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Abstract

Minimum execution time scheduling of task systems with resources has been the subject of several
papers over the past few years. The model used for much of this work assumes that the resources in the
system arc continyous. That is, there is one unit of cach resource, and a task may requirc any portion of
that unit during its exccution. While this is a reasonable assumption for certain bin packing applications,
it is intuitively unreasonable for certain other applications. In particular, the resources associated with
computer systems - rcaders, printers, disk drives - arc not "continuous” resources. We present an
alternative model of task systcms with resources in which the resources are discrete. That is, there are a
specific number of indivisible units of cach resource and a task may require only integral numbers of
those units.  Several results involving the worst case performance of list scheduling and critical path
scheduling with respect to this model are given. A new result on critical path scheduling of task systems
with continuous resources is also given. Finally, a comparison will be made between corresponding
bounds for the continuous and discrete models. '
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Chapter 1: Task Systems

Over the past fifteen years one of the most active areas of computer scieneeand industrial
engmeenng rescarch has been the scheduhng of large systems 'Ihrs rcseanch has been motivated both by
the existence of large industrial scheduling problems and by the exlstence of hlgh Speed dxgrtal
computers to solve those problems. Moreover, the models uscd to study these schcdulrng prohlems have
attracted great theoretical interest, and as a result, an immense qn'nntityfof rescareh hns ‘heen ddne on
them. o

In general, a scheduling problem is of the followmg form: Grven a sct of tasks which need to be
completed, produce a schedulc of minimum lcngth for comp!ctmg those tasks Oﬂen there are a
number of constraints placed upon the form that the schedule may take For example some tasks may
need to be completed before others can be started, or there may be a limit on the number of tasks that
can be "in progress” at any given Ume or some tasks may requlrc longer to completc than others Many
types of constraints are possible.

It should be apparent, even from the informai description given ahove, mat the seheduling of
systems of tasks is not trivial, and that ad-hoc methods have almost noehanee or‘ producing even near
optimal schedules, much less optimal schedules. Thc obvnous approach then is to fon'nulate a standard
set of rules (hopefully, a good sct) for producing schedulcs Indeed the dcsrgn and analysrs of g]g(_)mhm
for scheduling has been the primary arca of rcsearch concentration. For some classes of task systcms, fast
algorithms have been developed which produce optimal schedules for those systcrns.ﬁ For other classcs of
task systems, it has been shown that ﬁndrng algorithms which produce opdmal schedules in a reasonable
amount of time is unhkcly For thesc classes of task Systcms, the researeh has focuscd on producing
good, polynomial time, hcuristic algorithms. That is, algonthms which, in a reasonable amount of time,

produce good, though not nccessarily optimal, schedules. In conjunction with this, the perfonnancc of
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various simple and/or fast scheduling. algorithms has been analyzed, so as to provide a performance
"benchmark" that more comphcated algorithms can be compared to.

In thrs chapter we deﬁne the. nouons of a task system of a schedule and of a number of related
concepts that we wrll use t.hroughout this thcsrs We also grve a summary of the major results pertammg
to the basic task system modcl whrch we descnbe here S |
L1Thebasictask systemmodel
A task system is a system S = <T, <, m> where:

1. T= {Tl’ - s Ty} is a set of tasks - assocrated wrth Tjisa posmve mtcgral cxecuuon ume T

2. {isa pamal order specrfymg p_memg mnmm between the tasks.

3. Therearem rdenbcal proeessors. |
With respcct to the preccdence constraints, we have the followmg deﬁnmons If T < 'l‘.| then TJ isa
successor of T;, and Tiisa gm_dggssg_[ of T We wrll renresent the pamal order by a drrected acychc
graph (dag) with one nodc for each task and one arc for eaeh relatmn in rhe parual order We assume that
there are no transitive edges in the dag. Two examples of task systems are grvcn in Figurc 1 1- one isa
rully gencral task system and the other isa task system in whrch all of the tmks have an execution time of
one. -
A_a_lldsgh_du]gforatask system S, rsamappmgo T— (N {0})suchﬂm.

l Forallle(N {0HD.m> l{T; € T'c('l‘) <I< c('l') + T l}l.

2 lfT-(T- thena( DT -1(0('[‘)
These two condmons correspond to our mtumve notion of what consmutes a schedule that the tasks be
cxecutcd onm processors subject to the precedcncc constraints. More mrﬁcally. thc f' rst condmon
cnsures that at most m processors are in usc at any grvcn trme The seeond condltron cnsurcs that the
precedence constramts arc not violated. That is, if T; < Tj. then T mus_t have eomplcted execution before ’

Tj can begin execution.




Figure 1.1: Basic task systems

31‘\ 1B
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b) A task system with 2 processors and 13 tasks. Each task has an execution time of one.

Figure 1.2: Valid schedules

Schedule: AJA|JAJC|E]E
BiG|G]G|GIG ,
ASIBEEE

Time unit: 17'213%74151617138

a) A valid schedule for the task system given in Figure 1.1a. Cross-hatching is used to indicate idle
processors. The mapping o is not given explicitly.

: B

Schedule: [ATBTETJC ,G 1TK]
IMP DI H] 4-1
Time unit: 1 T KRR ANAR 1

b) A valid schedule for the task sytem given in Figure 1.1b,

wie|m
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Given a valid schedule, we definc for each i € (N - {0}), the set B; = {T; € T: o{T}) <'i < o(T)) +
T 1}. Also, let @ = minf{i : (Nj > i){B- = @]}. The schedule has]mgbw. and consists of the w time
units By, ..., B,. For each time umt E lf IB | <m, then B; has m - }Bij ﬂlﬁ processors. lntumvely, we

7

assume that the processors are numbered from 1 to m, and that procesorsl threegh IBLhave tasks

w’

executing on them and that processors [B;] + 1 through m are idle. Examples of vahd schedules for the
task systems in Figure 11 arc given in Figure 12, | y

Finally, we notce that there are a number of criterion for determining the "goodness” of a schedule.
The most widely used, and in many scnses the most natural ‘is that of mlmmlzmg the schedule length,
This criterion is refered to as the mininum cxeeution m Qﬂﬂgﬁl ﬁm nmg critefion. Thts is the
measure of optimality that we use throughout this l'.hess. :
1.2 Common submodels |

The model of task systems preeented above provides a“‘starting po;mt for virtually aii tl;eoretical
scheduling research. This miodel has proven  however, to be extmneiydifﬁcuit 0 deal with in its fuil
generality.  Morcover, many practical applications are most effectively analyzed using various
submodels of the model given above. Most of the rescarch has focused on Mpamcu!arwbmdelsof
the basic task system model. These submodels are: =~~~ 7 0T

1. Task systems where < is cmpty. That is, thcre awmp:eeedummts in the system.

2. Task systems where all of the task exccution tamcs arc ldemmal In :hls casc we assume without

losmfgenemhty that cach v; = 1. Thesc mmm&gm(ﬂﬂ)t&lm

With the exception of Chapter 7, we will deal cxcluswely wnth UET task systems in th:s thesis.
1.3 Scheduling algorithms TR

In this scction we describe the three types of schéduk:s whidl we wm uﬂﬁzé

List schedules are the most basic of the schedules which we will cxamine. They arc of particular
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interest not only because of their simplicity, but also because most intetesting scheduling algorithms
produce schedulcs which form a subclass of the list schedules. Intuitively, a list schedule is formed as
follows: Consider any (ordered) list L, of the tasks i in T. ‘!hetasks are acheduied as. follows: Whenever a
processor becomes idle, the list L is mstantancously scatmed from its: bcﬁnnmg until a task T (if any) is
found all of whose predecessors have completed execution. Task T is assigned to the idle processor and is
removed from L. |

More formally, a task T is ready at time /if for every T} such that T; < T;, o(T)) + 7~ 1< L A lis
schedulg is a valid schedule which is generated as follows:

1. Initially, L is an (ordered) list of the tasksin Tand /is 1, -~
2. While L is nonempty perform this step
a. Letk = [{T; ¢L: o(T)) S’SU(Ti)'*' -1}
b. For each of the first m - k (or less, if there aren’t m - k) ready tasks Ti,' on L at time [ let
o(T. i) = | and remove Ti from L. |
c. Let!/=1+ min {a(T) + r,-1:T; ¢ Landaﬂ')i—f -szl}
Figure 1.3 shows an example of a list schedule for the UET mksysaem glvcg in Figure L.1b.

List schedules are particularly attractive when dealing with UET task systems. ”In this case the
restriction that only list schedules (and subclasscs of list schedules) bn cons;fd;rc& as possible .schcdules for
the task system causes no loss of generality. To sce thls; cqns!dcr any sehédulc for a UET task system,
and assume that schedule consists of time units Bl' - ll A scheduk wnth length no more than w
results from the list consisting of the tasks in By, followed by the tasks'in B, followed by the tasks in B;,
and so on, cnding with the tasks in B - Figure 1.4 shows that it is not generally truc for non-UET task
systems that there is always a list schedule of minimum length among all schedules for the system.

Finally, for list schedules, note that given a list 1., the corresponding schedule (i.c. the mapping o) is

uniquely determined. For this reason, it is common practice when dealing with list schedules to simply
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- Figure 1.3; A list schedule for the task system in Figure 1.1b.

List (ML KJ I ABCDETFTGH

Schedule:  [MIBILIDJF |H
AVACIE
1 '2Y3%4

' Time unit;

Figure 1.4: List schedules are not best for non-UET systems.

2B

Task execution times are given beside the tasks.

An optimal schedule: AICTB R
‘ Y/AD |E | H
Time unit: 1121374

A list schedule: ‘
Listt AB CDE P

Schedule: AJCIDIE[F]
B|B /////¥4
Timeunits: '172'3 "4°§

In fact, o(B) = 1 in every list schedule for this system.
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give the list L, along with an informal description of the underlying:schedule. The mapping ¢ is not
formally specrﬁed because it tends to obscure, rather than illuminate, the nature of the schedule.
Throughout thrs thesis we will follow the practice of spec§yrng on”ly{he list aad net the mapping o.

L322 Critical path schedules o

Critical path schedulcs are one of the most wrdely studieﬂ subclassos of lm schedulcs. Intuitively,
these are schedules in which the tasks are ordered within thejm aocordmgto thcrr distance from a leaf of
the dag which represents the precedence structure (a leaf s a node wuhno successors). The idea is.that
tasks far from the leaves should be executed ﬁrst. o _ |

More formatly, the lgvel of a task in the precedence stmcture may be deﬁned as follows If T has
no successors, then level(T;) = 1; otherwise, level(T;) = 1 + m{lwelﬂ‘j)* T ( Tx}; A g[mcal m{h
schedule is a list schedule derived from a list having the - property that for any two tasks T and S 1f
level(T) > levek(S), then T precedes S on the list. Because the list comams the tasks ordered accordmg to
their levels, these schedules are also called Jevel xhgdnlgs An example of a crmcal path schedule is glven
in Figure 1.5. » |

As noted above, critical path schedules have Men itudled extemvely,; Thcy are of substanual
practical and theoretical interest for three reasons:. Frrsg the«rﬁethod is m(umvely appealmg. Second,
the method is applicable to any system havmg precedence constralm Thrr‘, these sch?dulcs are easyto
construct - using breadth first search the list can bc constructed in time hnear with the number of edges in
the dag rcprcscmmg the precedemefonstrain& V R - o o
L33 Coffman-Graham scheduling

Coffman-Graham schedules are the third class of schmhs we zmhae ’fhcse x:hcdule& are a.

subclass of critical path schedules in which the tasks of eaeb Mafeordered i pamcular way.
Specifically, Qﬁmanﬁ_ana_m schedules arc a class of list schedules for which the list is formed according

to the following rules: Each task is assigned a label as follows:
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 Figure 1.5: Critical path schedules

iv.l

The numbers beside the tasks are the levels of the tasks.

Criticalpathlist (AB C E DF G HI J KL M

Schedute:  [A TCIDIFIHIT [K]
Timeunit °'1 273747576777 ..

Figure L6: Coffinan-Graham schedules

M = ZProcessorns

M1
The numbers beside the tasks are the Coffman-Graham labejs of the tasks. .
Coffman-Grahamlist (B A D E C H G F I J K LM

7

Schedulee [B[DICIGIT]
JA|E H#F J
Timeunit: V1 12 131415

K
L
6
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1. Select a task which has no successors and assign label 1 io that task.
2. Assume that labels 1, ..., i - 1, have already been assigned. For each unlabeled task T, all of
whose successors have. been labeled, form a list (in Ms order) of the labels of T's
immediate successors. Assign label i to the task whose list:is lexicographically the smallest. -
’Il'_ne list used to do the scheduling contains the tasks in decreasing order of . their labels. An example of a
Coffman-Graham labeling and the corresponding schedule are given ia Figure 1.6
These schedules were first investigated by. Coffman and Graham [CG] in conjunction with UET
- task systems where m=2. As we note-in the next section, Coffinan-Grabam schedules are guaranteed to
' be optimal in this ﬁrﬁitcd case, while list and critical path schedules are not. . Since the initial work of
Coffinan and Graham, these schedules have been investigated by several other researchers, including
Lam and Sethi, Goyal, Leung and Jaffe [LS, Go, Le, Ja). In general.the mahematical properties of
Coffman-Graham schedules make them easier to analyze than the more general case of critical ~ath
schedules.- However, because Coffman-Graham schedulgs are a subclass-of eritical: path schedules, certain
results about Coffman-Graham schedules - in particular, lower bounds on worst casc performance - can
be applied to critical path schedules as well. We will make use. of this relationship in Chapter §.
14 A survey of major results -

In the remainder of this chap;er we survey the major mks,pemi-;-xing,;'e ;me,minin;um execution
time scheduling problem for the basic task systemn model and to the three types of schedules which we
utilize. . These results are basically of two kinds: cither they are NP~completencss. results, therefore

-implying that fiading. algorithms which produce. optimal schedyles.im.a regsonable amount of time is
unlikely; or they afc bounds on the worst case pesformance. of Jist, eritical path: or.Coffman-Graham
schcduli{ig. We first bricfly review the notions of NP-completeness. . -

14.1 NP concepts

Throughout this thesis a recurrent concept is the notion of a problem being NP-complete or
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NP-hard. In this section we give a bricf 'descﬁptbn'of these ideas. The reader is refered to the book by
Garey and Johnson [GJ79] for a detailed discussion.
The’set NP consists of all languages which can be recognized by a nondeterministic Turing machine
in polynomial time. Similarly, the set P consists of all languages which ‘can be recognized by a
-deterministic Turing machinc in polynomial time. It is not known Ma?bpropeﬂy contained in NP,
A language L ; in NP is NP-gomplete is the follewing condition is satisfied: ~ -

‘Given -a deterministic algorithm of time complexity T(n) > n for recognizing L, for each
language L in NP, there is an cffective way- to find a deterministic algorithm of time complexity
T(p(n)) for recognizing L, where p is a polynomial dependmgon L.

Clearly, if any NP-complete language is in P, then P = NP. “The usual method of showing that a
language L is NP-complete Is to show that:
L L, isin NP
2. There exists an NP-complete language L, which is redueible to L, in- deterrinistic polynomial
A languagc for which the second condition can be shown, but mmﬁmsm The recognition of
such languages is at least as hard as the recognition of NP-complete langhiages. -~
'Finally, we note that it is widely believed that P % NP. This-belief springs from the fact that there
has been an immensc amount of time and cnergy deévowed to:finding ‘a polymomial time algorithm for
'NP-minpfet‘e problems. Morcover, it is generally acknéwiodgod tﬁat;’dbtaming‘ lower bounds on'ﬁfmé
* complexity arc among the hardest types of results to obtain. This may help to cxplain why no one has
been-able to Show P-# NP, even though most rescarchers betiove that i - the case. ‘Thus, there is-strong
evidence that polynomial time algorithms for obtaining sofations to NP-compicte problems do not exist.

This leaves us to concentrate on the performance of heuristic algorithms for these problems.
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142 NP resuls

There are two important NP-completeness results pertaining to finding -minimum length schedules
for task systems

For UET task systems with m processoss, Ullman [U73, U7S5; U76] has shown that finding
mipimum length schedules is NP-complete. ng\stm and Kan [LK] have shown the same result using a
differcent construction. A major open problem is whether this result is true for any. fixed m 2 3. That is,
whether, for any fixed number of pmceasérs m 2 3, finding minimum. length schedules for UET task
systems with m processors is NP-complete. : As mentioned -earlier, when m. = 2, there j§ a polynomial
' time algorithm for finding minimum length schedules. Also, if the precedence constraints are restricted
to a forest, then tbere is a polynomial time scheduling algorithm. Both of thesc results are given in the
next section.

For task systems with unrestricted task execution times and no -precedence coastraints, Bruno,
Coffman and Sethi [BCS] have shown that finding minimum length: schedules is NP-hard even for
systems with just two processors.

Finally, both Ultman [U73, U75, U76] and Lenstra and Kan [L.K]:have shown the following: That
finding minimum execution time schedules for task systems with two processors, precedence constraints,
and task exocution times restricted to be cither 1 or 2, is NP-complete. - |
1.4.J Performance results

As evidenced by the NP-completeness resuits given-in- the previous. section, for most intetcsting
scheduling problems it is unlikcly that pelynomial tlmealuotid\ms exist - which -produce optimal
schedules. For this rcason, most of the. rescarch. attention has heen. on. analyzing the performance of
- various heuristic scheduling methods. Almest all of these results invelve worst case performance. That is,
an uppef bound is given for the ratio of the length of a-schedule of a particular type (for instance, a list

~ schedule) to the length of an optimal schedule for the: samic task system.  In: this:survey we restrict our
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attention to the worst case performance of list, critical path and Coffiman-Graham schedules. ‘Again we
“note that most useful scheduling algorithms can be formulated: as algoridhms which produce schedules
v)hich are a subclass of the list schedules, and that ‘critical path and Coffman-Graham: schedules: have
- properties which make them particularly attractive, bothx theoretically and practically.

* Many of the-results-which we cite ar¢ also the best pmsiﬁtnﬁl& “Fhis means that the result is
both an upper and fower bound on the worst case ratio betweon the length of schedule of the particular
typc and the length of an optimal schedule. That is, thereexists-a task systewy, a:schedule of the particular
type and an optimal schedulé for that task system; such that thiratio of the schedule lengths is arbitrarily
close to the upper bound. -

Throughout this thesis, given a task system S, we use the : follewing four values when citing various

results:

OPT is the length of an optimal'schedule for S -

LIST is the maximum length of any list schedule for §

CPATH is the maximum length of any critical path schedule for § = -

€G is the maximum length of any Coffinan:‘Graham schedule for S -
Before -actually giving any results, we note that there are ‘two excelient: ‘references for the 'interested
reader. Most of the major results cited in this and the. previous section are given a full tréstment,
including proofs, in the book by Coffiman [C]. Secondly, a ncar exhaustive listing of scheduling results
for many kinds of task systems and scheduling algorithms s gives in JGLLK].

" The most extensive rescarch with regard to the schedules that we arc eonsidering has been done for
UET task systems. Some of the carliest work was - done by-Grahiim [G66] who showed that LIST/OPT
< 2- 1/m, and that this is the best possible result. Chen {Chi has shown that CPATH/O0PT € 4/3ifm
= 2 and that CPATH/OPT < 2- 1/(m - 1}if m > 3. Each portion of this bownd is the best possible.

This result shows that critical path schedules- have - slightly better warst ‘case behavior than do list
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schiedules in the gencral UET case. If the precedence. structure.is restricted to a troe, Hu [H] shows that
critical path schedules arc optimal.

With rega;'d» to Coffman-Graham schedules and the UET case, there are two major results. If m =
2, then Coffinan and Graham [CG] have shown that - these schedules-are optimal. - If m 2 2, then Lam
and Sethi [LS] have shown that OG/OPT < 2 - 2/m, and thatthis: i the best.possibic result. = An
alternative method of producing optimal schedules when m = 2 is.given by Fujii, Kasami and Ninomiya
[FKN]. This method is based on maximal matchings and has not been genesalized for systems with more:
than two processors. .

With respect to task systems with no precedence commaudmm _exenu&ea times, there are
several intcresting results pertaining to- list scheduling. -Grabam [€366] has shown that. in this instance,
LIST/QPT < 2 - 1/m, and.that this is the best possible result. . This.is exactly . the same bound as was
given for LIST/OPT in the UET case. In fact, Graham [G66] has shown that this same bound &olds; -
even for task systems with both precedence constraints and unrestricted task execution times. Graham
[G69] has also shown the following result. which explicitly incorporates the task execution times:
LIST/OPT<1 + (m- Dimax{r; : T; € 7}]/(Eri'€ 7 7;)- Note that both Coffman-Graham and critical
path schedules are equivalent to list schedules in this context becausc there are no precedence constraints.
There are, however, a number of other types of schedules which have been studicd for this submodel.
Most of thesg are subclasses of list schedules in which the tasks are ordered in the list based on the task
execution times. Again the reader is refered to [C] and [GLLK] for a thorough n'caunént
1.5 Extensions

For many praétical applications the basic task system model presented here has proven to be
insufficient. Fof this reason, and out of theorctical curiosity, a number of extensions to the basic task
system model have been investigated.

One major area of rcscarch in this regard has been the study of preemptive scheduling. In this
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.extension, a task may be interrupted during its execution and then continued later in the schedule. For
UET systems, this produces no new results, however for systems where task execution ‘tirmes are not
resn‘icteci, this is an interesting and powerful extension. A large numbér of results have been obtained on
preemptive scheduling, many of them analogous to the results cited in the previous section. Most of these
results may be found in [C] and [GLLK). | ‘

Other extensions to the basic model include the-following: Liu and Liu {Li] and Jémz {Ja] have
investigated task systems with processors of different types - each task specifies the fype of processor that
it must execute on. Ibarra and Kim [IK], Kafura and Shen [KS] and iaffe [Ja] have mvatigatcdtask |
systems where the processors have different'speeds. Lioyd has studied UET task systems where each task
© may require more than one processor during its execution. These results are presented in Chapter 8.
Finally, a number of researchers have investigated task systems with resoiirces. These systems are the

main focus of this thesis,



For many practical schcduhng problems the basic task system model presented in Chapter lis
madequate For these problems, the performance bounds for the basnc modcl are netther accurate nor
informative. Intuitively, the basic model docs not takc enough ol‘ the parameters of t.hesc problems into
consideration to provide good bounds. For instance, consuder the followmg three scheduhng problems

1. A computer system has associated with it, in addmon to proccsors several types of resources.
including memory, disk drives and printers. In general there is a set of Jobs to be executed on the
system, and, dependmg on the circumstances, there may or may not be precedence constraints
associated with these jObS Each jOb has certain requtrements wuh rcspect to the resources of the

' system For example, a jOb may rcquire 20!( of memory, two dtsk drives and a pnnter The |

problem is to produce a schedule for 'exccuung tlns set of jobsm avmmlmum amount of time. |
Clearly, for such a schedule to be vahd the‘ demand of the jObS executmg at any grven ttme for
each resource, should not exceed the avanlable quanttty of the resource

2. A large construction company possesses a certain amount of equrpment hulldozers, trucks, cranes,
etc. In addition, the company has a number of cmployees Together the equlpment and the .
employees constitute the resources of the company ln general there is a sct of constructmn
‘prOJects for the company to complete Each pro_|ect ’rcqulres certam plcces of equlpment and
numbers of people. Herc again, the problcm is to produce a schedule for completing the pro:ects
in a minimum period of time, given the resources of the company 57

3. Anidcalized bin packmg problem is the followmg lecn aset of ng_ms and a sct of b_ms pack the
items mto a minimum number of bms l‘he ltems arc of rdcntrcal sue and shapc. although they

may vary in other parameters for instance, in welght and cost. l‘hc bms are ldcnt1cal m all

respects. In addition to having a fi xed siz¢ and shapc the bms have ﬁxcd capacmcs with respect to
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the other parameters of the items. Foréxample, ﬂtesemay be limits on the total weight and total
cost of the items packed into any smgle bin. In addmon, thcrc may or may not be a limit on the
total number of items that can be packcd into any srngle bm ‘The problcm is to pack the items
mto a’mrmmum number of bins wrthout vrolatmg the capacrty constramts of the bins. -
The outstandmg feature of each of these problems is the presence of a. mmg constraint. These ,
constraints are sufficiently powerful that it is unrcasonablc to expect that usmg the basrc task system
model for analyztng thc pcrformancc of schcdulmg alognthms for these problems wrll prowdc useful
results l‘he power-of these constraints cap, however, be capturcd by cxtcndmg the basxc task system
model to mclude a set of resources. Each task may requtre some or all of the resources dunng its
exccution. Such a task systcm with resources can be uscd to etfcctrvely model each of the threc problems
outlined above although for problcm 2and possrbly for problem 3 there is no processor constraint, We
will retum to the auestion of processor constramts ina later section. | B
ln the remaindcr of this thesis we deal exclusively with task systcms with resources. Depending on
the exact naturc of the problem under considcration. there are tﬁro alternative forrnal modcls of task
systems with resourccs that may be utilizcd In the next two scctions we ertamlne thosc two models.
21 Iasksxstgmsmthmnuuuousmm -
ln this scction we examine task systems wrth contmuous resources. Thts model has been used to
obtain almost all performancc bounds for the schcdulmg of task systcms wrth resources to date

Auhlustsmgmuuhmnummusmmmsystcms— <7‘ <, m, s>where

L. T= {Tl } is a set of tasks - assoctatcd wrth Tiisa ptmtwc mtegral exccution time T
2. <isa parual order spccrfymg preccdcncc constraints bctween thc tasts.
3 'l‘hcre arcm tdenttcal Processors.

