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ABSTRACT 

The first part of this thesis considers the complexity of Boolean 

functions. The main complexity measures used are the number of gates in 

combinational networks and the size of Boolean formulas. The case of 

monotone realizations, using only the operations of AND and OR, of monotone 

functions is emphasized. 

For a particular class of monotone functions, the quadratic functions, 

the worst-case values for the monotone circuit complexity is shown to be 

proportional to n2/log n. The number of ,....gates necessary to compute any 

quadrastic function is also analyzed. 

A technique for deriving bounds on monotone circuit size of threshold 

functions is applied to the 11majority 11 function (threshold n/2) to establish 

a lower bound on its monotone circuit complexity of 3n-O(l). For the function 
11 threshold 211

, previously known lower bounds on the number of v-gates required 

are extended in the case of a circuit which has a m1nimal number of A-gates. 
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As a result, it follows that no monotone circuit for "threshold 2" can 

simultaneously have both a minimal number of A-gates and a minimal number 

of v-gates. 

The complexity of combinations of functions on disjoint sets of variables 

is studied, and a gap between the formula and circuit size of a particular 

function is given. 

Finally, we study the effect of allowing negation in a formula for mono­

tonic functions. Examples are given both of functions in which using negations 

allows more succinct expressions, and functions in which it does not. 

The second part of the thesis describes an algorithm for computing shortest 

paths in a graph. These results show that an algorithm originally proposed 

by Spira for this problem can have slow running time. The lacuna in his 

algorithm is repaired, and it is shown to have O(n2(iog n) 2) ~verage running 

time over wide classes of graphs as Spira originally claimed. As a special 

case, a transitive closure algorithm with O(n2 log n) average time is al~o 

described. 

Thesis Supervisor: · Albert R. Meyer, Professor of Computer Science. 

Key Words: Boolean functions, circuit complexity, Boolean formula size, 
monotone networks, threshold functions, quadratic functfons, 
algorithms, shortest paths, directed graphs, transitive closure, 
computational complexity. 
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CHAPTE R 1 

Introduction 

This thesis consists of two parts, .each devoted to a di·fferent 

area in the theory of computation. It is primarily devoted to a 

study of the complexity of Boolean functions, with an emphasis on 

monotone Boolean functions. A secondary· objective _is the analysis 

of algorithms which compute the shortest distances between all points 

in a graph and whi:ch compute the transitive closure of a Boolean 

matrix. 

In general, computational complexity theory asks questions 

about the computational resources required to solve a problem or 

compute a function. Traditional complexity theory has been pri­

marily concerned with the difficulty of computing recursive functions 

on various models of machines such as Turing Machines or Random 

Access Machines; measures such as tlime ·or space on .these machines_ 

are considered. Finite functions (i.e. those with finite domain}, 

since they are computable by finite state machines, are inherently 
11 easy 11 according to these definitions since they require only enaugh time 

and space to read the input and print the output. Several models 

of computing machines for finite functions have been proposed over 

the past years, and these have been studied as a means for defining 

the complexity of finite functions. Some of these, such as 

circuit complexity, receive their flK.'lthation from computer technol-
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ogy, while others such as fonnula size are more mathematical in 

origin .. In the work which has beeri.done so far, these models are 

seen to have a rich mathematical structure which is only now begin­

ning to be understood to any extent. The bulk of the research con­

tained in th.is thesis is a study Of several problems 'in this area 

of finite computation. 

We restrict ourselves to the Boolean- case in which the finite 

domain and range are vector spaces over' the set {0,1}. The original 

work in this area was directed towards finding asymptotic results 

about the worst-case complexity of all Boolean:functions <>n n 

.variables. Work of Shannon [1949]~ Lupanov [1958,1962], and others 

[Krichevskii 1961) established that ''most" Boolean functions on 

n variables have minimal formulas of size asymptotic with c"/log n~t 

and minimal circuits of size asymptotic with 2"/n. During the 

1950 1 s attention was focused more on indivfdual 11 pra:ctica1° problems, 

and on finding optimal or near-optimal canonical fonnulas and 

circuits for a function with a given input-output specifi-catiori. 

Work of Quine (1952,1955] and others [McCluskey 1956, Karnaugh 1953] 

explored methods for finding efficient ways·. of computing or expres­

sdng a specific function. 

Recent research has been directed primarily at finding exact 

values for the complexity of individual functions in_ different 

models of complexity. As an adjunct to this pursuit, other more 

t In this report, all logarithms are to the .base 2. 
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basic questions such as the relationship between complexity in 

different models have.been studied~ This search for optimal 

circuits and formulas is only indir~ctly ,inot1Yated from an engi­

neering point of viewt, but is relevant to complexity theory. 

Several authors [Pi'ppenger and Fischer· 1977, Schnorr l 976d] 

have demonstrated a connection between the Turing Machine complexity 

of a function and the circuit <:omplexity of finite restrictions of 

that f~nction. These results essentially show that a function i~ 

easy to compute with respect to oracle Turing Machine time if and 

only if it has a small circuit on each set of finite length inputs. 

This work relates to recent studies of non-detenninisti·c polyn1>·­

mial time (NP) and to the NP·~omplete· problems of Cook [1971] and 

Karp (1972] because it implies that if P =NP, then the finite 

restriction of· any problem fo NP has a f)Olynelf1U-sized circuit. 

While this latter question is obviousa.y still open, this observation 

has given impetus to many researcher-$ to exf)lore the possibility of 

proving large lower bounds on the complexity of specific Boolean 

functions. 

t 
Considerations such ·as the number of gates in a circuit or the 

delay time are not as important as other factors such as the inter­

connections between gates and the fan-out of the gates. 
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The results obtained thus far have not been v~ry encouraging 

in pursuit of this goal. The lower bounds obtained may be divided 

into two types. Diagopal-type arguments can obtain exponential 

lower bounds on the complexity of specific functions. For example, 

Stockmeyer [1974] and Meyer have shown that.since there are functions 

which are recognizable on a detenninisti·c_Turtng Macbtne in space 2° 

whose restriction~ to inputs of fixed length have exponential circuit 

complex~ty, one can get a lower bound of ;en on any ci~cu-i:t wf)ich­

computes a res~riction of certain logical languages. Thus far, 

results of. this sort have b~n limited to Boolean functions which 

are binary codings of problems which are provably difficult to compute 

on a Turing Machine; the functions involJ.led have not arisen-. as 

Boolean functions in their own right. Moreover, since the NP-complete 

problems are not yet provably di ffiatlt for a Turi.ng Machine, these 

techniques do not apply to them. 

Direct arguments f.or particular functions have not yielded much 

in the. way of lower bounds. For_ sfo9le~0utput «funct:ions, no lower 

bounds on circuit complexity larger than linear in the number of 

inputs have yet been proven. 

· The order of these bounds has not been improved even when the 

allowable gates in the circuit are highly restricted. For the 

complete basis of all binary Boolean operations_, th_e largest of 

these lower bounds is 2.5n recently discovered by .Paul [1977.) 
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and Stockmeyer [19771. tfor restricted bases, the largest known lower 

bound is 7n. for particular functions (Red:kfn 1973l. Work contained in 

this thesis establishes lower bounds on the n:motone· circuit complexity 

of a particular threshold function which is equal to the largest lower 

bound achieved for this basis (namely 3n). 

For multi-output functions, larger lower bounds have been achieved 

on the circuit complexity in certain bases by exploiting the interplay 

between the functions computed by different outputs. For example, 

Paterson (1975] and Mehl horn and Galil [1976], indepently extending earlier 

work of Pratt [19741, ha.ve shown that the monotone circuit complexity of 

the multiplication of two nxn matrices is 2n3-n2. ttseveral other 

researchers have used different techniques to obtain lower bounds propor­

tional tQ n log n on functions related to sorting problems [Lamagna and 

Savage 1974, Lamagna 1975]. 

We obser.ve that in both cases the bounds obtained are far short of 

the exponential lower bounds theoretically possible for most functions .. 

t Recently, Lipton and Tarjon [1977] exhibited larger bounds for 

planar circuits, and Schnorr [1978bl has announced a 3n lower bound for 

arbitrary circuits. 

tt Recently, these techniques have been extended to yield an G(n2/log2n) 

lower bound on the monotone circuit complexity of eertain functions 

[Wegener 1978] 
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.For fonnulas the results are also limited. If arbitrary con­

nectives are allowed in the formula, the largest lower bounds are 

given by a general technique of Ne~ipon.rk [1966] wtric.fl he ,uses to 

establish lower bounds propol'tional to n2/log n for a specific 

function. Harper and Savage use Ne~iporuk'"S method to establish 

lower bounds on the complexity of the marriage problem [1972]. 

This technique is used later in this thesis to exhib-it a mnotone 

function for which negations don 1t allow a redvct;on in the formula 

size by more than a constant factor. Other lower bounds for 

fonnulas,in which arbitrary binary connectives are allowed have 

been reported by ~everal authors [Hansel 1964,·HOdes and Specker 

1968, Yilfan 1972, and Fischer, Meyer and Pate..-son 1975]. For more 

restricted sets of connectives, Khrapchenko [1971] established 

lower bounds on the {A,V,..,} formula complexity for the parity 

function proportional to n2, and this is the largest polynomia·l 

bound yet established for formula complexity. 

The principal research contained in this thesis is the estab­

lishment of lower bounds on the complexity of specific Boolean 

functions, but includes more general work on asymptotic.bounds on 

the complexity classes of Boolean functions and on the-relation­

ship between several complexity measures. In particular, we begin 

by studying the nonotone circuit complexity of qijadratic monbtone 

Boolean functions. (Those for which each prime implicant is a 
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product of two distinct variables. ) Using siuple oounting techniques 

we shJw ~t nost quadratic functions reguire at l~ g (n2 /log n) t 

gates to cc.rrpute in any circuit. en the other ham, we shJw that 

a roonotone circuit of size proportional to n2Jlog n exists for 

every quadratic function. When counting individual types of gates 

in a monotone circuit, we show that n-i A-gates suffice to compute 

any quadratic function, and exhibit a specific function for which 

2n/3 A-gates are necessary in any monotone circuit. 

In chapter 4 we examine the question of whether it may be 

easier to compute combinations of several functions than to compute 

the individual functions and then combine them. Both monotone 

and general circuits and fonnul as are considered. As a corollary 

to the work reported there, we establish the existence of a function 

of polynomial complexity which has·smaller circuit complexity than 

formula complexity -- in fact their ratio is proportional to 

n/log log n. 

Chapter 5 contains an examination of the monotone circuit 

complexity of the threshold functions. Using techniques similar 

to Paul [197i], Stockmeyer [1977], and Schnorr [1974], we establish 

larger lower bounds on their complexity than previously known. 

These bounds are in some cases quite small in comparison with the 

best known upper bounds. In particular, for the function 

"threshol!d n/2 11 of n variables, we establish a lower bound of 

t For rx>tation, see page 51. 
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· 3n-7 gates necessary in any ncrotooe circuit; f on the other harxi, the 
. . . .. . . 2 

smallest krrJwn circuit has a 1dlt>er of ·gates proportional to .n (log n) • 

For the function "threshold 211 of n variables, we present exact 

bounds on the number of A-gates and v-gates for any monotone 

circuit. These bounds were observed by F.F. Yaot! We extend 

these bounds in the case of a circuit with the minimal number of 

A-gates for values of n which are a power of 2, and show that for 

these values of n it is impossible to simultaneously achieve the 

minimum nuni>er of both types of gates. The latter result was again 

previously observed by F.F. Yao. 

Finally, we study the effect of different bases on the.fonnula 

complexity of monotone functions. In work done jofotly with M. 

Paterson, we exhibit a function with monotone formula complexity 

proportional to n2/log n for which any fonnula in an arbitrary 

basis can be no more than a constant factor smaller. On the oth~r 

hand, in work done jointly with A. Meyer, we show that there are 

monotone Boolean functions for which the smallest monotone formula 

is larger by a factor of e(n} than a fonnula for the function in 

the.basis of all binary operators. 

t .Recently these techniques have been extended by the author to yield a 3n-O(l) 
lower bound on the ·{A, vs-,} complexity of this function. 

tt Personal oama.micatioo, 1975. 
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The final part of this thesis deals with the problems of 

detennining the transitive closure of a Boolean matrix and deter­

mining the shortest distances between all points of a non-negatively 

weighted graph. P.M. Spira [1973] has published an algorithm to 

find the shortest distance matrix which he claims has an average 

running time (over a large class of weighted directed graphs) of 

O(n2 log2 n). Research by A. Meyer, M.J. Fischer, and this author 

has demonstrated classes for which his algorithm has slow average 

running time. A revision of his algorithm does indeed have 

O(n2 log2 n) average time, over even wider classes of graphs than 

Spira claimed. This result is presented in Chapter 7; it is also 

shown there that a further revision yields a simple O(n2 log n) 

average time algorithm to compute the Boolean transitive closure 

over a wide class of probability distributions on matrices. 

We begin by presenting some introductory remarks on Boolean 

functions. 
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CHAPTER 2 

Definitions and Preliminary Results 

Section A. Boolean Functions 

An n-input, m-output Boolean function is a function with 

domain {0,l}n and range {0,l}m . We will den0te the set of all 

n-input, m-0t•tput Boolean functions by B • We will generally· be n,m 
interested in one-output Boolean functions and denote the set Bn, 1 of 

all such functions with n inputs as Bn. If fE:B , we usually n,m 
denote an arbitrary element of the domain of f by x = (x1,x2, ... ,xn), 

and refer to each xi for l s i ~ n as a variable of f. Some 

specific Boolean functions we will refer to are the unary function 

negation or NOT (denoted : ), and the binary functions disjµnction 

or OR (v), conjunction or AND (A or·)~ EXCLUSIVE OR or mod 2 sum - -- - ---
(m ), equivalence(::); and the constant functions Q_and l· 

The sets of functions Bn m have been extensively studied from 
t . 

a mathematical point of view [Harrison 1965, MacLane and Birkhoff 

1967]. We assume that the reader is familiar with elementary 

properties of these sets. We use notation which is standard and 

refer the reader to Harrison [1965] for elaboration and proofs of 

t 

Frequently we will denote the conjunction of variables x and y 

by their concatenation xy. 
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results that we only statet. 

·Boolean functions may be com,bined in standard fashion. In 

particular the composition of functions is defined as usual~ If 

f and g are members of Bn for some n, we: 4ef1M · fVgt8n by 

(fvg){x) = f{x)vgfx) for any ldo,nn. ·If a collec.tion of functions 

( f i I id) is each a member of Bn, th# di $J~,mctton .j{i f i ~Bn is 

defined in the obvious fashion. The conjunction. of f1mctions is 

defined similarly. In addttipn, we may define, from the functions 

f EBn m and gEBn m' , the function fxgEBn +n m +m by 
l' 1. 2' 2 l 2' 1 2 

(where we use the obvious isomorphism between {0,llm1x{Q,l}m2 and 
+·-

{0,l}ml ~ ). The combination v(fxg) is defined, for fEB 
nl 

t Examination of the properties of Boolean functfons indicates 

strong similarities among them. In fact, they may be grouped into 

pairs in which occurrences of A and v are interchanged, as well as 

occurrences of 0 and 1. Such statements are called ·l:fu~ls of each 

other. It is a well known fact that a Boolean statement fs true if 

and only if its dual is true. This is known as the pricipal of 

duality, and permits some economy in proving pro.pertfes of Boolean 

functions. 
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and Q€B , to be the obvious co111>osition of v and x ; that is 
"2 . 

v(fxg)(xl, ... ,xn ,yl, ••• ,yn) = f(xl, ••• ,xn )vg(yl, ... ,yn ). 
l 2 l 2 

A(fxg) is defined similarly. 

Two properties of these coni:>inations which we will use are 

stated in the following le1TJJ1a: 

2.1 Lerrvna: Suppose f and g are ment>ers of 8
0 

for some n ~ 0. 

Then {a) if fvg = Q_, the constant function 0, then f = O and g = u 

and {b) if fAg = l, then f =land g = l· 

One specific set of Boolean ~unctions is the set of projection 

functions. The ;th projection function of n variables, 

denoted rr~, is defined by rr~(x1 , ••. ,xn) = x1 for each i in 

{1,2, ... ,n}. If f is an arbitrary member of B m' we denote n, 
by f1 the function rr~of, the ;th . componert of f. 

We say that a function fEBn,m functionally depends on its 

;th variable x
1 

if there are constants c and d in {0,l}n 

which differ only in their ;th positions for which f(c) 'I f{d). 

Finally, if A is some set of input variables for f, and 

cxdn,1} is a constant clefined for each X€A, then we denote the 

restricted function of the remaining variables which is obtained 

from f by setting each variable x in A to ex by 

f Ix = ex for XEA · 

We are particularly interested in one subclass of Boolean 

functions, the ~o~ot_p_il~ B~ole~~ function5 (m~L.f.'s). Observe that 
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the set {0,l}n is partially ordered by the rule 

(Xp···,xn) s (y,, ••. ,yn) iff xis yi for i = 1,2, ... ,n · 

(where 0 s 1). 

The set Bn.m is partially ordered (iri fact is a Boolean algebra) 

by defining, 

f s g iff f(~) s g(~) for all ~e{O~l}". 

A Boolean function f€Bn,m is monotonic increasing, or 

monotone for short, ff and only if ft preserves. the partial 

ordering s; that is, if flx) s f(y) for every pair of inputs x,ydO,l}n 

for Which "k s y. 
Specific examples of m.b.f.'s include the function 

threshold! of n variables, denoted T~, which is defined by 

T~(x1 , ... ,xn) = l if and only if at least k of the variables 

Cx1, •.. ,xn) have the va 1 ue 1. The tbreshold 1 function is the 

disdunction x1vx?v .•• vx ; the threshold n function is the 
.... n 

conjunction x1Ax2A ••• Ax
0

• Another m.b.f. is the Boolean 

multiplication of two nxn watrices A and B, a function in 
n 

.B 2 2 which is defined by A·B = C where Ci.= v (A.kABk.) 
2n 'n · · · .: J . k=l 1 , • J 

for each i and j in {1,2, •.• ,n}. A third set of m.b.f.'s 

is Boolean convolution, in which we define f€Bn,2n-l by 
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f k (x O '" · • ,xn..;1 •Yo···· ·Yn-1> = 1~j=k(x{'Yj) 

for each 0 s k s 2n-2. 

The m. b. f. 's .satisfy several· properties which are not true of 

Boolean functions in general. The following facts are easily 

verified. 

2.2 Lemma: Suppose f and g~Bn are monotone Boolean functions. 

Then 
(a) if fAg = Q_, then f = Q or g = 0. 

and (b) if fvg = l• then f = l or g = 1-

Further properties of the m.b .. f. 's will be explored later in 

this chapter. It is useful at this poir.t to point out one 

property of the ordering relationship on Bn. 

2.3 Lemma: Suppose that f, g, and h are functions in Bn. If 

f s h and g :S h, then 

( 1) fAh = f 

(2) fvh = h 

and (3) fAg $'. f S fvg s h. t 

t We remark that the dual of an arbitrary function frBn is the function D(f) in 

Bn defined by D(f)(~') = ·-if(-,x1, -ix2, ... n x
1
). The truth of a statement 

(cont. on next page) 
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Sect ion !h_ Representations of Boo lean Functions 

There are many different ways of representing Boolean functions, 

some of which give rise to the complexity measures· disc;ussed 1n this 

thesis. One standard representation :is the tr_uth table ~f tbe value 

of ~he function on different inputs. The unifying representation 

used in this thesis is that of a combinational (or gate-type) 

switching circuit, and is identical with those studied by numerous 

authors [Harrison 1965, Savage 1976, Paul 1971, Schnorr 1974 and 

others]. The underlying structure is a graph,-which we now define. 

A directed graph D c~nsists of a pair of finite sets (V,E), 

where V is a set whose members are called nodes or vertices, and 

Es VxV is a set whose members are called edges or arcs. Another 

notation for V and E is NODES(D) and EDGES(D) respectively. 

If (v,w~ EDGES(D) we say there is an edge from v to w in D. 

A path or chain of length !_ in D is a sequence of nodes 

v0,v1 , •.. ,vk(.for k.~ 0) of D su~h that there is an_ edge from 

vi to vi+l for every idO,l , •• .,k-1}. A graph D is acyclic 

if there is no path from any node A of D to itself other than 

like Le!Tllla 2.3 is unchanged if every function 1$ replaced by its 

dual. 

Observe that if f s g, then D(f) ~ D(g), and that the dual 

of a nx>notone function is monotone. 
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the trivial path of length 0. For any.node. A of an acycHc graph 

D, we def)ne the following subsets of nodes of D which pertain to 

A: 

Succ(A,D) = {BE::NODES(D) I there is an edge from A to Bl is 

the set of inmediate successors of A, 

* Succ (A,D) = {BENODES(D) there i.s a path from A to B in Dl, 

Succ+(A,D) = {BENODES(D) 1 there is an pa~h of length k ~ l 

from A to BJ, 

Pred(A,D) = {BENODES(D) there is an edge. from B to Al is 

the set of 1nrnedi ate prede·d~ssors of A, 

* Pred (A,D) = {8€NODES(D) there is a path from B to A in Dl, 

and Pred+(A,D) = {BENODES(D) there is ~ path of le.ngth k ~ 1 

from B to A}. 

If W is some subset of nodes of D, we may extend the above 

devinitions to W ·and speak, for example, of the ·set of immediate 

successors of W defined by· Succ(W.,D) = u Succ(A,D). Fina~ly, 
, AEW 

the indegree or fan.-in (respectively outdegree or fan-out) of a 

node A is the number of edges directed into (out of) A in D 

and is denoted indeg(A,D) (outdeg(A,D)). In general, we will omit 

mention of the graph D in the above notation when the graph is 

clear from context. 
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Suppose o is a finite set of primitiYe fiinctions 9f Bn. 
l 

called the basis. A cont>inational circuit or network over the 

basis o, in short an o-circuit, is a directed_acy_clic graph N 

together with a labelling of the nodes and ~~ges of N. which is 

subject to the following constraints and definitions: 
. . 

(1) For soine positive integer n, at most n of the nodes 

with indegree zero are given ·distinct labels from the 

set {x1 ,x2, •.•. ,xn}; we refer to such nodes as input nodes 

and denote their set by INPUTS{N). 

(2) 'lbere may be one node of indegree :zeµ>. la,belled with the 

symbol ZEOO, am there may be one node of indegree zero 

labelled with the synix>l am; Slx:h nodes are referred to 

as constant n:::ides. 

{3) There are no other nodes of indegree zero other than those 

mentioned in (1) or (2). 

and ( 4) Each node with .. i ndegree one· or more is. 1abe11 ed with some 

ment>er gi of n. Each such node is a gate node, and 

their set is denoted GATES{N). Such a node G labelled 

with g. must have indegree in N equal to the arity 
l ' 

n. of g.; furthermore, each edge directed into n must l l .. . 

be labelled with one of the integers {1,2, ••• ,rlt} in 

such a way that every edge into G gets a different label. 
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An example of such a network is given in Figure 2.1, where the 

basis is the set {A,v,• }. (For figures, the arcs in the graph are 

always direct.ed downward. Arbitrary nodes ·are designated by triangles, 

constants or inputs by rectangles, and gates by circles). 

fig. 2.1 A Cont>inational Circuit 
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If the input nodes to an a-circuit N are labelled with meni>ers 

of the set {x1 , ••• ,xn}' we may associate a Boolean function in Bn 

with every node A in N by the following inducti·ve. rule. We denote 

the associated function by . Res(A;N). ·If.· .A is..'an input node 

labelled with the variable x., then Res(A,N) is the projection on , 
the ;th coordinate, i.e. the function nT. If A is the constant 

node ZE~Q- (respectively ONE), then'. ~~{_A,N) = Q., the constant 
' 

function in Bn equal to 0 on all i~puts (~pectively RES{A,N) = l, 

the cons.tant function in Bn equal ~et·T:). Finally, ~ppose A is-

a gate for which every node in Pred(A) has an associated ·function. 

If we let Bk be the node in Pred(At -s4.1c.h'that the edge from Bk 

to A is labelled with k, and if A is labelled with the basis 

element g1En, then 

We will say that an n-circuit N computes a function fEBn,m 

iff for each i, 1 s i s m, there is a node Ai of K .·.such that 

Res(A i'N} = f 
1 

_, the i th component of f •. For example, the 

circuit given in Figure 2.1 computes the function f{x1,x2,x3) = 

x1 ~ x2 ~ x3 since the gate wit11 outdegree 0 co111>utes this_ function. 

We may also say that the circuit computes the function 

g{x1,x2,x3) = (x1, x1A-, x2} since there are gates which co111>ute 

each component of g,. A node which co111>utes a component of the 

designated function will be called an output node. 
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A basis n is called semi-coffiP1ete iff given any function fEBn 

for arbitrary n, there is an n-circuit as described above which 

computes f. The basis is caned conplete if any f can be computed 

b.Y an n - circ:;uit which does not contain the nodes ZERO and 

ONE {i.e. constants are not available). Three complete bases 

in which we will be interested are s2, the set of all binary 

Boolean funct·ions, 8- = B1u B2, and U = {A ,v ~}. An example 

of a semi-complete basis is the set {~,A} . An exhaustive 

characterization of all complete bases has been made by Post [1941], 

and the interested reader is referred to this work. 

One - incomplete basis which holds special interest is the 

set M = {A,v} which is important for the following ,reason. 

2.4 Theorem : A Boolean function fEBn,m is monotone iff there 

is an M-circuit which computes f. 

For a proof of Theorem 2.4 the reader is referred to [Harrison 

1965 p. 189]. 

The bulk of this thesis is concerned with the results about 

M-circuits (also called monotone circuits) computing monotone 

Boolean functions. 

One special class of circuits which holds special interest 

is the set of Boolean fonnulas. An n-formula is an n-circuit 

in which each node in the circuit has outdegree at most one, and 

which has a unique node of fan-out zero corresponding to the unique 
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output node. For a fonnula, we remove the restriction on the 

circuit that there be only a single node for each input variable 

and constant, and allow any n'uri>er of nodes of indegree zero_ 

labelled with any input variable or constant, each node having 

outdegree one. For an exClJ11)le see Figure 2.2. The graph of any 

n-fonnula is a tree in wbfch each leaf node (one with indegree 

zero} is labelled with a variable or constant, and each interior 

node (every other node) is labelled with a gate. This formulation 

is easily seen to be equivalent to the usual inductive definition 

of an n-fonnula. Clearly a fonnu1a can compute only a single-output 

function. 
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Classically, Boolean formulas have been extensively studied 

as a means of representing Boolean functions. Many formula schemes 

have been proposed as canonical means for their representation, 

including the classical disjunctive normal form. In this method, 

a function f€B
0 

is represented as the formula 

v 
(cl. ..... cn)eAf 

where 
• \ x if j = 1 

XJ = 
-,x if j = 0 

+ n for any variable x, and Af is those .set of constants c€{0,1} 

for which f(c) = l. Other canonical forms are discussed in 

[Savage 1976]. 

If F is a formula, and H .is a node in . F, then FH will 

* denote the subformul a of F above H; that is, Pred (H ,F). 

In this thesis, we will occasionally replace part of one 

circuit by another circuit and s>peak of coO'binations of circuits. 

For example, suppose that N and N' are n-circuits which contain 

nodes A and A' respectively. The circuit obtained~ replacing 

A ~ A' is constructed by first identify"ing the corresponding 

input and constant nodes of N and N' and considering them as 

one network. Node A together with each arc directed into it is 

removed from the graph, and each edge (A,B) originally in circuit 
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N is replaced by the edge (A"" ,B) (with the same label· as previous.ly). 

For e~ample, see Figure 2.3. The repl'acetient of a node in a circuit N 

N . N' 

Fig. 2.3 The Replaeement of A by A' 



-33-

by a node in the same circuit is defined similarly, but substitution 

must not -be made in a manner which introduces a cyc1e into the 

graph. 

One may say little in general about .the functions computed by 

a circuit in which one gate has been replaced by ·another. Specific 

situations may allow some conclusions to be drawn. For example, 

if node A in N is replaced by a node A .. in N ... for which 

Res(A,N) = Res(A .. ,N .. ), then it is easy to prove by. induction on the 

1 ength of paths that every remaining node in N. computes the 

same function as it did before the substitution. 

One special replacement is the substitution of a constant 

for a variable. We say that N.. is the circuit obtained from N 

!?.L. setting variable xi to Q_ (respectively 1) if N .. is obtained 

by replacing variable node xi in · N . by the constant node ZERO 

(respectively ONE}. One inductively defines setting a collection 

of variables to a constant. It is again easy tb verify the. 

following fact. 

2.5 Lerrma: Suppose N is an n-circuit, and xi(JNPUTS(N}. If 

N.. is the circuit obtained by setting variable xi to 0 , then 

for each remaining node A in N .. , 

Res(A,N~) = Res(A,N}lx. = O 
l 
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A similar statement may be made if x1 is set to 1. 

Qbservethat, depending on.the basis. if a.gate in a circuit 

has one input which is constant, then sone simplification of the 

circuit may be made. For example, suppose the basis is the set B2 

of all binary Boolean functions. If a gate has a constant input 

then, except for trivial cases, it may be eliminated from the 

circuit since the output of that function-·is then a unary function 

of the other predecessor. Since this unary function may be 

absorbed into a preceding or succeding binary gate ·(if one such 

exists), then one may obtain a smaller circuit equivalent to the 

original. See Figure 2.4 -for an example. Such simplifications may 

Fig. 2.4 Some Simplifications 
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a lways be made in the basis M. This elimination of gates will be 

a principal tool by which lower bounds on circuit complexity are 

obtained. 

