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· Abstract 

Minimum execution time scheduling of task systems with resources has been the subject of several 
papers over the past few years. The model used for much of this work assumes that the resources in the 
system arc continuous. That is, there is one unit of each resource, and a task may require any portion of 
that unit during its execution. While this is a reasonable assumption for ccnairi bin packing applications, 
it is intuitively u11reasonable for certain other applications. In panicular, the resources associated with 
computer systems - readers. printers. disk drives - arc not "continuous" resources. We present an 
alternative model of task systems with resources in which the resources arc discrete. That is, there are a 
specific number of indivisible unit." of each resource and a task may require only integral numbers of 
those units. Several results involving the worst case performance of list scheduling and critical path 
scheduling with respect to this model are given. A new result on critical path scheduling of task systems 
with continuous resources is also given. FinaJJy, a comparison will be made between corresponding 
bounds for the continuous and discrete models. 
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Chapter l!IMkSntms 

Over the ·past fifteen years one of the most active areas of computer science and industrial 

engineering research has been the scheduling of large systems. This research has been motivated both by 

the existence of large industrial scheduling problems and by the existence of high speed digital 

computers to solve those problems. Moreover, the models used to study these scheduling problems have 

attracted great theoretical interest, and as a result, an immense quantity· of research has been done on 

them. 

In general. a scheduling problem is of the following fonn: Given a set of tasks which need to be 

completed, produce a schedule of minimum length for completing those tasks. Often, there are a 

number of constraints placed upon the fonn that the schedule may take. For example, some tasks may 

need to be completed before others can be started, or there may be a limit on the number of tasks that 

can be "in progress" at any given time, or some tasks may require longer to complete than others. Many 
I 

types of constraints arc possible. 

It should be apparent, even from the infonnal description given above, that the scheduling of 

systems of tasks is not trivial, and that ad-hoc methods have almost no chance of producing even near 

optimal schedules, much less optimal schedules. The obvious approach then is to fonnulate a standard 

set of rules (hopefully, a good set) for producing schedules. Indeed, the design and analysis of alaorithms 

for scheduling has been the primary area of research concentration. For some classes of task systems, fast 

algorithms have been developed which produce optimal schedules for those systems. For other classes of 

task systems, it has been shown that finding algorithms which produce optimal schedules in a reasonable 

amount of time is unlikely. For these classes of task systems. the research has focused on producing 

good, polynomial time, heuristic algorithms. That is, algorithms which, in a reasonable amount of time, 

produce good, though not necessarily optimal, schedules. In conjunction with this, the pcrfonnancc of 
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various simple and/or fast schedulins~ aJaoritbants has ~n analyzed, so as to provide a perfonnance 

"benchmark" that more complicated algorithms can ~compared to. 

In this chapter we define the notions of a task system, of a schedule, and of a number of related 
f' 

concepts that we will use throughout this thesis. We also give a summary of the major results pertaining 
' ' 

to the basiC task system model which we describe here. 

ll~~~ system mOdel 

A Wk~ is a system S = <T. <. m> where: 

1. T = {T 1 ..... T 0 } is a set of tasks - associated with Ti is a positive integral execution time Tj· 
' . ~. i:; - ' . - ~ ;_ .s. 

2. < is a partial order specifying prcg;dcnce coostmin&s between the tasks. 

3. There are m identical processon. 

With respect to. the precedence constraints. we have the following definitions: If Ti< Tj• then Tj is a 
. . . . 

-· "··· 

successor of Ti• and Ti is a predeccs.wr ofTj. We will ref'rescnt the partial order oy a directed acyclic 
' - . ;;·:-:. 

graph (dag) with one node for each task and one an: for each refation in the partial order. We 8$Ume that 

there are no transitive edges in the dag. Two examples of task systems are given in Figure 1.1 -- one is a 
·,.:' 

. . . 
fully general task system and the other is a task system in which all of the tasks have an execution time of 

one. 

A ll.llil schedule for a task system S, is a mapping a: T _. (N - {0}) such that: 
·: - ~ ;· ' , - I -\ -

1. For all / E (N - {0}), m > l{Ti E T: a(Ti) < I< CJ(Ti) + Ti - I}~ 

2. If Ti < Tj• then cr(Ti) + Ti - 1 < a(Tj). 

'lbcsc two conditions correspond to our intuitive notion of what constitutes a scheduJe: that the tasks be 
\- ._ . 

executed on m processors subject to the precedence constraints. More specifically, the first condition 

ensures that at most m processors are in use at any givcri time. 1bc second condition ensures that the 

precedence constraints arc not violated. That is, if Ti < Tj. ~n Ti m~ have completed execution before . 

T; can begin execution. 



Figyre 1.1: Basic task systemS 

m = 3 pmcmon 

a) A task system with J processors and 7 tasks. The task execution times are given beside the tasks in 
thedq. ' . . 

· 81 = 2pmce•an · 

I K L M 

b) A task system with 2 processors and 13 tasks. Each tiJSk has an, execudon time or one. 

Fl&UfC L2: V alicl schedules 

Schedule: A A C E E E E 
B 000000 

Tame unit: 1 2 3 4 s 6 7 8 

a) A valid schedule for the task system Jiven in F'lgUJ'e Lla. .CJ'bSS-hatdling is used to inclicate idle 
processors. The mapping o is not given explicitly. 

Schedule: 
M 

Tune unit: 1 

b) A valid schedule for the task sytem given in· Figure l.lb. 
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Given a valid schedule, we define for each i € (N • {0}), the set Bi = fij ( T'. arrp S"i ~ "-o(fj}+ 

"'j -1}. ~lso, let w = min{i : (Nj) i)(Bj = 0)}. The schedule has~ w., and consists of the"'~ 
i. 

~ B1, ... , B c.>" For each time .. u,nit. ¥-r _if !Bil < m, then Bi has m -~ ~ proeesso~, Intuitively. we 
'~.__ j( 1," 

assume that the processors are numbered from l to m, and that . proccssor!··-1.~throngh IBil J,lave tasks 
' 

executing on them and that processors IBil + 1 through m are idle. Examples of valid schedules for the 

task systems in Figure LI arc given fo Figure 1.2 .. -

Finally, we note that there are a number of criterion for determining the "goodness" of a schedule. 

The most widely used, and in many senses the most naturaf is that of minimi~ the schedule length. 
_; . _, . ...... •_:. 

This criterion is refercd to as th~ minimum. execution 1itB qj 1A1CSl 60~08_ m ~riteiiott. This is the 
• - :? • l ..... ·~-

measure of optimality that we use throughout this thesii. 
_,.*- ·t 

' 

U Common sub111odels 

The model of task systems presented above provides a starting point f6r virtually all theoretical 

scheduling research.. This model has proven . however, tO. be extretticly difticidt tO . deal with in. its full 

generality. Moreover, many practical applications are most effectively analyzed using various 

submodels of the model given above. Most of the research has focused on Mj)artici.t1ar submoddsof 

the basic task system model. These submodels are: ~ · 

1. Task systems where< is empty. That is, the~·~nci~~ts.in the system. . ""::. ' . - :· ··. -:;: '.. " ~. . '-'._ ' 

2. Task systems where all of the task execution times arc identical. Jn this ca5c we mume without 

1oss of gcnemUty that eadl .,.i == 1. These are llt!il;mput.Ut .1im (UEl)task systems. 
-:- : .I, l· ·-,~· .. ' ~ .., . • . 

With the exception of Chapter 7. we will deal exclusively with UET task systems in this thesis. 

U Scheduling algoritbms : "~' 

. ·~ .. 

In this section we describe the three types ofschfdUtcs whlC1i *'e wntUdJtie: • 

lll LiS scbedules 

List schedules arc the most basic of the schedules which we will examine. They arc of particular 
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interest not only because of their simplicity, but also f>ecause most intetcsting scheduling algorithms 

produce schedules which form a subclass of the list- schedules. Intuitively,~ list schedule is formed as 

follows: Consider any (ordered) list L, of the tasks:in T. -the tasks are Sc~~B$•foltows: Whenever a 
} ' - .. , - ~ ··. . - . . . ~ 

" - "-',,,." 

processor becomes idle, the list L is instantaneously :;canned: from its-bcginnin8 until a task T (if any) is 

found all of whose predecessors have completed execution. Task T is assigned to the idle processor and is 

removed from L 

More formally, a task Ti is~ at time I if for every lj such that Tj <Ti, a(Tj) + "'j - 1<I.A1i&l 

schedule is a valid schedule which is generated as follows: 

1. Initially, Lis an (ordered) list of the tasks in Tand I is L 

2. While L is nonempty perform this step 

b. For each of the first m - k (or less, if there aren't m - k) ready tasks Ti, on L at time ~ let 

a(Ti) = I and remove Ti from L 

c. Let I= 1 +min {a(Ti) + "'i -1: Ti f Land a(tj~ + "i ..i~ ~ /}. 
' i. 

Figure 1.3 shows an example of a list schedule for the UET task.~ pvcil'in Figure I.lb. 

List schedules are particularly attractive when dealing with UET task systems. In this case the 

restriction that only list schedules (and subclasses of list sched~) be coosi~red as possible schedules for 

the task system causes no loss of generality. To see this:; consider any ~ ... ule for a UET task system, 
. ~"·,, ' "~ '· -

and ~me that schedule consists of time units n1, ... , · H"'. -A 9¢he<ll;ak with length ftO more than "' 

results from the list consisting of the tasks in n1• followecrby the tasn'in ~· followed by the tasks in 83,_ 

and so on, ending with the tasks in 8"'. Figure 1.4 shows that it is not generally true for non·UET task 

systems that there is always a list schedule of minimum length among all schedules for the system. 

Finally, for list schedules, note that given a list L, the corresponding schedule (i.e. the mapping a) is 

uniquely determined. For this reason, it is common practice when dealing with list schedules to simply 



-14-

Figµre 1.3: A list schedule for the task system ln fiauRl.l~ . 

list: (ML K J I A B'C D E F 'O H) 

Schedule: '~ L. Q F. H . ' IC 
A c E G 

Time Unit: 1 2. 3 4 1 6 

Figure 1.4: List schedules are not best for non-UET systems. 

Task execution times are given beside the tasks. 

Tuneuftit: 

'~···&.' 
D E 

l 2 ] 4 

An optimal schedule: 

A list schedule: 

List: (A B C · D E F) 

Schedule: 

Timeunis: 

In fact, a(B) = 1 in ~list scbedule ror this system. 
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give the list L, along with an infonnaJ description of the· underlyiatiCledule. The mapping fl .ii riot 

fonnaUy specified, because it tends to obscure, rather than illuminate, the nature of the schedule. 

Throughout this thesis we will follow the practice of spcclrying 00"11~ liSt an:d net the mapping u. 
- .. , " 

.lJ.2 Critical l2ilb schedules 

Critical path schedules are one of the most widely sru~ -su~~ of list schedules. Intuitively, 
~... _.,,..,.,~... t 

these are schedules in which the. tasks arc ordered within tlleJdl accordiog,ro their distanee from a leaf of 

tasks far from the leaves should be executed first. 

More formally, the km of a task in the precedence structure may be defined as follows: If Ti has 
r·'..; _'•,'i~'·-,, ;~,·-;A;: / ·.·· 'I > 

no successors, then level(9 = 1; otherwise, level(Ti) = l .f ~~j)! /f i { :Tjli A kli1iW lWll 
._,, ~-- ~ ' . • ,.j..,..,.., - -- ' 

- ·~ ~ "/> - • : ' ~ . •· > :: 

schedule is a list schedule derived from a list having the · pioperty that for any two tasks T and ·s, if 

level(l) > level(S), then T precedes S on the list Because the list contains the tasks ordered according to 
-.,. - , 

their levels. these schedules are also called km sc;hcdules. An example of a critical path schedule is given 

in Figure 1.S. 

As noted above,. cri~. path ~edules have bcten. Mudied ex~ttl~- They are of s.:mstantial 
. _, " >;" ~ 

practical and theoretical interest for three reasons: · Fi~ tl)e..fl1ethod is intuitively appealiJtg. Second. 
- . -~~ - - . ' -

the method is applicable to any system having precedence~- Thifl"thele sch~ are easy to 
. . ' -- . ...._.., ~ : . : 

construct - using breadth first search the list can be constructed in time linear with the number of edges in 

the dag representing the prccedelk:e'tonstraintk. · 

Ll.l Coffinan-Oraham schc4Mlin1 

Coffinan-Oraham schedules are the third elem of ~ewe utilize; These ~edulel are a. ,. r~"" ~ . - 1' ·.) 

. ~.~ ... 

subclass of critical path schedules in which the tasks of ed ~;a(e;~, itt1a pPrticular way. 
. . ' ' J.. . . ~ . , 

Specifically, Coffman-Graham schedules arc a class of list schedules for which the list is fonned according 

to the following rules: F.ach task is cmigncd a label as follows: 
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. figure 1.5: Critical path schedules 

L 1 M.l 

The numbers~ the tasks are the levels or the tasks. 

Critical path list: (A B C E D F G ff I J K L M) 

Schedule: 

Tune unit: 

Figure 1.6: Coffman-Graham schedules 

L 2 Ml 

The numbers beside the tasks are the Coffmail-Graham labels of die tasb. .· . 
• : > : :.:.> ' • --- ~ ' ••• 

Coffinan-Oraham list: (B A D E C H G F I J K L~; M) 

Schedule: 
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1. Select a task whlch has no successors and assign label l to thatt.ask. 

2. Assume that labels 1, ... , i - 1,- have already been ~ F'or:eacll ·µnlaMled .task .T, all of 

whose successors have. been labeled. form a list (in deeR?asina order) of the . labds of T's 

immediate sucussors. As$&n label i to the task whose list: is -~phically the maHest.. , 

The list used to do the scheduliag contains the tasks in decreasina ordeJ of. ~it 1*'5. Aa example. of a 

Coffman-Graham labeling and the corresponding schedule are gi~ m Hgure 1.6. 

These schedules were first inYeStigaled by CoffmaJt and arae. (CO] in conjunction with Ufil' 

task systems where m =:: 2. As we note in the next section. Cqt'ftnaa-0~ schedules~ guaranteed to 

be optimal in this limited case, while list and critical ~th ~es are • {Since the Jnitlal work of 

Coffinan and Graham, lhese scluKlules have beetl inv~ lw se~e~ other ~ iacl"'1ing 

Lam and Sethi, Goyal, Leung and Jaffe (LS, Go, Le, Ja). Jn geaJeral, .. dle· ~matioa~ p~~ of 

Coffman-Graham schedules make them easier to analyze than the more general case of critical "'8th 

schedules. However, because Coffinan-Graham schedQJ.qs cw a ~·ofcritical;pa\b ~ules. certain 

results about Coffinan-Graham schedules - in particular, lower bounds on worst case Pflformance - can 

be applied to critical path schcdules,as well. We will make use.of Ibis relaliouship in (])apter S. 

lA A survey Qf Illllim: results 

In the;remainder ofthis chapter we survey the majQf ~ks ... pc$iniagto the.minimum execution 

time scheduling problem for lho. basic; task. sy~ modet "14 to the three; .types Qf 6':bcdules which we 

utilize. .lllesc results are 1*ically of two kinds: cidier daey ar~. J"W'<OIRP~ rcsultsi ,~e 

-·implying that fiading algorithms which prooucc, optimal· s:ltfft1l'5<1-,a J'CttSO~,~ot of titQe .is 

unlikely; or they arc bounds on .lhc worst case pcfJQrmance,o{ili#. ·~ .path·or..~an-Or.tham 

scheduling. W c first briefly r-0view the notions of NP'i:Omplatcness. 

ill Jie CODCej,}ts 

1broughout this thesis a recurrent concept is the notion of a problem being NP-complete or 
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NP-hard. In this section we give a brief description of these ideas. The reader is refered to the book by 

Garey and Johnson [GJ79] for a detailed discussion. 

The set M!· oonsists of an languages which can benmpized by a .. nondetermiilistic Turing machine 

in polyflOmial time. Similarly, the set l consists of alHaaguagel which 'can be recognized by a 

·detenninistic Turing machine in polynomial-time. It is not known wttedler)P iScprOperly ~ined in NP. 

A language L0 in NP Is- NP=oomplete is the follewing condition is satmfted: 

·Given a detcrminislic attorithm of lime ·complexity l{n) ·~ n for tecogniziRg L
0

• for each 

language L in NP, there is an etrective way' to find a det«lniitistic al&orithm· of time complaity 

T(p(n)) for recognizing L. ·where p is a polynomial depending on L. 

Oearly, if any NP·complcte language is in P, then P = NP. ''The usUa1 method of showing· that a 

language L
0 

is NP-complete is to sboW that:. 

1. L
0

i&in NP 

2. There exists an NP-complete language l .. whicll is~ ta 1.
0 

in-~iuiStic p6lynomial 

time. 

A language- for which the second condition ean be shown, but not-thefintisNP=J\atd. The recogaition of 

such languages is at least as hard as the recognition of NP-complete la...U. ~ 

Finally, we note that it is widely believedthat.P·~· NP; This-hlic!f ~·fium the ·fact that there 

bas been an immense amount of time and energy dtmmd fb! fiadiftg·•a polywoinial tiine algorithm for 

NP-compfete problems. Moreover, it it scncra11y actnbwlcdged tJtat·<ibfaiftintlower boullds on·time 

· corttf>le1ity arc among the hardest-t'Jl*s ·or results to obtain~ ThiS may help to ciptain why no one bas 

been able to Show P ¢ NP,-even though -most reseatcilcrs believe tJtaf'iscfhe case. Thus. there is-strong 

evidence that polynomial time algorithms 'JM obtaifting sofutioRs tcJ ~ problems do Mt aist 

This leaves us to concentrate on the pcrfonnancc of heuristic algorithms for these problems. 
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WNflDUlll 

There are twa importaot NP-completeness ~ts pertaiaing to tiadin& -minimum length schedules . 

for task systaDS. 

For UET task system& with m pr~ Ullman fU7J, U7S; U7-6) has shown that find~ 

minimum length schedules is NP-OPmPlete. Lenstra and-Kaa fLK) have.-shown the Ame result using a 

different construction. A major open problem is whether tbi$, result is ne tOr any. fued m ~ 3. ·· Th;lt is. 

whether, for any Dwt nwnbu of processoll m ~ 3, finding, mtailnum Jctngth 5Chedules for UET task 

systems with m processors is ~etc. :Al mentioaedoarlier. whee Ill- 21;- 2. tbeEe il :apol~omial 

time algorithm for finding minimum length schedules. Also, if the precedenc~·CQDStrainta are restricted 

to a forest, then there. .ii a polynomial ~ schedul4n& algoritkrn., •Bodt of tbC8C t~ iVC given in the 

next section. 

For task systems with unrestricted task execution drneti and. no pnJCedenc;e ~--Bruno, 

Coffinan and Sethi [BCS) have shown that fiadina minimum- lenld\i shedules .is NP-hard• even for 

systems with just two processon. 

Finally, both Ullman [U73, U7S, U76) aod Lenstr.a -1 Kan (LK)ibavc shoWll die ft)llowin1: That 

finding minimum execution time schedules .for task systemS with two ~rs. ~OQe ,constraints, 

and task execution times restricted to be either l or 2. is NP~ 

LU P£ffonnaocc IClllU 

As evidenced by the NP-c001pleteness ~Its gj.yen, in the .previc>us, $0Ction. for mosf interesting 

scheduling problems it is unlikely that polynomial time ,a&aoriduns •ist . which pi'Qduce optimal 

schedules. For this reason. most of .thC. reswch.A1Ucntioll ·has been. cm .plyJ.ina the pcrformQCC of 

various heuristic scheduling methods. Almost all ofthcse.raul&sinvolve-_..~ pcffc.umance. That is, 

an ~ ~ is given for die ratio of the length of a, schedule of a particular type (for inllanCe. a list 

schedule) to the length of an optimal sdtedule tbr the,san;ic· lialt syfllelp. Jnlhis:survrl' we 1'$Act our 
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attention to the worst case perfonnance of list, critical path and Coffinan-Graham schedules. .·Apie J'e 

note that most useful scheduliag algorithms Gan be fonmi1ated: as at8orimmir which produce aedules 

which are a subclass of the liSt schedules, and that critical path and Coffman-Graham' shedules: have 

. properties which mate them pardculady auraeuve. bodr~y '**l J)Nelblly. 

· Many of dle<results'which ·we cite are also' the best~~ "TlliS'~s that the result is 

both an upper and IOwer bound on the worst case ratio betwftn thee i.ngttr of·a:5chedule of the particular 

type and the leftllh of an optimalschedule.,That is, the~existlra task ~Jaischedule of the parcicutar 

type anti an optimal schedule fbr that task system, .suc1- that M•fado.·..nrte·1Chedute tcngtht i&·arbitmily 

cloee to the Uf)pel' bound. · 

Throughout dDs rhesis, given -a tast system s~ we:use...ttJe; fellewinl JOurvatues when cidng various 

results: 

OPT is·tM lenadl of an-optimahchedule fotS 

LIST is the maximum ·Jensdt of any list schedule for S 

CPA TH is the maximum length of any critical path schedule for S 

CG is the inaximum length ofany Cofftnan<Jrahm-scllCcl• for S · ... 

Before actually siving any resukl. we note 1hat tllete' annwo-·esceRent; ; refeRHICCS ft>r the ·tnten!Sted 

reader. Most of the major results eke ht this and tho. J)levlous teetion are given a tUll treatmeM. 

including proofs, in the book by Coffinan [CJ. Secondly, a near exhaustive lisdill-Df 1Chcda11ina results 

for many kind& of task systemS and tchcduling'algoridnftsiis ~mtoU-Ki 

· The roost ntcnsive rC!SC8R;h with reprd to thtr&ehccttdas that we aR l?Olllidering has been -done for 

UET tast sysrems. Some of the cattiest wort was ·done~ (066} wfwO;tllowcd that LISTI-OPT 

S 2 • l/m, and that this is die best possibleresuk CheniCllJllaS.shdwti:aa.tCPATH/OPf S 4/Jifm 

= 2 anddlatCPATil/OPT Si· l/(m • l}1f'·m > l. ·Rachportionof*is bou1id is the bCit pmsible. 

This . fe9Uk shows that critical .paflt schedu1es· have ·. tlilfldY ·better worst.· case behavior than· do list 



schedules in the general UET case. If the p~~-i! re&Uictcd to a tree.. .Hu (H) shows that 

critical path schedules_ are optimal 

Witb regard to Cofftnan-Oraham $Che(lu~ andidle UET taSe.. dle..ar,e ·two major results. If ill = 

and Sethi (LS) have shown that CG/OPT < 2 - 2/m, and tlulL-this·, IS * best,, possible. result. An 
- p • • 

~ twoprocesson. . 

With ~tt.o • s)'$tems with no preeedence c~and~ _aecutioa ~ thereae 

several in~na rauk& pertainiag to list schC4l\tJN. .(J.._ IG<l6l• shewn .aat, in Jhis ~ 

µSTIQPT S 2 - llm. and.tJlai "1U. i$thebe$lpolllil)k~,:fbil:is eucdy .. the·•me bound lltwai 

given for LIST/C\PT in the UET case. In fact. Graham (G66) has shown that dlissne·boua~Ulohk; 

even for task systems with .balb. precedence constraints and unrestricted task execution times. Graham 

[G69) has also shown the following resulL.which explicidy incorporates the task execution times: 

LIST/OPTS 1 + (m - l)(max{Ti: Ti ( 7JV<!rr. € T"i). Note that both Coffman-Graham and-critical 
1 

path schedules are equivalent to list schedules in this context because there are no precedence constraints. 

There are. however. a number of other types of schedules which have been studied .for this submodel. 

Most of these arc subclasses of list schedules in which the tasks are ordered in the list based on the task 

execution times. Again the reader is rcfcred to [CJ and fOU..K) for a thorough treatment. 

ll F.xtensions 

For many practical applications the basic task system model presented here has proven to be 

insufficient. For this reason, and out of theoretical curiosity, a number of extensions ro the basic task 

system model have been investigated. 

One major area of research in this regard has been the study of preemptive scheduling. In this 
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extension, a task may be interrupted during its execution and then t:ontinued later in -the 9Chedule. For 

UEf systems, this produces no new results, however for systems wbettflast · seeutien times • not 

restricted, this is an interesting and powerful extensiOn. A larae manmeroPresutts have been <>l>tiined on 

preemptive scbeduling. many of them analogous ta the resultidttd iJl -~~en. Mo'Rof dleS& 

results may be found in (CJ and (OLLIQ. 

Other extensions· to the basic model includ~ the tblk>wing: Uu and Liu tLIJ and Jaffe {Ja) have 

investigated task systems with processors-0fdilfemtt tyf)eS .;*"task speeifies the type ofproeeSM>r that 

it must execute on. Ibarra and Kim [IK]. Kafura and Shen (KS) and Jaffe [Ja) have investigated' t8st 

systemS where the processors haw different~ Uoyd ttas-studic!d UET1asi: ~Where each task 

may requi~ more than one pmcessor during its s«:ution. Thde reSultl·are p?esentoc1·ift Outptet·S~ 

Finally, a number of researehers have investigated tast. syste8'S ·With ·PCIOOroes. These systemS '~the 

maiD focus of this 1hesiL 



For many practical scheduling problems the basic task system model presented in Chapter 1 is 

inadequate. For these problems, the perfonnance bounds for the basic model are neither accurate nor 

informative. Intuitively, the basic model docs not take enough of the parameters of these problems into 

consideration to provide good bounds. For instance, consider the following three scheduling problems: 

1. A computer system has associated with it, in addition to procC§Ors, several types of resources. 

including memory, disk drives and printers. In general, there is a set of jobs to be executed on the 

system, and, depending on the circumstances, there may or may not be precedence constraints 

associated with these jobs. F.ach job has certain requirements with respect to the resources of the 

system. For example, a job may require 20K of memory, two disk drives and a printer. The 
·i .'t 

problem is to produce a schedule for executing this set of jobs in a minimum amount of time. 

Oearly, for such a schedule to be valid, the demand of the jobs executing at any given time, for 

each resource, should ilot exceed the available quantity of the resource. 

2. A large construction company possesses a certain amount of equipment: bulldozers, trucks, cranes. 

etc. In addition, the company has a number of employees. Together the equipment and !he 

employees constitute the resources of the company. In general, there is a set of construction 
' ~ . \ 

projects for the company to complete. Each project requires certain ·pieces of equipment and 

numbers of people. Herc again, the problem is to produce a schedule for completing the projectS 

in a minimum period of time, given the resources of the company. 

3. An idealized bin packing problem is the following: Given a set of .i.t£tm and a set of him. pack the 
'· 

items into a minimum number of bins. 'Ille items arc of identical size and shape, although they 

may vary in other parameters - for instance, in weight and cost The bins are identical in all 

respects. In addition to having a fixed size and shape, the bins have fixed capacities with respect to 
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the other parameters of the items. Fon~xam~. dlele•lllaJ ~ liftiits oil the total weight and total 

cost of the items packed intO any single bin. In addition. there may or may not be a limit on the 

total number of items that can be packed into any single bin. The problem is to pack the items 

into a minimum number of bins without violating the capacity constraints of the bins. 

The outstanding feature of each of these problems is the presence of a resource constraint. These 

constraints are sufficiently powerful, that it is unreasonable to expect that using the basic task system 

model for analyzing the performance of scheduling alogrithms for these problems wi11 p~vidc useful 

results. The power of these constraints gm, however, be captured by extending the basic task system 

model to include a set of resources. Each task may require some or all of the resources during its 

execution. Such a task system with resources can be used to effectively model each of the three problems 

outlined above, although for problem 2 and possibly for problem 3, there is no processor constraint. We 

will return to the nuestion of processor constraints in a later section. 

In the remainder of this thesis we deal exclusively with task systems with resources. Depending on 

the exact nature of the problem under consideration, there are tWo alternative formal models of task 

systems with resources that may be utilized. In the next two sections we examine those two models. 

ll Tun systems »'.ith continuous resources 

In this section we examine task systems with continuous resources. This model has been used to 

obtain almost all performance bounds for the scheduling of task systems with resources to date. 

A .L!.fil .liS mwn dh cootiouous resources is a system S = <T. <, m, s> where: 

I. T = {T 1 •.•. , T 11} is a set of tasks - associated with Ti is a positive integral execution time "'i· 

2. <is a partial order specifying precedence constraints between. the tasts. 

3. lllcrc arc m identical processors. 

4. sis the number of different resources. It is assumed that s > l, that there is exactly one unit of 



each resource, and that each task may roqutre any ~dthal.0ne unit.for each~rce. 

For each task Ti and each resource v, RvfTi) E [0, 1) ~~poltjml of"60Urce· v;req'1fred:by task 

Ti during its execution. Because a task may ~cquire m portion of each resource (.all. none, 112, or 

.000001, for instance) we say. that the l'eSOWCCS ar~gmlnugus. 