4. s is the number of different resources. It is assumed that s > 1, that there is cxactly onc unit of
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each resource, and that each task may require any portion of Mm_e uni; for each resource.
For each task T; and each resource v, R(T) € [0, 1] specifies:the portion offesoume v:required by task
- Ty during its éxccution. Because a task may require any portion Vof: each resource (all, none, 1/2, or
000001, for instance) we say that the resources argmm
| A yalid schedule for a task system with continuous resoumes-S,,isa manpmg a:F =N - {0}) such
that:
1 Forallle (N-{0}). m > [{T; € T: o(T) < ISa(F)+ o-1H. - -
2 IfT;< Tj, then o(T}) + ;- 1< a(Tj).
3. Forallle(N-{0}),andv,1 <v<s 12> Z Rv('l' i) summing over all Tirsuch that
o(T) SIS o(T) + 7;- 1. e |
This definition is identical to the one for basic task systems, except for.condition 3. This last condition
insures that at any given time unit, the currently. executing.tasks do not: fequire. mofc than one unit of
cach resource,
Inwitively, a list schedule for a task system with continuous resources may be constructed. as :
follows: Initially, let L be.any (ordered)- list of the tasks in 7. The tasks are scheduled as: follows:
Whenever a processor becomes idle, the list L is instantaneously scanned. from.its beginning and the first:

e N

task T (if any) which meets the following criteria is removed from L and assigned to the

[Each task Tj such m;t Tj < T, has.completed execution-and *Z.dfékg..; «-§) vepresants the total-respurce
rcquigcmc,n& of all currently cxecuting tasks, then for each tesource v, 1, + Ry(T) < L This last
requirement guarantees-that the currently executing tasks do not require masc than atotal-of oncuw for:. -
any resource, Muré formally, axt}lﬂ;m&*fa a 1ask-System - with gontinuous resources is a valid:-

schedule which is gonerated as follows: . - TR IS (LR SR
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1. Initially, L is an (ordered) list of the tasksin T'and /is 1.
2. While L is nonempty perform this siep
a Letk = {T;¢L:o(T) </<o(T)+7-1}]
b. Foreachv,1 <v <s, letr, = T R (T;) summing over all Tlsudl that
o) SI<e(T) + 73-1
¢. Let L' be a list of the ready tasks on L at time / the tasks in the same orderon L. ason L. - |
d. While L' is noncmpty and k < m-perform dhis step
i. Let T be the first task on L
ii. Ifforeachv,1<v<sr +R (M1,
then let o(T) = , letk = k+1, for each v, letr, ﬁ.r¢‘+‘R«v('l‘),éndrcmOVeTfrom L
iii. Remove T fromL' -
e. Let/=1+ min{o(T)) +7;-1: Tj¢ Lando(T) +7;-12 8
An example of a task system with continuous resources and a list schedule; for that system i$ given in-
Figure 2.1 - - |

We note that critical path and Coffman-Graham schedules retalri their original definitions of being
particular subclasses of list schedules. |
21.2 Shorcomings

There are two major shortcomings of the task system with continuous resources model.

First, the assumption that the resources are “continuous™ is not an accurate refloction of efther
existing computcr systems or of many industrial scheduling probleriis. In thosc instances, resources are
much more "discretc” in nature tham they are "continuous”™. Fer:instance; computing resources such as
tape drives and line printers are generally available only in small quantiies ‘and a task can require only
whole units of them. Morcover, while memory may be thought of as being continuous due to its large

size, it is debatable whether memory should cven be viewed as a limiting resource in terms of practical
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Figg re 2.1: Example of a task system with continuous resources
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computation.

Second the performance bounds that have been obtained for various hcunsch with respect to the
continuous resourccs model, depend on the number of dlfferem rcsources but not on. the aetual number
of discrete units of each resource. For systems in whnch the avaﬂable“quaqﬂtfgs of the’ resources are small,
th¢ actual worst casc performance of various heﬁrisﬁcs may be much bettt;r than these bounds indicate.
22 Task svstems with discrefe resources B

~ To try to overcome the perceived shortcomings of the task:sysu':ms with continuousjregouroes model,
we consider a model of task systems with discrete resources - there 1s a ﬁxed number of indivisible units
of each resource which tasks may require during execution. A e o
2.2.1 The model
A task system with discrete resources is asystem S = <7, <, m, s> where:

1. T={T},. , T} isaset of tasks - associated with T; is a positive integral execution time ;.

2. {is a partial ordcr specifying ‘pMmc constraints between the tasks.

3. There are m identical processors. | |

4. s is the number of different resources. It is assumed that s > 1, that there are r; indivisible units of

resource i, and that a task may require only integral numbers of these units for each resource.

For cach task T; and cach resource v, R (T;) specifics the number of units of resource v required by task
T; during its exccution. Because a task may require only integral numbers of units of each resource, we
say that the FeSOUTCes arce discrete. | v

A yalid schedule for a task system with discrete resources .S is a mapping o:7 — (N - {0}) such
that: |

L Forall/e(N-{0}).m 2 {T;e T2 o(T}) S!S o(T) + ;- 1}
2. IfT; <Tj. then o(T) + 7; - 1< a(Tj).

3. Foralt/le (N-{0}),andv,1 < v <5, 22 Rv('l‘i) summing over all Ti such that



O.(Ti) <IL U(Ti) + 7 1

This definition is identical to the one for basic task systems, except for c&ndiﬁc-)n 3. This l;lst condition
insures that at z;ny given time unit, the cﬁﬁendy executing lasks do not require m;)rg than the existing
number of units of each resoume | h B

Intitively, a list schedule for a task system with discrztc,:rés?oui’ccsl rﬁay be constructed as follows:
Initially, let L be any (ordered) list of the tasks in 7. The tasks are scheduled as follows: . Whenever a
processor becomes idle, the list L is instantancously scanned from its bcginning and the first task T (if
any) which meets the following criteria is removed ;‘rom L and ;&signcd to the idk processor: 1. Each

J J
requirements of all currently executing tasks, then for etehmree G;Jf:, + RYT) S r,. More

task T; such that T; < T, has completed exccution and 2, lﬂfiv.-i..; , r;] rcpresents the total resource
formally, a Jjst schedule for a task system with discrete resources is a valid schedule which is generated as
follows:
1. Initially, L is an (ordercd) list of the tasks in T'and /is 1.
. 2. While L is nonempty perform this step
a. Letk = [{T;¢L:o(T;) /< o(T) + 7;-1}}
b. Foi' eachv,1<v<s let r", = X R (T;) summing over all T; such that
U(Ti)SISU(Ti)'*' fi'l
c. LetL’ be a list of the ready tasks on L at time /, the tasks in the same orderon L* ason L.
d. While L' is nonempty and k < m perform this step
i. Let T be the first task on L'
i Ifforeachv, 1 S v < s 1) + RYD <,
then let o(T) = [ letk = k+1, for cach v, It r; = r;+Rv(T):md remove T from L

iii. Remove T fromL"

e. Let/=1+ min {o(T)) + 7;-1: T;¢ Land o(T) + ;- 1> 1}
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Figure 2.2: Example of a task system with discrete resources
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An example of a task system with discrete resources and a list schedufe for that system is given in Figure
22.

We note that critical path and Coffman-Graham schedules retain their original definitions of being
particular subclasses of list schedules.

We arc not the first to consider task systems with discrete resources. The original formulation of
task systems with resources by Garey and Graham [GG73, GG75)} involved discréte resources. Morcover,
an NP-completeness result of Ullman [U76) involves discrete resources. However, as far as performance
" bounds are eoncerned, almost all of the previous work: hasbeen dene for systems with continuous
resources. The only results pertaining to the discrete modcl are some ﬁ:{a:ieed}esuits oFGéyal [Go] and
Leung [Le] involving systems with 0-1 resources. These are systems with exactly one indivisible unit of
each resource. A task either réquires all of a resource or none of it.

As noted earlier, the discretc resources approach is designed to  overcome the mmgd
shortcomings of the continuous reseurces approach.- ‘The performance bounds for systems with discrete
resources will incorporate the values 1y, ..., I (these are the number of units of each resource). This
means that the performance bounds will distinguish between task systems with different numbers of the
same resource, unlike in the continuous resources case. They will also be able to indicate the effect on
performance, if additional units of an cxisting resource are added to the system,

In the remainder of this chapter, we survey the NP-completencss fesuls involving task systems with
resourccs (discrete and continuous) and discuss the role of processors in this model. - -

In our discussion of basic task systems in the previous chapter we mentioned scveral
NP-completeness results regarding the minimum execution time scheduling of thasc systems. As might

be expected, much the same results exist for task systems with respurccs.< In this case howcver, the results
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are more definitive than for basic task systems. Ullman [U76] has shown that finding minimum
exccution time schedules for UET task systems with discrete resources is NP-complete, even for systents
Vwil:h only two processors, onc discrete resource with one unit (and arbitrary precedence constraints). For
continuous resources, Garey and Johnson [GJ74] show that finding minimum-execution time schedules is
NP-complete for UET task systems with threc proccssors, one continuous resource, and.no: precédence
contraints. They also show [G174] that fmdipg minimum execution time schedules is an NP-complete
problem for UET task systcms with two processors, one continuous reseurce and precedence constraints
restricted to a forest.

From the above results we can conclude that for virtually all interesting scheduling broblemsrfor’r
task systems with resources, it is unlikely that polynomial time alogrithms.exist which: produce optimal
schedules. This leaves the study of heuristic algorithms for scheduling. In this thesis we cxamine list and
critical path schcdulés. As noted in Chapter 1, these are the two si’mﬁlese and most intuitive scheduling
heuristics for UET systems. We will not be particularly concerned with »Cofﬁnaur(?raham scheduling,
except in one instance where we use it to get a lJower bound on the wotstcase peffomélancej of critical
path scheduling. The reason for this:lack of intense interest in Coffman-Graham- scheduling is that,
particularly when dcaling with cxtensiens of the basic task system: medel, expericnce has showi that the
difference in the worst case performance of critical path and Coffman-Graham scheduling is very small
rclative to the worst case bound. Because mis:,diffcre,nce is so.small; the analysis oﬁd\c?pcrfomance of
both critical path schedules and Coffman-Graham schedules s of little or no practical interest.

In both of the models of task systems with resources we study, there is a st of m-processors. The
role that these processoss should play in this model is a scrious question,” both theotctically and
practically. There arc two distinct schools of lho\ight on this issue.

- One approach is to assumc that the processors play ne-role in coastraining the schedule.  In this
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case, ii is assumed that the number of processors is-at lcast as large as the number of tasks in the system
(i.e. m > n = |T)). This assumption means that given any time unitS'Bi, Bj with j >i; and any task T € Bj,
the reason:that T did not execute in B is due to cither a resource constraint or a precedence constraint. It
is not the casc that B; was "full”, which would mean that there was "no reom" for T in B;. As far as
quomance bounds arc concerned under this assumption, it is as if processors never appeared in the
model at all. The quantity m plays no role in the bounds for task systems with no processor constraint.
For certain applications, this is a reasonable assumption-~ for msbamc. applications 2 and 3 that were
discussed at the beginning of tlﬂs chapter:  In the scheduling problem for 'a construction company given
' thcre, therc was nothing corresponding to a processor constraint. “In the bin packing problem it was noted
that there may or may not be a limit on the number-o&im placed into-any single bin (such a limit
corresponds to a processor constraint). Much of the previous work on performance bounds for:task’
systems with resources has been on systems without a processor constraint.

The second approach to the role of processors in the task system with resources model is that the
processors are vital in determining worst case performance, and that many applications demand a model
_ involving processors. Even so, rit} can be argued that no generality is lost 6y using a "no processor
‘constraint” approach, since processors can be treated as just another rcsource. That is, given a
performance bound for systems with no processor constraint, and a task systcm with s resources and a
processor constraint, simply apply the bound as if the system had s+1 resources. However, from an
intuitive vichoinL this approach is suspect, since processors are not "just another resource™. The
processor resource -possesses certain characteristics that are not sharcd by resources in general. In
particular, cvery tésk requires ¢xactly onc unit of the processor resource - no more and no less.
Furthermore, with respect to task systems with continuous resources, the processor resource is unique in
that a task may not require just any portion of the resource, as was assumed for continuous resources in

general. At least intuitively, there is no reason to believe that treating the processors as an  additional
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kind of resource will result in meaningful worst case bounds.
2.5 The problems to be studied o
In this thesis we study minimum execution time scheduling of UET task systems with resousces. We
examine the following four models:

UET task systems with continuous resources and no processor constraint

UET task systcms with continuous resources and a processor constraint -

UET task systems with discrete resources and no processor constraint

UET task systems with discrete resources and a processor constraint
We investigate the worst case performance of list and critical path scheduling for. cach. of these models.
We also compare the bounds for the four models-and try to delincate the relationships between those

bounds.
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Chapter 3 - List Scheduling

In this chapter we study the list scheduling of UET task systems with resources. As noted in the last
chapter, list schedules are the fundamental type of schedule which we consider, and ‘most scheduling
algorithms produce classes of schedules which are subclasses of the list schedules. Moreover, no
- generality is lost by restricting our attention to list schedules when dealing with UET task systems,
because there is always a list schedule of optimal length.

For comparison purposcs, we again mention the following two results on the worst casc performance
~ of list scheduling for basic UET task systems (i.e. systems without any resources). If there is no processor
constraint (m 2> n) then all list schedules are optimal. That is, LIST/OPT = 1. If there is a vprocessor
constraint (m > 2) then LIST/OPT < 2 - 1/m, and this is the best possible result [G66].

3.1 Continuous resources

The major work on list scheduling for UET task systems with continuous resources is by Garey,
et.al. [GGJY]. They show for a system with no processor constraint (m > n), that LIST/OPT < s‘OPT/2
+ s/2 + 1, and that systems exist for which LIST/OPT > s'OPT/2 + s/2 + 1 - 2s/OPT. This upper
bound can be compared to the corresponding result for UET task systemns with no resources. That
comparison shows that adding even a single continuous resource to a‘ UE'f task systcrﬁ results in a
tremendous degradation of the worst case behavior of list scheduling. That is, for a UET task system
without resources, list schedules are always optimal, whereas the addition of a single continuous resource
can result in list schedules having length quadratic in the length of an optimal schedule. This comparison
confirms our carlicr comments that performance bounds bdscd on the basic model arc probably not good
indicators of performance for problems involving resources.

For UET task systems with continuous resources and a processor constraint, there are no tight upper

bounds. There are, however, two partial results. First, is the result of Garey, ct.al. [GGJY] cited above,
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using s+1 resources instead of s - the extra resource accounting for the existence of the processor
constraint. This yields LIST/OPT < (s+l) 0P’I‘/2 + 8/2 + 3/2. Second Yao [Y] has shown that
LIST/OPT < mm{m (m 1)s° OPT/(Zm) + 7(m-1)s/(2m) + 1} As mentloned above nelther of these
results is best possible. | |

In this sectmn we statc and prove worst case performance bounds for the hst scheduhng of UEI‘
task systems with discrete resources. The only prevrous work for thcse systems is by Goyal [Go] and
Leung [Le). Goyal mvestrgated UET task systems wrth one dascrete resource, where rl = 1 (there is
exactly one umt of that one resource, 5o each task erther requmes all of the resource or none of rt) He
shows for systems with no processor constramt (m 2 n) that LlS’I‘ /0!71' 5 2, and for systems \vrth
processor constramts (m 2 2), that LlST/OPT < 3 Z/m Moreover both of these results are the best
possrble Comparmg these bounds to those for UFT task systems wnthout resources. we note that the
addmon of one umt of one dlscrete resource eaused the worst case ratro of LIST to OPT to mcrease by 1
in the no processor constramt case, and by 1 - l/m for systcms wnth a processor constmmt. Leung
mvestrgated UET task systems wrth drscrete resources in whrch each 5 -1 undcr the rcstncuon that each |
task may require at most one unit of resource (1 e. for each task T, Zs_ Ri('l') < 1) He showed that
LIS’ 1 /OP'I‘ mm{m (2-1/m) + s(l 1/m)} and that this is the best possrblc result. Our results
gencralize the results of Goyal and Leung. »

Wc prove the followmg two results about the worst case performance of hst scheduhng for UET task
sysicms with drscrete resources: | B !

“Theorem 3.1: If m > n (no processor constramt) then LIST/OPT <1+, where t = 2?:_1 .

Morcover, this bound is the best powble.
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Theorem 32: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) + (1-1/m)},
‘wherer = X}_ | r;. Moreover, thisbotind is the best possible:
These resultsart; proven iﬁ the next two sections. - Before doing 'so, however, there are several remarks to
be made about these two theorems.

First, note the surprising role played by the resources in determining the worst case bound. The
relevant quantity is not the number of different resources, but rather is the sum total of all the units of all
the resources in the system. The number of different resources and ‘the- distribution of the r units of
resource among those different: resources is no factor. This ‘means that the worst ‘cas;: ‘bound for

' LIST/OP'I‘ is the same for a system with 1000 units of one resource as it is for a system with oné unit of
each of 1000 resources. This contrasts sharply with the results for-UET task systems with continuous
resources, where the key parameter is s, the number of different resources.

Second, these bounds indicate that for each 'unit of (any) resourcé adddd to 2 UET task system, the

worst case ratio of LIST to OPT increases by 1 in the no processor constraint case, and’by 1 - 1/m in the

processor constraint casc. This follows, because for r =0, our results are identical to those cited in the
introduction to this chapter as the best possible bounds for LIST/OPT for basic UET task ‘systems (i.e.
without resources). These results provide a clear indication-of the role- of the. resources in determining
worst case behavior.

Third, unlike the situation for UET task systems with continuous resources, there is a tight upper
bound for UET task systems with discrete resources and a processor constraint. For that result, we note
that the bound of m holds for every r > m - 1. This indicates the poiit &t which the processor constraint
dominates the resoufcc constraint with respect to the worst casc performarice of list schediling.

3.2,2 The upper bounds |
In this section and the next we prove Theorems 3.1 and 3.2 - the upper bounds in this section and

the lower bounds in the next. In both sections we concentrate on the proofof Thcorem 3.2 - the result for
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systems with a processor.constraint. We do this because those results are slightly more complicated (due
to the presence of the processor constraint) than those: for Theorent 3.1.. At the end of each section we
.bricﬂy indicate how to modify those results'mobkamme,ml&m-s}_ze mpmccssowmlstramm
Lemma 3.1: If m > 2 (a processor constraint), then LIST/OPT < min{m, (2-1/m) +:1{1-1/m)}, where
r=2_y5 .
Proof
Assume that a UET task system with discrete resources is given. We prove:the result by obtaining a
lower bound on OPT, aad an upper bound on LIST. Combiniag shese bounds gives an upper bound
for LIST/OPT. .. . . - o e

We make use of the following notation throughout the proof: Let k be the length of acnmal
path in a directed acyclic graph Wﬁmﬁﬁc precedence constraints; and for sach resource §, Jet x;
= I Ry(T) summing overall Ty € T. That i, x; s the 1otal demand: for résousce i among all of the
tasks in the system.

Consider an optimal schedule_ for the system. : Three: observations: can . -bc made:  First; an .
optimal schedule can be. no shorter than k, the Jeagth of a critical path:: Second, an optimal schedule
can do o better than to have tasks executing on each-of the processors during each time unit. Third, |
for cach resource, an optimal schedule can do no better than to have all units of that resouree utilized: -
during each time unit. Thus, OPT 2> max{k, o/m, xy/ry, . xg/r}. -

| Now consider an arbitragy list schedule for the system. Such a:schedule consists oFtﬁd types of
time units: Those in which-all processors-have tasks exccuting on-them, and those it which atleast one -
processor is,idlc. The number- of time uaits with idle processors aray-be beunded abeve as follows:
Whenever a processor is idlc during a time unit, each unexccuted task, T, is prevented from exccuting
‘on that processor for onc of two reasons: Fither a predecessor of T has pet:yet cxecuted, or, for some

resource j, the demand for resource j by tasks cpecuting during that time - unit, together with the -




+39-

- demand for resource j by task T, exceeds T It is well known that there can be at most k time units in
which ‘only the first constraint prevents tasks from executing: -Moreower, at each time unit where the
second constraint prevents some task from executing, at least - one unit of some resource must e
required by some task exccuting in that time unit. Hence, there are at most 2%= 15 time units-in

4 which there i8 an idle processor due, in part, to the second constraint. Thus,

LIST <k + 2_; x; + (rk-2}_ ) x)/m = n/m + (Bbm)k + (-V/m)ES | x;.
.'. LIST/OPT < [n/m + (I-1/m)k + (1-1/m)2§_; x;)/ max{k, n/m, x,/r}, ..., Xg/tc}
S@Vm) + (F-/m)Ef_ 5
=(2-1/m) + (1-1/m) -
Finally, note that for all m, LIST/OPT < m, since
1. A list schedule cannot have a time unit in which all processors are idle uniess the schedule has
completed.
2. There are at most m"OPT tasks in the entize task system.
.". LIST/OPT < min{m, 2-1/m) + n(1-1/m)} : : o
Lemma 3.2: If m 2> n (no processor constraint), then LIST/OPT < 1 + r, wherer = o
Proof
First note that since m > n, each time unit of any schedule can be treated as having at least one idle
processor. ‘Then, analogously to the proof of [.emma 31 we can show that
OPT > max{k, x)/ry, . .x/r} and LIST S k + 5} _ xp
". LIST/OPT < [k + = _ ) x;] / max{k, xy/ry; . R/rc}
| <1+ 3_yy5

=1+r : : ' a
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In

this section we prove that the upper bounds for LIST/OPT given in the previous scction are the

best possible upper bounds for the worst case performance-of list scheduling for UET task systemis with

Lemma

Proof

FCSOUrces.
3.3: Ifm > 2 (a processor constraint); then LIST/OPT < min{m; (2:1/m) + r(1-17m)}, whiére

r = X}_, r;, is the best possible bound.

We show that for any number of processors m, and any distribution of r units of resource, that

the ratio LIST/OPT can be arbitrarily close to min{m, (17in) + r(I-1Am}. Weletr = =}_, r,

where r; is the number of units of resource i. Weassumiothat-each r; is nofzero, and that r does not

‘exceed m - 1. Now, let. be a multiple of m and corsidera task-sysiem consisting of thé following

tasks:

1L

2,

Tasks A} , . Aq.r. 1), Where each A, requires no-resources. *

Tasks B}, ..., B, where B, < B, ; for 1 < i 'z~ 1 and whese each'B; rquircs one unit of
resource sand @ units of all other resources. |

For cach resource v, 1 < v < s, there are tasks DY, ... , D‘,’v, each of which requires all the units
of all resources, and tasks CY; for I < i S 1, and 1< j < 7, eaéh of which réquires one unit of
resource v and 0 units of all -other resources. ‘'The exccption ﬁmm"cﬁs’l, s C?s'z
require no resources. Fuﬁhcnnorg.- for cachrvand i, 1 <Li rv,D‘l' < C?f < C‘l'z < C‘l'z

Such a sequence of tasks will be referred to as the DY chain. -

An cxample of such a task system for the case of s = 1 is shown in Figuseé 3.1.

An optimal schedule for this UET task system with discrete resources has length OPT = z + r.

In this schedule the D-tasks execute in the first r time units, and the C-tasks, B-tasks and A-tasks

exccute in the next z time units. During each of these z time units, r C-tasks, one B-task and m-r-1
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Figure 3.1: Task system used in Lemma 3.3,
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A-tasks execute. Moreover, all units of each resource are used during ‘éach of these z time units.
Figure 3.2 shows an optimal schedute for the W‘Mﬁ*m% Figure'3.1. ‘Note "that*an optimal
schedule can be generated from the hst (D-tasks, C-tasks, B-tasks, A tasks) Such a hst schedule will
be identical to the one described hcre except that some of the A-tasks *wnll execute w1th the D-tasks
instead of with the B-tasks and C-tasks. | | o |

Now consider the list (A-tasks, B-tasks, D{-cham Dfl{l-cham. Dz-dlam DR -cham) In thls

- schedule, the A-tasks execute in the first (m- r-l)z/m tnnc units. All m processors are utilnzed durmg
these time units. The B-tasks execute m the next z m§ units. Since cach D-task mqulreg all the umtsi
of each resonrce, none of the D-tasks or C~tasksaet;ute with the MS. Finally, the D}-chains
execute, one chain at a time. The execution of each chain requires z+1 time units. Thus, this
schedule has length LIST = (m-r-Dz/m + z + (z+1r = 2-V/m + r(1-1/m§); 4 r. Figure 33
shows such a list schedule formetasksystcmgiven inF'gureJl. S

. LIST/OPT = [(Z-llm + r(l llm))z + r] /(z + t)
" limit, o [:ISTIOPT*“ 2:1/m) :-F xﬂ-vni)
Finally, if r>m -1 tken the bound ofm for IZIST/OFI' can be @mm:hed by eonstdenng a system
w:thmesamesctofusisasifr—m 1, wxﬁ:ﬁwmmm@qm%aﬂf}:m L 0
Lemma 34: 1fm > n (no processor constraint), then LISTAOPT <1 41, ‘wherer = Z8_ 1 ry s the
best possible bound. | ) -
m.

We show that for any distribution of r units of resourccs that‘the ‘ratio LIST/OPT-can be
arbmarﬂydosem 1471, asnmugﬂmmcreisnopmcmorm Welstr = Z3_ r;, where

r; is the numbcr ofmiﬁofmmc i Wc mnneMench r Jsmro,.wl‘lﬂy,l@t zbean arbm'ary

integer and consider a task system consastmg of the followmg tasks:
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1. Tasks By, .., B, where B; < B; ., for1 S i £ 2-1 and wherc each B, requires one unit of
resource s and 0 units of all other resources.