One additional.representation for a Boolean function is as a 

set of prime implicants. In the interest of brevity we restrict 

ourselves to monotone Boolean functions, although a similar devel­

opmen may be made for all Boolean functions. 

A monome or product is a. product of distinct variables, e.g. 

x1x2x5 is a monow~. In particular, we denote the empty monome 

by £. A monome m includes a monome m.. if every variable 

which appears in m' also appears in m. We denote the function 

defined by a monome m by T(m), and if M is a set of monomes, 

then T(M) wi 11 denote the function V T{m). T(E') is the 
me:M 

constant function 1. 

Suppose that f is a monotone Boolean function. A monome m 

is an implicant of f iff T{m) s f; m is said to be a prime 

implicant of f if m includes no other implicant of f. We 

denote the set of all prime implicants of f by PI{f)t. 

For example, suppose f { x1 ,x2 ,x3) is the th res ho 1 d 2 function 
. 3 

of three variables, namely r2 . Then x1x2x3 is 

an implicant of f, but is not a prime implicant since the monome 

t One defines ~"m) = 0. Hence PI(Q) = 0, the empt_v·set, and PI(l) = {e:}. 
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. ·. t 

x1x2 is also an implicant of f. Pl(f) is the set· <x1x2,. x2x3 ' x,.x3l • 

-The importaoce of the set of prime implicants is that they are 

a canonical representation for the m.b.f.'s, and are fairly easy 

to manipulate 1JJathematically. A straightforward proof (see 

[Harrison 1965 p, 190] for example) "'demonstrates ·the following fact 

of their canonicity. 

2.6 Le11111a {Quine): Suppose f€Bn is a monotone Boolean function. 

Then f = V T(m). Moreover, if l? is any set of monomes such 
lllEPI{ f} · 

that no monome in P. includes another monome in P!, and 

f=T(A), then P = Pl{f). 

The set of prime implicants of a combination of functions can 

be obtained from those of the constituent functions by means of the 

following simple set of rules. Suppose that f and g are m.b.f. 's 

in Bn. Then for any nx>nome m, m 1s an iiJ1>licant of the function 

fvg if and only if it is an implicant of f or an implicant of g. 

t Note that we equate th.e ~nomes x1x2 and "2xl. Actually, the 

set of all monomes is equivalent to the freemonoid on; the elements 

{x],x2, ••• ,xn }modulo the relations of the coJIJllUtativity (xy = yx 

for all variables x,y) and ide111>otency {xx.= x for all ·x). 

E 1s: the identity element for this algebraic system. 
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Moreover, PI{fvg} is obtained from the union Pl{f}uPl(g} by· 

eliminating all monomes which include another nonome 1n the union. 

For example, if PI{f0) = {x1,x2x3,x4} and PI(g0) = {x1 ,x2,x3x4}, 

then PI(f0vg0} = {x1,x2,x4}. If f and g are m.b.f. 1s 1n 

Bn' and m is a nonome such that mE:Pl(fvg), then mE:Pl(f) or 

mE:Pl(g}, but the converse is not in general true. By Lemma 2.l(a), 

if PI{fvg) = 9J, then both Pl(f) and PI{g) are empty sets. 

The set of prime implicants of the function fAg may be 

obtained by forming the set of a 11 products m• n of a monome 

mE:Pl(f) and a monome nE:Pl(g) (where duplicate variables in n 

and m are reduced by the rule x·x = x), and then eliminating 

any products which include other products in the set. For f0 
and g0 of the previous example, PI.( f 0Ag0) = {x1 ,x2x3 ,x2x4 ,x3x4J. 

Again, ff tE:Pl(fAg), then there are monomes mE:Pl(f) and n€PI(g) 

such that m•n = t, but the converse is not in general true. 

One may relate the ordering relation s on the m.b.f.'s with 

their canonical representation using prime implicants by the following 

general result. 

2.7 Le111T1a: Suppose f and gEBn are m.b.f.'s. Then f s g iff 

every monon~ ITTE:Pl(f) includes some monome nE:Pl(g). 

Proo{: Suppose f s g, and mE:Pl(f). By Lenvna 2.6 and 

Lenvna 2.3(c), T{m) s V T(n) = f s g,. so by the transitivity of s, 
nEPI ( f) 

-- ----- ----------------------
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T(m) s g. Hence by definition m is an implicant of g. Define 

m0 to be an implicant of g which 1 s 1 ncl uded in m and which 

includes no other implicant of g. Then "'o·is;a prime· implicant 

of g which is included in-- m. 

Conversely, suppose every monome in PI(f) includes some 

roonome in Pl(g), and let ce{O,l}n_ be such that f(c) =- 1. By. 

Lemma 2.6, there ts some monome · m F:PI ( f) such that T (m _)(c) :;: l· 

By hyp<>;thesis, there is a monome n ·1n PI(g) included in m ; 

By Lenma 2.J(c), we know that T(•·) s T(n ) • Hence T(n )(c) = 1, 

and since n is an implicant of g, gf~) = 1 as well. 

D Le1J111a 2.7. 

One may define classes of Boolean· functions in terms of 

structural properties of their set of pHme impl"icants. For example. 

We Will say that a m.b.f. fEBn fs quadraticlf every monome in 

PI(f) consists of the product of exactly two distinct variables; 

a m.b.f. fEB m is quadratic iff every co~onent f. is n, 1 

quadratic (for 1 s i s m). 

'll1e set of prine inplicants of a function has been extensively 

used' as a tool in explaining argments in this field ·[Paterson 1975 
. . - ; .:. . . " . .. '. ~ . : 

MehlOOrn am Galil 1976, Lamagna 1915]. 'lhis xepcesentation is 

particularly helpful in describing several replacEl'fEllts which may be 

made in. M-circuita which don't affect. the~ funct.iOO ~­

Several general theorems have· been elucidated by Mehl!hJrn am 
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Gali l [1976] of which special cases have been used by other authors; 

we will find use for one of them later in the thesis. If N is 

any M-circuit~ and A is a node in N, then we will denote 

PI{Res{A,N)) by PI{A,N), and as usual omit mentfon of N whenever 

the circuit is obvious. 

2.8 Lemma .{Mehlhorn and Gali_l: Suppose N is an M-circu~t, A is 

any node in N, and PI(A) = {m0,m1, •.. ,mk}. If there is no 

output node B of N with m0·nEPI(B) for some monome n, then 

one may replace A by a gate which computes the function 

T{m1 ,m2, ..• ,mk) with out changing the function computed at any 

output gate. 

For a proof of this result and several other general replace­

ments for M-circufts the reader is referred to the paper [Mehlhorn 

and Galil 1976]. 

One final topic which pertains to c'ircuits in general is the 

different notatir ·s of dependence. we· will say that a node A in 

a circuit N depends functionally on the variable xi if 

Res{A,N) dep~nds functionally on x1• A different not~on of 

structural_ (path or syntactic) dependence«holds if there is a path 

* from input node x1 to A in N, i.e. if AESuoc (x1,N). 

Clearly if A depends functionally on xi then it must also 

depend structurally on - x., but in general the two notions do not 
l 
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coincide. It is not known whether they coinci~e for minimal sized 

circuits over partic~lar bases {M for .example) .. ~ever, it is 

possible to prove the following usef~l a?sery.atton. 

2.9 Lenma: Suppose a function fEBn depends functionally on a 

variable x
1
, and N is an n-circuit.cemputing f with 

Res{U,N) = f for a node U _in N. Jh~ .there is. a path from 

xi to U in N such that ever.y gate in the path depends fum;tiim­

ally on x1. 

Proof: We construct the chain backwards from the output gate · 

U. Let U = u0. Inductively assume that we have constructed a 

path Uk,uk_1, ••• ,u0 1n N such that every node in the path 

depends pn x1. If Uk = Xp then the, proof is comp.lete. Other-

wise, Uk must be a gate since no other input or cons~t node 

depends on xi . Hence, s i nee Res~ Ute) . , dep~~ds~ or;i xi' there. 

must be a node 8EP,red(Uk) which d~pend~ functiQnally on. x1• 

We extend the path by defining . Uk+l • ~ •. ($ee Figure 2,.5) 

. Since N contains no cycles, the ,nOdes lt!lec~ed are all 

distinct. Since· there are onl,Y: a .finit• J\'1AJ"'' of oodes in N; 

the above process must eventually halt. 

D Lenna 2~9 

------------------
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Fig. 2.5 The Extension 

2.10 Corollarv: If a function fEBn' which depends on x. , is not 
1 

the projection function 

f, then outdeg(x1,N) ~ 1. 

n rr., and if N is an n-circuit which computes 
1 
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Section ~Complexity Measures 

The models of computing Boolean functions introduced in the 

previous section naturally give rise to various complexity measures. 

If n is an arbitrary basis and ·N is an a-circuit, then we 

define C
0

(N) to be the nuni>e~ '~:gate-type nodes in N. If 

f£Bn,m' then we define the colfbi~atto~al (or circuit) complexity of 

f with_ respect to o, denoted :e~( f), to t:>e the minimum value of 

C
0

(N) for all a-circuits N w~ich conpute f. If f is not 
- I 

definable by any n-cfrcuit~--,~~-~ef,fne\ ... cft{f) = CIC>. 

For formulas, one possible IPllJPlexity measure is to consider 
' -~: -

the nunber of gates as was done ~bsve for circuits. We instead 

use the number of occurrences of l~terals as our comp1exity measure. 
. ... 

If F is an o-fonnula, we,.d~fi,Re Ln(F) to be the number of occur-

rences of variable input nodes 1n the circuit associated with F 

(the nunber of leaves of the tree correspording to F which are 

labelled with variables). Observe that if n is a binary basis, 

and F contains no constant nodes, then Ln(f) is one more than 

the nunber of gates in F. The fonnula complexity of a function 

f~Bn w1th respect to n. denoted l
0
(f), is ·tile minimum of, the 

val ~es of L
0

( F) . for a 11 ·tl--fonnulas ( F which define f. Aga,in, 

if f is not definable by an n-formula, we defi.he tn(f) I'll""· A 

minimal n-formula (respectively a-circuit) for f is an a-formula 

F (respectively n-circuit N) which computes f such that 
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L

0
(F) = L

0
(f) (respectivel~. ·C

0
(N),,= c

0
(f)). Where there is no 

ambiguity· we wil 1 use the same notati·oos of complexity · L
0 

for 

formulas and c0 for circuits. as well as for functions. 

For the particular monotone bets is M, we will use the alternate 

notations MC and ML for CM and LM respectively. For this 

basis, we also define a complexity measure which depends on the 

types of gates used. in the circuit or fo~la. If N is an M­

circuit, define MCv(N) and MCA(N) to be the number of v-gates 

and A-gates respectively in N. If f .js a m.b.f., we define 

MCv(f) (respectively MLv(f)) to be the minimum value of MCv(N) 

as N ranges over all M-circuits ··(respectively :formulas) which 

compute f (where here we consider a formula as a .special type of 

circuit). We similarly define MCA(f) and MLA(f). An v-m1n1mal 

(respectively A-minimal) M~ci rcuH for a m.b •. f. f is one which 

has the minimal number MCv(f) of v-gates {respectively 

MCA(f) of A-gates). 

The above are the complexity me~ures considered in the thesis, 

but other measures can be defined. For exatnple,,the depth of a 

circuit can be defined to be the length of the longest path in the 

circuit. This measure has been studied by Spira [1971] and more 

recently has been studied by several authors [McColl 1977, 

McColl and Paterson 1977, Paterson and Valiant 1976, and 

Borodin 1977]. One may similarly define the breadth of a circuit; 

this measure has recently been,studied by Schnorr [1976b.]. Finally, 

one may choose to consider only circuits in which the outdegree of 
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o f each gate in the circuit is bodnded above by soine integer k. .. . 

John$on, Savage, and Welch established the'result 1that if· k ;?; 2, 

·such a complexity neasure is proportfonaf· to c
0 

Jbr any comJ)l'ete 

basis n. {for proof, see [S<Wage' l97G'p.t4]}. 

The relations.hit> between these ,~q;l~xitj neaS"Ures of an 

individual .function is wen·understOOd· frt $olit4f''e1rcurristances and · 

unknown in others-. MuHer [19!16J Pofnted'oot tttat·'in genera1, the 

circu.it coq>lexi~y of· a funttiorr tn:'.anY4~mp1ete1tias'is o is pro­

portional to its c8 co111plexity. ·This· b:true-since any· gate fn 
2 . . 

82 may.--be synthesized by an o-subt'frcuh anl:t vlce·versa, so one 

can replace a gate by a subo'frtu1t ·'witH orHy a eonstant' factor'· 

increase in the total number of gatest ... Fbr' foi"mUlas' the ch01ce 

of cooplete bash can mat-e a difference· irt= formula size~ For· the 

parity furn::tion. f 0{xl' ••. ;xn~ = -xrxr.· .. exn~-·~apcheri~o tl971J 

dem:mstrated that lu(f0). is proporti_.oftal to •'lf', wtifle i0 

clearly has a fonnula of size n in the basis· a2• Pratt (1975] 

has. recently shown·'that the lnH'Hnal-~ap· betweetl ttie· complexity in 

any pair- of binary coq>lete: bases carihbit''be 'ftlUCft latger by cteMon­

stra.tiag that t,,(f) ~- [L
8 

(f)]19~3l(l,~f~ any :_ftB
0

• 

2 . 
The relationship between the e2-corRpfexf ty of a monotone 

~ : . {.i ,-:: - ~. --: . ; 

function and its co~lexity in the incomplete basis M is not as 
--: - .. , . 

tin fact, c8(f) = c
82

(f) for any fu~~tion_ f~n~ and if fcd@ends on 

mre than one variable, then c8(f) is .the, !'lfr:t1111al nur1Der pf_ "inar>!. 
. . ~ . ' 

gates in ·any B-Circuf t which computes f. See (Sav~ge 1976 p. 39] · 

for a proof of this fact. 

-- ·----------
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we 11 understood. Specific results will be shown .in Chapter 6. 

Results about the maximum values of these complexity measures 

among all Boolean functions were mentioned in the introduction. Jn 

brief, the nwmer of distinc;t circuits With at most a fixed mumber 

k of gates is bounded above by ckc~k for some constants c and 

c~ depending on the basis. From tMs fact, one can easily show 

that if there are many different functions to compute, then there 

are not enough small circuits to compute them all, so "most" of 

them require a large number of gates. What is remarkable is that 

soem clever constructions exist which enable one to compute.all· 

Boolean functions in certain classes wfth circuits or formulas 

which are close to, or even asymptotic with, the lower bounds on 

size obtained by the above argument. 

For the class of all Boolean functions, Shannon [1949] and 

Ltipanov [1958] have shown that the maximal B2 circuit complexity 

of any Boolean function fE:Bn is asymptotically 2n/n. Similarly, 

it is known [Kriche,v·skii 1961, Lupanov 1962] that the maximal B,, 
'" 

formula complexity is proportional to 2"110.g n. 

Recent attention has been focused on the class of monotone 

Boolean.functions. Kleitman and Markowsky [1976],' extending work 

of numerous authors, nave shown that there are asymptoti ca Hy 

( n J 
2 lil;21 m.b.f. 1 s of n variables, and one obtains a correspond-

ing lower bound of order 2n/n312 on the maximal B2 (and .. M) 
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circuit complexity .of m.b. f. 's. P1 ppenger [1916] has shown that 

this .lower bound is attainable in showf:ng:that·ariy m.b.f. f~Bn 

can be computed in -~ s2-circuit with -as.ympt~ti-ca Hy ot2"1n3l2 ) 

gates. and an M-circuit with asympt0tidal1y 0(2n'lci9 n/ri312'> gates. 

Lower bounds OJ\ the complex·ity of $peeif1:C furictlons ~dominate 

the .. bulk of this thesis. _lt will be hel.pful to PQint out· some 

facts about minima.l circui-ts. If ff!Bn 'm and· n · are arb1trary, 
' ' 

then any minimal n-circuit for f has &t .fOOst · m gates of outdegree 

O •. This is s.o since any gate of outdegree- O Wh1dt 1s·- not an output 

gate 11\ilY be eliminated from the cit"cu1t withOut <:hanging the 

functions compu.ted·at the output nodes. 

In a similar fashion, one can show that no two gates in a 

minimal n-circuit compute the samefunction. Suppose ·s and G .. 

were distinct gates in a mtnimal ·o--circv1t N "for whi·ch 

' * Res,G,N) = Res(G' ,N). Since N is acyclic; either ' GISU-cc (G') 

* ' -or G'iSucc (G); w.1.o.g. we assume the"f.<J~i Then We e1'fmt11ate 

gate G, and replace G · by Ci ... in . Prect(H,N) for each gate 

H €Succ(G,N). It is easily shown that the resu'lting cfrcuit is 

acyclic, and that every remaining gate in the new -~ircuit computes 

the sa~ fuoc:tion as 1t did or1g.ina11y. TMs is ac contradiction 

since N was a minimal n-circuit. 

Suppose that a f1,mction f€Bn depends on at least two var1"ables 

Then any n-ci rcuit or formula for f must conta:in-at lecast one 

binary gate (where n is B2, B, U, or M). By absorbing any 
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unary gates into the binary gates, one. C!lJl show ."that. in any minimal 

n-circuit. for f there are no edges directed out from any constant 

nodes since each gate with one input constant.<;an be ,simplified 

and eliminated. Similarly, no node G has two edges directed int.o 

the same node H, so outdeg(G) is equal to"the_nµ'*er of nodes in 

Succ(G). 

For minimal formulas, we point out that the.·n.otions of 

structural and functional dependence on a variable xi coincide, 

To prove this, suppose that n is an arbitrary basis, and F is 

a minimal n-formula for fEB . If H is a gate i~ F which 
. n . , '"' .... , .. 

does not depend functionally on· the variable x
1

, then we claim 

that there are no occurrences of the variable x1 in FH. If 

there were, then one could r-eplace all occurrences of x
1 

in FH 

by the constant 0 ( o.r 1) with out changing the function. computed· 

at H and hence by the entire formula F. Since this reduces the 

number of occurrences of inputs in F, FH must not contain any 

occurrences of xi. 

Finally, we point out one simple lower bound on the complexity 

of most functions. 

2.11 Lemma (Savage): Suppose a function. ·feBn depends on each of 

its variables. Then c8 (f) ~ n·l. 
2 
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Pro of: Sut>pose N is a minimal B2-circuit for f which 

has k gates. Observe that since each input ndde has outdegree 

at least one and since there is at roost'one.gat~ of outdegree O, 

we have 
f indegree (A,N) = 2k 

At:Rod~s(N) 

and ~ .· I outdegree(AJH.·2'; n+k .. 1 · 
A€Nodes{N) . 

Hence, since 

. ,: '" .. 

I indegree(A,N} ,;. ( 1 out~egree(A,N) , 
A£Nodes {N) A£Modes (N) ' · . • 

we obtaiQ 2k 2': n+k-1 which establi$bes: the,Je.-na. 

Il lenlria 2. 11 

Section !!:_Circuits and Turing Machines 

One question which naturally arises concerns t.~,e"~~l,~tion.ship 
. c:' ,·_J. J : < .. ·• 

between the measures of complexity defined above and ordinary 

Tu~ing Machine {T.J'\.) co11Pl!'xity •. As, llll!lttioned :alN,we. :every finift~ 

function is 11 easy11 for a Turing Machine to coQlllU!te since :1t may be 

computed by finite state machine. When one considers the finite 

subproblems of an infinite problem, however, the situation is 
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different. For concreteness, consi<.ler language recognition 

* * problems,. i.e. functions f:{0,1} + {0,1} (where {0,1} is. 

the set of all finite-length words over the alphabet {0,1}), and 

let fn be the restriction of f to words of length n. Consider 

the circuit complexity measure c8 • 
2 

One can show that there are functions f which are computable 

by a deterministic T.M. in space 2" (i .e.a relatively easy function) 

for which c8 {f n> is near-maximal for all· values of n (see 
2 

[Stockmeyer 1974] for proof). On the other hand, one can exhibit 

arbitrarily complex, even arbitrarily non-recursive, functions f 

such that c8 (f ) 
2 n is l for every nE lN. There thus appears to 

be litt~e correlation between the T.M. complexity of a function, and 

the circuit complexity of its finite pieces. 

A strong relationship between the two measures comes from a 

result due to Pippenger and Fischer (1977J which asserts the following: 

Suppose f is computable by a T.M. M operating in time T(n) for all n. 

Then there is a constant c (depending on M's state diagram) such that 

C(fn) ~ cT(n)logT(n). The proof is obtained by simulating machine M by 

an "oblivious" T.M. M .. which operates in time T·logT - the positions 

of the heads of M.. depend only on the input length n. Then it is 

shown that any oblivious T.M. can have its operation on an input of 

length n simulated by a number of gates proportional to its running 

time. 
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This remark has many appJ teat ions .[P~ul 1~76). As an exa.nP1 e, 

Fisch~r and Meyer [1971) hav~ shown that StrasseA •s fast integer 

matrix multi pl ic•t~on al ggF;itma cast be,used-tf> •1t1ply two 

Boolean nxn matrices in ti@le Q(n~ 092~logn loglogn logloglogn) 

on a Turing Machine. Using the oblivious -construction ·of a 

circuit simulatin_g the T.M., one thus gbtoins a_ ~2-cb~cuit for ~trix 

multiplication with O('n2·82 ) gates, {Recall that Pater~<m,[1975] ... 

and Mehlhorn and Galil [1976] have shpwn . that; any-M-circu4t 

for this problem must have Q(n~.> sates.) 

While Fischer's result is nice as a technical tool, it is 
- . " . - - ~ ~ ~ ' - - ~ 

obvious by the earlier remarks that the C0'1_verse_ res~lt does not 
~ . : . 

hold. Schnorr [1~_!6d] has strengthened t,be result by considering 

oracle T .~. 's in which one work tape initially holds- S:ome string-

* * A in {0,1} • Define, for f:{Q,l} + (O,l},, 

TC( f)(n) = min{ IMI • TA(n} 0 log· sA(n) I .M with oracJe A. computes f} 

where M ranges over.~11 pr~~le.T.M.'s (see [SctJoo~r 197,6d] for 

conventions , TA and sA are the time and space_ required. by M, 

and IMI is the nu;lt>er of in$tructions. in program. t-A, Then· there 

exists some fixed polynomial p and a constint c such that .. 

CB ( f) IS C• TC( f) and rc-c f) s p {CB ( f)). 
2 . - . ; . 2 

Section f:.. Misceilaneous Notations 

Frequently we will be concerned wtth the rate of growth of a 

numeric function rather than its exact value. Suppose f and g 
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are functions defined on the natural nunt>ers. Then we write 

f = o·(g) iff there is a constant c > 0 such that lim sup (f(n)/g(n)) s c 
' 11.-+oo . 

(i.e. 1 f f(n) :s c g(n) for all suffit1ently 1 arge n), 

f = o(g) iff limit f(o)/g(R} • O , 
Jl-klO 

f = n(g) iff there is a constant c > O such that Vim sup (f(n)/g(n)) 2:.· c 
Jl-klO 

(i.e. if f(n) ~ c g(n) for a'tl sufficiently 1arge n), 

f = e(g) iff f = O(g) and f = n(g), 

f· .... g iff \\!!'!t f(n)/g(n) = l~ 

and 

f s g iff lim sup f(n)/~(rr) s 1. 
0-+oo 

If f = e(g) we say that f is proportional to · g, if 

f .... g we say that f is asymptot~cally equal to g, and if 

f ~ g we say that f is asymptotically less than g • 

If A is any finite set, then IAI , the cardinality of A, 

is the number of elements in A. A partition of A is a collection 
k 

of pairwise disjoint sets s1,s2, •.. ,Bk such that u Bk= A.· 
i=l 

If A and B are sets, then A-8 = {x I X£A and xJB}. 

If X is a set of variables, an X-variable is a member of X. 

JN is the set of natural nunt>ers, and R is the· set of real ' 

* numbers; R = {r£ R . I r ~ O}u{m} 

If k s 1 are natural numbers, the set of consecutive natural 

nurrbers {k,k+l,k+2, ... ,2-1,t} is denoted [k:.11.]. 
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I f x is a real number, then Lx_j is the greatest integer less 

than or equal to x; lxl is the least integer greater than or eaual 

to x. 

"Iff" is an abbreviation for "if and only if", and "w.l .o.g." 

is an abbreviation for "without loss of generality". 

~ is the empty set. 
k If k and i are natural numbers, then (i) = 

kl 
£l(n-i)! 
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CHAPTER 3 

Worst-Case Values for the Complexity of Quadratic Functions 

We begin by considering several complexity measures for monotone 

Boolean functions, and examine the complexity of quadratic m.b.f.'s 

under these measures. Recall that a monotone function fe:Bn,m is 

quadratic iff for each ie:[l:m], component ~i .of f has a set 

of prime implicants Pl(fi) equal to {xj·xk I {j,k}e:A1}, where 

Ai is some collection of subsets of [l :n] of cardinality two; 

equivalently, f
1
.(x1, .•. ,x) = {' Y} A (J<.•Xk). The "threshoi'd . ·n J,1111 e: 1 J 

two" function of n variables T~ is quadra.tic since 

PI(T~) = {xfxk I j,ke:[l :n], j ; k}. Boo!,ean .matrix multiplication 

and Boolean con vol ut ion a re additional e:<amp l es . 

In this chapter we primarily consider the measures MC, MCA, 

·and MCv for circuits, and corresponding measures ML, MLA, and 

Mlv for fonnulas. For any M-circuit N, we have the relationship 

rt:A(N) + MC)N) = MC(N). For an M-formula F which does not contain 

any constant foputs, we have the corresponding equation 

* MLA(F} + Mlv(F) = ML(F) - 1 • Hence for an arbitrary monotone 

function fe:Bn we have the relationships 

* The number of gates in an M-fonnula is one less than the number of 

occurrences of variable and constant inputs. 
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and 

' ' 

but at least the first inequality may be strict for specific 

functions f. For example. in Chapter 5 we will show that 

r«:/\(T~) • nog nl and MCV(T~) = 2n-4,, but-'whl also show that if 

n is a power of 2~ any ·M-circuit for 'r~. 'which has ~xa~~iy 
r1 OQ nl A-gates must al SO nave at 1 east 2n + 3 flog nl - g' . 

v-gates. and hence any M-circuft for t~( mu~t have~at lea~t one 

more gate than the sum MC"(T~) + ~~(T~) ,r'for the~e';alues'o.f n~ · 

Two areas in the complexity of~single-out~t quadratic m.,b.f. 1s 
- . 

are presented in this chapter. The asymptotic value of the-largest 

complexity for all quadratic m.b. f. 's. is explored_ first. It is 
. . . 

shown that every.quadratic m.b.f. in 8
0 

has an M-circuit 

complexity of O(n2/log n). That this upper.bound 1s within a 

constant factor of the best possible result f s shown by proving that 
~ ~ . ' - ~ 

11most11 quadratic m.b.f. 's have circuit complexity over the larger 

basis e2 of n(n2/log n). · 

The other area is the detennination of the number of A-gates 

necessary and sufficient to compute·' any· quadratic m.b. f. in Bn. 

We show that .n-1 A-gates are sufficient in any M•fonnula. a~d 

exhibit a quadratic m.b. f. for wh1ch' lYfilt A-'gates are necessary 

in any M-circuit. By restricting the types' of M~circuits allowed. 

we can demonstrate a quadratic function for which n - o(n) /\-gates 

- -~ --- -----------
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are necessary in any restricted M-circuit, due to an observation by v.chvatal. 

Section ~ The Total Number of Gates 

We first demonstrate closely mat(:hlng upper and- lt>Wer bounds 

for the worst-case complexity of quadratic monotone Boolean functions. 

Definition: Suppose nelN • Define 

QC{n) = max{MC{f)lf is a quadratic m.b.f. in Bn}, 

QC"{n) = max{MC,.{f)lf is a quadratic m.b.f. in Bn}, 

and QCv(n) = max{MCv(f)jf is a quadratic m.b~f. in Bn}. 

We similarly define QL(n), QL"(n), and QLv(n). 

We can use standard counting techniques as found in numerous' 

proofs [Shannon 1949, Lupunov 1962, Fischer 1974] to establish lower bounds 
on QC. 

3.1 Theorem: Suppose -e > O. Then most quadratic m.b.f. 's fin Bn 

have 

c8 (f) ~ (1 - E)n2/(4 log n) 
2 

for n sufficiently large, where B2 is the complete basis of all 

two -input Boal ean functions'. 

Proof: Let Qn s Bn denote the set of all quadratfc m.b.f.is 

of n variables. Since there are (~) subsets of the 

va ri ab 1 es {xl' x2, ... x
0

} with two members , I Qn I = 2 (~ - 1. 

Suppose f E Qn. We know that there is some s2-ci rcui t N which 

------------~-----------------------------
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computes f since e2 is a complete basis. If N contains two 

gates which compute the same function, then ,a·s ~fn ·-tnapter 2, one of ' 

these may be eliminated to yield a e2-circuit with fewer gat~s.which 
~ ,,., 'i; - ' 

al.so computes f. Also, if f is n'ot~a constant function, it is pos-

sible to ,construct a 82 ... circ;ui~>fo.r, f·:cin wtttclt< . .eaclt·iWnstant node 

has out:degree zero·. We thus consider Ol'\:ly az-:ci.r-euits in· which· each 

gate computes a distinct function, and in whtd\;•constant ,fiodes: have 

outdegree z~ro; we -cal 1 such circuits· redu~." . 

