they 

can be added to the list of legal ones. 

I0nc designer has deplction mode puRdowns to ground on some of his input pads. Currently these would be flagged as an 
error. 
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lnvertin& 
supcrbuffer 

Legal Uses of Depiction Mode Transistor (1) 

To check for proper use of depiction mode transistors. the list of these transistors is scanned. 

For each transistor. a pattern match is perfonncd against the set of legal uses. Any that do not match 

arc flagged as potential cm>1"S. Jn addition. the total number of each pattern found is reported as 

infonnation for the designer. 

6.3 "Stuck at" checks 

For a particular node to be useful, there must be som~ way to give it the value 1 and some 

way to give it the val.ue 0. In general, it is impos.tjble to determine if a given node can ever take on a 

particular value without simulating the circuit However, a simple check can be made by assuming 

certain transistors can be turned on and verifying that for each node, a path exists to a pulled up 

node and to ground. 

A series of passes is made over the enhancement transistor data base until no more 

propagations occur. At each transistor. a check is made to sec if one side of the transistor is pulled up 

and the other unmarked. If so, the unmarked side is marked as pulled up (this counts as a 

pmpagation). The same test is made for ground. When this prOCCB settles. a scan is made of all the 

nodes. A node that docs not have both the pulled up and pulled down bits set is Hagged as an error. 

In an actual chip, especially ones designed either by a computer or with libraries of cells, 
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these "stuck at" conditions ofien occur and arc not considered errors. Typically, certain parts of a 

PLA come in pairs, with two pullups in each pair~ If one of the min1en11 lines is not used, there. will 

be no way to set it to zero; it will be stuck at one. If a designer uses only part of the function of a 

predefined cell, the unused part may contain some "stuck at" errors. Even though a spurious error 

message might occur, the checks seem worth perfonning. It docs not take long to review all the 

waming.c; output by the program. 

6.4 Threshold checks 

Earlier, the· problems of driving a pass transistor with a signal that is one or more lhreshold 

drops below V dd were discussed. The database that has been built so far can be used to check for 

that type of error. Two items must be detected: (l) a signal one threshold drop below V dd' and (2) 

what a pcm transistor looks like. 

In the previous section, multiple passes were made over the network during which each 

node was marked as potentially pulled up. To detennine threshold drops, more care in our marking 

is necemry. Any node that has a depletion mode pullup resistor attached to it will be marked 

"pulled up", as will any node that is an input node. 1be nodes that can be reached from pulled up 

nodes will be marked "indirectly pulled up". This indicates that these nodes arc at least one 

threshold below V dd" A pcm transistor with a gate driven by an "indirectly pulled up" node is an 

error. 

Currently, the method for detecting pcm transistors is not foolproof; some of them might be 

missed. Pcm transistors must be distinguished from transistors in pulldown chains. One 

distinguishing characteristic of transistors in pulldown chains is that there arc no transistor gateS 

connected to the intennediate nodes in the pulldown chain. For a pass transistor to be useful. the 
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gate of some other transistor must eventually use the value passed through it. which means that there 

must be a node with gates connected to it somewhere down the line. The current scheme docs not 

implement the "down the line" check. If it finds a transistor with a gate connected to an "indirectly 

pulled up" node, a source connected to a node that is "indirectly pulled up", and gates connected to 

the drain. the transistor is flagged as a possible error. 

Though depiction mode pullups used in supcrbuffcrs should have their gates connected to 

nodes that arc "pulled up", this check is not currently made. 

6.5 Ratio checks 

The ratio of the size of the pullup resistor to the size of the pulldown resistor should be 

four.[l] ll1c effect of driving a pulldown transistor with a V dd-V th signal is to double its resistance. 

Since the node extractor makes an attempt to calculate the length and width of each transistor, an 

attempt can also be made to check the pullup/pulldown ratio. The first problem is locating the 

appropriate transistors on which to perform the check. Finding the pullup transistor is easy; from 

there it is necessary to look for possible pul/down paths. 

'lbe following schrmc for finding pu11down paths was devised after much experimentation. 