2. For x;:ach resource v, 1 < v-‘s s, there are tasks DY, ... , D}'v. each of which requires all the units
of all resources, and tasks Ci} forl1<i<r, and l < jv 517.. each of whicj:h requires one unit of-
resource v and 0 units of all other resources. ’Iheiexceptivonci‘s that tasks Cﬁ P .'C‘;’ 2
require no resources. Furthermore for cach v andr 1<i<r, Dv < Crl { C12 . < C‘-’

This task system is identical to the task system descnbcd in the prcrrsf of Lcmma, 3.3, except that there
are no A- tasks Similarly to that rcsult, an optlmal schcdulc for this UE'I‘ task system with discrete |
resources can be gcnerated from the list (DD-tasks, C-tasks, B-tasks) Thls schedule has leng(h OPT =
z 4+ r. Also similarly to the proof of Lemma 33, consrder the llst (B-tasks Dl cham DR -chain.
D%-cham, DR ~chain). The schedule generated from thrs hst has !cngth LIST=z+ @+ )=
Q4+z+r |

W LIST/OPT=[1+z+1]/(z+1)

limit, _, oo LIST/OPT =1 + r. : : a
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Chapter 4 - Critical Path Schetuling : Con tj,._lii L

In this chapter we study critical p_am sgbgg_u_mg of UET (ask systems wnth contmuous resources. As
noted carlier, critical path schedules are a w1dcly studlcd subclas of hst schedules. .For comparison
purposes we agam mentmn the followmg two rcsults on the worst case performance of cntlcal path
scheduling for basm UET task systcms (1e systems thhout any rcsources) If there is no processor
constramt (m 2 n) then cnncal path schedules are optlmal 'I‘hat- is CPATH/OPI‘ =1 If there is a
processor constraint (m > 2) thcn CPA'l H/OPI‘ 5 4/3 lf m = 2 and CPATH/OPT 5 2 l/(m 1) lf m
>3 Thcse are the best possmle bounds [Ch].

41 ng.mm mnstmmx | |

The major work to date on crmcal path schedulmg for UEI‘ task systems wnth contmuous resouwes
is by Garey, et.al [GGJY] They show for a systcm wuh no processor constraints, that CPATH/OPT S 1
+ 175710, and that this is the best possible result, This result can be comparcd to the con:cspondmg
result for UET task systems with no resources (that result is CPA fH/OP'If = 1) That companson shows‘ -
that for every continuous resource added to a UET task system, the worst case bound for CPATH/OPT
increascs by 17/10. This result can also be compared to that for list scheduling of UET task systems with
continuous resources and no processor constraint. That comparison shows that the worst case behavior of
critical path schedules is far better than that of list schedules for these systems - in the worst case,
CPATH grows lincarly with OPT, while LIST grows quadratically with OPT. This contrasts si)arply with
the relationship between LIST and CPATH for UET task systems without resources and no processor
constraints, where both types of schedules arc always optimal.

4.2 A processor constraint

For critical path scheduling of UET task systems with continuous resources and a processor

constraint, there arc only two limited results (aside from our work). First, Yao [Y] has shown that
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CPATH/OP’I‘ < min{m,2 + 2s-(2s+1)/m }. Second, the result of Garey, et.al. [GGIY] given in the
previous section can be applied using s+1 resources (the extra- resource accountihg for the processor
const,raim)fyiek'iing' CPATH/OPT < 27/10 + 17s/10. In general, neither of thesc results s the best
possible. In the remainder of this section we prove the following result about critical path scheduling of -
UET task systems with continuous resources: -
Theorem 4.1:.Ifm > 2 (a processor constraint), then
CPATH/OPT m if 2€m<ls+1
(s+m+l)/2  if s+1<m(2s+1
(4s+m+3)/4 if 25+1<m<8s/3+1
(14s+m+9)/10 if8/34+1<m<CB +1
2+178/10-(3s+ 1)/m if 3s + < mandm > 10
2+5s/348s/3+1)/m if 35 + 1 S mand m< 10
Moreover, each portion of this bound is the best possible,
4.2.1 An interpretation
Because the bound given in Theorem 4.1 is somewhat imposing, it is uscful to obtain an intuition
about the nature of that bound. In this section we try to provide this intuition from the point of view of
the "lower bound”. That is, we discuss the principles behind the construction:of task systems for which
critical schedules exist which achicve vari;;us portions of the bound.” We will concentrate on the middle
four portions of the bound. The other twe portiuns ‘arise mainly from "boundary” constraints. In
particular, the first portién 2 € m <s + 1) is the situation whem the. ptocessor constraint -dominates
WOrst casc bchavior; The final portion (3s+1 < m < 10) arises because's and-m-arc both small. We
ignore these two protions-of the bound in the rest of this discussion.. -
The key to understanding the middle four portions of the :bound is the fonowing: When

constructing a task systeni fbr which a "bad” critical path schedule exists, there are three kinds of
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‘constraints to dcal with: precedence ‘constraims; processor constraints - and resource constraints.
Morcover, there are actually s kinds of resource constraints - one constraint fot €ach continuous resource.
A task system with a "bad" critical path schedule (presumably) exploits cath: of these constraints to the
fullest. Now' consider the bound 2+ 173/10 - (3s+ 1)/m. 'Fhe various ‘terms of that bound can be -
interpreted as follows: The term 17s/10 arises from the exploRation: of: the: resource constrainits. -There -
are 3s'OPT tasks involved in this. A term of 1 arises from:the exploitation of the |preccdence consttaints..
There arc OPT tasks involvgd in this. Finally, the term 1 - (3s+1)/m arigcs froin thie exploitation of the
~ processor constraints. All: of -the remaining tasks in theé" system ‘arc involved in this. Similar
interpretations exist for the other three portions of the bound: However, inn those cases, only the resource
and precedence constraints ‘are cxploited and not the processof constraints. Only when m > 3s+1is it
"profitable” to exploit the proccssor constrints. St

This interpretation can be seen:-‘meore clearly, if we assume that s is fixed, and that m and
CPATH/OPT are expressed as functions of s (Figure 4.1 shows: the plot ‘of such a function). Initially,
assume that m=s+1 and that we have a UET task system with continuous resources S;:.sich:that a criical .
path schedule exists for S, with CPATHAOPT arbitrarily closc to s+ Y. I S; thvere are OPT tasks devoted
to exploiting the precedence consuaints, and. for each continuwous:resource, there afe-OPT tasks deveted
to exploiting; the constraint imposed by that rcsource. ‘The processbr constraints:are 10t being exploited
at all. Now consider how S is inedifiéd as m is increased; one processor at a- time, from s+1 %0 2s+1.
Each Umc m:is increased, sevoral tasks ar¢ uddedao:S: Thoe:purpede of addimg these tasks' i to mere fully
cxplait-the resource constraints.. Each time m increases: by’-m;eéﬁmccssm;’ ‘thé worst ease bound increases
by aamsmnt.ammnt (namcly, 1/2).duc to the addition of thosc tasks. Atm=2s+- 1, there arc OP Paasks ™
devoted 10 exploiting the precedence constraints, and fdféxh contineous: resourt e, there are 20PT tisks
devoted to exploiting: the constraint imposed by-that resoarce. Now ‘considet the (similar) situation as i

is increased, ome processor.at a time from 25-+1:10 88/3%1. Again tasks-are addod to § each timem
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Figure 4.1: Graph of the upper bound as a function of s

CPATH/OPT (as 4 function of S)

2+17s/10-(3s+ 1)/10
2+178/10 (~
14+178/10 p=
1+58/3 = \
(14s+m+9y)/10
(4s+m+ 3)/4
143872 =
(S+m+1)/2
1+§ =
] l l |
S+1 25+1 8s/3+1 3s+1

m as a function of s, m 2> 10
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vincrcases. Now, however, the worst case bound increases by only 174 each time m increases. For a third
time, consider the (similar) situation as m is increased one processor at a time, from 88/3+1 to 3s+1.
Again tasks are addcd to- S each time m mcreases. In this instance, the worst case bound rncreascs by only
| 1710 each time m increases. At m=23s+1, there are OPT tasks devoted to exploiting the pnededenee
constraints, and :3S'OPF< tasks devoted to exploiting the resource constraints - for each oonunuous
resource, there are 3'0PT msks”cxploiting the constraint imposcd by that resource. At this .E’;point, the
prcccdence and resource constraints are fully cxplolwd. Finally, as m is increascd beyond Ss+1, yet
more tasks are addcd to S. These tasks exploit the: processor constraint. Note howevcr that (hc bound
increases only so slightly in this range, and that in faﬁ, it converges to 2 + 17s/10 as m approaches
infinity. |
4.2.2 A comparison o

Although Theorem 4.1 provides (in contrast to varous rcsuhs) a tight upper bound for the worst
case performance of critical path schcduhng of UET task systems w,lth continuous resources and a
processor constraint, there is a qucstron of how much that result really mprovcs over prcvnous results,
That is, consider the bounds (cited earlier) of Yao [Y} and Garey, ct.al. [GGP(] as they apply to UET
task systems with continuous resources and a processor constraint. Those resulrs-foan be-cornbined to
yield the following composite bound: |

_CPATH/OPT < min{m, 2 + 25 - 25+ 1}4m, 27710 + 17/10}

ﬁc quostion whicn anses, is whether this composue boundrs much worse than the bcst possible
bound (our Theorem 4.1). The answer to this question is yes. For instance, if s> 6and m = 1.8s + 2,
the composite bound indicates that CPATH/OPT < 17s/10 + 27/10. The bound that we give shows
tnat CPATH/OPT < 14s/10 + 3/2. 'The differcnce between the two bounds is 3s/10 + 6/5 -- a value
which grows lincarly with s. In percentages, the composite bound in this casc is too large by over 21

percent. Table 4.1 shows both the composite bound and our best possible bound for several specific



A comparison between the composite bound [Ya0,GGJY] and the best possible bound | _

] m composite best error in composite
2 4 4 3Ss 14%
5 5 4 25% -
6 5.17 425 2%
7 5.29 443 19% .
8 5.37 4.54 18%
00 6 54 1%
8 10 10 9.5 R |
15 15 12 - 25%
20 16.3 13.75 19%
25 16.3 14.6 12%
30 16.3 14.77 10%
00 - 163 156 L 4%
15 20 20 18 ' 11%
25 25 2.5 2%
35 282 4.5 15%
40 282 2875 . . .10
45 282 C %4 ~T%
50 28.2 26.58 . 6%
00 282 275 3%

The above values have been rounded to two-decimal places.
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éombinations of sand m. That table also shows the percentage error in the composiu; bound relative to
the best possible bound for cach such combination of s and m.

Note from Table 4.1 that although our results improve upon the composite result whenever m >
s+1, the improvement is usually most signiﬁcént when the number 6f processors is small relative to the
number of continuous rcsoum
4.2.3 The upper bound

In the next two sectibns we prove Theorem 4.1, The upper bound is given in this section and the
lower bound is given in the scction 4.2.4.

4231 Preliminari
Before beginning the proof of the upper bound, we require scveral definitions.

With respect to the. usage of the resources in the system, we have the following definitions:
Rpax(D) = max {RV(I'):%UI-S_VSS}. Given task T, R (N .s:he R,-value of T and Rpppau(T) is the
R,jax-Value of T. This notatlon is cxtended to a sct of tasks B, @RV(B) = ZR(T) overall T € Band
Rppac(®) = IRy, (Toverall T e B. For completeness, if Bis ampty, ot R (B) = 0. Finally, aset
of tasks B, is a lcgal set of tasks if for each resource v, RV(B) <L

With respcct to the precedence constraints, we remind the rcader of the definition of the level of a
task: If T; has no successors then level(T;) = 1; otherwisc, lcvcl(_'ri) = 1+ max{levcl(’l’,-): T; < Tj}.
This notion can bc cxtended to a sct of tasks B, by letting level(B) = max{level(T;) : T; € B}.

42.32 Proof outline

Consider any éritical path schedule for a task system S. The time units of that schedule may be
divided into three scts: those time units where the final task of cach level cxecutes, those where all of the
Processors aré utilized and thosc where at lcast onc processor is idle due solely to resource constraints.
Call thesc path. full and IS0 time units respectively. 'I'he proof follows by bounding thc number of

time units of each typc. The number of path time units is boundcd by the length of an optimal schedule.
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The humbcr of full time units caa be bounded using .the length of an optimal schedule and the number
of tasks executed in resource and path time units. The number ofrcsoume tinve units can bounded by
the usc of a "w?ighting function”.

A weighting function W, is a mapping from the interval {0, 1] to-an imcrvél [0, x],’ where the x
dgpcnds on the particular weighting function. We cxtend the functional *-mtat'ion to tasks and let W(T)
= W(Rp.x(T). Moreover, if B is a set of tasks, then W(B) =X W(T) over all T € B. (Our use of
weighting functions is motivated by, ,al}d draws upon, the work of Garey, ctal. [GGIY]). Given a
| particular weighting function and a set of resource time units, the average weight associated with cach of
those time units can be bounded below (this lewer bound will be 1). Morcover; by examining an optimal
schedule, the total weight associated with all tasks executing in resource:time units can be bounded above.
Combining these two bounds gives an upper. bound on the number of resource time units. The result
then follows from the upper bounds on the numbers of path, full and resource time units.

In this section we introduce two propertics of weighting functions.
Definition: Wcighting function W has Property A, if:
Given atask T' and a nonempty set of tasks B such that:
Ripax(M 2 R (T') foreach Te Band R, (T*)> 1R, (B),
then W(B) 2> L.
Definition: Wcighting function W has Property B, if:
Given a sct of time units {Bl; s Bt} witht> land Y = U%:] Bi, such that;
For cvery task l€ Bi' 1<i<t and everyj. 1 < j<i, Rmax(’f))-l - Rmaxmj)- .
then there cxists a task T* € Y, such that W(Y - {T*})2 ¢-1. -
Intuitivcly7 Property A states that given a sct of n tasks in ‘which the total resource requircments of the

tasks excceds one, then the total weight of the largest n- tasks is at cast onc. Property B will be used to
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obtain a lower bound on the average weight associated with & resource time unit. -
Lemma 4.1: If W is a weighting function which has Property A, thea W also has Property B.
Proof
Assume that W is a weighting function which has Property A, and let {By, .., B;} be a sot of time
units with Y = U%:l B, such that forevery task T€ B, 1<i S t, and every j, 1 <j <1, Ry ax(M>1-
' Rm(Bj). We want to show. that there exists a task T* € Y such that W(Y-{T*}) > t-1. Without loss
of generality, assume that W(B;) <1 for each-time unit B, 1 <i <t The proof s py induction on t.
Ift = 1 the lemma is immediate, 5o suppose that ¢ >-2: Consider time units B .pand B, LetX
be any task in B, Then R, (X) > 1 - Rnax(Bi-1)- ‘Morcover, forany task T € (B,,) U {X}),
Rpnax(M > 1-Rp o (B y U {X} - {T}). In particular, let Zbe a task in (B_; U {X}) vnth a minimal
R pax-value. From Property A, it follows that W(B,_; U {X}-{Z}) 2> 1.
Now consider the set of time units {B1, ..., B;_;}, where B, = B,for1 <i < t-2,andB, ; =
{Z}. LetY' = Uf=% B;. By induction, therc exists a T* € Y', such that W(Y'-{T*}) > -2,
Thus, W(Y -{T*H 2 W(Y' - {T*}) + WB_U{X}-{Z) 22 +1=¢tL o O
4.2.3.4 The weighting functions
Three weighting functions arc used in the proof of the main theorem. Thrce functions are used, as
opposcd to just one, duc to varying requirements with respect to the weights assigned in various parts of
that proof. Weighting function W, has the property that if a; + a5 < 1, then Wy(ayg) + Wi(ay) <
1.5. Morcovcr. values of a 1 and a; cxist such that wl("‘l) + ,w,(:az) = 1.5. A similar statecment can be
made about weighting function Wy and the valuc 1.6. Weighting fanction *‘WJ ‘Thas the property that if a;
+ o+ an. < 1, then Wiap) + ... + Wy(a,) < 1.7. Thesc propertics play a critical role in
cstablishing various segments of the upper bound.
For cach of the three weighting functions which we introduce, we give two major results. First, we

give an upper bound on the weight of a legal set of tasks. As a cofollary to this result we give an upper -
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bound on the weight of any set of tasks drawn from the task sy;stem which we are considering. Both of
- these bounds depend upon the cardinality of the set.of tasks being considered. Thesc results will allow us
to bound the total weight of the tasks executing in resource time wnits. Secondly, we show that the
weighting function has Property B. -
42,341 The first weighting function

Definition: Wy(@) = 0. if a=0
/4 if a€(0,1/4]
172 if a€(1/4,1/72)
1 if a€(1/2,1]
Lemma 4.2: If B is a lcgal sct of tasks, then W;(B) £ min{ (IB{+s)/2 (lBI +4s)/4 }.

Recall that B is a Jegal set of tasks if for each resource v, the totnl usage of v by thc_tasksvin B does not
exceed one, | o ” ‘ N

Partl:LetX = {T € B: R, (T)>1/2} and letx = IXI Since for canh rrcsourc-e v, thcre is at most

one T € B, such that R (T) > 172, it must be thatx <'s. Moreovcr 1f Rmax(r) > 1/2 then W(T)

= 1. -Eachtask T € (B X)hasR .. (T) < 1/2 hence Wl('[') < 1/2 Thus WI(B) is bounded

~ above by max|x + (|B|-x)/2] such that x <'s. This maxlmumk occurs at x =8 flfl}ereforc, WI(B)

<s+ (|B|-s)/2 (IB| +s)/2. | - 7

Part2: LetX = {T € B: R, (T) > 1/2}, letx = |X| letY = {Te€ B" 174<R . (T) £ 1/2} and let

y= IYI Snmllarly to Casel we deduce that x < sand y < 3s 2x Moreovcr ifR ('I')) 172

then Wi =1landif 174 <R, (T) £ < 1/2 thcn Wl(T) = 1/2 Each task Te@®- X Y) has

(T) < 174 and Wl(T) < 174, Thus WI(B) is bounded above by max[x + y/2 +

(IB}-x-y)/4] such thatx <sandy < 3s - 2x. ThlS maximum occurs atx = y = s, S0 WL(B) <s

+ s/2 + (|B|-2s)/4 = (|B| +4s)/4. 4D

Corollary 4.1: Given aset of tasks Y C 7, then W1(Y) < min{ ([Y]+sOPT)/2, (Y| +4S'OP’I‘)/4 }



Proof
Let By. . Bopr be the tane unis of an_optimal schedule resirited to the tasks in Y. Then, Y =
U?B} Band Wy(V) = 2QETw,B). "
Part 1: By Lemma 4.2, each W(B) < (IBj|+s)/2. Thus, Wy(Y) < Eaff(m l+s)/2 = SOPT/2
EOPT|B V2 = (Y]+SOPTY2 T . oLk
Part 2: By Lemma 4.2, each Wy(B)) < (IB,[+4s)/4. Thus, wl(Y) 5 ze*’ T (]B|+4s)/4
(IY]+4sOPT)/4. s o
Lemma 43: Weighting function W, has Property B, |
By Lemma 4.1, it is sufficient to show that W has Property A Consndcr a task T and a nonemp;y
SetoftasksB suchthatR (T)> R (T )foreachTE BandR (T ))1 RM(B) We
want to show that W(B) > L. | N

('[‘) > 172 for any T € B, then the lemma is unmcdtate. s0 suppose R (T) S 1/2 for

each T€ B. IfR,(T") —Othcanax(B)Zl hcncer(B)>l sosupposc Rinax(T")>0.
Case I Ry (T*) €0, 1/4] | -

Then R B) > 3/4. Since for each TeBO<R, (T) <172, we havc that B> 2 Morcover,

max(
for T € B, Wy(T) is either 174 or 1/2. llel > 4 then thc lcmma is 1mmedwtc IleI = 3 then at ,
least one of the tasks has anR max_¥alue cxcecdmg 1/4 hcncc it has a wclght of 1/2. Thc other
"two tasks have weights of at least 1/4 Thus, wl(m 21 IleI z then both of the tasks in B
must have Rmax-valucs cxcccdmg 1/4, hence they haye wc:ght; of1/2,and W =1L

Case 2: Rmax"(T")ea/«i 172) T o |

Then R (B)>1/2 chchBI>2,smccR (l‘)<l/2forcachT€B SmccforeachTeB

Rmax(n > Rmax('l"), we have: Rmax(T) €(1/4, 1(2] and Wlﬂ) = 1(2 for T € B. Thus, WI(AB) o

= B2> L. | | ' o



.Ss-
42342 The second weighting function

Definition: Wo(a) = 0 if a=0"
' 107100 if «€(0,.092]
15/100 if a €(.092,.136]
207100 if a€(.136,.182]
257100 if a €(.182,.204]
307100 if « € (.204, .250]
407100 if a €(.250,.296]
45/100 if a €(.296,.318]
507100 if a €(.318,.364]
557100 if a € (.364, 408]
607100 if a € (408, .500]
1 if a€(s00,1]
We have the following facts which follow from the dcﬁg;ition of W2:'

Fact 1: If a € (092, .500}, then Wo(a) <.(1.64)a.
Fact 2: If|Bf = 3 and R (B) < 1, then W5(R(B)) < 17/10.
Fact 3: If|B| = 2and R (B) < 1, then W(R(B)) £ 16/10..
Fact 4: If|B] = 2 and R (B) < 500, then Wo(R (BY) < 7/10.
The following claim is uscful in proving Lemma 4.4
Claim A: If B is a set of tasks such that R\ (B) < 1and |B| 2 2 then \,VQ(R,;(B» < (|B|+14)/10.
If|B| < ‘3 then the claim follows from Facts 2 and 3, so, assume that |B} > 4. Define the following
two sets of tésks: |
Y={TeB: R(T)>.500}
X={r € B: 092¢ R(T) < .500}
Clearly, Wo(R\(B)) = W3R\ (Y)) + W(R(X)) + sz(%v(B-X;;-Y))g»,Notc that if T € Y, then
WH(R () = 1andif le B—X-Y thcn Wy(R(T)) < 10/100. Thus, -

Wo(R(B)) S [Y] + WyR (X)) + (IB] - X1 - [Y]/10.



Cascl:[Y] =0
Then, Wy(R(B)) = Wy(R (X)) + (B - [X)/10. o
IFIX] < 2 then since for each T € X, WoR (1) < 69_/1.00; we have yz(m» < (60/100)X] +
(BHXD/10 = SIXI/10 + [BY/10< (B} + 14)/10. R
IFIX[> 2, then by Fact 1, Wo(R (X)) < 1.64, hence WMB)) 5164+ (IBI =IXD/10 <
1.64 + [IB - 3/10< (B} + 14)/10. o B
Case2: Y] =1
Note that R (X) < 500 and . | N
VR S+ WoR00) + [BHXFVIE - @
rf;k[ = 0, then from (1), Wo(R (B < 1 + (IB}-1)/10< (IBj+14)/10.
IF X} = 1, then W,(R (X)) < 607100, o from (I, W(R(B) < 1 + 60/100 + (B-2110 =
(Bj+14)/10. | A
IFX} = 2, then by Fact 4, Wo(R (X)) < 7/10, 50 from (T),
WyR(B) < 1+ 7/10 + (1B-3V/10 = (B +14/10.
IFIX] = 3, then let max (X) = max{R(T): T € X}.

I max,(X) > 318 then the other two tasks in X have R -values totaling less than 182, since
R,(X) < .500. Then at least onc of thesc other two tasks must have an R -valuc less than 091.
But, by definition, cach task in X has an R, -value excocding 092 This, max,00) < 318, |

1 max,(X) € (250, 318), then W(man(X)) < 45/100. The other two tasks in X have
Ry-valucs not cxcceding .136 and .182 respectively, hence they have a total weight not
cxceeding 35/100. Thus, W(R (X)) < 80/100. e

If max (X) € (092, 250, then Womax (X)) <- 30100, The ofher two tasks in X have

R,-valucs not cxceeding 204, hence they Rave a total weight not cxcecding 507100, 11‘11{;5; "

Wo(R (X)) < 807100,
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Thus, if X| = 3 then Wy(R,(X)) < 80/100, hence Wz(R",(B'))«-S 1 + 807100 + [|B}-4)/10 =
(B +14)/10.
IfIX] > 4 then from Fact 1, Wy(R,(X)) < 164R (X) < .82. Then from (I), Wy(R,(B)) <1 +
82 + [IBHX|-1/10 < 1.82 + HBI-S])IO(([BHM)/IO. 1 : a
Lemma 44: 1€ B s a legal sot of tasks, then W,(B) < (|B|+ 145)/10, |
bt :
Partition the tasks in B into s sets Dy, ..., Dg, where T € D‘ifzmd only if v is the minimum index such
that R(T) = R___ (T). Clearly, Wy(B) = Z5_ W,(R (D,). Now -partition the resources into
sets Zy, .. , Z,,, according to the sizes of thc respective D, sets. That is, Tesource v is placed into set
Zp,| (Figure 42). Thus, Wy(B) = z;-"=0 (Zyez, wzgnv(é;?»;‘ ).' Clearty, for cach v € Zo
wz(Rv(Dv)) = 0 and from the definition of W2 1[ fpllows"ﬂiat for each’'v € il’ WZ(RV(D_V» <L
Moreover, from Claim A, it follows that for each j: > 2 andecachv € Z-, WZ(RZ;(DV» <G+ 14)/10
and Zyez, WoR,D) = [G+14V10]7).  Thus, W) < 7yl + 206 + ey10)z) =
=P _1IZ10 + Z0_ | MZ)/10- Z)}72. But, the Z;s are a partition of the resources, so Z0_ )
IZjI < 's. Morcover, that partition is based on a partition of fhé tasks such that 2'-'= 11 IZjl < |B}.
Also, |7, > 0.
.. Wo(B) < |BJ/10 + 145/10 - 0/10 = (B} +. 14s)/10 R O
Corollary 4.2: Given asetoftasks Y C 7, then Wo(Y) < (|Y|+ 143'0!1’]')/10 |
Let Bl » Bop be the time units of an optémal schcdulc rcsmctcd to thc tasks in Y. By Lemma 44,
cach W(B) < (] + 145)/10. Thus, W(Y) = ?E{ w,B) < =9PT iy + 14510 =
1450PT/10 + 2?2{1|;i|/10 = (Y] + MsOPTY/10. - o
Lemima 4.5: Weighting function WZ has Property B.
Proof

By L.emma 4.1 it is sufficient to show that W, has Propcrty_A. Considcr atask T* and a



' Figure 4.2: Partitioning the resources.

e - - @ - - -
L
Ty [ - - . . @2 o
L A O
w1 @ - - - - - 1
T¢ [ - - - - @ - -1
L ©
Ty [ - . 1 . . -1
N S R
Tm:_ [ - - @ . - 4 -]
Ty [ - . . - @ - I

These are the resource requirements for the tasks in a system \v:th 11 tasks and 7 resources. A zer0
mquuement is shown as a dash. The largest requircment, of each task ip circled.