Now suppose q?lN and N_ is a .re~~~ 8z"'c..ircuit. of &iie s q 

which computes a function feQ • By possibly adding additional 'ttummy 11 

.. . n , . "" . ·: .... - . _. ... ) ... 
gates, we may assume th~t there is a reduced~ s2~.ci rcuit .of size ex-. __ 

actly q in which one of the gates- ~~niputes
1 

f :· Let Rq de~ote the 

number of quadratic m.b. f. 's computed by such reduced circuits of 

size q. Since each gate has· two inputs/'and ~an; be labelled with ar:y 

of the 16 binary Boolean functions, tt1et.e· 'are at ~s~ lG(q + n)2 

possible assignments of function-input pair combinations for. each .. 

gate in a reduced 82-circuit, giving·~ total of at-mos~[16Cq +-:n) 2Jq 

such assignments of reduced s2-circuits. However, many of these la­

bellings describe the same circuit'..:- fn fact, tttere are q! differ­

ent enumerations of the comput,c;tional n.Q~s of~41tY ~-r reduced circuit. 

Hence,· there a;e at most 16q(q + n)2q/q! -~d .oi,,.~j:t-s _of size , 

q. Since the (quadratiq output function may be ~omputed at any gate of 

the ci~uit, we have 

-~------------~ --
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Rq s 'q • 16q (cf+ n)2q/q! 

s (16q(q + n)2q+l-eq)/(niq•qq) (using Stirling's 
approximation) 

( fot sbme c ~ 0 and q suf­
fi c~ en tly large ) 

Now, suppose that q s (1-e:)(~) / log (~). · Then 

Rq s [ c (1-£)(~) I log (~)] (1-£)(~) I log (~) 

s (~) Cl-&)(~) l log (~~ { wl'ren l<>g (~) ~ ~(1-e:)) 

s 20-£)(~) 

Hence the fraction of a 11 quadratic m. b. f. 1 s counted in Rq is 
n . n n 

R 12(2) s 20-e:r(2)12(v = 2-£~) 
q . ' 

which tends to O as n + •. Thus most quadratic functions have e2 
complexity at least (l-£)(~) I log ~) ~ '(l;,;tHn2)/(4 log n). 

O Theo'rem 3.1 

3.2 Corollary: QC(n) = n(n2/log n). 

Proof: For any quadratic m.b.f. f, MC(f) ~ c8 (f) since 
2 
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O Corollary 3.2 

We can prove that all qua~J.tH~_:Jml:>.f. •s can be computed using a 

monotone cjrcuit which. i$ no more than a 'stna-11 constant factor larger 
• ', ; • ' ' • o • r 0 

than this bound. The' idea~of the proof is similar to that used in 

the Four Russian's algorithm for transitive closure [Arlazarov et al • 
. ~""' ~· .. ;, : 

1970], and has been used previously fo~'~onstructin~'= efficient cir-
-- -

cuits for other classes of functions (Tarjan 1976]. 
. . ;: . .-,. 1 !'\ 

'. \ 

q 

~.3 Ttfeorem! Sup~se f€Bn ts a mc)~tane qu~4ratic Boolean function. 

Then 

MC(f) s 4 n2/log n + O(n). 

Proof: Let ,m • tlog ".J· We_ par.titicm the input variables of 
: ' ·.' ,•, . "' 

f into rn/ml subsets~ the \1th·. subset s
1 

--~ ci>~sistfng of the set 

S1 = {xjj (1-1).m < j s i·m~ j s n} .f.-Qr· iis{l:rt/ID).a- . Each Sul:J$et, with -

the PO$Sjble ~xce~tion,-of the J:as.t. h•s: '·..: .variabJ•_cfn. ft. If f(Qn 

is given, for each tn~t variable x1 and each subset Sj we define 

Note that Af j • • for j < r11m1. Let Aij be the Boolean function 

of the dfsjunc:tion of all variables in ·A1j (recall tffat by· eonven-
... 

tion A1j is the constant function O when A1j • ~). We clearly 

------
---~-- --- -~- . 
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can express f as ~e factorization 

n rn/ml 
t ( x1 ., ••• , x ) = .v ( x. " ( Y. P.1 J) ) 

n 1 = l 1 j a fi" /m-, 
(1 ) 

Our goal will be to compute the functions A.. efficiently, and 
lJ 

use the decomposition (1) to compute f. We make use of the following 

result [Tarjan 1976] which allows efficient computation of sets of 

disjunctions. 

3.4 LeDITla: Suppose X is a set of m variables, and f1,f2, ..• ,fk 

are monotone Boolean functions whi:ch are the disjunction of subsets 

of variables of X. Then there exists a c1rcu1t N consisting solely 

of v-gates which computes F = {f1,f2, ••• ,fk} such 'that 

c{vJ(N) ~ 4km/log k. 

Proof of 1 emma: Let r = !log Jg. We decompose the set of X var­

iables into rm/rl subsets T1 ,T2, ••. ,Trm/rl each containing no more 

than r variables. For each i, the circuit N initially computes 

the disjunction Of all possible subsets of T1• This can be done in a 

manner which has one disjunction for each subset of size ~ 2 by com­

puting the disjunction of smaller subsets first, and then constructing 

the disjunction of a larger set with one additional variable by using 

a single v-gate to add this variable to the previo_usly constructed 

disjunction of the smaller set. Hence, this can be performed using at 

most 2r- r - l disjunctions for each i€[1 :fii/n], giving a total of 
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(2r - r - 1) (rm/rl) < !Cm/rl disjunct.ions '~ - Sf-hce'. each function 

f j ca~ be constructed by ,comt>tfting the di sju~c;tion of_ rm/r"l of 

these previously computed funct4ons.(one per subset T1), we can com-

pute F with at most an additional k(rm/rl.- 1~ v-gates. Since 

rih/r"l s 2m/log k, the total number of v-gates us~~ in thi~ co~struc­

ti on is at most 21Cm/rl - k s 4km/log k. 

0 Lenma 3.4 
•(, > < • 

Returning to the proof of Theorem 3.3, suppose· that j - is 

fixed. Note that Aij ~ .J for at ·mos:t ·j ·m values of i, ilalllely 

for each iE:[l:j·m]. Hence the cmnputattm :01·-the~funeti-ons A;j 

for a 11 j • m ya 1 ues of i can be acaHRP11 shEfcf us fng the method of · 

Lemma 3.4 with at Q;>~t · 4jm2/log: «Jin) -v.-gates. ·.Thus, One can compute 

all functions Aij for i €[1: n], jE:[l :rn/ml] us11tgc·llt most 

rn1m1 rn/ml : * 
>: (4Jm2)/(1og(jin)) = 4m2·( · t J/log(jm)) · 

j=l j•l 

v..;gates. 

* To swn the series, note that 

rn/ml 
1
-n/m; · 

j~ J/log (jm) ~ 2 \X/log{xm)) dx + 2n/(m l~g, n) 

s {1/m2) J~ x/log x dx + 2n/(m log n) 

(cont. ·on next page) 



-61-

Finally, combining these <lisjuncttons ·u, compute f using (1) 
. . 

can be do~e using an additional n - ·:1 "-gates (since Anj = 0 

for all j); the nunber of additional v--gates is at most 

I (rn/ml - ri/m"l) + n - l s ~ ( (n-i }/Ill + l) + n .. 1 
1"=1 . 1=1 ' 

n-1 
• ( I· J)lm + 2n - 1 

j=O 

• n2/2m + O(n). 

Again, since n2/m s 2n2/log n, we have a total of 4n2/log n + O(n) 

gates in the M-circuit constr1,tcted. 
O Theorem 3.3 

Section !L_ Asymptotic. Bo4nds !!!'!. /\-gates 

In the remainder of this chapter, we consider the measures QC" 

and QLA which are the minimal number of A-gates required in any 

But . n 
n · 11121 + 1 f · x/109 x dx s I i/log i s r [11109 i + cn-i+2)/ 1og(n-1+2)J 
2 1=2 i=~ 

Ln/t.J+:1 . 
~ Ji . 2(JZ"n/Ol)/log(n/2 + 1) 

= 2(Ln/2.J(rn/2°1f-1))/(2 log (r~/ltf-1)) 

= n2/2 log n + O(n/log n). 
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circu,it or formula respectively .to expNSs :&-quadratic m.b.'f. of 

n variables. We do not consfder tHe meaSlJY'85 ,Qtv' and· Qlv, anti 

. consider ~temina.tion :Q,f tbei·r yalUU:·rto;becaJt•;interestfng 'CJT)en'· 
~· i ~ - - \ 

question. When arbitrary M-circuits are allowed, the bounds we obtain 
- -. . ~~ -. --. ~- . r 'T, ,-, ~-; l~ 

on A-complexity are not as tig~t as tfrose "'ft 'the previotis .$Fction, 

but tighter bounds are given in Section C when 

A-gates are not 811l>Wed :t~ bay~ a path to another A-gate in the 

circuit. 

Proof: O~viously QC" (n) s Ql:~(nf itnce a fonnula may be 
;"• .· 

considered a special kind of a circuit. 

We prove that QL
1
Jn) s n-1 by fndUttirm on n. 

' - - : : .-- .. : : - .'.. 

If n • 2, then clearly QL (2} = 1 since the only quadratic 
. " 

m.b. f. of 2 variables is ~(xl'x2 ) '~- ~l " x2 .. 

Now assume inductively that Ql"(n) s n-1, and suppose that 

f is a quadratic m.b.f. of n+l. ~--~iables. >"fe ~an e~pre~s., f 

as the factorization 

, . 
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Clearly ML"{g) = O since it is simply a disjunction of single 

variables. Also ML"(h) s QL(n) since h ·is a quadratic m.b.f. of 
n variables. Inductively, we then know that ML"(h) s n-1, so 

HL"(f) s ML"(g) + MLA(h) +l s n. 

0 Lenana 3. 5 

Remark: One can show that QL"(4) = 2 by examining all quadratic 

m.b. f. 1s of 4 variables, and hence a similar pr~of demonstrates 

that QLA(n) s n-2 for n ~ 4. 

We would now 11 ke to determ"ine whether there are quadratic 

m.b.f. 1s which require a number of A-gates which is close to the 

upper bound provided in lerrma 3.5.t It is easy to demonstrate a 

quadratic m.b.f. in B~ for which n(n) ·A-gates are required. 

For example, suppose n is even and consider the function 

f0(x1, ••• ,xn) = (x1Ax2) v (x3Ax4) v ••• v {xn~l''xn); the proof that 

t We remark that the number of prime implicants of a quadratic m.b.f. 

correlates poorly with its A-complexity since' (as ~e s.how in Chapter 

5) the function T~, which has 

r109 n"l A-gates to compute. 

' 'I 

(~) prime implicants, only requires 
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fo requires n/2 A-gates to compute is relatively straightforward. 

It is an open question whether QC (n) is asymptotic with n. 
A 

Our objective is to show that the constant factor of the trivial 

lower bound of n/2 may be improved to 2/3. 

3.6. Theorem: Suppose n ~ 2. There is a quadratic m.b.f. feBn 

such that MCA(f) = lg_n/1!. 

Proof: We define f as follows: partition the n variables 

into k = 'n;31 subsets s1 ,s2, ... ,Sk' each containing 3 variables 

{except possibly Sk). We consider the function 

is the threshold 2 function of the variables in s. 
1 

(for the set Sk, if n is not evenly divisible by 3, we consider there 

to be 1or2 "dummy" variables set to the constant 0). We 

claim that MC (f) = i_nl~ , and prove this result by induction on 
A 

k in the event n = O(mod 3). The other cases n = l(mod 3) and 

n = 2(mod 3) are proven similarly. We first show that 

MC (f) ~ 2n/3 . 
A 

Suppose k = and n = 3. 

By Theorem 5.9 in which it is shown usir.g other means that 

MCA(T~) = ITog t1l, we have MCA(f) = tlog2 ~ = 2. 

Now assume the statement true for k and n = 3k -- namely 

that the function 
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has MC" ( f) <!: 2k. We are concerned with the functi o.n 

where we have re-named the. vari ab·l es for ease of description. 

Suppose N is an M-circuit computing f'. The general 

aim of the proof will be to show that.there are constants a1,a2 
and a3 in {0,l} with the following property: if Yi is 

set to a1 (for i = 1,2, and 3), then the resulting circuit N' 

computes f; moreover, it is possible to eliminate two unnecessa_ry 

A-gates from N' since each gate has at least one predecessor 

which computes the constant function ·1. We proceed in a fashion 

similar to Paterson [1976]. 

Definition: Suppose N is a·circuit which computes f', and 

suppose i,jE{l,2,3}. We say a node G of N has property Pi,j 

iff yi yj is a prime implicant of Res(G,N). 

Definition: If P is any property on nodes of N, we define the 

initial occurrences of P, denoted I(P), to be 

I(P) = {G€Nodes(N) I G satisfies P, b~t no predecessor of G 

satisfies P }. 
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3.7 Lenma: Suppose N 1s ~n-M•circuit wbich. computes f~, and 

i,J£{1,2,3} , i ~ J. Then 

(1) 

and (2) I(P1 •J) consists $ele}y of" ~-~~~s~ 
. ... -~ 

Proof: Since the input varia,bl~s do nu~ satisfy Pi .J <and the 

output gate of N does, by passing up the circuit .N from the 
. . . ~ -. ~ ·. .: r ~ : . ~- :_ 

output gat~ we 1111st eventually find ~ gate ~hich satisfies P1 ,J 
' • • • \. ' • • > • ' : ~ ... 

but none of whose predecessors do. This establishe~ statement 
:, • , . ~ - - :. ~ : .,;;; ._ -""!! - . 1- . -

, ' ~· . ' -

(1). For statement (2), suppose that G is an v-gate which s~t-
-· ;- ~ :·.·._:r,1-;"_·--! -~'·: 

is fie~ P t,j , an_d 1.et Pred(G,.N) = {J ,K}. By ,t~.~. ~,rk~ in 

Chapter 2 on prime in.,lfca~ts, we ~O()W t~a~, PI{,~.N), .s -~I_(J,,NJuPl{K,~), 

and since y1ylPI(G,N), one of J or K 1111$~ ~at!.sf,y P1..;· 

Henc~ GII(P ;',j>. 

tl~ Leana- 3. 7 

3.8 Le11111a: Suppose N, i, ·and j are :'a a-bove, :and·' 1£1 (Pi ,J>. ··. If 

Pred(G) = {J,Kl, then either Y;£PI(J,N) ·and Yj*:PI(K,N), or 

vice versa. 

Proof: Bylenna3.7, ff Gd(Pi,j),then G isan A-gate. 

Every prime i"'lfcant of G fs a produc't of a me.ber of PI (J) and 
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a member of PI (K). · Since neither PI (Jt nor Pl(K) contains 

y1·Yj• we _must have either y1(PI{J) and Yj:~PI(K), .or vice ver~a. 

O· l-*nil 3.8. 

Proof: Suppose to the contrary that. there is only a si'ngle gate 

G in I(P112)ul{P213 )ul(P113) ,. and su:ppase Pred{G,N) = {J,K} • 

By Lenma 3.8, we may suppose w.-1.o.g. that y1 e:PI('J,N}~ and 

y2ePI(K,N) since Gel(P112 ). Again by virtue of Lef1111a 3.8 and 

the fact that Gd{P213), we must have y
3
ePI(J1tt) since 

y2ePI(K,N) implies that y2ePI(G,N), and hence that y1y2iPI(G,~), 
contrary to the assumption that Ge I (P1 ,2> .. But ther\ GtI(P1 , 3> 

since y1y3 .cannot be a prime imp!1cant of 

Res(G.)N) = (y{y3vh1Y,(y1vh2). This contradiction implies that the 

union contains at least 2 ~ates. 

O Lenma 3.9. 

we.are now in.a position to prove the main theorem. Since 

there are at least two· distinct A-gates in I(P
1 

,
2

)uI(P
2

,
3

)ul(P-
1

,
3

) 

and since none of these sets i~. eJQPty .by L~nma.3 .. Y, we.~ w~ 1.o.g ... 

assume that there exist distinct gates G and H in N such that 

Gd (P1 ,2> and Hd (P213). Assume ustng Leliltta 3.8 that · 
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Pred(G,N) = {K1 •Kil ctnd ·Y2ePI(K1 ,N); ·and similarly that 

Pred(JI,") = {K3,K4} and Y2~PI('3•N)~ (It may lte<possible that 

some of th' ;.K,;,~S' are not distinct.) The assignment of the 

variables y1 = 0, y2 = 1, and y3 = O results 1n·a circuit N"' 

wMch c~tes ~he functi.on . f. Moreover·i in N"' the input$ - K1 j ; 

and K3 to G and H respectively now compute the constant function 

l• and hence gates G and. H may be elinrina~·in H"" sihce 

l 1t. g ,. g for any Boolean function 9-. ; Jlt!hce if the- resulting 

circuit is called N"". we have . 

r«; {N);;:: r«: (N"'"') + 2 2: ~ (f) + 2 = 2n'+ 2 
A fl. A 

by induction, •nri-the lawer bound •is' contplete • 

. To show that C ,.( f) s_ t{_2/3)!!1 , dt suffices- to observe that' 

and hence c,.(T~) s: 2. Thus using the definition (2) one can 

compute f using lL2/3)!!J A-gates. 

a Theorent3.6 

=3. iO Coroil!r..r: Suppose n ;;:: 4. Then 

t.l2/3)~. s QCA(n) s Ql."(n) s n-2. 
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Section C. A Graph Problem 

_We close this chapter by describing a graph-theoretic problem 

which is related to the A-complexity of quadratic m.b.f.'s when 

they are computed with a restricted class of M-circuits. The 

research in the remainder of this chapter was done in conjunction 

with Ronald Rivest. We introduce n6tati'6n similar to Harary [1969] 

for undirected graphs. 

Definition: An undirected graph G is a pair (V,E), where V is 

a finite set whose members are call~d noges o~ vertices, and 

E £ :{8 £ v I . I BI = 2} is a set whose members are ca 11 ed edges. 

A bipartite graph is a graph G = (V,E) whose vertices can 

be partitioned into two non-empty sets v1 and v2 such that if 

edge {v1 ,v2JEE, then v1Ev1 - v2Ev2; that is, each edge consists of 

one point in v1 and one point in v2• 

A complete ~ b.:i».artjte graph is a b~partite graph 

(V = v1uv2,E) such that IV11 = k IV21 = t, and 

E = Hv1, v2J I v1 e:v1, v2EV2J ~ 

Definition: If G = {{V1,E1),(V2,E2), ... ,(Vk'Ek)} is a collect~on 

of undirected graphs, and· G = (V,E) is an undirected graph, then 

an exact covering C of G by G is a collection of one-to-one 

mappings h1:vi + V for fE[l:k] such that E = iE[l:k]~h(e) leeEi} 
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where h({a,b}) = {h(a),h(b)} for any edge fa,b}€Ei. The· cost of the 
A 

cover,.denoted D(C), is k. 

not bipartite bipartite 

Fig. 3.1 ·some Graphs 

.. 

c9111plete 
3-3"'·bi parti te. 

Points represent nodes and lines.represent edges. 

We can now define a measure on graphs. 

Definition: Suppose nelN, and G is an n-node undirected ' 
":. •'.,· 

graph. _Then 

D(G) = min{D(C) C is an exact cover of G by {G1, ... ,Gk}' 

where Gi is·., • c?"P 1 •te bi pa rtf te graph 

tor i~n :k]l • 

Define H(n} = max{D(G) I G is an n'-Aode.undirected graph}. 



-71-

The connection between quadratic m.b.f. 's and graphs is as 

follows: Suppose f is an n-variable Boolean function. We can 

assoctate a corresponding n-node undirected graph Gf = (V,E), 

where V = {1,2, ••• ,n} and E = {{i,j} I xixj€PI(f}}. Conversely, 

suppose G = (V,E) is an n-node undirected graph. By possibly 

renaming the vertices, we may assume V = [l:n]. Define the Boolean 

function f6:{0,l}n + ·{0,1} by 

The functions f + Gf and G + f 6 clearly demonstrate a 

one-to-one correspondance between the set of quadratic m.b.f.'s in B 
n 

and the set of n-node undirected graphs with at least one edge. 

See Figure 3.2 for some examples. 

r4 
2 

Fig. 3.2 Some Functions and their Graphs 
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In fact, we can get a more strict correspqn~ence in mathematical tenns. 

A 

Notation: qn = {f J f is a quadratic m.b.~f. of n var'i~b.1e$}· v 
~ l 'I. 

{0, the constant fuf.lctjon O of. n variables}. 

Gn = {G = (V,E) I G. 1s .on undir:ected graph, and , v == [l:ti]}. 

Zn is the graph ([1 :n],,) · in Gri° 

If Gl = (V ,El) and 62 a ~v.E2h:Q11/ defi~e'' P1 uG2 to 

be th~ graph (V,E1uE2). 

If A ts any s·et, and f:A 4 8, then f(A) = ff(a) · 1 aE:A}. 

lf G = {Y,E) is an undirected graph';; and h:V + W, 

then · h(G) 1s tne graph' (h(V) ,h:(E)) / 

3.11 Lenvna: Suppose n ~ 0. Then 

(1) (Qn,v,Q ) and (Gn,u'Zn) are m6noids, 

and (2) the func~ion f -+ Gf is a monoid isomorphism wtto~e 

'fnv~l'}Se b the map G-+ f 6• 

Proof: Statement (1) is easily checked, as are the facts that 

the maps 1n (2) are· one"."to-one, onto, and 1nverses of each other. 

Moreover, if f1 and f 2E:Qn' then 



since each prime implicant is the product of two variables. Thus, 

if 

Gf v f = { (1 : n] • E ) , 
1 . 2 

is easy to check that E = E1uE2, and the claim is verified. 

0 L emia 3 • 11 

3.12 Corollary: Suppose C = (h1, ... ,hk) is a covering of the 

graph G by graphs G1,G2, ... ,Gk. Then 

f G = f h (G ) v f h (G ) v ••• v fh (G.) 
1 1 2 2 k k • 

Proof: Proven inductively using Lemma 3.11. 

O Corollary 3.12 

We now connect the complexity of functions and their graphs. 

We will say an M-circuit or. M-fonnula N is si~gle-level if 

there is no path between any pair of A-gates ';n N. Obviously, any 

quadratic m.b.f. can be computed by a single-level.M-fonnula and 

hence a single-level M-circuit. In a single-level M-circuit N, 

each immediate predecessor of every A-gate consists-of the 

disjunction of some set of input and constant nodes. Moreover, if 

N computes a quadratic m. i:>. f. f, then there is some subset a. of 
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the /\-gates of N such that f • ·~~4;Resr(~.HY. ·· Tnes, given a 

single-level M-circuit N computing a quadratic m.b.f. f, one may 

construct a single-level M-fo1"111.11a F which also computes f and 
~, ~ , 

which has the same numer of /\-gates a't N sinc'e~ computing ~hyc' 

number of disjunctions of variables takes ~ A-gates. 
;~. ;1 'l' • • 

If - f is a quadratic m.b. f. ,\ deflne 

S~CA(f) = minfMCA(N) I N is a single-level M-circuit which computes f}. 

We shall prove 

3.13 Theorem: Suppose f is a quadratic m.b.f~1 • tqen .SLC,.(f) = 
' \ ; - ,j ~ '. ·.;_ 

; ! 

t. ' \ ; J ~- ~. i ~ 

Proof: Suppose f is a quadratic m.b.f., and that 

D(&,) = k. Let C • (h1, ••• ,hk) be an exact cover of Gf by 

complete bipartite graphs Gl'·~··Gk. We will" construct a single• 

level M-~ol"lll.lla for f wtaictl ~ ?n~ ~~gate .for:~--~"~ in 

the cover 9f _ 6t· Supp<>se G1 = (V1 .•" v1l\JV 12.Er)' - i>S thedeco11PO-· 

sition of .the verti~s ,of .. Gt , as i~ ~e-~finc~-1j9~ of hip~rti~ 

graphs. 

Note that h1(G1) is also a complete bipart!te _. graph. Since each 

graph is complete, 

-----~----
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fhf(Gi)(x) = V{xjxk {j,k}Eh1(E1)} . 

a (V{xj I j€h1(V11>}) A (V{xk f k€h1CV1z)}). 

Hence, usfng Corollary 3.12, we can express f as 

f = f G = f h (G ) v f h ( G ) v ••• v f h ( G } 
f 11 22 kk 

k 

= i'!t [(\ltxj I J€hi (Vu)}) A ('vtxk I k€~i(V12P>l 

which is a fonnula with k A-gates. Thus SLCA(f) .~ k .• 

Conversely, suppose f is a quadratic m.b.f., and SLC (f) = k. 

By the remarks preceding the theorem, there is .a .single-level 

M-fonnula F for f such that MCA(F)· = k. Since F is single­

level, we may write 

for some subsets Ai and s1 · of [l :n] for each ie[l :k]. Since 

Pl(f) has no single variable tenns, we know that A
1
nBi = 0 for 

each i€[l~k]. Thus 

k 

f(x) = i~l{xjxk I j€A1 and k€B1}. 
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So if we define Gi to be the comp1ete:bipJrtite graph with vertex 

set ~1 uei (dec()ll)posed as A1 a,I)~ <Qt) for eactt i.e[l :k], we 

observe that C = (id,id, ••• ,id) fs an exact cover of Gf by 

complete bipartite graphs G1'G2, ••• ,Gk, where _i;~ -~~ t~1! :ide11tit.Y 

map. Hence D(Gf) s k. 

· Cl 'Theorem 3. 13 

If we define SLQCA(n) to be the maxiD1Jm value of SLC(f) 

for qny quadratic m,t>. f. of .,n varf ~ble~~, then ~~h~oretn 3r 13 

implies that SLQCA (n) = I({~). Sfn~_ 4ny..;sh\9l~-ltY~--~M•fenaula 
' . ~ -

is in fact an M-fonn4la, we know QLA(n) s SLQCA(n). We note 

that the proof given for Lenna l~S act-Oally .rt~ld$. a .,sing1e..:1evel 

M-fonnula for ·any quadratic m.:b. f. ,- s& 'SlQCA {rij '~(n.:.1:. Si11ce 

QL (nl = e(!I), we kno.t also that. St.QC {rt) i.t d{nj;. Fo·r the 1 atter 

function, it was pointed out to the author by v .. Cfrvatalt tttat one 

can actually get asymptotically matching upper and lower bounds on 

H(n). 

3.14 Theo!'§: SLQCA(n)_ • H(n), · and ff{n} ""n. · ' 

We include a sketch of the proof of Theorem 3.14 in Appendix l. 

tPrivate conmunfcation, 1977. Recent work· by Bennond [1978] has 

tightened the bound given on H (n). 

--------

.7 



-77-

Section Q.:._ Open Questions 

At the end of each chapter, we list some open questions pertaining 

to that chapter. 

1. Demonstrate a m.b.f. for which ML. (f) +ML (f) < ML(f) - 1. 
/\ /\ 

2. 
2 . 2 

Is QL(n) = e(n /log n)? More generally, do o(n ) 

monotone formulas exists for all quadratic rri.b.f. 's? QL(n) is 

obviously O(n2). 

3. What is the asymptotic behavior of QLy(n) and QCv(n)? 

Determine QL" and QC" more exactly than given in Corcllary 3.10. 

4. If f is a quadratic m.b.f., is SLC (f) = ML (f)? 
/\ A 

Is 

ML ( f) "' 
/\ 

MC ( f)? 
" 

5. More generally, is SLQC .(n) -· QL. ( n)? 
/\ /\ 
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CHAPTER 4 

Combinations of Functions 

One fundamental problem of Boolean function complexity is deter­

mining the relationship between the complexity of individual func­

tions and the complexity of combinations of those functions. The 

relationship depends not only on the type of OOmbination but al so 

on the model and.measure of complexity used. In this chapter, we 

explore several questions in th.is area. 

Given Boolean functions f. and g, we consi.der primarily the 

combinations fxg and v(fxg). Results about the function A(fxg) 

may be obtained by duality from those for v{fxg). We do not consider 

the composition of functions; this area has many interesting open ques­

tions. The measures which we consider are formula and circuit size 

over different bases. 

As Paul [1976 p.383] points out, one might expect that 

CB (fxg) = CB (f) + c8 (g) since the evaluation of f and g on 
2 2 2 

disjoint sets of variables. "have nothing to do with··each other. 11
' This, 

however, is incorrect; Paul shows that for any e ·> O, there are ar­

bitrarily complex functions f in Bn,n such that 

CB (fxf) s (1 + e)CB (f). In addition, he exhibits arbitrarily com-
2 2 

plex g in Bn such that c8 (v(gxg)) s (l + ~)c8 (g). 
2 2 

For M-circuits computing monotone functions, the results are 

drastically different. ·M. F15cher proved that · 
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t 
MC(f>19) = MC(f) + MC(g) for al\y m~b;f~'s fE:Bn,k and QE:Bm,R." 

[Paul 1976]. It is still unknown whether MC(~(fxg)) = MC(f)+MC(g)+l. 

In Appendix 2, we present an extension to Fischer's result, due to 

Galbfat.i .and Fischer; [1978.] in ·whieh, the tets. of variables qn which f and 

g depend have one, v•rf abl~ jn, ~. . . ,·:ht addition~ -we show that · 

Fischer's result hold$,,when \'-gates,~, A: .. gil_t:G 0are e.counted separ­

ately; namely tttat· HCA{f"9-) -~ HCJ\{f) + MCAfg)r -and dually• 

MC)fxg) = MCV(f) + MCV(g) • 

We consider the question of fomJl;a size additivity; the only 

conmination considered is v(fxg) •. He~, ·1'n ~o~·tr:st'- to Paul's 
' 

results on circuit size, we show that fom,la size is additive under 

v, namely 

L0~v(fxg)) = l0 (f) + Ln(g) .. (1) 

for any basis o which contains v, and any non-constant Boolean 

When counting individual _types of gates 

in fonnulas over the mC>notone'basis M~ we show that 

"-v(v(fxg} = Mlv(f) + Mlv(g) .+ 1 for a·tb1trary 'tifonotone functi~ns 
.. 

f f n Bn and g in Bm; the corresponding question 
• ,-•'"> 

K."(v(fx_g) l fil."(f) + Ml."(g) remains Open.- even for sf111Ple cla$Ses of 

·tin fact, Fischer shows that any 11riWiaia:J M~clrcu1t for f~g is 

composed of disjoint minimal circuits for f . a.nd g. 