A .Yalli1 schedule for a task system with continuo1:1s res<>ul'CC$·S.Js~ plappt:ng,~T.~{N - {0}) such 

that: 

1. For all / E (N - {O} ), m > l{Ti E T: u(Ti) S I SJO{T1)1+. •i '.' l}f. 

2. IfTi < Tj, then a(Ti) + "i - 1 < a(Tj). 

3. For all/ E (N - {O}), and v, 1 < v S s, 1 ~·· l! JtyIT i) summing_~v~r all Ti.such that 

u(f i) < IS o(Ti) + "i - L 

This definition is identical to the one for basic task systems, except for.QOllelitioo 3. 'Ibis last condition 

insures that at any given time unit, the currentW· executil'g • dQ ~1tcqufrc. mote than one unit of 

each rcsoun:e. 

Intuitively, a I.W r.cbcdule for a task system with continuous resources may be constructed..:85 · 

follows: Initially, let L be.any (ordC,red) ·liJt.o{ • tlSks ;a T.. 'Ji'he,1task1:.41f: 11eheduk:d as;folows: 

Whenever a processor becomes idle, the list L is instantaneously scanned. from.its btgim'liq.and die .first 

task T (if any) which meets the following criteria is removed from Land assigned to thejclt;~: _l.' 

F.ach task Tj such that Tj < T. bas.~el.OCutiooand: ·2.·ffitt*'••"'·fjlfePl'QSc;ntl the .,.hreDirce 

rCQUir:cni~nts of all cur-1cptly exccutina tasks. then· for~ ~-.vi: •\1. + ·Rvff) S l~ This· last 

rcquirc~nt guaral)t~-thatd1' curro~ ¢A«ltting•• ®.-.,.~ .... ,than atotal,ofiqnc,uai&:fot\ ·. 

any resource. More (QrmaHy, a. Jia;Mbr4ule for a uM ~,,w;t& ll>ntiatff>ut 11.*Nn:ei is. •.valid: 

schedule which is gC11cratcd as foU.o• . 
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1. Initially, Lis an (ordered) list of the rasts in Tand I is 1. 

2. While L is nonempty per'1nn this step 

a. Lett = I {T1 f L : cr(I'i) S I< a(Ti) + °'i - l}f 

b. For each v, 1 ~ v < s, let rv = X ~i)silmming'overatl Ti:&ucti that 

affi) < 1 S4(1'1) + "i-1 

c. Let L' be a list of the ready tasks on Lat time~ the tasks in the same order on L' as on L · · 

d. While L' is nonempty and t < m-perfOnn ttiis step 

i. Let T be the first task on L ' 

ii. If for each v,l < v < s. rv+Ryfl}S I. 

then let ofO = I, let k = k +I, for each v, letr v = ry'+ Ry(T). and remove T from L 

iii. Remove T ftmi L' 

e. Let 1=1 +min {o(Ti) + ..-:1 ·I: Ti ( L antl-crfl'1) + .r1 • l2'; /} -

An example of a task system with continuous res00rces and a list schedule for that system· iS giYen · m 

Fiaure2l;. 

We note that critical path and Coffman-Oraham sd\edU1eS•Mai1Hhcit original definitions of being 

particular subclaaes of list schedules. 

2J.2 ShortcomUw 

There are two major shortcomings of the task system wilboontinuousn?SOurtes model. 

Firss. the cmumption that the rosouroes arc "continuous'" iS>not an accurate; reflection of either 

existing computer systems or of many- industrial ~Ulil18 problems. In 1hOsc instances, rcsotlTtCs ~ 

much more "discrete" in nature tha they are '-'continuous". Fertilistaftee; computing re90lU'CCSSUCh as 

tape drives and line printers arc generally available only in small qliaftttlies 'and a biSt- can require only 

whole units of them. Moreover, while memory may be thought of as being continuous due to its large 

size, it is debatable whether memory should even be viewed as a limiting resource in tenns of practical 
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Figure 2.1: Example of a task system with continuous resources 

A [.S, .1) . B (1. OJ C (.l, .11 

i~!~.~L.L.~ 
~/~ I 

0 {O, 1) H (1. .l} 

. m = 3 processors 

2 continuous ~es 

The resource requirements of the tasks are given in a vector beside the task. 
F.ach task has an execution time of one. · 

List: (A B C D E F G H) 

Schedule: .. I 2 ~ 4 S 6 Time unit: 
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computation. 

Second, the pcrfonnance bounds that have been obtained for various heuristics with respect to the 

continuous resou·rccs model, depend on the number of different fCSOU~,·bUt not on.the iOOJal number 
- j 

of discrete units Gf each resource. For systems in which the available ~(JUalllides of die resources are small, 

the actual worst case pcrfonnance of various heuristics may be much better than these bounds indicate. 

2.2 Im_ svstems Eth discrete TeSQUfCQ 

To try to overcome the perceived shortcomings of the task systems with continu.ous resources model. 
, .. . 

we consider a model of task systems with discwte rcsourees - there is a fixed number of indivisible units 

of each resource which tasks may require during execution. 

A Wk~~ discrete resources is a system S = <T. <. m, s> where: 

1. T = {T 1 •..• T nl is a set of tasks- associated with Ti is a-positive intqra1 execu~n time "i· 

2. < is a partial order specifying precedence constraints between the taltL 

3. There are m identical processors. 

4. s is the number of different resources. It is assumed that s ~ 1, that there are ri indivisa'ble units of 

resource i, and that a task may require only integral numbers of these units for each resoun:e. 

For each task Ti and each resource v, Rv(Ti) specifics the number of units of resource v required by task 

Ti during its execution. Because a task may require only integral numbets of units of each resource. we 

say that the resources arc discrete. 

A Yilfu1 schedule for a task system with discrete resources S, is a mapping o:T - (N - {O}) such 

that: 

1. For aJI / E (N - {0} ), m > l{Ti E T'. off;) S IS o(Ti) + "i - l}f. 

2. lfTi < Tj, then o(f i) + "i - 1 < o(Tj). 

3. Fora11 /E (N- {0}), and v, 1 < v < s, rv >:I Rvff;)summingoveraHTi such that 
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This definition is identical to the one for·basic task systems. except for condition 3. 'Ibis last condition 

insures that at any given time unit. the currently executing task$ do nqt require more than the existing 

number of units of each resource. 

Intuitively, a }W· schedule; for a task system with discrete rnoui'ccs may be constructed as follows: 

Initially, let L be any (ordered) list of the tasks in T. The ~s a~ schc~!Jl~d as f(}Jlows: .. Whenever a 

processor becomes idle, the list L is instantaneously scanned from its beginning and the first task T (if 

any) which meets the following criteria is removed from Land ;migncd to the idle processor: 1. F.ach 

. ~ -- • ; . f - . .. 

task Tj such that Tj < T, has completed execution and 2. lf.fr1 ..... r~J represents the total resource 

requirements of all currently executing tasks. then for Cieft'te1ot11~!·\i;:·-.;t'~:,,;+ Rv(T) ::$ rv. More 

fonnally, a lW schedule for a task system with discrete resources is a valid schedule which is generated as 

follows: 

1. Initially, Lis an (ordered) list of the tasks in T and I is L 

2. While L is nonempty pcrfonn this step 

• b. For each v, l :$ v :$ s. let r v = l: Rvff i) summing over all Ti such that 

c. Let L • be a list of the ready tasks on L at time /, the tasks in the same order on L' as on L 

d. While L' is nonempty and k < m perfonn this step 

i. Let T be the first task on L' 

• ii. If for each v, l < v < s, rv + Rvfl) < rY' 

• • then let a(T) =/,let k = k+l, for each v. let rv = rv +RvfOand rcmoveT from L 

iii. Remove T from L • 
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Figure 2.2: Example of a task system with discrete resources 

A [l,OJ 

I 
B (l, lJ 

I 
c (1,1] 

I 
D [3,2] E [l, 2] F [O. OJ 

I l~L.~ 
Each task has an execution time of one. 

List: (I H G F E D C B A) 

Schedule: C F D G 
B 
A 

Time unit: 1 2 3 4 5 

m = 3 processors 

2 discrete resources 
r1 = 3 
r2 = 2 
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An example of a task system with discrete resources and a' list schedule f<>r that. system is given in Hgure 

2.2. 

We note that critical path and Coffman-Graham schedales retain their original definitions of being 

particular subclasses oflist schedules. 

m Dig;ussion 

We arc not the first to consider task systems· with discrete ~urces.' ,'Fite original fonnulation of 

task systems with resources by Garcy and Graham [0073, 007.S) involveddisc~te resources. Moreover, 

an NP-completeness result of Ullman (U76) involves discrete resources. However, as far as performance 

bounds arc concerned. almost all of the previous woFt has ·been dene for systems with continuous 

resources. The only results pertaining to the discrete meclct ar~ some tilllired resttlts of Goyal [OoJ and 

Leung (Le) involving systems with 0--1 resourees. These aR"syitemswith e1act.Jy ofle indivisible unit of 

each resoun:e. A task either requires all of a resource« none of it. 

As noted earlier, the discrete resources approach is designed r.o oveirome the perceived 

shortcomings of the continuous rcsourc~ approach. The petl>rmance bounds for systems with discrete 

resources will incorporate the values r1 •... , rs (these are the number of units of each resourte). 11tis 

means.that.the performance bounds will·distinguish between task systems with different numbers of the 

same resource, unlike in the continuous resources case. They wnt also ·be ·able to indicate the effect on 

performance, if additional units of an existing resource are added to the-system.· 

In the remainder of this chapter, we survey the NP-complcten&; rcsull'S involving task systems with 

resources (discrete and continuous) and discuss the role of proccswrs in this ftk1del. 

2J. ~titWb:heuristia? 

In our discussi0.n of basic task systems in the previous chapter we mentioned several 

NP-completeness results regarding the minimum exocutiOn time scheduling Of thtlSC systems. As might 

be expected, much the same results exist for task systems wkttresoorocs;.cJntJiitcase1lowcvcr, the results 
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are more definitive than for basic task systems. Ullman (U76) has shown that finding minimum 

execution time schedules for UET task systems with discrete resources is NP-complete, even for systems 

with only two processors. one discrete resoun:e with one untt (and arbitrary ,precedence constraints). For 

continuous resources, Garey and Johnson (GJ74) show that finding mbiimlllll:ex«Uti~lifnc«hedutais 

NP-complete for UET task systems with three processors, one continuous resource, an<f.no:precCde.oce 

contraints. . ll1ey also sh<>w [GJ74) that finding minimum 01'CCUtkm ·lime schedules is an NP--complete 

problem for UET task systems_ with two processors. one continuous Ie&QUR:C and .precedence· constraints 

restricted to a forest. 
J 

From the above results we can conclude that for virtually all interesting scheduling pro9lems·fbr 

task systems with resources. it is unlikely that. polynomial time aqritlims4ist. whidtc produce optimal 

schedules. 1llis leaves the study ofheuristic.algoriduns for scheduling. "ln.thisthesis we examine list and 

critical path schecfules. As noted in Chapter l, these are the two sitnplestand inostintuitive schcdulin9 

heuristics for UET systems. We will not be particularly concerned. with CoffinamGraham scheduling, 

except in one instance where we use it lO get a lower bound, on the worst c:ase · performance of critlcal · · 

path scheduling. lbc reason for this: lack of. :il}tcn~ interest in C-Offman-Oraham scheduling is that, 

particularly when dealing with extensions of the basic taSk systom model, apericnce has shoWn that the 

difference in the worst case pcrfonnance of critical path and Coffinan-Orabam scheduling is very smaJI 

relative to the worst case bound. Hccause this . difference is SQ.tmall; dM? ,~uaalysis of<lhc pctformance 'of 

both critical path schedules and Coffinafi'"Gntham schedules isoflittlc or no practical interest. 

2A Ib..e processors question 

ln both of the models of task systems with resources we study, there is a set of m·procmon.. The 

role that these procCSSOIS shQuld play in this model is ·a scriaus qilcstion.· badt. theoretically and 

practically. There ,arc two disc.incl schools of lheugbt on this issue. 

One approach is to assume rhat the pi:ocesso~ play ncuvlc in ·roastmning the schedule. In this 
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case, it is assumed that the number of processors is at least as large as the number of tasks in the system 

(i.e. m > n = 171). This assumption means that given any time unitS Bi. B; with j > i. and any task T E Bj• 

the reason that T did not execute in Bi is due to either a resouree :constraim er a precedence constraint It 

is not the case that Bi was "full", which would mean that there was "no room" fQr T ia Bi. As far as 

pcrfonnance bounds arc concerned under this assumption, it is as if proces&oB never appeared in the 

model at all. The quantity m plays no rote in the bounds for task systems with no processor constraint. 

For certain applications, this is a reasonable assumption ~ k in~ applications 2 and 3 that were 

discussed at the beginning of this chapter. hr the scheduling. problem· ror·a construction company given 

there, there was nothing oorrcsponding·w a processor comUaint; -1n them. packing problem it was noted 

that there may or may not be a limit on the number·of4tcms placed into·any 1in&le bin (such a limit 

corresponds to a processor constraint). Much of the previous work on performance bounds fof;UISt' 

systems with resources has been on systems without a proc~r constraint. 

The second approach to the role of processors in the task system with resources model is that the 

processors m vital in determining worst case performance, and that many applications demand a model 

. involving processors. Even so, it can be argued that no generality is lost by using a "no procesoor 

·constraint" approach, since processors can be treated as just another resource. That is, given a 

performance bound for systems with no processor constraint. and a task system with s resources and a 

processor constraint, simply apply the bound as if the system had s+_ l resources. However, from an 

intuitive viewpoint, this approach is suspect, since p~rs arc not "just another resource". The 

processor resource possesses certain characteristics that arc not shared by resources in general. In 

particular. every task requires ~ one unit of the processor resource - no more and no 1cu. 

Furthermore, with respect to task systems with continuous resources, the processor resource is unique in 

that a task may not require just any portion of the resource, as was assumed for continuous resources in 

general. At least intuitively, there is no reason to believe that treating the processors as an additional 
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kind of resoun;e wiH result ia meaningful worst case bounds. 

U. JM problems 1Q ht: studied 

In this thesis we study minimum execution time· scheduling d UE'f task systems with resoun:es. We 

examine the following four models: 

UET task systems with continuous resources md no processor constraint 

UET task systems with continuous resoul'Ces and a prtJCeSBOr.consanint 

Uhl task systems with discrete resoui:ccs and no processOEconstraint 

UET task systems with discrete resoun:es and a processorcooltl'Bint 

We investigate the worst case perfonnance of list and critical padutbcdqling fOl'..cach of these models. 

We also Ctllllpare the bounds for the four models and tr)' to delineate &be· rdationslaips between :those 

bounds. 
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Chapter J: List Schcdulin& 

In this chapter we study the llil scheduling of UET task systems with resources. As noted in the last 

chapter, list schedules arc the fundamental type of schedule which we consider, and most scheduling 

algorithms produce classes of schedules which are subclasses of the list schedules. Moreover, no 

generality is lost by restricting our attention to list schedules when dealing with UET task systems, 

because there is always a list schedule of optimal length. 

For comparison purposes, we again mention the following two results on the worst case, performance 

of list scheduling for basic UET task systems (i.e. systems without any resources). If there is no processor 

constraint (m > n) then all list schedules arc optimal. That is, LIST /OPT = 1. If there is a processor 

constraint (m > 2) then LIST/OPT < 2 - l/m, and t11is is the best possible result [G66). 

3.1 Continuous resources 

The major work on list scheduling for UET task systems with continuous resources is by Garey, 

et.al. [GGJY]. They show for a system with no processor constraint (m > n), that LIST /OPT < s·OPT /2 

+ s/2 + 1, and that systems exist for which LIST /OPT > s·OP'f /2 + s/2 + 1 - 2s/OPT. This upper 

bound can be compared to the corresponding result for UET task systems with no resources. That 

comparison shows that adding even a single continuous resource to a UET task system results in a 

tremendous degradation of the worst case behavior of list scheduling. That is, for a UET task system 

without resources, list schedules arc always optimal. whereas the addition of a single continuous resource 

can result in list schedules having length quadratic in the length of an optimal schedule. This comparison 

confinns our earlier comments that performance bounds based on the basic model arc probably not good 

indicators of performance for problems involving resources. 

For UET task systems with continuous resources and a processor constraint, there arc no tight upper 

bounds. 'I11crc arc, however. two partial results. First, is the result of Garcy, ct.al. [GGJY] cited above, 
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using s+ 1 resources instead of s - the .extra resource at'COllnting for the existence of the pr~r 

constraint This yields LIST/OPT S (s+l)·OPT/2 + s/2 + 312. Second. Yao [Y) has shown that 

LIST/OPT< min{m, (m-I)s·OPT/(2m) + 7(m-l)s/(2m) + l}. As mentioned aboye. neither of these 

results is best ~ible . 

.l2 Discrete resources 

In this section we state and prove worst case performance bounds fur the list scheduling of UET 
-. : ' ; ~: ' ' . ; ' .. 

task systems with discrete resources. The only previous wort for these systems is by Goyal [Go) and 

Leung [Le). Goyal investigated UET task systems with one discrete resource, where r1 = 1 (there is 

exactly one unit of that one resource, so each task either requires an of the resource or none of it). He 

shows for systems with no processor constraint (m ~ n). that LIST /OPT S 2. and for systems with 

processor constraints (m > 2). that LIST /OPT S 3 - 2/m. Moreover, both of these results arc the best 

possible. Comparing these bounds to those for UET task systems without resources, we note that the 
;·:'i" r; 

addition of one unit of one discrete resource caused the worst case ratio of LIST to OPT to increase by 1 
~' .- . 

in the no proces,,or constraint case, and by l - l/m for systems with a proces,,or constraint Leung 

investigated UET task systems with discrete rcsourecs in which each ri = 1, under the restriction that each 
• ' ~ ? !. 

task may require at most one unit of resource (i.e. for each task T, ~r = 1 R1(1) < 1). He showed that 

LIST/OPT < min{m, (2-l/m) + s(l-1/m)}, and that this is the best ~b1e result Our results 

generalize the results of Goyal and Leung. 

We prove the following two results about the worst case performance of list scheduling for UET task 

systems with discrete resour~: 

lbcorem ll: If m > n (no processor constraint), then LIST/OPT < l + r, where r = ~~=l ri. 

Moreover, this bound is the best pcmible. 
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Theorem U: If m > 2 (a processor constraint), then UST/OPT S min{m, (2-1/ril) + r(l-1/m)}, 

where r = If= 1 ri. Moreover, dtis,boUnd·fS'diehestpossible; 

These resuhs are proven in the next two sedions. Before domg'so; hoftver1 there are several remarks to 

be made about these two theorems. 

First, note the surprising role played by the resources in detennining the worSt case bound. The 

relevant quantity is not the number of different resources, but rather is the sum total of all the units ()r,att 

the resources in the system. The number of' different ~ialtd 'the· dimibutiof'l 'of',the r'·units of 

resource among those different: resourees is no factor. This ,means that 1hc Worst case bound for 

LIST /OPT is the same for a system with 1000 units of one resource as it is for a system with one unit of 

each of 1000 resources. This contrasts sharply ·with· Ute ·rmutts for· UET tast systems with continuous 

reSOUICeS. where the key parameter is s, the number of different~ 

Second, these bounds indicate mat for eacb'unit of(any}resour<tC added to~ UET task system, the 

worst case ratio of LIST to OPT increases by 1 in the no processor constraint case, and 'by 1 - Um hi the 

processor constraint case. This foll~ because for r =0,-our rostt1t& are idciltidal to those cited in the 

introduction to this chapter as the best P6§ible ooands fer UST/OPT'fbr bask: UET task 'systems (i.e. 

without resources). These results provide a clear iftdieatiaft;of the r01c·oflt1e. rest>ulUS in determining 

worst case behavior. 

Third, unlike the situation for UET task systems with continuous resources, there is a tight upper 

bound for UET task systems with discrete resourecs and a proed!isorrol'i9lrainl For that result, we note 

that the bound of m holds rot evccy r ~ m - I. 1bis indkatcs the' point at which the processor constraint 

dominates the resource constraint with rcspcct to thO'worst oalC ~bf Hsuchcdtlling. 

J.2.2 ~ nnmu: bounds 

In this section and the next we prove 1beorems 3.1 and 3.2 • the upper bounds in this section and 

the lower bounds in the next In both sections we ooncentratc on the proof -0fTheorem 3.2 - the result fur 
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systems lUtll. a processor.constraint We do this l>eclluse. those multi~· slightly more complicated (due 

to the presence of the processor c0nstraiat)rth~.tl1ostri>r .l'heomnt 3.l., Atdle:end of each section we 

brictly indicate hQw w ~ify those results ro obtain die ,_.Jbc $e oopmccssor ~ Q5'\ 

LemmaJJ.: lfm ~ 2 (a processor constraint), then LIST/OPTS miJl.lm,(l-1/m) +;"l-llm)} •. where 

r = xf=l rr 

Assume r.Mt a iJJU' • system rwidl disclete resouft?O ilL&i'IC!a.' We.prove the result by ·obtaining a 

lower bound 011. OPT, aed an upper bound on UST. Combiailla.thescboliads live& an upper bound 

for LIST /OPT. . 

We mate 1,15e of.the fOHowing notation ~-preof; L.ct k be the length ofaeritical 

path in a directed acyclic grap~~- ~~aadheadtnaxm:ei.let~ 

= ~ R{fj> S1unmh1geverall TrE·T. That~ "ii& ·dlctoral,de11taad·.,,:~iamonaall·ofthe 

&asks in the system., 

Consider CJD. -Optimal schec:l&de. for the system. ' 1lu'ee ~as: tan ·be: made: Hat; aa 

optimal schedule can be no shoner than k, the/~ of :a eridfal patj\J · SeooaG. an optimal schedule 

~do no better than to ba:YC t•bexecutia&on~oflhe ~adurinaeach time unit. Third. 

for each resource, an optimal schedule can do no better than to have all units of thatresauree utiiml· · 

during~ time unit Thus. OPT> nw.{k. o/m., x1lr1, -J./FJ· · 
Now consider an arbi~ list sclwdJlle for. the S)!Stem. Suetuncbeduleo consisls of two types of 

time units: 'lb~ in whicb all proccssors;havc t8t •«udng~ anddaose·in which atkmt one 

processor is.idle. lbc number. el Mme· uoits with,Wlo ~-:be beundcd above as i>llows: 

Whenever a p~r is idle during a time unit, each unexccuted task. T, is prc~fron}·J'Xc:icutilll 

on that proccasor for Qne of two reasons: Hither a ~of T has nat')1et,cucuted. or, .fbr some 

resource j, the demand tor resource j by tasb eMCutiog 4uritta &hat time unit; 'together with the 



demand for resource j by task T, exceeds rj. It is well known that there can be at most t time units in 

which only the first constraint prevents tl$b tl'om aocuq · ~~r. at each time unit where the 

second constraint prevents some tast from effC\Jting, a& least one unit of some resource must ~ 

required by some task executing in that time unit Hence, there are at most If= 1 xi time tmits in 

which .there is an idle prOCC§Of aue. in pan, to the second ooastrainl Thus. 

LIST< k +If =l xi+ (n·k·If=l xi)/m = nlm + (l~llm)t +(l-l/m)l;f:::i:•i· 

. ·.LIST/OPT< [n/m + (l-1/m)k + (l·l/m)l:f =l xi) /max{k, n/m, x1tr1 ..... xsfr5} 

S (2-1/m) + (l • l/m)~ = 1 ri 

= (2-1/m) + r(l • l/m} 

Finally, note that for all m. LIST/OPT :Sm. ace 

l. A list schedule cannot have a time. unit in which all pl'QCISSOn are idle u~ the schedule has 

completed. 

2. There are at most milPT tasks in the endie. lllSk system. 

. ·. LIST/OPTS min{m. (2-1/m) + r(l-1/m)} 

Lcmma.U: Ifm > n (no processor constraint), then .LISTlOPf :S 1 + r, Where r = l:f =i 'i· 

fm.g.f 

D 

First note that since m ~ n, each time unit of any schedule can be b'Catcd as baving at least one idle 

processor. Then, analogously to the proof of Lemma 3.1. we am show that 

OPT> max{k, x 1tr1 ••..• xs'r5} and UST~ k + ~f =l 11" 

LIST/OPT< [k + l:f= 1 x~/max(l.1t1r1•0...¥r5} 

<I+ Ef =lri 

= 1 + r. D 
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In this ~ we prove that i1e upper bounds fur UST/OPT given in the previous section are the 

Lemma J,J: If m > 2 (a pl'OQCSSOr.con&traint).,tflen US'f/OPf S mkt{nt; (2!l/m) + r(l-ltm)}, Wtiere 

r = l:f = 1 'i· is- the best posUle bound. 

We show that for any number of processors m, ~ any distribution of r units of resource. that 

the ratio LIST /OPT can be arbitrarily close to min{m, (>1Ytn) + r(I'-fJntt}. We let r = :tf = 1 ri, 

where ri is the number of units of resource i Ww:••une.~~h:ri is nomero,:and that r does not 

exceed, m - 1. Now, kJtz ho a multiple of m and COhlklci':a task'~ tonsistina ormcf following 

tasks: 

1. Tasks A1 , ... ,A(m-r-l)z where each A1 ~es no· ·~R:et 

2. Tasks B1, ... , Bz where Bi< Bi+l for 1 Si ~\i .. land"~ eath·Bi: RK}uires one unit of 

resource sand 9 uairs of all~ resoun:es. 

3. For each resou~ v, I< v < s, there are tasks DI .... , D~ , Cacb of which requires all the ubifs•' 
v 

of all resources, and tasks cyj tor l < i 'S r, and 1 S j < z. dCh of.wliich requires one unit of 

resource v and 0 uaits of all -Other resource& , 'Fhc Gccptioft a fiat-ram' ~S'l• ··· , ~r 

require no resources. Furthermore, f~r~vaed lt Si;<i;;t~:Dj< cJ1< er2·~ .. ~: <Ci'z· 

Such a sequence of tasks wil1 be referred to as me DJ:~~ . , . · 
An example of such a task system for the case of s = 1 is shown in Raum 3.1: 

An optimal schedule for this UET task system with discrete rcsource5 bas length OPT = z + r. 

In this schedule the D-taslcs execute in the first r time units, and the C·tasks, 8-tasts and A-tasks 

execute in the next z time units. During each of these z time units. r C-tasts, one B-task and m·r-1 
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Fypire 3.\: Task system used in I .emma 3J. 

Assume~!! ~ l,hencer = rl' 'lbere.-eaoproo11Jor~ 

11 r Pl r 

l 11' r 
r 11·1' 

92.1 1 I . . . lu' ~.l 0 

I 
82 1 C1,2 1 ru l 

Cr-U 1 ~,2 0 

I I f f . . . . 
. I I I f f ' 
Dz 1 C1.z 1 Czz 1 Cr-i,z l CT.t• Al o ••• A(m·r-l)z 0 

The resource requirements are given beside each task. 

Fi8!!re 3.2: An optimal schedule 

Schedule: 

A·tasb 

TIDle units: r z 

Length= r + z 

Fpre 3.3: A "bad" list sclH!dule , 

Schedule: 

TIDle units: 
m 

Length = (2 - l/m + r(l -Um))z + r 
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A-tasks execute. Moreover, all units of each resource are t1SCd ·ctorln( ·each of these z time units. 

Figure 3.2 shows an optimal schedule tbr-the-·&JstdrPgiVett~ln Figure'.J-J;· N~lhat'an optimal 

schedule can be generated from the list (D-tasks, c-tasu. B-tasts. A-lasts). Such a list Schedule will 

be identical to the one described here except that sorrie of the A-tasks iwill execute with the D-tasts 
. ; 

instead of with the 8-tasks and c-tasb. 

Now consider the list (A-tasks, B-taskS. Dl·chain, ... I ol -chain. ni~ain, ... I Di -chain). In this 
: , . . I .·.1 . ~' . 

schedule, the A-tasks execute in the tlrst (m-r-l)z/m tllnc units. All m processors arc u~lized during, 

these time units. The B-tasks execute in the next z tima units. Since ~ D-task rcqui~ all the units 
J ~ ~ ' 

of each resoarce, none pf the D-tasts· or C-tasb,~te with the ~s. Finally. die D r-cllab)$ 
execute, one chain at a time. The execution o(.~l>,_cJtgt __ J!AUJ~ ~-+~- ~ine .. u.rY~ Thus..this 

-" "_•_, t ~ ;. .· 4 .; 0 ;,,~_ ,- • ,. '; , ~ >_, I • ' ."' 

schedule has length LIST = (m-r-l)zlm + z + (z + l)r = (2-1/m + r(l-1/m))z + r. Figure 3.3 

shows such a 1ist schedule for the task system given in Figure 3.1. 