, B= {Tl’ .TZ‘ TS' Td' T Ts- T Tga Tgn TlO' Tu}

Ds = & > 7, = {6}
Dﬁ”s’____————__:.a‘*rlm{;.n}
poat——

=TT 7’12 {2.4}

z,=9
Dg = {T3 T, T Ty} —— 2, = {5}
L= =Ty =8
Task partition Resouirce partition
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' nohempty set of tasks B such that R, . (T) 2> R (T*) for T € B, and Ry, (T') > 1- Rpyax(B)-
We want to show that Wo(B) 2 1.

IftBl = 1, the-rosult follows immediately from the definition of“Wz, $0 assume that IBI >2 Let -
min(B) = min{R .. (T): T € B}. If there.is only one ;esource in the task system then mm(B) is the
smallest resource requirement of any task in B Given a time unit B, it is posslblc to computc alower
bound for W2(B) based on IBI mm(B) -and Rmax(B) In particular, Table 4;2 gives various
combinations of |B), min(B) and Ripax(BX qach of wh;c'h lmphcs that Wy(B) 2 1. These values were
verified using the MACSYMA system of the MIT Laboratory for Compute: Sc;enpe. The program
uscd to do the venﬁcanon is shown in Figure 4.3,

Now consider the possible values of W(T" ). If Wo(T*)2 50/100, then for each T € B, Wy(T) ‘
2 50/100. Since |B| > 2, we have Wy(B) > 1. If Wo(T') = 107100, then 0 <R, (T") < .092.

But this implies that R .. (

B) > 908 and min(B) > 0 hence from Table 4.2, Wy(B) > L IfR__ (T)
= 0.then R, (B)> 1 hence W,(B) > L. " -
There are six rcmaining possibilities for WH(T" ): 15/100, 20/106: 25/ 100,‘ 30/100 407100, 5nd
45/100. Associated with cach of these wclghts there is a rangc (ay, a2] in whlch R (T “) must lie. |
Morcover, in cach instance it follows that mm(B) > a ay and that Rmax(m >1- ay. For each (ml,t a2]
pair, an examination of mc"'_relg\((ant" cnmcs in Table 4.2,ish9ws that Wo(B) 2> L in allinstances. A
guide to the "rclevant” entri‘cs bf Téble 4.2 is given in Table 4.3. In Table 4.3, for cach of the six
possible .values of Wz(T '), we give the valucs ay, a;. the subscquent lower bounds oﬁ min(B) and
R hax(B) and the entrics of Table 4.2 that nced to be examined. Note that cnmes arc not listed for
cach size of |B| in cvery case, In particular, for cach Wz(f ') possibility, only onc entry of thc form
(B}, min(B), 0) is given. Such an cntry implics that Wy(B) > B Wz(min(B)) 2 1. ‘Thus, for any
larger [B}, we also have W,(B) > 1. : ' 1

For example, when Wo(T*) = 25/100, R (T') € (182, .204). Thus, min(B) > .182 and

max



Wy(T")
157100

20/100
25/100
307100

407100
457100 -

W NN

(Bl min(B)

0
250

J04

Rm(B)
750

682

818
750

0

Table 4.2

0

0

AR LW hhan

136

136
RT7)

092

1B min(B)  Rg® 4Bl minB) Ry (®)

.8(1)8‘ 7 02 0
S B NI ¢ )
334 3 0
o 9 0 m
866 9 02 0
8682 - . ‘ i

0 0 0 0

An entry (i, x,y)mthns(ableismterpretedasﬁ)llows. lfBisasetoftasksmchthat
Bj=i, min(B) > x, and R0y (B) >y, then WoB)>L o

(apay)
(092, .136]

(136, .182]

(182, 204]

(204, 250)
(250, 296)

(296, _.318] -

T
min(B) Ry (B
092 264
1% 818
182 796

oM 750
250 704
29 682

43
R.cle\mtﬁntries'

(2.0,.750), (3,0, 818),4,0, G, 0.-864). '
(6, 092, 862), (7, 092, 0) i

(2,0: 750):(3/8, $18),(4;.136, 318), (5, 136, 0)
(2.0, 750), (3. 182, .750). (4, 182.0)
(2.0,.750), 3, .182,,750), (4, 182.0)

(2. 250,709, 3, 250,00

@ 2%, 682), (3,.250,0)
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Figure 4.3: MACSYMA program used to verify the values in Table 4.2,

The function CALC takes three inputs: B, MINB, and RMAXB, and computes the minimum total
weight of the tasks in a time unit where:

B is the number of tasks in the time unit

MINB is a lower bound on the resource requirement of each task in the time unit.
That is, for each task T, Rmax(T) >MINB,

RMAXGB is alower bound on the total resource requnrement of all the tasks in the
time unit. That is, R, (B) > RMAXB. '

CALC finds the minimum total weight by doing an exhaustwe search of the possible values for the
resource requirements.of the tasks in the time unit. For convcnicnce, Wclghts are multiphed by 100 and
resource requirements are multiplied by 1000. :

- Sample ouput of the program is: CALC(2, 296, 682)$ (input to MACSYMA)

2 296 682 100 - (MACSYMA output - the fourth
value is the minimum weight)

CALC(B, MINB, RMAXB) :=(MINWT : 100,
FOR J FROM 0 THRU'9 DO
(IF MINB = RES; THEN BOT : J+1),

HELPCALC(B; 0, 0);,
PRlNT(B MINB, RMAXB, MINWT))

HELPCALC(COUNT, CURWT, CURRESY
IFCOUNT =0
THEN (IF CURWT < MINW'EANQCURRES >RMAXB -
) THEN MINWT : CURWT),
ELSE (IF CURWT + WTSpat * COUNT < MINWT

THEN FOR I FROM BOTTHRU 10 DO
HELPCALC(COUNT -1, CURWT + WTS], CURRRES +RESI))

The values of the WTS and RES arrays are as follows:
| o 1 2 3 4 5 9 10

6 8
wrs | o 10 15 22 25 30 40 4 SO 55 60
Res | o 92 136 182 204 250 296 318 364 408 SO0
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Rpa(B) > 1-.204 = 79. If |B] > 4, it follows from [B} and min(B) > .182 that fwz(n) >4
Wo(min(B)) > 4 (25/100) = 1. - If |B| <4, the entries (2, 0, 57;0) ind '-(3; .182,’ .750) in Table 4.2
iudica.te that wz(a)z L | B o

42343 mm_mmmm

Definition: Wy(@) = (6/5)a  if a €[0, 1/6]
(9/5)a-1/10 if ac(1/6,1/3)
(6/5)a + /10 if a€(1/3,172]

6/5)a + 4710 if a«€(1/2,1] ;
This is the weighting function defined in Garey, etal{GGJY): In-that paper the ﬁ)ilowmg coroﬂary and

lcmma about W3 are proven,
anﬂauﬂ Givenaset oftasks Y C 7, then W4(Y) < 17OPT/10.

Lemina 4.6 Civcn 0 < a<1/2,and aset of tasks B = {Tj, ... ,Tn} with n > 2, such that R . (T}) 2>
Ronaa(T2)> @ a0d 2 1- Ry (B). then Wy 2 1. -
A straight-forward consequence of Lemma 46 and the dcﬁnkiol of W3 (used to handle |B} = 1 and

Ryax(T') 2 172) is that W3hastDeﬂYA,henoe
Lcemma 4,7: Weighting function W3 has Property B.

In this section we complete the pfoof of the uppcrbound./\ssume that a UET task system with
continuous resources S <T, {,m, s> is given. Let CPATH be asct contammg the time units of a critical
path schedule and lct OPT be a sct containing the time units of an opumdl schcdulc for thls systcm As
usual, we atso Tet CPATH and*OP'f‘ be the lengths Gf these schcdules whcn ap;irépriatc The time umts
in CPATH arc partitioncd into the following three sets:

P = {B; € CPATH: (Vj > iflcvel(B) > lcvcl(Bj)]}
F = {B; ¢ CPATH : B} = mand Bi(P}

= {B, € CPATH: |B,/<m and B; ¢ P}
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The time units in P are path time units, those in F arc full time units, and those in H are respurce time
units. Clearly, CPATH = |P| + |F| + [H].

LetQ = {Te T: Te B;and B, e H} (ie. Q consists of afl tasks exccuting in resource time units of
CPATH). Clearly, [P| < OPT and F] < OPT - [P}/m - |Q}/m. The number of resource time units JH
can be bounded by use of the following lemma (adaptch from a lemma given by Garey, et.al[GGIY]).
Lemma 4.8: If W is a weighting function which has Property B, then there cxists a set of tasks Q' C T
with [Q'] = Q] such that [H] < W(Q"). | |
Proof

Assume that W is a weighting function which has Property B. Let k be the maximum level of any task
inT. VFor eacﬂ level | 1 < 1 <k, there is one time unit B, € P witlz_l Icvel(ﬁ,) =L LetT;be any task
inB ; With level(]"l) = I. Moreover, foreach levet/ 1 </<Kk, dcﬁ‘nc'thc following t\;;) sets:
A= {Bi € H:level(B;) = I3 |
L; = {T:level(T) = /and (3B, € A;)[TE B} U {E.
Thus, A; contains all of the resource time units where the highest level of any task cxecuting in the
time unit is L Likewise, L;contains task T;and.all level. / tigks-executing ina resource time unit
where the highest level of any task exccuting in the time unit is I Figure 4:4 shows the
correspondence between L b Tl and A F
Consider any sct A F We claim that there cxists a task X 1€ I s such that W(LI - {X ,}) 2IA ll
lflA)I = 0 then the result is immediate, so assume that JA > 1. Let By, ..., B|/\1| be the time
units in AI. For cach Bi €Ay let B; = Bi n Lt There is one B; for cach Bi,'and cach B;
contains at lcast one task. Also, let Bi A A $1= {T,}. Note that‘U!:{'.HfB; = l‘I‘ Morcover,
each B; contains only level / tasks.
j

tasks with levels larger than / must have alrcady been scheduled in timé units prior to Bj.

Now consider any B. and B ; with j<i. l.et T be any task in B ; When T was scheduled, all
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Figure 44: An example of the sets A;and L;, and the task T

Assume that By has a level of / and is a path time unit. This means that the task in Bé of the highest
level has level , and that all tasks executing in time units after By have levelslessthan

Some number of time units immediately preceding By also have a level of I. Assume that these are time

units B, By, B, and B,. The set A;consists of these 4 time units. Thé set Ljconsists of all of the level /
tasks which execute in these 4 time units, along with task T}, '

A; = {B, B, B, B;} leveB)) = ! fori=4,5,6,7,8 -

By is B; in this instance
//kwell“‘aSks
: -

Bf 71 B

\\ xasksoflevellsomﬂmanz/,_/ |

B,, B, B¢ and B, are resource time units and By is a path time unit

.7\\\\\ \

Ly = {T: levelT) = /and T is in a time unitin A} U {T}

The tasks in the non-shaded portions of B,, By, B, B, and By are the tasks in L
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Moreover, the only tasks alrcady scheduled in time unit Bj wereulev;el'l tasks.. Thus, T was not
scheduled to execute in Bj due solely to resource constraints imppsed by the level / tasks in Bj.
This means that for T € B, R (M>1- R-m(Bj: )for-all j<i. Thus, the B}s form a set of

time units for which the conditions given in the definition of Property B hold. Then, since
[A 1+1

weighting function W has Property. B, therec cxists a task X, € Ly{since Ly = U, _1 . B;) such
that W(LI- {XI}) > |A1|, and theclaimis provedi.. = ., . : -0
Finally,letQ' = (QU {TI: 1<I<k}- {Xl: 1£1< k}. Clearly, [Q*| = IQ}.
=25 A S 3K W DD S WeQtsince UKy (- (XD S Q' o

'_ From Lemma 4.3, it follows that given a particular weighting function. W* . which has Property B, there
exists a set of tasks Q' C T'suchthat jQ'| = |Q] and [H} € W*Q*).
Thus, CPATH = |P| + [F| + [H| £ IP{ + (OPT-|P{/ar|Ql/m). + W*Q"). and with a rcordering of
terms,
CPATH S OPT +{PKl-Vm)- [Q/m + W*Q*). (1)
There are six cases to consider basced on the relative values of sand m.
Cascl:2< m<{s+1
| Then CPATH < m OPT since at least one task must execute- during each time anit of CPATH. .
Case2:s+1 <m<2s+1
Let W; be the weighting function W*. By Corollary 4.1, W(Q') < [IQ'[+sOPT}2 =
'[lQl+S‘OPIT/2. Thus from (), CPATH < OPF 4 [Pii-1/m) - JQl/m + [IQ}+sOPT}2 = +
$/2YOPT + [P1-1/m) + Q172 L/m]. Bug 1/2 = 1/m 2.0 and:Q}: < «mOFT - P Heace,
CPATH < (1¥s/2)’0l‘l'~ + |PI(1-1/m) + (mOPT = {PPj1/2 - 1/m} = [(s+m)/2yOPT + |Pj/2 £
[(s+m+1)72]-OPT, since |P} < OPT.

.".CPATH/OPT < (s+m+ 1)/2.



Case3: 25+1 <m<8s/3 + 1
First assume ti\z;t m24 let Wl be the weighting function W*. Then by Corollary 4.1, WI(Q') <
{{Qf l-;~4S’OPﬂ/4. Similm“ly'te Case 2, we derive from (11) that CPATH/OPT < (4s+m+3)/4.

Now assume that m < 4. The only combination of s and mi to fie in this rangeis s=1 and m=3. l§ut,
from Case 2 (since the assumption that m < 2s+1 was not used in' that proof), CPATH/OPT <
(s+n.x+1)/2 = (4s+m+3)/4 whens=1 andm=3.

Case4:85/3 + 1 <m<(3s+1 |
First assume that m > 10, Let W, be the weighting fiinction W*. Thén by Corollary 4.2, Wx(Q") <
[Q' |+ 145OPTI/10. Similarly to Casc 2 we derive from (i) that ‘CPA':I'H/OFf < (14s+m+9)/10.
Now assume that m < 10. The only combination of s and m (o lic in this range-is s=3-and xﬁ=9. But,
from Casc 3, CPATH/OPT < (4s+m+3)/4 = (145+m+9)/10 when s=3 and m=9. -

CaseS:s+1<mandm> 10
First assume that |Qf > 3sOPT. Let W3 be the Qveigﬁting function W*. Then by Corollary 4.3,
W3(Q') < 17OPT/10. ‘Thus, from (i), CPATH < OPT + [P1 - 1/m) - Q¥m + 17SOPT/I0,
But -jQ} < -3s’OPT and |P| < OPT, so CPATH < OPT + OPT(1-1/m) - 3sOPT/m + 17sOPT/10
= OPT{2 + 17s/10 - (3s+ 1)/m].
Now assume that |Q| < 3sOPT. Let W, be the weighting function W*. Then by Corollary 4.2,
WAQ') < [IQ'|+14s0PTV10 = IO+ 14sOPTY10. ‘Thus from (), CPATH < OPT +
IPK1-1/m) - [Qi/m + [IQl+ 4sOPIY/10 = OPT{1+14s/16] + |PK1-1/m) +.|QE1710 - 1/m}. But
1710 - I/m >0, jQf < 35OPT and |P| < OPT. Hence, CPATH <IOPF{1+ 145/10] + OPTY(1-1/m)
+ 3SOPT{I/10 -1/m} = OPT{2 + 175710 . (3s+1)/m}. Thus, CPATH7OPT < 2 + 175/10 -
(Gs+1)Y/m.

Casc6: 3s+1 <mandm<10

First assume that |Q| 2 (8s/3)OPT. lLect W, be the weighting function W*. Then, by Corollary 4.2,
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W5(Q") <[IQ'| + 14sOPT)10. Similarly to Case 5, we derive from:(Il) that CPATH/OPT < 2 +
5s/3 - (8s/3+1)/m.
Now assume that |Q} < (8s/3)OPT. Let W) be the weighting function. W*. Then by Corollary 4.1,
W1(@Q') < [IQ'|+4s0PT)/4. Similarly to Case 5, we derive from (If) that CPATH/OPT < 2 +
5s/3 - (8s/3 + 1)/m.
This completes the proof of the upper bound for Theorem4.1. - : - o
4.2.4 The lower bound
In this section we prove that the upper bound for CPATH/OPT given in Thcorem 4.1 is the best
possible upper bbund, completing the proof of that result.
For cach possible combination of s and m, we exhibit.a UET tagkisysﬁn with continuous resources,
§ = <T, <, m, >, acritical path schedule for that system, and an optimal schedule for that system such
that the ratio CPATH/OPT is arbitrarily close to the_ app:gpriate upper bound. “As in the 'probf of the
upper bound, there arc six cases to consider based on the relaﬁoash;pé between s and m.  The
constructions that we use in the six cases arc similar, but not identical. They make use of task.systems
which differ primarily in the resource usages of certain tasks-in the system. ‘The overall precedence
structures of these systems are the same, as are the resoumemgaaf several-of the tasks.  Thus, before |
proving cach of the lemumas, this general task system structure is introduced. - The aspects of the system
which are the same in all cascs are specificd. We indicate which paramaiors will be specified: within the
p(oofs of tt;c _individual lemmas. Wc also sketch:optimal and critical path schedulcs for this general
system. The exact nature. of these schedules will, of course, depend upon: the valucs assigned to the
unspecificd parameters within the proefs.of the individual lomeras.: - -
4241 A seneral task svstom structure
Assume that s > 1 and m 2 2, with m > s-+1, are given (in the nextsectior we will indicate how to

handle the casc of m < s). Intcgers x and z are to be specified lates, as is e, a positive constant. Consider



* atask system S* with the following tasks:
L Dj for1 < i< x, such that Rl(Di) = g and Rv(Di) =0forv#1.
-2 BO such that Rl'(l}o) =1 and‘Rv(Bo)':n'O forv#1l |
3. Bifor1 <i<s suchthat Ry(B;) = l'and R(B) = Oferval =
4. G fof 1 £ i <'s. These tasks require nb resources.
5. A} for1 <i<sandl<j<z Forv#i R‘?,(A}) = 0. The usage of resource i by each  task
A} (its R-value) will be specified latcr (it will be a non-zero requircment). - Tasks Af, .. AL
- arecalled Al-tasks.
This task system has the following precedence constraints:
L. For1 i <x-1, Dy <Dy, |- Moreover, D¢ Cp.5: =7
2. For0<i<s1,B <8, andB,< -Aji“ frl<j<z
LForl<igslandl Sj<aAl¢C ).
4. Forl Si<s1.C<Cy e
The precedence structure of this systern is shown ‘in‘ Figure 455, - e
«Asséming that the constants x, z and e have been specified, comnsider the following schedule for S*
-(Figure 46a): -In the first s+1 time units exccute the B-tasks. *Tn the next x time units exccute the
D-tasks an processor m, and exccute all of the: A-tasks onthe other ar-1 processors.” In the final $ time
units execute the C-tasks. Such aschedule has fength x + 25 4 1. The assumption that the A-tasks can
all be cxecated in time units s+2 through x+5+1 depénds only off the‘sinbicr of A-tasks (which is s2)
and on the resource requircments of the A-tasks - no precedence constraints-are involved since aRter task
B exccutes iﬁ time unit s+ 1, all of the A-tasks are available for exceution: Ty cach of the Tesults using
this general task system, the value z and the resource rcqulrcmcu&omkc%'mksmwcd so'the
A-tasks can indeed be cxecuted in just: x time units m m-I processofs and $o the total requirement for

resource 1 during each of those x time units doos not exceed I =e.” This fast condition is nceded since
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Figure 4.5: The general task system structure used for the lower bounds.

\\\

\ Als\ AZS .\ AZS

The non-zero resource requirements of these tasks are:
Each D-task requires € of resource 1

B, requires all of resource 1

B requires all of resource i, i>0

Each Al-task requires a non-zero portion of resource i
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' Figure 4.6: Two schedules for the general task system structure

Bs The A-tasks execute on

processors 1 thru m-1

D,

Time units s+1 » X

a) An optimal schedule -- length = x+2s+1

x G(AY 1

b) A critical path schedule -- length = x +s+1+s G(A)

AL B[ B i o




each of the D-tasks requires ¢ of resource 1.

Now consider the critical path schedule for $* generated from the following list: (D-tasks, By, €y,
Al-tasks, By, C;, A-tasks, ..., By, Cg, A™tasks, By). In this.schedule, (Figure 4.6b) the D-tasks
executc in the first x time units, then By and C; execute in the next time unit, followed by the execution
of the Al-tasks. After those tasks have exceuted, By and Cy execute, followed by the execution of the
Az-msks, and so on. Eventually, Bs-l and Cs execute, followed by the exccution of the. AS-tasks. In the
final timc unit B exccutes. Assuming that the Ai—rta_sks arc asagnedthcsame Fesource requirements for
resource i, as the Al-taslgs arc assigned for resource 1 and that they are scheduled identically to the
" Al-tasks, this schedule has length CPATH = x + s + 1 + sG(AL), where G(A1) is the length of the
schedule for the Al-tasks. ‘ o r

In the individual proofs which follow, several things are done. . Fisst, the values of x, z and ¢ are
specified, and the remaining resource requirements for the. A-tasks.are-given. We then show that the
A-tasks can be exccuted on m-1 processors in x time-units with the total requirement for resource 1 by
the A-tasks, in each of those x time units, not exceeding 1 - &, This establiskes that OPT-< x + 28 + 1.
The value of G(A) is then derived by analyzing a particular list schedule for the Al-tasks, establishing
that CPATH > x + s + 1 + sG(A). The lower ;bound for the worst case-of CPATH/OPT is then
obtained by : combining the bounds for OPT and CPATH.

Lemng 49: 1F2 € m<s + 1, then CPATH/OPT can be acbitrarily close to m.

er .
Assumc that Lhcire are only. m:1 resources, That is, assume s = m-l.(i.¢. in the task system used to
show that the upper bound of m may be approached arbitrasily. closaly, the fasks toquire only the first
m-1 resources). The next lemma shows that in this case (i.c..m 2 s+.1) that CPATH/OPT can be

arbitrarily closc to(s+m+1)/2. But, if m = s+L then (s+m+1)2 =m. ; .. a
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Lemma 410 Ifs + 1 <m<2s + 1 then CPATH/OPT can be arbitrarily close to (s+m-+1)/2.
Pt |
Let ¢ = (m-s-1)/s. Let x be a positive integer such that x = O mod 2s, fetz = [1+clx and let ¢ <
1712. Now consider the task system S* as speeified in the previous section, using these values of x, z
and e. The remaining resource requirementsof the A-tasks are: |
‘Foreachi, 1 <i<s, H
x of the Ai~tnslfshavean R;‘value of /24 ¢ o
cx of the Al-tasks have an R-value of 1/2 - 2. N

Note that for each i, we have specified’ resource requircments for exactly x + cx = [I+ck = z
Altasks. As desired, in total there are zs = (m-1)x A-tasks. |

As noted in the previous section, OPT < x + 2s'+ 1 provided all of the A-tasks can be
executed on m-1 processors in just x time umits, with the ‘total réquirement for resource 1 by ‘the
A-tasks in cach time unit not cxceeding 1~ e. This can be dome by exceuting the following tasks at
each of those x time units (Figure 4.7a): For cach i, } < <8, an Altask with ari R-valuc of 1/2 +
¢ executes. This utilizes s processors at cach time unit. Mofeover, for cs = m-s-1 values ofi, an °
Al-task with an Ryvaluc of 1/2 - 2¢ executes. Since m-T A-tasks exccute per tinic unit, all of the
A-tasks can be executed in x time units. Note that for each i, there are'(1<c)x time units in wlﬁch one
Al-task executes and there are cx time units in which two Al-tasks exccute. Moreover, the total -
reéuimmcnt for gach resource during cach time unit docs notcxcccdl - ¢. Therefore, OPT < x+ 28
+1

Also as noted in the provious scction, for critical path schedules; CPATH >x+s+1+
s6(A1), where G(Al)is the length of a particular fist schicdinle ¢which wé are-about to specify) for the
Al-tasks. Consider the following schedule for the A l-tasks (Figure 4.7b): In the first cx/2 timic units:

two Al-tasks with Ry-valucs of 1/2 - 2e cxecute. These time units arc followed by x time units in
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Figure 4.7: The schedules used in Lemma 4.11.

1 Al-task 2 Al-tasks
% +e “B+e

14 -2¢
(ex cx

a) A{l optimal schedule -- for each other resource v, A"-tasks execute (in a similar manner) with these
A'-tasks.

2 Al-tasks 1 Al-task
15 -2e % +e

18 - 2e

cx/2 X

b) The schedule used for G(AY) -- these tasks exccute alone.