--------. ----~-
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functions such as quadratic functions. 

Finally, using fact (1), we demonstrate a gap between the circuit 

and formula complexity of some specific functions. In particular, we 
·' 

show that there is a sequence of functions w.tt~e B2-circuit complex-
2 ' ·_.•. ' 

ity is O{n log n), but whose·B2-formula complexity is 

n{n2/log log n). A sli'ghtly larger gap between these measures for a 

particular function had been previ0usly shown ·using d.ifferent. techniques 

by Paul [1977]t, who observed the implications of fact (1). 
;,.. ' , ~~, 

The following chart sunmarizes the current state of what is known 

about these problemstt. 

tworst-case results for these measures show that most functions 

·fd~ · have L8 {f) = ·nc2"11og n) and c8 {f) = 0(2"/n). Hence for 
·n 2 2 

most functions the ratio between these two measures is n(n/log n), 

but the measures themselves are exponential in n. 

tt Paul's result on the sub-additivity of x in the-measure c8 used 
2 

multi-output functions. 



-82-

•. 

Cori>ination Measure 
'' : ~ : 0 ' .. ' ' . T 

Class of Functions CB2 MC CV CA Lszl ML Lv. LA 
-
v(fxg) 

x 

x 

. . ~ 
Bn SUB 1 1 ? ADD j .ADO ADD ?. 

·" 
I 

-

Bn ? ADD ADD ADD 
.. - - . ' • .. 

B· SUB ADD~ . ·.ADO ··AoD . - - -n,m -

Table 4.1. Swmia.ry of resultS. 

Key - ADD: combination of minimal circuits/fonnulas 

gives optimal circuit/fonnula for combination 

SUB: negation of ADD for some particular functions 

? : open 

. -: does not apply 

Section &. The FOnJIUla Size of v(hg) 

In this section we show that one cannot econom1te when constructing 

a fonnula for v(fxg) in an arbitrary binary basis. 

4.1 Theorem: Suppose n and mE:JN, f &n and g&m are non­

constant Boolean functions, and n is an arbitrary Boolean basis. 
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Then 

Proof: Suppose F(x1, ... ,xn,y1, ••• ,ym) is an n-formula for 

v(fxg)(x1, •.. ,xn ,y1, ••• ,ym) = f(x1, .•• ,xn)vg(y1, ••• ,ym). Since f 

and g are non-constant functions, there are constants a€{0,]}n 

and B"d0,1}"1 such that f(a) = g{t) = o~· Thus F(x1, •.• ,xn,5), 
even when simplified by absorb'ing c.onstants into gates, is an 

n-fonnula for f(~)vg(fi) = f(~). and hence has at least L
0

(f) 

occurrences of variables from {x1, ... ,xn}. Similarly, since 

F(a,y1, ... ,ym) is a formula for g{y), F has at least L
0

{g) 

occurrences of variables from {y1; ••• ,ym}. Since tile sets 

{x1, ..• ,xn} and {y1, •.• ,ym} are di.~joint, F' has at least 

L0 (f) + L0 (g) total occurrences of variables. Since this is 

true for any formula r for v(fxg), the theorem is proved. 

O Theorem 4.1. 

4.2 Corollary: If n is any basis containing v, and f and g 

are as in Theorem 4.1, then. L
0

(v(fxg)) ~ b
0
{f) + L

0
(g). Particular 

examples are n = B2 and n = M • 
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To obtain the next corollary, we state without proof the fonowing 

technical lenwna due to Paul [1976]. . . 

Notation: For gE:Bn' and k£1N, k > 0, define Vgk by the inductive 

rules: 

Vgl • g 

(So \/gk is the disjunction of k copJe,s of g on disjoint sets of 

variables.) 

4. 3 Fact· (Paul) : There is • con~~ant a. s1,1ch ,that, for al 1 , k 

and nc::lN, k .~ 1, .and ·an . g€Bni t~ follqwiog hqldu 

c8 (Vgk) s a•max(n·2",nk log! k) • 
. 2 ! . 

We also need the following fact due to Krichevskii [1961]. 

4.4. Fact:. There is, an n0E:t-J svch th~t .for ~very . n, >
1 

no•:· there is .a 

function f E:Bn such ~hat L8 ( f) ~ , 2~/ l2 · lo~ n) ·: 2 .. . .. 

We now can establish the following gap between circuit and for-

111.1la complexity. 
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4.5 Corollary (Paul, Bloniarz): There are c<>nstants n0 and a 

such that.if· m > n0 is a power of 2 and n = 2m/m, then there is 

a function f€8n such that 

while 

(2) c8 (f) s a•m•2m 
2 

Hence L8 (f) = o(n2/(log log n}) whereas c8 (f) = O(n log2 n}. 
2 2 

Proof: For this proof, we assume that the basis of operators 

for all fonnulas and circuits is e2. Let n0 be as in Fact 4.4. 

There is thus a function g€Bm such that L(f) ~ 2m/(2 log m). 

By induction on Theorem 4.1, tt is .easy to show tbat L(Vgk} = k·L(g), 

so if we define 

2m1 2 
f = V(g m ) , 

On the other hand, ·by Fact 4.3, there is a constant a such 

that 

m = a•m•2 • 

The final remark. fol lows since f has n = (2m/m2) ·m variables and 

since m s 2 log n. o· Corollary 4.5 
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Section !:_Monotone Functions 

We now restrict ourselves to the class of single-output ~notone 

Boolean functions and fonnulas over the basis M. For the combin­

ation v(fxg), Corollary 4.2· proved that mpnotone fonnula complex-
.. ·- - -. . . 

ity ML is additive since v€M. As for counting individual gates, 

clearly Ml..A{v(fxg))s MLA(f) + MLA(g) for any m.b.f.'s f and g. 

It remains an open question as to -whetfler the!e· at"'ei any non-constant 

m.b.f. 's f and g for which the inequality is strict. The co~-:­

responding question for Mlv is answered by the following theorem. 

4.6 Theorem: Suppose n and m€lN, and f€B
0 

apd g€Bm are non­

constant m.b.f. 's. Then 

N.. (v{fxg})• ft.. (f) + ML (g) + 1 v v v 

Proof: The fact that Mlv(v(f><g}} s, Mlv(f) + Mlv(g) + 1 is 

easily verified by combining an v-minimal M-fonnula for f with 

one for g by an v-gate. To show the inequality fn the opposite 

direction, suppose -that F(x,jl .ls :a .M .. ft>nnula for :f(Xjvg(y) 

with the minimal number of v-gates. We will prove that if H is 

any A-gate of F • then H depends t on'1y oo \(ar! ab 1 es . from the set 

X = {x1, ... ,xn} or only on variab 1 es from.., Y = {yl' ••• ,ym}. 

t We remark that in a minimal fonnula, the notfonsof structural 

dependence and functional dependence coincide. 
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Supposing this for the moment, we show that the theorem follows 

from this claim. Let H = {HjH is a variable or A-gate of F such that 
+ . Succ {H,F) contains no A-gates}. By assumption, no node in H depends on 

variables from both X and v-. We look at Succ+{ff,F). If 

+ Succ {H,F) were empty, then since F is a formula there would be a 

unique node H0 in H. But then Res(H0,F) = v(fxg). Since v(fxg) 

depends on variables from both X and Y, and by assumption H
0 

+ . -
does not, this is a contradiction. Hence Succ {H,F) is a non-

empty collection of v-gates, one of which is the output gate U 

(see Figure 3.l(a)); moreover 

Res{U,F) = H~HRes(H,F) (2) 

We will replace Succ+(HiF) with a tree of v-gates which also 

realizes the function (2) and obtafn a (possibly different) formula 

for Res(U,F). Let Hx denote the set {HEHjH depends on variables 

in X}, and let Hy= {HEHIH depends on variables in Y}. By assump·­

tion, the pairs of sets Hx and Hy is a partition of H. Form 

the subfonnul as 

and 

(where the disjunction may be associated atbitrarily), and finally 
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the fonnula F' = Fxvfy • Since Res(F) = (H~HxRes(H,F)) v (H~ffyRes{H ,F), 

f'' defines the same function v(fxg) as F •. More()Ver, since F 

was v-minimal, Socc+(H,F) contilins, exactly iHl-1 v-gates; 

H 
~ 

. G>···~ 

~ 
(a) (b) 

Hy 
~ 

© .. '© .. ... 
- .. . / 

\ ~ 

- ..,~ -, tJ . ' y 

U' 

Fig. 4 • 1 The re•arrangement 

since IHl-1 v-gates were added in the rec?.nstruction, f' also 

contains a minimal nunber of v-gates. But f(x1, ••• ,x
0
)vg(yl' .•• ,ym) 

= Res(Fx)(x,y)vRes(Fy)(X,y). Since Res{Fx) depends only on X and 

Res(Fy) depends only on Y, it is easy to show that f = Res{fx) and 

g = Res(Fy). Since the subtrees Fx and F.y are disjoint, there 

must be at least Mlv(f} v-gates in fx and Ml..v(g) v-gates in Fy, 

giving a total of MLv(f) + Ml..v{g) + 1 v-gates in F', and hence in F. 

To show that all A-gates in F depend on only one of X or Y, 

we suppose to the contrary that some A-gate depends on both X and Y 

variables. Let H be a top-most A-gate with this property, i.e. H 
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is an A-gate such that H depends on some variable in X and some 

variable in Y, but any A-gate H' in Pred+(H,F) depends only on 

X-variables oio~ly on Y-variables. We will use techni~ues similar 

to the first portion of the proof to r~structure the formula and 

reduce the number of v-·gates in F. 

Suppose that Pred{H,F) = {l,J}. Define 

A(l) * = {G~Pred {I,F)jG is an A-gate or an input and all interme-

diate gates (if any) on the path from G to Hare v-gates} 

and define A(J) similarly. Note that neither A(I) nor A(J) 

is empty by our selection of H. Since the portions of the tree 

from A{I) to I and from A(J) to J consist solely of v-gates, 

there are IA(I)j-1 v-gates in the subtree from A(I) to I and 

I A(J) l-1 v-gates in the subtree from A(J) to J. Functionally, 

we have 

Res (H, F) = [G~A( I) (Res (G,F))] A. [G'fA(J) (Res (G,F))] (3). 

We are now in a position to use Mehlhorn and Galil 1s lerrma 

(Lerrma 2.8 ) to reduce the number of v-gates in the formula. 



-90-

Define 

A = x {GEA( I) I G depends on some variable in X} 

Ay = {GEA(I) IG depends on some variable in Y} 

Bx = {GEA(J) I G depends on some variable in X} 

and By= {GEA(J) IG depends on some variable in Y} 

Observe that since H is a top-most A-gate depending on both 

X and Y, AxnAy = BxnBy = 0. We construct a new formula F~ 

by replacing the subformul a FH in F by a subformui a F 0 
which realizes the function 

If none of Ax, Ay• BX' nor By is empty, then we define 

(4) 

Iri this case F0 has at least one fewer v-gate s"ince the 

jA(I)! + IA(J)! - .2 v-gates we identified in deriving equation(.~) 

have been replaced by 

(IAxl-1) + (IBxl-1) + (JAvl-1) + (IByl-n + 1 = IA{OI + IA(J)i - 3 

v-gates. 

If, for cxa~pl~. AX alone is empty, then we define Fn to be the 
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obvious simplification of (4), namely 

(5) 

In this case, F0 contains CIAyl-1) + (JByl-1) = IA(I)j + fByl-2 

v-gates. But Bx~~ sir.ce H depends on both X and Y vari­

ables by definition •. Thus IByl < IA(J)I so Fa has fewer 

v-gates then FH. 

If one of the other sets is empty we proceed similarly. If 

two of the sets are empty, then they must differ in their variable sets 

s i nee H depends on both X and Y vari ab 1 es. So suppose w .1. o. g. that 

Ax and By are empty. Then fa = Q., the constant function zero, so we 

may let Fa be the constant a. In this case the closest v-gate in 

Succ+(H,F)' may be eliminated since one input to the gate is the constant 

O;· such a gate must exist since the formula F does not compute a constant 

function. 
I 

Hence in all cases F has at least one fewer v-gate than F. 
Now if we can show that F~ also computes f(x) v g(y), then 

we will have a contradiction. But.this is in fact the case. Observe 

that f0 implies Res(H,F); in fact, Pl(f0) consists of those 

monomes of PI(H,F) which consist solely of X-variables or solely 

of Y-variables. Since PI(v(fxg)) has no monomes which contain 

both variables from X and variables from Y, by Lemma 2.8 we know 

that each monome in PI(H,F) which contains variables from both X 
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and Y may be eliminated from PI(H,F) without changing the function 

defined by the formula F. Since the replacement of F0 fo~ FH 

eliminates exactly all such monomes, F and F' define the same 

function v(fxg). But since F' has at least one fewer v-gate 

than F, this is a contradiction to the v-minimality of F. 

O Theorem 4.6. 

Section.~ Open Questio11s 

(1) There are several open questions listed in Table 1. Are 

any solvable in general? If the class of functions f s restricted 

(e.g. to quadratic functions) are any of the questions solvable? 

(2) More generally, for arbitrary single~output m.b.f. 1 s f 

and g, is 

MC(f(g(t) ,g(y), ••• ,g(l)}) ·'-' MCl f) + MC(g) ? 
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CHAPTER 5 

The Monotonic Circuit Complexity of Threshold Functions 

One important class of Boolean functions is the set of synmetric 

functions, those which are invariant under· any permutation of their 

inputs. Fonnally, a Boolean function fE:Bn,m is SY!l!!letric iff 

f(x1 ,x2 , ... ,xn) = f(x11'(1) ,x11'{ 2), ••• ,x11'( n)) for every pennutat1o~ 

11' of the set [1 :n]. One interesting fact about the S,Yl11ftetric 

Boolean functions is that they are fairly easy to compute by a 

circuit over a complete basis. The valu•,of aft.Y.~ric function 

on an argument depends solely on the number 'Of inptfts,,wfiich are 
. 

set to 1. Since it is possible to construct a .linear-sized circuit 

whic'1 counts the number of l's in an input and outputs that number 

written in binary,.it is possible to use the output of such a 

"unary to binary" converter to compute the value of. the symmetric 

function on the input. The best known general schemes for 

computing symmetric functions in this way -Over the i:onq>lete basis 

B2 require ~6n gates in all [Muller and Preparata l97·5]t. 

As for lower bounds on the complexity of symmetric functions, 

Lemma 2 •. 11 shows that any non-constant synll'letric Boolean function 

has complexity at least n-1 over B2 since the function depends 

t We remark that using a similar idea, one also obtains a fairly small 

formula (size O(n3· 51··•)) for expressing any threshold function 

[Peterson 1978]. 

' 



on each of its inputs. Schnorr shows that all but 8 of the synmetric 

functions of n variables have e2 circuit comp_lexity of at.least 

2ri-3 [1974]. Recently, Stockmeyer showed that at least half of the 

2n+l synnetric·Boolean futtctions ()f ·n variables have B2 circuit 

complexity of at least 5n/2 .. S [197i]. T-he latter result', along 

with an argume_nt of Paul which esta61ishes a similar· 5n/2 - 0(1) 

lower bound on the complexity ·of specifi¢:funetions [1977], are the 

largest known lower bounds on the s2 circuit complexity of any 

single-output Boolean function other than bounds obtained-by 

diagonal arguments [Stoekmeyar 1974]. t 

In this chapter, we consider the collection of monotone 

synrnetri.c Boolean functions, the threshold functions. - The main 

object of study will be the monotone circuit complexity of these 

functions. Recall the definiti~>n of the threshold functions. 

Definition: Suppose k,nE: N. Define the Boolean function threshold 

.!s. of n variables, denoted TkE:Bn, by ~·{x1 , •.• ,xn) -= 1 iff at 

least k of the inputs x1, •.• ,xn are 1. 

In particular, rg is the constant function 1 for all values .of 

n, and r: is the constant function O for all; RL'> n. Since 

n n 
~l (x.) = V x. and Tn" = (\ x1, 

1 i=l 1 .1~1 

..&. 

' Recently, Schnorr [1978b] has announced a 3n - lower bound 
on the B2-circuit complexity of a function. 
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these extremal threshold functions have circuit complexity over M 

of n-1. By observing that 

n n we know that Tk and T n-k+l are duals of each other, so that in 

general Ca
2 
(T~) r: c82( T~ _ k + 1 ) and MC(i~) = MC (T~-k+ 1) for 

k€[0:n+l]. 

For circuits over B2, the best known results are the following. 

The general upper bound of 6n for the s2-.circuit complexity of 

any symmetric function obviously applies to the threshold functions. 

(This general bound can be improved upon for small values of k.) 

Stockmeyer's techniques show that c8 (T~) ~ 2n + min(k, n-k+l) - 3 
2 

for any ki;;[2:n-l]. 

In this chapter, we present new lower bounds for the monotone 

circuit complexity of the threshold functions. For arbitrary threshold 

functions, we develop a general theorem using an approach similar to 

Stockmeyer, Paul, and others which shows that 

MC(T~) ~ 2n + 2 min(k, n-k+l) - 0(1) 

for any k€[2 :n-1]. In particular, for the "majority function" 
n T lil/2-, , we show that 
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MC(Tnfit/2-,) ~ Jn-7. 

Using different techniques, we also study lower bounds on the 

monotone complexities for_ the function -Ti·· .we prese.'1t proofs of 

two results due to F. F. Yaot, namely that 

We then show that these lower bound~ ar~ not achievable.simultan­

eously by proving that, for n a power of 2, an,v_ 111$?,nQ~Qn~ ci rcu-i t 

for T~ with exactly lfog ill v-gates 1111st have a~ least 

2n + 4 log n - 9 v-gates. 

Before proceeding to proofs of the lower bounds, we first make 

some remarks on upper bounds for. the M-circuit complexity of the 

threshold functions. As of the present, no linear (in k and n) 

upper bound exists ciri MC(T~) for arbitrary-threshold functions. 

Hence the gap between the lower bounds mentioned above and the best 
. . - . 

known circuits are disappointingly large. For fixed values of k, 

L. Adleman has developed ·a scheme for constructing.an M-circuit for 

T~. which has kn + o(n) gates.tt 

t 
Private conmunication, ·1976,. 

tt Private conmunication, 1976. 
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In particular, he shows that 

MC(T~) = 2n + O(ln) 

and thus that the high order tenn of Yao's lower bound is exactt • 

While Adleman 1 s method yields the best known Circyits for small 

fixed values of n, a result due to A. Yao and F.F. Yao on 

building selection networks from comparators [Yao 1974] can be used 

to show that, for fixed k, 

MC(T~) s rfog k+il n + o(n). 

Finally, if k is allowed to vary.with n (for example if k = rri/21 ), 

the smallest known M-cireuit which .computes T~ has O(n log2 
n) 

gates. This bound is obtained by using an M-circu1t of this size 

to sort the inputs in increasing order (Batcher fn [Knuth 1973 pp. 
· n th 111-114]) and then observing that Tk(x1, •.• ,xn) = 1 iff the k 

largest input is 1. 

t We remark that in addition, Adleman (private communication, 1976) 

has proved a lower bound of 2n + n(/n) gates for an~ M-circuit 

which computes T~, has exactly log n A-gates, and is synchronous 

(for definition, see [Savage 1976],p.124). 
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Section !h.. The Class of all Threshold FJtoctioos 

In this section we show that the general lower bound techniques 
l ~ •. 

used by numerous researchers [Stockmeyer 1977., Paul 197~, Schnorr 1974, 

Khasin 1970] for circuit complexity can yield a larger bound when 
. . 

the basis of allowable gates is restricted to M. The basic method 

of attack is as fOlTows: To prove a loWer bound on the combinational 

complexity of a particular Boolean function f, one attempts to 

show that ·there is a set of variables {xi I iE:A 5. [l :n]} and 

corresponding constants (ci I iE:A, c1E:{O,l}) such that the restricted 

function f lxi = ci for: hA is. a function \flhos~ complex,f ty is 

known to be bounded below by some quantity. If, in addition, one 

can sh°"' that in any minimal B-circuit fir fonru1a which computes 

f, the setting xi = ci for hA .allows ooe to eliminate (as in 

Chapter 2) k gates because these 94"te$ now hare at least one 

constant input, we then know that 

hence a lower bound on c8(f} can be obtained.- Th-is is the gener­

al approach we take; in particular, a lower bound Qn_the resticted 

function f Ix = c will be known by induction. 
i 1 
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Before describing the inductive hypotheses needed to prove our 

result, we first informally describe the method. The largest 

lower bound obtained from this method is for the majority function 

r"rnt21 . We will reduce an M-circu:tt ff, for an, arbitrary threshold 

function T~ to one for r~:1 by.setting the input xil to a 

constant. The setting xn ~ G results, in a circtrlt for, rrl 
while the setting xn = l results in a circuit for r~:~ If 

the constant can be chosen arbitrarily and•'.SUH allow a large 

number of gates to be eliminated, then the constant will be 

chosen so that k' is as close to ffn ... 1 )/21 aS'PoSsible. 

Some notation w11 l ,be useful. 

Definition: The parity function, IY=1N-+ fO,H, is defined by 

p(n) = { 
l if n is odd 

0 if n is even 

The partial function t:lN xN , -+ 'IN is defined by 

t(n,k) = ln+l-2kl whenever k s n. 

The sign function, denoted Sign:Z-+ {0,1} is defined by 

if x ~ 0 
Sign (x) 
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The function S b defined by S(n,k):;: Sign(n+1-2k) 

for n1k4'., lN • 

Note that R.,n,k) -is a/measure o-f .the prwtimity.of k ta 

(n+ 1.)/2. Observe that · p(n ... t(R·,k}} .= l ,· an<t: tt.at .for: fixed . n, 
~ .~~ 

the solution in JN to the equation . .t(k,n).= t'""! u·non•existent' 
·,l 

unless r s ti-1 and p(n-r) = l, 1n ·which case ; k 1: (n+l-r}/2 

and k = (n+l+r)/2 are the only. solutions. · 

Definition: Suppose- that k,tE!N , . .e. s n•3, and p(n-.t) ·;: 1. 

Define rn,.t = {threshold functions T~-1 t.~n;k):.·= 1.}. 

For completeness, we.,deftne :.r.n,t~-:_,., if . .t '> 11"'3 

or p(n-.t) = 0. 

Define MC(n,.t) = max{MC(f) I f€Ti .l . n, ... 

We observe that by the above note, if ~ s n-3 and n-1 .. is 

odd, then rn,1 = rr(n+l-.t)/2, r(~+l+t}/2 } , and the two members of 

T are duals of each others. n, t 
-· - ..... -

The prinicpal result we prove is the following: 

-5.1 Theorem: Suppose n,.t e:JN , p{n-1) i: 1,. and J. s n-3 (so n ~ 3}. 

Then MC(n,R.) ~ 3n-max(R.,1) - 6 .' 
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Before proving Theorem 5.1, we observe the following corollaries: 

5.2 Corollary: Suppose n ~ 3. Then MC(T"~izf) ~Jn - 7. 

. ' D Corollary 5.2 

5.3 Corollary: Suppose n.~ 3 , ke:[2:n-l], k ~ (n+l)/2. Then 

MC(T~) :?: 2n + 2(m1n(k ,n-k+ 1)) - 7_. 

Proof: Assume ke:[2:n-1] and k ~ (n+l)/2. Since 
-

t(n,k) s n-3 and p(n-t(n,k)) = 1; we have T~ e: ·~(n,k) . But then, 

since k ~ {n+l)/2, t(n,k) = ln+l-2kl = max{n+l-Z~, 2k-n-l) :'/ 0 

and thus Theorem 5.1 implies 

MC{T~) :?: Jn ~ 1{n,k) - 6 

= Jn - max(n+l-2k, 2k-n-l) - 6 

= 2n + 2min(k,n-k+l) - 7. 

D Corollary 5._J. 

The property of classes rn,t which we will exploit is ·the 

following: 

5.4 Lemma: Suppose n,te:JN, n :2!: J, and R. 5 n-3. _If _ fe:Tn,t' then 

there is a cor.stant se:{O, 1} such that 
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if .e. ~ n-5 

and 

Proof: Suppose __f ~ ~~· £ T71:,i/ We claim ~hat":$ = :S(n_,k) 

satisfies the properties claimed by the _lenma •. JJ}~s is proven by 

examining both of the possible members of Tn,.e. • For example, if 

then S ( 1t , .e.) = l, so 

I r'!-1 
f x = 1 = (n-1-.e.)/2 £ Tn-l,t+l n 

The other case is similar. O Lenna 5.4. 

We will. u~e"one- additional lenma which gives infonnation about 

the structure of 82-circuits ( or M-circuits) computing threshold. 

functions. 

5.5 Leoma [Schnorr 1974]: Let n be the b~sis 82 or M, and let 

N be~aminimal o-circuitfor T~, for n_~Jand k£[2:n-l]. 

Then there exists a gate GeGates(N) and indices i ,jf:[l :n] such 

that 
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(1) Pred(G) = {Xi s.Xj} . 

{2) i ; j 

and (3) outdeg (xj) ~ 2t ~ 

Proof Sketch (For complete proof see [Schnorr 1974] or [Stockmeyer 

1977]): Since N is an acyclic graph, one can clearly find a 

node G and indices i and j satisfying property (1). Since 
•c > • • 

N is minimal, i ~ j. We now prove that one of xi and xj must 

have outdegree of at least 2. Suppose to the contrary that G is 

the unique gate in Succ(x.)uSucc(x.), and suppose Res(G,N) s: 
l .1 

g(x.,x.). Then two of the values g(O,O), g(O,l), and g(l,l) 
1 J 

111Jst be equal since they are all members of {0,H . 

t Actually, Lenma 5.5 holds for any function feB
0 

with the property 

that, for any pair of distinct inputs xi and 

l{f lxi = cl 

xj = c2 

x.' J 

Such a function is said to satisfy the 11 2-3 property". Lower bounds 

on the complexity of functions with this and more generalized 

properties have been previously studied [Savage 1976]. 
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Consequently two of the function~.· T~ lxi = o ·, 'Tk:.'lxi. = o 
xj = ,o , xj = 1 

d Tn I an k x = 1 
i 

must be equal. · Since these -tiW'ee fut'lctions'.,are 

x = 1 j 

distinct, this is a contradiction, so one of xi or ~j must have 
. ./ ··1-·: : .'; ' . 

outdegree at least 2. · D Lema 5.5. 

We ca~ now return to the proof ~f Theorem 5.1. 

Proof .Qf. Theorem 5. l: The proof i.s. broken. down into two 

stages: 

( i} the result is first prov~n for .e. =. n-3, fqr al 1 ~ 

and 

(ii) the result is proven for R. ·s n .. 5 by induction on n~ using 
as basis pa~t (i). 

Part (1): Suppose 1 = n-3. In this case, T
011 

= {T~,T~_ 1 } • 

Lower bounds of 2n-3 on c8 , and hence Ht, for botb of these 
2 

functions have been proven previously by Schnorr (1974]. This 

proof is. repeated io[Stockmeyer 1971']. Infact, the 16wer bound 
- .. .• . ' 

of 2n-3 Oil MC(T~) follows frOll\· Theorems. 5_.6 and 5.9, whjch 

will be proven later in this chapte,r indeper-4~nt.1y of these results .• 

The lower bound on MC(T" 1) follows by duality. n-

------ ---· 
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Part (;1): Suppose that .e. s n-5, ffT • , and N is a minimal n , ... 

M-circuit which computes f. We break the proof up into several 

cases. 

Case l: There is an input xi with outde9 (xi) .~ 3. See Figure 

5. 1. 

I. le· 

Fig. 5.1 Case 1 

W.l.o.g., by r.enumbering the inp~t nodes of N we assume that 

i = n. In this case, by Lemma 5.4, there is a constant S€{0,1} 

such that f = f lxn = ,s € Tn-l,l.e.-ll . By setti.ng xn to 

-,s in · N, all gates in Succ(xn,N) ma,y b" eliminated, so the 

resulting contracted network N' has at least 3 fe~er gates than 

N. Hence MC(f) = CM(N) ~ CM(N')·+ 3 

~ MC(f .. ) + 3. 

If R. ~ l, then f .. €Tn-l ,.e.-l' so by induction 
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MC(f") + 3 ;::: 3(n-1) - max (£-1,1) - 6 + 3 

= 3n max(£-l, 1) - 6 

~ 3n - max ( Q,, 1 ) - 6. 

On the other hand, 

if Q, = 0, then f"i::Tn-1 l' so 
. . . 

MC(f") + 3;::: 3(n-l) - max(l ,1) - 6 + 3 

= 3n-7 = 3n - max(£,1) - 6 

This proves the result if Case 1 holds. Assume in the 

remainder that Case 1 does not apply. Assume in addition tr.at 

x.,x., and G are as in Lemma 5.5; w.l.o.g., we assume that j = n. 
1 J 

Since Case does not apply, outdeg (xn) = 2, so we may let 

Succ(x ) = {G,H}. 
n 

Case 2: G is an A-gate, and H is an v-gate. See Figure 5.2. ----
In this case neither G nor H is the output gate since 

Res(H,N) Ix 
n = l is constant while f Ix = 1 n 

is not; similarly 

Res(G,N) Ix 0 t f Ix = o· Hence I'/€ can assume that A and B 
= 

n n 
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are arbitrary members of Succ(G) and Succ(H) respectively. 

