
MIT/LCS/TR-234

TRANSMITTING ABSTRACT VAilJES IN MESSAGES

Maurice Peter Herlihy

This research was supported in part by the
Advanced Research Projects Agency of the

Depart:mP..nt of Defense, IIDni tared by the
Off ice of Naval Research under contract

N00014-75-C-0661, and in part by the National Science
Foundation under grant .r:vx::s 74-21892 AOl

This blank page was inserted to presenie pagination.

Transmitting Abstract Values in Messages

Maurice Peter Herlihy

© Massachusetts Institute of Technology 1980

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under .contract
N00014-75-C-0661, and in part by the National Science Foundation under grant
MCS 74-21892 AOl.

Cambridge

Massachusetts Institute oCXecbnology
Laboratory for Computer Science

Massachusetts 02139

This empty page was substih1ted for a
blank page in the original document.

-2-

Transmitting Abstract Values in Messages
by

Maurice Peter Herlihy

Abstract

111is thesis develops primitives for a programming language intended for use in a
distributed computer system where individual nodes may have different hardware or
software configurations. Our primitives are presented as extensions to the CLU
language. We assume that differences in hardware and in administrative policy require
that individual nodes be free to choose their own local representations for common
types, including user-defined types. Our main objective is to provide primitives to
communicate values of user-defined type. Our primitives support a large degree of
node autonomy, without requiring that communicating nodes have prior knowledge of
one another's special characteristics. We argue that the precise meaning of value
transmission is type-dependent; thus the user, not the language, must control the
meaning of transmission for values of a type.

Thesis Supervisor: Barbara H. Liskov
Title: Associate Professor of Electrical Engineering and Computer Science .·

Keywords: Abstract Types, Distributed Systems. Message 'Passing, Modularity,
Object-Oriented Programming, Programming Languages. Programming
Methodology

This empty page was substih1ted for a
blank page in the original document.

- 3 -

Acknowledgements

I owe special thanks to my advisor, Professor Barbara Liskov, for her editing,
suggestions,. criticism, and insights. I would also like to thank the members of the
Distributed Systems Group, most especially Russell Atkinson, Toby Bloom, Paul
Johnson. Eliot Moss, Eugene Stark, Craig Schaffert. and Robert Scheifler, who have all
listened to me with great patience, and whose ideas and suggestions were
indispensable. Finally. I would like to thank Ellen Laviana for her encouragement and
support

Submitted to the Department of Electrical Engineering and Computer. Science on
April 25, 1980 in partial fulfillment of the rcquir~ments for the Degree of Master of
Science.

This empty page was substih1ted for a
blank page in the original document.

-4-

CONTENTS

1. Introduction ... y ~ -_, _ •••••••••••••••• ~"'··-······· 6

1.1 ModetofComputation ... ,. ~················ 7
1.2 Modei of Cotnmunication,. ~······~····· .. ·····-··········: 8
1.3 Language Primitives ~ ~ ~.'..' .. ~.............................. 8

! I "·-

1.4 Multiple Representations t •• ._.. ••• '. ~ 9
1.5 Sharing ~' ·.:: ... ~ ... ~ ,: , :........................... 10
1.6 Why Type-Independent Schemes non~t Work· :.~ :: 11
1.7 Related Work .. 12
1.8 Outline of the Thesis ... 16

2. The Language Definition .. 17

2.1 Goals of the language .. 17
2.2 Terminology .. 18
2.3 Communication Primitives .. 21
2.4 Transmitting Comp<)Site Types .. 22 ·
2.5 Transmitting Abstract Types .. 23
·2.6 An 'Exam.pie .. 26
2. 7 Sharing .. .-.......... 28
2.8 Two Examples ... 32
2.9 Transmitting Cyclic Structures .. 36

3. An Implementation Design ... 43

3.1 Some Useful Data Abstractions ... 43
3.2 The Algorithm for Encoding Values•.. 49
3.3 The Algorithm for Decoding Values ... 53
3.4 An Example ... 65

-5-

4. Refinements ~nd Optimizations ... 75

4.1 Overview .. 75
4.2 Translating Between 1~~ ~.~uilt-in Values 76
4.3 Constructing and Transmitting Messages ... 93

5. Conclusions ... -......................... 97

5.1 Summary and Evaluation : ~: 97
5.2 Transmitting Untyped Objects,. ~-··~···········-···! 100
5 .3 1 m pTications of Own Data ~ .. m, ~ ... ~,. -.:........... 102
5.4 Operation &tension by Overloading' >& ... ~ •• ~ ~ 103
5.5 Operntion Extension by Template m••············ 106
5.6 Applicability to Other Languages' :•..•.•.......... 115
5. 7 Directions for Further R~rch .. ~ ,. u. ••••••• 115

-6-

Introduction

.Distributed computer systems have a greater petential ifor decentralized physical

and adminiStrative control than do more tradiVemil teMrtilited systems. It is· felt that

organizations consisting of co-operating, largely AUttJn01t1bl16~ps~11bestbe served

by comp~rter: systems.consisting of·co~':of co-GfSeraUfig; ,iaucnnomous··no<Jes.

where each·node is controlled by a pattioaahir ·group·[R.eed 78; Svobod 79). When· we

say that nodes are autonom005; ·we· mean 'Utat<'1e .group contrt!JHing· a node,haS ;Ii

certain amount oFfreedom to choose its hardware configuration. an4to nm:speciaftzed

or proprietary software. Nodes may perform specialized tasks, such as printing, or

high-precision floating point arith~etic, and rnay .be~efit,from sp~cialiied hardware
• ~ : ! 'o:- ~,,·~Lr

configurations. Nodes owned by groups interested in special applications may be
. I'

''<l

required to run private software. Rich groups may maintaiO expen~ive, sophisticated

machines, while groups with smaller budgets m~y be limited to simpler devices.

Conflicting with the need for diversity· an<f·Sll)ecintization•is.a need for individual

nodes to co-operate and communicate. The< ekisteJtCI. of'idiversity "in :hardware,

software, and administrative policy threatens to complicate the task of designing and
~ ., , # ~

H _·

verifying programs that involve the participation of several nodes.

A. high-level programming language' suitable for constructing .distributed

programs· should support the specification or' nC>de beh~vior 'in a. clear,· ve;iflable, ·

implementation-independent manne~. U.nguages that support the use of data
. - : . ~ - . . ' ' ~ . . .

abstraction, such as CLU [Liskov 79], or Alphard [W~li76] already present a·

methodology for the construction of dean-.· modular inte~faces between· layers of a

centralized system. To support communication and co~operation in a heterogeneous

distributed system, it is desirable to impose interfaces with similar modularity qualities

-1-

between nodes.

This ~ develops. communication ,prinriti~1- fur· <8 higll.-level language

intended. for writing distributed-programs in a heterogeneous- system. Communication

among nodes is accomplished, by mcssagt"'"pmin& ·so that the behavior of a node am

be-completely characterized by the messages it·sends and -receives:: Our- primitives are

structured to facilitate the: design .of diitrihuted· pftigmms in termS: of the

message'."passing -behavior of participating 'Bodes• ,,fodepmdently of how .the nodes

implcme~ tllat behavior.

We assume that communiq1ting programs use, the primitives developed in this
• r J ;-; t: i ;- '. ff, , , ;.'- .: : : '. ' ' : '.

thesis. Messages contain values such as integers. booleans. or values of user-defined

type. We shall see that it is a rela~vely simple fllatter to communicate values of

language-defined type; a node may send the integer. value 1. to another no<fe, even if
' . ' ' i: : . . -~ ; , ' . ' J '.: ... ~ -. -

the two nodes do not implement integers in the same way. Jn this thesis we addr~ the

IDOJie difficult . ,problem ,of! ·.de~doping a, lWdH.tnduredi laitplage: mechanan to

communicate· values of user-defined type.·· ~ ' ', j) '

I.I Model of Computation

Following [Li~kov 79a), the logical entities corresponding :to, individual
· , :-'.~·:;,.~~il ~:' ·:~~·~,: -~ i ; F , :!

. admiJ!istrative groups are call~ guardians. Tne pbysical machines on ~hich guardians
. ' ' . : ~ ; ' ' \ • '~ :: . ! f'.,.;~>' . ,. ; ~ .- ~ '- /~ . " ' '. '~ .· .

reside are ca11cd nodes. There is. not necessarily a one-to-one correspondence between
• • ' • ' • ~ f :_ • • -- r

~·, ..

guardians and nodes. althou~h guar~ians are aks,tractjQ~~ of,ipdividual computers. A
,'., -,. ·, ';'., _· ; .~i. ·. :~>; '. : ~ .~ ,, i ~-- .-; '; ..

guardian has an address space containing objects and processes. A process is an
} '. . ;· ~ t - - i:

execution of a sequential program; objects are CLU objects.
. ' _:(;: ·. ' '

-8-

1.2 Model of Communication

With the exception of ports, to be disc~d ,be~.,.ttie agdr~ .spaces of

guardians ate disjoint; guardians only commun~te.hy message. passing... M~ges do

not contain objects. they contain the va/14es.ofqbjf.tcts. cThe ~ult10fse11ding ~ ~

containing an object's vaJue is to create a ~ew, disti~) @PY, Qf :Utat: ()9,iect at ·.tlte

destination guardian, having the same value as the Ofi&inaL .

1.3 Language Primitives

The programming. language used in this thesiS iS CLU '[Liskov 79}; •with· ne\Y

primitives and data types to facilitate distribttted' programming. For simptlcity, We

ignore CLU's own variable facility, although we ~ottlsomeofttte:iSstres'itralses iri·

the conclusion.

Port objects permit general routing and· sorting of messages. Messages are

addressed to portS, not gmii'd~; :ports·accepf antf1Store'thessages of:pr&deterrniried

type, and they are the only object:S that eari be'nmnectacrossguardian briundaries .

' . ; '.:
. ,.,

The langLJage includes send and receive .Pfimit,iy~~ for commuQ.iq1ting values of
< • ' "! - . ' .'.- ' . • ,. $ ~

objects between guardians. Both send .and ~~eiv~ w~~ifY: ·~port. '1be seo,d'. staterµent
< ' ..: ' • ,: - • ~ • • l • - -' - ~ -

causes a,.message to be sent to the indi~ted,por:t.;m4. ,Ute.1e~~ivc st,ateiµ~pt causes a
. ' '· ' ;; 'f' '.. • -· • ' ' . _<

created by a guardian, and only that gµ~rdian can proc~ a,~ rec~iv,ed by ~at
' -· J ,'. _, - • ••• ' ; ' • ,,,

port

_. 9-

1.4 Multiple Representations

The CLU language provides a number ofbuilt.:.in data types, and permits users to

define·new types, which we call ahstrocrtypes. Twt>'ldrids,ofinfbrtnation are useful foi:

describing an abstract type T. ·Speeificatlon information describes the behavior of T

objects in tenns of 11 collection cf primitive' operations. Rtpresintlition information

includes the data structures :used to repreSent"'l' objects, ·and the code ·for the

procedures implementing the primitive operations. Representation information .is

encapsulated within a cluster. Clusters are information hiding devices; other programs

may use specification infonnation about a type, but n9t-representation information.

This restriction is enfor~d; by limiting ace~ to an object's un(jerlying representation

to.the primitive operations of the type.

Different guardians in the distributed system may implement the same abstract

type. We do- not require that all the guardians imple1tJenti~ a give~ tY,pe use the same

representation. In fa<;t, for many .reasons ,it .is desirable,~~aJJ.9,w d.i"1'erenctguardians to . . - .

use different representationsfor a.copimon abstract ~pe., Th~~ compelling reason

is to realize the large degree of· autonomy possible in a decentralized system. In a

system of physically and administratively inaepeffdent ·guardians, 'individuals will

invariably be tempted to'• '"customizen the implementations or'eommo1l. data typ~.

while retaining the need to communicate their ;values' wiill other guardians. For

example, ati indlvidual may wish to install a privately developed hashing function in a

guardian's implementation of a symbol table type.

Different patterns of use may encourage specialized representations; for

example, a company's sales division may wish to support a more space-consuming

representation of a telephone book, which, in addition to listing telephone numbers

-10- .

and addresses keyed by names, lists numbers and names, keyed by addresses,

permitting more efficient canvassing of neighborhoods.

Hardware characteristics may also encourage specialized representations. A

guardian whose underlying hardware interprei~r directly s~pp~rts complex arithmetic

should treat complex numbers as a base-lev~l type, ~nd shoul'd no~ have to.represent

complex numbers in the same way as a guardian residi~g 'at a ie~ powerful node.

Simila.rly, guardians providing access to different kinds of photo-typesetting devices
lo ; - , ~.: • ; ./· ; ~ •• i ·' - ,J : .I .• , • i ; ! : ' .

may USC different mterna1 representations for character fonts, while gLiardians that Use

those servers shoufd' use a single abstract font type, undcrStood by all the servers,

. regardless of the underlying har~w&~~; iJ1terpreter.,

Security concerns may also prompt a guardian to keep secret its representation
- - ., - i f .. ·' < ~ ' '. ; !~ - ' . ·'. ; : • ~~ ; ' - ; : - . • ' ' : - ' ,",

for a' type. The scheme developed in 't~ls thesis i>ennits indi~idual'guardians to' conceal
" - .- ·: ,:· -_ i--~-~.,.r._:'J·',_,.(;, . 1 ~ • ~

the representation used to implement a type from other guardians implementmg that

same type.

1.S Sharing

CLU objects may name other objects. When two objects name the same object,

we say the Jatter i~'shared The behavior of an obje~t.m~iet~llen4 not ~nly on the
~ - - . ;

objects ·it eontains, but.· also on sharing ·among theni~1''The: semantics of value

transmission for such a type should state whether this sharing .stq1~wre is preserved.

Any scheme for transmitting values must address the problem of preserving (or not
'- " ; ! ~ - '4. ; ~' ; . '? ,

preserving) the sharing structure of objects. Th.tlsdteme presanted ia 1this thesis takes

the approach that the degree to whiCh' sharing is prese~ed is part of each type's

definition. The language provides the implementors of a type with the tools necesmry

-11-

to control the transmissie1u1f sharing ,structure.

1.6 Why Type·lndependent Schemes Don't Work

A straightforward and general scheme for transmitting an .object's value is ~mply
- . ; _._.-; , •. · f.-~ .. •:;":<,,.:.~--!!:~-:01~ .. ~:,'.·:·'.~·: /

to transmit the value of the object's UQderlying ,representation -in , terms of vah1es of
·_ · ' _ _ . :· · . '1·7-" ·· : :c _;..:.~.:~._.. t :~_:_ -c:• -_~:H:~ .1::·;~ 1 ~~. ,~ ~ ~ ·- •

pr_imitive type. SucJl a ~h~f!le .clearly does not .~up~rt _m~Jti~f. ~Pf~~~tions. E~en

if it were acceptable to force every guard~n to use the same represe,ntation for ~ch
, ~_- . · --~ ,,-:· «; ';~; • ?.'.:-"~.~-)-_~;; ;: ~ c:t:•:~·j ·.----;., · ·:·_ :, . ,_ .. ::: -·

transmissible type, such a naive scheme wQuld be completely un~1ited for a langu~~
-:. , ... · .. · .· ., _ ... , · __ ,.,_, · . , :. ·. ·' ~·'f-:''L:H··,.-·-_.,_., ·,,f;: -··; :· . _.; .. ·

bused on the use of data abstraction, as we discuss, in t.fle ~e~t p~ra~~J>t\S· .
- - - - l - •. - -1' :/-j 1< ;J-. _;-·. ; ! ; l 1 { - -

The underlying representation 'ofifili'. otfjtefiffa}/t1e 1tfanslriisSible', while the

abstract valu_e of that object 111a~ ~?f.~·. For;~x~~~le,lfil~ 1~~e ~~r 1~:~epr~nted
- ~ ~ ~ : • ,i ' -· '.' .. ~ ' - ~ • - 1, ~:: •• - - ' '~ -- - • • '

by a character string. The string may be Jrarwn~ible, but the ~le name may be
• · . '"' . , ,'.~. · ___ ,- __ : __ ,,· i,\ •·•.• - __ 1 --~d ~'Jnt ;;f tV;tFJi~.}-/"Jtt ·:=-;~~ ... :-. 1~ ,r,~~ ... , :· -·

meaningless outside of~ part~cul9r file system,~l~~gj~,,~o a ~cul~-W1'.~d~an ..
. - • • - " ,,. . _. ,. -- , t - ~ ~ :'., ; ' .• : • - • • • '~

Conversely, there are a number ofsituations where an object's abstrad value is

transmissible, but where the object's representation is unsuited as a v~~~Jc; !(>r

communicating its value. For instance:

An obj~ct's r~prfS(!~tati<?,n lll~YL~~!ft.i_i:t)~foflJ.Vlt~!1, ~~~~~
to anoth-er -guardian~ ·'such as' 'an "irl'tfex inti> ifJp~~1ite table
niain~d t>y·th~-Ofiai~ ~rdi~.~ ~<Hilf.tiemt C®ldutot
recognize (and compensate for) such context-dependent
informatiofl. ·. '1 ' :, · • ' • • ::· · '_j· ·:: · '~.,-,

; A~ object's representation c~id · iflct~d~. objee~ ~llose . values
are,not tbemselYa transhHssible,~iu11l/tltSbe1Mlbutflhidt ; ~ ·
can be reconstructed by the recipient. . ,

' ' " '. . ! ' . ' ' ' ~ ~ ' '":.. , i) i "'°

' .. ·1:-

-12 -

What. constitutes the "value" of ClJ1 ~stract pbject may not
always be clear from its representation. For example, each ·

, object of a type migltt be marked .with·'its'time .of:creation.
When the value of such an obje,ct)s t.~an~~itlffl,,,\Y.hat q:eation
time shoold the new copy ci:>nt8in7 Only the pfogrammer can
make this decision.

A type's representation 'may Contain redundant mformatfon that
may be more economic;ally recol\$fuc~q.t)ijm.toinsmitted. .. ·

. . _,' ' " . - ; .' : ~ . . .

We conclude that transmissibility is a characteristic of an object's type, not of its

underlying representation.

l.7 R-eloted Work

We begin by providing a rather summary descriptiqn, of ou~ sc~eme to lay a basis

for comparison with previous work. We assume that the la9guage implementations of
' . ,. . •· -~--~ ~ . . . - (~ .

the various guardians are c~pable of communicating val;~~ of built-in type. To

communicate values of a user-defined t}.'pe between guardi~Qs that may use dif(erent
' ~ • - '.:_ .· • • ·_, " I

representations for that type, values are encoded into a standard intermediate

representation, called the type's external rep~semat~ · At 'the ·lallguage level, this

external representation takes the form of an object.of dlfferent:transmlsSible type. The ·

external representation type may itSetf be 'user-deft~ or contain user-defined· type8~ ·

When a .value is sent in a message. a ser.ies .of tr.andlltiont;opetatiolls ;are inW>led that

eventually reduce the user-defmed vatue to values 0f built-in ,type~, which can be

transmitted. Upon receipt. dte inverse transJaoons'.- :applied·to ·reconstruct the

original value. ·

An alternative to standard intennediate representations is direct translation

between representations. (Fabry 76) develops a scheme far ·replacing 'modules while

the ambient system continues to run. During the tranSition' frotrHU1 old Version to a ·

- l3 -

new version it is possible that different representations for objects of the same type

may co-exist. In Fabry's scheme, each _object js, tagged with a version 11umber, and

each module ve..Sion includes a translation operat~c;m frow tbe representJtion used by
. - ''; ' . .

the previous version to its own representation. Whenever: aft' object using an old

representation is encountered, a chain of transl"tiQn operations is invpked to convert

the object into the current representation for that t}'pe.

lt does not appear that direct translation can be applied to the problem of value

transmission in a heterogeneous distributed system. Fabry's version numbering

scheme assumes that each new version makes a single predecessor oblt>lete, amt thus it

suffices to provide a single translation operation. Jn a heterogeneous system where

eac'h guardian may ,use a different representation, there is no such natural ordering

among representations. When a new implementation or' an existing type is introduced,

how many translation operations must be provided? Must all other guardians be

informed? How do guardians translate between hardware-dependent representations?

A number of schemes have emerged that,pennit tnnsmi~ion of built-in values

between heterogeneous nodes through the - -use . of -standard - intermediate

representations {Levine 78,Crocker 75,Postel 74,Wbite 74,Neigus 131Telnet 73). Our

scheme builds on the results of these works,, since we sume that the underlying·

language implementation can faithfully transmit such language-defined v.alues as

strin~. or arrays of integers. independently-of their machine-level representations.

[Levine 78) examines and evaluates different strategies for communicating values

such as real numbers, integers, or files of characters,among heterogeneous nodes. It is

concluded ·that the use of standard intermediate represen .. tions best satisfies such

criteria as flexibility, extensibility, and efficiency.

-14- '

A number of . protocols have been . developed ·'.far. transmission. of typed

in formation across the ARP ANET.1 The Pfocedll~ Call· frntacoL developed for the

National S<?ftware WOfks·{Q:-OCker 75,Postet'Z~~hite 74) iiuhe most~11111biti~, being

c~pable of transmitti~g $UCh values as cbacacter ,strittp. · intege~ and lists. The

TELN~T_protocQI [T~lnet 73] is used:f01 ttansfaml&:ch~ter'irtformatio~ and: the

File Transfer Protocol {Neigus 73) is u600-.to 'tla.asferdilbs;· ;f'1 thestLprmtocoiS; the

sender converts the infonnation to be sent into a standard representation which is

either statically determined, or agreed ui}on by'n~g~ti~ti~~. 'j(jp~~-.~eceip't. th.e receiver

converts the standard rcpreSentation into whateve'r loca1' repr~ntati6n it uses. ' .

[Haber 78). discusses ~·.for, dyaa11aic'.: replamntnt af modules. managing

collections of lon~Uv~(l,.pb~f$. Each ~ctle.~dn£1udeS' 0pdatioo.s.to,tmnslate

betw~en its aw~ rep.-ese~tation and a '.'sirnple.1~" rupraentation. When a new

module encoonte~ M ~bject in tbe old·IeP~t8U.,itheit>ld,ntOdule. version is called

upon to. translate tho Qb~t imo its eapqnieat~tation,· .and. ·die K\V: versien

translates the canonical representation into the current representation. It is remarked

that canonical representations dray be •, useci'' b'' co~mu.:.'~te '. valuef; among

heterogeneous nodes in a dtstfibiited syStem. : ' i \!' ; ": ,., '.' • ''

Our scheme di,fft;rs Jrom Ulat ~ipcdtia,{Habet:'J.iJ in thet'we :expliCitly :state

what constitutes a pennissible external (canonical) ~tielL ·As ~we shall ~lain

in detail in the next chapter, many of the modutarity properties of our scheme are a

direct result of the pahic~far way external tepr~1ritiktidns'if~«kfined. '

1. By"typed" infonnation, wec1neanasothenhanueinteq>retld bitstrinp.

-ts ..

The PUTS language [Feldman 79] defines n number of language primitives for

writing distributed programs. PUTS modules· ctimmunicate by messag~~ing.

Messages consist of individual valnes .of 1linstrtictured ;primitive type.1 The

mechanisms used to communicate these vatuos btt\\leen •heterogeneous nodes are not

described Users of the language wh0 wish to ttansmit more toritplicated; values such

as arrays. or .values of 1ttser-:defined type, ate left to their (J'IJD devices.

When Qefining value transmission_ for a_type. one m1,1~ ,d~Ei.~(! w}\at constitutes
' . f ' < c ' _: ,. / • . •

the "boundary" of an object. and what effect transmi~ion ~ to ha.ve on an object's
' • , ' - • : ; , " • • • • .: ~ • : J ; • '

sharing stmcture. A related problem, that of defining copying operations for objects in

a distributed system is addftssed· in' [Sdlins 79); · 1lte~ Of•rommunicatron· used in

this thesis is similar, to the copf"tfult-Jocdf, -0perltioA ~ibed· there: Om- app~h

diffeFS in that oor primary interest is ' not in «veloping sophisticated copying

operations: rather . it is in. developing; Janguage-~&nsttitctS ;tt>1-f,>tnnit· users to define

transmissible abstract types in wayslhat.<k>•not:compt'Offiise·fi18rdian autonomy .
. - . ' '.!.

[G ligor 79] discusses techniques foi storin,g v~l~~ pf~ <;l9je<:ts on. ~c,ondary
. -~ ~,., - ~ .. ·' f:. _,~:;.it, ~·· -:.·l!-::'-i'.£.,._.!.i._·; ~l,.-

storage, using encryption to avoid comprOJnt~!ng ~.~µr\ty1_pfili,e i1'form~tion. 111:e,i1;1
;Jj,'"--{· ·J_:'~·'' •: '.~-::'~: __ ~ .. ~ ~; . :!__ '· :: ~.-J. ,,.-

encryption scheme is largely independent of the m~e construction scheme

deYeloped in this thesis; it c::$\ltd·be \Jsed'.to:J)~e.JcuntY~atid;·aatheftticationto the

language primitives.developecHaere.- · . I

Both the choice 9f la~guage prin:ii.tives ~-~- tti,e &l:l~f4~~~ .WO<tel Qf computation
•.,-"·: : - : ~.~,.<~~-----:~:_--;·;;-lt.:.i;_;_;' •'.

used in this thesis have been taken from work done by the M.J.T. Distributed Systems

1. Integers, booleans, characters, and reals are sugestect

•.