In each of the above figures, the values inside of the boxes indicate the R -values of the the tasks

exccuting in thosc time units. The values under the boxes indicate the number of time units where tasks
with those particular R,-values cxecute.
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which one Al-task with an R -value of 1/2 + ¢ executes per time unit.- Note: that in each of the first
cx/2 tme units the total rcquireinent for resoun;:e_l is2(172-2) =1- 4{.; During the execution of
these time units the smallest resource requxtcmcnt.of any 1.mexecuteci’)’(I task Ts 172 - 2e, a value
which exceeds 4e. This means that none of the Agl tasks which execmc later m the schedule can

38 - Fops an e

exccute in these time units. This assures that the schedule we have descnbed here is a valid list
schedule. Thus, G(Al) cx/2 + x, and CPATH 2x+s+ 1+ sfex/2 -:;] gzx(m+s+ 1)72.
', CPATH/OPT > (x(m+5+ I/2/(x+25+D). '
limit, _, oo CPATH/OPT = (n+s+1)/2. 0
mw: If2s + 1 <m<8s/3 + 1, then CPATH/OF'I‘can be arbitrarily close to (4s+m+3)/4.
Letc = (m2s-1)/s. Note that0 < c< /3. Also, ket = Oifc < 1/2 andletg l"r"k»s [(1-0)/(2-3)
if ¢ > 172. Let x be an integer such that x = Omodszq etz = [2+c]x andletY ¥+
(1-c)29° %, -1 (The origin of Y will be explamcd a llttlc later in the proof) bet c = ‘0 = 1/10‘“'2.
Also, for 1<k <qletey = 10e, ;. Nowconsider lhc task system S* using thesc values of x, z and
e. The remaining resource rcqmremcnts of the A-tasks are e o o
Foreachn.lSnSs. | o
1. (1-¢)x of the Al-tasks have an Ry-valuc of 1/2 + ¢
(I-c)x 6f the Al-tasks have an R;-valuc of 172 - 2eo.
.2. For0 <k <q-1,
~ (1c/2X of the Al-tasks have an Ry-value of 1/2 + ¢y
(1-)x/2% of the Al-tasks have an R;-value of 174 + 2ey.
(1-c)x/2X of the Al-tasks have an R;-valuc of 1/4 - dey.

3. Yx of the Ai-tasks have an Ri-valuc of 172 4+ L=

Yx of the A™tasks have an R;-value of 1/4 + 2¢.
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Yx of the Al-tasks have aﬁ R;-value of 1/4 - 4eq.

There are two cases to be considered here:

1. Ifq = 0, then no tasks are assigned resource rcquiremem_s in part 2 of the above specifications. In
this instance Y = c.

2. Ifq > 0, then some tasks are assigned resource requirements ixi part 2 of the specifications. Note
that Y > 0, since q< 1 + log [(1<)/(2-3). | |

In both cascs, resource requirements are specified for cxact,ly z Ai-‘tasks. Thc constant Y was chosen

so that this was the vcase. Intuitively, in part 2 of the Wiﬁcations, we assign R;-values to the tasks in

a series of sets of tasks. The number of tasks in each sct is onc half the number of tasks in the

preceding set. Since there arc only [2}c]x =z Ai-tasks, thesenes must be terminated at an

appropriate point. In ‘fthiskinstance, that is aﬁgr q sets. 'l"hc» valuc 3¥x is the number of | Ai-tasks

whose R;-valu has nd been specificd when the series is terminatod. These 3Yx tasks are the tasks

assigned R;-valucs in part 3 of the specifications.

As before, OPT <x + 2s + 1 pn;vided all of the A-tasks can be executed in x time units with
the total requirement for resource 1 by the A-tasks in each time unit not exceeding 1 - &. This can be
donc by exccuting the following tasks at each of those x time units (Figure 4.8a): Forcachi,1 €i <
s, cither 2 or 3 Ai-tasks execute at each of the x time units. _ Morec specifically, for (1-c)s = 354m+1
values of i, two Ai-tasks exccutc. They have Ri-valucs of 172 + ) and 172 - 2c0. For the gther cs
= m-Zs-i values of i, three Ai-tasks cxcecute. They have Ri-valucs of 172 +. &g 174 + Zek and 174 -
4ey, for some k, 0 € k. < q. Since at cach time unit 2(l-§)s + 3cs = ml tasks exccute, all of the

-A-tasks can be cxecuted in x time units. Note that for cach :i, there are klf)i tirﬁc units in which two '
Al-tasks exceute and there arc cx time units in which three Ai-,tqsl_:s, c*cc!ute. Morcover, since ey >
gg=¢ for— 0 <k < q. the total rcquircmcnt for any rcséurce during each time unit docs not exceed

1- e. Thus, the A-tasks can be cxcecuted in just x time units, and OPT <x + 25 + 1.




Figure 4.8: The schedules used in Lemma 4.12. -

2 Alasts 3 Alasks 3 Aluasks
R ‘+v°o Bte | % f,_‘i‘;:?
2 4+ ey %+ 2
% '“k . . “‘_“q,
(1o (1c)x/2k RV T
0<k<ql

a) A{l optimal schedule -- for each other msourcev AV-tasks exccute (in a similar ﬁ{ah:ier) with these

4 Al-tasks 2 Al-mks, 2 51"35“ 1 A_lf‘f’*s
%-’4807 o ‘%-2%‘ %-2‘0 . % + ¢
‘i‘("“o  %+‘2¢0 - “’_zco“ SR R B
% -4e
- cx/4 - Q3nr? s

b) The schedule used for G(A!) when g = 0. Thesc tasks execute alone.: -

4 Altasks 4 Altasks . 3 Altasks 3 Altasks 2 Altasks lk“Al-task |
U deq Wotega| [W2eg| [Wvoe| [z NED
%-4¢q %-4eq_1 H‘A‘-4cq-1 | %'“k-l - ‘K+2¢o | o
- de, ey | |U-degy| |W-de| |

Wodeg | | deg, .

Y [1o/l-2Yp/a Yx Gk e x

¢) The schedule used for G(AT) when q > 0. These tasks cxecute alone.
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For critical path schedules, CPATH > x + s +1 + sG(Al). . There are two cascs to congider‘
based on the value of q (i.e.q = 0 and q>0).

Ifq = 0, consider the following schedule for the Alstasks (Figurc 4.8b); In the first cx/4 time
units, four Al-tasks with R;-values of 1/4 - 4eo-e;ecutc in each time unit. Next there are cx time
_ units in which two Al-tasks execute during each time unit. These tasks have R;-values of 172 - 2e0
and 174 + 2e0. Thirdly, there are (1-2¢)x/2 time units in which two Almk& each with an Ri-value
of 172 - 2e0. execute. Finally, there are x time units in which one Al-task with an Ri—value of 1/2 +
gp executes per time unit. Note that in cach of the first cx/4 time units the total requirement for
resource 1 is 4(1/4 - 430) =1- 16e0. During the execution of these time units the smallest resource
requircment of any unexecuted Al-task is 1/4 - 4e0, a value which cxceeds 1650. ‘This means that
none of the Al-tasks which exccute later in the schedule can cxecute in these time units. Similar
remarks can be made about cach of the other time .inits in this schedule. This assures that the
schedule we have described here is a valid list schedule. Thus, G(Al ) =cx/4 4+ cx + (1-2c)x/2 + x
= [3/2 + c/4]x.

If q > 0, consider the following schedule for the Al-tasks (Figure 4.8c): In the first Yx/4 time

units four Al-tasks with Ry-values of 1/4 - 4e _ cxecute in cach time unit. Next, there are [(l-c)lzq’1

q
-2Y]x/4 time units in which four A]-tasks withv Rl-valucs of 1/4 - 4’q‘l execute per time unit (since
q 2 logl(1-c)/(2-3c)) this quantity is non-ncgative). In the next Yx time units, three Al-tasks execute
per time ‘unit: these tasks have Rl-valucs of 1/4 + 2cq. 174 - 4eq_1, and 1/4 - 4eq_1. Similarly, in the
RCXL (l-c)xlzq'.1 time units three Al-tasks exccute per time unit. These tasks have R -values of 174

174 - 4¢

+ 2¢ and 1/4 - 4aq_2. Generally, fork, -1 2 k 21 thck are (l~c)x/2k time units

q-l q-2

with three Al-tasks exccuting per time unit. These tasks have Ry-values of 1/4 + 2¢, 1/4 - dep 1,
and 174 - 4ey . Following these time units there are (1-c)x time units with two Al-tasks exccuting

per time unit: These tasks have Ry-values of 1/2 - 2¢g and 1/4 + 2¢;. Finally, there are x time units
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in which one Al-task exccutes per time unit. Each of these tasks has an Ry-value excecding 1/2.
Note that in each of the first Yx/4 time units the total requirement for resonrce 115 4(1/4 - 4e) = 1-
| l6eq; During the exccution of these time" units-the smallest resourte: requircmém of any unexccuted
q? vaiue which exceeds 16¢q. This meansthatmneof the Al-tasks which execute
later in the schedule can executc in these time units. - Similar remarks-can' be made about each of the

Altask is 1/4 - de

other time units in this schedule. This assures that the schedule we have described hore is a valid it
schedule. Thus, GAD) = [¥/4 + @29 - 2va + Y + 3P_100n* + 0 + 1k = B2
+ c/4x.
.". In both cases, G(A]) = [3/2 + c/4)x and CPATH 2 x'+ s + 1 + {372 + c/4jx >
x(4s+ m+3)/4.
.. CPATH/OPT 2> (x[4s+m+3l/4)/(x + 23 + 1)
limit, _, oo CPATH/OPT = (4s+m+3)V4. : 0
42.4.3 A uschul sct of independent lasks
In the next two lemmas, wé make usc of a set of tasks originally described by Johnson,
ctalfJDUGG]. We have modified this set of tasks slightly to better suit our purposes. |
Given some resource (say, resource 1) and an integer y, we will describe a set of 3y - 1 independent
tasks. Fach task requires some non-zcro portion of the resource: These tasks can be grouped into three
sets of tasks: In the first st all of the tasks have R-valucs of “approximately 1/6; in the second set the
tasks t;ave Ry-values of ,approx_imatcly 1/3; and in the third set the tasks:-have stvillue’s-"ex'ceédiﬁg 172.
Within cach sct the tasks differ slightly in their mmemquircmts. For instance; in the ﬁrst sct some
of the tasks have resource requirements cxcceding 176 and some have requirements loss than 176, There
arc y tasks in cach of the first twe scts and y - 1 tasks in the third.
'More formally, assume that an integer y, with y =0 mod 10 is given. Let 8 be such that 0 <8«

18Y/10, Also, ket 8, = 818"/10" i for 1 <i < y/10. Consider the following three scts of tasks:
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1. The first set contains y tasks, T}; for 0 < j < 9 and 1 < i < y/10. These tasks have the following
resource requirements for 1 < i < y/10:
Ry(T) = 1/6 + 33;
Ry(T}) = /6 -33;
Ry(T) = Ry(Th) = /6 - 78
Ry(T1) = 176 -135;
Ry(rL) = 176 + 98,
Ry(Tg) = Ry(T7) = Ry(T) = Ry(T§) = 1/6-28;
2. The second set contains y tasks, T}i for0 < j < 9and 1 < i< y/10. These tasks have the
following resource requirements forl < i < y/10:
R)(Tg) = /3 + 468,
R(T}) = 1/3- 48,
Ry(13) = Ry(T3) = 1/3 + 63
Ry(T2) = I/3 + 125,
Ry(T2) = 13- msi'
RyCTE) = Ry(T) = Ry(Th) = Ry(T) = 1/3 + 4,
3. The third set contains y - 1 tasks, T3 for } < i <'y-1. Bach task requires 172 + § of resource 1.
An optimal schedule for these 3y-1 tasks has length y. It consists of timve units with the folowing tasks:
L For2 <j<9and1<i < y/10, a T3-task and T}i and T}i
2. For1 <i < y/10,aT>task and T and T,
3. Forl <i<y/10,a13task and Thand T, 1
4. T} ,/10and T
Now consider the list (1, . T§1. T v T e T /100 -+ T y710- T = T By 100

.T% y/10 Ti‘, ,'1‘3_ l)' This list results in a schedule with length 17y/10 - 1. This follows casily from
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the results in JDUGG). We give an informal description of the schedule here. The schedule has y/S
time units in which S tasks from the first set executc per time: unit ad in-which the total resource
‘requircment in each of the time units exceeds 5/6; y/2 time units iﬁ which 2 -tasks from: the second set
execute per time unit and in which the total resource requirement in each of-the-time units exceeds 2/3;
and,y- 1 time units in which one task from the third sct exemite# per ﬁmeumt. L

Now assume that y is fixed. Since cach task in the system requisés.a non-zero portion of the
resource, and since (in both of the schedules given above) each time unit has 5 or‘fewcr exccuting tasks,
there exists a B, > 0, such that the resource requirement of every. taskmhe teduwdby ﬂ; without
changing either of the two schedules. - Moreover, m:simphes éﬂm&e M?mme usage during any
single time unit in these two schedules does not exceed 1 ~ ﬁ*y.

In the next result, some Al-tasks are assigned Rj-values in a manner similar w&hese assigned in
previous lemmas, and some are‘ assigned Ri-val_ues similar to the resource requirements of the J-tasks.
4244 The remaining cases | |
Lemma 4.12: If8s/3 + 1 < m<3s + 1, then CPATH/OPT can be arbitrafily close~so(l4s;f-m+9)/10.
ot .

Letc = (m-25-1)/s and let q > 0 be an arbitrary integer. Note that /3 S c< 1. Letx = 20829 letz
= 2+ck - land ket Y = 32 4 (10729 ], The valuc Y willserve s purposc in this rosule similar to
what it served in the previous resuit.  Also similarly to the previous result, det ¢ = e << min{ By,
11092} and for 1 Sk < g, let ¢, = 10¢, ;. Nowieonsider ic taik systoms S using these values
of x, z, and e. The remaining resource requircments ofﬂukmksm&fom ‘ |
For cach i,'l <i<Ls,

L (1-0)x of the Al-tasks have an R;-value of 1/2 + ¢

(1-c)x of the Al-tasks have an R;-value of 1/2 - 2e;,

2 For0<k < g,
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(1-(:))(/2k of the Al-tasks have an Ri-value:ot’ 172 + 8.
_ (/2K of the Al-tasks have an Ry-value of 1/4 + 2¢y.

(1-c)x/2 of the Al-tasks have an R;-value of 1/4 - dey.
3.3Yx - 1 of the Ai-tasks are assigned R;-values cqual to the Ry-values of the tasks in a set of 3Yx -1
© Jtasks. These Al-tasks will be called fype ] Al-tasks.

- An optimal schedule for this task system has a similar form for the cxecution of the A-tasks as

the optimal schedules. in the previous lemma. As-before, OPT < x + 25 + 1 provided all of the
A-tasks can be executed in x time units on m-1 processors. This-can be done by exccuting the

following tasks at each of those x time uaits: For (1-¢)s = Jsm 1 values of i, two Al-tasks execute:

- these tasks have R;-values of 1/2 + g and 1/2- 2¢4. For the giher cs = m-2s-1 values of i, either:

1. Three Al-tasks execute having R;-values of 1/2 + ey, 1/4 + 2ey, and 1/4 - 4¢ for some k, 0 <k
5¢Lm»

2. Two or three type J tasks exccute (as noted in section 4.3, three type J tasks execute in alt but one of
these time units).

Note that at cach time unit no.more than 2(1-c)s + 3cs = m-1:tasks-execute. Also, for each i, there

are cx time units in which three Ai-tasks execute and there are ¢(1-¢)x time units in which two Al-tasks

execute. Thus, the A-tasks can be executed in just x time units and the total requirement for - any

single resource during each time unit docs not exceed 1 - €. Thus, OPF <x+ 25 + 1.

Thé exccution of the Al-tasks is also similar to that in the.previous lemma. In that lemma (for g
>0), there were cssentially four types of time  umits: those with 4, 3, 2 or 1-tasks. .Let T4, T3, T2 and
T1 designate all of the time u’nits of each type. Each ofithese types of - time:units will also occur here,
In addition, in this proof, we have time units where only type § Al::asks exccute. As indicated in our
discussion in the previous scction, there will be three types of time units where type J Al-tasks

execute.  These time units contain 5, 2 and 1 Laéks,- and will be referred to-as J5, J2 and J1,



-82-

respectively. The schedule used to deriveG(Al) consists all of these ﬁni&unit’s’ in the following order:
T4, J5, T3, T2, 12, J1 and TL. That is, first all of the T4 time units execute, then all of the JS time
units execute, and so on.

_ More formally, consider the following schedule for the Al-tasks (Figure 49): In the first
[(1-c)x/2q'1]/4 time units four Al-tasks, each with an Ry-value of 1/4 - 4eq,1, execute in each time
, uéit. Next, there are Yx/$ time  units in which five type J tasks execute - as noted in the ‘previous
section, cach of these tasks has an R -value of approximately 1!6 “Next, similarly to-the critical path

schedule described in Lemma 4.11, for g-1 > k > 1, there are (l-c)x/‘zk time units ‘with three tasks
executing per time unit. These tasks have Ry-values of - '1/4 + 2‘k*" 174 - 4¢; ), and 1/4-.- dey 1.
Following lhese.time units there are (1c)x time ’unﬁS with two Al-tasks -exécuti’dg per time unit.
These tasks have R -values of 1/2 - 2eq and 1/4 + 2ep. Next, there are Yx/2 time units with two
type J tasks e:ccuting per time unit - as noted in the previous section, these tasks have R)-values of
approximately 1/73. Finally, there are x-1 time units in which one Almk executes per time unit.
Each of these tasks has an R l-valt.ne exceeding 1/2. Notc that in each of the first [(l*c)ﬂq'llx/4‘time
units the total requirement for resource 1 is 4(1/4 - deg.;) = 1-16e; ). During the exccution of
these time units the smallest resource requirement of any uncxecuited Al-task is approximately 1/6
(actually, just a little lcss than 1/6). But, eg-1 Was chosen such that 1/6 >> l6eq_i. This means that
none of the Al-tasks which cxecute later in the schedule can cxecute in these time units, Similar
remarks can be made about each of the ether time units in: this schedule: This assures that the
schedule we have described here is a valid list-schedule. - Thus, GGAY) = (V2914 + Y/5 +
20 laonk + (10 + Y72 + Dr- 1 = [(16+¥10- (19/(20 29°Yx - 1. Hence, CPATH > x
+5+ 1+ sxf(164+c)/10 - (120 2971y} - 5. But, x = 202971 s0 CPATH > xfs(16 +¢)/10 + 1] -
.

.. CPATH/OPT > (x{s(16+¢)/10 + 1]- sD/(x+2s+1)




Figure 4.9: The schedule used for G(AY) in Lemdha 4.13.
4 Altasks ~ 5 Altasks 3 Altasks 2 AMtasks  2AMtasks 1 Alask
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type J task v type J task
%- 4eq-1 with an %- dey ., % +‘2e0 with an
Ye-deg,| |ofabout | [U-de | }ofabout -
1/6 173
% - deq- | | »; b
[(-ox29 Y4 Yx/5 aork o . Yx22 x1l
¢lzk2>1

These tasks execute alone
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limit, _, oo CPATH/OPT > (14s+m+9)/10. ‘ | O
Lemma4l13: If3s + 1 < mand m 2 10, then CPATH/OPT can be arbitrarily close to
2 + 17s/10 - (3s+1)/m.
Proof
Let x = O mod 10m, letz = 3x - Land let ¢ = 8. Consider the task sysiom S* using these
values of x,zand e. Foreachi, 1 <i 5 s, the Aijtasks are as;igned Ri-\}alﬁcs cqual to the Rl-values
of the tasks in a set of z J-tasks. In addition to the usual tasks in S* the foHowing tasks arc added to
S*:
1. G, a task which requires no resources.
2. Fj for1<j< (m-3s-1)x.k These tasks require no Tesources.
3.EwithR(E) = 1for1 <i<s
The following precedence constraints are also added to the system
1.Forlsjsz,A§<G.
2.B;<G,and C;<G.
3. For1 <j<(m-3s-1)x, E< Fj.
The precedence structure of this task system is shown in Figure 4.10.
An optimal schedule for this system is: In the first s+2 time units exccute the B-tasks and task
E. In the next x time units the A-tasks, D-tasks and F-tasks are cxecuted (1 D-task, m-3s-1 F-tasks
and no more than 3s A-tasks per time unit). For cach i, there are x-1 time units where three Ai-tasks
cxecute and there is one time unit where two Al-tasks exceute. In the final s+1 time units exccute the
C-tasks followed by task G. ThusOPT<s +2+x+s+1=x+25 + 3.
Now consider the following critical path schedule: Execute the D)-tasks and tasks By and C; in

the first x+1 time units. In the next 17x/10 - 1 time units exccute the Al-tasks. Then, exccute Bl

and Cz. followed by the Az-tasks in the next 17x/10 - 1 time units, and so on, until Bs exccutes. Then
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Figure 4.10: The task system used in Lemma 4.14,

‘asw

The non-zero resource requirements of thesé tasks are:

Each D-task requires e of resource 1

B, requires all of resource 1

B, requires all of resourced, i>0

Each Al-task requires a non-zero portion of resource i . -
E requires all of the resources

G, the C-tasks and the F-tasks require no resources
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exccute Eand G. In the final (m-3s-1)x/m time units executé the F-tasks’ Thus; CPATH >2x+1l+ |
17x8/10 + 1 + (m-3s-1)x/m >x[2 + 175/10 - (3s+1)/m].

.".CPATH/OPT 2> ;[2 + 17s/10 - 3s+1)/m/(x + 2s + 3)
limit_ _, oo CPATH/OPT = 2 + 178/10 - (38-+1)/m. | ]
Lemma 4.14: If 3s + 1 < m and m < 10, then CPATH/OPT can be arbitrarily close to
2+ 58/3 - (8s/3e+ 1)/m.
Proof
The task system we describe here combmes vamus aspeets of the systems uscd in Lemmas 4.11
and 4.13. We use the task systcmstmcture ﬂ'em Lemma4.13' (;e,, wsdnbeaddedjasks) and weasdgn
the A-tasks resource requuemems as was done in- bemmt:Il |
More formally, assume san& m are gwen. Let¢ € (1/2; w) aad let q= r log[(l-c)/(z 3c)11.
Let x be an integer such that X = Om'od‘sm2q, letz = [2+c]x and lft Y = 32 + (1:0)129'1. Tete
= eg=1/109%2 Aso, for 1 Sk < g letey = 1o¢k_1.4 Consider the task system S* using these
values of x, zandz S | | ;
For each 1i<s
1. (1-c)x of the Al-tasks have an R;-value of 1/2 + ¢
(1-c)x of the Ai-tasks have an Ri-vaiue of VZ 2,2‘0% o
2. For0 <k <ql, | |
(1-c)x/2k of the Ai~lasks have an R;-value of 172+ e. - -
(l-c)x/2k of the Ai-tasks have an Ri-value of 174+ ch w
(1-c)x/2K of the Al-tasks have an Ry-value of 174~ dey.
3. Yx of the Al-tasks have an R;-value of 1/2 + e
Yx of the Al-tasks have an Ry-valuc of 174 + 2,

Yx of the Al-tasks have an Ri-value of 174 - 4‘q‘
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These are exactly the same specifications for thé:R‘f-'valuﬁ of the Al-tasksas given in Lemma 4.12.
In addition to the usual tasks in S*, the following tasks are added to S*: |
1. G, a task which requires no resources.
2 Fj for1 £ j < (m{2+cks-1)x. These tasks require no resources.
JEwithR(E)=1for1 Sigs.
The following precedence constraints are also added to the system:.
LFor1 <j<zAj<G.
2.B;<G,and C < G.
3.Forl1 £j<{m-3¥s)x,E< F;.

An optimal schedule for this system is similar to that for the system uscd in the proof of the -
previous lemma. The B-tasks and task E are executed in the: first s+ 2 time units. In the next x time
units the A-ta-ks, D-tasks and F-tasks are executed. In each of those xtime units, [2+4c]s A-tasks, 1
D-task and (m-{2+c}-1) F-tasks exccute. For cach i, there are (1-c)x timhe -units where two Ai-task&
execute and therc are cx time units where three Al-tasks exwu@ In the final s time units the C-@
arc executed. Thus, OPT <x + 28+ 2.

Now consider the following critical path schedule; Exccute the D:tasks -and tasks By and C in-
the firstx-+1 time units. In the nest [3/2 + c/4lx time uaits ciocute the AL-tasks (chis follows from
the proof of Lemma 4.13, where G(A') = [3/2 + c/4}x): Then execute B, and'C,, followed by the
Az-tasks.in the next [3/2 + c/4]x time units, and so on, untit B executes. Next cxecute Eand G.
Finally, exccute the F-tasks in the final (m-{2+c}s-1)x/m time units. Thus, CPATH Zx +1+({372
+ c/4lx + 1)s + 1 + (m-2+cjs-Dx/m > x[2 + 3s8/2 - (2s+1)/m + esfl/4-1/m)}

. CPATH/OPT > x{2 + 35/2- Qs+ 1)/m + cs(1/4 - L/mM/(x + 25 + )

limit, _, 5,3 CPATH/OPT 2> x[2 + 5¢/3- (8s/3 + 1)/m}/(x +‘.2: + )

limit, _, oo CPATH/OPT =2 + 5s/3 - (8s/3 + 1)/m ’ a



In tl.ﬁs chapter we study critical path scheduling of UET task systems with discretc resources - both
with and without processor constraints, Unfortuaately, there are no resiits for this problem per se. It is
possible, however, to make some conclusions about this problem based.on results for Coffman+Graham
scheduling of UET task systems with @-1 resources. Thesc are UETF task systems: with discrete resources
in which cach r;=1 -- that is, there is exactly one unit of each resource, hencoa task cither requires all of a
resource or none of it. Because Coffman-Graham schedules are a subclass of the critical path schedules,
any lower bound on CG/OPT for UET task systems with 0-1 resousces, is also a lower bound on
CPATH/OPT for UET task systems with discrete resources. This: foliows. because systems with 0-1
resourccs .are a subclass of the systems with discrete resources. Althoeugh-at first glance; it appears that
any lower bound on CPATH/OPT obtained in this manner would be fairly weak, we will, in fact. (in
section 5.2) be able to use such a lower bound to make seme fairly strong statements about critical path
scheduling of UET task systems with discrete reseurces. ‘Before doingso, however, we present two results
on Coffman-Graham scheduling of UET task systems with 0-1 résousces. -

3.1 Coffman-Grabam scheduling of systems with -1 resources -

Coffman-Graham scheduling of UET task-systems with 0°1 resources has been studicd by Goyal
[Go] for the limited case of onc resource. ‘He shows that form = 2, 0G/0PT < 3/2, and that this is the
best possible result. This type of scheduling is also mentioned by Leang [Le]. He conjocturcs that for
UET .task systems ' with 0-1 - resources, Coffman-Graham schedules provide substantially better
performance ﬁ\an do list schedules.