(Note that we. are not assuming that A~ B.) See Figure 5.3. 

Fig. 5.2 Case 2 

I \ 

I 

Fig. 5.3 Two'Gates 
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We claim that A f H~ that is, HiSucc(G). If it were 

(see Figure 5.4) then Res(H,N) = x v(x AX.) = xn and the circuit 
n n 1 

Fig. 5.4 An Impossible Situation 

N is not minimal. Since Pred(G) = {x. ,x } , GiSucc(H) 
, 1 n 

and thus 

the gate(s) A and B are distinct from G and H. (In fact A :f B 

but we do not need this). 

By Lemma 5.4, there is some constant s such that the restriction 

f"' = f lxn = -,s E Tn-l, lt-l j' By setting xn to -,s in N, one 

of G or H nm<J computes the constant function 1s, and hence at 

least one input to either A or B .is now constant. Hence the 

resulting network N"' , which computes f"', can have at least 3 gates 

(G, H, and one of A or B) eliminated from it. As in Case l, this 

implies that MC(f) ~ 3n - max(t,l) - 6. 

Case 3: G is an v-gate, and H is an A-gate. 

This case is handled similarly to Case 2. 
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Case 4: Both G and H are A-gates. See Figure 5.5. 

/ I ' 
I 

,/ l ' 

' 
Fig. 5.5 Case 4 

In this case, the objective will be to show that by setting 

xn to the constant O, at least 4 gates can be eliminated from N. 

Observe that by Lenma 5A, f lxn = 0 € Tn-l,11.+l uTn-1,111.-ll' 

As in Case 2, it is clear that neither G nor ·H is the 

output gate since f Ix = 0 is not a constant function. Hence 
n 

outdeg (G) ~ l and outdeg (H) ~ l. Also HlSucc{G) since if 

this were so then Res(H,N) =· x A{x AX.) = x AX. (see Figure 5.6). n n l n 1 

But this means that two gates, G arid H, compute the same function 

x AX
1
., a situation that never happens in a minimal circuit. In a n . 

similar fashion, it is possible to show that GlSucc(H). 

We now show that there are at least 2 gates iri. Succ{G) u Succ(H). 

Suppose to the contrary that there is only 1 gate A in 
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I 

Fig. 5.6 Another Impossible Situation 

Succ(G) u Succ(H). See Figure 5.7. 

I 

I 

/ I ._ 

I 

Fig. 5.7 

Let Pred(H) ={x ,J}, and 
n 

J 

\ 
\ 
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suppose that A is an op-gate, where opdA,v}. By using the . 

identity (for any m.b.f. f) 

we may obtain a smaller circuit by replacing the .subcircuit in 

Figure 5.7 by the following one with one fewer gate (Figure 5.8); 

Fig. 5.8 The R.earrangement 

that is, eliminate gates G, H, and A; add gates B and C as 

above and replace A by 0 in Pred(K) for every gate K in 

Succ(A,N). Thus, if N were minimal, there are at least two gates 

in Succ(G) u Succ(H) (see Figure 5.9). 

We now are in a position to show that at least 4 gates may be 

eliminated by setting x = 0. Let N' be the circuit obtained n 

by this evaluation. and note that Res(G,N') = Res(H,N') = 0. 

Hence all gates in Succ{G) u Succ(tt) have at least one input 

constant. Since this is at least.2 gates in addition to G and 

H, this means that at least 4 gates in N' have a constant input 
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and may be eliminated, yieldh1g a reduced circfrlt N'"' .• 

I 

Fig. 5.9 Two _More Gates 

Finall,Y, we show that this elimina~ion of 4 ~ate$ .)·ields the 

desired result. As mentioned f'" = f I € T u T I I x = O n• l ,1.H · n-1, R.-1 · n· 

Since N'"'" computes. f'", we obtain 

MC(f) = CM(N) ~ 4 + CM(N'"'") 

Cl! 4 + MC(f'") 

Cl! 4 + min(MC(n-1,t+l), MC{n-l;lt-lj) 
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~ 4 + min(3(n-1) - max(.t+l,1)-6, J(n-1) - max(l.t-ll,1)-6) 

(by induction) 

m 4 + 3(n .. 1) .. max(1.+1.11-11,1> - 6 

• 3n-.t-6 ~ Jn - max{1.., l) - 6 

and the proof is complete for Case 4. 

Case 5: Both G and H are v-gates. 

This case is handled dually to Case 4. 

O Theorem 5.1 

Section !!.:.... The Monotone Circuit Complexity of Threshold £ 

We now consider a specific set of threshold functions, T~ 

for n ~ 2, and demonstrate some known lower bounds on the monotone 

circuit complexity for this set of functions. We first obtain 

lower bounds on the number of v-gates and A-gates separately. 

The gene~al technique used in previous sections of setting 

certain inputs to constants and eliminating gates will be used here 

as well. For the specific function T2 we will be· able not only to 

establish that a certain number of gates can be eliminated, but also 
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to detemrine what types of gates can be el imi-nated. 

Proof· (Bloniarz): By fnduction·on :r\. T-tre «~&se· n = 2 is 

obvious. 
' . 

For larger values of n, we use an argument similar to that 

used previously. Assume the statement of the theorem true fpr n-1, 
. ,_ '. . - . . . I;, . i ;.- , · '. ·~ - . ~ '. 

and suppose N is an M-circuit computing T~ (x1, ••• ,xn) with . 

exactly the minimal number· MCv(~) O·f r '1'.i.'ga~s'. ·. 'As·sune f.u.-ther 

that, N has the minimal total number of gates among all such 
.. 

circuits with MCv(T~) v-gates. We show there is some variable, 

which by synmetry we assume is xn' such that setting xn to 0 

results in a circuit from which at.lea$t two v-~~tes may be _elin­

ated. If the resulting contracted circuit is N', then N' 

computes T~"' 1 (x1, ••• ,x~- l), ·and' we~ obtai~ the inequality 

(since N" computes 
~"'.l}' 

and the inductive. assumption completes the proof. 

We use lenna ~.5 to estab-Hsh the.1'.'e~i.tlt;;w;.l..o.g. we~ may assume 

that there is a gate G in N and inputs xi and xn to N 
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such that i ~ n, Pred{G} = {x.,x } and outdeg {x } ~ 2. See 
. 1 n n . 

Figure 5.10. Clearly by setting x
0 

to 0 at least two gates may 

be eliminated. We prove that at least two of these gates are 

v-gates, but first introduce some useful notation. 

·"' I ~\. 

Fig. 5.10 

Suppose that · G and H are nodes -Of N. Reca.11 that a path from 

G to H is a sequence of nodes Go ,_G111 ••• , 6t (for. k 4t o) of 

> 

N such that G0 = G, Gk = H and Gi+le:Succ{Gi) for h[O:k-1] . 
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Definition: An A-chain from G to H is a path G0, ... ,Gk 

such that G. is an A-gate for all iE[l :k]. That is, an 
1 

A-chain is a path in the graph of N all of whose nodes, except 

possibly the first, are A-gates. Note that a path consisting of a 

single node is an A-chain regardless of the type of node. 

Define 

T(G,N) = * {HESUCC (G,N) I there is an A-chain from G to H} 

and 

V(G,N) = * {HESUCC (G,N) I H is an v-gate and 

Pred(H) n T(G) i 0} . 

(where again we omit mention of N if there is no ambiguity). 

The importance of these definitions is as follows. 

5.7 Lemma: Suppose N is an arbitrary M-circuit, and G and H 

are nodes in N. Suppose further that Res(G,N) = 0. Then 

(a) If HET(G)' Res(H,N) = O; 

(b) If HEV(G)' then H has at least one constant input 

and may be eliminated from N; 

and 

(c) * If HcSucc (G) and Res(H,N) t 0, then every pa th from 

G to H contains a node "in V(G). 
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Proof: (a) and (b) are obvious. ·to prove (c), suppose 

Res(H,N) ~·!J. · Then, by (a), there is no' A-cha ht from G to H. 

Thus every p~th.f.rom .a to H conta1ns at· least one v•gate, and 

the first.stJch is easily seen.tobe:a m&Ml)er ef V(G). 

·· . o· Lentna 5. 7. 

'We ·proceed with the proof ·of Ttte'orem 5.6. Suppose u is the 

output gate of N, an'd let · N ·be the c1rcuit·obtained when the 

constant <> is ·subs t ttuted for 
-- - : - \,; . ,. . --. 

xn. 'By Lehllla 5.7(b), this setting 

xn = -O allows-us to eliminate all the 'v-gates in V(xn,N) from 

N ... ; if fV(xn,lf)I -~ 2, then th~, proot'is completet. We therefore 

need constder ority t Vixn>I < 2. 

n * Because r2 depends on xn, we khow tHat U!Succ (xn,N). 

Since Res(U,N') is not the constant function 0, we know that 

there is at least·one,gate t11 ·V(x .) ·&y Lenna 5~7(t}~ n 

t Note that T and V are defined in terms of the structural 

properties of the circuit; in fact V(x ,N) = V(ZERO,W), and 
n . . 

T(xn,N) = T(ZERO,N"). We refer to these sets of gates as V(xn) 

and T(xn) respectively. 
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·so we may assume ~at V(xn} contahls exactly one gate H. 

* Note that U£Succ (H;N) since N WAS an v-AJ.fnima1 cirtu1t for 

T~. Suppose that Res(H .N ') • l• , Again:_·&tsing tenlha. 5;. 7(t), we 

know that V(H,N!') ~ f. ,Stnce the graph ef ·,N :is acyclic, it·fs. 

impossible ,for H to be a member of V(H), so I {H}uV(H) I C!: 2. By 

LeR111a 5.7(b), all nodes in {H}uV(H) may be eliminated from N', 

constituting at least two v-gates. 

We may conclude th~ proof by demon~trltjng that the,r~ining 
-. - -! - - ',:< ' . • . ~: - -· • I > _.! ' ' ~ • • ; 

case, namely when V(xn) = fH} and Res.(H~'r) ~';£• canno~., ~aJ>pen. 

Since H is a gate, we may assµme ~hat P~ci(HJ ,=., U ,JJ (where. 
' . - ; : . -· ·"" ~- ,, ~· - . . .. . 

it is possible that G is one of J~J,: or)ll· ,Since .. &V(xn), 

at least one of I or J must .be in .. ,T(~n}; w& ass~ w. l.0.9. that 

1£T(xn). The steps of the proof that ~tMs . .ca.~ ~anJ1pt,. ~r ,are 

eni>od i ed in the fo 11 owing 1 eR111a. 

5.8 Lenina: Suppose G, K, -I, and J ate .as above. ;:;Tften 

and 

(a) Every path from xn to U in N lilUst· pass through H; 

(b) J does not depend structurally on xn in N; 

(c) G is an A-gatei 

(d). I1:T(x
1

). 

Proof of LeR111a: Result (a) follows from the fact that 

Res(U,N') Io. By Lellllla 5.7(c), we then know that every path from 

ZERO to U in N' must pass through H; that is, every path from 
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xn to U in N must pass through H. 

Since. Ie:T(xn)' we know ·Res(I,N"") = O by Lenma 5.7(a). 

Hence Res(J,N .. ) 'IQ. since Res(I,N .. )vRes(J,N .. ) = Res(H,N"') 'IQ. 

Thus by Lenma 5.7(c}, any path from xn to J would contain H, 

the unique gate in V(xn). Since Je:Pred(H) by definition, and 

N is acyclic, we conclude that there·is no path from xn to ~­

Hence (b) is established. 

If G were an v-gate,,then .G. would be equal to H and 

there would be exactly one path consisting of a single arc from 

x
0 

~o H. Since outdeg (xn) ~ 2, there is a gate G .. ;. G in 

Succ(xn). Since there is a path from G .. to U in N .. , there 

must be a path from. G .. to H in N. Since both members of 

Pred(G,N} are input nodes, this is impossible, so (c} is established. 

Finally, since .G is an A-gate,. V(6) .s. V(xn}' By Lemma 5.7(c}, 

we know that V(G) 'I ~ since there is a chain from G to U in 

N .. and since Res(G,N .. ) = O. Hence He:V(G}, so by definition at 

least one of I or J is a member of T(G). ~f, Jt:T(G), then 

Je:T{x
0

) in contradiction to Lenma 5.B(b}; hence Ie:T(G). Since 

T(G) .s. T(x1), the proof of (d} is complete. 
'"" 

O Lenma 5.8. 

Now let N.... be the circtJit obtained from N (not N .. ) by 

setting xi to O. Res(U,N .... }, being the threshold 2 function of 

the remaining n-1 variables {x1, ••• 5xn} - {xi~' depends on xn. 

By Lemma 2.9, we know thut there is a path C in N...... from xn 
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to U such that every gate in C depends: functionally on "n· 

Since H is on every path from xn to u, irr --N py i..eR111a 5.8(a), 

it must appear ono,very path, in N"'" , and hence' on C. Thus 

Res(H,N"'"'), depends on xn , in N ...... 

Hc;>We~er, by L~tJJ11as 5~7(a,) and s.s(d~, R~s(l',N"'~) = O'~ so 

Res(I,N"'"') does not ®~nd fumc*ionally·ien, xn•"' ~'Sf1"ihrly, by 

Lenma 5.8(b), J cannot· depend functionally on\ 'xn _:in' N, and. 

hence in N ...... , so Qes(J ,H."'~) .does· not ·depend functfenall.r on . x~. 

Thus Res{H ,N ..... ) does not depend on xn t- a <$ntradic,fi ori. 

·· o 'Theorem s. 6. 

We c&n al so get a 1 ower bound on the nuinbet af "'-gates in 

any M-cin:uit which computes- . T~. Here the technique used is 

similar, but_w(! must set more than one input to a constant to 

eliminate a single A-gate.-

5.9 Theorem: (F.F. Yao): Suppose . n 2! l. Then. MC"(T~) <!: Jfog2 "1. 

P.roof: We prove this fact by strong induction on n. For 

n = 1 the result is trivial. 

Now suppose n <!: 2· and the statement of the theorem is true 

for all n"' < n. Suppos~ N ts . an .A11i-nimal Mo<ircuit which ; 
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computes T~. Since n ~ 2 and since x1 LPI{~) for any index 

h[l:n], N must contain at least one A-gate. Let 6 be a. 

top-most A-gate in N; that is, G is an A-gate such that every 
+ . . 

gate in Pred (G} is not an A-gate. C1early such a gate exists, 

since N is acyclic. suppose Pred{G) = {ff,J}. · See Figure 5.11. 

' Fig. 5.11 A Top-m0st A-Gate 
+ Since G is a top-most A-gate, all gates in Pred (G) are 

either v-gates or inputs. Hence Res(H,N) = i¥Axi ··and 

Res(J,N} = i'f8x1 for some non-empty subsets A and B of [l :n]. 

Observe that 

Res(G,N) = { 1 €~nB x1} ~ (i~-B (xi"Xj}) 
j€8-A 

(1} 

Let C denote the smaller of the sets A-B and B-A and let c 

denote ICI. Then one can easily check that c ~ ri/2.· By renum­

bering the inputs, we may assume w.l.o.g. that C = [n-c+l:n]. 

Let N"" denote the circuit which results when the entire set 

of variables {x; I i€C} is set to 0. Note that N ' computes the 
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function • By (1) we know that 

·We now modify N"' to eliminate gate (i.. Cons:tniQt ac new 

tree. of v-gates ~nd input n()des which ~~es ~- ·.f140c,tion,.; 

v i£AnBxi at a gate G"'. Eliminate G from N"', and replace G 

by G"' in Pred(K) for al L.9~tes KE:st.ic~(G~~"'). (If G were 
/' . 

the output gate of N, then 'G"' Wi.11 nowl(e th~- output gate.) 
" ... ~, "• -d!;. • • - ~ 

Call the resulting circuit N"'"'. Sfn'8e\ G has been replaced in 
' 

N" by a node which computes the s~~fi.anction, N" also computes 

T~-c • Since N"'"' has one fewer . A-gate than N and since N 

had a minimal number of A~gates computing T~, we .know that N"'"' 

does hot·compute T~ and thus c <? 1. Hence 

MC (T"2> = MC (N) = · 1 + MC (N") 
A A A. 

and the theorem is proved. 

I 

~ 1 + log(n-c) (by induction) 

~ 1 ·+ log(n/2) ·(since c s n/2) 

= '·1og(n) 

O Theorem 5.9. 
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In preparation for future results in the chapter, we note the 

following additional facts gleaned frotJ the proof of Theorem 5.9. 

Suppose n is an exact power of 2, and N is an M-circuit for 

T~ with exactly log n A-gates (which we later shew:is possible) .. 

If G is a top-most A-gateof N. then if c (as defined in the 

proof of Theorem 5.9) is less than n/2, the setting of the variables 

{xi I i£C} to O leaves a circuit N' for a function T~', wh~re 

n"> n/2, which has 1 fewer A-gate than N. But this is impossible 

since then 

A 

log n = MC(N) 

A 

;2: MC(N') + 1 

~ log n" + l 

= ·1 og ( 2 n·") 

> log n 

Hence we have proved 

5.10 Corollary: Suppose that n = 2r for rEJN , 'and that N is 

an M-circuit for T~ with exactly log n A-gates. If G is a 

top-most· A-gate of N and Pred(G) = {H,J}, then there is a 

partition of [l:n] into two sets A and B such that 

IAI = IBI = n/2 and such that Res(H) = i~Axi and Res.(J) = j~Bxj" 
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We proceed w1th our discussion of T~· by demonstrating that 

each of these lower bounds is ilttainable in some M•circuit comput­
n ing T2• 

An M .. circuit .with exactly · 2n-4 v-gates for- T~ ·. (for n ·~ 2) 

is obtai-ned ·by use·of tbe following reeurshe·constrtl<:tions. We 

will show ipductive1y that, for. n lt:2, there is a we-output 

M-circuit on inputs · {x1, ..• ,xn} contafnfng 211~! v-gates 

which computes T~(x1 ,.~.,x0 ) and T~(x1 , ..• ;·x~)." 'F'or · n = 2, 

the circuit is given in Figure 5.12. 

• j' 

. i 

Fig. 5.12 A circuit for: .n;=2 

Assumi.ng the fac;t true fnr n, ~e may cpf)~truct such a cir;cuit 

for n+l variables with 2 additional v-gates (and an. A-gate) 



-125-

by use of the recurrence re 1 at1 ons . 

and 

n+l n 
T 1 ( xl ' • • • 'xn , xn+ 1 ) = xn+ 1 v T 1 { xl ' · · • 'xn) • 

See Figure 5.13. 

Fig. 5.13 The Recursive Construction 
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A circuit for T~ with exactly .2n-4 v-9~ may ·be' thus 

obtained since at the last step in this construction of T~, there 

is no need for the v-gate marked by * in Figure 5.13. 

5.11 Corollary: For n ~ 2, MC {T~) = 2n-4. 

As for exhibiting an M-circuit for i~ with ex~c~1¥ 
0
,. [?g)il 

A-gates, we first describe a general method for.such a construction 

which was conmunicated to the author by F.F. Yao and A. Yao. For 

the remainder of this chapter it will be convenient to have the 

variable indices,begin with O rather l. 
} •' c 

Definition: Suppose .e.dN • Fot. O :;; R. s. 2t .and. 1 ·~ j ~ t, define 

{i)j to be the jth digit in the binary expansion of i.~ that is, 

(i). = 
J { 

1 i f i{mod 2j ) ~ 2.f • l ~ 

0 othems.e. 

Suppose n€1N • Define for each j~[l: !fog (n)1:Jy(he following 

subsets of the variables {xi I i€[0:n~l]}. 

A~= {X• I iE[O:n-1] and (HJ· = 0}. 
J 1 

and sj ={xi 1€[0:n-1] and (i)j = l} 
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n n Define corresponding Boolean functions aj' bj€8n by 

and bJ~<xo•···•xn-1) = 1VB xi 
€ j 

(We.omi.t mention of n if it is clear from<:ontext.) Finally, the 

radix-join function Fn B 
€ n, 2 rr og rtr 'is defined by 

An M-circuit which computes Fn is called a radix-join network. 

It is easy to see the relationship between the radix-join 

function and the function "Threshold 2. 11 In fact, with the 

definition given .above. 
If o'g "1 

T~ = V ( a
3
. A b

3
. ) • ( 2) 

j = l 

To prove (2), note that the sets of variables Aj and Bj are 

disjoint for each ,k[l : !'fog "1 ]. Hence, letting h be the 
n function defined by the right hand side of (2), we know that h ~ T2. 
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Conversely, for any pair of variables xk and x1 , with k I t, 

there i.s some posi.tion j at which the binary representation of 

k and t differ. Hence xkx1~P1(a,.j;.bj), ,$0 · xkxt s h. This fact 

being true for every k ~ t in [O:n-1], we know that T~ sh. 

See Figure 5.14. 

' ' 

. . . 

RADIX-JOIN . 

. ' . ~---

' " '¥>' 

aff ogn b fl ogn 1 
' :~ : ' 

Fig. 5.14 An M-circuit for T~ 

Applying the decomposition (2) to complexities, we have the 

fol lowing: 
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5.12 Lefl111a: Suppose nt~ , and Fn is the radix-join function. 

Then 

Since F" is defined only in tenns of v-gates, MCA(f'l} = O; 

hence we have: 

5.13 Corollary: For n ~ l, MCA{T~) = 'log ill. 

From the fonnula-definition of the radix-join function one can 

clearly construct a radix-join network with O{n log n) v-gates. 

A straightforward recursive construction yields a radix;,.jdin network 

with 3n - 2 log n - 4 v-gates, yielding an M-circuit for T~ 

using Lefl111a 5.12 with a total of 3n-5 gates. Several substan-

tially different M-cirtutts for T~ with this size·can be c~nstructed, including 

the circuit in Corollary 5.11. L. Adleman proved that asymptotically 

fewer than 3n-5 gates are necessaryt, and using.his.techniques 

t Personal co111RUnication, 1976 
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one can prove the following: 

5. 14 Theorem: Suppose nd·,1 • Then 

P.~of: Suppos~ n >4 and let J. = 'lo,g .Jil. Let· ·n1 = 2 &,g · 
and n2 = n/nl1 • We will use the following recursive (;U(f>a~sion 

to construct an efficient radix-join network for n variables. Let 

X denote the set of variables {xi· I iE[O:n-1]}. 

Suppose that pE[O:n1-l] and QE[O:n2-l]. Define subsets 

of the variables X for such p and q by L' = {x. I iE[O:n-1], p l 

i (mod n1) = p} and. Hq = £x1 j iE[O:n-1]. tiJn1...1 =, q}. Informally 

if all variables are thought to have indices whose binary represen­

tation is padded to length e~actly a.~ then LP .. is .the set of 

variables which have a binary index whose lower order .Y'!.:J bits 

are equal to the binary repres.entation .Qf p. S1nf1arly. Hq is 

the set of variables whose bi~ary index has a.high order 'i:°/21 

bits ·equal to the binary representation of q~ We have correspond­

ing functions LP and .Hq in Bn where LP 1~ the disjuoction 

of all variables in Lj;, and Hq is the disjunction of all vari­

ables in Hq. Note that each variable x1EX is a, !JlelN>er ·of exactly 

one of the sets {LP I PE[O:n1-l]J, namely the unique p such 
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that i (mod n1l = p. S_imilarly. it is easy to verify that the 

collection_ H0,H1 , ••• ,Hn _1 is a partition of ti a set X and that 
2 .. . . 

xi t:Hq where q = t:!Jn1...J. Moreover, none of the sets Hq is empty 

for Qt:[O:n2-l] since q·n1 ~ n1n2- n1 < n and· xq·n
1

t:Hq. 

We claim that the relationship 

(3) 

holds, where we use the obvious isomorph1sm:between {0,ll 2iand 

{0, 1} 2(1!/.?J) x{O, l} 2 (1f/2~ 

Assuming this for the moment, we describe an efficient radix­

join network using (3). Using the definitions of HP and Lq' · 

we construct an independent {v} - circuit (which happens to be 

fan-out free and is thus a formula) for each of the functions 

L0 ,L1 , .•• ,Ln
1
_1 and the functions H

0
,H

1
, ... ,H

02
_1 • To count 

the number of v-gates which this takes, suppose It: I = R. for 
.. p p 

pt:[O:n1-l]. Then, since LP is a disjunction of single_variables, 

C{v}(LP) = R.p- l since 1p;. O.for each p. Hence, the total number of 

v-gates required to compute all the functions L
0

,L
1

, ••. ,Ln
1

_
1 

is 

l[ ](1 -1) = ( l ] Lp) - nl pc O:n1-l p pc[O:n1-1 

= n - n l 
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s 1 nee each x1 ~x ts a mellDer of exie.t ly one --Of the set-s t.P for some 

p~[O:n1-l]. Similarly, One can· compute all .the ·funct}oos Hq 

for q~[O:n2-1] .wtth·« total .of n • nf~ v-~tes;. gtvfng ;a tot~l 

of 2n - n1 - n2 . gates in all. 

We now use the n1 functions ilp,.f~r, 1 ,P~l~=~i-:,U" ~s inputs 
. . n 

to a recursively constructed radix-join network F 1, and likewise 
.~ 

.. ! ... 

the n2 functions Hq for qc::[0:"2,.J] as tnprts to a recursively 

constructed radix-join network Fn2. Using equation (3), this yields 

a circuit for Fn. · (See F1 gu·re s.1 s.) 

-----------

' " ~ . 

" .. 
TREES. OF. v-GATES 

'RADIX' 
JOIN 

... 

'AAoU( 
JOIN 

·-

Fig. 5.15 The Recl4-f~ive Radix-join Network 
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If we let T(n) = C{v}(Fn), then we have th$ recurrence rela­

tionship 

Since n1 s ffn and n2 ~ ffn" and since T(4) = 4, this recur­

rence can be bounded by 

T(n) s 2n + ~(n/211 12 + <6(n!i2) 114 + 16(~/2) l /S +,:;; 
1 

(log log {n/2) te~ ) 

log log (n/2) k 
s 2n + r 2k+l (n/2) 1/2 

k = 1 

which establishes the theorem since the su1T1Tiation is O(ln). 

It remains to prove equation (3). Suppose that_ Aj, sj, aj, 

and bj are as 1n the definition of Fn. :suppose that j s l&.l.fJ • 

Then Aj ={xi I (i)j = 0} = (p}J~olp since (i)J = O iff (p)j = O 

where i (mod n1) = p • Hence anJ. = (i )"( L; 50 . a~ . i 
5 

the cor-

responding component a;l 
n 

is the component bjl of 

,prO ~-. J 
nl ( ) . 1 b~ of F Lo•··r·•Ln

1
_1 • Sim1lary J 

nl F ( L0 , ••. • , L.,.. l } • . . nl• .. 

A similar proof demonstrates tlfat when i!IEi < j s t, 
n a. is 
J 



-134-

O Theorem 5.14. 

Applying Le11111a 5.12, we have 

5.15 Corollary: (Adleman} Suppose ne ~ • Then 

We will have more to ·say about this method in Section D. 

Section c - M-circuits for Threshold£ which are ~-minimal 

In·the previous section, we demonstrated lower bounds of 2n-4 

and fog2 "1 on the number of. v-gates and A-gates respectively 

necessary to compute T~ by an 'M-ci r~uit. and demonst_rated -circuits 

which achieved each of these bounds. The· question naturally arises 

of whether ther~ is a single M-circuit which computes T~ and 

which simultaneously achieves this minimum number of A-gates and 

v-gates, and in this section we show this is impossible for infinitely 

many values of n. our technique will be to.est'ablish larger bounds 

on the number of v;-gates nepessary to compute T; (for n a 

power of 2) for any M-circuit wttich.ha$ exact.ly log n " .. gates. 
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We begin by examining the structure of such circuits with 

exactly l_og n A-gates. In Section B, we saw that such a circuit 

may be constructed from a radix-join network. In this section, we 

will show that ft 1s possible to extract a radix-join network from 
n . 

any M-circuit for T2 with exactly log n A-gates. For now, we 

assume that n = 2r is an exact power of 2 (for some r ~ 2), and 

that N is an M-circuit which computes T~, has exactly r A-gates, 

and among all such circuits has a minimal numbert· ofiv-gates. 

5.16-Theorem: Suppose n,N, and t are as above. Then an 

M-circuit Rn exists which computes F", the radix-join function, 

and which has t - log n + l v-gates and no A-gates. 

Proof: We show how to extract Rn from N. We first show· 

that there is a restructuring N0 of N which also computes T~ 

in which there is only a single A-gate on any path from an input 

node to the output gate - that is, there are no A-gates in 
+ + Pred (G,N0) ySucc (G,N0) for any A-gate G. Call such a circuit 

a single-leyel circuit. Moreover, we show that it is possible to 

construct ,NO with no additional A-gates or v-gates. 

Suppose that N does not have this property, and let U 

denote the (unique) output gate of N. Let G be a top-most 

A-gate in N which has at least one A-gate below it; that is, 

Pred+(G,N) contains no A-gates and Succ+{G,N) contains at 
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at least one A-gate. Observe that G ~ U by definitfon since 

Succ+(U,N} =i IJ. We show how to re ... wire~the circuit so that 6 is 

no longer Qn a path with.any other " .. gate. 