-16 -

Project [Svobod 79, Liskov 79a].

1 .8 Outline of the Thesis

The plan of this thesis is to present the value communication scheme at

successively descending levels of abstraction. At the highest level, Chapter Two

defines the communication primitives as extensions to CLU, and describes how the

language user may" define and implement transmissible abstract types.

Chapter Three outlines an implementation scheme for a run-time system

supporting the language extension defined in Chapter Two. The mechanisms for

constructing messages from objects and reconstructing objects from messages are

spelled out in detail. To present the scheme as simply as possible, we postpone

discussion of a number of efficiency-related issues.

Chapter Four addresses the issue of efficiency, describing optimizations to the

implementation described in Chapter Three.

Chapter Five discusses the conclusions reached in the thesis, including the

applicability of the methods developed here to other problem areas. Among these

areas are: the storage of values on secondary memory, displaying values of abstract

objects on terminals, and copying objects.

-17 -

The Language DeHnition

This chapter describes. a number of programming language primitives to support

the communication of values among heterogeneous nodes in a distributed system.

These primitives are presented as an extension to the CLU language. The extended

language defines the meaning of transmission for built-in types, as well as providing

the means to define and implement transmission for user-defined types. Some
_.,: ; .·!'

problems that arise when defining transmission for cyclic user-defined types are also

addr~d

Rather than attempting to give a formal semantics for value transmission. this
~

thesis presents informal definitions of the primitives introduced. A formal semantics

for the extend~d language is a major undertaking in its own right, and lies beyond the

scope of this thesis.

2.1 Goals of the Language

Before presenting the language design, we list a number of criteria that we feel

any m~ge-passing scheme should satisfy.

The scheme . mould support multiple imptementatiOns· of a
single type without a combinatorial grqwtb ofCQlllplexity. In
particular, the addition of new implementations.bfeiiSting types
must not require changes to existing implementations.

The meaning of transmission for any given type should be
determined by localized, single-level operations within the
module implementing the type. Verification of these operations
should suffice to verify the correctness of the module's
implementation of value transmmion~

,.18-

Message construction, transmission, aod' i~fa&ioo Should
be performed by the language implementation, not the user.
The user should be able to indicate the o!>jects whose yalu~ are
to be transmitted, and the tang~ •rl1enfation' 1-~buld do
the rest.

Any useful scheme must give ·the -· progiwmmer h reasonably
simple means to control the effect of. t@ll~~iqll. 011 sharing .

. . ' . . . ' ' '.} . ' -·. . . ,.
structure.

Any useful scheme must be efficiently implementable.
(However, we· pOst)Xjfie· diseu~fng theitmcle1frcfdf'bur sel1etne

. until a ~at~r, c~apter. . af}pi, ~~~ 1 :SOllW,- t .p<>s.Wble
implementations.) ·

2.~ Termlnology

In subsequent discu8sions we adopt the following typographical conventions.

Objects are denoted by letters in cursive script (A, B, C). Names of operations on

objects are written in italics. We use CLU's d()lla~~~gn ~O~!io~. to indicate the type
: .. . ' ·. . T·· ... i < 1·,, t. • '; • . - -

associated with an operation, where appJicable. For .example:, T$similar and T$equal
' ' /- .:. f .,,. '.: : '·-< !-.,:; : ·-~ ' • . • • . '" '• . ' ~ . •

are operations defined on r objects.
' '

As in CLU, tlie basic containers for infonnati.on are objects. The behavior of an

object is determined by its. type. ~Each typ~ h~ an. ~iated Crin~ction of operations' to

manipulate its objects. Objects have both an identity and a 'val~e. '.An ~bject'~ identity

determi~es which object it is, while its value is it:s)nfo1111a,tion conte.nt Qbjects of
' ~ • " , ; ' ~~ - , ~ - • • < - '. ~ •• ' ' '. ;' '.

mutable type may change t.tieir associated values. while ob~ts of immutable.type m~y
;· ' - """. ' • > ' • ~~ ' - ~ - ' ••

not. The identity of an object_ cannqt cha~ge.: Qb,tects '!1ay _ refe,r to otlie~ o\>)e<;ts.

When an object refers to another, we sometimes say the fofJller contains too li\l~r.
When two objects refer to the same object we say_ ~at the latter is shared .. For a more

: • ; < ' ' • ~ ' • - { • - : • • •• ' • • ,., ,

complete description of CLU's mod~l qf computation, the reader is ref e.1.-red to, the
• . . « ~ ~ > ' ; • ; - • • ,

-·19-

CLU Reference Manual (Liskov 79).

We partition .the types in CLU in~ three dis.Pint sets: primitive, .abstract, and

comp6site. Primitive types are unstructured, language-defined types such as string,

char, int. real; and bool. Abslract types are .uaer-ddined types. ComposUe types are

composed from langilage-defiried type constructors, 9f which CLt/ has six: array,

oneof, record. sequence, struct, and variant. Component types of a composite type may
~ ·, ; : .. -· ;. , ~ I ,- ·. f ~ , ~

be either prfmitive: abstract. or coml>os;te. R'ccml's. arpJ'&. 1~ varmnt's are mutable;

the other comj)osite types are in'tiriuta6te. Ob~cts of Colnp<>Site.t~pe serve primarily to
: ! '; ~ '~ _, '; . _,

refer to collections of other objects. Primitive and composite types are sometimes
•r;. __ ,,,,,_; •• : , '

referred to as built-in types. Primitive types and type constructors ar~,;,req.~ired to 'be

supported at every node, while an abstrac~}Y_~ nc;ed. 01lly b,e SUIU)(?I1e4 .at pertain

nodes.

A cluster encapsulates the implementation of an abstract' type T by defining a

concrete representation for T objects, and' by' defi'nl~g::T operation~ i~ 't~nns . of
) .. 1 ... ;~ :, if~. L(:1~, .. : : ·

operations on T's concrete representation. The Clioice of concrete representation

deflnes an abs1rac1ion function froJll. values C>f Jh~ .w»,::re~, r~pr.esen~~).l type to
.' '" ' ' ' - • . -- : ' ; ;:.: ; ,i .'..' .• _,, <; , •• • J, "'-~ '-. -- ' ' .

values of the abstract type, denoted by T$qbstrqc(. there is qo TSabstract operation ·
> •. • ' • .:: ' • 0 ._, > • > L " • !"" - ' • > ~ ~-·

available to users of the language.
- J - •' '

In our di8cussion of trahsmi8sion, 'it is useful , to define precisely when we
. ~ ; .f.J ·l, -~I·"_,~~ -t;;,:-... ~ ~, ·:·~ ·.,.. - ., -

consider two objects to be identical, that is, when they have the same identity.' The first

requirement we make of any such definition-· is thaf o~ly ohjectfi of the sam~ ty~ can

be identical. Accordingly, we deffne T$ideniical tb be an 0peration. taking t~o T

objects, returning true if and only if the argumeritS h~~e the same identity. Note that
.. -. -~ ;,-1~-$(;~,~ - L' . -

identical is used only for explanatory purpoSeS; there is no oorresporiding language

~ 20- .

operation currently defined in CLU. T$identkal is defined in the following way:

IfT is primitive, then T$identical is equivalent to T$equal, where
the latter is defined by the CLU Reference Manual.

:l~iv; ~1t;.~ ~ t-;.:

If T is composite, then two objects are identical if they are the
. results of the same inv~~CMl,Pf_~'}~~~1~1o~qn. ·

If T is abstl',act, the:n. two objects are identidlJ;tf. their ronctete
representations are identical. ,

: I;•

The identical operation is not quite the same as the CLU equal operation. For the

primitive types, and for the inutable' ~otrip<>Site ·types, identieaf and equal are indeed

~utvatent. When defining ah abstract typltT, tt1l{cL1J5J{efer~nce' :Manual suggests

that proper usage of the T$equaf operation requiresttiat:

the equal operation should be an equivalence relation satisfying
, the Sllb~tut~n propeny;. i.e.; if tWll QQ;~ ore1etllfttl/,;than ~ ,
can be substituted for the o~er without any detecta~le_
difference in:behavi0t.fp;80f - · .

For types having wen:defined equal operations, it follows that if two objects are

identical, then they are necessarily equal, although the converse may not be true.

Perhaps . the most important distinction . betwatn' -ltkllliCtlf and· equal . is th.at

identical is defined for every type, and is never defirreddn" tehns 1ofi user·defrned,

operations. If defined at all, the equal operations of abstract types are defined in terms

of user-defined operations.1 The identical opel1ltions fo~ alf types ~r~ defined .by the

language, independently of any user-defined Operationi

1. The equal operations of immutable composite types may also invoke equal
operations of us~r-detined compone~t types.

-21-

In our subsequent examples, . we use "A = · 8" · as an abbreviation for

''T$identical(_A, 8)", and "A = 8" as an abbreviation for "T$equaK.A. 8)".

2.3 Communication PrimitiYes

We restrict discussion to messages conSistittg o'f the vafoe of a ·single object

(which may, of course, mntain other objects)v•fo, Gbaptdr Fi1e,.we wilJ discuss some
'. ·<'. . . .·. ; .. · '

more general kinds of messages, but we will see that they introduce no new difficulties.

Objects of type port are used to identify the r~cipient, of a ,message. Ports are
' ' . ,- ' ' .

parameterized, uccording to Jhe type pf value th,ey ~ive1 e.g.\ ~ port of t,ype 19rt(~nt)
. . ! • "._ f!J ' • . '' _; •• ~ ~ ; '. ' - f - : ,_ • • - . . ' ' ,, • . "...,,.

can only receive the values of integers. The n,;1rnes of pQ.r:ts JJ;lay,be, sent in m~~;
~ - - ~ ' ,; . ~ - . ! - - " ' ' -~' '

however, only the node that created a port may receive m~es sent to that port

Users ntay cause the value of an Object to be sent'to·a·po'ttbf ·executing a send

statement, indicating the object whose value is t<>:be. ~lJ4 ,a&X! ~ P9f1, to w.hich it is to

be sent. A message may be received by executing a receive s,ta~ement, specifying the
. ~ . ' - - . :. . ~~~ : ; ~~ - - ..

po1t from which a message is to be taken, the variable to which the resulting object is to . .

be assigned, and the amount of time the user is wiUing to wait for the message to arrive .
..

The. languag~ im,pJernentation provides buffaing,ofrmcssages .between· the, time they

ar~ sent and the time they arrive. _ .,

At the most summary level of description, the Tes':flt of sending the value of a T

object is to create a new T object, whose value bears som,e relation to that of the
' .,,.,,. 1 • '

original. The meaning of transmission for T can thus be characterized by a transmit

operation, mapping T objects to T objects.

For a primitive type P, P$tra11smit creates a new P object having the same value

- 22- '

as the original. For example: "abc" = string$transmil(.~~at>C''), 1 a:.Jnt$t!4m"mi(lt}, elc.

We note that like T$identical and T$abstract, no explicit T$1ransmil operation is
, \, J- • t, - .

directly available to 'users of the fanguage. Th'e Uiransmit operation is a device that
<'- ::

serves to explain the meaning of value transmi~ion. · ·

The definitions given here concern only the valu~ of objects~ by di~u~ing
, , j , ~L - !·: .· : ~~·-t_ ·. ; ~;(t ._··. , ~ .

transmission in terms of values, rather than object identiti~~ we sid~step the problem
>. . •

. of defining the relation of sharing structure to value. This proble~ is 3:dqressed in a

later section.

Transmission ·for a value of composite ·type is defined in terms ·or ·component

transmission. For example, transmission for the arra)lf11type'iS' d~firtetl' irirotiftiitf~

follows: the result of transmitting an arrayfl1 is to er~~ a, new anaynl objc:ct, hayin~
fi~i!:~Ji \ < -~;~~ ~ ·.c: ; "' :r~'. _!'·~ __ • -~ __:_

the same bounds as the old array. Furthermore, the values of the new array's elements

are the transmitted valuesoftbe,okl array'selelllCIKS.

Transmission for the other composite ty~ can b~ de~.~ed similarly, Let A be an

object of composite type T. When the value of A is ~ntJ>y .~ nod~. A's ~otnpom;nt
• ~ '! . ' -: ' : ,.:. i . '

objects are transmitted in some can~nical order. (e.g.: asc~Qding order .for array's,
, "' r -. i ~ . • '", , -

lexicographical order for record's). When the T value ~,received, tne valu~ of the
: -~-\ -· .. ~ ~:-::;_ ~",~ :::_,!, ~· ~· f ; , ,,·~ --- ' ·,,. ;~· .

components are received in canonical order, component objects are constructed, and a

new T object is created:~initialiiedlfmm .thc ~'nt bbjeds. ·,

-'23.

2.5 TransmiUiq Abstract Tnes

The definit.ion of a_ transqiissi.ble a~s~t '. ty~ _ SI>ff_ifies thF . meaning .of

transmission for that type by defining a t~an,smlf ~ratiQR.:. Jllst as correct usage
• < ' - ; > " - ' : • • - :~ ' I < ; - - - ; • ' ' ·""

demands that the copy operation for an abstract type preserve the va1ue of the object

being copied, correct usage demands that the tran~bpemtftjn for an 'abstmtt tjpe

preserve the value of the transmitted object· In other words, the information content

of the received object should be the sam~. in Some sense, as the informati~n content of
I ; ' . ' . , - . ,--. -~ . . } ~ • .~· : ?- ' ! ,

the sent object The problem of defining transmit for an .abstract type T is thus the
- .- ' . : ,.· : ,r, ;;~.

problem of declding whiCh properties oft ~bjects constitute th~ir values, and what

constitutes preservation of those properties. An important area where such issues arise

is the que.stion of the relation of value.to. .sh~g ~r.e. So~ of these issues are
. .,, - • - - - -d - - - - - -

disc~d in the sectjon on sh~ng.,

?.S.1 lmplementi~g Transmissibility

We say that a type is transmisslbleifithas'a iranllhiliopmllion. ForM abstract

type T, the transmit operation is defined in the following way. A transmissible type XT

is ch<JSen, called the -external representation type ofr. aiong~ with a mapping from
i; ~ ~-

values of T to valueS of XT. This mappi~g is denoted 'by T$encode, and the inverse
• < • • . :- ·'. ••• __ ,J ;· 'A·~ n1 ~-'~-~ · ~r· :~. , ·'

mapping by T$decode. The va1u·e of the object created by Utransmit is defined by the
- ' c

composition oifsencode, XTStran~mit, ~d TSdeCode: _,.,,,. - ._,r,

The external representation of an abstract type T is specified by the definition of T;

thus all clusters implementing T use the same external representation. The external

representation type may be abstract, or composed from abstract types, but it must be

- 24- .

transmissible.

The meaning of trati§mission for T values is d4fined only in terms of the

correspondence ofT values W XT'values'(errebde;;artd dt!cO(/e). and'~in the meaning of
'. ' • ~ " - v -· ~ : ~

transmission for XT values (X'fftralrsmit). This detin!tion is ·independent of any

cluster's choice of concrete representation.

Each cluster implementing a transmissible type T must supply operations to
',- ~

implement the encode and decode mappings. The.T$encode op~ration takes a T object.
~ ;

: '..- ; - .. • • - • i " r '. •.,~. i _; ~ j:-. ~ ' • } ~- • 1 ' ' • • • ~ '

and returns an object of the corresponding external representation type, having the
:}.· - . ._.., '""

corresponding value. The T$decode operation performs the inverse mapping from an

ol),jectof the.e,xternal r~presentatio.n ty~ 19 tht!.~Tf~~:;Wstr~ct,~j~t The

encode and decode oper~tions of a type are invQke{La~~~~Uy by the language

implementathn when a ~.lld or re~elve ,~eiµenl is execute<L
- ' . ' 1 ' ·-- '

A value of abstract type T is transmitted by the language implementation in the
~ ,.. -

following way (Figure 1): When'~· ·~ode. sends the
1

value:~f a T object. T$encode ~
'

applied to the object. and the value of the resulting external representation object is

sent (possibly by . invoking further encQf./e's). . :Wllc;Jt the .b)i:get .fl()fie fC'teives the

message, an external representation object is ~structec't fi:om . it and T$decode is

applied to it to produce an object of type T.

The encode and decode operations of a cluster encapsulate the _translations

between the concrete and external representations .. These operations are ~ompletely

defined within the cluster, contributing to modularity. To verify that a cluster correctly

implements value transmission, it suffices to verify the cluster's encode and decOde

operations. The external representation also allows new T clusters to be written

-25-

Fig. I. Definition or TStransmit

+-----------------------+ +------------------------+
J Guardian) .I ~.'°'f.A.:11'~· d .. , .~· ' L ·~~· I·
I I I I
l. +--.:+ TSen.code +---~t. l x,Ut~a\nsmU .hi :+r·-.•-:-:t ;JSfff:CJP•· +-:--"'• I
I f T l--------->I XT 1------------------->1 XT 1--------->1 T I I
l +---+ +----;+ I .,·l·,1·,~J~+d, :!c;.: : / t-r--•.·•·
+-----------------------+ +------------------------+

• ~ l

without affecting existing ones. since all T dusters comm.u11icat~ by converting local
;._ '; , - -~ ! .· i' _:-·; ··: .. \- .,....~t·:.:- ;.r ··:.:~.-:- ~,: ~ .. 1 r1 .·< :;.;

concrete representations for T values to XT values in a stan<Jii.-d way as the values crcm
.:·l:~; ·:~ r~_;, ;i;·(·~· 'L:

node boundaries.

Let·T be a ttansstti~fe. type supported 'at tWb giiardi~m. :tet Cl1 1and ci'2be

the concrete representation ty~ ·1tsed by each. and. X'f· ·iJre 'elterrt~I reptesentatibn

type. As usual, let TSencoJ/e~d TSdecotle c'fen~'ifre' rffii~fngs.ibetween · vairies ()fT

and values of XT. Let T$abstractl a~d rya~~~~ac~ ~e-~?~~ ~~e rpappinp ~tween

values of CTI and Cf2 and values of T. The fimctiona.~it)'.. of th~ mappings ~e
, I ; :; : .~ ' ' f ·- ; i ' ' ,. ' •

illustrated in Figure l

The user of the T type needs tn' know th'e meaning of 1$1tttnSniit, but he does not

need to brow the nature Of T's' external represent'atiOti." Thi elttemal repteSentatrort of

a type T is only of interest to the implementotS bf 'DbllT dUSteh; The meaning of
transmission for primitive types and abstract types can be ~tied in the same way,

• • ··,, .:~ . ~ ~-- ... :~ :- "! ; ~·. r

without reference to whether values are transmitte.d directly or reduced f:o. simp~er
• • - o ·• ; ~ i· -; .". : - · . L .·. , " · ~ .'' · ·

transmi$ible values.

- 26-

Fig. 2. The Relations of Encoding Operations . r

+-----------------------+ +------------------------+
Guardian· I Guardian . I

: 4 '.d I
+- - -+ ,T$•flCQde +-,-- -+ l XTltnen;snri t ' J ~ ... "ti"..,,. .. (f$cfet;))de ·~'"---+ I ,
I T 1--------->1 XT 1------------------->1 XT 1--------->1 T I I
+---+ +----+ I . J ,; ;~n-r;::+rr,: ;,·r~, -tr'"!-+ .J

I I I I ' · I I
I / I I ' I I

1$abstract1 I I I , ,,_ 1Sabs.~act2 I; ·
I I I I ' . '\ . I I
I I I I ' I I
I I I .. I ' . I I +-------+ I '"'1 '+'.: ____ ::._i 'j

. I en I I I CT2 I I
+c-~-----+ 1 .. ,.. ·:;·+~-.i..·.:.-•..; ,).

+-----------------------+ +------------------------~ '

', .. • 1.;. '.:

2.6 An Example ' ..

To serve as an example of a typical abstracttyf><%i weJntroduce 'Ii single-ikey table
' "

which1§tores pairs ofr~ts. wber1}.0r(e-.;.~ii~ikey}.tisr-*d to1re~e the,;otl\et

(the ilep:1). The siogfe:-~y . table type1 has qperat¥>nforueatiqg empty· tamles, ·jnserting

paira, fetchmgtbe it.~ paired witJia,&iNtn kay,tdeleting,.pajri, and.Jterating throUgli all-

key-item pairs.

To'. present th<: ex~ple. we define some-simple sy...Wc coastruca 'As in CLU.

the concrete represeat4ltion for a type is· dtckt~dc.withip its-dustetTby'1use of'tQe,

. fi

rap = type_spec

where "type_spec" stands for a type specification. In addition, the external

representation for a type is declared by· a similar distinguished equate:

- '11 -

xrep = type_spec

The interface specifications for the encode and decode operations of a transmissible

type Tare:

encode:· proctype (T) returns (xrep) signals(not_poss ible(string))
decode: prootype (xr.ap? retUNls (T)· s1:gn8ta{il«>t-Ponitr1e~4"tf))

where xrcp is the external representation type of T.

When writing a cluster parameterized by a type Twe,use the syntaX: ·
I .

where T 1n transmissible-types
. . .

to indicate that we require value transmission to be defined for the parameter type.~
-

Transmission is defined for the primitive types. and for abstract types having encode

and decode operations. Transmission is also defined· for oomposite types ·whose

component types are transmissible.

Let us examine how a,single-key table might be madctmnsmi~ble. This type is

of.general utility, yet italmits. many speciel~~ooncrete re~ntaticmst a guardtan

that rarely deletes bindings mightehoose'a rep~BWiOn;tJ:\atpermits.quick insertion·

and lookup operations, at the expense of the delete ~ration, wtfi~ ·a:nOt.ber· guardian

might use a proprietary hashing function, or a complicated list structure represerttatioll.

The most obvious candidate for this tYpe's external representation is an amy of

key-item pairs. The encode operadon fut the singte-itey table ~ an .empty' array of

key-item pairs, extracts each pair from the table, and inserts it in the il!filj. The ilecoik

operation creates an empty table, extracts each pair from the external representation
,c •

object, and insel_"ts it in the table. A sample implementation is shown in Figure 3.

-28-

Fig. 3. The Single·Key Ta&tle Type

table= clust.,- [key_:type, item_type: ty,.]:1a
create, % Creat~ a new, emptl table
bind, X Add a ·new ·tey-1telt·ipa:tr
lookup, % Given a key, retu~n the associated item
d•lete, X Remove' a key-iitM prir · . · ·
elements % iterate through all _ke~-item pairs

where key_type, item_type 1n transmissible_types

tab = table[key_type, item_type]
pair = struct [key: key_type, item: item_type]
rep = ..• % CQtlPli~_ated structure ·
xrep = array[pair]

% Code for other operations ...

encode = proc(t: tab) returns (xrep)
an.s: xrep :;'- xrapS~()
for k: key_type, it:·· item_type in tabSelements (t) do

xrapSa~(ans •. pa·if"S{ker: k, cttaa-:.ft'})
and X for

return (ans)
end encode

decode = proq (x: xr_ap) .-~•rns (tu)
t: tab : .; tabScreate() · ·
for p: pair 1n xrep~1"'8-Dt.S(x.l de

tabSb ind (t, p. k'ey. · p. item)
end X for

return (t)
end decode

end table

2.7 Sharing

,·

CLU objects may refer to other CLU objects. When an object is referred to more

than once, we say that object is shared. Since mutable objects can be shared, the

behavior of an object may depend not only on the values of its components, but on the

-::19-

way those components are shared. Consider an arr., of ~ts.of s0me mutable type

T. If two elements of the array shaf~La, single .T object."'titen ·& .t~ange;: ta that .-Object

through one element will be obser.y,f>le ~a c~- tO £1\e <Xher. Alte~ati¥ely, if the
. -

, \ --j 1' -l .. , '" _-, -~: ;

two elements contain disti~ct t objec!S.Jb~p .~ ~~apg: .• ~lement .\l!ill· net affect the
• · · · ' . · ·. :l • .: , -, +; .;'. ' ; r< '•1L , ,

other. Since the behavior of the two arrays 1s· different, one can plausibly argue that
. - ~ - ~ . _._ - .. f - J: ,:~ ,; t t'} :} ~~ ,! -·-- ~- '.:: -~ ~ ~ t1: c -

they have different values, and that transmission should distinguish between them.
- ·v .~ r j • -· t

._· ,!, '. ·(:'? .• t

Although it rriay be useful to have the tranlfnil upemtion: for a type preserve
.l 'ii!.•'-; j ':.:;·:' ~ (;'···,.

sharing when transmitting a single value, it does not appear useful to pr~rve sharing
--b.f ;to ~#;c;t~ ~~f~J(~ ~lG~ ·-··:'-"

between objects sent in distinct mes&lges. To capture this aspect of transmission, we

redefine the transmit operations to take a second argument: a message context .that
~-:-·~:·L-. _; ,:~-~ "--~ __ ; j-;}1 -~ -L': t · }"J .~.--~ J --t'· •·

defines the scope of sharing preservation by identify.tRgo~~ge tieingltansmitted.
. - ~ ',: ,t - ,-,,. c'. f ,,:! : ~-;q_\:j. ·'·¥'~j ~ --~

. A mes&lge context can ~:viewed as uniquely 1 fdtintifyiftg1sa ~ar ;execution of a
. ' ... ~~ ~fr{. :,: -. ::

Let M be a message context, and ltt:A aftd~< T~'. 'Je~'ftn:ther redefine
" ; - • '.- .,,-... .,__,.. - • '.J

the transmit operations to satisfy the feftoWl,.~rtJ.'<: 'l " • ~1
t . _- '' ;

. : ?,-.~~ . ;: ."' _:; -~ :': -- ; ~ r .