A pulldown path is a path from a pulled up node to ground that passes through pulldown 

transistors. Each pulldown transistor is visited no more than once. lbere are no gates connected to 

an intcnncdiatc node, and none of the intermediate nodes arc pulled up. No pulldown path is 

longer than seven transistors (or some other arbitrarily chosen small number). 
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Possible pulldown paths are: 

A,B 
A,D 

C,B 

C,D 

Examples of P~blc Pulldown Paths 

A ftcr finding a pulldown path, the ratio calculation is fairly stntightforward, though it 

should include the fact that transistors with gates that arc "indirectly pulled up" arc twice the 

resistance of those with gates that are "pulled up". One problem pertains to ratios that are not 

exactly four. Most chips will work if the ratio is off by a small amount lbc ratio affects both the 

switching speed, and the thresholds at which certain voltages are said to be zero or one. One point of 

view allows for accepting a range of legal ratios instead of an absolute ratio of four. On the other 

hand. a chip designer who very carefully made sure that each ratiO was exactly four might be 

interested to know where a mistake occurred. CuffCntly, the program checks for the exact value. 

Experience indicates that chips either contain almost no violations or very inany. The output can be 

sorted on the ratios so that the extremes can be examined first, and multiple occurrences of the same 

errors arc Ii~ together. 

A nor gate contains several pulldown paths. lbc ratio check is performed for each path 

independently. If both pulldown transistors were turned on at once, the node would be pulled 

down faster than if only one were turned on. 'Ibis is not bad, and corresponds to a ratio of eight to 

one. Each of the pulldown paths in a nor gate could have a different resistance. These will be 

considered one at a time and any that arc in error will be reported. 
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1. Simulators 

After all the errors that can be detected through static analysis have been removed. it is time 

for dynamic analysis, or simulation. Though the research performed for this thesis did not result in 

the creation of a simulator by the author. it did result in some further simulation research by other 

people. An in-depth di!l:ussion of simulation docs not belong in this thesis. but an overview of 

simulation is appmpriate, along with a de!l:ription o( two po~ble algorithms for perfonning 

switch-level simulation. For deeper coverage of simuL1tion issues, the reader is referred to Bryant 

(IS) and Tennan (16). 

7.1 Different types of simulators 

There are many different levels at which simulation of VLSI circuits can be performed. 

Usually, simulation at a low level implies circuit simulation. 1be input is a set of circuit clements: 

resistors, capacitors, transistors (with length/width ratios), voltage sources. and input signals (e.g., 

square waves of a specified frequency). The output is a series of graphs, showing the wavefonns of 

each signal. The algorithm perfonns many separate integration steps for each unit of simulated time. 

This type of simulator is exemplified by SPICE which is usually run on small circuits (on the order 

of an output pad) and is expensive to run. 

The next level up from circuit simulation is switch-level simulation. In this type, transistors 

arc modeled as switches that are either on or off. Fixed delays arc associated with the transmission of 

signals and with the changing of state of transistors. 'Ibis will be the level of simulation emphasi1..ed 

in the rest of this chapter. 

One level up from switch-level simulation is gat~level simulatio11. (A gate is composed of 

two or more transistors.) The input to a gate-level simulator consists of a list of objects with their 



- S6-

inputs, outputs, and infonnation describing their interconnections. Typical objects include nand 

gates, inverters, and posmbly registers and memories. 1bis level of simulation is used for debugging 

Tll. circuits. It is not a good method for modeling components of VLSI circuits, because there are 

certain circuit configurations which oa."Ur in VLSI cireuits that cannot be modeled as objects with 

inputs and outputs. Examples include pa~ transistors and circuits with chaigc sharing. 

The highest level of simulation is usually called fanctio110/ simulation. 'Ibis level of 

simulation docs not have any information about the underlying ciocuit (since the circuit might not 

. have been designed yet). Instead. it tries to model the input/output behavior of the component 

modules. For example, if the chip is going to have a finite state machine as the main controller, then 

that will be simulated as a single module. Program variables arc used to represent the chip's 

registers. Subroutines are used to model particular pieces of the chip. This type of simulation 

usually runs very fast, allowing the designer to simulate many clock cycles. 1bc clever designer will 

develop test data with a functional simulator and use it to test the final chip. Ideally, the output 

from the functional simulator should agree with the output from a switch-level simulator. 