For purposcs of comparison, we note that the results of Chapter 3 can be-applicd to UET task
systems with 0-1 resources giving the results LIST/OPT < 1 + s if there is no processor constraint, and

LIST/0OPT < min{m, (2-1/m) + s(I-1/m)} if there is a processor constraint, - Morcover, both of these
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reshlt§ are the best possible bounds.
In this scction Qe prove the following two results on Coffman-Graharhn ‘scheduling of UET task
systcmé with s 0-1 resources when s > 0: |
Theorem 5.1: If m > n (no processor constraint) then CGZOPT < 1+ s. Moreover, this is the best
possible result.
Jheorem §.2: 1f m 2 2 (a processor constraint).thea
CG/OPT < m  if s2m .
m-1/2  iffs=m-1
(2-2/m) + s(1-1/m) if s<m-2
Morcover, this is the best possible result.
These rc§ults show that Leung% conjccture about the relationship betweea Coffinan-Graham scheduling
and Hst’schedulingisvwr.qng: - Coffman-Graham scheduling doésxﬂgspm;vﬂe'mbs’tmﬁaﬁyf better worst
case performance than list scheduling for UET task systems ‘with 0-1 resources. - In fact; for systems with
no processor constraints, Coffman-Graham scheduling has exactly the same worst case perfomnce as fist
scheduling. We will prove these two theorems, and then, in section 5.2, we will-discuss how these results
apply to critical path scheduling of UET task systems with discrete resources.
Lemma 3.1: Ifm 2> n(no precessor constraint), then CG/OPT <1 + .
This result is trivial because Coffman-Graham schedules are a subclass of dist schodules and as noted
above, it follows from Theorcm 3.1, for UET task systems: witlt ©-1-rosourees and -no processor

constraint that LIST/OPT <1 +s. B : n)
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Lemma 5.2: If m > 2 (a processor constraint), then
CG/OPT £ m - if s2m
m-1/2 if s=m--l 
(2-2/m) + (1-1/m) - if s € m-2

2.1.1.1 Proof Qutline

Wec prove the upper bound in two stages. Initially, we show -that. given a Coffman-Graham
schedule, some of the tasks can be placed into sets Wy, ... Wp (called scgmesits) such that given tasks T €
W;and S€ W, , it must be that T < §, where < s the transitive closure of the precedence relation.
. This property implies that all the tasks in scgment W; must.execute before any of the tasks in Wi
cxecute. This allows us to examine each scgmcent individually, and obtain a worst case bound for the
length of the portion of the Ceffman-Graham schedule where the tasks in the scgment cxecute, to the
length of an optimal schedule for the tasks in the segment.- This we do in the second stage of the proof. A
portion of this proof is largely a modification {(to accomodate resource tasks) of a proef by Lam and Sethi
[LS]. In particular, most of the first stage of the proof and the sccond half of the second stage of the proof
are drawn from their work. |
2.1.1.2 Scements

Before beginning, we make the following assumption about how tasks are assigned to processors
when using list schedules (our formal definition did not mention which tasks exccute on which
proccséors). Since we are dealing with UET task systems, this assignment is relatively simple: If Ty, ...
T, with x < m, are the tasks cxecuting in a particular time unit; with LABEL(T}) > LABEL(T) > ... >
LABEI(T,), thca task T; exceutes on processor i Here LABEL(TY) refers to the labcl assigned o T;
using the Coffman-Graham labcling algorithm. Note that in the hst used W deo the scheduling, T;
appcars before T,, which appears before T, and soon.

Finally, a task T with RM(T) = 0 is a pon-resoyrce task, and a task T with Rmax('l‘))()isa



resource task,

Now cons:der any Coffman-Graham sehedule As- usual we. let CG m&r to both the set of tunc
units comprising the Coffman-Graham schedule and the lcngth of that schcdule As notcd above. we wﬂl
form sets of tasks called segments. This is done in two stage‘s.z, Firg;,--"wc form blocks of tasks, and then
combine those blocks to form segments. Blocks are form?d fronfme Coffman-Graham schedule as
follows: | |
Definiton: Form blocks X . Xo. . -.. . Xg, for some q > 0, as follows:

1. Uy is the task exccuted on ?rocessor one in time unit BCG
2. Fori2> 1, 'U- is the task éx@cuted On processor one in thémaximai ame unit BA where:
a. A non-resource cask exccutes on procesor one ufBA |
b. (VT=U)TeBy = LABEL(T) < [ABEL(UH)]
3. Forq2i2 1, X1 = {T:e(U)<a(T) < o(U;)) and LABEL(T) > LABEL(U;. )}
X ={T:o(N < a(U )and LABEL(T) > LABFL(U )}
An cxample is shown in Flgure 5.1.- Note that' notcvcry tas!t bclongs toa biock ‘such-a task is callcd an
extra task. The last time unit of each block cither eontams an extra: task or it has an idle processor. Also,
for block X a(X ) = min{o(T): T € X } That is, o(X) is the carlicst time at which a task of block X’
executes.
The following lemma about blocks is uscful:
Lemma 5&:. Forq 21> 0, task Uj is a predecessor of cach task i“n block X; 1.
proof _ :
Consider any U; and black X, ;. Three things should be noted::
L. Uj; is a non-resource task
2. Each task in X;_; has a label at lcast as large as I.ABF.L(Ui_l). N

3. Each task cxccuted in the same time unit as Ui has a label smaller than LABEL(Ui_l).
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Figure 5.1: Example of the division of a Coffman-Graham schedule into blocks.
Consider a task system with 3 processors and one 0-1 resource. The precedence structure is given

below. The iy are the:Caffman=Grahain labels GF the tasks. Thoise mumbers will bo-used to refer
to the tasks. Circled tasks requlrc the moume

'.: N e \O i ot

Schedule:

Time units
Blocks are outlined in the above schedule.

Figure 5.2: Example of the division of a Coffman-Graham schedule into segments,
The task system given in Figure 5.1 is used: I

Schedule:

Time units

Segments are outlined in the above schedule,
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‘Now consider ahy task T € X;_; which has no predecessors in Xi.1- th didn’t T execute in the same
time unit as Ui? Because LABEL(T) exceeds the: labclofeack task-executing with Ui' and Ui is a
non-resource task, it follows that Ui {T. Thus, Ui-h a predecessor of every task mxi_lg ]
Segments are composed of blocks and a few extra tasks. .Specifically, segments WO" iy Wp, for somep >
0, are formed as follows: '
L. Initially, et Wy = Xq, leti =.0andletj = q-1L
2. Whilej 2 0do
if (VT € WVT* € X)IT <t 1)
then W; is complete
CletWip =X deti =i+ Landletj=j-1 |
else letG = {E ¢ W; : LABEL(E) > LABEL(Uj) and (3T € WyT Y E}
MW, = WiUXjUGandletj =j-1
3.Letp =i, and Wp is complete.
An cxample showing scgments is given in Figure 5.2, Intuitively, scgments arc formed from left to right
by combining successive blocks until a block is encountered,-all of whose tasks are successors of all the
tasks already in the scﬁmcm. At this point the scgment is complete and a new :'scgm'ent is starsed Extra
tasks are added to the scgment for accounting purposcs which arise in the second stage of the proof.
Extra tasks which arc placed into a scgment are called Jatecomers.
Lemma 5.4: For0 < i<p,ifTe W;and T € W, , |.then T<F T".
Proof
Consider any Wi and W; . ; for some i, 0 < i<p. Assume that scgment W, , | consists of blocks X .,
we s Xoogo fOr some k 2> 0, along with some latccomers: It follows from the construction of segments,
forcach T € Wi andT' € Xc, that T<Y T, Ifk = 0. it also follows that there are no latccomers in

W, , |- so the lemma holds. Thus, assume k > 0. From Lemma 5.3, for-alt j, ¢ 2§ > c-k, task Uj



-04 -
precedcseachtaskinxj

- U X_y. The only other tasks in W; , ,-arc latecomors. The first latecomer added to W, 1 s by

.1 Then by transitivity, each task T € W;; precedes cach task in X, U 1Y

definition, a successor of a fask in X, Each subscquent latecomier to W, | is-a successor-of either a

task in some block of W; | ; or of a latccomer already in W, , 1. In cither case; by transitivity, each T

€ W precedes each latecomer in W; ;. e g
Because of the preceding lemma, we are free to treat each: sogment mdmdmlfy with fespect to obtaining
an upper bound, That is, because each task in scgmcnt'Wi must exccute before any task -in Wi:{-l can
execute, we have that OPT > E? =0 OPTP where OPT is the length of as optimad schodule fé? the entire
task system, and OP'T; is the length of an optimal schedule for a task systom comsisting of ®e tasks in W,
(and the precedence constraints restricted to those tasks). Morcover, GG = Z‘;.: 0t5CGi, where CG is the
length of a Coffman-Graham schedule for the cntire task system, and CG, is the length of the portion of
the Coffman-Graham schedule under consideration regtricted to the tasks in Wi.' The equality follows
because at least one task from each time unit belongs to some segment, In the next section we show that
for each i, 0 < i < p, CG/OPT; < b, where b depends on the relationship of s and m. It follows that,
given a particular relationship between s and m, CG/OPT < b.- Thus, in the remainder of the proof we
assume that the Coffinan-Graham schedule consists of a single scgment W. That sogmicnt.consists of
blocks Xq. « » Xg» and some number of latccomers. We let OPT be an optimal schedule for the tasks in
w.
5.1.1.3 The individual bounds

In this section we complete the proof of the upper bound. As. .nntc;i prcviously,‘m is a trivial upper

bound on CG/OP'I This handles the case of s > m. Moreover, Geyal [Go] has shown that CG/OPT <
3/2if s=1 and m=2, and it has been shown [CG,1.§] that CG/OPT <2 -2/mifs=0and m 2 2. Thus,
we assume that s > 1 and m 2 3 in the remainder of this proof.

- The following lemma about scgments is useful:
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Qmma 5.5: If W contains blocks Xq, s XO' then there arc at least g Tatocemers:in W. - -
Eroof
; | We consider the procedure by which scgments are formied; -and: show that each time the
elsc-clause in step 2 of that procedure is exccuted, at least one Iatccomeor: 8 added to W. Since the
elsc-clause is exccuted for-cach block added to W texeept the first block), the lewima foliows.

Assume. that blocks Xq.-... XJ 41 are already-in :W: (along witht latccomers) and that there are
tasks T € W and T* € X; such that T <* T is false. Choose T so that it has no successors in W and
T so that it has no predecessors in Xj. Letl = {T€ Xj: T has no wredecessors»inij}.» Clearly, T' €
I. Now consider Uj +1° By definition Uj +1€ W. From -Letmna:s.:&,”:Uj- +1 is & predecessor of each
task in Xj. It follows from there being no:transitive cdges-in:the dag for £, that when labeling U_' +1
the largest ]I labels of its successors are the labels of the tasks.in I. Now consider task T. By
definition, LABEL(T) > LABEI.(Uj +1). Since T has no successors in W, and THT is false, it
follows that there is a task E ¢ W such-that LABEL(E) > LABFi:(:l;lj)zandz.&(E) < c(xj). Intuitively,
the first condition helds because LABEL(E) must cxceed the label of some task in 1, since LABEI(T)
> LABEL(UJ- + 1). The sccond condition holds since E is not in Xj, - Therefore, e?ch time the
elsc-clause is executed in the procedure defining segmients, at least-one lateccomeris addedto W. - 0

3LL3) Thecases=m:1
Given a scgment W, let g be the number of resource tasks in'W and let d be the aumber of time
units in the Coffman-Graham schedule having a resource task exccuting on processor one.
Lemma$,6: CG <(mOPT + a + 1)72
.M v
From the constructions of blocks and segments it follows that for each ’time unit B € CG, not having a

resource task executing on processor onc, that ane-of the following holds::



1. B is the last time unit in W.
2. B is not the final time unit of any block. This means that there are at least two tasks of W-which
- are not latecomers and exccate in B. |
3. Bis-the final time.unit of block X;, for somei 8 (i.e. not te last'block).  This means that at
least one latecomer was placed into'W-when block X; lwééwde@ﬁw.“ :
Note that there are CG ~d-time units nat having d resource 1sk cxosuting On processor onc, and for
. only onc of these time umits éan item 1 (above)hold. ‘Thus,d + 4CG-d-1] + 1 =2CG-d-lisa
lower bound on the number of tasks in W.' Since m OPT is an upperbound on‘the number of tasks in
W, we have m OPT > 2CG -d - 1.. |
Clearlyd = a -k for some k > 0, hence, mOPT > 2CG-fa-k]-1. -
S.CGLMOPT + a+ 1)/2-k/2
SMOPT +a+ B2 : - . - - a
Fhree corollarics foHow directly from the proof of the above lemima:
Corollary 5.1: If a resousce task cxecutes on any processor:other than processor one, then
CG < (mOPT + a)/2
Corollary §.2: If m OPT 2 2 CG - d, then CG. < (m OPT + a)/2.
Corollary 5.3: If any time unit with a resource task executing on processor ene, has a task 'l‘ €W,
exccuting on processor two, and T is not a latecomer; then CG < (m OPT + a)/2.
’l‘ocorﬁplctc the proof fors = m - 1 there are three cases to consider:
Case 1: A resource task executes on a processor other than pmccssorone |
From Corbllary 5.1, it follows that CG/OPT < (m OPT + a)/(2 OPT). Buta < (m - 1)OPT, since
there are only m - 1 units of resourcc available at cach time unit of OPT,
.". CG/OPT £ (mOPT + (m-1)OPIYQOPT) - .

=m-1/2
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Case 2: Each resource task executes on processorone anda § (m-1) OPT - 1. -
From Lemma 5.6, CG/QPT < (m OPT + a + 1)/(2 OPT)|
< (m OPT + (m - 1) OPT)/(2 OFT)
=m-1/2
Case 3: Each resource task executes on processor onc and-a = (m - 1).OPT. -
These conditions mean that in each time unit of OPT, m-~ 1 tasks require a.respurce, and that each
resource task requires exactly one unit of onc resource. In particular, consider the: ﬁtsgtime unit of
OPT. Sin};e m.2 3, (hence s 2 2), there arc at least two resaurce m;ks c:@cutimg in that time unit.
Let T) and T, be two such tasks. In the Coffman-Graham schedule, T, and 'F, both ‘cxecute on
pfocessor one. Without loss of gencrality, assume. that Ty qxacueas:bcﬁ;rer 'an .There are only three
possible reasons why T did not execute with Ty in the Coffiman-Graham schedule:
1. Due to processor constraints. That is, when T, was scheduled, the only'reason that it was not
- scheduled to cxecute with T, was. that the time unit. wheve Ty exceutes atready contained m
tasks. Let T3 be the task which exccutes-on processor two. - It follows that LABBL(TI) >
LABEL(T3) > LABEL(T,), and that o(T}) < o(T 3);( o(T,).: From Lemma 3.3, since Ty and
T, have no predecessors in W, it follows'that Ty and T, are ‘in. block X . Then, from the

definition of blocks, T3 € X, hence T3 € W. Thus, the time unit where T) exccutes has a

q
resource task cxecuting on processor one and a task Ty € W on processor two. Since Tyis not a
lafccomcr, from Corollary 5.3, CG < (m OPT + a)/2. Asia Cascl, CG/OPT < m - 1/2.

2. Duc to precedence constraints. That is, some task Ty:4 Ty had: not executed prior to time unit
a(Tl) ini the Coffman-Graham schedule, ' It follows that LLABEL(T 1) > LAIIIiIﬂ'})‘ >
LABEL(T,) and that o(T}) < o(T3) < o(T;). As aboﬁc. it follows that Tyisin W. But this is

a contradiction, since Ty must execute before T, in OPT and Ty cxecutes in the first time unit

of OPT.
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3. Due to resource constraints, That: is, some task Ty executes in ‘the same ‘time unit of the
Coffman-Graham schedule as Ty and fequires the ‘same: resource as T). It follows that
LABEL(T}) > LABEL(T3)'> LABEL(T,) and that a(Tj}' < o(Ty) < o(Ty). As above, it
follows that Ty is in W. But this is a contradiction: Since Ty is a resource task, and it doesn’t
execute on processor one;
This completes the proof for lhc;cases = m-l, - S -0
31132 Theemes<m:2
Given .a segment W, the time units of the Coffiman-Graham schedule can be fpartiti;med into the
following three sets:
- F={BeCG: Bl =mand(VTeBfTecWandT isnot»ahteqmr]}
H = {B¢ CG: B ¢ Fand (3T € BT € W and T'is not a latecomer and T is a resource task]}
P=CG-F-H ‘ ‘
It follows that for each B € P, cither B has an idle processor or there is -’a:;*exu'a task in B (this extra task
may or may not be a latecomer). The time units in F are fizl] time units, those in H are resource time units
and those in Paremnmmmunm.i»
Lemma 3.7: If the first time unit of CG is either a full or resource time unit, then OPT > |P{ + 1.
Proof
Consider the partial time units of W and numbcer them (left to right) from 1 to [Pf. For1 < i ([P}, let
Vi be the task executed on prooessor one in the time¢ unit immediately following partial time unit i.
et T* be the task executed on processor one in partiat time unit 1. “There arc two obscrvations to be
made:
L T* < Vy. Tosce that this is so, consider the time unit where T* executes. Since this is a partial
| time unit, any extra tasks in this time unit have a labet smalier than LABEI(V,). Since Vy

executes after time unit o(T*), for some task T executing in that time unit, T < AT Suppose T
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# T*. Since LABEL(T*) > LABELm,sand'Vf is-the task withi the highest label that either T

or T* can precede, it must be that T* < V.
2. Forl 5 FSIP|-1, every T-¢ W, such that LABEL(T) > LABEL(V), procedes atask R € W,
such tha( LABEL(R) > LABEL(VJ +1»)a' To see: that 'this is so; consider any task T with
- LABEI(T) > LABEL(VJ-). “IfFTL Vj +1 the claim holds, so assume not. Let T' be thé task
executed on processor one in partiat time uniti+ 1. Similarly to the previcus observation, T' <

J
LABEL(T) > LABEL(T"). Since T' < Vj +1 anﬂf'f?'dmn'&?T»mm-zprceedewmg‘msk R with

Vi1 Tt follows from LABEI(T) 2 I.ABEL(Vj) and LABEL(V}-)'-?_)LABEL(T'), that

LABEL(R) > LA’BEL(Vj +1)- All that remaisis is to show: that R-€ W.IFR is in some- block
then it is in W, so assume that R is an extea task. Ho(R) (‘--6(9(*0): dien:R is a latecomer toW-
(it is added no later than when block X, is added to W), “If o(Ry B-o{Xp) then R € X since
Vig1€ X( and LABEL(R) > LABEL(Vj +1)- This i a contrudiction since R is:an extra task.
Thus,R € W. |

From the above two observatioss, it follows that task T* and every task T € W with LABEL(T) >

LABEL(T*), precedes a chain of at least JP| - 1 tasks(with cach task of thatchiain a member of W).

Now consider the first time unit B; of W. There are two-cases::

Case 1: Bl is a resource time unit.

If some task T € (By N W) precedes task T* then T procedes a chain of at least |P{ tasks, each
of which s in W, hence OPT > |P| + 1. Thus supposc that:there is ne sich- task T. Since
there is cither an idle proacessor or an cxtra task inBl (which 'must Bave a lower label than T%),
when T* was scheduled there was still room in By for it Since T* couldn’t have been
prevented from exccuting there duc to resource constraints (F* roquires no resources), there
must cxist a task Q such thatQ < T*. Morcover, Q € W since T* € W and T* is in the first

partial time unit of W (i.c. Q cannot be an extra task). Henee; Q precedes a chain of at least [P



- m - ‘
tasks, each of which is in W, hence OPT > [P| + 1..-
Casc 2: By isa full time unit.
Let Ay, .., Am be the:tasks exccutingin By. . If eachi A, has.a dabel exceeding EABEL(T®) then
there are at least m+1 tasks in W, cach pmcedixwawmmof at Jeast: [P} tasks, each of which is
in W. It follows that OPT > [P{+1. Thus-assume that :for some A;,-LABEL(A) < |
- LABEL(T*).. Then, identically to Casc. 1, there éxists a-task Q € W, such that Q.< T*, hence
OPT>P|+1 S T T ,, n]
New we: complete the proof of the upper bound fqr s < m-- 2. Note that it follows from previous
arguments, that there arcat least mi|F| + {H| + 2 [P{- 1 tasksin W.. Again there arc two casés to consider
bascd on time unit By of the Coffman-Graham schedule: .
| Case 1: ‘By is a full or resource. time unit, |
First note that OPT 2 {H|/s, m OPT 2 m |F| + [H} + 2 [P} - 1 and that OPT > |P| + 1 (from
Lemma 5.7). Morcover, CG = |F| + [H| + [P}, so - |
-mCG = [mi{F] + H|-+ 2P| - 1] + Km-2)(P} + 1} + m - D)IHf-m + 3
< mOPT +(m - 2) OPT + (m~ 1)s OPT -(m - 3)
=[2m-2 + s(m-1)]OPT -(m-3)
< [2m-2 + s(m - )] OPT, since m > 3.
.. CG/OPT £ (2-2/m) + s(1 - /m).
) C& 2 By is a.partial time unit.
Since By is the first time unit of the schedule, there are no latccomers in By Morcover, because it
isa parﬁal time unit, there must cither be an extm.task or an'idic processor in Bl. hence [B) N W}
< m- 1. Siace none of the tasks in By MW requires.a resource, it follows that cach task in Xq -
- By has a predecessor in By N W. From Lemma §.3 and the masner in which latecomers arc added

to W, it follows that cach task in W - Xq has a prcdeotssorrian. Then by transitivity, cach task in
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w- B} has a predecessor in B; M W. Now consider an optimal schedwle for W. Such a'schiedule

must have an idle processor in its first time unjt. since thc only tasks that can execute there are

those in Bl NnWw. Thus, m OPT 2> m |F| + H| + 2 IPI From thepmofﬁﬂ&mma 57 it follows

that OPT > [P|. Moreover OPT 2 [HI/s. Thus, '

=[m|F + IHI + 2{Pf} + [km - 1) IHl] + ((m Bl
SmOPT +(m-1)sOP'l‘+(m-2)OP’I‘
= [2m-i + s(m - 1)] OPT
*. CG/OPT £ (2 2/m) + (1 -1/m)
' This completes the proof of the upper bound.
2.1.2 The Jower bounds
In this section we prove that the upper bounds given in Theorems 5.1 and 5.2 are the best possible
bounds. We concentrate on proving that the bound given in Theorem 5.2 - the processor constraint crse -
is the best possible result. At the end of the section we indicate how to modify that proof to show that ﬁe
upper bound given in Theorem 5.1 - the no-processor constraint case - is the best possible result.
Lemma 3.8: If m > 2 (a processor constraint), the upper bound given in fIhcprng.Z is the best possible
result. o o
The task systems we will.use to prove this lo'wervbvound wilt consnstofvanous éombil;ations of the
following two sets of tasks (Figure 5.3): | -
Definition: An RES,-structurc consists of:
1. The following tasks:
A, for 1 < v <'s, where A, requires only resource v

ij for1 <v<s,1<j<z where B . requires only resource v

v

C, for1 < v <'s, where C, requires only resource v
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2. The following precedence constraints:

A V<A 184 C < Cyppforl Sy S sl

Av<Bv+lJfor15v<s-1and15]$z

B,; <Cv+1for15v <s-1and1 <j<L:

Definition: A PRECx‘fstrucmre consists of:

1. The following tasks:

D forl1 <j 5x where D; reqmresnoresources

J

Ejk for x- y<35x -1, 15k5m whercFJkrcqulresnoresoum

Fj forl < j < x, where Fj requires no resources
2.'The following precedence constraints;

D <D landF <F 4rforl <j<x1

D] { E 1kforx~y-1 <ij <x-2and15k5m

ij +1forx-y<15x1and ISkSm

Forl<vs 5, we will refer t0 tasks B, . = By, 28 B, tasks, and-for x-y g,s,x-l we will refer o tasks
By Ejp as ptasks. |
These two structures can be combined by the use ofthe following precedence relations:
1. RES, < PRECx'y means that A<D, o
By<Fforl<k<z

C < Fy

2. PRECx‘y < RES, means that D, <A
D, <Bjforl <k <z
F, <Gy
These precedence relations are shown in Figure 5.4.

Now consider possible Coffman-Graham labclings of these structures:
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- Figure 5.4: Precedence relations between the structures
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Figure 5.5: Bad CG labelings
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a) A bad CG labeling of RES, when's = 3. b) A bgd“_\_CG labeling of PREC‘%lwhen m = 2.
Labels are given beside the tasks.