LIST /OPT = K2-l/ni + r(l -1/m}~ + r] /(z + r) · 

limilz-+ 00 I.JST!qP'I"=: (Z•llm) if. l(l·lilllt): 

Finally, if r > m - I the& !he. boun_d Qf m Jqr· t(STIOPI cap _1'e· ~oo-by ~ring a system 
. '· 

with the same set of taSts aslT r = m .: l, wfffi:;tlle"iame ~~~-l().:~ ·in - 1. D 
t - . - ~ 

Lemma ,M: lfm > n (no proccB>r conStlaint)~ then ·LiST'6Pr·~·t·+·r. ;'Whcie-r = Jf =I ri, is the 

best pc>sQble bound. 

We .show that for any distribution of r units of resources thati&•h.tio UST/OYf-ean be 

~trmilycloseto I+ r._muming~_thcrcisno~r~ ~f~'r ::i:: ~=I ri.wllere 

r1 is the n~bCrofunils~~~ i. ~'mUIDie·M~'.Jfit·-o>.~_N.o.w .. kt z be an arbitrary 
• 7 ' ; • ~ • ' • 

integer and consider a task system consisting of the following tasks: 



resource s and 0 units of all other resources. 

2. For each resource v, 1 S v S s, there are tasks DJ ..... D~ v' each of which _requires all the units 

of all resources, and tasks crj for 1 s i s rv and 1 s j s z. each of which requires one unit of 

resource v and 0 units of all other resources. The ~ception is that tasks ~ 1 •... , ~......z S' . ...-

require no resources. Furthermore, for each v and i, l < i.< rv .. DI < CJ1 < cri < ·- < crz• 
i- L 

This task system is identical to the task system described in the·proof of Lemma. 3.3, except that there 

are no A-tasks. Similarly to that result, an optimal schedule for this UET task system. with discrete 
.. ,, 

resources can be generated from the list (D-tasb, C-tasks. B-tasks). This schedule has length OPT = 

z + r. Also similarly to the proof of Lemma 3~3. consider the list (B-task~. Dl·chain, ... , DA -chain. 
. ' : •: . . . 1 

Di-chain, ... , Dl -chain). The schedule generated from this list has length LIST = z + (z + l)r = 
s 

(1 + r)z + r . 

.". LIST/OPT= ((1 + r)z + r) I (z + r) 

limi1z _. 00 LIST /OPT = 1 + r. a 
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-.. '. ; : -"' ~' 
::· 

In this chapter we study g:lljWllJ2illh picsfuljng ofUEf task systems.with continuqus rcsou~ As 
- - ~ . . - ' .- - . ~ . ' . 

noted earlier, critical path schedules are a ~idcly studied subcla$s of list schedules. For comparison 
-. ---- _:. ~ . ~ . "- ,. : i .. 

";i 

purposes we again mention the following two results on the worst case performance of critical path 
< • .- • ~ " ·7: ,' I ,'." ·:_. 'i.' ·_: •i .·,- ! ,,:· .- ' 

scheduling for basic UEf task systems (i.e. systems without any rcsowces). If there is no pl"OCCaC>r 
~-:·> ~--:' ·:,::~, .. o-,·,i t _.':t -~-· ~ .;r: 

constraint (m > n) then critical path schedules arc optimal. That is CPA TH/OPT.= I. If th~~ is a 
~ '. * ' . • ' .. ~ 

;~ '.":° . \};: ·- ::.. 

processor constraint (m;:::: 2) then CPATH/OPT ~ 4/3 ifm = 2, and CPATH/QPT ~ 2 • l/(m-l)Jfm 
f·"". - 1 ;:, :: 1~ .. ' - ; ~ ' ' . 

> J. These are the best possible bounds (Ch]. 

il NQprocemr constraint 

The major work to date on critical path scheduling for UEf task systeips wi°' co11tji)uous resoun;es 
_ ,, ,._ ,. , __ . :~ _ __ --;. ,_ ':., .<:-·_,-. r::·c:-~- ·:·~- - -5'; .(_p .. :;· ,.- --: ' ,' 

is by Garey, etal. (GGJY). They show for a system with no proces.10r constraints., that CPA TH/OPT ,S. l 
• - ! -

+ 175110, and that this is the best possible result This result can be compared, to th<;. corr.csponding 
--· "- " "'; \ -;: ·~ ' ~; ' .' , - - : l 

result for UE.T task systcn:is with no r:esources (that result is CPATH/On: = l);.; Th~tcQmparison shows 
·- ~~ : _. ~ " t ~ ..:: · .• -' <!,:· ' 

that for every continuous resource added to a UEIT task system, the worst case bound for CPATil/OPT 

increases by 17/10. 111is result can also be compared to that for JiS scbeduling of Uhl task systems with 

continuous resources and no processor constraint 1bat comparison shows that the worst case behavior of 

critical path schedules is far better than that of list schedules for these systetns • in the worst case, 

CPA 111 grows linearly with OPT, whi1e LIST grows quadratically with OPT. 11tis contrasts sharply with 

the relationship between LIST and CPATH for UET task. systems without resources and no processor 

constraints, where both types of schedules arc always optimal. 

i2 A processor constraint 

For critical path scheduling of UET task systems with continuous resources and a processor 

constraint, there arc only two limited results (aside from our wort). First, Yao M has shown that 
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CPA 111/0PT :S min{ m. 2 + 2s • (2s+ l)/m }. Sec~ the resuhof Garey, eul (GGlY) given in the 

previous section can be applied using s+ 1 resources (the atra resouree accounting for the processor 

constraint) yielding CPA TH/OPT :S i1110 + 175110. In: genera1, . ncitMr of these results is the best 

possible. In the remainder of this section we prove the folloWiat result about critical path schedulina of 

UEr task systems with continuous resoun:es: · 

lbcorcmM;.Ifm > 2 (a processor constraint).. then 

CPATHIOPT :S m 

(s+m+l)/2 

(4s+m+l)l4 

(14s+m+9)110 

if 2 S m«s + 1 

if s+l:Sm<2s+l 

if 2s + l :S m < 8513 + 1 

if 81/l + 1Sm·<ls+1 

2+17s/10·(3s+l)/m if ls+ l:f:i·mandm~ 10 

2+Ss/3-(8s/3+1)/m if.35+ l:Smandm<lO 

Moreover. each ponion of this bound is the bestpoasible. 

ill An intemretation 

Because the bound given in 'flleorcm 4.1 is somewhat· inipasina. it iS useful to obtain an intuition 

about the nature of that bound. In this section we try to provide this.intuition fn.m the point of view of 

the "lower ,bound". That is. we discuss the principles behiQd the constmctiotLof task systems for which 

critical schedules exist which achieve various portions of die bound., We will concentrate on the middle 

four portions of the bound. lM other two pontuns 'arise 1118inly Imm r:bottlldary" constraints. In 

particular, the first portion (l :S m < s + l) is the; silultion where lhc processur constramt dominata 

worst case behavior. 'lbe final portion (3s+ 1 :S m < I~ arises bccause's and m arc both small. We 

ignore these two prolions of the bound in tha rest oft.his diticus&ioD. 

The key to understanding the middle four portions of the . bound is the following: When 

constructing a task system for which a "bad" crilical path scbcdule exists, there arc three kinds. of 



constraints to deal . with: precedence constraints; processer coniltaiots and ·resource cimSt.raints. 

Moreover, there are actual1y S,kinds of resource constraints • one constrainilot each continuous resource. 

A task system with a "bad" critical path ~hedule (presumably) eiplotts clttl' or theSc constraints to the 

fullest. Now consider :the bound 2+ 17s110 • (Js+ lYm~ 'Rle variout~terms.ol·that bOUnd can 1te 

interpreted as follows: The tcnn 17s/10 arises from the exploitation: of< the'~ constteia ,TiheJ-e 

are 3s·OPT tasks involved in this. A tenn of 1 arises from 10.Caploitado1H;f'·fhe :proccdcoc~oonsltainisi. 

There arc OPT tasks involved in this. Finally, the tcnn I - (Js+l)/m arisetffuntthe &ptoitation of the 

processor constraints. All: of lhe remaining tasks in tht ·. systeln ·arc involved in this. Similar 

interpretations exist for the other three portionsoftfic bound~ Hmvever, in those cases, only the resource 

and precedence constraints 'are esploite4 and uut the proceawoonstniit«a. Only when m > 3s+ I is it 

"profitable" to exploit the pr<J(:CSIOf co•tte:i-'ts. 

This interpretation can be sem··mQTe clearly, if we assume that s iS fixed, and that m and 

CPATII/OPT arc expressed as functions of s (Ftsute 4.l shoWsid\e ptet1m'ld a ftlnctiun}. Initially, 

assume that m =s+ 1 and that we have a UE'f task system with continuous resources ~:aieh:that.a.ctidcaL 

patlt-!Chcdule exists for S, with CP ATHIQ>T arbknnily close to s:+ 11 fn Si~ are OPT tasks devoted 

to exploiting the precedence constmints. and- for each ._contin~~. thenti ate<?PT tasks -OeWKed 

to exploitia8lthc consttaint•imposed:by tbat.remun:e. 11- pr11ceasbff~a.-flbt betngcxplOited ·. 

at all. Now mnsida how S is modified as m is iftcreascd\ one ~ ••;· IRM, from s+ I to 25+ l. ' 

P.ach time m-isincreased. 9e'Yom1 taskS:ar<n1ddc<MD~& Ufc•fJtU'fJtticOf.Mlc.fiftj t.hVSc'tllSk's»iS to riWJrc fully 

exploit the rcsou~ constraints.. -1<..ach ·time .m inaeascs- by' one iproccsstfrt•tl\C WOr5t ~1>tftil\d increases 
by aaJnstaotamount (namely, 112).duc tti thc:ad4ition ofehoSc-UISlts. Atttnd:lsl+ t·thcre'3tc•OP'Jl-tasks 

devoted lo exploiting the precedence consttaiftls. and rot each CORtibtkJaUvstJUkt,;tbere an? 2()17.r'tilskS 

devoted m cxploi&ing the constraint imposed by4tlat R?SPOree. NtMVooMidct·tHe (simftatt) situation ai In 

is inc:rcascd. one processor.at a tilne fi'om2s+·lco 8sl!i¥J. Aiain- uisb1lreidclccf to Seam timem · 
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Figure 4.1: Graph of the upper bound as a function of s 

CPA TH/OPT (as a function ofs) 

2+17S/10 
1+178/10 

l+SS/3 

1+3S/2 

l+S 

S+l 2S+l 

2+ 17S/10-(3S+ 1)/10 

\ 

~ (4S+m+3)14 

(S+rn+l)/2 

8S/3+1 3S+l 

rn as a function of s, m > 10 
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increases. Now, however, the worst case bound increases by onty 1/4 eaCfi time m increases. For a dlird 

time, consider the (similar) situation as m is increased one processor at a time, from 8s/3+1 to 3s+ 1. 

Again tasks are a<ldcd .Q> S each time m increases. In this instance, the worst case bound incre8$CS by only 
- ' . 

1110 each time m increases. At m=3s+l, there are 0171' tasks devoted to exploiting the ·p~ . 
constraints, and -Js·OPF _tasks devoted to exploiting the resource constraints - for each oontintioi.s 

' resource, there are 3-0PT JaSts · cx.ploiting the constraint imposed by that resource. At this point, the . . 

precedence_ and resource constraints are fuQy exploited. Finally, as m is increased beyond :'Js+ l yet _, 
more tasks are added to S. These tasks exploit the.,processor constrainL Note however, that Che bound 

increases only S<> slightly in this range, and that in ~ it converges to 2 + 17s/l0 as m approaches 

infinity. 

il2 A comoarison 

Although Theorem 4.1 provides (in contrast to_grevious ~1-) a tight upper bound for;the w'll'St 

case performance of critical path schcduling-c)f UET task systems •th continuous resources and a 
' . 

' . 
processor constraint, there is a question of how much that result really infprovcs over previous results. 

That is, consider the bounds (cited earlier) of Yao [Y) and Garey, cLal. (GGJYJ as they apply to UET 

task systems with continuous resources and a processor constrainL Those results •(:an be co .. bined to 

yield the following composite bound: 

_CPA TH/OPT :S min{ m, 2 + 2s -(2s+ l)lm. 27110 :+- 17s110} 

The question which arises. is whether .this composite bound is much worse than the best ~ible 
, ' '---, .. £"~ .. ~ ~;.., . f •· 

bound (our Theorem 4.1). lllc answer to this question is yes. For instance, ifs> 6 and m = 1.8s + 2, 

the composite bound indicates that CPATH/OPT < 17s/IO + 27/10. lbe bound lhat we give shows 

that CPATH/OPT < 14s/10 + 312. ·1be difference between the two bounds is 3s/IO + 615 -- a value 

which grows linearly withs. In percentages, the composite bound in this case is too large by over 21 

percent. Table 4.1 shows both the composite bound and our best poaible bound for several specific 
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Tab1!4.l 

A comparison between the composite bound [Yao,GGJY) and the best possible bound 

s m composite best error in composite 

2 4 4 3.S 14'11 
s s 4 . ·.2541 . 
6 S.17 4.2S m 
7 S.29 4.43 19" 
8 S.37 4.S4 18" 
00 6 S.4 11'1 

8 IO IO 9.S s" IS IS 12 2$'1, 
20 I6.3 13.75 I9" 
2S 16.3 14.6 12" 
30 16.3 14.77 IOI 
00 16.J 15.6 .,., 

lS 20 20 18 II'li 
2S 2S 20.S m 
30 ' 1.8.2 2l ' 23'11 
35 28.2 24.S ISi> 
40 28.2 2S.1S •!JOI,,. 
4S 28.2 26.4 .. 7". 
so 28.2 26.58 6'1 
00 21.2 27.S ~ 

The above values have been rounded to two decimal ·placa. 
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combinations of sand m. That table also shows the.pcreentage error in the composite bound relative to 

the best possible bound for each such combination of sand m. 

Note from Table 4.1 that although our results improve upon the composite result whenever m > 

s+ 1, the improvement is usually most significant when the number of processors is small relative to the 

number of continuous rcsoun:es. 

In the next two sections we prove Theorem 4.1. - The upper bound is given in this section and the 

lower bound is given in the section 4.2.4. 

WJ Preliminaries 

Before beginning the proof of the upper bound, we require several definitions. 

With respect to the .. usage of the resources in the syste111. we have the :tOllowing definitions: 

Rmax(T) = max {Ryff):;: l;Sv<s}. Given task T, Ryff) is die Rv·value of T and ~(T) is the 

Rmax ·value ofT. This nor.ation is extended to a set of tasks B, WiUl Ry(B) = l: RPJ over all TE Band 

Rmax(B) = I Rmax(f) over all T E B. For completeness, if B is CJOpty, 1et Rmax(.B} = 0. Finally, a set 

of tasks B, is a gm setoftasksifforeath rcsoureev.Ry(8' S l 

With respect to the precedence constraints. we remind the reader of the definition of the level of a 

task: If Ti has no successors then level(Ti) = 1; otherwise, lcvel(fi) =_ l + max{_level(Tj): Ti < Tj}. 

This notion can be extended to a set of tasks H, by letting lcvel(B) = max{1evel(Ti): Ti E B}. 

!2J.J .efi!Qf outline 

Consider any critical path schedule for a task system S. The lime units of that schedule may be 

divided into three sets: those time units where the final task of ~h level executes, those where alt of the 

processors arc utili1.cd and lhosc where at 1east one processor is id1e due solely to resource constraints. 

Cati these mull. full and rcsoun;e time units respectively. The proof foHows by bounding the number of 

time units of each type. The number of path time units is bounded by the length of an optimal schedule. 

-------
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The number of full time units cao ho bounded using ,the length of an optimal schedule and the number 

of tasks executed in resoun;c and path time units. The number .of resource time units can bounded by 

the use of a "weighting function". 

A wejghting function W, is. a mapping from the interval fO, l) ·to an interval (0, x], where the x 

depends on the particular weighting function. We exWnd the funcdonal notation tQ tasks and let W(I) 

:::: W(Rmax(f)). Moreover, if B is a set of tasks, then W(~ =, · E W(I) over all TE B. (Our use of 

weighting functions is motivated by, and draws upon,; ·the wort of ©arey, ctat (GOJYJ). Given a 

particular weighting functioa and a ;Set of rcsouocc time untts, the average weight associated with each of 

those time uni~ can be bounded below (this lower bouqd will be I). Moreover, by examining an optimal 

schedule, lbe tor.al weight associated with all tasks executill8 in resource time units can. be bounded above. 

Combining these two bounds gives an upper bound on the number ofresoutte time units. The result 

then follows from the upper bounds on the numbers of pat•1, full and resource time units. 

~ m important oroocrties 

In this section we introduce two properties of weighting fuodions. 

Definition: Weighting function W has Prooertv A. if: 

Given a task T' and a nonempty set of tam B such that: 

Rmax(l) > Rmax(T') for each TE Band Rmax(T') > I • Rmax(B), 

then W(B) ;;::: 1. 

Dctinitjon: Weighting function W has prqpcrty .B. if: 

Given a set of time units {R1 ~ ... , llt} with t > I arid Y = uf = 1 Hi, such that: 

For every task TE B;. l < i S t. and every j. I < j < i, Rmaxff)'> I ~ Rmax<Dj)• , 

then there exists a task T* E Y, such that W(Y - {T*}) > t· J. 

Intuitively, Property A states that given a set of n tasks in which the t<>tal TCSOurce requirements of the 

tasks exceeds one, then the total weight of the largest n· l tasks is at .feast one. Propcny ll will be used to 
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obtain a lower bound . on the average weight associated witll a resource lime unit 

Lemma U: If W is a weighting funCtion wbich has Property A. then W alse has Property B. 

Asmlme that W is a weighting function which has Property A, and let {B1, ... , I\} he a set of time 

uni~ with Y = uf = 1 B1 such that for every task Te Bi, 1 < i St, and eYefY j, 1 ~ j <i. Rmu(l') >I· 

. Rmax(~). We want to show• that there exists a task 'r € Ysuch that W(Y-{'P}) > t-1. Without Joss 

of generality, auume that W(Bj)< 1 for each time unit 8i· l Si St ThcprOOfis ~yinduction On l 

If l ;::;: 1 the lemma !5 immediate, so suppose that t ~ ·:2: Consider time units Bt-l and Bl. Let X 

be any task in n,. Then Rmax(X) > l .~ Rm81(Bt-l). Moreover, fb1"' any fast T E (8t-l U · {X}). 

Rmax(T)> 1 - Rmax<Bt-l U {X} - tn ). In panicular. Jet Z be a task in (Bt-l U {X}) with a minimal 

Ruiax-value. From Property A, it follows that W(l\-I U {X} • {Z}) ~ l 

I t I . f• , 

Now consider the i;ctof~ un~ {B1 •... , 81_1}, where•Bi =I\ for IS i < t-2. and Bt-~ = 

{Z}. Let Y' ;::;: uf:::l n;. By induction, there exists a ·r E Y'. sudl tbat W(Y'·fr})> t-2. 

Thus. W(Y - {T*}) ~ W(Y' - ff*}) + W(J\-l U {X} - {Z}) > t-2 + l = t-1. 0 

~ The weighting functjons 

Three weighting functions arc used in the proof of the main rheoreln. Throe functions are used, as 

opposed to just one, due to varying requirements with respect to dlctwctgllts·assig~ in various parts of 

that proof. Weighting function w1 has the property that if a 1 + a2 < 1, then W1<«1}+ W1(«2) < 

1.5. Moreover, values of a:1 and a 2 exist such that W 1(a1) + W1(:a2)::::: 1.5. A similarstatcmchtcan be 

made about weighting functionW2 and dlC value 1.6. W.cightifl&Atnction"WJ bas-thc:property that if a1 

establishing various segments of the upper bound. 

For each of the three weighting functions which we introduce, we give two major results. First, we 

give an upper bound on the weight of a legal set of tasks. As a corollary to this result we give an upper 
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bound on the weight of any set of tasks drawn from the task system which we are considering. Both of 

these bounds.depend upon the cardinality. oftbe set:oftasks being considered. ·These results will allow us 

to bound the tOtal weight of the tasks executing in rcsouree time snlts:. Secondly; we sl\ow thclt ·the 

weighting function has Propetty B. 

4.2.3.4.1 Tu .fi.!lt weighting function 

Dctinitipn: W 1 (a) = · 0. if er : 0 

114 if a E (0, 1/4) 

112 if a E (1/4, 112) 

1 if a E (112.1) 

Lcmma.4.2: lfB is a legal set of tasks, then W1(B) s; min{ (IBl+s)/2, CIBl+4s)/4 }. 

Recall that B is a kga.l set of tasks if for each resource v, the total usage of v by the tasks in B does not 

exceed one. 

~ l: Let X = {T E B: Rmax(T) > 112} and let x = IXI. Since for each ~source v. there is at most 

one T E B, such that Ry(T) > 112, it· must be that x S s. Moreover, ~f RmaJT> > 1(2 then W 1 (I) 

= 1. ·F.ach task TE (B - X) has Rmax(T) S 112, hence W1(T) < l!T. Thus. w1(B) is ~unded 

above by max{x + (IBl-x)/2) such that x < s. This maximum occurs at x = s. 'Illcrefo.rc, W 1(B) 

S s + CIBl-s)/2 = CIBl+s)/2. 

fan 2: Let X = {TE U: Rmax<n > 112}. let x = IXI. let Y = {TE B: 114 < Rmax(T) S 112} and let 

y = IYI. Similarly to Case 1, we deduce that x <sandy< 3s - 2x. Moreover, ifR~(T) > 112 

then W1(T) = 1 and if 114 < Rmax<T) < 112 then w1(T)::: 112~ i:ach ta~k TE (I)- X - Y) has 
,,;· 

Rmax<T) < 1/4 and w1(T) < 114. Thus, W1(B) is bounded ,~b~vc by m~,(~ + y/2 + 

(IBl-x-y)/4) such that x < sandy < Js - 2x. This maximum occurs at x = y = s. so W 1(1l) < s 

+ s/2 + CIBl-2s)/4 = CIBl+4s)/4. D 

Corollary~: Given a set of tasks Y ~ T, then W 1(Y) <min{ (IYI +s·OPT)/2. (IYI +4s·OPT)/4 }. 
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Let n1 .... BoPr be the tisne units of an optimahcheduJe restricted ta the tasks in Y. Then. Y = 

.u?~ T 8i and W i<Y> :;; · I9 ~T w i(Bf). 

fan l: By Lemma 4.2, each W 1 (Bi) < (IBil + s)/2. Thus, W 1 (Y) S ~~I (f8if + s)/2 = s'OP'r /2 

+I?;J1niv2 = <IYl+s"<JPT)l2 ·· :,·,i0
• •. ':_ ' 

&n 2: Dy Lemma 4.2, each w1(Bi) < (1Bil+4s)l4. Thus.· W}(Y) _$ I?~J .(JBif+4s)/4 . =' 
~ j ' ' . 

(fYI + 4s·OP'I)/4. a 

l.&mma tJ: Weighting function w1 has Property B. 
,··f 5 

By Lemma 4.1, it is sufficient to show that w1 has Property A. Consider a task T' an4.a n<>ncmp'-Y 
- i : ' -~ - . ~ '. ~ • ~ ' . j . - - . ' l ' -

set of tasks Ji, such that RmaxcO ~ Rmax(T') for each TED and Rmax(T') >I - R~(~). We 

want to show that W1(B) ~ 1. 
1-: 

IfRmalO > 112 for any TE B, then the lemma is immediate, so .5Uppose Rmax(T) S 112 for 
' : ,. • \~ > '. 

each TE B. lfRmax(T') = Othen Rmax(B) ~I. hence W1(B)~ I. :SO~f?OSC Rmax(T'} >O. 
' .. "". - : ; ~ 

Qsl: Rmaxff') E (0, 114) 

Theil R01ax(B) > 314. Since for each T E B, 0 < Rmax(T) < 112. we have that IBf .~ 2. Moreover. 
/ 

for TE B. W2(T) is either 114or112. If 181>4, then the lemma is immediate. IffBI = 3 then at 

leaSt one of the fasts has an Rmax ·vatue exceeding l/4, hence it has a weight of 112. The other 
' •'. . ,. ·/. 

two taSbhave weights of at least 114. Thus, W1(D) ~I. If IBf = 2, then both of the ~sin 8 
- . ,_ ,,._ .. 

must have Rmax ·vatucs exceeding 114, hence they have weights of 112. and W 1(B) = 1. 
.'. 

(jg.2: Rmax(T') E (114, 112) 

Then Rmax(B) > 112. Hence 181 ~ 2, since Rmax(T) < 112 _for ~h TE R. s;ncc for each TE 8, 

Rmax(T) > Rmax<T' ), we have: Rmax<T) € (1/4, 112) and W 1(1') = 112 for TE B. 11lus. W 1(B) 

a 
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4.2.3.4.2 Ib£ smrul wcjghting function 

Deftpition: w2(a) = 0 if a=O 

10/100 if a E (0, .092) 

15/100 if « E (.092, .136) 

20/100 if a E (.136, .182) 

25/100 if a E (.182, .204) 

30/100 if a E (.204, .2SO] 

40/100 if a E (.250, .296) 

45/100 if a E (.296, .318) 

50/100 if a E (.318, .364) 

55/100 if a E (.364, .408) 

60/100 if a E (.408, .500) 

1 if a E (.SOO, l) 

We have the following facts which follow from the ~cfipition ofW2: 

~l: If a E (.092, .500). then W2(a) S,(l.M~ 

&£2: IflBI = 3 and Rv(B) S 1, then Wz(Rv(B)) S 17110. 

&!J.: lflBI = 2 and Rv(B) <I, then W2(iiy(P)) s;,16/10., 

Em~: IflBf = 2 and Rv(D) < .500, then \¥iUlv(JJ.» S 7110. 

The foJlowing claim is uscfill in proving Lemma 4.4: 

.. ,;;· .., .... 

QWm ,A: If B is a set of tasks such that Rv(B) S 1 and JRI .;t! 211)~n W,i£~¥(B}) S OBI+ 14)/lO. 

fmilf 

If IBI $ 3 then the claim ~ollows from Facts 2 an(f 3, so, ~ ,lhfJt IBJ ~ 4, Define the following 

two sets Of tasks: 

Y = {T E B: Rv(T) > .500} 

X = {TE 8: .092 < Rv(T) < .500} 

Clearly, W2(Ry(B)) = W2(Rv(Y)) + W2(Ry(X)) + W2'~vf8·X-i\')~' J\Jalc that if TE Y, rhcn 

W2(Rvf0) = 1 and ifT E 8-X-Y th.en W2(Ryfl')) S 10/100. Thus. , 

w2<Rv(R)) S IYI + W2<Rv(X)) + <IHI - IXI · IYl)/10. 
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.Qlg l: JYI = 0 

Then. W 2<Rv(B)) = W 2<Rv(X)) + OBI · IXD/10. 

If pq < 2. then since for each TEX. W2(Ryf0) S ~/100, we ~ve:~i(lty(B)) S (60/lOO)fXI + 

(JBf-1XD110 = srx1110 + IBVlO <((Bf+ 14)110. 
' :"1 

lflXI > 2. then by Fad 1, W2(Rv(X)) S 1.64, hence ~~:8)) S 1.6' + (jJ)I dXl)IIO S 

1.64 + OBf -3y10 < <IBI + 14)110. 

QBl: fYI = l 

Note that Ry(X) < .500 and 

W2<Rv(B)) S 1 + W2(Ry(X)) + OBf-fXf-lY18 (I) 

lflXI = 0, then from (I). Wi(Ry(B)) S 1 + tlBf-1)110-< (fBI+ 14)110. 

If fXl = I, then Wi.(Rv(X)) S 60/100. so froni {I).' W'i(Ry(B)) ~I + 60/100 + (PJl-2)110 = 

ORI+ 14)110. 

JflXJ = 2, then by Fact 4, Wi(~(X)) < 1110, so from (I). ,. 

W2<Rv(B)) <I+. 1110 + CIBl-3)/10-= UBt+l4)110. 

If fXI = 3, then let maxy(X) = max{Rv(I'): TE X}. 

If m~(X) > .JIB then· the other two tasks in' X have -lv ·values totali~g ~ than .lS2, since 

Ry(X) < .500. Then at least one of these other two tasks must have an Rv ·value Jes than 1J'Jl. 

But. by definition. ~h task in X has an ttv ·value exceeding .09i fb~ ~v(X) S ·.318. 

If maxv(X) E (.250 • .318}. then W2(maxv(X)) < 45/100. The other two tasks in X have 

Ry-values not exceeding .136 and .182 rcsp«tivcty, hence ~---~vc '.a- to~I weight not 

exceeding 35/100. lbus. Wi(Rv(X)) < 80/100. 