7 .2 A possible design of a switch-level simulator 

For simulating the information derived from the artwork, switch-level simulation is the 

appropriate level of simulation to use. Cil'Clfit level simulation is too low a level, since the user is 

usually not interested in the actual waveforms that occur at each node in the chip. If all of the 

conservative design rules have been obeyed, the chip should work (though it might logically 

compute a result different from what is desired). in addition, today's designs arc too large to be 

simulated as a whole at the circuit level. On the other hand. gate-level simulation is too high a teve~ 

since this type of simulator docs not model all of the ~ble nMOS circuits well. The output of the 
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·node extractor would require additional pruccBng to group transistors into gate infonnation, which 

could be used as input for a gate-level simulator. This would be ditTicult, however, since it is not 

always possible to fonn gates fmm all transistors. Often a gate-level simulator contains an extensive 

user interface, including macros and editing capabilities. which allow an easy and concise method for 

entering a circuit. When the input is computer-generated, .such capabilities arc not needed. 'fbe 

programmer of a simulator might spend so much time providing an easy method for entering input 

that he becomes distracted from the real problem of simulation. Some attempts have been made to 

modify a TI14 simulator to work with nMOS. but with liule succes&. Staning with a switch-level 

simulator would pmbably have given bcucr results. 

Before a di!l:ussion of some possible implementations of a switch-level simulator, it is first 

necessary to consider some issues which arise in typical cin:uits. Transistors are used not only as 

switches. but also as pullup resistors. This means that a pulled up node has a value of 1 uni~ it is 

also connected to ground. Charge can be stored on the gates of transistors and on nodes with 

enough capacitance (such as long wires). 'This charge will retain the state of that node, even when 

the driving fon:c is removed. In the simulator, the aBJmption is made that the charge lasts forever, 

though in reality, the charge leaks away slowly and must be refreshed (dynamic logic). Charge 

sharing can also occur, i.e., two isolated pools of charge can be merged if the pm transistor between 

thCltl is turned on. 
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Example of Charge Sharing 

The difficult question to answer is what happens when a zero is merged with a one: is the result zero 

or one? Often it is neither. If charge sharing is not handled, or if it comes from two equally sized 

pools of 0 and l merging, the resulting value wilt be undetined (X). Charge sharing can be either 

ignored, since most designs do not make use of it, or handled by the simulator using the capacitances 

reported by the node finder. Initial values for the internal nodes must also be considered. 'lbree 

possibilities arc (1) initialize alt internal nodes to zero or one, (2) set each node to zero or one 

randomly, or (3) introduce another value (I) that indicates an initial value. 'The simulator should 

treat X's and l's in the same manner (both as "undefined") when computing new values. but the 

distinction can be useful in notifying the designer if any problems occur. 

Two possible methods of switch-level simulation will be presented. ll1e first one, the 

equivalence class method, is easy to explain and easy to implement. The second one, the e11e11t driven 

method, is slightly more complicated but runs much faster. 
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7 .2.1 The equivalence class method 

In the equivalence class method of simulation, three pieces of infonnation arc associated 

with each node: an old state, a new state. and a bit which is set if there is a pullup transistor.on the 

node. The user sets aJI the input variables to the desired values and instructs the simulator to 

simulate the circuit until it sell/es, at which point the values of the nodes (either internal or output 

pads) can be displayed. 

The simulator makes repeated passes, called microsteps. over the circuit. When a pass is 

made and 1 o more changes take place, the simulation has settled. I\ microstcp consists of the 

following stepS. 

1) Place each node in its own equivalence class. 

2) For each transistor that is turned op (i.e. its gate has a value of -1). 
merge the equivalence classes of its souree and drain. 

3) For each equivalence c1'm. dctcnninc the value of the equivalence 
class by looking at the old value of each node in the equivalence 
class. 'Ille value is dctcnnined from a collection of nodes that may 
be connected to VDD. connected to GND. puHcd up, Cbarsed 1, 
charged 0, initial. or undefined. Once this value is determined. the 
new value of each node in the equivalence class is set to this value. 

4) For each node, copy the new values to the old values, noting if any 
changes occurred. 

5) If any changes occurred, repeat from step 1. Otherwise, the circuit 
hassctded. 

Some ismJcs arc ignored in this simple statement of the algorithm. 'Ille two major points to 

consider arc the merging of equivalence chmcs and the dctcnnination of the new value for the 

clements in an equivalence class from the collection of old values. What should happen when the 

user connects VDD and ONO together? What does it mean when a pcm transistor has a gate of X? 
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The real problem with this algorithm is its speed. At each microstep every node and every 

transistor must be examined, whether a change has occurred or not If the simulator only took action 

when a change occurred, it could compute its work much faster. A good test example is an inverter 

chain 1000 inverters long. To simulate a signal propagating through the inverter chain, the 

equivalence cl~ algorithm requires 1000*1000 operations. However, an algorithm that recomputes 

only when something changes should take only 1000 operations. 