Definition:
1. A Coffman-Graham labeling of a RES,-structure is a bad mm[mg if:
label(B, ) > label(A ) for1 S v < sand1 S k z
label(C,) > label(A,) forl Sv<'s
label(C,) > label(B ) for 1 S v < sand 1S kSz -
2. A Coffiman-Graham labeling of a PRECx'y-structure isa mgg labeling if:
label(Ejk) > label (Dj) forx-y<j<xlandl1<k<m
label(Fj) > labcI(Dj) forl<j<x
label(F;) > label(Ejk) forx-y <j<xlandl <k<m
Figure 5.5 shows examples of bad CG labelings. ‘
Proof of Lemma 3.8
Assume thats > 1 and m > 2 are given. Letg, x, y and zbe integers to be specified later. Consider a
task system S$* consisting of g+ 1 RES,-structures: RESl RES%+1,,and;q PREC, ,-structures:
PREC1 . PRF,Cg,y. Intuitively, we arrange thcsc structures in kz‘a stack, alternating

Xy
RES,-structures and PREC, . -structures, with a RESZ-stma;:m on the top and on the bottom of the

y
stack (Figure 56). Formally. RESi < PREC]  forl <i<qand PREC] | < RESI+ for 1 i< q.
Now consider a Coffman-Graham labeling of S" in wh(iéh, each . RES,structure and each
PRECx’y-structurc has a bad CG labeling. To scc that such a iabeling exists; consider thé point in the
labeling ﬁroccss when lfabels have been assigned to the tasks in RESi"' 1 As#ﬁmc. that this is a bad
CG labeling. Now, PRECJiK.‘Y can have a bad: CG labchng éuly if the 'labcliéng algorithm assigns a
smaller label to D,i‘ than it docs to F)i‘. But, this is preciscly what the labeling algorithm does since
RES} *1 has a bad CG labeling, hence label(C] +1) > labei(A} +1) and labeic] +1)> 1abel(B] 1)
for 1 < k <z A similar observation can be made about a bad CG labeling of RES%. given that

PREC,i‘ y has already been assigned a bad CG labeling. Thus, a Coffman-Graham labeling of $* in



Figurc 5.6: The task system S*

Figure 5.7: The Cofftman-Graham schedule - exccution of RES!, and PRB‘C‘,;’
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“which cach of the structures has a bad CG labeling does exist.
The initial portion of the list (used to schedule S$*) which-is formed as a result of this labeling is:
«l, B}-casis, AL c} Bltasks, AL .., cL, Blasks AL F] DL FL D) . FL bl FL

B} -tasks, Dy, .., FL.}, EL -tasks, DL}, FL, D}, C}, ..). Beginning with C the-pattern repeats

for RESJ and PREC? , then for RES] and PREC] . and o on.
 The Coffiman-Graham schedule produced from this fist is as follows: Exccute task CJ in the
first time unit, followed by the remainder gf RES}L and taskF}in the next (z+1)s ti;ne units (each
BY, exccutes alone, since label(BL,) > labe(AL) and'Al precedes all-of the tasks that might excute
with By). In the next x-+y time units cxecutc the remainder of PRECY  and task C}. This consists
of x time unils in which two tasks exccute per time uait and y tne units in which in of the El-tasks
exccute per time unit. In the next (z+ 1)s time units execute the remainder of RES% and task F%. And
50 0n. The pattern repeats (Figure 5.7) until RES3*+ ! excoutes in the final (z+1)s time units. This
Coffman-Graham schedule has length
CG=1+(z+Ds +x +y)g+ (z+Ds M
Now we want to get an upper bound on the length of an optimal: schedule for this system. |
There are three cases to consider based on the three parts of the lower bound given in the statement
of Theorem 5.2.
Cacl:s2m
Without ‘loss of gencrality assume s = m. Let z be an arbitrary intcgerand letx =y = q = 0. The
task system S* consists just of RES). From(1),CG =1+ @z+Ds =sz + s+ L.
Consider the following schedule for this task system: . In the first s-time units cxecute the Al-tasks. In
the next z time units, exccute all of the Bl-msks; ‘with s _tagks. executing per time unit - one task

requiring cach resource. Finally, excecute the Clms'in the last s‘time units. This schedule has

length z + 25, hence OPT < z + 25,
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.".CG/OPT > (sz + 5 + D)/(z + %)
limit, _, o0 CG/OPT 2's = m.
, Casg ngg 1 s <m-l
Consider the following condition: , »
Condition 1: For 2 < i < q. if the D ltasks, the Al-tasks and the tasks in RES] ! have exccuted,
then all of the following tasks can be exccuted in the next z-time units: :the Bltasks, the D'-tasks,
 the E"l-tasks and the F1"1-tasks,
Whether or not this condition holds depends upon the relative values of s, m, x, y and z. - Also, if the
condition holds nonvacuously (i.e. q 2 2), then the following also hold:
L If the Al-tasks have been executed, then the BY-tasks and D'-tasks can be executed in just z
time units. |
2. If the M-tasks, the A9+ -tasks and the tasks in RES? have been cxocuted, then all of the
following tasks can be cxecuted in the next z time units: the BQ+T11asks; the E9-tacks and the
FA-tasks. ‘ |
Lemma 3.9: Ifs = m-land x > 72,;withq = X,z = 2x and y = 0, then Condition 1 holds. .
Proof
First observe that y = 0 mcans that there are no E"Ltasks for any i-l. The Bi-la‘sis;’Di-tasRs and
» Fi-L tasks can be exceuted in just z ﬁmc units as follows (Figure 5.8): In time unit k, execute
tasks Bl .., Bl,. Since s = m-1, this utilizes m-1 processors in cach of the z time units. The
Di-tasks and F'"1-tasks exccute on the unused processor: the 1D-tasks cxccuting in the first 2/2
(=x) time units and the Fi*l-tasks cxccuting in the second 2/2(=x) time units. m]
lemma 5.10: Ifs < m-2and x is an imcgcr'suchum'x 2 2and (x-1) = O0modm, withz =x,q =x

andy = (m-s-2)x-1)/m, then Condition 1 holds. - -
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Figure 5.8: Execution of the tasks - Lemma 5.9.
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Figure 5.9: Execution of the tasks - Lemrha 5.10
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Figure 5.10: A "good" schedule.
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Proof

First observe that y is an integer and that there are (m-s-2){x-1) of the E"L-tasks. The B'tasts,

Di-tasks, Ei"1-tasks and Fi"L-tasks, can be exccuted in just ztime ﬁnits as follows (Figure 5.9): In

time unit k, exccute tasks B{k, s B;k Divan'd FE'L, Phis utilizes s+ 2 processors, icaving m-s-2

processors at each time unit to cxccute the Ei'l-tasks on. These tasks are executed in tunc units 1

thru z-1 (=x-1), with m-s-2 of the EVL-tasks executing per time uait. ‘ o
To complete the proof of the lower bound we assgmé that q, x, y apd z are chqgcn such that
Condition 1 holds. Consider the fol!owiég schedulc‘ for the task system (Figure 5.10): In the first s
time units execute the Al-tasks. Exccute the Bl-tasks and D1-tasks m tﬁ‘é’vpcxt 2time units. Thisis
possible since Condition 1 holds. In the next s+1 time units execute ihe Cl-tasks and the AZ-tasks.
Now execute the Bz-tasks, Dz-tasks; El-tasks and Fl-tasks in the next z time units. This is possible
since Condition 1 holds. In the next s+1 time units execute the Cz-task-s and the AJ-tasks. Now
execute the B3-tasks, Ds-tasks, E2-tasks and F2-tasks in the next z Ume units. And so on. This
pattern continues until the C3-tasks and A9+ L acks execute. Then exccute the BStl-tasks,
E9-tasks and F9-tasks in the next z time units. Again, this is poésibslgsime)'Condition 1 holds.
Finally, execute the C3 L-tasks in the last s time units. This schcdule»h;aﬁ length s+z+1)q + z 4
2s. Thus, given s and m, provided q, x, z and y are spcﬁﬁod ) Condition. 1 holds, we have:

OPTL<(s+z+1)g+z + 2. an

Case 2: completion: s = m - 1

Let x be an arbitrary integer with @ = x,z = 2x and y = 0. By L.emma 5.9, Condition 1 holds,

and frdm an, orPr < (s+2x+1)x + 2x + 2s = u? + (s+3k .+ 2s. From(I),CG =1 +

@x+Ds + X% + Qx+Ds = Qs+ +3sx +5+ L.

Colimit, |, oo CG/OPT = s+ 2=5+1/2=(m']) + /2 =m-1/2,
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-Came J - completion: s Sm -2
Let x be an integer such that x> 8 and (x*1) = O mod m, with 2z = x, ¢ = x, and y =
(mvs-ZX;-l)/m. By Lemma 5.10, Condition 1 holds and from (1), OPT < (s+x+l)x +x+2
= x% + (s+2x +2. From(D), CG = 1+ (x+1)s + x + (tn*s-Z)(xﬁl:}/,m)x# (x+1)s =
(@Um) + QVmn + Qs- s DR s +L - e
. limit, _, oo CG/OPT > (2-2/m) + (1 - 1/m)
This concludes the proof of Lemma 5.8, showing that the botid given in Theorem 5.2 is the best
possible bound. : Cn N O
' Lemma 511: 1fm 2 n (no processor constraint) then the upper, bouad given in Theorem 5.1 is the best
- possible upper bound.
Proof
Consider a task system S* as described in the previous proof, with x an it;teger.-x >2, z=x,q=x nd
y=0. It follows from that broof (cquation T) that there exists a. Coffman-Graham schedule for $*.of
length |
CG =1+ (+Ds+0x + (x+1)s = (s+1x% + 2x +5+ L.
From the proof of Lemma 5.10, it follows that Condition 1 holds given these values of x, z, q and y.
This in turn implies that equation I given there holds; m;&cw.QM-a~(mtimd) schedule for S*
of length
OPT < (5+X+1)Kx + x + 25 = x2 + (s+2)x +.25,
.. CG/OPT < [(s+1m? + 2sx +5 + W/Ix2 + (s+2)x + 25}
limit, _, oo CG/OPT =1+ : o
5.2 The implication for critical path scheduling |
Now we consider the implication of the above results for critical path scheduling of UET task

systems with discrete resources. Because  Coffiman-Graham scheduling is ‘a subclass of critical path
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scheduling and UET task systems with 0-1 resources are a subclass-of UET task systems with discrete
resources, we have the following two lower bound results for UET task systems with discrete resources:
Ihm' 3.3: If m > n(no processor constraint) then, in the worst ease; CPATH/OPT can be:arbitrarily
closeto 1l + 3.
Theorem 54: If m > 2 (a processor constraint) them, in the worst: case, CPATH/OPT ean be arbitrarily
close to m if s 2m |
m-1/2 if s=m-1
(2-2/m) + s(1-1/m) if s<m-2
In the remainder of this section we concentrate on critieal path-scheduling of systems without processor
constraints. Similar remarks apply for critical path scheduling of ‘systems: with processor constraints,
except that they are complicated by the fact that the lower bound has three portions.
The result in Theore;n 53 can be mpired'to-meim‘éﬁﬁa‘my, etal. {GG}Y}, for critical path
‘scheduling of UET task systems: with continuous resources. That result is CPATH/OPT < 1 + 17/10.
If we let Rs, 1y, ... , £;) be the best possible worst case bound for critical path scheduling of -UET task
systems with discrete resources, we have: |
1+3 € fsr,...r) S1+Us/10 @
* Several remarks can be made about equation 111
First, regardless of the actual values of ry, ... , rg, the function £ is cssentially a lincar function in s.

The values of fps - » [ (i the distribution of units of ‘fesource: among: the -various resources) are
relatively unimportant in determining the worst casc bound on CPATH/OPT. This i in sharp contrast to
the situation for list scheduling of UET task systcms with discrete resources. In that instance, the bound
was LIST/OPT < 1 + rwhere r = 2} _ | r,. There, the:number of diffcrent resources didn't matter at
all - only the total numbcr of units of resource of any kind in the task system,

Sccond, relatively fittle additional information about the worst case performance of critical path
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scheduling for UET task systems with resources is to be gained by explicitly obtaining the function f.
That is, the results on the worst case performance of critical path scheduling provided by the continuous
model arc going to be relatively close to those provided by the discrete model. These bounds are related
by a constant - both are bounded by linear functions of s. Again this contfasts éharply with lthe results of
Chapter 3 on list scheduling. In that chapter, we saw that the list scheduling results based on the discrete
model had a much higher information content than those based on the continuous model. Here, they do

not.
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ﬁ.lSummm

In thc past several chapters we have studned hst and cnueal path schedulmg of UET task systems’
with resources. Thc formal model of task systems thh resources used in most prevnous work involving
the analysns of schedulmg hcunsucs for thesc types of systcms mvolvcs mnnnugus rcsoun:es That is,
there is one unit of each resource and a task may require any portion of that one unit. We noted that
there are some serious questions about the appropriatencss of that model in regard to cprtain application‘)s.
In particular, the assumption that resources are continuous sccms inappropriate for applications where
the available quantities of cach resource are small. To try to overcome thcse perccived shortcomings of
the model with continuous resources, we introduced UET task systems with discrete resources. In that
model, there are a specific number of units of cach resource, and a task may require only integral
numbers of those units. Our hope was that performance bounds bascd on this model with discrete
resources would provide substantially more information than bounds based on thc model with
continuous resources. In particular, information about thc affect on performance of increasing or
decrcasing the available units of resource in the system. Morcover, we noted that depending upon the
particular application, the presence of processor constraints was or was not apprbpria(c. Thuﬁ. we
investigated the worst case performance of list and critical path scheduling for four models: those with
discrete or continuous resources and with or without processor constraiﬁts. A summary of the major
results now known about these problems is given in Table 6;1. Of the results given there, we note that the
two results for UET task systems with continuous rcsbun:cs and no processor constraints arc due to
Garéy. ctal. [GGJY]}, and that the rest of the results are given in this thesis.

Finally, to reiteratc the remarks made in the last chapter about the relationship between the models

with discrete and continuous resources, we found that our expectation that bounds based on the model
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Figure 6.1: Summary of the results for UET task systems with resources - -
LIST/OPT CPATH/OPT -
Continuous | No GGIY] I
b GGIY] [GGHY]
constraint SOPT/2+s/2+1 1+17s/10
almosl"bestposlble . best possible
Processor 11 .
constraint [GGY] ) : - m Sl 2dmds+l
min{m, (s + 1)OPT/2+5s/2+3/2} s+m+1)/2 ifs+1{m{2s+1
(4s+m+3)/4 if2s+1<{m<8s/3+1
I . [Yao} v :-(ldﬂ‘vm{-%m “if8s/3+ 1€ m{3s+1
min{m, 2+17s/10-(354+ 1)/m if3s+1<{m m2x10
(m-1)sOPT/(2m)+ Hm-1)s/(2m) + 1} 2+55/3-(8s/3+1yY/m  ifds+1<m m<10
Discrete No ‘ 1+r ->l+s
processor best possible
constraint
Processor (2-1/m) + r(1-1/m) m ifsam
constraint " best possible -20v1/2 if$ = ml
2(2-2/m) + dl—l/m) ifs{m-2

Unless otherwxsc noted, each of the above results isan upper bound.
Except where notc-1, all of these resuits are given in this thesis,
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§vith discrete resources would have a much higher information content than bounds based on the model
with contmuous resources, was both right and wrong. For list xhedulmg, this was certainly the case - the
results were particularly strong for the modcl with discrete resources and were parucularly weak for the
modecl with continuous resources. For critical path schcduling. we found that while bounds based on the
model with discrete resources should have a slightly higher in?énﬂ%tion »contetrlt ihan bounds based on the
model with continuous resources, the additional useful information is ‘not nearly as great as for list
scheduling. For this reason, obtaining tight bounds for critcal path scheduling of UET task systems with
discrete resources does not appear to be a particularly important problem.
6.2 Open Problems

There are obviously a large number of questions which remain unanswered as-a result of this
rescarch. We mention only a few of the problems which we feel are the most finibomhthene.

First, is to analyze the worst case performance of other schcduhngaigorithms with respect to the
task system model with discrete resources. In particular, the performance of‘ the resource decreasing
algorithm. This is a list scheduling algorithm in which the tasks arc ordered in the list according to their

R, . -values -- tasks with the largest R pax-values coming first in the list This algorithm has been

max
analyzed by Garey, ctal. [GGJY] for UET task systems with continuous resources and no processor
constraints. For that modc! they show ihat RDEC/OPT < 1 + 17s/10, and that task systems and
resource decreasing schedules for those systems exist, such that RDEC/OPT > 1 + 1.69s (where
RDF.C)OP'I‘ is the worst casc ratio of the length of a resource decreasing schedule for a task system to the
length of an optimal schedule for that task system). Note that this is the samc upper bound as that for
CPATH/OPT. An intcresting question which might be answered via the modcl with discrete resources, is
whether or not resource decreasing schedules and criﬁcal path schedules are as comparablc as they appear

based on the worst case performance bounds for UET task systems with continuous resources and no

processor constraints,
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Second, is to find algorithms which have a worst casc performance bound substantially better than
O(s). Consider, for instance, the scheduling of UET task systems with 0-1 resources and no processor
constréints. Ali of the scheduling alogrithrﬁé th;u we have cxéminéd . list; critcal path, Coffman-Graham
- as well as the resource decreasing algorithm (and simple variations of it), have a worst casc.performance
bqundicv)f 1 + s when applicd to these systéms. An élgorithm which had any kindAof sublinear (in s) worst
case performance would be a significant advance. Prcsumably, such an algorithm for UET task systems
with 0-1 resources could be extended to provide a Sl;‘blincarr alg’orithm[ for more general UE l‘ task systclﬁs
with resources - either contin'uous or discrete. | |

Third, is the analysis of scheduling algorithms with réspect to the model w_ith discrcte resources in
other contexts. For instance, in a mbdcl with no precedence cmsuaipﬁ. but‘ where task exccutionr times
are not restricted. In Chapter 7 we give two results on the worbst‘ case pcrﬁ;r;nance of list scheduling for

that particular model.
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Chapter 7 - Non-UET results

In this chapter we investigate list schedulmg of task systems le moum wherc no prccedence
constraints exist and whcre task execution times are not restncted. As notcd prcvxously. th:s submodcl is
one of the two major submodecls uscd to mvesugate schcduhng algonthms Also as menuoncd earlxer. we
note that there is not always alist schcdulc of opumal lcngth for such task systcms. Dcspne that, because
list schedules are intuitively s:mple and are casy to construct. they provnde the basns for most schedulmg
algomhms for task systems of the type we study hcre ln dus chaptcr we deal exclus:vely with hstr
scheduling. For companson purposcs, we note that Graham [066] has shown that |f m 2 2(a processor
constramt) thcn LIST/OPT <2 - 1/m and that thisis thc best possable msult. We also note that lf m >
n (no procesor constramt), thcn LIST/OPT =L k
1.1 Continuous resources |

-The only two significant results for list scheduling of task systemns with continuoﬁ;r’esoufce"s a;d no-
precedence constraints, are by Garcy and Graham. They show [GG73, GG7S] that if m 2> n (no
processor constraint), then LIST/OPT < 1 + s and, [GG7S), if m > 2 (a processor constraint), then
LIST/0PT < min{(m+1)/2, s+2 - (2s-+1)/m}. Morcover, they show that both of these bounds are the
pest possible.

1.2 Discrete resources

There are no previous results about the schcduling‘of task systems with discrete resources and no

precedence constraints. In this section we prove the following two results about such systems:
| Theorem 7,1: Ifm > nand s=1, then LIST/0PT < 2 - 1/r|. Morcover, this result is the best possible.

Theorem 7.2: Ifm 2> n,s=2, and )= 1, then LIST/0PT < 2 - /1. Morcover, this result is the best

possible.
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There are three things to be noted about these results.

First, and most obvious, is that given a system with a single type of resource, the addition of a single
unit of a second type of resource has ng affect on the worst case performance of list scheduhng “This is
somewhat surprising, and the qucsuon arises whcther this is a gencral phcnomenon That is, can single
units of a third resource, a fourth respurce, and s0 on, bc addcd to the system wnthout affecting thc worst
case performance of list scheduling? Not surprisingly; the answer is no. Figurc 7.1 shows an example of a
systcm where the addition of a single unit of a third type of resource results in a worst casc bound
exceeding2 - 1/ry. |

Second, it is interesting to note that for the special case ;)f rl =1 = .1, list schedules are optimal.
As the example in Figure 7.1 shows, this phenomenon does not generalize.

Third, we can compare these results to those for task systems wnh continuous resources. For
systems with s = 1, the results for continuous resources inékatt !‘hat LM/OPT < 2 Our results show
that LIST/OPT < 2 - 1/r1. Obviously, for systcms with a small number of units of resource, our result
provides a somewhat better indication of the worst case performance of list scheduling. For systéms with
s = 2, our results show how significant the difference can be between the discrete and continuous bounds
when small quantities of resources are involved. For example, if n= 2 and Iy = 1, our bound shows that
LIST/OPT < 3/2. The bound bascd on systems with continuous resources is LIST/OPT < 3.
Morcover, if rp = ry = 1, then our bound indicates that list scheduling is optimal. Again the bound
based on systems with continuous resources is LIST/OPT < 3.

122 Upper bounds

In this scction we prove the two upper bounds associated witﬁ Theorems 7.1 and 7.2. In the next

scction we show that those two bounds are the best possible upper bounds.

Note that we can prove both of the upper bounds, mercly by proving the upper bound for the case



- Figure 7.1: An observation

Consider a task sytem with 4 tasks and 3 resources:

A 2
B 1
o 2
D 2

Whemr1=r2=r3=l

An optimal schedule: A[A]B
clcID|D
Timeunit: '1121314 1
A list schedule:
Lst (AC B
Schedule: A '
Time unit; 1

LIST/OPT = 5/4>1 = 1-1/r,

0 1
1 0
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01

Resource i

0]
0 ]
1]
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ofs = 2andry = 1 (Theorem 7.2). From such a proof it follows immediately that the-same bound holds
for s = 1 (Theorem 7.1). Similarly, if we show that the upper bound is aéhigvéble for the case ofs =1
(Theorem 7.1), then the bound is achicvable for the case of's. = 2 and-ry = 1 (Theorem 7.2). Before
proving these results, we have the following mathematical fact:
Claim7.1: If X < D, and B> AC, with A, B, €, D, X all non-negative, then
(X + A/(CX + B) S (D + ACD + B).
Proof
Assume X < Dand B > AC. Then B-AC > 0, so
(B-AO)X < (B-AC)D
= BX + ACD < BD + ACX
= CDX + BX + ACD + AB < CDX + BD + ACX + AB
= (CD + BXX + A) S(CX + BXD + A)
= (X+A)/CX+B<(D+A/CD+B) T a
Lemmall: Ifm > n, s=2and = 1, then UST/OI’F <2- llrl.
Proof
Consider any task system with two discrete resources, where ry 2 landry= 1. Let LIST be any list
schedule for that system. Similarly to an earlier proof, for each time gﬁiat B of LIST, we lct Ri(B) =X
Ri(T) summed over all TeB, and Ri(L]ST) =2 Ri(B)lsummcd over 4&_!“-1 time units B in LIST. There
are scvcrél cases to consider based on the resource usage in various time units of LIST.
Case 1: In each time unit Bof LIST, Ry«(B) = 1.
Since ro = 1, this means that LIST = OPT, hence LIST/OPT = 1<2- ).
Case 2: In each time unit B of LIST, RI(B) >/
Since Rl(B) > r1/2, we have RI(B) 2 (rl + 1)/2. Then RJ(LIST) > (ry + DEIST/2. But, OPT

2 Ry(LIST)/r}. Tt follows that OPT 2 [(ry + DLIST/2)/1;.
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o LIST/OPT < 2ry/(ry +1) = 2- (| + 1} €2~ Vry.
Case J: In some time unit B of LIST, RiB)<1/2 andRy(B) = 0.
m F = {B € LIST: Ry(B) £ r /2 and Ry(B) = 0} and let B* € F, be a time unit such-that
Ry(B*) = min{R(B): B€ F}. Lets = maxfe(T): 'T'¢ B*} and let £ = max{o(T) +»p-1: T€
B*}. That is, s is the latest starting time of any task in B* and £ is-the Jatest finishing time of any
task in B*. Notc that at least onc task in B¥ has an exdcution time:at/least asdarge as f - s + 1 (in
particular, each task which finishs at time unit f).

Now consider any time unit B;, 1 < i<s. Thereis at least one task T* in B* which did not
cxecute in B, (in particular, a task starting at time unit s). Task"F*#hudt havo been prevented from
executing in B; by the resource constraints. In particular, sinee R)ﬂ”‘) =0, it was prevented from
doing so by the constraint imposcd by resource 1. Thus, Ri‘(Bi) =-¥;‘%16T‘) >, hence; Rl(Bi) +
Ry(B*)>r;.

Similarly, consider any time unit Bi,"f <i < LISFand any task T-€ Bi' Task T did not
exccute in time unit B* due to the constraint imposed by resource L. Thus, Ry(T) + R'I(B‘) >ry.
hence, Ry(B) + Ry(B*) > 1y.

Finally, letd = R (B*)
e = min{Ry(B): 1 S i<sorf<i SLIST}
x=f-s+1
y = LIST-x
As noted carlicr, at lcast onc task cxccutes for at least x time units. For cach of the x time units, B;,
s<i _<__ £ Ri(B) 2 Ry(B%. Aso,y = (s- 1) + (LIST -H and LIST = x + y. Morcover, from
the arguments given above ¢ 2 ) - d + 1. The situation is shown in Figure 7.2a,
.". OPT > max{x, [dx + cy}/r;}

2 max{x, [dx + (r; -d + )yM/r;}.



-123-

Figure 7.2: Resource usages in a list schedule

Schematic: ' y time units I X time units
RyB)>r,-d+1 R,(B) > d
(ADry 2 x]

a) The situation in case 3.