If mav(X) E (JJ'Jl, ;250J. lhen W2(maxv(X)) <, ·Jo1100. The other two tasks in X have 

Rv·valucs not exceeding .204, hence they have a total weight not ~cccding So/100. Thus, 

------
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Thus, if IXI = 3 then W2(Rv(X)) :S 80/100, hence w2(Ry(B)) :S l + 80/100 + 0Bf-4Vl0 = 

(IBI + 14)/10. 

If IXI > 4, then from Fact I, W2(Rv(X)) ;S l.64Rv(X) :S .82. Then, from (I), W2(Rv(B)) ;S 1 + 

.82 + [IBl·IXl· l)/10 :S 1.82 + OBl-5)/10<<181+14)/10. a 

l&mma M: If Bis a legal set of tasks. then W 2(B) :S <IBI + 14s)/10. 

Panition the tasks in B into s sets o1 .... , 0 5, where T € D,;~fand only if v is the. minimum index such 

that RvfO =' Rmax(T). Clearly~ 'W2(B) = I~= 1 W2(Rv(f)v)). Now partitiOn the rcsoun:cs into 

sets Z.O, ••• , Zn, according to the siZcs of~ respective Dv sets. That is, Tesoun:e v is placed into set 

ZIDvl (Figure 4.2). Thus, w2(B) = Ij =O ( Ive71 w2(Rv(0~)} ). 'aearty, for each v E ~ 

W2(Rv<Dv)) = 0 and from the definition of w2 it ~ollowsthat for each' v E z1, W2(Rv<Dv)) :S 1. 
' ' 

Moreover, from Claim A, it follows that for each j > 2 and each v E Zj, W 2(R~(Dv)) :S 0 + 14)/10 

and IvEZj W2(Rv<Dv)) = [(j+l4)/JO)l7f 'Illus, W2(B) :S tz1_1 + Ij =l ((j + 14)/JOB~I = 

I'J = 1 jlZjl/10 + Ij = 1 l4fZjf/tn- tZ1fn. But, the li's are a partition of the resources, so Ij = 1 

IZjl :S s. Moreover, that partition is based on a partition of the wt~ such that Ij = 1 j l~I :S IBI· 

Also, IZ11>0. 

:. W2(B) < IBl/10 + 14&/U)_-0/10 =tint +J4S)/10 0 

Corollary !2: Given a set of tasks Y ~ T, then W 2(Y) < (IYI + l4s"OPT)/10. 

Let R1 •... , RoPT be the time untts of an optimal scb~duJC r($Uicic,d k> me tasks in Y. By Lemma 4.4, 

OPT OPT each W2(Bi) <(!Bil + 14s)/IO. lllus. W2(Y) = Ii= I W2(Hi) < Ii= l [!Bil + 14s)/10 = 

14s·OJYJ'/10 + I? ~T IBil/10 = (IYI + 14~-0PI')/10. 0 

I .cm ma ~: W cighting function W 2 has Property B. 

By Lemma 4.1 it is sutTJCicnt to show that w2 has Property A. Consider a task T' and a 
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Figure 4.2: Partitioning the resoua:es. 

Resoun:e 

1 2 3 4 s .6 1· 

T1: [ . Ci> - l 

T2: [ . @1 
T3: [ . (j) '..2 . ] 

T4: [ . @ l . ] 

Ts: I .1 @ - ] 

T,: [ . @ .• . J 

T1: [ @ .2 J 

Ta: [ Q) .l .. - ] 

Tg: [ . © . I 

Tio: [ . Ci) .4 . ] 

Tu: [ . @ . ] 

These are the resource requirements for the tasts in a system with 11 tasks and 7 resources. A l.el'O 

requirement is shown .as a dash. The. laraest req~if!;ID~~ ·--~ - . ,:\: ,, ' . ., "• ; . ·. 

B = ff1.·T2' T3, T4• T1• T6• T7• ! .. Ito '!'~.T~1~. , . 

o, = Ill------- l.o = {6} 

~ ':: fJ 

D5 = {T3, T4, T6' T11} · Ii Z,.c = {S} 

~-·== '·~-==Zn = • 
Tastparti~ 
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nonempty set of tasks B such that Rmax('lj > Rmax(T') for T E B, and Rmax(T') > 1 - Rm81(B). 

We want to show that Wi(B) ~ 1. 

lffBI = 1, theiresuk: follows immediately froiti 'the deftiihion otW2;'so assume that 181>2. Let 

min(B) = min{Rmaxffi: TE B}. If there.if only oneresouJcein the task·iystem. tlten min(B) is the 

smallest resource requirement of any task in B. Given a time_ unit 8, it is ~ible to compute a lower 

bound for W 2(B) based on IBI. min(B) and Rm~(B). In particular;·· Table 4;2 gives various 

combinations of 181. min(B) and Rm
81

(B), ~h of which ~plies that W 2(8) > 1. These values were 

verified using the MACSYMA system of the MIT Laboratory for ComP,ute~ Scte~ The program 

used to do the verification is shown in Figure 4.3. 

Now consider the possible values of W 2(T' ). If W 2(T' )~ 50/100. then for each T E 8, W 2(T) 

~ 501100. Since f8f > 2. we have W2(B) > 1. lf\Vi(T') = 101100. then 0 < Rmax(T') < .092. 
" '. . 

But this implies that Rm81(8) > .908 and min(B) > Olteneetrom Table 4.2, W2(B) > 1. If Rma:.m 

= 0. then Rmax<B) > 1, hence Wi(B) ~ 1. 

There are six rcmainiqg possibilities for W f..T' ): lS/100, 20/100; 25/100, 30i1~. 40/100, and 

45/100. Associated with each of these weights there is a range (a1, aiJ in which Rm~(T') must lie. 

Moreover. in each instance it follows that min(B) > a 1 and tllat: Rmax(~) > I - a2~ For each (a1 ~ .«zl 

pair, an examination of the "rele~ant" entries in Table 4.2. shows that W2(B) > Jin aij, ittstances. A 

guide to the "relevant" entries of Table 4.2 is given in Table 4.3. In Table 4.3, for each of the six 

possible values of W 2(T' ), we give the values a1• a2, the subsequent lower bounds on min(B) and 

Rmax<B) and the entries of Table 4.2 that need to be examined. Note that entries arc not listed for 

each size of fBI in every case. In particular, for each W2(T•) possibility, only one entry of the form 

(fllf, min(ll). 0) is given. Such an entry implies lhat W2(B) > fill W2(min(R)) > 1. Thus, for any 

larger lllf, we also have W 2(8) > 1. 

For example, when W2(f') = 25/100, Rmax(T') E (.182, .204). Thus, min(B} > .182 and 
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Table4.2 

IBI min(B) R._(B) JBI miD(B) ·. R · (B) 
''·····~· .4Pk· IQia(B} Rma(B) 

2 0 .7SO 4 0 ~ ·;·1 ,o J68-
2 .2SO .704 4 .136 .II . ···7 M 0 
2 .296 .682 4 .182 0 

8· e··· .8'10 
3 o· .811 s 0 .864 8 .()IJ2 0 
3 .182 .750 s ' .136 0 
3 .250 0 9 0 .872 

6 0 .866 9 sm 0 
6 .on .112· 
6 .136 0 10 0 0 

An entry (i, x. y) in this table is interpreted as follows: If Bis a set of tasks such that 
IBI=~ min(B)) x. and Rmu(B)) y, tiara w9>».L ' 

· Table4.3 

Wi(Tt) (a1,4fz} min(B)> Ra.CB» R.dnant Batries .. 
IS/100 (.092, .136) .OIJ2 .864 (2. 0, . 7S0). C~~ .818i (4. O, .820). (S, 0. .864). 

(6. .OCJl, :ti!). fl"' .Mt 0) ' ' 

20/100 (.136, .182] .136 .818 (2, 0. .7SO);'(lJD. .tll1~4~ .13" .818), (S, .136, 0) 

2S/100 (.182 •. 204] .182 .796 (2. 0. .75Gl (3 •• 1$Z. .• 7SO).J+.· .182.. 8) 

30/100 (.204 • .250] .204 .750 (2. 0, .7SO), (3, .182 ... 759). (.,, .182, 0) 
), 

401100 . (.2SO • .296) .2SO .704 (2. .2S(). .704). (3, .250.. 0) 

4S/100 · (.296~ .318] .296 .682 (2. .296 •. 682). (3, .2s0. 0) 
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Figure 4.3: MACSYMA program used to verify the values in Table 4.2. 

The function CALC takes three inputs: B, MIND. an4 RMAXB. and compu~ the minimum total 
weight of the tas~ in a time unit where: · 

Bis the number of tasks in the time unit 

MIND is a lower bound on the resource requirement of each task in the time unit. 
That is, for each task T, Rmax(f) > MIND. 

RMAXB is alower bound on the total resource requirement of all the tasks in the 
time unit. That is, Rmax(B) >·RMAXB. 

CALC finds the minimum total weight by doing an exbilusti.ve search of tile possible values for the 
resource requirements.of the tasks in the time unit. For c0nveniCnce, weights are nniltijJJied by 100 and 
resource requirements.arc multiplied by 1000. · 

· Sample ouput of the program is: CALC(2, 296, 682)$ 

2 296 682 100 

(input to MACSYMA) 

(MACSYMA output· the. fourth 
value is the minimum weight) 

CALC(B, MIND, RMAXB) : = (MINWf : 100, 
FORJ FROMOTHRU900 

(IF MINB =RF.SJ TIIEN BOT: J+l), 
HELPCALC(B; 0. '8~ 
PRINT(B, MIND, RMAXB, MINWf)) 

... 
HELPCALC(COUNT, CURWf, CURRF.Sr: = 

IFCOUNT = 0 
THEN (IF CURWf < MINWI:~O..CURRF.S > RMAXB 

. THEN MINWf: CURW'l), 
ELSE (IF CURWf + wrsooT. COUNT < MINWf 

TIIEN FOR I FROMJJQT TKR-U.1-0 I)() . 
HELPCALC(COUNT -1, CUR wt + WI'S1, CURRRF.S +RF.Si)) 

The values of the WTS and RPS arrays are as follows: 

0 1 2 3 4 s 6 7 8 9 10 

IS 20 2S 30 45 so SS 60 wrs o 
RPS 0 

10 

92 136 182 204 2SO 296 318 364 408 soo 
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Rmax(B) > 1 - .204 = .796. If IBf > 4. it follows from fBt and min(B) > .182 that W2(B) ~ 4 

W2(min(B)) > 4 (251100) = 1~ If fBf < 4, the cntriCs (2, 1t, ;750) ind (3; .182,_ .750) in Table 4.2 . ~'. 
indicate that W :i(B) ~ 1. 

4.2.3.4.3 -~ 1llini Y..eigbting function 

Dcfinilk>n: W 3(a) = (6/S)a 

(9/S)a - 1110 

if a E (0, 1/6) 

if a E (116. 113) 

(6/S)a + 1110 if a E (1/3, In) 

{6/S)a + 4/10 if -a E (112. l] 

_O 

This is the weighting function defined in Garey, etal~GGJYJ; ln""181-paper the rotlowing corollary- and 

kmma about W 1 am proven. 

Corollary~ Givea a set of.tasb Y ~ T, then W 3(Y) ~ 'lls-oPf LIO. 

l&mma .§.&: Given 0 < a< In. and a set of tasks R = {T 1 .... , T 0 } with n ~ 2. such that Rmax(T i> > 

A straight-forward consequence o_f Lemma 4.6 and dle:-dCfihkift_ of W l (used to handle 181 = l and 

Rmaxff') !?: In) is that w3 has Property A. hence: 

Lemma~: Weighting function W 3 has Property B. 

In this section we complete the proof of the upper bound. A~me that a UET task system with 

continuous resources S = <T. <. m, s> is given. Let CPA 1ll be a set containing the lime units of a critical 

path schedule and let OPT be a set containing the time units of an optimal schedule for this system. As 

usual. wc·atso let CP1\. m an<tOP'f be w-kngths <Jf·~ sdlcdub ~- i\)SJSi'{)j)riatc. The time units 
- - . / : 

in CPA'lll arc partitioned ioto the folJowing dm:c sets! 

P = f8i £ CPATll: (Vj > i)(lcvcl(8i) > lcvcl(n.;n 

F = {Bi€ CPA'lll: IB~ = m and Bi ( P} 

H = f 8t E CPA'rn: '°'' < m and I\ ( P} 
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The time units in P are lIB1b .ti!n£ ll!lW. those in F arc JiillJhm lUlill, and those in H are resource .dmc 

~. Clearly, CPA TH = IPI + IFI + IHI. 

Let Q = {T E T'. T E Bi and lli E H} (i.e. Q consists of an tasks executing iit resource time units of 

CPATII). Clearly. !Pl·~ OPT and IFI S OPT -fpt/m ~ IQVm .. The ~umberofresource timeunitsJHI. 

can be bounded by use of the following lemma (adapted from a lemma given by Garey, etal.(GGJY]). 

Lemma !a: If W is a weighting function which has Property B, then there exists a set of tasks Q ' ~ T 

with IQ' I = IQI such that IHI S W(Q '). 

Assume that W is a weighting function which has Property R Let k be the maximum level of any task 

in T. For each level /, 1 < I ~ le., there is one time unit a / E P with 1cvel(B 1) = I. Let T / be any task 

in BI with level(T 1) = I. Moreover, for each level t i · < I S k, dctt~- the following two sets: 

A I = {Bi E H : level(Bi) = /} 

L1 = {T: level(T) = I and (3Bi E A,>(T f ~}} U ff1}. 

Thus, A1 contains all of the resource time units where the highest •level of any task executing in the 

time unit is /. Likewise, L / contains task T / and all level.J bisk.5' executing in a resource time unit 

where the highest level of any task executing in the time unit is /. Figure 4.4 shows the 

correspondence between L /' T / and At 

Consider any set At We claim that there exists a task x1 E L1such that W(L1 · {X1}) >IA~. 

If IA) = 0 then the result is immediate, so assume that IA~ > 1. Let n1 •... , lllA~ be the time 

' ' ' units~n A1. For each Bi E A1, let Bi = Bin Lt There is one Bi for each Hi, and each Bi 

' IA,l+l ' 
contains at least one task. Also, let n I A~+ 1 = {T1}. Note that U i = 1 fl i = L /· Moreover, 

I 

each Bi contains only level I tasks. 

I I I 

Now consider any B j and Il i, with j < i. I .ct T be any task in n i . When T was scheduled, all 

tasks with levels larger than I must have already been schedu1cd in time units prior to Bj. 
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Fjgure 4.4: An example of the sets A1 and L/o and the tMt TI 

Assume that B8 has a level of I and is a path time unit This means that the task in 88 of the highest 
level has level /, and that all tasks executiq in time unla a~ Ba baye ~vds ~than L . 

Some number of time units iD;llllediately preceding Ba also h~ve a level of 1 •. Assu~ th~t these are time 
units B4, B5, 86, and n.,. The set A1consists Of these 4 time units. The set L1ci>nsists of all of the level I 
tasks wllich execute in these 4 time units, along with task T f 

leveJ(Bj) = I for i = 4. s. 6, 7. 8 
8s is n1 in this i~ 

B4, B5, B6 and S., are resource time units and Ba is apath tln;)e unit 

L1 = {T: levd('I) = I and T is in a time unit in A1} U ·ff i} 

The tasks in the non-shaded poJ1ions of B4• B5• B6• S., and Be are rhe tasks in 4 
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Moreover, the only tasks already scheduled in time unit Bj were level I UISU. Thus, T was -not 

scheduled to execute in Bj due solely to ._ reso,oo:e_. constraints im_ppscd by the level I tasks in Bj. 

I t I 

This means that for T E Bi , Rmax(T) > 1 - Rmax<a;) for aH j < i.- Thus. the· B j s fonn a set of 

time units for which the coRditions given ii\ t.hc.ukfinition ()f Property B hokl Then, since 

IA,1+1 I 

weighting function W h~ Property B, therccxisua f8.X1 ~ L1,siAtCe L1 = Ui= 1 . Bi) such 

that W(L / • {X 1}) > IA). and the claim is PfOV~., D 

Finally, letQ' = (Q U {T/: 1 <IS k})- {X1: 1 SI< k}. Clca~ly, IQ'I = ~. 

:. IHI= l:~=1IA~:Sl:~=l W(Lr{X,l) ~w~~).~~~::i1:f(lt.rlX1HC:Q'. D 

From Lemma 4.8, it follows that given a particular weightiag ~--. WJ .wbid.l has Property ~there 

exists a set of tasks Q '. ~ T such that tQ' I = IQJ and IHI~. W·*(Q "). 

Thus, CPATH = IPI + IFI + lHI ~ IPt + (OPf~IPVm-fQV~) + ;w~(Q'). and -witll a rcoroeriog of 

tenns. 

CPATH S OPT +tPkl·llm)~ IQl~m+ W*(Q~). (U) 

There are six cases to consider based on th~ rclativ~ values oh and m. 

~l: 2:S m<s+l 

Then CPATH < mOPTsinccat least one task must execute dudflg.~.tbnc~tofCPATH. 

~ 2: s+ 1 ::;; Pl < 2s+ 1 

Let W1 be the weighting function W*. By C~ 4.l, Wi{Q') ·;S, UQ'l+s·OPT)ll = 
·[IQl+s-OPJl/2. Thus from (If). CPt\TH S Of>'Fi+ lPf61-llm) ·IJfl~ :t lfQJ+s'OPT}/2 ::,(l + 

s/2)iWT + f Pl(J ·llm) + tQtll/l;- llmj. Out,_ l/~ ":'l{m,,~ J> ,Qd~fQj; :S ttn-0~ · fPI. Heace. 

CPATH < (l+s12)•01XJ' + JPKl .. J/m) + (nrOPT dPJll/2 ·d/~ = ((s+m)latofl'·+ JPl/2 :S 

[(s+m+ l)/2)·0PT, since IPf <OPT . 

. . . CPA TH/OPT < (s + m + 1)/2. 

' . 
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Cml:2s+l <m<8sl3 +I 

First assume that m > 4. l.et W 1 be the weighting function w•. Then by Corollary '4.1, W 1(Q ') :S 

(IQ' l+4s·OPT]/4. SimiJarlytoCase2, we4eJjve from (il)lllatCPAnl/OPT :S (4s+m+3)14. 

Now mumc that m < 4. The only combination ofs. and ni to iie m thls rarige is s== land m=J. But, 

from Case 2 (since the asMllpoon that m < 2s+l·was not Used irnhat proot),_ CPA1ll/OPT :S 

(s+m+ 1)/2 = (4s+m+3)/4 whens= 1 andm=3. 

~~:8s/3 +I <m<3s+l 

First assume that m > 10. Let W2 be the weighting Aloction W*. Th~n by Corollary 4.2, W2(Q I) s 
00' I+ 14s·OPT)ll0. Simt1arly to Case 2 we derive ftom (II) that CPATH/OPT :S (l4s+m+9)110~ 

Now assume that m < 10. The only combination oft and m to lie in lhisnnge-is s=land m=9. But. 

from Case 3, CPATH/OPf S(4s+m+3)14 = (14s+m+9)1IawbeD s:::Jandm=9. 

CB~: 3s+l Swandm> 10 

First assume that IQf > ls-OPT. Let W l be the weighting function W*. Then by Corollary 4.3, 

W1(Q') < 17s·OPT/10. Thus, ftom (II). CPAnl < 0PF + IPl(l- Ilm)- IQVm + 17s'0PfJ10. 

But-IQI <-ls-OPT and IPI S OPT, soCPATI-1 S OP'f + OPT·(l-llm)-ls-OYf/m + 17s-0Pf/10 

= OPT [ 2 + 17sl10-(Js+ l)lml 

Now assume that IQI < ls-OPT. Let W 2 be the weighting function W*. Then by Corollary 4.2. 

Wf.Q') < [IQ' I+ 14s'()PT}/l0 = 0Qt+14s·OPfl!IO. Titus from (JI), CPATH S OPT + 

IPl(l-1/m) - IQl/m + llQI+ 14s-OP'l1fJO ::; OPT11 +l4sll8J + IPIO-flm) + .IQ(I/10 - l/mi But 

l/10- l/m > O. fQI (JS'OP'f and 1PI S OPT. Hence. CPATH Stt>i>'f11+14Sl10) + OPT"(l-llm) 

+ 3s-OP'f11110 ·l/m) = 0Pf12 + 11s/l0 • (ls+l)/m}. Thus, OATiilOPT S 2 + 17s/10 · 

(ls+l)/m. 

.C.,j: 3s+ 1 Sm and m < 10 

First assume that IQI ~ (8s/J)·OPT. Let W 2 be the weighting function w•. Then. by Corollary 4.2. 
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W2(Q I) <[IQ I I + 14s·OPT)/10. Similarly to Case 5, we derive from:(U) mat CPATHIOPT s 2 + 

Ss/3 • (8s/3 + l)/m. 

Now assume that IQI < (8s/3)·0Pf. Let w1 be the w.e~tina functioa .. W• .. Then by Coronary 4.1, 

W1(Q') < [IQ'l+4s·OPT}/4. Similarly to Case 5. we 4trive.from (ll) that CPATHIOPf S 2 + 

Ss/3 · (8s/3 + l)/m. 

This completes the proof of the tmper bound for Theorem 4.1. D 

In this section we prove that the upper bound for CPATH/OPI' giveain Thcorem4.l is the best 

possible upper bound, completing the proof of that reaulL 

For each possible combination of s and·m, we exhibit a UET-is)'$ml with continuous resources. . . . . 

S :::: <T. <. m, s>, a critical path schedule for that ~ ~a qp~- $1dhedule for that system such 

that the ratio CPA 111/0PT is arbitrarily close to the app.'Qf)riatc •PP« bound. ·As hi the proof of the 

upper bound, there arc six cases to consider based on the reJatipash\fi' .between s and m. The 

constructions that we use in the six cases a.-c siEqilar. :but. not identical. They make use of task. systems 

which differ primarily in the resource~ o{ certaia tasts·in· the. 8)lSlCln. The overall precedence 

structures of these systems are the same. as are die resoun:e· usages of several. of the tasks. lbus. l>Qfdre 

proving each of the .lemmas, this general task system strueturo IS: introduced. The aspects of the systeltl 

which arc the same in all cases ar~ specified. We indicate which ,paramotcr& wilf be specified' within the 

proofs of the individual le.mmas. We also sketch .optimal and critical pa&h :Sehedulcs for this" general 

syst,em. 'Ille exact nature of these schedules wiU. of course,: depend upon the. vahlcs assigned to 1he 

unspecified parameters within &he proofs.of the ,indiviNUemma · · , . 

handle the case of m :s; s). lntcaers x and z are l() be specified ater~ as is '•a pOsitive copstant Consider 
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a ta_sk system ~ with the following tasb: 

1. Di for I < i < x. such that R 1 (Di) = e and Rv(Di) = 0 for v * 1. 

2. Bo such tl1at R1<Do> = land R~so>·.:: 0 lb( v ;11: 1. 

3. Bi fur I < i < s, such Wit R1(8i) : l and Rv{O.~ ·:i 0 fer v ~ l .. 

4. Ci for 1 < i :S s. These tasks require no resources. 

5. Aj for I < i < s and 1 < j < z. For· v * ~ Rv<Aj) ::: 9. · 1?he .. tisage of resoiure i by each task 

Aj (its Rrvalue) will be specified later (it will be a non-zero requircMtm). T*hAf •. ;.. .A! 
are called A i_taskt. 

This task system has the following precedence constraints: 

1. For 1 :S i < 1-l. f>t < °t + 1· Moreover. o,l' < C1·" , 

. 2. For 0 < i < s-1. 8i < 8tt.'l and 8f < Aj+ 1 IUFT:S j ~ z.. 

:3. For 1 < i < s~l and l :S j :S z. Aj {Ci+ t· 

4. For 1 < i <s--1. q < Ci+l· 

The precedence structure of this sys&em is shown'in Fi&ere 45; 

(Fiaure 4.6a): In the filst s+ 1 time unihH~xa:ute 41le •-tas1s. 'frt the 1'ext x time units elccilte the 

~s on processor m. and ex«ute- aU of the· A-tasks on:'tle ~ irf'I'p~.'' fn the ft~a1 s ·ttme 

unirscxecuwtheC-tasks. Sochadcduk hastett81fi x ·+ 2s +: L''llle·mumptimi tfmtheA-taslscan 

an be cKC.utcd in timeunilS s+lthrough x+s+l depends only on· tbei~tJfA-tasb(Which is sz) 

B
8 

executes in time unit s + I, all of the-A-tasls M-mailablo fur ncaatioh; ··fir each of the TCSU1ts usmg 
, . 

this general task system, the value z and the rcsoun."C rcquircmclds Ofillrc~satc~ fl&fhe 

resource 1 during each. of those x time.· un~ docs Mt: eaceed· f ··~. '. !fhit tast condition is nccdcd since 
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Figure 4.5: The general task system structure used for the lower bounds. 

• • • 

~As'-...__ As ~ As 
l 2 z 

The non-zero resource requirements of these tasks are: 

Each D-task requires E of resource 1 

B0 requires all ofrcsource 1 

Di requires all of resource i, i > 0 

Each A i_task requires a non-zero portion of resource i 

D1 

I . . . 
I 



Figure 4.6: Two schedules for the general task system structure 

The. A ·tasks execute on 

processors 1 thru m- 1 

... 
1imeunits s+l x s 

a) An optimal schedule -- length = x + 2s+ 1 

x 1 1 .l O(A~) 1 1 
Tuntrnnits 

b) A critical path schedule -- length = x +s+ 1 +s O(A1) 
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each of the D-iasks requires e of resouroe l 

Now consider the critical path schedule for S* generated from the following list: (D-tasks, ~Ci, 

A1-tasks, B1, Ci· A2-task$. •.. , B5•1, Cs, A8-.tasks, 85). •. In ~·schedule, (Figure 4.6b) the D-tasks 

execute in the first x time units. then Bo and c1 execute in the next.~ unit. followed by the ex~ution 

of the A 1-tasks. After those tasks have cx~tcd. B1 and c2 e1ecut,e,. fol)Q~ ~ the execution of the 

A2-tasks, and so on. Eventually, 85•1 and C
5 

execute, followed by the execution of the A5-usks. In the 

final time unit Bs executes. Assuming ~t the Ai~taiP:arc ~oil Uie $UllC rC$0Urce requirements for 

resource i, as the A 1-tasks arc assigned for resource l and that ~Y are scheduled identically to the 

. A1-tasks. this schedule has length CPATH = x + s + 1 + s(](A1). where G(A1) is the lenath of the 

schedule for the A 1-tasks. 

In the im;lividual proofs which follow, several things a.-e done .. First,. tAe values of x, z and e are 

specified, and the rem~jning resource requirements for &be.A~tasks:aregiven. We then show that the 

A-tasks can be executed on m-1 processors in x time uni~ with. &a. total requirement Jor .resouree 1 by 

the A-tasks. in each of those x time units, not exce~ina 1- a. This establ,isla~Ulat·OPT·< x + 2s + 1. 

The val~ of G(A 1) is then dcnvcd by analyzing a paflicuiar Ii~ sch~ for the A 1-tasks, eslablishing 

that CPATH ~ x + s + 1 + s0(A1). The klWCJ ;bound for theworstqsc'.i>f::CPATHIOPT is thon 

obtained by combining the bounds for Ol!r and CPA ll-1! 

~ ~$implc,Cm 

l.croma~: lf2 Sm< s + l, then CPATH/OPT can be adlitrarily ~tom. 

Assume that there aa;.c onJy. m~l.r~rc~,. That ~~mes = rp~l. (~~tin tile•· J>'stem used to 

s~ow ID,aqhe upper .bQund of m tQay be .appro.1Clw4 ~tf~Y. tjosqb:. ,the Jask,s toqqire only the tll'$t 

m-1 resources). The next lemma show$ tbat: in this·~. (i.e.,~~ s:+J)., N .CPA.nl/OPT can be 

arbitrarily close to(s+m+ l~/2. Rut. ifm = s.-t<l, then (s+m+ 1)12 ::a mo a 
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Lemma 4.10: Ifs+ 1Sm<2s + 1 then CPATH/OPTcan bearbitnttilycloscto(s+m+l)/2. 

Let c = (m-s-1)/s. Let x be a positive integer such tbat x = O mod 2s, fetl: =' (1 +c)x and let t < 

1/12 .. Now consider the task system S* as specified in the prcyiOus section~ using these values of x. z 

and e. The remaining laotH'cercquirements<>f$e A--tastsafe: 

For each i, 1 Si Ss. 

x of the Ai.tasks have an Rtvalue of tn + t 
ex of the Ai.tasks have an Rrvalue'of· 112- 2t. 