Tl: A = 8 => T$transmit(A, M) = T$transmll(,B. M) . ·. . ~ -

; ,-, ?

In other words, transmit preserves identity; if the value of an object is transmitted twice

in the course of executing a single send statement, a single object is created at the
• - ·-~~ < ·--·-- ·-·-· -- -- ---·~ - ·-·

receiving guardian.

Using the new definition o~ transm{t. we, ~ill , now ~ify the effect of ~alue
- . . . ~ .- ' - , : ' - ' . -- . : . _ .. ' ',,~ .. / ~ . ; .

transmission on the sharing structure of objects of compqsite type, by informally
-? § : - ; - - •• ~ .. ~- '~,. _·,~·:-' ~ ;)~(t··.: __ :;: ;_;· ' ' .. -· -- :

stating a number of properties of array(TJ$1ransmit. 11te notation used to present these
·~· .:--~~:· i~· .~ .. ' --

properties is used for brevity. In the following statements, A and 8 denote any amyfTJ

~ 30- .

objec~ and M denotes· any ~ge ,tontext 'De fint: two 'properties state that the

resulting array has the same bounds as theorigiftak :

Al: •rrayf11$low(array(TJS1mnsmil(A; M»;= arrayf11$1ow(A)

A2: .. arrayff1kire(arrar~rmwni(A.;-M))o a.,.YfT1$8'~e(A)

The third property states that the value of each compon~nt of th~ new array is the
, •> • , - ;-,. ,' ' '

transmitted value of the corresponding .componen~ o[th,e, q,l!J
1
,array. Moreover, ~ng

i : ' . ,·) . ' : ; : : .• : I I • -· · ! · ~ -• -' ' -'

of components is preserved.

A3: (V k) (k is a tegaf index of A)=> T$1ranS11lil(A[kJ, 'ki)'· ·arrayfl1$ttansmil(A,
.M}(t) . ..

The transmit operations for the other composite types are defined similarly.

The language primitives develope~ in this thesis use the ~Qtion of obj~t identity
' -_, · .. -' .· ~, '. .: ':-,.·.·· ~ ~''1'.~~ff,,;i);J:-:. ··~ ·' ~ :_. '·'

as the basis for defining the effect of the transmit opeoitions on sharing structure .
. • , ; ~ - ~ ,. : • \._. '. • ~ .;·· \ ! \ ·: '. • , :·/ L: ,'_;" : --~ _; _.) : . '. - " .. i --

Object identity was by no means the only possible ~twice. One ~temative, similar to
" : , ; . ' < ;· -. . ' 1 ., ,· .,_·

that taken by the CLU copy operation for composite types, is to ignore sharing
' . ' .; - i ·.· ·":,····.-· ' .. ' ' ') _,) " ·: ''

completely. The eff~ct of applying the copy ope.ration to an arraym, A, (where Tis a
' ~ --. . " ,· _: ' -~ ."--~ ~:. _:.,; ·. j: .,.'~;· ';_"_;\,_,; ':'' ·-..... -' , .

mutable type) is to create a new, disjoin\ array(J1, A:. ~!!~~~p~ing elemeµ~}>f ,A.
" : : • • ' ; ; :_ • : - ; • ' ~ ' $ • . • '. ~ ~ ' ~ /

and A' have the same value, but. any sJ1aringi ~on~ el~m-~~~ ?f ~. ~- n~t re~ected by
f ·,. , j ' I \ •. ,' • • 1 1 : : ~, "_ •• , • ; • • ,

sharing among elements of A'.
'\.

A user wishing to preserve sharing in such a schert;te; must. ~~J?lidtly etJ,code
,: . ' { ., , . .:-;'!J !~; :1_~~_//~:

sharing information when the value is sent, and reconstruct it upon re~eipt . For
, ~--· . .. ·: ' " : ~ r . , , • . . , . -

example, to transmit an arra1n1. A, preserving sharing ampng the elemen,ts, one might.
. . '·. . _' . : :·~~.., ~i)f~ ~_-,.- -~~ {.-,~~- '._'.(,'1 ' ' ,,. r '~

create an arrayITT, 8, referring to each T object in A OQIY 9nce, a,nd an array[int], C,

having the property that for every ,legal imlex k, iHCtkH = A(k]. Skariilg structure is

explicitly encoded in the integer elementsofC.

We reject this approach because we feet.that ~aring structure -is part of an

object's value, and so sllQukl be preserved ·by transmjsSiop.; 1MORdyef(.although it is

the responsibility of the language user to define and implement the effect of

transmission on the sharing structure of an· ~bSt.ract type,"~:the lang~age definition

should make the most common and useful delinitions'~a5y; to .iinplcme:llt. ·.i~st as for

composite types, the sharing structure of an abstract type is part'or it& ~al~e. It is our

opinion that a well-structur~ definition of vallle. tmn.~i~jp~ fo.r ~l abstract type.
. . '\ : _'. .' .: ,_ ' : ~ .. : " ; . ·' .

should have properties analogous to A3; i.e., it will preserve its own'-illtdfnal sharing

structure.

Another approach is to use· equal, rather &.an identical, as the basis for preserving
;-"J

sharing. This approach has the drawback that the equal ope~tion for abstract types are
~.

: - - ~ -

neeessarily Oser-defined, while identical is not.· To implement value transmission.so as
. .

to preserve equal, each transmissible type would have to provide an eq~al operation, an
- ~ ~ { : _, /' -

awkward requfrement Moreover: a language implementation that must frequently

invoke user-defined equal operations is likely to be much Jess efficient than one that
,' -· . . . ! . ' ~ ~ - . f : - ~ :· ~ • < • - -- , -

can perform an implementation-defined check' for object identity. In a recent
~ . -~

implementation of this scheme by the author, testing for identity of composite objects
,, : . ;. -',; (

is done by a simple test for pointer equality.

The descriptions of the transmission algorithms given in this chapter suffice to
.. . ._

detennine the order of application of transmit operations when a value is transmitted.

Invocations of encode and dcc'ooe operations caused by the appli~tion of transmit

operations may be observable by the user, since encode and decode are user-defined,

"32-

. .

and may have side-effects. Accordingly, we specify that for each object whose value is

transmitted -in a .given message context, e1ttodlis ·mvoked' at tlle 8ending g~ardi~n at

least once, and decode is invoked· at the receiving guardian 'at least once. The language

definition places no ~rictions on the order orn"umber of thoSe inv&atlons ..

2.8 Two Examples

We use the table type to iUustrate the two kinds of sharing properties that are of
' ·, ,,,

'' • 1·· c.,·: • '. •' '
-'- .' :

interest to the definer of a type's transmit opemtion. The first property co_ncerns the
- .. ' ' .

,, > , 't ' - ' '·

. . ' ' - . '

effect of transmission on internal sharing struct~res. Su~~ a_single item I is bound

tO two keys· K
1

and K2. in a ta~le T. Let .the v~lue of T be, ~~ansmit~e~ "in a: m~ge
i - ;• . .. ·,.., .• :~. '.· :!' ·- ; ~·-:.· . ~-- : ··' .' ; i

context M, and Jet T' = table$transmil(T, M). For any reasonable definition of
.... _t_:,:· i(; ' • -, ,-

table$transmit, T' wiJI contain keys K1' and K2' corresponding to K1 and K2 in T. By

the effect of transmission on internal, skatjng; w~ ·mean that the definition of

table$transmit should specify whether/(1' and K2' continue to share a single item, or

whether they are each bound to disjoint items.

f.> /' ~ t: \ < ;·...;, ~ ~ '; • " ,n{ .. · •• ~-; ~ ;

The second important sharing property concerns the effect' of transmission on

sharing relations between distinct objects whose val~es ~~~~~~r~lri tlie same m~e ..
By contrast to internal sharing, which concerns sl\arhl~ refifibris"tvitfiln·aslngie object,

we call the second sharing property external sharing. rt1t f i 'aria 'T~ b~-'fuble8 ~;haring a

single item I. Suppose the values of T 1 and T 2 8fi~ ;1r?~l~~f ~~~ jn a ~;~gl~ m~e, .

where T 1' = table$transmil(T 1, M), and T 2' = table$transmtl(T 2~ M). By the effect of

transmission on external sharing we iflt'lift'.thatfbe; dttmitiah .ofiMhlt!Sfmnsmit should

specify whether T 1' and T 2' continue .toudmre w siqle-iteiU, ~' 1'hether1they contain

disjoint copies ofl.

- JJ-

The only 'Nay we have provided for table$ut1nsmil .to preserve external sharing of

items is to have it invoke item$transmil on those,;it~~ ~WlrdingJy, we define the

effect of transmission on the internal and external ~acing suuctures ofthe table type

in the following way. LetM be a message context,f, a ~b)e, and,~ a~ey, in the table.

TABl: table$1ookup(table$transmil(T, M), key$transmil(K, M)) =
item$transmil(table$1ookup(T, K), M))

TABl guarantees two properties. First of all, it guarantees that sharing of items within
. ' .

- ~ ,,

a given table is preserved. Secondly, it guarantees that sharing of items between

distinct tables is preserved when the tables' values are transmitted in a single m~ge
} : '

' - ' - ~ _- - - . .

context. Let M be a message context, and Jet T 1 and ! 2 be (no,t nect!SSarily distinct)

single-key tables. Suppose:

Let:

T 1• = tab1e$trapsmi1T PM)_

T 2' = table$transmil(T 2, M)

K1' = key$transmi(K1, M) .

K2' = key$transmil(K2, M)

By two applications of property T ADI:

table$1ookup(T1', K1') = itemStmnsmil(l,M)

table$1ookup(T 2'. K2'):: item$1rammi'{I, M).

' .

By property Tl. the right hand sides are identical, so sharing is preserved:

,q- : -~ -

- 34-

table$1ookup(T 1•• K1') = table$1ookup(T 2'.K2').·

An informal verificatian that the single-key table implcrnentatiori ·listed above

satisfies TABI is· quite straightforward. By insp~ng the Code o(the, encode operation.

we can see that if item tis ·bound to keys K 1 and K2 in tables T 1 ~dT2 respectively.

then I iS shared by two key-item pairs in the -external repr~enta'.tion·s. having keys -K 1

rind K2• :By' a si~ilaf argument, decode also preservd' sharing of' items. -To p~ve

TABI. ·it suffices to· observe that -xrep$trd#smi1 ~pr~tve5 sharing of items. an

observation that ronows dircttty from· the definitiHn 1 or ir~n~m;/ rof-lhe army types. Ir

transmission of the external representation did_µ~ J?fe~rv~. S~3:ring of it~ms. tllfn the
• r ' ·, ,. ' • ; ' I ' . ·. ; ~ ; \ i_ ! t : , . > '

encode and decode operation~ of the abstr~cttype WPLJ.ld ~ve.J~-~e_written.to disco,ver,
. ' '\, ' '.fl" J .. l , .,,' l ': :: } ;! .•) . '; ,';. ~ ,• ~ f-; \' '. ' .' ,;.

encode and reconstruct the sharing stru~ture.

If (fo~ some perverse reason) the defin!Hon of tll~· iiingle·ley table type had

specified that transmission· should not'preser\ie exter~al·sfiahng of items, that effect

rould have been achieved by having the single;,. le/' table's exte;nal representation

contain distinct cdpies'of the: item.
' ;, .

To illustrate how the lransmit operation of a new type'can be composed from the

transmit operations of subsidiary types. · tet -tis 'exilirtin((die , impfementatio~ and
-verification of a tw~key table .. A two:.tey table citff'~rs trdfu' a :single key tabfo in that it

penrtits two types of keys to be used to retrieve 'items. A singfo iteoi -rn~y be bound to

any number of keys of either type. Just as for siitgle-lcey''tabfes, ~e requJre th~t ·1r'~

single ite:m' is bound to several keys, then ifiat sharlhg is preserv
1ed by 'tran\smiS8ion.

Since we already have a transmissible single-key table, Jet us choose, as an

external representation for the two-key table. a street consisting of two single-key

-35 -

tables, each accepting one of the two typesofkeys.

xrap = struct[tabl: tablet, tab2: table2].
, . _.. -.· _, . . ''

We define the correspondenc~, ~twe.en valuers 0,f th<r ,cJt>~ct.ct type and vallfCS of the
- ~ • -) ' • .j ~ 1 - '!_. - '. l ' - ';_ - ' , - ~

external representation type in the most straigbtfqtward .m~'1ner; for. each key-item
_/ '- - _, , : _., '; ,' ' . ~ - ' ~ , '. - .

pair in. a two-key table. the appropfiately ,t¥~,~.n~~:~e~ 1ta~Jf 7orp~~nt of tQe

external representation contains the S?me pair .. This ~fi.ni,;oµ il.llRlies that .if th~ same
- - 7 : • - ' • - : .•.- ;. :' '

item is paired with keys of different types i~J.ht; tW.():key ta~~- tl)enJhat.ob.itft will be
- , -~ - ·. . •·• -~-~ y 'J"~' _, .~,- .• ,)~ .:.- .,;- .

We can verify informally that this: choiee, of external representatiOn preserves

snaring of key-item pafrs. From the defi~itionL of~rep$/ro~~1~ we k~ow that the
- _ - : Ji: n ~- .: q; ·t ~ ; ~-,..· ~ f ~ J · _; , - ' :· - · ; · · : - ·

value of each single-key table component iS'transmitted by its own transmit operation,

using the same message ·context Pro~ttY: Tl\Ql ensu,r:~. tJ,i;it~adpg of.items both
~- . :~.:. . s,_~i ;' .~:):~~ ·,·. r;:)' ,;:-·.! ~~·· ~~):'~· . ·'

observe that without. property A3 to p~rve stu~~ng. w~ ~,Id,. n<>t h~~e constnJcted

and verified the sharing properties of either table type~.~¥~ w~ '1a'Ve~
, r .• ,_, .: ' - • ' " - ,.. ~ - • •. •

. To conclude the example, let us sket~h .~ iJDp~m~n~tiQn·for ~W tw<rkey table.
~ - ' •• ; - ' • • ; ; • •• • - ·_ • ..- ' , JI. - • ~ • ,_, •

We choose a co.ncrete ~r~nt~tion identical ~,th~ ,exte~_ repr~~n, wi~ the
• ' _." ~ • • I : : • • C .- : -· : :, • • ' •• • : ~ - ' ""• '' • ' • • •

same correspondepce t>etwe~~ ~nc.r;ete.v1d4es,,~d.A~tiYfilQ~r).be·O~rcW~;U>.
• • ! ·. ~ • : . - I • • • . • ·- -- • .· : ..,. > -_, _$_. ., " , • • ; • . •

add, delete,, ch~nge. and retrieve J>Slirs ~ be 1\mple91e0Wd}n a .~raigbtforward
,. < " ! > - 0 ' ;' • • '- -~ .f·--~ :,; ' . ' , ·-' •

manner. Th.e encode a~d decode .operatiQns a~ 1parnculwJ.N. simple: .. they).ust retum
. - . ' - - , . ~ - . - - - . ·: r ~ ~ . , ;. , .- "' - •. -.- ,., - -

their argum~~~ after~rforming.an ':IP, or, a ~""·.:!ll~ i¥Wl~~'Wl~~:i~iU~ted in

Figure4.

- 36-.

Fig. 4. The Single·Key Table Type

two_key_table =cluster [kt~type, k2_type, item_type: typa].11

tablet = table [kt_type, item_typeJ ·
table2· = table [k2_type, item_type) ,.
rap = record [tabt: tablet, tab2: table2]
xrap = rap

encode = proc (x: cvt) returns (xrap)
raturn(x)
end encode

decode = proc (y: xrep) returns (cvt)
raturn(y)
end decode

and two_key_table

2.9 Transmitting Cyclic Structu~.

-·---:.,

When an object is created, CLU requires that it be given a value; there is no such

thing as an ·uniniti?lized object in CLU.1 This r~triCdok iidds· to the safety of the

language, since every object 'that Can be. name"d has a 'l~gal v~l~e ..

Let A be an object of abstract type, and let A!, be its external-representation. We

say that A' U; se/f rtferefllial if it re(ers to. A. Valu~caonot be traftStnitted using

self-referential ,ex~emaJ ; repc.eseat4tions. as may be· ilhlstrated by the following ·

example. Consider the int_{i~l. duster shown in,fisure5 wlrich implements lin~ed lists

of integers. The concrete representation is just a record with two components: the first

1. Although there may be uninitialized variables.

- 31-

Fig. 5. Linked List of Integers

int_list = clust•r 11 •••

link = oneof [next: int_list, emptx: null]
rep= record[car: 1nt, cdr~ link)
xrep = rep

encode = proc(x: cvt) returns(xrep)
return(x)
end encode

decode = proc(y: xrep) returns (cvt)
return(y)
end decode

end int_list

. f.

is an integer, and the second is either an inLlist, or null. The external representation is
.. ~ · ! i ., : . :~: lE; ~ · ·•) ~,; · ·i. : ~ .. ·, , •• - : ~ ~- -" ~:~

the same as the concrete representation. We encounter a problem when we try to

decode a message containing a circular)jst. To construc~an in~Jist ffQJll a mes&tge, we
. , . ' ~. : . -~ ; '

must first have const(ucted its external repr~tation. To construct the. external
• • >-~ - • • ; ' ' : '. • - '. ' • • •

representation object, we must first constru~t .the c;>bj~~ it n~es. However. in the
' \ ' . • ' ~ ~ ; ; - ' ! ~- '

case of a circular inLlist, the external representation contains the decoded inLlist itself.

The requirement that an object have a well-defined vatbe 1>efere 'it can be named

means that both the inLlist and its external reprtsenmtion \ltJUSt ·be-· created before

being named hy the other, and thus neither can be,OO'ftstruct&i.;'NOte thatif:the list is

acyclic~ then ·the external 'representation is not self~l'efemttial, and oo such problem

results.

It might appear reasonable to state that an external representation JS not

-38 -

well-formed if it is selfrreferentiaL Unfortunately, such ,a restriction makes the

transmission of cyclic objects quite,--difticutt.: <Ccn~tder the problem of mating

potentially cyclic inLlist's transmtssible. Wh~er·extemtil representation we choose

for the inLlist type cannot itself contain aw in1Ll.1ist rnmpenent; since other\Yise we

c:amwt guarantee that the extemalcirep~nutiuni "5 not··5eff-retetentlat A simpte

strategy is to -place the integer -00mponents.iRl an "anay,•ihlg·With -·-same'additibnal

·information indicating the index in>the.attay:of the;efement•te Whidt t.he~;element

was linked (with a special value for a null link). What the user is really doing here js
• ' • - - - ·~. • • < , .~~ .. ,-··i~:._ }-:~}-... ' ~f~· 'i' .

evading the CLU requirement that every named object have a value, by disguising an

object name: as an array index.

We can take two approaches to dle:protJlem.'-Of tnUtstRitting·cydic structures.

One option is to leave the implementors of cyclic types to their own d~ices when

writing those types' decode operations. As a justification for this approach we might
' __ :_')!1·~~ ' .~~~~ i.t

observe that language support for such transmission requires extending CLU's object

semantics to permit naming objects before they are; ~nstructed, complicating both the
- - ' -

· language definition and its implementation.

The other option is to provide some explicit support for the trtmsmission of cyclic

structures. We have seen that either course forces the user to name objects before they
' • < • - ,', • • '\ j -. ' •• i_~ ~ ! f : :· ; -, • •

have been given values. Without language support, the user must d1sgmse the nature

of such references from the language, a clear case.of having the language hinder, rather

than help the problem of program design~ It ~~ms· unre~~nablc ~nd i~elegant ,to

require the programmer to take, he~oic measu~g; bO~h ~o encode valu~ and to

circumvent the language definition.

Whether transmmion of self "'feferential external representations is to be

supported is primarily a question of programming convenience. in the same way that

implicit transmimion of sharing informationAs·.-a 'IUCSlion ·of cxmvenience. We ·ha:ve

seen that without the ability to use sdf-relirelltiat exsetnal representations the

trallSflJ~ioo of cyclic structures becomes·quit1u1w~~ For.this reason, we ch00setO

relax the requirement that an object Jaav0ca1-value.beftlre itan;f>e named. H<>Werer

~h- references may_ only exist ·while · a rmemage .·i$ being deeoded, aD(f'. tile

imp1ememat1on of the deCQC:/eqJeration mustsatisfy·certain reStridiUns. :

The restriction we impose on decode operations can be infonna~ly summarized w;
, • -' ; ·• '. • : '. : ' ~ i , ~ I ~ ~ ' ;' ; ~ ~ • < ; • , I •• - . ./ • ; ,• ' • /

follows: Let A be an object of abstract type T, and let A' be.its ex~rn_al repr~ntation.
•, ; ' ~-' i ' ! ! ~ ... : t - -

A' may contain A ifT$decode applied to A' does not use the value of A. In other words,

we allow A' to na~ A l>efQrc A has.been inttializeddx1t we:torbid ·114ec-Dde-tO ac~

the value of A.

Let us make this notion more precise. Given a procedure P and an objectA-Qf
- - • . i .

abstract type T. we seek to formulate a rule that eqsures that P does_ not depend on the
- ' ' , -· - ~ .- - ~ ·._.; . ' ~ . . ~- \ ~ , ~ i ' ' . .' • ~ ; ' ~

value of A. We do not require that this rule be exact. but we do require that it be.
- - ' . : ' . . ,... ~: -~

conservative; whenever the rule is followed, we are safe, although we do not mind if

the rule is'°vedy strict.,

Oearly. any procedure that operates on A's concrete representation uses its value.
-;- . ~

"

Moreover. the only procedures that can operate on A's concrete representation are the
• • , : , •• ~~ (' • : ~ ,"; >. '

operations of the T cluster. This suggests the following rule: A procedure P uses the

value of an object A of abstract type.~ if an invocatjon of r applies a primitive T

operation to A. This rule is safe. since without invoking an ope~tion of1he Tcluster~P

can only use the name of object A. The rule is conservative, since it is possible that an

operation of the T cluster might -not ace~ the concrete representation of A.

-40- .

If the decode operation constructing A ·u~·tJTe"!vaftle·nfB by invoking a cluster

operation on it, then the construction of 8 must pr-ecede•dle e0nstn.1etfon of A'.· We say

that A depends on the value of s·if 8 is id the transitt*';tlOStire.ottbe'!•ases 'the value

or' relation induced by; .applyittg decode' to A: 'If At deptr1dso::on i~ then 8 must be

decoded before A. If A depends on itself; then ib; con~ctibn-mtrst ·jjrecede''it:Self, an

obvious impossibility.

, - -<'ti{·'"'- _-.'

We may now make precise our restriction on decode operation~(ttiat operate on

self-referential exter~al representations: • 1 ~1 'dec~·~q.iefaii~n ·i§ i~~~e :if tii'e "ii8es the

value or' relation of the object being decoded is acyclic.

This restriction permits an object to:t>{~~--by t~AW~~xte~n@!fCpresentation,

facilitating the transniiSsion 'of cydit'~sfructures. "'th~: in~'1~1uster1)~ shown above
• ' ~ .- . - - ~ .. - • ; ·: :::' ~·~ -~o ~, ~ . ;-. ,._ ; - . ~

will now legally transmit cyclic lists, Since corre~tly 'decoding' all':mt_tlst ~ends only

on the identity of the following inLli~t.-J¥>t 9n ,w~e~,JtJ1as,1b~jnitialize4~ as no
:• • lo-... q . ,r, -

operations are invoked on the succ~r.

: ,_ J /-::·
We can display an illegal decode J>P~ll· by,,dloQsing a1 different concrete

~ :t~ .-'.,, __ ,f'?i;)·~;jrz:f.~) __ ~~G 1 ': }.;t.J

representation for the inLlist type (Figl.lre,.-6.)~1.lni~~ulter1s oon.irete representation,
~;·,-.;~ ,_,. J ··. :--~?--:-Iu:.n1 ~1~~,-J

each elemenffiaving· a i;\l~r q:>JltaiJ1S ttie value or the su~r·s integer, as well as

its own. The external representation. '5, the ~I! ~ !!}~ tc;n~ M~.3Llc>~th: .h inLlist
' ' • - - ••• '. ,,_ + •

":.;;Lr-.....,, n ~.f!r,

object depends on its successor, since decode invoices an inLlist operation" (car) on the
. .

. .: :; : ~· .. ~...; {(.

next int_list. [f the list is cyclic, an inLlist depends on itself, and the decode operation

fails .the restriction. When implementing a ne~-~l~~ter f~r ~ e~istin~ transmi~i~le

type, it is the responsibility of the cluster writer to choose a concrete represeptation

compatible with a legal decode operation.