, 'lllough an inverter chain 1000 tong docs not usually occur on a real chip, and though many 

chips contain many signals moving at the same time, an improvement in speed can be realized by an 

algorithm that docs not recompute the whole chip at each microstcp. The event based simulator 

incorporates such an algorithm. 

7 .2.2 The event oased method 

In an event based simulator, each node has a bit that is set if it is pulled up, and a variable 

that contains its current state. In addition, an event list is used to store a list of actions to be taken. 

Initially, the circuit is in a consistent state (possibly all I's) and the event list is empty. The user 

changes the value of some node (usuatly an input) and instructs the simulator to pcrfonn 

computations until the circuit scules. Once it has settled, the values of any nodes can be examined. 

Whei:t the user changes the value of. a node, the simulator enqueues on the event list an 

event that contains the name of the node and its new value (le., forced 0 or forced 1). Then, the 

foJlowing algorithm is executed until the event list is empty. 

1) 1ne first event is removed from the event list. A new potential is 
calculated for the node, based on the potentials of all the other 
nodes connected by turned-on transistOl'S to this node. 
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2) If this new potential is the same as the old, then this event bas no 
effect. No further proccWng is pcrfonncd on this event. and the 
execution continues from step I.· · 

3) A scan is made of an transistors with sources or drains that are 
connected to this node. If the change to the new value could 
possibly change some other node (that might be on the other side· of 
a transistor with a gate of "X"). that node is enqueued on the event 
list 

4) Jf the change in value would affect any transistors with gates that 
arc connected to the node, then all such transistors arc enqueued on 
the event list 

S) 'Ille value of this node is updated to reflect the new value and 
proces,gng continues from step l. 

Computations of new values based on old ones arc pcrf ormed with table lookups. 1be 

network is stored so that it is easy to find all transistors with sources and drains (or gates) that are 

connected to a particular node. The net result of this algorithm is that simulation is performed only 

on the pieces of the circuit that change. 

Many simulation schemes arc possible, but the above two should give the reader some ideas 

about selecting an implementation of his own. The specific details of the simulation step have been 

found to be particularly sensitive; a slight change in a functioning simulator often causes it to stop 

working. It is important to have a set of test examples to verify that the simulator still works after a 

modification has been made. 

7 J Possible speed improvements 
, . 

There are many possible ways to speed up the simulator. A few ideas which have been 

partially implemented [16) arc discussed here. 

Though it has been indicated here that a circuit should be viewed as a collection of 

transistors by the simulator, often an actual designer thinks in tcnns of gates. An improvement in 
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speed could be made if it is posgble to find all the gates in a cimiit. and if it is faster to simulate the 

gates rather than the individual transistors which mate them up. Any transistors that arc not part of 

a gate would still be simulated in the usual way. 

A gate can be recognized by finding a node that is pulled up and then is simply pulled down. 

Le. there arc paths from the pulled up node to ground. through transistors with intcnncdiate nodes 

that arc not used anywhere else. The output of the pulled up node may go through p~ transisto~ 

but eventually it can only be connected to a transistor's gates. Output from such a node is a strict 

function of its inputs (the gates of the transistors in the pulldown chain). and it does not require 

simulation of its component transistors to determine its value. 

A common method of implementing combinational circuits. and read-only memory uses 

Programmed l.ogic A"ays (PLAs). If a PLA can be recognized, it can be replaced by a table lookup. 

'Ille general fonn of a PLA is some number of inputs connected to a number of mintenns, which are 

in tum connected to outputs. The minterms arc pulled up and potentially pulled down by various 

inputs. The outputs are pulled up and potentially pulled down by various mintcrms. Such a 

structure can be recogniad by OftC of two mcthodL 

A check can be made for structures that fit the specific shape of a PLA. 'Ibis wiU wort. but 

·additional optimi7.ation is po!ltible. Most PL.As have superbuffered outputs. An algorithm that 

looks for bloc;:ks of logic with outputs that can be computed from their inputs would not only find 

the PLA. but would detect that the real output is on the far side of the supcrbuffers. Jn addition, 

such a program may find pieces of logic that were not implemented as PLAs. but neverthcl~ can be 

converted into tables. For example. it might be pc.>miblc to convert an inverting superbuffer into a 

simple inverter. · 
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7.4 User interface 

An area that is often overlooked in simulator design is the user interface. A poor user 

interface can make the fastest algorithm uscl~ Unfortunately, there is no set of rules to follow to 

create a good user interface. A few of the interface-related iBICS to keep in mind when designing a 

simulator are mentioned below. 