Note that for each i, We have specifiect'resource requirCmcllts fbr eUcdy x + ex = [l+c)l = z 

Ai-tasks. As desired. in total there are zs = (m-l)l A-tasb. _- ,/ 

As noted in the pmrious Sl'Ction, OPT :S 1 + 2s + 1 provi<led aft of the A-tasks can be 

executed on m-1· processors in just x time units,· 1'it1t ·the 1Mal reqmmnent fbr resouru t by 'the 

A-casts in each time unit oot exceeding I·- e. This can be done b)"exc!cuting the fbflowing tasts at 

each of those x time units (Fwpre 4. 7a): For each i, l S i· ~ !. an A i'-taSk with ati Rrvalue of 112 + 

1 executes. 1'his utilizes s processors at each time unit. ~/tor cs = m-s-1 values of' i, an 

Ai.tast with an Revalue of 112 • 2e executtt 5inee·m-l A-taSks mcutc;pcr lime unit. 311 or the 

A-tasks can be executed in x time units. Note that fbr eadti;dlete:~(t-c)X thne·unitS ID whidr one 
Ai.task executes and there are ex time unirs in which two Ai-laSts execute.' MoreeYer, ttwe'totat 

requirement form resourec during each time unit does not C1Cccd l • 1; Therefore. OPT :S. Jl + 2s.' 

+ 1. 

Also aw noted in the previous section. h uitieal path sditdules;: €PATH ~· x + s + ·I + 

sO(A l). where O(A l) is the IC?ft8dt of a particular list sc~ (wldch' ..C•'lhiRJt to specify) for the 

A1-rasts. Considcrthc lblowingscbedule fbrlhc AlfaSis{Figure 4.7b): ln'Che ftrstcx/2 time units 

two A 1-tasts with R rvalucs of tn - 21 execute. These time units ate ,fbllc>WOO by i time unils in 
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Figure 4. 7: The schedules used in Lemma 4.ll 

1 A1-task 

(1-c)x Cl 

a) An optimal schedule -- for each other resource v, Av-tasks execute (in a similar manner) with these 
A1-tasks. . 

2 A1-tasks 1 A1-task 

EJ e LJ 
cx/2 x 

b) The schedule used for G(A1)-- these tasks execute alone. 

In each of the above figures, the values inside of the boxes indicate the Ri"valucs of the the tasks 
executing in those time units. The values under the boxes indicate the number of time units where tasks 
with those particular R1-values execute. 
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which one A 1-task with an R 1-value of 1/2 + e execub per time unit.: Nate• that in each Orthe; Rtst 

cx/2 bne units the total requirement for resoqrcel is 2(1/2 ·le) = 1- 4e.; During the execution of 
• . _-, - .f ... ~ - • -

these time units the smallest res0urcc requiremcnl-:<>f any unexecutect~;;.~ i, 112 - 2e, a value 

which exceeds 4e. This means that none of fu~ ~-tasks which ex~te" ~ter '1 the schedule can 
;\. - : '~- "·~·-· . 

execute in these time units. This assures that the schedule we have described here is a valid list 

schedule. Thus.G(A1) = cx/2 + x,and CPATH > x + s + l.+ s[cx/2 ;\~J>;x{m+s+l)/2. 

..• CPAJlllOPT ~>(l(n+s+ 1)12)/(x+?Js+l): 

limilx-+ 00 CPATH/OPT = (m+s+l)/2. a 

Lemma ill: lf2s + 1<m<8s/3 + 1, thcnCPATH/OPTcan be arbitrarily close to(4s+m+3)/4. 

Let c = (m-2s-l)/s. Note that 0 < c < 213. Also, ~~·q. = 0 if c S 112 andlct,q =~tlog Kl-c)/(2-Jc))l 
"i: -, ~ ~ 

if c > 112. Let x be an integer such that x = 0 mOd s2q, let z = (2+c)x, and!let Y = Jc-: + 

(1-c)/2q·l. (The origin of Y will be explained a little later in the proot).:.l~:;--~- e0 = 111()<1+2. 

Also, for 1 S k < q, let ek = lOek· l· Now·considcr the task system S* using~ values ofx, z and 

<>Ii n, .• .. : · :• .. ·• 

e. The remaining resource requirements of the A-taSks are: 

For each i. 1 S i S s: 

1. (1-c)x of the Ai-tasks have an Rrvaluc ofl/2 + e0 

(1-c)x of the Ai·tasks have an Rrvalue of 112 - 2eo-

2. ForO < k < q-1, 

(l-c)x/2k of the Ai.tasks have an Rrvalue ofl/2 + et. 

(l-c)x/2k of the Ai·tasks have ~n Rrvaluc of 114 + let. 

(l-c)x/2k of the A i_tasks have an Rrvaluc of 114 - 4et· 

3. Yx of the Ai.tasks have an Rrvalue of 112 + 'q· 

Yx of the Ai·tasks have an Rrvaluc of 1/4 + leq. 
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Yx of the Ai-tasks have an Rrvalue ofl/4 - 4•q· 

There are two cases to be considered here: 

1. If q = 0, then no tasks arc assigned resource requirements in part 2 of the above specifications. In 

this instance Y = c. 

2. If q > 0, then some tasks arc assigned resource requirements in part 2 of the specifications. Note 

that Y > 0, since q < l + log [(l-c)/(2-3c)). 

In both cases, resource requirements are specified for cxactJy z Ai-tasks. The constant Y was choseJJ 
' 

so that this was the case. Intuitively, in part 2 of the specifications, we assign Rrvalues to the tasks in 

a series of sets of tasks. The number of tasks in each set is one half the number of tasks in the 

preceding set Since there arc only (2+c)x = z Ai-tasks,. &he-series must be terminated at an 

appropriate point In :this instance, that is after q sets. The value 3Yx is the number 'or Ai·tasks 

whose Rrvalu has not been specified when the series is r.erminatcd. . lbese 3Yx tasks are the tasks 

assigned Rrvalucs in part 3 of the specifications. 

As before, OPT < x + 2s + 1 provided all of the A-tasks can be executed in x time units with 

the total requirement for rcsoun::c 1 by the A-tasks in each time unit not exceeding l - i. This can be 

done by executing the following tasks at each of those x time units (Figure 4.8a): For each i, l < i ~ 

s, either 2 or 3 Ai-tasks execute at each of the x time units. More ~ifically, for (1-c}s = Js-m+l 

values of i, two Ai-tasks execute. lbcy have Rrvalues of 112 + to and 112 - 2t0. For the ~cs 

= m-2s-1 values of~ three Ai·tasks execute. TI1ey have Rrvalues ofl/2 +.tit, 114 + 2ek and 114-

4ek, for some k, 0 < It S q. Since at each time unit 2( 1-c)s + Jes = m-1 tasks execute, all of the 

·A-tasks can be executed in x time units. Note that for each i, d1erc are (1-c)i time units in which two 

A i.taslts execute and there arc ex time units in which three A i_~sks execute. Moreover, since tk ~ 

to = e for 0 < It < q, the total requirement for any resource during each time unit does not exceed 

l - e. lbus, the A-tasks can be executed in just x time units, and OPT ! x + 2s + 1. 
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Figure 4.8: The schedules used in Lemma 4.12. 
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For critical path schedules. CPA TH ~ x + s + I + sG(A 1 ). 'Illerc· are two cases to consider· 

based on th~ value of q (i.e. q ::::: 0 and q > 0). 

ff q = 0, consider the following schedule for the A l.,tasks (Figure 4.8b): In the first cx/4 time 

units, four AI-tasks with Rrvalues of 114 • 4e0 execute in each time unit Next there are ex time 

units in which two A I-tasks execute during each time unit These tasks have RrvaJues of 112 • 2e0 

and 1/4 + 2e0. ll1irdly, there are (l-2c)x/2 time units in which two A 1-tasks. each with an Rrvalue 

of 112 - 2ecr execute. Finally, there are x time units in which one A 1-task with an Rrvalue of 112 · + 

e0 executes per time unit Note that in each of the first cx/4 time units the total requirement for 

resource 1is4(114 • 4eo) = 1- 16eo- During the execution of these time units the smallest resource 

requirement of any unexecuted Ai·task is 1/4 - 4ecr a value which exceeds I6eo- This means that 

none of the A 1-tasks which execute later in the schedule can- execute in these .time units. Similar 

remarks can be made about each of the other time .mits in this schedule. This assures that the 

schedule we have described here is a valid list schedule. Thus, G(Al.) = cx/4 + ex + (l-2c)x/2 + x 

= (312 + c/4]x. 

If q > 0, consider the following schedule for the A I-tasks (Figure 4.8c): In the first Yx/4 time 

units four A 1-tasks with R1-values of l/4-4eq execute in each time unit Next, there are [(1-c)/2q· l 

- 2Y)x/4 time units in which four A 1-tasks with R 1-valucs of 1/4 - 4eq· l execute per time unit (since 

q > k>g((l-c)/(2-lc)] this quantity is non-negative). In the next Yx time units, three A 1-tasks execute 

per time unit: these tasks have R 1-valoos of 114 + 2t:q• 1/4- 4eq-l • and l/4 - 4eq-l · Similarly, in the 

next (l ·c)x/2q~ 1 time units three A 1-tasks execute per time unit lbcsc tasks have R i-valucs of I/4 

+ 2eq-l• 114 - 4eq_2, and 114 - 4t:q_2. Generally, fork, q-1 ~ k ~-1, there arc (l-c)x/2k time units 

with three A 1-tasks executing per time unit 'll1csc .t.1Sks have R1-valucs of l/4 + 2ek, 114 - 4ek· l • 

and 114- 4ek·l· Folk>wing these time units there are(l-c)l time units with two A1-tasks executing 

per time unit: lllcse tasks have R 1-valucs of 112 - 2e0 and l/4 + 2e0. Finally, there arc x time units 
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in which one A 1-tast executes per time unil F.ach of these tasks has an R1 ~vatue-ucee<ting 112. 

Note ~at in each of the first Yx/4 time units the total requirementlor resooree l is 4(1/4. - 4tq) = 1 • 

16eq. During the execution of those time unit!Hhe smaJles( resource ttqliircmcnt of any unexccuted 

Al_task is 1/4 - 4eq• a value which exceeds l6eq. This meaAS'thafiJIOfte;of the A l..._ts which execute 

laterin'the schedule can execute in these time 0uni&s.. Sitntlar rematkBcanbe made about each efthe 

other time un~ in this .schedule. This assures that the .schedule we-have 4e&Cribed ~ is a valid 'list 

schedule. lbus. G(A 1) :::: (Y /4 + ((l-c)12'1~ 1 - 2Y)/4 + Y + l-1 ~l (l-c)l2k + (1-c) + l)x = (Jn 

+c1'4J. • 

• ". In both cases. G(A l) = (312 + c14)x and CPA TH ~ x '+ s + 1 + sf3/2 + cl4ji > 

x(4s+ m + lY4. 

: . CPATH/OPT > (x(4s+m+3)14Y(1 + 2s + l) 

limifx-+ 00 .CPATHIOPf = (4s+m+3)14. 

!2.U A llHfW st 2f independent .li&I 

D 

In the next two lemmas. we make use of a set of tasks originally described by Johnson, 

elal.(JDUGG]. We have modified this set of tasts slightly to better suit our purposes. 

Given some resource (say, resouree 1) and an integer y, we wilt describe a set o~ Jy -1 independent 

tasks. F..ach task requires some non-zero· portion of the msouree: 1bese tasks can be grouped into three 

seas of tasks: In the first set all of the tasks have Rrvalues-0f approximately 116; in the-second set the 

tasks have Rrvalucs of approximately 1/3; and in the third set lhe tasts~havc;R rvalues exteeding 112. 

Within each set the tasks dilfcr slightly in their resource MQUimnents: fiof' instance, in the first set some 

of the tasks have resoun:c requirements cxccedins l/6.and some have rcquiromcnts lcss'tharil/6. 'lbere 

arc y tasks in each of lhc first two sets and y - l tasks in the third. 

More formally, assume that an integer y, with y = 0 mod JO is given. Let 8 be such ahat 0 <a« 

1s·y/IO. Also, let 8i = I lBy/10 • i for 1 < i < y/10. ConsiderthC followin3,threc sets of tasks: 



-19-

1. The first set contains y tasks. T} i for 0 S j :s;; 9 and 1 S i .:s;; y/10. These tasks have the following 

resource requirements for 1 :s;; i <'. y/10: 

R1(T&) = 116 + 33&1 

R1(Th) = 116 -Jai 

R1(T!i> = R1CT}i> = 116 • 71i 

R1(1~i) = 116 • llai 

R1fr}i> = 116 + 981 

R1ff~i) = R1(r}i>:;: R1rrli> = R1(T~) = l/6· 2'i 

2. The second set contains y tasks, Tfi fur·O S j < 9 and 1 < i S y/10. These tasks have the 

following resource requirements for 1 S i S y/Ut 

R1<T&) = l/J + 46&1 

R1(T~i) = 1/3 • 348i 

R1(Tii> = R1(T}i) = 113 + 64i 

R1(T~i) = 113 + 12&1 

R1(T~i) = 1/3 - 108i 

Rr(T~i) = R1(T~i) = R1<Ti1> = R1(T~) = l/l +'81 

3. The third .set contains y • 1 tasks, Tf for 1 < i S y-1. F;Jch task requires 112 + I of resource 1. 

An optimal schedule for these Jy·l tasks has lengthy. It consists of time writ'S wilh the foltowing tasks: 

1. For 2 < j S 9 and l Si< y/10, a T3·mskand T}i and Tf 1 

2. For l < i < y/10. a T3·task and T& and Tii 

3. For 1 < i < y/10, a T3-t..1sk and T}i and Tfi.i + 1 

4. T},y/IO and Tij1 

N 'd th 1· t (1'1 1·1 1·1 ..,I ·1·1 · Tl •1·2 T2 T'2 ow cons1 er e as 01..... 91• 02• ... ··•92· ...• 0,y/1& .... 9,y/l& 01· ···• 91• ···• -0,y/l(}t 

...• T~.y/l()t T~ •... , T~_ 1). This list results in a schedule with length l 7y /10 - 1. 1bis follows easily from 



- IO-

the results in (JDUOGi We give an informal ~ of1hc sc:heciule flae The schedule has y/S 

time units in which S tasks from ·the first set execute per time· unit aRd aPNbich the· total resource 

·requirement in each of the time units exceeds S/6; y/2 time units in whiCl·2 ·tasks fromthe.tecond set 

execute per time unit and in which the total resource requirement in each of,tJte:time units exceeds 213; 

and, y - 1 time units in which one task from .the third set execute$ per thnevnit. ··. • . 

Now assume that y is fixed.. Since each task in the system requi~-8 non·zen> ;J)oltfOn of the 

resource, and since (in both of the schedules given above) each time unit bas S or*wcr .executing tasks, 
• l - ' 

there exists a /J Y > 0, such that the resource requirement of evesy .. task-an 1'*; ~~-:t'Y fl~ without 

changing eilher of the two schDdules. - Moreover,.: tbisJmpl~~- fl.)talc.rosource :u&aae during any 

single time unit in these two schedules does not ~1 • Jy 

In the next result. some A i.tasts arc assigned Rrvalucs in a manner: similar· to-·· assigned in 

previous lemmas, and some arc cmigned Rrvalues similar to the resource requirements offlle .Masts. 

~ ~ rcmainjogs:m 

-
l.emmafil: lf8s/3+1 <m<3s + l,thenCPATH/OPT canbcarbitrai'i1Vclo9ero(14s+m+9)110. 

Letc = (m-2s·l)/sandletq>Obeanarbitraryintep; Nott-·~)<c(l .. Letx = 2Qs2'1"1,letz 

= (2+c)x • l:and lctY = Jc.l.+ (l-c).fZtl. ~~Ywr,tsm:ve.BpuqJO&CinthistcllUltstaliilarto 

what it sel'veG in the previolls nftl1llt. Abo similarly to thcr ~ n:su1t. ict • = ·io « min{ /Jvx• 

l/I·o<t+2 } and for 1 S k < q, lct ek = lOek~l" NowleonsiClcr tliC ~ ~s-:~,lhese.alues 

ofx, z. and e. The remaining resource requirements tlfdllN\~fasbarosfollows: 

For each i, 1 < i < s, 

L (1-c)x of the A i·tasts have an Rrvalue ofl/2 + 'o

(1-c)x of the Ai·tasbhavcan Rr~ue of 112 ". "'o-

2. ForO~ t S~l. 
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(l-c)x/2k of the A i·tasks have an R1-vatue?Of 112 + · •t· 

. (l-c)x/2k of the Ai.tasks have an Rrvalue ofl/4 +lat· 

(1-c)x/2k of the A i.tasts have an Rrvalue of V4 -4at· 

3. 3Yx -1 ofthe Ai.tasks are assigned Rrvalues equal to ttteRrvalues of dle tasks in a ~t of 3Yx -1 

J·tasks. These Ai.tasks will be called &mil A i.tasts., 

An optimal schedule for this task system has a similar form: for file execution of the A-tasks as 

the optimal schedules in, the previous lemma. As.· before., .OPf ~· x + 2s + l provided alt of the 

A-tasks can be executed in x time units on m-1 processors. Th~caa be done by executing the 

following tasks at each ofthose 1 time units: For (1-c)s. = Js-m + l values of i, two A i·tasks execute: 

these tasks have Rrvalues of 112 + e0 and 112 - 2eo- For the *t cs = m~2s· l values of i, ~ther: 

1. Three Ai·tasks execute having Rrvalues of 112 + ar 114 + 2et• aid 114 • 4et for some k, 0 < t 

S q·l,or 

2. Two or three type J tasks execute (as noted in section 4.3. three type J taskS execute in all but one of 

these time units). 

Note that at each time unit no more than 2(1-c)s + Jes = m-1 tasb·execu&c. Also. for each i, there 

arc ex time units in which three A i.tas1ts execute and there arc O-.c)x time units in which two Ai-tasts 

execute. Thus, the A-tasks can be executed in just .x time units and the total requirement for any 

single rcsouocc during each time unit docs not exceed 1 - e. llws, OYl' S x + 2s + 1. 

The execution of the A Ltasts is also similar tD that ia th4~prcvious lemma. la that lemma (for q 

> 0). there wcr:e essentially four types of time writs: those with 4 .. 1. 2 Ot" ll.ISks. .Let T4, TJ, Tl and 

Tl designate all of the time units of each type. f.ach of;thcsc types of.time units will also occur here. 

In addition, in this proof, we have time units where only type J A l~.tasts execute. As indicated in our 

discussion in the previous section, there will be three types of time units where type J A 1-tasks 

execute. These time units contain 5, 2 and 1 tasks, and will be irefen"ed to ·as JS, J2 and Jl, 



respectively. The schedule use.d to derive G(A 1) consms all of lhese time:unitS in the following order: 

T4, JS, Tl, T2, 12, Jl and Tl. That is, first all of theT4 time units execute~ then an of the JS time 

units execute, and so on. 

. More formally, consider the following schedule for the A 1-tasts (Figure 4.9): In the first 

[(l-c)x/2q-l]/4 time units four A1-tasks, each with in Rrvalueof 1/-4,.. 44!q-l• execute in each time 

unit Next, there are Yx/S time unils in which five type .J talks execute.- as noted in the previous 

section. each oflhesc tasks has an ·Rrvalue of approximately 116. ·Next, similarlf to· the critical path 

schedule described in Lemma 4.11, for q .. l > k > I, there are (1-c)xt:zk time units with three tasks 

ex«uting per time·unil These tasks have Rrvalues of. l/4 + 2ct• 114 - -kt-I• and lit- ._t-1· 

Following these time units there• (1-c)I time units With two A.1-tasts ex~uting per time unit 

These tasks have R1-values of 11i -2e0 and 114 + 2et>- Neat, there are Yx/2 time.units with two 

type J tasks c:- ecuting per time unit - as noted in the previous section, these tasks have R 1-values of 

approximately 113. Fmally, there are x• l dmc units in wbkh one Alo.task executes per time unit 

Each of these tasks has an R 1-value exceeding 112. Note that in each of the first ((l "C)l2q-l]l/4 time 

units the total requirement for resource 1 is 4(114 - 4eq-l) = l -16eq-I· ·During the execution ef 

these time unit& the smallest resource requirement of aAy UOCX«tited Ai-laSt is approximately 116 

(actually, just a little lea-; than 116). But, eq-l waschosenBUChlhal 116»16tq-I· This means lhat 

none of the A 1-tasks which execute tater in the schedule ean execute.in, these time units. Similar 

remarks can be made about each of the osher time vnits in; this schtdule; This ,assures that the 

schcduJc we have dcsciibed here is a valid lisl'!chcduJc. Thus. otAl) = (((l-c)l2Q-ly4 + Y/S + 

~:::l(l:-c)/2t + (1-c) + Y/2 + 1)1-1 =-[(l6+c1/10-0.oc)l(202'1~ljx~ l. Hcnce,CPATH ~ 1 

+ s + 1 + sx{(l6+cY16-(l-c)l(20tl-l)j -s. But.x- = 2052Q·l,-sea>NfH >l(s(l6+c)ll0 + 1)-

.;.. 

• ·. CPAlll/OP'f >(x(s(l6+c)/10 + 11- s2)1(x+1.a+ 1) 
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Figure 4.9: The schedule used for G(A 1) in Lcouna~.U. 

4 A1-tasks · S A1·tasts 3 A1·tasks 2· A1·tasks 2 A1·tasks l A1~t 

% • 4eq·l Each isa % + 2et IA· le0 
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% • 4eq·l with an % • 4ek·l 'A +2e0 with an " - .. 
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'A·. 4eq·1· of about 1A •4et ;-Of abOui . ·l 

116 113 
'4. 4eq·l 

((l ·c)x/2Q·Iy4 Yx/S (l"'C)/2k, (1-c)l Yxll x·l 
q-1~ k~ 1 

These tasks execute alone 
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limifx - 00 CPATH/OPT;::: (14s+m+9)110. a 

Lcmma!J.l: lfJs + 1 Sm and m·;::: 10, then CPATH/OPTcan be arbitrarijy close to 

2 + 17s/10 ·(ls+ l)/m. 

Let x = 0 mod lOm~ let z = Jx - 1 and let e = /j1. Consider the task system S* using these 

values ofx~ z and e. For each~ I < i <: s, the A ttasks arc assigned Rrval~cs equal to die R1-values 

of the tasks in a set of z J·tasks. Jn addition to the usual tasks in S* the foHowing tasks are added to 

S*: 

1. G, a task which requires no resources. 

2. Fj for 1 < j < (m· 3s-l)x. These tasks require no resources. 

3. E with Ri(E) = I for 1 < i S s. 

'lbe following precedence constraints are also added to the SyStem: 

1. For 1 S j < z, Aj < G. 

2. Bs < G, and Cs< G. 

3. For I< j < (m-3s-l)x, E < Fj. 

The precedence structure of this task system is shown in Figure 4.10. 

An optimal schedule for this system is: In the first s+2 time units execute the B-tasks and task 

E. In the next x time units the A-tasks, 0-tasks and F-tasks arc executed (l D-task, m-3s-l F-tasks 

and no more than Js A ·tasks per time unit). For each i, there arc x-1 time units where three A i_tasks 

execute and there is one time unit where two Ai·tasks execute. In the finals+ l time units execute the 

C·tasks followed by task G. Thus OPT < s + 2 + x + s + l = x + 2s + 3. 

Now consider the following critical path schedule: Execute the {)-tasks and tasks Bo and c1 in 

the first x +I time units. Jn the next 17x/10 - l time units execute the A 1-tasks. Then, execute B1 

and c2• followed by the A 2-tasks in the next 17x/10 - I time units, and so on, until Bs executes. Then 

------· ·--~~-
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Figure4.10: The~ system used in Lemma 4.14. 

• • • 

The non-zero resource requirements oftheSt tasks are: 

Each D-task requires e of resource 1 

Bo requires all of resou~ 1 

Bi requires all of resource~ i>O 

Each Ai-task requires a non .. zero portion of NIOUl'Ce i 

E requires all of the resources 

G, the C-tasks and the F-tasks require no resoun;:es 



execute E and G. In the final (m-Js-l)x/m time unia ex«me the F~' ~CPA TH ~ x + l + 

17xs/10 + 1 + (m-Js-l)llm >·x[2 + 17s/10 - (3s+ l)lmi 

: • CPATH/OPT ~ 1(2 + 17s/10-(3s+l)/mY(x + 2s + 3) 

limifx- 00 CPATH/0Pf = 2 + 17s/10·(Js+l)lm. a 

Lemma~: If 3s + 1 :S m and m < 10. then CPA TH/OPT can be arbitrarily close to 

2 + Ss/J • (Bs/J. + l)lm. 

The task system we describe here cod'lbines vMio~ ¥l*tS ofthe ~u!CcfiR temmas .\11 

and 4.13. We use the task system sef\icture ti'mn LeJnma:tI3. O:~ widl"tlie added .tasks) and we asaian 

the A-tasks resource requirements as was d~ne in ~ ... u: ·· · .. 

More fonnally, assume sattirt·are giv~ l.et'(.E (lnf l(J)"aoo let q ~ rtoS((l-c)/(2-3c)l1. 
• ~ -r .,.~ -

Let x be an integer such that x = 0 mo<tarn2cl, tet z = ci+c]x and ·~t y = k-2 + (l~llCJ"1. '.et. 
= e0 = l!Io'l + 2. Also, A>r 1 :S ~- :S q. Jet •t = lO•t-l · Consider the task system St' using dlccle 

vaJues of x. z and . .a. 

For each i, 1 :S i :S s: · 

I. (1-c)x of the Ai.tasks have an Rrvalue ofl/2 + 'O 

(1-c)x of the Ai-tasks have an Rrvalue of 112 7 2eo-

2. ForO :S k :S q·l. 

(l-c)x/2k of the A i·tasks have an Rrvalue of 112 + •t~ · 

(l-c)x/2k of the Ai.rasks have an Rrvalue ofl.14+1-t· '· 

(l-c)x/2k of the Ai.tasks havcaaRrmuc·of llit:-4-t-

3. Yx of the A i.tasts have an Rrvalue_ of 112 + •q· 

Yx of the Ai.tasks have an Rrvatuc of 114 + 2tq. 

Yx of the Ai.tasks have an Rrvalue of 114 • 4tq. 
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These are exactly the same specifications for tho llrvelumof tlcrAi .. tasts:~ atven in Lemma 4.12. 

In addition ~ the usual tasks in S*, the following tasks are added to $*-: 

l 0, a task which requires no resowta. 

2. Fj for 1 :S j :S (mi2+e)s·l)x. These tasks rvqun'no resources. 

3. E with R~E) = 1 for 1 ;S i :S s. 

The following precedence constraints are also added to the system: 

1. For l :S j :S z, Af < O. 

2. Hg< G, andC1 < G. 

3. For 1 :S j < .(m-Js-l)x. E < F1. 

An optimal schedule for this system is ,similar to tbat fur lhe"·syscem ·used· in the pro0f of the 

previous:lemma. The &tasks and laSk E are executed in thO firsu+2time units. In the next x time 

units the A·ta·ks. 0-tasks and F·tasks are executed. In each ofllose-xd.me units, (2+c)s A-tasks, 1 

D-task and (m-[2+c)-l) F-tasks execute. For each i. Chore are (1-tjx time·units where two Ai.tasks 

execute and there are ex time units where three Ai.tasks exec~ la the finals time units the C-tasts 

are executed. Thus, OPT :S x + 2s + 2. 

Now consider the following critkdll path schedule: .&c¢utc the OitaSb ·and tasks Bo and c1 in 

the first x+ 1 time units. In the nat [312 + c/4}x tffne.tmits ~-die0A~•taski(this foUGws from 

the proof of Lemma 4.13, where b(A1) = (312 + c14)k); Thenexecule B1 and·c2: tbtlowcd by·the · 

A2-tasts in the next (312 + c/4}x time units, and S6 on. until D~ execute& Next execute E and G. 