.;.41-

Fig. 6. All Incorrect ~t_Jist IJ11-Pie.eumti.on .

int_list = cluat•r 11 car, .••

rap = HC~d (car: ·1nt. c.dr:· link]. r;
link = oneof [non_empty: cdr_info, empty: null]
cdr_in.fo =· rtf;orcl-:{ne~t;;;.li,st; i11t..:.H~ ... ~._Mxt~p.al(:• tat)

xrap = record [ca.r: 1-11~. c;dr: 111 i nkJ; ' z.
xlink = oneof [non_ampty: int_list, empty: null]

car = proc(x: cvt) return1(1nt)
return(x.car)
end car

encode = proc(x: cvt) return~(xr,ep L
X Construct xrep·• S '1 iRk c <-

xl: xlink
tagcase x.cdr

tag 9111pty:
xl :• xlinkSm.ake_emptJ(R1,1)

tao non.::empty{t f : • cdl" ~ i hto J :

. ' .~ .. / ! t i 1.._. • ! ' ' :

xl : = x.1 intSma~e_non_emp_ty(t. i .nttxt"'"l ist)
end -~; .. t._.,. •· · · -' · i' · '· ·

return(xrepS{car: x.car, cdr: xl})
et\d encode

decode a. proc(y: xrep) returns (cvt1
X Extract record components
lk: link
tagcaa1 y.cdr

tag etapty:
-lk ;=• linkSmake.:..:9111pty(nHl

tag non_empty(list: int_list):
·· lk :• ·Hlitt...,.&.;;.ndn_..,tJ(· ., •'

cdr ,,.JnfoS{neJtt_car: int_l istScar(.1 is,t).
· · · ' · n4txt.;.)tft-: :1'heyy; · · '' · ·' ·

and x tag
return(repS{car: y~C:ar. cdr: lie})
and decode

and int_H st

: .
!) ~

Curiously, we can encode and send a self-referential external represen~~on with

no apparent difficulty. The nature of this asy~~etfy be~~n sending and receiving

- 42 -

can be illuminated by observing that on the sending side, a self-referential external

representation names the argument to a past invocation of encode, whereas at the

receiving side, such an external representation names the result of a fU!ure invocation

of decode.

-43-

An ~tationl>esip

This chapter presen~ an implementation desi~n for the value transmi~ion

scheme described in the previous chapter. We describe run-time machine~ to

construct messages from objects, and to reconstruct objects from messages. The

mechanisms introduced here are intended primarily as explanatory devices. As a

consequence, we have made no attempt to optimize run-time performance or to

minimize the number of constructs used. Although we feel that questions of efficiency

are extremely important, we also feel that the structure of the implementation can best

be conveyed by postponing a discu~ion of efficiency-relate~ issues to the next chapter.

By presenting the complete implcmentation design in two stages, we hope to

distinguish fundamental aspects of the implementation from details intended to

enhance performance.

Throughout this chapter, we refer to the construction of a message denoting a

value as encoding the value, and to the interpretation of a m~ge denoting a value as

decoding the value.

3.1 Some Useful Data Abstractions

This section defines some data abstractions used to build the value encoding and

decoding mechanisms. Operation definitions follow the terminology of the CLU

Reference Manual: argl. arg2, etc. refer to the operation's arguments. The interfaces

of some of the data abstractions used differ slightly according to whether they are

being used to encode or decode values. Where appropriate, we prefix the names of

abstractions used to encode values with the letter "e", and those used to decode values

with the letter "d".

,a~
- '1"t -

3.1.l Mess~e Streams

A message stream is an abstraction of the communication medium, encapsulating

specific characteristics of the medium that are: irrelevant' at the levei of ·abstraction

addressed here, such -asthe protocols used, or when-m~ are really sent. There are

two kinds of message· streams: encoding streams. wh~ are used to send an object's
, '

value to a foreign pcirt, and decoding streams, which are used to receive a value

previously sent to a local port

Information is transmitted in discrete units call~ tokens. When a value is sent,

an encoding stream is created, and the vafoe is placed ih the streOO:l aS a sequence of

tokens. A decoding message stream releases tokens in the38hle;-mder:~were placed

into the original encoding stream. The ext~rnal representation mechanism ensures that
• , ~ ej "• C 'j' :, '-: :'.: ~ '

the sequence of tokens used to encode a value is independent o(the concrete

representation used by .a.guardian.

Encoding message streams are implemented by the estriam type:

open: proctype(port) returns(estream)

Creates an encoding stream used to send tokens to fhe indicated foreign
port.

1nsert: proctype(estream, token)

Inserts a token into an encoding stream.

current: proet,vpe(estream) returne(straaLaddr)

Returns the stream address of the next token. Stream addresses (see below)
are used to refer to tokens already in the stream.

close: proctype(estream)

-46 -

Jndicates that the user does not intend to use the stream for furt)leroutput

Decoding streams are implemented by the dstream type:

open: proctype(port, timeout) r1t,.r1t1(4~~·~~~ s1~J:~(tiflteput)

Creates a decoding streami for ,~9,tokellS, prtv,ioliSly.:'SCOt;to .the po1t
indicated by argl. If the message is delayed due to node failure or
communication' failure, the tim~~arguinefifi'ndicates'how long'the uset
is willing to. wait.., If ,the ~gi,91tn~dPJ~Qt.fJt.,,~f ~fo.f ~ wit~ a
message, a timeout exception is signalled.

·~ ' . .

extract: proctype(dstream) returns(token) s1gnals(timeout)

Removes' and returns the next t0tce1t'ff6hl"tt1M·Strearn.; ildle nexf token
does not.become available for:ttie ~,of,f.i.we~ifit!d in the timeout
argument to the open operation, a timeout exception is signalled and the
stream;Js,ctisablccl : · ... ;... ··: "· -' '.ci 1 ; _; .:;«· · 1!:1,. · ·

peek = proctype(dstream) returnsc't:oken)

Behaves just like extract, ·~xcept that it does n~t r~~ove.· the next token
from the stream. This operation will not ~USedlUotikth\fttaticbajttet. ··

current: proctype(dstre.am} ra~11rn.s(Hr·~~~~rl
• ~ ' • < • • • ' ~ • .".}

Returns the stream address of the most recently extracted token.
'.~t·' ! , ,;~}:-.;-.; ".',_;,··,

close: proctype(dstream)

Indicates that the user does not intend to use the stream for further input

3.1.2 Tokens

There are three kin~,of tokens (Figun37). lh!ttder-·10ket1Bi(F1g0re 8} mark the

start of a new value of composite or abstf$:t·typei· They;·may,tontain ,type or size

information. Back reference tokens contain the stream· adar~ of a token previously

placed into the stream. Sharing is indicated by back 'fetertfltCt·tblrens.' Da1a· 1okens

-46-

Fig. 7. Token Type Definition

token = oneof [data: data_token, % Primitive type
header: headet_toten, % ,composite or abstract
back_ref: stream_addr] % Indicates sharing

Fig. 8. Header Token Type Definition

header_token = oneof [
abstract..Jldr: ·
oneof_hdr:
.varhmt.Jtdr:
array_hdr:
seq_hdr:
record_hdr:
struct_hd·r:

]

' nuui. %: abstractrvalue'
1nt, % tag value
1n t. % ;tag · va:1 ue
record [low, size: 1nt],
1nt:, · ;, ~ .,.1zei · •
1nt, % number of selectors
111t .. %. p~~'r ~f ~~lectors

(Figure 9) represent values of primitive type such as integers, strings, booleans, etc. A
·'., ,,,- ~·; ,~,-·; ,'>' ,• :" .•. ~1.:' · .. ;: '• ,~-\~'-.

stream address uniquely idenufies,atoken in agivea·messagearemm ;

Fig. 9. Definition of Data Token Type

data_token = oneof (
bool:
char:
int:
null:
real:
string:

bool,
char,
1nt,
null,
real,
string]

.. ~ '

¥,.

3.1.3 Maps

We recall from the previous chapter that if the value of the· same object is sent

twice in the same message, then a single corresponding object is constructed by the

receiver. Objects of type map are used to ensu!e that !ransmiss.io11p~~rres shari.ng. A

map contains corresponding pairs of objec~ and stream addr~. Thei:e are sev~ral
~ri-~~ J_1n~',' '. ~ :q< ~ n '-i :- " ~

kinds of maps. When encoding values, the emap type is ~sed to locate the stream
"' -

address of a given object's encaded vatb6. Whew deoodrntg values, the dmap type is

used to locate the object oonstructcd ·from l'he value tRcf>dtdi•a given stream address.

The emap type has the following operations;

create: proctype() returns(emap)

Creates an empty encoding map.

enter: proctype[T: type](emap, stream_addr, T) s1gnals(exists)
' ' .,,.· •1;.;

Enters arg2 as the stream address where the encoded value of argJ starts. If
arg2 has alreadyJ>een eate~.- existslrs signabed.: • · · '

seen: proctype[T: type](emap, T} returns(bool)

If ar:g2 has been entered, the result is true, otherwise the result is false.

lookup: proctype[T: type](emap, T) retur·ns(steULaddr),
s1gnals(not_found)

If arg2 has been entered, the associated stream address is returned,
otherwise noLfound is signalled. . ,, ,. ·., i.

The dmap type has the following operations:

create: proctype(} returns(dmap)

Creates an empty decoding map.

enter: proctype[T: type](dmap, T, stream_addr) s1gnals(exists)

-48-

Enters arg2 ~ the object decoded from the vatcre at the ·stream address
denoted by arg3. If arg2 has already been entered, exists is signalled.

lookup: proctypa[T: type](dmap, stream_addr) returns(T)
~1gnals(not_found)

,If arg2 has been entered, the' ~ated · objeet is returned, otherwise
not_fom:id is signalled

i

se&n = proct)'pe[T: t19e](dlt&J, strN11Laddr) returnt(i»ool)

Returns true if an object of type T has been entered in the map with the
given stream address. This opertniolt 'Witl 'riof 'be used u.rftit the next
·cltilpter. · .,,,, ·:;.;:·. · ., "'./:''l · , , ·· ··

.~· '
-;, . ;: .'.-;. - ;- " , -~

Finally, we need a third kind of map that just remembers the identities of the
' .

i ; ~· ~ > ~ , • I . '

objects that have been entered. We'callthis type.the inillalization m~p. for reasons that
" .

' . - , ,, ... · '

will be explained later. The initialization map is implemented by the imap type, and

has the following operatioils:

create: proctype() returnt(imap)

.,

enter: proctype[T: type](i11ap, T) signals(exists)
' .:;

Enters arg2 in the map. If arg2 has already been entered. exists is ~ignall~d
• I ,-~ ; ;"} • ·, . f ' ; . ~ ,

elements: 1tertype[T: type](imap) y1elds(T) .' t, '·

Yields and removes all previous entries of type T.

empty: proctype(. imap) returns(bool)

Returns true if there are no objects, of any type currcnt.Jy in the map.
. , - .·

1s_1n1t1a11zed: proctype[T: type](imap) raturns(bool)

Returns false the first time it is invoked with the given parameter type. and

·'~ .. ·-~"
-.49-

true thereafter.

3.1.4 Contexts

Objects of type comexi serve to ~ciate tbe~i$lream aflQ the maps used
"' . .'" . ,. -- -~ ~ . .. - ·'

to encode or decode a single value. There are two kitrds bf ·eonte~ls: e~&sding contexts

and decoding ~nw~ The.oonkt~t types are cidinodiby~the fdUotifng'oquataz: ·

econ text = r•cord [emap :,, e.~.· a~tre•: . 1e~tr•81!1]
dc:Ontext = record tdmap: dntap, iaap: ;map, dstre8'l:fw~~rt..ream]

3.2 The Algorithm for Encoding Values

_); .

The language implementation encodes an,pbjecfs value by recursively tr~v~rsing
• . •'~)_ '; ' ·.: :: ;• I ;-c/ ;- ~·:.: -~-~:_' ''.,. •: ., ; .~, •

the object, rather like a LISP map functiQn. ..As the. s:>bject ~ tra.versed. t,he
• • .r. -~-.·~:·ii;~'!~:< e,~•, • •·. ·-· '

implem'entation ~reates tokens and places them in a m~~~ii~~eai~~~ys~~g, a. nwp ~
keep track of sharing information.

'.

Executing a send statement on an ~J?k~r;f ;i~~v~~iavoking the

procedure shown in Figure 10. The send statement creates _a new context for the
- --~·:~ .··"" ~-~ __ :; 1) :~ :' { '~:i-r,}; · ... ~·r·,.""'_":,·: :·: 3:t1-q-x_:::::.:r1~-r:. · ~~.J~t;

message, opening a message stream and creating an empty map. Upul is then invoked
~ ~, .. : ,., , _:_.· · ~ .. ~, .. ~ : ;- ,< _:~ ... • ~ I-; 1~1 .:rs.r) ::.:.~~-'"~f'f·~

tci.·place~the' value ofthe T object in the streani as a Sequence of tokens. After T$put

rett•ms. the stream is closed.

-50-'

Fig. 10. Effects of the Send Statement '

send = proc[T: typa]{x: T, p: port[T])

% Create a new encoding context~ ·.'' "
em: emap := emapScreate()
es: estream := estreamSopen{p)
ext: econtext := econte«1:${t!l'inapFe•.~

% Encode the value.
TSput{ x. ext)

% Close the stream.
estreamSclose(es)

end send

'fftrtftmn:'''fiS}
. ·'' ~ "··

. ,..,·

'' \

']

The put operations for abstract and composite types presef\'e . sharing in the
;·~ ·:.·::; ·~:: } .~ 1 . . •_ t ~:: ,';,,. ·~· ;, -~ _. ~·'.

following waj. When put is invoked, it chetk$l!t.....,.. the Mrject being sent has
~.:"l-.-) ~~:.,,~~.~'~·;

previously been entered in the map. If it has, then the associated Streant 1uddress is

extracted. A token containing a back reference to that stream address is•put into the

message stream, and T$put returns. If the ob~t has not been previously encountered.

it is entered in the map with its stream address. The pu-ioperation proceeds differently

depending on whether its type is composite dr'~tt: '' ·.'' ·,; · •.. ·' ·

Fqr an abstract type T, a~header' toten.islpbtc&tirt1Jie-~ream, an<f the external

representation is created by applying T$encode to the ·T~'Aifameht .,XTsput is then

invoked with the new external representation object and the old context The put

operation for an abstract T is illustrated in Figure 11.

For a composite type, a header token containing type-specific information is then

placed in the message stream, and the put operations of the components are invoked

-SI -

Fig. 11. The Put Operation for an Abstract Type:J'

put = proc(x: T, ext: econtext)

% Has this object been seen before?
if emapSseen[T](x, cxt.emap) then

% Find the straam addres~ of t ... o&lject.
back: stream_addr := emapSlookup[T](cxt.e•ap, x)

% Output a back reference to the object.
tok: token := tokenSmake_back_ref(bact)
estreamSinsert(cxt.estream, tok)

else
% A new object, enter it in the map.
next: stream_addr := estreamScurrent(cxt.estream)
emapSenter[T)(cxt.emap, x, next)

% Create and output a header token.
htok: header_token := header_token$aake_abstract(n11)
tot: token := tokenSmake_heAder..:ttrtenftH6k}' ' ·
estreamSinsert(cxt.estrea., tok)

% Create the external representation.
,, : xr., : " lSewcode{x)
xrepSput(y, ext)

entl x if

•ad put

Figure 12 contains the text for arraJmSJJUL

If T is primitive. the object's value is e~oded directly into a data token. Figure

13 contains the text for int$pul.

,. 52-

Fig. I 2. The Put Operation for the Array[T] Type

put = proc(x: array[T], ext: econtext)

% Has this array been seen before?
1f ema'p$se-enfarray[T]](x, cxt~ellhif1) lhH

% Find th~ stream.address of tu Obleet. ·
back: stream_addr := emapSlookup[array[T]](cxt.emap, x)

'•'

% Output a back reference to the object.
tok: token := tokenSmake_back_ref(back)
estreamSinsert(cxt.estream, tok)

•11•
% A new object, enter it in the 11ap.
next: streaa.....add.r := .~str:e .. ~\.tf:l!&iftt(eit~.:"1tream)
emapSenter[array[T]](cxt.81118p, x, next)

% Create and output a header token.
htok: heacler~token :•

header_token'Seake_array(
array_hdrS{low: array[T]Slow(x),

size: array(T]Ssize(x)})
tok: token := tokenSmake_header_token(htok)
estreamSinsert(cxt.estr~~· ;it~~~··,'.•_ :•Yi,

% Output each element.
for elm: T 1n array[T]Selements(x) do

TSput(eht, ext) ·
end X for

Hd x if

end put

Fig. 13. The Put Operatioa for the Int T7pe .

put = proc(x: 1nt, ext: eccmtext)

dtok: data_token := data_tokenSmake_int(x)
tok: token : = tokeo$maq_data_token(ctWtl
estreamS insert(ext·. ~stream, tok)

end put

- .:53.

3.3 The Algorithm for Decoding Values

The language implementation decodes a value by removing tokens from the

message stream and building up an object- having the· \latue···represented. The

implementation remembers the :identities· of objectsoonstrueted, ~that when a back
-· ..

reference token is encountered, the system can identify the object indicated by the
-- . -)

back reference.

The scheme described supports the use of sclf-refere.nda1 external
,, - . ..

representations. To keep the explanation as ~pie as"P,ossif)le, 'we ignore the question
-~ ' - ' :. - ' '

of efficiency, and present a simple scheme that, in mostcaseS. is more.powerful than is
' . . -'; ~ ' - _, ... : ~ . ' . . : . . . :

strictly needed. In the next chapter we discuss w~· of: nl'a~ing this scheme more
-,, - -

efficient

3.3.1 Self· Referential External RepresentatlOns

We recall that if A is an object, and A' -~-external representation, A' is

self-referential if it contains A. We stated in .the pre~ious chapte~ that to ,<IQcode an

object having a self-referential external representation it is nee~ to name the ooject

before it has been given a value. The implementation scheme adopted.here permits an

object to be named before its value has been reooMtructed by creating a preliminary

uninitialized version of the object The identity -Of_itfle; tiMnitialited version is the
\

identity of the object being decoded, although its;vahlets,uadefmed _,.

We emphasize that uninitialized ·versions· are · pnrt of the language

implementation, not part of the language. The user can never observe. or opei:ute Qn,

an uninitialized object version. Uninitialized versions can exist only while a receiye is

mprogrea.

- 54-

3.3.2 Order or Initiali1.ation

Let A be an object of type T. When shqu1p an uniniti~Hzed version of A be us~

and when shou1d the completed version be, u~? As e~pl~ined in the. previous

chapter, A cannot be initialized until the all the objects whose values are needed to

initialize A have been initialized. This ~t·has'differeht implications for

built-in types than for abstract t~

lfT is primitive, then A is constructed from a ,single to~en. lfT is composite, the

value of A consists of the identities of its. components, n91. their. vah.~es. :Thus, the
' . . ' : .. - - -··

initialization of an object of built-in type de>¢s not depend on ?OY otl,ei;:objcctbavipg
\ ' ~ .· - '

been previously initialized.

If A is abstract, then A cannot be ~eroded until all the objects whose values are

used by Tidecode have been deCoded. ff anfo~ject; whose)~e~~e pr~cedes A's refers

to A, it must refer tO an uniriitialited 've~idri.'''tn parti~ul~r. nri Jo~er-l~vel decode
' J· ·, '

operation may invoke a T operittidt{;ott an ·unfn'itiatized version of A. Conversely, A

must be dec6ded befdre any object wllo!;e·JecOde dperatiOn de~ends on A can be

Reflecting the different degrees ()f dem;n~~ ¥alues.are.decoded in two stages.

In the first stage, cattea the setup ~e..·~;.valu~~«. primitilletand~·oomposite type

contained in the message are decoded. References to objects of abstract type are

constructed as. referenc~ to uninitialized. object ve~io~s ... No user-d;fined de~ode

operations are invoked at this stage. In the 'second St:agb,; cJir~d
0

ih~ ,i11itia/ization stage,

aff uninitialized object ·versions are initialized iff~ ~f~ order.·, ,. ' '

Values of built-in type are decoded before values of abstract type because the

-55 -

fonner can be efficiently decoded entirely by the languGBC implementation. In

particular, uninitialized versions of objects of composite type are protected from ace~

by decode operations, since user-written procedures· an;· not invoked until the
. .

initialization stage, by which time all objects ofbiillt~in ty~ will have been initialized.

How do we prevent decode operPtions fromiopemmg, on uninitialized verSions of

abstract objects? The order in which abstract objem'.oiust be.decoded depends on the

order in which their values are used by decode operations. Although this order might
'

be determined by examining the text of all the ~~;Je ope.rations invok~d in the course

of a receive. such an examination seems impractical. We choose to determine a proper

order by initializing· object versions only when an attel11pt is. ~ade to ~ the object's

value. Since the values of the objects are constructed.only when they are needed, this

control structure is a kind of lazy evalu~iQn.ilffie~~ 7~. Htllder .. 76i· We~ean this

strategy lazy decoding~ When an ope~tjon qf W>s\r~ .1YJ>C: :r. ~ iµ.voked from ~ de<X)(k
, \ ' " •• - ' ' ! c;.. • > •" ~ •"' ' L - ' _,.

operation. ~he language implem~nta~~n. fll~s, Cifb ar~m~lJtQf t~pe T to see whether

it has been initialized. If it ~as •. the.~nvocation_)>(~: If it ~ npt, lhe-aicrent
. , ~· ' : "

invocation is suspended. and the decQf:ie ope~~iQn oftfte unitlitiajizeq object is.invoked
' ' . - . . . : !~ -, "' , . -

to initialize it As soon as all T arguments have been initialized,· the sus~

invocation is resumed. This strategy guarantees that objects are decoded in an order

consistent with the dependency relaliOM 1destrikd1~.·;Sinte an object is always

decoded bem ils value .is: used; and no:obiett ~~~tttrety.

Executing a recciYe statement is equivalent 10 ioyoking tbe procedure ~own in

Figure 14. The recei¥e statement cre~tes ii ne~,~odi~g qlllte.xt. opening a ~~e
' -. _;'.I· • ·.' • '

stream and creating an empty map. T$get, is then. invpked to implement the setup,

stage, and T$initi'alize is invoked to implement the initialization stage. Finally, a

- S6 -

cleanup procedure is invoked to reclaim some unneeded storage.

3.3.3 Representation of Uninitialized Object VeJ'Siom

We assume the language implementation uses object references oLfixed size,
.

[Snyder 79], as do all current CLU fmplementations. Use of fixed-size references

means .that it is pos.5iQ1e to detenn ine, the storage ~equired., py an object from the

information in its header token. In th~ way. we can allocate storage for an object of

composite type before decod,ng that object. In this. implementation, a reference to an

uninitialized object ~rsion of composite type is a refereq~ to the storage that will

eventually be used by the initialized version.

We construct the uninitialized version of an object of abstract type by

Fig. 14. Effects of the Receive Statement

receive = proc[T: type]{p: port[l], time: timeout)
returns(T) s1gnals(timeout}

% The setup stage:
% Create an empty d&coding map.
dm: dmap := dmapScreate{)
% Open a message stream.
ds: dstream := dstreamSopen{p, time)
% Create an empty initia_l i~aJ.j.on ma,p.
im: imap := imapScreate()
ext: dcontext := dcontextS{dmap: dm, imap: im,

. -dst-reaa.: d&}
x: T := T$get(cxt) resignal timeout
dstreamSclose(ds)

% The initialization stage:
T$initia1ize(cxt)
x := cleanup[TJ{x)
returnti) .. . ·

end receive

-'57 -

constructing the object's extema1 representation. The ve.rsioa i$.i~itial~zed by decoding

the external representation. Unlike composite types. the uninitialized and initialized
. . . { .

versions of an abstract object cannot ~ ~trie' same"Stbrage: Since the' fatter is

constructed from the former by a user-defined operatiQn. and the language

implementation has no way of knowing how large the result will be.
• f

Since we cannotpre-atlocate storage. every•object-ofabstmct type created during

a receive is referred to indirectly through a''tifi,; (unfinished· fllttire object); TI1e

representation of a ufo is shown in Figure ts. 'The· Meanin~ of the fbtrr States are as

tbllows: The · ufo ·is in the empty state' 'when :it i is 'created!: J1be -ii}O · repreSeJ1tS · an

uninitialized object version while it is in the'l.mtnftktllzttf'stiite. wltetfit conuiins the

object's external representation. When the ufo enters the initialized state. the ~l:>ject it
;,·'

represents has been initialized by decoding the external representation. The in progress

state exists to detect illegal decode operations. A ufo is in this state while the object it

represents is being constructed If an attempt is ~ade ;to ~·.~. ufo' in oii~ state, then

a cyclic dependency exists and ranure is signalled.•, ·.