'Inc circuit input format is not really a pmblcm when a simulator is driven from extracted 

circuits, though it should be readable by the user. Many errors that arc discovered during simulation 

can be patched in the cin:uit tile. using a text editor. This means that it is not ncc~ry to re-extract 

the entire cin:uit before simulating it again. 

It should be p~blc to specify different step sizes during the simulation. When debugging 

a cin:uit for the first time. the user might di~ver an unclocked feedback loop resulting in a chruit 

that never settles. 'Ibis user needs a command to execute a single microstcp or event at a time, letting 

him examine values in between. After completing that p~ he might want to step through the 

various clock phases .of the cin:uit himself. examining variables at each step. When the user is sure 

that everything is working correctly, he needs a command to execute a full clock cycle. When 

individual cycles wort. he will want to set up certain input vectors and run the chip through many 

cycles. Some chips dcsi~ed to interface with mcm0rics may require an interface more complicated 

than vectors of inputs, since they require simulation of a piece of the outside world. lbis leads to the 

next capability. 

Some chips use a straightforward two-phase clocking scheme. while others use a more 

complicated one. It seems that the only way to handle all the possible clocking and input/output 

requirements is by providing the user with a facility for writing macros or programs that can call the 

simulator. Such a language could be embedded in USP. lbis would allow the user to tailor the 
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simulator to his own needs, writing routines for reset, clocking, input, and so on. 

Designers often create families of custom chips. In the future, there will be a need for a 

simulator to accept the circuits from a family of chips along with an interconnection list, and to 

simulate the entire family at once, making sure the interface between them is correct. TI1is technique 

may also be useful to the designer of a chip who has not yet completed the final wiring, but who has 

completed and simulated ;ill the major pieces. He may want to simulate the entire chip by hooking 

up the individual pieces. This facility would allow final simulation to he performed at the same time 

as final wiring. 
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8. How Does All Of This Relate To The Real World? 

Even if the work in this thesis were applicable only to designs foitowing the Mead and 

Conway approach, it would stitt be useful to a group of university rcsean:hcrs. The hope is. that it 

can be applied to a much larger selection of designs than those used so far. In this chapter, we will 

touch on some of the problems that might occur with this design verification when other types of 

designs are used. 

Some overall observations can be made before looking at each program in detail. 'lbe 

underlying a~umption that was used in this thesis is that designs arc expressed in tenns of lambda 

(or fractions of lambda) and that the designs arc expressed in tenns of rectangles. While most 

designers use some basic unit of resolution, it is often much smaller than lambda and certainly too 

small to use as a scale for rasterir.ation. Most design systems support additional primitive shapes in 

addition to the rectangle. Examples include round flashes (le., cin:les), wires (a locus of points a 

specified distance from a multi-segment line), and polygons (both convex ones and others). In 

industry, the cmumption of orthogonal geometry does not hold. 

'lbe imumption that there are only six layers is not a valid one in industry. Some common 

additional layers that must be handled include buried contacts.1 a second layer of metal, a second 

layer of polysilicon, and two or three more layers of ion implantation.2 None of these extra mask 

layers add any new concepts. 111ough the node finder will contain more layers to follow and the 

cin:uit file will have more types of transistors. the basic algorithms will remain the same. 

When a change is made in technology (le., from nMOS to cMOS or bipolar), larger changes 

1A method of connecting polysilicon to diffusion that does not use metal. This allows mclal to be run over poly-diffusion 
contacts without any interaction. 
2Thc different ion implantation masks arc used to control the thresholds of the tramislora. 
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will have to be made. While the author has never seen a design in either of these other technologies. 

the assumption is that the basic transistor finding algorithm wiD have to be changed. Chang [17) 

presents an algorithm for performing higher level checks on bipolar devices. He claims that it is 

possible to design many devices that pass att the design rule checks. but are still incorrect Perhaps a 

scheme similar to his can be used to recognize and extract the transistors in bipolar cirruits. 

'Jlte different design verification tools win be considered one at a time. Any limitations that 

can be forcsccn will be diocu~d. along with posgble solutions to these problems. 