Finally, execute the F-tasks in the fmal (m-(2+c)s-l)l/m time units. 'lbus;·cPATH ~ x + 1 + ((312 

+ c/4)x + l)s + l + (m-[2+c)s-l)xlm>x[2 + 3s/2·(2s+l)/m + afl/4 .. 1/tn)i 

. '.CPA TH/OPT> x[2 + 3s/2-(2s+ l)/m + a(l/4 • llm)V(x + 2s + 2) 

limi~ - 213 CPATH/OPT > x[2 + Ss/l- (8s/3 + l)/mV(x + ~ + 2) 

limirx - 00 CPATH/OPT = 2 + Ss/3. (8s/3 + IY~ 0 
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CJuujer S: Critical faill Sclleduliu ! Dismtelesoa• 

In this chapter we study critical path scheduling of UHf task .sysaems widulfsctetc nJ80UICeS - both 

with and without processor constraints. Unfortuqtely~ thenr *no i'Csliks (or this: J>l"Qblem 'W se. It is 

~ible, however, to make some conclusions about this problem ~pa re!lilts for Coninaw'Oraham 

scheduling of UET task systems with Q-1 resources.. 11M1se are. UE'fitask~ith discrete resources 

in which each ri = 1 -- that is, there is exactly one unit of each resource, henC<Ja -..eifhcr requires all of a 

resource or none of it. Because Coflinan-Graham schedules are a subclass oNhe critical path schedules. 

any lower bound on CG/OPT for UET tast systems with 0-1 l'tiSOUices.; it aJsC> ;a JQwer boUnd on 

CPA TH/OPT for UET task srstems with discrete l'CSOuas. This fbliows. because systems. with 0-1 

resoun:cs are a ~ubcJass of the systems with discrek J'CSOllroe& AMheagii« fifst· ifance; ·it appears that 

any lower bound on CPA 'fH/OPT obtained in· this maaner woukl. be fairly. weak,. ~ will, in fact. (in 

stmol1 5.2) be able to use such a lower bound to make some faidy l8'0a8 statements-about critical path 

scheduling of UEf &ask systeihS widl discrete reseurocs. Before doing'SO, however, we present twcuesults 

on Coffinan-Graham scheduling of tJEr task systems with 0-1 l'Osoudl. · · 

il Coffm~n-Groham sdleduling ufustems Dh:Od pmrpcs 

Coffinan-Oraham schedultng ef UETtask·S)'Stcms with"0-1 N9GUKieSJlas been 1'Udicd by Goyal 

(Go) for the limited case of one resource. He shows that for,m ; 2.:dJIOPf < 312, and l!Nt this is the 

best possible result This type. of scheduliog is also mentioned hr Leung. (1.e). He <:0njcctun:s that for 

UET .last SfSlems with 0-1 resources. Coffinan-Qraham schcclulcs 'provide subSlantiaUy better 

performance than do list schedules.. 

For purposes of comparison, we note that the ~ of Olapler 3 can b,c ,applied lo· UE'f task 

systems with 0-1 resources giving the resulu UST/OPT ~ l + s if there is no· pmccssor constraint. and 

LIST /OPT ~ min{m. (2· l/m) + s(J-1/m)} if lhert ii a proceaor toastramL Mon:o~r. both of these 
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results are the best possible bounds. 

In this section we prove the following two results on Coffman-Graham 'scheduling of UET task 

systems with s 0-1 resources when s ~ 0: 

Theorem .U,: If m ~· n (no processor consl@int) then COJOPT ·•~· l :+ s. Moreover, this is the best 

i><miblc result 

lbcorem Sa2: If m ~ .2 (a proeessor constraint) then 

CO/OPT :S m 

m·l/2 

.if s>m 

if:-s=m·l 

(2·2/m) + s(l • l/m) ii s ~ m • 2 

Moreover, this is the best possible result 

These results show that Lcung'5 conjcctureabout·the relationship~ C.Offinan-Orahrun:scheduling 

and list schcduli~ is wrong: Coffinan-Oraham schedt.ding does· Bal pRWtdc substantiafff. better worst . 

case performance than list scheduling for UET .task SJ*1DS ·with 0-l ~JteS. In fact; ·fbr sysrems with 

no processor constraints, Coftinaft-Oraham sdlcdufing haseiacdy the same Wont case pcrlbnnanee as list 

scheduling. We will prove these two theorems, and then, in section 5.2, we wilhli!cllSS'how these feSults 

apply to critical path scheduling of UET task systems with discrete resources. 

fil JM wmg:bouu4s• 

Lemma hl,: If m > n (no processor constraint), Chen CG/OPT < 1 + ·s. 

This result is trivial because Coffint11l"'Graham schedules are a subclass eftist schedules and as noted 

above. it fi>llows from Theorem 3.l, for UE'f task ~ #ttlf. •t' rosources and no pRlC4?S&Or 

constraint that l.IST/OPT ~ I + s. 0 
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LemmaU: Ifm > 2(aprocessorconstraint), then 

CO/OPT S . m 

m·l/2 if s=m·l 

(2·2/m) + S(l-1/m). · if s ~ 111. • 2 

ll!.l fmilf Outline 

We prove the upper bound in two stages. lniti<db. we sbOw ·that.· :given. a Coffinan·Orabam 

schedule. some of the tasks can be placed into "Sets W & ,_ .~ WP (cal~ scgmctilS) such that given tasks T € 

W i and S E W i + 1• it must be that T < + s. where < + B .the transitive closure of the precedence relation . 

. This property implies that all the tasks in segment Wi must.execute before !BY of the tasks in Wi+l 

execute. This allows us to examine each segment individually, ad obtaia a WQl'St ase bound for the 

length of the portion of the CQffinan-Oraham schedule wbf:N the iastsin the segment aecute, ro die 

teng&h-0f an optimal schedule for the tasks in chc segment.· This we do in· the IUOAd stage of.the proof. ·A 

portion of this proof is largely a modiftcation (to accomodate resource tasks) of a proof bJ Lam and: Sethi 

(LS}. In particular, most of the fmt stage of the proof and tile second balf of the secoedstage of the proof 

are drawn from their wort. 

ll.U Segments 

Before beginning, we mate the following assumption about how tasks are illSigncd to processors 

when using list schedules (our formal definition di4 .not .mention which- asks execute oo wllich 

processors). Since we arc dealing with UET task systems. this assignment is relatively simple: tfT1 .... . 

T1, with x Sm. are the tasks ciu .. "Culing in a particular lime unit,.·wilh l..ABF.l.(r1) > l.ABF.1..(1'2) > ... > 

LABfJ.(T1). the& task Ti accutcs.OR procc:ssor.i Hcrc.l.ABEl..(lj) mm te the label assigned to Ti 

using the Coffman-Graham labcting algorithm. Note rhat in the list usc4 lo da :tile scheduling, T 1 

appears bctOrc T 2' which appears before T 3• and so on. 

Finally, a task T with Rmaxfl) = 0 is a oon·rcspurcc task, and a laSt T with Rmall) > 0 is a 



-91 • 

resource task. 

Now consider any Coffmart-Oraham scbeduJe., As ua.Nll. we let .CO .~r to both the set of time 
> ' ~ • 

units comprising the Coffman-Graham schedule and the lcngth·of that schedule. As noted above. we will 

form sets of tasks called segments. This is done in two stages. Firsl{we fonn ~ of tasks, and then 

combine those blocks to form segments. Blocks arc formed tfont-the Coffman-Graham schedule as 

follows: 

1. u0 is the task executed on processor one in time uni~ Bco· 
--

2. For i > 1, Ui is the task ex~uted on processor one in the~ximaf time unit BA where: 

a. A non-resource task executes on processor one itrBA • 

• 
b. (VT *- Ui)(T E BA ==> LABEL(f) < LABEL(Ui-l)). 

3. Forq > i ~ 1, Xi-l = {T: a(Ui) < a(T) < a(Ui-l) and LAIEL(l) > LABEL(Ui-l)} 

Xq = {T: u(T) < a(Uq) and LABEL(f) ~ LABEL(~q)} 

An example is shown in Figure 5.1. Note that notevcry ta* belongs to a btoct·"' such a task is called an 

n.tra task. The last time unit of each btock either contains an extra task or it has an idle 'ptoccssor. Also, 

for block Xj, a(Xj) = min{u(f): TE Xj}. That is, u(Xj) is the carli~time at which a task of block"; 

executes. 

'The following lemma about blocks is useful: 

Lemma i,l: For q > i > O. task Ui is a predecessor of each task in block Xi-l · 

Consider any Ui and block Xi-l · Tiuce things should~~: 

1. ui is a non-resource task. 

2. Each task in Xi-l has a label al least as large as I .ABEL(Ui_ 1) .. 

3. Each task executed in the same time unit as Ui has a label smaller than LABEL(Ui_ 1). 
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Figure 5.1: Example of the division of a Coffman-Graham schedule into blocks. 

~.:~e~~°!r:~&M::.O=f!~~~~~n:tJ:~~e:!,rerer 
to the taski Circled tasks require the resource. · 

Schedule: 

Tune units 

mocts are outlined in the above schedule. 

Figure 5.2: Example of the division of a Coffman-Graham schedule lntO iegments. 

lbe task system given in Figure 5.1 is uscct ; . . . 

Schedule: 

Time units 1 I 2 I 4 

Segments arc outlined in the above schedule. 
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Now consider any Wk .T € Xi-l which bas no ptedeceaors in Xi· I· Why didn't T execute in die same 

time unit as Ui? Bocause LADEL.(1} exceeds tbedabel ~'each tast'"CICCUPng with Ui• and Ui iS a 

non-resource task. it follows that Ui < T. Thus. Urisap~rofevery task in•Xi-l' D 

Segments are c-0mposcd of blocks and a few extra ta&t~ ,8pccifica11y~ sepneoti W'()i ... "WP' for some p ~ 

0, arc formed as follows: 

1. Initially, let Wo = Xq, let i = .O and let j ::: q • 1. 

2. Whitcj ~Odo 

if(VT E WiXVT' E Xjlf <+ T') 

then W i is complete 

Jct Wi+l = Xj, let i = i + 1:, andletj= j· l 

else letG = {Ef wi,.: LABEL(E)>LABEL(Uj)~d (lTE<W~ <+ E)} 

lPt w i = W i u xj u G and let j = j • 1 

3. Let p = i. and WP is complete. 

An example showing segments is given in Figure 52. Jntuttrmy. segments are formed from left t&right 

by combining successive blocks until a bloct is encountered.· au of whose tasks are successors of all the 

tasks already in the segment At this point the segment •complete and a new ·segment is started. Eltra 

tasks are added to the segment for accounting .purposes which arise in the seoond ·~ of the proof. 

Extra tasks which arc placed into a segment arc called latecomers. 

Lcmma,M: ForO < i < p, ifTE Wiand T' E Wi+l· then T <+ T'. 

Consider any Wiand W; + 1 for some i, 0 < i < p. Assume Shat scgmcnt.Wi + 1 consists of blocks Xe• 

... , Xc-t· for some k > 0, along with some latecomers. It folklws from the construction of segments, 

for each T E W i and T' E Xe, that T < + T •. If k = 0. it also. follows th;.lt 1hcre arc no latecomers in 

Wi+I· so the lemma holds. 'Illus, assume k > 0. From Lemma S.3, tOr·afi j, c >J> c•k, task Uj 
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precedes each task in Xj· l · Then by transitivity, each task TE W r preCcdes each tast in Xe U Xe-I U 

... U Xc-k· The only other tasks in Wi+rarctatecomors. The finfla~r added to Wi+l is, by 

definition.. a successor of a fask in Xe. F.ach sqbsequent 18~ to Wr+ 1 is4l successor of either a 

task in some block of Wi + 1 or of a latecomer already in Wi + 1. In either case; by tranSidvity, each T 

€ w i precedes each latecomer in wi + 1 · a 

Because of the preceding Jcmma, we arc free to treat eadt ~t indi~lly with fCSf,)cet lb obtaining 

an upper bound. That is, because each task in segment. W i must execute before any task· in W i + 1 can 

execute, we have that OPr > 'l:~ =O OPfi• where OPT is the ltngt11' of aa of>timaf!chcdule flt the entire 

task system, and OPfi is the length of an optimal schedule for a task systefn C!DWSisting oftfletasks in Wi, 

(and the precedence constraints restricted to those tasks}. Moreover, CQ = I~ =o"C61, where CO is the 

length of a CotTman-Oraham sdledulc for the cntint task: systen\ and CGi is the length of the portion of 

the Coffinan-Graham schedule under consideration re$trit-tcd to the tasks in Wi. The equality follows 

because at least one task from each time unit belongs to some segment.· In the next scction we show that 

for each i, 0 ·Si Sp, CGiiOPTi Sb. where b depends on Che relationship_ of sand m. It foDows that, 

given a particular relationship between s ·and m. 00/0PT S b •. Thus, in. the remainder of the proof we 

asanne that the Coffman-Graham schedule consists of a single segment W. That scgmcnt consists of 

blocks Xq •... , .XO. and some number of latecomers. We let OPf be an optimal schedule for the tasks in 

w. 

w.J Tu indivjdual bounds 

In this section we complete the proof of the upper bound. As noted previously. m is a trivial upper 

bound on CG/OPT. This handles the case ofs > m. Moi:eovcr, Goyal (Go) bas shnwn that CG/OPT S 

3/2 ifs= l and m = 2, and it has been shown (CG,l.S) that CG/OPT ~ 2 - 2/m ifs= 0 and m ~ l Thus. 

we assume thats~ 1 and m ~ 3 in the remainder of this proof. 

The following lemma about segments is useful: 
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Lemma U: IfW contains blocks Xq, ... , ~ then there are at least q-'fatocanea.:in W., . · 

We consider the procedure by which scgmenas are bmed,,aad;sh<Jw that each time the 

else-clause in st'p 2 of that proceduR is c:x.ecuted, .al least one Jatt:comcria added•to W. Since the 

else-clause is exccl,ltcd lWGJeh t)lock added 1.0 W (cxee,ttk,fimtbtoek),'thc lmima follows. 

~me that blocks Xq• ..•.• X; +l are already, ill iW• (a)ong;widtJatetamm) and that there are 

tasks T E W and T' E Xj such that T < + T' is· false. Ch~• T »that tt has no suCcessoFs in W and 

I. Now consider Uj+l· By definition Uj+l E W. From Lemmas.~ UJ+l is •f>~r of each 

task in xj. It follows from there beif18 DO"transitive,edpS'in1the d4C fbr;(; that when labctitlg uj + l • 

the largest III labels of its successors are the labels of the tuts bi I. Now consider taslc T. By 

definition, LADEL(T) > LABEL(Uj+l>· Since T has no successors itl W, andT <+ T' is falsr. it 

follows that there is a task E f W suob·that LABEL(B) > LABF.l(~)amh1(E) < •(Xj). lntuiti~1y. 

the first condition halds bcx:ause LABEL(E)mustescecd the labd"of'SOmc·task in I; since l..ABFJ.a') 

> LABEL(Uj + 1). The second condition holds since E is not in ~.t · Ther~ore. e~h time the 

else-clause is executed in the proccdUfC'dcfiningsepietlts. atdeast't}fte latecomer is added tow. . a 

s.l.J.3.1 lkW\S.1=.m:l 

Given a segment W. let a be the number of resoun:e tasks in ·w aad let .d be the number of time 

units in the Coffman-Graham schedule having an5ource :Sask exomting on processor one. 

I .cmma i,6: CG < (m OPT + a + 1)/2 

From the constructions of blocks and segments it follows that for each time unit 8 € CG, not having a 

resource task executing on processor one, that onc:tlf thC' fblluwing' holds:, 



1. n is the last timcnmit in w. 

2. B is not the final time unit of any block. This means that there are at least two tasks of W-'Wllich 

· ar~ not latccomm~nd exccate in B. 

3. B is ,UJ~ linal time unit of block Xi• IOr some:i ·~ .0 (tc1..not file last :IJJock).- · This means that at 

least one lala:omCt"wasplactd ilunWwhenWOd'~i J 1.wasat.ldtdlr&W.··. 

Note thauhere are CG • dtimc units oot !laving a resource• ex~utiafon proce!iSor one, and for 

only one of lbese time Utlits tan item l (above) hokt .. Thus, d + 1.(CG • ~ - l) + l = 2 CG - d • l is a 

lower bound on the numherof tasks In W. Since m ~is an uppor~ne on·them.itn'ber oftaSlcs in 

W, we haYC m OPT~ 2 CO· d • l.. 

Cleady d = a • k for so1ne k ~ 0, hence. m OPT ~ 2 CO • (a • t) .. t. · 

. ·.CO :S (m OPT + a + 1)12· k/2 

S (Pl OPT + a + 1)12 

'fhrQe corollaries foHow directly from the proof of the above lemma: 

Corollary 11~ If a rcsoUR:C talk·accutes on any proces&Ol"otheJithan processor OM, theft 

CG < (m OPT + a)/2. 

Corollary ,U; If m OPT~ 2 00 • d, then CO < (m OVf + a)12. 

a 

Corollary ,S,J: If any time unit with a resource task executing on processor ene, has :a task T E W, 

executing on.pmeessor two, aad Tis not a la&eeomer; then CO < (m OPf + a)/2. 

To complete the proof for s = m - 1 there are three caseno coasklcr: 

~ 1: A resource task executes on a processor other than processor one. 

From Comllary 5.1, it follows that CG/OPTS (m OPT+ a)/(2 OfYO .. But a S (m - I)OPT, since 

there are only m-1 unitsofresourccavailabteatcach liMc.unk·ol'OPf • 

. '. CG/OPTS (m OPT + (m • l)OPT)/(2 OPf) · . 

= m • 112 
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.CB~: Each resource task executes op processor one and a S (m - l} OPT- L , 

From Lemma S.6, CO/OPT S (m OPT + a + 1)/(2OM)1 

S (m OPT + (m - 1) OP'f)/(2 0Yf) 

= m-112 

~ J: Each resource task executes on processor one and-a = (lh - l).OP'f., 

These conditions mean that in each time unit of OPT, m·,.. ! 1 tasks require a rosouR:c, and that each 

resource task requires exactly one unit of one resource. I~ particular, cQJlsidcf'tbe firstJime unit of 

OIYJ.'. Sin<;e m ,~ 3, ()lence 1 ~ 2). there arc at least two it&Ource tasks executing in that time unit 

Let T 1 and T 2 be two such taslcs. In the Coffman-Or.tham schedule, T 1 and 1'2 bOth :exec~ on 

processor one. Without loss of generality, ~qic that"ft; ._ecti()eS>bcmre T:z• . There are only three 

possible reasons why T1 .<lid not ~ecute with Ti in dld<'-0""8~Qtal\am schedule~ ' · 

1. Due to processor constraints. That is, when T 2 was scheduled, the only;~n mat it was not 

schcd~led to execute with T 1, was that Jbc tilae uniaJ,wlleae Ti executes atready contained m 

tasks. Let T3 be the task which excc\Jtes·on .PfCC~ two .. ft follows that·LADEL{T1) > 

LABEL(T 3) > LABEL(f 2). and that a(T 1) < a(f 3) < a(T 2). Ff()ftl'lemma S.3, since TI and 

T 2 have no prcdC(CS$0rs in W, it follows~ dlat T 1 -4 T 2 :-are' in. block Xq. Then,, ftom the 

definition of blocks, T 3 E Xq, hence T 3 E W. 'Illus; the time unit where T 1 executes has a 

resource task executing on processor one a11d a &ask Tl E Won processor two. Since T 3 is not a 

latecomer, from ~orollary 5.3, CG !) (m OPT + a)l2;1 Al.ln Case ,1, 00/0Pf < m - 112. 

2. Due to precedence constraints. lhat is, some task T9,,fl'2ftfld:nbtexccutcd·prior to time unit 

a(T1) in the Coffinan-Graham schedule. · It foll~s that LAUEL(T1) > LAllEl..(1~3) > 

l.AHEL(T 2) and that u(T 1) ~ o(T 3) < a('l'2). As aboye, it follows that T 3 is in W. But this is 

a cQntradiction, since T1 must-01ccutc before T2 in otr and Ttcxccutcs in the first time unit 

of OPT. 
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3. Due co resource constraints. That is. some task T 3 executes in the wne time unit of lhe 

Coffman-Graham schedule as T1 and requires lhc ;same-·~ as T 2. It follow! lhat 

LABEL(f 1) > LABEL(Tj):)· LABEt(T2) and 'thBt o(fi)-.S o'(f 3) < aff 2>· As above, it 

foJlows that T3 is in W. But this is a contradictiort~T3 is a resource task, and it doesn't 

execute on processor one. 

This completes the proof for the cases = m .. l. 

s.1.u.2lbsgga~m:l 

- . ':. ·' 

a 

Given .a segment W, the time units of the Coffinan-Orabam scbedute· can be partitioned Into the 

followina three sets: 

F = {B € CO: IBI = m and (VT E B:{f £ Wand Tit nota 1atecomer)} 

H = {BE CO: B ( F and (lT E Blf E Wand Tis 1tot a latecomer lrid Tis a resource tastll 

P=:CO-F·H 

It follows chat for each B E P, either B has an idle~..-or there is an ettra task 'in B (this extra task 

may or may not be a latecomer). 'fbe time units in ·F-.·ldl a llD.ita. lhC>se in H are resouree .I.UK .u.nill 

and those in pare DiUlial a Wl.iJa. 

l.enuna~: If the fim lime unit of CG is either a full or l'CIOU1tt'time unit. then OPT~ IPI + 1. 

emat' 

Consider the partial time units of W and number lhcm (left to risht) from 1 to IPf. Fort S i < IPf, let 

Vi be the last executed on processor one in the time unif immediately fbllowing partial time unit l 

1..ct T* be the tast executed on processor one in paniat time unit 1. •rtrere are two observations to be 

made: 

I. T* < V 1• To sec lhat lhil is so, consider lhc tin1c unir where T* necutcs~ Since this is a partial 

lime unit, any exua tasks in this time unit have a 1abcf waller than LABF.t(V 1). Since V 1 

executes af\cr time unit a(r), for some task T executing in that time unit, T < V 1. Suppose T 
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'i/i: T*. Since LABEL(T*) > LABBL(f),,an<fVt is.the task widi the'higheSt labclthat either T 

or T* can precede, it must be that T* < VI· 

2. For 1 ~j < tPI ·:1, every :T:E W. such that l.ABEL(T):~ LABBL(Vj~ precedes a task R € W, 

such that LABBL(R) > LABEL(VJ+t).' To tee::that·dlis is 10; consider any task T with 

LABEL(I) > LABEL(Vj). 'lfT < Vj+l· the clailll ho~ so asmme'oot:'Let·T' t;e the task 

cxecutcd:on processor one in paftiat time unit-t+ L ·Similaflly • dlc-1)revi6titot1SeMtion, T' < 

Vj +I· It follows from LABEL(T) > LABEL(Vj) and LABEL(Vj) > LAREt:{f' ), that 

LABEL(I} > LABEL(T' ). Since T' ( vj +;1 and'T doesn ... ;4 tnUlll~e~'task R with 

LADEL(R) > LABEL(Vj+ i>· AU that remains i's tDShow:tltst.ft.( W; 1 If R is in some·bloet 

then it is in W, so assume that R is an mramtrlf:d'(.lt)<'Cl(k:t)}; &liVn'R is a latecomer k>W 

(it is added no later than when block x0 is added ta•W). "fflO'(IO~:;~ then R € XO'Since 

vj + 1 t= x0 and LABEt(R.)> LABEl..(Vj + 1). Dis ii a conmldiction Si~ R is·an extra task. 

Thus, R€ W. 

From the above two observations. it follows that task 'r' and every tasi T E·W with LABEL(l) > 

LA BEL(T*), precedes a chain of at least IPI -1 taskSi(with each tast <Jf CIUttteha:m a member of W). 

Now consider the first time unit B1 ofW. There are two..cases: 

~ 1: R1 is a resource time uniL 

If some task T E ( n1 n W) precedes task T* then T precedes a chain of at least IPI tasks, each 

of which is in W, hence OJYr > IPI + 1. Thus suppose that thcrt,·is ne;sooh task T. Since 

there is either an idle processor or an extra task in Bi ('Whicn 'must have· a k>Werfabcl than T*), 

when T* was schcdulcd·tbcre was, stilkruom in B1 for 1t. Since 'P coutdn't have been 

prevented from executing there due to resource constraiftts{I~ rcquim m resources). there 

must exist a task Q such that Q < T*. Moreover, Q € W since T* € W and T* is in the first 

panial time unit of W (i.e. Q cannot be an extra task}. Hence; Q ptteedcs ·a chain of at least IPI 
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~ks. each of which is in W .. hence OPT-~ f Pl .+. 1. · 

.Qili£ .2: B1 is a full time unit 

Let A1 ..... A°' be the: tasks executing in 81• Jfeacb Ai hlsa-labef cxCf:ed!n&UBEl(r) then 

there. are at l~ast m + l talks in W, oadl p~~a·cbaifl. <>( allcast,IPf tasU. each of which is 

in w. It folloWJJ tbat OPf ~- IPl+t ~us-aaume;thal.tfor ~ Ai,,LABEL(Ai) < 

LAOOL(f*). -Thea. identically to Casc_ 1,~ lhefe. f&ist5· ~uast .Q E w .. such. that Q .. < T*, hence 

OPT~ IPI + L 0 

New wc:<:omplcte the . .proof of the upper bound for s Sm-!. :Note tlml it_~tows~troni previous 

argµments, that there arciat leastm; fFI +IHI + 2 IPl- -1 ...U-ia W.: Apth there are two cases ti> consider 

basod 01Hime unit B1 of the Coftinan-Oraham lehetiulo; . 

C..1: flt isafuU.oueao..•.dmeuail. 

First note thal OYf ~ lfffls. m OPT -~ m IFI + fHt: + 2 lpt - 1 and lhat OPf 2!: IPI + l (from 

Lemma 5.7). Morex>ver, CG = 11-1 + IHI + IPL so 

· m CG = Im tFI + Jll + 2 IPI -~ II + ({ta • l)(fPt- + -!)) + Km • l)fHft~ m + 3 

s m ovr + (RI - 2) OPT + (m ."' l)s-OP;I' •,(In. J} 

= (2m - 2 + s(m • I)) OPT • (m - 3) 

S (2m -2 + s(m - I)) OPT, since m ~ 3 . 

• ·. CG/OPT < (2 - 21m) + s(l - l/m). 

_ ~ 2: B1 is a-paRial time unk. 

Since n1 is the first time unit of the schedule.. there cw no lafocomers in B1. Moreover, because it 

is a partial time unit. there must either be aa extra task.or an idtei.procc:mor in 81• hence fn1 n WI 

S m • 1. Siecc none of the tasks in o1 n. W r.cquifa,a -resotan:e.· it Jbllows that each task in Xq -

B1 has a predcce&>r in B1 n W. From Lumna s~3 and the maaner in which latecomers arc added 

to W, it fqllows that each task in W - Xq h~ a prcdccessor in Xq. Then by transitivity, each task in 
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W- n1 has a predecessor in B1 n W. Now consider an optimal ~'for W. Such ascbedule 

must have an idle processor in its first time uwt. since tltc onl>' tasks that can execute the~ are 

those in B1 n W .. Thus. m OPT~ m JFl + 1HI + 2 IPI. From the proof-o~a 5.7, it follows 

that OPT > IPI. Moreover, OPT ~ IHl/s. ~ 

m CG = [m IFI + IHI + 2IPIJ + ((m ~ I) fHIJ + [(m - 2) IPIJ 

< m OPT+ (m- l)sOPT + (m-2)0PT" 

= [2m - 2 + s(m - l)) OPT 

•.. CG/OPT< (2·~ 2/m) + s(l-1/m) 

This completes the proof of the upper bound. 

i12 ~ km'.s:r bounds 

0 

0 

In this section we prove that the upper bounds given in Theorems 5.1 and 5.2 arc the best possible 

bounds .. We concentrate on proving that the bound given in Theorem 5.2 - the processor constraint o~ -

is the best possible result. At the end of the section we indicate how to modify that proof to show that die 

upper bound given in Theorem 5.1 - the no processor constraint case - is the best possible result 

Ismma 2..8,: If m > 2 (a processor constraint), the upper bound given in Theon:m5.2 ilH"e best possible 

result 
.~ 

The task systems we will. use to prove this lower bound wiff coriSist of various combinations of the 

folJowing two sets of tasks (Figure 5.3): 

Definition: An RESz ·structurc consists of: 

l. The following tasks: 

Av for l < v < s. where Av requires only resource v 

Bvj for 1 < v < s, I ~ j < z. where Rvj requires only resource v 

Cv for 1 < v < s, where Cv requires only resource v 



Fgmre S.3; Two useful stmeture1 

r 
I 
A 
13~ 
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2. The following precedence constraints: 

Av< Av+l andCv < Cv+l for I.:S v :S s·l 

Ay < Bv+ lj for 1 :S v < s·l and 1 :S j :S z 

Bvj < Cv+ 1 for1 :S v ,S't~l and 1 <j S z 

Definition: A PRECx.y ·structure consists of: 

1. The following .S: 

Dj for l S j ~; x: where D~ requires no resources 

~k for x·y ~ j S x· l, I S k S m, where Ejk requires no resourc:es 

Fj for l S j < x, where Fj requires no resources 

2 .. rllte following precedence constraints: 

Dj < Dj + 1 and Fj < Fj + 1 for l < j S x· 1 

·Dj < Ej·~·l,k forx·y·l <j < x-2 and i ~ t Sm 

Ej~ < Fj+l'for x·y <JS x·l and 1 S k Sm 

For 1 < v < _s, we will refer to tasks Bvl• ... , Bvz 8S Bv·tasks. and·~r x·y, ~j$--A-1 we '4'illrefer to tasks 

These two structures can be combined by the use of the following precedence relations: 

1. RESz < PREC1 ,y means mat A5 < D1 

85k < F1 for IS k :S z 

Cs< F1 

2. PRECx,y < RESz means that D1 < A1 

D1 < Ba for l < t S z 

Fx <C1 

These precedence relations are shown in Figure 5.4. 