In addition, three operations are provided tD ~t aed manipulate uninitialized

object versions:

ufo_mask: proctype [T: type](ufo) retUMt~(Tl

Fig. 15. The Representation of a UFO

ufo = var1ant(empty: null.
in_progress: null,
uninitialized: any,
initialized: any
]

% just created
% being in it i afi~td' j _

i _ - -

% xrep of represented-· obj~ct
% represented object

- 58 -

Creates an uninitialized T object from the given ufo.

ufo_unmask: proctype [T: type](T) returns(ufo)
s1gnals(not_a_ufo)

If argl is represented by a ufo, the underlying ufo is returned. Otherwise,
not_a_ufo is signalled.

ufo_test: proctype [T: type](T) returns(bool)

If arg/ is represented by a ufo, the result is true. Otherwise, it is false.

Lazy decoding is implemented in the following manner. Before the first line of

any T cluster operation is executed, the language implementation tests each argument

of type T to determine whether it is a ufo. If it is, an initialized version of the T object

it represents is extracted, possibly by decoding the object's external representation. We

call this test the careful prologue of an operation, and we assume it is automatically

performed by the language implementation. A careful prologue is shown in Figure 16.

When receiving a value of type T, The setup stage is implemented by a T$get

operation, which is provided to each transmissible type by the language

implementation. Like the put operation, get is part of the language implementation,

and is not visible to the user. The get operation for the type T has the foJlowing

interface specification:

get: proctype(dcontext) returns(T) s1gnals(timeout)

The get operation for an abstract type returns an uninitialized version of the object

being decoded. The get operation for a composite type constructs the composite object

(however, components of abstract type will refer to uninitialized versions). The get

operation for a primitive type constructs the primitive object

- 59-

Fig. 16. The Careful Prol.ogue o(a :T Quster Operatioa.

T = cluster 1s op,

rep =
xrep =

op = proc(arg: T)

. -·:

% Assign the initialized T object to variable "arg".

1f ufo_test[T](arg) then~
u: ufo :; ufo_unmask(T]{arg) % convert to ufo
tagcaae u .

tag empty, in_progress:
s 1gn• 1 f.a tl ure(" i l le.9a l · de~de")

tag in:itialized(a: a"J):
arg := force(T](~)

tag uninitialized(a: -any):
y: xrep : = force[xr•tt](a).
ufo$change_ in_progress(u, · nil)
arg : == TS.decode(lt) . .
ufoSchange_initializeff(u, ~rg)'

end X tag
end X if

% Now execute the user-written code.

end op

end T

To construct a T object when T is primitive. th~ .. CP~P<m~ing ,data. token. is
- • • • c - (~' • ·' ' - - - ' - - :

removed from the stream and used to allocate and initialize stora&e.: for, the object
~ • ~ - - ' ' , -' , - ; ! - : - ' - • ' ' ~ - "- - ' < ' - • - -- ~-

Figure 17 contains the text for int$g(t.

The gel operations for abstract and· composite 'types preserve .sharing in the

- 60-

Fig. 17. The Get Operation for the Int Type

get = proc(cxt: dcontext)
returns(int)
signals(timeout)

% Create a token and output it.
tok: token := dstream$extract(cxt.dstream)

resignal timeout
tagcase tok

tag data(dtok: data_token):
tagcase dtok

tag int(ans: int): return{ans)
others: signal failure("unexpected token type")
end % tagcase

ans: int := data_token$value_int{dtok)
others: signal failure("unexpected token type")
end % tagcase

return(ans)

end get

following way. When get is invoked, the next token in the stream is extracted. If the

token is a back reference token, the object referred to is retrieved from the map, and

get returns. If the token is a header token, gel proceeds differently depending on

whether the type is abstract or composite.

For a composite type, the header token is used to determine the amount of

storage required. The necessary storage is allocated, and a reference to the

uninitialized storage is entered in the map to catch cyclic references by components.

An object created by a lower-level get may refer back to A through the map, but no

attempt will be made to operate on A, as no decode operations are invoked until after

the setup stage has initialized all of A's component references. The text for

array[11$get is shown in Figure 18.

-61-

Fig. 18. The Get Operation for tlle Array[TIType

get = proc{cxt: dcontext)
raturns{array[T])
aignala{timeout)-

array_hdr = record [low, size: int]

X Examine the first token.
tok: token := dstreamSextract(cxt.dstream)

resignal timeout

tagcase tok
tag back...,.ref(addr: stre~addr}:

% Object is old, look it up:
return(dmapSlookup[ar,ray(TlJ<c~t.dmap, -addr))

tag header(hdr: header_token):
% Object is new, allocate storage:
ahdr: array_hdr := header_tokenSvalue_array_hdr(hdr)
ans: array[T] := array(T]Spredict(ahdr. low, ahdr.size)

% Enter the object in the map.
addr: stream_addr := dstreamScurrent(cxt.dstream)
dmapSenter[array[T]](cxt.dmap, addr, ans)

X Get the componeats.
for i: int 1n intSfrom_to(1, ahdr.size) do

array[T]Saddtt(allS, TSget(cxt))
resignal timeout

return(ans).

others: signal fa11ure("unexpected toke~")
end x tag

end get

For an abstract type T, an empty ufo representing A is entered in the decoding

map, bound to the stream address of A's header token. The uninitialized version of A

is entered in the initiaHzation map. XT$get is invoiced, returning the external

representation (which may itself contain uninitialized object versions). The external

representation is placed in the ufo representing A, and the uninitialized version is

-62-

returned. T$get is illustrated in Figure 19.

Fig. 19. The Get Opemtion for an Abstract Type

get = proc(cxt: dcontext)
return•{T)
s•gnlth{ timeout)

% Examine the first tolten.
tok: token := dstreamSextract(cxt.dstream)

resignal timeout · ·

tagcase tok
tag ~ack_ref(addr: stream_addr):

'X.. Object is old. look it up:
return{dmapSlookup[T]{cxt.dmap, addr))

tag header(hdr: header_token):
% Object is new, create uninitialized version
u: ufo : = ufoSmake_empty(nUJ . ..
ans: T. := ufo_mask[T](u)

% Enter the -0bje~t in the init1alizati~n map.
imapSenter[T]{cxt.jmap, ans}. ,

A.

% En.tar the obj.act in the dec;oding_ l!l~P-·
attctr: stream...:a'ddr· : s dstretilS~il~renf(cxt. dst·ream)
dmapSenter[T](cxt.dmap, addr, ans)

~ ' .<~ i ' > • :

% Construct the external representation.
y: xrap := xrepSget(cxt) rst~na1' tfme:out·
ufoSchange_uninitialized(u, y)
return(ans)

others: signal fa11ure("unexpected token")
end % tag

end get

-61 -

3.3.4 The Initialization Stage

At the end of the setup stage, no objects of abstract type have been initialized.

but all objects of composite or primitive type contained in the message have been fully

constructed. In the initialization stage, all uninitialized object versions previously

placed in the decoding context's initialization map are initialized.

The initialization stage can be vi~ed ~.an-0ptimmtion, since it is,· not necessary

for correctness to initialize an objects. The lazy decoding!~hem~guaruntees that~

values of abstmct objects will be av,iilable when needed.. ~&::verthcl~ :since decode

operations may contain errors or cause side-effects, .it~;;~onYen1ent:t<> ~ure the user

that all decode invocations have completed when the·receive -~ent COIUl)I~.

Each transmissible type T is provided with an inilialize operation. Ute put and

get, inilialize operations are provided by tlle language irnplementatioR-• .aAd may not be
< ; ' ' ·-

. invoked by users. /11i1ia/ize opemtions have the following calling sequence:
~ - ~ . . .

1n1t1a11ze: proctype(dcontext)

T$initialize iterates through. the uninitializ~ <;lbject versio11s of type T that had

previously been entered in the decoding ro~irs initialization : ~ap, as well as

invoking the inilialize operations of, 8ut>sidiaiiY. JYpeS ..):be is~'muial~ operation of

the. imap type prevents infinite recursion'~t)y <ietectfng the- Second 'an'd subsequent

attempts to initialize objec~ of a givenJ~-

The initialize operation for a composite type T simply invokes the initialize
~ ~ t :.

operations of its subsidiary types. The text for array[11$inilialize is s~n in·Figure 20.

The initialize operation for an abstract type T iterates through the T objects

-64-

Fig. 20. The Initialize Operation for Array(TI

initialize = proc(cxt: dcontext)

% Check that the invocation is new.
1f imaj>S is_ initial ized[array[T]](ext. inp)

then return end

% Initialize the subsidiary type.
TSinitialize{cxt)

end initialize

entered in the initialization map, extracts the ufo's, and initializes them if they are

uninitialized. When a ufo representing a T object is initiati.zed, T$decodc is invoked.

Lazy decoding may cause other object versians toibe initialized. T$inilialize is shown

in Figure 21.

The initialize operation for a primitive type returns immediately.

3.3.5 Cleaning Up

At the end of the initialization stage, initialized ufo's remain in the representation

of the object received. Since we assume (for now) that every abstract operation has a

careful prologue, it is not necessary for correctness to remove ufo's. Removing ufo's

does improve the performance of abstract operations, so it may make sense to remove

them at the end of the initializ.ation stage. For this, purpgse, we, use a cleanup

operation:

cleanup :::i proctype[T: type](lf) returns(T)

Cleanup performs a mark-and-sweep traversal of the machine-level representation of

- ~5-

Fig. 21. The Initialize Operation for an A"tract Type 'I'
• • , • • • <

initialize= proc(cxt: dcontext)

% Check that the invocation is new.
1f imapSis_initialized[T](<;xt.i·map) tb11n.r~~11rn •nd

% Initialize subsidiary types.
xrepSinitialize(cxt)

% Initialize subsidiary objects.
for x: T 1n imap$elements[T](cxt.imap) do

u: ufo := unmask_ufo[T](x)
tagcase u

tag initialized: % nothing to do

tag uninitialized(a: any):
% Extract external rep otlject ..
y: xrep := force[xrep](a)
ufoS¢henv•~ i.n_progress·(u, AH)
x := TSdecode(y)
ufoSchange_initialtzu{o. x.)

others: signal fa11ure("illegal decode")
end 'X tag

end % for

end initialize

.. ~ •• , •• y

/ ., ,:

its argument, replacing references to initialii«i ufo's , b~ ,direct references to the

contained objects.

3.4 An Example

To illustrate how these mechanisms work, we trace how the value of an object

consisting of two simple (and rather uselc&5) mutually recursive types is transmitted.

An engine object has a serial number and ap opti@nal-caboose. A caboose object has a

color and an associated engine.

~ 66-

The external representation of an engine is a recoffihaving as componenlS a

serial number of type int, and a oneof which is either nuU or contains :a caboose. The

cluster we examine here (Fipu'e 22) uses the same concrete· and .external

representations.

The external representation of a caboose is a struct, having as components a

string denoting. the color, and an engine:·· Thei cdncrete tcp~ntation used by the . . ~ ~ : - ; ,'"_ ... ,~ . ; . , : - . ~ '

cluster we examine also contains its engine's serial number in a cache component

(Figure 23).

We observe that no operations of ~bstract type are invoked from the decode

Fig. 2f· The Engine Clmter

engine= clutter is create, get_serial, ...

train = on-.o.f[etApty: .-un, car~ caboose}
rep = record(rear: train, serial: 1nt]
xrap ~ ~•

get_serial = proc(x: cvt) returns(1nt)
return(x.serial)

·end get_serial

encode = proc(x: cvt) returns(xrep)
return(x)
end encode

decode = proc(x: T) returns(cvt)
return(x)
end decode

end engine

Fag. ll. The Caboose Cluster

caboose c cluster ta create.

rep Im- -atruct'[color: ·atrtq. f r.ont £ .engt•. · ca~be~ int]·
xrtp = struct[color: atrtng, front: engine]

enco<te = proc(x: ,,e'ft), ratur~~irep} ·:
return(xrepS{color: x.color, front: x.front})
end· encode : . ·

decode = proc{y: xrap) returna(cvt)
cache_val: int := engineSget_serial{y.front)
return(repS{color: y.color,

front: y.fron~.'
cacbe: 'cache.:..valj}

end decode

end caboose

operation of the engine type. The Caboose clustefs tle&NJe opetlooiHtt\POkesait engine
· .-:t ·:_.;·r~,_. ,!·~_l:;j· ·\,~·.~t-:t~·;(~_,.;lo~-. --

..

operation; thus, the caboose decode operation uses the value of the ameciatetr-erigine.

From these observations, we conclude that the decode's listed above a~e legal, since the

transitive closure of the "uses the value or• relation is acyclic. When decoding a linked

engine and caboose, the engine must be decoded be(qre the caboose, ~i"1ce its value is
·-~- - ,--•l.··i;._'; - "":'-~- ~ .r.)~·~_;-~:'· ! '~ ~,,

used to initialize the caboose.

Let e be a variable bound to an engitre, ·h~ving seri~i h·um&er ,~ ,anA linked to a

red caboose. Let p be a port[cngine]. We will trace the effects of ex~utlng ,

send e to p.

First, a new encoding context is initialized. Then a number of put-operations are

-68-

invoked. For brevity, when naming' operilt\ons of oomposite type we use names like
. . . ' . "'

"record$puJ''when the partieuhlr record typets.clecv fromaM\axt:·'.Each4nvocation is

listed with its depth from the top of th~ calting stack.

Leve1 l: engineSput Chectstlte :mttp 1 Wf4~teHrtme·whet!ier the
engine;tras· alrBldy' been ericJded; · ~Leftgfne:·tras 1 not··be'en
entered in. the map, so put enters it, and places a header1toktn'1in
the stream at address 0. Engine$encode is invoked to (trivially)
construct the dttemaJ ·repr~tnlim~ ihcifrecant!J111d is irtwlc-ed
on the result ::1

Level 2: Since record$put does not find its argument in the map,
a header token is output at stream address 1 to indicate that the
value of a ~'~ifwo·se~16.sdDIM&~:: ~~'- ·
object is entered in the map, and the put operation of the first
component (in lexicographical order) is invoked.

I+v~l 3: ... After. jllT\Sf:l,~~ftJJJY.':~~ff=k~.:!~~,,~J?, .~~!
m:tputs a header token ataddress 2 to indicate that the value of
a oneof with a tag value of 1 is starting. Put is invoked on the.··.
caboose component

Level 4: After unsuccessful1y checking the map, caboose$put
outputs a header token .at.addres£3. .. ca~Sencode.constnacts
the external representation, then struct$put is invoked on the
result , ;: ... : .';; ;1d~;; · f!I :; • ·1 . '. •

Level 5: After unsucce~feJly checking: tlenttap, struct$put
outputs a struct header token with two selectors at stream
address 4, then proceedl»i1ednvoke put on its fint:;COfbponent

;

Level 6: -~ ,ouqi,ott a token denoting•ithc:String value
"red" at stream 11dttfes.1;5,';~':· ·, -DJ.> ·

Level 5: st..CIS,Ut ilWmlres put on its second (engine)
component,

'·

-69-

Level 6: engineSput fincts the engine in th~ map,, with associat~
stream address·o. 1t outputsa back refereoce to stream addr~o·
at stream addres,, 6. and retums. Hiach of the1 mspended pul
operations at levels 5,4, and 3 also retu,a

Level 2: record$put resumes and invokes intSput on its second
(serial) component. which. plac~~a U>ken ~g~theiillteger
valµe.9 at streaJl) address 7.~ ~U·the suspe~ppoperations
then re.tum.

When the highest-level invocation of engine$put retur~ the stream is closed, and the

sencl statement terminates.

To complete .the example. we trace the effects d1cxectlting: ·

receive e on p.

First a decoding context is initialized. In thesett:p ·~e. the values of built-in type are
, ' ,

constructed.

Fig. 24. Tokem Produced by Sending Engine Value

Stream Addns Token Type Toten Information

0 header abstract Yaluc
1 header record with two selectors
2 header : oneof witJt,tat.wlue 1
3 header abstraet1lilbe ':
4 header struct with two selectors
5 data iSlriDg value ''red"
6 back reference stream addns 0
7 data int value 9 ·

·70-

Level 1: engineSget extracts the first token, and dctennines that
it is a header token. An empty ufo is entered in the encoding
map, bound to stream address 0, and in the initialization map.
rerard$ge1. is.i.nvated' to oonst:ruet the extem*f!~tittion. ·

'c. J

Level 2: n;!Cord$get extracts the next tok-en, and dcterrttinesthai
it is a header token. Storage for a record having twd:~t&tatsis
allocated. The uninitialized record is entered in the map, bound
to stream addr.esS'.tand:rhe getOri!mtbh:W~e·;fitSirorhp6nent
is invoked

···:.

Level· 3: oneol'$ge1 extracts the next Mlretr; and detcnnines that It
is a header token with tag value 1. Storage for a oneof is
allocated.: Th{nmiriitiati'&d' oWtof1isr!CritM61mr~}ttiaP.. btiund
to stream address 2, and gel is invoked ftif:ttte~mji1~ · ;:

Level 4; caboose$ge1 extr3dS•;tf1e''t\at'tbken;: ~tttf Jdetermittes
that it is a header tokemt' iAfti 'entpty·1'fe w:ie\Jteteai1h t t1te
decoding map, bound to stream address 3, and in the
initialization: map.': •~et :tjS ·Mn' ·trWOlfed"·m .· ecmstruct the
external reprf!SCntation. , ,, .

Leve] 5: struct$get extracts the next token, and detennines that
it is a header token. Storage for a struct having two selectors is
ai~ie~ ,.~ ~9ttializefitatmot, ~£Mtlid:QJ;fhertMll>i'bounct; ··
to stream address 4, and the get operation of the first component
is invoked.

Level 6: string$get constructs a string having JJ1e value :·red"
from thetbicli;atmettnfadcfuS·t .,, ·. -' · \\\, "'·' ·1

• .·· ,
<'i> "i lo' ~ « - ,, I ·

Level 5: struct$get resumes, stores the v~lue "~" in jts ~rst
eomponen~ amt irrVbkeS getdn itf ~n~&impoiltfi(' ·

',, • i,·; i 'c _.,.;'."'",.~~~§.;~~-~~ ./'--~~~-{.~ -: ,, • .{';r'··,,

Level 6: engine$get extracts the irb'Xt 'tb~efl: anif detetiliine8 that
it is a back reference to stream a<Jd~ . (). .The f!m~ty . ufq
representing the' erigine1s ·~tt~t! :tfbrn 'ttle' W.\ip:~a ret~mett.

.. · '.

-71-

Level 5: after storing the ufo in its ~ond j;()Jl)tooeat. strudSget
returns.

Level 4: cabooseSgetresumes executk>n. lt~bangesits ufoto the
uninitialized state by binding it to the external representation
retu~ from the lower level. This,tJninitializelld>ject 11el'Sion
is returned.

Level 3: after .storing its component ufo~ oneol$ge/ returns. .

Level 2: · reconl$gel resumes execution, storing the oneof in its
, first compoo.ent. and invotina- l:fl on its.secx>nd component .

·Level 3: int$gc1 constrncts an • 1tall.iA& ,the ¥alue 9 from the
token at sueam ~ 5 ..

level): rttonl$get \Stores die value 9 in its second component.
and ret"ms. Engjne$get then ret11111$;, . . ,

All the values of primitive and composite t.Jpe sent. ,in the · .meaagc have been

constructed. The result of the setup stage isshown schematically'i'n Figure 25.

In the initialization stage all the ufo's crea18d cin the *Wt> ~ge are initialized.

Level 1: engine$initia/ize invokes reconl$inliialiie.

Level 2: record$inilialize invoices. tht.;Jo,i.tia,~e; 0pe~QQ .of its
first component · · · · · · · · · . ·

Level 3: oncol$initiq/iz.e invokes' tfu;,Jniti4lize operations of its
component ty(les. null$initiolize · · returns . mimediately.
Caboose$inilia/i~ is then invQke<L ·

Level4: caboose$inilialize invokes struet$initialize.

,.72-

Fig. 25. The Results of the Setup Stage

+---------+
+----------------->l. engine I
I I < uf o > I
I +---------+
I

+---------+
r oneof
+---------+

, I
+---------+
I caboose I
t (ufo-) I
+---------+
+---------+

I

+---------+
I record I
+---------+

\

+---------+
I int t
+---------+

+------1 struct I
+---------+

\

+---------+
I string I
+---------+

Level 5: struct$inilklli..ze invokes· initialize otir its ·first (color)
component. string$inilia/ize returns immediately.
Engine$inilialiu is then invoked.

Level 6: when engine$i11ltia/ize invokes imap$is__initialized, it
return~ true, so engiµe$ini'iali~ ~~ ·

Leve) 5: struct$ge1 returns.

Level 4: caboosc$initiaf ize resumes execution and invokes
imap$elements[caboosc], which yields the ufo created at level 4
during the setup stage. The ufo is found to be uninitialized, so
the external representation is extracted, and caboose$decode is
applied to it

-73 -

Level 5: caboose$decode invokes engindgctJlerial.

Level 6: the careful prologue of engineSget_serial detennines
that the engine argument refers to a ~. The ·state of the ufo is
tested and found to be uninitialized.. Engine$decode is invoked
to initialize the engine. (This is an example oflazy decoding.)

Level 7: engine$decode returns withoot invoking any operations
of abstract type.

Level 6: engine$geLserial returns the integer9. ·.

Level 5: caboose$decode resumes, returning a caboose.

Level 4: caboose$initialize returns, having :in1tialized all ·
uninitialized cabooses.

Level 3: oneof$initialize returns.

Level 2: recerd$initialize resumes . execution. It invokes
int$initia/ize on its second. (serial)· oompbneni which returns
immediately. rctonl$initia//ze retuths:' .

Level I: engine$inilia/ize resumes execution and invokes
imap$elements(engine). which yields-the .ufo created at level 1
during the setup stage. The ufo is found to have been initialized
(at leveJ 6nbove).m engine$in11Mlht~ .. ,, ~-

After engine$initia/ize returns, cleanup traverses the·object and· removes .the initialized

ufo's from the repr~ntation, The result of recei-viqg: tbe ~ge_ is to construct a

linked engine and caboose, having the;same valdes'asthe·ooginalS!.1be·re8ult is shown

schematically in Figure 26.

- 74 -

Fig. 26. The Results of the Initialization Stage

+----------+
+----------------->! engine I

I (record) I

+----------+
I train
I (oneof)
+----------+

+----------+
+-----1 caboose I

I (struct) I

+----------+
I cache
I <int)
+----------+

+----------+
I

I

\

+----------+

+----------+
I color I
I (string) I
+----------+

\

+---------+
I serial
I (int)
+---------+

-"15 -

Refinements •Oa&illlilatiolls , .

This chapter describes_refine~ts ~o the .implementation design presented in the

previous chapter. We identify.a nilmberofcommon situations that do not require the

full generality of.the m~hanisms we have invoduced. For each situation, we explain

how to recognize it ~~nit occurs, and how to: take .. ~~taS~ of it

4.1 Overview

To help describe these refinements, we divide'·vahre·transmission into two parts:

value translation and message construction.· Value translatiorr is the task of translating
,,,.. -~ ·-

'.' ! \ • : .. i ; i ::"·'f,.. _("; ·..,·

between values of abstract type Pf'(! values of built-in type.' To ttdmriiti an abstract
..;

value. it is necessary to encode it into values of built-in type, since the lowest-level

la_nguage implementati2n caf! only tra.!1~111it l>.Y.U1ti~ _v~Jy§ •. When sending a.m~ge.

abstract values are reduced to built-in values through successive application of encode

operations. When receiving a message, abstract values are constructed from built-in

values through successive application of decode operations. Jn this chapter we address

how to optimize the translation task.

The Second· task compnses the construction and transmission of m~es

containing values of built-in type. The mechanisms described in the previous-chapter

are 'designed to transmit values in a way that assumes as little as ~hie about the

implementations of built-in types used at the communicating guardians. Jn an actual

implementation, we may expect that some common patterns of communication will not

require the full generality of the mechanisms we have described. In particular, when

the sender and receiver reside on the same machine we may take advantage of the fact

that both sides of the exchange may share memory, and ma~ use the same

implementations of built-in types.

Two preliminary definitions are in order: a module is the unit of compilation, and

binding is th·e process of combining separatelytontpilett DlliiuW to form a program.

4.2 Translating Between AWrad and Built-in Yalues•

The greatest apparent threat to efficiency in the translation task is the lazy . -

decoding mechanism introduced in the previous chapter. w,~ recall that lazy d~coding

requires that each operation of abstract type execu~ a careful prologue to test whether
. - ! . - .

certain arguments are uninitialized. Although we can make testing itse,lf quite efficient,

we would like to reduce its frequency.