8.1 Design rule checking 

This algorithm suffers the most when brought to bear on real world problems. 'Jlte one 

lambda grid no longer applies. The complexity of the current design rule checking algorithm ocales 

up very poorly when a window larger than four-by-four is used. Also, the design rules used in 

industry arc much more complicated than those stated in this thesis. This complication comes from 

the need to save space in order to increase yield and, in the long run,· decrease costs. Typical rules 

specify one particular spacing uni~ some other condition occurs, in which case the spacing can be 

reduced a little. While industry has whole-chip design rule checkers, they are based on the geometry 

engine approach, with the Cray l as the engine. 

Even using the Mead and Conway design rules, the raster ocan design rule checker cannot 

handle diagonal lines. When these arc converted to a raster image, an error occurs in either width, 

spacing, or both. Loslebcn and lllompson [18) also use a raster ocan algorithm for performing 

topological analysis. 'lnough they restrict their discussion to orthogonal geometrics, they present a 

clever method by which 45° rectangles can be handled. Each "bit" is now represented by four bits, 

with 0000 representing white and 1111 representing black. 11te bit pattern 0101 represents a square 
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in which the lower left is black and the upper right is white. 

~~ 
~ ~ 

NSEW 0101 

I .oslebcn and Thompson 45° algorithm 

The codes have been constructed such that logical operations (such as- "and" and "or") have the 

same results on the codes as on the original single bil It may be pos.tjble to use this algorithm to 

implement a raster !l;an design rule checker that uses a small window. 

8.2 Node extraction 

The granularity of the rasterization should not cause the node extractor any problems. 

Wires must have some minimum width. If the basic pixel is made somewhat smaller than half the 

minimum width of a wire, then each wire is sure to be detected by the node extractor. 

The effects of differing technologies has already been dis:u~. Currently, the changes 

n~ry to process cMOS are not considered to be much of a problem, though bipolar might 

require more work. As more exotic technologies are invented, the hardest part of node extraction 

will ~ transistor recognition. As lon,g as transistor information is directly related to the mask layers. 

this should not be a problem. 
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8.3 Simulation 

The simu~ator is the program least affected by "real world" designs. 'Ibe input is still just a 

file of transistors, and the on1y difference might be in total size of the file. As designs become larger. 

the simulator will run slower. Currently, its speed depends on the number of transistors that are 

changing and the depth of the circuit Faster simulation algorithms will no doubt be developed, and 

since simulation presents an opportunity for multiprocessing, there may be some very fast simu1ators 

in the future. 

Differing technologies may require small changes to the simulator, but no major chai:iges are 

anticipated. The current simulator (16) is table driven and could be made to read in a ~ of 

technology-dependent simulation rules. 

8.4 What happens as chips get even larger 

The speed of the node extractor is dependent on the size of the chip. As designs get larger. 

the node extractor slows down. This effect wilJ be offset by faster computers and better algorithms. 

In addition. the node extracting algorithm .is simple enough to be implemented with a small amount 

of special purpose hardware. At some point. chips may become too large for such a brute force 

approach. Some of the other methods considered for this thesis, but rejected as too complicated. 

may be necessary. 

lbe static analyzer will also be slowed down by larger circuits. Since it never took very long 

to run, however, its speed should not be a factor when compared to the speed of the node extractor 

and simulator. 

The scaling problems of the simulator have already been mentioned. Jn addition to 

multiprocessing and better algorithms. extraction of additional higher level functions from the 

---·--· 
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circuit (memories, registers, alu's) should improve the speed of simulation. Other ideas being 

considered include the generation of complied code t11at will perform the simulation and the 

creation of special pu rposc hard\\ arc that takes ad van tagc of the parallel aspects of simulation. 

Dcsignc arc going to get larger. but the approach taken in this thesis should be able to keep 

up with the larger designs for at least the next few years. 
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9. Conclusions And Directions For Future Research 

Most of the ideas contained in this thesis have been implemented. and used to verify over 30 

designs. The general reaction of designers is that the time spent running the programs, checking 

each of the error reports and perfonning simulation. was time well spent. Few designs cmcfJCd 

un~athed. Many of the errors detected would have prevented the chip from working after 

manufacture. 