Now consider possible Coffman-Graham labclings of these structures: 
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Figure 5.4: Precedence relations between the structures 

I R~maindcr of RF.S1 J 

I'\" I A, B51... Bsz Cs 

I ~I 
D1 F1 

I . I 
( Remainder of PRF.Cx.y ) 

\ 

.. 

a) RFS1 < PRB;,y b)_ PRBcl.Y, < _Rf.Xz 
.:· . ' . ,•· . -, 

Figure S.S: Bad CG Jabelings 

a) A bad CG labeling of RFS2 whens = 3. 

Labels are given beside the tasb. 
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Definition: 

1. A Coffinan-Graham labcJing of a RESz-structurc is a 12&1 W'llhclin& if: 

labcl(Bvk> > labcl(Av) for 1 S v S sand 1 S t S z 

label(Cv) > labcl(Av) for 1 S v S s 

labcl(Cv) > label(Bvk> for 1 S v < sand 1 :S k S z 

2. A Coffman-Graham labeling of a PRECx,y-structure is a llslil'!al' labeling if: 

label(Ejk) >label (Dj) for x-y < j < x-1 and 1 S k Sm 

label(l-j) > labcl(Dj) for 1 S j S x 

label(Fj) > label(Ejk) for x·y < j < x-1and1 S k < m 

Hgure 5.5 shows examples of bad CG labclings. 

fmgf fil l&mma .U 

Assume thats ~ 1 and m ~ 2 arc given. Let q, x, y and z be integers to be specified later. Consider a 

task system S* consisting of q +I RESistructures: RF.&! •.••• R~ + 1, tnid q PR~.Y-structures: 

PRF..c!,y· ...• PREC2,y· Intuitively, we arrange these structures in a stack, alternating 

RES£structurcs and PRF..Cx,y-structurcs, with a RESistruoture on th~. top and on the bottom of the 

stack (Figure 5.6). FonnaHy, RES~ < PREC!.y forl Si < q and PREC!.y < RF.S! + 1 for l < i Sq. 

Now consider a Coffinan-Graham labeling of S* in which each ·. RESistructure and each 

PRECx,y-structure has a bad CG labeling. To sec that such a labeling exists. consider the point in the 
. . 

labeling proc~ when labels have been assigned to the. rasts in RES!+ 1. Assume. that this is a bad 

CG labeling. Now, PREc!.y can have a bad CG labeling ooly if the labeling algorithm assigns a 

sma11er label to o! than it docs to F!. But, this is precisely what the labeling algorithm docs since 

RF.S! + 1 has a bad CG labeling, hence label(Cl + 1) > label(Ai + 1) and labcl(Ci + 1) > fabcl(Bi t 1> 

for 1 < k < z. A similar observation can be made about a bad CG labeling of RF.S!. given that 

PREC!,y has already been assigned a bad CG labeling. Thus. a Coffinan-Graham labeling of S* in 
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Figure 5.6: The task system s• 

.. . , . 

Figure 5.7: The Cofllnan-Oraham schedule· execution orRESiz arid PREcix.y after ci1 has executed. 
The superscript i is omitted from the tasks. 

Ex·y+1.1 
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which each of the structures has a bad CG labeling does eaist. 

The initial portion of the list (used to schedule S*) which-is tbnned as a result of this labeling is: 

cc}. nl-tas1ts, A}, cl. aj-taslts, Al ..... c~. n!-tasts. A!. Fl. o}. F}. o}; .... F!-y-l• n}.y~t· F'!-r 
E!-y·tasks, o!-y· .... F!.1• E!-rtasks, o!.1• F!. o!. cJ .... ). Begittninl .Wfth tjthtrpauern repeats 

for RPS~ and PRF.C~,y· then for RES~ and PREtj.y,and so on. 

The Coffinan-Oraham schedule produced from ··Ibis· list' is-as fi>llows: Execute task cl in the 

first time unit. followed by the remainder ~f RES! and task Fl in the next (z+ l')s time units (each 

B!t ex«utts alone, since label(B~1c) ), · labcl(A~) and' A! ptlccodcs· all or tru? taSls that might execute 

with n!t>· In the next x + y time units ex-OCUte the rcinaindcr of PREC!.y and task cl. 'Ibis' consists 

of x- time units in which two tasks execute per time uait and yei111c-:units in. which in of the El.tasks 

execute per time unit In the next (z+ l)s time units execute the remainder ofR~ and task Fl. And 

so on. 'Ille pattern 'repeats. (Figure S.7) until RES~+ 1 aecutes in dte ftrial (z + l)s time units. "bis 

Coffman-Graham schedule has length 

CG= 1 + ((z+l)s + x + y)q+ (z+~)s. (I) 

Now we want to get an upper bound on the length of an o'Ptimal' schedule for this ·system. 

There are three cases to consider based on the three parts of the lower bound given in the statement 

of Theorem S.2. 

~l:s~m 

Without loss of generality assume s :;: m. Let z be an arbitrary integer and let x = y = q = 0. The 

task system S* consists justof RFS!. From (I)~ CO =: 1 + (z + l)s = sz + s + 1. 

Consider the following schedule for this task system: ·fa the ftrsf.,,timc units ex«utc the A I-tasks. In 

the next z time units, execute all of the D1·tasts/with s 1asb cirecu8ng per time unit • one task 

requiring each resource. Finally, execute the cl...as in- lhe last~ time units. This schedule has 

length z + 2s, hence OPT < z + 25. 



• '. CG/OPT > (sz + s + l)/(z + 2s) 

limitz -+ eo CQ/OPT ~ ·s =. m. 

~liDSll: s :S m-1 

Consider the foUowing cQndition: 
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Condition l: For 2 < i < q, if~ oi· l·tasks. the Ai~ aDd ,tfle ·tasks i1l RBt-1 have executed, 

then all of the following tasks can be exa:utcd in the ne1t'. zitime units:· the B~ the oi_.tasks. 

the Ei· 1-tasks and the Fi;-1-taU:s. 

Whether or not this condition holds <lepends upon the relative. -values ofs,. m. x, y and z. . Also~ if the 

condition holds non vacuously (i.e. q ~ 2), then the Jollowiaa also,bold: 

l. If the A 1-tasts have been executed, then ·.the Bl-tasks and W·tasks .caa be executed in just z 

time units. 

2. If the nq·tasks, ~e A q + 1-~ks and the tasts in ~ have ·been c1ccuted, then all of the 

following tasks can be executed in the next z time units: the sQ+~..u. the E'l-taSks and the 

Fl-tasks. 

l&mma ~: Ifs = m-1 and l ~ 2,. with q = l, z.::: 2x and y == a then Condition 1 holds. 

First observe that y = 0 means that there arc no Ei· 1-tasks for any i-1. The ni.tasb-; ·oi·rasts and 

Fi-!_tasks can be executed in just z time units as follows (Figure S.8): ln time unit k, execute 

tl,tsks nit· ... ' n!t· Since s = m-1, this utilizes m-1 processolS in each of the z time units. The 

ni.tasks and Fi·1-tasks execute on the unused processor: the l~-rasts executing in the frrst z/2 

( = x) time unil8 and the pi· I ·tasks executing in the second 'll2 ( = x) time unias. a 

l&mma U,Q: Ifs< m-2 and xis an intcgcr·such that x > 2 and (x~l) = Omod m, with z = x, q = x 

and y = (m-s-2)(x-J)lm, then Condition I holds. 
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Figyre 5.8: Execution of the tasks ·Lemma S.9. 

aiu ai 
12 aiu· . at1.1+1 

• • • • • • • • • • • • 

• • • 
Time unit: 1 2 x 

Figure 5.9: Execution of the tasks - Lemma S.16 

Time unit: 

niu aiu . . . 

Figure 5.10: A "good" schedule. 
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First observe that y is an integer and that there are (m-s-2Xx-l) of the Ei-l·tasts. The Bi.tasks. 

ni.tasts, Ei· 1-tasks and f4· l-tasts, can be executed in just z time units as follows (Figure 5.9): In 

time unit t. execute tasks Bit· ... , n!t. D~ and F{·l~ l'his otilb:~ $+2 prQCe$syrs.1eaving m-s-2 

processors at each time unit to execute the Ei· 1-tasks on. These tasks are executed in time units 1 

thru z-1 ( = x· l), with m·s-2 of the EH·tasks executing per time uaiL a 

To complete the proof of the lower bound we asmime that q, x, y and z are chosen such that 

Condition 1 holds. Consider the following schedule for the task system (Figure 5.10): In the first s 

time units execute the A 1-tasks. Execute the sl'."tasts and ol-tasts in. the next t'time units. This is 

possible since Condition l holds. In the next s+ l time units execute the cl.tasks and tile A2-tasts. 

Now execute the n2-tasts, n2-tasks. E1-tasts and F1-tasts in the next z time units. This is possible 

since Condition 1 holds. In the next s+ 1 time units <'1.ecute the C2-tasts and the A 3-tasks. Now 

execute the nl·tasts, o3-tasts. E2-tasts and F2·tasks in the next z time units. And so on. This 

pattern continues until the c'l-tasks and A q + 1-tasts execute. Then execute the Bq + 1-tasks. 

Fl-tasks and Fl-tasks in the next z time units. Again. this iS po$gble since Condition 1 holds. 

Finally, execute the cQ+1-tasts in the lasts time units. ThiSschcdule~ length (s+z+l)q + z + 

2s. Thus, given s and m. provided q, x, z and y are specified so Condition I holds, we have: 

OPT< (s+z+ l)q + z + 2s. (II) 

~ 2.: completion: s = m - l 

Let x be an arbitrary integer with q = x. z = 2x and y = 0. By Lemma 5.9, Condition I holds, 

and from (JI), OPT< (s+2x+l)x + 2x + 2s = 2x2 + (s+J)x + 2s. From (I). CG= l + 

((2x+J)s + X)l + (2x+l)s = (2s+J)x2 + Jsx + S + 1. 

. ·. limifx ... 00 CG/OPT= (2s + l)n = s + 112 = (m·l) + 112 = m-112. 
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&all l .:,@moletion: s. Sm • 2 

Let X be an integ~r SUCQ that X ) , S and (X'" l) ;;: 0 mod m. With Z :::: X, Q = X, and Y = 

(m-s·2Xx·l)/m. By Lemma S.10, Conditiotl l hPl•:•·fr(tlll (ll).: OPT S (s+x + l)x + x + 2s 

= x2 + (s+2)x + 2s. From (I), CG = l + ((x+l)s + x + (m.;s·2)(x"'l)lm)x + (x+l)s = 

((2•211Jl) +. s(l~tlin))i2. + (2.s· (pi-~2)/m)l + J+ :L , 

... limilx - co CG/OPT > (2 · 2/m) + s(l • Vm) 

This concludes the proof of Lemma S.8, showing .that the bound given in Theorem 5.2 is the best 

possible bound. 0 

. possible.upper bound. 

Comider a task system S* as described m the prcvioua,proof, with 1 ail inteier. x > 2, z; x, q = x ·md 

y=O. It follows from that proof (equation I} that there exist& a Cotfman-Orabam schedule for S*:,of 

length 

CG= 1 + ((x+l)s + x)x + (x+l)s = (s+l)x2 + 2sx +~ + 1. 

From the proof of Lemma S.10, it follows that Condition l holds given these values of x, z. q and y. 

This in tum implies that equation II given there hol~ b,eace there exists:a(optimal) schedule for St' 

of length 

OPT< (s+x+ l)x. + x + 2s::; x2 + (s+2)l + 2s. 

• ·• CG/OPTS ((s+l)l;l + 2sx +s + l)/(x2+ (s+2)x + 2a) 

limitx - 00 CG/OPT = 1 + s a 

.U ~implication fw: critical nath scheduling 

Now we consider the implication of the above results Jor critical path scheduling of UET task 

systems with discrete resources. Because Coffinan-Graham schechding is a subclass of critical path 
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scheduling and UET task systems with 0-1 resources are a subclass·ofUET task·systemS wi&h.discrete 

resoun:es, we have the followinr two lower boUnd tau1ts fi:>r UErtlist •ems with discrete resources: 

Theorem ,U: If m ~ n (no proeesaorconstrai~ ~ in:fhe worst case;·CPAfHIOPT can be arbitrarily 

clefetol +s. 

Theorem ,M: If m > 2 (a processor constraint) then. in the·worst case, ¢PA nl/OPr an be ·arbitrarily 

close to m if s~'m 

m·l/l if s=m·l 

(2•2/m) + s(l·l/m) if s :Sm· 2 

In the remainder of this section we concentrate on crilkal path.~ of systems withOUt procmor 

constraints. Similar remarks apply for critical path scheduling Gt Sjilblfs' Widt processor cOllStraints. 

except that they are complicated by the fact that the lower bound has three portions. 

The result in Theorem s~l can be com~-to-the~mult·Of:Oarey, et.at. (GGJYJ, fi>r critical path 

scheduling ofUET task systCmS with continuous nllOUlt:et. That rCsult is CPATH/OPT S 1 + 17s/10. 

If we let f{s. r1, ...• rs) be the best possible wOBt case bound for critical path scheduling ot;UET task 

systems with discrete resources. we have: 

1 + 1 · S f{s, r1, ... , rJ :S I + 17sll8 {Ill) 

· Several mnarts can be made about equation Ill. 

First. regardless of the actual values of r1, ... , rs· the function f is essentially a linear ftlaction ins. 

The values of r1, ... , rs (ie. the distribution of units Of tcsouice: atnOn&· the various. reiources) are 

relatively unimportant in determining the worst case bound on CP A·fHlmrt. This is in sharp commt to 

. the situation for list scheduling of UET task systems with discrfte resouttes. Ill Chat instance, the bound 

was LJST/OP'f S l + r where r = ~ = 1 ri. 'fhele.Jhc;Daillber ofauhelit tc90UtteS dicfa't matter at 

all - only the total number CJf' units of rcsouree of any kind in the rask..,,..._ 
Second, rclalively liulc additional information aboul the wont case perronru.nce of critical path 
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scheduling for UET task systems with resources is to be gained by explicitly obtaining the function f. 

That is, the results on the worst case perfonnance of critical patl1 scheduling provided by the continuous 

model are going to be relatively close to those provided by the discrete model. These bounds are related 

by a constant - both arc bounded by linear functions of s. Again this contrasts sharply with tl1e results of 

Chapter 3 on Jist scheduling. In that chapter, we saw that the list scheduling results based on the discrete 

model had a much higher information content than those based on the continuous model. Herc, they do 

not 
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6J. Summary 

In the past several chapters, we have studied list and critical path scheduling of UEf task systems 

with resources. The fonnat model of task systems with resources used in most previous work involving 
. !; _: . 

the analysis of scheduling heuristics for these types of systems, involves coqtinuqus resources. That is, 

there is one unit of each resource and a task may require any portion of that one unil We noted that 

there arc some serious questions about the appropriatcnc5s of that model in regard to certain applications. 

In particular, the assumption that resources are continuous seems inappropriate for applications where 

the available quantities of each resource arc small. To try to overcome these perceived shortcominp of 

the model with continuous resources. we introduced UET task systems with discrete resources. In that 

model, there are a specific number of units of each resource, and a task may require only integral 

numbers of those units. Our hope was that pcrfonnance bounds based on this model with discrete 

resources would provide substantially more infonnation than bounds based on the model with 

continuous resources. In particular, infonnation about the affect on performance of increasing or 

decreasing the available units of resource in the system. Moreover, we noted that depending upon the 

particular application, the presence of processor constraints was. or was not appropriate. Thus. we 

investigated the worst case performance of list and critical path scheduling for four models: those with 

discrete or continuous resources and with or without processor constraints. A summary of the major· 

results now known about these problems is given in Table 6.1. Of the results given there, we note that the 

two results for UEI' task systems with continuous resources and no processor constraints arc due to 

Garcy, ctal. [GGJY). and that the rest of the results are given in this thesis. 

Finally, to reiterate the remarks made in the last chapter about the relationship between the models 

with discrete and continuous resources. we found that our expectation that bounds based on the model 
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Fbzure 6.1: Summary of the results for UET task systems wJth ~urces 

Continuous No 

Discrete 

processor 
constraint 

Processor 
oonsb'lint 

No 
processor 
amstraint 

Proces8or 
CODSbailll 

UST/OPT 

sOPT/2+s/2+1 
"almost" best J>Ollible 

[GGJY] 

min{m, (s+ l)OPTl2+st2+ 312} 

. { [Yao) 
nun m, 
(m-l)sOPT/(2m)+ 7(m-l)sl(2m)+ l} 

l+r 
best possible 

(2-1/m) + r(l-1/m) 
best~ 

CPA 'fHIOPI' 

.(()GIYJ . 

1+ 17Stl0 
best PQ!l.Able 

m · if 2'.m<s+l 
(s+m+l)/2 ifs+Hm<2s+l 
(4s+m+~4 if2s+l~JtJ<8s/3+1 

-(14s+m+ if81/J+Um<3t+l 
2+17511{}-( +l)/m if3s+Hm.mHO 
2+Ss13-(8s/3+1)7m if3s+ H.m.m< 10 

f ;, . - '-11K*ib.ll~ ' 

>l+• 

~ 
~112 

~2-2/m) + s(l-1/m) 

ifs~m 
ik = m-1 
ifs~m-2 

Unless otherwise noted, each of the above results is an upper bound. 
E~cept where note. t. all of these results are given in tlUa ~ . 
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with discrete resources would have a much higher infunnation content than bounds based on the model 

with continuous resources, was both right and wrong. For list scheduling. this was certainly the case - the 

results were particularly strong for the model with discrete resources and were particuJarly weak for the 

model with continuous resources. For critical path scheduling. we-round that \Vf:1ilc bounds based on the 

model with discrete resources should have a slightly higher in-fomaation content than bounds based on the 

model with continuous resources, the additional useful information is not nearly as great as for liSt 

scheduling. For this reason, obtaining tight bounds for c~tical pt:tth scb.~4uUng of UIIT task systems with 

discrete resources does not appear to be a particularly important problem. -

~ Qum Problems 

There are obviously a large number of questions wkich remain unanswered as a result of thii 

research. we mention only a few of the problems whicfi we feel arc the most unportant here. 

First, is to artalyze the worst case pcrfonnancc of other schCduHnS;afgorithms with respect to die 

task system model with discrete resources. Jn panicular, the performance of the resource decreasing 

algorithm. This is a list scheduling algorithm in which the tasks arc ordered in the list according to their 

Rmax -values -- tasks with the largest Rmax -values coming first in the list This algorithm has been 

analyzed by Garey, ct.al. [GGJY) for UET task systems with continuous resource$ and no proceB>r 

constraints. For that model they show that RDEC/OPf S l + 17s/l0, and that task systems and 

resource decreasing schedules for those systems c1dst, such that RDEC/OPf > 1 + 1.69s (where 

RDEC/OPT is the worst case ratio of the length of a resource decreasing schedule for a task system to the 

length of an optimal schedule for that task system). Note that this is the same upper bound as that for 

CPATH/OPT. An interesting question which might be answered via the model with discrete resources, is 

whether or not resource decreasing schedules and critical path schedules are as comparabJc as they appear 

based on the worst case performance bounds for Ufff task systems with continuous resources and no 

processor constraints. 
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Second, is to find algorithms which have a wont Case ~ce bound substantially better than 

O(s). Consider, for instance, the scheduling of UET task systems with O· l resources and no processor 

constraints. All of the scheduling alogrithms that we have examined · list, critcal path, Coffman-Graham 

·as well as the resource decreasing algorithm (and simple variations of it), have a worst casc,pcrformance 

bound of l + s when applied to these systems. An algorithm which had any kind of sublinear (in s) worst 

case perfonnance would be a significant advance. Presumably, such an algorithm for UET task systems 

with O· l resources could be extended to provide a sublincar algorithm for more general UET task systems 

with resources • either continuous or discrete. 

Third, is the analysis of scheduling algorithms with respect to the model with discrete resources in 

other contexts. For instance, in a model with no precedence constraints. but where task execution times 

are not restricted. In Chapter 7 we give two results on the worst case performance of list scheduling for 

that particular model. 
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C._,ec 1: NmtUEI·multl 

In this chapter we investigate list scheduling of task systems with resourees where no precedence 

constraints exist and where task execution times are not restricted. As noted previously, this submodel is 

one of the two major submodels used to investigate schcduttna algorithms. Also as mentioned earlier, we 

note that there is not always a list schedule of optimal length for such task systems. Despite that, because 

list schedules arc intuitively simple. and are easy to construct, they provide the basis for most scheduling 

algorithms for task systems of the type we study here. In this chapter we deal exclusively with list 

scheduling. For comparison purposes, we note that Graham (066) has shown that if m ~ 2 (a p~r 

constraint), then LIST /OPT S 2 - l/m, and that this is the best possible resull We also note that if m > 

n (no processor constraint), then LIST /OPT = 1. 

11 Continuous resources 

The only two significant results for list scheduling of task systems with continuous resoun:Cs and no 

precedence constraints, are by Garcy and Graham. They show (GG73, OG7S) that if m ~ n (no 

processor constraint), then LIST /OPT S 1 + s and, (OG751 if m > 2 (a processor constraint), then 

LIST/OPT< min{(m+l)/2, s+2 • (2s+l)/m}. Moreover, they show that both of these bounds are the 

best pos.WJe. 

12. Discrete resources 

'fltere are no previous results about the scheduling of task systems with discrete resources and no 

precedence constraints. In this section we prove the following two results about such systems: 

. Theorem 11: lf m > n ands= 1, then LIST/OPf S 2 - llr1. Moreover, this result is the best possible. 

Jbcorcm 1.J.: If m > n, s=2. and r2= 1, then LIST/OPTS 2 - llr1. Moreover, this result is the best 

J>,<&ible. 
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LU Discussion 

There are three things to be noted about these rcsu~ 

First, and most obvious, is that p.en ·a system with'.a single type of resource, the addition ofa single 

unit of a second type of resource has .wz affect on the worst case perfonnancc of list scheduling. 'This is 

somewhat surprising, and the question arises whether this is a general phenomenon. That is, can single 

units of a third resource, a fourth resource, and so on, be added to the system without affecting the worst 

case perfonnance of list scheduling? Not surprisingly, the answer is no. Figure 7 .l .shows an example of a 

system where the addition of a single unit of a third type of resoun;e results in a worst case bound 

exceeding 2 - llr1. 

Second, it is interesting to note that for the special case of r1 = r2 = I, list schedules are optimal. 

As the example in Figure 7 .1 shows, this phenomenon does not generalize. 

Third, we c;in compare these results to those for task systems wjth continuous resources. For 

systems with s = 1, the results for continuous resource$ mdkate that LJS1~lOPT S 2. Our' results show 

that LIST/OPT< 2 - l/r1. Obviously, for systems with a small number of units of resource, our result 

provides a somewhat better indication of the worst case performance of liSt scheduling. For systems with 

s = 2, our results show how significant the difference can be between the discrete and continuous bounds 

when small quantities of resources arc involved. For example, if r1 = 2 and r2 = 1, our bound shows that 

LIST /OPT < 312. The bound based on systems with· continuous resources is LIST/OPT S 3. 

Moreover, if r1 = r2 = 1, then our bound indicates that list scheduling is optimal. Again the bound 

based on systems with continuous resources is LIST/OPT S 3. 

7.2.2 ~bounds 

In this section we prove the two upper bounds associated with Theorems 7.1 and 7.2. Jn the next 

section we show that those two bounds arc the best possible upper bounds. 

Note that we can prove both of the upper bounds, merely by proving the upper bound for the. case 
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Figure 7.1: An observation 

Consider ~ task sytem with 4 tasks and 3 resources: 

~ &ecution Time Raource Rtouinmenrt 

A 2 ( 0 1 0 l 
B 1 [ 1 0 0 J 
c 2 1 0 1 I 
D 2 [ 0 1 1 I 

Wherer1 = r2 =r3 =1 

Tune unit: - D 
1 l 3 4 

An optimal schedule: 

A list schedule: 

List: (A C B D) 

= l~H-
UST/OPf = 514> 1 = l • llr1 
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of s = 2 and r2 = 1 (Theorem 7 .2). From such a proof it follows immediately that the same bound holds 

for s = 1 (Theorem 7.1). Similarly, if we show that the upper bound is achievable for the case ofs = 1 

(Ibcorcm 7.1), then the bou~ is achievable for the case ofs = 2 and r2 = 1 ffheorem 7.2). Before 

proving these results, we have the following mathematical fact: 

Qiiml.l: If X < D, and 8 ~ AC, with A, B. C, D, X all non-negative, then 

(X + A)/(CX + B) ~ (D + A)l(CD + B) 

fmQf 

Assume X < D and: B ~AC. Then B - AC > 0, so 

(B - AC)X S (B -AC)D 

• BX + ACD < BD + ACX 

=> CDX + BX + ACD + AB ~ CDX + BD + ACX + AB 

=> (CD + B)(X + A) ~ ({:X + B)(D + A) 

=> (X + A)/(CX + B) < (D + A)/(CD + B) 

J&mma 1.1: lfm ~ n, s=2 and r2= 1, then UST/OPT s; 2-llr1• 

fm2f 

D 

Consider any task system with two discrete resources, where r1 ~ 1 and r2= 1. Let LIST be any list 

schedule for that system. Similarly to an earlier proof, for each .time U,BiL B of LIST, we Jct Ri(B) = I 

Rp') summed over all TEU, and Ri(LIST) = l: Ri(B) summed over all time units B in_ LIST. There 

are several cases to consider based on the resource usage in various time uni&s of LIST. 

~ l: In each time unit B of UST, Ri(B) = 1. 

Since r2 = I. this means that LIST= OPT, hence-LJST/OP1' = l < 2- llr1. 

Case 2: Jn each time unit B of LIST, R1(B) > r1/2· 

Since R1(B) > r112, we have R1(B) > (r1 + 1)12. 111cn R1(US'I') > (r1 + l)UST/2. But, OPT 

> R1(LIST)lr1. It follows that OPT> [(r1 + l)UST12Vr1• 
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. . • LIST /OPT S 2r11(r1 + l) = 2 • U(r1+1) < 2 .. 11r1. 

!dgJ: In some time unit BofLIST. R1(B) <r112 and Ri(B) :c O~ 

Let F = {BE LIST: R1(8) S r1n and Ri(B) = O} and let 8*,E. F. be a time unit such that 

R1(B*) = min{R1(B): BE F}. Lets= max{.(T):,Te B*}and let t= inax{cr(1)+ "T • l: TE 

B*}. That is, sis the latest stamng time of any cask iii IP'Jllld 1'3-·the'Jatest ftni&bing time of.any 

task in n•. Note that at least one task in B• has .an aOcuti<ilf time~11east as.farse as f · s + 1 (in 

particular, each task which finishs at time unit t). . _.- .. ~ 

Now consider any time unit Bi, I < i < s. Theff is It least one task ~ in B*.which did not 

execute in Bi (in particular, a task starting at time unit s). Task' 'rlhuSI havo Men prevented from 

executing in Bi by the resource constraints. In particular, siDee R~ :;:: -0. k was prevented from 

doing so by the constraint imposed by rcsoUR:e 1. Thus. R}(8i)'·+~tt1f:r> > r1• hence, lt1(Bi) + 

R1(B*) > r1. 

Similarly, consider any time unit Bi• r < i < UST and anf task T ~ B1. Task T did not 

execute in time unit B* due to the constraint imposed by mouree:l •. Thus, Rt CO+ R1(B*) > r1• 

hence, R1(Bi) + R1(B*) > r1• 

Finally, let d = R1(B*) 

e = min{R1(8i): 1 Si< sor f< i S UST} 

x=f·s+I 

y =LIST· 1 

As noted earlier, at least one task executes for at least x time units. Por each of the x time units, Bi• 

s Si< f. R1(Ri) > R1(B•). Aho, y = (s • 1) + (LIS'l'-t)and.UST = x + y. Moreover; from 

the arguments given above c ;?!: r1 • d + 1. 'Ille situation inhown in· Figure 7.la. 

: . OPT~ max{x, (dx + cyJlr1} 

~ max{x. [dx + (r1 • d + J)yVr1}. 



Figure 7.2: Resource usages in a list schedule 

Schematic: y time units 

a) The situation in case 3. 

Schematic: y time units 

b) The situation in case 4. 
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x time units 

R1(D) > d 
(3T)[rT > x] 

x time units 

R1(B} > d 
Ri(B) = 1 
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Intuitively, OPT is at least as long as the time it takes to execute_ any task (and some task has an 

execution time of at least x),·and is at least as long as a schedule in which resource I is fully utilized 

at each time uniL There are two subcaSc$ to consider: · 

Subcasc 1: x > [dx + (r1 - d + l)YV'J. 

It follows that x > (r1 - d + l)y/(r1 - d) and that LIST/OPTS (x + y}/x = 1 + y/x~ if d = 
0, then y = 0, hence LIST /OPT = 1, so assume that d > 0. Then, substituting for x, 

LIST/OPT S I + (r1 -d)!(r1 - d + 1) 

= 2 - l/(r1 - d + 1) .. 