We first censtruct a §ircuit N:";. as follows.' .Add an additional 

v-gate U .... and s~t Pr.d4U~,K ... } •.Ui,Uh cln:additioo ·•for 
' , 

every g~te HESucc(G,N). replace ; in Pred(H) by the constant 

node ZERO. See Figure 5.16~ 

• 
' 

; 

, I 
J 

I ' I \ I 

Fig. 5.16 The Reconstruction 

I 
I 

Then simplify this circuit to yi~ld a third. ci'rcu1t .H...... by 

simplifying any gates with at least one input a constant function. 
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Since outdeg (G,N) ~ 1, this removes from N' all gates in 

V(ZERO,N') (as defined in Section 58) and hence at least 1 v-gate, 

so N' has at most t v-gates and at moJt r A-gates. 

We claim that Res(U' ,N .... ) = T~, and .hence N''." has exactly 

t v-gates and ~ A-gates. ~ote that .Res(U',N'') = Res(U',N') ). 

To prove this, assume that t = ( c1 ,c2 P •• ,en) is an arbitrary 

constant in {0,l}n. We show that 

Since N had log n A-gates, by Corollary 5.10 we know that 

there are subsets A and B of [O:n-1] such that AnB = 0 and 

Res(G,N) = .YAx.x. Hence Res(G,N) n Thus, in the . s T2. case 
1€ 1 J 
jt::B 

that T~(c) = o, we know Res ( G ,N)(c) = 0. In this case it is 

easy to prove by induction on length of paths that 

Res(K,N)(c) = Res(K,N')(c) for every K£Nodes(N). Henc~ 
+ 

Re~{G,N'}(c) v Res(U,N')(c) = O, an~ thus Res(U' ,N'}(C) ;:Q. On the 

other hand, suppose Res(U',N')(c) = o. Then Res(U,N')(c) = 

Res(G~N')(c) = O so Res{G,N)(c) = o since N and N' are 

identical on the predecessors of G. Thus, it is again easy to 

verify by induction that Res(K,N)(c) = Res(K,N')(C) for every node 

Kt::Nodes(N), so Res(U,N)(c) = o. Hence 
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(Res{U,N)(c) = O) * (Res(U' ,N"')(c) = o) 

so . T~ = Res(U,N) = Res(U',N"'). 

/ 

The effect of this rewiring is to remove G from any path 

which has more than 1 A-gate on it. · Since the transfonnation 

decreases the number of A-gates with A-gate successors t, by recur­

sively repeating this process for top~level A-gates with A-gates 

below them, the result is a single-level M-~ircuit for T~ with 

r A-gates and t v-gates. Call this modified circuit N0• We 

remark in passing th_at every path from an input to the output in 

N0 must have exactly one A-gate on it since PI(T~) contains no 

single variables. 

We can now extract the radix-join network from N0• Let U 

denote the output gate of N0, let G = {G1,G2, ••• ,6r} denote 

the set of (incomparable) A-gates in N0 , and let Pred(Gi)= {li,Ji} 

for all ie[l :r]. See Figure 5.17. There is a gate in G on every 

path from INPUTS(N) to U. Since N0 is minimal, there is a path 

from each node of G to U. Since there are only v-gates on any 

path from G to U, we know that Res(U) = G~GRes(G). Moreover, 
. -

since N0 contained a minimal number t of v-gates , we know that 

tObserve that for arbitrary nodes A and B of N , if A 

* * is a med>er of Succ (B,N .... ), then A was a member of Succ (B,N"'). 
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the portion of the circuit between the A-gates G and the output 

U consists of a tree of v~gates. Thus there are r-1 v-gates 

H = rn1 , ... ,Hr-l} (one of which is l!) below G in· the cf rcui t. 

Fig. 5.17 The Circuit N1 

Fix j€[l:r] and let iE[O:n-1]. By Corollary 5.10, since N0 
has r = log n A-gates, we know that there is a partition of the 

input variables X = {x4< I k··s [O:n-1]} into two sets A and B 

such that Res(Ij) is the disjunction of all variables in A and 
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Res(Jj) is the disjunction of all variables in B. Hence, 

since the circuit of the predecessors of G consists entirely of 

v-gates, there is a path from the particular variable xi to exactly 

one of I. 
J 

and J .. 
J 

Moreover, suppose that 

of X. Since XiXkEPI(T~), 

x, 
l 

and 

and 

since 

xk are two distinct variables 

T2n = GVGG., there must be 
f ' J 

some gate G. 
J 

path from x. 
1 

such that x.XkEPI(G.). 
1 J 

Hence there is either a 

to Ij and a path from xk to Jj or vice versa. 

With these observations, we may renumber the inputs as follows: 

If E is an input node to N
0

, we label E by xi, where we 

define the index ie[a:n-1] for E bitwise by defining 

( i ) . 
J 

= { 01 
if there is a path from E to I. 

J 

if there is a path from E to J 
j 

for each jE[l :r]. By the above observations, it is easy to verify 

that, since n = 2r, each input node gets labelled with a variable 

from {x. I ie[a:n-1]} . Moreover, each input node gets labelled 
1 

with a distinct variable since two distinct input nodes must have 

paths to different prede~essors of one of the A-gates G .• 
J 

We 

assume w.1 .o.g. that this is the numbering of the inputs since T~ 

is a symmetric function. 

Now let R be the circuit obtained from Na by deleting the 
n 

sets of gates G {all the A-gates of Na) and H ( r-1 v-gates). 

Since Rn is an {v}-circuit, we know that, for any gate D in R 
n ' 
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, * n 
[Xi€PI (D)] * [D€Succ (xi)]. Hence, if the radixLjoin function F 

has components (a1,bl'a2 ,b2 ... ,ar,br}' then, for each j'e(l:r], 

aj = Res{Jj,Rn) and bj = Res(Ij,Rn}. Het'lce Rn is· a radix-join 

network for n-variables. 

Since R contains t - r + 1 v-gates, the theorem is proved. 
n 

[} Theorem 5. l 6. 

Armed with this theorem, we proceed to obtain,bounds on the 

number of v-gates needed to compute the radix-s~t function in 

{v}-circuits. We first prove a general le111J1a about {v}-circuits. 

Defintion: Suppose N is an M-circuit. Define the center of !, 

denoted ZN,by ZN = {GeGates(N) I Res(G,N) = 0 }. Note that 

ZN= 0 unless outdeg(ZERO) ~ l. 

5.1 7 Lemma: Suppose N is a {v}-circuit with inputs {x1 ,x2 ,._ .. xn} 

for which outdeg(ZERO,N) = O , and some subset A of inputs to 

N is set to 0, yielding a circuit N'. Then it is possible to 

remove from N' at least 

l owtdeg(l,N) + l foutdeg(G) - 1) 
IeA Ge ZN' 

v-gates in Succ+(A,N). 



-142-

Proof: Recall that the operation "setting c.. variable x to 

011 in a circuit involves replacing x by ZERO in the predecessors 

of all gates in Succ(x). Hence outdeg(ZERO,N-) = I outdeg(I,N) 
It::A 

and it suffices to show that at least 

outdeg(ZERO,N"') + I (outdeg(G) - l) 
Gt::ZW 

(4) 

v-gates in + Succ (ZERO,W) may be removed from N' . We prove 

this by induction on f'ZN-1 · 

If ZN, = 0, then every gate in S = Succ(ZERO,N') may be 

eliminated from N- since each gate in S has at least one input 

constant. If JSI < outdeg(ZERO,W), then by the pigeon-hole 

principle there must be some gate Gt::S with both nodes in Pred(G,N') 

being the node ZERO. But then GrZN'' which is a contradiction. 

Hence, at least outdeg(ZERO,N-) gates may be eliminated. 

Now assume that IZwl =: k > 0, and that (4) is true for all 

{v}-circuits with centers of size k-1. Let G0 be a member of 

I(ZN_), the set of initial gates of ZN-' and suppose Pred(G) = {J,K}. 

See Figure 5.18. Since Res(G0,N-) ~ Q_ and G0 is an v-gate, 

we must have Res(J,N-) = Res(K,N-) = Q_ by Lemma 2.1. Since J 

and K are not members of ZN_ (by definition of G0), it must be 

the case that J = K = ZERO. See Figure 5. 19. 
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K 

Fig. 5. is G0 E r (ZN') 

I 

/ 

• • • < I ' . ' \ • • 

Fig. 5.19 

-
We construct a new circuit N from N- by eliminating gate 

G0, and replacing G0 by ZERO in Pred(H) for every gate 

HESucc(G0,N-). For every node LENodes(N), we know that 
-

Res(L,N-) = Res(L,N) since G0 was replaced by a node which 
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computes the same function. Furthermore, IZNI ~ IZN,j- l 

(since G0 was removed from the circuit); outdeg(G,N) = outdeg(G,N~) 

for every gate GEZN; and outdeg(ZERO,N) = 

outdeg(ZERO,N~) - 2 + outJeg(G0 ,N'). Thus, by induction, it is 
-

possible to remove from N at least an additional 

outdeg(ZERO,N) + L (outdeg(G,N) - l) = 
Gd-

N 

outdeg(ZERO,N~) +[ I (outdeg(G,N') - l)]- l gates from 
GtZN, 

+ - + Succ (ZERO,N) s Succ (ZERO,N~), which, together with the elimination 

of G0 , proves the lemma. 

D Lemma 5 ·. l 7. 

One additional lemma will prove useful: 

5.18 Lemma: Suppose for any r-.€ 11-~. 

n 
Let Rn be a minimal {v}-circuit for the radix-join function F . 

If i E[O:n-1], then outdeg(x.,R) ~ 2. 
i n 

Proof: Suppose n, R , and i are as in the statement of the 
n 

lemma. Let Fn = (a1 ,b1 , ... a liog ~ ,b flog~ ). Observe that 

IPI(a1)1 = 'n;21 and IPI(b1)1 = LO/ll and hence neither PI(a1) 

nor PI(b1) consists of a single variable. Since x1 is a member 

of one of PI(a1) or PI(b1), we must have that outdeg(x1 ,R0
) ~ l. 
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Suppose that outdeg(x1,Rn) = 1. and let Succ(xpRn) = {G} 

where Pred(G,R) = {x.,H}. See Figure 5.20. Since N is a {v}-circuit · n l · · · 

H 

Fig. 5·.20 The Case outde~(xi) = 1 

PI{H,Rn) is a non-empty collection of single variables, so let 

Xk€Pl(H,Rn) be chosen arbitrarily. Note that k I i since the 

graph of Rn is acyclic. 

It is easy to verify that in any {v}-circuit N, 

* [K€Succ (L,N)] .,. [PI{L,N) ~ PI(K,N)] (5) 

for any K,L€Nodes(N). Thus, in this case, since 
+ * . Succ (x1 ,Rn) = Succ (6,Rn), we must have xke:PI{ K,Rn) for any gate 

KESucc+(x1 ,Rn). However, if we let j be a radix position such 

that (i)j = (k)j (which must exist since i 'f k), then one of 
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PI(aj) or PI(bj) should conta:in x1 but not xk; assumi! w.1.o.g. 

that . X;~Pl(aj) a'nd xk.lPI(aj·}. Since· Rn •.computes ,:n' there 

must be a node D in R which computes a.. Si nee n ."1- 2r + l, n . J 

no component of Fn (including aj) is the projection of a single 

variable, so D must be an v-gate. ~~ D depends on xi 

and hence is in 
+ - '. _•, ' 

Succ (xpR0~-- we must h4y--:oe ~\XkE:Pl(aj) which is a 

contradiction. ,, 0 Lenna 5. 1 8 

We are now ready to establish a lower bound on the complexity 

of any {v}-circuit which computes the radix-join function. 
r ., 

5.19 Theorem: Suppose nE:lN • Then C{v} ( Fn) ~ 2n + 2 LlognJ - 8. 

Proof: The theorem is easily verified for n s 4. For larger 

values of n, we first solve the prol>Jem., _irt tile cas·e ,in which n is an 

exact power of 2; say n = 2r for some: t'ctf • ,We proceed by 

induction on r; the cases r = l and 2 have already been disposed 

of. 

Assume the statement of the theorem true for r - 1, and that 

n :::; 2r. 

Suppose that . Fn • ( a.1.bl' ..• ,ar ,b.r) . and. tha~ Rn is .. a 

minimal {~}-circuit which computes Fn. Our gem~ral obJect·ive will 

be to show that by setting half of the variable$ {xl'x,2, •••• xn} 

to o. one can eliminate at least n + 2; v .. gates from tbe resulting 
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circuit and have a circuit R .. which computes,, Fn/2. Assuming 

this for the moment, we then know that 

n .. .. 
C{v} (F ) = C{v} (Rn) <?: n + 2 .+ C{v} (R') 

~ _n + 2 + C{v} (Fn/2} 

~ n + 2 + 2(n/2) + 2(log (n/2}) - 8 
(by induction) 

= 2n. + 2 log n - 8, 

thus proving the theorem. 

So suppose Rn is as above, and that Ik and Jk are the 

nodes in Rn which compute _ak and .. bk respectively, for 

k€[1 :r]. 

By fact (5) of page 145, in Rn each output node in 

{I1 ,J1 , .•. ,Ir,Jr} must have outdegree zero since the sets of 

prime implicants of each component of Fn are incomparable. rn 

particular, if o1 and o2 are arbitrary output nodes~ then 

1PI(D1)nPI(D2)1 ~ n/4. Each output node_is an ~-gate since each 

component of Fn has n/2 > l prime implfcants. These are the 

only nodes in Rn with outdegree zero since Rn is minimal. 

Let 

and 
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Observe that AnB = 0 and IA! = IBI = n/2. Let RA (resp. R8) denote 

the circuit obtained by setting all variables in A (B) to 0. 

It is easy to see that RB, with output nodes o 1,J1, ... ,Ir-l'Jr-l}' 

is a radix-join network on n/2 variables. Similarly RA with 

the same set {I1 ,J1 , ... ,Ir-l'Jr-l} of output nodes is a radix-join 

network of the remaining variables in B if the rth bit of the 

index of each variable in B is changed from l to 0. 

We show that n+2 gates may be eliminated from one of these 

circuits RA or RB. In RA' the only gate with outdegree zero 

which computes the constant function Q_ is Ir. By Lemmas 5.17 

and 5.18, tbis means that at least 2·(n/2)-l = n-1 gates in 
+ Succ (A,R) may be eliminated from RA (where the only node in 

ZR 
A 

being accounted for is In addition, since 

outdeg(1.lr,RA) = 0, Jr also may be eliminated since it is no longer 

an output gate in RA. Since JriSucc+(A,Rn), it was not eliminated 

previously, so at least n gates may be eliminated from RA. 

In a similar fashion one may count at least n gates eliminated 

from RB. 

To show that at least two additional gates may be eliminated 

from RA or RB we must look at other gates in the circuit. Let 

Pred{Ir,Rn) = {KA,LA} and Pred(Jr,Rn) = {KB,LB}. See Figure 5. 21. 
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Fig. 5.21 The Predecessors 

We consider several cases: 

Case 1 (a)_: KA and LA are v-gates with outdegree in 

more than onl!. See Figure 5. 2 2. 

Fig. 5.22 Case l(a) 

R 
n 
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In this case, two additional gates in RA may be eliminated 

by Le.nma 5. 17. Both . KA and LA are menners of .ZR and -both 
A 

are of out-degree at le,St two in ~· The ~unt above:bf · n . 
gates consfdered only_ 0those mentlers of ZR . A of outdegM!e zero. 

~/ 

Case l{b): Kg ,and L8 are both v-gates of outdegree in Rn more 

than one. 

If this is the case,then in Ra two additional gates may 

be eliminated; the proof is handled as in l(a) with A replaced 

by B. 

Case 2(a}: -KA and LA are both v-gates o.f outdegree one in . R,.· 
See Figure 5.2 3. 

Fig. 5.23 Case 2(a) 
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In this case, both KA and LA in addition may be eliminated 

from RB. We have previously eliminated from· RB the unique gate 

Ir in Succ(KA,Rn) = Succ(LA,R
0

) •. Since neither KA nor LA 

is an output gate in Rg, each may also be elimina~ed from R8. 

Case 2(b): Ka and LB are both ·v-gates of outdegree one in RN" 

Proved similarly to 2(a). 

Case 3(a): Cases 1 and 2 do not hold; one of {KA,LA} is an v-gate of out­

degree more than one in Rn; and one of {K8,L8J is an 

v-gate of outdegree one in Rn. (The other nodes might 

possibly be inputs.) See Figure 5.2~. 

Fig. 5.24 Case 3(a} -- One Possibil1ty 
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In this case two additional gates v~gates_-tAay be eliminated 

from . RA. ZR has at ·1east one -gat~ of ootdegree-.at least .two 
A 

sfnce both KA and LA ·are menbers ofc: ZR , so Lemma 5.17 allows 
A .. 

us to eliminate at least one additional·gata. The v-gate of 

outdegree one in {Ka,Ls} may also be eliminated since its unique 

successor Jr had been previously eliminated and s'fnce; neither 

Ks and L8 is an output gate in RA. 

Case 3(b): Same as Case 3(a) with A and B interchanged. 
Proof is similar. 

Case 4: One of {KA .. LA} is an input, .the ot~r, is an, v-gate of 

outdegree one; one of {Ka~e} is an input9 :and the 

other is an v-gate of outdegree one. 

Suppose w.1.o.g. that KA and f<s are inputs. Let 

Pred{LA,Rn} ={M~N}. See Figure 5.25. At least one of Mor N must 

N 

Fig. S.25 Case 4 
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be an v-gate, for if both M and N were inputs, then 

IPI{lr;Rn.)1 = 3; but IPI(ar)l = (n/t) ~ 4 so this is impossible. 

Suppose w.l.o.g. that M is an v•gate. 

If outdeg(M,Rn) <?: 2, then Me:ZR , so in RA one additional 
A 

gate in Suc~+(M,Rn} may be eliminated by Ler1111a 5.1 7. Also L8 

may be eliminated since it is not an output gate and its unique 

successor has been eliminated. On the other hand, if outdeg(M,Rn) 

= l, then in R8 both LA and M may be eliminated in turn since 

each of their successors has been eliminated and neither is an 

output gate. 

The above list of cases exhausts all possible arrangements of 

KA' LA, Ka• and L8 ; the other arrangements are not possible in a 

minimal {v}-circuit. For example, 1t is impossible for KA to be 

an input and LA to be an v-g·ate of outdegree more than l. If 

so then since IPI(Ir,Rn)J = n/2, IPI(LA,Rn)I ~ (n/2) - 1. 

However, the set of prime implicants· of any output other than Ir 

has at most n/4 < (n/2) -l variables in common with PI{Ir,Rn), 

* and hence. the only output in Succ (lA,R ) is Ir by fact (5) of 
. n 

page 145. Similarly, it is not possible for both KA and LA 

to be inputs. 

This completes the proof of the theorem in the event . n .. ;_~ 

ari exact power of 2. 
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If n is not an exact power of 2, let r • t]_og :!J and 

let .n0 = 2r. Su1>1>ose that l\i. is a minimal {Y.}~ei rcuit for 

F"· = (al'bl, ••• ,ar+l 'br+l) an<J l'tt ·Ik .and Jt ·be nodes 1n." Rn 

computing ak and bk resp~ct.tvely (,for ke{t:r-:lJ). Let B be 
... 

the set of variables {xi I i€[n0:n-l]l: and ·observe that 

PI(br+l) = B. If R"' 1s the circuit obtain,eq by setting all 

variables in B to O, then R"', with outputs UpJp·' •• ,Ir,J.J, 

is a radix-join ne~work for n0 variables. 

If n ~ n0 + 1, then by LelllQa 5.18 each input. xieB has 

outdegree at least two in Rn. Hence by Lenna 5.17 at least 

2IBl-l gates in Succ+{B,Rn) may be eli.minated Jrom R"' {since 

Jr+l fZR ... is of ~utdegree zero). In aqqiti~n, Il"+V which is an. 

v-gate since IPI{ar+1)1>1, may also be eliminated from R"' 

since it is an v-gate of outdegree zero which is not an output of 

R"' • Since IBI = n - n0, this means that a total of at least_2{n - n
0

} 

gates may be eliminated from R'. 

If n = n0 + 1, then PI{br+l) = {~ .. 1}. Since 

xn_fi'I{a1) and IPI(a1)J > 1, we know that ,9Ut~g(x0 _hRn) ~ 1. 

Since N is minimal, Jr+l 1s the 1nput node ~n-l" The setting 

of· x 1 to 0 results in a circuit R' from which at least one n-
gate in Succ+{xn-l'Rn) may be eliminated (since there are no; 

gates of outdegree zero in ZR ... ). Moreover, Ir+l is again a gate 

and may be eliminated from R"' in addition to the gate previously 

mentioned, giving a total of two gates which may be eliminated from R"'. 
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In either case, R"' may be simplified to be a radix-join network 

R"'"' on ~O variables with the elimination of 2(n-n0) v-gates. 

Thus 

~ 2n0 + 2 log·n0 - 8 + 2(n-n0) (since 

n
0 

is a power of 2) 

= 2n + 2r - 8 

and th~ theorem is proven. 
0 Theorem 5.19. 

5.20Coro11ary: Suppose that n = 2r, r€1N, r .. ~:z and N is an 

M-circuit for T~ with exactly log n A-gates. Then 

A 

CM(N) ~ 2n+4 log n - 9. 

Section Q - Efficient Circuits for Threshold Functions 

As mentioned, the proof of theorem 5.14 is a modification of 

a method first discovered by L. Adleman for computing threshold 
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functions. A description of this method, which proves that 

MC(T~) ~· kn+o(n) for arbitrary . fbecfo k, · 15 to appear, and we sketch the 

technique briefly in this section f~r "threshold 211
• 

To compute T~, the n variables are arranged in a 

Ytil x r/til square matrix X. Let R
1 

be the disjunction -Of the 

variables of the ith row of x •. ~nd let Cj be the disjunction 

of the variables of the jth column. Then observe that 

since each pair of different variables in the matrix differ either 

in their row numbering or their column nunt>eMn~~ · This constrliction 

give rise to the recurrence relations 

and 

since the row and column sums can be constructed with at most 

2n - 2f /rl 1 + l gates. This method shows that 

MC(T~} ~ 2n + 2/ii + O(n l/4). 

One problem with the above method is that it·does not necessarily 

yield an M-circuit for T~ with ,the-minimuin number. 'log_,01 of 

A-gates. For example, for n = .8 the res~lting cir~uit has 

4 A-gates. The circuit for Fn described in Theorem 5.14 uses 
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the same idea except: that the variables~ are arranged into a 

rectangle with sides whi1ch are an exatt power of 2. While the 

method of Theorem 5.14 yields an M-circuit with exactly 'log d 
A-gates, it does so at the expence of incr~ing. $lightly the 

total number of gates. A close examination of the recurrence 

relationship for C{V}(Fn) shows th1t,·1n th~ notation·of-the 

proof of Theorem 5.14, either n1 s lri and n2 s l2ri ,or 

n1 s ffn and n2 s In. Hence thfs, metho4· yields an -M-ctrcuit 

for T~ with at most 2n+(l+/2) -rn + -Oenll~)'1' 1 g'it'tes." · (fDr some 

values of n. the-reot.trre11Ce ts-;bette'l'i} ·• Ttfe table below describes 

the best known constructions for some small values of n. 

Cor. 5.20 Lower Construction of Adleman's 
n Bound if log n ... Thms. 5.1,f .~nd 5. 14 Construction 

k1'-gates ' .. 

(lot~l Gates) (TotaJ ' (A,-(i~~J- · {T~al) {A-Gates) 

2 -1 1 l -" l 1 
4 7 7 2 7 2 
8 19 19 3 19 4 

16 39 39 4 39 4 
32 75 79 5 79 6 

64 143 151 6 151 6 

128 275 291 7 290 8 

Table 5.1 The Complexity of T~ 
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Observe that for n ;; 128, the JDOst -efficient -known M-circuit 

for T~ does not use the mt ni-.1 nunber· (log 128·) of 1v1ates. 

Section h ~ Questions 

There are a bost of open qu~stions raised by the· above 

results: 

(1) We know that C{v}{F") ~ ·2n .+ -O(·ln). Detennine 
. n 

c{,v} {F ) QIOre exactly. 

(2). Does ;an optimal M-cir-c.uit fGr J.~ ~ttav.e ~xactly Jfog n, 

1.-gates? 

(3) Is there a· minimal H-circuit for T~ which is single-level? 

Is there one for an arbitrary quadratic function? 

(4) Is there an M-circuitJ>.f .. s_j._ze c~n·lP!lJ'l ,for 

arbitrary k < n where t ls independent of. 

there an M-circuit of size < 'l~g. k + 1'n for 

fixed k? 

n 
Tk 

k? 

Tn 
k 

. for 

Is 

-for 
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CHAPTER 6 

The Complexity of Monotone -Ftmctfons 1n Other Bas·es 

The objective of this chapter is to study whether the complexity 

of a monotone Boolean function can be reduced by us,ing a b~sis qther 

than {~,v} in the fonnulas or circuits considered. That this is 

the case for Boolean circuits and multi-output fun,ctions is well-known 

and several exJmples exist. For instance, Paterson [1975] and Mehlhorn 

and Galil [1976], extendfog work origi_nally done by _Pratt[l974J, have 

shown that the M-circuit complexity of the Boolean matrix 

multiplication of two nxn matrices is exactly 2n3 - n2. On the 

other hand, Fische-r and Meyer [197U have shown that Strassen 's fast 

integer matrix multiplication algorithm can be used to multiply two 

B 1 t . T . Mach. .. t. 0( 2•81. .• ) U 1 oo ean nxn ma rlces on a urrng 1ne rn ime n • s ng 

Fischer and Pippenger's results connecting time..:bounded Turing Machine 

computatio~s and circuits, this means that a circuit with O(n2•82) gates 

for matrix multiplication exists. in any complete basis t. Paul [1976] 

has improved thi.s gap by exhtbiting a series of monotone functions 

fEBn,n for which MC(f) = n(n
2r (logri) 3/ 2) but for which c

8 
(f) 

" = O(n log2 n). 

t Recall that the complexity over different complet~ bases is always 

related by a constant factor, hence it does not matter which complete 

basis is used. 
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It remains an open· question a$ to 1fflettter·auch ·a gap between 

c8 and MC exists for a single-output function. Pippenger 
2 . 

[1976] has shown that if one looks at the monotone function in Bn 

with the worst MC ·complexity among all m.b. f. 's in Bn' then its . 
. , .. -, - . 

MC complexity is no more than ·a factor of O(log n) larger than 

1-ts CB complexity-t. Ori the other hand, several researchers have 
2 

conjectured that a large, even exponential gap may exist betwe_en the 

MC and MB mea'sures for a specific monotone Boolean function. 
2 

In contrast to this, it is possible to show that there are 

specific m.b.f. 's for whic.h allowing a cmnplete basis in the circuit 

does not allow a saving of more than a constant' ;factor over the 

monotone case. This clearly the case .for a .function of minimal 

M-complexity which depends on all its arguments~, cand hence has 

M-circuit complexity of n-1. The situation can occur for more 

complex functions in addition. For ex.ample. in· C~apter 3,.we 

demonstrated tbat most quadratic m.b~f. 's of n .. variables have 

B2 circuit complexity of n.(.n2/1og rt). Since'each quadratic 

m.b.f. can be realized in an M-circuit which has O(n2/log n) 

... In fact, Pippenger conjectures th.at among a11 monotone functions 

the worst case values for MC and for c8 are asymptotic, and 
. 2 

offers a reward of $100 for pf'oof of this conjecture. 
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gates, it is not possible te> save moa! ''than a am~tant factor. in 

circuit size for most quadratic fu~c.tions •. 

We consider the formula size of functions in the remainder of 

this chapter. Here, the choice of complete basi~ will have a 

9reater effect on complexity as pointeq out b¥ t~e work of Pratt 

[1975] - we consi~er the bases M, ,Bz- and U. On~ may make co1T111ents. 

about the worst-case values for these measures for all monotone 

Boolean functions similar to those voiced for circuit complexities-

it is ~e compl~Jdty relationsh:ip for individual fvnQtions which 

concerns us here. We show thi.t this ·relationship can depend on 

the functions involved. Clearly, there are functio~s -0f complexity 

n-1 · in a 11 three measures for which, no ~~; ngs can b_e had. In work 

done jointly with M. Paterson, we do sha.,,tha,t'tb.ere are m.b.f. 1 s 
' 

of M-fonr.ula complexity. e{n2/log 'n) for which any fonnula in any 

• complete basis must be Of size n{n2/1Q9 n), and hl!nce for which 

not more than a constant factor savings may be achieved. On the 

other hand, we exhibit a particular sequence of m.b.f. 1s which 

have M-fonnula ·complexity e(n2), but fur which linear sized· formulas 

exist over the basis s2. This sequence is derived as a corollary 

of Khrapchenko's result that.-Jny U-fonnula, for the parity function 

must have size n2. While this example affi nns that the comple.te basis s2 

may allow more succinct expressions for some m.b.f. 's, it does not 

answer the question of whether the addition of negation to the basis 

M allows a more compact expression for some functions. This latter 

question remains open. 
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. , 

We will utilize a method introduced' by Netiporuk [1966] to 
. ' ' { ~ -. ' . 

establish a lo\ller bound on the fonnula size of a partlcular mono-

tone function. This method has been used by other autho·rs in ref­

erence to other problems [Harper and Savage l972, Paul 1977, and 

Lamagna 1971]~ While the technique applies to fonnulas over arbit­

rary bases, ~e restrict our treatment -here to the binary basis B2• 

Notation: Suppose fEBn i's an arbiti'ary Boolean f-unct1on of the 

variables x,- ••• ,xn' and suppose - Y : ·{Xi I iE{l :nJ} is some 

subset of variables. Let S(f,Y) denote the set of all restric­

tions of f to Y obtafned,by setting; all remaining var11ables not 

1n Y to be <:cmstant; that is, 

S(f,Y) = {f I f~xdO,.l}n-IYI }. x = ex for xlY 

6.1 Lellllli: Suppose f,Y, and S are as: above. If F is any B2-

fornula for f, and F contains k ~ 2 occurrences of Y variables, 

then 

. IS(f ,Y)I :s: 16,ft-l 

Proof: We prove this fact by induction on k. Suppose f,Y,S, 

and k are as in the theorem. 