There are two complementary approfiches lo reducing the expense associated

with lazy decoding. The first approach is to distinguish between those operation

invocations that may encounter uninitialized object versions, .arid those that cannot
j 1 '. ~ - '; e

Uninitialized object versions can exist only while a message is being decoded. If we

make the plausible assumption that most invocations of cluster operations occur while

a receive is not in progress, then it becomes attractive to distinguish between
. .

invocations that may need to perform caref~I prologues, and those that do not We
' ' . - - '~ : ' '

present a scheme that restricts the execution of careful P,rologues to invocations of
, ~ . . ' - ' - . -- \ . . .

cluster operations that occur in the course of message decoding.
I ., '•

A second approach is to identify data types whose implementations do not need

lazy decoding. For example, we reca11 that lazy decoding was _introduced to permit the
• - : . , ~ c: ,_ • r~ t;, ; ' · ·

use of self-referential external representations to transmit values of cyclic objects.
'r . ; ~ ' ~ - . . '

Realistically, we expect that only a minority of types include cycl,lc objects, suggesting
, . : '~ .~ . : ·: __ ,: ,-_('; ··-:~ 1r.!'·.~ ·,· ~· ,·.·_.: , '· ·- ii: .

that methods for statically recognizing· types that only include acyclic objects may be

-17 -

profitable. We present two schemes for recognizing-that. a given duster ·does not

require lazy decoding.

4.2.1 Restricting the Use.ofCareful:Prolopes

In this section. we discuss how to structure clu~ Operations tE> ext!Cllte careful

prologues only while a receive is in progress. We recall that uninitialized object

versions are implemented by adding a level of indirection. to object references. This

level of indirection goes through an object we have eallc<t'a u/o .. When an operation of

type 'T is· invoked. it must check whether any of 'its T arguments is referred to

indirectly. and if so, it must extract a direct reference from the intermediate ufo. We

can increase the overall efficiency of abstract operati~n~ by ensuring that indirect

references can exist only while a re(eiv,e is in prp~ess,: m.i~ by .ex~utiog. careful

prologues on~y at that time.

We divide modules into two classes: careful modules. which are prepared tO
encounter ufo's in object representatio~s. ~nd normaitmooules;~hich are not Only

i ,. ..
careful modules are allowed to execute when d~illg a value. After the value is fully

decoded, all indirect references through ufo·s are replacei by,' direct referenc~ By
•.-- e - t ~

having the binder create two versions of those modules that can, be invoked both when
. ~' ,,. ;, . ,

a receive is in progress, and when. one is not, we may' avoid the expense of executing
·: .<~ ;~I'. ·';?(":::t~:·!~~'._J~~.):, ';~._, i .

unneeded· careful pro]ogues, at the expense of the storage required for the extra

m9duJe version.

The cleanup operation, previously intro<l'~ced as an optimi.zation, is neeessary to

ensure the safety of this scheine. Since n0rmal ,modules ctO not expect to encounter

indirect references, a)) ufils must be rem~ved from' the oonStructed object before any

-78 - .

nonnal modules resume execution.

The compiler only needs to. produce one verSion of the object code for a module;

differentiation of nonnal and.careful vemobs11lay 0e·dorieb:y the brnder.··w~ assume

that the binder is aware of the interface specifjeations ofcluster operations through the

:Ubrary. Jn particular, the binder can determine which :arguments to each T operation
. .

are T objects~ If, by bindin~ ttme, it has been:decitted thatilazy decoding is nec~ry
- . . -

fbr a given T duster, the· binder can "encldse" the ~reful versions of cl Lister operations

with dummy procedures that test and conditionally ;mitiatize r argtlments before

invoking the actual operation.

When joining modul~. the binder foHows these rules:

Careful modules are bound to careful modules,. and normal
modules are bound to normal modult:S.

All decode operations are careful.

When the same procedure is invoked from both careful and normal modul~ the

binder makes two copies of the procedure. placing a careful prologue in the careful

· version, if required~
/ . '

In summary, we have shown how ~;Lialit ·die ru~time penalty. for :Jazy decoding . ; - -~ -; - ,.. . . . ' " ,.

storage .. This scheme requi,re$ 91lly simple ehagges._ to the binder, which must

distinguish between carefu 1 and· nonnal. lll<>dulea.. ·•

-79-

4.2.2 Information About Abstractions and lmplemellfAtt•

In the remainder of this section, we discu~ ways to detect that the objects

managed . by a given cluster can be decoded without ,ereatiflg uninilializ.ed object

versions. Our b~ic strategy is to ~Ject infom,iati~ both about data abstractions and

the modules implementing those,. abstraction~ •. in, ofder to• cestablish that sufficient

conditions exist to eliminat~ lazy dewding. We;~mpv:e the;Qeed for careful prologues

in cluster operations by substitut~ng ditT~rentpu1, 1 ge1 •. an41initia/ize·operations from

those described in the previo~ chapter.

There are two kinds of information that wiJI prove useful. Specification

information about a module concerns Jl)e ai)&tr~on it- implements. Specification

information includes such items as the names and argument types of procedures, and

the external· representation used by a data t}'pe. Implementation information conce!'DS
' ' : ; ~. ; . ' . .

the way that a module implements an abstraction. Implementation infonnation

includes details such as a cluster's concrete represe~tatiori,' or the source code for a

We may also classify information by the ways it can be acquir,ed~ ~ompil.e-t.ime.

information about a module is information that can be co11ected during or after the

compilation of the module .. Such information tan t;e 'derived from im}'.>letnentation

inform~tion about the .particular module he~ compffed~ Moilg with specificiltio1f .

information about the modules it uses: Bllttlint·Htnt infortnation concefiis

implementation information about more tha:f'H>he mooule. '. Sueh information cannot

be acquired until it is known which implementations are being bound together.

lnfonnation about modules and abstractions is managed by the Library. The

-80- .

CLU Library (Liskov 79} contains the i11te1fllte specififJl.11,iOllSCiJfabstroctions needed to

type-.check inter--module references.· The ,Libra£)! for a CLU ·extension incorporating

the communication primitives· .. · .dev.ek>J*l· ~re·· .. would. amtain the extemhl

representations of transmissible data ~ttions.. since the extematrepresentation is

the interface between distinct dusters.impleme&ting:tbe·same:abstmetiom Tue Library

Also maintains infonnation about individual implementations. We 1lSSllme that both

the compiler and the binderean access and updattJinf@mrotion in the library.

4.2.3 Eliminatin& Abstract Value llen..-S:

In this section we show how to lower the number of tokens transmitted, at the

cost of slightly complicating the control structure of the get operations. In itself, this
, !. ' ~)-

reduction is not very important; however it permits us tq optimize the case, discu~
~ " ' ~. ;--· ~ : ' . \ .

below, where the encode and decode operations of a type perform no actual work.
'. "'.' ' • ' - • , :" " i. • r ~ f: · · ' ..

In the implementation presented in the previous;ttfa.pter; lhe start of an encoded·

abstract value within a message stream is marked by a header token. In fact, the
·,

infonnation conveyed by this kind of header token is reduqdant, since the type of a
i .

m~ge is known in advance from the type of the port.

The oj)timized get operation acts in the following way~ Let T be an-abstract type

having external representation type XT. Wheti'rf,Jitt~ncounters an object that has not

previously· been encoded, it invokes XT$put without placing a header token in the

stream.

At the receiving guardian, care must be ta~n when ~ back, reference token is

encountered, since an encoded abstract ·value :now. starts at the same stream address •
' ' . ' ~' .

the encoded value of its external representation, and it is necessary to determine which

value is indicated. Accordingly, when Uge1 is invoked, it examines the next token in

the stream without removing it. lfthetoten-is h0t·abactrefenmce,'xt1geris·involed.

Jf it is a back reference, die· decoding map iS checked,10 'deertainwtleU\er a T object

ha.5 been entered with the given stream add~; lfi8uc-h -~·is found~ the tOk:en is

removed .from the stream, and the object is'etttactef:Mml'tlieW.ap and· returned; lfno

~iated T object is found, then one mosfbe.ronstnicted~SCl1'$get invokes Xll~.

leaving the bad reference-token in the stream. l$getiSsh~1 iri Figore 27;

To illustrate how this scheme differs from·~th6pretii6us,one:1etuscompare how

the two schemes would transmit a given value. Let A be an object of abstract type T,

having the same object R as concrete and ~xternal representation.· For the purposes of

this example, let R be an array[int] with a singl~ el~ment ·we· ~L~ppose that A has an
: ~ t i ; ; ~;} - ~ > •

"exposed representation"~ ·that is, frs ~oncrete representation may be accessed and
. • ; _,: ;;}_~·,)'),-:\) .~ ... 1t ',\~:! . .- ,:

manipulated by programs other than T cluster operations. Let us transmit the value of

a struct containing bpth A and R.

The tokens produced by the unoptimized scheme appear in Figure 28. At the

sending guardfon, stmct$put outputS a header token at stream address 0, and invokes

array[int)$put, which outputs the tokens at ~~~~: ,add~esses I and~ i2.' Stn'.ct$put then

.invokes Uput. T$put does,,not find::A ill th,e ;ID~Pt ~,jt,Q'1t.pu~ ~,header t.cKen at
> ~k: . -~ - 4 - ' • ' • ,. '.•

stream addr~ 3, and invokes.arraylint)Sput. Ar,radif1;1}$pq~~Q~,R. i~ ~e. m~t4m4
. • . , • 'o. •," '.. -

i~ns a back reference tp stf~·a<Jdr~;·l at,~ ~~ ~· ~!-_the .re<;eiving

guardian, array[int]$ge/ constructs an object R' from the encoded value of R, and.ph,¥;es

R' in the decoding map. T$get extracts the next token from stream address 3, disoovers

it is a header token, and invokes· arrayfmt)Sget 'Aria~et discove~ that the next

token is a back reference, and· returns Ir from the tnap. ·

·82-,

Fig. 27. The Get Operation Without Abstract Header Totem

get = proc(cxt: dcontext. time: timeout)
returns(T)
signals(timeout)

% Peek at first token.
tok: token := dstreamSpeek(cxt.stream)

resignal timeout , .
1f tokenSis_back_ref(tok) then

addr: stream.:_addi .. := tokt{nSvalue_back_ref(tok)
1f dmapSseen[T](cxt.dmap, addr) then

% Object is old, remove token and look it up.
dstreamSextract(cxt.dstrea11)
return(dmapSlookup[T](cxt.dllap, addr))
end % if

end % if

% Object is new, create uninitialized ~~~~f~n.
u: ufo := ufoSmake_empty(n11)
ans: T := ufo_mask(T](u)

% Enter the object in the initialization map.
imapSenter[T](cxt.imap, ans)

% Enter the object in the decoding 11ap.
addr: strea11Laddr := dstreamScu~ren\{cxt.atreail)
dmapSenter(T](cxt.dmap, addr, ans)

% Construct the external representation.
y: xrep := xrepSget(cxt, tiae)

resignal timeout
ufoSchange_uninitialized(u. y)
return(ans) ·

end get

•.

The tokens pro~uced by the optimized schet¥ ap~ in Figure 29. At the

sending guardian, the only difference between the two schemes is that instead of

placing a header token.in the stream, TSput immediately ittvoblS array[int}$put. At the

receiving guardian. when T$get peeks atthe token atstr~m address 3, it discovers the
., ' . ' ·~ :.: .

token is a back reference to steam address I. When T$get looks up the stream addr~

-83.

Fig. 28. Tokens Produced With Abstract Headers -

Stream Addr~

0
1
2
3
4

Token Type

header
header
data
header
back ~eference

Token :Jn formation

struct with two selectors
array with ate element
iattatue'
abstract T vatue
:~f~~'aa~1

m the decoding map, it does not find an associated T object, so. it invokes

array[int)$get. The latter proceeds as before. _

4.2.4 Assumptions

To eliminate the need for careful prologu~s in the operations of an abstract type

T, T objects must be decoded before they are referred ttr_ by otJ:ter obj~ This implies

that values are decoded in an order such that all values used by T$decode are available
. ' ' - ' , ~ -, '

when it is invoked. In the previous chapter, laty' dec0ding ensured th,i~ property by
~ i; ~ : ' : . ' "' .

determining a legal order at run-time. For mostttypes, a legat order can:·be determined

statically, eliminating the need for lazy decoding and for careful prologues.

Fig. 29. Tokens Produced- Without Abstract Headers

Stream Addreg;

0
I
2
3

Token Type-

header ·
header
data
back reference

Token fnformatiOn _
... '';

struct with two selectors ,
amy'With 6ne'erement
int value
strea~ addr~ I

-84- •

We divide implementations of data abstractions mto two .classes: well-behaved

clusters are those whose objects may be completely deeeded1before·being referred to;

the unpredictable clusters are those for which run-time lazy decoding is required. The

implementation desc1ibed in the previous chapter protects objects of built-in type from

premature access by decoding them before objects of abstract type. Similarly, the

implementation developed in this chapter decodes value8 in . tw~ passes: valut;s of

buttt~111 ·type and well-b'ehaved abstract type are both' decoded in the first pass, and

values of unpredictable abstract type are decoded in 'ille second pass.

4.:2.S Trivial ~ncodc ~ud De<:tdc .()pe(atiom ·
. ' . ~ ' . "

Clusters whose encode and decode operations perform type conversions .on their
- ' ~

arguments, but no other operations, form the simplest class of well-behaved clusters.

We caJI such operations trivial e11c()f:ie's ~ deetN'k~J.·rW~'a•type Thas trivial e11crvle

and decode operations, the task ()f translating a T value into buitt .. in ·values is

simplified. If all the encode or decode operations invoked i1i the course:of enoodingor

decoding a T value are tri>1Aat, then ~ translation~•. for T values is itselftriviaf, as it

suffices to transmit the underlying representation of a T object as a bu Ht-in object

IfT is a type having trivial encode and decode operations, then there is no nee~ to

use lazy decoding for· T values; furthermore, there is' n<» neecf for the put and get
. . .

operations to check for sharing. Normaffy, when· put.enrounters a T objeet whose

value has already been encoded in the currenr''tnessage eontexi. it ·inserts .a b~ck
rererence token indicating the stream address whe~e th~,·· encoded T. value starts.

Suppose T has a trivia] encode, and that T$pu/invQk~.~fFPS./lµtwith9ut checking the
' -·: - . . ~ . ·. _, ;

encoding map. If xrep$put discovers that the xrep value has already Q~~n enCOO,ed. it

inserts a back reference to the start of that encoded value. Since we have eliminated

abstract header tokens; the stream address of the encoded xrep value is the same as the

stream addr~ of the encoded T value, so it mlffices tO have the lower level put place

the token in the stream.

An analogous argument suffices to show that ~get do,es not need to check for

sharing, since any sharing that exists will be detected at a lower level. Furthermore,

there is no need to create an uninitialized version ofthe T <>qject. since the uninitial~ed

version of its external representation will do us well. Fin~~ly, since n<;> uninitialized

versions of T objects are created. T$initialize does not need to iterate through the

initialization map. Jn summary, the put, -get; 8ft(J 1nltMlze 1>pernti0ris- for T can be

reduced to simple invocations of the put, gel and initialize operations of Ts, external

representation.

The cof!'lpiler can-easily detect trivial elf€ticle ood decode operations. As a further

optimization, the binder could replace the invocations ofthe trivial UpUI, T$get, and

T$inilioliu operations by direct' invocatiOns' of. the mp$pur. xrep$get, and

xrep$inilia/izeoperations. eliminating levels-ofproce<ture lfthge.

4.2.6 The External Type Closure

A second way to eliminate the need for lazy decoding is to recognize types that

cannot have self-referenti~I external repr~ntations. In tllis section we describe a

fairly simple way to recognize statically tha~ no objects of a Jype will require.Jaiy

decoding or uninitialized versions.

Let T and S be types. We define the ET (external type) relation among types.in

the foJlowing way:

-86- .

If T is a primitive type, then there is no type· S ·such that (f, ·
S) E ET.

If T is a composite type, then (f, S) E ET if. and only if S is a
component type of T:

If T is an ab~tr~~t ty.pe. then. (f, S) E ET if and only if S is T's
external represen'ta.tion type · ,. · ·

We use £7{1) to denote the set of types S such that (f, S) E ET. For example,

£7{string) = IZJ

£7{oncoflitem: T, empty: IUIHj) = {T, llUU}.

If setf11 is a parameterized, abstract type having as external representation type

scquence[f), then: .

£7(set[int]) = {sequence[int]}.

The ETC (external type closure) relation among types is defined to be the

transitive closure:: of ET. Intuitively, ETC(T) is tJle set of types whose values will l>e
I:, ,

included in a message containing a T value. The .external type closure is similar to the

conceptoftype closure found in [Atkinson ,.,1. ·

ETC(string) = IZJ. .
ETC(oneol[item: T, empty: nuHD = {T, null} u ErqI)

. ETQset{intD = {sequence[W]. mt} •.

Before discussing the use of the external type closure, let us introduce some

convenient terminology. For an abstract type T, we state th~~ T. i~ rec_ursively defined if

it belongs to its own external type closure. For example, we recall the int_list type

introduced in Chapter Two, whose ex.temaH-epresentntion is:deflned by:

xrep = record[car: 1nt, cdr: link]

- 87 -

link = onaof (next: int_,list, emp,\y: .n.1111).
_, ·--;:.

It is easy to verify that:

ETC(inLlist) = {int, inLlist, link, null, xrep},

where xrep and link are abbreviations for·ilie reeJilla,~d.~,~(~~P~~ Since inLlist is a
,_"'J'- l :_ ''' 't "; - . /{'.;_ .f i .. .i _; . '. ; . • . d

member of its own external type closure, it is recursively defined.

We say that a procedure P directly calls procedure Q if the text of P contains an
(.,;. . :;.~).~~ ;~.~. ~

invocation of Q. We say that P cq(fs Q .if O:ffd" ~ transitiv~ i;l~J~ of P's "directly
• f c ~ ~ i ; -~ . • -.. ' .I • ' • • • - -

~11s" relation.1

The basic claim we make in this section is that if a type is not red.tTsiveiy defined;

then it does not require lazy decoding. It is possible to optimize the task of decoding
. ~ j ;" ~ . ' ~ - ; .· . .· ;"" .

values of such types in the following way. Uget may immediately decode a T object's

external representation, as. shown in Figure. 30: rather than using i li/o to t~eate an

uninitialized object version. We will .refer io thi~"opefatii:m. ~the simp/e'get.
' ~ .

Our argument that the simple get may.be ustd· few types Uiat,ate oot rec~vely

defined takes the following form. To show that the simple get is safe for

non-recursively defined types, w~ show that if the simple Ugel a?u;fuRts touse a value
> ; - • - < ~ ; - ' ''. -- - • :- "'. : '- <.J ' . • • ' : ~ ~ i -. - _; - . -~

prematurely, then T must be recursively' ddi..ti 1bis;argumdBf'fs;presented in three

steps:

1. The ''calls" and "directly ca11s" relations are static: when we say that P catts Q, we
do not mean that each, ilt-V(IC(Jlion of;P,,wilflcauso·110Anvocott<i1,sf,Q. For example.
although the gel operation for a oneof calls the gel operations of all its component
types, only one component get will actually be invoked by the ~ors get.

- ·- '_;'

Fig. 30. The Get O~ration for a Non·RecursiYeType

. get = proc(ext: dconte.xt}
returns(T}
signals(timeout}

% Peek at first token.
tok: token := dstreamSpeek(cxt.stream) resignal. timeout
if tokenSis_back_ref(tok) then ·

addr: stream_addr := tokenSvalue_back_ref(tok)
if dmapSseen[T](cxt.dmap, addr) then

% Object is old. remove tQUfl''aml look ft up.
dstreamSextract(cxt.dstream)
returA(d111aplJ ookup[lJ(tJCt. dllap .. ~ addr))'.
end % if

end % if

% Object is new, reRJember steam add'f'eSS atwLdecode xrep.
addr: stream_addr := dstreamScurrent(cxt.stream)

% Construct and decode the external representation.
y: xrep : = xre.pS,get(cxt) ·reafgnal tiwout .
x: T := TSdecode(y)
dlllapSenter(T}(ext. d11ap, addr, x)
return(x)

end get

Claim One: ifT$gel invokes T$dec0de, ano ttiefatter attempts to
use the value of an S object, then S E ETl\I).

Claim Two: if T$get invokes T$decod~. and the ·latter fails when
trying to use the value of an S object, then T E ETC(S).

Claim Three: if S E ETC(T), and T E ETC(S), then T E ETC(f).

To establish the first claim, we observe that for an S object to be accessible from

T$decode. S$gel must have becil invoked by T$get, 1mptyihg that T$get catts S$get. By

inspecting the code 'for the get operations, one ·ctin 'see that T$get directly calls S$get if

and only ifS E E'll.T). It follows that T$get calls S$get if and only ifS E ETC(f).
. '

-·89-

To establish the second claim, we obsuve·tbat ~n attempt to use the value of an

uninitialized S object can fail only while the first S$get operation constructing it bas,

been invoked but has not yet completed. for only then is &he ufo representing the S
;

object in the empty state. If T$decode can access an S ;ebject,then T$get must have

been invoked by S$get, thus TE ETC(S).

We may illustrate this last point by recalling·the cydic engine and caboose types

used as an example in Chapter Three. In that emmple~ we:tfllCed·in detail how an

engine-caboose pair is decoded. Let us replace the usual caboose$gtt operation by a

simple gel operation, and briefly retrace the-steps in·ihe,examplt. All goes wen until

the simple caboose$get invokes caboose$decode. The latter invokes engine$geLserial.

which fails because the ufo representing t~·e11gine is in· the :wnp1y state, since the
~. '-

engine$get operation constructing the engine-· object has·beeR ·invoked, but has not yet

tenn inated.

To establish the third claim, we make use of the fact that for all types T 1 and T2:

which follows directly from the definition of the ETC relatiQn as a transitive closure.

Therefore:

S E ETC(T) and T E ETC(S) =i> TE ETqJ).

Having .. established that SE ETC(I) _(Claim _ l),. ~d.1 '.T ~ /i,"TC(S) (CU.im 2), we

theref.ore have TE ETC(T). demonstrating th~ T~: rccu~vely ~fined.

As a final remark on the simple T$gel operation, we note that when decoding a T

.. 90.'

object A, it is not necessary to enter an uninitialized version <>f A:·in the decoding map

before A's external representation is constructed., In the'generaf case, an uninitialized

version is placed in the map to catch cycles of reference. However no such cy~les can
, ,_ . :

•• '!:·_

exist when T is not recursively defined, for otherwise T$get calls llget, and

TE ETC(1).

The external type dost.ire of a type T may be computed statically. By definition,

external representations, unlike concrete representations, are the same at every

guardian. Since the extern.al type closure of a ~Y.~. r ~; qclined entirely in. terms of

external representations, it is the sume fQr ·"" T iPl~"tations. Fui!Ulermore, we
. ' ; ; • ; -- • ·' I •._ ,-·· •

may assume that extemal ,repre~ntati,ons ar~r~ngecJ:~.elx.,~f at ~lti sioce.¢hanging a

type's external repre~ntation requires. mod;fyin~ e-veor imp~eJl{ati.on of that type in

the system. This implies that once ETC(f) is computed, it is unlikely to change.

Since the external representation use~ ·by ~type is.~pwn tQ the library, it is a
~ -~ • _, \,. • , < ' • o' ' ' ,l

simple matter to compute the external type closure once the requisite specification
' , { < ~ '• • : ' ; ;

informption has been collected: The extemaHYpeeloStire df ah abstract type T should

be part of the speci ftcation in formation abdbtl''nmitttlimecf f;y· the ;Library.

The cluster-dependent optimizations,jus,i, ~tibed!, ~Y .~nteract with the
• ; : ; ' , -- • - , 4 ~ .. ,, •• - ·-- - ' , •

distinction between careful and normal modules in the following way. If the compiler

reco~~, that .. • pal1ielllar·duster iS-.reU-behav~~ citherJ~Se ·irtia5 trivial encode

and aecotip operations, .. or became, it· is 'nat, 1tt~ defrnet1. tHen ·ii in forms the

Library (}(that Jact. When tbe'bmder COftStrucls·irprogrnin, it extracts information

about each .module being, boundfronLthe Libtary: The bintler does not need. to insert

careful prologues .. in the ·aareful;,versions of aperhtio'rts of' well;.behaved· clusters.

Moreover. it-;is easii' to.detect the. spedai case1 m ·whidt~ e~erY rhodofe lmpl~inenting a

- 91-

type in £TC(T) .~ well-behaved, meaning that ther~ is no need to use separate copies to

distinguish betwee.nnormal and careful versions of those modUles.

4.2.7 The Function of the Binder

The put and get operations of an abstract type T can be constructed by the

binder, since the only type-dependent asp<:;ct of PU! or get, is. pie ch.nice of external

representation type.

Only the binder can determine whether an inStantiatlon of an abstract type
' .: ' ' ·t '

parameterized by type is'1ttursively defined, Since the parameterized type's external

type closure cannot be dete""ined witho~1t know)~Cfge ofthe instanti~t~d 'parameter

type. For example, the 8etfT1 abstraction desCribed a~ve has'it1e follo~ing external

type closure:

ETQ'set(T}} == {sequenceffl, n U ETl\fi.

Thus, setfT] is recursively defined for ~II and Ol}ly those t)'IPCS: T such that set(11 is a

member of ETC(l). For eQClt instantiation.~ pindercatrdecide which put and getk>'

use, and whether careful prologues are required. Like any other type, a parameterized

type· haviBg trivial encode and decode operations doeS not ret}ui~e · laiy deroding.