S 2 - llr1 since d > 0. 

Subcase 2: x < [dx + (r1 - d + l)yVr1 

It follows that x < (r1 - d + l)y/(r1 - d) and that LIST/OPTS (x + y)/(dxlr1 + (r1 - d + 

l)ylr11 Moreover, since d < r112. it follows that (r1 - d + l)tr1 > dlr1. 

Using Claim 7.1, with A = y, C = dtr1, B = (r1 - d + l)ylr1, and D = (r1 - d + l)y/(r1 - d) 

we have 

LIST/OPTS Kr1 - d + l)y/(r1 - d) + y)/[(dtr1Xr1 - d + l)y/(r1 - d) + (r1 - d + l)ytr1J 

= 2 - l/(r1 - d + 1) 

< 2 - llr1 since d > 0. 

~ ~: In each time unit B of LIST, either R 1(8) > r1t2 or Ri(B) = 1. 

Let F = {B €UST: Ri(B) = l}. Also, let o• € F, be a time unit such that R1(B•) = min{R1(B): 

B € F}. Note that R1(B•) < r112, since otherwise every B € UST has R1(B} > r112. This was 

handled in case 2. 

Now consider any time unit Bi preceding n• in LIST such that Ri(Bi) = 0. Since Ri(B•) = 

1, there is at least one task T* in n• which docs not execute in Bi. The reason that it does not 

execute in Bi is because of the constraint imposed by resource 1. Thus. R1(Bi) + R1('r) > r1• 
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Similarly, consider any time unit Bi following B* such that R2(Bi) = 0. 1bere must be a task 

The constraint imposed by resource 1 is the reason that T docs not execute in B*. Thus, R1(1) + 

R1(B*)> r1, so R1(Bi) + R1(B*)> r1. 

Fina~ly, let d = R1(B*) 

e =min {R1(B): R2(D) = O} 

x = l{B E LIST: R2(B) = l}I 

y =LIST- x 

Note that y = l{B: Ri(B) = 0}1 and that LIST = x + y. Moreover, by the argument given above, 

e ~ r1 - d + 1. The situation is shown in Figure 7.2b . 

. ·.OPT> max{x, [dx + ey]lr1} 

> max{x, [dx+(rrd+ l)y]lr1} 

As in Case 3, it follows that LIST/OPT< 2 - llr1. 0 

7 .2.3 Lower boynds 

In this section we show: 

LemmaU: Ifm > n ands= 1, then the bound LIST/OPT< 2 - llr1, is the best possible bound. 

Consider a task system consisting of the following tasks: 

1. A, with TA = r1 and R1(A) = 1. 

2. Di for 1 < i < r1(r1 -1), with TB· = 1 and R1(Bi) = 1. 
I 

There are, of course, no precedence constraints. lne system is shown in Figure 7.3a. Consider a 

schedule for this system generated from the list: (B1• B2, ... , nr
1
(rl _ l)• A). Such a schedule (Figure 

7.3b) consists of r1 - 1 time units with r1 B-tasks executing in each time unit, followed by the 



Figure 7.3: The bound is achievable 

A: "A= r1 8i .•. 
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Br1trc1): "Bj = l 
R1<Bi) = 1 

a) The task system withs = 1 and r1 units otthat ~ 

A list schedule: 

List: (Bl~ ••• 

Schedule: 

Time units: 

b) Ult scbodule 

An optimal schedule: A 

B-tasb 
r 1 • 1 per time unit 

T1Dle units: r1 

c) An optimal schedule 
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execution of task A. This requires an additional r1 time units. Thus, LIST = (r1 - 1) + r1 = 2r1 - 1. 

Now consider a schedule for this task system generated from the list: (A, B1, B2, ... , nr
1
(rl _ 1)). Such 

a schedule (Figure 7.3c) consists of r1 time units. In each time unit, task A is executing on the first 

processor, and r1 - 1 B-tasks arc executing on the other processors. Thus, OPT = r1 . 

. . . LIST /OPT = (2r1 - l)lr1 = 2 - l/r1. D 
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Chapter 8: Concurreat Im Sgtew 

In this chapter we investigate an extension of the basic task system model that was discussed in 

Chapter 1. This extension al1ows tasks to require more than one processor at each step of their execution. 

BJ JM model 

A 1'lll ~ wjth concurrency is a system S = <T, <. m, C> where: 

1. T = {T 1 •... , T 0 } is a set of tasks - associated with Ti is a positive integral execution time "i· 

2. < is a partial order specifying precedence constraints between the tasks. 

3. There arc m idcnticalprocessors. 

4. C~ {l, 2, ... , m}. The elements of Care dCJreesofcoocurrency. 

~iated with each task Ti, is a~ ill concyrrency qi e C. Intuitively, task Ti must execute for .,.1 

time units, and requires qi processors for each of those time un~ts. Task Ti is said to require "iqi 

processor~ to execute. When convenient, we Jet qX represent the degree of concurrency of task X. 

A Y!!l.W schedule for a task system with concurrency Sis a mapping a:T-. (N - {O})such that: 

1. For all/ E (N - {0}), Q1 < m, where Q1 = l: qi summing over all Ti such that a(fi) SIS 

a(f i) + "i • 1. 

As far as pcrfonnance bounds arc concerned, we restrict our attention to list schedules. Intuitively, for 

task systems with concurrency, a .lli!t schcdu)c is one where, if m - k processors are available, the first 

uncxecutcd task on the list, all of whose predecessors have completed and whose degree of concurrency 

docs not exceed m - k, is executed. More formally, a task Tj is .IDSh at time I if for every Ti such that T1 

< Tj, a(Ti) + "i - l < I. A lW schedule is a valid schedule which is generated as follows: 

1. Initially, L is an (ordered) list of the tasks in T and I is l. 

2. While L is nonempty pcrfonn this step 
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a. Let k = I qi summed over all Ti ( L such that aff 1) <I'< O'(fi) + 1i - 1. 

b. Let L' be a list of the ready tasks on L at time I. the tasks in the same order on L ' as on L. 

c. While L' is nonempty and k < m perfonn this step 

i. Let T be the first task on L' . 

ii. If qT < m - k, 

then let a(I') = I, let k = k + qT and remove T from L 

iii. Remove T from L' . 

d. Let/= 1 + min {a(Ti) + "i - I : Ti ( Land a(Ti) + "i - 1 ~ I}. 

Examples of a concurrent task system and a list schedule for that system are given in Figure 8.1. 

A task system with concurrency in which all tasks have the same execution time (which is assumed 

to be one) is a concurrent !lliI .wk ~- All of our results arc .abou~ cqncurrent UET task systems. 

As with the bask UET task system model, no generality is lost by resmctiog our attention to list 

schedules when dealing with concurrent UET task systems, since there is always a list schedule which is 

an optimal schedule. 

The task systems with concurrency model arises from several sources. A situation where one 

processor is to monitor another processor on a particular set of jobs is an example of a task explicitly 

requiring more than one processor. Moreover, with the current interest in parallel processing. the 

development of algorithms which require several processors to be simultaneously devoted to a single task 

seems inevitable. Apart from computer applications, task systems with concurrency model certain 

practical situations more precisely than standard task systems. For example, a construction company may 

want to allocate its supply of men to complete some system of jobs. lbey know the number of men and 

the number of hours required to complete each job and arc interested in completing tl1c system of jobs as 

soon as possible. lltis problem is naturally modeled as a scheduling problem for a task system with 

concurrency. 
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Figure 8.1: An example of a task system with concurrency 

m = 3 processors 
H 2 

I c = {l, 2, 3} 

I l 

The degree of concurrency of each task is given beside the task. Each task has an execution time of one. 

A list schedule: 

List: (H G F E D c B A) 

Schedule: H I D F G 
H B B E G 
A 

Time unit: 1 2 3 4 5 
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As is the case with several other extensions of the standard model- a t.a$k. system with concurrency 

can be viewed as a r•ict~ type of task ~stem with: resooates.. llJat ·u,. given a task. system with 

concurrency S, consider a task system with one discrete resource 31l9. no proccs.wr constraint : 

Furthennorc, suppose there are m (the numllef! Qf,pl'OCftlOtS ·itt~ ~.units ·f>f that rcsouKe aveilablc and 

each task requires a units of the resource where a€ C. This rc8'ridedtypcoftast,.systcm with discrete_ 

resources is equivalent w a task system witb COJlCUt'JU<;Y~ Jn: as :111Uelt ~18 this relationship exists, our 

results can be viewed as results for this restricted ~pc of~ ~tcm with,rcsoun:.es. However, we feel 

that the approach through the resource modct is an unnatural one for the problems w~ bave described 

and that the task systems with concµrroncy approach.is more illstructiVe. We.know of no.results about 

task _systems widt concurrc~y other than those~ here • 

.8.2. ~ WQWlexitY .Qfw00&uentllfil:scbedMlina .. 

In this soction we give two NP-completeness results invoMng concurrent UET task !i)'Stems. In 

subsequent sections othcr~tsofthc problem arc ~o.ect based on die pmbabfcnon-existence.of 

polynomial time~ aJ&Qrithms for finding optimal schedules ilr &UdtsptmllS. 

W ArbitJSf't cooc;urrcncy1 SQ orecedcace CQJlstraiotl 

Consider the following decision problem: 

CONCURRENCY: Given a deadlined', and a concurrent UET task system in which mis arbitrary, 

< is empty (i.e.·the~:_are no prccedcace c~aints) an4C = {1, ...• m},<locs there exist a schedule 

for the system with length not exceeding d'? 

CONCURRENCY is stated as a decision problem, rather Ulan as an optimi1.atjon:problcm, so that it is 

easily seen to be in NP. Note that any degree of COOCUffCDCY up w the number of.processors &allowed. 

Thcorcm'-1: CONCURRENCY is NP-complete. 

fmQf 

Garcy and Johnson (GJ79) have noted that the proolcrn· -of sehc<!tJlins ·.task systems with arbitrary 
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execution times and no precedence constraints to moot a de8dline, don p ~I'S is NP-complete. 

That problem reduces toCONCUllltENCY'by Cftthanging:eaeh executbt time for an equal degree 

of concurrency and letting d' = p and m = d. 

W 8oun4cd amcurrcncy. arbitrnrv precedence wnsuajntl 

Consider the foHowiog.decision.probleau .1 • 

a 

12CONC))RRF.NCY: Given a.cteadtine d\ and a concbn'ent'UET ID: syStem hrw1rich there arc 3 

· processo~ < l Js arbitnry and C ·::: {l,2} ~ does dlcre exlsFa ~ute fbr-tltc System with~ICngtll not 

eicecding d 1 ? 

It has been shown by Ullman fU7Sf lhat the following 'problem ·il'.Nfl-.tGftiplete! 

NQJDIS: Given a deadlined, such that n = dm-anchtUETtalksy&tem <T. <. m>in whichm and<· 

are arbitrary, and T = {T1, ... , T
8

}, doestbere.Jsist•i~-'AJti.the•.symim widl:·tensth not: 

exceediag·d? 

Intuitively, NOIDLE asks if the specified task 1ystcm can be deduled so mat no idle time exists in lhe 

schedule. The remainder of this 1CCtion is do¥8ted · to 'ill<liwiftg 1llal '1200N€URRENCY ls 

NP-complete. The reduction given here is an adaptadon of•GOmtRiction•elopeci'IJy Ulman (\116). 

Theorem .8.2: 12CONCURRENCY is NP-complete. 

fmslt' 

Let a UET task system S = <T. <. m> and a deac:Hi~ d. llldHhil n = dm, be Iii instance of 

NOIDl.E. Consider the following instance of 12CONCURRBNCY: 

l. Let d' = 2md. and Jct S' = <T', < •, 3, {1.2}>. 

l For each tast 1j E T. lhcre arc two tasts Ti and Tf in r. Each has an ca«ution time or one. Let 

qi = 2. qi = 1, and Ti <' Ti. Moreover, if the rdatioll V ~Ti exittsih S. ~ thctc1arion V <' 

Tj is in S'. Call tasks Ti and Tj rcgu1ar1&1U. 

l There are 2md tasks X19 for I S i S 2md. for eadl i, · l S i :S 2md • l. the precedence constraint 
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xi < ' xi+ 1 is in s I • Furthermore, if 0 ~ (i - lmod 2111) 1' m - 1 then qxi = 2. otherwise q~ 

= I. Call each xi a contmJC .t.uk. 

Note that a sch~ule for S' meeting the deadlined•, can have no idle· time. since the schedule for S 

meeting deadline d is to have no idle time. 

Qfilm: If a schedule oflcl)gtb d existsfor S, then a schedule-of ·lenathd' exists.for S'. 

Consider a schedule of length d for S. Consider any time unit I in that schedule, and Jet T If ... , 

T/ be the tasks ex.cc~ in that time uniL Thcna.inlhesdtedule for S', in time unit 2m(/- l)+i 
m 

execute tasks x2m(/ - l)+i and Tji. and in lime unit 1.m(/ - l)+m+i execute tasks X2m(/ • 

1) + m + i and T /i for l ~ i ~ m. lbis produces a schedule fo.F S' in wRich no:idle time exists. All 

that remains is to verify tbat no precedence constraints are violated. Clearly none of the 

constrain~ between the contoul'lasks are violated and none.of the constrahtts of the fonn T' < ' T 

are violated. Consider apy constraint of the form V < ' T •. This meaas that V < T in S, so V is 

executed before T in the schedule for S. Then in our constructed schedule for S', V executes 

before both T' and T. Hence. none of the precedence ams&raiats is violated and .a valid schedule 

oflcngth d • exists for S' . a 

Qaim: If a schedule of length d' exists for S', then a schedule of length d exists for S. 

Consider a schedule oflcngth d • for S'. Since d' = 2dm, contour task Xi must execute in time 

unit i of the schedule. The regular tasks must then 01ccute in the processor units not being used 

by the contour tasks. These remaining processor unit& have a very particular distribution. 'The 

first m lime units of the schedule each has one pr.ucessor unit .. vuilablc for regular tasks. the 

second m time units each has two processor units available for regular tasks. the d1ird m time units 

each has one processor unit available for regular tasks. and so on. The: pattern of m time unilS 
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with one processor unit available and then m time.uailS with two processor units available repeats 

itself d times. We will call the ith set of m time units~ i . ThiLpaucrri atKl the no idle time 

observation combine to force the 0'primcd" ~ taskt,.toiOlotute only dming thne units· when 

one processor unit is available, and the "unprimed .. n:gular:t.asb to exocurc 0111y during time 

units when two procossor unUs ate available. This Ir showbciW• ;R.._:t.2. · 

'lbcreforc, the schedule for S is as follows: In time unit I of the schedule, execute tM tasts 

correspo.nding to them (unprimed) regular tasks ciecut«Un bancllf of the schedule fOr S 1
• This 

schedule clearly meets the deadline of d amt since.ac1l tmk in T ClOIRllf>CMlds to an unprimed task 

. in T' , each task in Tis exocuted at some time unit :of the schedule. ,Al, dlat rcmaifts is to verify 

that the pteeedcnce constraints·aro not·violared. Consider any ,p~nce rClation V (.Tin S. 

The relations V <' T' ·and•T' <' T areinS: Suppose V,and 'f:Wercu.tcutedin thcsame·baadin 

the schedule for S'. Then T' would also be el'Cl"'uted 5-,UJattJtlKI. Buq>riJncd regular tasks 

must be executed in bands with only one plUCCSIOl'·unit av8itable,peuime uniL Contradiction. 

Thus. in the 11;hcdule for S' , V is executed in some'band bCAR lhe band that T ls executed in. 

hence V is executed before T in the scbedute fOr. S. 1betcfont; a· valid schedule cxiSIS fOr S. D 

Anally, WC note that 12CONCURRENCY is obviously in NP, hence it is 'N"1iomptete. a 

We conclude this section by noting that by using a straitht·fOfWatd modifteadon of the contour rasks. it 

can be shown that 12CONCURRENCY is NP-complete for any fixed number of processors m > l 

.8J: Worst mB bounds 

In this 1lCClion we show that for concurrent UET task, systems. lbc ralio of the lcRgth of an arbitrary 

list schcdMlc ror the sys&cm to the length of an optimal schedule is.bounded above by (2m·r)J(m-r+ I), 

where r is lhc maximum degree of concurrency. As noted earlier, wtwn. r = 1 these systems become 

basic UET task systems. In &his insrancc. our bound becomes 2 • llm. which· is the corresponding bound 

for basic systems as given by Graham (G(J6i In lhis acctton we also show 1hat concurrent UKr last 



• 135. 

Figure 8.2: The schedul!: produced by the contour casks an4 ~ljpe ldm. 

Band 
I 2 2d 

Time unit 

Regular tasks must execute in the cross-hatched time units -- priined tasks in odd numbered bands and 
unprimed tasks in even A.Umbered bands. 
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systems exist for which the ratio of the length of a list schedule tbr this system to the· length of an optimal 

schedule is L(2m-r)l(m-r+ l)J. 

Thcoreari.l::·L¢tS·= <T. <.m._C>be a concurrent -UET~-~~-~r~memaxin•m degree of 
' ...__'· > -.- ~-- -.~~ .. ~_--~-- ~- '·_;. ., ___ ,. • ··::.-:~· :;:· .:: .. -··,, --~ -~- ._ • ' 

concum:ncy.iaC. ~LIST£0Pf' S (2m~(m--r+l). . ;-. ·- -.. _. "-~---~--. ,, ' 

Let OPT be the Jcngth of an optimal schedule for S and Jct LIST be the length of an arbitrary list 
' < 

I ' > ~ ' • ! > :- -. "_· ' • : • • • ... 

schedule for S. First we give a lower bound on the Jcngth of all'~'~. Leth tiC thc'tcngdl 

of a critical path in the dag for<. and Jct a = l: qi such lhat Ti€ T. This is the total number of 
' 

processor units required for the actual execution of tasks in T. An optimal schedule must be at least as 

tong as the length of a critical path for the system and must be at least as long as a schedule with no 

idle time for a task system requiring a processor units. ·Thus. OPT > mu(h, aim). 

Next we give an upper bound on the length of an arbitrary list schedule. Consider any time unit I 

of the schedule which has more th~n r - I idle proccswrs. Because thcre are at least r idle processors in 

that time unit, a11 uncxccuted tasks must be successors of the tasks executing in that time unit Let k be · 

the highest level which has a task executing in time unit /. Since a task is only a pred~r of tasks at 

lower levels then the task's own level, time unit I must be the last time unit during which tasks at level 

k arc executed. Therefore, there are at most h time units in which more than r - 1 proc~rs arc idle. 

At all other time units at Jcast m-r+ I proc~rs must be executing tasks. Hence. LIST < 

h+(a-h)/(m-r+ 1) . 

. ·.LIST/OPT< [h +(a-h)/(m-r+ 1))/max(h,a/m). which, by a simple case analysis. reduces to 

UST/OPT< (2m-r)l(m-r+ 1). D 

The remainder of this section is devoted to showing that concurrent UET task systems exist for 
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which there are list schedules such that the ratio of the length of the schedule to the length of an optimal 

schedule asymptotically approaches L(2in-r)/(m·r+l)J. While this is not exactly .the bound derived 

above, the difference is Jess than one. 

Assume that m, the number of proces.wrs, and. r, the maximum degree of concurrency are given. 

Let n be any positive integer. The following three sets of tasks will be .used to construct the desired task 

systems: 

An A-structure consists of: Tasks Aij for l Si Sm-r+ 1 and I < j :Sn, where qAij = 1. 

Aij < Aij+ 1 for1 SJ :S n·l and 1. Si S,m-r+l. 

A ll-structure consists of: An A-structure. 

Tasks Bi, for 1 < i < Lm/r J, with qB: = r. 
, . . I . 

Bi< A_;i for 1 < i < Lm/rJ~l SJ.~m-r+l~ 

A C-structyre r,onsists of: Tasks q. for l S i < lm/r J, with <le. = r. 
I 

Tasks Dj for l S j < n. with qD: = 1. 
J 

Ci< o1 for1 < i :S Lm/rJ. 

These three structures arc shown in Figure 8.3. 

Next we give the specifications for a task system for which a list schcduJc: with the desired length 

relative to an optimal schedule exists. We let b = Lm/(m·r+ l)J. 'Ibcre arc two cases to consider. 

~!: m/(m-r+ 1) is an integer, hence b = m/(m·r+ 1). 

Consider the following task system S = <T. <. m, C>, where r is the maximum degree of 

concurrency in C. T and < coQsist of the tasks and associated precedence constraints from one 

A-structure and b-1 U-structurcs. 'Ibis system is shown in Figure 8.4a. 'fl1e system consists of(b-l) 

lm/rJ independent tasks each with concurrency r, and n(m-r+ l)b = nm tasks each with 

concurrency 1. Note that these tasks with concurrency 1 form m independent chains of n tasks each, 

and that an optimal schedule requires at least n time units after the last task with concurrency r is 
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Figure 8.3: Sets of tasks used to construct last systems 

. . . 

1-r+i.i 

j8'-r+u 

Am-r+.1.n 

a) An A-structure - all of these tasks have concurrency 1 

... l\m1rJ 

" ~Am-r+u 
I . 

- . . . 

: • • • 
I 
Am·r+I,n 

b) A B-structure - the B-&asks have concurrency r, and ·the A-taSts have concurrency 1 

c) AC-structure· thcC-tastshaveconcurrency r.and the D-tasbhaYeconnarency 1 
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Figure 8.4: A task system and two schedules - case 1 

• • • 

A-structure 

a) The task system 

Bl I 
• • • 

Blm/r 

Tune units: 

i0
m-r+i.1 . . 

lo 
A m-r+1.n 

82 I 
• • ••• . 
92m/r 

bl -

B~l I .. 
• . 
Bb--1 
m/r 

. . 

1 < i <b-1 
B.:StruC'tures 

·- . . . 

A-tasks 

n 

To simplify the figure it is assumed that m/r is an integer. Them chains. each with n tasks with 
concurrency 1. execute in the final n time units. 

b) An optimal schedule 

A°i_1 Ao Bi Aiu Ai 
• l,n 1 • I.n • • • • . • • . ••• • • • • •• • 

A
0
m-r+u A

0
m-r+i.n • • • • Aim-r+1.1 Ai • m·r+1.n 

i ; . 
Bm1r 

Time units: D 

To simplify the figure it is assumed that m/r is an integer . 

. c) A "bad" schedule 
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executed. 

The following is an optinial ~hcdule: In the first b-1 time unilS execute all of the tasks with 

concurrency r by exq:uting Lm/rJ ;·Jasks with concurrency rat c.at time unit (and allowing any 
. • -~ - l • • : ..- i . ; 

processor units not used by lhosc tasks to be used to execute any avai'8blc tasks wilh cpncurrency 1). 

Complete the schedule by exccuting1"1e remaining tasks wi!h.~ncy 1 in th~~ijlial n time units. 
• , j ~ "-~ •. ':. - ' ' 

The schedule is showp ~~Figura8.4b. An optimal schedule thus has JcRsdl·h'.'l-li·l. Call this value 
.: . !. :. 

OPT. 

Now consider the following schedule. Jn the first n time units execute the tasks in the 

A-structure. lbe11. ex~ut.~. the tasks widuoncwrcnq _J:from.opeofthcll~structuµ:s •. -followcd by the 
. ~ .• - ~ ' . :,, ---1 ; ,, ~ _,. 

tasks in th• A-structure. emaciated with thfltB-st~~rc. 11!is ~ui~ n~_l time ~ni~ Continue by 

executing the other B-structurcs. one at a lime· 1a ,Utd same ma'*1cr, u,mil all task& ilftj executed. 1be 
;' i~ f~ . ~ .·_,·:~ Z' "•d;. 

---
schedule is shown in Figure 8.4c. The length of the srllcdule is il+(b-lXn + 1) = bn + b4. OlD'thls 

value LIST. 
: ; i ·~ . - i 

.". LIST/OPT= (bn+b-1)/(n+b-l)and limi1n- 00 LIST/OPT= b. FurdleimOre, · 

b = m/(m-r+ 1) which is an integer. Thus. b = m/(m·r+ 1)+ L(in-r)l(m-r+ i)J = 

L(m +(m-r))l(in-r+ l)J ·::;: L(2m•r)/(m-r+ l)J . 
. ' 

... limi'n..,.. a0 LIST/OPT = L(2m·r)l(m-r+ l)J. 

Q!g Z: m/(m-:r+ l) ii not 8Q illtqer. 

Consider the following task system S =«T, <. m, C>, where r is the maximum degree ofconcunency 

in C. Tand < consist of the tasks and associated c.Q .. ~~fl'QQl ~-{\~$truc1Atc,. b- l R-struclUI"J$ . ' . . . . -

and one C-stmcturc. This is shown in Figure 8.Sa. Similarly to Case 1, an opdmal s:h~ ftrst 

executes the tasks with concurrency r and then completes the execution of the tasks with concurrency 

1. This is shown in Figure 8.Sb. An optimal schedule has length QPT = b+n. Also,·thcre is a list 

schedule which first executes the tasks in the A-structure. then executes the tasks in each of the 
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Figure 8.5: A task system and two schedules· case 2 
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A-tasks 
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To simplify .the figure it is assumed that m/r is an integer. Them chai•s. each with n tasks with 
concurrency 1, execute in the final n time units. Depending on the relative values of m and r, some idle 
time may exist in the final n time units. 

b) An optimal schedule 

Aoll Ao1n ai Aiu . ~il,O C1 
: ' • • 1 . . .. . • ••• • . • . 
A

0
m-r+u 

••• • 

To simplify the figure it is assumed that m/r is an integer. 

c) A "bad" schedule 
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B-structures, and finally executes the tasks in the C~re. - Thisc~UIC'i$ shOwn in Filurec 8Jc. 

khas length LIST= n+b(n+'l) =i n(b+l)+b • 

.". LIST/OPT= (n(b+l)+b)/(b+.n)and limila-. 00 LIST/OPT= b+l. Butm/(m-r~l}isnot 
' 

an integer. Thus, b + 1 = Lmi(m-r+ l>-' + 1 ~ L(m-1)/(m-r+ l)J + 1 = : 

L((m-l)+(m-r+ l))/(m-r+ l)i= L(2m-r)/(m--~+ l)J . 

. . . liIPi1n-+ 00 LIST/OPT = L(lorr}l(~~r+ l)J. 0 
_;• ._, . 

M A restricted problem 

We examine concurrent UET task systems in which C = {1;2}. As shown earlier, for any fixed 

number of processors exceeding 2. the sche~lllig.g of $J.ICh s~~ is _NP-tOIOllletc. In this section we 
,. . 

- ~ ~ 

give a polynomial time .algorithm whith produces optimal schedu_leJ on two i1rocessOJJ. This algorithm is 

a modifi.cation of the algorithm given by Co~. iUld : Graham (CO) which produces optimal schedules . . 

for basic UET task systems on two -processors. 

Assume that S == <T. <. m, {l,2} >is a concurtent UET task sYslem~- 1be algoridun is as foHows: 

1. Add all transitive edges to the dag representing <. 

2. Remove all tasks with concurrency two from this system along with any precedence constraints 

directly involving them. This yields a basic UET task system (i.e. without concurrency) S' = 

<T', <'. m>. Call this the uodqMng DKml· 

3. Remove-all transitive edges A-om the dag representitlg < '. 

4. Use the Coffinan-Oraharn algofithm to ptoduec a list,whidl an be uSQd to schedule S'. . .- . ~ , ~ - .- .. - -'~-; - -. .~ '""· -

5. Append (in any order) the tasks with coneun:encytwo to the front of the list This new list can be 

used to schedule S. 

~ntially, the tasks with concurrency two arc removed from the original system, a schedule is found for 

the underlying system and then each task with concurrency two is fit into that schedule as soon as all of its 

prcdeces.wrs have been executed. 
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Theorem U: The algorithm given above producetoptfinal schedules for concurrent UET task systems 

(in which each task has cona1rrency lor 2) on two prooeaaon. 

fmgf 

Suppose the schedule produced by this algorithm is not optimal. LefOPf be an optimal schedule. 

Because there are only two processors, if a task with concurrency two is executed at some time unit, 

then no other task can be executed at that time unit This means that the tasks with concurrency two 

can be removed from OPT, and the schedule compressed to get a tchedule for dlc·uaderlylng system. 

Two things ,should be noted about tllis schedule for the undedyina system: 

1. It is a valid schedule, since V <' Tin S' if and only if there exists a (possibly empty) sequence 

of tasks P1, ...• Pk, such that V < P1 < ... <Pk< Tia s. 

2. It is necessarily shorter dlan the schedule prodw;ed for. the. underlying system ifl step 4 of the 

algoritf1m. 

But an optimal schedule for tile underlying system result5 from the list wh~ wa produced in step 4, 

hence a contradiction. D 
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