In the event k=2, let xi and xj be the. Y-variables occurring 

in F (where possibly i = j). Since no other ·v-variables besides 

-- ·----



-163-

xi and xj appear in F, all restrictions f I x = c for xJ..V 

of f to Y are functions of the variables {x.,x.} • Since th~re 
1 J 

are at most 16 such functions, this proves the lenma in this case. 

Now suppose that k > 2, and the lenma is true for all smaller 

values of k. In the tree corresponding to F, there exists a 

subtree of F with ·some number R. of occurrences of Y variables, 

where 2 :s: R. :s: k-1 . This fs true s i nc.e the sons of a node in a 

binary tree create a partition of the leaves above the node. 

By passing upwardt from the root of F, one may find such a subt~e 

since each leaf contains at most 1 occur,rence of a Y-variable. 

Thus we can decompose the fonnula F as 

where H has R. occurrences of Y-variables and G has k-i occur­

rences of Y-variables. Let g(z,x1 ,x2, ••. xn) and h(x1 ,x2, ..... xn) 

be Boolean fucntions defined by G and H respectively. 

We may bound the number of restrictions of f to Y by bounding 

the number of restrictions of g and h. Let Y"' denote the set 

of variables Yu{z}. Then G has e~actly k-1+1 < k occurrences 

of Y"' variables. By ( l), si nee any restrict ion of f ·to Y 

t 
In a formula, as in all circuits, we think of the constant and inout 

nodes as being 

downward. 

at the top of the formula and arcs directed 
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satisfies 

there can be no more restrictions of f .to Y than the product 

By induction, this impltes that 

and the proof is complete. 0 Lemna 6.1 

6.2 Theorem (Ne~iporuk): Suppose_ f€Bn is a Boolean function and 

Pl'P2, ••• ,Pr is a partition of the variables {xi. I 1£[1 :n]} such 

that f depends on some variable in P; for each i£[l:r]. Then 
r 

L8 (f) ~ 1/4 L logjS(f ,Pj) I . 
2 j=l 

. Proof: Suppose F is a minimal e2-fonnula for f. For each 

i£[l:r], let ki be the number of occurrences of Pi-variables in 
k -1 

F. If k1 ~ 2, then IS(f,Pi)I s 16 i by Lenma 6.1, so 

ki-1~1og16 !S(f,Pi)I = 1/4 1og2 j~(f,P 1 )j. If ki = 1, then 

IS(f,Pi)I s 4, so ki ~ 1/4 log IS(f,P1)1; th~ ca~e k1 = 0 cannot 
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ki ~ 1/4 log 

theorem. 
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f depends on some variable 1n Pi. In any event, 

IS{f,P;)I. Since '[B (F). r k;, this proves the 
2 i=l 

D Theorem 6.2 

We may now use this theorem to establish lower bounds on the 

complexity of particular m.b.f.'s. Note that if n. =IP. I for 
n· 1 i 

iE[l:r], then IS{f,Pi)I s 22 1 since this is the number of Boolean 

functions of ni variables, and IS.(f . .:fi)I:;; 2n-ni since this is the 

number of settings of variables outs'kJe Pt'" Choosing nt ~ log n for 

each i gives a partition o1f the variab,les into ..... n/log n sets with a 

possible maximum value of logl.S(f,P1)1 c:ff n-log n, to yield a 

theoretically possible n(n2/109 n) lower bound using Theorem 6.2. 

It is possible to show that tha maximal lower bound obtainable from 

the theorem is n{n2/log n). 

Using an example similar to Ne~iporuk's original function, we 

establish the following exam~le: 

6.3 Theorem (Paterson, Bloniarz): For every n, there is an m.b.f. 

f EBn such that 

(A) L8 (f) = n(n2/log n) 
.2 

and 

(B) ML(f) = O{n2/log n), 
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so that allowing a complete basts in a formula for f does not 

allow .more than a constant factor reduotic>n in s1z~. 

Proof: Suppose for the .moment that n • ((m+l i12) where m 

is an odd integer. Note that m ·dtvid~s n. To define f, we 

regard the n input variables as arra~ged in a (n/m)xm re.ctangu-

1 ar matrix lij" For each ie[l:n/m] and je[l:m], we will fix 

l 
n/m 

l 

4 II ... 

. . . . 
•.. xij ... . . . 

Fig. 6.1 The Inputs 

aij to be a distinct subset of [l:m] of exactly (<m+~)/2 ~ 
elements (which ts possible by our choice of n). Define 

f:{O,l}n + {0,1} by 

je[l :m] 
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Intuitively, we may think of the· a~ .:'s•' as· row patterns·--lJ . 

(m+l )/2 entries which 'will be ch~en from .a row Qt; ~ variables'. 
-· ' ~ ~. -. ' .·. . ' ' . : .. - ~ \ ~. . - . 

If kt::[l:n/m]. and q~aij xkq _is ~ru~,,~~ •. will ~a.y_.th~t rQW. k 

satisfies p~ttern".aij" Note t.hat t~ts: tmpli.e.s that ro111 k. h~s at 

least (m+l)/2 ones in it. The clause 

is one if some row other than the 1th satisfi:e~ a ••• · Finally. 
lJ 

f{!ij) = l if there is some variable xij 'equal··tdil w'h~secor-=·; 

responding pattern aij is satisfied by s-0me row other than the 

;th. We note in passing that f i~ monoto_ne by Theorem 2.4. 

To obtain a lower bound using Theorem q.2; consider the rows 
. . 

pi= {Xij I j6[l:m]} for it::[l:n/m] to be r partition of the input 

variables. We obtain a lower bound on IS{f ,P1) I· W. l .o.~g. 

assume that i = l; we show that a large number of settings of the 

remaining variables.yield different ~stricted functions of f 

to ·P1• In particular,' suppose cij for .it::[2:n/m], jc£l:m] 

are constants such that each row of constants has fewer than 

(m+l)/2 ones in it (that is, l{j I .cij = 111 < (m+l)/2 for each 

it::[2:n/mJ). We show that two different such settings of the 

variables xij = c1j for it::[2:n/m], jt::[l:m] yield different 

restricted functions of the first row. 
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let fc denote _the restric1!i cm f · 1-x · • c for i ~ [2: n/m], 
' ij ij ' 

j~[l:.nt]. The first row is· the on1:Y possfblE! row which can satisfy· 

any pattern si11ce each other roW has fetter :than. (m+l )/2 ones in 
·, 

it. ttence the inner conjunction is false for · k ~ 1, and 

Now if e ~ C' are two distinct such constants, w.1.o.g. let i 

and j be indices s~c:h that cij = l and. cfl ,II' o.. Define an 

input for tb.e first raw by 

for each q£[1:m] 

0 if qAaij 

and note that the row x1q satisfies pattern a.ij and no other. 

Hence tifx1q> = 1 whereas fc'(x1q) = o~ and the two functions 

fc_ and fe, are different on the input x1q. 

Thus jS(f,P1)f is at least the number of .such settings of the 

remaining rows with fewer than (m+l )/2 ones per row. Sin_ce there 

are 211-l length m binary vectors with fewer than (m+l)/2 ones, 

we obtain 
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Hence, by theorem 2, 

{n/m) 
L81(f) ~ 1/4. t=l [n-(n/m)-m+l] 

= 1/4 ~.{n2 /m) - (n2 tm2) - n + (n/m)]. 

By Stirling's formula, [Knuth 1968, p. 46], 

so m,... log n. Hence Ls (f) = n(n2/m) = u(n2/log n) and the lower 
2 

bound is established. 

The upper bound on ML(f) is obtained by e){panding and fac­

toring the definition (2) to get a more compact formula for f. 

Since f' is not explicitly defined, we prove that an M-formula of 

size O(n2/log n) exists without actually exhibitfrig it. Clearly, 

f has an M-formula of size O(n2), namely (2). 

To get a smaller formula for f, we can distribute the variables 

in (2} to get the disjunctive form 

(3} 

k ; i 
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If we define, for kE[l :n/ml. 

then by reversing the indexing in (3) we obtain; 

n/m 
so K..{f) s l ML{fk). To bound Ml(fk) for a fixed k€[l:n/m], 

lc-=1 

note that each monome in Pl{f1c) conststs of the distinct product 

of {m+l)/2 variables from row k (which has m variables in all} 

and a single. variable not in this set. · 'sioo·e the nuni>er of ·prime 

implicants of f k far exceeds m, by factoring· (4) on the vari­

ables in row k we o~tafn a smaller fo"'1ila for f k. 

6.4 Lenma: Suppose r,S€lN • and g~Br+s is a function such that 

where,.for each 1, Ai fs a unique subset of size a of ·[l:r]. 

Then 

rt..Cg> s c"!1 > + <~> - 1. 
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Proof of Letm1a: We proce_ed by induction on r. If r = O, then since 

there is a·unique subset of size 0 of 0, g(y1} is either Y1 
1 0 or the constant function O. In either case, _J.L(~} ~) := (0) +. (0} - 1. 

If r > o . and a = r, then clearly g(x1, .•• ,xr,yl} = 

y
1

Ax
1
A ... Axr or g = Q_, so Ml'Qg) ~· 14tj=:(";1)+(~)_;l. 

Similarly, if a = 0, then again ,.ML{g) ~ 1 =· (~1 } + (~} - 1. 

Now suppose o < a < r. By factoring' the ~efinition of g by 

we may express 

(5) 

where 

and 

and T is the set of indices i€[l :sl soch that · r€Ai. . Note 

that each subset Ai \ (r} for i€T has a-1 members chosen 

from [l:r-lJ, and hence inductively 

Similarly, each set Ai for i'T has a members chosen from [l:r-1], 

and hence 
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Thus, by. the expression (5), 

ML(g} s 1 _+ ML(g1) + Ml(i92) 

~ 1 + ( r ) + ( r-1) - 1 +. ( !") + ( r-1 ) - 1 (by 
a-1 · a-1 .. ' ·a ·· a induction) 

li: <r:1) + <:~ -·;1 (usfng the fact that (~) = <!:'~) + ck; l) 

[Knuth 1968, p. 54)). 

D Lenna 6.4. 

Now, sincelemma 6.4applies to fk(t} with r = m and a = (m+T)/2, 

we obtain 

( 
m+l } ( m ) . · · 

Ml(fk) .i;; (m+l )/2 .+ '(m+l )/?) - l · · 
m . ·m m 

= ((m+1)12) .+ {cm-1)/~ + ('m+1)12) - 1 

= 3n - 1. 

Hence ML(f} s "fm(3n-1) = 3n2/m - n/m = ll(n2/log n). 
~1 . . . m 

To finish the proof 1 for n not of the fonn ((~1 }12) (m odd), 

we could choose n0 of this form with (n/4) s n
0 

s n and merely 

ignore all but the first n0 of the n arguments. 

O Theorem 6.3 
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In a counterpoint to the previous case, we present an example 

where the larger complete basis B2 can allow a reduction in fonriula 

size of more than a constant factor. The example is a monotone 

cover of the parity function. 

Defi~_ition: Suppose fE:B
11 

is an arbitrary Boolean function. An 

m.b.f. 9EB211 is said to be a monbtone ce~ef Of f if 

f(x1, •.. x,.) = g(xl'~xl' x2,-x2, •. ,xn,...,xn). 

fY.amµle: lf P"{x1 , ..• ,xn} = xrx2 .• ~xn is the parity.function, 

then g11 defined by 

n n 
= [P"(x1, .•• ,x )A/\ '(x.vy.)]v V (x.Ay.} 

n i~l 1 , i=l l l 

is easily verified to be a monotone cover of P11 • 

(6) 

We claim that the function gn exhibi'ts the proj)~rties desired. 

We use the foilowing result of Khrapchenko [1971) which we state 

without proof. 

6.5 Theorem: If nE::?-7, then 
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The fact that Lu(Pn) < 2n2 is -eas·ily:proved- by recursively 

dividing Pn(x1, ... ,xn) as (x1 e ... ex~/~ ) e-(x lri/1! +l E9 •• · • e xn) • 

The lower bound is established by a remarkable argument which uses 
' < ' ", ~ 

the isomorphism between series-parallel contact, networks and U­

fonnulas. 

Assuming Theorem 6.5, it is straightfon'lard to show that 

To derive the upper bour1d, suppose that F is a minimal U-fonnula 

for Pn. By applying DeMorgan~s l~ws, we may distribute all nega­

tions in F to the variables without changing the size of the for­

mula, so we assume w.l.o.g. that F has this pro~erty. Let f' 

be the fonnula obtained by replacing all occ~rrences of -,x1 in . 
F by the literal_ y1 (for all i€[l:n]). A straightforward 

argument demonstrates that 

n n 
[F' A i~l (xivyi)]v1¥1(x1Ayi) 

is an H-fonnula for g"(x1 ,y~, ••• xn,yn). 

- n 
For the lower bound on ML(g ), suppose t~at _F(x 1 ,y1'~··,xn,yn) 

is any M-fonnula for gn. By replacing yi by_-i x1 in F for 

each 1€[1 :n], we obtain a U-fonnula for Pn, which by Theorem 6. 5 

must have n2 occurrences of literals. Thus F must have had 

size n2• 
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Since Pn has a B2 fonnula of size n-1, LB (gn) s Sn-1. 
2 

Since gn .has 2n variables, we have proven 

6.6 Theorem(Bloniarz, Meyer): For every n1::1Nthere is an.m.b.f. fEBn 

such that 

and 

tt..(f) = e(n2) 

L8 ( f) s sn/2 + o ( l ) • 
2 

Note: Because of Theorem 6.5, any U-formula for gn 

must also have at least n2 occurrences of variables. Thus this 

example does not answer the question of whether the addition of 

negation to the basis B allows more compact expressions for m.b.f. 1 s. 

Section ~Open Questions 

(1) Is there any single-output m.b.f. for which 

Lu(f) < ML(f); for which CB (f) < MC(f) ? 
2 

(2) Is there a larger gap than that given in Theorem 6.6 

between ML and LB ? 
2 

(3) Do larger gaps between these measures exist for multi-output 

functions? 
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CHAPTER 7 

A Shortest~Path Algorithm 

"Fhis final chapter is concerned wi-th the preblem of ftndtng 

the snort.est distance matrix for a non-ae,atively;wi9bted directed 

graph. Several algori'thms to solve this prdblem kave been proposed 

[Dijkstra 1959, Floyd ,l9621c Spira 1973, :f-:re&man .1170], ,tile best 

worst-case running time ·being 0(113( log log :n) V3 t(log n) 113) 

[Fredman 1976). , .However, Spirats ,1qorithm, which flas a worst .. case 

time of n{n3 log n). has average running ·time O("n2 .{log a)2 ). 

Spira's algorithmcbasically searches for the'illbdes closest to 

a given source node. By searching ·along edges ~:m1-n1mtllh weight first, 

it is likely th.at the soortest pattts from the ·source node to all 

other nodes wil 1 be discovered before all 'arcs in ·tfte :graph need to· 

be traversed. In fact, starting f.rom "11\Y given source, on the 

average only O(n log nl arcs need 'to be tmtversed. . By repeatin.g 

this process for all r. source nodes, the shortest path10atrix cam 

be found. 

In Appendix 3 w.e show that.s~v~ral lacunae remain in Spira 's 

algorithm. In particular, Spira does not specify any search pattern 

when there are pQ ths from the source of equal ·length. We observe 

that arbitrary choices among paths of equal length do not solve the 

problem efficiently; inappropriate "ti e.:ore'akir+g" :rules «:arr result 

in algorithms which have n{n3) running time on almost all 

matrices. One example of this phendmanom is.presented in Appendix 3. 



-178-

Our main result (this work was--done jointly with A. Meyer 

and M •. Fischer) is a correct .versi,<>~ of ~~ir• 's algorithm, which 

we prove does indeed run in O(n2(1og n) 2) average time for a 

broad class of probability distr1but'f:ons on dt~ctff graphs wi'th 

non ... negative weights. These distributions properly.'tnclude 't+te 

distributions for which Spira originally :made his claims. lnfor.,.: 

mal ly the cooditiott characteriZi.ttg 4btl'ibutfons·\for wMd1 our 

results hold is that foforma-tton about tlle entiT't graph except 

for the arcs emanating fnxn any given node i, together with' 

infonuation about the weights of the arcs emaaattng .from ·noc:te i , 

is not correl ate<I with the assignment. of the wei.ghts to those 

arcs -- all permutations of as'Signments are equally likely. 

Finally, a modification o.f th'ts algori:tRm is no~ which 

computes the transitive closure of a Boolean matr'f·x in average 

time O(n2 log n). This result has recently 'been ;'fmproved by 

Schnorr [l978i]who exhibits an O(n2) aY6rage-time algorithm for 

this problem. 

Section ~ Shortest Paths and Grajfil Df stributions 

Directed graphs were defined in Chapter 2. We henceforth 

assume that every n-node graph has a set of vertices V = [1:n]. 

A graph (V,E) is weighted if there is a cost function 

c:E +Ru{-~,~} which assigns a weight or cost to each edge in the 

* graph; the graph is non-negatively weighted if range (c) ·s R ~ 
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We consider only weighted graphs of th1s latter type and refer to 

them as weighted graphs. 

One standard representation of a weighted graph is the n><n 

~-matrix c. where C{i,j) is defined to be the cost of edge_ 

{i,j) if edge (i,j)EE, and. C{.i,J)_oco if (hj)~Et. · One 

additional representation wil 1 also be used. In the sorted list 

of edges representation, an n-node graph G is represented as a 

sequence of n adjacency list-s. Each Hst el~ment is a pair (a,w), 

* .th where a is a vertex of G and w is a weight in R . The 1 

list 

represents the ki edges emanating in G from node i (including 

possibly an edge from i to itself}; a1j is the endpoint of the 

arc and wij is its corresponding weight. In addition, we 

require that the weights in each adjacency list be arranged in 

increasing order In the case where 

t We do not distinguish between missing edges and edges of weight =· 
tt 

The definition of ~ and + * + on· R are extended to R in 

the usual manner. 
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there are multiple edges in. the adjacency list of· the same weight, 

we as_sume that the endpoints are placed in th•.-11st' in some 

prescr.ibed order; for definiteness we, as.su111e that they ar~ in 

order of. increasing node index. t 
, 

We wi 11 represent the adjaceacy lists as two nxn matrices -

the endpoint matrix A and the edgecost: matri'X W, where 

A(i ,k) • l 
and 

W(i ,k) • · 1 

a1k if· k ~ ki 

NIL if k > k1 

Wik if k S ki 

.. if k > k1 . 

(NIL is a special synbol ). Figure 7 .1 exhibits different represen­

tations of a particular weighted graph. 

Suppose p =(v1 ,v2 , •••. ,vk) is a path in G, that is. a 

sequence of k ~ 1 nodes such that (v1,v1+1)€E for i€[l:k-l]. 

The cost of path .Q. is the sum of the costs of 1ts edges; that is, 

k-l 
i~lc({vi,vi+lH where the cost of the trivial path (v) fro1n v to 

v is 0. The minimum cost matrix M of G is the nxn matrix 

which has M(i,j) equal to the minimum of the costs of all paths 

in G from i to j. The shortest distance problem is that of 

computing the minimum cost matrix M given the cost-matrix C of 

a weighted graph. 

t This assumption is actually unnecessary for either the correctness or 
the timing of our algorithm. 
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00 00 0 

2 00 1 

Graph 

A: 1 2 3 W: 5 5 10 

3 NIL NIL .0 - ·"" 
3 1 NIL . 1 . 2 w 

Sorted List of Edges 

Fig. 7 .1 Representations of a Graph 

Gn . will denote the set of all n-node weighted graphs. The 

subscript n will usually be omitted. Through the cost-matrix 

representation of graphs, we will identify G with · [ R. *]"2 
• 

A map· rr: G ~ G is a !Q!!. pennutation if it simply permutes the 

endpoints of the edges emanating from a specified node while leaving 

the remainder of the graph intact; formally~ there must be a permu-

tation p of [1 :n] cind an index i 0E[1 :n] such that, if G is any graph 

in G with cost-matrix C, and 
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en is the cost matrix of n(G), then 

I C{j ,j) if i t- i 0 

C(1,P(j)) if i = 10 

for every ( i ,j }E [ 1 : n]2. The set of row permutations (Jenerates a 

group Tn of transfcmnations on G; each memer of rn: fs called 

an adjacency transformation. 

If P is a probability measure on G, its distribution function 

*f2 is the function Fp:[ R -+ ·{XER I 0 s x s lj defined by 

2 · * n2 
where X is any e1ement ,,<xij I (i ,j)£[1 :n] ) of [ R ] . 

Every probability d.istribution is uniquely characterized by its 

distribution function. 

We will say ~iat a probability n~asure P on G is adjacency 

invariant (A. l.) if any adjacency transformation . ll£Tn is .a 

measure preserving transforrr.ation ol'll . G ;. that is, Fp(TI(x)) = Fp(x) 
. * n2 for. all X€ [ R ] • We will consider spec;i fie: ,exaq>les of eontin-

uous A.I. probability measures lat~r i:n this chapter.. For a 

discrete prob11bi.li.ty measure on G, note 'that tile. measure is A. I. 

if and only if the probability of aAy graph is equal to the 
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probability of the graph obtained by permuting the endpoints of -

the edges _emanating from an arbitrary node fn the graph. 

For any function f:G+Rand any probability measure P on G, 

1 et Ep ( f) denote the expected v a 1 ue nf: · f with respect to P. 

Section Jh The A 1 go ri thm 

Before .describing the algorithm, we make an observation about 

weighted graphs which serves as.basis for the algorithm. Suppose 
' 

that G is a we1ghted directed graph, and that i . is an arbitrary 

"source" node of G~ Define,· for any node je:NODES(G), D(j) 
. 

to be the minimum of the costs of all paths in G from i to j, where 

D(j) is = if there is no path from i to j. Let NEAR be a 

subset of the nodes of G such that ie:NEAR; those nodes in NEAR 

are called near nodes, and all otner nodes are called far nodes. 

For each near node j, we define REALK(j) to be the ;far node 

k of G such that C(j ,k), the cost of the edge from j to k, is 

minimal among the costs of any edge from j to a far node. If j 

has several edges of equa 1 minima;l cost emanating from it, then 

REALK(j) is arbitrarily selected to be one of them. REALK(j) · 

is undefined if j has no arcs to any far node. 

We make the following observation. 

7.1 Lemma: Suppose that G is a directed graphl and that NEAR 

satisfies the property that for every jENEAR and kJNEAR, 

D(j) ~ D(k). Let jn be a near node such that the sum 
'J 
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D(j0) + C(jo-, REALK(j0})1s mfoimal among al 1 near nodes, and 1 et 

ko = R_EALK(jo). Then 

(l) o(k0) = D(j0) + c(J0,k0), 

and (2) D(k0) :; D(k) for every kiNEAR. 

Proof: Part(l). Since D(j0) is the c~st of so~ path from 

i to j 0, we know that D(j0) +_C(J0,k0) is the cost of a path 

from i to k0, and hence D(k0) !; o(j
0

) + C(j0,k
0

). Suppose to 

the contrary that D(k0) < D(j
0

) + C(j
0

,k
0
), and let 

i = v1 ,v2 , ••• ,v1 = k0 . be a path of weight_. D(k
0

) from i to k
0 

Observe that 9. ~ 1 since icNEAR. Let .e.
0 

be _t~e: least index in 

(1:1] such that v
1 

JNEAR; observe that l 
0 

I . 
< 10 s R. • Thus 

v
1 

_1ENEAR, and hence 
0 

D(v1 _1) + C{v1 _1,REALK(v1 _1) s D(v
1 

_1) + C(v.t -l '· v
1 

) (by'def. of REALK)· 
0 0 0 0 0 0 

10-1 

s I C(vm,vnt+l) 
m=l 

== D(k
0

) 

~ D(jo) + c<Jo,koJ. 

( s i nee v 1 , • . • , v 
1 

i o-
. is a ~ath to vt.

0
_1) 
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But this latter inequality contr~dicts· our choice of jo and 

part (l} i~ proven. 

Part (2). Suppose to the contrary that k is a far node such 

that D(k}<D(k0}. Let i=w
1

,w
2

, •.• ,wR.=_k beapathof 

length D(k} from i to k. Again choosing . .e.
0 

to be the least 

index in [l:.e.] such that w
1 

iNEAR, we must have l < .e.
0 

s ~ 
0 

and w
1 

_1 e:NEAR. Thus 
0 

= D(k) 

< D(k0) 

= D(jo)·+ C(jo,ko), 

which is again a contradiction to our choice of Jo· 

D Lemna 7. l 

By the above argument, if NEAR satisfies the hypotheses 

of Lemma 7 .1, theri so does NEARu{j
0

}. 

We may use lemma 7.1 as basis for an algorithm for constructing 

the minimum cost matrix M for a graph G. We first present a 

- -----~------------------------------------
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version of the algorithm which uses 'certain simple operations on 

finite sets. We later. n·ote how these set operations can be imple­

mented in terms of standard operations and data structures on random­

access computers. 

We assume that the graph is presented in its sorted list of 

edges r~presentation as matrices A and W. Extraction of A and 

W from the cost matrix C may be pertonned by sorting the rows of 

C in a stable fashiont using edge weights as keys. The algorithm 

constructs the minimum cost matrix H one row at a time; this cor­

responds to finding the shortest distance from one particular nnde, 

say node i , to a 11 other nodes in the graph. The a T gori thm 

searches from node i in a manner dictated by the weights of the 

edges; shorter paths are searched first. 

In the algorithm, NEAR and D are as described in the hypoth­

eses of Lemna 7.l with one exception - D(j} is only defined for 

near nodes. If j is a far node, then D(j) = NIL. Initially 

NEAR is set to {i} and D(i) to 0. The algorithm halts with 

NEAR equal to the set of nodes which are reachable by paths from i. 

t A·sort is stable if the relative order of elerttents with keys of 

equal weightis preserved at the end of the sort (cf. Knuth [1973 

Ch. 5 ]). 
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Inductively, to add a new node to NEAR, the algorithm attempts 

to find a node jo satisfying the hypothesis of Lcnma 7.1. A 

priority queue is used to direct this search (see [Aho, Hopcroft, 

and Ullman ·1974] for definition). In the cottr$e -0f ~xecution of 

this. algorithm, certain edges on a near node's aeljacency list will 

be 11 examined 11
; foitially no edges in the;groph have been examined. 

Inductively we ass.ume that all edges prevtousJ:y 1examined point 

to near nodes, and that a 11 examined edges on an adjace,ncy 

list will consist of those edges of least cost. A pofoter -r(j) 

is maintained for each node. j in [l ::n]; its value is the index 

in matrices A and W of the next (least-cost} unexamined,edge 

on j's adjacency list. P(j) is initially set tf:> l for all nodes. 

Each near node j has an additional value associated with it, 

·which we will call KEY(j). For these nodes. KE'f(j) is the sum 

of D(j) and the weight of the next unexamined edge from rrode j; 

that is, KEY(j) = D{j) +. W(J,P(j}). Since the e.xarnin.ed edges on 

j's adjacency list all point to near nodes, we know that 

KEY ( j) s D ( j ) + C ( j 1 REALK ( j ) ) . 

To add a new vertex to NEAR, the algorithm selects a near node 

j such that KEY(j) is minimal allllng all near.nodes. Suppose 

that k = A{j,P(j)) (the endpoint of the least-cost unexamined edge 

from node j) is a far node. Then j = jO sattsfies the conditions 

of Lemma 7.1 since 
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D(j) + C(j.k) • KEY(j).~ KEY·{j:-') 

s D(j .. ) + C(j .. , REAlK(j .. )) 

for any other near node j .. , and since C{j ,k) ts the least cost of any 

edge from j to a far node( an examfoed edges--po1·nt· toe near nodes). 

Hence k can be added to NEAR and · D(·k) can be set to· KE\'(j) 

and stHl preserve the inductive hypotfitesescof lemma 7 .1. 

On the other hand, if node k were alnady a menber of N£Aft, 

then its shortest distance is already known, ·so nothing h done. 

In either case, since the edge from j to .tc •A(j,P(j)) has been 

examined,. the pointer P(j) ts moved · to the neY.t·oedge from · j. 

This search is <:on'tinued until ~ithar! all rrodes are found to 

be in NEAR or until there are. oo further edfes to examine, in 

which case it follows from letmta 7.:1 'tmlt NEA'R-is ;the set of all 

vertices which are reachable by paths from i (since a mis-sing edge has weight •). 

One additional requirement is imposed in order that the general 

algorithm given above have fast running time. If the node j in 

NEAR from which we are searching has several edges of equal weight, 

then these edges are considered in consecotive executions of the 

search loop. That is, if W(j,P(j)+l) = W(j,P(jJ)., then we require 

that the algorithm select j as the neat· node from which to search in 

the next execution of the search loopt. 

t Together with the specifications on the tie-breaking rules of the 

priority queue below, this requirement avoids the difficulties in 

Spira's algorithm noted in Appendix 3. 
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To select nodes with appropriate KEY values, we use a priority 

queue. Three priority queue operations are necessary. CLEARQ 

sets the queue to the empty state. MINQ returns and re1110ves from 

the queue a pair (KEY(j) ,j) such that .j is a node in NEAR for 

which KEY(j) is a minimum among all node$ ii') NEAR. If the queue 

is empty, MINQ returns the pair (NIL,NIL). lNSERTQ {d,j) inserts 

node j into the priority queue and sets KEY(j) to .d. In case 

there are several nodes in the queue with minimal KEY values, 

MINQ selects and returns any one of them. (We .a~sume only that the 

queue operates so that the value returned by a MINQ operation 

depends solely on the previous sequence of queue operations.) 