· 9.1 The Scheme79chip 

The chip for which these tools were originally written and for which the most experience has 

been accumulated is the Schcme79 chip.(19] This chip implements a 32-bit LISP microprocessor. 

complete with an on-chip evaluator and garbage collector. 'Ille chip is 3000 lambda by 2375 lambda 

and contains 7811 enhancement mode transistors. 1637 depiction mode transistors and 2411 

electrically distinct nodes. The circuit for the Scheme chip can be extracted from the mast 

information in about 5 hours of CPU time on a PDP-ll.170. This includes the time necemry to 

produce a plot that shows all the node numbers which the the simulawr will use. 

When the designers considered the chip to be finished and ready for fabrication. 11 errors 

were detected through artwork analysis and simulation. The initial errors were d~overed by 

symbolic naming of the input an_d output pads and subsequent detection that some pads really 

belonged to the same node. Next. soine named internal nodes were d~vercd to have the same 

node numbers. After this, most of the errors were di~overcd during simulation. By the time the 

deadline for fabrication came, the simulated Scheme chip had both performed a garbage collection 

and interpreted a simple LISP program. Though this did not constitute an exhaustive test. it was all 

that time allowed. 
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After the Scheme chip was manufactured and returned, its tests were successful; the chip 

worked. During further testing of the actual chip, two more errors have been discovered. One, a 

"bug" in· the garbage collection algorithm, could have been detected if the particular case had been 

simulated. The other, a race condition in some of the logic added to an output pad in an attempt to 

make it latch a signal, was not detected, because the simulator. was not designed to detect race 

conditions. Fortunately, the correct value of this pad can be dctcnnincd by other means. so that the 

chip is usable. 

9 .2 Design errors that are not checked 

Other designs have been run through all the checks and have been fabricated, but none 

have been tested enough to determine if they work. It would be nice if we could be sure that any 

design that passes all of the tests described in this thesis would work when fabricated. Such a 

statement cannot yet be made; therefore some mention· should be made about the kinds of errors 

that might slip by all the checks and cause a chip to fail. 

The largest area in which no checks are performed is timing. The simulator docs not have a 

good idea of timi11g, nor is there any analysis of critical paths. nor checking for race conditions or 

hazards. In dynamic circuits, no checking is done for stale bits. bits that were not refreshed often 

enol!gh. More work is needed in these areas. 

Another unchecked problem area is power and ground bus sizing. When large DC currents 
I 

flow through small aluminum wires, the aluminum atoms migrate. 'Ibis causes the wire to become 

even thinner, which increases the migration. Eventually, the wire breaks, causing an open circuit A 

scheme has been developed by the author for checking power/ground bus sizing, but it has not yet 

been implemented. 
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Further thought is needed in the generation of test cases for the simulator. It is hard for the 

designer to create exhaustive test cases. The simulator can aid in this task by keeping track of nodes 

which have never changed state and reporting them to the user. He can then try to devise better test 

cases that would cause those nodes to change state. If the user identifies all state vectors (i.e., PLA 

feedback terms) to the simulator, an additional piece of useful bookkeeping can be performed. The 

simulator could keep track of the states that have been visited and report on those which have not. 

111is concludes the list of currently undetected problems that could lead to non-functional 

chips. As the relationship between the Mead and Conway design style and the actual analog 

functions of the chip is better understood, more areas can be checked. At some point, it will ~ot be 

worth investing more computer time in the extraction or simulation of difficult cases, and the best 

approach will be actual fabrication and testing. 

9.3 Better design tools 

If the tools used to design the chip were better, then none· of these design verification 

programs would be necessary·. This thesis has attacked the easy problem of design verification. The 

computer-aided creation of the designs is a harder problem. Currently there is little agreement in 

the field about the right way to do design automation in VLSI. The computer should be able to help 

the designer ~ontrol some of the wmplexity,. but the amount of help it can provide in the actual 

design process remains to be seen. 

A I though predictions can be made about the operation of design tools of the future, it seems 

more profitable to look instead at how some of the circuit extraction software can be integrated into 

an overall design system, both in the present and in the future. 

Integrating the current software with a design automation system will have the effect of 
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"closing many loops". The output of simulation based on circuits extracted from the artwork can be 

compared with that of functional simulation. Individual cells can be design mle checked, circuit 

extracted. and simulated as they are created. All these different representations can be rnade 

available to the designer. 'Il1ere will still be a final check perfonned on the whole chip, but the 

number of errors detected should be very small if all these other checks have been performed alo1)g 

the way. 
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