When binding the i=areful version ot•aT·cJusttr •. the. bimlef>decides whether to

place careful prologues in tbe cluster opera~s. and which· of the three tinds of get

operations to use for T. The binder Jirst checb. wMther T nas trivial enc8de, and

decode operations. If so9 invocations of T$ge1 IDQY· be.repklced by invocations of the

get operation of Ts external representation. If the ent-otle and decode operations are

non-trivial, the binder then checks ·whether T is recursively , .defiQed, using type ·

•92- .

information in the Library, and information about instantiated type parameters. lfT is

not recursively defined, it can be giveO' the s;mple get operation that directly invokes

T$decode on the external repres"entation. If either optimiiation applies,· the careful

versions of the T duster operations are bound, without careful prologl.ies. If the T

cluster has a non-trivial decode, and if T is recursively defined, then the general get
". >,, ~ L f ~

operation must be used, and the binder must place careful prologues in the operations

of the T cluster.

To make these decisions, the binder requires two kinds of information from the

Library. To determine whether an abstract Tis recursively defined, the library must
~ i.

maintain Ts external representation type, and Ts external type closure. The Library
. . .

must also keep track of which T clusters have trivial encode and decode operations.

4.2.8 Optimizing The Initialization Stage

The initialization stage is another pan of the ··translation task that can be

optimized .. One refinement saggests itse1f. immediately: if the initiafization :map is

:empty at the end of the :serup 'stage~ there "is ne need to irntintize object versions, or to

remove ufds. It is only ~ry to incur the expense of'.iniiiafiiation aA'a dean-up

when uninitialized vemions have actually been created:

We can also determine at bindi11g-time that objec~ of a given type cannot
,.'' , > • ' •

contain ufo's, requiring no initialization stage,or cleaJlUP traversal. If ever~ ~pe in a

type Ts external type closure is implemented by a w.cU-~h~vcd cluster, then there will

be no ufo's to initialize or remove. If ETC(T) contains no recursively defined types, the

condition can be established statically from specification information in the Library. If

ETC(l) does conta•n recursively dtfmed types, then when particular implementations

. 93.

of those types are chosen at binding-time, the binder can c.ileck whether those types

have trivial decode operations. If we can determine, either statically or at binding.-time,

that objects of type T cannot contain ufo's.. then T$ittilia/ize can be replaced by: a

dummy procedure that simply .returns.

4.3 Constructing and Transmitting Messages

In the previous section, we discussed ways to optimize the translation between

abstract and built-in values that takes place both before aod after t~e a~tual message

tr.ansmission. In this section we discuss ways to optimize the construction an~

transmission of messages containing the built-in values. We are primarily interested in
; .

reducing the amount of storage required to send and receive messages.
. t, ' '

When transmitting a very large message, we may reduce the amqqnt_ of storage
~ <i: ~ '!;'_? '" ~

needed for buffering by transmitting information before the message is completely

constructed. In the scheme described in the previoµs chapter, ;the :tokens placed in an

encoding stream. comprise the transm~ mes$lge. , Ii>kcna·~)pl~d;itt the:encoding

stream as the object referred to by tbq, semb•te~t J-1 traversed. The. encoding

stream abstraction. h~ the property that.~ token, taft ~~i~ted· any time after it has

been inserted in the stream. ~,e{lG(}(f1ng-;~~m:~l'1Ster~-bemtt*meoted to

transmit the tokens as soon as a certain number have accumulated, perhaps
· '' '' ' : '· ! - ' ; . ~ : ' ~ f':-~ -;: · ,. ~ r'; ' . .: ~

asynchron0usly. Encoding streams a11ow storag~·uSe to tie econOinized'by interleaving

valuetranslation and message transmismon. A di~d~ahtage of this irfterleaving is that

the receiver fms no way td defotfJline the size' of a''ih·~~e ·before it is completely

received.

In the special case where the . comm~~• guardians RSide on the· same

- 94- .

machine, use the same language implementation, and where the implementation

permits shared memory, message transmissfon can be acc~mplished quite easily. As we

have stated before, the messages· that are actualiy'con~tructed arid transmitted by the

language implementation contain only values of built-in type. In the general case, a
~ . ' ' : (. . - ' ~ - .

guardian wishing to transmit an integer value would encode that value into an integer

data token. The receiver would the~ construct a n.ew integer object from the received

token. In the local case, the sender can just copy' the lntCgetdlrectly i,nto the receiver's

address space, since both use the· same repre~nU.tio~ ~ic;r' i~t~ge~~ Simila~ly, a

guardian wishing to transmit the value of an arrayfin.t] colfld just c;opy t~ 3(-ray into

the receiver's address space. This scheme benefits both guardians: th.e ~nder may
:.-· '

economize storage use, since it is not necessary to construct a message stream, and the

receiver may economize processing, since' it -begifts with · a'i fulfy constructed

representation object,. instead of a stream of io~ns ~ rnl#st ~deciphered. . - - : - - ' -· . ,, . - '.. "

:-'. '',·'.'

Now suppose the sender wishes to send a set[int]. where setm is a parameterized
- :· ~ ~ -~: E i.. ~ ~ : " : ,. - -- , -

abstract type having sequence[11 as its external representation.i fllm·sender can apply

encode to the set[int], deriving a sequ~cefintL, llle sefl•~~e caq now be copied
,: ' . - ! - ~ ! -; ._ . ·• _.,._ ' ., ·. - • ; . • ':.

directly into the receiver's address space, wher~ _d(!cqde. can be a,ppli~~. to construct a
" • ' ' , ; ' ~ ; ; <"I 1 ~ • ' ,.: • _ ' ~ ·,

set[int] object

Finally, suppose the sender wishes to send a set[set[int]]. The first application of

encode returns a sequence(set[int]]. The next step _is to ~reate a, new seq~nce by
. ; ''· ; " . . ;'. . ';) ' . " .

replacing each element with its external representation, deriviJMI a

sequence[sequence[int]]. Since this is an object of Q~ilt:in typ~. it can be copied into

the receiver's address space. By successive applicati9ns p({l~<;~e operations~ a eppy -of
....

; .
the original object is then reconstructed by~-recei\'Ct.

- 95 -

These examples suggest how local message transmission can be optimized. The

value of an object of built-in type is transmitt~d simply. by copying that object into the

receiver's address space. If the object is not of built-in type. it is reduced to built-in

type by successively replacing abstract objects by their external r~presentations, until
' • - > ; ! ' ' . ~ 1 :

no abstract objec_ts remain.' TI1e resulting built-in obj~ct is th~n copiecl. The decoding . - ' ... - ' . ~ ~ . .

process is the reverse of the encoding process.; external representatjons are replaced by

the abstract objects they represent. The remainder of this section ~scrib~ the

construction and interpretation of message objects in more d~tail.

We define the message representalion lype of a type T, denoted by MR(D, in the

following way •1

If T is primitiv.e, MR.(1) == T.

If T is composite, then each component type·is replaced by its
message representation type, e.g. M R(array(S]) = array(MR(S)].

If T is abstract, having external representation type XT, MR(l)
= MR(Xl) ..

We introduce loca/_put and local_get operations· to construct message representations

for objects. Since most of the structure of ldcal_put and /ocal_get operations is

identical to the corresponding pul and get operations, we will not describe them in

great detail.

The loca/_put and loca/_get operations have' the folJowing interface

specifications:

l. The message representation of a recursively defined type is a directly recursive
type, which is not an expressible type inCLU.

·96- .

1oca1_put: proctype(T, map) returns(any)
1oca1_get: proctype(any,·map) returns(T)

For a type T, T$/ocal_put accepts a T object as'an argument, and returns an object of

type MR(T), encoding the value of that argument. n1ocal:.:get accepts an object of

type MR(T) as an argument, and returns a T object constructed from that argument

All local_put and loca!_get operations check for sharing in the usual way. Map
''

·t···

types similar to those used in the general scheme serve to detect sharing. Where the
.,

' ' . ' .
maps in the general scheme use stream addresses to refer to the encoded values of

o~jects, the maps in the local scheme use sta~dard object references.

The /oca!_put and. loca/_ge1 operatitms for primitive types srtnply copy their

arguments into the receiver's address space. The local_put operation for arrayrrl
'.

constructs an array[M R(T)] in the receiver's address space. where the latter objec;t is
" '< •

constructed by replacing each arrayf11 e.lement with the result of its. loca/_put

operation. The local_get operation constructs a new array[J1 by replacing each

element in the received array[MR(l)J, with. tJ:ie results of its loca/_get operation. The

loca/_put and local_get operatjons ofth~.othercompg;ite types behave analogously.

The loca/_put for an abstract type returns the result of applying xrep$/oca!_put ~
' .·. '
~ (:

the argument's external representation. The /~ca/_get operatio~ invokes xrep$/oca/_get
' ,; . '

~ ~

on its message argument

If every type in the external type cfosltre ofa tYf>e T has a trivial decode, then the

underlying representation of the T object is the MR(O object, and there is no need to
perform any translation.

-97 -

Conclusioas

In this chapter we evaluate our results. suggest some extensions, and list some

areas for future research.

5. l Summary and Evaluation

The scheme developed in this thesis is motivate4 ~Y the d~im th,at valu~
~i • ,,))·(! ~': - '

transmission for programmer-defined types should be un9er, the control . of the
" e<'. ' '

. . .· !L ' .: ~ ~ ; "

programmer. As evidence for this ~laim, the introduction d~rybes a number of
' !

situations in which the representations of values used within a guardian· are

inapprqpriate for communicating those v~ bd,wcnpardians. . , ·

We propose the external representation scheme qs. a. ,neans for defining
<. ~ : - - , •

transmission. To evaluate the merits ofthis scheme. let us review the go~ls set forth in
"4~· -~~ ' ~-· ' -,

".

Chapter Two, and examine how we have met them.
' ..

our. first goal was to permit rommunkating. gliardians tO use different

implementations for a comm~ data type, withot1fcat1$irtg ifrotnbinatOrial growth i~

complexity as new implementations are developed. The exte,rnal ,represeptation
·. ~ -', ; - ~-: ' - ·' - ,-:~ ~iJ!

schenie accomplishes this goal by serving ~ an information-hiding mechaniSITI. Since_
- > ~ ; - -·} - •• ; ::.. ;. [; : ;. • :. - ; '~ '

alJ .guardians communicate by encoding information in. a common external
.• • ••. -' <_,:.
} !

representation, no guardian depends on another's concrete representation, and the

introduction of a ne\V impJemen.u.~ion is ,~fllP'~fmnr:duptication of an old

implementation.

The ease of implementing and using a particular data type depends to a certain

extent on the simplicity of its specification. We feel that the external representation

-98-

scheme provides a simple way to specify the meaning of transmission for a type. The

specification for a programmer defined type T has two parts. The first step is to choose

an external representation type XT, for whkh transmission is defined. The second step

is to define abstract encoding and decoding operations, which translate between values

ofT and values of XT. Transmission is definedfbr•T·by the triple composition of the

encoding operation, the previously defined transmission operation for XT, and the

decoding operatioe.

Since the corrt'Ctness of a type's implenrentatfon depends on correctly

implementing the translation operations, the· progtatns that perform the transiation

should be easy to locate and verify. The programmer implementing a transrnissible

type must provide encode and decode operations to translate between concrete and

external representations. The input-output behavior of the encode and decode

operations completely characterizes the translation pr~ess. To verify ~hat transmission

is implemented correctly, it suffices to verify the encode and deco~eoperations.

·The responsibility for message constrbdion and interpretation is given to the

language implementation, facilitating thetaSk ofthe:pn)gtammer.

Although the scheme can be used wijJiout :m~anisms to preserve .sharing

structure and to transmit values of cyclic objects, we feel that the availability of such

mechanisms is a major strength of our 8chetrle. Later in this'chapter we wilt ·compare

our scheme to a simpler one that does not provide this kin(fot support

Finally, we require that our sche111e be a9~eptably efficient. Rather than attempt

to define "acceptabJy efficient," let us examin~; the areas where .~teiency may be al)

issue.

.. 99.

The first efficiency question we address concerns the expected complexity of the

user-defined translation operations. We may ~•,that ~ammers wiU attempt to

make the operations as efficient as ~le. · Jn: pa.:t~cu ... f, it .seem~ reasonable to

suppose that many transmissible types will be impleme,n~ having identical concrete

and external r_epresentatipns. requiring trivial translation operations.

The sharing preservation mechanisms increase the amount of work to be done •

. since objects must be entered into and retrieved from maps. On the current CLU
-

. implementation. it is possible to compare object ~ntitjr:~luoogh a simple pointer

romp{trison. meaning that stanchtrd hashing ~hWg~qnbe.useQ:to make.the map

. types quite efficient

The mechanisms used to facilitate transmission ot values of cyclic objects

introduce a potential source of inefficiency in the form of an extra level of indirectbn

in certain object references. This inefficiency can be reduced through a number of
, . - :·r:

optimizations described in Chapter Four. A straightforward optimization permits us to

restrict the run-time expense of using indi~t ,refereaces,., to .certain procedure
'

invocations, at a cost in storage. Slightly more ~icated optiftlizatians pe~it us,fO

eliminate indirect references entirely for certain types, through the maintenance of

·~levant infonnation in a library accesSible both to the' tompiter and the binder.

Finally. there are .several sp~i~J ~ thaLwe. ~rtio be ®mmon enough to
- c, ;; - l . .. • ·-

optimize speciany ... 8y
1
·re.cpgnizing .cl~.llSNi~'..~ .c;omlrete· and.:ekternal

representations. it is possible to make message construction and interpretation more

efficient. When all the translation dperatioos·tisdf ·to construct a message are trivial in

this way, the· expense. of constructing or interpreting a m~ge is comparable tO

copying the object whose vaJue is being transmitted. When communicating guardians

-100 •.

reside on the same node, it is possible to reduce the work associated with message

transmission to a significant degree by taking advantage of shared memory, as we
,,

discuss in Chapter Four.

5.2. Tran~mit~i~ Unt.Yped Objects

. .
Our scheme may be extended to permit guardians to ~eceive messages without

decoding the contained values. For example, a file server guardian may provide
'·;. ~ -:

reliable storage for information belonging to other guardians, without regard for the

content of the information. In particular, it should be possible to store and retrieve the
c ' ~ ' i ' .

~·-

value of an abstract T object using such a server, even if the T type is not supported at

the server's guardian. To provide this capability~ we introduce an image type. An
'

image object may be viewed as an undecoded message containing value of

transmissible type. An image is constructed from a transmissible object using the same

value encoding mechanism used to c00$trUCt . m~ges.. TAe value' decoding

mechanism is used to reconstruct a coPY of !he,, object orjgiaal_ly. used to construct: the

image. Images are immutable and transmi~ble. ~d httl{~ ~e .follow.iqg operations.

encode_value: Pf'Octy:pe[T: t.ype](T) return{imge)

Encodes the value o~ argl into ~e result

· decooo_value~ proct.rpe[T:. t.JP•Jfi•ge)- r.sturtta(T)
s1gna11(wrong_type) -

Returns an object constructed from Qllfl. 0

Let A be an object of type T. The relation df iinages fu transmission mechanisms can

-101-

. be summarized as follows:

image$decode_ valuerrJ(image$encode_ valuerrJ(A)) = T$1 ransmil(A.
message_contextScreate())

Images resemble CLU any's, in that they are · tiSeful~ 'for managing objects

independently of their types. However, there are sever8:1 important differences

between any's and images. First of all, "any" describes the behavior of variables. not

objects. Unlike image, any is not really an object type. Secondly, images are
..

transmissible. while any does not have a transmit operation. Finally, there is no sharing

between an image. and any other object. An object, ari" image created from it. and an

object created from the image are all disjoint. By C<?ntrast, when an object is ~igned

to an any, and when that any is forced. the original object, the any. and the result of the

force are identical.

Images can serve as a convenient way to store values on secondary storage. By

making images storable, the same 'encoding and ·decoding ·operations can serve both for

storage and transmission. Furthennore, ·the representation fo storage of· a value is

independent of the concrete representation used by the creating guardian. A guardian

may store an image constructed frol)l a T object iw aconda{y storage. change the

concrete representation used by its T cluster, and still be able to retrieve the stored
.;

value (as long as Ts external representation remains unehanged).'.

The most convenient way to encrypt values kept ift secondary storage may be to
. n ' .. ~ ~ ~

provide the image type with encrypting operations. rather than providing each storable

type with its own encrypting operatioe.

Images also provide a way to copy transmissible objects. An object may be

~ 102-·

copied by encoding its value in an image, and then decoding the image. The result will

be a completely disjoint object, having the same value- as;the original.

5.3 Implications of Own Data

The principal result of extending the communication primitives to a language

including ow11 data is to make the optimizationsdeScribed in the previous c~apter more

difficult

By distinguishing between modules that may encounter objects represented by

ufo's, and those that may not, we were able to restrict the execution of careful

prologues. This optimization depends on our ability to guarantee that two conditions

hold:

No indirect references to objects exist whjle normal modules are
executing (i.e. when a receive is hot in pr~).

Only careful modules can execute while a receive is in progr~ ·
~

Since normal and careful modules share o.wn variables, unrestricted 1,1se of own

variables may subvert the dichotomy betw~~ the two kinds of module versions. For

example, the careful version of a module may store a reference to, a ufo in an own

variable, which may later be operated upon by the normal version, violating the first

condition. Another kind of problem arises when a normal module stores a procedure

in an own procedure variable. The careful version of the module may violate the

second condition by invoking that procedure, suppfying an' indirect reference as an

~rgument.

We can avoid these problems by brute-force m~thc>ds, perhaps, by traversing own

-103 -

variables at the ~nd of a receife. or by requiring that procedllre variables always refer

to careful versions of procedures •. More refined· method$ UB~dly exist, but their

pursuit is best left to individual implementations.

5.4 Operation Extension by Overloading

,. Value transmission for an object is performed 'by the transmit operation of its

type. The method used to provide an abstract type with a transmit. operation, differs

significantly from the way abstract operations are usually provided in CLU. In this

section we examine the rea5ons for this difference. In the f<;llowing ~ction, we suggest

ways in wfocti. the me~hod used to implement 'transmit ·may .be generalized into a

methodology for implementing other operations of abstract type.

Certain operations, such as identical, copy, and transmit, are useful to a wide

variety of types~ The language provides these :op,eiations for a· collection of built-in

types, and it is frequently useful to provide them for abstract types. We will identify

three approaches to providing such operations. The first approach, which we call the

automatic approach, is to have the language implementation provide the operation for
. .

the abstract type, usualfy·in ·terms of the operations· of the ronctete representation' type.

The Identical operation was defined 'in this way. ln general, this approach is

unsatisfactory, since the exact meaning of a type's oJ>erations (e.g., copy) depend on the

abstraction, not on the type~s implementation.

The second approach, which we shall call.the-1M1erloqdi,,g approach. is the one

currently used in CLU. The language provides the built-in types with a collection of

standard operations; the cluster implementing an abstract type may include procedures

to implement the correspanding operations~ The· ~language requires that these

-104 ..

operations have standard interface specifications; for example, TScopy should have the

form:

copy: proctype{T) return•(T)

CLU suggests guidelines for, amropr.iately defining. T$copy,. although the language

does not attempt to im~ further f~ricti~,¢ither .. QR the meaning or on the

implementation.o~the operation.

In Chapter One, we observed that an abstract type's transmit operation cannot be

provided automatically~. ·One of the main c9~Jusioos of this thesis is that it is equally

undesirable to provide.abstract 1nu1sm;t opeAttiefJ~.bYJl~iflg. We.claim that if

users are given complete freedom to illij>leme~lf(lf1S'PiJ, ~•»the f,llQblems ()fsharing

preservation ~d representation standar~tioa remain. -unsolved. in any practical
. . .

sense.

Let us briefly examine the problems that arise in an alternate scheme using

overloading to provide abstract transmit operations. The image stream scheme used in

the CLU reference ,ll'.lanual to store values 011 secondary storage is used .to·construct

. messages. Image streams behave like the m~ge str~ ~. (!arlier in this thesis.

All of the built-in types are given encoding ~;ons •:LiQSert ·aiv.alue·into an image·

stream, .and decoding operations to extract a value from an image stream.

Implementors of abstract types are expectedto provide their types "'1ith encoding and.
,. ~; < - ' ' ' ., ;~;; ,;' ~~ jt;' ,~~- !.,' ', .

decoding operations, constructed from the entoding, arid $coding operations of

subsidiary types.--

The first problem with the overloading scheme is that it is much more difficult to

verify that information is being transmitted in .tlle .. ~rrec.t format. In any scheme,

-105 -

communicating implementions of the same . type must agree ·.on an intermediate

representation for values of the type. Using image streams, the compi\er cannot-check

whether an encoding operation that may invoke a number of subsidiary encoding

operations produces a correctly typed intermedfbte ·representation. ·On the other hand,

the transmit operation permits static verifreation that· ·the correct external

representation type is used by a Cluster. -simply by t~cheeting the mCode and decode

operations. Of course, neither scheme can completely eliminate the pOssibility of

error; however, the transmit scheme offers greater protection.

The·second problem with the overloading sdreme is the Cliflictllty of preserving

sharing. The encoding and decoding· opemtii>ns of'the objects,being ~nt must collect

. sharing information- and encode it explicitly into the it.ream. One might think that the

task could be facilitated by providing·cthe programmer with aceessjto encoding and

decoding maps. In fact, we have considered many such schemes. Unfortunately, we

have been unable to develop a scheme that did not seem exc~ively complicated and

awkward

Transmit is only one of a class of operations that are difficult to extend using

overloaditig. We-susgest copy ss·an example of anomer such operation.· In CLU, the

copy operation is intended 'to have·the-fbUowingefl'ect:

. the copy operation ~oul~ p~Qvj~~ ,Q c"co~y'' .. of ;~)nJ>\lt opject,
.;' -. - l" - - -~ ~ ~ - J .- . - -- . - ~

such that subsequent chan·ges made to either the old or the new
object do not afT«t the :«her. fLiskclv 79.- p.80j

Let us examine an abstract type whose copy operation does not readilt lend itself to

extension by operator overloading.
•

Consider a file system organized as a directed graph, where non-terminal nodes

-106-.

are directories, and terminal nodes are files. A file is named by· specifying a path from

a distinguished root directory to the desired termil}al node. Files and directories may

be shared, since a given node may be acc~ible thtOugh one or more path$.

Consider the problem of defining and implem~a directory$copy operation

that is to be used to create backup versions or directQtje5. Gwen a directory,. we wish

to make a copy of the directed graph rooted at that directory. We use A' to denote the

results of copying a graph node A. We wish copy to preserve the sharing Structure of

this subgraph: i.e., if A, B, and Care nodes in the subgraph, and if,B and C share a

node A, then B' and c· should share A'.

These specifications cannot be implemented in a satisfactory manner using

operator overloading. The problem is essentially that the user is given no way to detect

non-local sha:-ing structures. The directoryScopy operation could conceivably be able

to detect when a single directory has two iinks to the same file, but there is no

straightforward way to detect that two distinct directories share a file. Furthermore, it

is difficult to prevent the copy operation from recursing forever when it is applied to a

subgraph containing cycles.

5.5 Operation Extension by Tftlplate

The third approach to operator extension. which,_ \\'.C ;caUUle templa_ . 'e approach, w• . .

used to provide abstract transmit operations. Using this approach, an operation

provided for built-in types may be extended to abstract types, but the language

imposes a rigid stmcture on the fonn ofthe·0periitio1t's implementation.·

For an abstract type T, we can informally describe the T$transmil operation in

terms of the following five steps:

-107 -

Step 1: Check for sharing.
Step 2: Encode the T value into its external representation.
Step 3: Ttansmitthe external rtpresentation.
Step 4: Check for sharing. .
Step 5: Decode the external representation into a Tobjeet

Steps One and Two are performed at,the-sending guardian. While steps :four and Five

_ are performed at the receiving guardian. -The lan~-oontrols thejbtmof transmit,

·while the user coi:itrols its meaning throttgh the prtwision of the encode and decode

operations used in steps Two and Five.

In the remainder of this section, we will ex~wi,ne hpw this approach can be
, .· - . . - ~ - - - . - ' .

generalized to extend an arbitrary ·operation, and we will review a number of

operations whose. implementations are bettei''effette'd by using tettipJams than· by using

overloading.

We assume that some collection of built-in types and type cpnst,,ructors is
- ~ . - ' _ ... · - ' . ' _.. '

provided with an op operation. For each such type S. S$op has the following interface
. ~. . . . ·'

specification:

?~-J·

op: proctype(AT1 •... ,AT0) returns(RT1 •.... ,RTm) signals(...)

where each argument type and each result type (~ -~~ ;md exceptional) .is either

a built-in type, or S. We use I to denote the set of indices i such that ATi = S, and J to

denote the set of indices j such that RTj = S.