Schematic: y time units I X time units

R(B)>1,-d+1 R(B)>d
Ry(B) = 1

b) The situation in case 4.
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Intuitively, OPT is at least as long as the time it takes to ex;e-cute)-:any" task (and some task has an
exccution ﬁmé of at least x), and is at least as long as a schedule in which resource 1 is fully utilized
at éach time unit. There are two subcascs ta consider: - B
Subease 1: x > dx + (ry -d + Dy |
It follows that x > (ry - d + Dy/(r; - d) and that LIST/OPT < (x + yV/x = 1 + y/x. Ifd =
0,theny = 0, hencc. LIST/OPT = 1, so assumec that d > 0. Then, shbstituting for x,
LIST/OPT <1+ (rp-d)Ar;-d + 1)
=2-Um-d+l)
<2-Un since >0,
Subcase 2: x < fdx + (rp - d + DyW/ry
It follows that x < (rj - d + 1)y/(r} - d) and that LIST/OPT < (x + y)/fdx/ry + (rp-d +
1)y/r;t Morcover, since d < ry/2, it follows that (ry-d + /ey >d/n.
Using Clanim 71, withA =y,C=d/r),B=(rj-d + 1)y/rj,and D = (r| -d + l)y/(rl -d)

we have
LIST/OPT < [(ry d + Dy/(ry -d) + yVI(d/r)Xr -d + Dy/(ry -d) + (1) -d + Dy/n]
=2-U(r;-d +1) |
< 2-1/rysinced>0.
Case 4: In cach time unit B of LIST, eithcr R l(B) > r1/2 or Rz(B) =1
'Let F = {B ¢ LIST: R2(B) = 1}. Also, let B* € F, be a time unit such that Rl(B‘) = min{Rl(B):
B € F}. Note that R l(B‘) < r1/2, since otherwise cvery B € LIST has R 1(B) > r_1/2. This was
handléd in case 2,
Now consider any time unit B; preceding B* in LIST such that Ry(B;) = 0. Since Ry(B*) =
1, there is at least onc task T* in B* which does not cxccute in B;. The reason that it does not

exccute in B, is because of the constraint imposed by resource 1. Thus, RyB) + Rl(T‘) >n,
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‘hence Ry(B) + Ry(B*)> r.
Similarly, consider any time unit B; following B* such that R2(Bi) = 0. There must be a task
T in Bi which does not cxecute in B*. - This follows because RI(B*) < rl/2 and r1/2< Rl(Bi)'
The constraint imposed by resource 1 is the reason that T does not execute in B*. Thus, Rl(T) +
Ry(B*)>ry, 50 Ri(B) + Ry(B*)>ry.
Finally, letd = RI(B*)
e = min {R(B) : R(B) = 0}
x = [{Be LIST: Ry(B) = 1}
y = LIST -x
Note thaty = |{B: Ry(B) = 0}] and that LIST = x + y. Morcover, by the argument given above,
e 2 ry -d + 1. Thesituation is shown in Figure 7.2b.
.". OPT 2> max{x, [dx + ey}/r;}
2 max{x, [dx+(rj-d+ Dyl/ry}
Asin Casc 3, it follows that LIST/OPT < 2- 1/1;. R a
123 Lower bounds
In this section we show:
Lemma72; Ifm 2> nand s=1, then the bound LIST/OPT < 2 - 1/r1, is the best possible bound.
Proof
Considef a task system consisting of the following tasks:
L A, withty =rjand RI(A) =1
2. B;forl i< ry(ry-1), with -rBi = land Ry(B) = L
There are, of course, no precedence constraints. The system is shown in Figure 7.3a. Consider a
schedule for this system gencrated from the list: (B}, B, ..., Brl(rl -1y A). Such a schedule (Figure

7.3b) consists of r - 1 time units with r B-tasks executing in cach time unit, followed by the
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~ Figure 7.3: The bound is achievable

At 1y =1 B, .- Brl(rl_l): 'rBi =1

R,A) =1 CRB) =1

a) The task system with s = 1 and r, units of that resource.

A list schedule:
List (B;B, «-- Brl(rl-l) A)»‘
Schedule: ; A N .
B-tasks | ‘
T; per time unit A
Time units: Nl n 1
b) List schedule
An optimal schedule: A
. B-tasks
r, - 1 per time unit
Time units: T - length=r1)

¢) An optimal schedule

* length = 2r; - 1



-127 -
execution of task A. This requires an additional rq time units. Thus, LIST = (ry - 1) + 1| = 2ry - 1.
Now consider a schedule for this task system generated from the list: (A, Bl’ Bz, s Brl(rl i} 1)). Such
a schedule (Figure 7.3¢) consists of ry time units. In cach time unit, task A is exccuting on the first
processor, and ry - 1 B-tasks are cxecuting on the other processors. Thus, OPT = ry.

.- LIST/OPT = (2r - 1)/1; = 2- U/1y. 0



In this chapter we investigate an extension of thé Basic! task system modcl that was discussed in
Chapter 1. This extension allows tasks to rcﬁuire more than one prbéemt;r’ lat each step of theif éxecution.
8.1 The model B o - |
A task svstem with concurrency i a system S = <T, <, m, C> where:

L T={Ty, ..., T,} is aset of tasks - associated with T; is a positive integral execution time ;.

2. { is a partial order specifying precedence constraints between the tasks.

3. There arc m identical processors.

4, CC{l1,2,...,m}. The elements of C are degrees of concurrency.
Associated with each task T, is a degrec of concurrency q; € C. Intuitively, task T, must execute for T
time units, and requires q; processors for each of those time units. Task Ti is said to require 195
Progessor units to execute. When convenient, we let qy represent the dggrec of concurrency of task X.

A yalid schedule for a task system with concurrency Sis a mapping ¢:7 — (N - {0}) such that:

1. Forall /¢ (N - {0}), QI < m, where Q; = X q; summing over all T; such that o(T i) I

o(T i) + 7" 1

2 If T; < T, then o(T;) + 7;- 1< o(T).
As far as performance bounds are concerned, we restrict our attcntion to list schedules.  Intuitively, for
task systems with concurrency, a list schedule is onc where, if m - k processors are available, the first
uncxecuted task on the list, all of whose prcdeccssofs have completed and whosc degree of concurrency
docs not exceed m - k, is executed. More formally, a task ']"j is‘m at tﬁne Lif for c;'ery T; such that T;
< 'l‘j, o(T;) + 7, - 1</ A list schedule is a valid schedule which is generated as follows:

1. Initially, L is an (ordcred) list of the tasks in Tand /is 1.

2. While L is nonempty perform this step
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a letk=2 q; summed over all T; € L such that 'o(f'fi)s I<a(T i) +7- L
b. Let L' be alist of the ready tasks on L at time /, the tasks in the same orderon L' ason L.
c. Wl.ﬁle L' is nonempty and k < m perform this step |

i. LetT be the firsttask onL".

ii. Ifqp <m-k,

thenleto(l) = Lletk = k + qr and remove T from L

iii. Remove T from L.*.
d. Let/ =1+ min {o(T}) + 7;- 1: T;¢ Land o(T)) + fi‘- 1>8.
' Examples of a concurrent task systelﬁ and a list schedule for that system are given in Figure 8.1.

A task system with concurrency in which all tasks; have the sﬁnic executi(;n ﬂtﬁe (whkll is assumed
to be one) is a congurrent UET task system. All of our rcsulisareabwlcancurrcnt UET task systems.
As with the basic UET task system model, no generality is lost by resmcting our attcntion to list
schedules when dealing with concurrent UET task systems, since there is always a list schedule which is
an optimal schedule.

The task systems with concurrency model arises from scveral sources. A situation where one
processor is to monitor another processor on a particular sct of jobs is an cxample of a tf;sk explicitly
requiring more than one processor. Morcover, with the current interest in parallel processing, the
devclopment of algorithms which gequire several processors to be simultancously devoted to a single task
seems incvitable. Apart from computer applications, task systems with concurrency model certain
practical situations morc preciscly than standard task systems. For example, a construction company may
want to allocate its supply of men to complete some system of jobs. They know the number of men and
the number of hours required to complete cach job and are interested in completing the system of jobs as

soon as possible. This problem is naturally modcled as a scheduling problem for a task system  with

concurrency.
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Figure 8.1: An example of a task system with concurrency
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The degree of concurrency of each task is given beside the task. Each task has an execution time of one,
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A list schedule:
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As is the case with scveral other extensions of the standard model a task system with concurrency
«can be viewed as a restricted type of task system with: resources. That is, given a task system with
concurrency S, consider a task system with onc discrete resource and. no processor constraint. :
Furthermore, suppose there are m (the number of processots in: §).units of that resource available and
cach task requires a units of the resource where a € C. This restricted:type of task system with discrete
resources is equivalent to a task system with concurrency.. In as much as this relationship exists, our
rcsulits can be viewed as results for this- restricted type of task system with:resources. However, we feel
that- the approach through the resource model is an unnatural one for the p&blcms wé have described
and that the task systems with concurrency approach.is more instructive. We know of no results about
task systems with concurrency other thén those prescnted here. .
82 The complexity of coneurrent UET scheduling .~
In this section we give two NP-completencss results involving concurrent UET task systems. In
subscquent sections other aspects of the problem are examined, bascd on the probable non-existence of
polynomial time ajgarithms for finding optimal schedules for such:systems.
Consider the following dccision problem:
CONCURRENCY: Given a decadline d’, and a concurrcnt UET task system in which m is arbitrary, -
< is empty (i.c. there arc no precedence coanstraints) and C = {1, ..., m}does there exist a schedule
for the éystcm with length not exceeding d'? T »
CONCURRENCY is stated as a decision problem, rather than as an - optimization: prablem, so that it is
casily scen to be in NP Note that any dcgree of concursency up to the number of processors is allowed.
Theorem 8.1: -CONCURRENCY is NP-complete.
Proof
Garcy and Johnson [GJ79] have noted that the problem: of seheduling task systems with arbitrary
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exccution times and no precedence constraints to meet a deadline d ot p processors is NP-complete,
That problem reduces to CONCURRENCY by exchanging eac¢h execution timé for an cqual degree
of concurrency and lettingd' = pandm =d. T BT o ‘ O
Consider the following decision problem: =~ -
 2CONCURRENCY: Given a deadiine d", and a concurment UET ek system in which there are 3
' processors; < * is arbitrary and € = {1,2}; does there exist‘a schedule for-the Systern withlength not
exceeding d'? | |
It has been shown by Ullman [U75] that the following problem is'NP-cortiplete:
NOIDLE: Given a deadline d, such that n: = dm;»andtBE!"ta;kvsym &T, <, m>in whichm and <
are arbitrary, and T = {Tj, ..., T}, does there-éxist a schédulc fof ithe ‘systom with' Jength not'
exceeding d?
Intuitively, NOIDLE asks if the specified tasksymm can be scheduled so that no idic time exists in the
schedule. The remainder of this section i devoted ' o showing that ‘1200NCURRENCY &
‘NP-complete. The reduction given herc is an adaptation of a construction developed by Uliman [U76].
Theorem 8.2: 12CONCURRENCY is NP-complete,
Proof
Let a UET task system S = <7, £, m> and a' deadline d, sach that n = dm, be an instance of
NOIDLE. Consider the following instance of 12CONCURRENCY:
1. Letd' = 2md,and ket $* =<7, <*,3, {1.2P.
2. For cach task T; € T, there arc two tasks T; and T} in T*. Edch has an cxecution time of onc. Let
q; = 2.9} = L,and T} <" T;. Morcover, if the relation V < T; exists in S, then the relation V <
T}isinS'. Call tasks T;and T} regular tasks-

3. ‘There are 2md tasks X;, for 1 < i < 2md. For each i, 1 < i < 2md - 1, the precedence constraint
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X;<' Xj41isinS'. Furthermore, if 0 < (i - 1 mod 2m) < 'm-1then qxi =2, ot,hcrwiseqxi
= 1. Call each X; acontour tagk. -
Notc that a schedule for S' mecting the deadline d*, can have no idle time, since the schedule for §
mecting deadline d is to have no idle time.
Claim: Ifaschedule of kength d exists for S, then a schedule.of -length d' exists for S'.
Proof
Consider a sc,hgdulc of length d for S. Consider -any«timc unit / in that schedule; and let TII' s
Tlm be the tasks executed in that time unit. Then, in the schedule for S, in time unit 2m(/- 1)+i -
exccute tasks sz( I-1) +jand T)i. and in time unit 2m(/ - 1)4+m++1i execute tasks XZm(I .
+m+i and T’i for I € i € m. This producesa schedule for §' in-which no.idle time exists. All
that remains is to verify that no- precedence constraints are vwlatcd. Clearly v;mne of the
constraints between .thc contour tasks are violated and none.of the constraints of theform T* <' T
-are. violated. Consider-any constraint of the form V<' T'. Thismeansthat V< Tin §,soVis
exccuted before T in the schedule for S. Then in our constructed schedule for S*, V executes
before both T' and T. Hence, none of the precedence constraints is violated and a valid schedule
. of length d* exists for S’ : ‘ o
Claim: [If aschedule of length d' exists for S', then a schedule of length d exists for S.
Proof
Considcr a schedule of fength d° for §*. Since d' = 2dm, contour task Xi must: exccute in time
unit i of the schedule. The regular tasks must thcn exceute in the processor units not being used
by the contour tasks. These remaining processor units have a very particular distribution. The
first m time units of the schedule cach has one processor - unit available for regular tasks, the
second |;1 tisne units cach has two processor units avaﬂéblc for regular tasks, the third m time units

cach has onc processor unit available for regular tasks, and so on. The-paticrn of m time units
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with one processor unit available and then m time units with two processor: units available repeats
itself d times. We will call the ith set of m time units band i . This pattern and the no idle time
obscrvation combine to force the "primed” regular tasks to:execute only during time units when
one processor unit is available, and the "unprimed” regular ?tasksto»exocutk{ only - during time
units when two processor units afe available, This is shown:in: Figure $.2.
‘Therefore, the schedule for S is as follows: In time unit / of the schedule, exccute the tasks
corresponding to the m (unprimed) regular tasks cxecuted in band 2/ of the schedule for S*. This
" schedule clcarly mects the deadiine of d and since.each task in 7 cofresponds to an unprirpcd task
in T', each task in T is exocuted at some time unit of the schedule. All that remains is to verify
that the precedence constraints are not: violated. Consider any precedence relation V { Tin S.
The relations V<* T* and T* <* Tarcin §". Suppose V.and T-wereexecutad in the same band in
the schedule for S'. Then T' would also be exeruted i that-band. But primncd regular tasks
must be executed in bands with only one processor ‘unit available.per time unit. -Contradiction.
- Thus, in the schedule for S*, V is executed in some band before the band that T is-executed in,
hence V is executed before T in the schedule for S. Therefore, a.valid schedule exists for S O
Finally, we note that 22CONCURRENCY is obviously in NP, hence itis NP-domplete. -~ = = [
We conclude this scction by noting that by using a straight-forward modification of the contour tasks, it
| can be shown that I2CONCURRENCY is NP-complcte for any fixed number of processorsm 2> 3.
8.3 Worst case bounds
In this section we show that for cencurrent UET task: systems, the ratio of the length of an arbitrary
list schedule fur the system to the length of an optimal schedule is bounded above by (2m-r)/(m-r+1),
where r is the maximum degree of concurrency. As noted carlicr, when r = 1 these systems become
basic UET task systems. In this instance, our bound becomes 2 - 1/m, which: is the corresponding bound

for basic systems as given by Graham [G66L. In this scction we also show that concurrent UET task
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Figure 8.2: The schedule produced by the contour tasks and deadline 2dm.

Band '
1 2 2d
| Xt [ Xm | Xmeaf o0 Kom Xaam-m+1f *** |Xadm

Z .
1 m m+1l 2m
Time unit

Regular tasks must execute in the cross-hatched ume units - pnmed tasks in odd numbered bands and
unprimed tasks in cven pumbered bands. . R S
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systems exist for which the ratio of the length of a Hist schieduile for this system t6 the length of an optimal
schedule is L(2m-r)/(m-r+ 1J.

831 Annnmtbsmnd
Inmrgmm LetS‘ <T ( m C>be a concurrent UETtasksxstemwhcrcris»themaxunum degreeof‘

concurrcncy inC Tbemll&f[ﬂ?f £ Qm=-t)/(m-r+1). -
Proof

Let OPT be the 1cngth of an opumal schcdule for S and lct LIST bc the lcngth of an arbltrary hst
schcdulc for S. First we glvc a lower bound on the lcngth ot‘ avrbpﬁtmﬂ schedule Lcth e the length
of a critical path in the dag for <, and ket « = Z q; such that T; € 7. This is the total number of
processor units required for the actual cxecution of tasks in 7. An optimal schedule must be at least as
long as the length of a critical path for the system and must be at least as long as a schedule with no
idle time for a task system requiring a processor units. Thus, OPT > max(h, a/m).

Next we give an upper bound on the length of an arbitrary list schedule. Cdnsidcr any time unit /
of the schedule which has more than r - 1 idle processors. Becausc there are at least r idle processors in
that time unit, all unexccutcd tasks must be successors of the tasks exccuting in that time unit. Letkbe -
the highest level which has a task executing in time unit /. Since a task is only a predccessor of tasks at
lower levcls then the task’s own level, time unit / must be the last time unit during which tasks at level
k arc executed. Thercfore, there are at most h time units in which more,than r - 1 processors are idle.
At all other time units at lcast m-r+1 processors must be exccuting tasks. Hence, LIST <
h+(a-h)/(m-r+1).

" LIST/0PT < [h+(a-h)/(m-r+ 1)}/max(h,a/m), which, by a simple case analysis, reduces to
LIST/OPT < (2m-1)/(m-r+1). o (u]
832 A lower bound

The remainder of this scction is devoted to showing that concurrent UET task systems cxist for
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which there are list schedules such that the ratio of the length of the sché&u!e tf) the length of an optimal
schedule asymptotically approaches L(2m-r)/(m-r+1)J. While this is not exactly 1the bound derived
above, the difference is less than one.
Assume that m, the number of processors, and r, the maximum degrec of concurrency are given,
Lgt n be any positive integer. The following three sets of tasks Will be used to construct the desired task
systems:

An A-structure consists of: Tasks Aij forlSi<mr+landl <j < n wheregq A L

ij =
AjfAjjprforlSj<mlandl Sigmr+l,

A B-structure consists of: An A-structure,

Tasks By, for1 <i<Lm/rd, withqg =r.

L s

B;<Ajforl <i< Lm/rdandl <jgmr+l

A C-structure consists of® Tasks Ci' for 1 € i< Lm/rd, with Qc. =1
' i
J
Ci<D;forl £i<Llm/rl

Tasks D; for1 < j <n, withqpy = 1.
J

These three structures arc shown in Figure 8.3.

Next we give the specifications for a task system for which a list schedule with the desired length
relative to an optimal schedule exists. We letb = Lm/(m-r+1)d. There arc two cases to consider.
Casc 1: m/(m-r+1)is an integer, hence b = m/(m-r4- 1).

Coﬁsidcr the following task system S = <7, <, m, >, where r is the maximum degree of
concurrency in C. T and < consist of the tasks and associated precedence constraints from one
A-structure and.b-l B-structures. This system ls shown in Figurc 8.4a. The system consists of (b-1)
Lm/rl independent tasks cach with concufrcncy r, and n(m-r+.l")b = nm tasks cach with
concurrency 1. Note that these tasks with concurrency 1 form m independent chains of n tasks each,

and that an optimal schedule requires at least n time units after the last task with concurrency ris
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Figure 8.3: Sets of tasks used to construct task systems

‘l\u Ay Am-r+11
'i‘u Aza Am-r+12
Al.n Ai,n R Am-H:;l.n

3) An A-structure - all of these tasks have concurrency 1

B Bl Pwn

ALl T h S m-r+1.1
| S
| N
Arn Am-r+1,n

b) A B-structure - the B-tasks have concurrency r, and the A-tasks have concurrency 1

G

¢) A C-structure - the C-tasks have concurrency r, and the D-tasks have concurrency 1
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Figure 8.4: A task system and two schedules - case 1

/%me
0 0 i: B S §
"\1.1 iAm~r+1.1 *"1.1 ‘l\mr+11
| I ! |
A Ln Al r+1n A'in A m-r+1n
A-structure 1<i<bl
B-structures
a) The task system
=) 3 b
B B B1b 1
E : (X : A_(asks o
- bl
1 2
B m/r B m/r Bm/r
Time units: bl ' n

To simplify the figure it is assumed that m/r is an integer. Them chams, each with n tasks with
concurrency 1, execute in the final n time units.

b) An optimal schedule

Au 1n
AO - A L2 I )
m-r+11] -r+1,n
%47

]

Z

Time units:

To simplify the figure it is assumed that m/r is an integer.
) A "bad" schedule
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executed.

The following is-an optnmai schedule: In the first b-1 time units execute all of the tasks with
concurrency r by exaccuting Lm/rJ 1asks with concurrency r at cach time unit (and allowing any
processor units not used by those tasks to be used to exccute any avax}ablc tasks with c_pncurrency 1).
Complete the vschcdulc by executing:;;he remaining tasks wuhcomuﬁ:ency lin thq%ljﬁagl n time units.
The schedule is shown in Figure 8.4b. An optimal schedule thus has length b+g-1. Call this value
orr. b o ,

Now consider the following schedule. In the first n time units exccute the tasks in the
A- structure. . Then execute the tasks thh.conmnmucy .z from. upe of xhcﬂmfolbwcd by the
tasks in the A- structure asoclated with thpt B—stmcturc This t!cqumes n4:1 time ums. Continue by
executing the other B-stmcturcs, onecata ame n the same manhcr u!;gl all tasksarecxecutcd. The
schedule is shown in Figure 8.4c. The lcng:h of the schcdule is a+(br-l)(n+ 1) bn+b~(l-. Call:this
value LIST. ' ‘ | ’

". LIST/OPT = (bn+b-1)/(n+b;1) and limit, _, o LIST/OPT = b. Furthetmore,
b = m/(m-r+1) which is an integer. Thus, b = m/(m-r+1)+L(m-1)/(m-r+1)J =
L(m+(m-i-))’/(m-r+ l)J = L(2mq)1’(m—r+ nL. T

'. lxmntn = 00 LIS l‘/OP'I‘ L(2m-r)/(m-r+ 1)4. |

Casg 2: ml(m-r-t-’l)xs net an mwger . o
Consxdcr the. followmg task systcm S =<T, ¢, m o, whcre ris the maxl;num dcgrcc of concurrency
inC. Tand< consist of the tasks and associated constraings from ong A-structure, b - 1 B-structures
and onc C-structurc. This is shown in Figure 8.5a. Similarly to Case 1, an optimal schedule first.
exccutes the tasks with concurrency r and then completes the execution of the tasks with concurrency
1. This is shown in Figure 8.5b. An optimal schedule has length OPT = b+n. Also, there is a list

schedule which first exccutes the tasks in the A-structure, then exccutes the tasks in each of the
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Figure 8.5: A task system and two schedules - case 2

i i
/S N/
A® A0 ALY “al ) D
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a) The task system
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B! B go? | D D
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Time units: b L n

To simplify the figure it is assumed that m/r is an integer. The m chains, cach with n tasks with

time may exist in the final n time units.

concurrency 1, execute in the final n time units. Depending on the relative valucs of m and r, some idle

b) An optimal schedule

?0"1 Al By A {Ala G, [Dyf+ee Dy
H sas |3 . . . .ae '. . //
0 0 . b Y » /
A'nr+11 A m-r+in| ** . Alm-r+1.1 Am-r+1,u * //
7
/ y ‘ (Em’/r ///
n n+l n+1
1<i<b-1 ‘

To simplify the ﬁgufc it is assumed that m/r is an intcger.

c) A "bad”

schedule
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B-structures, and finally executes the tasks in the C-struetuire. ~ This schédule is shown'in Figure 8.5c.
- It has Iength LIST = n+b(n+1) = n(b+l)+b |
" LIST/OPT = (n(b+ l)+b)/(b +n) and hmun — 00 LIST/OPT b+1 But m/(m-r+1) is not
an integer. Thus, b+1 = Lml(m r+1)d+1 = L(m 1/(m-r+ 1)J+1 = }
L((m-1)+(m-r+ 1))/(_:(:1-& 1)3;: L(2m-r)/(m_—r+ DJA.
" limity, _, oo LIST/OPT =’ L(zn;-r)/(n%;rﬂ- ISJ. | co ]
84 Arsiricted problem o
We examine concurrent UET task systems in which C = {1,2}. As shou\m ea.lrlier:, f;)r any fixed
number of processors excceding 2, the schcdulmg of such systems is NPmmplexc In this section we
give a polynomial time -algorithm which produces opumal schcdulc; on two processors ’I‘hls algorithm is
a moduﬁcaﬂon of the algorithm gwen by Coffman and Graham [CG] whlch produc&s opumal schedules

forbaslcUETtask syaemontwo procamm.
Assume that § = <7, <, m, {1,2}>is a concurrent UET task system. The aigorithm is as follows:
1. Add all transitive edges to the dag mprcéén;ing <. R
2. Remove all tasks with concurrency two from this system along with anywprccevden'ce constréints
directly involving them. This yields a basic UET task system (i.e.» without fzoncunengy) S =
<, <, Canmismemmgm. S R
| 3. Remove all transitive edges ﬁ'om the dag represemmg {'.
4, Usc the Coffman-Graham algomhm to pmduec a lis&yhlehcan be usad to schedule S'.
5. Appcnd (in any ordcr) the tasks with coni:urtemyftwo to the front of the list. This new list can be
used to schedue 5.
Esscntially, the tasks with concurrency two are removed from the original system, a schcdulc is found ﬁ;r
the underlying system and then cach task with concurrency two is fit into that schedule as soon as all of its

predecessors have been exccuted.
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Theorem 8.4: The algorithm given above produces optimal schedules for concurrent UET task systems
(in which each task has concurrency 1 or 2) on two processors.
Prof “
Supposc the schedule produced by this algorithrh is not optimat. LetOFFbc an opti:irxal schedule.
Because there are only two processors if a task with concurrency two is executed at some time unit,
then no other task can be executed at that nmc unit. 'I‘hls means that the tasks with concurrency two
can be removed from OPT, s and the schedule compressed to get a schedule for the»uadcdying system,
Two things should be noted about this schedule for the underlyins system
1. Itis a valid schcdule since V{' Tin S’ ifand only |f there exists a (possxbly empty) scquence
of tasks Py, .., Py, such that V< Py < ..<P, <Tin S,
2. It is necessarily shorter than the schedule produced for the undcrlying system in step 4 of the
algorithm, | o
But an optimat schedule for the underlying system resuts from the lst which was produced in step 4,

hence a contradiction. O
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