The fully specified algorithm, Ri' which comp~tes the shortest 

distance D(j) from node i to node j is. 9iven below in a . . . . . 

PASCAL-like language, where "" is represented. by NIL: 



I 
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Algorithm R1 

FOR L := 1 to n DO D(L) := NIL ; 

f.QJ! L := 1 ton DO P(L) := 1; 

NEAR := {H ; D(i} := O; J := NIL; CLEARQ; 

IF W(i,1) I NIL THEN <KEY,J> := <W(i,1),b; 

Comment If there is an edge emanating from 1, then KEY is set 

to the minimum weight of all edges from i. 

WHILE J t- NJL DO 

Comment J· is the near node to be searched from. If REALK is 

defi~ed for some near node, then J ~ NIL. 

BEGIN REPEAT K := A(J,P(J)); 

END. 

Co11111e.nt K is a candidate for REALK{J). 

IE KJNEAR THEN 

Colll'lttnt K is REALK(J). 

·BEGIN NEAR :=NEAR u {K}; 

D(K) := KEY; 

IE I NEAR! = n THEN HALT; 

IF W( K, l) I NIL THEN INSERTQ ( ·KEY+W(K,1) ,K) 

END· _, 

P(J) := P(J) + l 

UNTIL W{J,P(J)) I W(J,P(J) - 1); 

ConneJit Examine all equal-weight edges emanating from J 

at the same time. 

IF W(J,P(J)} ; NIL THEN INSERTQ { O(J) + W(J,(P(J)},J); - ----
<KEY,J> := MINQ· 
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To compute the shortest-distance matrix M, algorithm R. is 
1 

run for each iE[l :n]. 

Shortest-distanc'= a1qorithm 

FOR I := i to n DO 

BEGIN 

R. ; 
1 

FOR J - 1 to n DO M(l ,J) - D(J) 

END . 
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Section h Analysis _of the fu.orithm 

If G is a weighted graph, we will denote by Ni(G) the 

number of times the test 11 .!.£.. KtNEAR 11 is executed by Ri on 

graph G; that is, N;(G) is the number of edges of G examined t 

by algorithm Ri. Note that only a fixed number of operations are 

performed by R. between successive executions of this test, so 
l 

that the total nuw.ber of operations performed by Ri on graph G 

is proportional to N; (G) + 1. Thus 1tJe try to estimate Ni (G). 

7.2 Theorem: For any iE[l :n] and any adjacency invariant 

probability measure P on G; 

Proof: Suppose that iE[l :n] and that P is an A.I. prob-

ability measure on G. If II is any adjacency transformation, then 

II is a measure preserving transforrnation on G. HP.nee Ep(N;) = 

Taking the sum of such expectations over all adjacency 

transformations n, we have 

= I Ep(N;) 
TI Efn 

= 17;, I • E (Ni ) 

Formally, an edge from J is "examined" when the pointer P{J) 

15 ~~et to the next en1:ry past the edge in the adjacency matrix. 



-193-

thus, to prove that E(N1) ,s n 1 oge n, it suffices to ~.how that 

We will prove the stronger statement that, for any graph GEG, 

( 1) 

So suppose that GE.:G is fixed, and let G1 be the set 

{II{G) I Ile Tn}. Ari easy argument demonstrates that the left-hand 

side of inequality {l) is simply the average value of Ni ·'with 

respect to the prcbabil ity measure P1 which assigns each ·grdph 

in G1 equal probability, and all'other graph$ probability zero. Hence 

we must show that 

(2) 

Proving inequality (2) requ·ires analyzing the average 

behavior of algorith~ R1 over all inputs G~G1 . A convenient way 

to carry out this analysis is to consider a probabilistic algorithm 

Ri which has no inputs. Ri is the sam~ as R1 except that where 

Ri would reference inputs describing a graph G,, Ri generates the 

inputs randomly. Note that every graph in . G1 has the. same 
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edge-weight matrix W as G; it is only the·endpoint matrices A 

which. differ among the memers of Gr Moreov~r, e.ach possi,ble 

endpoint matrix is equall~ likely, modulq.~e req~ir~ment that 
. ' 

edges of equal weight in a row be arranged in increasing node order. 

Hence, the probabilistic algor~t~m Rj ~h!ch we construct 
I <·, . -~ ',- -" ." '• .· • 

selects at random and with equal probabilities one of these 

possible endpoint matrices and then executes R1- on the ~r~ph chosen. 

The selection of the endpoint matrix 'A · h .not 1.-j 'fhf.ttally but _ - L, · , 1 

rather dynamically as Ri references A (which is done in left­

to-right fashiQn across the rQWS or A). At the .first refere11ce 

by R1 to entry A(~,K) for aoy J and K in p:n], ~ ~alue 

of the endpoint A(J,K) is chosen. If J has several edg~s of 

equal weight emanating from it, then at, the first re~erence to 

any of these a selection of the.endpoints for,all these edges of 
. , ~ . '. 

equal weight is made and entered in the matrix A in ~e,proper 

order. In all cases, by selecting these endpoints from all possible 

unused endpoints in an independent fia~tonwith equ~l probabilities, 

one guarantees that every graph in G1 will be chosen with equal 

probability. 

· Ri is obtained by replacing every reference A(J ,K) in Ri 

by the following probabf1 istfc procedure A"('J-~K) ~· Ir\ ·this 1 atter 

procedure, C is an fntental nxn matrix w~ich A' uses to store 

the endpoints which have already been selected; C(J,K) is 

inithlly set to tUL for every J and K 1n [1 :n]. L is 

the number of endpoints to be selected, and SET is a set variable 
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which collects those endpoints. RANDOM is a probabilistic 

procedure which returns an element of [1 :n] independently and 

with equal probability. MIN returns the minimal value of any set. 



Procedure A' 

, 
A (J ,K): .!f C(J ,K) 'I NIL THEN RETURN (C(J ,K)) 

ELSE 

BEGIN 

L := I {K'E[l :n] 

SET : = "~ 

REPEAT 

B := RANDOM· __ , 

W{J ,K} = W(J ,K .. }}l; Coment The number of edges 

to be selected. 

lE. BJ{C(J,K'} I K .. e[l:K-1]} 

THEN SET := SETu{B} 

UNTIL !SETI = L. 
I 

Co1rrnen:t SET is now a random selection of L un-used 

endpoints of edges from J. 

For J~ =J to (J + L - l} DO 

H EGIN 

'R := MIN(SET); 

SET := SET-{R}; 

C { J .. , K} : = . R 

END· _, 

Conrnent These L edges are inserted into the graph 

weight W(,J:iK) in the proper order. 

RETURN (C(J,K)) 

END· _, 
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We make the following obvious remark. 

7.3 Lemma: Let E0 be the average number of times the test "if 

KJNEAR" is executed over all possibl~ runnings of algorithm R.j. 

Then Eo = Epl(Ni). 

To analyze the probabilistic algorithm Ri , note that once a 

node becomes a member of NEARuSET, it w·i 11 become a member of NEAR 

before the next call of procedure MIN~. This ·;5 true since 

endpoints of equal-weight edges from J are considered in succes­

sive passes of the loop of Ri· Hence, if NEARvSET = [l:n] at 

any point in the algorithm, then at most n · further executions of 

the test 11![ KiNEAR 11 wi 11 occur before Ri terminates. 

Now let E be the expected number of times the procedure 

RANDOM is ·called in the execution of Ri tintil NEARuSET = [1 :n]. 

At any point in a particular execution of R:, the number of times 
1 

the test 11![ KiNEAR 11 has been executed is at most equal to the number 

of times nodes have been selected by RANDOM since the endpoint of 
every examined edge wa.s at some point returned by RANDOM. Hence 

Ep (N.) = fas E + n. 
l 1 . 

But E is nothing but the expected number of times nodes from 

the set [l :n] must be chosen randomly with repetitions and placed 

in the set NEARuSET until NEARuSET ~ [l :n]. This number is well 

known to be asymptotic with n loge n [Feller 1968, p. 2.25] so 

Ep
1

(N1) ~ n loge"· 

0 Theorem 7 .2 . 
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Section !h. Implementation 

There are several efficient ways of implementing a priority 

queue ·an a random access machine {R.A.M.) [Aho, Hopcroft, and 

Ullman 1974]. In particular, one can use a heap and ensure that 

every execution of MINQ and INSERTQ takes 

O{log n) steps, and every CLEARQ takes O(n} steps. Standard 

implementations al low COfllllUting melllbersh1p in,· and cardinality of, 

the set NEAR with fixed cost. Under these implementation assumptions 

the average number of instructive steps requfred to execute Ri (for any 

it:[l :n]) on a .R.A.M. is O(n log2 n) for a&y A.I. probability_ on G. 

Since the shortest distance problem is that of cdmputiA'g the 

shortest distance matrix M from the cost matrix C, we must 

include the cost of extract 1 ng matrices A · and W from C. This 

can be done by sorting at a cost of O(n·~ log n) basic steps, and 

we have the following theorem. 

7.4 Theorem: Implemented as above, the shortest distance algorithm 

take an average of O{n2 1092 n) basic steps on a R.A.M. over any 

· A. I. probabi 1 i ty measure on weighted graphs. 

For may applications, one wants not only to compute the mini­

mum distance between a 11 pairs of nodes i .and j , but al so to 

f-ind a path in the graph which achieves that minimum cost. A 

simple addition to algorithm R; enables one to retrieve such a 

path. A on'·· dimensional array PATH is introduced and PATH(!) is 

initialized ;3 NIL for every t€[l:n]. When a far node k is 

------- --
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added to NEAR by virtue of its being at the endpoint of an arc 

from the. near node j, then PATH(k). is set to j. This fully 

specified version of algorithm ·flt is given below:. 

Algorithm P1 

FOR L := 1 to n DO PATH(L) := NIL; 

FOR L := l to n DO D(L) := NIL; 

FOR L : :: 1 to n DO P(l) := 1 • 
' 

NEAR := {i}; D(i) := O; J :~!!lb.; CLEARQ; 

PATH{i) = i; 
.!f.. W{i,l) 'f NIL THEN <.KEY,J> := <W(i,l},i>:; 

WHILE J 'f NIL DO 

BEGIN REPEAT K := A(J,P(J)); 

END 

.!f KtNEAR THEN 

BEGIN D(K) := KEY; 

~ND; 

PATH(K) := J; 

NEAR : = NEARu{ K} ; 

.!f.. I NEAR I = n THEN HALT; 

!f W(K, 1) ; Nlb I!!fil!. INSERTQ( KEY + W(K, l) ,K) 

P(J) := P(J)+l 

UNTI L W ( J , P { J ) ) r W ( J , P ( J ) - 1 ) ; 

.!f.. W(J ,P{J)) 'f NIL THEN INSERTQ(D(J) + W(J ,P(J)) ,J}; 

<KEY ,J> := MINQ. 

-· 
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The paths from an. ~ource nodes may be -~tared in the obvious way. 

A straight-forward 1nductfve proof sh0ws the' following: 

Suppose k£NEAR at some stage in algorithm Pi. Then if we define 

the sequence of nodes: 

and if 10 is the least index in 1N such that w
1 

= i, then 

f = wt ,w 1 -1 ' ••• ,w2,w1 = k 
0 0 

is a path of cost D(k) from i t~ ~ •. 

A final application allows us to modify the algerithm to 

compute the transitive closure of an (un-weighted) directed graph. 

* If G is such a graph, thetransitive ~losure matrix I (G) is an 

nxn ·Boolean matrix defined so. that 

* 1· 1 if there is a path from 
I (G){i,j) = 

O othentise • 

i to j in G 

* The transttive closure problem is that of computing I (G) from 

the nxn incidence matrix I(G}, where 

if there is an arc from i to j in G 
I(G}(i ,j) 

otherwi~e. 



We may, identify an unwetghted directedcgraph G = (V,E) with 

the weighted directed graph G"' obtained by assignir.g weights of 

zero to all edges in E and weight ..o to all missi1tg edges'. 

We make the observation that the shortest distance matrix entry 

* . M{i ,j) is equal to O iff I (f ,j) = 1. 

Hence;· any shortest path a 1 gol"i thm .may be used ~o so 1 ve the 

transitive closure problem. For algortthms R1 and "P1, since 

all KEY's are equal to zero, one may irnprement 'the priority queue 

in such a way that every fnserti'on and diljeti on from the queue 

can be performed with· constant cost. As pointed out· in a previous 

paper [Bloniarz, Fischer, and Meyer 1976] this results in a 

transitive cl-Osure algorithm with O(n2 log n) average time. 
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Section' L_ A. I. Distributions 

We conclude by presenting several e~Qlla.s ~f ~ce•WY 

invariant probability measures. 

1. For each iE:[l :ra]. suppose P1 i.s a-propa~i]ity measure 

* on R • Let P be the probability measur.e.-0n G .obta4n~ by. 

selecting each entry of the weight matrix t(i 9j) independently 

according to distribution P1• Then P. be~ng ~e p.ro4uc~ .~asure 

generated by the measures P1• is A.I. This. cl~~ properly .. 

includes all distri~utions claimed in Spira {1~73]. 

2. Suppose. R is so~ probability meas.ure -0n an arbitrary 

set B, and f:G
0

-+ B is. a functicm wMch ts. invariant under each 

l1£T n; that is, f o n(G) = f(G) for ~U IkT n and; GE:~ • Then 

the induced probability measure R 0 f on G is A.I. by construc­

tion. Some specific examples include cases in which the weights 

of edges might be specified but all choi~es of endpoints are 

equally likely. For example, in the discrete case, one might 

specify a distribution on the sum ·of the weights of the edges 

leaving each node, and specify that each graph with the sa~e sums 

be equally likely. Or one might specify a distribution.on the 

maximum weight of any edge in the graph and specify that each graph 

with the same maximum be equally likely. 
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Section £.. Open Questions 

l. 
. 2 

Scnnorr [1978a] has recently exhibited an O{n) average-

time algorithm for transitive closure which improves on the ideas 

above. His algorithm does not construct the paths between all 

pairs of nodes; does a transitive closure algorithm exist which 

does construct the paths {as the algorithm P. does) and which has , 
o(n2 log n) average time? 

2. Is there a larger lower bound to the worst-case running time 

. of any shortest-path algorithm than the O(n2) obtained by adversary 

arguments? Can a lower bound on the average-case running time of 

such algorithms be established? For a related paper, see [Yao, Avis, 

and Rivest 1977, Graham, Yao, and Yao 1978, and Yao and Rivest 1978], 

3, The fastest known algorithm for computfng the transitive · 

closure requires O(n2·81 ··) basic steps in the worst case UFischer 

and Meyer 1971]. Can this algorithm be improved upon?t Can Fredman's 

{worst-case O(n3)) shortest-distance algorithm be improved upon? 

(Fredman [1975] has observed that Spira's algorithm may be 

modified to compute the shortest-distance matrix M with a average total 

number of comparisons of only O(n2 
log n) but at· a significant increase 

in total running time when all operations are considered,) 

t Recently, Pan [1978] has improved on this result and.has 
announced (i979) an even further improvement. 
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APPENDIX 1 

In this appendix we s~et.ch a proof pointed out to the author 

by V. Chvatalt of the lower oound on H{n) stated tn Theorem 3.14. 

We use notation as in Chapter 3. 

Theorem: Suppose O<E<l/8. Then, for arbi~ri1y ·large n, there 

is an n-node undirec.ted grap.h G such that. D(G) ~ n-n(l-e:)+l. 
£ . £ 

Hence H(n) ~ n-n(l-e:)+l. 

Pro~f Sketch: Suppose O<E<l/8. We Will show. the ~istence of an 

n-node undirected graph Ge: (for arbitrarily large n) for which 

D(G ) ~ n-n1-e:+l . First we make some observations. e: 
Suppose that G is an arbitrary undirected graph, and let 

C = (h1, •.. ,hm) be an exact cover of G by complete bipartite 

graphs G1 , .•. ,Gm. Suppose Gi is ·a compl cte k1-ti bipartite 

graph for i€[l:rn]. Observe tha~ if both k; and t; are at 

least 2 for some iE[l:m], then G must contain a 4-cycle; that 

is, there must be nod~s a,b,c, and d in G such that edges 

{a,b}, {b,c}, · {c,d}, {d,,a} are in G. Hence if G were a graph 

with no 4-cycles, we may without loss of generality assume that 

each graph G; isCt(l,.e.1) complete bipartite graph~ Let vi 

tPrivate corr.nunication~ 1977. Recent research by Berrond and Chung 

[Bennond 1978] have- shown that 

n-n19124 + 0< n(n) < n • log
3
n + 0(1) 

for arbitrary o>O. 
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be the node in hi(Gi} corresponding to the singleton set in G1. 

It is clear that {v1 I 1€[l:m]} is a node cover of G, 

that is, a subset of the vertices cf G $UCh that every edge in 

G contains at least ~ membt!-r of the set. • Hemlt, O(G) eEJUals 

the size of the smallest node cover of:G,aslong as, G contains 

no 4-cycles. 

If1 O<e:<l/~ :1s arbitrary, then Erdos [1%9] has proved the 

existence of an arbitrarily large graph G 'with n nodes which 
£ 

has no 4-cycles, and for which every set of at· least nl-£ nodes 

spans at least one edge. Hence any node cover for G£ can omit 

at most n1-£-1 nodes, so O'(G ) ?! n•nl-e•l. 
£ 

.a 1'h~m· 

-------
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APPENDIX 2 

In this appendix we explore several questions in the M-circ~it 

complexity of combinations of functions. A general theorem, due to 

Galbiati and Fischer, is presented in which a combination of functions 

f and g is considered in which f and g depend on one variable 

in commont. This general proof includes as a special case M. Fischer's 

result that MC(fxg) = MC(f) + MC{g) [Paul 1976]. Finally, we 

remark that these results also apply to the measures MCA and M(\.. 

Additional research on combinations of functions which are the dis­

junction of variables has been reported by Lamagna [1975], Neciporuk 

[1971], and Tarjan [1976] . 

l. Theorem (Galbiati and Fischer): 

Suppose n,m,k, and 1€lN, and f€Bn+l,k and g€Bm+l,t are 

m.b.f. 's. 

Define f6g£Bn+m+l, k+t by 

f6g(x
1

, ••• ,xn ,y1 , .•• ,ym,z) = ( f(x1 , ••• ,xn ,z) ,g(y1 , ••• ,ym,z)). 

Then MC(f6g) = MC(f) + MC(g). 

Proof: Clearly MC(fog) ~ MC(f) + MC(g); we prove the reverse 

t 
This result has been ~resented in [Galbiah and Fischer, 1978] since 

the writing of this paper, 
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i nequa 1i ty. 

Suppose N .is a minimal M-circuit which computes fAg. We 

will say a gate G£Gates(N) is a mixed gate if G depends struc-
. . 

turally on some variable from X = {x1, ••• ,x} and some variable n . ,. . ' . 

from Y = {y1, ••• ,ym}. We· show that it is possible to re-structure 

N to eliminate all mixed gates and result in a circuit N"' which 

has no more gates than N and which still computes fAg. I,f this 

is the case, then N consists of two disjoint circuits; one consists 
* . - . ~..... ' . 

of Succ (X,N)u{z} and contains a gate computing f{x,z), and the 
* . . . . 

other consists of Succ {Y,N )u{z} and contains a gate which computes 

g{y,z). Hence the total nunt>er of gates in N"' {and therefore N) 

is at least MC(f) + MC(g). 

So let MIX= {G£Gates(N)IG is a mixed gate} and suppose 

MIX f. e. Then l(MIX) 'I e, so we can select an arbitrary gate 

Gd {MIX) and let Pred(G) = {H,J}. Sinc:e N is ·nrtnfmal: neither 

H nor J is a constant node. We will replace G with another 

gate which is not mixed and yet still have a c1rcuit wtlidl- c®'utes 

f.Ag • 

. Since H and J are not in MIX, but 6 is, either H depends 

solely on Xu{z} and J depends on Yo{z}, or vice versa; suppose 

w.1.o.g. that H depends on Xu{z} and J depends on Yu{z}. 

We first consider the case that G 15 an A-gate. In this case 

Pl(G~N) ~ PI(H,N)·PI(J,N) ; (1) 
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that is, every prime implicant of G is a produet of a prime impli­

cant of H and a prime implicant of _J. By Lenma 2.8 , since _no 

component of f~g has a prime implicant which contains both a var­

iable from X and one from V, we may eliminate from PI{G,N) all 

such monomes which contain both a variable from X and a variable 

from V, and still have a circuit which computes fAg. We consider 

seveal cases. 

Case 1: Neither PI(H,N) nor PI{J,N) contains the monome z. 

In this case, every monome in Pl(H,N) contains an X-variable 

and every ioonome in PI(J,N) contains a V-vartable_. Hence, by -(1), 

every monome in PJ(G,N) contains both an X-variab-le and a 

V-varf able so G may be replaced by a node which computes the 

function\/~, the constant function 0. Since this new network has 

one fewer gate (namely G) than N, this contradicts N's minimality 

and hence Case 1 can not occur. 

Case 2: z is a member of both PI{H,N) and PI(J,N). 

In this case, zEPI{G,N). By an argument similar to Case 1, 

one can also show that all monomes in PI(G,N) different from z 

contain both an X-variable and a V-variable and hence may be 

eliminated from PI(G,N) while still leaving a circuit which 

computes fA9· Hence G may be eliminated and· replaced by the 

input node for the variable z, a contradiction to the minimality of N. 
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Case 3: z is a meQ>er of exactly one of Pl(M,tt) or PI (J ,N). 

Assume w. l.o.g. that zePI(H,N). In this case, every monome 

of PI(H,N) other than z contains an X-variable, and every 

monome of PI(J,N) contains a Y-variable. Thus every monome of 

PI(G) contains a Y-variable, and those which do not contain an 

X-variable in addition are of the fonn z•t .. , where t .. ePI(J) 

(note that t may also contain the 1 iterc:l z). 

So let N"' be the circuit obtained by replacing H in Pred(G,N) 

by the input node for variable z. Then PI(G,N .. ) consists of those 

monomes of Pl(G·,u) which do not contain·both an X"'va:riable and 

a Y-variable, and we have a cireuit . N' which st111 computes 

fAg by Leoma 2.8 • Since G is not mixed in ~,..~ we have reduced 

the number of mixed gates in N by one. 

In the event that G is. an v•gate, we use an argument dual 

to the one above to also replace G by a non-arixed:gate. Recur­

sively repeating the above construction for each initial mixed gate, 

we obtain a modified M-circuit for fAg with no mixed gates, and no 

more total nunt>er of gates than the original. Hence the ~heorem is 

proven. D Theorem 1. 

2. Corollary (Fischer): Suppose that f(Bn,k and geBm,t are 

m.b.f's~ Then MC(fxg) = MC(f) + MC(g), and any optimal circuit 

for fxg contains no mixed gates. 
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Proof: Define f"'(x1, ••• ,xn "z) = f(xT, •••• x,,l and 

g"'(y1 •••• ;ym,z) = g(Yp···•Ym). Then MC(f .. ) = MC(f) and 

MC(g"') = MC(g): Also f"'6g"' = fxg, so the first part of the 

corollary holds. Moreover since f"'6g"' does not depend on variable 

z, cases 2 and 3 of the proof of Theorem l can never hold for a 

minimal circuit, and hence no mixed gates can occur. 

O Corollary 2. 

In a similar fashion to Theorem l, one also proves that 

the following holds. 

3. Theorem: Suppose that f e:Bn ,k and ge:Bm,R.. are m. b. f. 1 s. T'hen 

(1) MC (f~g) =MC (f) +MC (g) 
A A . A 

and 

The proof of part (1) is similar to that of Theorem l; 

one considers an A-minimal circuit for fxg which among all such 

also has a minimal number of v-gates. Part (2) _holds by duality. 

A similar result holds to Theorem 3 holds for fog. 

Note: We observe that the analogous question to Theorems 1 and·2 

when f and g have 2 variables in corrmon is false as the example 
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demonstrates . 



APPENDIK 3 

In this appendix we present a version of Spira 1 s algorithm 

for computing shortest distances in a graph [1973] which has 

n{n3) average running time over a certain class of graphs. 

This counter-example, which was previously reported in [Bl oni arz, 

Fischer, and Meyer 1976],reveals why we needed to revise, correct, 

and verify Spira's original approach. 

Spira's algorithm operates by computing the distance from a 

particular 11 source 11 node i to all other nodes fo the graph. By 

repeating the algorithm for each source node i, th~ shortest­

distance matrix may be found. Two differences between this algor­

ithm, which we call Si' and the algorithm Ri of Chapter 7 are 
-

noted. The first is that, in Si' no assumptions are made about 

the value returned by MINQ in the case in which there are nodes 

in the queue with equal KEV 1s; the queue might utilize information 

about the graph in breaking ties. This is a minor difficulty. 

The other difference is that when a near node has several edges 

of equal weight emanating from it, then these edges are not nec­

essarily examined in successive passes of the algorithm. These in­

complete specifications lead to the problems we describe later. A 

Pascal-like implementation of s1 is given below: 
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ALGORITH": ~,J.Spjra 1S Algorithm} 

FOR L := 1 to n DO D(L) := NIL; 

FOR L := 1 to n QQ. P(L) := 1; 

NEAR := {i}; D(i) := O; J := NIL; CLEARQ; 

1£. W(i,l) 'I fil!:. THEN_ <KEY,J> := <W(i,1),i>; 

WHILE J I NIL DO --
BEGIN K := A{J,P(J)); 

IE KlNEAR ]]£! 

END • 

BEGIN NEAR := NEARu{K}; 

D(K) := KEY; 

!E. I NEAR! = n ~HEN , HALT; 
h . J 

lE. W(K,1) ~NIL . THEN INSE~TQ(«EY + W(K,l), K) 

END ; 

P(J) := P(J) + 1; 

.![ W{J ,P(J)) f NIL THEN INSERTQ( rE.Y :t" M(_K, l) ,K)'; 

<KEY ,J> := MINQ 

·The proof that Si correctly computes the shortest distance 

D(j) from node i to node j is identical with that given in 

Chapter 7 for algorithm R1• 

To show that algorithm s1 can be implemented poorly, for 

si~licity we will restrict ourselves to the case in which all 

edge weights are either 0 or m. This corresponds to computing 
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the transitive closure of a graph as ment11)ned in Chapter 7. 

In this case, every node in the priority queue has a KEY of zero, 

and the value returned by MINQ is an arbitrary pair in the queue. 

We present an example in which the~·priority queue is implemented 

so that the value returned by MINQ does not utilize any infonnation 

about the graph (i.e. the matrices A and W) other than'that 

given 'it by previous INSERTQ op~rations. In particular, we maintain a 

first-in, first-oat queue to store the nodes in the priority queue. A node 

is INSERT' ed at the end of the queue~ and MlNQ removes and returns 

the node at the beginning of the queue. 

Theorem: Let P be the uniform probability distribution on n-node 

weighted directed graphs in which all edge-weights are zero or oo. ·For 

any graph G~Gn• assume (as usual).that edges.of equal weight in 

a 11 adjacency 1 is ts a re sorted by increasing node 1ndex. If 

N1(G) is the number of times the subroutine · MINQ is called 

in executing s1 on G, then, when implemented as described above, 

Proof: A straightforward argument shows that an average 

graph under this probability di'stribution 

(1) has at least n/3 edges emanating from each node 

and (2) has a path (of weight O} from every node to every other 

node in the gr?ph. 
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It suffices to show that _there is a e&l)$ta11t c > Q such that if 

G is ·a graph satisfying (1).and (l}. then N~,(6).~ co2• 

So suppose G satisfies (1) and {2}. Then, ill tbe execution 

of s1 on G, node n will be placed inNiAR ~t some point. 

Hence. at some point in the execution we ·PIUSt·hay,, K = n; let J0 

be the value of J at tj:)e pojnt (the ~;ge from J0 tG n _is 

being "examined" at that peint}. Si"1Ce j 0 tlad a.~ lffst n/3 _ 

edges from it, and since the edge to n is the last edge listed 

in the jiJ th row of A ~nd . w., we ~ow. that jo" •st ·have been 

placed in NEAR, placed on the que~e, and sa.bsequ«ently returned by 

MINQ at least n/3 times. 

Following the R.th time that J0 1s returned by MINQ, an 

edge e~nating from jo is examined, and its en4toint A(J0,i) 

is added to the queue (unless that element. had previously been 

pl aced on the queue). The· queue dis~ipline implies that A(j0 ,i) 
.. 

will be returned by MINO in between successive return~. of J0 
by MINQ, starting from the .r. th time that .. j

0
_ is returned by 

MINQ and continuing at least until either node n is placed in 

NEAR (after at least n/3 - .e. further returns"of' jo by MINQ} or 

until every edge from A(j
0

,.e.} has been examined. Thus A(j0 ,.e.) 

is returned by MINQ at least min(n/~ - .e. - 1, n/3) = n/3 - 1 ~ l 

times. Since this is true at least fo.r 1 s .e. < n/3, the total 

nuneer of calls to MINQ is at least 
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n/3-1 

l (n/3 - i - 1) = ~(n 2 ) 
1=1 

and the statement is proved. 

D Theorem. 

Since this theorem is true for every iE[l :n], a transitive 

closure (or shortest path) algorithm implemented as above will have 

n(n3) average time, contrary to Spira 1 s original assertion. 
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