To extend the op operation to an abstract type T •. tl1e T cluster must provide

trans/at ion operations. denoted here by T$op4 eticade and T$DpJ,/ecQde_. tlbe op~

operation encodes the value of an argument of type T into a value of a special

representation type ST, where ST has an op operation. The op_decode operation

-.108-.

accepts an argument of type ST, and returns· a result of type T.

op_encode: proctype(T) returgs(ST)
. signals(encode_error(string))

op_decode: proctyp,e(ST) .. ret11rnt(T)
signals(decode_errort str'fng))

T$op is defined in terms ofST$op in the following way. An invocation such as

causes the invocation of:

YI' , ... , Ym' : = STSopfx I' , ... , x0 ')

where the values of the arguments to ST$op ~re' defined by:

The translation between the arguments to TSop and the arguments to· sTsop is also

sensitive to sharing, 'in the fOlfowing way; AiNnV'Otatrons ofop take place with respect

to a given context, where_~ context is ami!ogeus·\ttfthe message· context defined in

Chapter Two. The scope of a contexfis tf~ffne'd as ·ftinows; Whert.TSop is invoked

drrectly from a user program, a new context. It credted. 'When an In vocation of !$op

causes the invocation of ST$op, the :latter occurs witti' respect to 'the same context as the

former. ·For all invocations of T$op occurring with respect to the ~me context, the
:.-:1. c.

following condition holds: if two argµments to T$op share a T object A, then the
' ~ ..: . : '

corresponding· arguments to ST$op will share a ST object A', where A' is constructed
. ,

from A by a single application of T$op_encode.
'

If ST$op returns normally, then nop reti.J'rns nomtalJy, and the values of its

results are defined by:

-109 -

yj = T$op_decodt(yj ') tor j € J.
Yj = yj' otherwise.

Sharing among the results is preserved m the saln~ w~··t. as sharing among the

arguments: for all invocations of STSop occufring_ with ~Peet to .the same context, if
' <" , . - ·- •

two results of ST$op share a ST object B'. then .the corresponding results of T$op will
'. ' • • -~ • - ; ; • .? ~ ' '. , -

share a T object 8, where 8 is constructed from 8' by a single application of

T$op_decode.

If ST$op mises an exception. then T$op raises the same exception, and any

objects returned by the exceptions are ,treated ~ .. ~dts; i.e .• if STSop;s exception

returns a ST object, then 'f$op's exceptiQn •returns a T .f!l\ljec_t .. conStfJ.Jcted. from the

corresponding ST object by an application of T$op_decode. Finally, if op_encode or

op_decodesignal an exception, then T$op sigt\alstMt'SSnte exeepuOri.
·- -'" "'-.

Templates are. useful for .defining op~rations 0~4lt are se~itive to sharing

structure .. Since the op_encode and .op...decod~ ope~s ESOCiated .with ~h-an
- -.: • ' > ~ • ' • , • • c -

operation are applied by the Janguage, iµiplenienta~n. opt, by ~, programs. the
-~ - ' ' . .

language implemenuwon can do the ~keq>il}&~~uired to .-ecopize and keep track

of .sharing. As }Ye have repeateqly argµep. in ttie ~ ~.the traf1,Sl1Zjt operatipn, ~

kind of bookkeeping is tedious and error"'.prone ;fJ>effP((lled ~~the.user.

Template ·definition may be vie~ed as a control abstraction; th~ cluster writer

who defines an opemtion using a template d~fini~io~ n~d not be concerned with the

mechani~al details of sharing preservation, but ·the fact that sharl~g is preserved may
. -,: ~ ' .

be quite important The programmer is free to concentrate on the individual

translation operations, while the language implementatio!), ~nsures that. they are

applied correctly.

5.5.1 Revising Standard CLU Operatiom

The first examples we will ~xamine ar~ staudar4, CLU operations. As illustrated

in a previous section. the problem of sharing pi:~rv.~tipp ,,m~es the c.ppy op(!ra,tipn

difficult to extend satisfactorily using overloading. By using a template structured copy

operation. the language impternentation can aetect sttaring. white the m'eaning of the

·operation can be controlled by user-defined copy_;.t!ileade andcopy_decEJdeoperations.

For some typ~. copy will just copy the underlying cont:f~te represcn~tion object

Jn that case. copy_encode and' copy_decode may just perform up and d~wn conversions.

As an example of a type requiring more sophisticated translation operations. consider a

PT (protected T) object a>nsisting of tl T otJject protected-by :an -asrociated semaphore.

When the PT object is copied, it would make'DG seASe ·to copy.the state of the

semaphore. which may contain a col1ection of v.·aiting processes. The PT$copy_encode
. .

operation returns the T comf>onent without the associated· semaphore. while the

copy_decode operation accepts a T object. creates a new semaphore, and then combines
·f'. ,.

them to oonstruct a PT object

CLU's similar operation is used to determine when two objects of.the.sarne,type

have the same infonnation content Precisely what ronstitutes the interesting

"information content" of an object is quite type-dependent For instance,

_arrayITJ$similar is defined to check. w~e.ther the.~wo~ay~ ~IJg.cq,mpared have the

same bounds. If so, then 1'$S!f!!ilar is used to· wst pl}irs pf,wrr~p~>nding elements for

similarity. J fall of these-~ sa>ceeed, then the twq.arJll)'S;~ ~med to be similar.

The definition of array[T]$similar could be. altered to encompass the sharing
..

structures of the arrays being compared. Two objects may be compared as directed

- lll -

graphs of objects, where nodes represent compo~~Pt obje.Qt.s, .and.- edges repr.esent

logical containment Let us define a g/obally_similar operation for the built-in types to

test for similar objects having the same structure as directed graphs: Individual node

similarity is tested in the usual manner.

9.lobally_siailar: proctJpe(T. l} -~et.,ur.n•flPool)

Global . sharing structure is recognized ey., :~muhatjng a; ... le' Qf C()ITesp0,n0ln8

components of the objects being compared. If at any time, a component of one object

cC>tresponds to more than one ~omponent of the bther, then the objects are not

globally _similar.

We observe. that sinee· globally_1imilar retums,no:objects of T type, there is' no

need for-a.decoding translation operation.

When comparing the values o~ objects of the protected T type introduced above,
·'·'.

let us _assume we only wish to compare the values of ~e T components;. we do not_ wish
: .: _;.

to compare the states of the associated semaphores. Under this ~umption, the
•:". :·

encoding translation operation only needs to extract and return the T component of its

PT argument.·

5.5.2 1/0 Operatiom

We have observed that template definition impostS"a rigid Structure on the form

of an operation's hnplementatioil. A henerttof this ngidiiy iS that it becdriies ~1e

to use 'template structured oJ)erations to define interfaces; betw~eri 'autonomous

domains such as guardians. We have already seen how the structur~ of the transmit

operation permits a division of Jabor between the communicating guardians, and

.. 112-.

between the language implementation and the duster writer. A large class of

operations that not only involve sharing detection, but .that. require a. degree of

standardization among autonomous guardians, are operations to perform input or

output activities using the values of abstract objects.

The first l/O operations we will examin~are used to store and.retrieve the values

of objects on ~ondary storage. Let us defri\e slore and ~retrieve operations for· the

built-in types, having the following interface specifications: ·

store: proc(T) returns(file;....name)
retrieve: proc(f ile_name) returns(T)

(!

Mechanically copying objects' concrete representations to secondary storage is not a
.:• ,,_

satisfactory way to implement store and retrieve. To illustrate this point, we recall the

protected T type. When storing the value of a protected T object, it makes little sense

to store the state of the associated semaphore: Similarly, overloading is not a

satisfactory way to implement store and retrieve, for two reasons. First, we would like

to control how sharing structure is preserved. Second,. we woµld like to use static

. type-checking to ensur~ that values of a type are stored in a .~~~rd format, since we

would like to share stored values with other guarcliaJis tbat might use different concrete

representations. for the type.

' I " ,

We may extend store and retrieve to abstract types by selecting for each abstract

type T, a stable representation type ST, with appropriate translation operations. We

recall that by using a standard external representation, T values could be

communicated between different implementations of T. Similarly, the use of a

standard stable representation permits different implementations of T to store and

retrieve one another's values. This may be particularly useful when replacing one

-113 -

version of the T cluster by another; by leaving the stable represel)tation uochange4 the

new version can read values previously sto~ed,by, 019 versiOD$.:

Another operation that should be sensitive to sharing structure is the display

operation to display values of obje~ts to humans. Display 'requires an encoding

tr~nslation operation, but no decoding trausl;iti01;1,op~~~ .. The· di:Ip/op ·operation is

partkularly usefu~ for debugging. When dehf.1ggi9i a .. P~ that uses. a data

abstraction T, the best way to display a T ob~f ~ v~~js <n~ n~rity to:·display the

value of its representation. For instance, when debugging a program that uses a

symbol table, a simple display of ~iated tey-ittht pairs \vilf be more:useful than a
. ' ~ ' ' - : . . , s ' . . ' ; . -

more complicated display of hash ·tables and list structures. This kind of display .is

particularly appropriate for remote debugging, where an object of interest resides on a
' ; • ; > - - -

foreign guardian using a concrete representation unknown to th.e debugger. On the

other hand, when debugging the symbol table cluster, the value of the representation is
• -J • , • : ~

of interest.

We do not intend to explore the difficult qtiestion ofhow values are to be

represented to users: however, ·one could imngine 'dispfaying' an objett's va:lue as a

directed graph on a high res6lution cathod~taf seteell.' 'The b'uiJt.:irF types and type

constructors may be given a standard display representation~Which may be extended to

abstract types by selecting for each abstract type T, a,display representation type D'f,
~ ' • > ~ • • ' I ' • -

with a translation operation from T to DT. The; inverse translation from DT to T might
•. ' ; • • • c,• ,' ¥ ,_..; "_.{' ,•', >\ •:; •:\ •,

be used to define T literals.

~ 114-

5.5.3 Conclusions

Operation extension by template ~ti~. appears to have two advantages. It

serves to implement sharing-sensitive operations tOr abstmct types in a way that is not

currently possible in CLU. Furthermore, template definition eases the standardization

problems that arise in a distributed system:· aith0ugh· 'we cannot guarantee that the

information being released by transmit, SlOre, bt display is correct, ~e can guarantee

that it is in the correct fonnat

When defining template operations that ope~te on c)!Clic·objee~ one encounters

the same p~oblems we . encountered . earlier . with, •... self-refer~ntial external

representations. If we make the ~me choice. w~,mad~ for tron$111il~ w~ may, operate on

arbitrary cyclic objec~by imposing res~jc~s on f>P ... dec~·oi>etations. . Th.e language

implementation must then introduce uninitialized object versions in the manner

described above.

.. On the n~ve side, there may .b~ an efficiency -pellftlty. ;to having the language

imple~enta~on. app~ tr~nslation ~ratiQqs 4Jld c~ for-~~. A programmer

having semantic information about an abstraction can detect optimizations' tJlat; the

language implementation cannot By expending more human effort, in is undoubtedly

possible to improve individual implementations. 111\!rt·;~ lc~ari.cterlStic tfade-~ff
between the increased convenience aJ1d ~~liq~ility provided by template-structured

. .~~·:: ·r~~·r ,-.:: ~-:., .· ·' :~ _,

operations, and the ability to construct optimiz,atic>ns on .~n i!l!iiy~dual bas.is Pro-Y:ide<J
". > ; ' ' . :' . " ~ . ;,~:.. ' '. ·~ '.;. . .

by overloaded operations.

-115 -

5.6 Applicability to Other Languages

,Since we have presen~ our communreation ·primitives as· an extenSion t6 CLU,

it is natural to ask how readily our primitwes·-aan be adapted footheflanguag~

One aspect of CLU th8:{: is ,essential to pur .scheme ~ ~ notion of data
'

abstraction. One of the principaJ_;motivatioµs is ~J~~~iefJbatdifferenti:epresentatiODs

of infonnation are appropriate for different purposes. ':Tite:lepr~~" us,ed· .to

transmit a value between guardians may be different from the rep~esentation used

within a particular·guardian, and different representations 'tbt ObfectS ·t>f a type may

used at different guardians; If the· language· rontains· no facilities for encapsulating

representation infbrmation,: then rommunication affldng 'diffetihg; imptementations

must be based on voluntary ronventiOfts. notdtt:laa..,....featuteS.

The fact that CLU is an object-oriented language, as opPQSCd to . a

variable-oriented language, is not crucial to our scheme. Although we have spent

much of OtH' effort defining'the :effects of tmnsrnmion'on strarlng sUucture~ the same

problems atist in languages ha\1ng apficit reft:~ types;' rmti the sarrie''sotutions are

applicable.

S. 7 Directions for F•arther Researdt

Defining value transmi~ion is only the first of inany · diffl~lt problems in the

development of communication primitives' for a: distributed appUcatio~ language. A
-;:'- - .. ~ ! : : .O'.. •i

comprehensive survey of the outstanding research areas in this field could easily fill

another chapter; accordingly, we mention only those questions that arise directly fTQm

this research.

-116-

Rather than limit messages to the value of a single object, it may be convenient to

introduce explicit message types. One possibility is to define a m~ssage type as

consisting of a tag followed by objects whose values are transmitted together. Port

types would consist of a list of message types. Examples of message types an~:

employee-(nat11e: st1"1ng, salary: 1nt) ·
error(message: 1trin9)

If two objects whose values are sent in a m~e.sb.are a component, it must be
_,. .. ' . , ' ·,

de<;ided whether the objects constructed by the receiver sh91Jld ,also share. If that

effect is desired, all the objects in a m~~e ,sh01.dd b~ e~oded ~.d decoded in the

same message context. Alternatively, if the opposite effect is desired, a distinct

message cootext should be used for each Object.

An alternative to explicit m~ge p~g iJs 19. s~rt . .inter~guardian

communication by remote procedure invocation. The value transmission mechanisms
. ' . .

developed here can be used to passJlf~u~entsJrom tlle_invokin&:suardian to the

guardian where the requested action is carried,out. and.tp re.tur,n.any results. This kind

of remote invocation differs from usuaJ p~ocedure . in vexation. in CLU. where

procedures pass arguments by s1'a,riµg objQCts between. ~ . qil4:r aµd . the called

procedures. Remote argument passing resembles traditional call-by-value scltt;mes.

· We feel that value transmission is better suited to remote invocation, as node failures

and inherent unreliability in the communitation tnedium 'C:ah caOse remote· invocations

to fail in ways that are not ~ible for local invotatiolts.. .. I

ln .summary, the value transmission ~heme;dcv.eloped here can be adapted to a ·

number of different communication primitives. Determinin,g the best scheme (or
~. . . ,

schemes) to incorporate into a language is an area that would benefit from further

-117 -

research.

The send and receive .statements used in this thesis were defined as simply as

possible. Such simple send and receive statements are probably not the best choice of
.

primitives. Actual language primitives would probably have to be more sophisticated,

and would certainly have to addr~ i~es that we h~v~ avoi<led.: .. Foi:~e1'ample, it may . ' ~: - -

be useful to provide primitives to support patterns of~o~munication; 'such as remote

procedure invocation, paired requestS and' respon$es~· of fo..Warding of requests to other

guardians. More research is needed to determine which :of.these patterns. if any,

should be stipported in a higher·Jevet ·tanguage.

We have made no mention of the degree.of~i~t.y prpvid,eJtby the:seQdand

receive primitives. The send primitive may or may not attempt to retransmit m~es

that-appear to have been)()St,. and it rriay or may not cause tile same ine~ge' to be

received more than once. The degree of reliability built into a primitive undoubtedly

depends on 'its·form: a remote invocation pnmitivl\vduf(fhave.to be. fairly reliable,

while a simpte send nee~fnot be. The inhetentunrefiabttrty or a distributed. 8Y8tem
may· rompticate the programmer's task;· the degree to· which the· proper choice of

communication primitives' may, ease such' problems is an nrtp0rtant area for future

research.

We h~ve used ports w indicate .the *8ti(la~ pf -'11~ Qnd to insufe type

correctness. We have not addres.~ecUiow .. _po~ are ~~i~ '¥' ~wbethel: wrts are really,

the best way for guardians to name one another. The question of inter-guardian

naming depends on a~mhptions · abritit · the · dfganizatibns: i 'bt :. ptograms, and the

organizations ofguardiant

-118 -

We have not given a fonnal semantics for value transmission. A number of

approaches to formal description of object-oriented languages exist [Berzins 79.

Schaffert 78, Scheifler 78); it would be interesting to extend these descriptions to value

transmission.

The scheme developed in this thesis pennits guardians to change the concrete

representation used for a type without that change being visible outside the guardian.

We have not provided any easy way to change the external representation used by an

abstraction, as such a change requires changing implementations at all guardians

supporting the type. Changing a type's external representation is a special case of the

general problem of replacing programs in a distributed system.

Finally, we have noted that the template scheme used to implement and define

transmit can he extended in a very straightforward manner to implement _and define

such operations as copy, similar, store and retrieve, and display. [tis natural to enquire

whether other operations may be defined in this way, and whether other kinds of

templates may be useful for defining other operations.

This empty page was substih1ted for a
blank page in the original document.

-119 - .

References

[Atk1nson 76] R. Atkinson, "Optimization Techniques for a Structured
Programming Language, ff •• S.M thesis, Massachusetts
Institute ofTechnology, May !976. ·

[Berzins 79] V. Berzins, "Abstract Model Specifications for Data
Abstractions.'' M.l.T. Laboratory· for Computer Science
TR 221, July 1979.

[Crocker 75] S. D. Crocker, "The National Software Works: A New
Method for Providing Software Development Tools Using
the ARPANET," Proc. Meeting on 20 Years of Computer
Science, Pisa, Italy, July 197S.

[Fabry 76] R. S. Fabry, "How to Design a Syste111 in Which Modules
can be Changed on the Fly," Proceeding of the Second
International Conference. on Software, Engineering, San
Francisco CA, October 197f., pp. 470-477.

[Feldman 79] J. Feldman, "High Level Programming for Distributed
Computing," CACM 22, 6, June 1979, PP~ 353-367

[Friedman 76) D. P. Friedman and D. S. Wise, "CONS Should Not
Evaluate its Arguments," In S. Michaelson and R. Milnor
(eds), Automata, Languages and Programming. Edinburgh
University Press. Edinburgh 1976, pp. 257-284.

[Gligor 79) V. D. Gligor and B. G. Lindsay, "Object Migration and
Authentication," IEEE Transactions on Software
Engineering, Volume SE-5, 6, pp. 607-6U

[Haber 78) N. Habermann, "Dynamically Modifiable Distributed
Systems," Proceedings of the Dlstribut~d Sensor Net
Workshop, Cafl\egie-Mellon University, Pittsburgh PA,
December, 1978, pp. 111-114.

-t20-

[Hender 76] P. Henderson and J. H. Morris. "A Lazy Evaluator,"
Proceedin~ of_~e Third ACM Symposium on Principals
of Prograinmingl.anguages, 1976, pp. 95-103.

, [Levine 78] P. Levine, ."FacilitatingJnterp~QC~ ~,nmnication in a
Heterogeneous Netw<>a:t'Eq~i~went''1d.J.T. Laboratory
for Computer Science TR 184.]uty 1977.

[Lis1mv 79] · B. Liskov.·R. Atkinson, T. Bloom"E". ~.~,C. Schaffert. B.
Scheifler. A. ·snyder. CLJ.t R~r~reAGi;:¥anual, M.I.T.
Laboratory for Computer SCience TR. 225, {)ctober 1979 .

. '
[Liskov 79aj B. Liskov. "~rimitives: for .•. Oi~~t>µte~ · Computing,"

Proceedings of the SevA:nth. SympQSJurn. on Operating
Systems Principals, :p~rflc Grove CA~ ·~mber 1979, pp. . ' .- - _,. ,,

33-43.

[Neigus 73) N. J. Neigus, File Trl\nsfer Prowcot. NlC \17759, August
1973. '

[Postel 74] J. Postel, ''NSW Prot6cols Version i•"' Stariford 'Research
Institute, 1974.

[Reed 78) D. Reed, "Naming and Synchronization in a Decentralized
Computer Sy~," M~I·T.~ .~lQ,l'Y nfof GQn,lpu,~r

.. - . . - • - , • ~ .i ~ ; " •. .. + - • • ' • + • - J

Science TR 205 .• Septem~~ J91.8: . · , · ~ , · · ·

[Schaffert 78) J. C. Schaffert, "A Fonnal ~fini~Qn- ofCLU," M.l.T.
Laboratory for Computer Scienee tR 19j~ January 1978.

(Scheifler 781 R. w. Scheiner. ~.A Deootauc>n~fs~~ntics :of CLU/'
· · M.I.T .. Laboratory_ for Cptnp~t~f ~l.e~f TR 201, May

[Snyder 79)

}978~·· . -, ,. "!l· .· ,.'j,! '1..1iu:_:~.-~.~

A. Sn yd~ "A Machine Arcb:itectu~ W Support an
Object-Oriented Lan~ge_,"_

1

• MJ.f.· '· ~ratory for
Computer Science TR i®: Mar:th ~- · ·· . '

-121-

[Sollins 79] K. Sollins, "Copying Complex Structures In a Distributed
System," M.l.T. Laboratory for Computer Science TR 219,
May 1979.

[Svobod 79) L. Svobodova, B. Liskov, D. Clark, "Distributed Computer
Systems: Structure and Semantics" M.l.T. Laboratory for
Computer Science TR 215, March 1979.

[felnet 73] Telnet Protocol Specification, NIC \18639, August 1973.

[White 74) J. White, "The Procedure Call Protocol Version · 2,"
Stanford Research Institute, 1974.

[Wulf76] W. A. Wulf, R. L. London, M. Shaw, "Abstraction· and
Verification in Alphard: Introduction to . Language and
Methodology," Carnegie-Mellon University and USC
Information Sciences Institute Tech. Reports, 1976.

'------------------------------ ---

SECURITY'CC.ASSlFICATION OF TinS flAGt: (WllM ,,. •• an •• ,...,

T. REPORT NUIR«« ·· ·· 2. CfiWt· ACC*UION NOJ"$o'·,.,., ... ,,...,"'.'".:S.CATAi5""G tWIHfT~

MIT/I.CS/TR-234
4. TITLE (Md Su1'tllle)

Transmitting Abstract Values in t-Essages

7. AUTHOR(•)

Maurice P. Herlihy

9. PERFORMING ORGANIZATION NAME AND ADDRESS

MIT/Laborato:ry for Cooputer Science
545 Technology Square
Cambridge, MA 02139

I. TYPE OF REPORT 6 PERIOD COVERED

M.S.Thesis-April 25, 1980
•• PERFO ING ORG. REPORT IJHIMBER

M?T/!CS/TR-234
I. CONTRACT OR GRANT NUMBER(•)

N00014-75-C-0661
M::S74-21892 AOl

10. PROGRAM ELEMENT, PROJECT, TASK
AREA a WOltl< UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 7NSF /J\SSOCJ.a;te ~ 12. REPORT DATE

ARPA/Dept. of Defense . -.. Di.rect.Or,tOff±oe.Of:: May 1980
1400 Wilson B:>uJ.evard CfiiPltiftcj Jet.iv.i.tes 1-.-fil-. _N.;;;.UM-a-E'"""R_O_F,.._PA_G __ E,.,.S-------l

Arlington, VA 22209 -;;• _;:. Jtan, OC 20550 U3
-n. MONl'tORING AGENCY NAME a ADORESS(ll dltt.,..t 1tmt Con#Olllnl Offlc•) II. SECURITY CLASS. (ol Ihle report)

CNR/Departnent of the Navy
Infonnation Systems Program
Arlingon, VA 22217

16. DISTRIBUTION STATEMENT (of thl• Report)

unclassified
Tsa. OECLASSIFICATION7DOWNGRADING

SCHEDULE

'!his docuaent has been ai;:proved for public release and sale;
its distribution is unlimited

1~ SUPPLEMENTARVNOTES

19. KEV WOADS (Continue on rev•r•• aid• II nee•••_,, Md Identify by 1'1oclr nU91Hr)

Abstract types Programning Languages
Distr\i)::uted Systems ~ MetOOdology
M:!ssage Passing '
M:xlularity
Cl:>ject~iented Progranming

20. ABSTRACT (Continue on rever•• •Id• II nee•••_,, .,.d Identity 1'y •toe.Ir n1m1nr)

'!his thesis develops primitives for a programni.ng language intended for use in .:
distributed oarputer system where individual ooQe8 may have different hai:dware
or software oanfiguratians. ~ primitives are presented as extension.S to the
CW language. \'e assume that differences 1n hai:dware arxl in administrative
policy require that individual oodes be free to choose their own local ._,
representations for cxmron types, including user-defined types. Our : ma.in
objective is to provide primitives to camunicate values of user-defined type •
. Q:u:: .primitives ~-a l.arqe -"' .of- .-., -L . '1' • ~.. .. ~".mu-

DD FORM
1 JAN 73 EDITION OF ' NOV .. rs 08SOLETE 1473

SECURITY CLASSIFICA'TION OF THIS PAGE<""• D•t• Bntered)

20. .t.. ,...._.,:.;,....,..../'i,..,,. nodes ha.Ve · ~..;·;.:;.;;_.of·,,,.._ -....i-.-~s __,.,ial
l...µCI.(,.. ~-- ~"':f . prior n.&.Jl.IW<L.-...~ ~,.., . -r--.
~i.stl.c&. we~- that the prec~ meeni:ng'O.f:value·t:rananissiai
is type-dependent; thus the user, fK>t the language, nust cxntrol tjle
meaning of transmission for values of a type. ·

u

" '

